
Learning and Generalizing

Behaviors for Robots

from Human Demonstration

von Alexander Fabisch

Dissertation

zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

Vorgelegt im Fachbereich 3
(Mathematik und Informatik)

der Universität Bremen
im Oktober 2020

Datum des Promotionskolloquiums: 03.12.2012

Gutachter: Prof. Dr. Dr. h. c. Frank Kirchner

Universität Bremen

Prof. Constantin A. Rothkopf, PhD

Technische Universität Darmstadt

Contents

Acknowledgments ix

Zusammenfassung xi

Abstract xiii

Prior Publication xv

I. Foundations and Background 1

1. Introduction to Robot Behavior Learning 3
1.1. Behavior . 4

1.1.1. Definition . 4
1.1.2. Classification . 5

1.2. Behavior Learning . 8
1.2.1. Behavior Generation for Real, Autonomous Robots 8
1.2.2. What Makes the Domain Difficult? 8
1.2.3. Complexity of Systems Is Increasing 9
1.2.4. When Should Behaviors Be Learned? 9
1.2.5. An Analogy: Shifting from Deliberative to Reactive Behaviors . . . 14
1.2.6. When Should Behaviors Not Be Learned? 15

1.3. Limitations of Behavior Learning . 17
1.3.1. Limited Versatility of Learned Skills 17
1.3.2. Limited Variety of Considered Problems 18
1.3.3. Reasons for Current Limitations 18

1.4. Objectives . 20
1.5. Contributions . 20
1.6. Summary . 21
1.7. Thesis Structure . 22

2. State of the Art 23
2.1. Robotic Behavior Learning Problems . 23

2.1.1. Manipulation Behaviors . 25
2.1.2. Locomotion Behaviors . 26

2.2. An Overview of Behavior Learning Approaches 27
2.2.1. Imitation Learning . 28
2.2.2. Black-Box Optimization . 35

iii

Contents

2.2.3. Reinforcement Learning with Value Functions 38
2.2.4. Policy Search with Movement Primitives 41
2.2.5. Deep Reinforcement Learning with Value Functions 48
2.2.6. Deep Reinforcement Learning with Policy Gradients 50
2.2.7. Self-Supervised Learning . 62
2.2.8. Discussion . 62

2.3. A Detailed Overview of Contextual Policy Search 64
2.3.1. Contextual Black-Box Optimization 65
2.3.2. Computing Weights from Returns 66
2.3.3. Weighted Regression . 66
2.3.4. Regression with Uncertainty Estimation 70
2.3.5. Contextual Policy Search Algorithms 72
2.3.6. Benchmarks . 76
2.3.7. Discussion . 77

2.4. Summary . 77

II. Enhanced Methods for Robot Behavior Learning 79

3. Imitation with Automatic Embodiment Mapping 81
3.1. Task-Agnostic Embodiment Mapping . 81

3.1.1. Global Trajectory Optimization . 81
3.1.2. Local Pose Optimization with Approximate Inverse Kinematics . . 84
3.1.3. Evaluation of Task-Agnostic Embodiment Mapping 86
3.1.4. Discussion . 90

3.2. Task-Specific Policy Refinement . 91
3.2.1. Policy Search for Policy Refinement 91
3.2.2. Related Work: Behavior Learning in Cartesian Space 91
3.2.3. Experiments: Refinement in Cartesian Space and Joint Space . . . 92
3.2.4. Discussion . 96

3.3. Summary . 97

4. Sample-Efficient Contextual Policy Search 99
4.1. Active Context Selection . 99

4.1.1. Related Work: Active Learning and Artificial Curiosity 100
4.1.2. Proposed Method for Active Context Selection 101
4.1.3. Experiments: Generalizing Throwing Movements 106
4.1.4. Discussion . 111

4.2. Active Training Set Selection . 112
4.2.1. Proposed Method for Training Set Selection 112
4.2.2. Experiments . 116
4.2.3. Discussion . 120

4.3. Extensions from Black-box Optimization 120
4.3.1. Proposed Extensions of C-CMA-ES 121

iv

Contents

4.3.2. Experiments . 123
4.3.3. Discussion . 127

4.4. Bayesian Optimization for Contextual Policy Search 128
4.4.1. Extension of Bayesian Optimization to Contextual Policy Search . 128
4.4.2. Experiments . 130
4.4.3. Discussion . 133

4.5. Variational Trajectory Autoencoder . 134
4.5.1. Related Work: Manifold Learning for Behavior Learning 135
4.5.2. Proposed Manifold Learning Approach 136
4.5.3. Experiments . 139
4.5.4. Discussion . 145

4.6. Summary . 146

III. A Framework for Robot Behavior Learning 149

5. A Conceptual Framework for Automatic Robot Behavior Learning 151

5.1. Overview . 152
5.2. Motion Capture and Preprocessing . 153
5.3. Imitation Learning . 154

5.3.1. Correspondence Problem . 154
5.3.2. Motion Plan Representation . 155

5.4. Refinement and Generalization . 155
5.4.1. Refinement with Policy Search . 156
5.4.2. Simulation-Reality Transfer . 156
5.4.3. Contextual Policy Search . 156

5.5. Evaluation of the Learning Platform . 157
5.5.1. Methods . 157
5.5.2. Results and Discussion . 159
5.5.3. Application of the Learning Platform in Different Scenarios 162

5.6. Summary . 163

6. BOLeRo: Behavior Optimization and Learning for Robots 165

6.1. Related Work . 165
6.2. Design and Features . 166
6.3. Examples and Applications . 168

6.3.1. Simple Example . 168
6.3.2. Other Applications . 168
6.3.3. Reproducible Research . 170

6.4. Related Software . 170
6.5. Summary . 170

v

Contents

IV. Conclusion 173

7. Discussion 175

7.1. Contributions . 175
7.2. Experiments . 175
7.3. Evaluation of Objectives . 176
7.4. Limitations . 177

7.4.1. Policies with Continuous and High-Dimensional Sensor Input . . . 177
7.4.2. Automation of the Learning Platform 178
7.4.3. Reward . 178

7.5. Impact and Relation to Other Fields . 178
7.6. Insights . 181
7.7. Publications . 181

8. Outlook 185

8.1. Ways to Simplify Learning Problems . 185
8.2. Integration of Prior Knowledge in Deep Learning 187
8.3. Comparability and Reproducibility . 189
8.4. The Future of Behavior Learning Problems in Robotics 190

V. Appendix 195

A. Survey of Behavior Learning Problems 197

A.1. Manipulation Behaviors . 197
A.1.1. Fixed Objects (A) . 197
A.1.2. Spatially Constrained Behavior (B) 198
A.1.3. Movable Objects (C) . 199
A.1.4. Deformable Objects (D) . 202
A.1.5. Divisible Objects (E) . 203
A.1.6. Movable Objects, Dynamic Behavior (F) 203
A.1.7. Granular Media and Fluids (G) . 205
A.1.8. Collision Avoidance (H) . 205
A.1.9. Miscellaneous (I) . 206

A.2. Locomotion Behaviors . 206
A.2.1. Walking (A) . 206
A.2.2. Dribbling (B) . 207
A.2.3. Jumping (C) . 207
A.2.4. Standing Up (D) . 207
A.2.5. Balancing (E) . 207
A.2.6. Collision Avoidance (F) . 208
A.2.7. Navigation (G) . 208
A.2.8. Exploration (H) . 209

vi

Contents

A.3. Other Behaviors . 210
A.3.1. Human-robot Interaction . 210
A.3.2. Behavior Sequences . 211
A.3.3. Soccer Skills . 212
A.3.4. Adaptation to Defects . 212

A.4. Table . 213

B. Other Behavior Learning Algorithms 219
B.1. Hierarchical Reinforcement Learning . 219
B.2. Meta Learning . 219
B.3. Model-Based Reinforcement Learning . 220

C. Overview of Mathematical Notation 223

D. Derivation of Cost-Regularized Kernel Regression 225

E. Preliminary Experiments with Active Contextual Policy Search 229
E.1. Model of the Contextual Learning Problem 229
E.2. Contextual Function Optimization . 232
E.3. SAGG-RIAC for Ball Throwing . 236

F. Descriptions of Robots 237
F.1. COMPI . 237
F.2. Kuka iiwa 7/14 . 238
F.3. Universal Robot UR5/10 . 238
F.4. Mitubishi PA-10 . 239
F.5. Mantis’ Arm . 239

G. Detailed Evaluation of Variational Trajectory Autoencoder 241

Glossary 243

List of Figures 247

List of Tables 251

Bibliography 253

vii

Acknowledgments

I would like to apologize for statements like “artificial intelligence won’t ever work” or
“I do not believe that reinforcement learning has a future”. A dissertation is a journey
that sometimes drives sane people to the edge of insanity. I would like to thank Mario
Michael Krell, Constantin Bergatt, Marc Otto, Marc Tabie, Kai von Szadkowski, Martin
Schröer, and Frank Kirchner for encouraging me to continue this journey and to prove
these statements wrong.

I would like to thank Marc Tabie, Marc Otto, Mario Michael Krell, Matias Alejandro
Valdenegro Toro, Lisa Gutzeit, Hendrik Wöhrle, Bilal Wehbe, José de Gea Fernández,
and Thomas M. Roehr for their valuable feedback during research, work and writing this
thesis as well as Verena Fabisch for finding numerous mistakes in the text at hand.

I would like to thank particularly Yohannes Kassahun and Jan Hendrik Metzen for
being mentors at the beginning of my research, Constantin Bergatt and Manuel Meder
for providing simulation environments in which I could let robots learn behaviors, Mario
Michael Krell for collaboration on deriving the optimization algorithm for the positive
upper boundary support vector estimation (PUBSVE), Lisa Gutzeit for providing a li-
brary for trajectory segmentation that works really well and collaborating on recording
a large amount of motion data, Marc Otto for collaboration on robotic throwing and on
researching which other behaviors could be learned, Christoph Petzoldt for contribut-
ing a structured and application-oriented perspective, Hendrik Wiese for implementing
a procedure for automatic labeling of motion capture markers and ROS support, Jonas
Hansen for bringing contextual policy search to COMPI with excellent results, Sebastian
Hellmann for recording a dataset of human grasps, and Bernd Poppinga for recording
throwing movements.

There are many more current and former colleagues with whom I collaborated, who
inspired me, and who I do not explicitly mention here. In all the research projects that I
have participated in as part of the Robotics Research Group of the University of Bremen
or the Robotics Innovation Center of the DFKI I learned a lot from you. I would like to
thank you for that and I tried my best to also share my knowledge and experience with
you.

This thesis would not have been possible without a huge open source community in the
field of machine learning. I would like to mention particularly the project scikit-learn,
which provides a large amount of standard machine learning algorithms in Python, but
the whole scientific ecosystem in Python has much more to offer. With several projects
that resulted from this thesis I try to give something back to the community.

ix

Zusammenfassung

Verhaltenslernen ist eine vielversprechende Alternative zu Planung und Regelung für Ver-
haltensgenerierung in der Robotik. Das Feld wird zunehmend populär in Anwendungen,
in denen Modellierung von Umgebung und Roboter umständlich, schwierig oder vielleicht
sogar unmöglich ist.

Das Lernen von Verhalten für echte Roboter, die über Aufgabenparameter mit so we-
nig wie möglich Umgebungsinteraktionen generalisieren, ist eine Herausforderung, mit der
sich diese Dissertation auseinandersetzt. Welche Probleme wir derzeit durch Verhaltens-
lernen lösen können und welche Algorithmen wir in der Robotik brauchen, ist zurzeit
nicht offensichtlich, da es viele verwandte Felder gibt: Imitationslernen, Bestärkendes
Lernen, selbstüberwachtes Lernen und gradientenfreie Optimierung.

Nach einer ausführlichen Literaturübersicht entscheiden wir uns dazu, Methoden aus
den Bereichen Imitationslernen und Strategiesuche zu verwenden, um die Herausforde-
rung anzugehen. Wir nutzen Imitationslernen mit Bewegungsprimitiven und verwenden
menschliche Demonstrationen, die durch ein Bewegungsaufnahmesystem erfasst werden,
um initiale Verhalten zu erzeugen, die wir dann durch kontextuelle Strategiesuche gene-
ralisieren.

Imitation von menschlichen Bewegungen führt zum Korrespondenzproblem: die ki-
nematischen und dynamischen Fähigkeiten von Menschen und Robotern sind oft funda-
mental verschieden und deshalb müssen wir dies kompensieren. Diese Dissertation schlägt
eine Prozedur für eine automatische Übertragung auf Roboter durch Optimierung und
Strategiesuche vor und evaluiert diese mit verschiedenen robotischen Systemen.

Algorithmen für kontextuelle Strategiesuche sind häufig nicht dateneffizient genug, um
direkt auf echten Robotern zu lernen. Diese Dissertation versucht das Problem mit ak-
tiver Kontextauswahl, aktiver Auswahl von Trainingsdaten, Stellvertretermodellen und
Dimensionsreduktion zu lösen. Der Fortschritt wird mithilfe von einigen simulierten und
realen Lernaufgaben für Roboter illustriert. Starke Verbindungen zwischen Strategiesu-
che und gradientenfreier Optimierung werden in diesem Teil der Arbeit offengelegt und
genutzt. Diese Dissertation demonstriert, dass das Lernen von Manipulationsverhalten
in wenigen hundert Episoden direkt auf einem realen Roboter möglich ist.

Des Weiteren werden diese neuen Methoden für Imitationslernen und kontextuelle
Strategiesuche in einem kohärenten Rahmenwerk integriert, das zum fast automatischen
Lernen neuer Verhalten aus aufgezeichneten menschlichen Bewegungen genutzt werden
kann. Entsprechende Implementierungen, die während dieser Dissertation entwickelt wur-
den, sind öffentlich verfügbar.

xi

Abstract

Behavior learning is a promising alternative to planning and control for behavior gener-
ation in robotics. The field is becoming more and more popular in applications where
modeling the environment and the robot is cumbersome, difficult, or maybe even impos-
sible.

Learning behaviors for real robots that generalize over task parameters with as few
interactions with the environment as possible is a challenge that this dissertation tackles.
Which problems we can currently solve with behavior learning algorithms and which
algorithms we need in the domain of robotics is not apparent at the moment as there are
many related fields: imitation learning, reinforcement learning, self-supervised learning,
and black-box optimization.

After an extensive literature review, we decide to use methods from imitation learning
and policy search to address the challenge. Specifically, we use human demonstrations
recorded by motion capture systems and imitation learning with movement primitives to
obtain initial behaviors that we later on generalize through contextual policy search.

Imitation from motion capture data leads to the correspondence problem: the kine-
matic and dynamic capabilities of humans and robots are often fundamentally different
and, hence, we have to compensate for that. This thesis proposes a procedure for au-
tomatic embodiment mapping through optimization and policy search and evaluates it
with several robotic systems.

Contextual policy search algorithms are often not sample efficient enough to learn
directly on real robots. This thesis tries to solve the issue with active context selection,
active training set selection, surrogate models, and manifold learning. The progress
is illustrated with several simulated and real robot learning tasks. Strong connections
between policy search and black-box optimization are revealed and exploited in this part
of the thesis. This thesis demonstrates that learning manipulation behaviors is possible
within a few hundred episodes directly on a real robot.

Furthermore, these new approaches to imitation learning and contextual policy search
are integrated in a coherent framework that can be used to learn new behaviors from
human motion capture data almost automatically. Corresponding implementations that
were developed during this thesis are available in an open source software.

xiii

Prior Publication

Although this dissertation is a monograph, large parts of it have been published before
and some parts are submitted to conferences or journals and might be published soon.
Marginal notes at the beginning of a chapter or section will refer to publications that
the text is based on. At the end of Chapters 1–6 the corresponding publications will be
listed.

At the same place I will describe my contributions and the contributions of my co-
authors. I published some works without co-authors but most are published with at least
one co-author who contributed considerably, and in a few I am just a co-author. There
are several publications in which we integrated multiple components in a joint effort.
Hence, the first two or three authors contributed equally and are main authors of the
paper. In some cases it is necessary to also present the work of my colleagues in this
thesis to show the full system and evaluation or as a prerequisite for following sections.
I only summarize their work or I highlight these sections or figures as their work.

Throughout this thesis I will use the first person plural meaning you and me together,
including the reader. I will only break this style when I explicitly distinguish my contri-
bution from my colleagues work. In some cases, however, we can also include colleagues
with whom I published the paper. In this case it is clearly stated at the end of the
chapter who contributed in which form to this we.

xv

Part I.

Foundations and Background

1

Chapter 1.

Introduction to Robot Behavior Learning

Parts of this
chapter were
published
originally in
[Fab+20] and
have been revised.

The ultimate goal of AI and Robotics is to realize autonomous

agents that organize their own internal structure in order to

behave adequately with respect to their goals and the world.

That is, they learn.

(Asada et al. [Asa+96])

As robots are deployed in increasingly complex environments and have to fulfill a range
of different tasks, hard-coding the full set of behaviors before deployment becomes more
difficult. An alternative approach is to allow robots to learn behaviors.

Machine learning and particularly deep learning [Sch14; LBH15] made groundbreaking
success possible in many domains, such as computer vision [KSH12], speech recognition
[Hin+12], playing video games [Mni+15], and playing Go [Sil+16]. It is unquestionable
that learning from data, that is, learning from experience and observations, is the key to
adaptive and intelligent agents—virtual or physical.

Yet, people are often susceptible to the fallacy that the state of the art in robotic
control today heavily relies on machine learning. This is often not the case. An example
for this is given by Irpan [Irp18]. At the time of writing this thesis, the humanoid robot
Atlas from Boston Dynamics is the most impressive work in robot control. It is able to
walk and run on irregular terrain, jump precisely with one or two legs, and even do a back
flip [Bos18]. Irpan [Irp18] reports that people often assume that Atlas uses reinforcement
learning. Publications from Boston Dynamics are sparse, but they do not include machine
learning algorithms for control [Rai+08; Nel+12]. Instead, Kuindersma et al. [Kui+16]
present state estimation and optimization methods for locomotion behavior of the robot
Atlas. Robotic applications have demanding requirements on processing power, real-
time computation, sample efficiency, and safety. These often make the application of
state-of-the-art machine learning to generate robotic behavior infeasible.

The goal of this thesis is to make behavior learning a common tool for roboticists, as
common as planning and control. We need intuitive and reliable tools to achieve this
and learning should happen directly on the real system without complicated simulations
and with few interactions between the robot and its environment.

3

Chapter 1. Introduction to Robot Behavior Learning

1.1. Behavior

This thesis discusses behavior learning for real robots—physical agents that move in the
real world. In this section, we clarify what behavior is and in which forms it can occur.
In the following chapters we will analyze the state of the art of behavior learning for
robots, derive a set of interesting open problems and questions, and tackle these.

1.1.1. Definition

We adapt the definition of the term behavior from Levitis et al. [LLF09], who derive
this definition from a survey among behavioral biologists: “behaviour is the internally
coordinated responses (actions or inactions) of whole living organisms (individuals or
groups) to internal and/or external stimuli [. . .]” [LLF09]. Note that we excluded the
end, as it only applies to biological systems. For our purposes, we extend this definition
to artificial systems that are called robots.

Levitis et al. [LLF09] point out: “Information processing may be a necessary substrate
for behaviour, but we do not consider it a behaviour by itself.” This is important because
it excludes perception, state estimation, and building world models from the definition
of behavior, although they may be part of a behavior.

There are other terms related to behavior and behavior learning that we will use.
Shadmehr and Wise [SW05, page 46] write about reaching behavior:

Once the CNS [central nervous system] selects the targets (or goals) of reach
[. . .] it must eventually compute a motor plan and generate the coordinated
forces needed to achieve the goal, even if this computation evolves during the
movement. The ability to achieve such goals typically requires a motor skill.

Hence, we can distinguish the general concept of a motor skill and an explicit and specific
motor plan. The term skill is widely used and we define it as a learned ability of an
organism or artificial system. It is not the behavior but a behavioral template that can
be adapted to a behavior for certain situations that are similar to those in which it was
learned. A set of skills constitutes a skill library or motor repertoire. A motor plan is a
sequence of actions (control commands on a lower level) to be taken in order to achieve
a given goal. Hence, it is a skill adapted to a specific situation.1

Another term that is often used in the context of robot skill learning is movement
primitive. Movement primitives are “fundamental units of motor behavior” [GMB93],
more precisely, “indivisible elements of motor behavior that generate a regulated and
stable mechanical response” [GMB93]. Thus, a movement primitive can represent a
learned skill.

1These definitions of skill and motor plan originated from discussions with Elsa Andrea Kirchner,
Lisa Gutzeit, José de Gea Fernández, Alexander Dettmann, Sebastian Stock, Dennis Mronga, Nils
Niemann, Sebastian Bartsch, Marc Otto, and Christoph Petzoldt whom I would like to thank for
their contribution.

4

1.1. Behavior

1.1.2. Classification

Now that we have defined behavior and related terms, we will introduce categories to
distinguish behaviors and behavior learning problems. Note that some behaviors are not
clearly categorizable and some categories do not apply to all behaviors.

Perception and action: Behaviors often involve perception and action (see Fig-
ure 1.1). Some behaviors, however, can also be executed open-loop, that is, they do
not incorporate any sensory feedback after they have been started. Conversely, pure per-
ception does not match our definition of behavior. Often a coupling between perception
and action is required. Sometimes both components are learned, sometimes only the
action is learned, and sometimes there is a stronger focus on learning the perception part
of the behavior.

Deliberative vs. reactive behaviors: Arkin [Ark98] distinguishes between deliber-
ative and reactive robot control, which also applies to learned robotic behavior. Deliber-
ative control often relies on a symbolic world model. Perception is not directly coupled
to action but it is used to populate and update the world model. Actions are derived
from the world model. Deliberative control is often responding slowly with a variable
latency and can be regarded as high-level intelligence. We define deliberative behaviors
as behaviors that only have an indirect coupling between sensors and actuators through
a world model. Reactive control does not rely on a world model because it couples per-
ception and action directly. It responds in real-time, relies on simple computation, and
is a form of low-level intelligence. Reactive control architectures often combine multiple
reactive behaviors. An interesting property of these architectures is that often unforeseen
high-level behavior emerges from the interplay between robot and environment. Reflexive
behavior is reactive with tight sensor-actuator coupling. Both deliberative and reactive
behaviors are closed-loop behaviors.

Discrete vs. rhythmic behavior: Most behaviors cause movements. Schaal et al.
[Sch+04] distinguish between two forms of movements: discrete and rhythmic move-
ments. Discrete movements are point-to-point movements with a defined start and end
point. Rhythmic movements are periodic without a start or end point or could be re-
garded as a sequence of similar discrete movements. This distinction has often been used
for robotic behaviors. Some behaviors might be rhythmic at one hierarchy level and
discrete at another. Schaal et al. [Sch+04] show that discrete movements often involve
higher cortical planning areas in humans and propose separate neurophysiological and
theoretical treatment.

Dynamic vs. static behavior: Momentum is important in dynamic behaviors be-
cause it will either be transferred to the environment or it is required because the robot or
the environment is not stable enough to maintain its state without momentum. Static be-
haviors can be interrupted at any time and then continued without affecting the outcome
of the behavior. In practice, some behaviors also lie in between, because momentum is

5

Chapter 1. Introduction to Robot Behavior Learning

Figure 1.1.: Perception and action. The red background indicates which parts of the be-
havior are learned. Sometimes both, perception and action, are learned and
sometimes only some aspects are learned. The height of each bar indicates
complexity of the corresponding part.

6

1.1. Behavior

not important but interrupting the behavior might alter the result insignificantly. Some
problems would be solved by a human with dynamic behaviors, but when the behavior is
executed slow enough, it loses its dynamic properties. This often happens when robots
solve dynamic problems, hence, we call them quasi-static. This categorization is inspired
by research in walking robots: a static walk can be stopped at any time and the robot
will stay indefinitely at the same position [BF97]. A categorization into dynamic and
static motion is also made in rock climbing [Wik18], and Mason and Lynch [ML93] pro-
vide complementary definitions for manipulation: static manipulation is defined as an
operation “that can be analyzed using only kinematics and static forces”, quasi-static ma-
nipulation can be analyzed “using only kinematics, static forces, and quasi-static forces
(such as frictional forces at sliding contacts)”, and dynamic manipulation can be analyzed
“using kinematics, static and quasi-static forces, and forces of acceleration”.

Active vs. passive: Some behaviors are executed with the intention to actively change
the state of the robot or the world. Others are only passive, that is, they have the goal
of maintaining a state and change of the environment is a side effect. An example is
homeostasis, a state of steady internal conditions, which is a fundamental concept of the
robotic behavior architecture of Rauch et al. [Rau+12].

Locomotion vs. manipulation: Many implemented behaviors of existing robotic
systems can be categorized as locomotion or manipulation. Locomotion includes all
behaviors that move the robot and, thus, change the state of the robot in the world,
while change of the environment is a side effect. Manipulation is mechanical work that
modifies the arrangement of objects in the world. Therefore, manipulation behaviors
change the state of the environment and changing the state of the robot is a side effect.

Hierarchy of behaviors: Behaviors can have different timescales and levels of ab-
straction. For example, keeping a household clean is more abstract and time-consuming
than picking up a particular cup. Furthermore, behaviors can consist of other behaviors.
For example, a resource management behavior can achieve the goal of maintaining a stor-
age filled by keeping track of the stored amount (stocktaking) and collecting resources
(foraging) when necessary. As goals become more concrete and faster to achieve, their
priority generally increases. For example, keeping balance or avoiding an obstacle are
often obligatory, which leads to compromises in the achievement of higher level goals.
Sub-behaviors may be executed in parallel or in a sequence and generally, the type of
their combination (output weighting, suppression, sequence) is learnable.

Hierarchical behavior organization dates back at least to the field of behavior based
robotics [Ark98], manifested, for example, in the subsumption architecture of Brooks
[Bro86]. Organizing behaviors hierarchically has been demonstrated to be of practical
relevance to organize hand-coded behaviors for the complex domain of robot soccer.
The behavior specification languages XABSL [LRJ06] and CABSL [Röf18] are common
among robot soccer teams. A hierarchical behavior structure is also useful to divide the
learning procedure, as demonstrated by Kirchner [Kir97].

7

Chapter 1. Introduction to Robot Behavior Learning

System requirements: Behaviors have different requirements on the hardware de-
sign of the robot. Many locomotion behaviors require legs, although navigation and
exploration behaviors often only require wheels to move. Manipulation behaviors re-
quire grippers, hands, and / or arms. Some behaviors rely on particular sensors such as
cameras, force-torque sensors, or distance sensors.

Noise and uncertainty: Generating behaviors is considerably more difficult if there is
noise in state transitions or state perception. Sometimes the state is not fully observable
and, hence, there is uncertainty in perception. Sometimes the state transition is not fully
determined by the actions that the robot can execute because the environment itself is
stochastic.

1.2. Behavior Learning

1.2.1. Behavior Generation for Real, Autonomous Robots

What is a good strategy to generate behaviors for real, autonomous robots? There
are several options. We can hard-code solutions to common problems (similar to hard-
wired reflexes in biological agents), which requires a good implicit model of the problem
domain. We can also build a model during runtime and use offline or online solvers such
as planners to come up with a solution. But what if the model is not good enough? Maybe
the model is not accurate, maybe we cannot build a model because we are missing some
required information, or maybe it is too difficult to model some aspects of the interaction
between robot and environment. Learning behaviors from experience is a way to avoid
this problem; however, learning behaviors for robots that move in the real world is
difficult.

1.2.2. What Makes the Domain Difficult?

There are numerous reasons why machine learning is more focused on perception or is
done in simulation. Robotic behaviors cannot be executed indefinitely often as robots
suffer from wear and tear, require maintenance (for example, battery changes or hardware
repairs [KS04]), and hardware is expensive [KBP13]. Furthermore, human supervision
is often required, particularly when there is physical contact between robot and envi-
ronment so that imperfect behavior might break either the robot or the environment
[CP07; ET18]. Hence, training data are often sparse and learning must be effective with
small datasets [KS04]. Further challenges are partial observability, uncertainty, and noise
[KS04; KBP13], as well as the curse of dimensionality, since humanoid robots can have 40
or more state space dimensions [MD01]. Even modeling and simulation are difficult; in
particular dynamics of many robots and their environments are complex. Behaviors are
also often hard to reproduce [KBP13], since robots can even change their properties over
time because of wear or changing temperatures [KBP13]. In contrast to simulation, the
only option to speed up learning in the real world is to add more robots, which require
more maintenance work [KS04].

8

1.2. Behavior Learning

Learning behaviors for robots in the real world is difficult for all those reasons. Some
of them can be mitigated in laboratory conditions. Nonetheless, this domain is among
the hardest for today’s machine learning algorithms.

1.2.3. Complexity of Systems Is Increasing

The domain of robotics is not only difficult but it is becoming even more so with the
increasing complexity of robotic systems and posed problems. A complex six-legged
walking robot had 12 degrees of freedom (DOF) [MB90] at the beginning of the 90s.
In 2016, a quadrupedal robot with two arms for manipulation had to handle 61 DOF
[Bar+16]. Controlling such a complex robot is challenging. While the majority of the
works in the field of manipulation only have to handle six or seven DOF, complex robots
today control 17 [Kor+11b] or 24 DOF [Bar+16] to generate a walking behavior or
24 DOF for in-hand manipulation [Raj+17a; Ope+20]. For comparison, a well-studied
biological system is the human body. It has an estimated total number of 244 DOF and
a conservatively estimated number of 630 skeletal muscles [ZP12]. It is, hence, a much
more complex system to control than any robot used in works that are cited in this thesis.

Not only the actuation capabilities improved but also the complexity of sensors in-
creased considerably in almost three decades of behavior learning research on real robots.
In early applications only simple sensors have been used (for example, four light sensors
[Kir97]). Alternatively, the perception problem has been decoupled from the action prob-
lem to solve it with computer vision and state estimation [Mül+13; Par+15]. In more
recent works, raw camera images have been used directly by the learned behavior [LR13;
Lev+16; Lev+18] and RGB-D cameras have been used [LLS15]. RGB-D cameras are
probably the most complex sensors that are used in learned behaviors today. Robotics
research in general is already more advanced though and we will see other complex sen-
sors in addition to conventional cameras. Current robotic systems can have advanced
tactile sensor arrays based on fiber-optic sensing principles [Bar+16].

1.2.4. When Should Behaviors Be Learned?

One of the main questions that we would like to answer here is which behaviors robots
should learn given the availability of alternative approaches and difficulties applying
machine learning to real robotic systems. This is often intuitively clear to machine
learning and robotics researchers, but the intuition is often not underpinned by evidence.
The field is diverse so that it is easy to miss something.

We see several strengths of learned behaviors that have been mentioned quite often:

• Handling uncertainty and noise.

• Dealing with inaccurate or non-existing models.

• Learning can be better than hand-crafted solutions.

• They are easier to implement.

• They are often simple, sufficient (or even optimal) heuristics.

9

Chapter 1. Introduction to Robot Behavior Learning

Figure 1.2.: Sketch of a robust grasping trajectory from top view. The ellipse indicates
the uncertainty of the object’s estimated position. A grasp that moves along
the axis of highest variance of the estimate (blue trajectory) will succeed
with a higher probability than a grasp that moves along the axis of lowest
variance (red trajectory).

We will back up these findings with sources in the following paragraphs. Machine learning
is also considered to be the direction to real artificial intelligence or, as Asada et al.
[Asa+96] put it: “The ultimate goal of AI and Robotics is to realize autonomous agents
that organize their own internal structure in order to behave adequately with respect to
their goals and the world. That is, they learn.”

1.2.4.1. Handling Uncertainty and Noise

Uncertainty and noise are predominant problems in robotics. Sensors and actuators suf-
fer from noise, which makes noise part of the world from the perspective of a robot.
Information about the world is usually incomplete and knowledge is not certain. There-
fore, uncertainty played a central role in robotics research since its beginning [Mas12] and
probabilistic methods are popular in the robotics community (see, for example, Thrun
et al. [TBF05]). The following works demonstrate that learning can handle uncertainty.

Stulp et al. [Stu+11; STS12] show that state estimation uncertainty in a pick and place
problem can be compensated with an adapted motion. We illustrate how a compensatory
motion can address the problem of state estimation uncertainty in Figure 1.2.

An example of incomplete information is presented by Levine et al. [Lev+18], where
just a single RGB camera is used to learn grasping end to end.2 The distance and the
three-dimensional structure of objects cannot be inferred from only one camera. Objects
are in the same distance to the robot, however, when they are at the same position in
the image. Hence, the system implicitly learns the objects’ distances.

Furthermore, Deisenroth et al. [DFR15] use a low-cost robotic manipulator and show
that their method can compensate for actuator noise, Carrera et al. [Car+12] find that

2End to end means that a direct mapping from sensor data to actuator commands is learned.

10

1.2. Behavior Learning

learning offers the adaptability and robustness that is required to solve their problem of
turning a valve, Kober et al. [KMP08] learn a coupling of perception and action to handle
perturbations of trajectories, and Gullapalli et al. [GFB94] learn peg-in-a-hole insertion
with sensor noise in position encoders and in a wrist force sensor and demonstrate that
reinforcement learning can be used to generate robust insertion behavior.

Oßwald et al. [OHB10] report that execution of motion commands is noisy on their
humanoid robot because of backlash in joints and foot slippage. This results in motion
blur and makes pose estimation more difficult. Nevertheless, they are able to learn a
high-level navigation behavior that reduces pose estimation uncertainty that arises from
the noise.

Johns et al. [JLD16] consider the problem of grasp pose prediction and write:

issuing commands to align a robot gripper with that precise pose is highly
challenging in practice, due to the uncertainty in gripper pose which can arise
from noisy measurements from joint encoders, deformation of kinematic links,
and inaccurate calibration between the camera and the robot. [JLD16]

They develop a learning method that explicitly addresses these uncertainties.

1.2.4.2. Dealing with Inaccurate or Non-Existing Models

When there is no model of the robot or the world or existing models are too inaccurate,
machine learning is often able to compensate for that. This has been shown in the context
of dynamic behaviors. It is hard to model dynamics correctly but it is often not required.
For example, Mülling et al. [Mül+13] use state estimation to predict ball trajectories in
table tennis but neglected the spin of the ball. Similarly, Parisi et al. [Par+15] use a
simplified model of the forward dynamics of a robotic arm with springs and the learned
behavior was able to work with the simplified model. Furthermore, Kormushev et al.
[Kor+11b] solve the problem of energy minimization in a walking behavior that is used
with a robot that has springs in its legs. They report that it is nearly impossible to solve
the problem analytically “due to the difficulty in modeling accurately the properties of
the springs, the dynamics of the whole robot and various nonlinearities, such as stiction.”

In general, soft bodies and soft-body dynamics are difficult to model, which motivates
Colomé and Torras [CT18] to use machine learning for the task of folding a polo shirt.
Moreover, Englert and Toussaint [ET18] write that a

main issue is that the external degrees of freedom can only be manipulated
through contacts, which are difficult to plan since a precise and detailed
physical interaction model is often not available. This issue motivates the
use of learning methods for manipulation skills [. . .]. [ET18]

1.2.4.3. Learning Can Be Better than Hand-Crafted Solutions

Kohl and Stone [KS04], Kwok and Fox [KF04], Kober et al. [KMP08], and Parisi et al.
[Par+15] compared machine learning and hand-crafted approaches. These works show

11

Chapter 1. Introduction to Robot Behavior Learning

that learning is able to yield better behaviors than model-based or hand-tuned solutions,
although these results have to be read carefully because they are subject to publication
bias. There are only a few publications in which machine learning for robotic behaviors
and another method are compared with the result that machine learning performs worse.
For example, Bargsten et al. [BGK16] compare machine learning with dynamic model
identification to learn a model of inverse dynamics with the result that the machine
learning method is worse because it does not generalize well. Although it has to be noted
that the dynamic model identification is also a data-driven method with incorporated
physical prior knowledge.

1.2.4.4. Learning Behaviors is Easier than Other Approaches

It is often easier to specify the problem than to specify the solution. A reward for re-
inforcement learning, for example, can encode the problem specification. Thus, learning
approaches are often easier to implement because they are not problem-specific. Exam-
ples of problems where it is easy to define the reward are: walking as fast or straight
as possible, jumping as far as possible, throwing as close to a target as possible, or
grasping because we could apply random perturbations after the grasp and measure if
the gripper still holds the object. While walk as fast as possible alone might not be
a sufficient reward function, additional components of the reward function are usually
intuitive and part of the problem specification; we can penalize behaviors that let the
robot fall down or exert high forces on parts of the robot. Kormushev et al. [KCC10b]
made an observation that supports this point. They found that the solution to the
pancake flipping problem that has been discovered by learning contains an unexpected
compliant catching behavior at the end of the movement, which prevents the pancake
from bouncing off the pan. They conclude “such undesigned discoveries made by the RL
[reinforcement learning] algorithm highlight its important role for achieving adaptable
and flexible robots”. Imitation learning is another method that is particularly easy to use
from an end users perspective. It enables users to teach robots new behaviors without
requiring expert knowledge or programming skills [ACC14]. We do not want to deny that
tuning hyperparameters of a machine learning algorithm is a complex task and requires
expert knowledge, but Parisi et al. [Par+15] found that tuning hyperparameters can be
less time intensive than building a mathematical model for a given task. Amor et al.
[Amo+14] justify the use of machine learning in the context of human-robot interaction:
“programming robots for such interaction scenarios is notoriously hard, as it is difficult
to foresee many possible actions and responses of the human counterpart”. Matsubara
et al. [Mat+05] learn a walking behavior and point out the drawback of classical, model-
based approaches. These require precise modeling of the dynamics of the robot and the
environment. Fidelman and Stone [FS04] write that their paper

is concerned with enabling a robot to learn high-level goal-oriented behaviors.
Coding these behaviors by hand can be time-consuming, and it often leads to
brittle solutions that need to be revised whenever the environment changes
or the low-level skills that comprise the behavior are refined. [FS04]

12

1.2. Behavior Learning

Levine et al. [Lev+18] assume that “incorporating complex sensory inputs such as vi-
sion directly into a feedback controller is exceedingly challenging” and show with their
approach that learning complex emergent behavior can be done without much prior
knowledge.

Considering the long-term perspectives of robotics and artificial intelligence, the fol-
lowing works are relevant. Cully et al. [Cul+15] tackle online adaptation to hardware
defects, similar to how injuries are compensated by animals’ behavior. They found:

while animals can quickly adapt to a wide variety of injuries, current robots
cannot ’think outside the box’ to find a compensatory behavior when dam-
aged: they are limited to their pre-specified self-sensing abilities, can diagnose
only anticipated failure modes, and require a pre-programmed contingency
plan for every type of potential damage, an impracticality for complex robots.
[Cul+15]

Kirchner [Kir97] considers the problem of an autonomous robot that adapts its behavior
online and assumes that robots acting in the real world will encounter similarly unfore-
seeable situations, which makes learning a necessity.

1.2.4.5. Simple, Sufficient Heuristics

Before we elaborate on the last point, we will draw an analogy to behaviors of biological
systems. Many behavior learning algorithms do not guarantee optimality. Hence, we
consider learned behaviors to be heuristics, which are often computationally efficient.
Nonetheless, they are not necessarily second-best strategies. In real world situations,
where an agent is embodied in a physical system with noisy sensors and actuators that
result in uncertainty, heuristics often yield good behaviors. An example for heuristic
behavior is the gaze heuristic that is used to catch a ball that is high up in the air: “Fix
your gaze on the ball, start running, and adjust your running speed so that the angle of
gaze remains constant.” [GB09] The agent will be at the position where the ball comes
down. Other variables can be ignored, for example, distance, velocity, and spin of the
ball, air resistance, and speed and direction of the wind. Gigerenzer [Gig08] explains
why heuristics are useful in the case of human behavior, but these arguments also apply
to robotics. An optimal solution to a real-world problem is often computationally in-
tractable, for example, NP-hard3 or so ill-defined that we do not know exactly what we
should optimize for. In addition, real-world problems demand for robustness of behav-
iors. More information and computation is not always better according to Gigerenzer
[Gig08]. Reasoning often results in worse behavior because of model errors. Robust-
ness sometimes even requires to ignore or forget information. The following papers from
the robotics community support these statements. Berg et al. [Ber+10] consider the
problem of cutting, which would be hard to model completely but has simple solutions.
Benbrahim and Franklin [BF97] suggest: “The fact that walking is most of the time

3NP means nondeterministic polynomial time; NP-hard for our purpose means that the optimum solu-
tion usually cannot be determined practically.

13

Chapter 1. Introduction to Robot Behavior Learning

done unconsciously suggests that maybe it does not require constant heavy computing
in normal walking conditions.” Kuindersma et al. [KGB11] learn balancing behaviors
with arm motions and point out: “This general problem also has several attributes that
make it interesting from a machine learning perspective: expensive evaluations, non-
linearity, stochasticity, and high-dimensionality. In our experiments, a low-dimensional
policy space was identified”.

1.2.4.6. A Perspective from 1995

More than two decades ago, Thrun and Mitchell [TM95] already tried to answer when
behaviors should be learned. They distinguish between model-based approaches (with a
model of the robot and the world) and learning. In a way we can consider every approach
that does not use machine learning to be model-based because it either uses an explicit
model (for example, planning, reasoning, or optimal control) or an implicit model (for
example, behavior definitions with finite state machines or hard-coded motions). Learned
behaviors also build models but learned models directly encode real experience. Thrun
and Mitchell [TM95] identify four bottlenecks of model-based methods. (1) There is
a knowledge bottleneck : knowledge has to be provided by a human. While this is not
totally accurate anymore because robots are, for example, able to build detailed maps of
their environment on their own, this is still an issue because a programmer has to define
how to interpret the data: what is rigid and what is soft, which objects are movable
and which are fixed? (2) There is an engineering bottleneck : it requires a lot of time
to implement and generate these explicit models. For example, realistic modeling and
physics simulation of soft bodies, divisible bodies, deformable objects, fluids, or granular
media are still difficult. (3) There is a tractability bottleneck : many realistic problems
are computationally complex or even intractable which results in slow responses. For
example, Kuindersma et al. [Kui+16] report times of 1.5 or 10 minutes to plan simple
jumping motions. (4) There is a precision bottleneck : the robot must be able to execute
plans accurately enough. This is still an issue and is becoming more relevant with flexible
and compliant robots.

While all of the mentioned points are still valid, some of them also apply to state-of-
the-art machine learning. The knowledge bottleneck is an issue if pre-structured poli-
cies or models are used, for example, dynamical movement primitives [Ijs+13]. The
tractability bottleneck has a counterpart in machine learning: a lot of experience might
be required. As we have seen, simple heuristics are often sufficient, which means that
neither pre-structuring or restricting the policies or models necessarily results in bad per-
formance, nor will learning require much data. The precision bottleneck is related to the
simulation-reality gap [JHH95] that is a problem if behaviors are learned in simulation
and transferred to real systems (Kwok and Fox [KF04] report this problem).

1.2.5. An Analogy: Shifting from Deliberative to Reactive Behaviors

Human behavior has been analyzed from many different perspectives and one that is
relevant for this thesis is the following:

14

1.2. Behavior Learning

Conscious thinking takes time and mental resources. Well-learned skills by-
pass the need for conscious oversight and control: conscious control is only
required for initial learning and for dealing with unexpected situations. Con-
tinual practice automates the action cycle, minimizing the amount of con-
scious thinking and problem-solving required to act. Most expert, skilled be-
havior works this way, whether it is playing tennis or a musical instrument,
or doing mathematics and science. Experts minimize the need for conscious
reasoning. [Nor13, pages 100–101]

Skilled human behavior is trained and repeated often. We do not waste many computa-
tional resources and are able to execute it fast and precisely. In other words

motor learning matters because it allows you to act while directing your
attention and intellect toward other matters. Imagine that you needed to
attend to all of the routine aspects of your reaching or pointing movements.
Motor learning provides you with freedom from such a life. [SW05, page 2]

Exactly the same statement could be made for robotic behaviors. Learning individual
skills also simplifies reasoning and planning because planning can take place purely on a
high level and solve the problem of combining individual skills.

An argument in favor of learning robotic behaviors is this analogy to well-learned
human behavior. As we have seen, learned behaviors are mostly reactive behaviors or
heuristics. This is the precise opposite of the useful combination of mapping, state
estimation, and planning which we categorize as deliberative behavior. While state esti-
mation and planning works without previous interaction with the environment, learned
behaviors can be faster and can have a higher performance if enough data are available
or trials are allowed. While deliberative behavior can be a safe first solution, it can be
replaced by learned and reactive behaviors. This is actually similar to what humans do.

In summary, there is an analogy between humans and robots: learned behavior can
perform better while requiring less computational resources in comparison to high-level
reasoning in certain problem domains.

1.2.6. When Should Behaviors Not Be Learned?

Imagine you are a robot and you are in a critical situation that you have never seen
before. Dismukes et al. [DGK15] have an advice for you: “identify and analyze decision
options” and “step back mentally from the moment-to-moment demands [. . .] to establish
a high-level [. . .] mental model that guides actions”. Oh, you learned all of your behaviors
end to end and you do not know how to build a high-level mental model? Tough luck!

Not everything should be learned. Learning in robotics often aims at achieving the
quality of human behavior that cannot be reached by other approaches. Humans are
much better than robots at many tasks that require interpreting complex sensory data,
involve noise and uncertainty, or fast and dynamic behavior. They are the best examples
of a learning, physical agent that we know so far, but it might be hard to achieve better
results than a human if we try to use the same design principles for robots. Humans

15

Chapter 1. Introduction to Robot Behavior Learning

make errors all the time and the frequency of errors can even increase under external
factors such as stress [DGK15]. While we do not think that robots are prone to stress,
we think that in learned robotic behaviors often unpredictable failures might occur. A
robot might encounter a situation that does not occur in the training set (distributional
shift, see Amodei et al. [Amo+16]) or the agent learns continuously which means that it
also forgets. Therefore, sometimes it makes sense to rely on logical reasoning and model-
based approaches. Ironically, Dismukes et al. [DGK15] propose the same for humans to
reduce errors under stress (it is the advice that we quoted in the previous paragraph).
Humans, however, are weaker at strict logical reasoning and planning.

If a precise model of the world is available, planning and optimal control often generate
new behaviors faster and do not require physical interaction with the real world before
they provide a solution. For instance, collision avoidance based on distance sensors and
planning or reactive behaviors can be close to perfect so that it is applicable in industrial
scenarios [Gea+17]. If collision avoidance is learned, there is no guarantee for safety.
Particularly, there will be no safe collision avoidance during the learning phase, in which
imperfect behaviors will be explored on the real system. Tassa et al. [TET12a] show
that, even if the model is not accurate, model predictive control (MPC) with a finite
horizon can be used to generate intelligent and robust get-up and balancing behaviors.
It has to be noted though, that optimal control and reinforcement learning are related
[SBW92]. In this thesis we make the distinction between reinforcement learning that
needs experience and optimal control that needs a model, although machine learning
and optimal control can be combined [Lev+16; Eri+18].

Learning systems are not good at repetitive tasks and tasks that demand for high
precision, for example, tasks that have to be executed in a factory. If the same car has
to be produced several thousand times in precisely the same way, it is worth the effort
to let a human design the process step by step. In a lot of situations it is even better
to build specialized machines instead of using robots. Robots and behavior learning are
only required if the system encounters changing requirements or environments.

Coordination of behaviors is a difficult task for machine learning at the moment.
Whole-body control [SK06] is quite successful in this domain. It allows to prioritize
tasks and solves everything online in a high frequency on the system. If, for example,
an existing walking and object manipulation behavior should be combined so that the
robot keeps its balance, whole-body control is the method of choice. Whole-body control
is effective because it uses domain-specific knowledge: the Jacobian of the robot, which
contains information about a kinematic chain. In order to exhibit similar behavior, a
learned behavior would implicitly have to approximate the Jacobian. Configuring whole-
body control, however, is challenging. Weighting and prioritizing subtasks such that the
result “solves the task” is a difficult, manual task.

Perception for dynamic problems is challenging at the moment. It can be learned for
static behaviors such as grasping [Lev+18] or visual servoing [Lev+16] but it is nearly
impossible at the moment to learn a catching behavior for a ball end to end because the
learned model has to solve difficult perception, tracking, and prediction problems while
it must respond quickly. Birbach et al. [BFB11] impressively show how computer vision
and state estimation without machine learning can be used to track ball trajectories with

16

1.3. Limitations of Behavior Learning

an error of 1.5 cm in the predicted catch point. The perception takes about 25 ms and
tracking about 10 ms per step. A ball catch rate of 80 % has been reached on a humanoid.

Learned behavior can show emergent properties. While this is sometimes good (for
example, in the pancake flipping task [KCC10b]), it can also be disastrous. For example,
in reinforcement learning or similar disciplines learning algorithms often exploit ill-posed
problem definitions. This is called reward hacking [Amo+16, pages 7–11] and it is not
necessarily immediately visible. This problem can be particularly challenging if the
behavior should be used in a variety of different contexts and environments.

Interestingly, playing soccer is an exceptionally complex high-level behavior that robots
are able to perform today without learning. It is often not even solved by methods that
fall into the category of artificial intelligence. Hand-crafted behavior is the state of
the art for about two decades. Röfer [Röf18] gives a reason for that: “In the domain
of RoboCup, real-time requirements and limited computational resources often prevent
the use of planning-based approaches”. Between 2009 and 2017 three distinct teams
won the RoboCup Standard Platform League (SPL), which is carried out every year:
B-Human, UT Austin Villa, and rUNSWift. All of them used fixed behaviors. Few
background information about the behaviors used by UT Austin Villa is available but the
report accompanying their code release [Bar+13] suggests that behavior is hand-crafted.
rUNSWift’s behavior is hand-crafted and written in Python [Ash+15]. B-Human used
XABSL [LRJ06] and uses CABSL [Röf18] to describe behaviors. Both languages are used
to define hierarchical finite state machines for the robots’ behavior. Only in 2018 a team
using a dynamic strategy, Nao-Team HTWK, won the RoboCup SPL. They represented
the problem of positioning players that are not close to the ball as an optimization
problem and solve it [Mew14]. That, however, is only a part of the whole soccer behavior.

1.3. Limitations of Behavior Learning

1.3.1. Limited Versatility of Learned Skills

The works on bipedal walking are particularly interesting, since they allow a direct com-
parison of the application on real robots and the application in simulation and computer
graphics. Peng et al. [Pen+17] learned bipedal walking in simulation on two levels: a
low-level walking behavior and a high-level behavior that generates the walking direction.
The high-level behavior incorporates information about the surrounding terrain and has
been used to follow trails, dribble a soccer ball towards a target, and navigate through
static and dynamic obstacles. The low-level behavior only knows about the internal
state of the walker and the desired goal of the high-level behavior and was trained to be
robust against disturbances and terrain variations. Furthermore, Peng et al. [Pen+18]
demonstrate how imitation and reinforcement learning can be used to generate realistic
acrobatic movements: performing a cartwheel, backflip, frontflip, roll, vault, dancing,
kicking, punching, and standing up. Those skills are then combined to a complex se-
quence of behaviors. In comparison, learned biped walking behaviors on real robots are
only tested in controlled environments in the lab [BF97; Mat+05; GPW06; Kor+11b;
MB15].

17

Chapter 1. Introduction to Robot Behavior Learning

Walking is just one example of how skills that have been learned on real robots are
often not versatile. Another example is grasping: the currently most impressive work,
published by Levine et al. [Lev+18], is applicable to a large variety of objects but only if
the camera is in a certain angle to the objects and only vertical pinch grasps have been
considered. Other behaviors, for example, tee-ball [PVS05; PS08b], pancake flipping
[KCC10b], plugging in a power plug [Che+17a], flipping a light switch [Buc+11], do not
even include the position of the manipulated object in their control loop. Many of the
learned behaviors are hence still only applicable under controlled lab conditions.

1.3.2. Limited Variety of Considered Problems

In natural learning agents (also known as animals), there is evidence that the same
learning mechanisms can be evolved and used to solve a variety of tasks:

A major role of the early vertebrate CNS [central nervous system] involved
the guidance of swimming based on receptors that accumulated information
from a relatively long distance, mainly those for vision and olfaction. The
original vertebrate motor system later adapted into the one that controls your
reaching and pointing movements. [SW05, page 9]

In contrast, often the same simple problems with only minor variations are tackled
again and again in behavior learning for robots with a large variety of different learn-
ing algorithms. Learning efforts often focus on grasping, walking, and batting. These
problems are not solved yet (“Robot grasping is far from a solved problem.” [JLD16])
and solving the exact same problem again is good for benchmarking. Yet, the variety
of problems solved by learning is low. We should also try to solve a larger variety of
problems to discover and tackle new challenges in behavior learning and to improve our
set of tools. Examples are given in the outlook.

Most of the considered problems are only low-level motor skills. While this seems to
be too simple at first, there is also a justification for it. Shadmehr and Wise [SW05,
page 1] assume that motor learning, that is, learning of low-level behavior, uses the same
basic mechanisms as higher forms of intelligence, for example, language and abstract
reasoning. Nevertheless, the goal should be to demonstrate that learning is possible and
useful at all levels of behavior and to use its full potential.

Given the current developments in behavior learning and computer vision, we expect
that the next big steps will be made by deep learning (see Chapter 2) and by solving more
complex perception problems. We emphasize, however, that for complex behaviors not
only complex perception but also complex control is required. We should strive towards
pushing the limits of robots’ kinematic complexity as well as motion complexity.

1.3.3. Reasons for Current Limitations

What hinders robots from learning the same skills as humans with a similar performance
these days? The main reasons are algorithmic, computational, and hardware problems.

Not many fields of artificial intelligence are as advanced as computer vision based on
deep learning. In specific benchmarks computer vision is better than humans although

18

1.3. Limitations of Behavior Learning

it is not as robust as a human, which has been demonstrated by adversarial examples
[Sze+14] and overgeneralization [Jac+19]. In addition, semantic segmentation, tracking
objects in videos, object detection with a large amount of classes are examples of active
research topics in which humans are much better. Computer vision is one example of a
domain which behavior learning builds upon. When we learn grasping [Lev+18] or visual
servoing [Lev+16] end to end, we make use of the results from computer vision research.
While we do not reach human-level performance in these areas, we can hardly surpass
it in real-world behavior learning problems. Also reinforcement learning algorithms are
not yet at the point where they are sample-efficient enough to learn complex behaviors
from a reasonable amount of data. An impressive recent example is from OpenAI et al.
[Ope+20], who learned in-hand manipulation to rotate a cube into any desired orien-
tation. 100 years of experience were collected during training. Still the robustness of
the skill is not comparable to an average human: on average 26.4 consecutive rotations
succeed when 50 is the maximum length of an experiment. No human spent 100 years
on learning exclusively in-hand manipulation and most of us reach a much better level
of performance, although part of this success can be attributed to evolution.

Many state-of-the-art algorithms in machine learning have also high demands on pro-
cessing power during prediction phase [Sil+16; Lev+18; Ope+20] which makes them slow
in reaction time, maybe not even suitable for autonomous systems that have to budget
with energy, and training on a robotic system might be infeasible.

Probably the main reason why not many researchers learn complex skills for robots
in reality is that robots wear and break easily, which makes application of algorithms
with low sample efficiency and unsafe exploration infeasible. In contrast, humans collect
much more data, fail and fall all the time, and gain lots of negative experiences. There is
probably not a single professional soccer match that has been played over the full length,
in which no player is falling down unexpectedly, and yet most players are not seriously
injured. Humans are colliding all the time with objects, when they move things around,
for example, while eating at an overly full dinner table. The difference is that humans are
flexible, soft, and lightweight. As already mentioned, they have about 244 DOF and 630
skeletal muscles [ZP12] and most of their body is soft, while a complex robot today has
61 DOF and consists mostly of stiff and rigid parts [Bar+16] that are at the same time
fragile. Thus, we either develop more sample-efficient algorithms or we can build more
flexible and robust robots. For example, Haddadin et al. [Had+09] propose to use elastic
joints in the domain of robot soccer, which make robots more robust, collaboration or
competition with humans safer, and they would enable higher maximum joint speeds.
Controlling elastic joints is more complex though. In addition, humans have many sensors
(tactile, acoustic, vestibular) that are used to recognize unexpected events and they can
react accordingly: they learned to fall or to stop moving the arm before they pull down
the bottle from the dining table.

While we do not have all these safety mechanisms and robust hardware yet, a good
approach to behavior learning for robots is to use as few interactions with the environment
as possible and to integrate prior knowledge, but we should do so by relying on intuitive
human knowledge and universal principles such as knowledge about robot kinematics
and physics rather than expert knowledge in machine learning.

19

Chapter 1. Introduction to Robot Behavior Learning

1.4. Objectives

We now have an idea of what behaviors are, what behavior learning does, what it can
do for robots, and what it cannot do. We also know about the current limitations of
behavior learning. This leads us to the definition of the goals for this thesis that tackle
the most important problems of behavior learning to make it a common tool in robotics:

1. Reduce required expert knowledge to learn new behaviors. Behavior learning al-
gorithms should be easy to apply to a variety of systems and tasks without expert
knowledge about the underlying algorithms.

2. Reduce the number of episodes required to learn non-trivial behaviors directly
on real robots to a few hundred (100–300). Behavior learning should be sample-
efficient enough to directly learn on a real robot.

3. Generalize behaviors over relevant parameters of the task. Behavior learning should
not just learn a solution to one specific situation.

4. Evaluate on a variety of different robotic systems and tasks.

Referring to the behavior classification introduced in Section 1.1.2, the scope of this
thesis is limited to low-level, active, discrete manipulation behaviors with an emphasis
on action generation. Hence, we will mostly work with robotic arms and learn static and
dynamic behaviors.

We develop algorithms with the goal to learn directly on real robots and avoid sim-
ulations; however, we will use simulations, as this is the best option to perform many
repetitions of experiments to compare algorithms and evaluate their reliability. Some-
times we will even be able to transfer learned behaviors directly from simulation to reality,
but usually there is a simulation-reality gap [JHH95]. Note that building a simulation
would often require manual work unless a robot is able to build its own simulation from
sensor measurements.

1.5. Contributions

This thesis makes the following contributions to behavior learning for robots:

• In Chapter 1 we discuss when behavior learning should be used.

• In Chapter 2 we review behavior learning for robots extensively.

• In Chapter 3 we discuss a novel procedure for an automatic mapping from human
motion to robots. This procedure includes task-agnostic global and local trajectory
optimization and task-specific refinement through policy search. We evaluate the
task-agnostic part on four simulated and one real robotic systems based on 697
movements recorded from seven subjects. Furthermore, we compare target-system
specific refinement in joint space and Cartesian space in several benchmarks of
varying difficulty.

20

1.6. Summary

• In Chapter 4 we improve the sample efficiency of contextual policy search with vari-
ous approaches: active learning, training set selection, surrogate models, and mani-
fold learning. These improvements were evaluated on several benchmark problems,
simulated robots, and real robots. We mostly consider throwing as a benchmark
but also tackle the problem of grasping. The best compromise between sample
efficiency and avoiding a hand-crafted solution is an extension of Bayesian opti-
mization in combination with manifold learning from human demonstrations.

• In Section 4.2 we develop the positive upper boundary support vector estimation
(PUBSVE), which is a new model to estimate upper boundaries of data. We use
it to implement our approach to active training set selection.

• In Section 4.5 we develop an autoencoder to generate smooth trajectories.

• In Chapter 5 we discuss a framework for imitation and reinforcement learning,
of which parts were designed and implemented in the scope of this thesis. We
evaluate it with 240 throwing motions from ten subjects. Furthermore, we present
applications to grasping and pulling a lever.

• In Chapter 6 we discuss the underlying software, which is designed to easily apply
our approaches to new problems.

The algorithms that we discuss in this thesis work particularly well if reward is sparse
and typically occurs at the end of an episode or if temporal credit assignment is diffi-
cult. Good examples of problems that can be solved well by our methods are grasping,
throwing, and pulling a lever. Counter-examples are peg-in-a-hole, obstacle avoidance,
and problems with multiple via points.

1.6. Summary

Many people have a misconception of the prevalence of machine learning for robot control.
We call machine learning for robot control behavior learning. In this chapter, we define
what a behavior is and how behaviors can be distinguished. Important questions that
we discuss are why behavior learning for real robots is difficult, when it can be useful,
and when it is not. Learned behaviors often have limited versatility and the considered
problems are limited. One of those limitations is the recent focus on perception. We also
see that there are several reasons for these limitations: algorithmic, computational, and
hardware problems. The goals of this thesis mainly address algorithmic problems.

Related Publications

[Fab+20] Alexander Fabisch, Christoph Petzoldt, Marc Otto, and Frank Kirchner.
“A Survey of Behavior Learning Applications in Robotics—State of the Art
and Perspectives”. In: International Journal of Robotics Research (2020).
Submitted.

The discussion of behavior learning in this chapter is based on Fabisch et al. [Fab+20].
The complete publication is a joint work with the co-authors, but I contributed the anal-
ysis included in this thesis (Chapters 1, 2, and 8). Exceptions are marked accordingly.

21

Chapter 1. Introduction to Robot Behavior Learning

1.7. Thesis Structure

In Chapter 2 State of the Art we will discuss behavior learning problems and algorithms
to select a category of algorithms that will be used throughout this thesis. The main con-
tributions of this thesis to the field are presented in Chapters 3 Imitation with Automatic
Embodiment Mapping and 4 Sample-Efficient Contextual Policy Search. These will be
embedded in a framework in Chapter 5 A Conceptual Framework for Automatic Robot
Behavior Learning. The corresponding software BOLeRo will be presented in Chap-
ter 6 BOLeRo: Behavior Optimization and Learning for Robots. The appendices contain
complementary information. Appendix C Overview of Mathematical Notation and the
glossary at the end of the document might be useful in the beginning.

Most chapters of this thesis have been published before. The corresponding publica-
tions are specified in marginal notes and at the end of each chapter the contributions of
this thesis are discussed in detail.

22

Figure 2.2.: Mind map of behavior learning applications ordered by domain. Some behav-
iors are assigned to multiple domains and most of the elementary behaviors
could also belong to multiple domains.

2.1. Robotic Behavior Learning Problems

Figure 2.3.: Categorization of manipulation behaviors. Manipulation behaviors are cate-
gorized in two dimensions: softness and movability of the manipulated object
and dynamics of the behavior. Blue letters indicate the corresponding sub-
sections in Appendix A.1 Manipulation Behaviors.

a complex robotic system operating in the real world. (2) They were integrated in
kinematically or sensorially complex robots, which includes humanoid robots or parts of
humanoid robots such as legged robots or robotic arms. We only consider applications
for unmanned aerial vehicles, autonomous underwater vehicles, or wheeled robots if their
behaviors are relevant for humanoid robots. That excludes some recent work on deep
reinforcement learning and early works that apply machine learning to robotic control
such as Mahadevan and Connell [MC92], who learn a behavior to find and push a box
with a wheeled robot. We also do not discuss behaviors that have only been demonstrated
in simulation because of the simulation-reality gap [JHH95].

2.1.1. Manipulation Behaviors

Figure 2.3 shows the categorization of manipulation behaviors. Manipulation behaviors
change the state of the robot’s environment, hence, we categorized behaviors by the
softness of the manipulated object and the dynamics of the behavior. This is similar to
how Sanchez et al. [San+18] structured their survey about manipulation and sensing of
deformable objects. We found this categorization to be useful to organize publications.
It might not be easily applicable in all cases, however. For example, in case of a robot

25

Chapter 2. State of the Art

Figure 2.4.: Hierarchy of behaviors with focus on locomotion. Inspired by Arkin [Ark98,
page 49]. For different levels of abstractions exemplary behaviors are pre-
sented. Concrete movements of the body, a single extremity or joint are
found on lower levels in this hierarchy. While machine learning may be used
on all levels and intersections, this work focuses on behavior learning above
the level of joint control. Blue letters indicate subsections in Appendix A.2
Locomotion Behaviors. (Illustrated by Marc Otto in Fabisch et al. [Fab+20].)

that moves a catheter [Tib+14], we would have to answer the question if the catheter is
the manipulated object or part of the robot. If the catheter is part of the robot, what
would be the manipulated object?

2.1.2. Locomotion Behaviors

The design of locomotion behaviors is a challenge that increases with the kinematic
complexity of the robot, its inherent stability, and the terrain to be traversed. Machine
learning techniques can be used to provide solutions to locomotion problems, even though
fundamental principles of robot locomotion are not yet fully understood [Agu+16].

Locomotion problems can be organized hierarchically based on the controlled enti-
ties (single or multiple legs, joints of the robot body) as shown in Figure 2.4. On the

26

2.2. An Overview of Behavior Learning Approaches

lowest level, a proportional-integral-derivative (PID) controller may generate actuator
commands to control the joints of a robot leg or the motors of its wheels to reach or
maintain a certain position, velocity, or torque. By variation of its parameters, a joint
controller can achieve useful reactive movements without knowledge of the kinematic
structure. As an example, each joint can independently compensate for internal friction
or a certain reflex can be triggered locally at joint level [Kue+14]. We exclude the level
of joint control, as it is only modifying a given behavior generated on higher levels. Sin-
gle leg behaviors, such as the swing movement, can be defined in the Cartesian space
of the end-effector and thus require inverse kinematics and / or dynamics transferring
the behavior’s output into joint space. Behaviors that command the full body such as
balancing or walking often use other behaviors that only control single legs. High-level
locomotion behaviors concatenate, combine, and steer full-body behaviors. For exam-
ple, navigation behavior for a humanoid robot controls the goal of a walking behavior.
High-level behaviors could as well be controlled by other behaviors or overall objectives.

2.2. An Overview of Behavior Learning Approaches

There are many different approaches to behavior learning. Learning behaviors means
learning sequential decision making, which is inherently more difficult than, for instance,
supervised learning, because it violates the commonly used assumption of independent
and identically distributed data. Samples depend on previous samples in a sequence.
This often requires specialized approaches such as imitation learning or reinforcement
learning, but also supervised learning, particularly self-supervised learning, can be used
to learn behaviors. Furthermore, black-box optimization overlaps with reinforcement
learning but is an independent field that has also been used for behavior generation.

Some highlights are among all the publications that we discuss. These are marked
explicitly with this symbol on the margin, as they are relevant extensions of the repertoire
of robotic behavior learning algorithms or problems that can be solved and they are
crucial to understand the algorithmic development and technical challenges in the field.
They also give a good impression of the advantages and disadvantages of each approach.

Although behavior learning is an incredibly interesting field, applications in robotics are
often underwhelming. Although good results have already been presented in the nineties,
progress in the last decades has been mostly made in controlled learning problems or with
a huge amount of data and computational power—in controlled environments. A vast
amount of algorithmic ideas has been explored. Nevertheless, we are still struggling to
tune brittle algorithms that have many hyperparameters and do not hold up to their
promises. Here, we will shed light on this field and its ideas.1

In the behavior learning literature we often find similar concepts but different math-
ematical notation. We now define the notation that we will use throughout this thesis.
When we talk about behavior learning we mean that we want to learn a policy c of an
agent. Agent is a synonym for robot for the scope of this thesis. The agent uses c to

1Some algorithms will be discussed in Appendix B because they are not directly relevant to this thesis.

27

Chapter 2. State of the Art

Figure 2.5.: Kinesthetic teaching for the peg-in-a-hole problem with a UR5 robot arm.

derive actions that it takes in a specific state. The agent observes the state directly or
indirectly. We will use the variable x ∈ X for state and the variable u ∈ U for action un-
like, for example, Sutton and Barto [SB18]. Hence, a policy can, for instance, be defined
as a function c(x) = u (deterministic policy) or a distribution c(x |u) (stochastic policy).
We will also see policies that define state space trajectories by a function c(xC) = xC+1 for
discrete time steps C ∈ N. These require low-level controllers that execute state transi-
tions, that is, compute the action u from xC and xC+1. Appendix C gives a more detailed
overview of the mathematical notation.

2.2.1. Imitation Learning

Supervised learning can be used to learn the perception part of a behavior, the action
part, or both. If actions are learned supervised, this is called imitation learning or
programming by demonstration. Surveys of imitation learning have been written by
Billard et al. [Bil+08], Argall et al. [Arg+09], and Osa et al. [Osa+18]. We will summarize
aspects that are most relevant to this thesis.

2.2.1.1. Data Collection for Imitation Learning

If we want to apply imitation learning we have to collect a dataset that contains pairs of
observed states or observed states and actions. This is mostly done by observing how a
human operates a robot.

An operator can control a robot by kinesthetic teaching, which means the robot is in
a compliant control mode and can be moved easily as illustrated in Figure 2.5. This
requires a good model of the robot’s dynamics and can not be done with all types of
robots. Hence, kinesthetic teaching is mostly done with robotic arms. It is sometimes not

28

2.2. An Overview of Behavior Learning Approaches

easy, however, to move the robot appropriately or even impossible to reach the precision
and speed that the robot and the human would be capable of, if the dynamic model is
not well calibrated, which even happens with commercial robot arms such as Universal
Robots’ UR5 or the Kuka iiwa.

An alternative to this approach is teleoperation of a robot. This can be assisted
by human-computer interfaces. Zhang et al. [Zha+18a] present a system which uses a
consumer-grade virtual reality hardware to let a human operate a PR2 robot in a virtual
environment constructed from the perspective of the robot. They use this to teach
manipulation behaviors. Similar work on a real system has been presented by Rakita
et al. [RMG17] who use a 6-DOF controller for the pose of a UR5 robot arm.

The most natural way for a human to demonstrate behaviors is to perform the behavior
themself without directly controlling a real or virtual robot. This can be tracked with
a motion capture system and then be transferred to a robot. It is the best method
to demonstrate challenging tasks such as throwing, which requires high acceleration,
velocity, and smoothness, or assembly tasks, which require high precision and tactile
feedback. Motion capture, however, poses the correspondence problem since the human
does not directly control and observe the robotic target system.

2.2.1.2. Correspondence Problem

Demonstrated actions must be executable by the target system to apply imitation learn-
ing. Is is not possible to directly transfer joint angles from a human to a robot arm
because it has different joints, degrees of freedom, and link lengths. The correspondence
problem [ND02] consists of two subproblems [Arg+09]: finding the record mapping, which
maps observations to a sequence of states and / or actions, and finding the embodiment
mapping, which maps a recorded sequence of executable actions to the target system.

We have to find the record mapping 6' : U) → � from some not directly observable
space U) in which the teacher performs the demonstration (for example, joint angles of
a human, muscle activity, applied torque) to a corresponding observation space �.

We have to find the embodiment mapping 6� : � → U! from the observations 3 ∈ �
to a corresponding action u ∈ U! that the learner has to perform to achieve a similar
result. It is specific for the task and the target system.

Deriving the embodiment mapping, a processes that is also called motion retargeting,
is a well-known problem in the computer graphics and animation community [Gle98].
In practice it is often solved manually and even individually for each character or even
movement. Recently, Aberman et al. [Abe+19] present an approach based on neural
networks for automatic 2D retargeting of human motion from images to other human-like
characters. In the context of imitation learning for robots retargeting has been explored
by Pollard et al. [Pol+02] and Michieletto et al. [MCM13] with a fixed mapping.

29

Chapter 2. State of the Art

2.2.1.3. Imitation Learning for General Function Approximators

A lot of different policy representations have been investigated in robotics, from general
function approximators (for instance, neural networks and Gaussian process regression)
to more tailored representations like movement primitives and splines [KBP13].

Let us assume that we have an agent that directly or indirectly perceives the state x

and has to predict an action u. In imitation learning we assume that we have samples of
pairs (x, u) provided by an expert. The problem of inferring a policy can be a standard
supervised learning problem. In robotics we are mostly interested in u ∈ R=, = ∈ N
because the variables that we try to control (forces, torques, joint angles, Cartesian poses)
are continuous. Hence, we do regression and we can use general function approximators
to solve the problem. Typical examples are linear models or neural networks.

But consider that if we want to learn the behavior of an agent, we are mostly concerned
with sequential decision making problems. Not just a single action but a sequence of
actions has to be learned. In non-sequential regression problems it is often acceptable
to have small errors or even a small amount of large errors. In imitation learning these
errors add up. If we ignore the probabilistic nature of the state transitions for a moment,
these errors will already lead the agent to states that might be different from the states
that it saw during training. Standard regression algorithms assume independent and
identically distributed training data. This is not the case in imitation learning, since
we observe sequences of actions, in which each sample has an effect on the following
samples. We can either make sure that the training data contain almost all states in
which the agent might be or we need a specific training scheme. The state of the art is
dataset aggregation (DAgger) that has been proposed by Ross et al. [RGB11]. DAgger
uses an iterative data collection procedure: after training on an initial dataset provided
by a teacher, the obtained behavior is executed and a teacher is again asked to give
correct actions for observed states that have not been seen before. A new behavior is
trained on the augmented dataset. This can be done for several iterations. A real-world
application of DAgger has been presented by Ross et al. [Ros+13], who learn reactive
obstacle avoidance in a forest for an autonomous aerial vehicle (a drone) from human
control commands based on camera images. They note that although there exist devices
for teleoperation it is still difficult to collect the correct control commands from a teacher.
Human teachers could not correct the drone’s actions in real time, hence, they replayed
recorded data offline at a slower speed. Teachers also needed additional visual feedback
to estimate the effect of their corrections. Crashing the drone during training had to be
avoided by introducing an emergency mode in which the human operator takes complete
control of the drone. A linear policy with predefined features of the camera images
generates actions in this application.

For complex problems often large datasets are required. Scherzinger et al. [SRD19]
learn force-based insertion with a robotic manipulator from approximately 1000 demon-
strations. For a proof of concept of end-to-end imitation learning for autonomous driving
from camera images to steering commands Bojarski et al. [Boj+16] record about 72 hours
of training data; however, for more robust driving Xu et al. [Xu+17] learn from a dataset
of 10,000 hours of driving.

