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Abstract

In the underwater domain, optical sensors are extremely limited with re-

spect to range, resolution, and accuracy in comparison to most terrestrial

remote sensors. The reason for this is the medium water, which heavily

interacts with electromagnetic signals and therefore reduces their corre-

sponding signal-to-noise ratio. Also, many underwater areas can only be

visited by remotely operated vehicles due to water pressure, turbidity,

and or strong currents, posing a high risk for humans. This combination

considerably increases the complexity of underwater metrology, and many

applications currently require highly skilled personnel and large support

vessels. Here, a simplification of these applications is presently effectively

prevented by the performance gap of underwater optical systems in com-

parison to their terrestrial counterparts.

Motivated by the above limitations, this research work evaluates different

optical sensing modalities when applied to the underwater domain and

identifies their possible sweet spots. Based on these considerations, sev-

eral novel fusion strategies for passive-active optical systems are presented

able to reconstruct whole underwater scenes with high accuracy without

relying on additional navigation systems. For their evaluation, a novel

self-referenced optical 3D underwater scanner is implemented and used

for several test setups as well as real-world scenarios. The implementa-

tion also includes a novel method for in-air calibration of flat-port cameras

and integration into bundle adjustment frameworks for visual pose esti-

mation. Here, the evaluation demonstrates that passive-active optical

systems outperform standard methods when underwater sensor motion

is a critical design parameter. The most significant advantage of self-

referenced optical 3D scanners is that they compensate sensor motion in

the same sensor domain as 3D measurements take place. This reduces the

complexity of sensor co-calibration, ensures a similar accuracy for sensor

pose and scene depth estimation, and broadens their possible application

to smaller sensor platforms.
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Chapter 1

The Vision of Measuring the Ocean

Measuring heights, widths, distances and positions with millimeter precision are es-

sential for construction projects, inspection tasks or documentation. The exact knowl-

edge of these quantities allows to stake-out buildings and infrastructure, calculate

volumes and angles and to answer complex research questions. Over the last sev-

eral hundred years sophisticated mathematical methods and technologies have been

developed to improve the accuracy for ever more demanding applications.

Nowadays, satellite-based positioning systems like NAVSTAR-GPS (USA), Galileo

(Europe), GLONASS (Russia) or Beidou (China) allow estimating the position of a

receiver around the world with an accuracy of up to several meters. In the case of,

known reference stations the accuracy can be even further improved down to 1-2 cen-

timeter using, for example, Real Time Kinematic (RTK) positioning. In combination

with 3D sensors such as lasers and or high-resolution cameras, local metric measure-

ments with millimeter resolution can easily be referenced to each other as a standard

tool for all kind of terrestrial applications.

However, in the case of marine applications, the medium water heavily absorbs

electromagnetic waves used by most modern sensor systems such as satellite-based

positioning or infrared laser systems. Also, the visible spectrum of light is strongly

affected, reducing sight distances to several dozen of meters which is further degen-

erated to a few meters or even centimeters in case of turbid water.

Taking away the most powerful tools for performing metric measurements, leaves

the underwater community with a half-empty toolbox. Therefore, many technologies

were adapted or developed to fill the gap such as acoustic-based positioning systems,

synthetic aperture sonar, laser systems optimized for the visible spectrum of light or

scanning systems minimizing backscattering. Here, one of the biggest challenges is

still the accessibility of underwater sides. Often areas in questions can only be visited

by remotely operated vehicles due to water pressure, turbidity and or strong currents,
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posing a high risk for humans. Having floating underwater vehicles as the primary

platform for performing underwater metrology is therefore still today a very time

consuming and error prone process which requires highly skilled personnel and large

support vessels. Also, due to a lack of a global reference system, underwater sides

cannot easily be referenced to each other, and low-resolution acoustic positioning

has to be deployed to translate positions on the seafloor or in the water column to

locations on sea level covered by global positioning systems such as NAVSTAR-GPS.

1.1 High Interest for Exploration and Surveys

Finding objects underwater can be still considered as looking for a needle in a haystack

even for objects as big as submarines or airplanes. The reason for this is that all

modern remote sensing technologies cannot penetrate larger volumes of water with a

reasonable resolution making it impossible to perform surveys of deeper underwater

areas via satellites or airplanes. Even ship based high resolution surveys are limited

to shallow water regions and autonomous or remotely operated vehicles must be

deployed to reduce the distance between sensor and seafloor for deep sea operation.

The result is a vivid market around underwater survey, exploration and metrology

services for all kind of applications ranging from underwater mappings of black smok-

ers to inspections of damaged ship hulls, mooring chains, pipelines, and foundations

or simply locating missing airplanes or submarines. Here, depending on the applica-

tion and the desired resolution, optical systems become more and more popular for

inspection tasks due to their order of magnitude higher resolution and accuracy with

respect to sonar based systems when operated under good visibility conditions.

However, there is still no universal tool available which can be configured according

to the mission goals to automatically deliver the best possible resolution and accuracy

under given circumstances. In contrast, highly trained personnel with a rich toolset

of different technologies are required to solve a single task such as measuring the

relative position of several underwater assets to each other or finding and inspecting

cathodic protections on underwater pipelines in a more or less manual fashion.

1.2 Limited Remote Sensing Capabilities

Underwater sensors are extremely limited with respect to range, resolution and ac-

curacy in comparison to most terrestrial remote sensors. The reason for this is the
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medium water which heavily interacts with any signal reducing its amplitude and in-

creasing the noise level. The only exceptions are acoustic based systems which benefit

from smaller transmission losses in water in comparison to in-air but have a several

order of magnitude lower working range than microwaves in-air or vacuum.

State of the art synthetic aperture sonar (SAS) delivers an along-track resolu-

tion which is range-independent and allows covering large underwater areas with a

resolution down to a few centimeters. The working principle is similar to synthetic

aperture radar (SAR) combining several measurements while moving along a known

path. However, while a typical SAS can cover around two square kilometers per hour

with centimeter resolution a state of the art SAR system like the Sentinel-1 can cover

around one million times more area in the same time frame at a few meter resolution.

Unfortunately, the same analogy applies to other techniques like LIDAR or pho-

togrammetry. While satellites can usually cover more than half a million square kilo-

meters per day, an autonomous underwater vehicle equipped with a high-resolution

camera would take more than 400 years to survey a similar area. In combination,

with a lack of a global underwater positioning system, it becomes reasonable why

underwater areas are very demanding to map, and large areas remain still untouched.

1.3 Previous Works

The first underwater sensing technologies date back to ancient civilization when ship

navigators used sounding leads to measure the water depth manually. These point

measurements helped to navigate in shallow waters and on rivers. Several improve-

ments and automation were carried out over the next centuries. However, it took

until the beginning of the 20th century when sounding was replaced by echo sound-

ing measuring the amount of time a sound signal requires to travel from an emitter

to the seabed and back to a receiver. By knowing the speed of sound in water, the

exact depth can be calculated. All modern active sonar systems are based on this

principle even if they measure or control additional quantities like the phase and the

amplitude to perform beam steering or to synthetically enlarge their antenna.

In the last decade, the resolution of underwater sonar systems has continuously

been improved by the usage of phased arrays and increased processing power allow-

ing to embed real-time synthetic aperture sonar within medium-sized autonomous

underwater vehicle reaching resolutions around 3cm while maintaining a 600m swath

discussed in the work from Shea et al. [2013].

3



Furthermore, underwater LIDAR, photogrammetry and structured light systems

are nowadays more and more used by the underwater community. However, the

main driving factors for these technologies are still terrestrial applications, and many

sacrifices must be made if these technologies are applied to the underwater domain

without adaptions to the medium water. In order to overcome these limitations, dif-

ferent techniques were suggested over the last decades addressing performance issues

such as light refraction, backscattering, and light absorption discussed in Hannon

[2013], Balletti et al. [2015] and McLeod et al. [2013].

One of the challenges using underwater cameras, or to be more precise light-

sensitive detectors or emitters, is their protection against the medium water. In the

simplest case, a planar window is used to separate the detector/emitter from the

medium also referred to as flat-port. However, this invalidates the classical pinhole

camera model, or in general these sensor systems have no longer a single viewpoint

showed by Agrawal et al. [2012] and Treibitz et al. [2012]. This none single viewpoint

leads to large model errors for many machine vision algorithm using this constraint as

a foundation to derive underlying mathematical models. To relax this, the primary

challenge is not the back projection which can be solved using ray tracing approaches

but the forward projection of 3D points onto the detector required for calculating

re-projection errors.

Modeling the simpler back-projection of 2D image points onto their corresponding

3D rays in the water layer allows triangulating 3D scene points observed by multi-

ple cameras or from different camera positions. Here, Treibitz et al. [2012] suggest

modelling the distortion of a flat-port with the help of a ray map describing the light

rays with respect to the flat-port interface. However, for calibration, it is assumed

the principal ray of the camera is orthogonal to the flat-port interface and also the

resulting underlying ray model is incompatible with methods relying on a perspective

camera model. A similar approach is proposed by Fan et al. [2017] to model the back-

projection of 2D image points onto 3D rays subject to refraction and to triangulate

3D scene points using active stereo.

To handle the more complex forward projection which allows to predict the po-

sition of a 3D scene point in the image domain and to apply iterative refinement

methods Agrawal et al. [2012] derived an analytic solution resulting in a 12th degree

equation for a planar glass-water interface. They also showed that pinhole cameras

behind a flat-port convert to an axial camera where all camera rays no longer intersect

in a common point but with a common line. Here, solving the 12th equation insight

an iterative refinement for every single 3D point is usually not feasible. Therefore,
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Jordt-Sedlazeck and Koch [2013] proposed to use virtual cameras for each 2D point

allowing to project the corresponding 3D point and to minimize the effect of refrac-

tion. However, the proposed virtual camera error function adds additional degrees of

freedoms for every image pixel during calibration and masks the actual focal length

of the real camera.

Yau et al. [2013] also built on the work from Agrawal et al. [2012] to perform un-

derwater camera calibration using the dispersion of light. However, instead of solving

the analytic forward projection equation, they computed the plane of refraction com-

bined with a 1D bisection search for the angle of a camera ray lying on that particular

plane in such a way that the back-projected ray intersects with the given point.

 Luczyński et al. [2017] derived a so-called pinax model for calibration and image

rectification from underwater cameras in flat-port housings. The pinax model is based

on virtual cameras also used by Jordt-Sedlazeck and Koch [2013], but instead of using

multiple virtual cameras for modeling the axial camera they search for a single virtual

camera which fits best for all camera rays. This search is supported by constraining

the distance of the camera focus point to the window. Furthermore, they propose

a 2D lookup table to correct distortion due to refraction. However, as shown in

the following chapters this introduces non-linear re-projection errors depending on

the image location and scene depth becoming increasingly problematic when used in

combination with iterative refinements.

With the help of refractive camera models, supporting efficient forward projec-

tion, it is possible to use them within a bundle adjustment framework for iterative

refinements. However, for this also a good initial guess for each of the camera poses

and 3D points is required. Therefore, Haner and Astrom [2015] derived non-minimal

five- and six-point PnP solvers using only co-planarity constraints for flat refractive

interfaces which can be used in a random sample conses framework. Also, solvers for

solving the refractive plane parameters are included using 11 and 8 points recovering

all camera parameters except for the perpendicular distance of the camera to the

plane assuming zero distortion.

Jordt et al. [2015] proposes a complete structure from motion pipeline including

the virtual camera error explained in Jordt-Sedlazeck and Koch [2013] to calculate the

residual during bundle adjustment and a refractive relative pose solver for calculating

the initial guess of each camera pose. However, as stated by the authors the proposed

refractive direct solver is less reliable than solvers for the standard pinhole case.

In addition to refraction, the overall performance of underwater optical systems

is primarily limited by the absorption and scattering properties of the surrounding
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medium water. These fundamental limits to underwater imaging were already estab-

lished in the 1960s by Duntley [1963]. In general, systems using wide-angle illumina-

tion sources are limited by backscattering especially when the source and receiver are

placed close to each other. The reason for this is that this configuration increases the

amount of light reaching the receiver reflected by particles in the water column before

reaching the object of interest leading to contrast limited systems. Other more opti-

mized systems may become bounded by forward scattering or by absorption limiting

the strength of the returning signal and leading to a power limitation of the system

explained by Klepsvik et al. [1990], Jaffe [1990]. As a result, the best performance

can be expected for systems combining a narrow field-of-view for the source and at

the same time for the receiver element minimizing the common volume between the

illumination beam and the receiver. This setup reduces back- and forward scatter

by a spatial rejection of light from the outside of this volume (Moore et al. [2000]).

These, so-called laser linescan synchronous scanning systems have shown superior

contrast resolution over an area or line illumination strategy which is pointed out by

Jaffe [2010].

An additional degree of freedom is achieved by using either pulsed or modulated

light sources. In the case of short pulses, the system is usually referred to as Light

Detection And Ranging or short LIDAR (McLeod et al. [2013]). Here, a significant

advantage of LIDAR systems is that they can ignore backscattering originated in the

near-field which can quickly saturate other sensor systems. Another advantage of

LIDAR systems is that the range to an object reflecting the laser pulse can directly

be estimated by measuring the round-trip time of the pulse reaching the object and

traveling back to the light sensor. However, because of a none homogeneous water

column and the need for a precise timing due to the speed of light complex setups

are required to reach superior range resolution (Jaffe [2015]).

More recent underwater visual imaging systems combine spatial and temporal

separation between emitting and reviving signal to further increase the achievable

working range. Such a system is briefly mentioned in Jaffe [2015] and is referred to

as Pulsed Time-Resolved Laser Line Scan System. However, these systems rely on

expensive hardware and are usually not available to the broader community.

On the other side underwater laser systems based on off the shelf components

become increasingly popular in the underwater vision community. One of the most

prominent systems are line structured light systems which are solely based on fixed

line lasers and a machine vision camera and used for example by Klepsvik et al.

[1990], Roman et al. [2010], Liu et al. [2010], Albiez et al. [2015], Lucht et al. [2018].
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These systems face a contrast reduction in turbid water in comparison to line scanning

systems explained by Jaffe [2010]. However, they are relatively simple to build, have

no moving parts, and are a significant improvement over areal illumination based

systems. For reconstructing larger scenes, the whole system must be moved in order

to sweep the projected laser line over the scene. This sweeping is either accomplished

by mounting the system onto a pan/tilt unit or by moving the whole sensor carrier. In

both cases, the exact sensor position must be known in relation to a fixed coordinate

frame while scanning to be able to merge the reconstructed 3D profiles into one

consistent 3D point cloud. In the case the system is mounted to a tripod, the pose

estimation is relatively straight forward. However, in the cases the system is attached

to moving platforms the platform motion must be compensated while scanning. This

compensation is achieved by fusing the 3D profiles with the pose estimation of the

navigation system of the carrier vehicle based on Doppler velocity logs and military

grade fiber optic gyros. This usually leads to reconstruction errors considerable larger

than the accuracy of the optical systems itself due to sensor drifts and available sensor

resolution of the navigation system. Therefore, Brignone et al. [2011] proposed a self-

contained optical mapping payload which uses scene features in the image domain to

track the sensor motion while also using the same camera for structured light scene

depth estimation. This combination was also proposed by Strobl and Mair [2009] for

in air applications. However, while for in-air applications more advanced commercial

products (RGB-D cameras) are now available using areal light patterns like the Kinect

One or the Intel Real Sense, for marine applications no such improvements were made.

The main reasons for this are:

• Underwater systems using areal illumination face considerable more backscattering
than ones using narrow light beams.

• Infrared light is heavily absorbed by water and cannot be used to separate the RGB
camera from active depth estimation.

• Underwater light sources need considerable more power to reach comparable working
ranges to in air sources due to electromagnetic absorption in the medium water.

Unfortunately, these constraints are contradictory for underwater systems able

to estimate their sensor motion while performing active 3D depth estimation. The

highest contrast for underwater active depth estimation is achieved by using a narrow

field of view for emitter and receiver elements pointed out by Jaffe [1990]. However,

to track scene features in the same sensor domain, areal sensors must be deployed

to allow overlapping measurements. Therefore, the system proposed by Brignone

et al. [2011] can be considered as an excellent compromise to allow motion tracking
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while performing active depth estimation. Such self-referenced optical 3D sensors

could significantly reduce the complexity of underwater metrology currently limited

by the performance gap between underwater optical systems in comparison to their

terrestrial counterparts and broaden its applications.

1.4 Contributions

This research work evaluates different visual sensing technologies for the underwa-

ter domain and identifies possible adaptions and fusion strategies to improve their

accuracy and availability for various applications ranging from point measurements

to autonomous navigation and mapping. A particular focus is on active and passive

optical methods including a novel method for in-air calibration of flat-port cameras

and their integration into bundle adjustment frameworks for visual pose estimation.

Here, the integration is achieved by building on the framework proposed by Agrawal

et al. [2012], but unlike Jordt-Sedlazeck and Koch [2013] a Taylor expansion is pro-

posed to simplify the 12th degree equation for planar glass water interfaces and to

allow a tight integration into structure from motion pipelines.

Following this, several novel fusing strategies between active and passive vision

are presented able to reconstruct whole underwater scenes with high accuracy from

moving platforms without relying on additional navigation systems. For their evalu-

ation tank as well as sea trial data were collected and processed to show the influence

of different environmental parameters onto the reconstruction and pose accuracy. As

a summary this research work makes contributions in the following areas where many

vital parts were already presented on peer-reviewed conferences:

• Evaluation of active and passive optical 3D sensing methods for the underwater do-
main including experiments showing the influence of design decisions and scene prop-
erties onto their performance.

• A novel algorithm for accurate detection and localization of checkerboard corners for
demanding applications like flat-port camera calibration - Duda and Frese [2018].

• A novel approximation of the flat-refractive forward projection with direct support for
bundle adjustment frameworks for in-air, in-water camera calibration and structure
from motion pipelines - Duda and Gaudig [2016].

• Novel fusion algorithms to fuse active with passive vision for building self-referenced
underwater 3D scanner - Duda et al. [2015], Duda et al. [2016].

• Evaluation of several novel hardware and software setups of underwater self-referenced
3D scanners in real world use cases - Duda et al. [2016].
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Chapter 2

Signal Degradation

Any system measuring a value of a quantity relies on a signal which is varied in time

or space depending on the state of the quantity. In general, signals are subject to

disturbances which are an unwanted modification to an ideal signal and result in

measurement uncertainties and errors. These disturbances can be grouped into ones

which can be evaluated by statistical methods (random uncertainties/errors) and into

ones which are evaluated by other means (systematic uncertainties/errors).

In the case of underwater measurements, the medium water has a high impact on

these errors and uncertainties of the measurement process. This reduction in perfor-

mance is especially prominent for vision systems not taking the optical properties of

water into account introducing large systematic errors. The reason for this are viola-

tions of the assumptions used for modeling standard vision systems. In the following

chapter, the most prominent effects due to the medium water are described changing

the optical path of light rays or reducing their intensity.

2.1 Optical Properties of Water

Most optical properties of water can be divided into inherent and apparent proper-

ties. Inherent optical properties (IOP’s) only depend on the medium itself and are

independent of the ambient light. According to Mobley [1994] the two fundamen-

tal IOP’s are the absorption coefficient and the volume scattering function. Other

IOP’s include the index of refraction, the beam attenuation coefficient and the single-

scattering albedo. Apparent optical properties (AOP’s) depend both on the medium

and the ambient light field and are usually used as descriptors of the water body.

In the following only inherent optical properties are regarded, and apparent optical

properties are ignored.
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Figure 2.1: Inherent optical properties.

Light Attenuation and Scattering in Water

In general, if a small volume ∆V of water is illuminated by a narrow collimated

beam of monochromatic light some part is absorbed within the volume, some part

is scattered out, and the remaining part is transmitted through without facing any

change which is displayed in Fig. 2.1. Here, attenuation is defined as the gradual loss

of flux intensity through a medium. Based on the Beer-Lambert law, the remaining

intensity I of a signal I0 through a material is directly related to the material thickness

z and its attenuation coefficient α.

It(z, α) = I0e
−zα (2.1)

The attenuation coefficient α is the sum of all absorption and scattering, which

are defined analog to each other. The absorption usually only accounts for effects

transferring energy from a photon to the medium. Whereas scattering accounts for

effects deviating the photon from its original path. In the case of pure water, there

is a narrow band from near-ultraviolet to near-infrared, where the electromagnetic

absorption decreases by over nine orders of magnitude in comparison to wavelengths

outside of this band. The reason for this is that at blue wavelengths, photons do

not have the right energy to interact efficiently with the water molecules or to boost

electrons into higher states. At smaller wavelengths, photons gain enough energy to

excite atomic transitions, and the absorption rapidly increases. The same is valid for

wavelength beyond red, where photons have the right energy to excite whole water

molecules. However, even in the narrow band of visible light, the absorption heavily

dependents on the wavelength. Here, the absorption coefficients, as determined by

Smith and Baker [1981], are displayed in Fig. 2.2, which gives a lower bound for
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(a) Wide spectrum by Kebes [2008] (b) Visible spectrum by Smith and Baker [1981]

Figure 2.2: Electromagnetic absorption coefficient for liquid sea water.

wavelength-dependent absorption in clear water. Interesting enough, this narrow

band overlaps with the wavelengths of the sun’s maximum energy output and with

a corresponding window in atmospheric absorption. It is only this overlap of open

windows with the energy source, which has enabled aquatic life to develop in the form

we see on earth.

In addition to the absorption of pure water, additional absorption takes place due

to dissolved organic matter like yellow matter, phytoplankton, and organic detritus.

Here, the additional absorption can easily be the dominant part of the total absorption

depending on the water conditions. The absorption spectrum for selected waters is

displayed in Fig. 2.3.

The second fundamental IOP is the scattering of photons changing their path due

to interactions between them and atoms or molecules. Here, small-scale scattering by

water molecules serves as a minimum value for the scattering properties. However,

the scattering properties also strongly depend on organic and inorganic particles and

by fluctuations in the index of refraction. Therefore, because of more significant

fluctuations in the index of refraction seawater also scatters light around 30% more

than pure water pointed out by Mobley [1994].

As a result of absorption in combination with scattering, water has a relatively

high opaqueness outside of the band of visible light, and all wavelengths outside of

this band are usually unsuitable for measuring scene properties in distances exceeding

the size of the measuring system. Therefore, this opaqueness usually leaves only the

visible spectrum of light for active or passive optical underwater sensing.
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Figure 2.3: Absorption coefficients for selected waters with an increase in yellow
matter Mobley [1994].

Refraction Index

The refraction index n of a material is a dimensionless quantity describing how fast

light propagates through the medium with respect to light traveling through vacuum

expressed in Eq. 2.2 where c is the speed of light in vacuum.

nmedium =
c

vmedium
(2.2)

In the case of pure water having a refraction index of nw = 1.333, light travels 1.333

times faster in a vacuum than in the water body. However, the refraction is usually

not truly constant, and small variations of n within a material such as random thermal

fluctuations result in small-scale fluctuations in the index of refraction, causing light

scattering. In general, the refraction index depends mainly on the four parameters

temperature, wavelength, pressure, and salinity. Here, n increases with decreasing

wavelength or temperature and an increase in salinity or pressure. The relevant

extreme values for hydrologic optics is usually between 1.329 and 1.367, translating

to a maximal variation of around three percent discussed in Mobley [1994].