30

2.2. An Overview of Behavior Learning Approaches

2.2.1.4. Dynamical Movement Primitives

It is possible to avoid the instability of general function approximators with respect to
distribution shifts by using tailored policy representations. In robotics we often use
policies with guarantees for the produced trajectories. Popular examples are Dynamical
Movement Primitives (DMPs) [Ijs+13; Pas+09] that represent state space trajectories.

DMPs are suited for imitation and reinforcement learning, and encode arbitrarily sha-
peable, goal-directed trajectories. Their advantages in comparison to other policies are:

1. They are stable trajectory representations. Slight errors in execution of the trajec-
tory will not result in error accumulation as in general function approximators.

2. To reproduce a demonstrated movement, a one-shot learning algorithm can be used
that determines the parameters of a DMP. Hence, imitation learning with DMPs
is much simpler than it is for more general function approximators.

3. Movements can be easily adapted (even during execution). We can change the goal
of the movement and positions of obstacles that should be avoided.

There are many variations of DMPs, which have in common that (1) they have an
internal time variable (phase), which is defined by a so-called canonical system, (2) they
can be adapted by tuning the weights of a forcing term, and (3) a transformation system
generates goal-directed accelerations.

A canonical system generates the phase variable I which replaces explicit timing in
DMPs. The values of I are generated by the first order differential equation gI¤ = −UI,
where I starts from 1 and approaches 0, g is the duration of the movement primitive, U
is some constant that has to be set such that I approaches 0 sufficiently fast.

Following Pastor et al. [Pas+09], the transformation system is a spring-damper system
and generates a goal-directed motion that is controlled by a phase variable I and modified
by a forcing term 5 . Two first order differential equations

gH¤ = E

gE¤ = (6 − H)︸ ︷︷ ︸
distance to goal

−�
velocity︷︸︸︷
E − (6 − H0)︸ ︷︷ ︸

scaling

I +

learnable︷︸︸︷
5 (I)

define a transformation, where H, H¤ = E/g, and H¥ = E¤/g are position, velocity, and accel-
eration. H0 is the start and 6 is the goal of the movement. EC is an auxiliary variable.
and � are constants that have to be set for critical damping, that is � = 2

√
 must be

satisfied. Common values are � = 20, = 100.
The forcing term is a linear model of the form

5 (I) = I ·
∑
8 Φ8 (I) · F8∑
8 Φ8 (I)

with parameters w = (F1, F2, . . .)) that control the shape of the trajectory. Influence of
the forcing term decays as the phase variable approaches 0. Φ8 (I) = exp(− 38

2
(I − 28)2)

31

Chapter 2. State of the Art

Figure 2.6.: Illustration of two-dimensional DMP as a potential field. The temporal evo-
lution of a DMP is split up into 9 steps from left to right and top to bottom.
The blue dot represents the start, the green dot the goal, and the yellow dot
an obstacle. For each position in the two-dimensional space the DMP defines
an acceleration (black arrows) that is generated by superimposing the forcing
term (red arrows), the transformation system (green arrows), and obstacle
avoidance (yellow arrows). The resulting trajectory is indicated by the black
line. In the end the main influence comes from the transformation system,
which guarantees that the goal is reached.

32

2.2. An Overview of Behavior Learning Approaches

are radial basis functions with constant 38 (widths) and 28 (centers; equally spaced in
log-phase domain).

So far we only described DMPs for one-dimensional task spaces. If we want to control
multiple joints or positions in task space we will handle each dimension separately with
a DMP. Figure 2.6 illustrates a two-dimensional DMP as a potential field with several
superimposed components. For Cartesian trajectories we need to handle orientations
differently because we cannot linearly interpolate between orientation representations.
Averaging, for example, between two unit quaternions would result in a quaternion that
does not have the norm one anymore and, hence, is not a valid orientation. Ude et al.
[Ude+14] suggested a variant of DMPs that solves this problem for quaternions and
improves a previously suggested approach by Pastor et al. [Pas+09].

The weights F8 can be learned by imitation or reinforcement learning. We can guaran-
tee that the goal 6 will be reached at the end of the movement. Therefore, reinforcement
learning algorithms will only explore movements that reach the goal. If this is a necessary
condition for a good policy, the number of useless policies will be reduced.

In this thesis we often use a variant of DMPs that has been developed by Mülling et al.
[MKP11; Mül+13], which allows us to specify a velocity at the end of the movement as
a metaparameter. From a high-level perspective we can use these DMPs as policies

xC+1 = cv,w (xC , C), v = (x0, g, g¤ , g) ,

where xC is the state (position, velocity, and acceleration) at time C, w are the weights of
the forcing term and v are the following metaparameters: x0 is the initial state, g is the
final position, g¤ the desired final velocity, and g is the duration of the movement.

Note that this kind of policy defines a state space trajectory and requires a low-level
controller that generates the appropriate actions such that the state transition from xC
to xC+1 is performed.

Apart from the standard formulation of DMPs there are several variations. Matsubara
et al. [MHM10] introduce Stylistic Dynamic Movement Primitivess (SDMPs). These re-
duce the dimensionality of movement primitives learned from multiple demonstrations via
singular value decomposition to identify and represent different styles of similar motions.
SDMPs can interpolate between those styles by changing the style parameters.

Probabilistic movement primitivess (ProMPs) [Par+13] define distributions of trajec-
tories that are learned from several demonstrations. They do not have an attractor point
such as the goal in a DMP, but they can be conditioned on via points that lie within the
distribution.

The drawback of movement primitives and similar trajectory generators is that they
define state-space trajectories without directly specifying actions that ensure transition
between the states. They require controllers to generate these actions. For instance, a
joint position controller would be required if the state includes joint positions. Hence,
we cannot easily integrate rich sensory information such as images, that are not directly
controllable. Thus, movement primitives cannot continuously control based on this kind
of sensor input [Haa+18a].

33

Chapter 2. State of the Art

2.2.1.5. Other Trajectory Generators

Besides movement primitives and standard trajectory representations such as splines
there are several other trajectory generators that are sometimes used in robotics. An
example is the Stable Estimator of Dynamical Systems (SEDS) [KB11], an approach to
represent demonstrated trajectories as a time-invariant dynamical system with the goal
of the movement as attractor point. SEDS build on Gaussian mixture regression and
add several constraints that have to be fulfilled during learning. Hence, they need a
complex optimization procedure, which can be implemented for imitation learning but
complicates reinforcement learning. An advantage of SEDS over standard DMPs is that
they can encode multiple demonstrations. A similar approach has been presented by
Lemme et al. [Lem+14] for an extreme learning machine, which is a neural network of
which only the last layer is trained.

2.2.1.6. Generalizing Imitated Trajectories

The problem of learning more broadly applicable skills has been approached from different
perspectives. DMPs themselves have been designed to generalize over some metaparam-
eters such as the duration of the movement, the start position, and the final position.
Additionally, some DMP variants are able to generalize over velocities at the end of
the movement [MKP11; Mül+13]. We often want to be able to generalize over other
parameters of a task though.

Task-Parameterized Gaussian Mixture Models (TP-GMMs) learn a probabilistic rep-
resentation of multiple demonstrated trajectories with different linear task parameters
such as Cartesian transformations [Cal16]. They generalize over these task parameters
that could represent positions of objects in the environment or via points. They can
also mix between task parameters and different demonstrations. The requirements on
the task parameters are limiting, however. What if, for instance, we want to generalize
ball throwing over the target positions? TP-GMMs cannot do this because they would
require a model of the relation between the ball trajectory and the robot’s motion and
they would require this model to be linear.

Designing skills that generalize over more complex task parameters with a nonlinear,
indirect relation to the movement primitive is not straightforward. This is why various
machine learning techniques have been used to infer so-called upper-level policies. Ude
et al. [Ude+10] used a form of self-imitation to generalize the task of throwing a ball at
a desired target position. First, they generate a number of throws with different DMP
parameterizations (g, g, w, and release times of the ball) and measure the final ball
positions. Then, they use a mixture of locally weighted regression [CD88] and Gaussian
process regression [RW05] to learn mappings from the position that has been hit on the
ground to corresponding parameters that generated the throw. Thus, the problem has
been reduced to a regression problem. The same approach has been used for reaching
tasks and drumming. Kronander et al. [KKB11] propose a similar method to play mini-
golf. As underlying policy representation SEDS [KB11] has been used and another set

34

2.2. An Overview of Behavior Learning Approaches

of metaparameters is learned with Gaussian process regression and Gaussian mixture
regression. Both methods can be regarded as generalized imitation learning algorithms.

2.2.2. Black-Box Optimization

In black-box optimization we do not know the correct actions. Instead, we have an
objective function 5 ()) that we can sample and which tells us how well a given parameter
vector) ∈ Θ ⊆ R= with = ∈ N performs. We cannot compute the gradient of 5 . We
search for parameters) such that

argmin
)

5 ()).

We can apply this concept to behavior generation in robotics. To do this we have
to define a cost function that evaluates a robot’s behavior, we need a parameterized
representation of a behavior, and then we minimize the cost by changing the parameters
of the behavior. This approach is similar to policy search in reinforcement learning as we
will see in the next section. Thus, we will adopt the terminology of reinforcement learning
here, that is, we do not minimize cost but rather maximize return, the return will most
likely be stochastic in the real world, and the behavior is a parameterized policy.

Objective functions have properties that we can use to distinguish them. An objective
function is separable if we can obtain the optimum of each component of) independently
of other components [Han+08]. An objective function is ill-conditioned if steps with the
same length in different directions of the search space change the objective function
value considerably differently (typically orders of magnitude differently) [Han+08]. An
objective function is multi-modal if it has multiple local and / or global optima.

2.2.2.1. Evolution Strategy

One of the earliest concepts in this field that has been developed and is still used to-
day is Evolution Strategy (ES) [Rec71]. Recently, Salimans et al. [Sal+17] showed that
ES is still better than some state-of-the-art reinforcement learning algorithms in several
reinforcement learning benchmarks. In its simplest form, ES uses an isotropic Gaus-
sian search distribution with mean - and covariance f2O from which we can sample
parameters

) ∼ N(-, f2O)

to evaluate the objective function. We will do this # ∈ N times, but we will use only the
best samples (fewer than #) to estimate the new mean and variance of the search distri-
bution. This completes one so-called generation and will be repeated until convergence.
ES is a local search approach. It is not guaranteed that we will reach a global optimum,
although chances increase with larger # and a larger initial variance. ES only changes the
policy after each evaluation of the objective function (episode in reinforcement learning
terms) and the search distribution is only updated after # episodes.

The Cross-Entropy Method (CEM) [Rub99] is a variant of ES that estimates a full
covariance matrix and has been used for policy search [MRG03]. A state-of-the-art

35

Chapter 2. State of the Art

variant of ES is Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [HO01],
which uses a full covariance matrix to define its exploration behavior and several advanced
strategies to update the covariance matrix: (1) it maintains a separate scaling of the
covariance that is updated based on the consistency of the direction of previous update
steps, (2) it updates correlations between search space dimensions based on previous
update steps, (3) it keeps information about correlations from previous iterations, and
(4) it assigns individual weights to samples. The drawback of standard CMA-ES is that
it stores the full covariance, hence, the space complexity is quadratic in the number of
policy parameters. From time to time it also computes the Cholesky decomposition of
the covariance matrix. This is done in a way such that the computational complexity of
this operation over the whole optimization is on average quadratic per iteration, although
it is in fact an operation of cubic computational complexity. Hence, standard CMA-ES
is not the best option for a large number of parameters, that is, for more than 10,000.
Deep neural networks sometimes have even more parameters. For these cases low-rank
approximations of the covariance such as limited memory CMA-ES [Los17] could be
used. Furthermore, black-box optimization problems with a low number of parameters
are often better solved with other optimizers such as Nelder-Mead [NM65].

In optimization we can often trade function evaluation against more computational cost
on the side of the optimizer with a surrogate model. A surrogate model approximates
the objective function, that is, it represents a mapping from parameters to their expected
function value. For CMA-ES a local ranking support vector machine [LSS10] and a global
quadratic surrogate model [Han19] have been proposed.

CMA-ES uses many heuristics to update the search distribution. An alternative is Nat-
ural Evolution Strategies (NES) [Wie+14]. NES estimates the gradient of the expected
fitness under the search distribution from samples, that is,

g = ∇8E)∼c8 ()) [5 ())] = E)∼c8 ()) [5 ())∇8 ln c8 ())] (log-derivative trick)

is estimated from # samples () 8 , 5 () 8)) by

E)∼c8 ()) [5 ())∇8 ln c8 ())] ≈
1

#

#∑
8=1

5 () 8)∇8 ln c8 () 8) with) 8 ∼ c8 ,

for fixed parameters 8 of the search distribution c8, which are often mean and covariance
of a Gaussian distribution. This is called the score function estimator of the gradient
[Moh+19]. This gradient is not directly used to update the search distribution because
this might be slow or unstable. We compute the natural gradient, that is,

min
Δ8
E)∼c8+Δ8 ()) [5 ())] , subject to �KL(c8+Δ8 ‖ c8) = n,

with Δ8 = Gg and a small increment n . The constraint limits information loss measured
by the Kullback-Leibler (KL) divergence between successive search distributions. It turns
out that the matrix G that minimizes the above objective for small n can be approximated
by the inverse L−1 of the Fisher information matrix

L = E)∼c8
[
∇8 ln c8 ())∇8 ln c8 ()))

]
,

36

2.2. An Overview of Behavior Learning Approaches

which we can estimate from the same samples that we obtained to compute the gradient.
We can then update the parameters of the search distribution through

8← 8 − UL̂−1 ĝ,
with estimates of L and g and a learning rate U. This will be done until convergence.
Although NES is not better than CMA-ES, it is theoretically more sound and has in-
teresting similarities to reinforcement learning algorithms. Furthermore, Akimoto et al.
[Aki+10] show that a specific parameterization of CMA-ES follows the natural gradient.

2.2.2.2. Bayesian Optimization

Bayesian Optimization (BO) [BCd10] is an approach to optimization that fully builds
on a surrogate model, which not only predicts the expected function value but also
its uncertainty in form of a standard deviation. These can be used to define a so-
called acquisition function. A popular acquisition function is the Upper Confidence
Bound (UCB): the expected function value plus the standard deviation multiplied by
a constant, which is a hyperparameter of the algorithm. In BO we determine query
points by maximizing the acquisition function with another optimization algorithm. It
is, hence, costly but also sample-efficient and can be a global optimizer if the optimizer of
the acquisition function searches globally. Dividing Rectangles (DIRECT) [JPS93] does
this and it can be combined with a local optimizer for refinement. BO is particularly
effective for a low number of parameters. It is computationally expensive and global
optimization might be infeasible for a large number of parameters [SS19].

2.2.2.3. Gradient-Based Optimization with Finite Differences

It is possible to estimate the gradient of an objective function by finite differences and use
gradient-based optimizers such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) [Bro70;
Fle70; Gol70; Sha70], Limited-memory BFGS (L-BFGS) [Noc80], or L-BFGS for Bound
Constrained Optimization (L-BFGS-B) [Byr+95a]. If the gradient estimates are not
accurate enough this often leads to premature convergence [Los17].

2.2.2.4. Black-Box Behavior Optimization

Episodic policy search algorithms are often similar to black-box optimization algorithms.
Examples are the policy search algorithm Natural Actor-Critic (NAC) [PVS05] and the
corresponding black-box optimization algorithm NES [Wie+14]. Hence, there are many
applications of black-box optimization algorithms to behavior learning problems.

A lot of impressive results have been achieved with black-box optimization algorithms
in reinforcement learning domains such as walking with a robot, which has been tackled
with BO to optimize parameters of a finite state machine [Cal+16] and CMA-ES in com-
bination with model-based control [Geh+14]. Another example is playing video games,
which has been tackled with ES [Sal+17; CLH18; Fuk+19] and CMA-ES [HS18]. One
of the earliest applications of CMA-ES in policy search was in pole balancing with fully
and partially observable states [HI08; HI09].

37

Chapter 2. State of the Art

2.2.3. Reinforcement Learning with Value Functions

Reinforcement learning [SB18] is neither supervised nor unsupervised. It is between
both. Its goal is to infer a policy c that lets an agent select an appropriate action for
each state. Correct actions are unknown but hints are given by a reward function that
rates the actions of an agent. Surveys on reinforcement learning (RL) in robotics have
been published by Kober et al. [KBP13] and Kormushev et al. [KCC13]; however, they
do not include the latest developments.

Imitation learning maximizes ∫D ?c (x, u)3 (x, u), that is, the probability of the optimal
actions of which we have a finite set of samples (x, u) ∈ D from a teacher. Reinforcement
learning maximizes ∫X ∫U ?c (x, u)A (x, u)3u3x, that is, the probability of actions weighted
by their reward [DH97].2 In both cases ?c (x, u) = dc (x)c(u |x) with the state visitation
distribution dc of the policy c.

Reinforcement learning algorithms can be roughly divided into three categories: value-
function based algorithms, policy search, and actor-critic algorithms, which combine
both other approaches. Policy search algorithms try to infer the policy c directly by
maximizing a given optimality criterion such as the expected return. Value-function
based methods first learn a value function that estimates the expected return according
to some optimality criterion. Under certain conditions the policy can be directly derived
from the value function and we do not need to represent the policy explicitly. Actor-
critic algorithms learn a value function and a separate policy. The value function is then
a surrogate model for improvement of the policy. There are several main branches of
current RL research. We will take a closer look at the most relevant ones for this thesis,
that is, for the problem of learning behaviors for robots.

2.2.3.1. Value Function, Return, and Reward

In this section we will lay the foundation for more practical algorithms that we will
discuss in the following sections. Reinforcement learning is a field that deals with optimal
sequential decision making. A sequence of interactions with the environment that leads
to a terminal state is called episode. The term value function refers to the state value
function

+ c (xC) = Ec ['C] ,
the expectation of the return 'C of a policy c aggregated from state xC . It indicates how
good it is for an agent that operates under the given policy to be in this state. The
index C is used to indicate the position in the sequence of states, actions, or rewards.
The return accumulates rewards that will be obtained in future steps. A frequently used
model is the infinite horizon discounted return, that is,

'C = AC+1 + WAC+2 + W2AC+3 + . . .

with a parameter W ∈ (0, 1] that reduces the influence of future rewards AC+: exponentially.
The reward signal informs the agent after each step about its previous performance. It
2Although this is a simplification that does neither apply to all imitation learning algorithm nor to all

reinforcement learning algorithms.

38

2.2. An Overview of Behavior Learning Approaches

is often not possible to directly relate a reward with a specific action though. Because
we will often deal with episodes of fixed length in this thesis, we will also often use the
infinite horizon model, that is,

'C = AC+1 + AC+2 + AC+3 + . . .

To be precise, there are several types of value functions: the state value function
+ c (x), a state-action value function & c (x, u), in which the action u taken in state x is
an argument and not necessarily selected according to c in state x, and the advantage
function �c (x, u) = & c (x, u) − + c (x) that indicates how much better (or worse) it is to
execute an action u in a state x in comparison to the average state value.

2.2.3.2. Markov Decision Process

The standard reinforcement learning formulation requires that the problem is a Markov
decision process (MDP), that is, state transitions and rewards only depend on the last
state and the last action of the agent (which have to be fully observable) but might be
stochastic [SB18, Chapter 3]. With small modifications, many methods that we present
here can also be applied in partially observable MDPs, in which we cannot directly
observe the complete state.

2.2.3.3. Temporal-Difference Learning

Temporal-difference (TD) learning [Sut88] combines Monte Carlo estimation of a value
function, that is, sampling a reward, with bootstrapping based on a previous (or initial)
estimate of the value function. Iterating

+̂ :+1(xC) = +̂ : (xC) + U
[
AC+1 + W+̂ : (xC+1) − +̂ : (xC)

]
will converge (: →∞) to the true state value function of the sampling policy if we visit
every state infinitely often. The term X = AC+1 + W+̂ : (xC+1) − +̂ : (xC) is called temporal
difference error. While pure Monte Carlo estimates allow updates of the value function
only after a complete episode, TD learning updates the value function after each step in
an episode.

If we want to improve the policy, one option is to approximate the state-action value
function &̂ and interleave policy improvement based on the current estimate of &̂ with
updating &̂. In Q-learning [Wat89], the foundation of many state of the art reinforcement
learning algorithms, the policy selects actions based on the current best estimate of the
state-action value function with c(x) = argmaxu &̂(x, u) and we try to iteratively con-
verge to the state-action value function &∗(x, u) of the best policy c∗ with TD learning.
Convergence is guaranteed, if we ensure that each state-action pair is visited infinitely
often.

Q-learning is an off-policy reinforcement learning algorithm, as it uses a behavior
policy V for exploration and a target policy c for which the state-action value function
is approximated. We can use stochastic exploration in the behavior policy V. On-policy

39

Chapter 2. State of the Art

algorithms do not make this distinction. They have one policy c for exploration and
estimate a corresponding value function. The on-policy counterpart of Q-learning is
State Action Reward State Action (SARSA) [RN94], which uses the same policy c for
exploration and for estimation of the state-action value function.

Monte Carlo approaches (TD(1)) perform updates of the value function only at the end
of an episode, but they update the value function for each visited state-action pair based
on the Monte Carlo estimate of the expected return, that is, the measured return. One-
step TD methods (SARSA and Q-learning; also TD(0)) update one state-action value
per time step and are, thus, usually faster on stochastic tasks [SB18]. TD(_) [Sut88]
with _ ∈ [0, 1] interpolates between the two approaches. For delayed rewards _ ∈ (0, 1)
learns usually faster than TD(0) methods.

Q-learning overestimates the state-action value function, as it uses the maximum state-
action value as an approximation for the maximum expected state-action value, hence,
Hasselt [Has10] propose Double Q-learning to alleviate this problem. Double Q-learning
decouples the selection of the best action from computing its state-action value by using
two separate estimates of the state-action value function.

2.2.3.4. Function Approximation

In its simplest form, reinforcement learning can approximate value functions for discrete
state and action spaces with a table. When the state or action space is too large to
store value functions in tables, it is a better option to approximate a value function
with a function approximator. In the beginning this has been done mostly with models
that are linear in their parameters because these tend to produce more consistent and
stable predictions and their convergence can be guaranteed [Bai95; BB96]. Under the
infinite horizon discounted return criterion we can approximate the state value function
by minimizing the mean squared Bellman error (MSBE)

! ()) = 1

#

#∑
8=1

[
A8 + W+̂) (x′8) − +̂) (x8)

]2

estimated from samples (G8 , A8 , G ′8) with a previous estimate +̂) with respect to the func-
tion approximator’s parameters) [Bai95], for instance, through gradient descent. This
results in an update rule for the function approximator’s parameters that is similar to
the standard TD update for a tabular value function and can also be extended to com-
plex function approximators such as neural networks at the cost of losing convergence
guarantees.

2.2.3.5. Value Function Estimates

Estimating value functions may be prone to bias and variance. Assuming the infinite
horizon discounted reward model, we can estimate & c (xC , uC) with an approximation
+̂
c (x) of the state value function via &̂

c (xC , uC) = AC + W+̂
c (xC+1) or via Monte Carlo

&̂
c (xC , uC) = 'C = ∑∞C′=C WC

′−CAC′, where AC and, hence, 'C are unbiased but have high

40

2.2. An Overview of Behavior Learning Approaches

variance. An approximation +̂
c (x) of the value function with a function approximator

introduces bias but no variance. A generalization of both cases is the =-step truncated
Monte Carlo estimate &̂

c (xC , uC) =
[
∑C+=−1C′=C WC

′−CAC′
]
+ W=+̂ c (xC+=) based on a function

approximator +̂
c
, which allows to interpolate between both cases by setting the horizon =

to balance bias and variance.
If we want to include old off-policy samples into estimates of + c or & c we have to use

importance sampling. The V-trace estimator [Esp+18] does this and is state of the art,
as it improves on previous approaches such as the Retrace estimator [Mun+16]. V-trace
uses truncated importance sampling to estimate + c by

EC = +̂ (xC) +
C+=−1∑
C′=C

WC
′−C

(
C′−1∏
8=C

28

)
XC′, (2.1)

where +̂ is a neural network, XC = dC (AC + W+̂ (xC+1) − +̂ (xC)) is the temporal difference
error, V is the behavior policy, c the target policy, and dC = min(d, c (uC |xC)

V (uC |xC)) and 2C =

min(2, c (uC |xC)
V (uC |xC)) are truncated weights for importance sampling. In the special case of

c = V (on-policy), with 2 ≥ 1, 28 = 1, dC = 1, then

EC =

[
C+=−1∑
C′=C

WC
′−CAC′

]
+ W=+̂ (xC+=)

reduces to =-step truncated Monte Carlo estimate of + c . If d → ∞ the fixed point of
iteration is + c . If d → 0 the fixed point is +V. Otherwise the fixed point is between + c

and +V. 2 controls how much XC impacts the update of the value function at a previous
step, which can be used to reduce variance and does not change the solution. This kind of
estimators will become relevant especially for policy gradient and actor-critic algorithms.

2.2.4. Policy Search with Movement Primitives

Although there are works that apply standard RL on real robotic systems, it has been
struggling with challenging problems posed by the real world for a long time: continuous
state and action spaces, complex dynamics, noisy sensors, sparse rewards, and above
all the demand for sample efficiency. Policy search can use the strong inductive bias of
movement primitives to learn directly on real robots.

In policy search, we maximize the expected return, that is, we optimize parameters
) ∈ R= of a policy c) through

argmax
)
E ['())] ,

where '()) is the return that tells the agent how well the policy performed [DNP13].
We write '()) for '1 = A1 + A2 + . . . because we can modify the expected return only
through). Immediate rewards are stochastic but only depend on the policy, which we
define through), and the environment dynamics, which we assume to be stochastic but
fixed. Deisenroth et al. [DNP13] provide an introduction to policy search and Sigaud
and Stulp [SS19] a recent survey.

41

Chapter 2. State of the Art

Figure 2.7.: Overview of policy search algorithms for movement primitives. Each ellipse
represents an algorithm. We can categorize algorithms as black-box opti-
mizers, direct policy search, and contextual policy search. Arrows indicate
connections between algorithms (a strong influence of one algorithm on the
development of the other). Algorithms above others in a chain have been
developed earlier.

Movement primitives are common policy representations in robotics. Several policy
search algorithms have been proposed that are specifically tailored to learn movement
primitives, although most of them can also be applied to other policies. In DMPs,
the policy parameters) could be the weights of the forcing term, metaparameters, a
combination of both, or any combination of those of a sequence of multiple DMPs. The
following policy search algorithms have been used mainly with movement primitives.
Figure 2.7 shows connections between algorithms that we discuss in this section.

42

2.2. An Overview of Behavior Learning Approaches

2.2.4.1. Policy Gradients

Peters et al. [PVS05] and Peters and Schaal [PS08a] presented an algorithmic milestone
in reinforcement learning for robotic systems. They used a robot arm with 7 DOF to
play tee-ball, a simplified version of baseball, where the ball is placed on a flexible shaft.
Their solution combines imitation learning by kinesthetic teaching with a DMP and
policy search, which is an approach that has been used in many following works. The
goal was to hit the ball so that it flies as far as possible. The reward for policy search
penalizes squared accelerations and rewards the distance. The distance is obtained from
an estimated trajectory computed with trajectory samples that are measured with a
vision system. An inverse dynamics controller has been used to execute motor commands.
About 400 episodes were required to learn a successful batting behavior.

In their work, Peters et al. [PVS05] used NAC. Similarly to NES, NAC uses the score
function estimator to determine the gradient of the return and estimates the Fisher
information matrix to compute the natural gradient. In NAC, however, the exploration
noise is different in each step of an episode, as we use a stochastic policy to generate
actions. In NES we explore in the parameter space of a policy and change the parameters
only after the end of an episode. In addition, an estimate of the value function with a
linear function approximator is used to reduce the variance of the gradient. As many
other gradient-based optimization approaches, NAC has a learning rate that has to be
set. Heidrich-Meisner and Igel [HI08] show that CMA-ES outperforms NAC with neural
network policies on a pole balancing problem. Only when the search distribution is
initialized close to the optimum, NAC can be more sample-efficient than CMA-ES.

2.2.4.2. Reward-Weighted Self-Imitation

Reward-Weighted Regression (RWR) [PS07] and Policy Learning by Weighting Explo-
ration with the Returns (PoWER) [KMP08; KP09; KP11] are based on the principle of
reward-weighted self-imitation. RWR is an expectation-maximization approach that al-
ternates between computing an expected reward (expectation step) and updating the pol-
icy and a reward transformation (maximization step). Specifically, RWR uses a weighted
maximum likelihood approach to estimate a parameter-linear policy c) (u |x) that maps
from nonlinear transformations of the state q(x) to actions u. Sample weights are defined
based on the reward A through normalization of 3 (A) = g exp(−gA) so that they sum up
to 1, with g estimated in the maximization step as g ←

(∑#
8=1 3 (A8)

)
/
(∑#

8=1 3 (A8)A8
)

based
on 3 (A8) computed with the previous g. The main advantage of RWR over NAC is that
it does not have a learning rate.

In contrast to the reward-attracted RWR, Variational Inference for Policy Search (VIP)
[Neu11] is a similar cost-averse algorithm. Neumann [Neu11] shows that RWR minimizes
the KL divergence to the best possible policy in the expectation step. Since the KL
divergence is asymmetric, he investigates the case of interchanged arguments. This leads
to a more computationally expensive algorithm that can deal better with multi-modal
objectives, as it focuses on one optimum.

43

Chapter 2. State of the Art

PoWER adds state-dependent exploration noise to RWR. In addition, the best expe-
riences with respect to their return are kept in memory and reused. A restriction of
PoWER is that the reward is not scaled automatically but a fixed reward transformation
has to ensure that rewards are positive.

PoWER has been used to solve challenging problems such as the game ball-in-a-cup, in
which a ball is attached to a cup by a string and the robot has to catch the ball with the
cup by moving only the cup. Even humans require a considerable amount of trials to solve
the problem. Kober et al. [KMP08] and Kober and Peters [KP09] demonstrate that a
successful behavior can be learned on a SARCOS arm and a Barret WAM. An approach
similar to Peters et al. [PVS05] has been used: imitation learning with a DMP from
motion capture or kinesthetic teaching and refinement through PoWER. In addition, the
policy takes the ball position into consideration. A perceptual coupling is learned to
mitigate the influence of minor perturbations of the end-effector that can have a strong
influence on the ball trajectory. A successful behavior is learned after 75 episodes.

The problem of flipping a pancake with a pan has been solved by Kormushev et al.
[KCC10b] with the same methods: a policy that is similar to a DMP is initialized from
kinesthetic teaching and refined with PoWER. The behavior has been learned with a
torque-controlled Barrett WAM arm with 7 DOF. The artificial pancake has a weight
of 26 grams only, which makes its motion less predictable because it is susceptible to
the influence of air flow. For refinement, a complex reward function has been designed
that takes into account the trajectory of the pancake (flipping and catching), which
is measured with a marker-based motion capture system. After 50 episodes, the first
successful catch was recorded. A remarkable finding is that the learned behavior includes
a useful aspect that has not directly been encoded in the reward function: it made a
compliant vertical movement for catching the pancake that decreases the chance of the
pancake bouncing off from the surface of the pan.

2.2.4.3. Restricting Information Loss

Peters et al. [PMA10] note that policy updates may result in information loss, which
they reduce by enforcing the KL divergence of the previous and the next state-action
distribution ?(x, u) to be less than or equal a threshold n , which is a hyperparameter
of the proposed algorithm Relative Entropy Policy Search (REPS). REPS aims in each
update at maximizing the expected reward of the new policy while bounding the KL
divergence, that is,

argmax
)

Ex∼dc (x) ,u∼c) (u |x) [c) (u |x)A (x, u)]

subject to �KL(?c) (x, u) ‖ ?c)old (x, u)) ≤ n .

The inequality constraint distinguishes REPS from NES and NAC that use an equality
constraint for the KL divergence with an infinitesimal n . The expectation and the KL
divergence will be estimated from samples obtained with the old policy, which is a good
enough approximation because each step is limited by n .

44

2.2. An Overview of Behavior Learning Approaches

To use a numerical optimizer, we also have to ensure that there is a stationary distri-
bution over states (more precisely, state features) given the policy and that the policy
and stationary distribution dc (x) are proper probability distributions. The resulting
constraint optimization problem will be solved by the method of Lagrange multipliers
with an optimizer such as L-BFGS-B. During optimization also a state value function will
be approximated as +v (x) = q(x)) v, where v are Lagrange multipliers and q computes
arbitrary features of the state vector.

A main problem of episodic REPS in comparison to black-box optimizers such as CMA-
ES or NES is its premature convergence because the entropy of the search distribution
sometimes reduces too quickly [Abd+15]. In black-box optimization [HO01; Wie+14],
according to Akimoto et al. [Aki+10], this is mitigated by using rank-based fitness shap-
ing instead of fitness-proportionate updates of the search distribution (fitness is the same
as return), that is, samples are ordered descending by their return and new monotonically
decreasing return values are assigned to them. This also makes the optimizer invariant
under rank-preserving transformations of the returns [Wie+14]. Note that all pure re-
inforcement learning algorithms that we discuss in this thesis use fitness-proportionate
updates.

Nevertheless, REPS is an important algorithm that led to many follow-up works.
Hierarchical REPS [DNP12a] is one extension of REPS that allows in situations, where
several locally optimal behaviors exist, to learn all these optima simultaneously and is,
thus, an improvement over VIP, which focuses only on one optimum.

A surrogate model has been introduced by Abdolmaleki et al. [Abd+15]. Their algo-
rithm Model-based Relative Entropy Stochastic Search (MORE) learns a local quadratic
surrogate model of the return. Bayesian dimensionality reduction is used to reduce the
number of samples that is required to estimate the surrogate model in high-dimensional
parameter spaces. The surrogate model is used to analytically limit the KL divergence.
REPS could only compute a sample-based approximation, which requires more samples.
Furthermore, MORE encourages higher entropy of the search distribution, which reduces
the problem of premature convergence. MORE clearly outperforms PoWER, NES, and
REPS in most presented experiments but CMA-ES is competitive in some experiments
although it does not use a surrogate model.

2.2.4.4. Path Integrals

Policy Improvements with Path Integrals (PI2) [TBS10b; TBS10a] is based on stochastic
optimal control. PI2 requires specification of an initial policy and a covariance matrix,
which governs exploration in parameter space (a multiple of the identity matrix). Only
the mean of the search distribution is adapted during learning and a new policy is sampled
in each time step of an episode. PI2 has also been used in the context of motion planning
for manipulation [Kal+11a] to directly optimize end-effector trajectories.

Although PI2 originates from a different field, parameter space exploration makes it
similar to ES and its variants. This led to the development of a hybrid of PI2 and
CMA-ES [SS12] that automatically tunes the exploration noise of PI2.

45

Chapter 2. State of the Art

2.2.4.5. Parameterized Skills

Similarly to imitation learning, a way to generalize movement primitives in reinforce-
ment learning is to parameterize them based on the task parameters, that is, we learn a
mapping from task parameters s ∈ S (usually S ⊆ R=B) to policy parameters). A more
common name for s is context and we will use both terms interchangeably.

Silva et al. [SKB12] use PoWER to generate a training set of nearly optimal param-
eters {)1,)2, . . .} of low-level policies for several contexts {s1, s2, . . .} for a regression
algorithm. Thereupon, they infer a deterministic upper-level policy c8 (s) =), the so-
called parameterized skill, which generalizes over the context space, with parameters 8.
Silva et al. [SKB12] consider the problem of dart throwing and observe that this domain
has the additional challenge of discontinuities in the mapping from task parameters to
metaparameters of the policy. Such discontinuities occur if there are multiple solutions to
a task with similar quality and if there are no constraints during reinforcement learning,
but they are less likely when the examples have been generated by a human operator. To
address this problem, Silva et al. [SKB12] use Isomap [TSL00], which extracts clusters
that can be represented by a few parameters, and learn different upper-level policies for
each cluster. Parameterized skills have been used to learn ball throwing for an iCub
robot [da +14] on a target area of 90 cm × 90 cm with a policy that had 7 parameters to
describe an overhand throw. In this work PI2 was the underlying policy search algorithm.
The threshold for successful policies was a distance of 6 cm to the target, which could
be reached on average for 35 novel test targets with a training set of eight samples of
successful throws that were learned for various other target positions.

Skill templates [Met+14] are an extension of parameterized skills that learn a stochastic
upper-level policy c8 () |s), which includes an estimate of uncertainty that can be useful
for subsequent adaptation of the policy through policy search in a new context.

An advantage of these approaches is that the upper level policy c8 () |s), which maps
from contexts to parameters) of the low-level policy, can be an arbitrary function and,
hence, complicated regression methods can be used for generalization, which can deal
with discontinuities. On the other hand, a functional relationship between context and
control-policy parameters) as in a deterministic policy might not always be adequate;
for instance, there might be multiple optima in the space of) for a single context (for ex-
ample, think of fore- and backhand strokes in tennis). In addition, the approach requires
to learn close-to-optimal parameters for the control policy in a context to generate just
one training example for regression. Consequently, all other experience collected while
learning these close-to-optimal parameters is not used for generalization over the context
space.

2.2.4.6. Contextual Policy Search

Several algorithms have been proposed that learn the upper-level policy c8 () |s) without
separating learning in an RL and a regression part. These approaches allow transferring
experience between different contexts even if the behavior in these contexts is subop-
timal. Thus, these approaches can make use of all collected experience to be more

46

2.2. An Overview of Behavior Learning Approaches

sample-efficient, that is, they can learn a close-to-optimal upper-level policy with fewer
episodes. Furthermore, the upper-level policy c8 can be stochastic, which means it can
be implemented by a conditional probability distribution. This has the advantage that
the agent’s exploratory behavior is explicitly modeled and can be adapted by the learning
algorithm on the upper level.

This category of algorithms is called contextual policy search, in which we seek to
optimize

argmax
8

∫
S

?(s)
∫
R=

c8 () |s)E ['(s,))] 3)3s,

where s ∈ S is a context, c8 is a stochastic upper-level policy parameterized by 8 that
defines a distribution of policy parameters) ∈ R= for a given context [DNP13]. The re-
turn ' is extended to take into account the context. It is again stochastic because returns
and environment dynamics are stochastic. During the learning process, we optimize 8,
observe the current context s8, and select) 8 ∼ c8 () |s).

RWR [PS07] and VIP [Neu11] directly support contextual policy search. They can
learn a stochastic policy similar to the mapping from task parameters to policy metapa-
rameters in the regression setting. Kober et al. [Kob+12] extend this to non-parametric
policies in an approach that they called Cost-Regularized Kernel Regression (CrKR),
which models the upper-level policy with a Gaussian process and assumes the outputs
to be independent. CrKR has been used to learn throwing movements as well as table
tennis.

Mülling et al. [MKP11; Mül+13] learn table tennis with a Barrett WAM arm. Partic-
ularly challenging in this task is the advanced perception and state estimation problem:
behaviors have to take an estimate of the future ball trajectory into account when gen-
erating movements that determine where, when, and how the robot hits the ball. A
vision system with an extended Kalman filter [Kal60] tracks the ball at 60Hz and a sim-
plified model that neglects spin predicts ball trajectories. 25 striking movements have
been learned from kinesthetic teaching to form a library of movement primitives with a
modified DMP version that allows to set a final velocity as a metaparameter. Desired
position, velocity, and orientation of the racket are computed analytically for an esti-
mated ball trajectory and a given target on the opponent’s court, and are then given
as metaparameters to the DMP. In addition, based on these task parameters, a gating
network computes a weighted average of the repertoire of striking movements to form
a mixture of movement primitives. The resulting behavior is refined with CrKR and a
reward function that encourages minimization of the distance between the desired goal
on the opponent’s court and the actual point where the ball hits the table. In a final
experiment, a human played against the robot, serving balls on an area of 0.8m × 0.6m.
Up to nine balls were returned in a row by the robot. Initially the robot was able to
return 74.4 % of the balls and after playing one hour the robot was able to return 88%.

Extending standard policy search algorithms to the contextual setting is often straight-
forward. For instance, Contextual Relative Entropy Policy Search (C-REPS) [Kup+13]
is an extension of REPS. One of the key advantages of C-REPS over similar methods is
that it takes into account that different contexts might have different reward distribu-

47

Chapter 2. State of the Art

tions and computes a baseline to normalize the reward of each context. This baseline
approximates a context value function.

Because episodic REPS can be used for black-box optimization, C-REPS is a template
for the extension of other methods. CMA-ES [HO01] has been extended to Contextual
Covariance Matrix Adaptation Evolution Strategies (C-CMA-ES) [Abd+17a], MORE
[Abd+15] to Contextual Model-based Relative Entropy Stochastic Search (C-MORE)
[Tan+17], and BO [BCd10] to Bayesian Optimization for Contextual Policy Search (BO-
CPS) [MFH15]. There is also a hybrid of C-REPS and CMA-ES [Abd+19]. Since
contextual policy search is a main focus of this thesis we will give a more detailed overview
of contextual policy search algorithms in Section 2.3.

2.2.5. Deep Reinforcement Learning with Value Functions

Deep reinforcement learning is a new field that makes use of the results from deep
learning. Although there are only a few applications of deep reinforcement learning
in robotics, results of these methods are interesting for behaviors that involve difficult
perception problems. Specifically, it allows to learn complex end-to-end mappings from
sensor measurements to actuator commands or expected returns. A recent survey of deep
reinforcement learning has been published by Arulkumaran et al. [Aru+17] and a survey
of deep learning for robotic perception and control by Tai and Liu [TL16].

Deep RL with value functions specifically approximates either the state value function
+ (x), the state-action value function &(x, u), or the advantage function �(x, u) with
a neural network. Neural networks allow us to handle complex state spaces with high
dimensionality or continuous values efficiently. Handling continuous action spaces, how-
ever, is more difficult. An overview of algorithms for RL with value functions that we
discussed previously or will discuss here is shown in Figure 2.8.

The first success of reinforcement learning with neural networks was an agent that
played backgammon with TD(_) at the level of good human players [Tes95]. Convergence
with a neural network as a function approximator for the value function [Tes92] is not
guaranteed though.

For a long time this was the only prominent example that showed how neural networks
can be used for reinforcement learning. Reinforcement learning is difficult with a complex
function approximator such as a neural network, as they suffer from catastrophic forget-
ting [MC89; Rat90], that is, they prefer memorizing recent training samples over older
training samples. This is particularly critical for supervised online learning but also in
reinforcement learning, where the distribution of visited state-action pairs changes con-
tinually while the policy improves. This motivated Riedmiller [Rie05] and Riedmiller
et al. [RMD07] to use experience replay [Lin92] to reduce the problem of catastrophic
forgetting in Q-learning with a neural network. The algorithm Neural Fitted Q Iteration
(NFQ) accumulates a set D of experiences (x8 , u8 , A8 , x′8). Then NFQ constructs a loss

! ()) = 1

#

#∑
8=1

[
A8 + W argmax

u′
&̂(x′8 , u′) − &̂(x8 , u8)

]2

48

2.2. An Overview of Behavior Learning Approaches

Figure 2.8.: Overview of reinforcement learning algorithms with value functions. Each
ellipse represents an idea or algorithm that has been published. We can
distinguish between standard RL and deep RL algorithms. Arrows indi-
cate connections between ideas (a strong influence of one publication on the
other). Ideas above others in a chain have been developed earlier.

with a previous estimate of the state-action value function &̂. This is the MSBE for
Q-learning. Then the loss is used to train the state-action value network in a variant
of batch gradient descent until convergence. NFQ stores all experiences. For difficult
problems that require a lot of experience and large neural networks neither storing all
samples nor batch training until convergence are feasible.

New concepts had to be developed to enable Q-learning with deeper architectures and
to solve more complex problems such as video games of which we only observe visual
inputs. Learning the state-action value function with a neural network is a fragile pro-
cess in this domain. We sample from a high-dimensional state space, measure possibly
stochastic rewards, approximate the expected return with a complex function approxima-
tor &̂

∗
) with a large amount of parameters) on a small subset of all possible state-action

pairs using a stochastic optimization procedure while the target that we approximate
with the optimization depends on the current estimate &̂

∗
) which changes during this

optimization. Mnih et al. [Mni+15] mitigate the latter problem by introducing a target
network &̂

∗
)− of which the parameters)− are less frequently updated. The target network

is used to compute the temporal difference errors for the update of &̂
∗
) . Then a variant

of stochastic gradient descent uses small batches of experience from a fixed-size replay
buffer for this update. The proposed algorithm is called Deep Q Networks (DQN) and
is able to reach and surpass human level of control on many problems from the Arcade

49

Chapter 2. State of the Art

Learning Environment (ALE), a frequently used benchmark environment that provides
an interface to hundreds of Atari 2600 games [Bel+13].

Various extensions that increase the performance of the final policy derived from DQN
and the sample efficiency have been proposed. Double Q-learning can be combined
with DQN [HGS16]. Prioritized experience replay (PER) [Sch+16a] uses the replay
buffer more intelligently. A dueling network architecture separates the state-action value
function into the state value function and an advantage function to improve generalization
across actions [Wan+16c]. Noisy networks represent a learnable exploration strategy
which improves standard exploration [For+18]. Distributional reinforcement learning
learns a value distribution instead of a value function [BDM17]. Rainbow combines all of
these improvements [Hes+18]. The reported learning curves of Rainbow for Atari games
show the performance for up to 200 million steps. While the observation space for video
games is high-dimensional and complex, the action space contains only a few discrete
actions.

Most algorithms that are derived from Q-learning require discrete action spaces because
we have to be able to find the best action for a given state to update the state-action value
function and to determine the policy. Gu et al. [Gu+16] extend Q-learning to continuous
actions. They separate the state-action value function into state value function and
advantage function. The advantage function is enforced to be quadratic with respect
to the state vector by predicting parameters of this quadratic function with a neural
network. We can compute the optimum of the quadratic function analytically. This
algorithm is called Normalized Advantage Function (NAF). Restricting the advantage
function to be quadratic is a strong inductive bias. Nevertheless, this algorithm has been
used successfully by Gu et al. [Gu+17] to learn how to open a door with a robot arm.

We can use deep reinforcement learning with value functions and large amount of
experience to learn behaviors for complex state spaces. With a strong inductive bias we
can extend it to handle continuous action spaces. A more promising approach to handle
complex, continuous action spaces, however, is to represent a policy by a neural network
and use policy gradients to train them, which can be supported by value functions.

2.2.6. Deep Reinforcement Learning with Policy Gradients

Deep policy gradient algorithms represent the policy c) by a neural network with weights
). An overview of the algorithms that we will discuss can be found in Figure 2.9.

We can distinguish between deterministic and stochastic policies. A deterministic
policy u = c) (x) can be represented directly by a neural network. A stochastic policy
c) (u |x) would be a probability density function, that is, ∫U c) (u |x)3u = 1 and c) (u |x) >
0. We can guarantee that a neural network fulfills these conditions by restricting c) to
a specific parametric distribution such as a Gaussian distribution. In this case c(u |x) =
N(u |`(x), f(x)) with the distribution’s parameters `(x), f(x) being the outputs of the
neural network. We can sample from this distribution with u = `(x) + f(x) ◦ & , where &

is sampled from a standard normal distribution.

50

2.2. An Overview of Behavior Learning Approaches

Figure 2.9.: Overview of policy gradient algorithms. Each ellipse represents an idea or
algorithm that has been published. We can distinguish between algorithms
without value function approximation and actor critic algorithms. Arrows
indicate connections between ideas (a strong influence of one publication on
the other). Ideas above others in a chain have been developed earlier.

2.2.6.1. Policy Gradient Theorems

Policy gradient algorithms directly maximize the expected return E ['())] with gradient-
based optimization, for instance, gradient ascent. The expectation is computed over the
states x ∈ X that are distributed according to x ∼ dc and the actions u ∈ U that are
selected by the policy u ∼ c\ . That is, we can write

E ['())] =
∫
X

dc (x)
∫
U

c) (u |x)A (x, u)3u3x

with the reward function A (x, u). The reward function and the state distribution are
assumed to be unknown and, thus, can only be sampled. The policy gradient theorem
eliminates this problem. There are different versions of it for stochastic and deterministic
policies as well as for on-policy and off-policy algorithms.

Sutton et al. [Sut+00] derive the policy gradient theorem for stochastic policies and
on-policy algorithms, which (combined with the log-derivative trick [Wil92]) is

∇)Ex∼dc ,u∼c) ['())] = Ex∼dc ,u∼c) [∇) ln c) (u |x)& c (x, u)] .

Hence, the gradient does not depend on the derivative of the state visitation distribution
and the expectation can be estimated with sampled state-action pairs and an estimate of

51

Chapter 2. State of the Art

the state-action value function & c . An unbiased estimate of & c is the measured return
'. We will omit the subscripts of the expectation in the following.

Similarly, Degris et al. [DWS12] derived the policy gradient theorem for stochastic
policies and off-policy algorithms, which states

∇)E ['())] ≈ E
[
c) (u |x)
V(u |x) ∇) ln c) (u |x)&

c (x, u)
]
,

where V is the behavior policy for exploration and c is the target policy. c) (u |x)
V (u |x) is the

ratio for importance sampling, since states and actions are distributed according to V

but we compute the gradient with respect to the parameters of c. Note that this is an
approximation even without sampling state-action pairs, which has to be done, too.

Silver et al. [Sil+14] introduce the policy gradient theorem for deterministic policies
and off-policy algorithms, which states

∇)E ['())] ≈ E
[
∇)c) (x)∇c) (x)& c (x, c) (x))

]
,

where states are distributed according to some behavior policy V.

2.2.6.2. Policy Gradients with Advantage Function

Williams [Wil92] introduces REINFORCE (abbreviation of Reward Increment = Non-
negative Factor × Offset Reinforcement × Characteristic Eligibility), a type of policy
gradient algorithm that uses the Monte Carlo estimate of & c . In addition, Williams
[Wil92] introduces a baseline in the policy gradient and proves that the baseline does not
add a bias to the estimate but can be used to reduce the variance, hence, the stochastic
policy gradient for on-policy algorithms is often used in the form

∇)E ['())] = E [∇) ln c) (u |x) (& c (x, u) − 1(x))] ,

with a baseline 1(x), which is often the state value function so that we can write

∇)E ['())] = E [∇) ln c) (u |x)�c (x, u)] ,

by definition of the advantage function �c (x, u) = & c (x, u) −+ c (x).

2.2.6.3. Deterministic Policy Gradients

Deterministic Policy Gradients (DPG) uses the deterministic policy gradient theorem.
It is an off-policy actor-critic algorithm. Deep Deterministic Policy Gradients (DDPG)
extends DPG to deep neural networks and uses DQN to estimate & c of the deterministic
target policy c [Lil+16]. DDPG is outlined in Algorithm 1. Note that optimization is
performed with a variant of stochastic gradient descent and gradients are computed by
automatic differentiation. DDPG is the only algorithm that we show in detail in this
section to get an impression of how a policy gradient algorithm works.

52

2.2. An Overview of Behavior Learning Approaches

Algorithm 1 Deep Deterministic Policy Gradients
1: Randomly initialize critic network &(x, u |\&) and actor c(x |\ c)
2: Initialize target networks & ′ and c′ with weights \&

′
, \ c

′

3: Initialize replay buffer �, distribution N for action exploration
4: while not converged do
5: while episode not terminated do
6: Observe state x and execute action u = c(xC |\ c) +N
7: Observe reward A and new state x′

8: Store transition (x, u, A, x′) in �

9: Sample batch of # transitions (x8 , u8 , A8 , x8+1) from �

10: Set H8 = A8 + W& ′(x8+1, c′(x8+1 |\ c
′) |\&′)

11: Update critic with argmin\&
1

#

∑
8 (H8 −&(x8 , u8 |\&))2

12: Update actor with argmax\ c
1

#

∑
8 &(x8 , c(x8 |\ c))

13: \&
′ ← g\& + (1 − g)\&′, \ c′ ← g\ c + (1 − g)\ c′

14: end while
15: end while

Lillicrap et al. [Lil+16] demonstrate that DDPG handles high-dimensional state or
observation spaces such as images well, which DPG with a linear function approximator
could not. DDPG has been extended to Twin Delayed Deep DPG (TD3), which adds
tricks such as double Q-learning [FHM18] to improve the performance and sample effi-
ciency; however, for relatively simple walking problems from OpenAI Gym [Bro+16] the
required steps to reach a good performance is in the order of 100,000.

Andrychowicz et al. [And+17] develop Hindsight Experience Replay (HER) based on
DDPG. They address problems with sparse binary rewards that are only meaningful if a
goal was reached. They investigated robotic manipulation tasks such as pushing an object
to a given target position or picking up an object and placing it at a target position.
In these problems the reward is parameterized by the goal, which can be exploited by
replaying experience as if it was collected during an episode with a different goal. This
setting is similar to contextual policy search. Andrychowicz et al. [And+17] consider
the problem of pushing an object to a goal. Object and goal can be placed at arbitrary
positions on a table in front of the robot. The robot has a budget of 50 steps to reach
the goal so that it receives a reward. A goal is reached if the object is within 7 cm of the
goal. HER needs about 70 updates to reach around 90 % success rate in this task while
each update requires 800 episodes which results in a total number of 56,000 episodes.
HER is considered to be a state of the art in reinforcement learning for simulated robots.

2.2.6.4. Trust Region Methods

Even small steps in the parameter space of a policy can have large impact on outputs
of the policy. Therefore, policy gradient algorithms can be unstable, as performance
might even degrade during training. Trust Region Policy Optimization (TRPO) mitigates
this problem by taking the largest step that improves the policy on a batch of samples

53

Chapter 2. State of the Art

[Sch+15c]. Although TRPO is an on-policy algorithm, it uses an objective for the policy
that includes importance sampling to maximize the surrogate reward

E

[
c) (u |x)
c)>;3 (u |x)

& c)>;3 (x, u)
]
= E [& c)]

with a Monte Carlo estimate of the state-action value function and furthermore restricts
the update step such that the expected Kullback-Leibler divergence �KL between the
old and the new policy is below a threshold n , that is,

E
[
�KL(c\>;3 (·|x) ‖ c\ (·|x))

]
≤ n .

This notation means that the KL divergence is computed over the action distribution of a
fixed state, while the expected value is computed over the distribution of the state. This
procedure is not straightforward and involves approximations such as the linearization of
the objective and quadratic approximation of the constraint and a line search to ensure
that performance increases monotonously. Although the basic idea is similar to REPS
[PMA10], TRPO bounds the conditional distribution ?(u |x), whereas REPS bounds
?(x, u) and performs a more costly nonlinear optimization in every step.

Duan et al. [Dua+16] made an empirical comparison of several reinforcement learning
algorithms for neural networks in continuous control problems. These algorithms include
REINFORCE [Wil92], a variant of the natural policy gradient [PS08b], RWR [PS07],
REPS [PMA10], TRPO [Sch+15c], CEM [Rub99; MRG03], CMA-ES [HO01], and DDPG
[Lil+16]. Note that only neural networks as a policy representation have been used.
The main focus of the evaluation is on walking problems with varying complexity up
to a full humanoid mechanism. They found that TRPO mostly outperforms the other
algorithms. This finding is remarkable because TRPO performs updates after a couple
of episodes and does not learn a value function while DDPG continuously learns during
each episode and because the original paper of Lillicrap et al. [Lil+16] on DDPG does
not include a comparison to TRPO for exactly those reasons. This finding has been
confirmed by Ha et al. [HKY18] who learned crawling behaviors for simple mechanisms
and observe that the learning progress of TRPO is more stable. Furthermore, Mahmood
et al. [Mah+18] performed extensive evaluation on various robotic systems and show that
TRPO consistently outperforms DDPG.

Schulman et al. [Sch+16c] extend TRPO to an actor-critic algorithm and use an esti-
mate of the advantage function instead of the state-action value function in the objective
for the policy. They introduce Generalized Advantage Estimation (GAE), a method to
trade off bias and variance in estimation of the advantage function with a single param-
eter _ ∈ [0, 1]. Let +̂ be an approximate value function, the temporal difference error is
defined as

X+̂C = AC + W+̂ (xC+1) − +̂ (xC).
If + is the real value function, then

E
[
X+C

]
= E [AC + W+ (xC+1) −+ (xC)]
= E [&(xC , uC) −+ (xC)] = �(xC , uC),

54

2.2. An Overview of Behavior Learning Approaches

hence, X+C is an estimator of the advantage. We can take the discounted sum of = temporal
difference errors

�̂
(=)
C =

=−1∑
;=0

W;X+̂C+; = −+̂ (xC) + AC + WAC+1 + . . . + W
=+̂ (xC+=),

which is the =-step truncated Monte Carlo estimate of the advantage and is biased when
+̂ (xC+=) is biased. The bias becomes smaller for =→ ∞. −+̂ (xC) can be ignored because
it is the same for every action. For =→∞,

lim
=→∞

�̂
(=)
C = lim

=→∞

=∑
;=0

W;X+̂C+; = lim
=→∞

[
=∑
;=0

W;AC+;

]
− +̂ (xC) = 'C − +̂ (xC)

reduces to the Monte Carlo estimate. �̂
(1)
C = X+̂C reduces to the temporal difference error.

The construction of the generalized advantage estimate is similar to TD(_):

�̂
��� (W,_)
C = (1 − _)

(
�̂
(1)
C + _�̂

(2)
C + _2 �̂

(3)
C + . . .

)
=

∞∑
;=0

(W_);X+̂C+;,

with �̂
��� (W,0)
C = X+̂C (low variance, high bias) and �̂

��� (W,1)
C =

[∑∞
;=0 W

;AC+;
]
−+̂ (xC) (high

variance, no bias) as edge cases. _ controls the compromise between bias and variance.
Hwangbo et al. [Hwa+19] present a real-world application of TRPO [Sch+15c] with

GAE [Sch+16c]. They learn walking for a quadrupedal robot from simulation and focus
on making the simulation as realistic as possible by integrating a learned model of the
robot’s actuators. The simulation runs much faster than real time and training of a
behavior takes 4 hours of wall-clock time or 9 days of simulated time. The behavior that
was deployed on the real robot followed commands more accurately, was more energy-
efficient, and was faster than the previous, engineered walking controllers that often took
months of development effort. Nevertheless, there were some difficulties that had to
be solved to generate realistic walking behaviors. A walking behavior for a real robot
should use as low torques as possible. Encoding both objectives—moving forward and
moving with low torques—requires balancing between them. If penalties for torques are
too high, the robot will stand still. If they are too low, they will not result in walking
behaviors that can be executed on a real robot. This makes it complicated to define
a single combined objective that can be used to learn the behavior. Hence, Hwangbo
et al. [Hwa+19] use a curriculum of increasing difficulty. They first learn to solve the
main objective and then continuously increase the weights of constraints such as energy
efficiency.

Proximal Policy Optimization (PPO) [Sch+17b] simplifies the optimization problem in
comparison to TRPO by replacing the optimization constraint with a clipping function,
which is much easier to implement while it matches the performance of TRPO. PPO uses

E


min

©­­­«
d\ (x, u) �̂(x, u), clip(d\ (x, u), 1 − n, 1 + n)︸ ︷︷ ︸

clipped ratio

�̂(x, u)
ª®®®¬



55

Chapter 2. State of the Art

as the objective for the policy, where d\ (x, u) = c\ (x,u)
c\>;3 (x,u)

and n is a clipping param-
eter that is often set to values between 0.1 and 0.3. PPO also can be combined with
GAE [Sch+16c].

2.2.6.5. Distributed Policy Gradients

A major focus of deep reinforcement learning research has been distributed computation,
which is straightforward for environments that can be simulated fully. PPO has been used
to learn in-hand manipulation with a complex human-like robotic hand [Ope+20], basic
movements to solve Rubik’s cube with the same hand [Ope+19b], play the video game
Dota 2 [Ope+19a], learn complex walking behaviors from simple rewards in complex
environments [Hee+17], and to compete in a two-team hide-and-seek game in which
we can observe emergent tool use [Bak+19]. While all of these applications represent
extraordinary achievements in terms of what can be learned, they all required massive
amount of data, engineering effort, and computational resources. This is one of the main
directions of research in deep reinforcement learning at the moment.

OpenAI et al. [Ope+20] learn in-hand manipulation behaviors for a complex robotic
hand with 20 actuated degrees of freedom, that is, they learn how to turn a cube from
one orientation to another specified orientation. For this application three cameras were
placed around the hand to observe the orientation of the cube. Camera images were
given directly as input to the policy network. In addition, a motion capture system
was required to determine the state of the robotic hand. Still 100 years of simulated
experience were required to train policies that are robust enough to be executed on a
real hand. So much simulated experience was required because of an approach that is
called domain randomization, which was used to mitigate the simulation-reality gap:
many different variations of the simulation with different physics parameters and visual
appearance were used to let the reality seem to be just another variation of the simulation.
Although in the best trial the robot was able to turn the cube 50 times consecutively, the
median number of consecutive successful rotations was 13 in 10 trials with a maximum
number of 50 rotations. In their follow-up work OpenAI et al. [Ope+19b] used more
than 13 thousand years of simulated experience to learn manipulation skills for Rubik’s
cube. While the achieved results are unprecedented and it is important to explore the
capabilities of these algorithms, we should not believe that these skills can be learned on
a real robot.

Another extreme example that illustrates the enormous potential of neural networks
to represent complex behaviors but also requires huge amount of data and computational
resources is the work of OpenAI et al. [Ope+19a] who learn to play the video game Dota
2 and win against professional human players. For this application 45,000 years of game
experience have been used. To give an impression of how much computational resources
are required for these kind of applications OpenAI [Ope18] write that they used 128,000
CPU cores to collect experience and 256 P100 GPUs to run and train neural networks.

A deep RL algorithm that was explicitly designed for distributed training is Asyn-
chronous Advantage Actor Critic (A3C) [Mni+16]. It computes the =-step truncated

56

2.2. An Overview of Behavior Learning Approaches

Figure 2.10.: Distributed architecture of A3C. Based on diagram from Juliani [Jul16].

Monte Carlo estimate of the advantage function with an approximation of the state
value function from a neural network to compute the stochastic on-policy gradient. A3C
adds an entropy bonus to the objective of the policy to avoid premature convergence.
The target value for the value function is the =-step truncated Monte Carlo estimate of
the state value. The networks for the state value function and the policy share a common
core. Figure 2.10 shows the distributed architecture of A3C with a central server that
updates network parameters with the gradients that it receives from workers that collect
experiences in instances of the environment. The parameter copies of the workers are
regularly updated with parameters from the global network on the central server. A3C
has been evaluated in various Atari 2600 games [Bel+13] and has been shown to clearly
outperform DQN with respect to wall-clock training time and final performance.

Wang et al. [Wan+16a] improve the sample efficiency of A3C with off-policy samples
from old policies for the policy gradient estimate in the algorithm Actor Critic with
Experience Replay (ACER). ACER builds on the Retrace estimator [Mun+16] for the
advantage function. In addition, the update step is limited by a trust region approach
similar to TRPO [Sch+15c].

Espeholt et al. [Esp+18] take the distribution one step further and not only distribute
workers that interact with the environment but they also distribute gradient compu-
tations in the algorithm Importance Weighted Actor-Learner Architecture (IMPALA).
Workers only send observations (xC , uC , AC , xC+1) that they collected during interaction,
which avoids the communication overhead of gradients from large neural networks as
illustrated in Figure 2.11. Now observations might correspond to old policies, hence,
they are off-policy samples. Therefore value function estimates are computed based on
V-trace and additionally the truncated importance sampling weights from V-trace are

57

Chapter 2. State of the Art

used in the policy gradient. Similarly to A3C an estimate of the advantage function is
used so that we estimate the policy gradient

E


dC∇) ln c) (uC |xC)

AC+WEC+1−+̂ (xC)︷ ︸︸ ︷
�̂(xC , uC)


,

where EC+1 is estimated by V-trace, dC is the truncated importance sampling weight from
V-trace, and a neural network represents +̂ . IMPALA has been evaluated initially in
multi-task scenarios such as learning multiple Atari games from ALE. It was on average
found to perform comparable to A3C instances with shallow neural networks that have
been trained on individual tasks only. When IMPALA is trained specifically for one task,
it clearly outperforms A3C [Esp+18]. After this first success IMPALA has been used
in combination with various extensions and complex network architectures in AlphaS-
tar, which was able to beat professional human players at the video game StarCraft II
[Vin+19], and the FTW agent, which was able to beat strong humans players in capture
the flag in the video game Quake 3 [Jad+19]. Both games were played with images as
inputs to the policy, which can be handled well by neural networks. Both applications
require a huge amount of training data and computational resources though. Vinyals
et al. [Vin+19] report that AlphaStar instantiates 12 agents that compete against each
other during training. Each agent runs 16,000 concurrent matches on an equivalent of
roughly 4,200 CPU cores and makes predictions on Tensor Processing Units (TPUs),
which are specialized hardware components for neural networks. Furthermore, there is a
central 128-core TPU learner responsible for each agent.

State of the art in the ALE, however, at the time of writing this thesis is achieved by
Agent57 [Bad+20], a value-function based approach that is optimized for the domain. It
uses curiosity-driven exploration and reaches human-level performance on all 57 investi-
gated Atari games and the median score over all 57 games is 1933.49 % of an average
human’s score. 78 billion steps are required during training to surpass human-level per-
formance in the most difficult game. Assuming a frame rate of 50 frames per second this
would result in almost 50 years of experience.

2.2.6.6. Soft Actor Critic

A novel approach to policy gradient algorithms comes from maximum entropy reinforce-
ment learning, which encourages policies to exhibit a diverse distribution and maximize
the return, that is, we seek to maximize

E [' + UH(c(·|x))] ,

with the temperature U as a hyperparameter that controls the compromise between
maximizing the return ' and the entropy H of the policy. Haarnoja et al. [Haa+18a]
investigate soft Q-learning for real-world robot manipulation tasks. The (soft) state-
action value function in soft Q-learning approximates the expectation from the definition

58

2.2. An Overview of Behavior Learning Approaches

Figure 2.11.: Comparison of distributed architectures of A3C and IMPALA. Based on
diagram of Soyer et al. [SPE18].

above. Haarnoja et al. [Haa+18b] extend this to Soft Actor-Critic (SAC), an off-policy
actor-critic algorithm based on maximum entropy reinforcement learning. The objective
of the policy update looks completely different from other policy gradient algorithms
as the goal is to minimize the expected KL divergence between the new policy and the
softmax of the soft state-action value function, that is,

argmin
)
E

[
�KL

(
c) (·|x)

 exp(&(x, ·))
/ (x)

)]
,

where & is approximated by a neural network through soft Q-learning and / can be
ignored, as it cancels out in the policy gradient and is never explicitly evaluated. Instead
of the score function estimator, which is used in the stochastic policy gradient theo-
rem, SAC uses the reparameterization trick (also known as pathwise gradient estimator
[Moh+19]) to directly compute the gradient of the objective with respect to policy pa-
rameters. The policy c) is represented by a neural network that takes a random noise
vector & and a state x to predict an action. The noise can be sampled, for instance,
from an isotropic Gaussian. When we estimate the policy gradient, we consider samples
of & to be constants. With this trick we can represent and learn complicated policies
such as multi-modal distributions. Later versions of the algorithm [Haa+18c; Haa+19]
change the policy optimization objective to a constraint optimization problem with a
lower limit for the entropy, which results in an objective that will be solved with dual
gradient ascent. In terms of sample efficiency, SAC outperforms methods such as DDPG,
PPO, TD3 in Open AI gym walking problems. SAC has been used to learn walking with
a simple, real quadrupedal robot Haarnoja et al. [Haa+18c; Haa+19] within 160,000
environment steps, which amount to about 2 hours. Ha et al. [Ha+20] show that this
specific application can be fully automated with a system that recovers the robot from
failure states.

59

Chapter 2. State of the Art

2.2.6.7. Guided Policy Search

Guided Policy Search (GPS) [LK13] is not a typical policy gradient algorithm. It is
model-based and turns policy optimization into a supervised learning problem. GPS
alternates between fitting a local linear model with Gaussian noise of the dynamics, tra-
jectory optimization with iterative linear-quadratic-Gaussian regulators (iLQGs) [TL05;
TET12a] with the model of the dynamics, and policy learning. A neural network is
trained to mimic the optimized trajectories in the policy learning step by minimizing
the KL divergence between guiding policies, which are obtained through trajectory op-
timization, and the neural network policy.

Levine et al. [Lev+16] show that GPS can learn behaviors that use raw camera images
to compute corresponding motor torques (visual servoing) end to end. They use the 7
DOF arm of a PR2 robot to learn a variety of manipulation behaviors: hanging a coat
hanger on a clothes rack, inserting a block into a shape sorting cube, fitting the claw
of a toy hammer under a nail, and screwing a cap on a water bottle. A Convolutional
Neural Network (CNN) controls the arm’s movements at 20 Hz based on the visual
input from a monocular RGB camera with a resolution of 240x240 pixels. A complicated
training process involving several phases is required. The first layer of the CNN is
initialized from a neural network that has been pretrained on the ImageNet dataset
[Den+09]. In a second step, the image processing part of the neural network is initialized
by training a pose regression CNN to predict 3D points that define the target objects
involved in the task. GPS is used to train the final policy. The whole state of the system
is observed while the local dynamic model is trained. The iLQG uses the full system state
to obtain guiding policies. These guiding policies are used to train the neural network
policy in a supervised setting but only with a partially observable state; the neural
network only observes images from the robot’s camera. As proposed by Levine and
Abbeel [LA14] the objective of policy training includes a constraint on the distribution
between successive policies to stabilize learning. The KL divergence between successive
trajectory distributions is limited by a constant n , which is similar to REPS. Depending
on the task, the whole training process for a new behavior takes 3 to 4 hours with 156 to
288 episodes on the robot. This achievement relied on additional pretraining procedures
and a fully observable state space during training, which makes the process of generating
new behaviors difficult.

2.2.6.8. Criticism

Deep neural networks are powerful function approximators. Their complexity makes
them vulnerable to adversarial examples [Sze+14] and overgeneralization [Jac+19]. Thus,
a main problem of deep reinforcement learning is its sample efficiency. For example, HER
[And+17] needs about 40,000 episodes to learn how to push a puck on a table to multiple
goals with approximately 95 % success rate.

Nonetheless, in many Open AI gym [Bro+16] environments, particularly walking prob-
lems, deep RL algorithms do not actually use deep neural networks. For example, Lilli-
crap et al. [Lil+16] use a policy network composed of two hidden layers with 400 and 300

60

2.2. An Overview of Behavior Learning Approaches

nodes if no visual input is used. Schulman et al. [Sch+17b] use two hidden layers with
64 nodes per layer. Schulman et al. [Sch+15c] use only one hidden layer with 30 nodes.
Duan et al. [Dua+16] use 3 hidden layers with 100, 50, and 25 nodes. This suggests
that parameter-linear models with a nonlinear feature projection could achieve similar
performance. This has been demonstrated by Rajeswaran et al. [Raj+17b] for policy
gradient algorithms. They show that radial basis functions as features can be used to
even generalize better in these benchmarks. Mania et al. [MGR18] simplify the methods
to solve these problems even further: they use a variant of random search [Mát65] with
linear policies and show competitive performance in learning gaits for simple simulated
mechanisms in comparison to TRPO and outperform SAC [Haa+18b], DDPG [Lil+16],
and PPO [Sch+17b].

Engstrom et al. [Eng+20b] investigate whether the theoretical framework of TRPO
and PPO is actually explaining how these trust region policy gradient algorithms work.
They found that in practice PPO implementations make use of a lot of tricks that are
not theoretically justified but are important. An example of such a trick is normalization
of rewards to a preset range, for example, [−5, 5]. Furthermore, Ilyas et al. [Ily+18] find
that PPO and TRPO operate with poor estimates of the policy gradient, as they use too
few state-action samples per update. Using a value function as a baseline only slightly
reduces the variance of the gradient estimate and often the approximation of the value
function is poor, too. In addition, the trust region is not enforced properly by PPO,
which makes it a bad approximation of TRPO.

Mania et al. [MGR18] also find that the reported performances in the benchmarks
were susceptible to changes in the random seed and point out that the number of exper-
iments that were run with deep reinforcement learning algorithms are low, which makes
results questionable. In fact, Islam et al. [Isl+17] show that standard policy gradient
algorithms such as DDPG and TRPO are fragile with respect to hyperparameter choices
(such as network architecture, batch size). Hence, it is easy to improve in comparison
to these algorithms if their parameters were not perfectly tuned, which results in unfair
comparison. DDPG even gives different results when rewards are scaled with a constant
factor. Islam et al. [Isl+17] show that even the variance over different random seeds
is so large that it is not enough to perform five runs of the same experiment to show
performance differences between algorithms, but many published works do not include
performance evaluation over more than five runs. Mahmood et al. [Mah+18] evaluate
algorithms such as TRPO, PPO, and DDPG in several simple robotic problems and also
found that the performance of each algorithms strongly depends on the hyperparame-
ters. Henderson et al. [HRP18] emphasize that optimizers and their hyperparameters
are critical in particular. Henderson et al. [Hen+19] point out that not only random
seeds and environment properties but also the implementation and hyperparameters can
complicate reproduction of results of policy gradient algorithms.

There is not an established evaluation procedure in the deep reinforcement learning
community [CSO18] and it is hard to tell if a method is robust enough to be worth the
effort of implementing it for roboticists. Colas et al. [CSO18] at least give a practical hint

61

Chapter 2. State of the Art

on the number of runs for an experiment to compute robust estimates of the standard
deviation of the algorithm’s performance: they suggest 20 or more.

2.2.7. Self-Supervised Learning

Self-supervised learning is supervised learning with a process that automatically generates
desired outputs that should be approximated. Applications in behavior learning for
robots so far are rare, although Levine et al. [Lev+18] show an impressive application
in robotic grasping from raw monocular RGB camera images with a 7 DOF robot arm.
Grasp success can be verified automatically in this application. The behavior is not
learned end to end, but a CNN has been learned to predict the success of a motion
command for a given camera image (and the camera image before the behavior is started).
The behavior goes through a sequence of ten waypoints defined by the Cartesian end-
effector position and the rotation of the 2-finger gripper around the z-axis. A motion
command is selected in each step by an optimizer (CEM) based on the predicted success
of the motion command. Although the whole approach is inspired by and similar to the
work of Pinto and Gupta [PG16], the remarkable fact about this work is that a total
amount of more than 800,000 plus 900,000 grasps collected in two datasets have been
performed to train the grasp success prediction model and a maximum of 14 robots has
been used in parallel to collect the data. A large variety of objects has been used to test
the learned grasping behavior.

2.2.8. Discussion

Neural networks are a powerful framework to design function approximators that can
represent complex value functions and policies. The benefit of such a powerful gen-
eral function approximator is that it allows a conceptually easy integration of memory
through recurrent layers or integration of sensors like cameras that might require complex
processing architectures with convolutional layers.

If we want to train large neural network policies for continuous control, policy gradients
and exploration in action space are most efficient [Dua+16]. Nevertheless, we have to
be careful with policy gradient approaches, as they are brittle and have many critical
hyperparameters that we have to tune. In the literature they are often not evaluated
correctly with too few repetitions or not optimally tuned baseline algorithms.

Recent success of deep learning in the research community mainly comes from large
datasets and huge computational resources, however, what makes deep learning really
practically appealing is its enormous success with transfer learning. If we have a good
pretrained model that generates useful features we can easily adapt it with only a few
samples to a new but similar task. This has been shown in computer vision [Lin+17]
and machine translation [Dev+19]. We did not see similar practically useful results of
deep reinforcement learning for robotics so far. Transfer learning with pretrained models
is difficult in this domain since the kinematic structure and the sensors that have been
used in behavior learning are so diverse that transfer is hardly possible. Sometimes it
is even difficult for similar robots [Lev+18]. Nonetheless, it will be a promising field

62

2.2. An Overview of Behavior Learning Approaches

for the future. It will be interesting to see how transfer learning can be used with deep
reinforcement learning, imitation learning, and self-supervised learning in the robotic
domain or how we can encode robotic priors in neural networks.

Recently, there is a renewed interest in simple black-box optimizers such as ES [Rec71]
in deep reinforcement learning. The works of Salimans et al. [Sal+17], Chrabaszcz et
al. [CLH18], Ha and Schmidhuber [HS18], and Fuks et al. [Fuk+19] suggest that tra-
ditional black-box optimization can be competitive to policy gradient algorithms and
value-function based reinforcement learning (particularly in the Atari domain [Bel+13])
even for larger neural networks although only the accumulated reward at the end of an
episode is used. Song et al. [Son+20] state that ES only uses the total reward and not
any information about individual rewards or state transitions is not always a weakness
but it also can lead to more stability in the learning process. Salimans et al. [Sal+17]
find that exploration in parameter space as it is done by ES has an advantage over explo-
ration in action space as this is done by policy gradient algorithms for long episodes in
which actions have a long lasting effect because the variance of the policy gradient often
increases with the number of steps. Deisenroth et al. [DNP13] make similar observations
and add that exploration in action space might lead to action sequences that might not
be reproducible by a greedy policy without exploration noise, which affects the quality
of the policy update.

In deep RL we often assume a direct sensor-actuator coupling: a current sensor mea-
surement is fed into a neural network and the network generates an actuator command
(for example, joint angles or torques) that is executed. This is a reactive behavior. In this
thesis we will solve problems in which we have one sensor measurement from which we
predict a sequence of actuator commands. Discrete and dynamic manipulation behaviors
such as batting [PVS05; Mül+13], pancake flipping [KCC10b], or throwing [Gam+10]
fall into this category.

We will focus on algorithms that already work well in this setting: policy search
algorithms with movement primitives. We will select these categories of algorithms as
a foundation for this thesis. Policy search combined with imitation learning has been
proven to work reliably on real systems, as it often leads to a more stable learning process
in comparison to other reinforcement learning approaches. Movement primitives are
appealing since just one demonstration is enough to learn, for instance, a DMP that we
can directly refine by policy search. Using a neural network as policy representation would
complicate the integration of prior knowledge from non-experts by imitation learning
because specific imitation learning procedures or many demonstrations would be required.
Specifically, we will use contextual policy search algorithms to generalize behaviors over
parameters of the tasks.

Movement primitives can also be refined by black-box optimization and since we will
often encounter episodic settings in which the final reward is most relevant or considerably
more relevant (ball-throwing or grasping) we will use these methods, too.

We will explicitly not learn state transition models. They can improve sample efficiency
drastically as demonstrated by GPS [Lev+16]; however, they come with hyperparameters
that are often difficult to tune and they could introduce bias that might lead to a worse

63

Chapter 2. State of the Art

final performance than model-free algorithms. This decision will not limit the usefulness
of the algorithms that we develop since they can be combined with state transition models
to further increase sample efficiency. A brief overview of model-based reinforcement
learning can be found in Appendix B.

2.3. A Detailed Overview of Contextual Policy Search

In policy search, the objective is to find parameters) of a policy c) to maximize the
expected return. A problem with this formulation is that it is not applicable to settings in
which different tasks, which result in different returns for the same policy c) , are imposed
on the agent. For instance, when an agent tries to throw a ball to different target positions
(the tasks parameters), the same policy obtains different returns depending on the target
position. To address such multi-task settings, we consider the problem of learning policies
for contextual RL problems, that is, we assume that similar tasks are distinguished by
context vectors s ∈ S ⊆ R=B .

If we want to use state-space trajectory generators such as movement primitives it is
obvious that we must separate context and state information, as a movement primitive
directly modifies the state without indirection through actions. This eliminates the free-
dom of integrating arbitrary context information in the state representation, which we
typically have in MDPs, because the state space of movement primitives can only include
directly controllable variables. Although context information could be integrated in the
state vector of a standard MDP, a state that describes the current situation, in which
the agent is, and can be modified by the agent’s actions, is conceptually different from
a context, which is not directly under the agent’s control. This led to similar extensions
of the MDP concept in the absence of movement primitives. An example is the contex-
tual MDP presented by Hallak et al. [HCM15] and Modi and Tewari [MT19]. In deep
reinforcement learning a similar concept has been introduced by Schaul et al. [Sch+15a],
who use DQN to learn value functions that are parameterized not only by a state but
also by a goal vector. Although our context can be a goal, it can be something entirely
different that describes the variations among different but similar reinforcement learning
problems. The only restriction that we have is that contexts must be =B-dimensional real
vectors. Therefore, we use the terms goal, task, and context mostly interchangeably.

In contextual policy search we learn an upper-level policy c8 () |s), which is parame-
terized by 8 and defines a probability distribution over the parameters) of the actual
control policy c) . The upper-level policy should be selected according to

argmax
8

∫
S

?(s)
∫
R=

c8 () |s)E ['(s,))] 3)3s,

where E ['(s,))] is the expected return of policy c) in context s and ?(s) is the prob-
ability density function of the context distribution. This is an extension to the original
policy search formulation.

Contextual policy search algorithms are iterative and a typical iteration includes:

64

2.3. A Detailed Overview of Contextual Policy Search

Figure 2.12.: Illustration of experience collection in contextual policy search. We observe
a context based on which we sample control policy parameters from the
upper-level policy. The control policy can be a time-dependent movement
primitive such as a DMP. It will be executed on the robot to sample a
return.

1. Sample a dataset of corresponding contexts s, control policy parameters), and
returns '(s,)) based on the current upper-level policy c8 () |s) (see Figure 2.12).

2. Compute weights for each sample (s,)) based on '(s,)).

3. Update c8 () |s) with the collected dataset based on weighted regression.

We will discuss details in the following subsections. In Section 2.3.2 we will analyze
differences in calculation of sample weights that will be used in weighted regression to
learn a stochastic upper-level policy c8 () |s), hence, the underlying regression algorithm
has to support sample weights and must be able to predict a (co)variance so that we
can sample parameters for the control policy. We will see in Sections 2.3.3 and 2.3.4
that there is a broad class of algorithms that can be used for this purpose. Section 2.3.5
contains detailed descriptions of two concrete contextual policy search algorithms. First
of all, however, we will discuss similarities to black-box optimization.

2.3.1. Contextual Black-Box Optimization

A general and deterministic problem formulation that is similar to contextual policy
search is

argmin
6

∫
S

5s (6(s)) 3s,

65

Chapter 2. State of the Art

where 5s is a parameterized objective function and we want to find an optimal function
6(s). We call this the contextual black-box optimization problem. This, of course, is
an extremely difficult problem, which is relaxed by restricting the problem to a param-
eterized class of functions 68 (often linear functions with a nonlinear projection of the
context such as polynomials). The optimization problem becomes

argmin
8

∫
S

5s (68 (s))3s.

The challenge of contextual black-box optimization in comparison to black-box optimiza-
tion is that the true objective function is an integral over all possible context. We can
only compute a sample-based approximation. Contextual policy search and contextual
black-box optimization correspond to each other like policy search and black-box op-
timization. Contextual black-box optimization can benefit from the ideas of black-box
optimization as contextual policy search can benefit from policy search.

2.3.2. Computing Weights from Returns

Each contextual policy search algorithm has a different way of computing sample weights.
RWR [PS07] computes the weights based on the return by 38 = g exp(−g'8)// and sets
/ so that the weights sum up to one. In each iteration the hyperparameter is updated
by g =

(
∑#8=1 38

)
/
(
∑#8=1 38'8

)
, which requires ' > 0. RWR’s kernel-based extension CrKR

[Kob+12] uses returns as sample weights, which requires ' > 0.
VIP [Neu11] transforms rewards to probabilities by ?8 = exp (('(s8 ,) 8) −+ (s8)) / [)

and iteratively obtains sample weights 38 and a scaling factor [through gradient descent
so that the KL divergence is minimized between the search distribution and the reward-
weighted trajectory distribution ?' estimated by ?' (8) = 38?8. VIP normalizes weights
so that their maximum is 1 and estimates the baseline + (s) from previous samples.

C-REPS [Kup+13] computes weights by 38 = exp (('(s8 ,) 8) −+ (s8)) / [) / / , where
the baseline + (s) and the parameter [are optimized so that the KL divergence between
the old and the new policy in an update is less than a specified hyperparameter. /

normalizes all weights so that they sum up to one.
C-CMA-ES [Abd+17a] estimates a context value function + (s) to compute the context

advantage function �̂(s8 ,) 8) = '(s8 ,) 8) − +̂ (s8). The advantage values will be used to
order samples and their weights 38 = max(0, (ln ` + 0.5) − ln (8))// are defined based on
each sample’s rank 8 ∈ 1, . . . , `, . . . , #. / normalizes weights so that they sum up to one.

In most approaches we see similar patterns: in more recent algorithms a baseline
+ (s) is subtracted from rewards, rewards are transformed with an exponential function
before they will be processed further to make them strictly positive, the argument of the
exponential function includes an adaptive scaling factor ([or g) that can be used to put
more or less emphasis on the best samples, and weights of a dataset are normalized.

2.3.3. Weighted Regression

Weighted regression is the basis of most contextual policy search algorithms. We will
summarize existing results and show similarities between algorithms. Note that deriva-

66

2.3. A Detailed Overview of Contextual Policy Search

tions are not rigorous and formally complete, as we will skip steps and focus on the
most interesting parts to get an overview of the foundations of contextual policy search
(although we can say the same about original publications on contextual policy search).

The goal of regression is to approximate an unknown latent function 5 : R� → R� . In
linear regression we assume Gaussian measurement noise, that is, we collect a dataset D

of # samples (x, y) ∈ R�×R� from the true function, where y = 5 (x) +& and & ∼ N(0,�).
Note that x in this section is not a state but just an arbitrary real vector and input of
the model. We will actually use the context vector s as input in the following sections,
but here we stick to the standard notation, which uses x for feature vectors (inputs),
since the algorithms that we discuss in this section are general regression algorithms.

In linear regression we seek to maximize the likelihood of the model given the data.
This is equivalent to minimizing the negative log-likelihood or the sum of squared errors.
To find the maximum likelihood estimate for 5 , we have to assume a parametric form of
5 , in this case a linear function. With one output dimension (� = 1) this reduces to

5w (x) = w) q(x),

where q(x) ∈ R�′ is a nonlinear feature transformation and the hypothesis space is fully
defined by all possible w ∈ R�′ and � = f2 ∈ R. The probability of the dataset given the
hypothesis can hence be computed as

?(D|w, f2) =
∏
(x,y) ∈D

N(y |w) q(x), f2),

which directly translates to ?(D|w, f2) = L(w, f2 |D), the likelihood of the hypothesis
given the dataset. The maximum likelihood estimate is a solution to the optimization
problem

argmax
w,f2

L(w, f2 |D).

Since the negative logarithm is a monotonic function, we can simplify the problem and
find the solution by minimizing the negative log-likelihood

arg min
w,f2

− ln(L(w, f2 |D)).

After a lot of simplifications the negative log-likelihood almost reduces to the sum of
squared errors (see Bishop [Bis06, page 141, Equation 3.11])

− lnL(w, f2 |D) =

#

2
ln(2c) + #

2
ln(f2) + 1

2f2

∑
(x,y) ∈D

(
y − w) q(x)

)2
.

We have to find the zero of the derivative to compute the optimum. To prove that it
is a minimum we have to show that the second derivative (Hessian matrix) is positive
definite. We are at the moment only interested in the solution for w, which we can find
with normal equations. For more complex nonlinear models such as neural networks this

67

T
able

2.1.:
C

om
parison

of
w

eighted
regression.

�
:

design
m

atrix;
Q

=
�
�
)
:

G
ram

m
atrix;

y
targets;

J
:

diagonal
sam

ple
w

eight
m

atrix;
w
,"

:
m

odel
param

eters;
_:

regularization
coeffi

cient

A
lgorithm

O
b
jective

Solution

L
inear

R
egression

m
in

w
12 (y−

�
w)
)
(y−

�
w)

w
= (�

)
�)−

1
�
)
y

W
eighted

L
inear

R
egression

m
in

w
12 (y−

�
w)
)
J
(y−

�
w)

w
= (�

)
J
�)−

1
�
)
J
y

R
idge

R
egression

m
in

w
12 (y−

�
w)
)
(y−

�
w)+

_2
w
)
w

w
= (�

)
�
+
_
O)−

1
�
)
y

W
eighted

R
idge

R
egression

m
in

w
12 (y−

�
w)
)
J
(y−

�
w)+

_2
w
)
w

w
= (�

)
J
�
+
_
O)−

1
�
)
J
y

K
ernel

R
egression

m
in

"
12 (y−

Q
")
)
(y−

Q
")

"
=
Q
−
1
y

W
eighted

K
ernel

R
egression

m
in

"
12 (y−

Q
")
)
J
(y−

Q
")

"
=
(J

Q
) −

1
J
y

K
ernel

R
idge

R
egression

m
in

"
12 (y−

Q
")
)
(y−

Q
")+

_2
"
)
Q
"

"
= (Q

−
1+

_
O)

y

W
eighted

K
ernel

R
idge

R
egression

m
in

"
12 (y−

Q
")
)
J
(y−

Q
")+

_2
"
)
Q
"

"
=
(J

Q
+
_
O) −

1
J
y

C
ost-regularized

K
ernel

R
egression

m
in

"
12 (y−

Q
")
)
(y−

Q
")+

_2
"
)
�
J
−
1
�
)
"

"
=
(Q
+
_
J
−
1) −

1
y

68

2.3. A Detailed Overview of Contextual Policy Search

Figure 2.13.: Comparison of weighted linear regression methods. Methods with Tikho-
nov regularization have a regularization coefficient _ = 10−4, polynomial
regression uses 20 degrees, kernel-based methods use an RBF kernel with
W = 100, and the neural network has 500 and 500 hidden units.

might not be trivial and it might be infeasible to find the global optimum of the objective
function. At this point we can introduce sample weights in the objective to weight each
sample’s contribution to the total sum of squared errors.

See Table 2.1 for an overview of algorithms, objectives, and solutions for variations of
least squares regression and their counterparts that include sample weights. Note that
we made some simplifications here. We assume one-dimensional outputs. Hence, we can
write all outputs from the training set in a single vector y ∈ R# . We can also create a
design matrix � that contains the =-th projected feature vector q(x=)) in its =-th row.
Sample weights are organized in a diagonal matrix J.

From linear models we can derive nonlinear methods through nonlinear feature projec-
tion or kernel methods. Kernel methods replace the weight vector w by �

) " to introduce
scalar products that can be replaced by kernels. We can also apply Tikhonov regulariza-
tion, that is, we can penalize the Euclidean norm of the weight vector w. Thus, we do
not just maximize the likelihood but we also have a prior on the distribution of w and,
hence, compute the maximum a posteriori (MAP) estimate [Mur12, pages 225–227].

69

Chapter 2. State of the Art

Figure 2.13 compares several weighted regression methods on a simple one-dimensional
weighted regression problem. It also contains a neural network that minimizes the loss
that we will discuss in Section 2.3.4.

Sample weights can be integrated in two different ways in kernel methods: they can
be used directly to mitigate the error contribution of samples with low weight or they
can be used in kernel methods to apply different regularization coefficients per sample.3

The latter has been introduced by Kober et al. [Kob+12] in the algorithm CrKR. Since
the derivation is interesting and the most complicated one of the presented methods, we
will discuss it in Appendix D Derivation of Cost-Regularized Kernel Regression.

2.3.4. Regression with Uncertainty Estimation

Figure 2.14 compares three different approaches to uncertainty estimation. For simplicity
we omit sample weights in these plots. A detailed discussion on categories of uncertainty
estimates has been published by Kendall and Gal [KG17]. We briefly summarize it here
and apply it to regression models for contextual policy search.

Epistemic and aleatoric uncertainty can be distinguished. Epistemic uncertainty rep-
resents uncertainty in model parameters. We can reduce it by collecting more data.
Aleatoric uncertainty represents observation noise. If we observe multiple output values
for the same input, the variance of these output values will be an aleatoric estimate.
Furthermore, we distinguish homoscedastic and heteroscedastic aleatoric uncertainty.
Homoscedastic uncertainty is equal for the whole input domain, that is, the predicted
mean depends on the input but the covariance matrix does not (Gaussian: N(-(x),�)).
Heteroscedastic uncertainty depends on the input (Gaussian: N(-(x),�(x))). We can
estimate a full covariance matrix, a diagonal covariance matrix, or isotropic uncertainty
(� = f2O).

Let us take a look at contextual policy search algorithms and analyze their uncertainty
prediction properties. RWR [PS07] is the first algorithm that we can categorize as con-
textual policy search. In its original form RWR uses a probabilistic upper-level policy.
The model is N(y |-(x), f2O), where -(x) = w) q(x) with w, q(x) ∈ R�′ and y ∈ R� . The
covariance is isotropic as its variance is the same for all output dimensions and there are
no correlations. The distribution represents aleatoric uncertainty, that is, the weighted
variance of samples. It is obtained through weighted maximum likelihood, that is,

f2
=

1

�
Tr

[
(_ −�])) J (_ −�])

]
,

where all weights sum up to one ()A [J] = 1). The uncertainty estimate is homoscedastic
since the variance does not depend on the input vector.

C-REPS [Kup+13] uses a similar kind of uncertainty estimate based on weighted max-
imum likelihood for the full covariance

� = 2 · (_ −�])) J (_ −�]) ,
3This leads to the same result as Figure 2.13 suggests. Compare Weighted Kernel Ridge Regression

and Cost-regularized Kernel Regression.

70

2.3. A Detailed Overview of Contextual Policy Search

Figure 2.14.: Comparison of several uncertainty estimates. The transparent area indi-
cates the 95 % confidence interval (` ± 1.96f) of a prediction.

with 2 = 1/ (1 −)A [JJ]) to obtain an unbiased estimate [DNP13] (requires)A [J] = 1).
VIP [Neu11] also uses the weighted maximum likelihood estimate of the covariance but

incorporates previous covariances in the update. The influence of those is determined by
weights that will be optimized through gradient descent.

C-CMA-ES [Abd+17a] uses weighted maximum likelihood with additional tricks to
find a good covariance matrix for exploration. It computes an average of the previous
covariance, an estimate based on previous search directions, and the weighted maximum
likelihood estimate. Furthermore, the covariance matrix is scaled separately.

CrKR [Kob+12] predicts the variance with

f2
= : (x, x) + _ − k)

(
Q + _J−1

)−1
k .

For the RBF kernel the term : (x, x) is 1 and _ is a hyperparameter that is constant.
Hence, only the term −k)

(
Q + _J−1

)−1
k is a non-constant term. It reduces the variance

based on the values of the kernels. Since we use the RBF kernel, the closer x is to the
training data, the lower is the variance. This is a form of epistemic uncertainty prediction.
Gaussian process regression also estimates homoscedastic aleatoric uncertainty by adding
a regularization kernel and optimizing its coefficients.

71

Chapter 2. State of the Art

According to Kendall and Gal [KG17] we can predict heteroscedastic aleatoric uncer-
tainty with a neural network that has two outputs `w (x), fw (x) by minimizing negative
log-likelihood. We include sample weights 38 (

∑#
8=1 38 = 1) in the loss and extend it to

! (w) = 1

2

#∑
8=1

38

(
lnf2

w (x8) +
| |`w (x8) − y8 | |2

f2
w (x8)

)
.

Uncertainty estimates influence the exploration behavior of the agent in policy param-
eter space. Why do algorithms use fundamentally different approaches to uncertainty
estimation—aleatoric and epistemic uncertainty? Epistemic uncertainty explicitly fos-
ters exploration of previously unexplored regions, which is the most reasonable approach.
Aleatoric uncertainty estimates would actually not be enough to guarantee sufficient ex-
ploration and avoid premature convergence, however, because each training example has
a weight that is proportional to its return, aleatoric uncertainty increases more along the
directions to examples with high returns. This is still not sufficient for some algorithms,
hence, VIP and C-CMA-ES use additional modifications of the uncertainty update to
control exploration. In practice we also modify C-REPS to include regularization in
covariance estimation.

2.3.5. Contextual Policy Search Algorithms

After pointing out similarities of contextual policy search algorithms, let us take a closer
look at specific algorithms that we will use in the following chapters.

2.3.5.1. Contextual Relative Entropy Policy Search
This section was

published
originally in

[FM14] and has
been revised.

C-REPS allows any policy which can be learned by weighted maximum likelihood. A
frequently used variant is c8 () |s) = N

(
) |]) q(s),�

)
, where q(s) contains the linear and

quadratic terms of the context vector s,] is a weight matrix, and � the covariance of
the stochastic policy. C-REPS has been explained in detail by Deisenroth et al. [DNP13]
and Kupcsik et al. [Kup+13].

We summarize C-REPS in Algorithm 2. A stochastic policy c8 () |s) is used to generate
low-level controllers c) for a context s. We use a Gaussian policy with linear mean
[DNP13] so that 8 = (],�). After collecting # experience tuples (s8 ,) 8 , '(s8 ,) 8)) (lines
2–6), C-REPS determines a weight 38 for each experience based on the context-dependent
baseline + (s) = v) q(s) (lines 7–8). With the obtained weights, C-REPS updates the
policy by weighted maximum likelihood (lines 14–15). Note that this solution extends
the solutions from Section 2.3.3 to multiple output dimensions.

Implementing C-REPS is not straightforward. In our experiments and for our reward
functions it was sometimes numerically unstable. To improve the reproducibility of the
results, we explain some of the modifications that we made in addition to the log-sum-exp
trick (in line 7) that is already mentioned by Deisenroth et al. [DNP13].

The weighted least squares problem is sometimes ill-conditioned. Hence, we added the
regularization term _O so that

]new ← (�) J� + _O)−1�) J�.

72

2.3. A Detailed Overview of Contextual Policy Search

Algorithm 2 C-REPS
Require: n : maximum Kullback-Leibler divergence between two successive policy distributions;

q(s): extracts features from the context s; #: number of samples per update;]: initial
weights of upper level policy; �: initial covariance of upper level policy distribution

1: while not converged do

2: for 8 ∈ {1, . . . , #} do

3: Observe s8 ⊲ Draw from context distribution ?(s)
4:) 8 ∼ N(]) q(s8),�) ⊲ Draw policy parameters
5: Obtain '(s8 ,) 8) ⊲ Return of policy c)8 in environment with context s8
6: end for

7: Solve Lagrangian dual problem [[, v] = argmin[′,v′ 6([′, v′), subject to [> [min

6([, v) = [n + v) q̂ + [ln
(
#∑
8=1

1

#
exp

(
'(s8 ,) 8) − v) q(s8)

[

))

⊲ q̂ are average context features.
8: J8 9 ← X8 9

/
exp

(
' (s8 ,)8)−v) q (s8)

[

)
9: ⊲ / is chosen so that weights sum up to one, J is a diagonal matrix

10: for 8 ∈ {1, . . . , #} do ⊲ Prepare policy update
11: �8 = q(s8))
12: �8 =))8
13: end for

14:] ← (�) J�)−1�) J� ⊲ Update policy mean
15: �← 1

1−) A [JJ] (� −�])) J (� −�]) ⊲ Update exploration covariance
16: end while

Towards the end of the learning process, [sometimes becomes tiny which causes
numerical problems with the original formulation of C-REPS, which uses [min = 0. It is
helpful to use another lower bound [min so that [> [min. We suggest [min ∈

[
10−8, 10−4

]
.

For large returns the weights 38 = J88 are sometimes so big that the result of the
exponential function cannot be represented properly with 64-bit floating-point numbers.
Fortunately, 38 is a softmax term, which can be implemented numerically stable as

38 =
exp

(
' (s8 ,)8)−v) q (s8)

[

)
∑
9 exp

(
' (s 9 ,) 9)−v) q (B 9)

[

) =

exp
(
' (s8 ,)8)−v) q (s8)

[
− <

)
∑
9 exp

(
' (s 9 ,) 9)−v) q (B 9)

[
− <

) ,

where < = max8
(
'(s8 ,) 8) − v) q(s8)

)
/[so that the maximum argument of an exponential

function in this computation is 0.

2.3.5.2. Contextual Covariance Matrix Adaptation Evolution Strategies
This section was
published
originally in
[Fab19a] and has
been revised.

C-CMA-ES only has a few critical hyperparameters for which good default values are
known. It does not suffer from premature convergence like C-REPS. C-CMA-ES is based
on CMA-ES [HO01]. The original publication does not give a complete and correct listing

73

Chapter 2. State of the Art

Algorithm 3 C-CMA-ES
Require: #: update frequency; `: number of samples used for the update; q(s), k(s): context

transformations; _: regularization coefficient; =: parameter dimension; =B: context dimen-
sion; f0: step size; C: step counter, initially 1; search distribution is initialized to]0

= �
0
= O

1: J8 9 ← X8 9
/

max(0, (ln ` + 0.5) − ln (8))
2: ⊲ Diagonal sample weight matrix J ∈ R#×# , / is chosen so that weights sum up to one
3: `4 5 5 ← 1∑#

8=1 J2

88

4: 21 ← 2/
(
(= + =B + 1.3)2 + `4 5 5

)
5: 2` ← min

(
1 − 21,

2

(
`4 5 5 −2+ 1

`4 5 5

)
(=+=B+2)2+`4 5 5

)

6: 22 ←
4+

`4 5 5

=+=B
4+=+=B+2

`4 5 5

=+=B

7: 2f ←
`4 5 5 +2

=+=B+`4 5 5 +5

8: 3f ← 1 + 2max

(
0,

√
(`4 5 5 −1)
(=+=B+1) − 1

)
+ 2f + ln(= + =B + 1)

9: E| |N(0, O) | | ←
√
=
(
1 − 1

4=
+ 1

21=2

)
10: while not converged do

11: for 8 ∈ {1, . . . , #} do

12: Observe s8 ⊲ Draw from context distribution ?(s)
13:) 8 ∼ N(]C) q(s8), (fC)2�C) ⊲ Draw policy parameters
14: Obtain '(s8 ,) 8) ⊲ Return of policy c)8 in environment with context s8
15: end for

16: Build �, 	, �, and X, where �8 = q(s8)) , 	8 = k(s8)) ,�8 =))8 , X8 = '(s8 ,) 8)
17: HC ←

(
	

Z
	 + _O

)−1
	

Z X ⊲ Baseline
18: for 8 ∈ {1, . . . , #} do

19: �̂(s8 ,) 8) ← '(s8 ,) 8) − HC
)
k(s8)

20: end for

21: Order
[(
s1,)1, �̂(s1,)1)

)
, . . .

]
descending by advantage values �̂(s8 ,) 8)

22:]C+1 ←
(
�

ZJ� + _O
)−1

�
ZJ�

23: 5̂ =
1

#

∑#
8=1 q(s8); y =

] C+15̂−] C 5̂

fC ⊲ f-normalized step

24: pC+1f ← (1 − 2f) pCf +
√
2f (2 − 2f)`4 5 5

(
�
C
)− 1

2 y ⊲ Step size evolution path

25: ℎf ←


1 if | |pC+1f | |2

=
√

1−(1−2f)2C
< 2 + 4

=+1

0 otherwise

26: pC+12 ← (1 − 22) pC2 + ℎf
√
22 (2 − 22)`4 5 5 y ⊲ Covariance evolution path

27: 210 ← 21 (1 − (1 − ℎf)22 (2 − 22))
28: Y← ∑#

8=1

(
) 8 −]Cq(s8)

) J88

fC2

(
) 8 −]Cq(s8)

))
29: �

C+1 ← (1 − 210 − 2`)�C + 21 pC+12 pC+12
) + 2`Y

30: fC+1 ← fC exp
(
2f
3f

(
| |pC+1f | |

E | |N(0,O) | | − 1
))

31: C ← C + 1
32: end while

74

2.3. A Detailed Overview of Contextual Policy Search

Figure 2.15.: Comparison of C-REPS and C-CMA-ES in a simple contextual problem in
six generations. Background color indicates objective values. The optimum
is a quadratic function in the valley. The x-axis represents context and the
y-axis parameter. 100 samples per generation are used to move the search
distribution’s mean function from dashed to solid lines.

75

Chapter 2. State of the Art

of the algorithm, which we do in Algorithm 3. Abdolmaleki et al. [Abd+17a] provide a
more detailed explanation of the algorithm.

Note that the number of samples for an update, which is also called population size,
is written as # here, but the literature about CMA-ES uses _. As we do not want to
confuse it with the regularization parameter _ we will call it #.

A main difference to CMA-ES is that C-CMA-ES uses a context-dependent baseline
(line 17) to compute the advantage (lines 18–20) and determine the order of samples
(line 21). Furthermore, similar to C-REPS it performs weighted regression to estimate
the weight matrix (line 22), although the covariance matrix update is more complex.

The weight computation (line 1) is from CMA-ES. C-CMA-ES, like CMA-ES, separates
the step size f from the covariance. It estimates the evolution path (lines 24–26), which
is an approximation of the direction of previous update steps, to adapt the step size (line
30) and obtain an additional rank-1 update of the covariance. Hence, three ingredients
are used for the covariance matrix update in C-CMA-ES: the rank-1 update based on
the evolution path, a weighted maximum likelihood update like in C-REPS, and the old
covariance matrix is not immediately forgotten but decayed exponentially (lines 27–29).
These update steps are done with step-size normalized exploration noise.

Figure 2.15 illustrates how C-CMA-ES compares with C-REPS in a simple contextual
optimization problem. The initial variance of the search distribution was set intentionally
low to demonstrate that C-CMA-ES quickly adapts its step size, whereas C-REPS re-
stricts the maximum Kullback-Leibler divergence between successive search distributions
which results in slow adaptation.

2.3.6. Benchmarks

Episodic policy search and black-box optimization are similar. In the black-box optimiza-
tion community several benchmarks have been proposed. The most important benchmark
suite is Comparing Continuous Optimisers (COCO) [Han+16; Fin+19], which provides
24 noiseless objective functions that can be used to analyze the behavior of black-box
optimizers in a controlled setting. Those objective functions include five separable func-
tions, four functions with moderate conditioning, five functions with high conditioning,
five multi-modal functions with global adequate structure, and five multi-modal functions
with weak global structure. They can be instantiated for arbitrary parameter dimensions
greater than 1. Two examples with two parameters are shown in Figure 2.16.

As we discussed previously, we can extend black-box optimization with context pa-
rameters, that is, we can optimize argmin8 ∫S 5s (68 (s))3s with respect to parameters
of an upper-level policy 68 that maps the context to the optimum of the parameter-
ized objective function 5s. If we want to transfer the idea of benchmark functions to
contextual function optimization, we have to define parameterized objective functions
5s. In this thesis, we will modify existing benchmark functions from COCO. We apply
a context-based transformation ℎ of the parameter vector, that is, ℎ(s,)) =) ′, before
it is given to the original objective function 5 , hence, the contextual benchmark func-
tion is 5s ()) = 5 (ℎ(s,))). This approach has been later on used by Abdolmaleki et al.
[Abd+17a] as well. Specifically Abdolmaleki et al. [Abd+17a] proposed 5s ()) = 5 ()+Ms),
with a matrix M of components that are sampled independent and identically distributed

76

2.4. Summary

Figure 2.16.: Two object functions from the COCO benchmark: Schaffer’s F7 and Sphere.

(iid) from a standard normal distribution. We can extend this to 5s ()) = 5 (Mq(s)), with
a transformation q of the context vector. If q

(
(B1, B2))

)
=

(
1, B1, B2, B1B2, B

2

1
, B2

2

)) , we
would be able to represent any quadratic function of s = (B1, B2)) . The effect of the
transformation ℎ is to make the optimum of the objective context-dependent. The con-
textual optimizer has to compensate for ℎ while it samples in individual contexts.

2.3.7. Discussion

We have seen that there are strong connections between black-box optimization and
policy search. C-REPS has been the most important contextual policy search algorithm
for several years; however, it has been shown that it suffers from premature convergence
[Abd+17b]. Recently, novel approaches have been proposed: C-CMA-ES, C-MORE, and
BO-CPS can be considered state of the art in contextual policy search.

C-CMA-ES is similar to C-REPS and it is computationally more efficient than BO-
CPS with respect to the number of parameters that have to be optimized. For high-
dimensional, redundant context vectors such as camera images C-MORE is particularly
effective because it uses a dimensionality reduction method. Since we are more interested
in low-dimensional context vectors in this thesis, we will mostly focus on C-REPS and C-
CMA-ES. As most contextual policy search algorithms are local search approaches, they
need a good initial search distribution, which is often obtained by imitation learning.

BO-CPS is different, as it is a global optimizer and is only efficient enough for a small
number of control policy parameters. It is the most sample-efficient algorithm though.
BO-CPS will have an important role in this thesis and will be presented in detail in
Section 4.4.

2.4. Summary

We give a broad overview of behavior learning methods and problems in robotics. Al-
though there are several survey papers on various aspects, such a complete and broad
overview is new.

77

Chapter 2. State of the Art

We identify policy gradient algorithms for neural networks as a promising field of
research, especially for high-dimensional sensor data, but regard current approaches as
too brittle and difficult to tune. Policy search with movement primitives is a field with
a lot of potential for robust and sample-efficient methods that can be initialized from
imitation of human demonstration. These methods will form the basis for the next
chapters. Natural and highly optimized demonstrations from humans can be obtained
best from motion capture data, however, the embodiment mapping has to be defined.
Contextual policy search is a way to generalize behaviors over several task parameters
or the context. It is, however, either not sample efficient enough or not applicable to
complex movements. We have to address this issue.

Related Publications

[Fab+20] Alexander Fabisch, Christoph Petzoldt, Marc Otto, and Frank Kirchner.
“A Survey of Behavior Learning Applications in Robotics—State of the Art
and Perspectives”. In: International Journal of Robotics Research (2020).
Submitted.

[Fab19] Alexander Fabisch. “Empirical Evaluation of Contextual Policy Search with
a Comparison-based Surrogate Model and Active Covariance Matrix Adap-
tation”. In: Genetic and Evolutionary Computation Conference Companion.
Ed. by Manuel López-Ibáñez. GECCO ’19. ACM, 2019, pp. 251–252. isbn:
978-1-4503-6748-6. doi: 10.1145/3319619.3321935.

[FM14] Alexander Fabisch and Jan Hendrik Metzen. “Active Contextual Policy
Search”. In: Journal of Machine Learning Research 15 (2014), pp. 3371–
3399. url: http://jmlr.org/papers/v15/fabisch14a.html.

The overview of behavior learning problems is based on Fabisch et al. [Fab+20]. While
the complete publication is a joint work with the co-authors, the analysis that is included
in this thesis (Chapters 1, 2, and 8) is my contribution. Exceptions are marked accord-
ingly: Figure 2.4 and Appendix A.

The description of the algorithm C-REPS has been extracted from Fabisch and Metzen
[FM14] and the description of C-CMA-ES from Fabisch [Fab19].

78

Part II.

Enhanced Methods for Robot

Behavior Learning

79

Chapter 3. Imitation with Automatic Embodiment Mapping

Figure 3.1.: Synchronization frames on the human teacher and on the robot.

these trajectories to the workspace of the robot so that they are reachable and there are
no discontinuities in joint space.

As a first step, we define so-called synchronization frames (see Bongardt [Bon15] for
a thorough mathematical introduction) that exist in the teacher’s workspace and in the
robot’s workspace. A synchronization frame is a reference frame, in which a demon-
stration is recorded (teacher) or reproduced (robot) so that we can directly transfer
demonstrations to the corresponding synchronization frame in the robot’s workspace.
See Figure 3.1 for an illustration of a ball throwing example.

In some situations it is obvious how the corresponding synchronization frame of the
robot should be selected to transfer demonstrated trajectories in Cartesian space. For
example, if we define the teacher’s reference frame to be the target of a grasping move-
ment, we will not change this for the robot. In other cases it is not obvious. Consider
a ball-throwing movement where the reference frame of the recorded movement is the
human teacher’s back (see Figure 3.1). When we want to transfer the observed trajectory
to a robotic arm, it is not obvious where we would put the synchronization frame.

We can choose it arbitrarily and use this freedom to account already for some of the
problems caused by the correspondence problem without any information about the task.
We use optimization to do this. For simplicity, we assume that both synchronization
frames are constant over time, so that we effectively shift the whole trajectory globally
to compensate for some differences in the structure of the human teacher and the robotic
learner.

82

3.1. Task-Agnostic Embodiment Mapping

More precisely, we optimize a parameterized linear mapping of the form

6� (GC , HC , IC , UC , VC , WC) =

©­­­­­­­­­­«

XUB ,VB ,WB

©­­«
(1 − B)

©­­«
G0

H0

I0

ª®®¬
+ B

©­­«
GC

HC

IC

ª®®¬
ª®®¬
+

©­­«
GB

HB

IB

ª®®¬
UC + UB
VC + VB
WC + WB

ª®®®®®®®®®®¬

,

to transfer a pose (GC , HC , IC , UC , VC , WC) given by a position and Euler angles (intrinsic
rotations around x-, y’- and z”-axis) in a sequence of poses C ∈ {0, . . . ,)} from the
synchronization frame of a human demonstration to the origin of the robotic target
system. We also use a spatial scaling factor B ∈ (0, 1] to more easily fit the trajectory
into the robot’s workspace,) = UB, VB, WB are Euler angles that define a rotation, and
bB = (GB, HB, IB) is a translation. B,) , b will be selected to maximize the objective

5 (B,) , b) = exp

(
10

) + 1
∑
C

A (6� (pC))
)

(reachability)

− FE4;
∑
C

q¤ (6� (pC)) (velocities)

− F022
∑
C

q¥ (6� (pC)) (accelerations)

− F 9A :
∑
C

q̈(6� (pC)) (jerks)

− F2>;;
∑
C

2(qC) (self-collisions)

− F38BC | | p) | | (displacement)

+ Fℎ486ℎC
∑
C

p3,C (height)

+ FB8I4
3∑
3=1

max
C

p3,C −min
C

p3,C , (spatial extent)

where C ∈ {0, . . . ,)} is the time step, A (p) is 1 if p is a reachable end-effector pose and 0
otherwise, 2(q) is 1 if the configuration results in self-collision and 0 otherwise, pC is an
end effector pose and qC are corresponding joint angles at step C. The objective maximizes
reachability, while minimizing the risk of getting too close to singularities, avoiding self-
collisions, and maximizing exploitation of the robot’s workspace. To maximize 5 any
black-box optimizer can be used. We decided to use CMA-ES [HO01] for the following
evaluation. We could also use gradient-based optimizers such as L-BFGS [Noc80] with
finite differences. The weights of the objective have to be configured appropriately.

83

Chapter 3. Imitation with Automatic Embodiment Mapping

3.1.2. Local Pose Optimization with Approximate Inverse Kinematics

We will use an approximation to the numerical solution of inverse kinematics if it is
difficult to find a mapping that fits the trajectory into the workspace of the robot without
changing its global structure.

3.1.2.1. Related Work: Inverse Kinematics

Let qC be the joint angles of a kinematic chain at time C. The forward kinematics of the
chain is given by 5 (qC) = pC , where pC denotes the end effector’s pose. An exact solution
to the inverse kinematics (IK) problem would be 5 −1(pC) = qC ; however, 5 −1 is often not
a function, as more than one joint configuration can result in the same end-effector pose.

Numerical solutions to inverse kinematics efficiently handle kinematic chains that have
many solutions or no analytical solution. Widely used approaches are based on the
Jacobian pseudo-inverse or Jacobian transpose [Nil09], although sequential quadratic
programming has been shown to outperform these with regard to joint limit handling
and computation time [BA15]. Indirect formulations of the form

arg min
qC ∈R=

(qC−1 − qC)) (qC−1 − qC), s.t. 68 (qC) ≤ 18 , 8 = 1, . . . , <

where the constraints defined by 68 , 18 include the Euclidean distance error, the angular
distance error, and joint limits (for example, Kumar et al. [KSB10] and Fallon et al.
[Fal+15]), have a lower success rate than direct formulations of the form

arg min
qC ∈R=

3 (5 (qC), pdes
C)) (3.1)

B.C. 68 (qC) ≤ 18 , 8 = 1, . . . , < (3.2)

where 3 is a pose distance metric, pdes
C is the desired end-effector pose, and the inequality

constraints only consist of the joint limits [BA15].
Few works investigate approximate IK solutions; however, when the desired end-

effector pose cannot be reached exactly, we should use at least the closest possible solu-
tion. Unreachable poses might be a problem of robots that have a low number of joints
[Hen14] or at the borders of workspaces as this can be seen in visualizations of capability
maps [ZBH07]. Traditional methods based on the Jacobian pseudoinverse tend to be
unstable and run into local minima [Nil09; Hen14] here. Rakita et al. [RMG18] develop
RelaxedIK, which approximates solutions to the inverse kinematics problem but also
generates smooth joint space trajectories, avoids self-collisions, and avoids singularities.
Those are typical features of an offline planner and are now solved online with a sequen-
tial quadratic programming algorithm. RelaxedIK can be regarded as the link between
conventional inverse kinematics solvers and whole-body control [SK06], which optimizes
multiple arbitrary objectives for a complex robotic system online. RelaxedIK is similar
to our solution, which has been developed independently in 2016 before RelaxedIK has
been published.

84

3.1. Task-Agnostic Embodiment Mapping

(a) Exact inverse kinematics. The end effector
of a Kuka iiwa should follow a sine curve
with a fixed rotation (indicated by small co-
ordinate frame). Most parts of the trajec-
tory are not exactly reachable and marked
by a red line. Reachable poses are indicated
by a green line.

(b) Approximation of inverse kinematics. The
desired trajectory is marked by the black
line and its approximation with numerical
inverse kinematics by the green line with
small coordinate frames indicating orienta-
tions. We use the weight 0.001 for the ori-
entation and 1 for the position. Deviations
from the desired positions are marked by
red areas.

Figure 3.2.: Comparison of exact inverse kinematics and an approximation. The desired
trajectory is close to the border of the robot’s workspace.

3.1.2.2. Configurable Approximate Inverse Kinematics

A disadvantage of conventional inverse kinematics solvers is that they do not allow to
configure the approximation of a pose. In behavior learning it is often not required to
reach each pose in a trajectory exactly. Consider the problem of learning to grasp an
object. Orientation of the end effector is not relevant at the beginning of a reaching
movement. It only becomes important at the end. Therefore, we develop a configurable
IK solver based on the work of Beeson and Ames [BA15].

The approach is illustrated in Figure 3.2. In Equation 3.1 we use the distance metric

3 (p1, p2) = Fpos | | p1,1:3 − p2,1:3 | |22
+Frot

[
min(| | ln(p1,3:7 ∗ p2,3:7) | |2, 2c − || ln(p1,3:7 ∗ p2,3:7) | |2)

]2
,

where p1:3 represents the position of the end effector and p3:7 is a quaternion that
represents the orientation. ln is the logarithmic map. The metric consists of a position

85

Chapter 3. Imitation with Automatic Embodiment Mapping

distance and a rotation distance. We could also use other orientation distances [Huy09].
This allows us to set different weights on position and rotation because it is often much
more important to reach a desired position than the desired orientation. We could extend
this pose metric so that we can weight each of the six degrees of freedom individually.

3.1.3. Evaluation of Task-Agnostic Embodiment Mapping

In this section, we evaluate the proposed task-agnostic part of the embodiment mapping
with Touhu, which is a throwing game that is traditionally played in East Asia. The goal
is to throw a stick from a given distance into a pot. We use this scenario to evaluate the
transferability of throwing movements to different robotic systems using their kinematic
models. We use a large dataset of demonstrated throws to find out how many throws
are transferable, if they are distorted a lot, and what the differences between various
robotic systems are. Additionally, the quality of the transferred movements is evaluated
in a second experiment, where the trajectory and goal position of the stick thrown by
humans is compared with the one thrown by a real UR5 robot. Finally, we want to answer
the question how far we get with a task-agnostic embodiment mapping and whether task-
specific refinement is required.

3.1.3.1. Experimental Setup

Throwing motions that are demonstrated by human subjects are recorded with a marker-
based motion capture system [Qua20a]. Markers are attached to the hand, elbow, shoul-
der, and back of each subject to track these positions. We use three markers to determine
the orientation of the back and the hand. The complete marker setup can be seen in
Figure 3.3.

In a second experiment, in addition to the human movement, we track the position of
the stick. The trajectories of the thrown stick from the demonstration can be compared
with the resulting trajectories after imitation of the throwing motion on the real system.
Thus, a marker is placed on one end of the stick. Additionally, the movement of the
robotic arm UR5 is captured by placing a marker at the end effector (see Figure 3.3).

We extract the relevant throwing movements automatically from the recorded motions
of the human (see Chapter 5 for more details). To transfer the recorded demonstrations
to the four robotic systems, the embodiment mapping has been optimized with the
following weights in the objective function: F2>;; = 100, FE4; = 100, F022 = 10, F 9A : =

1, F38BC = 0.1, Fℎ486ℎC = 50, FB8I4 = 100. These weights have been determined empirically.
The optimization was limited to the Cartesian translation of the trajectory within the
workspace of the robot. Orientation and scaling remained unchanged. In addition, the
resulting trajectory is smoothed with a mean filter in Cartesian space and in joint space
(positions and accelerations) to avoid high accelerations.

86

3.1. Task-Agnostic Embodiment Mapping

(a) Setup to record the human arm motion with
markers attached to the back, arm, and hand.

(b) A marker is attached to the stick to
record its position. UR5 is tracked
with a marker at the end effector.

Figure 3.3.: Motion capture setup. (Illustrated by Lisa Gutzeit [Gut+19].)

3.1.3.2. Transfer in Simulation

Throwing motions of seven different subjects, each performing between 41 and 246
throws, were recorded to evaluate the generality of our approach. In total, 697 Touhu
demonstrations were recorded. With such a large dataset, we are able to evaluate the
generality of the movement segmentation as well as the transfer to different robotic sys-
tems, namely Universal Robots’ UR5 and UR10, Kuka iiwa 7 and DFKI’s COMPI (see
Appendix F for details).

The throwing trajectories mapped into the workspace of the robotic system UR5,
UR10, Kuka iiwa and COMPI, are shown in Figures 3.4a and 3.4b. 682 out of 697

trajectories were transferred to the workspaces of all target systems. We can see that
most trajectories easily fit in the workspace of UR10 (arm radius: 1300mm) and KUKA
iiwa (arm radius: 1266mm), while many trajectories have to be distorted or are close to
the borders of the workspace of UR5 (arm radius: 850mm) and COMPI (arm radius:
940mm). Throwing movements often tend to be close to the borders of the human’s
workspace. Hence, the skill that we selected is quite challenging for smaller robots.
Figure 3.4b shows the demonstration of subject 5 transferred to each target system.

3.4c shows the ground contact points of sticks for the presented throwing trajectories
from simulation. We see that the UR10 has the widest distribution as it has the largest
workspace. We will quantify how well the throwing trajectories can be transferred to the
real UR5 robot with the next experiment, as it is one of the robotic systems with a more
restricted workspace.

87

Chapter 3. Imitation with Automatic Embodiment Mapping

(a) All recognized throwing movements transferred to the workspace of the four robots. Tra-
jectories from the same subject are shown in the same color.

(b) All throwing movements of subject 5. Colors indicate the indices of the throws. The
frames of the robots’ base links are shown.

(c) Throwing results in simulation. We display the distribution of ground contact points of
the sticks. Colors of the points indicate the index of the transferred throwing trajectory.
Thus, similar colors most likely correspond to the same subject.

Figure 3.4.: End-effector trajectories of throwing movements in robots’ workspaces and
corresponding ground contact points of the sticks.

3.1.3.3. Transfer to a Real System

We additionally recorded 34 throwing movements of three subjects, in which also the
position of the stick was tracked. Three subjects performed 10, 11 and 13 throws respec-
tively. These demonstrations were transferred to the real UR5 robotic arm. We analyzed
the number of successful throws, the stick position during the throw and its goal po-
sition. A demonstrated throw on the UR5 robot is evaluated as transferable if robot
and stick do not collide with anything, the stick does not fall out of the stick holder
while the robot approaches the starting pose, and the stick leaves the holder during

88

3.1. Task-Agnostic Embodiment Mapping

(a) 3D plot of stick trajectories of the best (left), a good (middle), and the worst (right)
result. The orange trajectory indicates how the stick was thrown in the demonstra-
tion and the blue trajectory is the reproduction by the UR5.

(b) Average dynamic time warping distances and dis-
tances of goal positions.

Figure 3.5.: Analysis of the execution of throws on the real UR5.

the throwing motion. To evaluate the quality of the transferred throws, we compare the
stick trajectories of the demonstrated throws and the recordings of the throws transferred
to the UR5. Since the motion capture system sometimes returned noisy stick position
measurements, the trajectories had to be interpolated. A quadratic model was used for
interpolation. The same model has been used to extrapolate both the demonstrated and
the reproduced stick trajectory until the stick hit the ground. Before this, we aligned
the demonstrated trajectory with the start position of the transferred one. Thus, the
distance between ground contact points as well as the similarity of the stick trajectories
can be determined. We use the average dynamic time warping (DTW) [SC78] distance,
that is, the DTW distance divided by the maximum number of steps of the two time
series, to compare the trajectories.
27 out of 33 throws could be transferred to the real UR5. A comparison of the stick
trajectories can be seen in 3.5a, in which the best, a good, and the worst result are visu-
alized. The mean average DTW distance is 0.15m (standard deviation: 0.1m), and the
mean goal distance is 0.72m (standard deviation: 0.31m). The full error distribution is
shown in 3.5. The results show, that it is possible to automatically imitate demonstrated
throws and that most of these throws are executable on the real system. Furthermore,

89

Chapter 3. Imitation with Automatic Embodiment Mapping

the executed movements show useful throws. Despite everything, the goal positions of
the demonstrated throws are not reached by the system.

3.1.4. Discussion

Throwing trajectories are automatically extracted from human demonstrations, and
transferred to four robotic target systems. We show that the embodiment mapping,
which is needed to map human movement trajectories into the robot’s workspace, can be
automized for a dataset of 697 throws. Throwing is a challenging skill for these robots
because it has high accelerations and velocities and is close to the border of the workspace
of humans. Nonetheless, most of the demonstrated throws could be transferred to the
systems using our approach. Furthermore, we evaluate the difference of stick trajecto-
ries and ground contact points between demonstrated throws and reproductions of those
on a real UR5. Although the demonstrated throwing motions could be successfully ex-
ecuted on different systems, there is still a considerable gap between the outcome of
demonstrated throws and their reproductions.

Furthermore, this approach does not work well for arbitrary types of robot skills. To
transform demonstrated trajectories to the robot’s workspace, the trajectories sometimes
have to be modified. Long trajectories may have to be scaled down to completely fit into
the workspace. Fast trajectories may have to be slowed down to be executable by the
system. Often trajectories have to be translated with respect to the synchronization
frame in the workspace of the robot. This conflicts with trajectories that require that
certain poses, such as via points and goals, are reached. For this kind of task it is required
that these particular poses are reachable by the end effector, relative to given reference
frames. These constraints are not integrated in the objective of our embodiment mapping
and will be completely ignored. Thus, even though the human may have demonstrated a
successful reaching behavior, the robot might not be able to solve the same task because
the trajectory has been shifted by the embodiment mapping. The goal of our embodiment
mapping is to generate a good initial motion that is executable and can later be refined
for a specific task and target system.

Similar work on automating the embodiment mapping has been presented by Maeda
et al. [Mae+16]. Our approach to this problem has been developed before this work has
been published. It is is more restricted, as we do not integrate task-specific constraints
in the optimization process (for example, collision penalties for external objects or via
points), but this also is the benefit of our approach as it is more modular, which allows us
to use any standard black-box optimization method to optimize the embodiment and do
task-specific adaptation with standard reinforcement learning algorithms. Furthermore,
no model of the environment is needed at this stage. The only prior knowledge that is
needed is a kinematic model of the robot. In this section we examined if this restricted
approach already generates useful trajectories in the workspace of the robot. The main
focus lies on the automation of the embodiment mapping to map human movement
recordings to a trajectory which is executable on the system.

90

3.2. Task-Specific Policy Refinement

3.2. Task-Specific Policy Refinement
This section was
published
originally as
[Fab20] and has
been revised.

Until now we only used knowledge about our target system. To ensure that the imitated
skill has the same effects as the demonstration, we must integrate knowledge about the
task. This will be done in the policy refinement step.

Here we account for kinematic and dynamic differences that cannot be resolved easily.
For instance, a human teacher might have a hand structure that is different from the
target system. An example is displayed in Figure 3.1: the target system does not even
have an actively controllable hand. It has a scoop mounted on the tip of the arm. In
other cases, the robot might have a gripper that does not have all of the capabilities
of a human hand. Another problem in the ball-throwing domain is the dynamic and
kinematic difference between the human demonstrator and the target system. It might
be possible for the robot to execute the throwing movement after temporal scaling, but
this step can reduce the velocity in Cartesian space so drastically that the ball does not
even leave the scoop.

3.2.1. Policy Search for Policy Refinement

We propose to use policy search methods for task-specific refinement. Therefore, we must
define a reward function that can be used by policy search to complete the embodiment
mapping.

We will use DMPs as policies at this stage because they are well known and stable
trajectory representations that can be used for imitation and policy search. Many pol-
icy search algorithms for DMPs are based on similar principles: we learn a Gaussian
distribution from which we sample policy parameters. We will use CMA-ES [HO01] or
REPS [PMA10] to refine policies. CMA-ES has few critical hyperparameters and is still
reliable, when those are not set perfectly. REPS is a bit more difficult to tune but can
be similarly sample-efficient.

We are particularly interested in the question whether it is better to do policy search
directly in task space because demonstration and main objectives of the learning problem
are given in task space, for example, end-effector poses in Cartesian space. We will
investigate this empirically in the following experiments. When policy search methods
are used to learn end-effector trajectories in task space, it often occurs that a trajectory
is not completely in the robot’s workspace. The resulting return landscapes are difficult
to optimize. We will again address this problem with the approximation of IK.

3.2.2. Related Work: Behavior Learning in Cartesian Space

Examples for skills that have been demonstrated in task space and transferred to robots
are pancake flipping (learned from kinesthetic teaching; [KCC10b]), peg in hole (learned
from teleoperation; [Krü+14]), and serving water (kinesthetic teaching with a similar
arm; [Pas+09]). There are several reasons for learning trajectories in task space. Learning
in Cartesian space is often easier when the main objectives are defined in Cartesian
space. Learning to grasp an object in joint space might result in complicated Cartesian

91

Chapter 3. Imitation with Automatic Embodiment Mapping

trajectories. When we want to transfer a skill from one robot to another it is easier
over end-effector poses instead of joint angles because of different kinematic structures
[Pas+09], since part of the correspondence problem is solved by forward and inverse
kinematics.

3.2.3. Experiments: Refinement in Cartesian Space and Joint Space

We want to answer the questions (1) whether it is easier to refine trajectories in Cartesian
space or in joint space and (2) whether it is better to use an approximation of inverse
kinematics than only exact solutions for refinement in Cartesian space. The following
paragraphs will summarize the results obtained for several problems that have different
return surfaces.1

3.2.3.1. Methods

The artificial RL problems that we will solve vary in difficulty, that is, indirection and
smoothness of the return. We will only learn the weights of the DMPs. Metaparameters
are constant. A DMP based on quaternions [Ude+14] will be used to generate end-effector
poses.

We will use CMA-ES for policy search. Its most important hyperparameter is the
initial step size f. It determines the width of the initial search distribution. If it is not
large enough, the algorithm will first have to increase the step size for several updates
before it converges. If it is too large, convergence will take longer. For a comparison it
is important to select the correct step size ratio between joint space and Cartesian space
so that the results will not be distorted by a wrong choice of this parameter. In these
experiments, we use the Kuka iiwa 14 R820 robot arm with 7 DOF (see Appendix F.2),
for which we determined empirically that the initial step size in joint space must be 2 to
3 times higher than in Cartesian space to achieve similar end-effector motions.

In the first two experiments, the optimum solutions are close to the border of the
workspace so that not every orientation can be reached. In all experiments we compare
(1) learning weights of DMPs in joint space, (2) in Cartesian space with the proposed
approximate IK, and (3) in Cartesian space with an exact IK. The term exact throughout
this section means a numerical IK solver based on the pseudoinverse of the Jacobian that
does not move the end effector if no valid solution has been found.

We will execute 30 runs per configuration with different random seeds for CMA-ES. We
use the results to plot learning curves with the mean and standard error of the maximum
return obtained so far. Each DMP in our setup has 50 weights per joint space or task
space dimension.

3.2.3.2. Via Point

In the via-point problem, the end effector should pass through intermediate positions
(via points). Simpler via-point problems have been used before to compare various policy
search methods [Kob+10; PS06]. In this version we want the end effector to pass through

1Implementation is available at https://github.com/rock-learning/approxik.

92

3.2. Task-Specific Policy Refinement

(a) Learning curves for the via point problem.
The y-axis is logarithmic.

(b) Projection of the return surface of the via
point problem on one axis.

Figure 3.6.: Results of the via-point problem.

five Cartesian points (see Figure 3.7) while minimizing joint velocities and accelerations.
The return is

' = −10 ©­«
∑
(C. ,.)
| | 5 (qC.) − . | |2

ª®¬
− 10−3

(∑
C , 9

|q¤ C , 9 |
)
− 10−5

(∑
C , 9

|q¥ C , 9 |
)
,

where C ∈ {1, . . . , 101} represents the step, 9 are joint indices and (C. , .) represents a
position . that has to be reached at time C. .

The results are shown in Figure 3.6a. Learning in Cartesian space is more sample-
efficient because the primary objective is defined in Cartesian space. The exact IK per-
forms worse because the approximate IK generates more smooth trajectories. Via-point
problems belong to the most simple class of problems for policy search methods because

Figure 3.7.: Via point problem: 5 via points (circles) have to be reached. The red line
indicates the order. The blue line is a trajectory generated by a DMP with
small coordinate frames indicating orientations.

93

Chapter 3. Imitation with Automatic Embodiment Mapping

(a) Illustrations of obstacle avoidance problem: ball-shaped
obstacles must be avoided between start (triangle) and
goal (circle). An example of an optimized trajectory is
displayed. The line indicates an optimized trajectory
(orientations are indicated by small coordinate frames).

(b) Learning curves for the obstacle avoid-
ance problem. The y-axis is logarith-
mic.

Figure 3.8.: Obstacle avoidance problem.

there are no flat regions or abrupt changes in the return surface so that it is easy to deter-
mine the direction of improvement. We can get a rough impression of the return surface
of the problem from Figure 3.6b. To generate a projection of the return surface on one
DMP weight dimension, we learn a DMP for 1000 episodes, keep the best policy, modify
the 50th weight by adding an offset, and measure the corresponding return. We can see
that for both the joint space DMP and the Cartesian DMP with an approximate IK the
return surface is smooth with only one maximum. With the exact IK, the return surface
is rough and abruptly changing in some regions, which makes learning more difficult for
CMA-ES. Learning in joint space, however, is worse than learning in Cartesian space
because of the nonlinear mapping from weights to positions in Cartesian space through
the forward kinematics of the robot arm. This results in more complex dependencies
between parameters.

3.2.3.3. Obstacle Avoidance

In the obstacle avoidance problem, the end effector has to avoid several obstacles rep-
resented by spheres. It is an artificial problem because we only consider end-effector
collisions and not the arm to which it is attached. The environment is displayed in
Figure 3.8a. The return is

' = −10
(∑

1

?

(
min
qC
| | 5 (qC) − 1 | |2

))
−100| | 5 (q))−g | |2−10−2

(∑
C , 9

|q¤ C , 9 |
)
−10−5

(∑
C , 9

|q¥ C , 9 |
)
,

where C ∈ {1, . . . ,)} with) = 101 represents the step in time, 9 are the joint indices, g is
the desired goal position, and ?(3) = max(0, 1 − 3

0.17
) is greater than zero when the end

effector is in the vicinity of one of the obstacles.
Figure 3.8b shows the results. We see that learning in Cartesian space is again more

sample-efficient because the primary objective is defined in Cartesian space. The exact

94

Chapter 3. Imitation with Automatic Embodiment Mapping

Figure 3.10.: Mapping from weights to corresponding return in the via-point problem. In
each case the return of a weight vector involves different mappings.

3.2.4. Discussion

Weights in a DMP are bound to a specific radial basis function. They only influence one
specific joint or pose dimension and only affect accelerations of the arm locally in time.
They will affect the positions in all following time steps but with a decreasing influence
because the weight of the learnable forcing term converges to zero. So it is possible to
design a return so that the optimization problem becomes partially separable and, hence,
easy to solve.

In the via-point and obstacle avoidance problems there is a direct relation between
weights of the Cartesian DMP and obtained return (see Figure 3.10). With the approx-
imate IK we use the weights to generate a pose trajectory. An acceleration is computed
based on the linear forcing term that includes the weights and decays exponentially over
time. The acceleration is integrated to obtain a trajectory of end-effector poses. The
trajectory might not be perfectly executable so that in unreachable regions the pose is
mapped to the closest reachable pose. For each via point we compute the distance to
the corresponding poses from the trajectory. Hence, the mapping from specific weights
to the return in the workspace of the robot is straightforward and the return is partially
separable with respect to the weights of a DMP.

Joint space DMPs result in a nonlinear mapping with coupling between dimensions of
the weight space because of the forward kinematics of the robot. This results in a difficult
optimization problem that is not partially separable anymore and is even multi-modal.

The more complex the relation between weights and return becomes, the smaller is the
difference between learning in joint space and learning in Cartesian space. An example
is the pouring problem. It has an almost flat return surface where the arm collides with

96

3.3. Summary

an obstacle or a marble falls down. Small weight changes can make a difference between
a marble staying within the glass and falling down, hence, the return will abruptly
change in the corresponding regions of the weight space. The relation between the DMP
weights and a successful behavior is complex, highly nonlinear, and non-separable. This
eradicates the advantage of learning in Cartesian space.

Hence, learning in Cartesian space can be beneficial but it is not always the best option.
It will be advantageous if the main objective has to be solved in Cartesian space and
the return is almost separable. It is not always obvious when this is the case though.
The advantage of learning in Cartesian space vanishes for more complex, nonlinear, non-
separable returns. Policy search works best in the space in which the primary objectives
are defined directly. Generating smooth trajectories is simpler in joint space. This is, for
example, required for throwing behaviors. When we learn in Cartesian space and a pose
is not reachable we should use the best possible approximation of a solution to the IK
problem to generate a smooth return landscape.

3.3. Summary

We propose a procedure to automatically generate the embodiment mapping to transfer
demonstrated end-effector trajectories from a human to a robotic system. It consists of
three optimization phases that transform trajectories so that they are first executable
on the target system and then solve the desired task, while the former only requires
information about the target system the latter also requires information about the task
in form of a reward function that describes how a good solution to the problem has to
look like.

The contributions of this chapter to the state of the art are the following: the develop-
ment of the previously mentioned procedure, a large-scale evaluation of the task-agnostic
part of the automated embodiment mapping with various subjects and robotic target
systems, the development of an approximation to inverse kinematics, and a comparison
of trajectory refinement in Cartesian and joint space.

While inverse kinematics has not been reinvented with the approximation of inverse
kinematics, it is a trick that works remarkably well in comparison to using strict inverse
kinematics solvers. It is highly beneficial in the task-agnostic embodiment mapping, can
be beneficial for policy refinement, and, as we will see in Chapter 4, can be used to
generalize behaviors.

Related Publications

[Fab20] Alexander Fabisch. “A Comparison of Policy Search in Joint Space and
Cartesian Space for Refinement of Skills”. In: Advances in Service and In-
dustrial Robotics. Ed. by Karsten Berns and Daniel Görges. Springer, 2020,
pp. 301–309. isbn: 978-3-030-19648-6. doi: 10.1007/978-3-030-19648-
6_35.

97

Chapter 3. Imitation with Automatic Embodiment Mapping

[Gut+18] Lisa Gutzeit, Alexander Fabisch, Marc Otto, Jan Hendrik Metzen, Jonas
Hansen, Frank Kirchner, and Elsa Andrea Kirchner. “The BesMan Learning
Platform for Automated Robot Skill Learning”. In: Frontiers in Robotics
and AI 5 (2018), p. 43. issn: 2296-9144. doi: 10.3389/frobt.2018.00043.

[Gut+19] Lisa Gutzeit, Alexander Fabisch, Christoph Petzoldt, Hendrik Wiese, and
Frank Kirchner. “Automated Robot Skill Learning from Demonstration for
Various Robot Systems”. In: KI: Advances in Artificial Intelligence. Ed. by
Christoph Benzmüller and Heiner Stuckenschmidt. Springer International
Publishing, 2019, pp. 168–181. isbn: 978-3-030-30179-8. doi: 10.1007/978-
3-030-30179-8_14.

The automatic embodiment mapping has been published first in Gutzeit et al. [Gut+18]
and the large-scale evaluation has been done in Gutzeit et al. [Gut+19]. It is embedded
in a larger framework as we will see in Chapter 5. I contributed the concept of the
automatic embodiment mapping, implemented it for several application scenarios that we
will discuss in Chapter 5, and did the analysis of transferred trajectories for simulated and
real robots in this chapter. In Gutzeit et al. [Gut+19], Christoph Petzoldt contributed
to the implementation and application of the global trajectory optimization that has
been developed earlier in Gutzeit et al. [Gut+18] as well as the integration of software
components. Hendrik Wiese was responsible for recording throwing trajectories from
the real UR5. Lisa Gutzeit’s contributions to both publications are data recording,
preprocessing, segmentation, and classification. These aspects are not discussed in detail
in this chapter, but we will summarize them briefly in Chapter 5. The comparison of
policy search in Cartesian space and in joint space has been presented in Fabisch [Fab20],
which also introduces the approximation to inverse kinematics that we use.

98

Chapter 4. Sample-Efficient Contextual Policy Search

4.1.1. Related Work: Active Learning and Artificial Curiosity

In machine learning it is desirable to require as few training examples as possible because
it is often costly to acquire them. For instance, in supervised learning it can be expensive
to label data. Similarly, in reinforcement learning domains such as robotics, performing
an episode is costly. Hence, we would like to perform those episodes that maximize the
learning progress. A research field that deals with selecting data or tasks from which
we can learn the most is active learning. The goal of active learning is to label only
data or examine only tasks that promise the greatest learning progress, that is: the most
informative instances. Different query strategies to find these most informative instances
are discussed by Settles [Set10].

The idea to actively select tasks that accelerate the learning progress is related to
curriculum learning : Bengio et al. [Ben+09] and Gulcehre and Bengio [GB13] assume
that learning simple concepts first helps to learn more complex concepts that build upon
those previously learned simple ones in the context of supervised learning. We also use
this hypothesis in our empirical evaluation.

Another related work has been published by Ruvolo and Eaton [RE13] in the context
of lifelong multi-task learning, which compares several heuristics for actively selecting
the task that will be learned. Among these heuristics are the following: select the task
that maximizes the expected information gain (information maximization heuristic) and
select the task on which the current model performs worst (diversity heuristic). Once a
task is selected, all data with labels of this task are revealed to the agent.

It is not straightforward to transfer this approach to the reinforcement learning setting.
A problem that occurs in reinforcement learning is that we do not get the correct solution
(the optimal policy) of a queried task directly. Instead, we receive only rewards and
need to optimize the solution by trial and error in order to maximize the long-term
reward, which requires to select the same training tasks multiple times consecutively
until a close-to-optimal policy is learned. This approach is followed by da Silva et al.
[dKB14], who extend the parameterized skill introduced by Silva et al. [SKB12] to an
active learning setting. For this, the authors propose a novel criterion for skill selection.
In this criterion, the skill performance is modeled through Gaussian process regression
with a spatiotemporal kernel which addresses the inherent non-stationarity of tracking
the skill performance. Based on this estimate of the skill performance, the next task
is chosen such that the maximum expected improvement in skill performance would be
obtained if the outcome of learning this task is assumed to be an optimistic upper bound.
A drawback of this approach is that it may not be the most sample-efficient task-selection
strategy to stick for many episodes to the same task until a close-to-optimal policy for
this task is learned. We consider task selection in a setting in which a novel task is
chosen after each episode, which means that most likely no close-to-optimal policy has
been learned in the previous task.

A field related to active learning with applications in reinforcement learning is ar-
tificial curiosity [OK04; Got+13]. In particular, Baranes and Oudeyer [BO13] derive
self-adaptive goal generation—robust intelligent adaptive curiosity (SAGG-RIAC) from
the ideas of artificial curiosity and apply it to learning in contextual problems. SAGG-

100

4.1. Active Context Selection

RIAC divides the context space into rectangular regions. These are split once the number
of contexts that have been explored in these regions exceeds a threshold. For each region
R8, we can compute an interest based on the derivative of competence in that region

interest8 =
1

Z

�������
©­­«
|R8 |− Z

2∑
9= |R8 |−Z

'(s 9 ,) 9)
ª®®¬
−

©­­«
|R8 |∑

9= |R8 |− Z
2

'(s 9 ,) 9)
ª®®¬

������� ,

where |R8 | is the number of contexts that have been explored in region R8, Z is the size
of a sliding window, and '(s 9 ,) 9) is the return of a low-level policy with parameters) 9
in context s 9 (not to be confused with the expected return E ['(s,))]). Essentially, this
means regions with greater differences between recent and previous returns are considered
to be more interesting. Hence, on the one hand SAGG-RIAC focuses on regions where the
return increases considerably over time. On the other hand, it also favors regions where
the return decreases. Such a decrease might be caused by change in the environment and,
hence, it would make sense to explore this region more. SAGG-RIAC selects goals either
randomly from the whole context space or from a random region, where the probability
of each region corresponds to its interest. For a selected region, the goal is either sampled
from a uniform random distribution or from the vicinity of the context with the lowest
previous return. All three cases are selected randomly with fixed probabilities.

SAGG-RIAC naturally handles continuous context spaces, which is an advantage. It
will most of the time concentrate on regions where it expects a high learning progress but
does not converge to a single region of the context space. As an alternative to SAGG-
RIAC, we present an approach that is based on estimates of the learning progress and
multi-armed bandit algorithms, which more naturally trade off exploration and exploita-
tion of the noisy estimate of the learning progress.

4.1.2. Proposed Method for Active Context Selection

In contextual policy search we seek to maximize � (8) = ∫S ?(s) ∫R= c8 () |s)'(s,)) 3) 3s
by changing 8 based on collected experience from episodes, in which we use control
policies with parameters) in contexts s. In contrast to prior work, we consider the
context distribution during learning not to be fixed but to be under the agent’s control.
Although this assumption might not apply to all contextual policy search problems, there
are sufficiently many settings to make studying this setting worthwhile. For instance, ball
throwing with self-selection of targets. Note that the context distribution ?(s) within
the objective � (8) remains unaffected.

4.1.2.1. Overview

Formally, we introduce a context selection policy cV, which selects the context in which
the next episode will be performed. cV aims at optimizing the expected learning progress
of a contextual policy search method such as C-REPS and, hence, minimizing the required
number of episodes to reach a desired level of performance. In contrast, the control policy

101

Chapter 4. Sample-Efficient Contextual Policy Search

Figure 4.1.: Active versus passive context selection. Contextual policy search (left): A
context vector s is given by the environment according to some fixed distri-
bution ?(s), the upper-level policy c8 () |s) generates the parameters of the
control policy for s, the control policy is executed in the environment and
a return '(s,)) is obtained. A contextual policy search component updates
the upper-level policy based on the return with the goal to maximize � (8).
Active contextual policy search (right): The context vector s is selected by
the context selection policy cV which will be adjusted by an active context
selection component based on the intrinsic reward AV, an estimate of the
learning progress based on '(s,)). Differing parts are marked in blue.

c) and the upper-level policy c8 are learned to maximize � (8) directly. An illustration
of the components of contextual policy search is given in Figure 4.1.

We define the learning progress at time C when performing an episode in context s,
with the control policy parameters) selected according to c8, as Δs (C) = � (8C+:) −� (8C),
where 8C are the parameters learned by contextual policy search at time C. Note that
contextual policy search methods such as C-REPS do not update 8 after every episode
but only after a certain number of episodes :. Hence, it is more appropriate to define
the learning progress over the window : than between successive values of � (8C).