2.2 Refraction and Reflection at Housings

A light sensor is a sensitive element that must be protected from pressure, dust, water,

and other elements. This protection is usually achieved by placing the sensor into a

pressure housing and behind a transparent glass port allowing light rays to enter the

optical system. Here, when a light ray enters a medium with a different refraction

index than water, the change in speed leads to bending the light ray according to

Snell’s law of refraction summarized in Eq. 2.3 where θ1 and θ2 are the angles of

incidence and n1 and n2 are the refraction indices.
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(a) Refraction on a flat-port (b) Axial-Camera due to refraction

Figure 2.4: Refraction of light rays entering an underwater flat-port transforming a
pinhole camera into an axial camera.

n1 sin(θ1) = n2 sin(θ2) (2.3)

In the case of a simple glass window, the refraction invalidates the Single View-

point Constraint, which requires that all incoming principal light rays of a lens in-

tersect at a single point. In fact, a camera system behind an underwater flat-port

converts to an axial camera where all rays meet in a common line instead, as shown

by Agrawal et al. [2012]. This fundamental difference to the usual assumed underly-

ing pinhole camera model is visualized in Fig. 2.4 and introduces large model errors

depending on the application. In addition to refraction, the refraction index also de-

scribes the amount of light that is reflected when entering a medium with a different

refraction index. In the simplest case where the light ray is orthogonal to the surface,

and the permeability is one for all involved mediums the intensity of reflected light is

given by the reflection coefficient R.

R =

(
n1 − n2

n1 + n2

)2

(2.4)

This reflection translates to a transmission loss of up to ten percent when light

travels through a window surrounded by air if no special anti-reflection coating is

used, matching the refraction indices of both mediums. In general, R also depends

on the angle of incidence and the permeability of the mediums and strongly increases

for shallow angles. Its exact value can be calculated using the Fresnel equation, which

is also used to calculate the light reflection for incoming rays entering an underwater
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Figure 2.5: Light reflection of incoming light rays on underwater flat-ports with
nwater = 1.333, nglass = 1.7 and a permeability of one for all mediums.

flat-port visualized in Fig. 2.5. Here, the dominant transition takes place on the

glass-air interface, where the difference between both involved refraction indices is

the highest. Therefore, no special anti-reflection coating is required on the window

side facing the medium water. However, on the other side, transmission losses as high

as ten percent are present due to reflection if no special coatings are applied.

2.3 Image Degradation

Standard area image sensors face different types of noise, which can be mainly grouped

into temporal and spatial noise. Here, temporal noise is defined as a temporal varia-

tion in pixel output values under constant illumination due to supply, substrate noise,

and quantization effects being most pronounced at low signal values. Spatial noise

also called fixed pattern noise is constant for a given sensor, but varies from sensor

to sensor. It consists of offset- and gain-components for each pixel, which are depen-

dant on the pixel location and causes the most degradation in image quality at low

illumination. Following Suess [2016] and combining temporal and the fixed pattern

noise, the total input noise Qn can be expressed as:

Qn = Qshot +Qreset +Qreadout +Qfpn (2.5)

Where Qshot is the dark current shot noise with a Gaussian distribution with zero-

mean. Qreset is the reset noise, and Qreadout is the readout circuit noise. Both are

independent of the signal. Qfpn is the fixed pattern noise and grows with the signal.
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Figure 2.6: Image degradation due to forward and backscattering.

Also, the medium water acts as an additional noise source. Based on the the-

oretical foundations of the optical underwater image formation model laid out by

McGlamery [1980] and extended by Jaffe [1990] the underwater image can be pre-

sented as a linear superposition of mainly three components. Following this, the total

irradiance ET of every pixel is the sum of the light Ed directly reflected by the object,

light Ef reflected by the object but has been scattered at a small angle afterward

(forward scattering) and light Eb which has been scattered before reaching the object

(backscattering).

ET = Ed + Ef + Eb (2.6)

The dominance of the components Eb and Ef in comparison to in-air applications

result in an additional image blur, which can be modeled with the help of a point

spread function (PSF) reducing the contrast of the image respectively the signal-to-

noise level shown by Schettini and Corchs [2010]. In the ideal case, a vertical laser

line imaged by a camera would have a single well-defined peak value for each image

row. This is, for example, the case for in-air or underwater applications with low

water turbidities. With increasing turbidity, the well-defined peak value is going to

be blurred by the forward scattering, and the backscattering increases background

illumination of the common volume between the camera and the laser projector. This

circumstance is visualized in Fig. 2.7 for three different turbidity levels.
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Figure 2.7: Measured brightness distribution along an image row for a projected laser
line for different levels of water turbidity.

In addition to the blur due to scattering, underwater images are often dominated

by green and blue colors and considerably missing red tones. The reason for this is

the wavelength-dependent light attenuation in water. Here, the red color disappears

first at a scene depth of around 3m, followed by green and blue. Therefore, most

underwater laser systems concentrate on the green and blue wavelengths. The same

is true for underwater photogrammetry or mosaicking, where often only the green

channel is utilized for visual feature detection and matching due to its lower noise

level in comparison to the other channels. Here, a critical sensor property is its

dynamic range allowing imbalanced color channels without saturation and to allow

for color correction in post-processing.

However, different colors are not only subject to different absorption, but they are

also refracted differently. The reason for this is the wavelength-dependent refraction

index of a medium leading to not only a geometric distortion but also to chromatic

aberration where each color is focused differently, leading to rainbow edges in areas

of contrast. This chromatic aberration is especially problematic for monochromatic

cameras where this cannot be compensated by offsetting each color channel resulting

in unsharp images for larger radial distances. However, even for color cameras, this

cannot be fully compensated because each color channel has a bandwidth resulting in

a de-focus across the channel, limiting the maximal resolution of the optical system.

In the case of a flat-port color camera with a 1/3 inch sensor (1280×960 pixel, 2.9mm

focal length), and a 5mm sapphire glass window, the image blur due to wavelength-

dependent refraction insight each color channel is visualized in Fig. 2.8.

In the case of dome ports or special wet lenses, chromatic aberration and geometric

distortions can be reduced, but the remaining errors are often difficult to model. Also,

image restoration and enhancement algorithms can be used to somehow mitigate the
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(a) (b)

Figure 2.8: Simulated image blur in pixel for the green color channel (480 − 600nm)
due to wavelength dependant refraction on a flat-port window.

effects of the medium water onto the image quality discussed in work by Schettini

and Corchs [2010].

Conclusion

The medium water alters the light signal on many levels before reaching the image

sensor. First, the light signal is refracted when entering the medium water. After

this, the light signal is partly absorbed by the medium and partially scattered before

reaching an object reflecting it back to the sensor. The reflected light is again subject

to scattering and absorption before reaching the sensor housing. Here, the signal is

refracted again, leading to geometric and chromatic distortions before finally reaching

the image sensor. Also, floating particles in the path of the light yield further altering

of the signal. Most of these effects can be explicitly modeled. However, in practice,

it is difficult to obtain the correct model parameters, and estimations must be used

to correct the measured signal and remove unwanted effects. In any case, the signal-

to-noise ratio rapidly drops with increasing penetration depths making it infeasible

to use electromagnetic waves to measure scene properties in greater distances usually

used for remote sensing via satellites or airplanes. Therefore, the usage of underwater

vision techniques requires sensor platforms able to maintain a low altitude to visually

inspected objects. In return, visual inspections can outperform sonar-based tech-

nologies with respect to resolution and accuracy reaching sub-millimeter resolution

depending on the enviromental conditions.
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Chapter 3

Impact onto Optical Systems

The medium water has a direct influence on signal propagation like discussed in the

previous Chapter 2. This influence leads to all sort of errors for standard optical

methods summarized in Fig. 3.1. In the following, these errors are outlined for the

methods on the bottom of the figure including active and passive triangulation based

as well as indirect- and direct-time of flight methods.

Figure 3.1: Taxonomy of distance measurements derived from Luhmann [2010].

3.1 Stereo

A stereo camera system is a sensor system that is very similar to the three dimensional

perception of a human. It uses two projections of the same scene observed from

two slightly different physical locations to derive the scene depth with the help of
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Figure 3.2: Schematic of a stereo vision system.

triangulation, which is visualized in Fig. 3.2. This triangulation is possible because

the variation in the camera locations leads to a difference between both projections,

also known as parallax, which is scene-depth dependant and is caused by perspective

distortion. In the case of a visual stereo system, usually two identical cameras are

used, having a fixed baseline to each other to record two images of the same scene at

the same point in time, also referred to as stereo image pair.

Scene Depth Estimation

The scene depth calculation of a stereo system is based on the triangulation principle,

which has been used for centuries to calculate distances to objects with the help of

trigonometric functions and by measuring two angles and a baseline. This principle

is demonstrated in Fig. 3.3 for calculating the distance z to a remote object by

determining the angles α and β and the baseline c, which can often more accurately

be measured than directly measuring the longer distance z.

In the case of a stereo system, this translates to finding common scene points

in both camera images. Here, the position of a scene point in the image domain

determines the angle for the triangulation, and the distance z can be calculated with

the help of Eq. 3.1 visualized in Fig. 3.3 using the known baseline c between both

cameras.

z =
c

1
tan(α)

+ 1
tan(β)

. (3.1)
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Figure 3.3: Triangulation of the unknown distance z based on the known baseline c
and the two angles α and β.

In addition, most machine vision cameras can be approximated by a pinhole cam-

era model P , linearly relating the coordinate of a point X in the three dimensional

space to its projection x for a specific camera pose R, C̃.

x = PX

P = KR[I − C̃]

K =

f f
1

 (3.2)

Based on the camera model given in Eq. 3.2, the required angles α and β can be

expressed in terms of the focal lengths fa and fb of both cameras and the location

pa and pb of the observed object in both image planes according to Eq. 3.3. Here,

to account for that β has a different orientation than α a minus must be added.

Both angles are measured against the image plane and are not identical with their

corresponding camera ray angle measured against the principal axis of the camera.

tan(α) =
fa
pa

tan(β) = −fb
pb

(3.3)

A more in-depth explanation of the pinhole camera model, not required at this

point, is given in Section 4.2. Here, assuming both cameras have the same focal
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length fa = fb, the distance z of an object seen in both cameras as pa and pb can

be determined by the following equation with c being the known and fixed baseline

between the cameras.

z =
cf

pa − pb
(3.4)

This assumption also allows calculating the depth resolution as the absolute value

of the partial derivative of Eq. 3.4 with respect to pb translating small changes of the

projected object location dpb to distance changes dz.

|dz| =
∣∣∣∣∂z(pb)

∂pb

∣∣∣∣ dpb
=
cf

p2b
dpb

=
cf(

cf
z

+ pa
)2dpb

(3.5)

In the case the object is projected onto the image center of the first camera, pa is

zero and Eq. 3.5 can be further simplified to:

|dz| = z2

cf
dpb (3.6)

This simplified case for stereo triangulation is also demonstrated in Fig. 3.4.

For real-world cameras, the differential dpb is limited by the ability to determine

the exact sub-pixel location of an object in the camera image. Here, sub-pixel peak

detection algorithms can localize strong features up to 1
100

of a pixel. However, due

to the relation |dz| ∝ z2, the depth resolution quadratically scales up with the object

distance requiring large and larger baselines c to maintain a constant depth resolution.

Underwater Challenges

Underwater stereo vision systems face multiple challenges due to the signal degra-

dation introduced by the medium water. One very prominent error source is the

camera housing, which has unwanted effects onto the light propagation depending on

the shape of its air-water interface.

In the case, a flat-port camera housing is used, the refraction of the light on the

water glass and the glass-air interface invalidates the pinhole camera model because
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Figure 3.4: Passive stereo camera triangulation of the scene depth z.

the camera becomes, in fact, an axial camera shown by Agrawal et al. [2012]. Be-

sides, the refraction also leads to chromatic distortion due to the dependency of the

refraction indices on the wavelength. This introduces serious shortcomings of stereo

algorithms when applied to underwater flat-port cameras. The underlying reason is

that most stereo algorithms use the fact that in the case of two pinhole cameras,

corresponding feature points must lie on a plane which is defined by the position

of both camera centers and the position of the feature in one of the images. This

so-called Epipolar constraint helps to reduce the search space in the other image to

a search along a straight line. However, in the case of flat-port housings, these lines

become curved (Li et al. [2018]), and the search for corresponding features will fail if

not taken into account, which is visualized in Fig. 3.5.

(a) Left Camera Image (b) Right Camera Image

Figure 3.5: Curved Epipolar lines of an ideal underwater stereo flat-port camera
system with 10cm baseline and a 3cm thick glass port.

Also, the triangulation of scene points is strongly affected due to the change in
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refraction. Even if the camera is calibrated while being submerged to compensate

for these effects, the pinhole model is usually not able to compensate for the depth-

dependent distortion introduced by the flat port housing. The best mode of operation

with small error margins is to calibrate the camera to a fixed distance, which is

equivalent to the range later also used during an operation. Any depth deviation to it

will introduce errors that usually cannot be compensated by standard lens distortion

models ( Luczyński et al. [2017]), and flat-refractive projection must be taken into

account explained in the next chapter.

In the case of dome-ports or special wet lenses, the single viewpoint constraints

can be ideally maintained using standard stereo algorithms, and excellent results can

be achieved by the cost of increasing hardware/assembly costs and a reduced depth

of focus (Drap et al. [2015a]). Here, a more in-depth comparison between different

camera ports is given in Section 4.1.

Assuming the camera housing is introducing no additional image distortion, the re-

maining effects are due to forward and backward scattering as well as electromagnetic

absorption limiting the contrast and working range. These limitations are especially

prominent if the light source is located in the near vicinity of the cameras, increasing

the common water volume between the emitter (light source) and receivers (cameras),

which considerably increases the backscattering of the light signal.

Underwater Applications

Currently, there are mainly off the shelf underwater stereo camera systems available

for stereoscopy. These systems either display image pairs on a 3D display or, with

the help of 3D glasses, create the illusion of depth in an image for the human ob-

server. Other commercial systems mainly address the research community and allow

to size underwater objects by manually selecting features in both images and manu-

ally match them. However, none of these solutions take the refraction explicitly into

account nor support the generation of metric correct depth images, which is usually

provided by in-air stereo camera systems. In research, underwater stereo systems are

more widely used to demonstrate underwater mapping and localization tasks with

promising results for the near field (Drap et al. [2015b],  Luczyński et al. [2017]). An

overview of underwater stereo vision in the underwater domain is given in Tab. 3.1.
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Camera Port/Model Application Authors

Flat Port
Pinhole

Dataset / Obj. Detection Oleari et al. [2015]

Dense matching
Massot-Campos et al. [2015]
Huo et al. [2018]

Visual Odometry Nawaf et al. [2018]

SLAM

Schattschneider et al. [2011]
Hildebrandt [2014]
Carrasco et al. [2016]
Carrasco et al. [2015]

Flat Port
Refractive

Dense matching
Li et al. [2018]
Fan et al. [2017]
Jordt-Sedlazeck et al. [2013]

Active dense matching Kuo and Nobuhara [2017]

Dome Port
Pinhole

Dense matching
Bruno et al. [2011]
Bianco et al. [2012]
Drap et al. [2015a]

Active dense matching Detry et al. [2018]
Visual Odometry Drap et al. [2015a]

SLAM Rossi et al. [2018]

Table 3.1: Survey: Underwater stereo vision systems.

Strengths and Weaknesses

Stereo systems can be bought off the shelf, usually delivering several dense depth

images per second for in-air application by the use of specialized hardware for real-

time processing and triggering the cameras at the same point in time. The achievable

depth resolution mainly depends on the baseline between both cameras, the camera

resolution, and the availability of suitable scene features. In the case the system is

facing homogeneous regions, it is unable to triangulate depth information for these

regions and has to fill these areas with surrounding measurements. Also, the working

volume is smaller than for structure from motion systems because it is equivalent to

only the overlapping field of view of both cameras.

Its strengths lie primarily in the usages of standard machine vision cameras and

the ability to generate high-resolution 3D data for small working volumes with a

relatively high frame rate without any strong constraints on the sensor motion (Drap

et al. [2015a]). However, because the whole scene must be illuminated, stereo systems

use one of the worst illumination strategies for underwater vision, and they usually

become contrast limited due to backscattering (Jaffe [2010]). Therefore, in literature,

usually underwater stereo is used for small working distances between 1m (Drap et al.
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[2015a]) and 2m (Oleari et al. [2015]) and with rather poor results with distances up

to 3.2m (Pfingsthorn et al. [2016], Detry et al. [2018])

3.2 Structure from Motion

Structure from motion describes the process of estimating the motion of a camera and

3D scene points by solely taking the parallax of the estimated 3D points into account

while moving through the scene as visualized in Fig. 3.6. It is the generalization of a

stereo system or a trifocal system Torr and Zisserman [2002] replacing the observation

of additional physical cameras by observations of the same camera taken at a different

point in time.

Figure 3.6: Schematic of a structure from motion system using multiple views cap-
tured by the same camera.

Scene Depth Estimation

In the case of a static scene, a structure from motion system is equivalent to a stereo

system with an unknown baseline between both cameras. Therefore, because of this,

the scale of the scene cannot be recovered by a simple structure from motion system,

and it can’t detect if an imaged object is, for example, a real house or a doll’s house.

However, because the measurements from multiple locations can be fused, the depth

resolution is no longer limited by a fixed baseline and virtually growths with the

number of observations, which is also referred to as multi-view geometry by Hartley

and Zisserman [2004]. Based on this, the depth resolution can be bounded by Eq. 3.7,

where the baseline c is the maximal distance between camera locations from where
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identical scene features were observed. Note the additional scalar factor s for fixing

the unknown scale of the reconstruction.

|dz| = z2

cfs
dpb (3.7)

Underwater Challenges

In principle, the same challenges apply for underwater structure from motion like

for underwater stereo systems. However, on one side, structure from motion systems

cannot take advantage of limiting the search space by utilizing Epipolar-Constraints

because the pose between subsequent positions is unknown. On the other side, by

not limiting the search space, they will be also less affected by refraction during

the feature detection and matching step. Only during structure estimation and a

subsequent bundle adjustment step, scene depth dependant triangulation errors, in-

troduced by the refraction, will alter the camera pose and 3D scene point locations,

when refraction is not considered properly. Here, image features located further away

from the principal point are more affected due to larger angles of refraction, reduc-

ing the global accuracy of the final 3D reconstruction in comparison to dome ports

discussed by Menna et al. [2017]. These un-modeled errors usually lead to a curved

reconstruction of previously straight structures, and larger sea-floor stripes seem like

rolled up similar to a corkscrew. The reason for this is that the remaining residuals

due to refraction can be further minimized by the bundler adjustment step by falsely

bending these regions visualized in Fig. 3.7.

Underwater Applications

Like stereo systems, structure from motion systems are mainly used for underwater

mapping tasks in research at low altitudes. Commercial systems usually try to mini-

mize the effect of the medium water during image acquisition to be able to apply off

the shelf software suites for photogrammetry in a post-processing step. Otherwise,

larger regions tend to be bent due to inhomogeneous errors across the image domain.

However, good results have been achieved for underwater archaeological sites, which

also include ground control points to bound the reconstruction error (Yamafune et al.

[2017], Kan et al. [2018], Menna et al. [2017]). An overview of underwater structure

from motion system is given in Tab. 3.2.
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Figure 3.7: 3D scene reconstruction of a towing tank heavily distorted due to an
un-modelled flat-port housing (white: camera poses, orange: tank floor).

Camera Port/Model Application Authors

Flat Port
Pinhole

Visual Odometry Botelho et al. [2009]

SLAM (real-time)
Concha et al. [2015]
Leonard et al. [2012]

SfM / SLAM
(offline processing)

Beall et al. [2011]
Menna et al. [2017]

Flat Port
Refractive

SfM / SLAM
(offline Processing)

Jordt et al. [2015]
Jordt-Sedlazeck and Koch [2013]
Kang et al. [2012]

Dome Port
Pinhole

Visual Odometry Ferrera et al. [2018]

SLAM (real-time)
Meireles et al. [2015]
Ferrera et al. [2018]

SfM / SLAM
(offline processing)

Kan et al. [2018]
Menna et al. [2017]
Yamafune et al. [2017]
Drap et al. [2015b]
Arnaubec et al. [2015]

Table 3.2: Survey: Underwater structure from motion (SfM) and related technologies.
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Strengths and Weaknesses

In its basic configuration, a structure from motion system consists of a single camera

and has the lowest hardware requirements under all-optical systems. However, the

software must simultaneously estimate the pose of the camera and estimate 3D scene

features. Therefore, it also has the weakest constraints between measurements and is

likely to fail under challenging conditions. To improve the robustness, it is often fused

with an inertial measurement unit to stabilize it during rotation and to introduce some

weak constraints for estimating the scale of the reconstruction. Here, for real-time 3D

perception, no real commercial solutions are currently available, although they gain

more and more popularity in the mobile phone market to enrich application with

virtual reality capabilities.

Its strength is its offline processing capability and to generate baseline independent

depth information from images like aerial photos. However, it relies on unique scene

features that can be tracked over an extended period, which is not always possible.

Also, any dynamic in the observed scene is adding additional challenges. Furthermore,

similar to a stereo system, the whole scene must be illuminated, leading to contrast

limitation due to backscattering (Jaffe [2010]). Therefore, good results can usually

only be achieved for working distances smaller than 3m similar to stereo systems.

3.3 Structured Light

A structured light system is an active vision sensor that projects a known light pattern

onto the scene observed by one or more machine vision cameras to estimate the scene

depth. They are used in a large variety of use cases, like in industrial applications for

quality control, in consumer products for gesture control or robotics for simultaneous

localization and mapping. Depending on the application, many different configura-

tions and light patterns like dots, lines, or Gray codes exist, including coding in the

temporal and or spatial domain. Here, a more in-depth consideration is given in the

work by Chen [2015].

In the case of marine applications, usually, lines or dot patterns are used to mini-

mize backscattering (Jaffe [2010]). These light patterns also have the advantage that

they can be easily be generated using high power laser diodes to compensate light

absorption in the medium water. Other light patterns often require a light engine

that is either very bulky or cannot provide highly focused high power light patterns

and are mostly used in research to obtain close range underwater reconstructions
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(Bianco et al. [2012]). Here, a table of different structured light methods used in the

underwater domain is given in Tab. 3.3.

Scene Depth Calculation

A structured light system is equivalent to a stereo system where one of its cameras is

replaced by a light projector, which can be understood as an inverse camera. Here, the

projector actively projects a known light pattern onto the scene. The other camera

observes this light pattern as artificial features perspectively distorted due to the

baseline between camera and projector.

After the positions of artificial scene features are detected in the image domain,

their position in the known light pattern must be determined. This detection is re-

quired to derive the angle α of their corresponding light rays emitted by the projector

and generating the observed artificial features, also referred to as a decoding step.

The complexity of this decoding step massively depends on the used light pattern.

For example, in the case of a random point pattern, additional neighboring informa-

tion in the pattern must be used. In contrast, a single point or line pattern does

not require any further associations. Here, it is sufficient to know the pose of the

projector with respect to the camera and to identify the light pattern in the image

domain because its projection angle α is uniquely given by the projector to camera

arrangement.

Following the determination of the emitting rays, the distance z of each artificial

feature can be triangulated by additionally utilizing the angle β of the corresponding

camera rays projecting the artificial features onto the image plane and the known

baseline c between camera and projector. This triangulation process is demonstrated

in Fig. 3.8 for a laser sheet and is analog to the stereo triangulation case.

The depth resolution of the active vision system is also analog to the passive case

and estimated by Eq. 3.6 assuming the resolution of the projector is not the limiting

factor which is, for example, the case for laser line projectors usually following a

Gaussian dispersion model. For a Quad VGA camera (FOV 60°) its estimated depth

resolution in relation to the baseline is visualized in Fig. 3.9.

Underwater Challenges

In general, structured light systems are subject to refraction similar to stereo systems.

However, there are some simplifications possible, depending on the light pattern.

For example, in the case of a laser line pattern, the distortion on a flat-port can be
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Figure 3.8: Active triangulation using line structured light.
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Figure 3.9: Estimated depth resolution in mm/pixel of a line structured light system
in relation to its baseline and the distance to the observed object (FOV 60°).

30



neglected entirely if the laser sheet is orthogonal to the glass port. The reason for this

is that the light refraction on the flat-port only compresses the laser along its projected

line and because the absolute brightness of the laser line is usually not used for the

depth estimation, the refraction has no effect onto the depth estimation. However, in

the case the laser sheet is not entirely orthogonal to the flat-port interface, the laser

sheet will be geometrically distorted. The result is a bent laser sheet in the medium

water, altering estimated scene depths. For small angles, this can be compensated

using a radial distortion term, which significantly reduces the computational burdens

for scene point triangulation. Here, a more in-depth analysis is given in the next

chapter.

Furthermore, the light pattern itself, used for illumination, has a significant in-

fluence on the backscattering leading to contrast or power-limited systems. Here the

illumination schemas with the lowest contrast are areal illuminations while point il-

luminations are the ones with the highest. A line-pattern can be seen as somewhere

in the middle between both extremes allowing to recover multiple 3D scene points at

once while having less contrast than point patterns. An in-depth analysis between

different illumination schemas for active underwater sensing is given in the work from

Jaffe [1988], Jaffe [2010], and Ouyang and Dalgleish [2012] including simulations of

the optical path in the medium water.

In addition, most light projectors have very little power in comparison to electro-

magnetic radiation received at the Earth’s surface due to sunlight. This in-balanced

radiation is especially the case if the power of the structured light projector is dis-

tributed along a line or other light patterns generated by none collimated light beams.

In shallow water, this leads to a reduced signal to noise ratio, and the performance

of underwater structured light systems is usually regarded as profoundly affected in

the first 20m of the water column during the daytime, as discussed by Brignone et al.

[2011]. The same is true for situations where the structured light system is used for

areas subject to intense external lights such as lights from remotely operated vehicles

or artificial illumination of harbor piers. In the case of dark objects, this is even

more prominent because the structured light system must illuminate all scene points

sufficiently enough to measure a return value and to be able to triangulate the scene

depth. Otherwise, scene texture dependent holes will be present in the resulting point

cloud. Therefore, underwater structured light systems often use high power lasers to

compensate for the absorption of the medium water and to be able to measure a

return value even for dark objects. However, this high irradiation poses a significant

danger to operators with the risk of damaging eyesight if the laser beam is exposed
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to the human eye, which is especially problematic during calibration. Here, it is often

required to perform the calibration after the system is mounted on the carrier sys-

tem. Therefore, different strategies are used to reduce this risk. One approach is, for

example, to set the laser in a low power mode during calibration like performed by

Lucht et al. [2018] or the use of an additional stereo camera system to do underwater

on sight calibration described by Roman et al. [2010].

Underwater Applications

Underwater structured light systems are mainly used to perform high-resolution

seabed mapping from low altitudes or scanning static scenes to measure the three

dimensional shape of pipes, chains, or foundations. It is also often used to document

underwater archaeological sites, and shape changes of underwater habitats. Here,

mainly, two survey strategies exist. In the first case, a pan-unit equipped with a

line-structured light system is mounted onto a tripod, and a full scene scan is per-

formed before moving the tripod to a new position. This approach usually gives the

best results because multiple measurements can be aggregated without any sensor

pose change in between. Still, it is also very time consuming and requires interven-

tion capability. In the second case, a line-structured light system is mounted onto

a moving platform, and either a pan-unit is used to sweep the line laser across the

scene while the platform is hovering or the whole platform is moved. In both cases,

the motion of the platform has to be compensated with an accuracy matching the

sensor resolution of the structured light system, or the performance will significantly

be reduced, posing a major challenge for this kind of operation discussed in Duda

et al. [2016]. Other structured light patterns than line patterns can be mainly found

in research laboratories as they are usually not robust enough for real-world scenarios.

An overview of underwater structured light methods used in different research work

is given in Tab. 3.3.

Strengths and Weaknesses

A structured light system is a cost-effective high-resolution 3D sensor that can be

composed of off the shelf components. Its main advantage is its relatively high depth

resolution for close ranges, which can be easily controlled by selecting a suitable

baseline without adding any additional constraints on the hardware like timing or

sensor resolution. However, this makes it unsuitable for longer ranges because to

maintain a constant resolution over its working range, the baseline would have to be
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Light Coding Pattern/Code Authors

Temporal Coding
Binary/Gray Code

Bräuer-Burchardt et al. [2015]
Bruno et al. [2011]
Bianco et al. [2013]

Phase Shifting Bräuer-Burchardt et al. [2015]

Spatial Coding
Line - Pattern

Lucht et al. [2018]
Fan et al. [2017]
Chi et al. [2016]
Smart et al. [2013]
Inglis et al. [2012]
Brignone et al. [2011]
Roman et al. [2010]
Liu et al. [2010]

De Bruijn Patterns Kuo and Nobuhara [2017]
Pseudo-random Patterns Ouyang and Dalgleish [2012]

Table 3.3: Survey: Underwater structured light methods.

quadratically scaled, which would lead to very bulky setups. But, this argument is

less prominent for the underwater domain because the system is usually contrast or

power limited after 10m − 20m, and proper operations ranges are generally below

10m limiting the maximal useful baseline. In any case, because the camera and the

projector are spatially separated, they are also facing perspective distortion, including

shadowed areas which either camera rays and or the light pattern cannot reach. The

results are holes in the 3D reconstruction, which are more prominent if the baseline

is increased with respect to the observed scene depth.

The real strength of structured light systems is that the light pattern minimizes

backscattering in comparison to areal illumination resulting in higher contrast. Also,

the pattern acts as artificial scene features that can be more accurately be located in

the image domain than natural features, usually resulting in overall higher accuracy

and working distance than passive vision systems. Also, due to the projected light

pattern, featureless image regions can be reconstructed, which often occurs for painted

human-made objects and areas where fine dust is covering the seabed.

However, any additional light source, such as the sun or an underwater light,

has a negative influence on the performance, which is especially the case for shal-

low water during the daytime. Also, there is currently no underwater off the shelf

structured light system available, which can estimate their sensor pose based on their

sensor readings, and an additional navigation system is required when mounted onto

a moving platform.
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3.4 Time of Flight

Time of flight systems consist of an emitter and a receiver, which is capturing the

emitted signal after reflected by an object. By measuring the period, the signal

requires to travel from the emitter to the object, and back to the receiver, the distance

between the sensor and the object can be determined. Here, depending on how

this period is measured, they can be grouped into direct- and indirect-time of flight

systems. In the case of direct-time of flight, a timer starts counting after the signal

is emitted and stops upon receiving the signal requiring a timing accuracy in the

order of picoseconds. To relax this, indirect-time of flight systems measure a quantity

which is proportional to the real period but which is easier to be measured with high

accuracy.

Scene Depth Estimation

A time of flight system is based on measuring the time a signal takes to travel to an

object and back to the sensor system. By knowing this period ∆t and the velocity v

of the signal, the distance from the sensor to the object can directly be calculated by

Eq. 3.8.

z =
v∆t

2 (3.8)

In the case of light, the velocity of the signal is the speed of light c for the

corresponding medium the signal is traveling in. For vacuum, this translates to c =

299792458m/s requiring a timing resolution of a few picoseconds to be able to have

a depth resolution in the mm range. These pulse-based, or linear-mode, systems are

therefore usually limited by how accurate the timespan ∆t can be measured, taking

all delays due to electrical components and their signal propagation into account.

The direct-time measurement is therefore often substituted by a measurement via

interferometry on modulated light, which is proportional to the distance traveled.

This indirect-time measurement is achieved by using the phase of a modulated laser

beam to calculate the distance to the object as a fraction of the modulated wavelength

of the signal. In the continuous wave mode, the phase difference between the radiated

and receiving signal can be calculated from the relation between four electric charge

values C1 to C4, which are collected with a 90 degree phase delay to each other as
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Figure 3.10: Timing for collecting the four electric charge values C1 to C2.

shown in Fig. 3.10. Based on these four measured values, the phase can be calculated

with the help of Eq. 3.9 (Remondino and Stoppa [2013]).

ρ = arctan
(C3 − C4

C1 − C2

)
(3.9)

The corresponding distance z can then be calculated, using the speed of light c

and the signal frequency f :

z =
c

2f

ρ

2π (3.10)

Here, because the measurement is based on the phase which wraps around every

2π, the derived measurement will also have an aliasing distance. The distance is called

the ambiguity distance and defined by the first term of Eq. 3.10 which is c/(2f).

In addition to the continuous wave mode, the phase can also be estimated using

pulsed modulation, which only requires to measure two electric charge values instead

of four. Still, the latter method automatically reduces the effect of constant offsets

and constants gains due to attenuation or object color.
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These phase-shift-based indirect-time of light systems are closely related to pure

optical interferometry and share the same principle of operation but use intensity

modulation of the light signal at radio frequency to obtain a much larger unambiguous

range at the cost of achievable resolution (Heredia Conde [2017]).

Underwater Challenges

In the simplest case where the light source is a laser beam located behind a flat-

port, the system will face no geometric distortion due to an orthogonal angle to the

different layers. However, the refraction index n will change the speed of light cmedium

according to:

cmedium =
cvacuum
n

(3.11)

This effect can easily be compensated in post-processing by a constant distance offset

and a scale factor according to the refraction index, assuming a constant refraction

index across the penetrated water column. In the case, the incoming or receiving

signal is no longer orthogonal to the glass water interface, the measurement will face

a geometric distortion, and the X, Y coordinate will be altered while still having a

correct Z coordinate.

The primary challenge can be seen in an increase in unexpected interference be-

tween two or more optical signals due to multipath effects. Notably, in case of light

scattering, due to low-quality optics or high water turbidities, the assumption made

for deriving the phase difference between the radiated and the receiving signal with

the help of two or more charges no longer holds. The reason for this is that the

backscattering of the signal will offset the measured charges in a nonlinear fashion

and also might drive the detector into saturation.

In the case of direct time of flight systems, backscattering makes it challenging to

determine at which point in time the signal is returned from the object and not from

some particle in the water column. Here, the main issue is that a wrong triggering

puts the timer into a mode neglecting all further detections for the period of the light

pulse. Even in the case, the timer would be able to deal with multiple detections; each

detection would disable the detector for a short period until its initial state is restored.

In the case of single-photon detectors, this period is usually a few nanoseconds which

translate to a dead time of several centimeters during which the sensor can no longer

detect a signal (Vornicu et al. [2014]). A solution for this could be gated viewing in

an iterative fashion, which would, however, dramatically reduces the acquisition rate.
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Another challenge is the electromagnetic absorption of water requiring high power

lasers, which can be precisely pulsed. This requirement significantly increases the

system costs and is currently the limiting factor for these systems, which are usually

power limited rather than contrast limited.

Underwater Applications

In general, scanning time of flight systems have one of the most extended ranges

of all commercially available visual underwater systems. Therefore, they are mainly

used to measure the pose and dimension of larger underwater installations. Here, the

sensor is usually linked to the seafloor, and the scene is statically scanned. After each

scan, the position of the system is altered, and subsequent scans are merged using, for

example, iterative closest point algorithms or manually selected control points. Other

applications are seabed mapping using remote or autonomous underwater vehicles.

However, usually due to its limited opening angles, in comparison to cameras, multiple

units must be combined to reach comparable coverage. An overview of time of light

systems used in the underwater domain is given in Tab. 3.4.

Method Application Authors

Range Gated Imaging
Tracking of animals Dubrovinskaya et al. [2018]

Dense 3D data Mariani et al. [2018]

Image enhancement
Church et al. [2014]
Shen et al. [2008]

LiDAR
Dense 3D Data McLeod et al. [2013]

Marine life classification Dalgleish et al. [2017]

Seafloor mapping
Jaffe et al. [2001]
Jaffe [2015]

Table 3.4: Survey: Underwater time of light systems.

Strengths and Weaknesses

For directly measuring the time of flight as well as for measuring the phase-shift us-

ing charge counters, high-speed electronics are needed since achieving one-millimeter

accuracy in water requires a timing resolution of around ten picoseconds. This level

of accuracy is hard to accomplish at room temperature using any silicon technol-

ogy pointed out by Remondino and Stoppa [2013] limiting the achievable resolution

usually to several mm.
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Furthermore, several sources of noise exist. Here some of the most important noise

sources are the optical shot noise, the thermal noise, flicker noise, and the quantization

noise. Therefore, in the case of phase-shift-based systems using a photonic mixing

device (PMD), which most of the time of flight cameras do, the precision is limited

to around 1cm at 20MHz modulation frequency (Heredia Conde [2017]).

In the case of marine applications, the wavelength of the system has to lie in the

visible spectrum of light, or strong absorption will take place, limiting the possible

range to several centimeters (Anwer et al. [2017]). This absorption limits the use

of standard commercial systems because most of them are using near-infrared for

illumination to take advantage of characteristics of the sunlight spectrum after passing

the earth’s atmosphere and to be non-disturbing to the human eyesight. Here, the

required high power visible laser is one of the most expensive components of an

underwater LIDAR system.

However, LIDAR systems use by design a single laser beam minimizing the backscat-

tering while the signal strength is maximized. In combination with gated viewing, this

allows for the maximal possible range of visual systems without putting excessive con-

straints onto the water body. Also, unlike triangulation-based systems, time of flight

systems require no spatial separation between the signal emitter and the receiver,

and very compact pre-calibrated systems can be achieved. Furthermore, these sys-

tems have nearly depth independent depth resolution with minimal shadows, making

them especially suited for longer ranges where other optical systems would be bulky

or are contrast-limited.

3.5 Comparison Sensor Technologies

This comparison between the different optical sensor technologies shown in Fig. 3.1

is mainly focused on the underwater case. For in-air applications several compar-

isons through out the literature exists like for example given by Bosch et al. [2001],

Jain [2003], Li [2014], Sarbolandi et al. [2015], or Kovacovsky [2017] and which are

summarized in Tab. 3.5.

For underwater applications, the environmental conditions reduce in general the

performance of every optical system. The reason is that additional noise enters the

system while the signal is weakened due to the medium water and potential particles

floating in the water column. However, not all sensing technology are impacted the

same way, and there are regions where each of the sensor technology has advantages
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Consideration Stereo Vision Sfm Structured Light Indirect ToF Direct ToF
Software Complex. Medium High Medium Low Low
Material Costs Medium Low Medium Medium High
Compactness Low High Low High High
Response Time Medium Low Medium High High
Depth Accuracy Low Low High Medium Medium
Low Light Perf. Low Low High High High
Bright Light Perf. High High Low Medium Medium
Scene Dependency Medium High Low Low Low
Range in-air Low High Low Low Medium

Table 3.5: Comparison of optical methods for range measurements in air.

in comparison to the others. Also, some of the effects can be compensated using

specialized hardware and or software.

The most critical parameters for underwater optical range measurements are simi-

lar to the one from in the in-air case. However, due to additional efforts for protecting

sensor systems against the medium water and the usage of usually stronger light emit-

ters to counteract the signal loss in the medium the material costs are considerably

higher for all regarded systems. Also, external lights have a significantly stronger

effect on the performance of active systems, which must have their signal emitter in

the visible spectrum to stay in the narrow window of transparency of water. How-

ever, the comparison from Tab. 3.5 stays valid when tuned to the visible spectrum

of light while Tab. 3.6 extends it with additional considerations for the underwater

case, which also includes the dependency on external navigation systems as a static

measurement in the water column often cannot be maintained or is too costly.

Consideration Stereo Vision Sfm Structured Light Indirect ToF Direct ToF

Calibration Effort High Medium High Low Low
Distortion Complexity High High Medium Low Low
Dep. on Turbidity High High Medium High Low
Dep. on Known Pose Low Low High Medium High
Range in Water Low Low Medium Low High

Table 3.6: Comparison of optical methods for range measurements in water.

Also, the payload volume, weight, and power available on sensor carriers such

as remotely operated vehicles have to be taken into account. But, because in the

underwater area, tightly integration solutions are still barely available and consider-

able weight comes from the underwater housings, the benefits for one or the other

technique are less prominent than for in-air applications.

As a summary, Fig. 3.11 gives some guidance where each technology has the high-

est performance for a specific set of mission constraints. Consequently, no technology
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is delivering even close the performance underwater, which is achievable for in-air

applications. However, in the absence of alternatives, they still can provide viable

information about the surrounding. Also, it is this lack of performance which makes

it more and more vital to use multi-modal approaches to maximize the performance

and to extend the working area of such sensor systems in challenging conditions.

Figure 3.11: Guideline underwater optical sensing.

In case a single technology has to be deployed to accomplish a given task. The

following considerations can be used to identify the technology with the best possible

performance. For measuring a static object from a distance exceeding 6 − 10m the

best performance can be usually achieved with time-of-flight systems rigidly mounted

on a tripod. Structured light systems typically outperform all other methods for

closer static scenes, if the water turbidity does not lead to a contrast limitation of

the signal. For seabed/object mapping from closer than around 3m distance using a

moving platform, mono and stereo systems usually, deliver the best performance as

they also nativity estimate the pose of the system as an embedded processing step.

Here, many different software suites are available to transform an image sequence into

a consistent 3D reconstruction after data acquisition using dome port cameras. In
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case an external pose estimation is available, structured light systems usually deliver

the best near to mid-range performance. Whereas, time-of-flight systems typically

deliver the best far range performance.
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Chapter 4

Modeling the Optical Path

Optical systems are usually designed to operate in-air or vacuum and optimized to be

approximated by linear light propagation models. These linear models are the base

for projective geometry and, for example, are heavily used by triangulation based

systems. Therefore, special care has to be taken if transferred to the underwater

domain where these models might be invalidated due to light refraction.

4.1 Sensor and Emitter Housings

From a modeling point of view, there is no difference in which direction the light

traverse through an optical system. Therefore, a light projector can also be considered

as an inverse camera. However, it has to be differentiated between solving a direct or

an inverse problem, which might be even impossible to solve depending on the nature

of the problem. Here, tracing the path of light using ray-tracing techniques and

projecting a 2D point into 3D space using a refractive camera model is considerably

less complicated than calculating the inverse. The reason for this is that calculating

this inverse involves estimating which 2D image point belongs to a 3D scene point

located behind multiple transparent layers such as glass without explicitly knowing

the ray vector in each layer.

Flat-Ports

Underwater flat-port cameras use a flat transparent window in front of the camera

lens to seal the camera against the environment. This additional layer introduces a

considerable change in the refraction index when a light signal parses the different

media. The result is geometric and chromatic distortion depending on the angle of

the light ray with respect to the different layer normals. However, flat-ports are
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(a) Flat-Port Camera (b) Dome-Port

Figure 4.1: Schematic of an underwater flat-port camera and dome-port.

usually quite inexpensive and can be easily mathematically modeled. Therefore,

many underwater systems rely on flat-port cameras, and even without modeling the

light refraction, they produce satisfactory results in many scenarios. As a summary,

the following characteristics should be regarded when choosing a flat-port. A more

in-depth consideration is given in Section 4.2:

• Objects appear around 25% closer in water than in-air.

• Refraction can be minimized by placing the camera axis orthogonal to the glass layer
and the focal point as close as possible to it.

• Different wavelength facing different refraction leading to chromatic distortion.

• The image center is less affected than outer image regions.

• Standard lens distortion models work only well if calibrated to a fixed object distance.

Dome-Ports

Hemispherical dome-ports consist of two spherical surfaces that have the same center

of curvature. Its thickness is defined by the difference between the two radii of these

two spherical surfaces. In the case, the focus point of a camera is precisely located

in the center of the dome; all camera rays will enter the dome-port orthogonal to its

spherical surfaces and will face no refraction. However, this requires a highly accurate

manufacturing process and is more demanding and expensive than the production of

flat-ports. Also, due to the concave nature of the dome-port, an underwater object

is always imaged as a smaller virtual object in front of the dome glass in several

centimeters away while being submerged visualized in Fig. 4.1(b). In-air, a dome-

port does not have this effect, and objects appear at the correct distance. Therefore,

it is difficult to set the correct focus during assembly, especially for small dome-ports.

It is worth to note that a dome-port also produces a curved field of focus, reducing

the effective depth of field. This curved field of focus is especially problematic for
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planar structures that are blurred at their edges. To counteract this effect, usually

underwater dome-port cameras are using a large F-Stops, but this also reduces the

amount of light the sensor can collect. Nonetheless, they are widely used for many

marine applications ranging from photogrammetry to video documentation because

they can preserve the main geometrical characteristics of standard lenses supported

by most software packages. Here, small miss-alignments can usually be compensated

using standard lens distortion models, which is not the case for flat-port cameras

requiring an explicit refractive camera model (Nocerino et al. [2016]). As a summary,

the following characteristics should be regarded when choosing a dome-port:

• The camera focus point should be located in the center of the dome.

• The focus point of a lens is changing when using zoom lenses.

• The focus should be set to macro mode and is depending on the dome radius.

• The field of focus is curved requiring large F-Stops to maintain a sufficient sharpness.

• Small miss-alignments can be modeled by standard lens distortion models.

• Larger dome-ports are less prone to miss-alignments, focus and sharpness issues.

Special Underwater Lenses

There are only a limited number of underwater wet lenses that take the refraction

of water into account as their last lens element. They are considered to deliver

the sharpest images with minimal distortion. One very famous camera series was

the Nikonos from Nikon, supporting special underwater lenses, which only shoot

sharp images underwater. However, the series was discontinued in 2001 in favor of

cheaper underwater accessories for regular cameras (Camera-wiki [2015]). Nowadays,

a standard camera, including a lens, is usually housed in a waterproofed housing with

a dome or flat-port. In the case of flat-ports special waterproofed conversion lenses

can be added to change the focal length and to improve the underwater performance.

Comparison

Flat-port cameras, as well as dome-port cameras, have advantages for specific applica-

tions and are widely used for underwater applications. Although special underwater

lenses can deliver sharper images across the whole image, they are less often used due

to their price and availability. A comparison between these three lens types is given

in the following table.
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Considerations Flat-Port Dome-Port Underwater Lens

Work Principle
Flat transparent window

for sealing the camera
including its lens

Concentric lens acting
as additional optical

element after the camera
lens

Assembly of multiple lenses
with the water considered

as last element of the assembly

Field of View
Reduced by around 25%

in comparison to in-air. Limited
to 97◦ due to total reflection

More than 180◦ possible Usually <100◦

Focal Length Increased by around 25% Same as in-air Designed for submerged only

Depth of Field Compression of around 25%
Curved reducing

effective Depth of Field
According to lens specification

Low Light
Conditions

Small F-Stops are
supported as required for

low light condition

Large F-Stop is needed
due to curved depth of field and

good illumination is required

Low F-Stops are supported
required for low light condition

Geometric
Distortion

High Low Low

Chromatic
Distortion

High Medium Low

Assembly

Camera axis should be
orthogonal to the glass layer.

The focus point should
be as close as possible

to the window to
minimize distortions.

The camera-lens should be
focused to a smaller virtual
image in front of the dome

port. Focus point of the camera
lens should be in the center of

the dome.

Must be manufactured by
a specialized lens company.

Calibration

Refractive camera model
in combination with

standard lens distortion
model. In the case of fixed
object distance standard

lens distortion model
might be sufficient.

Standard lens distortion model Standard lens distortion model

Price Low Medium High

Applications
Photogrammetry
Structured Light

Video / Photo Footage

Photogrammetry
Photo mosaique

Video / Photo Footage
Stereo Vision

Limited availability
Video / Photo Footage

Table 4.1: Comparison between different underwater camera ports.
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4.2 Camera Models

An optical camera projects a 3D scene onto an image sensor composed of many light-

sensitive elements. Each of these elements collects light originated under a specific

solid angle. The relation between this solid angle and the location of a sensor element

inside the image sensor is established with the help of camera models.