The learning task on the task-selection level can now be framed as finding cV such
that cV selects contexts that maximize the expected learning progress Ec8 [Δs (C)]. The
learning progress Δs (C) is stochastic because the environment and the upper-level policy
c8 are stochastic, hence the expectation. Furthermore, the learning progress is also non-
stationary since it depends on the quality of 8C : if � (8C) is already close to the optimum,
the expected learning progress is smaller than the learning progress at the beginning of
learning when 8C is expected to be far from optimal.

We restrict cV to select among a finite number of predetermined contexts {s1, . . . , s }
during learning. These predetermined contexts are, however, elements of a continuous
context space S over which c8 should generalize and where � (8) is evaluated. The
restriction to a discrete set of training contexts allows application of well-established
multi-armed bandit algorithms. Choosing the set of training contexts can be based

102

4.1. Active Context Selection

Algorithm 4 D-UCB [KS06]
Require: : number of tasks; W: discounting factor; b > 0: parameter that controls

the strength of padding; C: number of episodes; 81, . . . , 8C : previously selected tasks;
A1, . . . , AC : previous rewards

1: if C < then
2: return C ⊲ Sample each task at least once
3: else
4: for 8 ∈ {1, . . . , } do
5: =8 ←

∑C
C 9=1

WC−C 9✶{8C 9=8 } ⊲ Discounted number of episodes in task 8
6: end for
7: =← ∑

8=1 =8 ⊲ Discounted total number of episodes
8: for 8 ∈ {1, . . . , } do
9: A 8 ← 1

=8

∑C
C 9=1

WC−C 9AC 9✶{8C 9=8 } ⊲ Discounted mean reward in task 8

10: 28 ← 2�

√
b ln =

=8
⊲ Padding function for task 8

11: end for
12: return argmax8∈{1,..., } A 8 + 28 ⊲ Select task in which discounted UCB is

maximal
13: end if

either on domain knowledge or on simple heuristics. In low-dimensional context spaces,
an equally spaced grid over the context space is sufficient. In high-dimensional context
spaces this is infeasible because of the course of dimensionality, and sampling the set of
training contexts from a uniform random distribution over the continuous context space
is more viable.

4.1.2.2. Non-Stationary Multi-Armed Bandit Problems

A Multi-armed bandit problem (MABP) [Rob52; BC12] can be regarded as a one-step
or one-state Markov decision process, in which an agent has to select one of actions
and then obtains a reward that is assumed to be drawn iid for each action. The agent
tries to minimize regret, which is defined as the expected difference between its accumu-
lated reward and the reward that would have been accumulated with the optimal but
unknown stationary policy. UCB [Agr95] is a popular algorithm in this setting. It uses a
deterministic policy that selects the action with the maximum upper bound on the confi-
dence interval of the reward. This upper bound is constructed from the past rewards for
the action and is based on their empirical mean and a padding function. The padding
function summarizes the uncertainty in the estimate of the expected reward. Since UCB
always selects the action with the maximum upper bound, this results in choosing actions
where the reward is either highly uncertain (large padding) or expected to be high (large
empirical mean). By this, UCB trades off exploration and exploitation.

One crucial assumption of most MABP algorithms is that the reward distributions do
not change over time. This assumption will not be satisfied in our settings. There exist

103

Chapter 4. Sample-Efficient Contextual Policy Search

bandit algorithms that are designed to deal with non-stationary MABPs, in which the
reward distributions might change over time, either abruptly, leading to sliding window
UCB [GM11], or slowly but continuously, leading to discounted UCB [KS06].

The problem of learning cV can be framed as a MABP, where the contexts corre-
spond to the arms and AV to the bandit’s reward, which is the learning progress in the
corresponding context. Due to the non-stationarity of AV, we propose to use D-UCB (Al-
gorithm 4) for active context selection since it explicitly addresses changing reward dis-
tributions. For this, D-UCB estimates the instantaneous expected reward by a weighted
average of past rewards where higher weight is given to recent rewards. More specifically,
a discount factor W ≤ 1 is introduced and the reward that has been obtained at time step
C 9 is weighted with the factor WC−C 9 at time C. The central idea of D-UCB is that the
discounting can compensate for continuously but slowly changing reward distributions.

The upper confidence bound of the D-UCB algorithm for arm 8 takes the form A 8 + 28
where A 8 = 1

=8
∑CC 9=1 W

C−C 9AC 9✶{8C 9=8 } is the discounted mean and 28 = 2�
√
b ln(=) / =8 is the

padding function which controls the width of the confidence intervals. In these formulas,
=8 corresponds to the discounted number of samples of arm 8 and = to the total discounted
number of samples (see Algorithm 4). Furthermore, AC 9 is the reward obtained in the C 9-th
episode and 8C 9 is the arm played in this episode. ✶{8C 9=8 } is the Kronecker delta, which
is one if the equality holds and zero otherwise. � and b are parameters of the algorithm
which control the width of the confidence intervals, where � is an upper bound on the
rewards and b needs to be chosen appropriately.

4.1.2.3. Intrinsic Reward Functions for Context Selection

Since Ec8 [Δs (C)] is unknown to the agent and difficult to estimate because of its non-
stationarity, we propose several heuristic but easily computable reward functions AV that
reward the agent for certain proxy criteria. These proxy reward functions can be consid-
ered as means for intrinsic motivation of an agent [BSC04], which drives it to engage in
activity that increases its competence in task solving on a larger time scale. In empiri-
cal experiments, we evaluate which AV is a good proxy for the actual expected learning
progress. Note that the heuristics that we propose are not exactly comparable to query
strategies from supervised learning, since the learning process in reinforcement learning
in a specific task is iterative with distribution shifts unlike most supervised settings.

In a generalized form, we can write the proposed proxies of the learning progress as

AV = 5 ('(sC ,) C) − 1̂sC),

where '(sC ,) C) is the return obtained in episode C with policy c)C in context sC , 1̂sC is a
baseline term, and 5 is an operator. Note that the bandit algorithm handles stochasticity
in '(sC ,) C) so that the heuristics do not have to account for it.

Best-Reward Heuristic: This heuristic directly uses the reward obtained by the con-
trol policy c) in task s and episode C as the proxy for the learning progress, that is,
AV = '(sC ,) C). Thus 1̂sC = 0 and the operator 5 is the identity. This heuristic corresponds

104

4.1. Active Context Selection

to assuming that the agent makes the most progress when it focuses on improving its
performance in tasks in which it is already performing well. The idea behind this heuris-
tic is that we should first learn easy tasks because this can help us to learn similar but
more difficult tasks later on.

A potential problem of this heuristic are problems in which high reward does not
correspond to easy tasks, for instance, when the maximum achievable reward differs in
contexts. Additionally, the best-reward heuristic requires that knowledge can be trans-
ferred well between contexts. Otherwise it converges to context with the highest rewards.

Diversity Heuristic: As the opposite of the best-reward heuristic, this heuristic en-
courages to select tasks in which the agent receives the worst reward. For this, the
negative actual reward AV = −'(sC ,) C) is used. Thus 1̂sC = 0 and the operator 5 is simply
5 (G) = −G. The intuition for this heuristic is that we focus on the hardest tasks in which
the current performance is worst since in these tasks the potential for large improvements
is high. This heuristic bears similarities to the heuristic proposed by Ruvolo and Eaton
[RE13] for supervised learning and is hence called diversity heuristic.

Similar to the best-reward heuristic, this heuristic might have problems in settings in
which the obtained rewards might not be comparable between different contexts. Another
disadvantage appears in problems with unlearnable contexts, as the diversity heuristic
would then focus on these.

1-step Progress Heuristic: This heuristic uses the difference of the last two rewards
obtained in the same context as proxy for the actual learning progress, that is, AV =

'(sC ,) C) − '(sC̄ ,) C̄), where C̄ is the index of the previous episode in context s. Thus, the
baseline is the last obtained return 1̂sC = '(sC̄ ,) C̄) and the operator 5 is the identity.
The heuristic is a direct proxy for the learning progress, as it replaces effectively the
integration over s and) in � (l) by sampling. As it is based solely on differences of
rewards rather than absolute values, it should cope better than the best-reward and
diversity heuristic with situations, in which the maximum reward differs across contexts.

A drawback of the 1-step progress heuristic is that reward signals AV have high variance.
Variance in AV is inevitable because of the stochasticity of both the environment and the
upper-level policy c8, however, the baseline has also a high variance.

Monotonic Progress Heuristic: Although bandit algorithms account for the stochas-
ticity in the 1-step progress heuristic, it might be useful to reduce the variance of the
intrinsic reward. We can use more stable baselines such as the maximum reward of all
previous episodes in the context s, that is: 1̂sC = maxC′ '(sC′,) C′). Furthermore, since the
learning progress should be monotonically increasing, using the operator 5 (G) = max(0, G)
to avoid negative AV appears to be reasonable. The resulting heuristic is denoted as mono-
tonic progress heuristic and has the form AV = max(0, '(s,) C) −maxC′ '(sC′,) C′)).

The heuristic considers the learning progress to be monotonic and positive. In compar-
ison to the 1-step progress heuristic, the intrinsic reward AV will be more often zero and
its baseline has less variance since unsuccessful explorative episodes have less influence.

105

Chapter 4. Sample-Efficient Contextual Policy Search

4.1.3. Experiments: Generalizing Throwing Movements

Figure 4.2.: Visualization of the sim-
ulated Mitsubishi PA-10
throwing a ball.

We want to answer the following questions:
(1) Which intrinsic reward is the best for ac-
tive contextual policy search? (2) How much
more sample efficient is active context selec-
tion in comparison to standard contextual
policy search and is the final return better?
(3) Is context selection plausible?

Preliminary experiments that compare
context selection methods are described in
Appendix E for the sake of brevity. These
also contain comparisons of our approach to
SAGG-RIAC. The most interesting experi-
ments are presented here.

We consider the problem of learning to
throw a ball at a given target. A similar set-
ting has been investigated by Wirkus et al.
[WdK12], where the objective was to learn
throwing an object at a specified target based
on a forward model of the system. In our ex-
periments, the target can be located at different positions in a predetermined area on the
ground and we do not provide any model of the system, making it a contextual model-
free policy search problem with the target position being the context. We consider two
different reward functions for this experiment. One reward function is continuous (grid
problem) while the other has discontinuities and flat regions without clear direction of
improvement (dartboard problem), resulting in a setting with easy and more difficult
tasks. We provide an empirical evaluation on the grid problem and apply the gained
insight on the dartboard problem. In our experiments, we use a simulated Mitsubishi
PA-10 robot arm with seven joints for throwing (see Figure 4.2 and Appendix F.4 for
details).

4.1.3.1. Methods

A throwing behavior in this experiment consists of a sequence of two DMPs, where the
first corresponds to the strike out and the second one to the actual throwing movement.
Both primitives have a duration of g1 = g2 = 0.5 s. The movement primitives define
joint trajectories directly for the 7 joints of the Mitsubishi PA-10. The weights of the
forcing terms and the metaparameters of the DMPs (DMP formulation of Mülling et al.
[MKP11; Mül+13]) have been initialized such that the resulting throw hits the ground
position (−3.55<,−3.55<), where (0<, 0<) is the position of the PA-10. Some of the
metaparameters of the initial policy are to be adapted later on such that other ground
positions are hit. These include the final state of the first movement primitive g1 and the
velocities at the end of the two movement primitives g¤ 1, g¤ 2 so that our low-level policy is

106

4.1. Active Context Selection

described by the parameters) = (g1, g¤ 1, g¤ 2). The weights w of the forcing terms of the
two primitives remain fixed during this adaptation. Thus, the contextual learning task
consists of finding a mapping for 3 ·7 = 21 parameters such that different target positions
on the ground are hit.

We use C-REPS for contextual policy search with the context s, which contains the
Cartesian coordinates of the target position for the throw. The mapping q(s) projects the
context to polar coordinates and generates all quadratic terms of the polar coordinates.
A policy update is performed after every 50 episodes and a memory of at most 300
episodes is used for the update. This memory consists of the best 300/ episodes for
each of the tasks. We restricted the maximum Kullback-Leibler divergence of the old
and new policy distributions to n = 0.5, the initial weight matrix was set to] = 0, the
initial covariance was set to � = f2

0
O with f2

0
= 0.02, and the regularization weight to

_ = 10−4. For D-UCB, we use W = 0.99, � = 10, 000, and b = 10−9 in all cases.

4.1.3.2. Grid Problem

We define two contextual learning problems in this setting whose main difference is
the structure of the reward function. The first reward function provides the squared
distance of the position hit by the throw to the target position as reward so that we can
directly compute the return as '(s,)) = −||s − b) | |2, where s is the target and b) are
the Cartesian coordinates of the ball when it hits the ground after executing policy c) .
In this problem, we generate an equidistant grid of 25 targets for training over the area
[−3<,−5<] × [−3<,−5<]. Another set of 16 targets is used to test the generalization.
These targets form an equidistant grid in the area [−3.25<,−4.75<] × [−3.25<,−4.75<].
While different contexts share the same reward function, learning them might differ in
complexity. Some of the targets are harder to hit because of the kinematic structure of
the arm. In addition, the distance to the initial policy makes some contexts easier to
solve by exploration than others.

We compared our methods with three baselines: continuous random sampling of con-
texts from [−3<,−5<] × [−3<,−5<] (Random (cont.)), selection in a fixed order (Round
Robin) and the best policy that we have found in all experiments (Best Policy). On the
left side of Figure 4.3 the learning curves of several intrinsic reward heuristics are shown
and on the right side the best intrinsic reward heuristic is compared with the baselines.

The diversity heuristic, which prefers selecting hard tasks in which a low reward is
obtained, performs worse than round robin or random selection. Thus, selecting the
more difficult tasks first is not beneficial to speed up learning in this setting. This effect
might be even more pronounced, when the most difficult tasks are unsolvable. The Best-
Reward heuristic performs worst here. We observed that it quickly converged to nearly
always selecting the same task and hence failed to learn a generalizable upper-level policy.
The reason for this behavior is that it encourages D-UCB to focus on the simplest task
first. Because it improves quickly in this task, the reward will be considerably greater
than the reward of the other tasks. Even though it periodically samples other tasks,
the reward in these tasks will be smaller and thus, D-UCB sticks to the same task.
Selecting the tasks in which we can make the greatest estimated learning progress gives

107

Chapter 4. Sample-Efficient Contextual Policy Search

Figure 4.3.: Left: Learning curves of several intrinsic reward heuristics for D-UCB in the
grid problem. The return is the average negative distance to test targets.
The curves and the error bars show the mean and standard error of the mean
over 20 runs. Best Policy indicates the performance of the best policy that
we found in all experiments. Right: Comparison of D-UCB with intrinsic
reward based on the monotonic progress with the baselines.

a considerable advantage in this problem. In contrast to the results in Section E.2.2, the
1-step Progress heuristic is on a par with the Monotonic Progress heuristic. A possible
reason for this is that the inherent context complexities in this task do not vary as
strongly as in the problem in Section E.2.2. In comparison to the baselines, D-UCB
under the monotonic progress intrinsic reward is on a par with round robin selection and
slightly worse than continuous random selection. Continuous random sampling learns
more quickly in the beginning because the comparison of different methods is done on a
set of test contexts that are maximally dissimilar from the discrete training context set.
Methods that use only the discrete set of training contexts during the training phase have
thus a disadvantage compared with continuous random sampling, which often samples
closer to the test contexts.

In the long-term, however, D-UCB performs better than both baselines and its average
performance gets closer to the best policy’s performance. This shows that active task
selection can accelerate learning considerably and improve the reliability of the result of

108

4.1. Active Context Selection

Figure 4.4.: Left: The dartboard is composed of 81 quadrangular fields. Bull and bull’s
eye are regarded as one field, the rest belongs to one of the four circles (inner
circle, outer circle, doubles, and trebles). The initial policy given by)0
would throw at the center of the dartboard, that is the bull. Right: The
target regions of the bull, inner circle, and outer circle are greater than the
corresponding fields on the dartboard and overlap neighboring fields. Shown
here are 5 of the 20 target regions of the inner circle. These target regions
are only used to compute the return. Larger target regions can be assumed
to make the corresponding learning tasks easier.

contextual policy search. A potential reason why continuous random sampling performs
worse in the long term is that it cannot use the strategy otherwise employed in C-REPS,
namely to keep a separate history of samples per context of identical size (300/ episodes
per context), because it does not encounter any context twice.

4.1.3.3. Dartboard Problem

As second scenario with the PA-10, we consider a problem which poses tasks of more
varying complexity onto the agent. The targets are fields on a dartboard. A virtual
dartboard is placed on the ground in front of the PA-10. Placing the dartboard on
the ground instead of a wall was done to simplify implementation. The diameter is
set to 1.4 m (real dartboards have a diameter of 0.451 m). Each field is approximated
by quadrangles (see Figure 4.4) and the center of this field is the context of the task
corresponding to the field. For each target, we assign a corresponding target area, which
is usually the quadrangular field. For some tasks, we enlarge each side of the quadrangular
field by the factor 3.5 to build the corresponding target region (see Figure 4.4 for details).
This will make these tasks considerably easier than others. The reward function gives a
constant negative reward outside of this target area and only provides a reward gradient
inside the target area. The return is defined as

'(s,)) =
{
−10,000

3s
| |s − b) | |2 if b) is within the target area of s

−10, 000 otherwise
,

109

Chapter 4. Sample-Efficient Contextual Policy Search

0 2000 4000 6000 8000 10000

Episode

0

50

100

150

200

A
v
e
ra

g
e

n
u

m
b
e
r

o
f

ta
sk

se
le

ct
io

n
s

Treble (×1.00)

Double (×2.17)

Inner Circle (×9.88)

Bull (×12.04)

Outer Circle (×37.67)

Figure 4.5.: Left: Final upper-level policy. The blue circles mark the center of each
field, the red squares that are connected to the corresponding centers with
a red line show the position at which the robot arm has actually thrown
the ball. Right: Accumulated average number of selections for different
task categories. Larger target areas and target areas that are closer to the
initial policy are selected more often at the beginning. The relative size in
comparison to the smallest target region is given in brackets in the legend.

where 3s is the maximum distance to the center within the target area of context s. A
constant reward outside of the target area complicates the problem compared with the
grid problem, as no reward gradient helps the agent if it does not hit the target area,
within which a reward gradient guides the agent to the center of the field. Thus, the tasks
corresponding to larger fields can be considered to be easier since it is more likely that
the agent finds a reward gradient through exploration. The agent should thus focus first
on these tasks and select more difficult tasks not before it has improved its upper-level
policy so much that it is able to hit the corresponding target areas.

We train with all 81 targets for 50, 000 episodes using the monotonic progress intrinsic
reward. Results are displayed in Figure 4.5: the final policy hits the bull, 18 of 20 fields
in the inner circle, 15 of 20 trebles, 20 of 20 fields in the outer circle, and 9 of 20 doubles.
The mean of the error is 4.62 cm, the median 3.77 cm, and the maximum 15.96 cm.

Doubles are the most difficult tasks to learn for the agent because they are far away
from the initial policy, the target region is small, and we cannot transfer much knowledge
from neighboring tasks because they are on the edge of the dartboard. For this reason,
some doubles have not been learned well. In contrast, the trebles can be learned easily,
because the solution can be obtained approximately by transferring the solutions of
neighboring fields from the inner circle and the outer circle.

110

4.1. Active Context Selection

In Figure 4.5 we show which kind of tasks have been selected in the initial learning
phase. We can see that the inner circle and the outer circle, which have the greatest
target regions, are selected most often in the beginning. The targets from the inner circle
are selected even more often than the targets from the outer circle during the first 1,000
episodes even though they are smaller. This is because they are more likely to be reached
when exploring from the initial policy, which throws at the center of the dartboard. For
the same reason trebles are selected more often than doubles at the beginning. After
this initial phase, fields of the outer circle are selected more often because they are now
much easier to learn. The bull is so rarely selected because the initial policy will already
generate a good result for this context, hence, improvement is hardly possible.

4.1.4. Discussion

We investigated the hypothesis that active selection of contexts during training time
can improve sample efficiency. We proposed to use the non-stationary bandit algorithm
D-UCB to select tasks that have a large estimated learning progress. The learning
progress is estimated by heuristics that can be considered as proxies for the actual learning
progress. The underlying model of the learning process assumes that each task has a
different intrinsic expected learning progress which might change abruptly in the context
space and that knowledge can be transferred between similar contexts.

Our empirical results show that active task selection can make a difference for the
learning speed of contextual policy search, the performance of the final policy, and the
stability of the learning process. We found that a task-selection method should explore in
the beginning, then focus on several easy tasks to acquire some initial procedural knowl-
edge, thereupon transfer knowledge to similar but more difficult tasks, and concentrate
in the end on those tasks that have not been learned yet. Some of the proposed intrinsic
reward heuristics provide an advantage over round robin or uniform random selection.

A limitation is that we restricted ourselves to a discrete set of context vectors for
training. It is interesting to note that we are thus able to keep a history of the best
samples for each context and use this for the update of the upper-level policy instead of
just the last # samples. This is, however, not easily possible for continuous contexts.

Moreover, it would also be desirable to stop sampling of tasks for which the policy
has reached an acceptable level of performance, that is, tasks that are solved. Since
the expected learning progress becomes small in such tasks, an active context selection
mechanism should recognize this. As D-UCB assumes non-stationary rewards, it assumes
that the expected reward could increase again and will continue to sample such tasks.
Active context selection algorithms, which take the property of the learning progress to
converge to zero into account, could thus be better than D-UCB.

Among the kind of tasks for which we consider active contextual policy search to
be promising are goal-directed reaching, hitting and throwing problems such as ball
throwing, darts, and hockey. Moreover, scenarios in which an agent can select from a
small set of predefined contexts, for example, grasping one object from a set of objects
with varying size and shape, are promising.

111

Chapter 4. Sample-Efficient Contextual Policy Search

Our objective for active context selection was to reduce the amount of episodes that
we have to perform to successfully learn a certain behavior. We set a few hundred
episodes as the objectives for this thesis and we can clearly see in Figure 4.3 that a well-
performing throwing behavior is only reached after a couple of thousand episodes. Even
worse, continuous random sampling seems to be slightly better in the region that we are
interested in although the overall performance is so bad after a few hundred episodes that
this does not matter. Hence, adding active context selection alone is not an appropriate
means to achieve this objective. It is, however, a method that can easily be applied to
a variety of contextual policy search algorithms to improve their performance, stability,
and even their sample efficiency slightly.

4.2. Active Training Set Selection
This section was

published
originally as

[Fab+15] and has
been revised.

Figure 4.6.: Active training set selection.

A set of samples (s,) , '(s,))) is required
for contextual policy search to update the
upper-level policy. Therefore, in each
episode we test parameters) in context
s and observe the corresponding return
'(s,)). As we have seen in the previous
section it is also sometimes useful to keep
a buffer of the best previous samples for
the update. Determining the best sam-
ples for a discrete set of contexts is pos-
sible for each context individually, but it
is not possible for continuous contexts be-
cause returns are often not comparable be-
tween contexts. The maximum return value in one context could be far from optimal
in another context. We have to normalize returns with respect to their corresponding
context before we select the best samples. In this section we will introduce a method for
reward normalization based on the context.

4.2.1. Proposed Method for Training Set Selection

In this section, we propose a novel approach for addressing task incommensurability. This
approach allows to estimate an upper boundary of the achievable return and a typical
return range (as illustrated in Figure 4.6) and thus, allows to make returns comparable
by normalization. We can then use these normalized returns to keep the best samples
for the next update.

4.2.1.1. Positive Upper Boundary Support Vector Estimation

Given observations D = {(s8 ,) 8 , '8)}=8=1, we assume that for all 8, '8 is an estimator of
E ['(s8 ,) 8)] = + c)8 (s8) ≤ +∗(s8). In contrast to standard regression problems, we do
not want to approximate the mean function + c) (s) of some policy c) but we want to

112

4.2. Active Training Set Selection

approximate the upper boundary +∗(s), which is the context value function of the best
upper-level policy.

One constraint on the approximation +̂ ≈ +∗ is that +̂ (s8) ≥ '8, that is, +̂ should be
an upper boundary on returns from D. Since this constraint does not uniquely determine
the approximation, we add two additional objectives: (1) +̂ should be smooth, that is,
similar inputs s1 ≈ s2 should have similar values +̂ (s1) ≈ +̂ (s2). (2) +̂ should be less or
equal to +∗ in the absence of data, that is, it should be a pessimistic estimate with a
bias towards values that are too small. Since +∗ corresponds to the value of the optimal
policy, the current policy will almost always obtain returns smaller or equal to +∗ and a
pessimistic estimate +̂ will necessarily be closer to the level of performance of the current
policy than a too optimistic estimate with the same overall error |+∗ − +̂ |.

Since a linear model of +̂ is often too restrictive, we use a non-parametric, kernelized
model for +̂ , that is, +̂ (s) = 1 + ∑=

8=1 U8: (s8 , s) with offset 1 and RBF kernel : (s8 , s 9) =
exp(−W | |s8−s 9 | |2) for bandwidth W. This model allows for both a smooth (constant) upper
boundary by setting U8 = 0 and 1 ≥ max8′ H8′ and a pessimistic upper boundary for large
W and small 1. We propose a new method, the positive upper boundary support vector
estimation (PUBSVE), for learning such a model of the upper boundary. While the
concept has been developed and the algorithm has been implemented for this thesis, the
learning algorithm has been derived in collaboration with Krell [Kre15, pages 199–201].

Without loss of generality, we assume that all '8 are positive (because we subtract
min8′ '8′ for normalization). This implies 1 ≥ 0. The PUBSVE has the objective

min
",1

1

2

∑
8, 9

"i"j : (s8 , s 9) +
�

2
12

subject to 1 +
∑
9

"j : (s8 , s 9) ≥ '8 for all 8.

� is a hyperparameter that allows to balance between a pessimistic upper boundary
(1 → 0 when � → ∞) and a constant upper boundary (1 → max8′ '8′ and " → 0 when
� → 0). � = 100 ≫ 0 gives good results empirically and is used in our experiments.
The RBF’s bandwidth W controls the generalization between similar samples: the greater
W is the less similarity between similar inputs is assumed and the more local will the
generalization be. The model has similarities to support vector machines and allows to
use related implementation techniques [MM98; SHS09]. Further details are provided by
Krell [Kre15].

4.2.1.2. Incremental Return Normalization

In this section, we describe how PUBSVE allows to normalize the obtained return: for
a given context s, we map the PUBSVE prediction +̂ (s) to 1 and the context’s typical
return level '̃(s) to 0. This can be achieved via

'8 =
'8 − '̃(s8)

+̂ (s8) − '̃(s8)
.

113

Chapter 4. Sample-Efficient Contextual Policy Search

Figure 4.7.: Four iterations of incremental learning of the upper boundary +̂ (solid line)
and medium return level '̃ (dashed line). For each update of the PUBSVE,
new samples (black dots) and support vectors of PUBSVE from the previous
iteration (large circles) are used as training set. All previous samples that
are not used for the incremental training are displayed as small crosses. '̃ is
learned using an SVR on the whole data. New samples are drawn uniform
randomly from the white background area.

Approximating a lower boundary on the returns cannot be performed analogously to esti-
mating an upper boundary since contextual policy search tries to avoid sampling regions
of low return and in some problems, no lower bound exists. Therefore, we normalize
returns based on their estimated typical return level '̃(s) obtained from a standard SVR
[Dru+97] model trained on D.

Since the PUBSVE needs to be updated when new samples arrive, an incremental
training procedure is desirable. For this, instead of training the PUBSVE on the whole
set D = {(s8 , '8)}=8=1, we can update it incrementally [SLS99], where we forget every old
example (s8 , '8) except the support vectors s8 with U8 > 0, collect new samples, and use
the new samples and the retained support vectors to update +̂ . Note that this heuristic
does not guarantee that the same results are obtained as in the non-iterative PUBSVE;
however, it provides good results in practice. For the SVR model, we don’t perform an

114

4.2. Active Training Set Selection

incremental update but keep the computational cost limited by subsampling the set D

to a size of 5000. An illustration of this approach is given in Figure 4.7.

4.2.1.3. Training Set Selection for Contextual Policy Search

Contextual policy search methods such as C-REPS perform a search through the space
of policies where updates of the policy are done such that we move in the direction of
increasing expected return while, at the same time, bounding the loss of information
between the observed data distribution and the data distribution generated by the new
policy [PMA10]. Bounding the information loss results in small steps in policy space and
avoids that a large step is taken into an unknown area of the policy space, which might
contain policies whose execution is dangerous for a robot.

It remains to define the observed data distribution. Possible choices are the samples
drawn from the last policy or from the last policies [DNP13]. The former choice has
the disadvantage that all prior experience not generated by the last policy is effectively
forgotten and the latter choice slows down learning initially, as the new policy is enforced
for iterations to stay close to the data generated by the initial policies, which are
typically behaving badly and strongly exploratory. In principle, it would be appealing
if the old data distribution would consist of the best samples from the entire history, as
this enforces the new policy to stay close to what has worked well in the past. Note that
one potential risk of this strategy is premature convergence to local optima; it is thus
important to maintain a sufficient level of exploration.

As discussed above, the main challenge for determining the best samples is the incom-
mensurability of returns in different contexts. In the previous section we investigated a
solution in a simplified setup, in which only a discrete set of contexts exists and we
can store the best #/ obtained returns for each context and use these for the update
of the upper-level policy, where # is the number of examples for each update. As the
method proposed in Section 4.2.1.1 allows to make the returns from different contexts
comparable, we can now extend this training data selection to continuous context spaces
by selecting the training examples with the highest normalized return for training. To
avoid premature convergence and to be more robust to errors in the estimate +̂ , we sug-
gest to use softmax for training set selection instead of the maximum, which means that
each of the samples (s8 ,) 8 , '8) that we observed will be selected with probability

?(s8 ,) 8 , '8) =
exp(g'8)∑
9 exp(g' 9)

,

where g = 10 in our experiments and '8 is the normalized return (see Section 4.2.1.2).
We call this active training set selection C-REPS (aC-REPS). Since we reuse the best
samples from previous policies to estimate the reward baseline in C-REPS, we can say
that aC-REPS is an off-policy version of C-REPS. We compare standard C-REPS and
aC-REPS in the following sections.

115

Chapter 4. Sample-Efficient Contextual Policy Search

(a) Contextual Rastrigin function. Func-
tion value are indicated by the back-
ground color.

(b) Learning curves for best configurations of standard C-
REPS (update after 200 episodes, n = 1) and aC-REPS
(update after 100 episodes, n = 2). Lines correspond to
quartiles. The y-axis is logarithmic.

Figure 4.8.: Rastrigin benchmark function.

4.2.2. Experiments

With the following experiments we want to answer the question whether our algorithm
aC-REPS is more sample-efficient than C-REPS. We will discuss three problems with
increasing difficulty.

4.2.2.1. Benchmark Function

We evaluate both standard C-REPS and aC-REPS on a benchmark function. The so-
lution c of the benchmark is a quadratic function and the upper return bound +∗ is
quadratic as well.

The contextual optimization objective is defined based on a function 5 from the BBOB
testbed [Han+10]:

'() , s) = − 5 ()) + 1

10"
s)\∗s, where for all 8 : −5 ≤) 8 ≤ 5.

The parameters]1, . . . ,]# ∈ R"×" ,\ ∈ R"×" , and 11 . . . , 1# ∈ R are generated ran-
domly and scaled so that all context-dependent optima are within [−5, 5]. The optimum
of the benchmark function depends on the context via)∗8 (s) = 1

100"
s)]8 s + 18. In the

following evaluation, we use the Rastrigin function 53 from the BBOB testbed as 5 . The
contextual objective function as well as the optimal c and a non-optimal solution are
displayed in Figure 4.8a.

We use 200 samples for each policy update and set the minimum allowed temperature
[min = 10−8; moreover, we use quadratic context transformation for the linear upper-level
policy, bound the output of the upper-level policy to the interval [−5, 5], and initialize
the upper-level policy such that it generates zeros for all inputs. The parameter W for
the kernels of the boundary estimations is set to 103, where 3 is the average distance of

116

4.2. Active Training Set Selection

(a) Illustration of the catapult problem: the ob-
jective is to shoot an object from a catapult
situated at position 0 such that it hits a pre-
specified target position s. Several example
trajectories are shown.

(b) Learning curves for standard C-REPS (update
after 200 episodes, n = 0.5) and aC-REPS (up-
date after 200 episodes, n = 0.2). The 3 lines
correspond to the quartiles.

n 0.1 0.2 0.5 1 2

Update after 50 samples + + + + o

Update after 100 samples + + + + o

Update after 200 samples + + o o o

(c) Comparison of aC-REPS and C-REPS for several configu-
rations after 7,500 episodes. We test statistical significance
with a Wilcoxon signed-rank test. “+” means aC-REPS is
significantly better and “o” means no significance.

Figure 4.9.: Catapult experiments.

training contexts. This choice is often not critical as long as it does not make the model
too smooth. We are looking for a configuration that is stable on the one hand and fast
on the other hand. To guarantee both, we select critical parameters by a grid search so
that the performance after 5,000 episodes is optimized. There are two critical parameters
of (a)C-REPS that have to be selected: the number of episodes between policy updates
(options: 50, 100, 200) and the upper limit n on the allowed Kullback-Leibler divergence
between successive search distribution (options: 0.1, 0.2, 0.5, 1, 2).

We perform 50 runs with 10,000 episodes. The learning curves are displayed in Figure
4.8b. We can see that both methods reach a similar optimum, but the active training
set selection (aC-REPS) is much faster in the beginning. There are configurations of C-
REPS that reach the optimum similarly fast but these are unstable so that the algorithm
diverges after finding a good solution.

4.2.2.2. Catapult Domain

Figure 4.9a shows the catapult problem introduced by da Silva et al. [dKB14]. The goal
is to learn an upper-level policy that generates appropriate actions) 8, consisting of the
angle q8 ∈ [0, c/2] and velocity E8 ∈ [5, 10] of the catapult’s shot, such that a specific

117

Chapter 4. Sample-Efficient Contextual Policy Search

Figure 4.10.: Throwing experiments. Learning curves for best configurations of standard
C-REPS (update after 200 episodes, n = 2) and aC-REPS (update after
50 episodes, n = 2). Sold lines correspond to quartiles and dashed lines
correspond to the best values over all runs.

target position, the context s8 ∈ [2, 10], is hit. The target surface is unknown to the
agent, which requires the agent to learn by trial and error. The return of an episode
is computed as '8 = −|s8 − sℎ | − 0.5E8, where sℎ is the position that was actually hit.
Returns obtained in different contexts are not directly comparable, because certain target
positions such as those behind the top of a hill are more challenging than others.

We use 200 samples for each policy update and set the minimum allowed temperature
[min to 10−8; moreover, we employ a Nyström approximation [WS01] of an RBF kernel
with W = 10−5 and 10 components as context features for the linear upper-level policy
and initialize the upper-level policy such that it generates velocity 7.5 and angle c/4 for
each context. The optimum parameter configuration is determined after 7,500 episodes
similar to Section 4.2.2.1.

We perform 50 runs with 15,000 episodes. We found that aC-REPS is more robust
with respect to parameter configuration which we demonstrate with a Wilcoxon signed-
rank test in Table 4.9c. This property is desirable for learning, for instance, with robots
because we would otherwise require a lot of episodes to find the optimum configuration.
The learning curves in Figure 4.9b show that both variants of C-REPS improve initially;
however, the best configuration of standard C-REPS is not as reliable as aC-REPS be-
cause there are some runs that do not improve beyond a moderate level of performance.
aC-REPS does not exhibit this problem.

4.2.2.3. Ball Throwing

We use the simulated robot arm COMPI (see Appendix F.1 for details) with 6 degrees
of freedom to generalize a throwing movement over a target area on the ground. The
return is the negative distance to the target location. Targets are sampled from s ∈
[−3, 3] × [3, 6]. We use a DMP as defined by Ijspeert et al. [Ijs+13] with an execution
time of 200ms, a control frequency of 250Hz, and 10 basis functions per dimension to
generate the throwing motion in joint space. The ball is attached to the end effector and

118

F
ig

ur
e

4.
11

.:
L
ea

rn
in

g
cu

rv
es

fo
r

ba
ll

th
ro

w
in

g
w

it
h

va
ri

ed
hy

pe
rp

ar
am

et
er

s.
W

e
pl

ot
th

e
ta

rg
et

di
st

an
ce

on
th

e
y-

ax
is

.

119

Chapter 4. Sample-Efficient Contextual Policy Search

is released after 140ms. An initial throwing motion, which throws into the middle of the
target area, has been learned with standard REPS [PMA10]. Only the 60 weights of the
DMP are to be adapted. Each policy update is based on 200 samples and the minimum
value allowed for [min is 10−8. We use quadratic features of the context.

In all experiments, we perform 30 independent runs and 15,000 episodes per run. We
evaluate learning progress in an equally spaced grid of 100 test contexts

s ∈ {−2.7<,−2.1<,−1.5<, . . . , 2.7<} × {3.15<, 3.45<, 3.75<, . . . , 5.85<}.

Figure 4.11 shows the effect of hyperparameters. We varied n and the number of samples
before we update the upper-level policy. We can see that C-REPS is better for small
n and large number of samples before the update, which stabilizes training at the cost
of slowing down the learning progress. n > 2 often leads to numerical problems in any
version of the algorithm so we do not recommend it. Hence, aC-REPS seems to handle
the largest possible value of n well and stabilizes training over all independent runs. It is
also able to update the upper-level policy more frequently, which accelerates the learning
progress. Figure 4.10 compares the best hyperparameter configurations (measured after
5000 episodes). aC-REPS learns good policies fast and reliably. Standard C-REPS is
slower and less reliable, which is consistent with the results of Sections 4.2.2.1 and 4.2.2.2.

4.2.3. Discussion

We propose the novel approach PUBSVE for addressing the incommensurability of re-
turns in contextual policy search with contexts of different difficulties. This approach
can be employed in contextual policy search and achieves more robust and faster learning
by selecting high quality data for the policy update.

The PUBSVE by itself is an interesting approach since most approaches in regression
are about estimating mean values or standard deviations, but the PUBSVE can be used to
estimate the lower or upper bound of samples. This could not just be useful for contextual
policy search in the future but also for other reinforcement learning algorithms. Similar
loss functions could also be used to train other models such as neural networks.

We have seen that aC-REPS can not only improve the sample efficiency but also make
the training process more reliable and consistent. Although it is impressive that aC-
REPS is able to approximately halve the number of episodes required to reach a good
median performance in ball throwing in comparison to C-REPS, this number is still in
the range of a few thousands, which is too much to reach our objective of learning within
a few hundred episodes.

4.3. Extensions from Black-box Optimization
This section was

published
originally as

[Fab19a] and has
been revised.

C-REPS and C-CMA-ES (see Section 2.3.5) are similar, although C-REPS has been
developed in the field of reinforcement learning and C-CMA-ES is an extension of the
black-box optimizer CMA-ES. There is more potential to transfer algorithms from black-
box optimization to the reinforcement learning domain and to contextual policy search

120

4.3. Extensions from Black-box Optimization

in particular. In this section, we will investigate two common extensions of CMA-ES and
apply them to C-CMA-ES. Note that also active training set selection could be used in
C-CMA-ES, and elitist selection, which C-CMA-ES performs in each generation based
on advantage values, is similar.

4.3.1. Proposed Extensions of C-CMA-ES

4.3.1.1. Active C-CMA-ES

Active CMA-ES (aCMA-ES) [JA06] modifies the covariance update of CMA-ES to take
into account the worst samples of a generation and discourage exploration in their direc-
tion. Similar to the rank-` update of the covariance with the best samples of a generation,
we compute a matrix

Y− ← 1

fC2

#∑
8=1

(
) 9 −]Cq(s 9)

)
· J88 ·

(
) 9 −]Cq(s 9)

))
,

where 9 = 1 + # − 8. Y− will be subtracted from the covariance. Line 29 of Algorithm 3
is replaced by

�
C+1 ← (1 − 210 − 2`−

1

2
2`−)�C + 21 pC+12 pC+12

) +
(
2`+

1

2
2`−

)
Y−2`−Y−,

with 2`− =
(1−2`)`4 5 5

4((=+=B+2)1.5+2`4 5 5) .

4.3.1.2. A Surrogate Model for C-CMA-ES

Another extension to CMA-ES is CMA-ES with a ranking SVM as surrogate model
(ACM-ES) [LSS10]. The ranking support vector machine (ranking SVM) [Joa02] orders
samples, hence, CMA is ordered alphabetically in the acronym of this extension. A
ranking surrogate model fits well because CMA-ES only takes into account the ranking
of samples in a generation. It does not consider actual returns. Assuming all samples
are ordered by their rank, a ranking SVM finds

minw
1

2
| |F | |2

2
+

#∑
8=1

�8b8

subject to w) (q(x8) − q(x8+1)) ≥ 1 − b8 ∧ b8 ≥ 0,

for all 8 = 1, . . . , # − 1,

for a nonlinear projection q of the feature vectors x8 with corresponding ranking penalty
terms b8. w is a weight vector. This can be solved by a form of sequential minimal
optimization [Pla98] and we can use the kernel trick to generate a nonlinear ranking
function without explicitly specifying q. We will use an RBF kernel

: (x, x′) = exp

(
− (x − x

′)2
2f2

)
,

121

Chapter 4. Sample-Efficient Contextual Policy Search

with f set to the average distance between training samples. The cost of an error depends
on the ranks of corresponding samples and is �8 = 106(# − 8)2?>F , where 2?>F = 2.

Instead of ordering samples by their returns, we will order them by their advantage
values (returns with subtracted context-dependent baseline, see Algorithm 3, line 21).
We found this to be crucial in preliminary experiments.

Loshchilov et al. [LSS10] use the surrogate only conservatively to pre-screen a larger
set of samples from which more promising samples are selected with a higher probability
for evaluation. This is more difficult in a contextual setting because we have no control
over the contexts in which we can evaluate samples. Once we know in which context we
can evaluate the next sample, we could sample several parameter vectors) 8 and select
the most promising samples with higher probability for evaluation. In experiments that
we conducted, this often caused preliminary convergence. Instead, we will exploit the
surrogate model directly, that is, we will not use it for pre-screening but we will use
predicted ranking values directly in the update step.

Another key idea of ACM-ES is to learn the surrogate model with normalized samples

) ′← �
− 1

2 () − -)

with respect to the covariance1 and the mean of the search distribution. We adopt the
idea of using a ranking SVM as a surrogate model with normalized samples for Contextual
ACM-ES (C-ACM-ES). The surrogate model will also take into account the context s in
addition to the parameters). The normalization is more complicated:

) ′← �
− 1

2

(
) −]) q(s)

)
,

where the contexts of the training set will be normalized to have a mean of zero and
a standard deviation of one. We assume that there is no correlation between context
variables, which is not correct in general.

The search distribution is updated after # samples from the objective function. We
store the last 40 + ⌊431.7⌋ samples to train the local surrogate model, where 3 is the
number of parameters to be optimized. For each update of the search distribution, in
addition to the # samples that we evaluated on the real objective function, we will
draw # ′ − # samples from the previous search distribution for random contexts that we
observed in the training set and predict their ranking values to compute the update of the
search distribution with these # ′ samples. Additional hyperparameters will be described
and evaluated in Subsection 4.3.2.2.

Using a surrogate model does not decrease the computational complexity in comparison
to C-CMA-ES. Our expectation is that it increases sample efficiency and, hence, the
suitability for expensive objective functions.

1The inverse square root �
− 1

2 = HJ−1H) of the symmetric covariance matrix can be computed from
the eigendecomposition � = H(JJ)H) .

122

4.3. Extensions from Black-box Optimization

4.3.2. Experiments

The questions that we want to answer with our experiments are: (1) Which hyperpa-
rameters should we use for our extensions? (2) Are our extensions more sample-efficient
than existing contextual policy search algorithms? (3) Are they sample-efficient enough
to learn on real robots?

4.3.2.1. Objective Functions for Contextual Black-box Optimization

Another idea that can be transferred from black-box optimization to the contextual
setting is a set of standard benchmark functions. The analysis in this section is similar
to the one of Abdolmaleki et al. [Abd+17a]. We use some additional objective functions.
We take standard objective functions and make them contextual by defining 5s ()) =
5 () +Mq(s)), where M is a matrix with components sampled iid from a standard normal
distribution. If not stated otherwise, =B = 1, q(s) = s, and the components of s are
sampled from the interval [1, 2).

To make results comparable to the results of Abdolmaleki et al. [Abd+17a], we use the
same definition of 5(?ℎ4A4 ()) =

∑3
8=1 \

2

8 and 5'>B4=1A>2: ()) =
∑3−1
8=1 100(\28 −\8+1)2+(\8−1)2.

In addition, we use the functions ellipsoidal, discus, different powers from the COCO
benchmark platform for black-box optimization [Han+16], and

5�2:;4H ()) = −20 exp
©­­«
−0.2

√√√
1

3

3∑
8=1

\2
8

ª®®¬
+ 20 − exp

(
1

3

3∑
8=1

cos(2c\8)
)
+ exp(1).

The sphere objective evaluates the optimal convergence rate of an algorithm, the el-
lipsoidal function has a high conditioning that requires the algorithm to estimate the
individual learning rates per dimension but is symmetric and separable, the Rosenbrock
function checks whether the optimizer is able to change its direction multiple times, the
discus function also has a high conditioning, the different powers function has no self-
similarity, and the Ackley function is a multimodal function with many local minima. We
do not use any other multi-modal function because contextual black-box optimization
algorithms do not work well for this kind of problems.

Initial parameters are sampled from N(0, f2

0
O) with f0 = 1 in most cases. Initial

parameters of the Ackley function are sampled with f0 = 14.5 and the function has
bounds at [−32.5, 32.5]. The number of dimensions of the parameter vector) is 20. # is
set close to the smallest possible value that generates a stable learning progress. Unless
otherwise stated, we use # = 50 samples of the objective function before we make an
update of the search distribution. The number of updates corresponds to the number of
iterations or generations in the following analysis. Instead of minimizing the 5s, we will
maximize − 5s. Listed function values are averaged over one generation, that is, multiple
contexts will be considered but not always the same contexts.

123

Chapter 4. Sample-Efficient Contextual Policy Search

Table 4.1.: Comparison of hyperparameters. Performance is averaged over 20 runs.

Hyperparameter − 1

|(|
∑

s∈(5s (G)

Rosenbrock (=B = 1), after generation 850

′ = 2# −7.817 · 10−10

′ = 3# −1.485 · 10−9

′ = 5# −4.089 · 10−3

′ = 10# −1.445 · 1015

=8C4A = 300 −1.679 · 10−3

=8C4A = 1000 −1.485 · 10−9

=8C4A = 300 −4.607 · 10−13

=8C4A = 10000 −2.396 · 10−14

2?>F = 1 −3.656 · 10−9

2?>F = 2 −1.977 · 1041

Ackley (=B = 1), after generation 1100

=BC0AC = 100 −1.411 · 101

=BC0AC = 300 −1.085 · 101

=BC0AC = 1000 −1.086 · 100

=BC0AC = 3000 −3.995 · 10−9

=BC0AC = 10000 −1.155 · 10−8

4.3.2.2. Hyperparameters of C-ACM-ES

First, we look for a good configuration of C-ACM-ES. There are several hyperparameters:
we have to define after how many samples the surrogate model is accurate enough to be
used (=BC0AC), the number of samples # ′ evaluated by the surrogate model, 2?>F of the
ranking SVM objective, and the number of iterations =8C4A that will be used to optimize
the ranking SVM per training sample. While one parameter has been investigated, the
others were kept to the values # ′ = 3#, =BC0AC = 100, 2?>F = 1, =8C4A = 1000. We found
that =BC0AC is particularly important for optimizing 5�2:;4H and 2?>F , =8C4A , and # ′ are
critical for 5'>B4=1A>2: .

The most important results of the performed experiments are shown in Table 4.1.
Setting # ′ = 2# gives the best result for the Rosenbrock function, but # ′ = 3# is
a better compromise between exploitation of the model and a conservative handling.
There are some objectives, where we can much better exploit the model. In the following
experiments, we will use the configurations # ′ = 3# and # ′ = 10#.

Larger values for =8C4A improve the result, which is not surprising. This works partic-
ularly well on a complex function such as the Rosenbrock function. As a compromise
between computational overhead and sample efficiency, we select =8C4A = 1000 which

124

Chapter 4. Sample-Efficient Contextual Policy Search

Table 4.2.: Average performance of algorithms (20 runs, best option is underlined).

Method − 1

|(|
∑

s∈(5s (G)

Sphere (=B = 2), after generation 200

C-REPS −4.509 · 10+01

C-CMA-ES −1.815 · 10−05

aC-CMA-ES −1.348 · 10−05

C-ACM-ES+ −1.294 · 10−08

aC-ACM-ES+ −1.506 · 10−01

C-ACM-ES −6.257 · 10−04

aC-ACM-ES −2.309 · 10−04

Rosenbrock (=B = 1), after generation 850

C-REPS −1.255 · 10+04

C-CMA-ES −2.328 · 10−03

aC-CMA-ES −9.736 · 10−01

C-ACM-ES+ −1.445 · 10+15

aC-ACM-ES+ −3.227 · 10+19

C-ACM-ES −3.656 · 10−09

aC-ACM-ES −3.899 · 10−11

Ackley (=B = 1), after generation 1100

C-REPS −1.947 · 10+01

C-CMA-ES −8.762 · 10−07

aC-CMA-ES −8.773 · 10−07

C-ACM-ES+ NaN
aC-ACM-ES+ NaN

C-ACM-ES −3.995 · 10−09

aC-ACM-ES −1.813 · 10−08

Method − 1

|(|
∑

s∈(5s (G)

Ellipsoidal (=B = 1), after generation 800

C-REPS −2.944 · 10+05

C-CMA-ES −2.337 · 10+02

aC-CMA-ES −1.524 · 10+02

C-ACM-ES+ −1.300 · 10+16

aC-ACM-ES+ −2.407 · 10+18

C-ACM-ES −1.039 · 10−10

aC-ACM-ES −2.388 · 10−11

Diff. Powers (=B = 1), after generation 600

C-REPS −9.088 · 10+02

C-CMA-ES −1.562 · 10−07

aC-CMA-ES −3.038 · 10−07

C-ACM-ES+ −7.111 · 10+74

aC-ACM-ES+ −8.717 · 10+82

C-ACM-ES −2.464 · 10−14

aC-ACM-ES −1.284 · 10−14

Discus (=B = 1), after generation 850

C-REPS −1.288 · 10+02

C-CMA-ES −2.995 · 10−10

aC-CMA-ES −3.838 · 10−10

C-ACM-ES+ −8.297 · 10+27

aC-ACM-ES+ −1.250 · 10+24

C-ACM-ES −8.877 · 10−12

aC-ACM-ES −1.684 · 10−11

set # ′ = 10# and =BC0AC = 100, otherwise # ′ = 3# and =BC0AC = 3000. Exemplary learning
curves are displayed in Figure 4.12a for the Rosenbrock function.

Variants of C-ACM-ES mostly outperform vanilla C-CMA-ES. Although the surrogate
model focuses on ordering the samples with the highest rank more correctly and aC-
CMA-ES is often not better than C-CMA-ES, aC-ACM-ES performs best in most cases.
If this is not the case, C-ACM-ES performs best. The sphere function with two context
variables seems to be different. Here, it is important to exploit the surrogate model as
early and aggressively as possible to have a chance against C-CMA-ES.

An interesting result, however, is that C-REPS is often much faster in the early phase.
See, for example, Figure 4.12b: in the first 10 generations, which amounts to 500 episodes,
C-REPS outperforms all variants of C-CMA-ES by orders of magnitude. Unfortunately
this is the phase of the optimization that is interesting for learning in the real world. We

126

4.3. Extensions from Black-box Optimization

Figure 4.13.: Learning curves for the via-point problem averaged over 20 experiments.
Dashed lines indicate the maximum return over all experiments.

can also see that C-REPS converges already and does not learn anything for the next
840 generations. Variants of C-CMA-ES will continue making progress until the last
episode. Because the surrogate model is only useful when we have a good estimate of
the covariance matrix and a substantial amount of samples from the objective function,
we can only use it in later stages of the optimization to improve the learning progress.

4.3.2.4. 2D Via-Point Problem

We will evaluate C-CMA-ES variants on a 2D via-point problem. A DMP with x0 =

(0, 0)) , g = (1, 1)) , g = 1.0, and ten weights per dimension will be used as trajectory
representation. The reward is defined for each step C = 0, . . . ,) − 1 as AC = −0.001| |v | |C ,
and for the last step as the distance to each via point A) = −∑

pE80,C
| | pE80,C − pC | |. Via

points are defined as a tuple of time and positions {
(
0.2, (0.2, 0.5))

)
, (0.5, s)}, where

s ∈ [0.3, 0.7] × [0.3, 0.7].
We did not use C-REPS as a baseline because it is not robust against the choice of its

hyperparameter n . In the experiments, we use # = 100, =BC0AC = 1000, and a quadratic
baseline. Learning curves are displayed in Figure 4.13. The performance is evaluated
on a grid of 25 test contexts, where s1, s2 ∈ (0.3, 0.4, 0.5, 0.6, 0.7). Active C-CMA-ES
does not have an advantage. The convergence behavior of (a)C-ACM-ES is much better,
however, the advantage only occurs after about 8,000 episodes, which is too late for such
a simple problem from the robotics perspective.

4.3.3. Discussion

We demonstrate that the extensions active C-CMA-ES and C-ACM-ES can be combined
and yield impressive results on contextual function optimization problems in comparison

127

Chapter 4. Sample-Efficient Contextual Policy Search

to C-CMA-ES. We show, however, that these results are actually not directly transferable
to the domain of robotics. We would like to learn successful upper-level policies in a few
hundred episodes at maximum. The presented extensions, however, start to be better
than standard C-CMA-ES just after the range of interest. They exhibit much better
convergence behavior though.

In this section, we investigate a surrogate model for the first time in this thesis. We see
that black-box optimization in combination with a good surrogate model can be more
sample-efficient, however, it would be desirable to have a surrogate model that can be
exploited after only a few episodes.

4.4. Bayesian Optimization for Contextual Policy Search
Parts of this
section were

published
originally as

[MFH15; Gut+18]
and have been

revised.

Contextual policy search is often based on local search approaches. From the field of
black-box optimization, it is well-known that local search approaches are well suited for
problems with a moderate dimensionality and no gradient-information. For the special
case of relatively low-dimensional search spaces combined with an expensive cost function,
which limits the number of evaluations of the cost functions, global search approaches
with a surrogate model such as Bayesian optimization [BCd10] are usually superior.
Policy search with pre-trained movement primitives can also fall into this category, as
evaluating the cost function requires an execution of the behavior on the robot while
only a small set of metaparameters might have to be adapted. In this section, we will
apply Bayesian optimization to contextual policy search.

Bayesian optimization has been used for non-contextual policy search on locomotion
tasks [Liz+07; Cal+16] and robot grasping [Kro+10] before. Calandra et al. [Cal+16]
optimize eight parameters of a finite state machine that controls bipedal walking of a
small robot. About 20 to 80 episodes are required for this task, which suggests that
Bayesian optimization can be very sample-efficient.

4.4.1. Extension of Bayesian Optimization to Contextual Policy Search

Note that the algorithm BO-CPS, which is presented in detail in this section, is
not my contribution. It was developed by Jan Hendrik Metzen and published
as Metzen et al. [MFH15]. I did the experimental evaluation of the approach
in simulation, which will be presented in the next section.

BO-CPS [MFH15] internally learns a model of the return ' of a parameter vector) in
a context s with Gaussian process regression (GPR) [RW05]. BO-CPS is summarized in
Algorithm 5. The GPR is trained from sample returns ' obtained in episodes at query
points consisting of a context s determined by the environment and a parameter vector
) selected by BO-CPS. By learning a joint model over the context-parameter space,
experience collected in one context is naturally generalized to similar contexts.

The GPR provides both an estimate of the expected return `�% ['(s,))] and the
uncertainty f�% ['(s,))] of this estimate. The uncertainty contains a homoscedastic

128

4.4. Bayesian Optimization for Contextual Policy Search

Algorithm 5 BO-CPS
Require: kernel for Gaussian process regression : (x, y), dataset D = ∅, trade-off parameter for

exploration and exploitation ^, number of random samples =random before surrogate model
is used

1: C ← 1

2: while not converged do

3: Observe s

4: if surrogate model is initialized then

5:) ← argmax) `�% ['(s,))] + ^f�% ['(s,))] ⊲ Optimize GP-UCB
6: else

7: Sample) randomly
8: end if

9: Obtain '(s,)) ⊲ Return of policy c) in environment with context s

10: D← D ∪ (s,) , '(s,)))
11: if C ≥ =random then

12: Train surrogate model on D to predict return from context and parameters
13: end if

14: C ← C + 1
15: end while

aleatoric and an epistemic component. Based on this information, the parameter vector
for the given context is selected by maximizing a so-called acquisition function. These
acquisition functions allow controlling the trade-off between exploitation (selecting pa-
rameters with maximum estimated return) and exploration (selecting parameters with
high uncertainty). Common acquisition functions in Bayesian optimization are the prob-
ability of improvement (PI) and the expected improvement (EI) [BCd10]. PI and EI,
however, both require the definition of an incumbent, which denotes the parameter vector
with the maximum observed return. This notion of an incumbent is not extended easily
to contextual policy search, where the incumbent is different for every context, returns
are noisy, and each context will only be sampled once because of the continuous context
space. Thus, we use the acquisition function Gaussian process Upper Confidence Bound
(GP-UCB) [Sri+10] instead, which does not require the definition of the incumbent. We
define GP-UCB of a parameter vector in a context as

GP-UCB(s,)) = `�% ['(s,))] + ^f�% ['(s,))],

where ^ controls the exploration-exploitation trade-off.
BO-CPS selects parameters for a given context s by choosing

) ← argmax
)

GP-UCB(s,)).

This maximization is performed by using the global optimizer DIRECT [JPS93] to find
the approximate global maximum, followed by L-BFGS-B [Byr+95a] to refine it. Note
that this maximization is performed only over the parameter space for fixed context s.

129

Chapter 4. Sample-Efficient Contextual Policy Search

(a) Simulated robot arm COMPI. (b) Learning curves: mean and standard error for test con-
texts {−1<,−0.33<, 0.33<, 1<} × {1<, 1.5<, 2<, 2.5<}
after intervals of 25 episodes.

Figure 4.14.: Simulated ball-throwing experiments with BO-CPS.

4.4.2. Experiments

In the following experiments we will investigate the sample efficiency of BO-CPS and its
suitability for learning on a real robot.

4.4.2.1. Simulated Ball Throwing

We present results in a simulated robotic control task, in which the robot arm COMPI
(see Figure 4.14a and Appendix F.1 for details) is used to throw a ball at a target on
the ground encoded in a context vector. The target area is [1<, 2.5<] × [−1<, 1<] as
shown in Figure 4.15. We compare three learning approaches, which all start from a
manually initialized DMP where the start and goal position are defined in joint space
and the weights are set to zero: (1) C-REPS learning all weights of the DMP, resulting
in a high-dimensional search space with 300 parameters, (2) C-REPS learning only two
metaparameters, and (3) BO-CPS learning the same two metaparameters. These two
metaparameters are the execution time g of the DMP, which determines how far the ball
is thrown, and the final angle 60 of the first joint, which determines the rotation of the
arm around the z-axis, that is,) = (60, g)) .

For (1), we use a Gaussian upper-level policy to map contexts to DMP weights, with
the mean being a quadratic function of the context and initial variance 100. For (2), we
also use a quadratic Gaussian upper-level policy to map contexts to metaparameters with
an initial)0 = (0, 1)) , initial variance

(
(0.1c)2, 12

)
, and parameter space 60 ∈

[
− c

2
, c
2

]
and g ∈ [0.2, 5]. In (1) and (2), the upper level policy is updated after 25 episodes based
on the last 100 samples. For (3), an anisotropic RBF kernel (a length scale for each
dimension) is used for the GPR and GP-UCB’s exploration parameter is set to ^ = 1.0.

130

4.4. Bayesian Optimization for Contextual Policy Search

Figure 4.15.: Sketch of the ball throwing problem.

The return '(s,)) = −||s − bc) | |22 − 0.01
∑
C q¤ 2C includes the squared distance between the

goal s and the position bc) hit by the ball with policy c) (both in centimeters) as well
as the squared sum of joint velocities during DMP execution.

Figure 4.14b shows the corresponding learning curves: although C-REPS performs
initially better than BO-CPS, BO-CPS obtains a considerably higher return than C-
REPS after 150 episodes. Learning only metaparameters is considerably faster than
learning all weights.

4.4.2.2. Ball Throwing on a Real Robot

Jonas Hansen did this experimental evaluation of BO-CPS on a real robot in
his master’s thesis [Han15], which I supervised. This work is published with
Gutzeit et al. [Gut+18]. I will present his work here as the results are essential
for the following section and to achieve our goal of sample-efficient contextual
policy search.

In the experiment presented by Gutzeit et al. [Gut+18] ball throwing is learned directly
in reality without any simulation. Similar but not directly comparable works for ball-
throwing have been published by da Silva et al. [da +14] and Ude et al. [Ude+10].

Similarly to the previous experiments in simulation, from an initial motion plan we gen-
eralize to a behavior template that can hit any target s (context) in the area [1 <, 2.5 <]×
[−1 <, 1 <], where COMPI (see Figure 4.16) is located at (0 <, 0 <). The performance
is evaluated on a grid of 16 test contexts

{−0.7<,−0.2<, 0.2<, 0.7<} × {1.3<, 1.6<, 1.9<, 2.2<}

that are not be explored during training.
The maximum reachable accuracy of COMPI was determined previously for four man-

ually designed throws. The standard deviation of the touchdown position in 20 exper-
iments per throw was measured. The mean positions were 1.3m to 2.3m away from

131

4.4. Bayesian Optimization for Contextual Policy Search

Figure 4.17.: Learning curve of contextual policy search (BO-CPS with entropy search)
for real ball-throwing. The logarithmic H scale on the left represents the
mean return and the linear H scale on the right represents the mean distance
between the touchdown position and the context. Mean and standard error
are measured over 16 test contexts. The reading point indicates where we
measure the final performance. (Created by Jonas Hansen for [Han15].)

4.4.3. Discussion

4.4.3.1. Summary

Bayesian optimization is a sample-efficient black-box optimizer that can be used to learn
difficult tasks such as throwing a ball and generalize it to a given context space with
fewer than one hundred episodes. The main drawback of BO-CPS is its computational
complexity. It is required to reduce the number of policy parameters and episodes to
a small amount, which we did manually for the experiments in this section. It would
be better to extract relevant policy parameters automatically. Note that reducing the
number of parameters does not reduce the asymptotic computational complexity though.
It merely further improves the sample efficiency of BO-CPS so that we do not need as
many samples as are required to slow down the update step of the algorithm to a level
that is not useful for contextual policy search anymore. Let us take a closer look at the
asymptotic computational complexity of BO-CPS.

133

Chapter 4. Sample-Efficient Contextual Policy Search

4.4.3.2. Computational Complexity

Let =opt be the number of optimization steps on the acquisition function, C be the number
of episodes, and =hyper be the number of hyperparameter optimization steps. Then the
asymptotic time complexity of querying a new parameter vector is O(=optC

2) for the
GP-UCB acquisition function. The complexity of updating the model is O(=hyperC

3).
Updating the Gaussian process regression model requires hyperparameter optimiza-

tion. In each of the =hyper optimization steps we recompute the symmetric Gram matrix
of size C2. Computing this matrix is of complexity O(3C2), where 3 is the dimensionality
of the data, in our case the sum of the numbers of context and parameter dimensions.
The Cholesky decomposition of this matrix will be computed in O(C3), which dominates
the complexity of other steps in this procedure. In our application we set =hyper > C so
that we can effectively say the complexity is O(C4).

Querying a new parameter vector involves optimizing the GP-UCB acquisition func-
tion. This requires computing in each of the =opt steps the standard deviation of the
Gaussian process, which requires the computation of k) Q−1k with k ∈ RC and Q ∈ RC×C
of complexity O(C2). Entropy search [MFH15] is even more expensive than GP-UCB.

4.5. Variational Trajectory Autoencoder
This section was

submitted
originally as

[FK20] and has
been revised.

Figure 4.18.: Architecture of the VTAE. The encoder reduces the dimensionality of tra-
jectories. The decoder generates trajectories from a low-dimensional repre-
sentation. The decoder has a special structure that splits the initial state
from the shape of the trajectory. Both are combined in the trajectory layer.

The space of possible trajectories is huge. Let us assume that we want to create a
trajectory of 100 steps for a robot with three joints. We would have to generate 300
continuous values. This results in a large search space that contains far more possible
trajectories than required to solve a specific task. We want to reduce the search space

134

4.5. Variational Trajectory Autoencoder

for policies to a low number of dimensions and make useless trajectories less likely. This
can be achieved by manifold learning from demonstrated trajectories. The manifold
learning algorithm should be able to figure out which latent variables are best suited to
cover the distribution of the demonstrated motions. We can then apply BO-CPS to the
low-dimensional search space.

Problems such as playing table tennis [Kob+10] or darts [Kob+12], have often been
handled with domain-specific policy representations such as DMPs [Ijs+13] in combina-
tion with policy search. These methods mostly use linear or non-parametric models. We
are also interested in building the bridge between these approaches and deep learning,
which learns nonlinear, parametric models. While neural networks are good at robot per-
ception, there is a lack of approaches that generate complex movement patterns. Without
a tight, reactive coupling of sensor measurements and actions it is difficult to generate
complex trajectories, which is a problem that we will address in this section.

We will see how we can learn a trajectory generator that outputs dense high-dimensional
trajectories from a low-dimensional latent space. The generator is a decoder extracted
from a variational autoencoder (VAE) trained on a specific kind of trajectories that are
demonstrated by an expert. We will discuss a new building block for neural networks: a
trajectory layer that enforces smoothness on generated trajectories. The trajectory gen-
erator can be used to perform sample-efficient policy search with Bayesian optimization.
We show this by applying the approach to robotic grasping on a real system.

4.5.1. Related Work: Manifold Learning for Behavior Learning

The manifold assumption is a fundamental idea in machine learning: “(high-dimensional)
data lie (roughly) on a low-dimensional manifold.” [CSZ06, page 6] Manifold learning
tries to identify this low-dimensional manifold to circumvent the curse of dimensionality
that would require us to collect a number of samples that exponentially increases with
the number of dimensions.

Manifold learning for action generation has a biological motivation. A concept that has
been widely adopted to explain how animals control complex motor systems are muscle
synergies [SFS98; TSB99; dSB03]. Muscle synergies are defined as coherent activations of
a group of muscles in space or time [dSB03]. They are building blocks of motor behaviors
and a small number of these can be combined to form complex motor behaviors. Hence,
low-dimensional representation of complex high-dimensional movement patterns is also
present in animals that have to deal with a high number of individual motor units. This
motivated research in the direction of manifold learning for robot control [Rue+15].

Several previous works combine manifold learning and dimensionality reduction with
imitation or reinforcement learning. A survey of dimensionality reduction in learning for
manipulation and control has been written by Ficuciello et al. [FFC18]. We will give a
short introduction here.

The work presented in this section is inspired by Matsubara et al. [MHM10] who in-
troduce one of the earliest methods that apply dimensionality reduction to state space
trajectories in imitation learning: SDMPs. SDMPs reduce the dimensionality of DMPs
learned from multiple demonstrations via singular value decomposition (SVD). Mat-

135

Chapter 4. Sample-Efficient Contextual Policy Search

subara et al. [MHM10] use SDMPs to identify and represent multiple styles of similar
motions. The shortcomings of SDMPs are that they are deeply coupled with DMPs and
they exclude metaparameters from the dimensionality reduction. Furthermore, an SVD
only allows linear transformations. A similar approach based on principal component
analysis (PCA) [Pea01] has been suggested by Tosatto et al. [TSP20] for parameters
of ProMPs and Rueckert et al. [Rue+15] present an extension of ProMPs with hierar-
chical priors to learn a low number of control parameters for trajectories from multiple
demonstrations. They were also able to represent multi-modal distributions.

As previously stated, black-box optimization and policy search are closely connected.
Bayesian optimization can be used for policy search, but it is difficult to scale it to many
parameters. Parameter reduction has been used for this reason in high-dimensional prob-
lems by Wang et al. [Wan+16b], who use random embeddings to solve high-dimensional
optimization problems with low intrinsic dimensionality. The idea of using fixed low-
dimensional representations of high-dimensional policies has also been employed success-
fully in neuroevolution [Kou+13; Fab+13].

Instead of applying manifold learning to policy parameters, we can also reduce the
dimensionality of the states or of the observations. Ha and Schmidhuber [HS18] use
a VAE [KW14] to compress images from video games. They train a recurrent neural
network to predict future states and employ a linear controller that uses the compressed
observation and hidden state of the recurrent network. The controller is optimized with
CMA-ES. An autoencoder can be used for dimensionality reduction (encoder) but it can
also be used to generate data from the latent space (decoder). A VAE specifically can
be used to learn such a generative model.

The approach that we discuss in this section is similar to the work of Matsubara et
al. [MHM10] and Rueckert et al. [Rue+15] in the sense that we learn a low-dimensional
representation of trajectories from expert demonstrations, but we do not need an indirect
trajectory representation. We will furthermore focus more on action generation than
perception in contrast to Ha and Schmidhuber [HS18], that is, we will use a generative
model. We will develop a nonlinear manifold learning approach for trajectories and we
will perform policy search in the low-dimensional, latent parameter space of trajectories.

4.5.2. Proposed Manifold Learning Approach

Our proposed network architecture is displayed in Figure 4.18. We use a VAE to learn
a low-dimensional representation of trajectories, however, we are only interested in the
generative model ?(^ |z) after training, where ^ represents a trajectory and z is a la-
tent vector. We will directly generate trajectories and not have an indirect trajectory
representation via movement primitives. For this purpose we develop a special kind of
layer to ensure that generated trajectories are smooth. This layer does not have any
learnable parameters and can be added at the end of any neural network that should
output trajectories. It is a way of integrating prior knowledge in the structure of the
neural network without restricting the capacity of a neural network since the new layer
implements a linear transformation.

136

4.5. Variational Trajectory Autoencoder

Sequence prediction problems have been solved mostly by recurrent neural networks
(for example, in machine translation [SVL14]), however, recurrent modules are nowadays
replaced by feedforward architectures (such as transformers [Vas+17]) that can consider
all information without relying on faulty memory [Car+20] and are easier to train.

4.5.2.1. Trajectory Layer

Trajectories executed by humans are usually smooth. Trajectories executed by robots
should be smooth to avoid high accelerations and velocities. We can encode this knowl-
edge in a layer of a neural network. We will use a trick presented by Kalakrishnan et al.
[Kal+11a] to generate smooth and dense trajectories of end-effector poses.

With & ∈ R) ×� and x0 ∈ R� from previous layers the trajectory layer implements

^ = 6(& , x0).

x0 represents the initial pose or position in the trajectory ^ that will be generated by
the layer. ^ ∈ R) ×� defines) steps in � dimensions.

The layer performs a matrix multiplication R&•3 for each column &•3 of & to compute
trajectory offsets in each dimension 3 ∈ {1, . . . , �} that will be added to the initial
position x03 of that dimension. Hence, the layer performs only linear operations.

We will now explain how the constant matrix R is computed. It is based on a co-
variance matrix of a multivariate Gaussian that generates low acceleration with respect
to the quadratic cost function 2(x) = x) G) Gx. Note that x here is a sequence of one-
dimensional points and not a state vector. G is a second order finite difference matrix.
Second order backward differences for a sequence can be used as an approximation of the
second derivative, that is,

5 ′′(C) ≈ 5 (C) − 2 5 (C − ΔC) + 5 (C − 2ΔC)
ΔC2

.

With a sequence x = (G1, G2, G3, . . . , G))) and a temporal difference of ΔC, this results in

G¥C ≈
GC − 2GC−1 + GC−2

ΔC2
,

which can be written as matrix multiplication x¥ = Gx, with

G =
1

ΔC2

©­­­­­­­­­­­­­«

1 0 0 0 0 0

−2 1 0 . . . 0 0 0

1 −2 1 0 0 0
...

. . .
...

0 0 0 1 −2 1

0 0 0 . . . 0 1 −2
0 0 0 0 0 1

ª®®®®®®®®®®®®®¬

∈ R=+2×=

137

Chapter 4. Sample-Efficient Contextual Policy Search

to obtain the sequence of acceleration x¥ for a given sequence of positions x, so that our
cost function reduces to 2(x) = x¥) x¥ .

Kalakrishnan et al. [Kal+11a] propose (G) G)−1 as a covariance matrix of a multi-

variate normal distribution over trajectories N

(
x |0, (G) G)−1

)
in the context of motion

planning for manipulation because samples from this distribution have a low control
cost. According to Toussaint [Tou11, Equation 33] this results in an expected cost of
Ex [x) G) Gx] = Tr[G) G(G) G)−1] = Tr[O=+2] = =+2, which only depends on the number
of steps = in the trajectories. Sampled trajectories start at zero and end at zero. To gen-
erate a distribution that diverges from zero in the end we can use the upper left quarter
of this covariance matrix.

We can reparameterize a standard normal distribution y ∼ N(0, O) to output these tra-
jectories with x = Ry, where R is obtained by Cholesky decomposition RR) = (G) G)−1
and is a lower triangular matrix. While the Cholesky decomposition has cubic complex-
ity with respect to length of the trajectory and number of task space dimensions, it only
has to be computed once during the training phase.

We can use the same trick for other distributions. In our case we apply it to the
output of a neural network that transforms a Gaussian distribution. So far we described
everything for one-dimensional trajectories, but we can use the same approach for each
dimension of a multi-dimensional space individually. Since we produce dense trajectories,
we can even approximate trajectories of unit quaternions for orientation representation
well enough by handling each dimension of the quaternion individually and normalizing
the generated quaternions.