Pinhole Camera Model

One of the widely used camera models is the pinhole camera model. It establishes

a projective relationship between the location of light-sensitive sensor elements, also

referred to as pixels and the solid angles which get projected onto them. The pinhole

camera model is the base for many machine vision algorithms. There are many areas

where currently no equivalent algorithms exist for other camera models, such as the

five-point algorithm for estimating the relative pose between two camera positions

based on five corresponding scene points (Nistér [2004]). Therefore, other camera

models, such as omnidirectional camera models (Kannala and Brandt [2006], Micusik

and Pajdla [2003]), are often solely used to correct the raw image to be able to

use standard pinhole camera pipelines afterward. However, the vision community is

currently in the process of generalizing structure from motion algorithm for other

types of cameras as well. Here a library for solving calibrated central and non-central

geometric vision problems is, for example, the OpenGV library by Kneip and Furgale

[2014]. Looking at standard pinhole camera models, they can be characterized as

finite projective cameras that have some additional parameters. These parameters

augment the most basic pinhole camera model, which maps a 3D point (X, Y, Z)T to

a corresponding 2D point by simply projecting it onto a virtual plane 1m away from

the origin.

(X, Y, Z)T 7→ (X/Z, Y/Z) (4.1)

The extended model takes also the focal length fx and fy and the principal point

(image center) cx and cy into account.

(X, Y, Z)T 7→ (fxX/Z + cx, fyY/Z + cy) (4.2)

This equation can also be rewritten in homogeneous coordinates resulting in:
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fxX + Zcx
fyY + Zcy

Z

 =

fx cx 0
fy cy 0

1 0



X
Y
Z
1

 (4.3)

Here, the so called calibration matrix K encapsulates the intrinsic camera param-

eters and is defined as:

K =

fx s cx
fy cy

1

 (4.4)

In this case, the skew factor s was added for completeness which is usually zero

for most modern digital cameras. Based on this, Eq. 4.3 can be rewritten with the

homogeneous coordinates for a 3D point X and its projection x as:

x = K[I|0]X (4.5)

Finally, in the case, also the camera frame orientation R and the camera center

C in world-coordinates are given the model extends to:

x = KR[I| − C]X
x = PX

(4.6)

This linear model, visualized in Fig. 4.2, is the general mapping of a pinhole

camera with P referred to as the camera matrix. The 3 × 4 camera matrix has 11

degrees of freedom, which is identical to a 3 × 4 matrix defined up to an arbitrary

scale. Six of the free parameters encapsulate the pose of the camera and five the

intrinsic camera parameters. Based on this camera matrix, any 3D point can be

forward projected onto the camera image by simple matrix multiplication. Here, also

the backward-projection, mapping a 2D point to its dedicated camera ray X(λ), can

be written in matrix form as:

X(λ) = C + λR−1K−1x

= C + λ~v
(4.7)

Due to this linearity for forward and backward-projections, the pinhole camera

model is widely used in many computer vision applications. Here, its parameterization

used in common machine vision applications is given in Tab. 4.2 not taking any lens

distortion into account explained in the next section.
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Figure 4.2: Mapping of a scene point X onto its corresponding image point x using
a pinhole camera model.

Symbol Description

fx, fy Focal length
px, py Principal point
R Camera Orientation
C Camera Center

Table 4.2: Parameters of a standard pinhole camera model.
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Lens Distortion Model

Real cameras usually consist of multi-layer none pinhole lenses to increase their light

sensitivity. These additional elements in the optical path usually generate a deviation

from the ideal projective mapping between 3D points and their corresponding pro-

jections. To compensate this deviation a software correction can be applied which is

often done using Brown’s distortion model (Brown [1971]). Based on this model the

2D image points are re-mapped to new positions which are distortion free. This map-

ping from a distorted point (xd, yd) to its undistorted version (xu, yu) as projected by

an ideal pinhole camera is defined by the following equation with the principal point

(cx, cy), the radial distortion coefficients Kn, the tangential distortion coefficients Pn,

and the radial distance r =
√

(xu − cx)2 + (yu − cy)2:

xd = xu + (xu − cx)(K1r
2 +K2r

4) + (P1(r
2 + 2(xu − cx)2) + 2P2(xu − cx)(yu − cy))

yd = yu + (yu − cy)(K1r
2 +K2r

4) + (2P1(xu − cx)(yu − cy) + P2(r
2 + 2(yu − cy)2))

(4.8)

The benefit of this approximation is that it is independent of the actual scene

depth and can be pre-computed and efficiently applied to all raw images. After this,

subsequent algorithms directly can take advantage of the projective mapping defined

by the pinhole camera model. Taking this additional radial and tangential distortion

into account, the pinhole model expands to the normally used parameterization listed

in Tab. 4.3.

Symbol Description

fx, fy Focal length
px, py Principal point
K1, K2 Radial distortion
P1, P2 Tangential distortion
R Camera Orientation
C Camera Center

Table 4.3: Parameters of a standard pinhole camera model including lens distortion.

Here, also other lens distortion approximations are available, which allow more

compact representations, especially for certain types of lenses like wide-angle lenses

or lenses mainly subject to radial distortion, for example, addressed in Tang et al.

[2017].
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Refractive Camera Model

A refractive camera model is a mathematical model taking the refraction of light

rays at interface boundaries explicitly into account and can correct deviation from

the projective relation between the location of light-sensitive sensor elements and the

solid angles which get projected. In the case of underwater cameras, usually, flat-

ports are modeled using three layers leading to two defined interfaces between them.

Here, the first interface is between the air layer, the camera lens is located, and a

flat glass port. Following this, the second interface is between the glass port and the

medium water on the outside of the camera system.

The refraction of light at these interfaces due to different refractive indices, ergo,

air, glass, and water can be described using Snell’s law (Eq. 4.9). For this, the

refraction indices of both media as well as the incoming light ray angle with respect

to the interface normal must be known. Also, the location where the refraction takes

place must be known to not only calculate the direction of the refracted light ray but

also the exact path. Assuming an underlying pinhole camera, this is the case when

the position, orientation, and thickness of the glass layer is known with respect to

the camera center. This consideration leads to the required minimal parameter set of

a refractive camera model given in Tab. 4.4 extending the standard pinhole camera

model with eight additional parameters. This general refractive model for flat-port

cameras supporting thick glass ports with tilted interfaces is also used by Agrawal

et al. [2012] and Jordt [2013] and is visualized in Fig. 4.3.

Symbol Description

fx, fy Focal length
px, py Principal point
K1, K2 Radial distortion
P1, P2 Tangential distortion
~n Interface normal
na, ng, nw Refraction index for air, glass and water
da, dg Thickness of the air and glass layers
R Camera Orientation
C Camera Center

Table 4.4: Parameters of the refractive camera model.
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Figure 4.3: The flat-port camera model.

Back-Projection

Based on the parameterization listed in Tab. 4.4 and Snell’s law in vector form,

back projecting any image point onto its corresponding 3D ray, can be achieved in

a straight forward manner. In the first step, the light ray captured by the camera

sensor at location p is mapped to its corresponding 3D ray P (λ) in-air using the

projective relation between it and the sensor location p established by the pinhole

camera model. In general, this is referred to as the back-projection of a 2D point to

3D space. Following this, the ray ~va is refracted when entering the glass layer. This

refracted ray ~vg in the glass layer can be derived using Snell’s law in vector form.

Here, na, ng are the refractive indices, and ~n is the plane normal of the glass layer

with respect to the camera orientation assuming a planar glass window.

vg =
na
ng

[
~n× (−~n× ~va)

]
− ~n

√
1− na

ng

2

(~n× ~va) · (~n× ~va) (4.9)

Analog to this, the ray vector ~vw in the medium water can be computed by:

vw =
ng
nw

[
~n× (−~n× ~vg)

]
− ~n

√
1− ng

nw

2

(~n× ~vg) · (~n× ~vg) (4.10)

However, this only calculates the direction of the ray in each of the layers. To

calculate the exact path, also the entry and exit points of the ray into and out of the
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Figure 4.4: A pinhole camera converts to an axial camera due to a flat-port housing.

glass must be calculated. Because the camera center defines the starting point, the

entry point can be derived by intersecting P (λ) with the plane equation for the first

glass surface. Analog to this also, the exit point can be calculated, which gives the

line equation for the refracted ray in the medium water. In computer graphics, this

is also known as eye-based ray tracing, which is a rendering technique for generating

an image by shooting rays from the eye to the light source and simulating the effects

of its interactions with virtual objects and media.

Forward-Projection

The forward-projection of 3D points onto the image plane is considerably more com-

plicated than the back-projection because, unlike for the pinhole camera model, there

is no projective relation between a 3D point and its projected version subject to re-

fraction. In fact, due to the additional optical elements, a pinhole camera behind a

flat-port converts to an axial camera when being submerged. Here, all camera rays

no longer intersect in a common point (center of projection) but a common line vi-

sualized in Fig. 4.4. This invalidation of the single viewpoint constraint is a direct

consequence from the plane of incidence or plane of refraction (POR), which is defined
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Figure 4.5: An incoming and its corresponding refracted ray always lie in a common
plane called plane of incidence or plane of refraction (POR).

by the incoming ray ~v and the surface normal ~n of the interface. Based on Snell’s

Law, it can be shown that also the refracted ray must lie on this plane visualized

in Fig. 4.5. This constraint can further be used to define a coplanarity constraint

between each 3D point P and its projection p = (px, py) which is independent of the

actual refraction indices (Agrawal et al. [2012]). This constraint describes the metric

distance of a 3D scene point to the POR defined by its projection and the layer

normal of the glass layer. It is zero if the light rays intersect with the projection and

the 3D scene point at the same time and therefore originated from this point.

~n× ~v · P = 0 (4.11)

~v =

 px−cx
fx

py−cy
fy

1

 (4.12)

However, the coplanarity constraint cannot directly be applied to global optimiza-

tion problems because the scale of its residual depends on the scene depth and the

location of the projected scene point. Also, it ignores the direction orthogonal to the

POR and leaves only one constraint for every 3D point. Therefore, in the following,

the re-projection error is approximated using a novel first-order Taylor expansion of

the flat refractive forward projection centered around the projection obtained by the

pinhole camera model. Here, the measured 2D point can directly serve as the center

of the Taylor expansion, making it possible to integrate it seamlessly into non-linear

optimization problems such as bundle adjustments. This new approach was already

presented in Duda and Gaudig [2016]. Here a new, more compact derivation is given.
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Figure 4.6: The basis change to simplify the refractive calculation.

In general, the flat refractive forward projection can be simplified by converting

the three dimensional problem into a two dimensional problem. This simplification

is achieved by performing the calculation with respect to the POR containing the

whole path of the camera ray, including any refraction. Per definition, the POR

contains the layer normal n and the camera ray ~v. Therefore, the vector ~v‖, which is

the intersection of the POR with the image plane, is given by:

~v‖ =

~v −

 nx

nz
ny

nz

1


∣∣∣∣∣∣~v −

 nx

nz
ny

nz

1

∣∣∣∣∣∣
(4.13)

Any change along this vector will lead to a new associated 3D point, which also

lies in the same POR. Therefore, this direction is used as the new x-coordinate in

the image domain, and its re-projection error is calculated by only tracking the ray

inside the POR = POR‖. For the y-coordinate in the image domain, a vector ~v⊥

orthogonal to ~v‖ is defined encapsulating deviations from the POR:

~v⊥ =

 −~v‖y~v‖x
0

 (4.14)

Based on these two vectors, visualized in Fig. 4.6, the basis vectors of the POR
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are derived. It is worth mentioning that these basis vectors are only aligned with the

image plane if the camera is orthogonal to the glass interface.

~e⊥ =
~n× ~v‖

|~n× ~v‖|

~e‖ =
~e⊥ × ~n
|~e⊥ × ~n|

~en = ~n

(4.15)

Here, ~e‖ and ~en are lying in the POR and ~e⊥ and ~en are lying in a second plane

POR⊥ which is orthogonal to POR. Based on this, the slope angle α of the camera

ray ~v inside the POR is given by:

sinα =

∣∣∣∣~en × ~v

|~v|

∣∣∣∣ (4.16)

In the next step, using Snell’s Law in standard form, the slope m of the camera

ray can be calculated after entering a different medium with na being the refraction

index of the first and nb the one of the second medium.

sin β =
na
nb

sinα

tan β =
sin β√

1− sin β2

m(~v, na, nb) =

na

nb

∣∣∣~en × ~v
|~v|

∣∣∣√
1−

(
na

nb

∣∣∣~en × ~v
|~v|

∣∣∣)2
(4.17)

Using Eq. 4.17 and the refraction indices of the media the slope m of the camera

ray in the three different medias air, glass and water is given by:

ma(~v) = m(~v, na, na)

mg(~v) = m(~v, na, ng)

mw(~v) = m(~v, na, nw)

(4.18)

Following this, as the real 3D point P must also lie inside the POR it position can

be calculated using the distance da between the camera center and the glass interface,

the thickness dg of the glass layer and the distance dw between the 3D point and the

glass interface. This circumstance is visualized in Fig. 4.7 and given by the following

equation:

g(~v, da, dg, dw) = dama(~v) + dgmg(~v) + dwmw(~v) (4.19)
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Figure 4.7: Refraction inside the plane of refraction.

By applying a change of basis to transform the 3D point P to the coordinate

system of the POR the following constraint can be defined.

g(~v, da, dg, ~e
n · P − da − dg) = ~e‖ · P (4.20)

Also, per definition, all refracted rays are contained by the POR. Therefore, the

following constraint also applies which is, in fact, the normalized coplanarity con-

straint.

g(0, da, dg, ~e
n · P − da − dg) = ~e⊥ · P = 0 (4.21)

Assuming the re-projection error ∆‖ and ∆⊥ between a projection p1 of a trian-

gulated 3D point P1 and its measured image location p0 is known, the constraint can

be rewritten as:

~e‖ · P1 =dama(~v0 + ∆‖~v‖) + dgmg(~v0 + ∆‖~v‖) + (~en · P1 − da − dg)mw(~v0 + ∆‖~v‖)

~e⊥ · P1 =dama(∆
⊥~v⊥) + dgmg(∆

⊥~v⊥) + (~en · P1 − da − dg)mw(∆⊥~v⊥)
(4.22)

This re-projection error is visualized in Fig. 4.8. Here, because the re-projection

error is usually unknown, the goal is to solve Eq. 4.22 for ∆‖ and ∆⊥ which is

non-trivial in closed form and would lead to a 12th degree equation which was first

published by Agrawal et al. [2012]. However, it can also be solved by approximating

all slopes m by a Taylor series centered at the projection p0.
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Figure 4.8: Re-projection error of a flat-port camera.

m(~v0 + ~v‖∆‖) ≈ m(~v0) +m
′
(~v0)∆

‖

m(~v⊥∆⊥) ≈ m(0) +m
′
(0)∆⊥

(4.23)

Plugging Eq. 4.23 into Eq. 4.22 and solving for the re-projection errors while

using the fact that due to Snells’s Law m(0) = 0 results in:

∆‖ ≈ ~e‖P −ma(~v0)da −mg(~v0)dg −mw(~v0) · (~enP − da − dg)
m′
a(~v0)da +m′

g(~v0)dg +m′
w(~v0) · (~enP − da − dg)

∆⊥ ≈ ~e⊥P

m′
a(0)da +m′

g(0)dg +m′
w(0) · (~enP − da − dg)

(4.24)

This simplification leads to the final re-projection error in image coordinates given

by:  ∆x

∆y

0

 = ∆‖~v‖ + ∆⊥~v⊥ (4.25)

However, this equation is an oversimplification because the POR⊥ does not go

through the real camera center, and a new virtual camera center is generated with

a slightly different focal length scaling the re-projection error in the direction of ~v⊥.

This difference can be compensated by applying the correct scaling factor. ∆x

∆y

0

 = ∆‖~v‖ + ∆⊥~v⊥ ~en · (0, 0, 1)τ (4.26)
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The resulting re-projection error is based on the Taylor series centered at an

approximation for the corresponding projection. Therefore, the result diverges from

the real value depending on the initial approximation. In addition to this linearization

error, there is an additional error resulting from a POR, which does not contain the

real 3D point. This deviation happens if there is an error in the direction of ~v⊥, which

leads to an offset for the estimated basis vectors of the POR, which can be minimized

when Eq. 4.26 is used in an iterative fashion.

In the following, several experiments verify the accuracy of the proposed approach

in dependency on the image location. Assuming a flat-port camera has the intrinsic

model parameters displayed in Tab. 4.4 where Flat1 is an optimal flat-port camera

having an image plane that is parallel to the glass interface and an optimal distance

to the glass interface which mostly cancels out the effects of refraction. Here, the

constraint for cancellation is given below, which can only be fulfilled for a single

concrete camera ray vector ~v.

dama(~v) + dgmg(~v) = (da + dg)mw(~v)

da = dg
mw(~v)−mg(~v)

ma(~v)−mw(~v)

(4.27)

However, it should be considered during camera design to minimize the average

geometric distortions, as shown in Fig. 4.10 and 4.11. This optimal distance was also

identified by Schattschneider [2014]. Here the conclusion is that the camera should

be placed as closely as possible in front of the window as the optimal distance is

usually below what is physically achievable. A schematic of the optimal placement is

visualized in Fig. 4.9 minimizing the overall geometric error.

Following this, Flat2 is a flat-port camera which is still orthogonal but is shifted

away from the glass interface by an additional 5mm. Finally, Flat3 is a flat-port

camera with a small tilt against the glass layer similar to one which is manually as-

sembled without special equipment for alignment. Analog to this, in Tab. 4.3 the

corresponding model parameters for the pinhole camera model are given optimized

to minimize the geometric error with respect to the flat-port model assuming a cali-

bration target in 3m distance. Here, for the orthogonal cases, the refraction is mainly

compensated by changing the focal length and the radial distortion coefficients of the

camera. However, in the case, the camera is tilted, this is no longer sufficient, and

the image center, focal length, and radial and tangential distortion coefficients must

be modified to minimize the error.

Using these model parameters for each pixel of the camera image, the correspond-

ing 3D points are calculated based on refractive back-projection and a virtual plane
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(a) Non-Optimal Placement (b) Optimal Placement

Figure 4.9: An optimized placement of the focal point with respect to the glass port
minimizes the observed geometric distortion.

Symbol Flat1 Flat2 Flat3

fx, fy 785, 785 785, 785 785, 785
px, py 640, 480 640, 480 640, 480
~n [0.0,0.0,1] [0.0,0,1] [0.02,-0.01,1]
na, ng, nw 1,1.77,1.337 1,1.77,1.337 1,1.77,1.337
da, dg 0.005, 0.01 0.010, 0.01 0.005, 0.01

Table 4.5: Parameters of the refractive camera model for different simulated cameras.
The first one has an orthogonal camera axis with respect to the glass interface and
an optimal distance to the glass interface. The second one is also orthogonal to the
glass interface, but its position is shifted by 5mm away from the glass interface. The
third camera has an optimal distance to the glass interface but has a small tilt angle
similar to cameras manually assembled and aligned.

Symbol Pin1(Flat1) Pin2(Flat2) Pin3(Flat3)

fx, fy 1047.30, 1047.30 1046.74, 1046.74 1048.69, 1048.57
px, py 640.00, 480.00 640.00, 480.00 644.95, 477.47
K1, K2, K3 0.395, 0.182, 0.282 0.394, 0.182, 0.276 0.368, 0.358, -0.038
P1, P2 -0.578e-6, -0.556e-6 -0.559e-6, -0.532e-6 -0.00444, 0.00914

Table 4.6: Parameters of the pinhole camera model optimized to minimize the re-
projection error of the corresponding flat-port model given in Tab. 4.4.
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in a scene distance of 1m. After this, each 3D point is forward projected onto the

image plane using the pinhole camera model optimized to minimize the geometric

error with respect to its corresponding refractive camera. The difference between the

original 2D point and the one obtained using the virtual image plane is shown as

the pinhole model error in Fig. 4.10(a), 4.11(a) and 4.12(a) for the three different

flat-port parameterizations. In the ideal case, the camera plane is parallel to the glass

layer, and the un-modeled distortion is less than one pixel using a pinhole camera

model. However, this error is range dependent and has its minimum for ranges simi-

lar to the one used for optimizing the pinhole model. This range dependency is, for

example, problematic for bundle adjustments as it will favor 3D point locations at a

specific distance to the camera. In the case, the camera plane is slightly tilted against

the glass layer, or the camera has a none-optimal distance da to the glass-port; the

error of the pinhole model significantly increases as the pinhole model can no longer

compensate the error.

For the proposed refractive forward projection, an estimate for the 2D point lo-

cation is required. The pinhole camera model can obtain this initial location despite

its deviation to the real value. This is done fo Fig. 4.10(b), 4.11(b) and 4.12(b) and

the remaining errors in pixels are visualized for the proposed flat projective forward

projection. Following this, for Fig. 4.10(c), 4.11(c) and 4.12(c) the new improved

locations of the projections are used to re-center the Taylor Series and the results of

the second iteration are visualized. As the deviation of the starting points to the real

locations of the projections increase with larger tilt angles of the camera, also the

remaining errors of the proposed refractive forward projection increase. However, in

real case scenarios the camera is usually only slightly tilted against the glass layer

similar to Flat3, where the pinhole model can deliver reasonable close approximations

to obtain a final accuracy close to 1
10
th of a pixel after one iteration. This accuracy is

sufficient for most applications as it is close to the accuracy of sub-pixel peak detectors

for localizing natural feature points in the image domain.

For validating the proposed flat refractive forward projection is stable for cases

the point for centering the Taylor Series is very far away from the real projection

of the given 3D point P0, a 2D image point p0 at location 200/200 is chosen, and

its corresponding 3D point is calculated. Following this, for each image point p, the

proposed flat projective forward projection is calculated using the point location itself

as a starting point for projecting the 3D point P0 onto the image plane.

In Fig. 4.13 the relative remaining error after one iteration is visualized. Here, for

all image locations, the proposed flat refractive forward projection can considerably
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(a) Pin1 (b) Flat1 1. iteration (c) Flat1 2. iteration

Figure 4.10: Re-projection error in pixel introduced by a pinhole camera model when
used instead of a flat-port model. a) error of Pin1; b) error after the first iteration
of the proposed refractive forward projection centered at the projections obtained by
Pin1; c) error after the second iteration centered at the projections obtained by the
first iteration.

(a) Pin2 (b) Flat2 1. iteration (c) Flat2 2. iteration

Figure 4.11: Re-projection error in pixel introduced by a pinhole camera model when
used instead of a flat-port model. a) error of Pin2; b) error after the first iteration
of the proposed refractive forward projection centered at the projections obtained by
Pin2; c) error after the second iteration centered at the projections obtained by the
first iteration.

(a) Pin3 (b) Flat3 1. iteration (c) Flat3 2. iteration

Figure 4.12: Re-projection error in pixel introduced by a pinhole camera model when
used instead of a flat-port model. a) error of Pin3; b) error after the first iteration
of the proposed refractive forward projection centered at the projections obtained by
Pin3; c) error after the second iteration centered at the projections obtained by the
first iteration.
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reduce the remaining deviation to the real projection. Therefore, for the whole image,

the proposed approximation always converges to the true value without getting stuck

in a local minimum. However, the convergence speed greatly depends on how close

the point p is located to the point p0. In the worst case, the deviation is only reduced

by a factor of two after the first iteration. However, in case the distance to the true

value is close, the deviation can be reduced by a factor of more than 10 using a single

iteration.

(a) Flat1 (b) Flat2 (c) Flat3

Figure 4.13: Relative error of the approximated refractive forward projection depend-
ing on the point p used for centering the Taylor Series. Here, the true projection is
(x=200,y=200) shown as cross. The color indicates the remaining error after one
iteration relative to the error at the beginning for each possible image point.

These considerations show that for many applications, a standard pinhole cam-

era model can correct most of the distortion introduced by the flat-port housing if

the camera is designed with care and is orthogonal to the glass interface. However,

small deviations from the optimal camera placement will introduce considerable ad-

ditional distortions that cannot be compensated by the pinhole camera model. Also,

demanding applications like structured light systems able to track artificial features

with an accuracy of 1
100

of a pixel, bundle adjustments, or high-resolution cameras

will face a reduced performance if the refraction is not explicitly taken into account

during processing. Also, having access to the underlying flat-port model improves

the calibration process as in-air calibration is now possible. This allows estimating

the model parameters for the underwater case taking the refraction index of different

water bodies (fresh versus saltwater) into account. Here, an in-depth consideration

for calibrating cameras is given in the next sections.

4.3 Line Projector Model

A line laser projector can be handled as an inverse line camera, which only has a

single coordinate in the former 2D image domain. Therefore, in the case of the flat

glass interface, the flat-port model can also be used for the line laser projector. Here,
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Figure 4.14: Brightness distribution of a former homogeneous laser line due to refrac-
tion compressing the line at its edges.

the glass port has mainly two effects onto the laser sheet while being submerged.

Assuming the laser projector is perfectly orthogonal to the glass port, all refraction

will take place in the laser plane itself. The result is that a former homogenous bright

laser line gets transformed into a line that is brighter on its edges, like visualized in

Fig. 4.14. However, the absolute brightness of the laser is also altered by the medium

water, and the texture of the object reflecting the laser line to the camera is usually

not used for depth estimation.

The second effect is more critical and takes place when the laser line is no longer

orthogonal to the glass interface. In this case, the refraction no longer lies inside the

laser sheet, and the laser line gets geometrically distorted, as visualized in Fig. 4.15

for different tilt angles. This distortion leads to an imprecise triangulation of laser

points if not taken into account and is usually ignored by underwater line structured

light systems assuming the orthogonal case.

However, the distortion can be approximated by shifting the principal point of an

inverse pinhole camera and by applying tangential distortion. The rationale behind

this new parametrization is that a flat-port model is, in fact, an axial camera where all

camera rays intersect in a common line, which has the same direction as the normal

of the flat-port. As long as this line is part of the ordinal laser sheet, no geometric

distortion will be observed. However, in the case, the laser sheet is non-orthogonal

to the flat-port interface, the virtual location of the light emitter is pushed away

from the original light-sheet depending on the radial distance of the point leading

to a symmetrical distortion of the laser line. Therefore, a sufficient projector model

parameterization is listed in Tab. 4.7. Here, the focal length and the principal point
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Figure 4.15: Deviation of the laser line due to a tilted glass port. The deviation is
visualized as observed from an ideal camera (Pin1) having the same pose as the line
projector.

Symbol Description

f Focal length (canonical value)
p Principal point (canonical value)
P1 Tangential distortion
R Orientation (plane normal)
d Baseline (distance to origin in m)

Table 4.7: Parameters of a flat-port line projector model.

can be set to the canonical values because no real measurements can be taken in the

image domain of the projector. The accuracy which can be reached by this model for

different use cases is visualized in Fig. 4.16.

This proposed line projector parameterization is a simplification of the flat-port

model. It is only valid for small tilt angles against the glass port, which usually is in

the order of one degree when manually assembled without specialized equipment. The

benefit of using this model is that the laser sheet is approximated by a parabola back-

projected into 3D space. This allows simplifying the triangulation of 3D points by

calculating the intersection between the refracted camera rays and the back-projected

parabola.

4.4 Calibration

Every real camera has a specific characteristic due to small imperfections and toler-

ances during assembly. These characteristics can usually be described by a suitable
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Figure 4.16: Re-projection error between the laser model and the refractive forward
projection using a given tilt angle to modify the parameterization of the flat-port
Flat1 from Tab. 4.5.

camera model resulting in remaining re-projection errors in the order of a fraction of

a pixel. However, the correct model parameters have to be determined for each cam-

era, which is usually referred to as camera calibration or finding the intrinsic camera

parameters.

Finding the intrinsic camera parameters usually involves the detection of a known

object in the camera image, which signals multiple object-points. Those relationships

with each other are precisely known in 3D space. Based on these object points

and their measured projections, the model parameters can be approximated and

iteratively refined by minimizing the re-projection error between measured image

points and projected ones.

This calibration process is usually done for most machine vision cameras by col-

lecting a set of images showing a calibration target from different positions (Duda

and Frese [2018]). In general, this involves the following steps:

• Setup suitable light conditions.

• Record multiple images of a calibration target from different positions.

• Detect calibration target in the image domain.

• Filter out distorted images due to motion blur, difficult light conditions or difficult
target poses.

• Estimate camera model parameters as starting point for iterative refinement.

• Refine model parameters.

• Filter out images subject to high re-projection errors above a given threshold.

• Repeat refinement and filtering until convergence.
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Calibration Targets

Checkerboards are by far the most popular calibration targets in the vision community

(Fig. 4.17). They have strong gradients in all directions, and more importantly, the

exact localization of their crossings is mostly invariant to lens distortion. However, it

is difficult to get measurements close to the image borders required for an accurate

calibration as four full fields are required to signal a single point. Here, calibration

targets using squared/circle grids are less prone to this limitation. Still, it is more

difficult to detect them in the image domain with a comparable precision like checker-

board patterns (Abeles [2018]). One reason for this is that their geometric center is

not invariant under perspective distortion, and extra care must be taken in the case

of larger circles. They are also more sensitive to image noise (Luhmann et al. [2013]),

whereas a robust and accurate calibration can be achieved using checkerboards (Duda

and Frese [2018]).

(a) Checkerboard (b) Squared Grid (c) Circle Hex. Grid (d) Circle Reg. Grid

Figure 4.17: Standard targets for camera calibration Abeles [2018].

Robust Checkerboard Detection

The central part of this work has been already published in Duda and Frese [2018],

which was mainly motivated by the demanding requirements of a flat-port camera

calibration due to its additional model parameters in comparison to standard models.

Here a summary is given as the presented approach is used for calibrating all flat-port

cameras part of conducted experiments.

Checkerboard detection has mainly two aspects: The first is to detect the checker-

board as a whole and distinguish it from other image content. This step determines,

in particular, in difficult conditions, whether the image can be used in the calibration

or not. The second is finding accurate corner locations. This localization determines

the accuracy and precision of the calibration. In the case of checkerboard targets,
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(a) Centerline based junction
model

(b) Edge based junction model

Figure 4.18: Junction models in the case of no projective distortion.

the Harris operator by Harris and Stephens [1988] is often used for detection and

combined with the Förstner Operator published by Forstner and Gulch [1987] for

sub-pixel refinement. Here, the Förstner Operator exploits the observation that the

image gradient ∇f [x, y] at a point ( xy ) is perpendicular to the line from ( xy ) to the

corner ( cxcy ). Implementations, based on these two operators, can be found, for exam-

ple, in the OpenCV’s camera calibration pipeline (Bradski [2000]), or work published

by Douskos et al. [2008], and Rufli et al. [2008].

Following Sinzinger Sinzinger [2008], there are basically two models for a checker-

board corner: Black and white sectors with centerlines (Fig. 4.18(a)) and a cross of

edges (Fig. 4.18(b)). An edge-based view leads to algorithms based on gradients that

are susceptible to image noise in comparison to an algorithm that takes a sector-based

view. Such a sector-based algorithm is developed in the following exploiting the point

symmetry of checkerboard corners with a localized Radon transform approximated

by box filters. This approach is far less affected by image noise than gradient-based

methods and considerably improves the calibration results.

The underlying concept of the new corner detector is that all neighboring regions

are point symmetric to the desired point (Fig. 4.18(a)), unlike in most ”natural” cor-

ners. Therefore, centerlines from opposite regions are viewed as a common centerline.

Following this, the sum of all pixel values along the centerline through the bright ar-

eas is higher than the sum of pixel values along the other centerline through the dark

areas. In fact, if the two paths used for summation/integration are the centerlines

of a checkerboard corner, the difference between both integrals will be maximized.

In all other cases, the value will be reduced by the amount the paths are touching

neighboring regions and is zero for homogeneous image regions.
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Assuming a function fc[x, y] exists, which calculates the integral for all possible

centerlines around a given image point f [x, y] and returns the square difference of

the maximal integral value and the minimal integral value. Checkerboard corners

can be identified with a min-max search by transforming the image into a response

map using this function. This approach is similar to the Harris detector response

map (Harris and Stephens [1988]). However, instead of shifting window patches in x

and y-direction of the image plane they are rotated around the selected point. After

local maximums are identified in the response map subpixel position of corresponding

corners can be estimated by subpixel peak algorithms. A comparison between differ-

ent algorithms is given in Fisher and Naidu [1996] and Kiger [2010]. In this case, a

Gaussian peak fit is used.

A closer examination of the requested function fc[x, y] reveals that it is in fact

similar to the Radon transform Rf [r, α] (Ginkel et al. [2004]) localized to each image

point f [x, y] while setting r to zero. This localized Radon transform Rflocal[x, y, α]

provides the integral for all possible centerlines or rays for a given point coordinate

x, y. Here, only the squared difference between the strongest ray and the weakest ray

is returned by fc[x, y] with m specifying how large the corner is expected to be in the

image.

Rflocal[x, y, α] =
i=m∑
i=−m

f
[
x+ i cos(α), y + i sin(α)

]
fc[x, y] = [ max

α∈[0,π]

(
Rflocal[x, y, α])− min

α∈[0,π]
(Rflocal[x, y, α]

)
]2

(4.28)

However, calculating the localized Radon transform for each image point would

be very time-consuming. Therefore, max and min are approximated by considering

only α ∈ {0, π
4
, 2π

4
, 3π

4
} as angles.

This approximation is possible due to the point symmetry of checkerboard corners

generating a function similar to a sine or cosine after the localized Radon transform

is applied (Fig. 4.19).

This function curve allows to efficiently approximate the transformation of the

input image into a response map by convoluting the image with box filters using

a kernel size matching the considered window patch around a corner. But instead

of rotating the filter kernels by an angle α (steerable filter), the image is rotated

counter-wise, convoluted with two 1D kernels, and turned back. This approach is

motivated by the work of Maire [2009] using the same method to speed up contour

detection. However, in this case, box filter kernels are used to calculate the integrals

of a localized Radon transform for pre-defined discrete ray angles.
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Figure 4.19: Responses for a checkerboard corner.

fblur[x, y] = 1
2k+1

i=m∑
i=−m

f [x+ i, y]

frot[x, y, α] = f [x cos(α)− y sin(α), x sin(α) + y cos(α)]
fr[x, y, α] = frot

(
fblur(frot(f [x, y],−α)), α

)
∝ Rflocal[x, y, α]

fc[x, y] ∼ [max
(
fr[x, y, 0], fr[x, y,

π
4
], fr[x, y,

2π
4
, fr[x, y,

3π
4

]
)
−

min
(
fr[x, y, 0], fr[x, y,

π
4
], fr[x, y,

2π
4
, fr[x, y,

3π
4

]
)]2

(4.29)

Each rotation combined with a convolution generates one new copy of the input

image blurred in a discrete direction. Therefore, a blur kernel size of n×m is used

corresponding to the size of the window of the detector and is usually in the range

between 1× 3 and 1× 9. By changing this window size in both dimensions it can

easily be generalized to detect corners at a specific scale. In the next step, these

blurred images are joined to a response map, according to Eq. 4.29.

A complete procedure of the detection is given below:

• Convert input image into a greyscale image.

• Supersample greyscale image by a factor of two to improve anti-aliasing.

• Rotate greyscale image around its center using the angles 0 and π
4 .

• Blur rotated images each with an n×m and m× n box filter resulting in twice as
many images as before and inflating the angle interval to [0, π[.

• Rotate blurred images back.

• Join images which are rotated back to their original orientation using Eq. 4.29.

• Blur resulting response map with a k × k box filter to account for the discretization
errors.

• Locate corners by searching for local maxima in the blurred response map.

• Use thresholding and nonmaximal suppression to filter out weak corners.
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Figure 4.20: Detection of checkerboards using the proposed method: (a) response
map calculation; (b) processing time for a checkerboard detection including subpixel
estimation.

This method has some additional advantages useful for a checkerboard detector

such as supporting scale space (Crowley and Parker [1984], Lindeberg [1991]) or

providing the angle of each corner by fusing the blurred input images using a subpixel

peak detector estimating the angle of both centerlines. Also, it can be directly applied

to determine the subpixel location of each corner. Based on this, a checkerboard

detector is implemented, which uses cross ratios to grow an initial 3x3 checkerboard

by adding more and more local maxima from the response map stored in a k-d tree.

The initial board is generated by drawing a random point from an initial point set

and by using the provided angles to search for neighboring maximums in the response

map.

Here, the described method is also mostly linear in the number of processed pixels

and usually outperforms the checkerboard detector implemented in OpenCV with

respect to localization error and processing time. The processing time is displayed in

Fig. 4.20(b) for the detection of the checkerboard visualized in Fig. 4.20(a) using the

described and the OpenCV method.

Furthermore, the results for two real image sets using two different camera setups

are displayed in Fig. 4.21. Here, the first image set Fig. 4.21(a) was taken indoors in

a controlled environment with a static checkerboard while the second Fig. 4.21(b) was

taken outdoors under difficult illumination conditions and a quasi-static checkerboard

setup introducing small amounts of motion blur.

For the checkerboard detection, the described method is compared to OpenCV’s

implementation (9x9 window size). The result is passed through the same code to

estimate camera parameters and to calculate the remaining re-projection error of each

checkerboard corner. These errors are plotted in Fig. 4.21 as mean error for each
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Figure 4.21: Re-projection error of each detected checkerboard after calibration: (a)
calibration in controlled environments; (b) outdoor calibration - negative values in-
dicate that no checkerboard was detected.

Proposed OpenCV

Focal Length 990.52 / 990.94 990.31 / 990.66
Principle Point 642.94 / 552.31 642.37 / 551.81
Radial Distortion -0.12172 / 0.12032 -0.11951 / 0.11917
Tangential Distortion 0.00316 / -0.00101 0.00316 / -0.00101
Mean Residual in pixel 0.0332 0.0391

Table 4.8: Camera Parameters - Indoors

Proposed OpenCV

Focal Length 746.49 / 745.86 746.79 / 745.48
Principle Point 514.66 / 512.73 514.12 / 514.12
Radial Distortion 0.01752 / -0.01585 0.02114 / -0.01993
Tangential Distortion 0.00062 / 0.002016 0.00147 / 0.000798
Mean Residual in pixel 0.0459 0.0738

Table 4.9: Camera Parameters - Outdoors

image of the set. In case, the checkerboard was not detected, or the residual error was

above 0.5 pixels, the image was excluded and is marked with a negative re-projection

error in the plots.

Here, the proposed method is outperforming the OpenCV implementation (OpenCV

v3.3 - cv::findChessboardCorners) under all tested conditions and results in consider-

ably higher detection rates and a smaller re-projection error. The resulting intrinsic

camera parameters are displayed in Tab. 4.8 and 4.9. In particular, the outdoor

case shows a problematic increase in the re-projection errors for the baseline method,

while the proposed method can maintain a relatively small re-projection error. A

more in-depth analysis is given in Duda and Frese [2018].

Camera Model Refinement

The ability to detect and track calibration targets unbiased and with high accuracy

in the image domain, discussed in the previous section, is especially crucial for cali-

brating complex camera models like, for example, the flat-port camera model. The

more noise is present in the detected point coordinates, the more the convergence of

the optimization step is affected during model parameter optimization. Here, if the

noise is too high, the optimization problem might converge only to a local minimum

leading to poor performance when used for applications like motion tracking or 3D

scene reconstruction.
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(a) Error in-Air (b) Error in-Water

Figure 4.22: Re-projection error of a flat-port camera (Flat1) in pixels due to an one
degree tilted 10mm glass layer with respect to an orthogonal case.

For accurately calibrating a flat-port camera, the previously discussed flat-port

model in combination with the new checkerboard detector is used. In the first step,

a pinhole camera model is assumed, and the camera is calibrated in-air using the

method described in Zhang [2000] and implemented in Bradski [2000]. Following

this, these values are used as an initial guess for the flat-port model. Here, the

additional flat-port model parameters are set to their default values assuming all

refraction indices and the thickness of the glass layer are known. Using these initial

values in combination with the poses of the checkerboards found during the pinhole

camera calibration, a bundle adjustment is performed. Here, as residuals, the forward

projection of the flat-port model is used utilizing the measured 2D point locations of

the checkerboard corners to center the Taylor series.

During the iterative refinement, the normal vector of the glass layer is set to be

constant as the effect of a tilted glass layer in-air is close to the theoretical limit of

sub-pixel peak detectors in the image domain. As an example of a one-degree tilt, the

re-projection error is visualized in Fig. 4.22. According to this, the glass layer normal

can only be calibrated when the camera is being submerged. However, without loss

of generality, for small tilt angles, the camera can be assumed to be orthogonal to

the glass layer for the in-air case.

The same is true for the thickness of the air layer because the media on both sides

of the glass are near identical for an in-air calibration of a flat-port camera. Therefore,

it is impossible to find the exact location of the glass layer between the object point

and its projection while the camera is not being submerged. For the in-air case, any

value smaller than the distance to the real object can be used. The following table

summarizes the initial values of the in-air calibration, which is assuming ng and dg

are known based on the mechanical design of the flat-port camera.
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Symbol Description Initial Value Attribute

fx,fy Focal length Pinhole Camera Calibration variable
px,py Principle Point Pinhole Camera Calibration variable
K1,K2 Radial Distortion Pinhole Camera Calibration variable
P1,P2 Tangential Distortion Pinhole Camera Calibration variable
~n Interface normal [0,0,1] const
na, ng, nw Refraction indices 1.0,ng,1.0 const
da, dg Layer thickness [0.01,d g] const
R Camera Orientation Pinhole Camera Calibration variable
C Camera Center Pinhole Camera Calibration variable

Table 4.10: Flat-port model parameters for iterative refinement in-air.

(a) 5mm Glass Layer (b) 10mm Glass Layer

Figure 4.23: Influence of the glass layer thickness onto projected scene points in pixels
using the parameterization of Flat1.

Comparing the calibration results between a pure pinhole camera model and the

flat-port camera model for the in-air case, the small effect of the additional glass

layer can be noticed. Its influence on the re-projection result is visualized in Fig.

4.23 for different glass thicknesses requiring an exact sub-pixel target location for

in-air calibration capability.

In addition, Tab. 4.11 shows the change in the camera parameters for a real-world

calibration due to the additional flat-port refinement step while being submerged.

For the calibration and the further refinement, around 50 checkerboard images with

random checkerboard poses were collected averaging errors due to Bayer pattern,

motion blur, in-homogeneous illumination, image noise, etc.

A small tilt of the camera against the glass layer is noticeable when comparing

the free parameters, optimized while the camera is being submerged, with the one

from the in-air calibration listed in Tab. 4.11. This tilt is due to the manufacturing

process of the camera and hardly avoidable as the glass port is pressed against a

sealing that gets compressed. This compression is also the reason why the camera
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Figure 4.24: Image distortion due to an change in the salinity level of the water body
or a distance change of the focal point with respect to the flat-port.

Symbol Flat-port in-air Calibration Flat-port in-water Refinement

fx,fy 777.73,776.93 777.73,776.93
px,py 648.49,489.61 648.49,489.61
K1,K2, K3 -0.329023, 0.121897,-0.022262 -0.351943, 0.168047 -0.044378
P1,P2 -0.000556, -0.000227 0.000294, -0.000974
~n [0,0,1] [0.004942, -0.006180, -0.999969]
na, ng, nw 1.0,1.72,1.0 1.0,1.72,1.337
da, dg [0.01,0.01] [0.0195,0.01]
Reprojection Error 0.07478 0.05157

Table 4.11: Flat-port model parameters after in-air calibration and after iterative
refinement of the distortion parameters, layer normal and air layer thickness while
being submerged.
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parameters are subject to small changes while diving. However, these changes are

small in comparison to a change in the refraction index due to different salinities.

Therefore, in the case, high precision is required, an on-site refinement step should

be considered.

Line Projector Refinement

The line projector model outlined in Tab. 4.7 has five degrees of freedom, which is

analog to the equation of a plane in 3D space augmented with an additional parameter

for modeling a bending of the line. Therefore, by ignoring this extra parameter, the

initial projector parameters can be found from multiple 3D points lying on a virtual

plane, which is projected onto the line of the projector. Here, at least three points are

required that are not collinear. Using multiple 3D points allows using least square

fitting techniques finding the best plane parameters by minimizing the sum of the

squares of the offsets of the 3D points from the plane (Eberly [2018]). In the case of

outliers, this can also be combined with the Random sample consensus (RANSAC)

algorithm, which acts as an outlier detection method (Fischler and Bolles [1981]).

After the initial values are calculated, the model is refined by using the distance

d of projected 3D points x to the distorted image of the plane as residuum to opti-

mize the model parameters. Here, the residuum is defined by the following equation

where X are the homogenous coordinates of a 3D point, R the rotation matrix of the

projector, and C the location of the projector. This equation is analog to the pinhole

camera model with K set to identity and the additional constraint that all projected

points must have no y component after they are un-distorted.xxxy
xz

 = R[I| − C]X

d = xy
xz
− P1

x2x
x2z

(4.30)

Assuming a camera with a fixed baseline to the projector is already calibrated, the

projector can be co-calibrated by projecting its line onto a planar target whose pose

is known with respect to the camera. Here, as a planar target, standard calibration

targets such as checkerboards can be deployed. Based on this, for each detected line

point x on the planar target, its corresponding 3D point X can be calculated by

intersecting the plane equation of the target with the camera ray belonging to the

detected point x in the image domain. Because, at least three 3D points, used for

calibration, must not be coplanar, the planar target must be positioned at least at
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two different distances to the camera. For each distance, multiple 3D points must be

collected. Here, also other methods exist to access 3D points part of the laser sheet.

For example, in the work of Roman et al. [2010], a pre-calibrated stereo system was

used to recover the 3D points underwater to calibration the line projector on-site

without the need for particular calibration targets.

Conclusion

The medium water considerably alters the path of optical signals, and care must

be taken to minimize these effects onto underwater sensing using special underwater

lenses or by model the refraction of light. Here, flat-port housings invalidate the

single viewpoint constraint of the pinhole camera model leading to significant errors

depending on the application. In general, a pinhole camera behind a flat-port converts

to an axial-camera where all rays meet in a common line instead of a common point.

To account for this, refractive backward and forward projection must be taken into

account, which is challenging to solve in a closed-form required for camera calibration

and bundle adjustments. Therefore, a new approximation for the refractive forward

projection based on Taylor Series is proposed to broaden the usage of general flat-

port cameras. As an alternative, if the position of the camera with respect to the

flat-port can be precisely controlled during manufacturing, the light refraction can be

eventually mostly absorbed by the standard lens distortion model. In an ideal case,

it might be even able to push re-projection errors into the sub-pixel range, which is

sufficient for many marine applications. However, this is usually only possible for

thick flat-ports or small lenses otherwise the lens cannot be placed close enough to

the window.

For the calibration of underwater cameras and projectors, similar approaches like

for the in-air case can be used. Here, most parameters of the refractive camera

model can be already estimated in-air. And only some of its parameters require

additional underwater calibration images as these parameters have only a measurable

influence on the image formation process while the camera is submerged. For this

extra refinement step, accurate detection and precise localization of known calibration

targets in the image domain are required. Therefore, a new checkerboard detector is

developed able to localize checkerboard corners with higher precision in comparison to

standard methods. This higher precision improves the accuracy of flat-port camera

calibrations and allowing to reduce the amount of required underwater calibration

images considerably.
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Chapter 5

Combined Active-Passive Vision
System

Active visual sensing can be seen as orthogonal to passive visual sensing. Here, on

one side, passive visual sensing has its strength when the scene is strongly textured,

allowing to detect and match scene features between multiple images taken from

different locations. However, in the absence of scene texture, the passive vision system

is prone to fail as no scene features can be detected. On the other side, active systems

project their own light signal onto the scene used for triangulation or time of flight

measurements and work best when there is no scene texture or environmental light

present. Nowadays, there are many systems available that combine both methods

and deliver range data in addition to RGB images, also known as RGB-D cameras,

TOF systems, or LIDAR systems fused with color cameras. However, these systems

have one common design approach. The depth sensor is usually shifted to the infrared

spectrum and does not interfere with the passive vision system. This separation allows

us to separate both sensing modalities and simultaneously measure scene features and

associated depth readings resulting in a well constraint optimization problem (Yang

et al. [2010]).