4.5.2.2. Configuration of the Variational Autoencoder

We use a VAE [KW14] as a basis to train our trajectory generator. The complete archi-
tecture is displayed in Figure 4.18. We use dense layers followed by nonlinear activation
functions. We found that using a leaky ReLU activation function gives better results
than tanh or ReLU (refer to Maas et al. [MHN13] for definitions of the activation func-
tions). Furthermore a scaling layer that multiplies a learnable scalar with the output
of each layer makes learning more stable. This might be regarded as a simple version
of batch normalization [IS15]. Similar simplifications have been used by Zhang et al.
[ZDM19] and Kingma and Dhariwal [KD18]. Zhang et al. [ZDM19] use learnable scalar
multipliers for residual blocks. Kingma and Dhariwal [KD18] use an actnorm layer, a
simplified version of batch normalization for small batch sizes.

Our decoder has a special structure that employs the trajectory layer. Therefore, we
need to generate two inputs & and x0 to the trajectory layer from a latent vector z. These
will be generated by two separate paths in the decoder.

In addition, we use a modified loss similar to the V-VAE [Hig+17], however, Higgins
et al. [Hig+17] suggest to use V > 1 to learn a better disentanglement of the data while we
choose 0 < V < 1 to generate trajectories that are closer to the demonstrated trajectories.
Similar configurations have been investigated previously by Hoffman et al. [HRJ17] and
Alemi et al. [Ale+18].

138

4.5. Variational Trajectory Autoencoder

Figure 4.19.: Demonstrated grasping movements projected to x-y plane. Lines indicate
trajectories and circles mark end positions of these trajectories.

4.5.3. Experiments

We investigate the following questions: (1) Is the VTAE better for trajectories than
other manifold learning algorithms? (2) Can the VTAE learn a manifold in which we can
smoothly interpolate between trajectories that are similar to demonstrated trajectories?
(3) Can we use the contextual policy search algorithm BO-CPS to learn a mapping from
contexts to corresponding parameters in the latent space? (4) Can we do this on a real
robot?

4.5.3.1. Dataset

We recorded 249 pick and place movements from one person with XSens Awinda [Xse20],
which is a motion capture system based on inertial measurement units. The person had to
pick a small cylindrical object from various positions on a table. We were only interested
in the grasping movement and manually extracted those movements. We scaled each
trajectory temporally to the same length, which is the mode of the gamma distribution
fitted on the lengths of the trajectories. Each trajectory consists of 76 steps at a frequency
of 60 Hz. We also centered the data so that all trajectories start at the position (0, 0, 0).
Orientations were not changed. We only use the end-effector pose since the positions of
the fingers are completely different from the positions of the fingers on the robot. Figure
4.19 displays all demonstrated trajectories.

4.5.3.2. Training and Hyperparameters of Variational Trajectory
Autoencoder

We reduce the number of dimensions to two since we want to restrict the search space
for policy search to improve sample efficiency. We explored different architectures for

139

Chapter 4. Sample-Efficient Contextual Policy Search

the decoder. In the initial architecture we had an additional layer with 266 nodes as
the third layer of the decoder, but we found this made the mapping from latent space
to trajectory space too complex such that interpolation between trajectories in latent
space was not smooth enough to apply contextual policy search. The decoder has to be
nonlinear to represent the demonstrated trajectories adequately, but we have to balance
the capacity to reconstruct the original dataset and the smoothness of interpolation
between trajectories. One way to do this is to set V appropriately, another way is to
adapt the architecture of the decoder.

We set V = 0.1, as this gives us the best compromise between fitting the dataset
accurately and approximating a Gaussian distribution in the latent space. We tried
V ∈ [0, 0.01, 0.1, 1, 5].

With a batch size of 16, we train the VAE for 500 epochs with Adam [KB15], that is,
all samples from the training set are used 500 times. We also trained for 50,000 epochs
but did not see relevant progress in the training loss after 500 epochs. We also explored
smaller and larger batch sizes and found that a batch size of 16 achieves the lowest loss
after 500 epochs. Training was done either on an Intel i7-5960X CPU or on an NVidia
Titan X, which was twice as fast.

4.5.3.3. Comparison of Manifold Learning Approaches

Figure 4.20 compares three manifold learning approaches to encode the grasp dataset.
We generate a grid with 144 points in latent space and project it with PCA [Pea01], a
standard VAE, and a VTAE. PCA is a linear model and apparently does not capture
the distribution of the training set accurately, as there are many trajectories that are
not in the training set. This extrapolation might be desirable, for instance, with only
a few demonstrations but it is not desirable in our case, where we want to guide policy
search by demonstrations. The standard VAE uses the same architecture as the VTAE
without a trajectory layer for decoding & , however, we can see that the trajectories are
more shaky than with the other models. This property is not desirable for trajectories
that should be executed on a robot. The VTAE is a good compromise between capturing
the distribution and smoothness.

4.5.3.4. Interpolation

We want to explore the learned manifold and the projection from the latent space to tra-
jectory space. Figure 4.21a and 4.21b show interpolations along two feature axes. Those
have been identified by learning linear mappings of the form H = w) z from the latent
space to a characteristic feature H of the corresponding trajectories that are generated
by the decoder. This approach has been proposed by Guan [Gua18] in the context of
generative adversarial networks. Our assumption is that w corresponds to the axis of
maximum variation of the trajectory feature H. In Figure 4.21a the feature axis varies
the difference between the position on the y-axis between start and goal in trajectory
space and in Figure 4.21b the feature axis varies the difference between the position on
the z-axis between start and goal in trajectory space.

140

4.5. Variational Trajectory Autoencoder

(a) Latent grid. (b) PCA. (c) VAE. (d) VTAE. (e) Training set.

Figure 4.20.: Projection of grid in latent space to trajectory space with three manifold
learning approaches: linear PCA, VAE, and VTAE. Trajectories are pro-
jected on the x-y plane. Each colored line corresponds to one trajectory
that is projected from one point of the grid in latent space. For comparison
we also show all trajectories from the training set.

In Figure 4.21c we select two samples from the training set that are clearly different
in trajectory space, project them to latent space, interpolate in latent space and project
the interpolated latent variables back to trajectory space. Hence, we can identify axes
in latent space that have different effect on the shape of trajectories and we can also
smoothly interpolate between trajectories.

4.5.3.5. Simulated Contextual Policy Search

In Section 4.4 we already demonstrated that BO-CPS can be more sample-efficient than
C-REPS if we reduce the number of policy parameters drastically. We will first check
whether contextual policy search algorithms are generally able to exploit the latent space
to do sample-efficient policy search and which algorithm works best. For this purpose
we will use a simple reaching task: goal positions for the end effector are located on a
line in 3D space. Goals s = (6G , 6H)) are varied along one axis, that is, 6G = 0.35 and
6H ∈ [−0.4,−0.15]. Goals are used as context for contextual policy search and they define
the return, which is the negative distance of the end effector’s center after executing the
trajectory to the goal. In this and in the following experiment, contextual policy search
algorithms learn an upper-level policy c8 () |s), where for our purpose) = z are the latent
vectors that will be projected to trajectories by the decoder of the VTAE.

Figure 4.22a shows a solution to the problem that has been obtained by BO-CPS after
250 episodes. Note that we only optimize the position distance to the goal. We do not
have any penalty on accelerations or velocities. Nevertheless, all trajectories are smooth,
even during the learning process.

Hyperparameters: We compare BO-CPS, C-REPS, C-CMA-ES, and aC-REPS. The
search space for all algorithms is restricted to [−3, 3] × [−3, 3] in the latent space. The
initial variance of C-CMA-ES and C-REPS is set to 5, we use a quadratic upper-level
policy that maps from context s to trajectory parameters z. Although BO-CPS is non-

141

Chapter 4. Sample-Efficient Contextual Policy Search

(a) Latent space interpolation along feature axis 1. (b) Latent space interpolation along feature axis 2.

(c) Latent space interpolation between training samples.
Projection on x-y plane (left) and x-z plane (right).

Figure 4.21.: Interpolations in latent space. Black circles and lines in the background
show the training set.

(a) Learned policy (quadratic mapping from goal posi-
tions to the latent space) for the simulated reaching
problem. Goal positions are represented by circles
in the right plot, corresponding trajectories are indi-
cated by lines in the same color, and their parameters
in latent space are shown by circles in the left plot.

(b) Comparison of contextual policy search al-
gorithms in latent space. Mean and stan-
dard error over 20 experiments are dis-
played. The y-axis is logarithmic.

Figure 4.22.: Reaching problem.

parametric, we also learn a quadratic policy from all samples at test time because this
speeds up querying parameters for given contexts drastically. The quadratic policy is
obtained in the same way as in C-REPS, although we use all samples. After manual

142

4.5. Variational Trajectory Autoencoder

hyperparameter tuning we decide to update the upper-level policy in C-REPS and aC-
REPS after 20 episodes with a history of 25 samples. C-CMA-ES determines these
parameters automatically. We tried updates after [5, 10, 20, 25, 30, 50] samples and a
training set size of [5, 10, 20, 25, 30, 50, 100, 200, 250] for all three algorithms but did not
find any better configuration. For BO-CPS we use Gaussian process regression as a
surrogate model. We manually designed the kernel : (x1, x2) = 21"a (x1, x2) +, (x1, x2) +
22, where "a is a Matérn kernel with an anisotropic length scale initialized at 1 and
limited to [0.01, 100] and the parameter a is set to 1.5. 21, 22 are constant kernels that
are initialized to 100 and are limited to

[
10−3, 105

]
and

[
10−2, 105

]
respectively. , is

a white noise kernel initialized at a noise level of 1 and limited to
[
10−5, 105

]
. We did

not invest much time in tuning the kernel hyperparameters and they could be optimized.
We use GP-UCB as acquisition function with the parameter ^ to balance exploration
and exploitation. ^ = 2 was just enough to avoid too much exploitation. We tried the
values 1, 1.5, 2. For every query of the acquisition function we set the budget of the
global optimizer DIRECT [JPS93] to 500 iterations and allow L-BFGS-B [Byr+95b] to
run until convergence for fine tuning.

Figure 4.22b shows the learning curves of the four algorithms. BO-CPS clearly outper-
forms the other algorithms. A detailed analysis can be found in Appendix G. BO-CPS’s
computational complexity, however, depends on the number of samples that were pre-
viously explored. This makes it slow after much more than the 250 episodes that were
needed in this task. Hence, it is not an optimal algorithm for learning in simulation.
Nevertheless, for learning in reality this is acceptable because learning in the real world
with a robot is a tedious task if it cannot be fully automated. Hence, we prefer sample
efficiency over low computational complexity.

4.5.3.6. Contextual Policy Search on Real Robot

We use a UR5 robot arm (see Appendix F.3 for details) and a Robotiq 2F-140 gripper for
this experiment to grasp a can. BO-CPS generalizes grasping behaviors to a predefined
area (see Figure 4.23c).

We perform 250 episodes, as it is a good compromise between minimizing episodes on
the real robot on the one hand and the amount of samples necessary to learn a useful skill
with BO-CPS on the other hand. As the task of grasping is closely related to reaching,
we use the same hyperparameters as in the previous experiment.

With a marker-based motion capture system from Qualisys AB [Qua20a] we measure
the pose of the gripper and learn to reach given points with it. We assume that we
do not know the transformation between the coordinate system of the motion capture
system and the robot. The robot is blind, that is, it does not receive any information
about the problem other than the target location (context) and the return, which is the
negative distance between the gripper’s center and the target location. The context is
sampled uniformly from an area of the size 20 cm × 25 cm during training. During this
phase we do not actually grasp the cans that we use during the testing phase since we
only optimize the distance to the goal.

143

4.5. Variational Trajectory Autoencoder

were we actually tried to grasp cans (see Figure 4.23c). The gripper is triggered after the
execution of the trajectory. Can locations close to the border or outside of the context
area do not result in successful grasps while it is possible to successfully grasp objects in
the middle of the target area. Although the gripper is forgiving for inaccuracies because
of the size of the can compared with the span of the gripper, it is often failing to grasp
the can just by a centimeter at the border of the target area.

The main focus of this experiment is not to show that BO-CPS can solve this particu-
lar problem better than other approaches, but to demonstrate that the whole approach
from manifold learning to contextual policy search works on a real robot and is agnostic
to the kind of context parameters. We also see that the generated trajectories are easily
executable by a standard robot arm, as they are smooth. Grasping seems to be much
simpler than ball throwing at first glance. Part of the difficulty in the throwing problem
comes from flexibility of the projectile and of the robot, which we cannot model accu-
rately, however, this just means that the projectile motions are a bit noisy. A similarly
complicated part is identifying the transformation between the robot’s coordinate system
and the measurement coordinate system. We learn a policy that implicitly replaces an
explicit chain of mappings from an end position on the ground over the corresponding
projectile motion, over the throwing motion, to corresponding policy parameters. In the
grasping problem we have a similar problem, as the transformation between the robot’s
coordinate system and the motion capture system’s coordinate system is unknown. It is
inferred indirectly by contextual policy search and encoded in the mapping from target
object position (context) over latent space parameters to the end pose of the trajectory,
which might include several nonlinearities. We think that while the concrete challenges
for other skill learning problems might take on a different form, the degree of difficulty
is often similar.

4.5.4. Discussion

Complex movement generation without tight coupling to sensors is an underexplored field
in reinforcement and imitation learning, particularly in combination with deep learning
which mostly focuses on complex, redundant sensory data. With the trajectory layer
we provide a building block that generates smooth trajectories, which are particularly
suited for robots. It is a module for neural networks that can be used to enforce a spe-
cific property without too strong restrictions. Much success in deep learning is based on
similarly domain-specific modules, for example, convolutional layers [LeC+89] or trans-
formers [Vas+17].

In this section, we use the trajectory layer with manifold learning to train a low-
dimensional representation of grasping movements to demonstrate that this can be com-
bined with contextual policy search algorithms to efficiently learn grasping on a real
robotic system. Nonetheless, the approach is not limited to this learning paradigm. We
would also like to build a bridge to deep RL, which learns nonlinear, parametric models
but currently often needs a tight sensor-actuator coupling, that is, a current sensor mea-
surement is fed into a neural network and the network generates an actuator command
(such as joint angles or torques), which is then executed. The decoder of our variational
trajectory autoencoder could also be used in combination with deep RL algorithms. We

145

Chapter 4. Sample-Efficient Contextual Policy Search

can couple it with a rich sensor processing network such as an object detection network
and train a mapping from camera images to grasping movements.

An interesting application is transfer learning. It is common practice in deep learning
to use pretraining and transfer learning to solve harder problems or problems with fewer
training data, for instance, the backbone of RetinaNet for object detection is pretrained
on ImageNet [Lin+17]. Devlin et al. [Dev+19] establish similar practice in language
understanding. We argue that robots have to build on pretrained action primitives that
can be extended and refined to reach a high competence level in terms of motor skills. If
we want to succeed with this approach we have to collect more datasets of movements,
and train more complex models that also combine multiple types of movements, not just
grasping motions. Our trajectory layer could be a building block for skill networks that
can be trained on larger datasets and form the basis for transfer learning.

The limitation of this approach is that it is not able to represent any possible trajectory.
We limit the agent by the mapping that has been learned previously. In future work, the
weights of the network could also be adjusted during RL.

4.6. Summary

We investigate several ways to improve contextual policy search algorithms with the goal
to increase sample efficiency. These are

• active context selection,

• return normalization and selection of the best training samples (aC-REPS),

• surrogate models (C-ACM-ES, BO-CPS),

• and manifold learning (VTAE).

Table 4.3 summarizes the performance improvements that we measure in experiments.
The two most important numerical indicators for improvement are the number of episodes
to reach a certain return and the return reached after a certain number of episodes. Note
that the numbers are not exact, as they sometimes have to be approximated from learn-
ing curves because there is no measurement at the exact point when the threshold is
reached. Furthermore, the results between different experiments are not directly compa-
rable because of the different robotic arms, policies, and policy parameterizations that
we use in different works. A PA-10 arm and a sequence of two DMPs, of which the
metaparameters are learned, are used to compare context selection approaches. In this
case ball throwing is learned for the target area [−3<,−5<] × [−3<,−5<], that is, 4<2.
AC-REPS is evaluated with COMPI, one DMP, of which the 60 weights are learned, and
the target area [−3<, 3<] × [3<, 6<] (18<2). The reason for these different evalua-
tion processes is that the experiments are performed over a long period of time with an
evolving simulation and evaluation procedure. Furthermore, the analysis of the results
varies a lot: the learning curves of aC-REPS show quartiles of 30 independent runs while
BO-CPS in simulation is only evaluated in one run of which the mean performance and
the standard deviation over 16 test contexts are plotted. Note that the result of the latter

146

4.6. Summary

Table 4.3.: Improvements of sample efficiency in contextual policy search.

Approach Comparison Criterion Improvement

(ours vs. baseline) (over baseline) (percent)

Active
context
selection

Ball throwing with
monotonic progress
heuristic vs.
round-robin selection

Episodes to
return −0.2

3,200 vs. 4,800 33.3 %

Return after
10,000 episodes

-0.109 vs. -0.164 33.5 %

AC-REPS
Ball throwing with
aC-REPS vs.
C-REPS

Episodes to
return −0.1

4,000 vs. 8,000 50 %

Return after
3,500 episodes

-0.991 vs. -2.123 53.3 %

BO-CPS Ball throwing with
BO-CPS vs. C-REPS

Return after
250 episodes

-2,400 vs. -8,000 70 %

VTAE
Grasping with
BO-CPS vs. C-REPS

Episodes to
return −0.03

63 vs. 180 65 %

Return after
250 episodes

-0.009 vs. -0.024 59.8 %

experiment can only be understood as preliminary and it has to be backed up by further
experiments, which we do with experiments on the real COMPI and in combination with
the VTAE.

Active context selection and return normalization are applicable to both C-REPS and
C-CMA-ES. The ranking SVM can only be applied to C-CMA-ES as a surrogate model.
Manifold learning can be applied to any policy search problem, but it is most effective in
combination with a sample-efficient contextual policy search algorithm such as BO-CPS,
which uses Gaussian process regression as a surrogate model and is computationally
expensive in comparison to C-CMA-ES or C-REPS.

BO-CPS for a low number of policy parameters is sample-efficient enough to generalize
behaviors over a certain context space and manifold learning from demonstrations can be
used to extract relevant policy parameters. Further improvement of sample efficiency is
possible with state transition models, and integration of rich sensor data through neural
network policies should be investigated in the future.

Related Publications

[Fab+13] Alexander Fabisch, Yohannes Kassahun, Hendrik Wöhrle, and Frank Kirch-
ner. “Learning in compressed space”. In: Neural Networks 42 (2013), pp. 83–
93. issn: 0893-6080. doi: 10.1016/j.neunet.2013.01.020.

147

Chapter 4. Sample-Efficient Contextual Policy Search

[Fab+15] Alexander Fabisch, Jan Hendrik Metzen, Mario Michael Krell, and Frank
Kirchner. “Accounting for Task-Difficulty in Active Multi-Task Robot Con-
trol Learning”. In: KI – Künstliche Intelligenz 29.4 (2015), pp. 369–377.
issn: 1610-1987. doi: 10.1007/s13218-015-0363-2.

[Fab19] Alexander Fabisch. “Empirical Evaluation of Contextual Policy Search with
a Comparison-based Surrogate Model and Active Covariance Matrix Adap-
tation”. In: Genetic and Evolutionary Computation Conference Companion.
Ed. by Manuel López-Ibáñez. GECCO ’19. ACM, 2019, pp. 251–252. isbn:
978-1-4503-6748-6. doi: 10.1145/3319619.3321935.

[FK20] Alexander Fabisch and Frank Kirchner. “Variational Trajectory Autoen-
coder for Sample-Efficient Policy Search”. In: Conference on Robot Learning
(CoRL). Submitted. 2020.

[FM14] Alexander Fabisch and Jan Hendrik Metzen. “Active Contextual Policy
Search”. In: Journal of Machine Learning Research 15 (2014), pp. 3371–
3399. url: http://jmlr.org/papers/v15/fabisch14a.html.

[Gut+18] Lisa Gutzeit, Alexander Fabisch, Marc Otto, Jan Hendrik Metzen, Jonas
Hansen, Frank Kirchner, and Elsa Andrea Kirchner. “The BesMan Learning
Platform for Automated Robot Skill Learning”. In: Frontiers in Robotics
and AI 5 (2018), p. 43. issn: 2296-9144. doi: 10.3389/frobt.2018.00043.

[MFH15] Jan Hendrik Metzen, Alexander Fabisch, and Jonas Hansen. “Bayesian Op-
timization for Contextual Policy Search”. In: Machine Learning in Planning
and Control of Robot Motion (MLPC) Workshop, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Aleksan-
dra Faust. 2015. url: https : / / www . cs . unm . edu / ~afaust / MLPC15 _

proceedings/MLPC15_paper_Metzen.pdf.

Active contextual policy search has been published in Fabisch and Metzen [FM14].
The complete paper is a joint work with Jan Hendrik Metzen and my contributions
are included in this chapter: the development of the context selection method and its
evaluation on ball throwing. Active training set selection has been presented in Fabisch
et al. [Fab+15] and this chapter summarizes my contributions. As mentioned previously,
the PUBSVE is a joint development with Mario Michael Krell. The extensions to C-
CMA-ES that were presented in this chapter have been published in Fabisch [Fab19].

As I emphasized before, BO-CPS has been developed by Metzen et al. [MFH15]. This
thesis merely contributes the evaluation of the algorithm in simulated robotic ball throw-
ing and a discussion of the algorithm’s computational complexity. The corresponding
experiments on the real robot COMPI were presented in Gutzeit et al. [Gut+18] but
were conducted by Jonas Hansen during his Master’s thesis, which I supervised.

The idea of reducing the dimensionality of a policy originated from earlier work on neu-
ral networks with fixed dimensionality reduction [Fab+13]. This resulted in application
of manifold learning to contextual policy search in Fabisch and Kirchner [FK20].

148

Part III.

A Framework for Robot Behavior

Learning

149

Chapter 5.

A Conceptual Framework for Automatic

Robot Behavior Learning

Parts of this
chapter were
published
originally as
[Gut+18] and
have been revised.

Figure 5.1.: Data flow of the BesMan Learning Platform: a demonstrated behavior is
segmented into behavioral building blocks that will be imitated and refined
using reinforcement learning and can be generalized to more generic behavior
templates. The modules that have been developed in this thesis are marked
with a green background.

The BesMan learning platform is a stand-alone solution to automatically learn robotic
manipulation behavior for different robotic systems and applications. It is designed for
situations, in which the operator has no direct physical contact to a robot. Behavior that
is adaptive to task changes and different target platforms can be learned to solve unfore-
seen challenges and tasks that can occur during deployment of a robot. The learning
platform is composed of components that deal with preprocessing of human demon-
strations, segmenting the demonstrated behavior into basic building blocks, imitation,
refinement by means of reinforcement learning, and generalization to related tasks.

This learning platform is a framework in which the previous chapters are embedded.
Note that only parts of the whole learning platform were developed in this thesis. We
will describe the whole framework, point out which parts this thesis contributes, and
summarize the evaluation of the whole learning platform in this chapter.

151

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

5.1. Overview

Learning complex behaviors at once is often difficult or even impossible. Thus, it is often
easier to learn small behavioral building blocks separately and combine them to complex
behaviors. Studies with rodents [Gra98] and children [Adi+08] indicate that this strategy
is efficient. Therefore, we will follow this approach.

Behavior learning often combines various approaches to leverage intuitive knowledge
from humans as we have seen in Chapter 2. In particular, imitation learning (IL) and
RL are often combined: a standard approach is to learn behaviors by initialization with
a demonstrated movement and refinement through RL. Complete descriptions of robot
skill learning frameworks are hardly present in the literature. To our best knowledge the
only work that gives a complete overview of a learning architecture and is comparable to
the work that we present here has been published by Peters et al. [Pet+12]. They do not
provide a thorough evaluation of the automation level and time consumption to learn
new skills. Their work includes movement primitives, policy search, contextual policy
search, and methods to learn low-level control. In this work as well as in the majority of
similar works the relevant behaviors are directly presented by kinesthetic teaching so that
the correspondence problem [ND02] is neglected. In addition, only the relevant behavior
is presented or it is not discussed how the relevant part that should be transferred is
extracted. In contrast to that, we would like to let a human demonstrate the behavior
as naturally as possible. With this approach, the system can be situated in a far away
place or environment hostile to man and could still learn from a human demonstration
although direct kinesthetic teaching is not possible or would only be possible indirectly
in case that a second identical system would be available. To allow the demonstrator
to act naturally, we use behavior segmentation methods and solve the correspondence
problem as automatically as possible.

The learning platform (see Figure 5.1) transfers movements from a human teacher to
a robotic system. During this process so-called motion plans and behavior templates
are generated. Motion plans represent solutions to generate specific behaviors as motor
plans that have been introduced in Chapter 1. Behavior templates represent generic
movements to generate a flexible behavior that is able to, for example, reach different
points in space. They are a form of skill according to the definition given in Chapter 1,
as they generalize over a limited set of context variables or task parameters.

In a first step, the learning platform records demonstrations and preprocesses these (see
Section 5.2) to generate labeled behavioral building blocks that are independent of the
target system. For each relevant building block, we use imitation learning to represent
the recorded trajectory segments as motion plans (see Section 5.3). Motion plans describe
trajectories that could be executed by the robot and mimic the trajectories presented by
the human demonstrator during a single behavioral building block. To account for the
correspondence problem (see Section 2.2.1.2), the Motion Plan Refinement module can
use RL (see Section 5.4) to adapt the motion plan. This requires interaction with the
real or simulated target system and the specification of a reward function which tells the
learning algorithm how well a motion plan solves the task. Alternatively or in conjunction

152

5.2. Motion Capture and Preprocessing

with RL, transfer learning as described in Section 5.4.2 can be used to adapt motion plans.
Using this method, differences between learned behaviors in simulation and on the real
robot are also considered during the motion plan refinement. Motion plans are solutions
for specific settings. It is often necessary to learn more generic behavior templates that
can be applied to similar settings. This is achieved by the Behavior Template Learning
module (see Section 5.4). Behavior templates are capable of generating motion plans
for new but similar settings. Once a behavior template has been learned, it is added to
the Behavior Template Pool, which is accessible from the robotic system. The behavior
templates in this pool can be used directly during operation.

In the following sections, we give detailed descriptions of the modules. Note that the
learning platform provides a framework with various methods, of which not all have to
be used for all applications. We will present three examples with different instantiations
of the learning platform.

5.2. Motion Capture and Preprocessing

This section describes the motion capture process and the necessary preprocessing steps
for the motion capture data. The preprocessing includes marker labeling and behavior
segmentation. For this thesis, we will assume that these parts are already available and
we just describe them.

We record movements of a person with a motion capture system. For this work we use
a marker-based system from Qualisys AB [Qua20a]1 and attach visual markers to the
human demonstrator and to objects that are involved in a particular task to also record
important changes in the environment.

We place markers at shoulder, elbow, and hand of the human demonstrator. Three
markers at one position can be used to infer orientations. This is important in manip-
ulation tasks that require the robot to imitate the orientation of the hand. By placing
three markers at the back, all marker positions can be transformed into a coordinate
system relative to the demonstrator to make the recordings independent from the global
coordinate system of the camera setup. Additional markers can be placed on manipu-
lated objects. An example of a recording setup for ball-throwing behaviors is shown in
Figure 5.2.

Because a passive marker-based motion-capture system is used, an automatic marker
identification based on the relative positions of the markers to each other is required.
Methods are provided by manufacturers of motion capture systems. The Qualisys track
manager [Qua20b] offers automatic identification of markers, which is based on previously
labeled motion capture data. Other works rely on manually defined or otherwise inferred
skeletons. Refer to Meyer et al. [Mey+14] and Schubert et al. [Sch+15b; Sch+16b] for
details about some of these approaches.

We have to identify the main movement segments of recorded demonstrations to trans-
fer the movements to a robotic system. Therefore, we segment the demonstration into

1Instead of a marker-based motion capture system we could use also other motion capture system that
can extract poses of human body parts such as the hand.

153

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

its building blocks and classify each building block into a known movement class. Then
we can automatically select movement sequences that are required to solve a certain task
with a robotic system without user input.

To decompose demonstrated behaviors into simple building blocks, we have to identify
the characteristics of the movements. Senger et al. [Sen+14] developed the velocity-based
Multiple Change-point Inference (vMCI) algorithm to segment manipulation behavior.
It is a fully unsupervised algorithm that requires no parameter tuning as shown in several
experiments [Sen+14; GK16].

Segmented motions have to be annotated to select trajectories that should be learned
and transferred to the robot. To minimize manual effort, this annotation should work
with small training sets. As proposed by Gutzeit and Kirchner [GK16], we use the nearest
neighbor based on Euclidean distance on the normalized trajectories transformed to a
coordinate system relative to the human demonstrator to assign movement classes to the
acquired segments.

5.3. Imitation Learning

We use IL to obtain motion plans from the recorded trajectories. A workflow for learning
from demonstrations must address the correspondence problem as well as the represen-
tation of the motion plan. In this section we introduce motion plan representations used
within the BesMan learning platform and discuss the correspondence problem.

5.3.1. Correspondence Problem

The following two mappings have to be defined: the record mapping, which maps marker
trajectories to a sequence of actions or system states, and the embodiment mapping,
which maps the recorded sequence to a trajectory that is executable on the target system.

We cannot directly observe the actions of the agent, but we can observe the marker
positions, which means that a part of the record mapping is already given. Instead of
using the observed marker positions directly, we reduce the marker positions to a repre-
sentation that is more meaningful to describe manipulation behavior and is independent
of the platform, that is, we extract end-effector poses in a reference frame. For this pur-
pose we first have to define which are the markers on the end effector, which is specific
for a marker setup. The reference frame depends on the application. For goal-directed
manipulation behavior Wirkus [Wir14] proposes to use the target as a reference frame,
for example, a box that we want to grasp. For behaviors such as ball-throwing it is better
to use a reference frame on the teacher, for example, on the back, because the target ob-
ject (the ball) will be moved with the end effector. Works by Manschitz et al. [Man+16],
Calinon [Cal16], and Niekum et al. [Nie+15] select the reference frame automatically but
we did not consider this here.

Although it seems like transferring end-effector poses to the target system is simply
an inverse kinematics problem, it can actually be much more complicated, as the target
system might not have the same workspace, kinematic structure, and dynamic capabilities

154

5.4. Refinement and Generalization

as the teacher. The approach to define the embodiment mapping automatically has been
presented in Chapter 3. With the task-agnostic embodiment mapping we only integrated
knowledge about our target system. To ensure that the imitated skill has the same effects
as the demonstration, we must integrate knowledge about the task. This will be done
in the policy refinement step. We have to define a reward function that can be used by
reinforcement learning methods to complete the embodiment mapping. Here we account
for kinematic and dynamic differences that cannot be resolved easily, for example, a
human teacher might have a hand structure that is different from the target system.
An example is displayed in Figure 3.1: the target system does not even have an active
hand. It has a scoop mounted on the tip of the arm. In other cases, the robot might
have a gripper that does not have all of the capabilities of a human hand. Another
problem in the ball-throwing domain are the dynamic and kinematic differences between
the human demonstrator and the target system. It might be possible for the robot to
execute the throwing movement after temporal scaling, but this step can reduce the
velocity in Cartesian space so drastically that the ball does not even leave the scoop any
more. Details on the methods for this step are given in Section 5.4.

5.3.2. Motion Plan Representation

Dynamical movement primitives [Ijs+13] have a unique closed-form solution for imitation
learning, which makes it appealing for our purpose. After imitation, the parameters of
the DMP can be adjusted easily which makes it suitable for policy search.

The standard DMP formulation allows to set the initial state, goal state, and execution
time as metaparameters. There are several variants of DMPs. See Section 2.2.1.4 for
more details. An extension that allows to set a goal velocity has been developed by
Mülling et al. [MKP11; Mül+13]. We use this DMP formulation for trajectories in joint
space. A solution for orientations has been proposed by Ude et al. [Ude+14] with unit
quaternions. To represent trajectories in Cartesian space, we use a combination of a
position DMP as formulated by Mülling et al. [MKP11; Mül+13] and an orientation
DMP by Ude et al. [Ude+14].

5.4. Refinement and Generalization

The learning platform provides tools to adjust motion plans to specific target systems
and to generalize motion plans over specified task parameters based on reinforcement
learning (RL).

Depending on the application, we have to decide whether learning will take place in
simulation or in reality. Learning in reality would give the best results, however, this
might not always be feasible because some problems might require a lot of samples. This
depends on the target system and the application. Standard policy search (see Section
5.4.1) is always included in our learning platform to ensure that the embodiment mapping
is completed. Furthermore, it is sometimes a good idea to model the relevant aspects of
the task in simulation and start with the refinement in simulation. When a good motion

155

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

plan is obtained, this can be used to start learning in reality directly or approaches can
be applied to handle the simulation-reality gap (see Section 5.4.2).

We can then generalize the obtained motion plan to a behavior template that takes
the current context as a parameter to modify its motion plan using contextual policy
search (see Section 5.4.3).

5.4.1. Refinement with Policy Search

Policy search is sample-efficient in domains where a good initial policy can be provided,
the state space is high-dimensional and continuous, and the optimal policy can be rep-
resented easily with a prestructured policy such as a DMP (see Section 2.2.1.4).

Depending on whether we want to optimize only a few metaparameters or the whole
set of parameters, we can select the best policy search method. We use several algo-
rithms in the learning platform. Among them are CMA-ES [HO01] and REPS [PMA10])
as local search approaches, which means they need a good initialization provided by
imitation learning. In addition, we use Bayesian optimization [BCd10] as a global opti-
mizer. Bayesian optimization is limited to a few parameters because of the computational
complexity, however, it is sample-efficient.

We can learn DMPs in joint space or in Cartesian space depending on the task. See
Chapter 3 for a discussion.

5.4.2. Simulation-Reality Transfer

Motion plans learned only in simulation often perform worse when they are executed in
reality. In certain situations, this performance drop is small, for example, in open-loop
control with a robot having accurate and precise actuators. In such a case, it can be
sufficient to apply policy search methods in simulation and transfer the result directly
to the real system. Often, however, the simulation-reality gap is a problem. Hence, the
work of Otto [Ott15] is integrated in the learning platform to address this problem.

The ball-throwing task that we investigate in this chapter requires to release the ball
at a certain position and velocity. The time of release, speed and direction are not easy
to simulate accurately [Ott15] because we would need a detailed model of the ball and
the ball mount. We avoid this with the Transferability Approach [KMD13] that refines
motion plans with few episodes on the real system and is assisted by a simulation that
does not have to be perfectly accurate. It tests only a few motion plans in transfer exper-
iments on the real system and compares them with the simulation to learn a surrogate
model that estimates the transferability of motion plans. Thus, testing motion plans
with low transferability is not necessary.

5.4.3. Contextual Policy Search

A disadvantage of using prestructured motion plans such as DMPs is that they are
designed for a specific situation and generalize only over predefined metaparameters. We
can use contextual policy search to generalize over arbitrary task parameters that often

156

5.5. Evaluation of the Learning Platform

have non-trivial relations to the optimal motion plan. The algorithms for contextual
policy search that are developed for the learning platform are presented in detail in
Chapter 4.

5.5. Evaluation of the Learning Platform

In this section, we evaluate the learning platform as a whole in a ball-throwing scenario.
We transfer human movements to a robotic arm. We are particularly interested in time
requirements and level of automation. We show that the learning platform can be run
with minimal user interference to learn from different non-expert subjects, who demon-
strate motions. The complete experiment builds on multiple components of the learning
platform. Segmentation, annotation, and simulation-reality transfer are not a contribu-
tion of this thesis. We will focus only on those aspects that have been developed in this
thesis or are essential for the evaluation.

5.5.1. Methods

5.5.1.1. Robotic System

We transfer the movements to the robot arm COMPI (see Appendix F.1) that is displayed
in Figure 3.1. A scoop is attached to COMPI to hold a ball. The position where the
ball hits the ground can not always be identical because of varying positions of the ball
in the scoop, varying shape of the deformable and not perfectly round ball, inaccuracies
in the execution of the desired trajectory, and measurement errors. How reproducible
this position is depends on the throwing movement. For some throwing movements the
standard deviation of the position can be more than a meter because the ball sometimes
falls down before the throwing movement is finished and sometimes not.

5.5.1.2. Data Acquisition

The recording setup for a demonstration of a throw can be seen in Figure 5.2. Seven
cameras tracked eight visual markers attached to the human and the target area. Only
five cameras were focused directly on the subject. The recorded marker positions were
labeled according to their position on the human body (for example, ’shoulder’). The
subjects had to throw a ball to a goal position on the ground, approximately 2m away.
To limit the range of possible throws, they were instructed to throw the ball from above
with the hand above the shoulder while throwing (see Figure 5.2). The subjects had to
move their arm to a resting position in which it loosely hangs down between the throws.
The movement was demonstrated by 10 subjects. All subjects were right-handed and
had different throwing skills ranging from non-experts to subjects performing ball sports
as a hobby (basketball, volleyball, or handball). Each subject demonstrated 8 throws in
3 experiments which results in total numbers of 24 throws per subject, 30 experiments,
and 240 throws for all subjects.

157

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

Figure 5.2.: Data acquisition setup. Motion capture cameras, markers, and goal positions
for the throws in the setting are displayed. (Illustrated by Lisa Gutzeit in
[Gut+18].)

5.5.1.3. Imitation Learning

IL is based on end-effector poses. End-effector trajectories cannot be transferred directly
to the robot’s coordinate system so that we have to do a synchronization frame optimiza-
tion to translate and rotate the original trajectory so that it fits into the workspace of
COMPI. The end-effector trajectories are transformed into joint trajectories via inverse
kinematics. In addition, we scale the joint trajectories so that the joint velocity limits of
the target system are respected. In a last step, the throwing movement is represented as
a joint space DMP via IL. Moreover, a minimum execution time of 0.95 s is set to reduce
the velocity and accelerations, which are penalized during the following optimization.

5.5.1.4. Motion Plan Refinement

While the DMPs resulting from IL can be executed on the robot, they do not necessarily
have the same effect on the ball as the movements of the human. The lack of actuated
fingers as well as kinematic and dynamic differences to the human lead to the need for
adaptation, which we do via policy search. The adapted policy parameters include: initial
position, goal, weights and execution time, consisting of 6, 6, 36, and 1 value(s). Following
the concept of the Transferability Approach, we aim to minimize two objectives: (a) the
target distance of the touchdown position in simulation and (b) the distance between
the touchdown position in simulation and in reality. The target distance in reality is not
directly optimized, but evaluated during and at the end of the experiment.

The optimization consists of several steps. (1) refinement in simulation, (2) refinement
in simulation and reality, (3) refinement of simulation, refinement in simulation and
reality, and (5) evaluation of motion plans.

158

5.5. Evaluation of the Learning Platform

5.5.1.5. Required Time and Level of Automation

For each main module of the learning platform that is needed to learn a new behavior,
the required time was measured. The time required to learn a new behavior is strongly
influenced by the degree of automation, which is furthermore important to simplify appli-
cation. Therefore, we evaluated the degree of automation for each module of the learning
platform.

5.5.2. Results and Discussion

5.5.2.1. Imitation Learning and Motion Plan Refinement

In this section, we evaluate the target distance measured at several steps of
the learning platform. Note that Marc Otto did this evaluation and it is not a
contribution of this thesis. It has been published with Gutzeit et al. [Gut+18].
Nevertheless, as it is an interesting part of the complete evaluation, we will
present it here.

(0) Initial performance: At first, we evaluate the results of the IL in simulation.
The IL does not consider suitability for holding and throwing the ball. Hence, several
motion plans result in a simple ball drop near the initial position. This is reflected by
target distances around 2.15m in Figure 5.3 a). None of the simulated ball throws is
closer than 1m to the target. Note that there is also a lot of variation in the number of
throw segments that are detected in the data containing 24 actual demonstrations per
subject. (1) Refinement in Simulation: For one subject, the goal (distance is below
the 0.1m threshold indicated by the gray line in Figure 5.3 a)) was not reached. For
all remaining subjects, the goal was reached in fewer than 2200 episodes in at least one
of the 6 runs. (2) Refinement in Simulation and Reality: For 2 out of 9 subjects,
the transfer experiments reached target distances below 0.1m in reality. The deviations
of the touchdown positions in reality and in simulation seem to be systematic, that is,
for throwing behaviors resulting from the same subject, similar deviations are found.
Having a constant offset between simulated and real results contradicts the premise of
the Transferability Approach, aiming to find a region in the parameter space that features
transferable motion plans. Hence, we decide to adapt the simulation specifically to predict
the touchdown positions for some of the movements more accurately. (3) Simulation
refinement: To reduce the offset of real and simulated results, we minimize the median
of the touchdown disparities obtained for the 25 transfer experiments so far. This is done
via a simple grid search on the value for the robot height and the ball-release angle. The
medians could be reduced to a range of 0.11m to 0.23m (depending on subject; compared
with 0.23m to 0.73m before). (4) Refinement in Simulation and Reality: For one
subject, this optimization step was aborted after 10 critical transfer experiments, during
which joint limits were exceeded and the robot was deactivated consequently. For all
of the remaining subjects, target distances below 0.1m as well as touchdown disparities
below 0.1m occurred in the 50 transfer experiments. The best target distances so far are

159

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

1 2 3 4 5 6 7 8 9 10

subject ID

0.0

0.5

1.0

1.5

2.0

2.5

3.0
d

is
ta

n
c
e

 t
o

 g
o

a
l

[m
]

10 20 30 40 50

trans fe r trial

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
is

ta
n

c
e

 t
o

 g
o

a
l

[m
]

1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
is

ta
n

c
e

 t
o

 g
o

a
l

[m
]

2 3 5

subject ID

6 7 8 9

targe t dis tance in s imulation

targe t dis tance in reality

Figure 5.3.: a) Results of IL evaluated in simulation are shown by Tukey box plots. N is
the number of throw segments detected in the data of a specific subject. The
solid gray line indicates the 0.1m threshold. Please note the different scaling
of the ordinate, compared to b) and c). b) Closest distance to target achieved
in transfer episodes during robot-in-the-loop optimization. The median over
8 subjects of the best results so far is shown. For each subject, 50 transfer
episodes are executed on the robot during the optimization. c) At the end of
the optimization process, for each subject, six motion plans are automatically
selected for evaluation. The result from the deterministic simulation is shown
by squares. Each motion plan is evaluated three times in reality (circles). If
the ball landed closer than 0.1m to the target in all three repetitions, the
circles are filled, otherwise not. (Illustrated by Marc Otto in Gutzeit et al.
[Gut+18].)

160

5.5. Evaluation of the Learning Platform

Table 5.1.: Required time (per experiment, 8 throws) per module.

Step Time Automated Required knowledge

Attaching markers for mo-
tion capture

0:55 min ✗

Motion capture 1:08 min ✗

Automatic marker labeling 4:58 min ✓ Neighboring markers, initial
pose

Manual marker labeling 9:19 min ✗

Behavior segmentation 0:44 min ✓

Labeling for movement
classification2

50 min ✗

Movement classification 2 sec ✓

Imitation learning 4:20 min ✓ Robot description

Policy search 10 min ✓ Reward function, simulation

Transferability approach 75 min (✓) Reward function, simulation

shown in Figure 5.3 b). The curve indicates that 25 transfers are sufficient to minimize the
target distance. (5) Evaluation of Candidates: Figure 5.3 c) shows the performance
evaluation of 6 automatically selected final candidate solutions (2 with the lowest target
distance in reality and 4 from the Pareto front. Up to 4 of these hit the ground reliably,
that is, the target distance is below 0.1m in all three repetitions (marked by filled dots).
For seven out of eight (remaining) subjects, at least one selected candidate solution hits
the target reliably.

5.5.2.2. Required Time

An overview of the required time for each step can be found in Table 5.1. Note that
labeling the dataset for movement classification has to be done only once. The required
time for successful automatic marker labeling is much faster than manual labeling even
though the automatic labeling is slow for these specific data because of many gaps in
marker trajectories. If the markers were always visible, the automatic labeling would have
taken only about some seconds. The longest part in the whole process is the refinement
for the target platform (imitation, policy search, transfer), which is a difficult problem
that involves interaction with the real world.

2Dataset from 5 experiments including 40 throws.

161

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

5.5.2.3. Level of Automation

Although we have automated the process of acquiring new behaviors, still some human
intervention is required in the form of knowledge that has to be given to the system and
physical interaction with the system. An overview can be found in Table 5.1.

Apparently, it is necessary that a human demonstrates the movement. Movement
classification requires a dataset that is labeled manually, but we minimized the effort by
using a classifier which classifies at a high accuracy with small training sets.

When we set up the learning platform for a new target system and type of manipulation
behavior we have to decide which components we combine for embodiment mapping, for
example, in the ball-throwing scenario the synchronization frame optimization was useful,
which is not always the case, however, IL is completely automated.

The motion plan refinement with the Transferability Approach requires human assis-
tance because the robot has to try throwing movements in the real world and is not able
to get the ball back on its own. The process itself is automated so that no knowledge
about the system or the task is required from the human at this step. In addition, we
have to define a reward function that describes how a solution of a task should look like
and because we want to minimize the interaction with the real world we use a simulation
which has to be designed. This is a manual process at the moment.

5.5.3. Application of the Learning Platform in Different Scenarios

In addition to throwing a ball, the learning platform has been used in other scenarios
to transfer movements to other robotic systems. In a pick-and-place scenario a grasping
movement was extracted from demonstrations of picking a box from a shelf, placing
it on a table and putting it back afterwards. The movements were recorded with a
marker based tracking system. After successful segmentation and classification of the
grasping movement [GK16], it was imitated using a Cartesian space DMP and adapted
to be executed on a Kuka iiwa lightweight robot equipped with a 3-finger gripper from
Robotiq (for details see Appendix F.2). Cartesian DMPs were used for easy integration
with whole-body control and perception. In this scenario the refinement was done using
the CMA-ES algorithm in simulation. After 50–100 iterations, the movement could be
successfully transferred to the robotic system. One demonstration of the initial trajectory
is sufficient.

In another scenario, the learning platform was used to teach the arm of the robotic
system Mantis (see Appendix F.5 for details) to pull a lever. Like in the pick-and-place
scenario, policy search was used to adapt the demonstrated movement to the robotic
system. REPS and CMA-ES gave good results. After several hundred episodes in sim-
ulation, a successful movement could be generated. Learning could be done in parallel
from multiple demonstrations with each RL process being initialized with a single demon-
stration. The position of the lever during training in simulation was varied slightly so
that the behavior has to be robust enough, which makes it possible to compensate for
position uncertainty in the real world.

162

5.6. Summary

(a) Grasping a box, video: [DFK16b] (b) Throwing (c) Pulling a lever, video: [DFK16a]

Figure 5.4.: Robotic applications.

As in the ball-throwing scenario, the transfer of the demonstrated movements was
partially automated. To imitate and adapt the demonstrations to the system, the em-
bodiment mapping and a reward function have to be selected with regard to the robotic
system and the task goal. The robotic systems that we used are shown in Figure 5.4.

5.6. Summary

Our results show that it is possible to learn new skills for robots without specifying the
solution directly. The automated learning platform, that is the first complete system of
its kind, leverages intuitive knowledge from humans that do not know anything about
the target system to automatically transfer skills to robots. The main impediments that
can be overcome by the learning platform in this setting are the kinematic and dynamic
differences of the demonstrator and the target system.

On the basis of the learning platform, we can build a library of movements that are rep-
resented independently of the target system. We could then use methods for embodiment
mapping to transfer those skills to several target systems.

Related Publications

[Gut+18] Lisa Gutzeit, Alexander Fabisch, Marc Otto, Jan Hendrik Metzen, Jonas
Hansen, Frank Kirchner, and Elsa Andrea Kirchner. “The BesMan Learning
Platform for Automated Robot Skill Learning”. In: Frontiers in Robotics
and AI 5 (2018), p. 43. issn: 2296-9144. doi: 10.3389/frobt.2018.00043.

[Gut+19] Lisa Gutzeit, Alexander Fabisch, Christoph Petzoldt, Hendrik Wiese, and
Frank Kirchner. “Automated Robot Skill Learning from Demonstration for
Various Robot Systems”. In: KI: Advances in Artificial Intelligence. Ed. by
Christoph Benzmüller and Heiner Stuckenschmidt. Springer International
Publishing, 2019, pp. 168–181. isbn: 978-3-030-30179-8. doi: 10.1007/978-
3-030-30179-8_14.

163

Chapter 5. A Conceptual Framework for Automatic Robot Behavior Learning

[Met+14] Jan Hendrik Metzen, Alexander Fabisch, Lisa Senger, José de Gea Fer-
nández, and Elsa Andrea Kirchner. “Towards Learning of Generic Skills for
Robotic Manipulation”. In: KI – Künstliche Intelligenz 28.1 (2014), pp. 15–
20. issn: 1610-1987. doi: 10.1007/s13218-013-0280-1.

The idea of an automated learning platform has been introduced by Metzen et al.
[Met+14]. It has subsequently been implemented and evaluated by Gutzeit et al. [Gut+18]
(first two authors contributed equally) and evaluated with a focus on the embodiment
mapping by Gutzeit et al. [Gut+19] (first three authors contributed equally). The contri-
butions of this thesis are the embodiment mapping, imitation learning, policy refinement
through reinforcement learning, behavior template learning, and integration of the learn-
ing platform for specific applications (throwing, grasping, pulling a lever). Lisa Gutzeit
contributed to data acquisition and the behavior segmentation and classification modules.
Marc Otto contributed the Transferability Approach to alleviate the simulation-reality
gap and performed the experiments with COMPI. Jan Hendrik Metzen contributed to
imitation learning, policy refinement through reinforcement learning, and behavior tem-
plate learning, in particular to the implementation of basic algorithms (DMPs, REPS,
C-REPS, BO) and the development of BO-CPS and extensions of it.

164

Chapter 6. BOLeRo: Behavior Optimization and Learning for Robots

robotic simulations are involved. Small changes in the simulation setup can consider-
ably influence the problem complexity and often not all simulation details are published.
Contact parameters for a walking system, for instance, might influence the preferred
walking pattern. In BOLeRo it is easy to create environments with the MARS simula-
tion software [MAR20]. Hence, it simplifies the publication of reference implementations
of robotic learning environments. A recent development that covers the same aspects as
BOLeRo is OpenAI Gym [Bro+16]. It provides a range of environments from simple
test problems to complex robotic problems to improve reproducibility of experiments and
enable rigorous comparison. There are other works that build upon OpenAI Gym, for
example, Lopez et al. [Lop+19] extend it with various simulated robotic scenarios.

There are several behavior learning libraries that focus on classical RL [FG13; Ger+15],
which often does not work out of the box for robotic problems. Some open source
libraries provide implementations of deep RL [Aru+17]: OpenAI Baselines [Dha+17],
Dopamine [Cas+18], TF-Agents [Gua+18], and Garage [Dua+16]. Deep RL, however,
as we discussed in Section 2 is not easily applicable to real robotic systems yet and its
main problem is sample efficiency. Available implementations are often either in the
state of research code or are designed to learn behaviors of agents in virtual worlds. An
alternative is the recently published library PyRoboLearn [Del20] that provides several
algorithms that overlap with BOLeRo’s algorithms.

Nevertheless, we see a niche here for a library that provides implementations of es-
tablished behavior search algorithms that work well for robots and that is designed to
support the behavior development workflow for a robot and we propose BOLeRo as
a solution. BOLeRo mainly includes policy search and movement primitives. Imple-
mentations of these types of algorithms have previously been provided as Matlab scripts
without common interfaces or as individual libraries for one algorithm.

6.2. Design and Features

One of the main design decisions of BOLeRo is to keep interfaces simple, which allows
to quickly integrate external methods. Decoupling by interfaces also provides flexibility
in combining methods and applications. It also enables us to easily combine Python and
C++. There are Python bindings for C++ components and, vice versa, it is possible to
run Python components from C++ via the BOLeRo interfaces.

BOLeRo can be used as a library that provides behaviors, behavior search algorithms
(learning and optimization), or simulation environments that represent behavior learning
problems. It is also a framework for comparison of behavior learning algorithms.

Figure 6.1 illustrates how BOLeRo can be used as a benchmark framework. An
environment defines the learning problem. A behavior is evaluated in the environment in
a control loop: in each step the behavior observes the current state of the environment,
computes an action, and the action is executed in the environment. After the control
loop finished, which is indicated by the environment, feedback (reward or fitness) is
given from the environment to the behavior search algorithm. The behavior search uses
feedback to generate new behaviors in a learning loop. This episodic learning process is

166

Chapter 6. BOLeRo: Behavior Optimization and Learning for Robots

example is shown in Figure 6.2. Implementing new environments is also possible with
the physics engine Bullet via the convenient pybullet API. BOLeRo also a wraps OpenAI
Gym [Bro+16] environments since both have the goal to provide reproducible learning
environments.

Behaviors. Behavior search algorithms can generate new behaviors. Sometimes be-
haviors are an integral part of them. Behaviors map observed states to actions.

BOLeRo provides baseline behaviors such as a random and a linear behavior as well as
implementations of recent movement primitives such as Cartesian space DMPs [Ude+14]
and ProMPs [Par+18].

Behavior Search Algorithms. Behavior search algorithms combine behavior repre-
sentations (for example, neural networks in deep reinforcement learning and neuroevolu-
tion or movement primitives in policy search) with behavior optimization (for example,
policy gradient algorithms in deep reinforcement learning or black-box optimization in
episodic policy search). They need feedback from the environment to update behaviors.

BOLeRo provides implementations of the following policy search algorithms: episodic
REPS [PMA10], C-REPS [Kup+13], CMA-ES [HO01], ACM-ES [LSS10], C-CMA-ES
[Abd+17a], and NES [Wie+14]. A wrapper around scikit-optimize [Tim18], a library for
model-based optimization, is integrated. An additional package [MF20] for BO [BCd10]
and BO-CPS [MFH15] is available. Step-based reinforcement learning and deep rein-
forcement learning algorithms are planned as next features.

6.3. Examples and Applications

6.3.1. Simple Example

An episodic learning process can be organized by a controller in a simulation (see Fig-
ure 6.1). A simple source code example is shown in Algorithm 6. The behavior is
a DMP in this case (Python class: DMPBehavior), the behavior search is a black-box
search (BlackBoxSearch), which uses the black-box optimization algorithm CMA-ES
(CMAESOptimizer) to modify weights of the DMP. The environment OptimumTrajectory
is a simple 2D trajectory planning problem: three circular obstacles have to be avoided
on the path from start to goal while minimizing acceleration. The corresponding learning
curve is displayed in Figure 6.3 together with the environment, the final trajectory, and
several intermediate solutions.

6.3.2. Other Applications

BOLeRo has been used in various research projects2 to learn skills for different robots
and in various publications [Met+14; FM14; Fab+15; MFH15; Met16; Gut+18; LSK14;
Det+14; Fab20; Fab19a]. In addition to the skills displayed in Figure 5.4, BOLeRo has
also been used to learn walking behaviors for a mantis-like robotic system.

2For example, BesMan [DFK16c] and LIMES [DFK16d].

168

Chapter 6. BOLeRo: Behavior Optimization and Learning for Robots

6.3.3. Reproducible Research

Reproducing results is a notoriously hard problem in the domains of robotics and machine
learning. One goal of BOLeRo is to provide well-tested implementations of algorithms
and applications. Furthermore, is should be possible to publish the exact learning config-
uration used in publications based on BOLeRo. When a simulation tool and model are
used to produce scientific results, the experiments can often not be reproduced without
publishing tools and models with their exact configuration.

Another idea that we pursue with BOLeRo is to produce reference implementations
of existing algorithms. An example of how we imagine this to be done is the reimple-
mentation of C-CMA-ES [Abd+17a]. The learning curves for C-REPS and C-CMA-ES
in Figure 1 (a) and (b) of the original publication of Abdolmaleki et al. [Abd+17a] could
be reproduced with BOLeRo’s implementation of the algorithm (see Figure 6.4).

6.4. Related Software

In addition to BOLeRo the following open source software has been produced and
released during this thesis.

pytransform3d: Learning robotic behavior from human demonstration requires a het-
erogeneous ecosystem with components such as a motion capture system, the learning
platform, and a robot middleware. All of these have their own definitions of 3D rotations
and transformations that are often not explicitly documented. pytransform3d [Fab19b]
has clearly documented conventions and can be used to convert between those definitions.
It has been released at

https://github.com/rock-learning/pytransform3d

approxik: The code for our version of the approximation of inverse kinematics that
has been presented in [Fab20] is released as open source software at

https://github.com/rock-learning/approxik

6.5. Summary

BOLeRo provides a development and test environment for new learning approaches and
scenarios. We split learning problems, learning algorithms, and behavior representation
via defined interfaces (see Figure 6.1) which makes BOLeRo open for extensions and
its parts reusable. We provide easy-to-use interfaces that support many of the common
learning setups used in reinforcement learning and evolutionary computation. Addition-
ally, by using the learning controller, BOLeRo is best suited to perform benchmarks of
learning methods.

170

Part IV.

Conclusion

173

Chapter 7. Discussion

Table 7.1.: Overview of experiments and applications that have been presented in this
thesis. See Appendix F for details on the robotic systems.

Section Problem IL
/

R
L

Robot R
ea

l
sy

st
em

3.1.3.2 Touhu throw IL UR5/10, Kuka iiwa 7, COMPI ✗

3.1.3.3 Touhu throw IL UR5 ✓

3.2.3.2 Via point RL Kuka iiwa 14 ✗

3.2.3.3 Obstacle avoidance RL Kuka iiwa 14 ✗

3.2.3.4 Pouring RL Kuka iiwa 14 ✗

4.1.3 Ball throw RL PA 10 ✗

4.2.2.1 Black-box optimization RL ✗ ✗

4.2.2.2 Catapult RL ✗ ✗

4.2.2.3 Ball throw RL COMPI ✗

4.3.2.1 Black-box optimization RL ✗ ✗

4.3.2.4 Via point RL ✗ ✗

4.4.2.1 Ball throw RL COMPI ✗

4.4.2.2 Ball throw RL COMPI ✓

4.5.3.5 Reach RL ✗ ✗

4.5.3.6 Grasp RL UR5 ✓

5.5 Ball throw IL COMPI ✓

5.5.3 Grasp IL, RL Kuka iiwa 14 ✓

5.5.3 Pull lever IL, RL Mantis’ arm ✓

7.3. Evaluation of Objectives

In Section 1.4 we define the objectives of this thesis. The first objective demands us-
ability of behavior learning approaches. Chapter 5 contributes a framework to almost
automatically generate manipulation behaviors and support robot behavior generation
for non-experts to address this objective. Chapter 6 presents the underlying open source
software. An important element of this framework is the automatic embodiment map-
ping that we discuss in Chapter 3. Although this framework does not solve the problem
finally, it is a crucial step forward. Chapter 1 contributes a discussion of when behavior
learning should be used and Chapter 2 contributes an extensive discussion of the state
of the art in behavior learning for robots, which does not reduce the required expert
knowledge but can be used to increase knowledge of non-experts.

176

7.4. Limitations

The second objective is to learn behaviors with a maximum of 100–300 episodes and
the third objective postulates that interesting skills generalize over several task param-
eters. We achieve both goals with BO-CPS in combination with the VTAE. So far our
approaches are limited to only a few context variables and we do not incorporate high-
dimensional, complex sensors or continuous sensor feedback. BO-CPS is sample-efficient
(throwing: 80 episodes; grasping: 250 episodes) and generalizes over a specified context
space but it requires a low-dimensional policy representation, which can be provided by
the VTAE. For the scope of this thesis we achieved our goals, but the general problem
of sample-efficient and generalizing behavior learning is far from being solved and it is
unclear if it will ever be, since we currently have no idea of how behavior complexity
and sample efficiency are related. We have no effective way of measuring behavior com-
plexity, but it certainly depends on sensors and actuators of the robot as well as on the
problem that we try to solve. Here we should improve quantitative evaluation to measure
scientific progress better.

Although BO-CPS is evaluated only in two scenarios, the category of algorithms is
evaluated, as we have just seen, in a variety of problems and robotic systems, which we
demand in the fourth objective. Only robotic arms are considered, but these exhibit
diverse structures as well as diverse kinematic and dynamic properties.

7.4. Limitations

7.4.1. Policies with Continuous and High-Dimensional Sensor Input

We learn reference trajectories that, for example, whole-body control [de +17] can use.
Unlike many deep RL approaches, we do not learn reactive behaviors that map sensor
measurements to actions. Instead, our approach is more deliberative, as we integrate one
sensor measurement in the beginning of an episode as a context vector to generate a full
trajectory. We also did not use high-dimensional contexts such as images in this thesis.

The episodic policy search approaches that are used in this thesis can be easily com-
bined with smooth and stable trajectory representations such as DMPs or the VTAE, and
they have no clear disadvantage compared with step-based RL, when reward is sparse
and typically occurs at the end of an episode, or compared with value-function based
RL, when temporal credit assignment is difficult, a sufficiently good policy is simple in
comparison to its value function, or imitation learning can provide a good initialization.
Hence, good examples of problems that can be solved well by episodic policy search with
stable trajectory representations are grasping, throwing, and pulling a lever. Counter-
examples are peg-in-a-hole and obstacle avoidance, which are better solved with continu-
ous sensor feedback, and problems with multiple via points, which makes temporal credit
assignment simple.

Consequently, we would like to learn reactive behaviors that handle high-dimensional
inputs with neural networks and combine it with reliable learning and stable trajectory
generation, which has been achieved with contextual policy search and DMPs. There is
more potential here and the VTAE could be a first step to combine both approaches.

177

Chapter 7. Discussion

7.4.2. Automation of the Learning Platform

For automated behavior recording, marker free approaches could be tested and compared
with respect to accuracy and achievable automation level. Also some prior knowledge is
implicitly integrated in the design of the learning platform. There is not one combination
of methods that works for all applications. For instance, simulation-reality transfer is
only required in challenging applications such as throwing.

7.4.3. Reward

Besides markers for motion capture or simulations some prior knowledge has to be defined
in form of reward functions. This can be complicated. The reward function for pancake
flipping [KCC10b] is the most complicated one in a robotic context so far: besides requir-
ing a motion capture system (which is acceptable), it considers the maximum altitude of
the pancake, the orientation of the pancake, and the position of the pancake with respect
to the center of the frying pan. Although the reward function is complicated, defining a
solution is even more difficult. Nevertheless, for complex problems with complex reward
functions it is desirable to have a more intuitive way of defining reward. There are several
ways to take the burden of specifying a reward function from the human.

Reward functions can be optimized [SLB09], which shifts the problem of defining the
optimization criterion to another level, that is, leads to the question: optimized with
respect to what? This is, however, the way evolution works. A binary fitness function—
extinction or not—results in the fine-tuned reward system that is integrated in each
creature’s body to increase its gene’s ability to survive.

More practical approaches are the following. With active reward learning [Dan+15]
the reward is directly given by a human and a surrogate model for the human’s reward is
trained to decrease the number of queries from the human. Inverse reinforcement learning
[NR00] defines a reward function based on demonstrations. Kim et al. [Kim+17] avoid
querying the human directly by reading error-related potentials, a signal that is implicitly
generated by a human’s brain, when an error occurs.

7.5. Impact and Relation to Other Fields

Let us take a look at how the publications on which this thesis is based have influenced
other research and how this thesis is related to other fields.

Black-Box Optimization. There is a strong connection between policy search and
black-box optimization. This led to the development of contextual CMA-ES [Abd+17a]
based on the black-box optimizer CMA-ES [HO01] and BO-CPS [MFH15] based on
Bayesian optimization [BCd10]. Furthermore, active contextual ACM-ES [Fab19a], con-
textual CMA-ES with a surrogate model, has been presented at the Genetic and Evo-
lutionary Computation Conference (GECCO), one of the most important conferences of
the black-box optimization community.

178

7.5. Impact and Relation to Other Fields

Goal-Conditional Deep RL. Contextual policy search is a multi-task reinforcement
learning problem that is similar to goal-conditional reinforcement learning, which has
been explored by the deep RL community. Relevant works in this context have been
published by Schaul et al. [Sch+15a] about goal-conditional universal function approx-
imators for DQN, Andrychowicz et al. [And+17] about hindsight experience replay for
DDPG, Rauber et al. [Rau+19] about hindsight policy gradients, and Florensa et al.
[Flo+18] about goal-generating neural networks for exploration.

Active Context Selection. After our initial publication about active context selection
[FM14] several other works followed. We summarize the most interesting approaches.
Metzen [Met15] builds on BO-CPS and extends it with active context selection based
on entropy search [HS12]. Pinsler et al. [Pin+19] present a version of BO-CPS with
a form of experience replay and active context selection. They test their algorithm
in environments that are similar to those in which HER [And+17] has been tested.
Although their reward is more informative than it was for HER, they were able to learn
in orders of magnitude fewer episodes, which suggests that HER is not optimal for these
tasks. Forestier and Oudeyer [FO16] extend our idea of using a multi-armed bandit
algorithm to high-dimensional spaces of sensorimotor models for tool use. Florensa et
al. [Flo+18] apply active context selection to policy gradient algorithms with neural
networks. Although they cite our work, they develop a different approach based on a
generative adversarial network [Goo+14] that generates goals. Char et al. [Cha+19]
present a new approach that is similar to BO-CPS with active context selection and
apply it to the domain of nuclear fusion.

Bayesian Optimization for Contextual Policy Search. Besides the previously
mentioned works that build on Bayesian optimization for contextual policy search, Met-
zen [Met16] extended BO-CPS with minimum regret search, an acquisition function
similar to the entropy search acquisition function [HS12]. Yang et al. [Yan+17] build on
BO-CPS and apply it to the domain of walking with a simulated, tiny six-legged robot.
They learn to walk at different speeds, uphill, and in a curve. Follow-up work has been
published by Liao et al. [Lia+19] in which the robot’s morphology is optimized in steps
that are interleaved with learning to walk.

Manifold Learning for Optimization. Besides reinforcement learning for robots
there are other potential application areas for manifold learning with contextual or stan-
dard black-box optimization. An interesting similar work in a different field has been
published by Gómez-Bombarelli et al. [Góm+18], who use a VAE to encode molecule
structures in the latent space and then train a model that predicts properties of the
molecules with GPR based on a large dataset. Their main goal was not to reduce the
dimensionality of the search space but to make it continuous by manifold learning. Con-
tinuous optimization on properties can then be performed to identify new molecules that
might have desired properties, for instance, being a potential new drug.

179

Chapter 7. Discussion

PUBSVE. The majority of regression algorithms approximate a hypothetical function
that generates the training set. Sometimes Gaussian measurement noise is assumed to
be part of the training set so that in addition to the mean we estimate the (co)variance
of the noise. In reality this is often a drastic simplification. We have to think of the
reality more as a distribution that is not Gaussian or not any other simple, parametric
distribution because it is often more complicated. Think of the state transition model in
reinforcement learning, which is inherently stochastic, and if we approximate it, we often
assume a Gaussian (for example, [DR11; Lev+16]). If, however, the distribution has two
modes this will not work. We have to think of other ways to approach regression and
find other descriptions of the conditional distribution that generates the training set.

The PUBSVE, which has been developed in collaboration with Krell [Kre15], approx-
imates the upper bound of the output distribution instead of its mean. There is no
algorithm that solves the exact same problem to the best of our knowledge. Using neg-
ative target values for training, we can approximate the lower bound, too. It is also
possible to implement a similar loss function for a neural network, which would have
the advantage that both, the lower and the upper bound, can be predicted in a single
forward pass with multiple heads and shared internal representation. This approach is
similar to recent work of Rodrigues and Pereira [RP20] in a field of research that is called
quantile regression. Similarly, Meinshausen [Mei06] use a tree-based ensemble approach
to predict several quantiles of a conditional distribution.

Learning Platform. Peng et al. [Pen+20] use a framework to learn locomotion be-
haviors that is similar to the framework introduced in Chapter 5. They learn locomotion
behaviors for a quadrupedal robot from motion capture of dogs. Their work fits in our
framework, as they use imitation learning of Cartesian trajectories with embodiment
mapping and refinement based on reinforcement learning as well as simulation-reality
transfer. Their methods are similar, but the details differ. They transfer manually de-
fined Cartesian key points from the dog to a similar robotic system and use inverse
kinematics to obtain joint angles. They optimize individual joint angles to produce a
similar Cartesian trajectory and minimize the distance of each angle to a default pose
at the same time to make trajectories simpler and smoother. Policy refinement by re-
inforcement learning then makes simulated postures and velocity of the robot during
locomotion more similar to the demonstrated reference. Domain randomization is used
to make the policy robust against changes in the dynamics model before transfer to a
real robot.

Computer Graphics and Video Games. A common problem that we see in com-
puter graphics is character animation from motion capture data, which often requires
complicated manual motion retargeting. Although full automation is not possible yet,
we see potential to assist and speed up the process of motion retargeting with the methods
that we develop here.

180

7.6. Insights

While all the behavior learning algorithms and applications that we considered here
are always evaluated with respect to their usefulness for robotics, they can all be applied
to character animation for computer graphics or to solve video games as well.

Then, however, we have to evaluate algorithms differently. In computer graphics it is
often cheaper to do more episodes than to use a computationally expensive algorithm.
Parallelization becomes more important, as we can scale training to large hardware re-
sources. Therefore, evolution strategies, a simple but highly parallelizable algorithm, is
popular for solving video games [Sal+17; CLH18; Fuk+19].

7.6. Insights

Apart from its main matter of research, each dissertation teaches its author several lessons
that may be forgotten if they are not written down. The following list summarizes these.

• Deep RL doesn’t work yet.1 Although deep RL receives a lot of attention,
policy search and black-box optimization are robust, sample-efficient, and work
well. Deep learning is a promising direction of research in behavior learning, but
we should always compare it with these methods and, ideally, combine approaches
and ideas from both worlds.

• Black-box optimization is policy search. There is a strong connection between
policy search and black-box optimization. These fields should exchange more ideas.
Currently, black-box optimization seems to have more to offer for RL than vice
versa.

• Prior knowledge is important. Trajectory generators such as movement prim-
itives can be an important building block, even for deep RL. Integration of prior
knowledge (inverse kinematics, movement primitives, imitation learning) is still
an underestimated tool to make reinforcement learning more robust and sample-
efficient. We can use much more prior knowledge in robotics.

• Unsupervised learning is the bridge to deep RL. Manifold learning (which is
unsupervised) for policy parameters can be used for transfer learning and could be a
bridge between imitation learning with policy search and deep reinforcement learn-
ing. Deep reinforcement learning could become sample-efficient through transfer
learning.

7.7. Publications

Journal Articles

[Fab+13] Alexander Fabisch, Yohannes Kassahun, Hendrik Wöhrle, and Frank Kirch-
ner. “Learning in compressed space”. In: Neural Networks 42 (2013), pp. 83–
93. issn: 0893-6080. doi: 10.1016/j.neunet.2013.01.020.

1An allusion to Irpan [Irp18].

181

Chapter 7. Discussion

[Fab+15] Alexander Fabisch, Jan Hendrik Metzen, Mario Michael Krell, and Frank
Kirchner. “Accounting for Task-Difficulty in Active Multi-Task Robot Con-
trol Learning”. In: KI – Künstliche Intelligenz 29.4 (2015), pp. 369–377.
issn: 1610-1987. doi: 10.1007/s13218-015-0363-2.

[Fab+20] Alexander Fabisch, Christoph Petzoldt, Marc Otto, and Frank Kirchner.
“A Survey of Behavior Learning Applications in Robotics—State of the Art
and Perspectives”. In: International Journal of Robotics Research (2020).
Submitted.

[Fab19] Alexander Fabisch. “pytransform3d: 3D Transformations for Python”. In:
Journal of Open Source Software 4.33 (2019), p. 1159. doi: 10.21105/

joss.01159.

[FLK20] Alexander Fabisch, Malte Langosz, and Frank Kirchner. “BOLeRo: Behav-
ior Optimization and Learning for Robots”. In: International Journal of
Advanced Robotic Systems 17 (3 2020). doi: 10.1177/1729881420913741.

[FM14] Alexander Fabisch and Jan Hendrik Metzen. “Active Contextual Policy
Search”. In: Journal of Machine Learning Research 15 (2014), pp. 3371–
3399. url: http://jmlr.org/papers/v15/fabisch14a.html.

[Gut+18] Lisa Gutzeit, Alexander Fabisch, Marc Otto, Jan Hendrik Metzen, Jonas
Hansen, Frank Kirchner, and Elsa Andrea Kirchner. “The BesMan Learning
Platform for Automated Robot Skill Learning”. In: Frontiers in Robotics
and AI 5 (2018), p. 43. issn: 2296-9144. doi: 10.3389/frobt.2018.00043.

[Met+14] Jan Hendrik Metzen, Alexander Fabisch, Lisa Senger, José de Gea Fer-
nández, and Elsa Andrea Kirchner. “Towards Learning of Generic Skills for
Robotic Manipulation”. In: KI – Künstliche Intelligenz 28.1 (2014), pp. 15–
20. issn: 1610-1987. doi: 10.1007/s13218-013-0280-1.

Conference Publications

[Fab19] Alexander Fabisch. “Empirical Evaluation of Contextual Policy Search with
a Comparison-based Surrogate Model and Active Covariance Matrix Adap-
tation”. In: Genetic and Evolutionary Computation Conference Companion.
Ed. by Manuel López-Ibáñez. GECCO ’19. ACM, 2019, pp. 251–252. isbn:
978-1-4503-6748-6. doi: 10.1145/3319619.3321935.

[Fab20] Alexander Fabisch. “A Comparison of Policy Search in Joint Space and
Cartesian Space for Refinement of Skills”. In: Advances in Service and In-
dustrial Robotics. Ed. by Karsten Berns and Daniel Görges. Springer, 2020,
pp. 301–309. isbn: 978-3-030-19648-6. doi: 10.1007/978-3-030-19648-
6_35.