In the underwater domain, only the visual spectrum of light is available for sensing,

as discussed in Chapter 2. All other wavelengths are strongly absorbed by the water

body and are unsuitable for optical sensing. Therefore, in the case passive and active

vision are combined to collect data from the same underwater scene simultaneously,

they have to use overlapping wavelength or at least wavelengths which are very close

to each other leading to interferences on the sensing side. Therefore, classical fusion

approaches for RGB-D systems are subject to high noise as they usually fuse sensor

data after pose and or range data were separately estimated, not taking any crosstalk

into account. Here, a promising solution is to simultaneously track natural scene
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Figure 5.1: Wavelengths used for optical 3D range sensing.

features (passive-features) and features originating from the projected light pattern

(active-features) with the help of the same camera sensor instead of using separate

sensor elements. This approach has several advantages for cases requiring overlapping

wavelengths between passive and active sensing, such as for underwater applications:

• Co-calibration between multiple sensors and time synchronization is not re-

quired, as the same physical camera is used for active and passive sensing.

• The resolution and characteristics are similar for both sensing modalities.

• The detection of active and passive-features in the same image domain reduces

the complexity to label image features into one or the other reducing the noise

both systems are facing when used simultaneously.

• The fused system can gradually fall back to passive or active sensing for image

regions favoring one or the other modality as shown in Fig. 5.2.

However, the requirements on the sensing element depend on the sensing method,

and, as discussed in Chapter 3, time of flight systems have very different requirements

than triangulation based approaches. The first one requires a good time versus the

second one a good spatial resolution. Therefore, using currently available sensing

technologies, it is only feasible to fuse passive with active triangulation based methods

using the same physical sensing element. But even here, competing requirements are

present, and it is usually infeasible to measure the scene texture at image regions

showing the projected light pattern. In the extreme, a light pattern covering the
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(a) Image with projected light pattern. (b) 3D reconstruction of a ship hull.

Figure 5.2: Underwater scan of a ship hull with a line structured light system. Here,
large regions have no scene texture, making it extremely difficult to be reconstructed
with passive vision systems.

whole image and, therefore, masking all scene features, it is no longer possible to

perform robust scene feature tracking simultaneously. Thus, in the following, a line

structure light system is used, which is the ideal compromise between both extrema.

This circumstance allows to fuse it with a structure from motion system and to

utilize the remaining regions of the image for motion tracking. Here, the scale and

dense 3D range profiles are recovered by the line structured light system while the

structure from motion system performs the pose estimation. This approach was

already published in Duda et al. [2016], and a more in-depth consideration is given

below, which might also be extended to other light patterns than a laser line. However,

line pattern prove very practical for many marine applications like discussed, for

example, in the work of Narasimhan et al. [2005], Roman et al. [2010], and Bleier and

Nüchter [2017].

5.1 Overview

The proposed passive-active system consists of a color camera and a visible line laser

with a fixed baseline between both components, which is visualized in Fig. 5.3. From

a hardware point of view, this is analog to a standard line structured light system

where a Bayer filter replaces the usually used narrow optical bandpass filter.

Here, in each RGB image, the laser line is detected by the structured light system,

and simultaneously a structure from motion system identifies and tracks passive-

features. To reduce the impact of the projected light pattern on the detection of
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Figure 5.3: Overview of an passive-active line structured light system.

passive-features, all possible active-features are masked before passive-features are

extracted. In addition, active-features are validated after the pose of the camera was

recovered using epipolar constraints. An overview of the algorithm is outlined in

Fig. 5.4 and a detailed description of each of the components is given in the following

sections.

Figure 5.4: Overview fusion structure from motion with structured light.

5.2 Structure from Motion

The structure from motion component estimates the poses of a calibrated camera and

the corresponding sparse scene structure by tracking visual scene features through an

image sequence and by adjusting the camera poses in such a way that the detected
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and back-projected features intersect with their corresponding 3D points. Here, each

image contributes one bundle of rays with known angles between them according to

the identified features in the image domain. By adjusting these bundles with respect

to each other, the re-projection errors of 3D points projected onto each image are

minimized, and the camera poses and the 3D scene structure are recovered. This cir-

cumstance is also reflected by the naming schema of this approach labeled as structure

from motion in combination with bundle adjustment techniques for final refinement.

In general, there are direct, indirect, or semi-direct approaches available for simul-

taneously estimating the scene structure and sensor pose based on image sequences.

Direct approaches skip the detection and matching step of visual features and directly

minimize a photometric error in the image domain. Whereas, indirect approaches

detect features in the image domain, match them with detected features from subse-

quent images, and finally minimizes a geometric error. Also, a combination of both

approaches exists, usually referred to as semi-direct structure from motion. In the

following, only an indirect structure from motion system is considered. However, sim-

ilar methods can be used for other structure from motion flavors, which mainly differ

in their robustness against certain types of noise and their relative error with respect

to the traveled distance. An overview of different structure from motion systems is,

for example, given in the work from Schonberger and Frahm [2016].

Indirect structure from motion systems usually consist of the following subsequent

steps, often referred to as structure from motion pipeline because the images are

entering the pipeline on one side and are processed by following components until the

pose and 3D scene structure are recovered.

• Detection of features with high gradients in the image domain.

• Matching of features between subsequent images.

• Camera pose estimate based on the feature matches.

• Depth initialization of the 3D points based on the feature matches and camera

poses.

• Bundle adjustment to refine camera poses and 3D point coordinates.

Here, many different algorithms and flavors exist for implementing each of these

components, and there is no universal strategy for ensuring the best performance

for a particular application. Some people refer to the design of a structure from

motion pipeline still as black magic as the designer is confronted with an overwhelming
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amount of possible combinations with unknown performance and possible side effects

due to other components in the pipeline. In the following, the structure from motion

pipeline is briefly described used for implementing an underwater passive-active vision

system. However, it can be easily substituted with any other structure from motion

pipeline as long as additional cues from the structured light system can be embedded.

Feature Detection & Matching

Each captured image is divided into n rectangular segments, and for each segment,

the strongest m Harris corners are stored. These are used to calculate a sparse optical

flow based on the iterative Lucas-Kanade method with pyramids (Bouguet [2001]).

Following this, the flow is used to generate feature matches between consecutive

images and to track features through images sequences.

Camera Pose Estimation

After the initial pose and scene structure is recovered using the five-point algorithm

derived by Nistér [2004], new poses are calculated based on the P3P algorithm (Gao

and Hou [2003]) to speed up the calculation. Here, if the current features have enough

parallax to the last keyframe, the current image is regarded as a new keyframe. In

the case of a new keyframe, its corresponding pose is recalculated based on the tri-

focal tensor of the last three keyframes using the five-point and P3P algorithm in

a RANSAC framework similar to the work presented by Nistér et al. [2004]). This

approach allows to maintain an arbitrary but constant overall scale of the reconstruc-

tion and to recover from wrongly added 3D scene points. Following this, all inliers

are used to calculate an optimized pose by minimizing the re-projection error based

on the Levenberg-Marquardt algorithm.

3D Depth Initialization

After the pose of a new keyframe is recovered, new 3D points are triangulated and

added to a global map using the camera views with the largest baseline. Here, the

optimal triangulation method described by Hartley and Zisserman [2004] is used,

which minimizes the geometric distance between the projections of a 3D point and

the epipolar lines defined by their corresponding feature matches and the camera

centers.
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Windowed Bundle Adjustment

The complexity for long-lasting image sequences is bounded by a windowed bundle

adjustment, which regards only the last n keyframes to minimize the re-projection

error of 3D points seen from the selected keyframes. The optimization itself is done by

the open-source Ceres library developed by Agarwal and Mierle [2018]. Here, the flat

refractive forward projection described in Section 4.2 is used as a residuum to support

underwater flat port cameras. A comparison of 3D underwater scene reconstructions

performed with different camera models is given in Chapter 6.

5.3 Structured Light

The structured light component detects the known light pattern in the captured

images and triangulates the scene depth along this pattern based on the known fixed

baseline and orientation between the camera and the light projector. In general, a

structured light system performs the following processing steps:

• Detection of known light patterns in the image domain.

• Association of the detected light patterns to corresponding projector angles.

• Triangulation of 3D scene points along the detected light patterns.

In the case of marine applications, the most common light pattern is a laser line

projected by a laser diode in combination with a line optic such as a Powell lens. The

reason for this preference is that high power multi-mode laser diodes can deliver up

to several watt optical power on the line, which is not easily achievable with other

projection techniques. Also, the laser line minimizes the common volume between

the camera sensor and projector, leading to less backscattering in comparison to areal

illumination schemas. Although a range-gated point source would be the optimum,

the laser line gives the advantage to allow for connectivity constraints along the line

to filter out noise such as marine snow appearing as bright spots in the camera image.

Therefore, in the following, a laser line projector is used but could be replaced by

any other light pattern projector working in the visible spectrum of light and is

covering only a sub-part of the image to allow for the detection of passive-features

simultaneously.
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Light Pattern Detection

Camera images usually show the projected light pattern in conjunction with some

background textures illuminated by an unknown external light source like visualized

in Fig. 5.5. This background noise, is also present if a narrow optical bandpass

filter is used to block most of the environmental light not belonging to the laser line

projector.

For the proposed system, the common optical narrow bandpass filter of a line

structured light system is replaced by a Bayer filter to improve the capturing of

passive-features by the structure from motion system. This replacement increases

the effective passband from around 10nm to 150nm for the structured light system.

Therefore, in the presence of other light sources, it reduces the signal-to-noise-ratio

of the structure light system as more photons from the different light sources can

reach the sensing element. Also, the Bayer filter reduces the spatial resolution of the

system because usually, not all pixels can be used for sub-pixel peak detection of the

light pattern. However, it improves the rejection of false positives as the scene is not

only spatially sampled but also over its spectrum.

Also, the sub-pixel peak detection is not only limited by the sensor resolution but

also by the light pattern projected back to the camera. Here, the highest accuracy can

be achieved if the light pattern has a size of two pixels pointed out by Kiger [2010].

The reason for this is that smaller features can no longer be resolved, and larger

ones increase the random noise counteracting accurate sub-pixel peak detection using

regression analysis. Therefore, in the case of a standard Quad-VGA color camera,

the light pattern should have an optimal thickness of around 8mm in 3m distance to

have the highest accuracy assuming a flocal lenght of 1112. This requirement is close

to what can be achieved with underwater lasers even in relatively clear water bodies.

Therefore, even for relatively low-resolution cameras, the Bayer pattern is usually not

the limiting factor of the system.

For the detection of a light pattern in RGB images, and to suppress unwanted

background textures, a simple difference image approach can be used assuming a static

scene. Here an image is taken while the light projector is turned on and another one

while it is turned off. By subtracting both images from each other, the background

can be successfully removed (Mertz and Koppal [2012]). This is also often referred to

as ambient light filtering. However, this assumption does not hold if the system is in

motion because a slight difference in the camera pose will produce artifacts similar to

the light pattern. This circumstance also applies to methods using temporal coding
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Figure 5.5: Raw images captured by the camera showing the projected light pattern.

requiring multiple measurements for each pixel. Therefore, to overcome this, the

following method for laser line pattern extraction is proposed:

The image is logarithmically scaled to normalize the laser linewidth across the

whole image (Duda and Albiez [2013]). This scaling allows to use a subsequent 1D

FIR bandpass filter with a constant bandwidth applied vertically in respect to the

laser plane assuming the target signal is symmetric across its two sides.

Following this, the signal-to-noise-ratio is calculated for each filtered image pixel

assuming the noise is represented by the mean value of a 1D window around each pixel.

Based on this, the laser peaks are finally detected using non-maximum suppression.

After possible laser points are identified, they are segmented into groups fulfilling

connectivity constraints and are rated based on their group size and signal strength

to filter out background noise. Here, for the connectivity constraints the distance to

the next detected laser point is regarded and the score s is calculated according to

the following formula with b(n) being the measured delta brightness value of the nth

point of the segment and m the number of points belonging to the segment.

s = m+ 104

m∑
n=0

b(n) (5.1)

This score is analog to the sum of all measured brightness values of a segment

reduced by the estimated noise floor. Here, the introduced scale ensures that for

standard camera resolutions, the segment size is only dominant if multiple segments

have the same brightness sum. Other scores such as the signal-to-noise-ratio, yield less

accurate results as the noise is only estimated by the surrounding pixels. Here errors

in the noise estimation have a significant impact on the segment score, which would

effectively suppress blurred laser projections due to, for example, water turbidity.
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After the score for each segment is calculated, the laser line is extracted by combining

the strongest non-overlapping segments. Finally, its sub-pixel location is estimated

by a Gaussian peak fit using raw measurements around each detected peak value.

Pattern Association

In the case of a line laser, the pattern association or also called the decoding step is

relatively simple as every camera ray intersects only at one discrete location in 3D

space with a laser sheet/plane defined by the projector position with respect to the

camera. Therefore, for each laser detection, only its corresponding camera ray must be

associated to find the corresponding position in the projected light pattern. For other

patterns such as pseudo-random point patterns, additional cross-ratio constraints

between detected features would have to be used to associate projector rays to detect

light pattern points in the image domain.

Triangulation

The location of the light projector is known with respect to the calibrated camera.

Therefore the 3D location X of a detected light pattern can be estimated by calculat-

ing the intersection of the corresponding camera ray ~v with the associated projector

ray. This step is analog to the triangulation of 3D scene points based on two cam-

eras, but here one camera is replaced by a laser line projector (inverse camera) where

each epipolar line is, in fact, a discrete point in the projector image domain and no

feature matching step is required. Based on this circumstance, the 3D location of a

detected active-feature can be triangulated with the help of the following equation

with p0 being the origin of the projector, ~n the laser sheet normal with respect to the

coordinate system of the camera, ~vw the camera ray leaving the flat port and entering

the water layer and g the location where the camera ray enters the water layer.

X = ~vw ·
(po − g) · ~n

~v · ~n
+ g (5.2)

It is worth mentioning that no forward projection is required for calculating the

3D scene points based on a structured light system, and efficient closed-form solutions

are available, including underwater flat port cameras.
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5.4 Fusion

One of the main challenges for fusing structure from motion with structured light

using light patterns in the visible spectrum of light is an increased number of outliers

encountered by both systems. Here, the structure from motion system is profoundly

disturbed by the projected light pattern in the feature detection and matching step,

while the structured light system is affected by the environmental light required for

the structure from motion system to be able to track passive-features. In the case a

single camera is used for both modalities, optical band-pass filters cannot be applied

to reduce the effects of environmental light onto the structured light system because

this would also reduce the number of passive-features observable by the structure

from motion system. This controversy is a substantial disadvantage in comparison

to multi-sensor / dual-camera systems allowing a better sampling of the visible spec-

trum. However, the structure from motion system has to deal with interferences

in either way. Therefore, using the same sensor for both modalities can be seen as

re-using the interferences to get more knowledge about the scene, which leads to a

single sensor passive-active vision system fusing structured light with structure from

motion on a software level. Adding more sensing elements certainly improves the

overall performance as more measurements and or constraints are available. But, the

single-sensor system can be seen as a generalization of a multi-sensor system. It has

considerably fewer measurements, fewer constraints, and less short cuts than multi-

sensor systems but with the ability to be scaled up and constrained at a later stage

using the same software components.

The most critical step for fusing structured light with structure from motion is

to distinguish between active and passive scene features. Here, based on the working

principle of triangulation based systems, a signal must be located in the image domain

respectively spatial domain to derive its bearing with respect to the sensor. Therefore,

a pure time encoded signal is not possible for triangulation-based systems, unlike it

is the case for a time of flight based system. However, mixed encoding is possible.

In the simplest case, the light pattern is interleaved in an on-off like fashion, and the

light pattern detection is performed on the difference image between two consecutive

images. More complex time encodings are also possible, which could also involve a

blur in the spatial domain to increase the accuracy in the time domain. However,

underwater systems are usually power-limited. Therefore, to achieve the most reliable

signal in the spatial domain, a focused light pattern is preferred. Here, the most

straightforward fusion strategy includes the following steps:
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• Detection of active and passive-features in the image domain.

• Classification of the detected features.

• Pose and 3D scene structure recovery.

• 3D scale equalization between both modalities.

Each of these basic building blocks is discussed in the following subsections. More

complex strategies are derived later in this chapter.

Feature detection

All primary information for active and passive triangulation based vision systems are

encoded in the image domain. Here, most information is carried by features with

strong gradients in both image directions, as this allows to localize them in the image

uniquely. In the case of projected light patterns, the baseline between camera and

projector is usually known to imply additional epipolar constraints allowing to use

light patterns having a strong gradient only orthogonal to epipolar lines like, for

example, a simple laser line. Here, a structure from motion system combined with

such a line structured light system requires to detect passive-features with strong

gradients in both image direction in addition to the line pattern projected by the line

projector. This detection can be achieved by using standard feature detectors like

SIFT, ORB, SURF, etc. in addition to a laser line detector searching row/column wise

for a local maximum to detect possible locations of the projected light pattern analog

to the approach discussed in Section 5.3. As both feature detectors are executed on

the same raw image, overlapping feature sets will be generated because the projected

laser line might also have gradients in both image directions, and the scene might

have line-like elements depending on the scene texture. Therefore, these sets must be

filtered before used for 3D depth estimation. Here, an example of overlapping feature

sets is visualized in Fig. 5.6.

Feature classification

Separating detected features into passive and active-features belonging to the pro-

jected light pattern is a base requirement to use the same physical camera for struc-

tured light and structure from motion applications. Here, the challenges faced by the

classification step are:

• The shape of natural scene features is unknown.
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(a) Raw Image (b) Feature Overlay

Figure 5.6: Active-features (green) and passive-features (blue) detected in a raw
camera image.

• The 2D shape of projected light patterns is only known when leaving the pro-

jector and is subject to an unknown scene depth dependant projection.

• The brightness distribution of projected light patterns is altered by the medium

water, the scene texture and unknown environmental lighting.

• Light patterns move depending on an unknown scene depth change preventing

a matching between consecutive images.

• The light pattern is subject to occlusion depending on the scene structure and

the projector camera geometry.

The goal is to find mutual information of the projected light pattern which is

untouched by projecting the pattern onto a scene and imaged by a camera. In the

case of a laser line pattern, the cross-section of the line usually follows a Gaussian

distribution, which is defined by the laser diode and the line optic. In the case of no

abrupt scene texture changes in the scale of the line width, the Gaussian distribution

can be used as such mutual information for line feature detection and classification.

Also, by limiting the allowed frequency of the scene depth variations, connectivity

constraints can be defined between detected light pattern features, including a global

constraint that each row/column can only have a single valid light pattern feature. In

the case of more complex light patterns, more connectivity constraints can be added

but at the cost of increased complexity to associate a projector angle to each detected

light pattern, which might also require tighter restrictions on the scene structure (Zeng

and Zhang [2012]).
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For passive-features, usually, more constraints are available as they are associated

with 3D scene points, which are fixed with respect to the global coordinate system.

This association implies that passive-features and their surroundings are only subject

to global illumination changes and perspective transformations, allowing for tracking

the 3D scene points across image sequences by matching their corresponding projec-

tions imaged as passive-features. These passive-features tracks must be in accordance

with epipolar constraints implied by the motion of the camera, allowing to filter out

wrong feature tracks. In general, the classification of valid passive-features is analog

to any structure from motion system and is usually referred to as an outlier rejection

schema. However, in the case of a projected light pattern, the feature distribution gets

biased as many features from the light pattern might be picked up, which all move

in accordance to the unknown scene depth change. Therefore, the standard outlier

rejection is prone to be less effective, leading to wrong pose estimations in challenging

environments. To avoid that many active-features are entering the outlier rejection

step of the structure from motion system, the following steps are proposed:

• Mask all possible active-features based on the assumption that the cross section

of the projected laser line follows a gaussian distribution.

• Match remaining features with features from previously images.

• Reverse matching and match features from the previous image with the current

one and filter out all matches which are not in agreement.

• Use remaining feature matches in combination with a standard Random Sample

and Conses Framework (RANSAC) to find a set of minimal features explaining

the motion of most of the remaining features enforced by epipolar constraints.

• Remove all features not in agreement with the RANSAC step.

This approach allows to separate detected features into, active-, passive-features,

and outliers. Here, additional outliers can be detected after the motion of the system

is recovered.

Pose and 3D scene recovery

Based on the found passive feature matches, the poses of the camera can be recov-

ered using, for example, the five-point algorithm to find the initial pose, followed

by an iterative refinement to geometrically minimizing the re-projection error of all
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Figure 5.7: Sparse 3D points recovered by a structure from motion system based
on two images in addition to the two line profiles simultaneously recovered by a
structured light system using the same input images.

triangulated points explained in Section 5.2. This approach allows performing a 3D

scene reconstruction up to scale as the amplitude of the motion scales with the size

of the observed object and vice versa. This correlation is similar to an image showing

a house where it is impossible to tell if its a dollhouse or a real house if no other

information is available even when imaged from multiple locations.

In addition to the passive-features, each image also contributes 3D measurements

based on the structure light system, which are metrically correct. However, they are

only loosely coupled to the 3D scene structure estimated by the structure from motion

system as it is usually not possible to track passive-features through image regions

where active-features are present. This circumstance is visualized in Fig. 5.7.

3D scale equalization

The structured light system only delivers 3D scene measurements without reliable

information about the scene texture because the light pattern dramatically changes

the illumination at these locations. Therefore, the only reliable information which can

be used for matching is their 3D coordinate. To match these 3D points with the sparse

scene structure recovered by the structure from motion system, the scene structure is

re-projected onto each image, taking the camera pose estimations into account. This

re-projection cancels out the arbitrary scale of the scene structure estimated by the

structure from motion system. Here, for each re-projected point that intersects with

an active feature a range constraint is added to the iterative refinement of the last n

poses, also referred to as windowed bundle adjustment. The underlying assumption
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is that the camera moves through the scene so that at some point, formerly tracked

features intersect with the light pattern of the structured light system. However,

because the light pattern usually prevents the tracking of passive-features in the

same region, the pose estimation of the camera must be used to transfer features

from previous images to the regions covered by the light pattern. Although the scale

of the reconstruction does not matter at this point, as the re-projection removes

the scale dependency, any pose error will eventually introduce wrong associations

between the structured light and the structure from motion system. To counteract

wrong associations, a robust loss function is used, which reduces their influence in

cases of large residuums s. Here, for example, the Cauchy Loss function ρ can be

used to damp large errors defined as:

ρ(s) = log(1 + s) (5.3)

In addition, to increase their influence even further, constraints having large

residuums are automatically removed after a windowed bundle adjustment was per-

formed and before new constraints are added to the optimization problem.

5.5 Extended Fusion

The fusion explained in the previous section is algorithmically complex but based on

an established vision pipeline for motion tracking. Under suitable conditions, such

a system can perform surprisingly well and produces dense metrically correct 3D re-

constructions with a sub-millimeter resolution like shown in Chapter 6. However, the

structure from motion system suffers from the projected light pattern as it reduces

the image area available for feature tracking and prevents continuous tracking of

passive-features throughout the image sequence. This reduction removes many con-

straints used by the motion estimation and reduces its overall robustness to outliers

and noise. To counteract this, several improvements to the software and hardware

level are addressed in the following sections.

Software Improvements

A critical limitation for fusing active with passive vision sharing the same sensor el-

ement is that each image region can only contribute either active or passive-features

but not both. Therefore, 3D points from the structured light system cannot directly

be linked to measurements of the structure from motion system. As a direct conse-

quence, feature tracks are cut into at least two segments. The first segment consists
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of the projections of a 3D point before and the second one of projections after the

3D point was hit by the light pattern. Therefore, the 3D scale equalization step can

be further improved by not only associating feature tracks to active-features but also

other passive features. This association is possible if they intersect on the image

plane during re-projection, and a distance measurement was associated, indicating

the track was interrupted by the projected light pattern.

In theory, the distance constraints can also be used to rate the RANSAC hy-

pothesis from the structure from motion system. This rating can be performed, by

validating the depth of triangulated 3D points using their cross-ratio and compare

it with the cross-ratio of associated distance constraints canceling out the arbitrary

scale. However, experiments have shown that usually not enough distance constraints

are available to improve the pose estimation significantly. The reason for this is that

usually around 100 up to 10000 passive-features are tracked, covering not more than

one percent of the total pixel area. Therefore, the likelihood for a light pattern in-

tersecting with this sparse point set is very low, which leads to only a few distance

constraints on a frame per-frame basis. A statistic about how many distance con-

straints can be generated for different scenes is given in Section 6.4. Here, only a

semi-dense reconstruction would yield enough constraints to not only fix the scale of

the structure from motion system but also to significantly contribute constraints to

the motion estimation. However, a dense reconstruction, based on a single camera, is

usually very computationally demanding. It also uses the photometric error between

different patches directly, like discussed by Ummenhofer and Brox [2012]. Therefore,

it is even more sensitive to artifacts due to the projected light pattern than features

with sharp gradients and is usually not used for marine applications.

In the case the system is in motion, active-features usually move differently to

passive-features. The reason for this is that passive-features move according to the

scene structure, and the sensor motion, whereas active-features only depend on the

scene depth change. These different movements can be used to improve the detection

of active-features over a sequence of images. But there always exists a critical motion

vector which will lead to a situation where active and passive-features move the same

way for a particular scene. For example, assuming no rotation and that all scene

points are lying on a horizontal plane with respect to the camera. The following

equation would define the critical motion vector with C being the baseline between

camera and projector and X = (X1, X2, X3)
T the 3D coordinate of passive-feature

which moves like an active-feature on the plane.
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~vcritical =

 1
0
X3

X1−C

 (5.4)

Therefore, this constraint can only be used to score light pattern features rather

than filtering them out. Here, the assumption is: If an active-feature moves differently

to its surroundings in the image domain, the likelihood is higher. It belongs to the

light pattern and not to the scene texture than the other way around. Following this,

after the camera motion is recovered up to scale, the following method can be used

to score active-features:

• Match detected active-features with previously detected ones using epipolar

constraints implied by the recovered sensor motion. This also supports matching

of active-features lying on a line orthogonal to the sensor motion.

• Transfer matched features to a third image using a trifocal tensor.

• Calculate the geometric distance to the closest active feature in the third image

and use its norm for rating the feature.

Here, in the case, an active-feature moves like a passive-feature. The distance

to the predicted location is close to zero as the sensor motion model can explain

it. This circumstance significantly improves the noise removable from a structured

light system by filtering out all segments that norm is smaller than X% of the camera

motion vector. In case, this step suppresses more than Y% of the active-features, they

are restored. This approach avoids scenarios where the sensor is wrongly reporting

free space for the entire workspace due to a critical sensor motion. But at the same

time, it filters out scene textures with a similar appearance to the projected light

pattern.

However, like discussed, due to the inability to simultaneously measure passive

and active-features for the same scene region like, for example, possible with RGB-D

sensors, no direct constraints can be defined, improving the motion estimation step.

For this, either additional assumptions constraining the scene-depth change must be

made, or further hardware improvements are required.
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Hardware Improvements

A single-camera combined with a constant light projector, having a fixed baseline

with respect to the camera, is the simplest hardware setup possible to perform active-

passive sensing. But, it also generates only very few cues that can be used for fusing

both modalities. More advanced hardware setups allow to increase the number of cues

and to increase the robustness of such systems as more measurements can be taken

into account, suppressing outliers and noise. Here, mainly three options are available

which all use the basic building blocks explained above but utilize more constraints

due to an increase in the number of measurements or an improved separation in the

time, spectral or spatial domain:

• Multi camera setup increasing the number of measurements.

• Colored light patterns in combination with colored illumination.

• High speed camera in combination with modulated light patterns.

A multi-camera setup allows to directly validate all active-features as the depth

estimation by a multi-camera system must be in agreement with the structured light

system. This circumstance is similar to a trifocal system where one camera is re-

placed by an inverse camera (projector). Also, it allows triangulating 2D features

without having to estimate the pose change of the system simultaneously. Therefore,

adding at least one additional camera solves the classification of features directly into

active and passive-features. It also considerably improves the robustness of the pose

estimation by adding other range measurements and the ability to generate dense

3D measurements for each captured stereo image pair. However, adding additional

cameras comes at the cost of at least doubling the computational complexity and

usually a reduced field of view as only a subset of the volume imaged by one camera

is also imaged by the other cameras. Also, like shown in Section 3.1, the epipolar

planes between two flat port cameras are no longer imaged as straight lines but as

curved ones making it more demanding to perform feature matching using epipolar

constraints.

In the case of modern color cameras, the sensor is usually covered with an optical

color filter array composed of the three band-pass filters green, red, and blue. This

arrangement is generally called a Bayer filter and adds the ability to sample the

spectral domain at the cost of a reduced spatial resolution. When using such a sensor,

the tracking of features can be performed in one color channel while the structured
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light system is using a different channel. However, although the performance increases

in certain situations, there is still considerable cross-talk as the color channels overlap,

and strong light patterns leak into the other color channels. Also, experiments have

shown, that usually not all color channels are equally practical and must be chosen

depending on the object range and water quality to find a possible combination. Here,

in good conditions, accurate 3D reconstructions are possible without substantial cross-

talk between color channels, as shown in the next chapter using the fusion described

above. The only difference is that for feature classification, multiple color channels

are evaluated, and passive-features are only masked if an active feature was found

in the same color channel. Here, in the case the raw Bayer image is used as input

for light pattern detection, all channels can be detected simultaneously, including

none-maximum suppression across the spectral domain.

An improved separation between structured light and structure from motion can

also be achieved in the time domain. Here, the light pattern is modulated in time

in a predefined manner, and range measurements are assigned to feature tracks only

tracked in images with no light pattern present. This approach increases the pressure

onto the feature tracker as it has to match features that are further apart. But in

case, state of the art low light cameras are used frame rates higher than 140 frames

per second can be achieved. Here, according to the work of Handa et al. [2012] there

is a considerable gain between feature tracking with 40 and 100 frames per second

due to less motion blur. However, the frame-rate cannot be arbitrarily pushed up

due to image degradation. Therefore, the optimal frame rate minimizes the motion

blur and feature movements on one side while maximizing the signal-to-noise-ratio of

the signal, on the other hand, requiring longer exposures. In the case of interleaved

feature tracking, the frame rate is halved but without introducing additional motion

blur. Therefore, the impact is less prominent as laid out in the research work, not

decoupling exposure time from framerate. However, the effect onto the structured

light system is directly noticeable as reducing the amount of frames with an active

light pattern reduces the number of available range measurements. To compensate

for a drop in range measurements, more complex strobe patterns can be used. One

possible schema is, for example, to alternate two light patterns imaged at different

image regions. Using linear optical flow constraints for groups of three images, the

features can be tracked throughout these regions without requiring an accurate sensor

motion estimation. Also, the background signal for these regions can be measured

while the light pattern is not present, which considerably improves the detection of

light patterns.
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5.6 Conclusion

In the simplest case, a line laser is fixed with respect to a single camera, and the

whole system is moved through the scene to perform dense metrical correct 3D re-

construction with sub-millimeter resolution. This approach works considerably well

for situations where the visual motion tracking has enough features to track to com-

pensate for the loss of features due to the active light pattern masking parts of the

scene. Here, although the scale can be recovered with the help of the active-system,

no generalized constraints can be added on a software level to restrict the motion of

the system. Adding additional restrictions is either possible if scene texture and range

measurements can be performed for the same image region at the same time. Or if

the light pattern is covering more extensive areas of the image, producing overlapping

depth measurements which can be utilized for motion estimation. However, this is

usually not advised in the underwater domain as even line lasers are already contrast

limited (Jaffe [2010]), and using more complex light patterns would decrease the con-

trast even further. On a software level, the structured light system benefits from the

additional noise removal, which can be performed due to the knowledge about the

sensor motion. However, the structure from motion system cannot efficiently utilize

3D range measurements produced by the structured light system. Here, the sparse

feature set of the structure from motion system allows matching only a few corre-

spondences between the active and passive system on a frame by frame basis. These

correspondences are usually just enough to fix the scale of the structure from motion

system with respect to the structured light system.

By using more advanced hardware setups, it is possible to separate the motion

tracking from the structured light in the time spectral or spatial domain without

reducing the density of the final reconstruction. Here, the most promising solution is

to use a time-coded structured light system that allows tracking scene features with

at least half the image framerate. Here the performance of the motion estimation is

close to a purely passive one as the only difference is that passive-features covered by

the light pattern must be interpolated between images, which are one frame apparat.

Further improvements can be expected by adding a camera for generating more con-

straints without enforcing a strict stereo setup. This approach can be seen analog to

the work of Solà et al. [2007] stating, ”Two times mono is more than stereo”.

By ignoring the reduced robustness against noise or environmental illuminations,

a simple setup consisting of a camera and a line laser can achieve impressive results
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in real-time, which cannot be achieved using a single camera or a standard line struc-

tured light system. The reason for this is that on one side, a camera system allows

accurate motion tracking but has an inaccurate depth estimation, especially in re-

gions with no scene texture. On the other hand, a line structured light system can

accurately estimate the depth along the projected line but fails to reference them

with respect to each other over time. Combining both modalities results in consistent

3D reconstruction with sub-millimeter resolution. As the system uses only the visual

spectrum of light and minimizes the backscattering by utilizing line patterns, the

system is well suited for underwater applications. Here, using a passive-active vision

system allows tracking the motion in the same sensor domain as the active depth

measurements are performed, improving the accuracy of the 3D reconstruction. Al-

though the envelope under which conditions such a system can be operated is rather

small and many factors must be considered to achieve a successful deployment. To

increase this envelope of operation, more advanced hardware setup can be used with-

out changing the underlying working principle. Here, a comparison between different

configurations and the achieved accuracy is discussed in the next chapter.
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Chapter 6

Experiments

The previous chapters described several methods for underwater visual scene recon-

struction using passive-active image features. Here, mainly analytic approaches are

used, including simulated sensor data, to evaluate the sensor models. Therefore, to

verify the software implementation and the alignment of simulated with real sen-

sor data, several experiments are described in this chapter designed to answer the

following two questions:

• Do-real world experiments support the theoretical consideration or are relevant

effects present, which were neglected?

• How do different parametrizations and system configurations affect the overall

accuracy of the system?

The conducted experiments are ordered based on their complexity and start with

single components such as the flat-port camera model or the line projector model

before they are aggregated to more complex setups. Here, for each experiment, the

objectives, experimental setup, and calibration procedure are described, and the re-

sults are discussed.

6.1 Flat-Port Camera Model

A pinhole camera behind a flat-port converts to an axial camera when being sub-

merged as discussed in Section 4.2. This conversion leads to additional achromatic

and geometric distortions. Here, the achromatic distortion cannot be completely

compensated in software as each color channel has a certain bandwidth of around

150nm which will lead to an additional image blur for each color channel at the im-

age edges. Monochrome cameras are even more affected as each image pixel receives

99



photon from the full visible spectrum of light. However, the geometric distortion can

be compensated if the model parameters of a flat-port camera are precisely known.

Therefore, to verify the flat-port model is in agreement with the physical one, the

following experiment is carried out.

Objectives

Estimate the flat-port camera model parameters for different camera setups based

on calibration images and compare them with manual measurements. Here, the flat-

port camera model should be able to correctly estimate the pose of the camera with

respect to a flat-port utilizing light refraction.

Experimental Setup

The model parameters of a real underwater flat-port camera are difficult to change

without opening its watertight housing. Therefore, the setup is simplified by using an

aquarium instead of a submerged flat-port housing shown in Fig. 6.1. The aquarium

is filled with fresh water and acts analog to a flat-port housing for a camera on the

outside of the aquarium. On the inside, a planar calibration target is placed, which

can be moved around. By adjusting the position of the camera on a rail system, the

model parameters of the mocked flat-port camera can be modified in a controlled

manner allowing to test if the camera model can track these changes using images of

the calibration target at different positions as measurements.

(a) Side view (b) Top view

Figure 6.1: Camera in front of an aquarium window mocking an underwater flat-port
housing.
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In general, a flat-port camera model has seven additional degrees of freedom in

comparison to a standard pinhole camera model, whereas, to improve convergence,

usually four of them are fixed as they are known or can be independently measured

with high accuracy including:

• The refraction index of the medium insight the flat-port housing which is usually

air having a refraction index close to one.

• The refraction index of the flat-port which is known for most materials usually

ranging from 1.52 for ordinary glass to 1.77 for sapphire glass.

• The refraction index of the water body which can be independently measured

using a refractometer.

• The thickness of the flat-port according to the datasheet of the interface.

The remaining three model parameters are the flat-port normal with respect to

the principal axis of the camera and the distance of the focal point to the flat-port.

During the experiment, these parameters are changed in the following manner:

• The distance between the lens of the camera, and aquarium window is adjusted

to 1mm, 10mm and 20mm.

• The camera axis is set to 0° and 4° with respect to the normal of the aquarium

window.

System Calibration

The camera is calibrated in-air without the additional aquarium window as its effect

onto the geometric distortion is smaller than the noise of the system, as shown,

for example, in Fig. 4.22. Based on the estimated intrinsic model parameters of a

standard pinhole camera, including lens distortion, labeled in Tab. 6.2 as Pin-Air,

the remaining flat-port model parameters are initialized for the orthogonal case and

refined using images of the visual target located inside the water-filled aquarium. For

the refinement, the re-projection error, outlined in Section 4.2, is used as a residuum to

optimize the model parameters after each physical modification of the arrangement.

Here, as measurement, ten different visual target positions are recorded for each

modification. The resulting refined camera model parameters are labeled as Flat-

Mixed-X, where X encodes the actual position of the camera with respect to the

window of the aquarium. In addition, the same image sequences are also used to
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calibrate a pinhole camera model for each pose implicitly minimizing the refraction

error. These refined pinhole camera model parameters are labeled analog to the

flat-port camera as Pin-X.

Results

In general, it is difficult to directly measure the exact location of the focal point of

a camera lens, which is usually insight the lens housing. Therefore, the camera is

placed 1mm in front of the aquarium window, and the estimated distance between

the focal point and window of 4mm is used as an offset for the other measurements.

Here, the relative displacement of the camera along its axis is correctly tracked with

an accuracy better than 1mm for all measurements reaching the measurement limit

of the physical setup and is given in the Tab. 6.2 as the first value of the layer

thickness for each flat-port camera. Whereas, the second value of the layer thickness

encodes the thickness of the aquarium window, which is constant during the whole

experiment.

For a distance of 20mm between lens and window also the angle of the camera to

the normal of the glass layer is changed from 0° to 4°, which is estimated as 4.2° by

the model. This estimate also lies in the tolerance of the physical setup and shows

that the model correctly tracks the physical camera parameters, which is vital for

accurate calibration.

Although the pinhole camera model does not explicitly model the physical ar-

rangement, it can be used to approximate a flat-port camera to a certain extent.

In this case, it uses all its parameters to minimize the un-modeled light refraction.

Therefore, the best performance can be expected for the orthogonal case when the

focal point has an optimal distance to the flat-port. This expectation is supported

by the residuum of the pinhole model listed in Tab. 6.1. Here, the pinhole camera

for 1mm distance to the window has a surprisingly small model error, which is even

smaller than the flat-port model. However, the pinhole model was fully optimized

based on the underwater image sequence, while for the flat-port model, some of its

parameters were transferred from the in-air case. Also, the used aquarium has only a

maximal working range of 0.4m, which a pinhole camera model can well approximate.

This circumstance is usually not given for larger working ranges as the light refrac-

tion introduces a scene depth-dependant distortion term. Therefore, as discussed in

Section 4.2, there are many underwater applications which can be carried out with

standard pinhole camera models. However, their performance mainly depends on the

physical placement of the camera with respect to the flat-port, the working range, and
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good in-situ calibration. Whereas flat-port camera models can be pre-calibrated and

adjusted to the actual water body, have a range independent distortion, and support

arbitrary camera placements with respect to the flat-port.

Parameter Pin-Air Pin-Water-1mm

Focal Length 1112.70 / 1112.58 1496.55 / 1493.91
Principle Point 625.64 / 443.93 624.47 / 432.97
Distortion K1,K2 -0.0489 / 0.1037 -0.007 / 1.6207
Distortion K2,K3 -0.4781 / 0.6206 -14.5986 / 41.3812
Mean Residual in pixel 0.1394 0.1106

Parameter Pin-Water-10mm Pin-Water-20mm-4deg

Focal Length 1490.83 / 1488.66 1493.26 / 1488.06
Principle Point 628.78 / 430.42 546.08 / 431.00
Distortion K1,K2 -0.0178 / 1.1952 0.0171 / -0.4683
Distortion K2,K3 -9.8510 / 26.885 3.0338/ -5.9621
Mean Residual in pixel 0.145 0.218

Table 6.1: Estimated parameters for the pinhole camera model in relation
to the physical placement of the camera.

6.2 Line Structured Light

A line structured light system consists of a camera and a line projector, which can

be interpreted as an inverse camera. Therefore, both optical systems are subject to

refraction if placed behind a flat-port and being submerged. Here, like discussed in

Section 4.3, in the case the projector is placed orthogonal to the flat-port, the plane

of refraction is identical with the light sheet generated by the projector. Therefore, in

this particular case, the straightness of the line pattern is conserved by the flat-port,

and only the brightness distribution along the line is slightly changed. However,

in the case the line projector is non-orthogonal to the flat-port, the light sheet is

geometrically distorted and appears as a curved surface as the plane of refraction no

longer coincides with the light sheet visualized in Fig. 6.4.

Objectives

In Section 4.3 it is concluded that the distortion of the light sheet due to a non-

orthogonal orientation of the projector with respect to the flat-port can be modeled

with the help of first-order tangential distortion for small angles. Here, the objective

is to measure the model error for several laser camera orientations and to verify that
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Parameter Flat-Mixed-1mm Flat-Mixed-10mm

Focal Length 1112.70 / 1112.58 1112.70 / 1112.58
Principle Point 625.64 / 443.93 625.64 / 443.93
Distortion K1,K2 -0.0489 / 0.1037 -0.0489 / 0.1037
Distortion K2,K3 -0.4781 / 0.6206 -0.4781 / 0.6206
Interface Normal [0.0020, -0.0077, -1.0] [0.0004, -0.0110, -1.0]
Refraction Index 1.0,1.52,1.330 1.0,1.52,1.330
Layer Thickness 0.004, 0.006 0.013, 0.006
Mean Residual in pixel 0.1183 0.127

Parameter Flat-Mixed-20mm Flat-Mixed-20mm-4deg

Focal Length 1112.70 / 1112.58 1112.70 / 1112.58
Principle Point 625.64 / 443.93 625.64 / 443.93
Distortion K1,K2 -0.0489 / 0.1037 -0.0489 / 0.1037
Distortion K2,K3 -0.4781 / 0.6206 -0.4781 / 0.6206
Interface Normal [-0.0015, -0.0117, -1.0] [-0.073, -0.016, -0.997]
Refraction Index 1.0,1.52,1.330 1.0,1.52,1.330
Layer Thickness 0.023, 0.006 0.023,0.06
Mean Residual in pixel 0.125 0.127

Table 6.2: Estimated parameters for the flat-port camera model in relation
to the physical placement of the camera. Parameters in bold are refined
underwater while the other ones are borrowed from Pin-Air.

(a) Side-view of the experimental setup (b) Laser sheet estimation based on
two measured profiles

Figure 6.2: Setup for measuring the distortion of a laser line due to non-orthogonal
orientation of the laser projector with respect to the glass interface.
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the proposed model error is outside of the accuracy of sub-pixel peak detectors of the

camera.

Experimental Setup

The underwater housing for the camera and laser are similar to the previous experi-

ment, replaced by an aquarium filled with water acting as a flat-port. On the inside

of the aquarium, a planar target is attached, reflecting the line laser to the camera.

On the outside, the camera and the laser are placed on a rail system equipped with a

stepper motor allowing to precisely control the rotation of the laser sheet with respect

to the window without changing the physical baseline between camera and projector.

An overview of the setup is shown in Fig. 6.2.

System Calibration

For the camera, the flat-port model parameters from the previous experiment (1mm

focal distance, orthogonal) are reused listed in Tab. 6.2. In addition to this, the

projector parameters are estimated by projecting the laser line onto the visual target

at two different target distances for each selected orientation of the laser line. Based

on these measurements, two 3D laser profiles for each laser orientation are calculated

by intersecting associated camera rays with the plane of the visual target. Following

this, these two 3D profiles must also intersect with the distorted laser sheet and

therefore describe its 3D shape. Here, as an example, the calibration images for the

laser angle 0° are visualized in Fig. 6.3 and the corresponding 3D laser profiles with

a fitted laser sheet are displayed in Fig. 6.2(b).

Results

The estimated projector parameters are compared with simulated ones using a flat-

port model to back-project a virtual line onto two virtual planes at two distances.

Following this, the back-projected points are used to calibrate a virtual line projector

displayed as a reference in Fig. 6.4. Here, the effective baseline is defined as the min-

imal distance of the laser sheet in water to the focal point of the camera. Therefore,

the effective baseline is not only dependant on the actual laser angle but also on the

amount of refraction and where the interface is located with respect to the focal point

of the projector. This further reduces the effective baseline between both systems like

predicted and visualized in Fig. 6.5.
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(a) Visual target at close range (b) Visual target at far range

Figure 6.3: Underwater calibration images for estimating the projector model param-
eters for the laser angle 0°.

(a) Orthogonal (b) Non-orthogonal

Figure 6.4: Distortion of the laser line due to non-orthogonal orientation of the laser
line projector to the glass interface. Detected laser line points used for model refine-
ment are marked in color, and black and white circles indicate detected points on the
visual target used to calculate the pose of the target.
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(a) Distortion Coefficient
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(b) Effective Baseline

0 5 10 15 20 25
Angle of the laser in deg

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er
ag

e 
m
od

el
 e
rro

r i
n 
pi
xe

l measured
reference

(c) Model Error

Figure 6.5: Distortion coefficient, effective laser baseline, and model error in relation
to the angle of the line laser with respect to the glass interface.

Furthermore, the model error increases with an increasing angle between the laser

and interface normal, like simulated in Section 4.3. Therefore, for values above five de-

grees, the model error is significant in comparison to sub-pixel peak detectors, and the

simplified projector model should no longer be used. However, for standard underwa-

ter housings, the model gives enough margin to compensate for small misalignments

between line projector and its flat-port. Here, even when manually mounted, usually

values better than 1° can be reached.

6.3 Visual Odometry

One of the key aspects of an accurate 3D reconstruction is the ability to track the sen-

sor motion and to fuse 3D measurements over time into one consistent representation.

Here, the proposed passive-active visual system uses natural scene features for per-

forming motion compensation while scanning. Therefore, one of its sub-components

is a monocular visual odometry using passive image features to track the motion of

the sensor. It is based on a windowed bundle adjustment, and its implementation is

explained in Section 5.2. The component is embedded in the laser processing pipeline.

However, it can also run standalone tracking the motion of the camera up to scale.