[FK20] Alexander Fabisch and Frank Kirchner. “Variational Trajectory Autoen-
coder for Sample-Efficient Policy Search”. In: Conference on Robot Learning
(CoRL). Submitted. 2020.

182

7.7. Publications

[Gut+19] Lisa Gutzeit, Alexander Fabisch, Christoph Petzoldt, Hendrik Wiese, and
Frank Kirchner. “Automated Robot Skill Learning from Demonstration for
Various Robot Systems”. In: KI: Advances in Artificial Intelligence. Ed. by
Christoph Benzmüller and Heiner Stuckenschmidt. Springer International
Publishing, 2019, pp. 168–181. isbn: 978-3-030-30179-8. doi: 10.1007/978-
3-030-30179-8_14.

Workshop Publications

[MFH15] Jan Hendrik Metzen, Alexander Fabisch, and Jonas Hansen. “Bayesian Op-
timization for Contextual Policy Search”. In: Machine Learning in Planning
and Control of Robot Motion (MLPC) Workshop, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Aleksan-
dra Faust. 2015. url: https : / / www . cs . unm . edu / ~afaust / MLPC15 _

proceedings/MLPC15_paper_Metzen.pdf.

183

Chapter 8. Outlook

We have to find ways to share knowledge between similar and dissimilar robots and
tasks. In theory, sharing knowledge between robots in form of training sets or pretrained
models is much easier than sharing knowledge between humans that can only absorb
knowledge through their senses. Bozcuoglu et al. [Boz+18] propose a similar approach:
they share ontologies and execution logs on the cloud platform openEASE. The knowledge
can be transferred to other environments or other robots. The same approach could be
used to share pretrained models or training data to learn behaviors.

Combination with other methods: Combining existing approaches for perception
and state estimation with machine learning has been shown to be effective by Mülling
et al. [Mül+13] and Parisi et al. [Par+15]. Similarly, combining existing approaches for
planning and machine learning has been shown to be effective by Lenz et al. [LLS15].
Also model predictive control has been combined with a learned uncertainty-aware per-
ception model by Kahn et al. [Kah+17]. Nemec et al. [NŽU17] combine machine learning
and structured search with physical constraints. To generate walking behaviors, often
classical models such as a linear inverted pendulum [Kaj+01] are used and a zero mo-
ment point (ZMP) [VB05] is computed. Only parts of complex walking behaviors are
learned. We think this is a good method to verify and understand what is happening
on the system, to reduce the amount of physical interaction with the world that is re-
quired to learn the behavior, and to obtain solutions that are safe. Geng et al. [GPW06]
confirm this for their application: “Building and controlling fast biped robots demands
a deeper understanding of biped walking than for slow robots.” Englert and Toussaint
[ET18] write: “One way to reduce [. . .] difficulties is by exploiting the problem structure
and by putting prior knowledge into the learning process.” Although Loquercio et al.
[Loq+18] show remarkable results with an approach that learns collision avoidance on a
drone almost end to end, they do not want to replace map-localize-plan approaches and
believe that “learning-based and traditional approaches will one day complement each
other”.

Nonetheless, we must not restrict the amount of learnable behaviors by introducing
too strong constraints or too simple models. For example, requiring the ZMP to be in
a support polygon is a strong limitation. It is an artificially constructed, simple model
of dynamical stability, which has been developed to avoid at all costs that expensive
robots fall and break. It limits the capabilities of a robot, as running would be difficult
to implement with a ZMP approach. Yang et al. [YKL17] argue that this approach
prohibits advanced balancing behaviors. Making basic physical knowledge available to
the learning algorithm can be beneficial without restricting the amount of learnable
behaviors though. As an alternative to the ZMP approach, we can compute the centroidal
momentum [OG08; OGL13] and make it available to the learning algorithm. When a
translation from joint space to Cartesian space is required or useful, we can use the
Jacobian. For dynamics we can use the equations of motion.

Boostrapping: A situation, in which the combination of behavior learning with an-
other method is safer, is manipulation with a superimposed collision avoidance behavior.

186

8.2. Integration of Prior Knowledge in Deep Learning

While the robot is learning to grasp, it can safely be guided around obstacles. These
safety mechanisms could also be used to bootstrap learning and collect data safely before
we shift to the pure learned behavior that might perform better. It is even possible to
use additional equipment or a controlled environment to provide additional information
to bootstrap learning. This has been done, for example, by Levine et al. [Lev+16] to
reduce the required amount of data. Englert and Toussaint [ET18] also demonstrate that
a combination of optimal control, episodic reinforcement learning, and inverse optimal
control in the training phase can be safe and efficient. The problem of safe exploration
has also been discussed in more detail by Amodei et al. [Amo+16, pages 14–17].

8.2. Integration of Prior Knowledge in Deep Learning

Among the previously proposed paths, combining behavior learning with existing meth-
ods is the most promising path to sample-efficient learning of complex behaviors. We
cannot stress enough the need for the right inductive biases to simplify the learning pro-
cess. Deep learning specifically can benefit the most from this. We will take a closer look
at how prior knowledge can be integrated in deep neural networks for behavior learning.

Ever since the term deep learning [Sch14; LBH15] has been popularized, the field gen-
erated impressive results. Outstanding successes in computer vision [KSH12] with sub-
disciplines such as object detection [Lin+17; RF18] and semantic segmentation [SLD17;
YCW19], speech recognition [Han+14], machine translation [Vas+17], and playing video
[Mni+15] and board games [Tes95; Sil+16] usually have the following unsolved problems:
they require huge amounts of data and large computational resources, they are hardly
explainable, and they often do not generalize well [Sze+14; Jac+19].

In the last years deep reinforcement learning has been driven to an extreme. Silver
et al. [Sil+16] implement a distributed AlphaGo that uses 1,202 CPUs and 176 GPUs
to play a single game. OpenAI et al. [Ope+19a] learned to play the video game Dota 2
with 45,000 years of game experience and beat professional humans [Ope19] with 128,000
CPU cores and 256 P100 GPUs [Ope18]. OpenAI et al. [Ope+19b] learn low-level hand
control skills for Rubik’s cube with roughly 13 thousand years of experience in simu-
lation. This development prevents normal researchers from generating state-of-the-art
results because of outrageous requirements on computational resources. Such high com-
putational requirements have a negative environmental impact [Sch+19]. In addition,
we mostly solve perception problems, although in robotics we will have to solve much
more complex problems that combine perception and action while autonomous robots
only have limited resources.

What makes a neural network? It is a hierarchical, parameterized function. It has
a loss of which we compute the gradient with respect to the parameters of the net-
work by backpropagation and a gradient-based optimizer reduces the loss. Generalized
backpropagation is a form of automatic differentiation: the reverse accumulation mode
[Bay+18]. It is efficient for scalar functions with lots of parameters. Neural networks
were a major driver for the development of automatic differentiation engines for tensors.
Examples are Theano [The16] (first release in 2009), MXNet [Che+15b], TensorFlow

187

Chapter 8. Outlook

[Aba+15], PyTorch [Pas+19] (first release in 2016), or JAX [Bra+18]. Because gradient-
based optimization can be used for more than machine learning this led to the advent
of a new programming paradigm—differentiable programming. The idea can be traced
back to Olah [Ola15] who used the term differentiable functional programming. Karpa-
thy [Kar17] developed a similar idea under the term Software 2.0. It means that we
can write software that has parameters and everything is differentiable so that we can
optimize it. With this approach we can, for example, optimize a browser for a specific
user. This demands not only for powerful automatic differentiation tools but also for
an integration in the programming language. Scientific programming languages such as
Julia [Bez+17] are predestined to popularize differentiable programming. Innes et al.
[Inn+19] introduced Julia libraries that enable differentiable programming. They focus
on the links of machine learning and scientific programming. Since problem definitions
that are implemented in Julia are differentiable we can also train neural networks that
solve these problems by gradient-based optimization. In 2019, the Differentiable Pro-
gramming Manifesto of the programming language Swift has been released [Wei+19],
which is an outline for the introduction of differentiable programming as a core concept
of a compiled language that is not mainly used by researchers.

We will give examples of prior knowledge that can be integrated in differentiable pro-
grams or neural networks. The first deep neural networks that could be trained end to
end are convolutional neural networks [LeC+89]. They exploit the 2D structure of the
data that they process (mostly images). Similarly, attention mechanisms in deep neural
networks are a successful architecture pattern for machine translation [Vas+17]. Kas-
sahun et al. [Kas+08] integrate a simplified version of a Kalman filter in a neural network
that is trained without gradients. A Kalman filter [Kal60] can be used to track objects
that are recognized by a perception component. Jonschkowski et al. [JRB18] integrate a
particle filter that can be used for state estimation in a neural network. The integration
of this well-known algorithm fosters explainability and the combined system of neural
network and particle filter generalizes better. Jonschkowski et al. [JRB18] conclude that
“the use of algorithms as algorithmic priors will help to realize the potential of deep
learning in robotics”. Degrave et al. [Deg+19] present a differentiable rigid body physics
engine to simulate robots. Hu et al. [Hu+20] present a differentiable physics simulation of
elastic objects, incompressible fluids, a mass-spring system, billiard, rigid body collisions,
water rendering, volume rendering, and electric fields. Engel et al. [Eng+20a] present
a differentiable digital signal processing library. They integrate it in a neural network
that generates sound. This strong inductive bias does not reduce the expressive power
of the network in this domain. It even enables extrapolation, which is unusual for deep
neural networks. Lutter et al. [LRP19] integrate Lagrangian mechanics to learn inverse
dynamics. Pavllo et al. [PGA18] use quaternions in a network and forward kinematics
in a loss. Graves et al. [GWD14; Gra+16] integrate a differentiable memory module and
Grefenstette et al. [Gre+15] introduce network modules that represent data structures
such as stacks, queues, and deques. Blondel et al. [Blo+20] propose differentiable sorting
and ranking algorithms and Berthet et al. [Ber+20] present differentiable optimization.
All of these works show that we can integrate prior knowledge in neural networks to in-

188

8.3. Comparability and Reproducibility

crease sample efficiency, foster explainability, and generalize in a more controllable way.
These properties are important for robotics, but also adaptation through learning, since
often not everything can be modeled perfectly [TM95].

Previously, the robotics community often preferred imitation learning and policy search
with simpler function approximators over deep learning [DNP13; Gut+18]. Nevertheless,
it is desirable to use neural networks, as they are powerful function approximators and we
can benefit from the successes of deep learning such as extraordinary sensor processing,
especially in computer vision. There are previous success stories that rely either on pre-
training with simpler models or huge amount of data. Levine et al. [Lev+16] demonstrate
that deep reinforcement learning based on policy search can successfully learn various
manipulation skills end to end from camera images to torque commands. Levine et al.
[Lev+18] show impressive grasping behaviors of a simple two-finger gripper that have
been learned in a self-supervised fashion. More than 800,000 grasp attempts have been
used to generate this result. We would like to learn with fewer samples to avoid costs and
high energy consumption not just during training but also during execution. For mobile
robots this will be particularly important because the amount of energy is limited to the
battery that they carry.

It is important to integrate prior knowledge in a way that does not limit the expressive
power of neural networks. Different domains require different forms of prior knowledge
that will be integrated in neural networks. Prior knowledge can be integrated in forms of
new layer types, architecture patterns, loss functions, or pretraining. We should use it to
improve sample efficiency and generalization in deep learning. We expect gradient-based
training from supervision or reinforcement learning to complement classical approaches
from robotics extraordinarily well, since these often have many parameters that have to
be set, which is often done manually.

8.3. Comparability and Reproducibility

Shadmehr and Wise [SW05] convey the idea that the same computational principles that
allow earlier forms of life to move in their environment later enabled higher forms of
intelligence: language and reasoning. The intelligence of animals and humans evolves
with the complexity of the problems that it solves. An example for this is confirmed
by Faisal et al. [Fai+10], who investigate production of early prehistoric (Oldowan) and
later (Acheulean) stone tools. Oldowan tools are simpler and their production require less
complex behaviors. The production of Acheulean tools requires the activation of brain
regions associated with higher-level behavior organization. The development of more
complex behavior coordination is even linked to development of more complex forms of
communication, since the development of complex manipulation behaviors required more
intellectual capacities and these could also be applied to language. It is an important
finding for us as roboticists. Translating this to our work, this means more complex prob-
lems require the development of better behavior learning algorithms. These algorithms
could potentially also be used in other domains for which they have not been designed
originally. Hence, advancing at both frontiers could benefit the whole field.

189

Chapter 8. Outlook

Artificial intelligence has advanced by setting challenging goals. For example, the prob-
lem of playing chess against a human or the RoboCup initiative, which has a similar goal
but combines AI with robotics: “The Robot World-Cup Soccer (RoboCup) is an attempt
to foster AI and intelligent robotics research by providing a standard problem where a
wide range of technologies can be integrated and examined.” [Kit+97] In recent years we
have seen major advances in reinforcement learning also because clearly defined bench-
marks are available, for instance, the Atari learning environment [Bel+13] and OpenAI
Gym [Bro+16]. These benchmarks make comparisons of existing approaches easier. It
is also simpler to reproduce results because it is easy to check if a reimplementation of
an algorithm gives the same result as in the original publication. Hence, we recommend
to define benchmarks for robotic behavior learning.

A problem is that often similar problems are solved but with varying conditions. In the
context of grasping we observed that the objects are often different, although there are
standardization efforts: the YCB object and model set is an example [Cal+15a; Cal+15b;
Cal+17]. These efforts have to be fostered and supported. Also new benchmarks have to
be created. For these we can draw inspiration from the diagnosis and treatment of human
patients. An example of a benchmark for humans is the box and block test [MFW85], in
which a patient has to move colored blocks from one box to another as fast as possible.
We think that a set of benchmark problems should be selected, standardized, formalized,
and described in detail so that results are easily comparable.

Games and sports are particularly good candidates for benchmark problems because
they have a clear set of rules, standardized material, they are usually easy to understand,
and offer a variety of challenging problems. We have seen that a large number of be-
havior learning problems that have been tackled already come from this domain. Mostly
subproblems, for example, kicking or batting a ball, have been extracted and learned.
More advanced benchmarks would also include tasks with less strict rules, for example,
setting a table.

Benchmarking in the context of robotics, however, is difficult because software cannot
be tested in isolation. Simulations could be used to address this problem, but they often
lead to solutions that are not transferable to reality, neither the learned behavior nor the
learning algorithm. The RoboCup Standard Platform League (SPL) solves this problem
by requiring that each competing team uses the same hardware. This is not an optimal
solution because most robots are expensive and most research institutes are not able
to buy a new robot just to compete in a specific benchmark. We can offer no perfect
solution for this problem. We can only propose that a cheap robotic platform that is
sufficient enough for a variety of benchmarks should be developed.

8.4. The Future of Behavior Learning Problems in Robotics

Mason [Mas12] writes: “What percentage of human’s manipulative repertoire have robots
mastered? Nobody can answer this question.” We can say exactly the same about any
other category of robotic behaviors. At least we have a rough overview of behaviors that

190

8.4. The Future of Behavior Learning Problems in Robotics

have been learned from Chapter 2 and Appendix A. We will now talk about what is still
missing.

At the moment, most behaviors are learned in isolation. On a complete system, the
learned behavior will interfere with high-level behaviors and other behaviors on the same
level that might even have higher priority such as balancing or collision avoidance. There
might even be other learned behaviors, for example, a learned walking behavior and a
learned throwing behavior could be executed in parallel. Executing multiple behaviors
in parallel has effects on the whole system. These problems are neglected if behaviors
are learned in isolation. Throwing a ball while walking makes the balancing part of
the walking behavior more difficult and grasping an object while collision avoidance is
active might result in different reaching trajectories. Sometimes combining two behaviors
might require one of these behaviors to be changed completely. For example, in the case
of throwing while running, the whole locomotion and balancing behavior might have to
be altered to anticipate and absorb high forces that are exerted during the throw (for
example, in a javelin throw).

Figure 8.1 illustrates two possible roadmaps for walking behaviors. Currently, we are
able to learn walking for robots with four or more legs. There are two alternative routes
illustrated that we could take from there: the ball sports route and the parkour route.
Ball sports in this example include soccer, basketball, or handball. It is to some ex-
tent possible to learn bipedal walking, which requires more advanced balancing behavior
than walking with more legs. Fast bipedal running is already a much more complex
task because it is a highly dynamic behavior that cannot easily be solved with classical
stability criteria and control approaches. Running and dribbling a ball requires to solve a
much more complex perception problem and precise foot placement or hand movements.
Combining this behavior with the requirement to throw or kick a ball will introduce a
difficult coordination problem: throwing will have an impact on the balancing part of
the running behavior. A good solution will predict this impact and counteract already
while performing the throw. Nevertheless, throwing a ball to a fixed goal is easy in com-
parison to passing the ball to a teammate, when the robot has to anticipate the behavior
of the teammate to pass the ball to a location where the teammate will be able to use
it. Another future research direction could be over climbing to parkour. Legged robots
unfold their full potential in rough and irregular terrain, where precise perception of the
environment, foot placement, and robust balancing is required. This has been learned
already to some extent. A more difficult scenario would be climbing up a mountain with
steep slopes, where not only feet but all body parts must be controlled, for example, a
humanoid would have to use its arms. The robot must be flexible enough to balance on
steep and rough terrain. A next possible step would be among the most difficult sports
that humans are able to perform: parkour. It requires to understand the environment,
that is, know what you can do with it to find the fastest and direct way by overcoming
obstacles. The whole body is involved and it is often required to turn off basic safety
mechanisms, for example, to perform a double kong vault where the body is almost
turned upside down with the hands on the obstacle directing momentum and the feet
above the head to get out of the way.

191

Chapter 8. Outlook

Figure 8.1.: Roadmaps for walking robots.1

There are low-hanging fruits to increase the spectrum of learned behaviors. Examples
are the locomotion behaviors running, climbing ladders, jumping over obstacles, jumping
precisely or jumping as high as possible with one or two legs, front or back flip, swimming,
and paddling. In the kitchen domain: stirring, chopping, opening cans or bottles. In
the household domain: the problems of folding sheets or clothes can be challenging
because these problems are hard to model. In the manufacturing domain: the skills
of hammering, screwing, sewing, shoveling, and tool use in general are relevant. While
perception has been fully learned for grasping and collision avoidance, this has not been
considered so far for dynamic problems such as catching, batting, or kicking balls. There
is a limited amount of publications concerned with learning high-level game playing in
real physical games, for example, to learn coordination of multiple robots in soccer. For
interaction with humans, performing gestures and other physical interaction behaviors
such as various forms of hand shaking could be learned. Interesting balancing problems
often come from sports, for instance, surfing, skating, or skiing.

1Image sources: running from Stephane Kempinaire (URL: http://www.mynewsdesk.com/se/

puma-nordic/images/puma-aw14_ff_bolt-325510; license: CC BY 3.0), dribbling from flickr user
tsavoja (URL: https://www.flickr.com/photos/tsavoja/4106568938/; license: CC BY-SA 2.0),
throwing while running from flickr user RFEBM Balonmano (URL: https://www.flickr.com/

photos/125948220@N02/14826033503/; license: CC BY-SA 2.0), passing while running from flickr
user Terry Gilbert (URL: https://flic.kr/p/QDhaKN; license: CC BY 2.0), parkour from flickr user
THOR (URL: https://www.flickr.com/photos/geishaboy500/3090363361/; license: CC BY 2.0),
all other photos are from DFKI RIC and can be found at https://robotik.dfki-bremen.de/

192

8.4. The Future of Behavior Learning Problems in Robotics

There are not many learned behaviors that require advanced spatiotemporal and causal
reasoning beyond unscrewing a light bulb. More examples for this kind of problems are
assembling furniture, tidying up a room, cooking a complete meal, or solving puzzles.

Creating a system that solves not just one problem but a variety of complex tasks is
even more difficult. It involves integration of hardware components, software components,
and behaviors. Building complex systems is a challenge in itself, but it is required to
create more sophisticated complex behaviors.

Learned behaviors can usually not be explained. Robots cannot reason about them.
They cannot explain why they selected a certain action or why it works. We have not yet
seen robots that combine existing learned behaviors to new sequences or combinations
of behaviors to solve tasks that they have not seen before.

As we already argued in the introduction, given the current development in behavior
learning and in computer vision, we expect that the next big steps will be made by deep
learning and by solving more and more complex perception problems. This direction of
artificial intelligence research has its justification in Moravec’s paradox: “it is compar-
atively easy to make computers exhibit adult level performance on intelligence tests or
playing checkers, and difficult or impossible to give them the skills of a one-year-old when
it comes to perception and mobility” [Mor88, page 15]. We emphasize, however, that for
complex behaviors not only complex perception but also complex control is required. It
is not sufficient to control a 7 DOF arm to realize a versatile, flexible, and autonomous
humanoid robot. We should strive towards pushing the limits of kinematic complexity.
A good example is the work of OpenAI et al. [Ope+20], who control a complex hand
that is similar to a human hand.

In summary, there is still a long way to go to build robots that are able to perform as
good as humans in these tasks, but we think that learning behaviors is the best way that
we have to acquire these skills, when the robotic hardware is sufficient. Mason [Mas12]
formulated a conjecture about robotics research: “[I]t is just possible that our field is still
in its infancy. I do not have a compelling argument for this view, but it is telling that
we have no effective way to measure our progress toward long-range goals.” Our outlook
on which skills we should try to master by behavior learning in the future, particularly
the discussion of the roadmap displayed in Figure 8.1, also is a confirmation of this.

Although the influence of one researcher is minuscule in this domain, this thesis postu-
lates the basis for future developments in behavior learning and explores basic algorithms
and concepts that can be extended and developed further in the future.

193

Part V.

Appendix

195

Appendix A.

Survey of Behavior Learning Problems

This appendix
was published
originally as
[Fab+20] and has
been revised.

This appendix includes a more detailed discussion of the publications that have been
presented in Section 2.1 Robotic Behavior Learning Problems. It was first published by
Fabisch et al. [Fab+20] and thus is a joint effort of the authors of this survey paper. The
remainder of this section is separated in manipulation behaviors, locomotion behaviors,
and behaviors that do not fit in any of these categories. Table A.1 summarizes the
behavior learning problems, corresponding publications, and their categorization.

We capture a large variety of robotic behavior learning problems according to the
presented definition of behavior. We group problems according to the categories that
we introduced and point out similarities and differences between and difficulties of these
problems.

A.1. Manipulation Behaviors

A.1.1. Fixed Objects (A)

Flipping a light switch: Buchli et al. [Buc+11] investigate the task of flipping a light
switch. The switch essentially is a via point that has to be passed through precisely in
this kind of task. In addition to high accuracy, the flipping process itself requires the
exertion of forces. In their work, the robot learns to be compliant when it can be and be
stiff only when the task requires either high precision or exertion of forces. The problem
could be extended to the recognition of the switch, which is not done here.

Open door: In contrast to flipping a switch, opening a door does not require precise
trajectories. Additionally, more than just a via-point problem has to be solved: opening
a door involves grasping the handle, closing the kinematic chain between gripper and
the handle and finally moving the handle. The movements of the robot after grasping
are restricted by the structure of the handle. Opening a door requires significant force
exertion from the robot to the environment. Nemec et al. [NŽU17] ignore the problem
of grasping and only consider the problem of learning the unconstrained DOFs while the
kinematic chain from the robot to the door is closed. Chebotar et al. [Che+17b] and Gu
et al. [Gu+17] consider the problem of learning this behavior end to end from camera
images to motor torques. Nemec et al. [NŽU17] and Englert and Toussaint [ET18] ignore
the perception part of the problem and assume known relative positions. Kalakrishnan
et al. [Kal+11b] and Kormushev et al. [KCC11] use force sensors. The door considered

197

Appendix A. Survey of Behavior Learning Problems

by Kormushev et al. [KCC11] does not have a handle but a horizontal bar that has to
be pushed with a larger force than a standard door handle. It is also the only work in
which the door has been pushed and not pulled. Nemec et al. [NŽU17] and Englert and
Toussaint [ET18] consider not only horizontal but also vertical handles.

Turning objects: Several manipulation problems involve turning fixed objects, for
example, turning a valve [Car+12], or a crank [Pet+14], or screwing a cap on a (pill or
water) bottle [Lev+16]. The challenge is to reach a via point and then hold and move
an object on a circular path. These behaviors can be realized as rhythmic movements
[Pet+14] or discrete movements [Car+12; Lev+16]. They can be discrete when the object
has to be turned only by a small angle (for example, 90 degrees, Carrera et al. [Car+12])
or when the robot can spin its wrist [Lev+16]. Some works focus more on robustly
reaching the target object [Car+12; Lev+16] and others on robustly turning the object
itself [Pet+14]. Carrera et al. [Car+12] exclude perception from learning, Levine et al.
[Lev+16] learn perception and action, and Petrič et al. [Pet+14] follow previously learned
torque profiles.

A.1.2. Spatially Constrained Behavior (B)

Peg-in-a-hole: Inserting a peg in a hole is one of the most basic manipulation skills
that we discuss in this article. It is the most frequent assembly operation [GFB94].
The behavior can benefit from both visual [Lev+16] and force sensors [GFB94; Ell+12;
Kra+16], but it can also be done without any sensors [Che+17a]. While the most obvious
application of this skill is found in assembly tasks [GFB94; Ell+12; Kra+16; Lev+16], it
can also be used to, for example, plug in a power plug [Che+17a]. The problem can be
solved end to end from visual data to motor torques [Lev+16] or from force measurements
to Cartesian positions [GFB94] as a purely reactive behavior. Alternatively, learning can
be combined with search heuristics for the hole based on force measurements [Ell+12;
Kra+16]. In the simplest case, the behavior is learned for a fixed relative transformation
between robot and target [Che+17a].

A more advanced assembly operation that involves multiple instances of the peg-in-
a-hole problem has been learned by Laursen et al. [Lau+18] to connecting a pipe for a
heating system. In this task, a passively compliant gripper holds a tool extension and
has to use a tube feeder, nut feeder, and crimping machine. Only actions were learned
and a safety mechanism prevented the system from serious collisions. Apart from that,
the system learns blindly without any sensors.

Wiping: The motion required to solve sweeping, wiping, ironing or whiteboard cleaning
tasks can be either discrete or rhythmic. Further, all these tasks require environmental
interaction by exerting (specific) forces on external objects. Learning mostly focuses on
finding parameters for the representation of the movement. Kormushev et al. [KCC10a;
KCC11] let a robot learn a discrete ironing skill from demonstrated trajectories and ad-
ditional force profiles. They also evaluated their work on a whiteboard cleaning task

198

A.1. Manipulation Behaviors

[Kor+11b]. A similar task is surface wiping which is investigated by Urbanek et al.
[UAS04] and Gams et al. [Gam+14]. Both works represent the wiping skill as a periodic
movement. In this case, rhythmic motions are advantageous, as the complete surface
can be wiped easily by executing the motion several times while shifting only the center
point. The work from Gams et al. [Gam+14] also uses force feedback to maintain contact
with the surface. Besides the aforementioned household tasks, there are also industrial
operations that require constant environmental contact. From these, grinding and pol-
ishing tasks have been investigated by Nemec et al. [Nem+18]. The goal of these tasks is
to keep contact with a specific force exertion between a polishing/grinding machine and
the treated object, which is manipulated by a robot with a desired orientation. There-
fore, their approach reproduces the relative motion between object and tool. The contact
point is estimated using measured forces and torques and can be changed to optimize a
defined criterion, for example, minimize joint velocities. Sweeping has been considered
by Alizadeh et al. [ACC14]. The position of dust is obtained using computer vision and
the behavior is adapted accordingly. Pervez et al. [PML17] train a sweeping behavior
end to end from visual inputs to collect trash placed at various positions between a fixed
initial and goal position.

Handwriting: The goal of handwriting tasks is to resemble human writing as precise
and smooth as possible. Complete words have been reproduced and generalized on real
robots: Manschitz et al. [Man+18] learn to generalize a handwriting skill to unseen
locations of a whiteboard which is defined as the target writing position. Berio et al.
[BCL16] learn to dynamically draw graffiti tags. In comparison to the above mentioned
behavior, these drawings particularly require fluid and rapid manipulation of the pen
to produce elegant and smooth sequences of letters. Precision is less important for this
behavior.

A.1.3. Movable Objects (C)

Grasping: Grasping is a good example for a high diversity of similar but different task
formulations. The problem of grasping is tightly coupled with perception, but it can
be separated into perception and movement generation. Continuous feedback can be
used to verify the grip although it can also be sufficient to perceive the target before
the grasp attempt. Problem formulation for grasping varies in the degree of automation
and amount of other methods used in the process. Sometimes perception is learned and
movement generation is done with other approaches and vice versa. Some approaches
learn full reaching and grasping movements for known object locations [GSB10; Kal+11b;
Stu+11; Amo+12], others just learn to predict grasp poses [LLS15; JLD16; PG16]. Steil
et al. [Ste+04] only consider the problem of defining hand postures and Kroemer et
al. [Kro+09] the problem of learning hand poses relative to objects. A full grasping
movement includes a reaching trajectory, positioning the gripper at the correct position,
closing the gripper, and sometimes objects have to be moved in the right position before
the gripper can be closed. From the works that are mentioned here, Gräve et al. [GSB10],
Steil et al. [Ste+04], and Stulp et al. [Stu+11] do not learn to use feedback from sensors,

199

Appendix A. Survey of Behavior Learning Problems

Kroemer et al. [Kro+09] use features obtained from images, Kalakrishnan et al. [Kal+11b]
use force measurements, Lenz et al. [LLS15] use RGB-D images, Johns et al. [JLD16] and
Mahler et al. [Mah+17] use depth images, and Lampe and Riedmiller [LR13], Pinto and
Gupta [PG16], and Levine et al. [Lev+18] use RGB images. Figure A.1 illustrates possible
inputs and outputs of a component that generates grasping behavior. A classification
proposed by Bohg et al. [Boh+14] distinguishes between grasping of known, familiar,
and unknown objects. Familiar means that the robot did not encounter the objects
before, but has seen similar objects. Most of the works that we present here fall into
this category. For grasping, other factors that influence the difficulty of the problem are
the used hand or gripper and the objects that should be grasped. Promising results are
shown by Levine et al. [Lev+18] and Mahler et al. [Mah+17]. A large variety of different
objects can be grasped with a two-finger gripper just based on images or depth images
respectively. However, there are still many options for improvements. The gripper can
only grasp objects with top-down movements. In the real world, not all problems can be
solved with this kind of grasp. The gripper only has two fingers. Hands with more fingers
have better control over grasped objects. Using force feedback and tactile sensors would
improve grasping in some situations. In a box full of objects, the approach of Levine
et al. [Lev+18] just picks a random object. In practice, this should be a parameter of the
behavior. Also, it is not clear where and in which orientation the gripper holds the object.
This does not seem to be a problem because most works just consider the grasping phase
but not what happens afterwards. In a real application, most probably the object will
have to be placed in some other location. Since the grasping is not as accurate as one
would expect in many cases, knowing the orientation of the object inside the gripper is a
useful information to prepare the placing behavior. This can be done either by in-hand
manipulation, which requires more fingers, or by adjusting the final target position of
the arm taking into consideration the object’s orientation.

Pick and place: A skill that is similar to grasping is pick and place. Some works
assume that picking the object is already solved and learn only object placement [Ijs+13;
Fin+17a], others learn both pick and place in one policy [STS12; Rah+18; Che+17b].
Some works only focus on movement execution [Ijs+13], others generalize from object
features to trajectories [KS17], or even learn camera-based perception and action end to
end for one specific object [Fin+17a; Che+17b]. An interesting work from Stulp et al.
[STS12] considers the special case of this problem under uncertainty. It assumes a state
estimation approach to track the object’s location which does not yield perfect results.
In addition, a sequence of movements is learned. A variant of pick and place is placing
coat hanger on a rack. Levine et al. [Lev+16] learned to perform this task end to end
from camera images to motor torques.

The next level of difficulty for simple pick and place tasks is placing objects precisely,
for example, stacking boxes. An interesting work shows that this can be learned even
with a low cost manipulator that has play in its joints and a wobbling base [DFR15].
While this can be easily interpreted as noise from a machine learning perspective, other
methods often fail without any informative prior knowledge. In their study, perception

200

A.1. Manipulation Behaviors

Figure A.1.: Learning grasping from sensory information. Exemplary sensor data that
could be used to generate grasping behaviors and possible outputs of a skill.

has not been learned but continuous feedback from a vision system has been used to
generate appropriate action. Duan et al. [Dua+17] tackle a more difficult problem by
learning a direct mapping from visual input to actions. In their work, however, a more
precise robotic system has been used.

In-hand manipulation: As objects cannot always be picked up in a specific configu-
ration, in-hand manipulation may be necessary to reposition the objects within a robot’s
hand. In general, this is a dexterous manipulation skill that requires a gripper with
multiple fingers that can be driven individually. Hoof et al. [Hoo+15] learn robot in-
hand manipulation with unknown objects by using a passively compliant hand with two
fingers and exploiting tactile feedback. They investigate an in-hand object rolling task
and learn a control policy that generalizes to novel rollable cylindrical objects that differ
in diameter, surface texture and weight. In their work, dynamics and kinematics of the
compliant robot hand are unknown to the learning algorithm.

The hand used by Rajeswaran et al. [Raj+17a] has five fingers and has pneumatic
actuation. They consider the problem of learning in-hand rotation of elongated objects
with and without the use of a wrist joint under varying initial conditions. The object
can either be in the hand at the start of the behavior or picked up and moved to the
desired configuration. Learning this skill is shown to be possible with only proprioceptive
feedback. This includes pressure measurements, positions, and velocities of each joint.

201

Appendix A. Survey of Behavior Learning Problems

OpenAI et al. [Ope+20] learn a complex in-hand manipulation skill: changing the
orientation of a cube to any desired orientation in a robotic hand with five fingers. Two
components are learned: a vision component that computes the object’s pose from three
camera images from significantly different, fixed perspectives and a policy component
that uses the finger tip positions and the object pose to generate motion commands for
the fingers. The finger tip positions are measured with a motion capture system which
unfortunately makes the learned skill in its current form not suitable for a humanoid
robot outside of the lab.

Tumbling / tilting an object: The challenge in quasi-static manipulation tasks like
tumbling or tilting objects from one face to another is to control the position of the
respective object over a period of time. Pollard and Hodgins [PH04] generalize an
object-tumbling skill to novel object sizes, shapes and friction coefficients. Kroemer
and Sukhatme [KS17] further enhance the difficulty by learning to tilt objects exactly
around their defined pivotal corners. This task requires a high accuracy during the whole
skill execution because the object’s corner has to stay continuously in contact with the
desired pivot point.

A.1.4. Deformable Objects (D)

Knot tying and untying: Tying a knot is a behavior that is frequently required,
for instance, during surgical operations, in the household domain, for search and rescue,
or for sailing where threads or ropes are often used. Berg et al. [Ber+10] demonstrate
that a combination of behavior learning and optimal control can be used to learn fast
and smooth knot tying with two manipulators consisting of 14 motors. This would be a
particularly challenging task for planning algorithms that would have to reason about a
three-dimensional soft body.

Similarly, untangling ropes and untying knots is required in the same domains as well
as for technical applications in which cables unintentionally tangle up. Wen Hao Lui
and Saxena [WS13] learn to predict the rope configuration and use it to choose several
actions from a predefined set to untangle the rope.

Handling Garments: Corona et al. [Cor+18] learn to handle garment, that is, ar-
ranging garment from an unknown configuration to a reference configuration from which
further steps can be executed, for example, folding it or dressing a person. The difficult
part is the prediction of suitable grasp points from camera images. A bimanual setup has
been used: one arm grasps a garment and presents it to an RGB-D camera, the garment
is recognized, and two grasping points for the arms are identified to bring the garment
to a reference configuration. Jeans, T-shirts, jumpers, and towels can be handled by the
system.

Colomé and Torras [CT18] learn to fold a polo shirt with two robotic arms. Each
arm has 7 DOF. Only trajectories for two arms are learned. An accurate model of
the polo shirt and its interaction with the grippers of the arms is not available. The

202

A.1. Manipulation Behaviors

learned trajectories minimize wrinkles in the shirt and make it look as close to a reference
rectangle as possible.

Erickson et al. [Eri+18] consider the problem of robot-assisted dressing: while a human
is holding his arm up and holds his posture strictly, a PR2 robot pulls a hospital gown
onto the arm of human. Physical implications of actions on people are learned from
simulation. The learned model predicts forces on a person’s body from the kinematic
configuration and executed actions. The model is combined with model predictive control
to solve the task. Hence, neither action, nor perception are learned completely.

A.1.5. Divisible Objects (E)

Cutting: Cutting objects is a complex task as dynamics are induced during the process
of object cutting. Cutting tasks can be found in various domains. For example, Lioutikov
et al. [Lio+16] consider the task of cutting vegetables in a kitchen scenario. In their
work, the movement is composed of multiple steps that are executed autonomously in a
sequence. The learned behavior generalizes to changed cutting positions. However, they
do neither consider the required forces to cut the objects nor the involved dynamics. As a
result, the cutting motion has to be executed multiple times to finally slice the vegetable.
Therefore, while Lioutikov et al. [Lio+16] represent cutting motions as discrete behaviors,
they recommend to represent them as rhythmic behaviors in future work. The difficulty of
food-cutting tasks is further exacerbated, if vegetables with different stiffness and shape
are evaluated. In this case, the (non-linear) dynamics vary not only with time but also
with different object types. As the hand-designing of such dynamics models is infeasible,
Lenz et al. [LKS15] aim to learn the prediction of these dynamics and the respective
controllers directly from a dataset of about 1500 cuts. In the medical field, Thananjeyan
et al. [Tha+17] investigate surgical pattern cutting of deformable tissue phantoms in
the context of laparoscopic surgery. As the task requires simultaneous tensioning and
cutting, they learn a tensioning policy which depends on the specific cutting trajectory
and maps the current state of the gauze to output a direction of pulling. Similar to the
work from Lenz et al. [LKS15], the dynamical deformation is difficult to observe or to
model analytically. Therefore, they directly learn the cutting policy in an end-to-end
fashion.

A similar task is peeling which has been learned by Medina and Billard [MB17]. It is,
however, modeled as a sequence of reaching, peeling and retracting. Only with one arm
the peeling motion for a zucchini has been learned while another arm holds it.

A.1.6. Movable Objects, Dynamic Behavior (F)

Batting, throwing and kicking: For many games some sort of batting or throw-
ing behavior is required, for example, hockey [Dan+13; Che+17a; RK17; Par+18], golf
[Mae+16], minigolf [KKB12], billiard [AMS97; Pas+11], baseball [PVS05; PS08b], bad-
minton [Liu+13], tennis [INS02], table tennis [Kob+10; MKP11; Kob+12; Mül+13],
tetherball [DNP12b; Par+15], darts [Kob+12], throwing [Gam+10; Ude+10; Kob+12;
da +14; Gut+18], and kicking [BL17; HQS10; Asa+96]. These are dynamic manipulation

203

Appendix A. Survey of Behavior Learning Problems

behaviors because momentum from the end effector has to be transferred to the manipu-
lated object. We can distinguish between settings where a specific goal has to be reached
by hitting or throwing an object directly [Che+17a; KKB12; RK17; Par+18; Gam+10;
Ude+10; da +14; Gut+18] or indirectly [Dan+13; AMS97], or the distance or velocity
has to be maximized [Pas+11; PVS05; PS08b]. Sometimes performing the motion was
enough [Mae+16; Liu+13; INS02; DNP12b; BL17]. Winning the game was the goal in
the case of tetherball [Par+15], or scoring a goal in the case of soccer [HQS10; Asa+96].
An extension to the problem of hitting a specific goal is to hit a given goal from a target
space, for example, along a line [KKB12], from an area [Kob+12; Gam+10; Ude+10; da
+14; RK17; Gut+18], or from a discrete set of targets [Kob+12]. In some cases special-
ized machines have been used, for example, Atkeson et al. [AMS97] use a simple billiard
robot or Liu et al. [Liu+13] use a badminton robot with three DOF. In contrast, Pastor
et al. [Pas+11] use a humanoid robot to play billiard or Mülling et al. [Mül+13] use
robotic arms to play table tennis. In some works, only serve motions [Liu+13] or hitting
static objects [PVS05; HQS10] are learned, in other works a moving object has to be hit
[Mül+13; Par+15]. Perception and state estimation is not learned in any of the presented
works, hence, behaviors that rely on perception and state estimation of moving targets
[Par+15; Mül+13] can be considered as deliberative. Most of these problems, however,
have been solved without exterioceptive sensors. Kicking a ball with a legged humanoid
represents a particular challenge because the robot has to keep balance. Böckmann and
Laue [BL17] execute a learned kick with manually implemented balancing and Hester
et al. [HQS10] learn to perform a kick that avoids falling over while scoring a goal. State
estimation uncertainty and noise is an issue if perception is involved in the skill although
this has not been mentioned explicitly in the works of Parisi et al. [Par+15] and Mülling
et al. [Mül+13] in which state estimation methods have been used. Hence, we assume
this has not been considered to be a significant problem. Learning the perception part
of these behaviors has not been considered so far and would significantly increase the
difficulty of the problems.

More dynamic manipulation behaviors: In ball-in-a-cup, a ball is attached to a
cup by a string. The goal is to move the cup to catch the ball with it. A robot has
to swing the ball up and catch it. The movements of the ball are sensitive to small
perturbations of the initial conditions or the trajectory of the end effector [KMP08].
Successful behaviors are learned so that they take into account the ball position [KMP08;
KP09] to compensate for perturbations, however, the perception part is not learned in
any of these works. Kober et al. [KMP08] state that it is a hard motor learning task for
children.

Another remarkable work is published by Kormushev et al. [KCC10b]. The goal is to
flip a pancake with a frying pan. It is a dynamic task and the pancake is susceptible to
the influence of air flow which makes it hard to predict its trajectory.

Zhao et al. [Zha+18b] learn nunchaku flipping, which is a dynamic behavior. A nun-
chaku is a weapon that consists of two sticks that are connected by a chain. A hand with
haptic sensors and five fingers has been used. Zhao et al. [Zha+18b] emphasize that the

204

A.1. Manipulation Behaviors

task requires compound actions that have to be timed well, contact-rich interaction with
the manipulated object, and handling an object with multiple parts of different materials
and rigidities.

Balancing: A typical balancing example which is often used as a sample problem is
balancing an inverted pendulum. Marco et al. [Mar+16] and Doerr et al. [Doe+17] inves-
tigate this problem in a real-world manipulation scenario by utilizing a robotic arm with
seven DOF to balance an inverted pendulum. In their work, they learn parameterizations
of a PID controller or a linear-quadratic regulator (LQR), respectively, while a motion
capture system is used to track the angle of the balanced pole.

A.1.7. Granular Media and Fluids (G)

Scooping: For humans, reasoning about fluids and granular media is no more difficult
than reasoning about rigid bodies. Not many researchers try to tackle these problems
with robots. Schenck et al. [Sch+17a] learn scoop and dump actions of granular media.
Both are executed in sequence and they are encoded with nine parameters that tell the
robot where and how to scoop and where to dump the granular media. The problem that
is solved is to scoop pinto beans from one tray and dump it to another tray to create
a desired shape in the target tray. A Gaussian-shaped pile and the letter G have been
selected as target shapes. The robot was allowed to execute 100 scoop and dump actions.
A depth camera is used to measure the current state of the granular media. The part of
the behavior that has been learned is a model that predicts the effect of actions which
will then be used to select good actions.

Pouring: An application which requires (weak) dynamical movements with moderate
precision is pouring liquids from a bottle into a cup. Learning focuses on the gener-
alization of the movement to new goals (position of the cup [PHS08]), changed initial
positions (position of the bottle [Chi+17]), or different object shapes and sizes [BKP14;
Tam+11]. Tamosiunaite et al. [Tam+11] learn both, the shape of the trajectory and the
goal position to generalize a trajectory to a different bottle. Similar to the pick-and-place
applications detailed above, the elementary pouring problem can also be extended to a
pick-and-pour task [Cac+18; Chi+17]. In contrast to the above mentioned works which
acquire the pouring trajectories from human demonstrations, robotic pouring behaviors
can also be learned in an end-to-end fashion directly from videos [Ser+18].

A.1.8. Collision Avoidance (H)

Robotic manipulation behaviors can result in collisions with the robot’s own body, other
agents or the environment. The latter is often termed obstacle avoidance, where the
obstacles can be both static or dynamic. While static objects in the environment can be
modeled well within a world model, dynamic obstacles are often circumnavigated with
reactive behaviors. Both, collision and obstacle avoidance are important in real-world
manipulation scenarios. Koert et al. [Koe+16] learn adaptation of trajectories in case of

205

Appendix A. Survey of Behavior Learning Problems

unforeseen static obstacles represented by a point cloud that has been obtained from a
depth camera.

A.1.9. Miscellaneous (I)

There are also some more unusual behaviors that have been learned but we will not
discuss them in detail. Among these are archery [Kor+10], which is similar to throwing
a ball or darts but does not involve an accelerating trajectory, playing with the Astrojax
toy [Par+18], playing maracas [Par+18], drumming [Ude+10], and calligraphy [OPL15].

A.2. Locomotion Behaviors

A.2.1. Walking (A)

The prime example of the category locomotion is walking. Walking is a diverse robotic
behavior learning problem. Its diversity stems on the one hand from the variety of dif-
ferent walking machines: six-legged [MB90; Kir97], quadrupedal [KS04; KAN08; BLE07;
KN09; Kal+09; Zuc+11; Bar+16], or biped systems [BF97; Mat+05; GPW06; Kor+11b;
MB15] have been considered for this paper. On the other hand, the problem formulation
can be made more difficult by requiring the system to walk up stairs [KN09] or walk
on irregular or rough terrain [KAN08; Kal+09; Zuc+11]. In principle, the problems of
walking as fast [KS04], straight [BLE07], energy-efficient [Kor+11b], or stable [MB15]
as possible can be distinguished. While six-legged and quadrupedal systems are stable
enough to prevent falling over in most situations and, hence, qualify for static behav-
iors, bipedal systems are often unstable and it is a hard problem to prevent them from
falling over. Hence, bipedal walking can be considered a dynamic learning problem.
Walking is a rhythmic and active behavior. It is an elementary skill that can be used in
many application domains, however, walking robots are in competition to wheeled robots
which are much more energy-efficient and precise in flat terrain. While walking itself is a
rhythmic behavior, precise foot placement is a discrete behavior. Precise foot placement
is required for climbing stairs [KN09] and walking on rough terrain [KAN08; Kal+09;
Zuc+11] on a lower level of behavior abstraction (see Figure 2.4). Those behaviors also
combine learning methods with other planning and control methods. Bipedal robots
are leaner than other walking machines and they are able to move like humans and in
the same environment, for example, go through narrow paths [BF97]. Because bipedal
walking is not statically stable per se, controllers have to compensate disturbances con-
tinuously. Either static stability or dynamic stability can be the goal of a bipedal walk.
Often the problem of learning bipedal walking is restricted by supporting structures to
the sagittal plane to simplify the balancing problem [BF97; Mat+05; GPW06] but not
always [Kor+11b; MB15]. However, behaviors are often prestructured to restrict and,
hence, simplify the learning problem. For example, Missura and Behnke [MB15] only
learn the balancing part of the walk. Using sensory feedback is particularly important
for bipedal walking. Apart from proprioceptive sensors [Mat+05], ground contact sensors

206

A.2. Locomotion Behaviors

have been used [GPW06]. Robustness to slightly irregular surfaces and changes of the
robots dynamics have also been considered [Mat+05] for bipedal walking.

A more difficult version of bipedal walking is riding a pedal racer. In principle, it is
comparable but it is crucial to exert a controlled force on the pedals. Hence, Gams et al.
[Gam+14] use a 6-DOF force-torque sensor in each foot of the bipedal robot to generate
feedback to the learned behavior.

A.2.2. Dribbling (B)

Walking or running while controlling a ball is called dribbling. It can be used, for
example, in basketball, handball, or soccer. Latzke et al. [LBB07] learned dribbling for
soccer with a humanoid toy robot by walking against the ball. The walking behavior is
simple because it only uses three motors. The goal is to learn how to score a goal with
dribbling, starting from ten different initial ball positions at the middle of the field. Only
high-level control, that is, setting a walking direction has been learned. Positions of the
ball and the goal are obtained from a world model.

A.2.3. Jumping (C)

If the walking robot is too small and the terrain too rough, jumping is sometimes nec-
essary. Kolter and Ng [KN09] show that this can be used for climbing up large stairs
with a small quadrupedal robot. With the same robot, Theodorou et al. [TBS10b] learn
to jump across a gap by maximizing the distance of the jump while jumping straight to
prevent falling over. Unfortunately, Theodorou et al. [TBS10b] could not evaluate their
approach on the real system.

A.2.4. Standing Up (D)

A stand-up behavior is important for any biped robot acting in the real world. In general,
the difficulty is that there exists no static solution, as there is no joint linking the robot
to the ground. For many robots, a robot-specific, preprogrammed stand-up movement
is used instead of acquiring the skill by learning. However, Morimoto and Doya [MD01]
learn a dynamical stand-up policy both in simulation and on a real two joint robot. The
robot (incrementally) learns a skill to stand up dynamically by utilizing the momentum of
its body mass. An inclination sensor measures the current state of the system and motor
torques are produced by the learned motor skill. The hierarchical learning architecture
learns to generate postures by means of an upper level policy and the movements to
achieve the next posture (sub-goals) by means of a lower level policy.

A.2.5. Balancing (E)

Keeping balance is a fundamental locomotion requirement and has been achieved with
various approaches by modifying different aspects of the motion. For example, balancing
a walking humanoid by modifying the gait [MB15], using arm motions [KGB11] or con-
trol motor torques [Vla+09] to balance a robot on two wheels. Often behavior learning is

207

Appendix A. Survey of Behavior Learning Problems

combined with classical control approaches: Kuindersma et al. [KGB11] use an existing
balance controller for normal balancing and only activate arm motions for postural re-
covery when the inertial measurement unit (IMU) detects perturbations through impacts
of an external weight.

A.2.6. Collision Avoidance (F)

Learning collision avoidance seems to play a secondary role in manipulation (see para-
graph Manipulation: Collision Avoidance). There are, however, many works in the con-
text of locomotion, where it is mainly related to navigation problems. The publications
discussed in this paragraph directly use images and vision systems. They present learned
reactive collision avoidance behaviors. In the field of navigation, Tai et al. [TLL16] learn
a collision avoidance strategy based on depth images in an indoor obstacle avoidance
scenario. They use a mobile, wheeled robot that learns to move in corridors with a set
of discrete actions. However, the robot only encounters static obstacles. Loquercio et al.
[Loq+18] investigate a civilian drone flight application. In their work, the drone learns
to safely fly in the streets of a city by mapping each single input image directly to a
drone steering angle and a collision probability to react to unforeseen obstacles. The
behavior for navigation and obstacle avoidance is trained for urban environments from
the viewpoint of bicycles and cars but can be generalized to novel situations like indoor
environments or high altitudes without retraining. The outputs of the perception model
are not directly used to control the drone but converted to movement commands with
fixed rules. Similarly, Gandhi et al. [GPG17] also learn to navigate an unmanned aerial
vehicle while avoiding obstacles. They use negative experiences, that is, a visual dataset
of more than 11,500 crashes in various environments with random objects, in conjunction
with positive data to learn to fly even in cluttered, dynamic indoor environments. The
behavior is learned end to end by taking camera images and outputting probabilities of
the motion commands go left, right, or straight. Kahn et al. [Kah+17] learn uncertainty-
aware collision avoidance, that is, given a camera image and a sequence of controls the
learned model will output a collision probability together with an estimate of uncertainty.
The approach proceeds cautiously in unfamiliar environments and increases velocity in
areas of higher confidence. Model predictive control is used to generate actions, while the
cost model incorporates collision probability and uncertainty. The approach has been
tested with a quadrotor and an RC car.

A.2.7. Navigation (G)

Assuming the robotic system knows how to walk or drive, where should it move? High-
level locomotion behaviors like navigation and exploration are concerned with local direc-
tion generation, for example, navigation through complex natural environments [SBS10],
navigation to visually presented targets [Zhu+17], navigation to targets with known rel-
ative location [Pfe+17], lane following [Chu+18b], reducing state estimation uncertainty
in navigation [OHB10] and navigating to a target position [CP07]. Most of the works
discussed here are concerned with wheeled robots but are in principle transferable to

208

A.2. Locomotion Behaviors

walking robots. Classical navigation through natural terrain has been considered by Sil-
ver et al. [SBS10]. They use planning to generate driving directions but the generation of
cost maps for the planner are learned. The cost maps are generated based on perceptual
data: static data sources like satellite images or onboard sensors like cameras and Light
Detection and Ranging (LiDAR). Zhu et al. [Zhu+17] consider the problem of visual nav-
igation: actions in a 3D environment are predicted based on the current image from the
robot’s camera and an image of the target. The predicted actions result in a minimum
path length to reach the goal. They show that navigation to different targets in a scene
can be learned without retraining. The approach has been tested on a wheeled robot in
an office environment. Pfeiffer et al. [Pfe+17] learn navigation to a given relative target
location end to end from 2D-laser range findings without a map. Steering commands
are directly generated by the learned behavior. The goal was to navigate safely through
obstacle-cluttered environments with a mobile platform. A similar problem is to learn
lane following from camera images end to end. This has been done by Chuang et al.
[Chu+18b]. Oßwald et al. [OHB10] consider the problem of navigation with a humanoid
robot that has noisy actuators and sensors. Motion commands are executed more inac-
curately with walking robots compared to wheeled robots and camera images are affected
by motion blur. A navigation behavior has to trade off quality of pose estimation and
walking speed. A vision-based pose estimation has been used and navigation actions
(forward, rotate left / right, stand still) for the robot have been learned and take into
consideration distance and angle to the goal and pose uncertainty. The goal is to reach
the destination reliably as fast as possible. Conn and Peters [CP07] solve a classical
grid-world navigation problem in the real world. The laser scan data and orientation
information are used by the behavior to generate one of the commands stop, turn left,
turn right, or move forward.

As a side note, we would like to mention here that autonomous driving behaviors for
cars also fall into the category of navigation. These behaviors can also be learned as shown
by Chen et al. [Che+15a] and Bojarski et al. [Boj+16]. Because this topic is broad and it
is not of utmost importance for humanoid robots, we will not further investigate it here.
The behaviors are often specific for the domain, for example, Bojarski et al. [Boj+16]
present an approach to learn lane and road following and Chen et al. [Che+15a] learn
driving in a car racing game.

A.2.8. Exploration (H)

Exploration behaviors use (lower level) locomotion behaviors to gain knowledge on the
robot’s environment. Cocora et al. [Coc+06] successfully transfer exploration behavior
from other environments to a new environment to find the entrance of an office. The
general problem that they try to solve is navigating to a room with an unknown location.
While searching for it, only labels for neighboring rooms are provided to the robot.
The required exploration behavior is achieved by learning an abstract navigation policy
choosing actions based on the provided local knowledge. Kollar and Roy [KR08] learn
an exploration behavior for an unknown environment to maximize the accuracy of a map
that is built with simultaneous localization and mapping (SLAM).

209

Appendix A. Survey of Behavior Learning Problems

A special case of exploration behaviors are sampling routines aimed at acquiring rel-
evant sensory input often referred to as active sensing or active perception. Chen et al.
[CLK11] state that “active perception mostly encourages the idea of moving a sensor to
constrain interpretation of its environment”. For example, a camera has a limited field
of view, thus, the goal of an active sensing behavior is to move the part of the robot to
which the camera is attached (or the whole robot) to reduce uncertainty about the scene.

Kwok and Fox [KF04] demonstrate how active sensing can be learned in the domain
of robotic soccer: a quadrupedal robot has to determine its own location, the location of
the ball, and the location of opponents on a soccer field with a camera to finally score a
goal. The behavior considers the current estimate of the world state and its uncertainty
from the state estimation component. It generates head motions to change the camera
position. The robot is trained to score a goal. The active sensing behavior is executed
while the normal soccer behavior is running.

A.3. Other Behaviors

Some behaviors cannot generally or not at all be classified as locomotion or manipulation.
We will discuss these behaviors in this section.

A.3.1. Human-robot Interaction

Human-robot interaction has become a feasible application through safe, compliant robot
control and design. Robots can come into physical contact with humans in these sce-
narios. Robots that assist humans with their tasks are particularly appealing in the
household and manufacturing domains. They can hold objects for a human [Ewe+15],
hand over objects to a human [Ewe+15; Mae+17], assist a human in putting on a shoe
[Can+18], lift [Evr+09] or carry objects in collaboration with a human [Ber+12; Roz+15],
or drill screws placed by a human [Nik+13], hence, show collaborative behavior. They can
even interact socially with humans, for example, by giving a high five [Amo+14] or shak-
ing hands [Hua+18]. These behaviors are dynamic because they have to be synchronized
with the human. Challenging tasks are the recognition of the human’s intention and act-
ing accordingly. Some authors focus on the intention recognition: Amor et al. [Amo+14]
only consider the problem of recognizing one interaction scenario by observing the hu-
man’s motion, whereas Ewerton et al. [Ewe+15] and Maeda et al. [Mae+17] consider the
problem of distinguishing between several possible interaction scenarios. In these works,
only marker-based motion capture systems have been used to provide motion data from
the human counterpart. The presented behaviors are active, discrete manipulation be-
haviors and perception has not been considered. What makes carrying special is that it
is a collaborative behavior which requires continuous observation of the co-worker’s state
and intention because both agents are indirectly physically connected during the whole
activity. Carrying an object in collaboration of a robotic arm and a human might require
exerting a specific force on the object, and therefore, a method to measure the forces.
Rozo et al. [Roz+15] use a 6-axis force/torque sensor for this. In their application, the

210

A.3. Other Behaviors

object can only be carried if both agents apply a force in opposite directions. In contrast,
Berger et al. [Ber+12] consider collaborative carrying as a whole body problem with a
humanoid. They adapt the walking direction of a robot according the movement of its
human counterpart. Deviations from learned expected movements are recognized and
the motion is adjusted accordingly. In this case only part of the perception is learned.
Carrying behavior is often done with the robot following the human leader. They can
be considered passive. The similar problem of lifting an object in collaboration has been
considered by Evrard et al. [Evr+09]. They additionally learn to recognize if the robot
should take the leader or follower role during task execution. Hence, the learned behavior
can be both active or passive. Canal et al. [Can+18] provide an example of a deliberative
system, where low-level actions have been learned and high-level symbolic planning is
used to organize communication and interaction with a human. They study the appli-
cation of assisting a human in putting on a shoe. The social acceptance of robots is an
important aspect for future robots interacting with humans. One of the key factors in
this context are natural motions, that is, the robot should not only reach a certain pose
of the end effector but also execute the motion in a human-like manner. To achieve this,
Huang et al. [Hua+18] present a hybrid space learning approach that learns and adapts
robot trajectories in Cartesian and joint space simultaneously while taking into account
various constraints in both spaces. They evaluate their approach on a humanoid robot
in a hand-shaking task, consisting of a discrete reaching and a rhythmic waving motion,
and adapt the movement to different areas for shaking hands. Nikolaidis et al. [Nik+13]
present results in a simplified human-robot collaboration scenario. The scenario should
model the human-robot interaction challenges that occur in a hybrid team of a human
and a robot that has to drill screws. The human has to place screws and the robot drills
them. Although in the real world scenario there are no real screws and not a real drill,
the robot learns to execute its motions in an order favored by the human. The problem
of perceiving the human’s current state is simplified by using a motion capture system.

A.3.2. Behavior Sequences

The specific task of unscrewing a light bulb is a good example for sequential tasks that
need to be decomposed into smaller subtasks to achieve the overall objective. Manschitz
et al. [Man+16] infer an unknown number of such subtasks automatically from demon-
strations of the overall task and learn how to sequence the subtasks in order to reproduce
the complete task. In their work, the taught task sequence consists of approaching the
light bulb, closing the end effector, unscrewing the bulb by rotating the wrist stepwise
(after each turning, the fingers are opened and the wrist is rotated back), pulling the
light bulb out of the holder and finally putting it into a box.

Besides the applications of pouring, cutting and wiping, another typical kitchen task
is cooking (see also pancake flipping described in paragraph More dynamic manipulation
behaviors) or, more specifically, food preparation. The preparation of food requires struc-
tured behaviors with a fixed chronological order of actions. Therefore, the complete task
has to be segmented into smaller subtasks. The order of these subtasks is managed by a
higher-level monitoring system. Caccavale et al. [Cac+18] picked the tasks of coffee and

211

Appendix A. Survey of Behavior Learning Problems

tea preparation to present their work on learning the execution of structured cooperative
tasks from human demonstrations (respectively, though only in simulation, Caccavale
et al. [Cac+17] investigated pizza preparation). A similar approach was presented by
Figueroa et al. [FUB16] on pizza dough rolling task with the goal to achieve a desired
size and shape of the pizza dough.

A.3.3. Soccer Skills

Soccer is one of the most extensively studied games in robotics. Besides walking, dribbling
and kicking, more high-level skills have been learned with simpler robotic systems or in
simulation. For example, Müller et al. [Mül+07] learn ball interception on a wheeled robot
with known poses and velocities of the ball and the robot, Riedmiller et al. [Rie+09] learn
an aggressive defense behavior also based on these information and the pose and velocity
of the opponent but only in simulation, Riedmiller and Gabel [RG07] learn cooperative
team behavior also in simulation. Another example of a low-level behavior that has been
learned for robotic soccer is capturing a ball with the chin of a dog-like robot [FS04].

A.3.4. Adaptation to Defects

A kind of learned behavior that does not fit into any category because it is more general
and can be used in combination with any underlying behavior is presented by Cully et
al. [Cul+15]. The robot learned to adapt to defects. A walking behavior of a six-legged
robot as well as pick and place with a manipulator with redundant joints have been
considered.

212

A.4. Table

Table A.1.: Overview of learned behaviors.

Behavior Publication P
e
r
c
e
p
ti

o
n

†

A
c
ti

o
n

†

D
e
li
b
e
r
a
ti

v
e

‡

R
e
a
c
ti

v
e

‡

D
is

c
r
e
te

R
h
y
th

m
ic

S
ta

ti
c

D
y
n
a
m

ic

A
c
ti

v
e

P
a
s
s
iv

e

L
o
c
o
m

o
ti

o
n

M
a
n
ip

u
la

ti
o
n

flipping a light switch [Buc+11] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

open door ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

[Kal+11b] ✓ ✓ ✗ ✓ · · · · · · · ·
[Gu+17] ✓ ✓ ✗ ✓ · · · · · · · ·
[KCC10a; KCC11] ✓ ✓ ✗ ✓ · · · · · · · ·
[NŽU17] ✗ ✓ ✓ ✗ · · · · · · · ·
[Che+17b] ✓ ✓ ✗ ✓ · · · · · · · ·
[ET18] ✗ ✓ ✗ ✗ · · · · · · · ·

valve turning [Car+12] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

crank-turning [Pet+14] ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

screw cap on bottle [Lev+16] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

peg-in-a-hole ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

[GFB94] ✓ ✓ ✗ ✓ · · · · · · · ·
[Ell+12] ✗ ✓ ✓ ✗ · · · · · · · ·
[Lev+16] ✓ ✓ ✗ ✓ · · · · · · · ·
[Kra+16] ✓ ✓ ✓ ✗ · · · · · · · ·

⊢ power plug [Che+17a] ✗ ✓ ✗ ✗ · · · · · · · ·
⊢ connect a pipe [Lau+18] ✗ ✓ ✓ ✗ · · · · · · · ·

ironing [KCC10a; KCC11] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

whiteboard cleaning [Kor+11a] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

grinding / polishing [Nem+18] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

wiping
[UAS04] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

[Gam+14] ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

sweeping
[ACC14] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[PML17] ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

handwriting ✓ ✗ ✗ ✓

[Man+18] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ · · · ·
[BCL16] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ · · · ·

calligraphy [OPL15] ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

grasping ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

[Ste+04] ✗ ✓ ✗ ✗ · · · · · · · ·
[Kro+09] ✗ ✓ ✗ ✓ · · · · · · · ·
[GSB10] ✗ ✓ ✗ ✗ · · · · · · · ·
[Stu+11] ✗ ✓ ✗ ✗ · · · · · · · ·
[Kal+11b] ✓ ✓ ✗ ✓ · · · · · · · ·
[Amo+12] ✗ ✓ ✓ ✗ · · · · · · · ·

Table A.1.: Overview of learned behaviors (continued).

Behavior Publication P
e
r
c
e
p
ti

o
n

†

A
c
ti

o
n

†

D
e
li
b
e
r
a
ti

v
e

‡

R
e
a
c
ti

v
e

‡

D
is

c
r
e
te

R
h
y
th

m
ic

S
ta

ti
c

D
y
n
a
m

ic

A
c
ti

v
e

P
a
s
s
iv

e

L
o
c
o
m

o
ti

o
n

M
a
n
ip

u
la

ti
o
n

[LR13] ✓ ✓ ✗ ✓ · · · · · · · ·
[LLS15] ✓ ✗ ✓ ✗ · · · · · · · ·
[PG16] ✓ ✗ ✓ ✗ · · · · · · · ·
[JLD16] ✓ ✗ ✓ ✗ · · · · · · · ·
[Lev+18] ✓ ✓ ✗ ✓ · · · · · · · ·
[Mah+17] ✓ ✓ ✗ ✓ · · · · · · · ·

pick & place ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

[STS12] ✗ ✓ ✗ ✗ · · · · · · · ·
[Ijs+13] ✗ ✓ ✓ ✗ · · · · · · · ·
[Rah+18] ✗ ✓ ✓ ✗ · · · · · · · ·
[Che+17b] ✓ ✓ ✗ ✓ · · · · · · · ·
[KS17] ✗ ✓ ✓ ✗ · · · · · · · ·
[Lev+16] ✓ ✓ ✗ ✓ · · · · · · · ·
[Fin+17a] ✓ ✓ ✗ ✓ · · · · · · · ·

block stacking ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

[DFR15] ✗ ✓ ✓ ✗ · · · · · · · ·
[Dua+17] ✓ ✓ ✗ ✓ · · · · · · · ·

in-hand manipulation ✓ ✗ ✗ ✓

[Hoo+15] ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ · · · ·
[Raj+17a] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ · · · ·
[Ope+20] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ · · · ·

tumbling / tilting objects
[PH04] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

[KS17] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

hockey ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[Dan+13] ✗ ✓ ✗ ✗ · · · · · · · ·
[Che+17a] ✗ ✓ ✗ ✓ · · · · · · · ·
[RK17] ✗ ✓ ✗ ✗ · · · · · · · ·
[Par+18] ✗ ✓ ✗ ✗ · · · · · · · ·

knot tying [Ber+10] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

knot untying [WS13] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

folding a shirt [CT18] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

holding garment [Cor+18] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

dressing assistance [Eri+18] ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

cutting ✓ ✗ ✗ ✓

[Lio+16] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ · · · ·
[LKS15] ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ · · · ·
[Tha+17] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ · · · ·

peeling [MB17] ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓

Table A.1.: Overview of learned behaviors (continued).

Behavior Publication P
e
r
c
e
p
ti

o
n

†

A
c
ti

o
n

†

D
e
li
b
e
r
a
ti

v
e

‡

R
e
a
c
ti

v
e

‡

D
is

c
r
e
te

R
h
y
th

m
ic

S
ta

ti
c

D
y
n
a
m

ic

A
c
ti

v
e

P
a
s
s
iv

e

L
o
c
o
m

o
ti

o
n

M
a
n
ip

u
la

ti
o
n

scooping [Sch+17a] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

pouring ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[PHS08] ✗ ✓ ✓ ✗ · · · · · · · ·
[Tam+11] ✗ ✓ ✗ ✗ · · · · · · · ·
[BKP14] ✓ ✓ ✗ ✗ · · · · · · · ·
[Chi+17] ✗ ✓ ✗ ✗ · · · · · · · ·
[Ser+18] ✗ ✓ ✗ ✗ · · · · · · · ·
[Cac+18] ✗ ✓ ✓ ✗ · · · · · · · ·

collision avoidance [Koe+16] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

golf [Mae+16] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

minigolf [KKB12] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

billiard ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[AMS97] ✗ ✓ ✓ ✗ · · · · · · · ·
[Pas+11] ✗ ✓ ✗ ✗ · · · · · · · ·

baseball [PVS05] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

badminton [Liu+13] ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

tennis [INS02] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

table tennis ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[Kob+10] ✗ ✓ ✓ ✗ · · · · · · · ·
[MKP11] ✗ ✓ ✓ ✗ · · · · · · · ·
[Kob+12] ✗ ✓ ✓ ✗ · · · · · · · ·
[Mül+13] ✗ ✓ ✓ ✗ · · · · · · · ·

tetherball ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[DNP12b] ✗ ✓ ✗ ✗ · · · · · · · ·
[Par+15] ✗ ✓ ✓ ✗ · · · · · · · ·

darts [Kob+12] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

throwing ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[Gam+10] ✗ ✓ ✗ ✗ · · · · · · · ·
[Ude+10] ✗ ✓ ✗ ✗ · · · · · · · ·
[Kob+12] ✗ ✓ ✗ ✗ · · · · · · · ·
[da +14] ✗ ✓ ✗ ✗ · · · · · · · ·
[Gut+18] ✗ ✓ ✗ ✗ · · · · · · · ·

kicking ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[BL17] ✗ ✓ ✓ ✗ · · · · · · · ·
[HQS10] ✗ ✓ ✓ ✗ · · · · · · · ·
[Asa+96] ✗ ✓ ✓ ✗ · · · · · · · ·

ball-in-a-cup ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[KMP08] ✗ ✓ ✗ ✓ · · · · · · · ·
[KP09] ✗ ✓ ✗ ✓ · · · · · · · ·

pancake flipping [KCC10b] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Table A.1.: Overview of learned behaviors (continued).

Behavior Publication P
e
r
c
e
p
ti

o
n

†

A
c
ti

o
n

†

D
e
li
b
e
r
a
ti

v
e

‡

R
e
a
c
ti

v
e

‡

D
is

c
r
e
te

R
h
y
th

m
ic

S
ta

ti
c

D
y
n
a
m

ic

A
c
ti

v
e

P
a
s
s
iv

e

L
o
c
o
m

o
ti

o
n

M
a
n
ip

u
la

ti
o
n

nunchaku flipping [Zha+18b] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

archery [Kor+10] ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

astrojax [Par+18] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓

maracas [Par+18] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓

drumming [Ude+10] ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓

balancing on wheels [Vla+09] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

postural recovery [KGB11] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗

balancing inv. pendulum ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓

[Mar+16] ✗ ✓ ✗ ✓ · · · · · · · ·
[Doe+17] ✗ ✓ ✗ ✓ · · · · · · · ·

walking
⊢ six legs ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

[MB90] ✗ ✓ ✗ ✗ · · · · · · · ·
[Kir97] ✓ ✓ ✗ ✓ · · · · · · · ·

⊢ quadrupedal ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

[BLE07] ✗ ✓ ✓ ✗ · · · · · · · ·
[KS04] ✗ ✓ ✓ ✗ · · · · · · · ·
[Bar+16] ✗ ✓ ✗ ✓ · · · · · · · ·

⊢ biped ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

[BF97] ✗ ✓ ✗ ✓ · · · · · · · ·
[Mat+05] ✗ ✓ ✗ ✓ · · · · · · · ·
[GPW06] ✓ ✗ ✗ ✓ · · · · · · · ·
[Kor+11b] ✗ ✓ ✓ ✗ · · · · · · · ·
[MB15] ✗ ✓ ✓ ✗ · · · · · · · ·

walking up stairs [KN09] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗

walking on rough terrain ✓ ✗ ✓ ✗

[KAN08] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ · · · ·
[Kal+09] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ · · · ·
[Zuc+11] ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ · · · ·

pedal racer [Gam+14] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

jumping ✗ ✓ ✓ ✗ ✓ ✗

[KN09] ✗ ✓ ✗ ✗ ✓ ✓ · · · · · ·
[TBS10b] ✗ ✓ ✗ ✗ ✓ ✗ · · · · · ·

dribbling [LBB07] ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗

standing up [MD01] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗

collision avoidance ✓ ✗ ✓ ✗ ✓ ✗

[TLL16] ✓ ✓ ✗ ✓ · · ✓ ✗ · · · ·
[Loq+18] ✓ ✗ ✗ ✓ · · ✓ ✗ · · · ·

Table A.1.: Overview of learned behaviors (continued).

Behavior Publication P
e
r
c
e
p
ti

o
n

†

A
c
ti

o
n

†

D
e
li
b
e
r
a
ti

v
e

‡

R
e
a
c
ti

v
e

‡

D
is

c
r
e
te

R
h
y
th

m
ic

S
ta

ti
c

D
y
n
a
m

ic

A
c
ti

v
e

P
a
s
s
iv

e

L
o
c
o
m

o
ti

o
n

M
a
n
ip

u
la

ti
o
n

[GPG17] ✓ ✓ ✗ ✓ · · ✓ ✗ · · · ·
[Kah+17] ✓ ✗ ✓ ✗ · · ✗ ✓ · · · ·

ball interception [Mül+07] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

defense behavior [Rie+09] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

cooperative behavior [RG07] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

capturing a ball [FS04] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

visual navigation [Zhu+17] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

navigation [SBS10] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

navigation [CP07] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

navigation [Pfe+17] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

lane following [Chu+18b] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

navigation and estimation [OHB10] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗

navigation with exploration [Coc+06] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

exploration [KR08] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

active sensing [KF04] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

unscrewing a light bulb [Man+16] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

coffee / tea preparation [Cac+18] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

pizza preparation [Cac+17] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

pizza dough rolling [FUB16] ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓

high five [Amo+14] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

hand shaking [Hua+18] ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓

hand-over
[Ewe+15] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

[Mae+17] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

holding [Ewe+15] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

carrying
[Roz+15] ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

[Ber+12] ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

lifting
[Evr+09] ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓

putting on a shoe [Can+18] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

collaborative drilling [Nik+13] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Table A.1.: Overview of learned behaviors (continued).