To test its performance and to identify any systematic errors, it is tested against the
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odometry benchmark KITTI released by Geiger et al. [2013]. The benchmark is an

automotive vision benchmark with accurate ground truth and was selected to get a

comparison with the broader vision community. In addition, ignoring refractive dis-

tortion, the challenges for in-air and underwater visual odometry are quite similar if

difficult sequences like tunnels or heavy traffic are included. The dataset itself consists

of eleven sequences with ground truth trajectories of a camera in different automo-

tive scenarios for training and an additional eleven sequences without public available

ground truth for evaluation. After an algorithm recovers the camera trajectories of

the eleven sequences without ground truth data, they can be uploaded to a website

to participate in an online ranking. Here, the scale of the trajectories must also be

recovered, which is non-trivial as usually single-camera systems can only recover the

camera motion and scene structure up to scale. Therefore, for this test, the estimated

scale was injected into the windowed bundle adjustment by finding scene points on

the street in combination with the known mounting height of the camera pose with

respect to the street.

Figure 6.6: Image from the KITTI Benchmark - Sequence 13.

Objectives

Test the robustness and accuracy of the implemented visual odometry on a well-known

vision benchmark.

Experimental Setup

Two-color and two mono cameras are mounted in a dual stereo setup on top of an

automotive vehicle together with a GPS and LIDAR system for ground truth data.

The cameras are synchronized at 10 Hz with respect to the laser scanner, and their

data are provided as lossless compressed and rectified png sequences. Here, for the

monocular data set, only the data from one camera are used with a dynamic exposure

108



time, which is not allowed to exceed 2ms. Further information about the raw dataset

can be found in work from Geiger et al. [2013].

System Calibration

The camera images are cropped to a size of 1382 x 512 pixels and rectified by the

authors of the dataset. Therefore, only the focal length, the principal point, and the

location of the camera with respect to the road are required, which are provided with

the dataset.

Results

The implemented visual odometry can process all 22 sequences of the dataset con-

sisting of 43552 mono images. The estimated camera trajectory, together with the

ground truth, are displayed in Fig. 6.7 for sequence 13 and 14. The average trans-

lation error for all trajectories submitted to the KITTI web server for evaluation is

2.16% per traveled meter, which is an excellent result for a monocular vision system

and proved that the implementation is robust to many different environmental con-

ditions. However, monocular vision systems are still an ongoing research topic, and

the current state of the art algorithms for automotive scenarios report errors as small

as 0.8% per traveled distance. This level of accuracy would directly benefit the com-

bined active-passive vision system as any pose error also appears as a 3D structure

error in the final scene reconstruction.

109



(a) Estimated vehicle path for seqence 14 (b) 3D reconsturction for sequence 14

(c) Estimatead vehicle path and ground truth data for sequence 13

Figure 6.7: Estimated camera/vehicle trajectory and the resulting 3D reconstruction
showing all tracked and triangulated scene features.
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6.4 Combined Active-Passive Vision System

The most straightforward combined active-passive vision system consists of a camera

and a line laser, which is identical to a classical line structured light system. However,

instead of only using the active light pattern of the laser line, also passive features

are used to estimate the pose of the camera while scanning.

Objectives

Estimate the accuracy of the proposed passive, active system in a real-world under-

water scenario and generate a statistic of the available features.

Experimental Setup

The laser and the camera system are mounted on a remotely operated vehicle to scan

the seabed with a line laser, which is mounted on a servo allowing to rotate the laser

around its axis while the camera is keeping its orientation. This setup is identical to

a classical line structured light system with the addition that the angle between the

camera and the laser can be dynamically adjusted. This modification allows scanning

whole scenes without requiring to move the sensor setup physically. However, to

be able to scan objects in the water column or to avoid attaching sensor setups to

the seabed, it is usually desired to scan objectives from moving sensor platforms

such as remotely operated vehicles. Therefore, to simulate these scenarios, a visual

target is attached to the seabed and scanned from a remotely operated vehicle while

hovering introducing micromotion, which must be compensated to allow an accurate

3D reconstruction. For the compensation, the scene is illuminated with a red LED

light while a green laser is used for scanning the scene. This separation reduces the

crosstalk between active and passive visual features and increases the signal to noise

ratio of the reconstruction. For the scan itself, 2300 images with 144 frames per

second and an exposure time of 6.94ms are recorded with a Quad-VGA camera while

the laser is rotated anti-clockwise.

System Calibration

The camera system is calibrated in-air and refined underwater using images of a

checkerboard. Here, the refraction index is estimated based on the light refraction at

a spot near the location where the experiment is conducted. In addition, the baseline

between the laser and the camera system is estimated in-air using the calibration
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(a) Remotely operated vehilce with
attached sensor frame

(b) Sensor frame in mm

Figure 6.8: The sensor system consisting of two identical tubes mounted 970mm
apart on a remotely operated vehicle by attaching it to a hydraulic arm. Each tube
embeds a PC, a camera, a RGB LED, and a laser mounted on an internal servo which
is electrically linked to the camera of the other tube. This linkage allows adapting
the baseline between the camera and the laser of the system according to the mission
requirements.

routine described in Section 4.4. The estimated and refined model parameters for the

laser and the camera are given in Tab. 6.3.

Results

The estimated camera poses for the recorded image sequence based on passive and

active image features are plotted in Fig. 6.9 and Fig. 6.10. Here, no direct ground

truth exists as underwater navigation systems usually cannot deliver position data in

the mm range required for the 3D reconstruction. However, because the shape of the

visual target is known, the deviation of the reconstructed target from the ideal one

can be used as a precise error measurement. Here, the standard deviation to an ideal

planar target is 5.15mm in case of an uncompensated scan and 1.86mm after motion

compensation for an object distance of 2m. Also, 3D points of the visual target are

shifted insight the target plane resulting in imprecise distance measurements leading

to an error of around 5% in the uncompensated scan and 0.8% after motion com-

pensation. The resulting 3D reconstructions of the target, the signed distance to an

ideal planar target, and distance measurements along the target are visualized in Fig.

6.13. Here, the motion compensation is effectively reducing the reconstruction error

by a factor of around five. This reduction allows an accurate 3D reconstruction in
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Flat-Mixed Projector

Focal Length 782.49 / 782.58 1.0 / 1.0
Principle Point 648.01 / 484.82 0 / 0
Distortion K1,K2 -0.037 / 0.0002 -0.02034 / -
Distortion K2,K3 -0.00045 / 0.002 - / -
Interface Normal [-0.0004,0005,-1] -
Refraction Index 1.0,1.77,1.337 -
Layer Thickness 0.007, 0.01 -
rvec [0,0,0] [-0.129, -0.104, 1.568]
tvec [0,0,0] [0.794, -0.001, 0.009]

Table 6.3: Flat-port camera and line projector parameters for mixed calibration (in-
air + in-water refinement).

the millimeter range, which is usually not possible using floating sensor carriers open-

ing interesting new applications such as 3D reconstructions of ship-hulls or mooring

chains with millimeter accuracy.

(a) Camera Image
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(b) Estimated camera poses

Figure 6.9: a) Demosaicked camera image part of an image sequence used to scan the
visual target. b) The estimated motion of the camera while scanning using passive
features for motion tracking and active features for scale enforcement.

For demonstrating the geometric error introduced by a physical flat-port, the same

scene is reconstructed using a standard pinhole camera model. Here, the calibration

of the pinhole is based on the underwater checkerboard images, which are also used to

refine the flat-port model. In this complex scenario, including motion compensation,

the pinhole camera performs well in the working distance similar to the distance of

the checkerboard used for calibration. However, a deviation of up to 10cm can be

noticed in the far-field due to un-modeled light refraction visualized in Fig. 6.14.
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Figure 6.10: Feature matches between two consecutive camera images used for motion
compensation while scanning.
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Figure 6.11: Number of currently tracked passive features over the the image sequence.
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Figure 6.12: Total sum of active features joined with passive features over the image
sequence.
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(a) Uncompensated full scan (b) Compensated full scan

(c) Uncompensated checkerboad (d) Compensated checkerboard

(e) Comparision side view (f) Comparison top view

Figure 6.13: Dense 3D reconstruction of a checkerboard with 3cm × 3cm field sizes
based on passive and active features. a) Raw scan without motion compensation.
b) Scan with motion compensation c) Uncompensated checkerboard with signed dis-
tances to a fitted reference plane. d) Compensated checkerboard with signed dis-
tances to a fitted reference plane. e) Side by side comparison of the uncompensated
and compensated checkerboard. f) Side by side comparison of the uncompensated
and compensated checkerboard.
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Figure 6.14: Absolute distance in meter between a reconstruction based on the pinhole
camera model and a reconstruction based on the flat-port camera model using the
same image sequence.

6.5 Ship Hull Inspection

The inspection of a floating object such as a ship hull or a pier is a challenging target

for underwater inspection techniques. Not only does the object move relative to an

observer, but it also influences state of the art navigation solutions due to magnetic

distortions and multi-path effects. Here, as a technology demonstration, a ship hull

is inspected with the help of a remotely operated underwater vehicle equipped with

the proposed active-passive visual system.

Objectives

Test the proposed combined active-passive underwater system for the application of

underwater ship hull inspections and identify its potential for further developments.

Experimental Setup

A modified Falcon from Saab SeaEye is used to inspect a medium-sized ship hull

in the North Atlantic near St. John’s in a harbor during nighttime to reduce the

influence of sunlight on the measurements. The modified Falcon, shown in Fig. 6.15,

is equipped with a high-grade inertial navigation system (Phins Compact C3), which
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Figure 6.15: A Falcon from Saab SeaEye equipped with an additional inertial system
(INS) and a structured light system.

uses a fiber optic gyro for measuring orientation and angular velocity. In addition, two

identical pods, embedding each a camera and a steerable laser, are mounted at the

front of the vehicle and electronically paired. This pairing allows the camera of the

left pod to use the line projector from the right pod and vice versa. All systems are

hardware time synced using a pulse per second signal (PPS) emitted by an additional

GPS module.

With the help of the modified Falcon, several parts of the ship hull are scanned

while hovering in front of the hull using auto depth. The auto heading is turned off

because the compass of the Falcon is affected by the ship hull, and the Phins C3

is not fed back into the control system of the vehicle. In addition, to minimize the

effect of the ROV light on the measurement, the target was scanned with a green

laser while illuminated only with a red LED light. This illumination schema gives

the pilot sufficient visual feedback to safely operate the vehicle near the ship hull.

For each scan, the laser line is swept across the scene from the left side (−10◦) to

the right side +60◦ with an angular velocity of 5◦ using the servo the laser is mounted

to. While sweeping, the camera is collecting raw Bayer images with 140Hz, and the
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(a) Camera image while scanning at t1 (b) Camera image while scanning at t2

Figure 6.16: Camera image while scanning showing the green laser and the red light
for feature tracking.

navigation data from the Phins C3 are synchronously logged with 50Hz. This setup

results in around 2000 raw images for each of the scans with a scan duration of about

14 seconds. Here, two raw images of one of the scans are displayed in Fig. 6.16 after

a De-Bayering step to get a color representation for the images. These images are

also subsequently used for laser line extraction and triangulation, as well as for visual

pose estimation.

System Calibration

The camera system is calibrated in-air and refined underwater using images of a

checkerboard similar to the previous experiment. However, for the baseline estimation

between the camera and the laser, a single scan is utilized using the servo to change

the angle between the laser and the camera. This is possible because, due to the

rotation of the laser, the planar calibration target appears at different ranges. By

rotating these measurements back around the servo axis according to the servo angle,

this generates multiple 3D profiles, which can be used for iterative refinement of the

projector parameters without changing the location of the calibration target during

the calibration process. Here, the calibration parameters for the camera and the

projector used for the following 3D scans is given in Tab. 6.4.

Results

In the case of a ship hull inspection, the relative pose between the sensor and the ship

must be precisely known to avoid errors in the resulting 3D data. However, this is
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Parameter Flat-Mixed Projector

Focal Length 781.19 / 781.27 1.0 / 1.0
Principle Point 648.22 / 485.13 0 / 0
Distortion K1,K2 -0.040 / 0.008 -0.0093 / -
Distortion K2,K3 -0.0093 / 0.00567 - / -
Interface Normal [-0.001,0006,-1] -
Refraction Index 1.0,1.77,1.336 -
Layer Thickness 0.007, 0.01 -
rvec [0,0,0] [-0.106, -0.112, 1.590]
tvec [0,0,0] [0.810, 0.0174, 0.0113]

Table 6.4: Flat-port camera and line projector parameters for mixed calibration.

a difficult task, as underwater navigation solutions usually do not provide millimeter

accuracy. Therefore, to compare the embedded commercial navigation solution with

the pose estimation of the passive-active system, straight features of the ship hull

are used as a reference value. Here, in the case of perfect motion compensation,

straight features would also appear straight in the final 3D reconstruction. Therefore,

any deviation from it is due to an in-precise pose estimation assuming the range

measurement error on a per image bases is negligible.

As a first linear feature, the propeller shaft of the ship is scanned with the green

laser using the servo to rotate the laser. While scanning, the ship is illuminated with

the help of a red LED for visual motion tracking visualized in Fig. 6.16.

Following this, a cylinder is fitted to the resulting 3D data as a reference value.

After this, the signed distance between the cylinder and the measured 3D point cloud

is measured for motion compensation with the help of the inertial system combined

with a doppler velocity log and for the embedded visual odometry. The result for

both cases is displayed in Fig. 6.17 and 6.18. Here, the average error between the

reference value and the measured one can be reduced by a factor of 2 in case the

visual odometry is used instead of the inertial system.

As a second feature, the front of the ship hull is scanned with the same technique,

including a chime, which is regarded as a slightly curved linear feature displayed in

Fig. 6.19. Here, the sensor motion introduces a dent in the front section of the 3D

reconstruction, which can be compensated by the visual odometry but not by the INS

(Fig. 6.20). The deviation between both reconstructions in this section is above 4cm

(Fig. 6.21). Here, assuming the structure can be approximated by a curved plane,

the point cloud compensated by the visual odometry has an around five times smaller

signed distance error than the one compensated by the INS (Fig. 6.22).
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(a) 3D Point Cloud (b) Propeller shaft fitted to a cylinder

Figure 6.17: 3D reconstruction of a propeller using visual odometry for stabilization.

(a) Visual Odometry (b) Inertial Navigation System

Figure 6.18: Difference between a fitted shaft and a measured point cloud motion
compensated by a visual odometry and an inertial navigation system.

(a) Camera image while scanning at t1 (b) Camera image while scanning at t2

Figure 6.19: Camera image while scanning a ship hull section showing the green laser
and the red light for feature tracking.
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(a) Laser Remissions: left(INS); right(VO) (b) Deviation between INS and VO

Figure 6.20: Hull section scanned with a line structured light system which is compen-
sating with an inertial navigation system (INS) left object and with a visual odometry
(VO) right object.

(a) Side view of two surfaces reconstructed
with VO (top) and INS (bottom)

(b) Reconstruction of the front part of the ship
using VO

Figure 6.21: Motion compensated hull section scanned with a line structured light
system.
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Figure 6.22: Signed distance error of a reconstructed hull section to a virtual curved
reference plane assuming the real structure can be approximated by the plane. Here
the upper part is reconstructed using the visual odometry for motion compensation
resulting in a standard deviation of 1.4mm. The lower part is the exact same hull
patch but reconstructed with the help of the INS resulting in a standard deviation of
8.0mm.
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Conclusion

The first experiment, layed out in this chapter, shows that the proposed underwater

flat-port model accurately tracks the displacement of a camera with respect to a flat

physical interface. Following this, it is verified that the underlying geometric model

of an underwater line-projector can be approximated by a simpler pinhole model in

combination with tangential distortion. This approximation only holds if the angle

between the principal ray of the laser projector and the glass interface normal is below

5◦, which is usually even the case for manually aligned lasers. This combination allows

implementing an accurate underwater line structured light system based on flat-port

housings. Here, the unavoidable geometric distortion due to light refraction on the

interfaces is effectively compensated in software for its full working range without

compromising its accuracy.

In addition, several experiments demonstrate that sensor motion compensation

is required for 3D scans performed from hovering platforms such as remotely oper-

ated vehicles. Here, an inertial navigation system is usually not accurate enough

to compensate for the motion with an accuracy in the same order as the 3D range

measurements are performed. Therefore, for improving the accuracy of such mea-

surements, the sensor motion is tracked in the following with the help of raw sensor

data utilizing background features of the scene. This so-called active-passive method

is further successfully deployed to reconstruct several 3D underwater objects. Here,

depending on the sensor movements, the system can reduce the overall reconstruction

error by a factor of five in comparison to a motion compensation based on an inertial

system. This improvement not only allows to perform accurate 3D reconstructions in

the millimeter range from moving platforms. It also requires only a minimal sensor

integration and removes the need for a co-calibration between the sensor and the in-

ertial system of the vehicle. This circumstance makes it a very cost-effective method

for accurately digitizing small underwater objects such as but not limited to corals,

mooring chains, pipes, and ship hull sections.
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Chapter 7

Conclusion and Outlook

7.1 Thesis Summary

We are only at the beginning of technological developments allowing the usage of op-

tical sensors for more and more underwater applications. Many of these applications

are currently impractical or limited by the available sensor resolutions, including in-

spection of submerged objects, such as mooring chains, risers, or ship hulls. In these

cases, unavoidable relative motion between the sensor and the object introduces sig-

nificant errors, often outside of the allowed measurement tolerances to accomplish

the underlying task. Compensating these errors to a high degree usually requires

motion tracking capabilities of the sensor system itself. In general, this capability

relies on the correlation of multiple measurements over time by an underlying motion

model. This trend is analog to what can be currently observed for in-air applications.

Here, more and more off the shelf optical systems are nowadays available, supporting

simultaneous location and mapping (SLAM) in 6D using embedded cameras. Even

recent smartphones are now able to utilize their camera for 3D measurements, in-

cluding gesture recognition and estimating the traveled sensor distance. Also, in the

area of self-driving cars, cameras are becoming an essential sensor for 3D perception

and situation awareness. Although the medium water profoundly impacts the per-

formance of submerged cameras, there is no fundamental reason why they cannot be

used similarly in the underwater domain.

For transferring machine vision technologies into the underwater domain, the most

important aspects are the wavelength-dependent absorption of the medium water and

the light refraction on air-glass and glass-water boundaries. Here, the absorption puts

a hard limit on the achievable working range down to a few dozen meters. It also

enforces that optical systems must use visible light to penetrate a reasonable water

body. In addition, the refraction alters the light path invalidating standard camera
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models used for motion estimation and 3D scene reconstruction. This circumstance

leads to measurement errors, which eventually grow to the extent that it can no

longer be ignored. Counteracting these errors requires either special camera ports or

wet lenses, compensating for the additional refraction. This modification increases

the hardware costs. It also comes with other drawbacks, such as a curved depth of

focus in the case of dome ports. Whereas, flat-port cameras introduce in general

significant chromatic and geometric distortions. However, the geometric distortion of

flat-port cameras can be fully compensated in software with the help of flat refractive

camera models. Therefore, they can still be a better choice for many underwater

machine vision applications. Here, a new efficient approximation for the flat refractive

forward projection is presented. It allows for the integration of flat-port cameras into

bundle adjustments seamlessly and to calibrate the model parameters using standard

calibration methods.

Furthermore, as stated, optical systems must use the visible spectrum of light

to avoid substantial absorption by the water body. This circumstance is the main

reason why many in-air systems cannot be easily transferred to the underwater do-

main. In general, all sensors are affected, relying on an infrared light emitter to

measure the scene depth. For example, this includes all standard LIDAR systems

and RGB-D cameras. Here, as the infrared spectrum is not available underwater, the

depth sensor must be shifted to the visible spectrum also used by standard color and

mono cameras. This overlap introduces considerable crosstalk between active and

passive optical sensors. Therefore, a new passive-active approach is presented, which

uses a single sensor element to perform active and passive measurements simultane-

ously. This approach is explicitly aware of active and passive features in the image

domain, limiting the noise each modality has to cope with. Based on this, sensor

self-localization can be realized while simultaneously using an active light pattern for

dense 3D scene reconstructions with high accuracy.

As a demonstration, multiple difficult underwater objects are reconstructed with

the new passive-active method under real-world conditions. The results are promis-

ing and are hardly achievable with a single modality alone. This also includes the

reconstruction of objects in the water column subject to motion while scanning. In

these cases, the motion tracking capability of the presented method can adequately

compensate any relative motion between sensor and object while performing a dense

3D reconstruction in the millimeter range using structured light techniques.
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7.2 Limitations and Future Work

Optical systems rely on the ability to sense electromagnetic signals with a frequency

close to visible light. If an additional medium between an optical sensor and an object

prevents transmission of these frequencies, the optical system is effectively disabled.

Therefore, the transparency of the medium water is the leading factor for the ability

to use optical systems for underwater sensing. Depending on the dissolved and none-

dissolved particles in the water column, the working range of an optical system can

vary between several dozen meters and only a few centimeters. This possible working

range reduction by multiple orders of magnitude requires a robust fallback strategy,

which is less affected by water turbidity, such as the usage of acoustical sensors.

However, if the water body allows sufficient transmission for a given working range,

optical sensors can outperform other sensing modalities with an order of magnitude

in terms of resolution and accuracy. Here, an increase in the number of optical

sensors also increases the number of redundant measurements robustifying 3D scene

reconstruction and allowing to push the boundaries a system can operate in. Using

only a single camera combined with a line laser can be seen as the lower hardware

bound for performing metric correct 3D reconstructions. However, it is also the most

sensitive as it cannot build up enough constraints to filter out biased noise. Therefore,

it requires a certain amount of planning to change environmental conditions to its

favor. For example, this includes operating during night time to reduce environmental

light, using specialized illumination schemas for the operator, and carefully selecting

sensor poses with a minimum object distance.

Future work will, therefore, concentrate on multi-sensor setups using the pre-

sented basic building blocks to increase the robustness of passive-active systems. A

promising setup is, for example, a multi-camera setup allowing to directly label image

features into passive and active features using the underlying trifocal tensor without

requiring any motion cues. Furthermore, because the working range of underwater

optical systems is in general smaller than of acoustical systems, surveys are usually

carried out with acoustical sensors as primary sensors maximizing the available foot-

print. State of the art synthetic aperture sonar (SAS) can deliver footprints of around

800m orthogonal to the traveled path (across-track) at a resolution of around 3cm.

Therefore, future work will also include the fusion of optical passive-active systems

with SAS imagery, which can serve as a global map reducing the drift of the optical

motion compensation. Here, the underlying concept is that acoustical range data
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will usually not improve a single range measurement of an optical system as the co-

variance of both sensor modalities is too different. However, it is often the case that

SAS imagery is not delivering enough information to identify all objects of interest

reliably. Therefore, one possible schema is to pre-survey a particular region with

SAS and mark all unknown objects. In a second step, the marked objects are re-

visited, and a passive-active system is used to reconstruct them with sub-millimeter

resolution. Following this, the embedded motion tracking localizes itself in the SAS

imagery, which is already geo-referenced. This leads to a consist map where regions

of high interest are enriched with an optical system. Any improvements in the area of

visual odometry and or visual SLAM frameworks can be directly transferred to this

schema as long as the refraction at interface boundaries is taken into account during

pose refinement.

On a hardware level, the underwater community is usually too small to be the

driving factor for significant sensor developments close to the visible spectrum. Unlike

for the smartphone market, there is barely any camera manufacture that optimizes

its sensor chips for the underwater case. The same is true for camera optics, LEDs, or

new beam steering techniques used, for example, by solid-state LIDARs. Therefore,

the underwater community heavily relies on new upcoming technologies that are

transferrable to the underwater domain without requiring an extensive adaption of

their core elements such as light emitters or receivers. This missing market traction

limits somehow the possible developments in the near future. Nonetheless, exciting

new sensor systems will emerge using the available building blocks to improve signal

contrast further and to improve the utilization of the relatively small bandwidth of

visible light available for underwater sensing.
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