Behavior Publication P
e
r
c
e
p
ti

o
n

†

A
c
ti

o
n

†

D
e
li
b
e
r
a
ti

v
e

‡

R
e
a
c
ti

v
e

‡

D
is

c
r
e
te

R
h
y
th

m
ic

S
ta

ti
c

D
y
n
a
m

ic

A
c
ti

v
e

P
a
s
s
iv

e

L
o
c
o
m

o
ti

o
n

M
a
n
ip

u
la

ti
o
n

† Perception and Action: Refers to the part of the behavior that has been learned.
‡ Deliberative and Reactive: Refers to the complete behavior. Behaviors are considered to be deliber-
ative if models of the world or the robot in the world are constructed.
Symbols:

⊢ Indicates that the behavior is an instance of the more general behavior above.
✓ Behavior has this property.
✗ Behavior does not have this property.

We cannot state that the behavior generally has this property.
· Property is inherited from the behavior category.

Appendix B.

Other Behavior Learning Algorithms

In this appendix we will discuss several behavior learning algorithms that were not rele-
vant enough for this thesis to be included in Chapter 2.

B.1. Hierarchical Reinforcement Learning

A way of reducing the difficulty of learning complex skills is to break it down into smaller
subproblems. Hierarchical RL [BM03] is concerned with this problem. An early work
that applies a hierarchical version of Q-learning in robotics has been published by Kirch-
ner [Kir97]. A goal-directed walking behavior for the six-legged walking machine SIR
ARTHUR with 16 DOF and four light sensors has been learned. The behavior has been
learned on three levels: (i) bottom: elementary swing and stance movements of individual
legs are learned first, (ii) middle: these elementary actions are then used and activated
in a temporal sequence to perform more complex behaviors like a forward movement of
the whole robot, and (iii) top: a goal-achieving behavior in a given environment with
external stimuli. The top-level behavior was able to make use of the light sensors to find
a source of maximum light intensity. On the lowest level, individual reward functions for
lifting up the leg, moving the leg to the ground, stance the leg backward, and swinging
the leg forward have been defined.

B.2. Meta Learning

Meta-learning approaches have been proposed by Duan et al. [Dua+17] for block stacking
and Finn et al. [Fin+17b] and Yu et al. [Yu+18] for pick-and-place tasks to improve the
sample efficiency of imitation learning for manipulation skills with camera inputs. The
idea is to transfer knowledge about how to solve a specific task to similar new tasks with
a low number of demonstrations.

Also in reinforcement learning additional improvements in sample efficiency can be
obtained when we try to solve multiple similar problems with Model-Agnostic Meta
Learning (MAML) [FAL17]. It can be combined with REINFORCE and TRPO to solve
new reinforcement learning tasks faster after training on a set of similar tasks. Recently,
Song et al. [Son+20] presented a MAML variant that does not need policy gradients but
uses evolution strategies [Rec71].

219

Appendix B. Other Behavior Learning Algorithms

B.3. Model-Based Reinforcement Learning

Many RL algorithms do not use a model, that is, they are model-free RL algorithms.
This refers to the state transition model and the reward model. Those are assumed to be
unknown. If they are known, an RL problem will become an optimal control problem,
hence, RL and optimal control have a strong connection [SBW92]. There is a middle
ground: we can learn a model from interaction of the agent with its environment. With
a state transition model, we can exchange computational effort for sample efficiency. We
can alternate between model estimation and planning steps on the model. The Dyna
architecture Sutton [Sut90] is the earliest example of this concept and can be used with
Q-learning to form the algorithm Dyna-Q. Planning in this case means that we sample
state-action pairs to query the model for successor state and reward so that we can
update the state-action value function with this virtual experience tuple.

Model-based deep RL with a partially known model has been responsible for a major
breakthrough of artificial intelligence in the domain of board games. The game Go has
been extremely demanding for traditional search-based approaches. AlphaGo [Sil+16]
was the first computer program to beat a professional Go player and later on even the best
human Go player. AlphaGo combines planning by Monte Carlo tree search (MCTS) and
RL. After imitation learning from human players, REINFORCE policy gradients [Wil92]
are used to learn a policy represented by a neural network. Furthermore, a value function
network is learned from human games and self-play with the policy network. The learned
value function and policy network are then used to guide and evaluate planning steps in
MCTS and, thus, reduce computational cost. MCTS is a stochastic planning approach
that is often used in the domain of board games. The combined approach runs on a
platform with 48 CPUs and 8 GPUs to play a single game. A distributed version uses
1,202 CPUs and 176 GPUs. AlphaGo Zero [Sil+17] extends this work. It is trained
without any human knowledge and consistently beats AlphaGo. AlphaGo Zero uses
MCTS also during training of the policy and value function networks to obtain better
estimates of their objective functions.

Direct policy search can also benefit from a model. Deisenroth and Rasmussen [DR11]
present Probabilistic Inference for Learning Control (PILCO), a policy gradient algorithm
that uses GPR to represent a probabilistic state transition model. It does not approx-
imate a value function. PILCO can propagate Gaussian state distributions through its
model of the dynamics and outputs a corresponding Gaussian distribution of the next
state. PILCO has been used to learn block stacking with an inaccurate low-cost ma-
nipulator [DRF11; DFR15]. The algorithm requires that the reward function is known
and can be computed analytically for a given state x, which is a strong restriction. Lin-
ear policies were used in the presented experiments. PILCO is still considered to be a
sample-efficient algorithm.

The original publication that introduces C-REPS [Kup+13] also presents a model-
based extension that is called GPREPS because it uses GPR to represent robot and
environment dynamics as well as the reward model. Further details are provided by
Kupcsik et al. [Kup+17]. To learn a dynamic behavior such as ball throwing the model

220

B.3. Model-Based Reinforcement Learning

was split into a dynamic model of the robot, a release model of the ball, a ball flight
model, and a reward model. Hence, there is a lot of task-specific modeling and knowledge
required to learn the state transition model and reward model.

State transition models can be learned with Bayesian methods as in PILCO or with
local linear models as in GPS. Using more powerful function approximators such as neural
networks is difficult because they tend to overfit and need a lot of samples. Nagabandi et
al. [Nag+17] use medium-sized neural networks to learn state transition models for MPC.
They notice that the model-based approach is better than model-free training particularly
at the beginning of learning. After a while the model-based approach does not make
progress anymore. Its asymptotic performance is worse because the model is biased.
Nagabandi et al. [Nag+17] propose to initialize the model-free algorithm TRPO with a
policy learned by DAgger from their model-based approach. In comparison to standard
TRPO this combined approach achieves its final performance with three to five times
fewer samples in the locomotion tasks of Open AI gym [Bro+16]. Probabilistic ensemble
with trajectory sampling (PETS) [Chu+18a] addresses the shortcomings of the work of
Nagabandi et al. [Nag+17] by using high-capacity, probabilistic state transition models.
They use an ensemble of neural networks to learn epistemic uncertainty, which indicates
the lack of data, and each neural network learns aleatoric uncertainty, which captures
the stochasticity and noise in the data. Through the probabilistic ensemble we propagate
several potential trajectories for a finite time horizon with actions maximized by CEM.
Chua et al. [Chu+18a] show with Open AI gym benchmarks that this probabilistic model-
based method is able to reach the same performance as model-free algorithms such as
PPO, SAC, and TRPO with 8 to 125 times fewer samples. Nagabandi et al. [Nag+17]
and Chua et al. [Chu+18a] do not address the problem of learning the reward model
though. They assume that it is available and can be queried while sampling the state
transition model. We cannot assume that this is possible in general. Suppose we want to
test the quality of a grasp. We could lift the grasped object, move it around and measure
whether the gripper still holds the object. This clearly cannot be easily expressed in an
analytical reward function.

221

Appendix C.

Overview of Mathematical Notation

We will use bold lower case for vectors and bold upper case for matrices. The follow-
ing table gives an overview of the most important symbols and functions that we use
throughout this thesis. The second table gives an overview of the notation for mathe-
matical operators.

Symbol Explanation

x State; fully describes the state of an agent in some environment

X State space; often X ⊆ R= with = ∈ N
u Action; fully describes the action of an agent in some environment

U Action space; often U ⊆ R= with = ∈ N
s Context, task parameter(s), goal parameter(s)

S Context space; often S ⊆ R=B with =B ∈ N
c Policy; defines the behavior of an agent

) Parameters of a policy c) ,) ∈ R= with = ∈ N
l Parameters of an upper-level policy c8 () |s) that defines a distribution

over policy parameters given a context

' Return (accumulated rewards in an episode); might be a function
'(s,)) that depends on context and policy parameters

dc Policy-dependent state visitation distribution

We will often use # ∈ N for the number of samples that are collected
to update an upper-level policy, to update a search distribution, or in
supervised learning

q Joint angles

+ (x) State value function; we write + c (x) to indicate that the value function
is defined with respect to some policy c

&(x, u) State-action value function

�(x, u) Advantage function, �(x, u) = &(x, u) −+ (x)
38 The weight of the 8-th sample in weighted regression; often we organize

these weights in a diagonal matrix J ∈ R#×# , where J88 = 38

L(G |H) Likelihood of G given H; L(G |H) = ?(H |G)

223

Appendix C. Overview of Mathematical Notation

Symbol Explanation

! (w) Loss or error function; objective function that will be minimized in
supervised learning

�KL(? ‖ @) KL divergence of probability distributions given by their proba-
bility density functions ? and @; note that we sometimes write
E [�KL(?(·|G) ‖ @(·|G))] if we take the expectation of the KL diver-
gence of conditional distributions to indicate that the expectation is
computed over G while the KL divergence is computed for a fixed G

clip(0, 1, 2) Clipping function; limits the value of 0 to the interval [1, 2], that is,
values of 0 less than 1 will become 1 and values of 0 greater than 2 will
become 2

✶{8= 9 } Kronecker delta; one if the equality holds and zero otherwise

X 98 Kronecker delta; in this case the value depends on equality of the indices

Operator Explanation

E [-] Expected value; if it is used with a subscript E? (G) = EG∼? this means
the expectation is computed with respect to G with the probability
density function ?(G), other variables are assumed to be constant in
this case

G ◦ H Element-wise multiplication of matrices or vectors

q ∗ p Quaternion product

+̂ Hat operator; indicates estimates of quantities, for example, +̂ is an
estimate of +

)A [G] Trace of a matrix

0 ← 1 This operator assigns the value of 1 to the variable 0. The same variable
can be used on the left and on the right side as in a programming
language.

224

Appendix D.

Derivation of Cost-Regularized Kernel

Regression

First we will take a look at how kernel ridge regression can be derived from linear regres-
sion and ridge regression. CrKR can be derived in a similar way from weighted linear
regression or RWR that has been presented by Peters and Schaal [PS07]. CrKR also
predicts the standard deviation similar to Gaussian process regression.

Our model is y = �w, where y ∈ R# contains the target values of a one-dimensional
regression problem, � ∈ R#×�′ contains features of input vectors q(x)) in each row,
w ∈ R�′ are the model parameters. For a dataset (�, y) we want to find

argmin
w
! (w) = argmin

w

1

2
(y −�w)) (y −�w) .

We can rewrite the objective function (loss) to

! (w) = 1

2
y) y −

[
1

2
y)�w + 1

2
w)�) y

]
+ 1

2
w)�)�w.

Because y)�w =
∑
=

∑
3 y=�n,dwd =

∑
=

∑
3 w3�

)
3,=

y= = w)�) y, we can write

! (w) = 1

2
y) y − w)�) y + 1

2
w)�)�w.

Now it is easier to compute the derivatives. The gradient is

∇! (w) = −�) y + 1

2

(
�
)
� +

(
�
)
�

)))
w,

where �
)
� is symmetric, because �

)
� =

(
�
)

(
�
)
))))

=
(
�
)
�

)) , hence we can
simplify the gradient to

∇! (w) = −�) y +�)�w

The second derivative, the Hessian matrix, is

∇∇! (w) = �
)
�.

225

Appendix D. Derivation of Cost-Regularized Kernel Regression

A convex quadratic function would have a positive definite Hessian. �
)
� ∈ R�′×�′ is

positive definite iff � has a full column rank, that is, we have enough samples. The
optimum (minimum error) can be found at the zero of the gradient:

0 = −�) y +�)�w

⇔ �
) y = �

)
�w

⇔
(
�
)
�

)−1
�
) y = w.

The extension to ridge regression (linear regression with regularization) is straightfor-
ward. Minimizing the loss

argmin
w
! (w) = argmin

w

1

2
(y −�w)) (y −�w) + _

2
w) w

leads to the solution (
�
)
� + _O

)−1
�
) y = w.

Now there are at least two ways to derive Kernel Ridge Regression from this. The first
one is replacing weights by the weighted sum of training data. Let us take the loss

! (w) = 1

2
(y −�w)) (y −�w) + _

2
w) w

and replace w = �
) ", which results in

! (") = 1

2

(
y −��

) "
)) (

y −��
) "

)
+ _
2
")��

) ",

where ��
)

= Q ∈ R#×# is a Gram matrix, that is, it contains inner products of all
inputs of the dataset. We can rewrite this to [Bis06, page 293, Equation 6.5]

! (") = 1

2
") QQ" − ") Qy + 1

2
y) y + _

2
") Q".

The optimum is
" = (Q + _O)−1 y.

We can make predictions for a new feature vector 5 = q(x) with

H = w) 5 = ")�5,

where we can define k = �5, hence,

H = ") k .

Note that k= = �=5, which is an inner product. Hence, the solution " and the prediction
H can be expressed purely by inner products of the feature vectors. Hence, we can use the
kernel trick and replace those inner products with kernels. This allows us to approximate

226

nonlinear functions without actually transforming data with a nonlinear function q. A
typical example of a kernel is the RBF kernel : (x, x′) = exp

(
−W | |x − x′ | |2

)
with the

hyperparameter W > 0.
The alternative solution is based on the formula [Bis06, Appendix C, Equation C.5]

(V−1 + H) X−1H)−1H) X−1 = VH) (HVH) + X)−1.

To go directly from the solution of ridge regression to kernel ridge regression. Let us
assign the variables V−1 = _O, H = � and X = O. Using the formula, we can transform
the solution of ridge regression:

w =

[(
�
)
� + _O

)−1
�
)

]
y

=

[
_−1�)

(
_−1��

) + O
)−1]

y

=

[
�
)

(
��

) + _O
)−1]

y

= �
) (Q + _O)−1 y

We can make new predictions for a feature vector 5 with

H = w) 5 =

(
�
) (Q + _O)−1 y

))
5 =

(
(Q + _O)−1 y

))
�5

This is exactly the same solution because we can define

" = (Q + _O)−1 y,

hence, the prediction reduces to

H = w) 5 =

(
(Q + _O)−1 y

))
�5 = ")�5 = ") k .

Now that we extended linear regression to kernel ridge regression we know how to
make the same extension from weighted linear regression or RWR [PS07] to CrKR.

RWR is essentially linear regression with weighted samples, that is, assuming that we
have multiple output dimensions the weight matrix] ∈ R�′×� is

] = (�) J� + _O)−1�) J_ ,

where J is a diagonal matrix that contains a weight per sample. _ ∈ R#×� now is a
matrix that contains one output vector per row. _ = 0 in the original paper [PS07], but we
already introduce regularization here to save one step. RWR has been extended to a form
of kernel ridge regression with the second method that we used to derive kernel ridge
regression from ridge regression by Kober et al. [Kob+12] to obtain a new contextual
policy search algorithm that is called CrKR. From reward-weighted regression with one
output dimension,

w = (�) J� + _O)−1�) Jy,

227

Appendix D. Derivation of Cost-Regularized Kernel Regression

we can go to cost-regularized kernel regression

w =
[
(�) J� + _�)−1�) J

]
y

=
[
−1�) (�−1�) + J−1)−1

]
y

=
[
�
) (��

) + _J−1)−1
]
y

Note that we have to learn a separate model for each output dimension. Predictions can
be made with

H = w) 5 =

(
�
)

(
Q + _J−1

)−1
y

))
5 =

((
Q + _J−1

)−1
y

))
�5,

where " = (Q + _J−1)−1y can be precomputed, hence,

H = ")�5 = ") k .

Similar to GPR [RW05], we can also compute a standard deviation

f =

√
: (x, x) + _ − k)

(
Q + _J−1

)−1
k

of the prediction,1 where : (x, x) is the kernel of the sample with itself and k = �5 is a
vector that contains the kernels between the sample and the whole training set.

1Note that we cannot directly derive this form of uncertainty estimate from the maximum likelihood
as defined in Section 2.3.3. Refer to Kober et al. [Kob+12] and Rasmussen and Williams [RW05] for
details.

228

Appendix E.

Preliminary Experiments with Active

Contextual Policy Search

This appendix
was published
originally as
[FM14] and has
been revised.

This appendix contains preliminary experiments that were conducted with active con-
textual policy search but were not relevant enough to be included in Section 4.1. It is
joint work with Jan Hendrik Metzen, who wrote Section E.2.

E.1. Model of the Contextual Learning Problem

In this section, we show how contextual policy search algorithms can benefit from active
context selection by means of a simple artificial model of the contextual learning problem.
The model abstracts away the contextual policy search which is possible because our
approach treats it as a black box (see Figure 4.1).

We assume that the context space S = {0, 1, . . . , 9} is discrete and associated to each
context s is a hidden value ;s ∈ [0, 100] that indicates the agent’s competence in s,
that is, how well s has been learned. Large values of ;s simulate that the current policy
parameters in context s are close to the optimal policy parameters)∗(s). The true return
in context s, which is given by

'(s) = (1 + exp(−0.1;s + 4))−1 + 1s,

depends directly on ;s. '(s) corresponds to a scaled and shifted logistic function so that
'(s) ≈ 1s if ;s ≈ 0 and '(s) ≈ 1+ 1s if ;s ≥ 100. In real learning problems, different tasks
often have a different maximum return. To simulate this, we artificially create a true
return baseline 1s for each context. The baseline is randomly sampled from a normal
distribution with zero mean and standard deviation f1. The true return is not observed
directly. Instead, we add Gaussian noise with zero mean and standard deviation fA to
simulate trial and error of a learning agent.

We assume that each context has an intrinsic complexity which controls how much the
agent learns in a single episode in this context. This complexity can change abruptly
between neighboring contexts even in continuous domains. This model is motivated for
instance by reaching tasks, in which it might happen that a slight modification of the
goal position requires that the agent needs to avoid an obstacle that blocks the direct
path. As a result, the slightly different context corresponding to the blocked goal would
have a significantly worse expected learning progress than its neighbors and its solution

229

Appendix E. Preliminary Experiments with Active Contextual Policy Search

−2

−1

0

1

2

3

4

J
−
J
R
R

(a) σr = 0.00, σb = 0.00 (b) σr = 0.01, σb = 0.00

0 200 400 600 800 1000

Episode

−2

−1

0

1

2

3

4

J
−
J
R
R

(c) σr = 0.00, σb = 0.20

0 200 400 600 800 1000

Episode

(d) σr = 0.01, σb = 0.20

Jopt

1-step Progress

Best Reward

Diversity

Monotonic Progress

Round Robin

SAGG-RIAC

Figure E.1.: Relative learning curves of several active context selection methods. The
performance of the round robin context selection baseline (�'') is sub-
tracted from all learning curves. The values of the standard deviation for
return measurements fA and of the standard deviation for the baseline f1
have been varied. After 1000 episodes the monotonic progress heuristic has
approximately reached the upper bound of the performance �>?C .

cannot be transferred well. We model this behavior of learning progress and skill transfer
by assigning a different learning progress factor Fs ∈ {0.12, 0.22, . . . , 12} to each context
randomly, where large Fs corresponds to a larger improvement of competence after one
additional episode in s.

Each time, the return of a context sC will be queried, the values ;s of each contexts s

will be updated to simulate the learning progress according to the update rule

;
(C)
s = ;

(C−1)
s + FsC · 0.5 |s−sC |,

which models that experience obtained in one context generalizes to other contexts based
on their similarity (measured here using the euclidean distance). Contexts which are
easier learnable (large Fs) lead to higher overall learning progress at the beginning.
However, it does not make sense to focus at the context with maximum FB indefinitely
because '(B) saturates once ;B ≥ 100. Hence, the estimate of the learning progress has
to be adaptive. Since we only have a discrete set of contexts, we can exactly compute
� =

∑
s '(s) and the upper bound of � is �>?C = 10 +∑

s 1s.
In addition to our proposed methods, we examine the context generation and selection

method from SAGG-RIAC and context selection in a fixed order (round robin). In
order to show different properties of the active context selection methods, we display the
number of episodes versus the relative � in comparison to round robin selection in Figure
E.1. We have used the parameters W = 0.95 and b = 10−8 in all heuristics that are based
on D-UCB. For the diversity and the best-reward heuristics we have used � = 1 and for

230

E.1. Model of the Contextual Learning Problem

Episode

S
e
le
ct
e
d
co
n
te
x
t

SAGG-RIAC

0 200 400 600 800 1000

Episode

0

1

2

3

4

5

6

7

8

9

Monotonic Progress

0.0 0.5 1.0

ws

Figure E.2.: Selected contexts per episode with SAGG-RIAC and monotonic progress
heuristic and D-UCB (with fA = 0). The learning progress factor Fs of each
context is displayed on the right side.

all others � = 0.25. For SAGG-RIAC, we set the maximum size of samples per region
before we split the region to 8 and the window size which is used to compute the interest
value is 10.

We can see that despite different learning progress factors, round robin context se-
lection is a good baseline. The best-reward heuristic that focuses on the best learnable
context is a good heuristic at the beginning. However, when the best context approaches
the optimum return, the learning progress decreases and approaches zero. At this time it
would be better to switch to a context in which greater learning progress can be achieved.
This will be even more significant for larger context spaces because the transferability of
knowledge decreases with the size of the context space and the complexity of the different
contexts. In addition, an artificial baseline for each return (see Figure E.1 (c) and (d))
leads to severe degradation because the context with maximum '(s) is not necessarily
the context with maximum learning progress. The diversity heuristic does not work well
either. This is because the differences of the expected learning progress are too large
between contexts and it will select the worst learnable context.

The 1-step progress heuristic and monotonic progress heuristic essentially focus on the
same context as the best-reward heuristic at the beginning. But they switch to other
contexts with greater learning progress when the learning progress in the best learnable
context decreases. Moreover, the 1-step progress and monotonic progress heuristics are
invariant under different baselines. The heuristics behave identically when the return is
noise-free, that is fA = 0. If there is noise (which simulates the exploration of the agent),
the monotonic progress heuristic is better (see Figure E.1 (b) and (d)).

A context selection method that differs from all others is the context generation and
selection method from SAGG-RIAC. It is designed for continuous context spaces. How-
ever, it has a crucial disadvantage in our model of the learning progress: we assume
that the expected learning progress of neighboring contexts can change abruptly. This
is a problem for SAGG-RIAC because it focuses on regions of the context space that

231

Appendix E. Preliminary Experiments with Active Contextual Policy Search

have a high return derivative. Among these are not only regions with a high learning
progress but also regions with abruptly changing learning progress. In Figure E.2 we
can see which contexts have been selected by SAGG-RIAC during the simulated learning
process: it focuses most of the time on the region around the contexts 3, 4 and 5 because
of the greatly varying learning progress factor Fs in this region, which results in a high
competence derivative. Therefore, a significant part of the explored contexts are not
informative because the context 4 has a low learning progress.

The monotonic progress heuristic, in contrast, selects most of the time tasks with a
high learning progress as we can see in Figure E.2. At the beginning, it focuses on the
context 3 which has the highest Fs. After some time, when the learning progress in this
context saturates, it concentrates on other contexts. At the end it concentrates on the
contexts that have not been learned perfectly yet even though they have a low intrinsic
learning progress factor.

E.2. Contextual Function Optimization

In this section, we evaluate the proposed approach on an artificial test problem, compare
it to reasonable baseline methods, and analyze the effect of different intrinsic reward
heuristics. The test problem is chosen such that some contexts are harder in the sense
that the parameters) need to be chosen more precisely to reach the same level of return.
By focusing on learning primarily the parameters) for these contexts, active context
selection should be able to outperform a uniform random context selection.

E.2.1. Problem Domain

The context is denoted by s ∈ (= [−1, 1]=B . We use the objective function

5 () , s) = −||�) − s | |2 · | |B | |22 +
=B−1∑
8=0

s8 ,

where) ∈ R=\ denotes the low-level parameters and the matrix � ∈ [0, 1]=\×=B is chosen
uniform randomly such that it has rank =B (=\ > =B). The objective function consists of
three terms: the parameter error −||�)−s | |2 which can be influenced by the agent’s choice
of), the context complexity | |B | |2

2
, which controls how strongly the agent’s parameter

error deteriorates the task performance, and the baseline
∑=B−1
8=0

s8, which controls the
maximum value in a context. Since A has rank =B,) can always be chosen such that
the parameter error becomes 0 and thus the optimal value 5 ∗(s) is equal to the baseline∑=B−1
8=0

s8. However, if the agent chooses) suboptimally, the same parameter error has
different effects on the value of 5 in different contexts: in contexts with high context
complexity, the value of 5 will be considerably smaller than 5 ∗, while the difference will
be less pronounced in contexts with lower context complexity. Most extremely, for s = 0,
the choice of) is arbitrary since 5 will always be equal to 5 ∗. Thus, an agent should
focus on learning) in the contexts with high complexity if its objective is to minimize
| 5 () , s) − 5 ∗(s) |.

232

E.2. Contextual Function Optimization

0 500 1000 1500 2000 2500

Rollouts

−6

−5

−4

−3

−2

−1

0

L
o
g
-C

o
st

Best-Reward

Diversity

1-Step Progress

Monotonic Progress

Corners

Random

Figure E.3.: Learning curves of different task selection heuristics. A contextual upper-
level policy has been learned using C-REPS for different active task-selection
strategies. The logarithm of the cost | 5 () , s) − 5 ∗(s) | averaged over 100 test
contexts is used as performance measure. Shown are mean and standard
error of the mean for 20 runs of 2500 episodes. (Illustrated by Jan Hendrik
Metzen in Fabisch and Metzen [FM14].)

E.2.2. Comparison of Task Selection Heuristics

In a first experiment, we compare task selection with D-UCB for different intrinsic reward
heuristics to two baseline methods. In this experiment, training takes place on 25 contexts
placed on an equidistant grid over a context space with =B = 2 dimensions; that is, the
set of contexts that will be used for training is (train = [−1,−1

2
, 0, 1

2
, 1]2. The objective of

learning, however, is to generalize c8 over the entire context space S, that is, to choose
c8 () |s) such that 5 () , s) is maximized. As baseline, we use a Random task-selection
heuristic, which selects uniform randomly among the training contexts. Moreover, we
use a Corner task-selection heuristic, which selects the four contexts, where the context
complexity is maximal, that is s = (±1,±1), in a round-robin fashion.

For the D-UCB, we have used � = 1.0, W = 0.99, and b = 10−8. The external return
'(s,)), based on which the intrinsic reward AV is computed, is set to '(s,)) = 5 () , s)
where) = c8 (s) is sampled from the upper-level policy for the given context s. Note that
the returns in s have high variance because of the agent’s explorative behavior and are also
non-stationary since they depend on the current upper-level policy c8. Contextual policy
search was conducted with C-REPS with n = 2.0, # = 50, and performing an update
every 25 episodes. The evaluation criterion is the expected value of | 5 (c8 () |s), s)− 5 ∗(s) |
of the learned contextual policy c8 over the context space S, where exploration of c8 is
disabled. We approximate this quantity by computing the average return of c8 on 100

test contexts sampled uniform randomly from S.

233

Appendix E. Preliminary Experiments with Active Contextual Policy Search

C
o
n
te
x
t

Best-Reward Diversity 1-Step Progress

L
o
g
-S
e
le
ct
io
n
R
a
ti
o

Context

C
o
n
te
x
t

Monotonic Progress

Context

Corners

Context

Random

L
o
g
-S
e
le
ct
io
n
R
a
ti
o

Figure E.4.: Task preferences of different task-selection strategies during the first 250

episodes of training. Shown is the logarithm of the mean selection ratio.
(Illustrated by Jan Hendrik Metzen in Fabisch and Metzen [FM14].)

Figure E.3 shows the learning curves for different task-selection strategies. Figure E.4
shows which contexts (tasks) are selected by the different strategies during the first 250

episodes of training. D-UCB with the Best-Reward and the Diversity intrinsic reward
performs significantly worse than a uniform random task selection. The reason for this is
that Best-Reward focuses mostly on tasks where the baseline term is large (upper right
area in Figure E.4) or where the task complexity is small (central area). Conversely,
Diversity focuses on areas where the baseline term is small. Both strategies are too
imbalanced if the baseline term’s contribution is not negligible.

D-UCB with the 1-step Progress intrinsic reward performs equally bad during the first
250 episodes. The reason for the low initial progress is that the 1-step Progress intrinsic
reward not only rewards progress but also penalizes regression. However, regression
is inevitable during the initial explorative phase. Because of this, this intrinsic reward
heuristic focuses initially on contexts with small context complexity where the parameter
error and thus the explorative behavior have only a small effect on the actual return.
After the initial explorative phase, this intrinsic reward gets more informative and the
corresponding active task selection outperforms uniform random task selection in the
long run.

D-UCB with the Monotonic Progress intrinsic reward performs considerably better
than both D-UCB with the other heuristics and uniform random task selection. The
reason for this is that it initially favors complex contexts (the outer areas in Figure E.4
with | |B | |2 ≫ 0), where the potential return improvement is large, without any preference
for tasks with small or large baseline value. This task-selection strategy works well and

234

E.2. Contextual Function Optimization

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

L
o
g
-C

o
st

Context Dimensions: 1 Context Dimensions: 2

0 1000 2000 3000 4000 5000

Rollouts

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

L
o
g
-C

o
st

Context Dimensions: 3

0 1000 2000 3000 4000 5000

Rollouts

Context Dimensions: 4

DUCB

Random (continuous)

Random (discrete)

Figure E.5.: Learning curves for different context dimensionality. Shown are mean and
standard error of the mean for 20 runs of 5000 episodes. (Illustrated by Jan
Hendrik Metzen in Fabisch and Metzen [FM14].)

results in a large and stable learning progress. Based on this, we have tested a second
baseline denoted as Corners, which selects the four contexts with maximum context
complexity in a round-robin fashion. While this resulted in a rapid learning progress
initially, it is slightly suboptimal and unstable in the long run since only four of the tasks
are ever sampled. Conversely, the Monotonic Progress intrinsic reward leads to a more
balanced selection of tasks when converging and is thus favorable in the long run. In
summary, D-UCB with the Monotonic Progress intrinsic reward selects tasks in a way
which increased C-REPS’ learning progress considerably and proved to be stable at the
same time.

E.2.3. Dimensionality of the Context Space

In a second experiment, we compare the performance of D-UCB to uniform random
task selection for different dimensionality of the context space. A discrete set Strain of
25 contexts for training has been generated by selecting the :-the context s: uniform
random from R=B under the constraint | |s: | |2 = :/25. The set of test contexts has been
generated in the same way but with an other random seed. D-UCB has been combined
with the Monotonic Progress heuristic. The D-UCB parameters have been set to � = 1.0,
W = 0.99, and b = 10−8, and the C-REPS parameters to n = 1.0 and # = 25=2B , and an
update was performed every 13=2B episodes. As baseline, two different random context
selection strategies have been tested: Random (discrete) chooses tasks uniform randomly

235

Appendix E. Preliminary Experiments with Active Contextual Policy Search

0 2000 4000 6000 8000 10000

Episode

0

10

20

30

40

50

60

70

80

90

100

D
is

ta
n

ce
to

te
st

ta
rg

e
ts

(c
m

)

0 2000 4000 6000 8000 10000

Episode

0

10

20

30

40

Figure E.6.: Learning curves of Figure 4.3 including SAGG-RIAC.

from Strain while Random (continuous) chooses tasks uniform randomly from R=B under
the constraint | |s: | |2 ≤ 1.

Figure E.5 shows the learning curves for =B ∈ {1, 2, 3, 4}. For any value of =B, D-UCB
outperforms random task selection in the initial learning phase (not the final perfor-
mance). We can further see that selecting a finite, discrete set of training contexts from
the continuous context space does not necessarily impair performance; conversely, Ran-
dom (discrete) performs slightly better than Random (continuous). While the general
learning progress decreases considerably for higher dimensionality =B, this is not directly
an issue of the task-selection strategy (since D-UCB still outperforms random task se-
lection) but rather of the underlying contextual policy search method. Thus, the results
show that active context selection with D-UCB works satisfyingly while higher dimen-
sional context spaces remain a general challenge for contextual policy search.

E.3. SAGG-RIAC for Ball Throwing

The evaluation in Section 4.1.3 does not contain a comparison to SAGG-RIAC, which
has been done though in response to the review but was not included in the final paper.
SAGG-RIAC focuses on regions with high reward derivatives. Figure E.6 shows that this
is not beneficial in our experiment with a static environment.

236

F.4. Mitubishi PA-10

in this thesis it has been used for imitation learning from motion capture data, it also
provides a compliant freedrive mode that can be used for kinesthetic teaching.

We send joint position commands in our experiments. For grasping we use a gripper
with two fingers and one DOF. In the throwing experiments we use a specific cone that
holds the stick.

F.4. Mitubishi PA-10

The Mitsubishi PA-10 7C has seven DOF. Further technical details can be found at
DFKI’s website [Gea20]. In this thesis the robot is only used in simulation.

F.5. Mantis’ Arm

We used an arm of DFKI’s robot Mantis for learning how to pull a lever. The robot
Mantis is presented by Bartsch et al. [Bar+16] and at DFKI’s website [Bri20]. The arm
was detached from the rest of the robot and mounted at a fixed structure for this purpose.
The stand-alone arm has six DOF.

239

Appendix G.

Detailed Evaluation of Variational

Trajectory Autoencoder

(a) Learning curves: mean and standard error. (b) Learning curves: 25-, 50-, and 75-percentiles.

Figure G.1.: Comparison of all contextual policy search algorithms on the reaching prob-
lem. Note that the median performances are more similar than mean per-
formances.

This is a detailed analysis of the results from Section 4.5. We analyze the convergence
behavior of all contextual policy search algorithms by learning for more than 250 episodes.
Figure G.1 shows the learning curves for all algorithms. Different between the two plots
are the statistics: mean and standard error on the left and percentiles on the right.

Although the differences in regard to percentiles between BO-CPS and the other algo-
rithms is negligible, it is larger with respect to the mean. After 350 episodes, however,
C-CMA-ES is able to reach a performance similar to the one of BO-CPS. The differences
between the algorithms that we see here are not as striking as in previous evaluations
because all of them benefit from the low dimensionality of the search space. C-CMA-
ES, an algorithm that inherits many properties from the well-tuned black-box optimizer
CMA-ES, benefits more than C-REPS, which has previously mostly been evaluated for
problems with 20 or more dimensions, in which parameters or metaparameters of move-

241

Appendix G. Detailed Evaluation of Variational Trajectory Autoencoder

ment primitives had to be learned. There is only a slight advantage of aC-REPS over
C-REPS.

The difference that we noticed in G.1 is best explained by Figure G.2, which shows
all 20 individual learning curves per algorithm. BO-CPS shows the most consistent
improvement over all experiments and continuous improvement. C-REPS and aC-REPS
work well in most cases, but there are some outliers that converge too early, which can
be noticed in the mean but not in most percentiles, for instance, not in the median.

If we are only able to learn once on a robotic system, we have to make sure that
we select the most reliable algorithm. This is BO-CPS in this case, closely followed by
C-CMA-ES.

(a) Learning curves for BO-CPS. (b) Learning curves for C-REPS.

(c) Learning curves for aC-REPS. (d) Learning curves for C-CMA-ES.

Figure G.2.: Learning curves per individual run. Each plot shows all learning curves for
all experiments with one algorithm (thin lines). The area marks the interval
between the best and the worst returns, and the median is indicated by the
thick line.

242

Glossary

A3C Asynchronous Advantage Actor Critic. 59–61

aC-REPS active training set selection C-REPS. 118–121, 145, 148, 149, 242

ACER Actor Critic with Experience Replay. 59

ACM-ES CMA-ES with a ranking SVM as surrogate model. 123, 124, 127, 170, 180

aCMA-ES active CMA-ES. 123

ALE Arcade Learning Environment. 52, 60, 61

BFGS Broyden-Fletcher-Goldfarb-Shanno. 39

BO Bayesian Optimization. 39, 40, 50, 165, 170

BO-CPS Bayesian Optimization for Contextual Policy Search. 50, 80, 130–136, 141,
143, 145–150, 165, 170, 177, 179–181, 241, 242

C-ACM-ES Contextual ACM-ES. 124, 126–128, 130, 148

C-CMA-ES Contextual Covariance Matrix Adaptation Evolution Strategies. 50, 69, 74,
76–78, 80, 123, 125, 127–130, 145, 149, 150, 170, 173, 177, 241, 242

C-MORE Contextual Model-based Relative Entropy Stochastic Search. 50, 80

C-REPS Contextual Relative Entropy Policy Search. 50, 68, 73–76, 78–80, 104, 109,
111, 117–121, 123, 127, 129, 132, 133, 143, 145, 149, 150, 165, 170, 173, 177, 220,
241, 242

CEM Cross-Entropy Method. 38, 56, 64, 221

CMA-ES Covariance Matrix Adaptation Evolution Strategies. 38–40, 44, 47, 48, 50, 56,
76, 85, 93, 94, 96, 123, 138, 158, 164, 170, 180, 241

CNN Convolutional Neural Network. 62, 64

COCO Comparing Continuous Optimisers. 76, 79

CrKR Cost-Regularized Kernel Regression. 49, 50, 68, 72, 74, 225, 227

D-UCB Discounted Upper Confidence Bound. 101, 105, 106, 109–114, 230, 231, 233–236

243

Glossary

DAgger dataset aggregation. 32, 221

DDPG Deep Deterministic Policy Gradients. 55–57, 62–64, 181

DIRECT Dividing Rectangles. 39, 132, 145

DMP Dynamical Movement Primitive. 33–36, 44, 46, 49, 50, 66, 67, 93–99, 108, 109,
120, 129, 132, 133, 136, 138, 149, 157, 158, 160, 164, 165, 170, 179

DOF degrees of freedom. 9, 19, 44, 46, 62, 64, 94, 193, 197, 202, 204, 205, 207, 219,
237–240

DPG Deterministic Policy Gradients. 55

DQN Deep Q Networks. 52, 55, 59, 66, 181

DTW dynamic time warping. 91

EI expected improvement. 131

ES Evolution Strategy. 37, 38, 40, 48, 65

GAE Generalized Advantage Estimation. 57, 58

GECCO Genetic and Evolutionary Computation Conference. 180

GP-UCB Gaussian process Upper Confidence Bound. 131, 133, 134, 136, 145

GPR Gaussian process regression. 130, 131, 133, 181, 220, 228

GPS Guided Policy Search. 62, 66, 221

HER Hindsight Experience Replay. 55, 56, 63, 181

iid independent and identically distributed. 79, 105, 125

IK inverse kinematics. 86, 93–97, 99

IL imitation learning. 154, 156, 160–162, 164, 178

iLQG iterative linear-quadratic-Gaussian regulator. 62

IMPALA Importance Weighted Actor-Learner Architecture. 59–61

IMU inertial measurement unit. 208

KL Kullback-Leibler. 39, 46, 47, 56, 61–63, 68, 224

L-BFGS Limited-memory BFGS. 39, 85

244

Glossary

L-BFGS-B L-BFGS for Bound Constrained Optimization. 39, 47, 132, 145

LiDAR Light Detection and Ranging. 209

LQR linear-quadratic regulator. 205

MABP Multi-armed bandit problem. 105, 106

MAML Model-Agnostic Meta Learning. 219

MAP maximum a posteriori. 72

MCTS Monte Carlo tree search. 220

MDP Markov decision process. 41, 66

MORE Model-based Relative Entropy Stochastic Search. 47, 50

MPC model predictive control. 16, 221

MSBE mean squared Bellman error. 42, 51

NAC Natural Actor-Critic. 39, 44, 46, 47

NAF Normalized Advantage Function. 52

NES Natural Evolution Strategies. 38–40, 44, 47, 170

NFQ Neural Fitted Q Iteration. 51

PCA principal component analysis. 138, 142, 143

PER prioritized experience replay. 52

PETS probabilistic ensemble with trajectory sampling. 221

PI probability of improvement. 131

PI2 Policy Improvements with Path Integrals. 48

PID proportional-integral-derivative. 29, 205

PILCO Probabilistic Inference for Learning Control. 220, 221

PoWER Policy Learning by Weighting Exploration with the Returns. 45–48

PPO Proximal Policy Optimization. 58, 62–64, 221

ProMP Probabilistic movement primitives. 35, 138, 170

245

Glossary

PUBSVE positive upper boundary support vector estimation. 21, 115–117, 121, 150,
182

ranking SVM ranking support vector machine. 123, 124, 126, 149

RBF radial basis function. 71, 74, 115, 119, 124, 133, 227

REPS Relative Entropy Policy Search. 46, 47, 50, 56, 63, 93, 120, 158, 164, 165, 170

RL reinforcement learning. 40, 49–51, 59, 63, 66, 94, 148, 154, 155, 164, 168, 178, 179,
181, 183, 219, 220

RWR Reward-Weighted Regression. 45, 46, 49, 56, 68, 72, 225, 227

SAC Soft Actor-Critic. 61–63, 221

SAGG-RIAC self-adaptive goal generation—robust intelligent adaptive curiosity. 103,
108, 230–232, 236

SARSA State Action Reward State Action. 42

SDMP Stylistic Dynamic Movement Primitives. 35, 138

SEDS Stable Estimator of Dynamical Systems. 36, 37

SVD singular value decomposition. 138

SVR support vector regression. 116, 117

TD temporal-difference. 41–43

TD3 Twin Delayed Deep DPG. 55, 62

TP-GMM Task-Parameterized Gaussian Mixture Model. 36

TPU Tensor Processing Unit. 60

TRPO Trust Region Policy Optimization. 56–59, 63, 64, 219, 221

UCB Upper Confidence Bound. 39, 105, 106

VAE variational autoencoder. 137–140, 142, 143, 181

VIP Variational Inference for Policy Search. 46, 47, 49, 68, 73, 74

vMCI velocity-based Multiple Change-point Inference. 156

VTAE Variational Trajectory Autoencoder. 137, 141–144, 148, 149, 179

ZMP zero moment point. 186

246

List of Figures

Acknowledgments ix

Zusammenfassung xi

Abstract xiii

Prior Publication xv

1. Introduction to Robot Behavior Learning 3
1.1. Perception and action. Adapted from figure originally published in [Fab+20]. 6
1.2. Sketch of a robust grasping trajectory from top view. Originally published

in [Fab+20]. 10

2. State of the Art 23
2.1. Number of considered publications by years. Originally published in

[Fab+20]. 23
2.2. Mind map of behavior learning applications. Originally published in

[Fab+20]. 24
2.3. Categorization of manipulation behaviors. Originally published in [Fab+20]. 25
2.4. Hierarchy of behaviors with focus on locomotion. Illustration by Marc

Otto. Originally published in [Fab+20]. 26
2.5. Kinesthetic teaching for the peg-in-a-hole problem with a UR5 robot arm. 28
2.6. Illustration of two-dimensional DMP as a potential field. 32
2.7. Overview of policy search algorithms for movement primitives. 42
2.8. Overview of reinforcement learning algorithms with value functions. 49
2.9. Overview of policy gradient algorithms. 51
2.10. Distributed architecture of A3C. 57
2.11. Comparison of distributed architectures of A3C and IMPALA 59
2.12. Illustration of experience collection in contextual policy search. 65
2.13. Comparison of weighted linear regression methods. 69
2.14. Comparison of several uncertainty estimates. 71
2.15. Comparison of C-REPS and C-CMA-ES in a simple contextual problem.

Originally published in [Fab19a]. 75
2.16. Two object functions from the COCO benchmark. 77

3. Imitation with Automatic Embodiment Mapping 81
3.1. Synchronization frames on the human teacher and on the robot. Originally

published in [Gut+18]. 82

247

List of Figures

3.2. Comparison of exact inverse kinematics and an approximation. 85
3.3. Motion capture setup. Illustration by Lisa Gutzeit. Originally published

in [Gut+19]. 87
3.4. End-effector trajectories of throwing movements in robots’ workspaces and

corresponding ground contact points of the sticks. Originally published in
[Gut+19]. 88

3.5. Analysis of the execution of throws on the real UR5. Originally published
in [Gut+19]. 89

3.6. Results of the via-point problem. Originally published in [Fab20]. 93
3.7. Via-point problem. Adapted from figure originally published in [Fab20]. . . 93
3.8. Obstacle avoidance problem. Originally published in [Fab20]. 94
3.9. Pouring problem. Originally published in [Fab20]. 95
3.10. Mapping from weights to corresponding return in the via-point problem.

Originally published in [Fab20]. 96

4. Sample-Efficient Contextual Policy Search 99

4.1. Active versus passive context selection. Originally published in [FM14]. . . 102
4.2. Visualization of the simulated Mitsubishi PA-10 throwing a ball. Origi-

nally published in [FM14]. 106
4.3. Learning curves for active context selection on grid problem. Adapted from

figure originally published in [FM14]. 108
4.4. Dartboard problem. Originally published in [FM14]. 109
4.5. Results of dartboard problem. Originally published in [FM14]. 110
4.6. Active training set selection. Originally published in [Fab+15]. 112
4.7. Incremental learning of upper boundary. Originally published in [Fab+15]. 114
4.8. Rastrigin benchmark function. Adapted from figure originally published in

[Fab+15]. 116
4.9. Catapult experiments. Adapted from figure originally published in [Fab+15].117
4.10. Throwing experiments. Adapted from figure originally published in [Fab+15].118
4.11. Learning curves for ball throwing with varied hyperparameters. 119
4.12. Learning curves of several contextual policy search methods. Originally

published in [Fab19a]. 125
4.13. Learning curves for the via-point problem averaged over 20 experiments.

Originally published in [Fab19a]. 127
4.14. Simulated ball-throwing experiments with BO-CPS. Originally published

in [MFH15]. 130
4.15. Sketch of the ball throwing problem. 131
4.16. The robotic arm COMPI with a ball. 132
4.17. Learning curve of contextual policy search (BO-CPS with entropy search)

in the ball-throwing domain. Figure by Jonas Hansen. Originally published
in [Gut+18]. 133

4.18. Architecture of the VTAE. Originally published in [FK20]. 134

248

List of Figures

4.19. Demonstrated grasping movements projected to x-y plane. Originally pub-
lished in [FK20]. 139

4.20. Projection of grid in latent space to trajectory space with three manifold
learning approaches. Originally published in [FK20]. 141

4.21. Interpolations in latent space. Originally published in [FK20]. 142
4.22. Reaching problem. Originally published in [FK20]. 142
4.23. Results of contextual policy search on UR5. Originally published in [FK20].144

5. A Conceptual Framework for Automatic Robot Behavior Learning 151

5.1. Data flow of the BesMan Learning Platform. Adapted from figure origi-
nally published in [Gut+18]. 151

5.2. Data acquisition setup. Illustration by Lisa Gutzeit. Originally published
in [Gut+18]. 158

5.3. Transfer to real robot. Illustration by Marc Otto. Originally published in
[Gut+18]. 160

5.4. Robotic applications. Originally published in [FLK20]. 163

6. BOLeRo: Behavior Optimization and Learning for Robots 165

6.1. Main cycles during episodic learning process. Originally published in
[FLK20]. 165

6.2. Example of a MARS environment in BOLeRo. Originally published in
[FLK20]. 167

6.3. Simple example. Originally published in [FLK20]. 169
6.4. Reproduction of experiments from Figure 1 of Abdolmaleki et al.

[Abd+17a]. Originally published in [FLK20]. 171

7. Discussion 175

8. Outlook 185

8.1. Roadmaps for walking robots. Originally published in [FLK20]. 192

A. Survey of Behavior Learning Problems 197

A.1. Learning grasping from sensory information. Originally published in
[Fab+20]. 201

B. Other Behavior Learning Algorithms 219

C. Overview of Mathematical Notation 223

D. Derivation of Cost-Regularized Kernel Regression 225

E. Preliminary Experiments with Active Contextual Policy Search 229

E.1. Relative learning curves of several active context selection methods. Orig-
inally published in [FM14]. 230

E.2. Selected contexts per episode. Originally published in [FM14]. 231

249

List of Figures

E.3. Learning curves of different task selection heuristics. Illustration by Jan
Hendrik Metzen. Originally published in [FM14]. 233

E.4. Task preferences of different task-selection strategies. Illustration by Jan
Hendrik Metzen. Originally published in [FM14]. 234

E.5. Learning curves for different context dimensionality. Illustration by Jan
Hendrik Metzen. Originally published in [FM14]. 235

E.6. Learning curves including SAGG-RIAC. Originally published in [FM14]. . 236

F. Descriptions of Robots 237

G. Detailed Evaluation of Variational Trajectory Autoencoder 241
G.1. Comparison of all contextual policy search algorithms on the reaching

problem. 241
G.2. Learning curves per individual run. 242

Bibliography 253

250

List of Tables

Acknowledgments ix

Zusammenfassung xi

Abstract xiii

Prior Publication xv

1. Introduction to Robot Behavior Learning 3

2. State of the Art 23
2.1. Comparison of weighted regression. 68

3. Imitation with Automatic Embodiment Mapping 81

4. Sample-Efficient Contextual Policy Search 99
4.1. Comparison of hyperparameters. Adapted from table originally published

in [Fab19a]. 124
4.2. Average performance of algorithms. Adapted from table originally pub-

lished in [Fab19a]. 126
4.3. Improvements of sample efficiency in contextual policy search. 147

5. A Conceptual Framework for Automatic Robot Behavior Learning 151
5.1. Required time (per experiment, 8 throws) per module. Adapted from table

originally published in [Gut+18]. 161

6. BOLeRo: Behavior Optimization and Learning for Robots 165

7. Discussion 175
7.1. Overview of experiments and applications. 176

8. Outlook 185

A. Survey of Behavior Learning Problems 197
A.1. Overview of learned behaviors. Adapted from table originally published in

[Fab+20]. 213
A.1. Overview of learned behaviors (continued). 214
A.1. Overview of learned behaviors (continued). 215
A.1. Overview of learned behaviors (continued). 216

251

List of Tables

A.1. Overview of learned behaviors (continued). 217
A.1. Overview of learned behaviors (continued). 218

B. Other Behavior Learning Algorithms 219

C. Overview of Mathematical Notation 223

D. Derivation of Cost-Regularized Kernel Regression 225

E. Preliminary Experiments with Active Contextual Policy Search 229

F. Descriptions of Robots 237

G. Detailed Evaluation of Variational Trajectory Autoencoder 241

Bibliography 253

252

Bibliography

[Aba+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,
Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. 2015. url: https://www.
tensorflow.org (visited on 05/28/2020).

[Abd+15] Abbas Abdolmaleki, Rudolf Lioutikov, Jan Peters, Nuno Lau, Luís Paulo
Reis, and Gerhard Neumann. “Model-Based Relative Entropy Stochastic
Search”. In: Advances in Neural Information Processing Systems. Ed. by C.
Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett. Curran
Associates, Inc., 2015, pp. 3537–3545. url: http://papers.nips.cc/

paper/5672-model-based-relative-entropy-stochastic-search.pdf.

[Abd+17a] Abbas Abdolmaleki, Bob Price, Nuno Lau, Luís Paulo Reis, and Gerhard
Neumann. “Contextual Covariance Matrix Adaptation Evolutionary Strate-
gies”. In: International Joint Conference on Artificial Intelligence (IJCAI).
Ed. by Carles Sierra. 2017, pp. 1378–1385. doi: 10.24963/ijcai.2017/191.

[Abd+17b] Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, and Ger-
hard Neumann. “Learning a Humanoid Kick with Controlled Distance”. In:
RoboCup: Robot Soccer World Cup. Ed. by Sven Behnke, Raymond Sheh,
Sanem Sariel, and Daniel D. Lee. Springer, 2017, pp. 45–57. isbn: 978-3-
319-68792-6.

[Abd+19] Abbas Abdolmaleki, David Simões, Nuno Lau, Luís Paulo Reis, and Ger-
hard Neumann. “Contextual Direct Policy Search with Regularized Covari-
ance Matrix Estimation”. In: Journal of Intelligent and Robotic Systems 96
(2 2019), pp. 141–157. doi: 10.1007/s10846-018-0968-4.

[Abe+19] Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen, and Daniel
Cohen-Or. “Learning Character-Agnostic Motion for Motion Retargeting
in 2D”. In: ACM Transactions on Graphics 38.4 (2019). issn: 0730-0301.
doi: 10.1145/3306346.3322999.

253

Bibliography

[ACC14] Tohid Alizadeh, Sylvain Calinon, and Darwin G. Caldwell. “Learning from
demonstrations with partially observable task parameters”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). Ed. by Ning Xi
and William R. Hamel. 2014, pp. 3309–3314. doi: 10.1109/ICRA.2014.
6907335.

[Adi+08] Esther Adi-Japha, Avi Karni, Ariel Parnes, Iris Loewenschuss, and Eli Vakil.
“A Shift in Task Routines During the Learning of a Motor Skill: Group-
Averaged Data May Mask Critical Phases in the Individuals’ Acquisition
of Skilled Performance”. In: Journal of Experimental Psychology: Learning,
Memory, and Cognition 24 (2008), pp. 1544–1551.

[Agr95] Rajeev Agrawal. “Sample Mean Based Index Policies with O(log n) Regret
for the Multi-Armed Bandit Problem”. English. In: Advances in Applied
Probability 27.4 (1995), pp. 1054–1078.

[Agu+16] Jeffrey Aguilar, Tingnan Zhang, Feifei Qian, Mark Kingsbury, Benjamin
McInroe, Nicole Mazouchova, Chen Li, Ryan Maladen, Chaohui Gong, Matt
Travers, Ross L Hatton, Howie Choset, Paul B Umbanhowar, and Daniel I
Goldman. “A review on locomotion robophysics: the study of movement
at the intersection of robotics, soft matter and dynamical systems”. In:
Reports on Progress in Physics 79.11 (2016). doi: 10.1088/0034-4885/
79/11/110001.

[Aki+10] Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi.
“Bidirectional Relation between CMA Evolution Strategies and Natural
Evolution Strategies”. In: Parallel Problem Solving from Nature (PPSN).
Ed. by Robert Schaefer, Carlos Cotta, Joanna Kołodziej, and Günter
Rudolph. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 154–
163. isbn: 978-3-642-15844-5.

[Ale+18] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A. Saurous,
and Kevin Murphy. “Fixing a Broken ELBO”. In: International Conference
on Machine Learning (ICML). Ed. by Jennifer Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. PMLR, 2018, pp. 159–
168.

[Amo+12] Heni Ben Amor, Oliver Kroemer, Ulrich Hillenbrand, Gerhard Neumann,
and Jan Peters. “Generalization of human grasping for multi-fingered robot
hands”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Ed. by Anibal T. de Almeida, Urbano Nunes, and Eugenio
Guglielmelli. 2012, pp. 2043–2050. isbn: 978-1-4673-1737-5.

[Amo+14] Heni Ben Amor, Gerhard Neumann, Sanket Kamthe, Oliver Kroemer, and
Jan Peters. “Interaction primitives for human-robot cooperation tasks”. In:
IEEE International Conference on Robotics and Automation (ICRA). Ed.
by Ning Xi and William R. Hamel. 2014, pp. 2831–2837. doi: 10.1109/
ICRA.2014.6907265.

254

[Amo+16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John
Schulman, and Dan Mané. “Concrete Problems in AI Safety”. In: CoRR
abs/1606.06565 (2016). arXiv: 1606.06565.

[AMS97] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. “Locally
Weighted Learning for Control”. In: Artificial Intelligence Review 11.1
(1997), pp. 75–113. issn: 1573-7462. doi: 10.1023/A:1006511328852.

[And+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Woj-
ciech Zaremba. “Hindsight Experience Replay”. In: Advances in Neural In-
formation Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Asso-
ciates, Inc., 2017, pp. 5048–5058. url: http://papers.nips.cc/paper/
7090-hindsight-experience-replay.pdf.

[Arg+09] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. “A
survey of robot learning from demonstration”. In: Robotics and Autonomous
Systems 57.5 (2009), pp. 469–483.

[Ark98] Ronald C. Arkin. Behavior-based Robotics. 1st ed. Cambridge, MA, USA:
MIT Press, 1998. isbn: 0262011654.

[Aru+17] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. “Deep Reinforcement Learning: A Brief Survey”. In: IEEE
Signal Processing Magazine 34.6 (2017), pp. 26–38. issn: 1053-5888. doi:
10.1109/MSP.2017.2743240.

[Asa+96] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda.
“Purposive Behavior Acquisition for a Real Robot by Vision-Based Rein-
forcement Learning”. In: Machine Learning 23.2 (1996), pp. 279–303. issn:
1573-0565. doi: 10.1023/A:1018237008823.

[Ash+15] Jayen Ashar, Jaiden Ashmore, Brad Hall, Sean Harris, Bernhard Hengst,
Roger Liu, Zijie Mei (Jacky), Maurice Pagnucco, Ritwik Roy, Claude Sam-
mut, Oleg Sushkov, Belinda Teh, and Luke Tsekouras. “RoboCup SPL 2014
Champion Team Paper”. In: RoboCup: Robot Soccer World Cup. Ed. by
Reinaldo A. C. Bianchi, H. Levent Akin, Subramanian Ramamoorthy, and
Komei Sugiura. Cham: Springer International Publishing, 2015, pp. 70–81.
isbn: 978-3-319-18615-3.

[BA15] Patrick Beeson and Barrett Ames. “TRAC-IK: An open-source library for
improved solving of generic inverse kinematics”. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids). 2015, pp. 928–935.

[Bad+20] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprech-
mann, Alex Vitvitskyi, Daniel Guo, and Charles Blundell. “Agent57:
Outperforming the Atari Human Benchmark”. In: CoRR abs/2003.13350
(2020). arXiv: 2003.13350.

255

Bibliography

[Bai95] Leemon Baird. “Residual Algorithms: Reinforcement Learning with Func-
tion Approximation”. In: International Conference on Machine Learning
(ICML). Ed. by Armand Prieditis and Stuart Russell. San Francisco (CA):
Morgan Kaufmann, 1995, pp. 30–37. isbn: 978-1-55860-377-6. doi: 10.

1016/B978-1-55860-377-6.50013-X.

[Bak+19] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell,
Bob McGrew, and Igor Mordatch. “Emergent Tool Use From Multi-Agent
Autocurricula”. In: CoRR (2019). arXiv: 1909.07528 [cs.LG].

[Bar+13] Samuel Barrett, Katie Genter, Yuchen He, Todd Hester, Piyush Khandel-
wal, Jacob Menashe, and Peter Stone. “UT Austin Villa 2012: Standard
Platform League World Champions”. In: RoboCup: Robot Soccer World Cup.
Ed. by Xiaoping Chen, Peter Stone, Luis Enrique Sucar, and Tijn Van der
Zant. Lecture Notes in Artificial Intelligence. Berlin: Springer Verlag, 2013.

[Bar+16] Sebastian Bartsch, Marc Manz, Peter Kampmann, Alexander Dettmann,
Hendrik Hanff, Malte Langosz, Kai von Szadkowski, Jens Hilljegerdes, Marc
Simnofske, Philipp Kloss, Manuel Meder, and Frank Kirchner. “Develop-
ment and Control of the Multi-Legged Robot Mantis”. In: International
Symposium on Robotics (ISR). 2016, pp. 379–386. isbn: 978-3-8007-4231-8.

[Bar20] Vinzenz Bargsten. COMPI: Compliant Robot Arm. 2020. url: https://
robotik.dfki-bremen.de/en/research/robot-systems/compi.html

(visited on 05/06/2020).

[Bay+18] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. “Automatic Differentiation in Machine Learning:
a Survey”. In: Journal of Machine Learning Research 18.153 (2018), pp. 1–
43. url: http://jmlr.org/papers/v18/17-468.html.

[BB96] Steven J. Bradtke and Andrew G. Barto. “Linear Least-Squares Algorithms
for Temporal Difference Learning”. In: Machine Learning 22 (1996), pp. 33–
57. doi: 10.1007/BF00114723.

[BC12] Sébastien Bubeck and Nicolò Cesa-Bianchi. “Regret Analysis of Stochas-
tic and Nonstochastic Multi-armed Bandit Problems”. In: Foundations and
Trends in Machine Learning 5.1 (2012), pp. 1–122.

[BCd10] Eric Brochu, Vlad M. Cora, and Nando de Freitas. “A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with Application to
Active User Modeling and Hierarchical Reinforcement Learning”. In: CoRR
abs/1012.2599 (2010). arXiv: 1012.2599.

[BCL16] Daniel Berio, Sylvain Calinon, and Frederic Fol Leymarie. “Learning dy-
namic graffiti strokes with a compliant robot”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Il Hong Suh
and Dong-Soo Kwon. 2016, pp. 3981–3986. doi: 10.1109/IROS.2016.

7759586.

256

[Bd15] Vinzenz Bargsten and José de Gea Fernández. “COMPI: Development of a
6-DOF Compliant Robot Arm for Human-Robot Cooperation”. In: Inter-
national Workshop on Human-Friendly Robotics. Munich, Germany, 2015.

[BDM17] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Per-
spective on Reinforcement Learning”. In: International Conference on Ma-
chine Learning (ICML). Ed. by Doina Precup and Yee Whye Teh. Vol. 70.
Proceedings of Machine Learning Research. International Convention Cen-
tre, Sydney, Australia: PMLR, 2017, pp. 449–458.

[Bel+13] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
“The Arcade Learning Environment: An Evaluation Platform for General
Agents”. In: Journal of Artificial Intelligence Research 47.1 (2013), pp. 253–
279. issn: 1076-9757.

[Ben+09] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
“Curriculum Learning”. In: International Conference on Machine Learning
(ICML). Ed. by Leon Bottou and Michael Littman. 2009, pp. 41–48.

[Ber+10] Jur van den Berg, Stephen Miller, Daniel Duckworth, Humphrey Hu, An-
drew Wan, Xiao-Yu Fu, Ken Goldberg, and Pieter Abbeel. “Superhuman
performance of surgical tasks by robots using iterative learning from human-
guided demonstrations”. In: IEEE International Conference on Robotics
and Automation (ICRA). Ed. by Wesley Snyder and Vijay Kumar. 2010,
pp. 2074–2081. doi: 10.1109/ROBOT.2010.5509621.

[Ber+12] Erik Berger, David Vogt, Christian Poenisch, Heni Ben Amor, and Bern-
hard Jung. “Cooperative Human-Robot Manipulation Tasks”. In: Beyond
Robot Grasping - Modern Approaches for Learning Dynamic Manipula-
tion, IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Ed. by Heni Ben Amor, Ashutosh Saxena, Oliver Kroemer,
and Jan Peters. 2012. url: https://www.ias.informatik.tu-darmstadt.
de/uploads/Research/IROS2012/iros2.pdf.

[Ber+20] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-
Philippe Vert, and Francis Bach. “Learning with Differentiable Perturbed
Optimizers”. In: CoRR (2020). arXiv: 2002.08676 [cs.LG].

[Bez+17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. “Julia:
A Fresh Approach to Numerical Computing”. In: SIAM Review 59.1 (2017),
pp. 65–98. doi: 10.1137/141000671.

[BF97] Hamid Benbrahim and Judy A. Franklin. “Biped dynamic walking using
reinforcement learning”. In: Robotics and Autonomous Systems 22 (1997),
pp. 283–302.

[BFB11] Oliver Birbach, Udo Frese, and Berthold Bäuml. “Realtime perception for
catching a flying ball with a mobile humanoid”. In: IEEE International
Conference on Robotics and Automation (ICRA). Ed. by Zexiang Li and
Yuan Fang Zheng. 2011, pp. 5955–5962. doi: 10.1109/ICRA.2011.5980138.

257

Bibliography

[BGK16] Vinzenz Bargsten, José de Gea Fernández, and Yohannes Kassahun. “Ex-
perimental Robot Inverse Dynamics Identification Using Classical and
Machine Learning Techniques”. In: International Symposium on Robotics
(ISR). 2016, pp. 1–6.

[Bil+08] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal.
“Robot Programming by Demonstration”. In: Springer Handbook of
Robotics. Ed. by Bruno Siciliano and Oussama Khatib. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 1371–1394. isbn: 978-3-540-30301-5.
doi: 10.1007/978-3-540-30301-5_60.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.
isbn: 0387310738.

[BKP14] Sascha Brandl, Oliver Kroemer, and Jan Peters. “Generalizing pouring ac-
tions between objects using warped parameters”. In: IEEE-RAS Interna-
tional Conference on Humanoid Robots (Humanoids). Ed. by Carlos Bal-
aguer and Giorgio Metta. 2014, pp. 616–621. doi: 10.1109/HUMANOIDS.
2014.7041426.

[BL17] Arne Böckmann and Tim Laue. “Kick Motions for the NAO Robot Using
Dynamic Movement Primitives”. In: RoboCup: Robot Soccer World Cup. Ed.
by Sven Behnke, Raymond Sheh, Sanem Sarıel, and Daniel D. Lee. Cham:
Springer International Publishing, 2017, pp. 33–44. isbn: 978-3-319-68792-
6.

[BLE07] Nicole Birdwell, Scott S. Livingston, and Itamar Elhanany. Reinforcement
learning in sonsor-guided AIBO robots. Tech. rep. University of Tennesse,
2007.

[Blo+20] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga.
“Fast Differentiable Sorting and Ranking”. In: CoRR (2020). arXiv: 2002.
08871 [stat.ML].

[BM03] Andrew G. Barto and Sridhar Mahadevan. “Recent Advances in Hierarchi-
cal Reinforcement Learning”. In: Discrete Event Dynamic Systems 13 (4
2003), pp. 341–379. doi: 10.1023/A:1025696116075.

[BO13] Adrien Baranes and Pierre-Yves Oudeyer. “Active learning of inverse models
with intrinsically motivated goal exploration in robots”. In: Robotics and
Autonomous Systems 61.1 (2013), pp. 49–73.

[Boh+14] Jeanette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic. “Data-
Driven Grasp Synthesis: A Survey”. In: IEEE Transactions on Robotics 30.2
(2014), pp. 289–309. issn: 1552-3098. doi: 10.1109/TRO.2013.2289018.

258

[Boj+16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. “End to End
Learning for Self-Driving Cars”. In: CoRR abs/1604.07316 (2016). arXiv:
1604.07316.

[Bon15] Bertold Bongardt. “Analytic Approaches for Design and Operation of Hap-
tic Human-Machine Interfaces”. PhD thesis. Bremen, Germany: University
of Bremen, 2015.

[Bos18] Boston Dynamics. Atlas: The World’s Most Dynamic Humanoid. 2018. url:
https://www.bostondynamics.com/atlas (visited on 10/06/2018).

[Boz+18] Asil Kaan Bozcuoglu, Gayane Kazhoyan, Yuki Furuta, Simon Stelter,
Michael Beetz, Kei Okada, and Masayuki Inaba. “The Exchange of Knowl-
edge using Cloud Robotics”. In: IEEE International Conference on Robotics
and Automation (ICRA). Ed. by Kevin Lynch. IEEE, 2018.

[Bra+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, and Skye Wanderman-Milne. JAX: com-
posable transformations of Python+NumPy programs. 2018. url: http:

//github.com/google/jax (visited on 05/28/2020).

[Bri20] Wiebke Brinkmann. MANTIS: Multi-legged Manipulation and Locomotion
System. 2020. url: https://robotik.dfki-bremen.de/en/research/
robot-systems/mantis/ (visited on 05/06/2020).

[Bro+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. “OpenAI Gym”. In: CoRR
abs/1606.01540 (2016). arXiv: arXiv:1606.01540.

[Bro70] Charles G. Broyden. “The Convergence of a Class of Double-rank Mini-
mization Algorithms”. In: IMA Journal of Applied Mathematics 6.1 (1970),
pp. 76–90. issn: 0272-4960. doi: 10.1093/imamat/6.1.76.

[Bro86] Rodney Brooks. “A robust layered control system for a mobile robot”. In:
IEEE Journal on Robotics and Automation 2.1 (1986), pp. 14–23. issn:
0882-4967. doi: 10.1109/JRA.1986.1087032.

[BSC04] Andrew G. Barto, Satinder Singh, and Nuttapong Chentanez. “Intrinsically
motivated learning of hierarchical collections of skills”. In: International
Conference of Developmental Learning. LaJolla, CA, USA, 2004, pp. 112–
119.

[Buc+11] Jonas Buchli, Freek Stulp, Evangelos Theodorou, and Stefan Schaal.
“Learning variable impedance control”. In: International Journal of Robotics
Research 30.7 (2011), pp. 820–833. doi: 10.1177/0278364911402527.

[Byr+95a] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A Limited-
Memory Algorithm for Bound Constrained Optimization”. In: SIAM Jour-
nal on Scientific Computing 16 (1995), pp. 1190–1208.

259

Bibliography

[Byr+95b] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. “A Limited-
Memory Algorithm for Bound Constrained Optimization”. In: SIAM Jour-
nal on Scientific Computing 16 (1995), pp. 1190–1208.

[Cac+17] Riccardo Caccavale, Matteo Saveriano, Giuseppe Fontanelli, Fanny Fi-
cuciello, Dongheui Lee, and Alberto Finzi. “Imitation Learning and At-
tentional Supervision of Dual-Arm Structured Tasks”. In: IEEE Interna-
tional Conference on Development and Learning and on Epigenetic Robotics
(ICDL-EPIROB). 2017. url: http://elib.dlr.de/113326/.

[Cac+18] Riccardo Caccavale, Matteo Saveriano, Alberto Finzi, and Dongheui Lee.
“Kinesthetic teaching and attentional supervision of structured tasks in
human–robot interaction”. In: Autonomous Robots (2018). issn: 1573-7527.
doi: 10.1007/s10514-018-9706-9.

[Cal+15a] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter
Abbeel, and Aaron M. Dollar. “The YCB object and Model set: Towards
common benchmarks for manipulation research”. In: International Confer-
ence on Advanced Robotics (ICAR). 2015, pp. 510–517. doi: 10.1109/

ICAR.2015.7251504.

[Cal+15b] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter
Abbeel, and Aaron M. Dollar. “Benchmarking in Manipulation Research:
Using the Yale-CMU-Berkeley Object and Model Set”. In: IEEE Robotics
Automation Magazine 22.3 (2015), pp. 36–52. issn: 1070-9932. doi: 10.
1109/MRA.2015.2448951.

[Cal+16] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth.
“Bayesian optimization for learning gaits under uncertainty”. In: Annals of
Mathematics and Artificial Intelligence 76.1 (2016), pp. 5–23. issn: 1573-
7470. doi: 10.1007/s10472-015-9463-9.

[Cal+17] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige,
Siddhartha Srinivasa, Pieter Abbeel, and Aaron M. Dollar. “Yale-CMU-
Berkeley dataset for robotic manipulation research”. In: International Jour-
nal of Robotics Research 36.3 (2017), pp. 261–268. issn: 0278-3649. doi:
10.1177/0278364917700714.

[Cal16] Sylvain Calinon. “A tutorial on task-parameterized movement learning and
retrieval”. In: Intelligent Service Robotics 9.1 (2016), pp. 1–29. issn: 1861-
2784. doi: 10.1007/s11370-015-0187-9.

[Can+18] Gerard Canal, Emmanuel Pignat, Guillem Alenya, Sylvain Calinon, and
Carme Torras. “Joining high-level symbolic planning with low-level motion
primitives in adaptive HRI: application to dressing assistance”. In: IEEE In-
ternational Conference on Robotics and Automation (ICRA). Ed. by Kevin
Lynch. 2018.

260

[Car+12] Arnau Carrera, Seyed Reza Ahmadzadeh, Arash Ajoudani, Petar Kor-
mushev, Marc Carreras, and Darwin G. Caldwell. “Towards Autonomous
Robotic Valve Turning”. In: Cybernetics and Information Technologies 12.3
(2012), pp. 17–26. url: http://kormushev.com/papers/Carrera_CIT-
2012.pdf.

[Car+20] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko. “End-to-End Object Detection
with Transformers”. In: CoRR (2020). arXiv: 2005.12872 [cs.CV].

[Cas+18] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar,
and Marc G. Bellemare. “Dopamine: A Research Framework for Deep Rein-
forcement Learning”. In: CoRR abs/1812.06110 (2018). arXiv: 1812.06110.

[CD88] William S. Cleveland and Susan J. Devlin. “Locally Weighted Regression:
An Approach to Regression Analysis by Local Fitting”. In: Journal of the
American Statistical Association 83.403 (1988), pp. 596–610.

[Cha+19] Ian Char, Youngseog Chung, Willie Neiswanger, Kirthevasan Kandasamy,
Andrew Oakleigh Nelson, Mark Boyer, Egemen Kolemen, and Jeff Schnei-
der. “Offline Contextual Bayesian Optimization”. In: Advances in Neural
Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates,
Inc., 2019, pp. 4627–4638.

[Che+15a] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. “DeepDriv-
ing: Learning Affordance for Direct Perception in Autonomous Driving”. In:
IEEE International Conference on Computer Vision (ICCV). Ed. by Kat-
sushi Ikeuchi, Christoph Schnörr, Josef Sivic, and Rene Vidal. IEEE, 2015,
pp. 2722–2730. isbn: 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.312.

[Che+15b] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tian-
jun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. “MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Sys-
tems”. In: CoRR abs/1512.01274 (2015). url: http://arxiv.org/abs/
1512.01274.

[Che+17a] Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Ste-
fan Schaal, and Sergey Levine. “Combining Model-Based and Model-Free
Updates for Trajectory-Centric Reinforcement Learning”. In: International
Conference on Machine Learning (ICML). Ed. by Doina Precup and Yee
Whye Teh. 2017.

[Che+17b] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan
Schaal, and Sergey Levine. “Path Integral Guided Policy Search”. In: IEEE
International Conference on Robotics and Automation (ICRA). Ed. by I-
Ming Chen and Yoshihiko Nakamura. 2017, pp. 3381–3388. doi: 10.1109/
ICRA.2017.7989384.

261

Bibliography

[Chi+17] Mingshan Chi, Yufeng Yao, Yaxin Liu, Yiqian Teng, and Ming Zhong.
“Learning motion primitives from demonstration”. In: Advances in Mechan-
ical Engineering 9.12 (2017). doi: 10.1177/1687814017737260.

[Chu+18a] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine.
“Deep Reinforcement Learning in a Handful of Trials using Probabilistic
Dynamics Models”. In: Advances in Neural Information Processing Sys-
tems. Ed. by Samy Bengio, Hanna Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett. Curran Associates, Inc.,
2018, pp. 4754–4765. url: http : / / papers . nips . cc / paper / 7725 -

deep- reinforcement- learning- in- a- handful- of- trials- using-

probabilistic-dynamics-models.pdf.

[Chu+18b] Tzu-Kuan Chuang, Ni-Ching Lin, J. Jean Chen, Chen-Hao Hung, Yi-Wei
Huang, C. H. Teng, Haikun Huang, Lap-Fai Yu, Laura Giarré, and Hsueh-
Cheng Wang. “Deep Trail-Following Robotic Guide Dog in Pedestrian Envi-
ronments for People Who Are Blind and Visually Impaired - Learning from
Virtual and Real Worlds”. In: IEEE International Conference on Robotics
and Automation (ICRA). Ed. by Kevin Lynch. IEEE, 2018, pp. 5849–5855.

[CLH18] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. “Back to Basics:
Benchmarking Canonical Evolution Strategies for Playing Atari”. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). Ed. by Jérôme
Lang. 2018, pp. 1419–1426. doi: 10.24963/ijcai.2018/197.

[CLK11] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. “Active vision in robotic
systems: A survey of recent developments”. In: International Journal of
Robotics Research 30.11 (2011), pp. 1343–1377. issn: 0278-3649. doi: 10.
1177/0278364911410755.

[Coc+06] Alexandru Cocora, Kristian Kersting, Christian Plagemann, Wolfram Bur-
gard, and Luc De Raedt. “Learning Relational Navigation Policies”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Yunhui Liu and Ning Xi. 2006, pp. 2792–2797. doi: 10.
1109/IROS.2006.282061.

[Cor+18] Enric Corona, Guillem Alenyà, Antonio Gabas, and Carme Torras. “Active
garment recognition and target grasping point detection using deep learn-
ing”. In: Pattern Recognition 74 (2018), pp. 629–641. issn: 0031-3203. doi:
10.1016/j.patcog.2017.09.042.

[Cou15] Erwin Coumans. “Bullet Physics Simulation”. In: International Conference
on Computer Graphics and Interactive Techniques Courses. Ed. by Glenn
Goldman. SIGGRAPH ’15. Los Angeles, California: Association for Com-
puting Machinery, 2015. isbn: 978-1-4503-3634-5. doi: 10.1145/2776880.
2792704.

262

[CP07] Karla Conn and Richard Alan Peters. “Reinforcement Learning with a Su-
pervisor for a Mobile Robot in a Real-world Environment”. In: Interna-
tional Symposium on Computational Intelligence in Robotics and Automa-
tion. 2007, pp. 73–78. doi: 10.1109/CIRA.2007.382878.

[CSO18] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. “How Many Ran-
dom Seeds? Statistical Power Analysis in Deep Reinforcement Learning
Experiments”. In: CoRR abs/1806.08295 (2018). arXiv: 1806.08295.

[CSZ06] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised
Learning. MIT Press, 2006. isbn: 978-0-262-03358-9.

[CT18] Adrià Colomé and Carme Torras. “Dimensionality Reduction for Dy-
namic Movement Primitives and Application to Bimanual Manipulation
of Clothes”. In: IEEE Transactions on Robotics 34.3 (2018), pp. 602–615.
issn: 1552-3098. doi: 10.1109/TRO.2018.2808924.

[Cul+15] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret.
“Robots that can adapt like animals”. In: Nature 521.7553 (2015), pp. 503–
507. doi: 10.1038/nature14422.

[da +14] Bruno Castro da Silva, Gianluca Baldassarre, George Konidaris, and An-
drew G. Barto. “Learning parameterized motor skills on a humanoid robot”.
In: IEEE International Conference on Robotics and Automation (ICRA).
Ed. by Ning Xi and William R. Hamel. 2014, pp. 5239–5244. doi: 10.1109/
ICRA.2014.6907629.

[Dan+13] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters.
“Learning sequential motor tasks”. In: IEEE International Conference on
Robotics and Automation (ICRA). Ed. by Lynne E. Parker. 2013, pp. 2626–
2632. doi: 10.1109/ICRA.2013.6630937.

[Dan+15] Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Pe-
ters. “Active Reward Learning with a Novel Acquisition Function”. In: Au-
tonomous Robots 39.3 (2015), pp. 389–405.

[de +17] José de Gea Fernández, Dennis Mronga, Martin Günther, Tobias Knobloch,
Malte Wirkus, Martin Schröer, Mathias Trampler, Stefan Stiene, Elsa
Kirchner, Vinzenz Bargsten, Timo Bänziger, Johannes Teiwes, Thomas
Krüger, and Frank Kirchner. “Multimodal sensor-based whole-body con-
trol for human-robot collaboration in industrial settings”. In: Robotics and
Autonomous Systems 94 (2017), pp. 102–119. issn: 0921-8890. doi: 10.
1016/j.robot.2017.04.007.

[Deg+19] Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. “A
Differentiable Physics Engine for Deep Learning in Robotics”. In: Frontiers
in Neurorobotics 13 (2019), p. 6. issn: 1662-5218. doi: 10.3389/fnbot.
2019.00006.

263

Bibliography

[Del20] Brian Delhaisse. PyRoboLearn: a Python framework for Robot Learning.
2020. url: https://github.com/robotlearn/pyrobolearn (visited on
06/05/2020).

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Im-
ageNet: A Large-Scale Hierarchical Image Database”. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Ed. by Irfan Essa,
Sin Bing Kang, and Marc Pollefeys. 2009, pp. 248–255.

[Det+14] Alexander Dettmann, Malte Langosz, Kai Alexander von Szadkowski, and
Sebastian Bartsch. “Towards Lifelong Learning of Optimal Control for Kine-
matically Complex Robots”. In: Workshop on Modelling, Estimation, Per-
ception and Control of All Terrain Mobile Robots, IEEE International Con-
ference on Robotics and Automation (ICRA). Ed. by Philippe Martinet,
Kasuya Yoshida, and Marcel Bergerman. Hong Kong, China: IEEE, 2014.
url: http://wmepc14.irccyn.ec-nantes.fr/material/paper/paper-
Dettmann.pdf.

[Dev+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”. In: Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies. Ed.
by Jill Burstein, Christy Doran, and Thamar Solorio. Minneapolis, Min-
nesota: Association for Computational Linguistics, 2019, pp. 4171–4186.
doi: 10.18653/v1/N19-1423.

[DFK16a] DFKI GmbH, Robotics Innovation Center. BESMAN — Dritte Demon-
stration — Robotersystem MANTIS. 2016. url: https://robotik.dfki-
bremen.de/de/mediathek/videoarchiv/besman- dritte- demo.html

(visited on 05/28/2020).

[DFK16b] DFKI GmbH, Robotics Innovation Center. BESMAN — Zweite Demon-
stration — KUKA LBR iiwa. 2016. url: https://robotik.dfki-bremen.
de/de/mediathek/videoarchiv/besman-zweite-demo.html (visited on
05/28/2020).

[DFK16c] DFKI GmbH, Robotics Innovation Center. BesMan: Behaviors for Mo-
bile Manipulation. 2016. url: https://robotik.dfki-bremen.de/de/
forschung/projekte/besman-1.html (visited on 05/28/2020).

[DFK16d] DFKI GmbH, Robotics Innovation Center. LIMES: Lernen intelligenter
Bewegungen kinematisch komplexer Laufroboter für die Exploration im Wel-
traum. 2016. url: https://robotik.dfki-bremen.de/de/forschung/
projekte/limes.html (visited on 05/28/2020).

[DFR15] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. “Gaussian
Processes for Data-Efficient Learning in Robotics and Control”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 37.2 (2015),
pp. 408–423. issn: 0162-8828. doi: 10.1109/TPAMI.2013.218.

264

[DGK15] R. Key Dismukes, Timothy E. Goldsmith, and Janeen A. Kochan. Effects
of Acute Stress on Aircrew Performance: Literature Review and Analysis of
Operational Aspects. Tech. rep. TM-2015-218930. Moffett Field, CA: NASA
Ames Research Center, 2015.

[DH97] Peter Dayan and Geoffrey E. Hinton. “Using Expectation-Maximization for
Reinforcement Learning”. In: Neural Computation 9.2 (1997), pp. 271–278.
doi: 10.1162/neco.1997.9.2.271.

[Dha+17] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and
Peter Zhokhov. OpenAI Baselines. 2017. url: https : / / github . com /

openai/baselines (visited on 05/07/2020).

[dKB14] Bruno Castro da Silva, George Konidaris, and Andrew G. Barto. “Active
Learning of Parameterized Skills”. In: International Conference on Machine
Learning (ICML). Ed. by Eric P. Xing and Tony Jebara. Vol. 32. Proceed-
ings of Machine Learning Research 2. Bejing, China: PMLR, 2014, pp. 1737–
1745. url: http://proceedings.mlr.press/v32/silva14.html.

[DNP12a] Christian Daniel, Gerhard Neumann, and Jan Peters. “Hierarchical Relative
Entropy Policy Search”. In: International Conference on Artificial Intelli-
gence and Statistics (AISTATS). 2012, pp. 273–281.

[DNP12b] Christian Daniel, Gerhard Neumann, and Jan Peters. “Learning Concur-
rent Motor Skills in Versatile Solution Spaces”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Anibal T. de
Almeida, Urbano Nunes, and Eugenio Guglielmelli. 2012, pp. 3591–3597.

[DNP13] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. “A Survey on
Policy Search for Robotics”. In: Foundations and Trends in Robotics 2.1–2
(2013), pp. 328–373.

[Doe+17] Andreas Doerr, Duy Nguyen-Tuong, Alonso Marco, Stefan Schaal, and Se-
bastian Trimpe. “Model-Based Policy Search for Automatic Tuning of Mul-
tivariate PID Controllers”. In: IEEE International Conference on Robotics
and Automation (ICRA). Ed. by I-Ming Chen and Yoshihiko Nakamura.
2017, pp. 5295–5301.

[DR11] Marc Peter Deisenroth and Carl Edward Rasmussen. “PILCO: A Model-
Based and Data-Efficient Approach to Policy Search”. In: International
Conference on Machine Learning (ICML). Ed. by Lise Getoor and Tobias
Scheffer. Omnipress, 2011, pp. 465–472.

[DRF11] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. “Learn-
ing to Control a Low-Cost Manipulator using Data-Efficient Reinforcement
Learning”. In: Robotics: Science and Systems (RSS). Ed. by Hugh Durrant-
Whyte, Nicholas Roy, and Pieter Abbeel. 2011. doi: 10.15607/RSS.2011.
VII.008.

265

Bibliography

[Dru+97] Harris Drucker, Christopher J. C. Burges, Linda Kaufman, Alex J. Smola,
and Vladimir Vapnik. “Support Vector Regression Machines”. In: Advances
in Neural Information Processing Systems. Ed. by M. C. Mozer, M. I. Jor-
dan, and T. Petsche. MIT Press, 1997, pp. 155–161. url: http://papers.
nips.cc/paper/1238-support-vector-regression-machines.pdf.

[dSB03] Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi. “Combinations of mus-
cle synergies in the construction of a natural motor behavior”. In: Nature
Neuroscience 6.3 (2003), pp. 300–308. doi: 10.1038/nn1010.

[Dua+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
“Benchmarking Deep Reinforcement Learning for Continuous Control”. In:
International Conference on Machine Learning (ICML). Ed. by Maria Flo-
rina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, 2016, pp. 1329–
1338.

[Dua+17] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas
Schneider, Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. “One-
Shot Imitation Learning”. In: Advances in Neural Information Processing
Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 1087–
1098. url: http://papers.nips.cc/paper/6709-one-shot-imitation-
learning.pdf.

[DWS12] Thomas Degris, Martha White, and Richard S. Sutton. “Off-Policy Actor-
Critic”. In: International Conference on Machine Learning (ICML). Ed. by
John Langford and Joelle Pineau. 2012. url: http://arxiv.org/abs/
1205.4839.

[Ell+12] Lars-Peter Ellekilde, Bojan Nemec, Danny Liljekrans, Thiusius Rajeeth
Savarimuthu, Dirk Kraft, Fares J. Abu-Dakka, Aleš Ude, and Norbert
Krüger. “Robust peg-in-hole manipulation motivated by a human tele-
operating strategy”. In: Beyond Robot Grasping - Modern Approaches for
Learning Dynamic Manipulation, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Ed. by Heni Ben Amor, Ashutosh
Saxena, Oliver Kroemer, and Jan Peters. 2012. url: https://www.ias.
informatik.tu-darmstadt.de/uploads/Research/IROS2012/iros14.

pdf.

[Eng+20a] Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts.
“DDSP: Differentiable Digital Signal Processing”. In: International Confer-
ence on Learning Representations (ICLR). Ed. by Dawn Song, Kyunghyun
Cho, and Martha White. 2020. url: https://openreview.net/forum?id=
B1x1ma4tDr.

266

[Eng+20b] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Fir-
daus Janoos, Larry Rudolph, and Aleksander Madry. “Implementation
Matters in Deep RL: A Case Study on PPO and TRPO”. In: Interna-
tional Conference on Learning Representations (ICLR). Ed. by Dawn Song,
Kyunghyun Cho, and Martha White. 2020. url: https://openreview.
net/forum?id=r1etN1rtPB.

[Eri+18] Zackory Erickson, Henry M. Clever, Greg Turk, C. Karen Liu, and Charles
C. Kemp. “Deep Haptic Model Predictive Control for Robot-Assisted
Dressing”. In: IEEE International Conference on Robotics and Automation
(ICRA). Ed. by Kevin Lynch. IEEE, 2018, pp. 4437–4444.

[Esp+18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane
Legg, and Koray Kavukcuoglu. “IMPALA: Scalable Distributed Deep-RL
with Importance Weighted Actor-Learner Architectures”. In: International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause.
Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden: PMLR, 2018, pp. 1407–1416.

[ET18] Peter Englert and Marc Toussaint. “Learning manipulation skills from a
single demonstration”. In: International Journal of Robotics Research 37.1
(2018), pp. 137–154. doi: 10.1177/0278364917743795.

[Evr+09] P. Evrard, E. Gribovskaya, S. Calinon, A. Billard, and A. Kheddar.
“Teaching physical collaborative tasks: object-lifting case study with a
humanoid”. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids). 2009, pp. 399–404. doi: 10.1109/ICHR.2009.5379513.

[Ewe+15] Marco Ewerton, Gerhard Neumann, Rudolf Lioutikov, Heni Ben Amor, Jan
Peters, and Guilherme Maeda. “Learning multiple collaborative tasks with
a mixture of Interaction Primitives”. In: IEEE International Conference on
Robotics and Automation (ICRA). Ed. by Lynne Parker and Nancy Amato.
2015, pp. 1535–1542. doi: 10.1109/ICRA.2015.7139393.

[Fab+13] Alexander Fabisch, Yohannes Kassahun, Hendrik Wöhrle, and Frank Kirch-
ner. “Learning in compressed space”. In: Neural Networks 42 (2013), pp. 83–
93. issn: 0893-6080. doi: 10.1016/j.neunet.2013.01.020.

[Fab+15] Alexander Fabisch, Jan Hendrik Metzen, Mario Michael Krell, and Frank
Kirchner. “Accounting for Task-Difficulty in Active Multi-Task Robot Con-
trol Learning”. In: KI – Künstliche Intelligenz 29.4 (2015), pp. 369–377.
issn: 1610-1987. doi: 10.1007/s13218-015-0363-2.

[Fab+20] Alexander Fabisch, Christoph Petzoldt, Marc Otto, and Frank Kirchner.
“A Survey of Behavior Learning Applications in Robotics—State of the Art
and Perspectives”. In: International Journal of Robotics Research (2020).
Submitted.

267

Bibliography

[Fab19a] Alexander Fabisch. “Empirical Evaluation of Contextual Policy Search with
a Comparison-based Surrogate Model and Active Covariance Matrix Adap-
tation”. In: Genetic and Evolutionary Computation Conference Companion.
Ed. by Manuel López-Ibáñez. GECCO ’19. ACM, 2019, pp. 251–252. isbn:
978-1-4503-6748-6. doi: 10.1145/3319619.3321935.

[Fab19b] Alexander Fabisch. “pytransform3d: 3D Transformations for Python”. In:
Journal of Open Source Software 4.33 (2019), p. 1159. doi: 10.21105/

joss.01159.

[Fab20] Alexander Fabisch. “A Comparison of Policy Search in Joint Space and
Cartesian Space for Refinement of Skills”. In: Advances in Service and In-
dustrial Robotics. Ed. by Karsten Berns and Daniel Görges. Springer, 2020,
pp. 301–309. isbn: 978-3-030-19648-6. doi: 10.1007/978-3-030-19648-
6_35.

[Fai+10] Aldo Faisal, Dietrich Stout, Jan Apel, and Bruce Bradley. “The Manipu-
lative Complexity of Lower Paleolithic Stone Toolmaking”. In: PLOS ONE
5.11 (2010), pp. 1–11. doi: 10.1371/journal.pone.0013718.

[Fal+15] Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew Antone,
Toby Schneider, Hongkai Dai, Claudia Pérez D’Arpino, Robin Deits, Matt
DiCicco, Dehann Fourie, Twan Koolen, Pat Marion, Michael Posa, Andrés
Valenzuela, Kuan-Ting Yu, Julie Shah, Karl Iagnemma, Russ Tedrake, and
Seth Teller. “An Architecture for Online Affordance-based Perception and
Whole-body Planning”. In: Journal of Field Robotics 32.2 (2015), pp. 229–
254. issn: 1556-4959. doi: 10.1002/rob.21546.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks”. In: International Confer-
ence on Machine Learning (ICML). Ed. by Doina Precup and Yee Whye
Teh. Vol. 70. Proceedings of Machine Learning Research. International Con-
vention Centre, Sydney, Australia: PMLR, 2017, pp. 1126–1135.

[FFC18] Fanny Ficuciello, Pietro Falco, and Sylvain Calinon. “A Brief Survey on the
Role of Dimensionality Reduction in Manipulation Learning and Control”.
In: IEEE Robotics and Automation Letters (RA-L) 3.3 (2018), pp. 2608–
2615. doi: 10.1109/LRA.2018.2818933.

[FG13] Hervé Frezza-Buet and Matthieu Geist. “A C++ Template-based Reinforce-
ment Learning Library: Fitting the Code to the Mathematics”. In: Jour-
nal of Machine Learning Research 14.1 (2013), pp. 625–628. url: http:
//www.jmlr.org/papers/v14/frezza-buet13a.html.

[FHM18] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Func-
tion Approximation Error in Actor-Critic Methods”. In: International
Conference on Machine Learning (ICML). Ed. by Jennifer Dy and An-
dreas Krause. Vol. 80. Proceedings of Machine Learning Research. Stock-
holmsmässan, Stockholm Sweden: PMLR, 2018, pp. 1587–1596.

268

[Fin+17a] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. “One-Shot Visual Imitation Learning via Meta-Learning”. In: Con-
ference on Robot Learning (CoRL). Ed. by Sergey Levine, Vincent Van-
houcke, and Ken Goldberg. Vol. 78. Proceedings of Machine Learning Re-
search. PMLR, 2017, pp. 357–368. url: http://proceedings.mlr.press/
v78/finn17a.html.

[Fin+17b] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey
Levine. “One-Shot Visual Imitation Learning via Meta-Learning”. In: Con-
ference on Robot Learning. Ed. by Sergey Levine, Vincent Vanhoucke, and
Ken Goldberg. Vol. 78. Proceedings of Machine Learning Research. PMLR,
2017, pp. 357–368.

[Fin+19] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-
Parameter Black-Box Optimization Benchmarking 2010: Presentation of
the Noiseless Functions. Tech. rep. 2009/20. Research Center PPE, 2019.
url: https://coco.gforge.inria.fr/downloads/download16.00/

bbobdocfunctions.pdf.

[FK20] Alexander Fabisch and Frank Kirchner. “Variational Trajectory Autoen-
coder for Sample-Efficient Policy Search”. In: Conference on Robot Learning
(CoRL). Submitted. 2020.

[Fle70] Roger Fletcher. “A new approach to variable metric algorithms”. In: The
Computer Journal 13.3 (1970), pp. 317–322. issn: 0010-4620. doi: 10 .

1093/comjnl/13.3.317.

[FLK20] Alexander Fabisch, Malte Langosz, and Frank Kirchner. “BOLeRo: Behav-
ior Optimization and Learning for Robots”. In: International Journal of
Advanced Robotic Systems 17 (3 2020). doi: 10.1177/1729881420913741.

[Flo+18] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. “Auto-
matic Goal Generation for Reinforcement Learning Agents”. In: Interna-
tional Conference on Machine Learning (ICML). Ed. by Jennifer Dy and
Andreas Krause. Vol. 80. Proceedings of Machine Learning Research. Stock-
holmsmässan, Stockholm Sweden: PMLR, 2018, pp. 1515–1528.

[FM14] Alexander Fabisch and Jan Hendrik Metzen. “Active Contextual Policy
Search”. In: Journal of Machine Learning Research 15 (2014), pp. 3371–
3399. url: http://jmlr.org/papers/v15/fabisch14a.html.

[FO16] Sébastien Forestier and Pierre-Yves Oudeyer. “Modular active curiosity-
driven discovery of tool use”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Ed. by Il Hong Suh and Dong-Soo
Kwon. 2016, pp. 3965–3972.

269

Bibliography

[For+18] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick,
Matteo Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Remi Munos,
Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg. “Noisy
Networks For Exploration”. In: International Conference on Learning Rep-
resentations (ICLR). Ed. by Iain Murray, Marc’Aurelio Ranzato, and Oriol
Vinyals. 2018. url: https://openreview.net/forum?id=rywHCPkAW.

[FS04] Peggy Fidelman and Peter Stone. “Learning Ball Acquisition on a Physical
Robot”. In: International Symposium on Robotics and Automation (ISRA).
2004. url: http://www.cs.utexas.edu/users/ai- lab/?fidelman:

isra04.

[FUB16] Nadia Figueroa, Ana Lucia Pais Ureche, and Aude Billard. “Learning
complex sequential tasks from demonstration: A pizza dough rolling case
study”. In: ACM/IEEE International Conference on Human-Robot Inter-
action (HRI). 2016, pp. 611–612. doi: 10.1109/HRI.2016.7451881.

[Fuk+19] Lior Fuks, Noor Awad, Frank Hutter, and Marius Lindauer. “An Evolution
Strategy with Progressive Episode Lengths for Playing Games”. In: Inter-
national Joint Conference on Artificial Intelligence (IJCAI). Ed. by Sarit
Kraus. International Joint Conferences on Artificial Intelligence Organiza-
tion, 2019, pp. 1234–1240. doi: 10.24963/ijcai.2019/172.

[Gam+10] Andrej Gams, Tadej Petrič, Leon Zandlajpah, and Aleš Ude. “Optimiz-
ing parameters of trajectory representation for movement generalization:
robotic throwing”. In: International Workshop on Robotics in Alpe-Adria-
Danube Region (RAAD). Ed. by Imre J. Rudas, József K. Tar, and Claudiu
Pozna. 2010, pp. 161–166. doi: 10.1109/RAAD.2010.5524592.

[Gam+14] Andrej Gams, Jesse van den Kieboom, Massimo Vespignani, Luc Guyot,
Aleš Ude, and Auke Jan Ijspeert. “Rich periodic motor skills on humanoid
robots: Riding the pedal racer”. In: IEEE International Conference on
Robotics and Automation (ICRA). Ed. by Ning Xi and William R. Hamel.
2014, pp. 2326–2332. doi: 10.1109/ICRA.2014.6907181.

[GB09] Gerd Gigerenzer and Henry Brighton. “Homo Heuristicus: Why Biased
Minds Make Better Inferences”. In: Topics in Cognitive Science 1.1 (2009),
pp. 107–143. issn: 1756-8765. doi: 10.1111/j.1756-8765.2008.01006.x.

[GB13] Caglar Gulcehre and Yoshua Bengio. “Knowledge Matters: Importance of
Prior Information for Optimization”. In: International Conference on Learn-
ing Representations (ICLR). Ed. by Aaron Courville, Rob Fergus, and Chris
Manning. 2013.

[Gea+17] José de Gea Fernández, Dennis Mronga, Martin Günther, Tobias Knobloch,
Malte Wirkus, Martin Schröer, Mathias Trampler, Stefan Stiene, Elsa
Kirchner, Vinzenz Bargsten, Timo Bänziger, Johannes Teiwes, Thomas
Krüger, and Frank Kirchner. “Multimodal sensor-based whole-body con-
trol for human–robot collaboration in industrial settings”. In: Robotics and

270

Autonomous Systems 94 (2017), pp. 102–119. issn: 0921-8890. doi: 10.
1016/j.robot.2017.04.007.

[Gea20] José de Gea Fernández. Mitsubishi PA 10-7C. 2020. url: https : / /

robotik.dfki-bremen.de/en/research/robot-systems/mitsubishi-

pa-10-7c.html (visited on 05/06/2020).

[Geh+14] Christian Gehring, Stelian Coros, Marco Hutter, Michael Bloesch, Péter
Fankhauser, Markus A. Hoepflinger, and Roland Siegwart. “Towards au-
tomatic discovery of agile gaits for quadrupedal robots”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). Ed. by Ning Xi
and William R. Hamel. 2014, pp. 4243–4248.

[Ger+15] Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, and
Jonathan P. How. “RLPy: A Value-Function-Based Reinforcement Learning
Framework for Education and Research”. In: Journal of Machine Learning
Research 16 (2015), pp. 1573–1578. url: http://jmlr.org/papers/v16/
geramifard15a.html.

[GFB94] Vijaykumar Gullapalli, Judy A. Franklin, and Hamid Benbrahim. “Acquir-
ing robot skills via reinforcement learning”. In: IEEE Control Systems 14.1
(1994), pp. 13–24. issn: 1066-033X. doi: 10.1109/37.257890.

[Gig08] Gerd Gigerenzer. “Why Heuristics Work”. In: Perspectives on Psychological
Science 3.1 (2008), pp. 20–29. doi: 10.1111/j.1745-6916.2008.00058.x.

[GK16] Lisa Gutzeit and Elsa Andrea Kirchner. “Automatic Detection and Recog-
nition of Human Movement Patterns in Manipulation Tasks”. In: Inter-
national Conference on Physiological Computing Systems (PHYCS). 2016,
pp. 54–63.

[Gle98] Michael Gleicher. “Retargetting Motion to New Characters”. In: Interna-
tional Conference on Computer Graphics and Interactive Techniques. Ed.
by Christopher C. Yang and T. M. Murali. SIGGRAPH ’98. New York, NY,
USA: ACM, 1998, pp. 33–42. isbn: 0-89791-999-8. doi: 10.1145/280814.
280820.

[GM11] Aurelélien Garivier and Eric Moulines. “On Upper-Confidence Bound Poli-
cies for Switching Bandit Problems”. In: International Conference on
Algorithmic Learning Theory. Ed. by Jyrki Kivinen, Csaba Szepesvári,
Esko Ukkonen, and Thomas Zeugmann. Springer Berlin Heidelberg, 2011,
pp. 174–188. isbn: 978-3-642-24412-4. doi: 10.1007/978-3-642-24412-
4_16.

[GMB93] Simon F. Giszter, Ferdinando A. Mussa-Ivaldi, and Emilio Bizzi. “Conver-
gent force fields organized in the frog’s spinal cord”. In: Journal of Neuro-
science 13 (1993), pp. 467–491.

[Gol70] Donald Goldfarb. “A Family of Variable Metric Updates Derived by Vari-
ational Means”. In: Mathematics of Computation 24.109 (1970), pp. 23–26.
doi: 10.1090/S0025-5718-1970-0258249-6.

271

Bibliography

[Góm+18] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán
Aspuru-Guzik. “Automatic Chemical Design Using a Data-Driven Contin-
uous Representation of Molecules”. In: ACS Central Science 4 (2 2018),
pp. 268–276. doi: 10.1021/acscentsci.7b00572.

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative
Adversarial Nets”. In: Advances in Neural Information Processing Systems.
Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger. Curran Associates, Inc., 2014, pp. 2672–2680. url: http://
papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[Got+13] Jacqueline Gottlieb, Pierre-Yves Oudeyer, Manuel Lopes, and Adrien
Baranes. “Information-seeking, curiosity, and attention: computational and
neural mechanisms”. In: Trends in Cognitive Sciences 17.11 (2013), pp. 585–
93.

[GPG17] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. “Learning to fly by crash-
ing”. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Ed. by Hong Zhang and Richard Vaughan. 2017, pp. 3948–
3955.

[GPW06] Tao Geng, Bernd Porr, and Florentin Wörgötter. “Fast biped walking with
a reflexive controller and real-time policy searching”. In: Advances in Neural
Information Processing Systems. Ed. by Y. Weiss, B. Schölkopf, and J. C.
Platt. MIT Press, 2006, pp. 427–434. url: http://papers.nips.cc/

paper/2769- fast- biped- walking- with- a- reflexive- controller-

and-real-time-policy-searching.pdf.

[Gra+16] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefen-
stette, Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl
Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King,
Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis
Hassabis. “Hybrid computing using a neural network with dynamic exter-
nal memory”. In: Nature 538.7626 (2016), pp. 471–476. issn: 00280836. doi:
10.1038/nature20101.

[Gra98] Ann M. Graybiel. “The basal ganglia and chunking of action repertoires”.
In: Neurobiology of Learning and Memory 70 (1 1998), pp. 119–136. issn:
1074-7427. doi: 10.1006/nlme.1998.3843.

[Gre+15] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil
Blunsom. “Learning to Transduce with Unbounded Memory”. In: Ad-
vances in Neural Information Processing Systems. Ed. by C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett. Curran Associates,

272

Inc., 2015, pp. 1828–1836. url: http://papers.nips.cc/paper/5648-
learning-to-transduce-with-unbounded-memory.pdf.

[GSB10] Kathrin Gräve, Jörg Stückler, and Sven Behnke. “Learning Motion Skills
from Expert Demonstrations and Own Experience using Gaussian Process
Regression”. In: International Symposium on Robotics (ISR). VDE Verlag,
2010, pp. 1–8.

[Gu+16] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. “Con-
tinuous Deep Q-Learning with Model-based Acceleration”. In: International
Conference on Machine Learning (ICML). Ed. by Maria Florina Balcan and
Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research.
New York, New York, USA: PMLR, 2016, pp. 2829–2838.

[Gu+17] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. “Deep re-
inforcement learning for robotic manipulation with asynchronous off-policy
updates”. In: IEEE International Conference on Robotics and Automation
(ICRA). Ed. by I-Ming Chen and Yoshihiko Nakamura. 2017, pp. 3389–
3396. doi: 10.1109/ICRA.2017.7989385.

[Gua+18] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro,
Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Chris Harris,
Vincent Vanhoucke, and Eugene Brevdo. TF-Agents: A library for Rein-
forcement Learning in TensorFlow. 2018. url: https : / / github . com /

tensorflow/agents (visited on 11/30/2018).

[Gua18] Shaobo Guan. TL-GAN: transparent latent-space GAN. 2018. url: https:
/ / github . com / SummitKwan / transparent _ latent _ gan (visited on
01/30/2020).

[Gut+18] Lisa Gutzeit, Alexander Fabisch, Marc Otto, Jan Hendrik Metzen, Jonas
Hansen, Frank Kirchner, and Elsa Andrea Kirchner. “The BesMan Learning
Platform for Automated Robot Skill Learning”. In: Frontiers in Robotics
and AI 5 (2018), p. 43. issn: 2296-9144. doi: 10.3389/frobt.2018.00043.

[Gut+19] Lisa Gutzeit, Alexander Fabisch, Christoph Petzoldt, Hendrik Wiese, and
Frank Kirchner. “Automated Robot Skill Learning from Demonstration for
Various Robot Systems”. In: KI: Advances in Artificial Intelligence. Ed. by
Christoph Benzmüller and Heiner Stuckenschmidt. Springer International
Publishing, 2019, pp. 168–181. isbn: 978-3-030-30179-8. doi: 10.1007/978-
3-030-30179-8_14.

[GWD14] Alex Graves, Greg Wayne, and Ivo Danihelka. “Neural Turing Machines”.
In: CoRR abs/1410.5401 (2014). arXiv: 1410.5401.

[Ha+20] Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. “Learn-
ing to Walk in the Real World with Minimal Human Effort”. In: CoRR
abs/2002.08550 (2020). arXiv: 2002.08550.

273

Bibliography

[Haa+18a] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter
Abbeel, and Sergey Levine. “Composable Deep Reinforcement Learning
for Robotic Manipulation”. In: IEEE International Conference on Robotics
and Automation (ICRA). Ed. by Kevin Lynch. 2018, pp. 6244–6251.

[Haa+18b] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor”. In: International Conference on Machine Learn-
ing (ICML). Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceed-
ings of Machine Learning Research. Stockholmsmässan, Stockholm Sweden:
PMLR, 2018, pp. 1861–1870.

[Haa+18c] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Se-
hoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
Abbeel, and Sergey Levine. “Soft Actor-Critic Algorithms and Applica-
tions”. In: CoRR (2018). arXiv: 1812.05905.

[Haa+19] Tuomas Haarnoja, Aurick Zhou, Sehoon Ha, Jie Tan, George Tucker, and
Sergey Levine. “Learning to Walk via Deep Reinforcement Learning”. In:
Robotics: Science and Systems (RSS). Ed. by Antonio Bicchi, Hadas Kress-
Gazit, and Seth Hutchinson. 2019. isbn: 978-0-9923747-5-4.

[Had+09] Sami Haddadin, Tim Laue, Udo Frese, Sebastian Wolf, Alin Albu-Schäffer,
and Gerd Hirzinger. “Kick it with elasticity: Safety and performance in
human–robot soccer”. In: Robotics and Autonomous Systems 57.8 (2009).
Humanoid Soccer Robots, pp. 761–775. issn: 0921-8890. doi: 10.1016/j.
robot.2009.03.004.

[Han+08] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and
Anne Auger. PSO Facing Non-Separable and Ill-Conditioned Problems. Re-
search Report RR-6447. INRIA, 2008. url: https://hal.inria.fr/

inria-00250078.

[Han+10] Nikolaus Hansen, Anne Auger, Raymond Ros, Steffen Finck, and Petr
Pošík. “Comparing Results of 31 Algorithms from the Black-box Optimiza-
tion Benchmarking BBOB-2009”. In: Genetic and Evolutionary Computa-
tion Conference Companion. Ed. by Jürgen Branke. GECCO ’10. Portland,
Oregon, USA: Association for Computing Machinery, 2010, pp. 1689–1696.
isbn: 9781450300735. doi: 10.1145/1830761.1830790.

[Han+14] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,
Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam
Coates, and Andrew Y. Ng. “Deep Speech: Scaling up end-to-end speech
recognition”. In: CoRR (2014). arXiv: 1412.5567 [cs.CL].

[Han+16] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tušar, and Dimo
Brockhoff. “COCO: A Platform for Comparing Continuous Optimizers in a
Black-Box Setting”. In: CoRR abs/1603.08785 (2016). arXiv: 1603.08785.

274

[Han15] Jonas Hansen. “Contextual Policy Search for Ball-Throwing on a Real
Robot”. MA thesis. Bremen, Germany: University of Bremen, 2015.

[Han19] Nikolaus Hansen. “A Global Surrogate Assisted CMA-ES”. In: Genetic
and Evolutionary Computation Conference. Ed. by Manuel López-Ibáñez.
GECCO ’19. Prague, Czech Republic: Association for Computing Machin-
ery, 2019, pp. 664–672. isbn: 9781450361118. doi: 10 . 1145 / 3321707 .

3321842.

[Has10] Hado V. Hasselt. “Double Q-learning”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by J. D. Lafferty, C. K. I. Williams, J.
Shawe-Taylor, R. S. Zemel, and A. Culotta. Curran Associates, Inc., 2010,
pp. 2613–2621.

[HCM15] Assaf Hallak, Dotan Di Castro, and Shie Mannor. “Contextual Markov
Decision Processes”. In: CoRR (2015). arXiv: 1502.02259 [stat.ML].

[Hee+17] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel,
Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin
A. Riedmiller, and David Silver. “Emergence of Locomotion Behaviours in
Rich Environments”. In: CoRR abs/1707.02286 (2017). arXiv: 1707.02286.

[Hen+19] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. “Deep Reinforcement Learning that Matters”.
In: CoRR abs/1709.06560 (2019). arXiv: 1709.06560. url: http://arxiv.
org/abs/1709.06560.

[Hen14] Alexander David Henning. Approximate Inverse Kinematics Using a
Database. Tech. rep. Worcester Polytechnic Institute, 2014.

[Hes+18] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Os-
trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar,
and David Silver. “Rainbow: Combining Improvements in Deep Reinforce-
ment Learning”. In: AAAI Conference on Artificial Intelligence. Ed. by
Sheila A. McIlraith and Kilian Q. Weinberger. AAAI Press, 2018, pp. 3215–
3222.

[HGS16] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement
Learning with Double Q-Learning”. In: AAAI Conference on Artificial In-
telligence. Ed. by Dale Schuurmans and Michael Wellman. Phoenix, Ari-
zona: AAAI Press, 2016, pp. 2094–2100.

[HI08] Verena Heidrich-Meisner and Christian Igel. “Evolution Strategies for Di-
rect Policy Search”. In: Parallel Problem Solving from Nature (PPSN). Ed.
by Thomas Jansen, Simon Lucas, and Carlo Poloni. 2008, pp. 428–437.

[HI09] Verena Heidrich-Meisner and Christian Igel. “Neuroevolution strategies for
episodic reinforcement learning”. In: Journal of Algorithms 64.4 (2009).
Special Issue: Reinforcement Learning, pp. 152–168. issn: 0196-6774. doi:
10.1016/j.jalgor.2009.04.002.

275

Bibliography

[Hig+17] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. “V-VAE:
Learning Basic Visual Concepts with a Constrained Variational Frame-
work”. In: International Conference on Learning Representations (ICLR).
Ed. by Hugo Larochelle, Oriol Vinyals, and Tara Sainath. 2017.

[Hin+12] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara
Sainath, and Brian Kingsbury. “Deep Neural Networks for Acoustic Mod-
eling in Speech Recognition”. In: Signal Processing Magazine (2012).

[HKY18] Sehoon Ha, Joohyung Kim, and Katsu Yamane. “Automated Deep Re-
inforcement Learning Environment for Hardware of a Modular Legged
Robot”. In: International Conference on Ubiquitous Robots (UR). Ed. by
Frank C. Park and Paul Oh. 2018, pp. 348–354. doi: 10.1109/URAI.2018.
8442201.

[HO01] Nikolaus Hansen and Andreas Ostermeier. “Completely Derandomized Self-
Adaptation in Evolution Strategies”. In: Evolutionary Computation 9.2
(2001), pp. 159–195. issn: 1063-6560. doi: 10.1162/106365601750190398.

[Hoo+15] Herke van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Peters.
“Learning robot in-hand manipulation with tactile features”. In: IEEE-
RAS International Conference on Humanoid Robots (Humanoids). 2015,
pp. 121–127. doi: 10.1109/HUMANOIDS.2015.7363524.

[HQS10] Todd Hester, Michael Quinlan, and Peter Stone. “Generalized model learn-
ing for Reinforcement Learning on a humanoid robot”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). Ed. by Wesley
Snyder and Vijay Kumar. 2010, pp. 2369–2374. doi: 10.1109/ROBOT.2010.
5509181.

[HRJ17] Matt Hoffman, Carlos Riquelme, and Matthew Johnson. “The V-
VAE’s Implicit Prior”. In: Workshop on Bayesian Deep Learning, Ad-
vances in Neural Information Processing Systems. 2017. url: http : / /

bayesiandeeplearning.org/2017/papers/66.pdf.

[HRP18] Peter Henderson, Joshua Romoff, and Joelle Pineau. “Where Did My Op-
timum Go?: An Empirical Analysis of Gradient Descent Optimization in
Policy Gradient Methods”. In: CoRR (2018). arXiv: 1810.02525.

[HS12] Philipp Hennig and Christian J. Schuler. “Entropy Search for Information-
Efficient Global Optimization”. In: Journal of Machine Learning Research
13.57 (2012), pp. 1809–1837. url: http : / / jmlr . org / papers / v13 /

hennig12a.html.

276

[HS18] David Ha and Jürgen Schmidhuber. “Recurrent World Models Facilitate
Policy Evolution”. In: Advances in Neural Information Processing Systems.
Ed. by Samy Bengio, Hanna Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett. Curran Associates, Inc., 2018,
pp. 2451–2463.

[Hu+20] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Fredo Durand. “Differentiable Programming for Physi-
cal Simulation”. In: International Conference on Learning Representations
(ICLR). Ed. by Dawn Song, Kyunghyun Cho, and Martha White. 2020.
url: https://openreview.net/forum?id=B1eB5xSFvr.

[Hua+18] Yanlong Huang, Joao Silverio, Leonel Rozo, and Darwin G. Caldwell. “Hy-
brid Probabilistic Trajectory Optimization Using Null-Space Exploration”.
In: IEEE International Conference on Robotics and Automation (ICRA).
Ed. by Kevin Lynch. IEEE, 2018, pp. 7226–7232.

[Huy09] Du Q. Huynh. “Metrics for 3D Rotations: Comparison and Analysis”. In:
Journal of Mathematical Imaging and Vision 35.2 (2009), pp. 155–164. issn:
0924-9907.

[Hwa+19] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. “Learning agile and dynamic
motor skills for legged robots”. In: Science Robotics 4.26 (2019). doi: 10.
1126/scirobotics.aau5872.

[Ijs+13] Auke Jan Ijspeert, Jun Nakanishi, Peter Pastor, Heiko Hoffmann, and Ste-
fan Schaal. “Dynamical Movement Primitives: Learning Attractor Models
for Motor Behaviors”. In: Neural Computation 25.2 (2013), pp. 328–373.

[Ily+18] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Fir-
daus Janoos, Larry Rudolph, and Aleksander Madry. “Are Deep Policy
Gradient Algorithms Truly Policy Gradient Algorithms?” In: CoRR (2018).
arXiv: 1811.02553.

[Inn+19] Mike Innes, Alan Edelman, Keno Fischer, Christopher Rackauckas, Elliot
Saba, Viral B. Shah, and Will Tebbutt. “A Differentiable Programming
System to Bridge Machine Learning and Scientific Computing”. In: CoRR
abs/1907.07587 (2019). arXiv: 1907.07587.

[INS02] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. “Movement imitation
with nonlinear dynamical systems in humanoid robots”. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). Ed. by William R.
Hamel and Anthony A. Maciejewski. Washington (DC), USA, 2002. url:
http://www-clmc.usc.edu/publications/I/ijspeert-ICRA2002.pdf.

[Irp18] Alex Irpan. Deep Reinforcement Learning Doesn’t Work Yet. 2018. url:
https://www.alexirpan.com/2018/02/14/rl-hard.html (visited on
10/13/2018).

277

Bibliography

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: Interna-
tional Conference on Machine Learning (ICML). Ed. by Francis Bach and
David Blei. Vol. 37. Proceedings of Machine Learning Research. PMLR,
2015, pp. 448–456.

[Isl+17] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup.
“Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for
Continuous Control”. In: International Conference on Machine Learning
(ICML). Ed. by Doina Precup and Yee Whye Teh. 2017. url: http://
arxiv.org/abs/1708.04133.

[JA06] Grahame A. Jastrebski and Dirk V. Arnold. “Improving Evolution Strate-
gies through Active Covariance Matrix Adaptation”. In: International Con-
ference on Evolutionary Computation (CEC). 2006, pp. 2814–2821.

[Jac+19] Jörn-Henrik Jacobsen, Jens Behrmann, Richard S. Zemel, and Matthias
Bethge. “Excessive Invariance Causes Adversarial Vulnerability”. In: Inter-
national Conference on Learning Representations (ICLR). Ed. by Sergey
Levine, Karen Livescu, and Shakir Mohamed. 2019. url: https : / /

openreview.net/forum?id=BkfbpsAcF7.

[Jad+19] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning†, Luke Marris, Guy
Lever, Antonio Garcia Castañeda, Charles Beattie, Neil C. Rabinowitz,
Ari S. Morcos, Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise
Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu,
and Thore Graepel. “Human-level performance in 3D multiplayer games
with population-based reinforcement learning”. In: Science 364 (6443 2019),
pp. 859–865. doi: 10.1126/science.aau6249.

[JHH95] Nick Jakobi, Phil Husbands, and Inman Harvey. “Noise and the reality gap:
The use of simulation in evolutionary robotics”. In: Advances in Artificial
Life. Ed. by Federico Morán, Alvaro Moreno, Juan Julián Merelo, and Pablo
Chacón. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 704–720.

[JLD16] Edward Johns, Stefan Leutenegger, and Andrew J. Davison. “Deep learn-
ing a grasp function for grasping under gripper pose uncertainty”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Il Hong Suh and Dong-Soo Kwon. 2016, pp. 4461–4468.
doi: 10.1109/IROS.2016.7759657.

[Joa02] Thorsten Joachims. “Optimizing Search Engines Using Clickthrough Data”.
In: International Conference on Knowledge Discovery and Data Mining
(KDD). Ed. by David Hand, Daniel Keim, and Raymond Ng. KDD ’02.
Edmonton, Alberta, Canada: Association for Computing Machinery, 2002,
pp. 133–142. isbn: 158113567X. doi: 10.1145/775047.775067.

278

[JPS93] Donald R. Jones, Cary D. Perttunen, and Bruce E. Stuckman. “Lipschitzian
optimization without the Lipschitz constant”. In: Journal of Optimization
Theory and Applications 79.1 (1993), pp. 157–181.

[JRB18] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. “Differentiable Par-
ticle Filters: End-to-End Learning with Algorithmic Priors”. In: Robotics:
Science and Systems (RSS). Ed. by Hadas Kress-Gazit, Siddhartha Srini-
vasa, Tom Howard, and Nikolay Atanasov. 2018. isbn: 978-0-9923747-4-7.
doi: 10.15607/RSS.2018.XIV.001.

[Jul16] Arthur Juliani. Simple Reinforcement Learning with Tensorflow Part 8:
Asynchronous Actor-Critic Agents (A3C). 2016. url: https://medium.
com / emergent - future / simple - reinforcement - learning - with -

tensorflow - part - 8 - asynchronous - actor - critic - agents - a3c -

c88f72a5e9f2 (visited on 08/03/2020).

[Kah+17] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey
Levine. “Uncertainty-Aware Reinforcement Learning for Collision Avoid-
ance”. In: CoRR abs/1702.01182 (2017). arXiv: 1702.01182.

[Kaj+01] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hiro-
hisa Hirukawa. “The 3D linear inverted pendulum mode: a simple modeling
for a biped walking pattern generation”. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Ed. by Tzyh Jong Tarn
and Joel Burdick. Vol. 1. 2001, pp. 239–246. doi: 10.1109/IROS.2001.
973365.

[Kal+09] Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, and Stefan Schaal.
“Learning locomotion over rough terrain using terrain templates”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Ning Xi and Zhidong Wang. 2009, pp. 167–172. doi: 10.
1109/IROS.2009.5354701.

[Kal+11a] Mrinal Kalakrishnan, Sachin Chitta, Evangelos A. Theodorou, Peter Pas-
tor, and Stefan Schaal. “STOMP: Stochastic trajectory optimization for
motion planning”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). Ed. by Zexiang Li and Yuan Fang Zheng. 2011, pp. 4569–
4574. doi: 10.1109/ICRA.2011.5980280.

[Kal+11b] Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor, and Stefan Schaal.
“Learning force control policies for compliant manipulation”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Ed. by
Oussama Khatib and Gaurav Sukhatme. 2011, pp. 4639–4644. doi: 10.
1109/IROS.2011.6095096.

[Kal60] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Predic-
tion Problems”. In: Transactions of the ASME–Journal of Basic Engineer-
ing 82.Series D (1960), pp. 35–45.

279

Bibliography

[KAN08] J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng. “Hierarchical Apprentice-
ship Learning with Application to Quadruped Locomotion”. In: Advances
in Neural Information Processing Systems. Ed. by J. C. Platt, D. Koller, Y.
Singer, and S. T. Roweis. Curran Associates, Inc., 2008, pp. 769–776. url:
http://papers.nips.cc/paper/3253-hierarchical-apprenticeship-

learning-with-application-to-quadruped-locomotion.pdf.

[Kar17] Andrej Karpathy. Software 2.0. 2017. url: https : / / medium . com /

@karpathy/software-2-0-a64152b37c35 (visited on 02/11/2020).

[Kas+08] Yohannes Kassahun, Jose de Gea, Mark Edgington, Jan Hendrik Metzen,
and Frank Kirchner. “Accelerating Neuroevolutionary Methods Using a
Kalman Filter”. In: Genetic and Evolutionary Computation Conference. Ed.
by Maarten Keijzer. GECCO ’08. Atlanta, GA, USA: ACM, 2008, pp. 1397–
1404. isbn: 978-1-60558-130-9. doi: 10.1145/1389095.1389365.

[KB11] Seyed Mohammad Khansari-Zadeh and Aude Billard. “Learning Stable
Nonlinear Dynamical Systems With Gaussian Mixture Models”. In: IEEE
Transactions on Robotics 27.5 (2011), pp. 943–957.

[KB15] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: International Conference on Learning Representations
(ICLR). Ed. by Hugo Larochelle, Oriol Vinyals, and Tara Sainath. 2015.

[KBP13] Jens Kober, J. Andrew Bagnell, and Jan Peters. “Reinforcement Learning in
Robotics: A Survey”. In: International Journal of Robotics Research 32.11
(2013), pp. 1238–1274. issn: 0278-3649. doi: 10.1177/0278364913495721.

[KCC10a] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. “Approaches
for Learning Human-like Motor Skills which Require Variable Stiffness
During Execution”. In: Workshop on Humanoid Robots Learning from Hu-
man Interaction, IEEE-RAS International Conference on Humanoid Robots
(Humanoids). Ed. by Sonia Chernova and Çetin Meriçli. Nashville, USA,
2010. url: http://kormushev.com/papers/Kormushev_Humanoids2010_
workshop.pdf.

[KCC10b] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. “Robot motor
skill coordination with EM-based Reinforcement Learning”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Ed. by
Ren C. Luo and Huei-Yung Lin. 2010, pp. 3232–3237. doi: 10.1109/IROS.
2010.5649089.

[KCC11] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. “Imita-
tion Learning of Positional and Force Skills Demonstrated via Kines-
thetic Teaching and Haptic Input”. In: Advanced Robotics 25.5 (2011),
pp. 581–603. url: http : / / kormushev . com / papers / Kormushev _

AdvancedRobotics_2011.pdf.

280

[KCC13] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. “Reinforce-
ment Learning in Robotics: Applications and Real-World Challenges”.
In: Robotics 2.3 (2013), pp. 122–148. issn: 2218-6581. doi: 10 . 3390 /

robotics2030122.

[KD18] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative Flow with In-
vertible 1x1 Convolutions”. In: Advances in Neural Information Processing
Systems. Ed. by Samy Bengio, Hanna Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett. Curran Associates,
Inc., 2018, pp. 10215–10224. url: http://papers.nips.cc/paper/8224-
glow-generative-flow-with-invertible-1x1-convolutions.pdf.

[KF04] Cody Kwok and Dieter Fox. “Reinforcement learning for sensing strate-
gies”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Ed. by Kazuhiro Kosuge and Hajime Asama. Vol. 4. 2004,
pp. 3158–3163. doi: 10.1109/IROS.2004.1389903.

[KG17] Alex Kendall and Yarin Gal. “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” In: Advances in Neural Information
Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017,
pp. 5574–5584.

[KGB11] Scott Kuindersma, Roderic A. Grupen, and Andrew G. Barto. “Learning
dynamic arm motions for postural recovery”. In: IEEE-RAS International
Conference on Humanoid Robots (Humanoids). Ed. by Aleš Ude and Nancy
Pollard. 2011, pp. 7–12. doi: 10.1109/Humanoids.2011.6100881.

[KH04] Nathan P. Koenig and Andrew Howard. “Design and Use Paradigms for
Gazebo, An Open-Source Multi-Robot Simulator”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). Ed. by
Kazuhiro Kosuge and Hajime Asama. 2004, pp. 2149–2154.

[Kim+17] Su-Kyoung Kim, Elsa Andrea Kirchner, Arne Stefes, and Frank Kirchner.
“Intrinsic interactive reinforcement learning - Using error-related poten-
tials for real world human-robot interaction”. In: Nature Scientific Reports
7.17562 (2017). doi: 10.1038/s41598-017-17682-7.

[Kir97] Frank Kirchner. “Q-learning of complex behaviours on a six-legged walking
machine”. In: EUROMICRO Workshop on Advanced Mobile Robots. 1997,
pp. 51–58. doi: 10.1109/EURBOT.1997.633565.

[Kit+97] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Os-
awa, and Hitoshi Matsubara. “RoboCup: A Challenge Problem for AI”. In:
AI Magazine 18.1 (1997), pp. 73–85.

281

Bibliography

[KKB11] Klas Kronander, Seyed Mohammad Khansari-Zadeh, and Aude Billard.
“Learning to control planar hitting motions in a minigolf-like task”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Oussama Khatib and Gaurav Sukhatme. 2011, pp. 710–
717.

[KKB12] Seyed Mohammad Khansari-Zadeh, Klas Kronander, and Aude Billard.
“Learning to Play Minigolf: A Dynamical System-based Approach”. In: Ad-
vanced Robotics 26.17 (2012), pp. 1967–1993. doi: 10.1080/01691864.
2012.728692.

[KMD13] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. “The Trans-
ferability Approach: Crossing the Reality Gap in Evolutionary Robotics”.
In: IEEE Transactions on Evolutionary Computation 17.1 (2013), pp. 122–
145. doi: 10.1109/TEVC.2012.2185849.

[KMP08] Jens Kober, Betty Mohler, and Jan Peters. “Learning perceptual coupling
for motor primitives”. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). Ed. by Raja Chatila, Jean-Pierre Merlet,
and Christian Laugier. 2008, pp. 834–839. doi: 10 . 1109 / IROS . 2008 .

4650953.

[KN09] J. Zico Kolter and Andrew Y. Ng. “Policy search via the signed deriva-
tive”. In: Robotics: Science and Systems (RSS). Ed. by Jeff Trinkle, Yoky
Matsuoka, and Jose A. Castellanos. 2009. isbn: 978-0-262-51463-7. url:
http://www.roboticsproceedings.org/rss05/p27.html.

[Kob+10] Jens Kober, Katharina Mülling, Oliver Krömer, Christoph H. Lampert,
Bernhard Schölkopf, and Jan Peters. “Movement templates for learning
of hitting and batting”. In: IEEE International Conference on Robotics
and Automation (ICRA). Ed. by Wesley Snyder and Vijay Kumar. 2010,
pp. 853–858. doi: 10.1109/ROBOT.2010.5509672.

[Kob+12] Jens Kober, Andreas Wilhelm, Erhan Öztop, and Jan Peters. “Reinforce-
ment learning to adjust parametrized motor primitives to new situations”.
In: Autonomous Robots 33.4 (2012), pp. 361–379.

[Koe+16] Dorothea Koert, Guilherme Maeda, Rudolf Lioutikov, Gerhard Neumann,
and Jan Peters. “Demonstration based trajectory optimization for gener-
alizable robot motions”. In: IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids). Ed. by Eduardo Bayro-Corrochano and Paul
Oh. 2016, pp. 515–522. doi: 10.1109/HUMANOIDS.2016.7803324.

[Kor+10] Petar Kormushev, Sylvain Calinon, Ryo Saegusa, and Giorgio Metta.
“Learning the skill of archery by a humanoid robot iCub”. In: IEEE-RAS In-
ternational Conference on Humanoid Robots (Humanoids). Nashville, USA,
2010, pp. 417–423. url: http://kormushev.com/papers/Kormushev_

Humanoids-2010.pdf.

282

[Kor+11a] Petar Kormushev, Dragomir N. Nenchev, Sylvain Calinon, and Darwin G.
Caldwell. “Upper-body Kinesthetic Teaching of a Free-standing Humanoid
Robot”. In: IEEE International Conference on Robotics and Automation
(ICRA). Ed. by Zexiang Li and Yuan Fang Zheng. Shanghai, China, 2011,
pp. 3970–3975. url: http://kormushev.com/papers/Kormushev_ICRA_
2011.pdf.

[Kor+11b] Petar Kormushev, Barkan Ugurlu, Sylvain Calinon, Nikolas G. Tsagarakis,
and Darwin G. Caldwell. “Bipedal Walking Energy Minimization by Rein-
forcement Learning with Evolving Policy Parameterization”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Ed.
by Oussama Khatib and Gaurav Sukhatme. San Francisco, USA, 2011,
pp. 318–324. url: http://kormushev.com/papers/Kormushev-IROS2011.
pdf.

[Kou+13] Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez.
“Evolving Large-Scale Neural Networks for Vision-Based Reinforcement
Learning”. In: Genetic and Evolutionary Computation Conference. Ed. by
Christian Blum. GECCO ’13. Amsterdam, The Netherlands: Association
for Computing Machinery, 2013, pp. 1061–1068. isbn: 9781450319638. doi:
10.1145/2463372.2463509.

[KP09] Jens Kober and Jan Peters. “Policy Search for Motor Primitives in
Robotics”. In: Advances in Neural Information Processing Systems. Ed. by
D. Koller, D. Schuurmans, Y. Bengio, and Leon Bottou. Curran Associates,
Inc., 2009, pp. 849–856. url: http://papers.nips.cc/paper/3545-

policy-search-for-motor-primitives-in-robotics.pdf.

[KP11] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”.
In: Machine Learning 84.1–2 (2011), pp. 171–203.

[KR08] Thomas Kollar and Nicholas Roy. “Trajectory Optimization using Re-
inforcement Learning for Map Exploration”. In: International Jour-
nal of Robotics Research 27.2 (2008), pp. 175–196. doi: 10 . 1177 /

0278364907087426.

[Kra+16] Aljaž Kramberger, Rok Piltaver, Bojan Nemec, Matjaž Gams, and Aleš
Ude. “Learning of assembly constraints by demonstration and active ex-
ploration”. In: Industrial Robot 5.43 (2016), pp. 524–534. issn: 0143-991X.
doi: 10.1108/IR-02-2016-0058.

[Kre15] Mario Michael Krell. “Generalizing, Decoding, and Optimizing Support
Vector Machine Classification”. PhD thesis. Bremen, Germany: University
of Bremen, 2015.

[Kro+09] Oliver Kroemer, Renaud Detry, Justus Piater, and Jan Peters. “Active
learning using mean shift optimization for robot grasping”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Ed.

283

Bibliography

by Ning Xi and Zhidong Wang. 2009, pp. 2610–2615. doi: 10.1109/IROS.
2009.5354345.

[Kro+10] Oliver Kroemer, Renaud Detry, Justus H. Piater, and Jan Peters. “Com-
bining active learning and reactive control for robot grasping”. In: Robotics
and Autonomous Systems 58.9 (2010), pp. 1105–1116. issn: 0921-8890. doi:
https://doi.org/10.1016/j.robot.2010.06.001.

[Krü+14] Norbert Krüger, Aleš Ude, Henrik Gordon Petersen, Bojan Nemec, Lars-
Peter Ellekilde, Thiusius Rajeeth Savarimuthu, Jimmy Alison Rytz, Kerstin
Fischer, Anders Glent Buch, Dirk Kraft, Wail Mustafa, Eren Erdal Aksoy,
Jeremie Papon, Aljaž Kramberger, and Florentin Wörgötter. “Technologies
for the Fast Set-Up of Automated Assembly Processes”. In: KI – Künstliche
Intelligenz 28 (4 2014), pp. 305–313. url: 10.1007/s13218-014-0329-9.

[KS04] Nate Kohl and Peter Stone. “Machine Learning for Fast Quadrupedal Lo-
comotion”. In: AAAI Conference on Artificial Intelligence. Ed. by George
Ferguson and Deborah McGuinness. 2004, pp. 611–616. url: http://nn.
cs.utexas.edu/?kohl:aaai04.

[KS06] Levente Kocsis and Csaba Szepesvári. “Discounted UCB”. In: 2nd PASCAL
Challenges Workshop. Venice, Italy, 2006.

[KS17] Oliver Kroemer and Gaurav S. Sukhatme. “Feature selection for learning
versatile manipulation skills based on observed and desired trajectories”.
In: IEEE International Conference on Robotics and Automation (ICRA).
Ed. by I-Ming Chen and Yoshihiko Nakamura. 2017, pp. 4713–4720. doi:
10.1109/ICRA.2017.7989546.

[KSB10] Sanjeev Kumar, Nagarajan Sukavanam, and Raman Balasubramanian. “An
optimization approach to solve the inverse kinematics of redundant manip-
ulator”. In: International Journal of Information and System Sciences 6 (4
2010), pp. 414–423.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Advances
in Neural Information Processing Systems. Ed. by F. Pereira, C. J. C.
Burges, Leon Bottou, and K. Q. Weinberger. Curran Associates, Inc., 2012,
pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf.

[Kue+14] Daniel Kuehn, Felix Bernhard, Armin Burchardt, Moritz Schilling, Tobias
Stark, Martin Zenzes, and Frank Kirchner. “Distributed Computation in
a Quadrupedal Robotic System”. In: International Journal of Advanced
Robotic Systems 11.7 (2014), p. 110. doi: 10.5772/58733.

284

[Kui+16] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela,
Hongkai Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ
Tedrake. “Optimization-based locomotion planning, estimation, and control
design for the atlas humanoid robot”. In: Autonomous Robots 40.3 (2016),
pp. 429–455. issn: 1573-7527. doi: 10.1007/s10514-015-9479-3.

[Kuk20] Kuka AG. LBR iiwa. 2020. url: https : / / www . kuka . com / en - us /

products/robotics- systems/industrial- robots/lbr- iiwa (visited
on 05/06/2020).

[Kup+13] Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, and Gerhard
Neumann. “Data-Efficient Generalization of Robot Skills with Contextual
Policy Search”. In: AAAI Conference on Artificial Intelligence. Ed. by Marie
desJardins and Michael L. Littman. AAAI’13. Bellevue, Washington: AAAI
Press, 2013, pp. 1401–1407.

[Kup+17] Andras Kupcsik, Marc Peter Deisenroth, Jan Peters, Ai Poh Loh, Prahlad
Vadakkepat, and Gerhard Neumann. “Model-based contextual policy search
for data-efficient generalization of robot skills”. In: Artificial Intelligence 247
(2017). Special Issue on AI and Robotics, pp. 415–439. issn: 0004-3702. doi:
10.1016/j.artint.2014.11.005.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”.
In: International Conference on Learning Representations (ICLR). Ed. by
Yoshua Bengio and Yann LeCun. 2014.

[LA14] Sergey Levine and Pieter Abbeel. “Learning Neural Network Policies with
Guided Policy Search under Unknown Dynamics”. In: Advances in Neu-
ral Information Processing Systems. Ed. by Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran Associates,
Inc., 2014, pp. 1071–1079. url: http://papers.nips.cc/paper/5444-
learning-neural-network-policies-with-guided-policy-search-

under-unknown-dynamics.pdf.

[Lau+18] Johan Sund Laursen, Lars Carøe Sørensen, Ulrik Pagh Schultz, Dirk Kraft,
and Lars-Peter Ellekilde. “Adapting Parameterized Motions using Iterative
Learning and Online Collision Detection”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). Ed. by Kevin Lynch. IEEE,
2018, pp. 7587–7594. doi: 10.1109/ICRA.2018.8463208.

[LBB07] Tobias Latzke, Sven Behnke, and Maren Bennewitz. “Imitative Reinforce-
ment Learning for Soccer Playing Robots”. In: RoboCup: Robot Soccer World
Cup. Ed. by Gerhard Lakemeyer, Elizabeth Sklar, Domenico G. Sorrenti,
and Tomoichi Takahashi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 47–58. isbn: 978-3-540-74024-7.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In:
Nature 512 (2015), pp. 436–444. doi: 10.1038/nature14539.

285

Bibliography

[LeC+89] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. “Back-
propagation Applied to Handwritten Zip Code Recognition”. In: Neural
Computation 1.4 (1989), pp. 541–551. issn: 0899-7667. doi: 10.1162/neco.
1989.1.4.541.

[Lem+14] Andre Lemme, Klaus Neumann, René Felix Reinhart, and Jochen J. Steil.
“Neural learning of vector fields for encoding stable dynamical systems”. In:
Neurocomputing 141 (2014), pp. 3–14. issn: 0925-2312. doi: 10.1016/j.
neucom.2014.02.012.

[Lev+16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-
End Training of Deep Visuomotor Policies”. In: Journal of Machine Learn-
ing Research 17.39 (2016), pp. 1–40. url: http://jmlr.org/papers/v17/
15-522.html.

[Lev+18] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen. “Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection”. In: International Jour-
nal of Robotics Research 37.4-5 (2018), pp. 421–436. doi: 10 . 1177 /

0278364917710318.

[Lia+19] Thomas Liao, Grant Wang, Brian Yang, Rene Lee, Kristofer Pister, Sergey
Levine, and Roberto Calandra. “Data-efficient Learning of Morphology
and Controller for a Microrobot”. In: IEEE International Conference on
Robotics and Automation (ICRA). Ed. by Ayanna Howard. 2019, pp. 2488–
2494.

[Lil+16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous
control with deep reinforcement learning”. In: International Conference on
Learning Representations (ICLR). Ed. by Samy Bengio and Brian Kings-
bury. 2016.

[Lin+17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
“Focal Loss for Dense Object Detection”. In: IEEE International Conference
on Computer Vision (ICCV). Ed. by Rita Cucchiara, Yasuyuki Matsushita,
Nicu Sebe, and Stefano Soatto. 2017, pp. 2999–3007. doi: 10.1109/ICCV.
2017.324.

[Lin92] Long-Ji Lin. “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching”. In: Machine Learning 8 (3 1992). Ed. by John
Case and Anselm Blumer, pp. 293–321. issn: 0885-6125.

[Lio+16] Rudolf Lioutikov, Oliver Kroemer, Guilherme Maeda, and Jan Peters.
“Learning Manipulation by Sequencing Motor Primitives with a Two-
Armed Robot”. In: International Conference on Intelligent Autonomous
Systems. Ed. by Emanuele Menegatti, Nathan Michael, Karsten Berns, and
Hiroaki Yamaguchi. 2016, pp. 1601–1611.

286

[Liu+13] M. Liu, Bruno Depraetere, Gregory Pinte, Ivo Grondman, and Robert
Babuška. “Model-free and model-based time-optimal control of a badminton
robot”. In: Asian Control Conference (ASCC). 2013, pp. 1–6. doi: 10.1109/
ASCC.2013.6606242.

[Liz+07] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. “Auto-
matic Gait Optimization with Gaussian Process Regression”. In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Ed. by Manuela
M. Veloso. IJCAI’07. Hyderabad, India: Morgan Kaufmann Publishers Inc.,
2007, pp. 944–949.

[LK13] Sergey Levine and Vladlen Koltun. “Guided Policy Search”. In: Inter-
national Conference on Machine Learning (ICML). Ed. by Sanjoy Das-
gupta and David McAllester. Vol. 28. Proceedings of Machine Learning
Research 3. Atlanta, Georgia, USA: PMLR, 2013, pp. 1–9. url: http:

//proceedings.mlr.press/v28/levine13.html.

[LKS15] Ian Lenz, Ross Knepper, and Ashutosh Saxena. “DeepMPC: Learning Deep
Latent Features for Model Predictive Control”. In: Robotics: Science and
Systems (RSS). Ed. by Lydia E. Kavraki, David Hsu, and Jonas Buchli.
Robotics: Science and Systems Foundation, 2015. isbn: 978-0-9923747-1-6.
doi: 10.15607/RSS.2015.XI.012.

[LLF09] Daniel A. Levitis, William Z. Lidicker, and Glenn Freund. “Behavioural bi-
ologists do not agree on what constitutes behaviour”. In: Animal Behaviour
78.1 (2009), pp. 103–110. issn: 0003-3472. doi: 10.1016/j.anbehav.2009.
03.018.

[LLS15] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep Learning for Detect-
ing Robotic Grasps”. In: International Journal of Robotics Research 34.4–5
(2015), pp. 705–724. issn: 0278-3649. doi: 10.1177/0278364914549607.

[Lop+19] Nestor Gonzalez Lopez, Yue Leire Erro Nuin, Elias Barba Moral, Lander
Usategui San Juan, Alejandro Solano Rueda, Víctor Mayoral Vilches, and
Risto Kojcev. “gym-gazebo2, a toolkit for reinforcement learning using ROS
2 and Gazebo”. In: CoRR (2019). arXiv: 1903.06278 [cs.RO].

[Loq+18] Antonio Loquercio, Ana I. Maqueda, Carlos R. del-Blanco, and Davide
Scaramuzza. “DroNet: Learning to Fly by Driving”. In: IEEE Robotics and
Automation Letters (RA-L) 3.2 (2018), pp. 1088–1095. doi: 10.1109/LRA.
2018.2795643.

[Los17] Ilya Loshchilov. “LM-CMA: An Alternative to L-BFGS for Large-Scale
Black Box Optimization”. In: Evolutionary Computation 25.1 (2017),
pp. 143–171. issn: 1063-6560. doi: 10.1162/EVCO_a_00168.

[LR13] Thomas Lampe and Martin Riedmiller. “Acquiring visual servoing reaching
and grasping skills using neural reinforcement learning”. In: International
Joint Conference on Neural Networks (IJCNN). Ed. by Peter Erdi. 2013,
pp. 1–8. doi: 10.1109/IJCNN.2013.6707053.

287

Bibliography

[LRJ06] Martin Loetzsch, Max Risler, and Matthias Jungel. “XABSL - A Pragmatic
Approach to Behavior Engineering”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Ed. by Yunhui Liu and
Ning Xi. 2006, pp. 5124–5129. doi: 10.1109/IROS.2006.282605.

[LRP19] Michael Lutter, Christian Ritter, and Jan Peters. “Deep Lagrangian Net-
works: Using Physics as Model Prior for Deep Learning”. In: International
Conference on Learning Representations (ICLR). Ed. by Sergey Levine,
Karen Livescu, and Shakir Mohamed. 2019. url: https://openreview.
net/forum?id=BklHpjCqKm.

[LSK14] Malte Langosz, Kai Alexander von Szadkowski, and Frank Kirchner. “In-
troducing Particle Swarm Optimization into a Genetic Algorithm to Evolve
Robot Controllers”. In: Genetic and Evolutionary Computation Conference
Companion. Ed. by Christian Igel. GECCO ’14. Vancouver, BC, Canada:
ACM, 2014, pp. 9–10. isbn: 978-1-4503-2881-4. doi: 10.1145/2598394.
2598474.

[LSS10] Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. “Comparison-Based
Optimizers Need Comparison-Based Surrogates”. In: Parallel Problem Solv-
ing from Nature (PPSN). Ed. by Robert Schaefer, Carlos Cotta, Joanna
Kołodziej, and Günter Rudolph. Springer Berlin Heidelberg, 2010, pp. 364–
373. isbn: 978-3-642-15844-5. doi: 10.1007/978-3-642-15844-5_37.

[Mae+16] Guilherme Maeda, Marco Ewerton, Dorothea Koert, and Jan Peters. “Ac-
quiring and Generalizing the Embodiment Mapping From Human Observa-
tions to Robot Skills”. In: IEEE Robotics and Automation Letters (RA-L)
1.2 (2016), pp. 784–791. issn: 2377-3766.

[Mae+17] Guilherme J. Maeda, Gerhard Neumann, Marco Ewerton, Rudolf Lioutikov,
Oliver Kroemer, and Jan Peters. “Probabilistic movement primitives for
coordination of multiple human–robot collaborative tasks”. In: Autonomous
Robots 41.3 (2017), pp. 593–612. issn: 1573-7527. doi: 10.1007/s10514-
016-9556-2.

[Mah+17] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,
Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. “Dex-Net 2.0: Deep
Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic
Grasp Metrics”. In: Robotics: Science and Systems (RSS). Ed. by Nancy
Amato, Siddhartha Srinivasa, Nora Ayanian, and Scott Kuindersma. 2017.
isbn: 978-0-9923747-3-0. doi: 10.15607/RSS.2017.XIII.058.

[Mah+18] A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma,
and James Bergstra. “Benchmarking Reinforcement Learning Algorithms
on Real-World Robots”. In: Conference on Robot Learning. Ed. by Aude
Billard, Anca Dragan, Jan Peters, and Jun Morimoto. Vol. 87. Proceedings
of Machine Learning Research. PMLR, 2018, pp. 561–591. url: http://
proceedings.mlr.press/v87/mahmood18a.html.

288

[Man+16] Simon Manschitz, Michael Gienger, Jens Kober, and Jan Peters. “Proba-
bilistic decomposition of sequential force interaction tasks into Movement
Primitives”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). Ed. by Il Hong Suh and Dong-Soo Kwon. 2016,
pp. 3920–3927. doi: 10.1109/IROS.2016.7759577.

[Man+18] Simon Manschitz, Michael Gienger, Jens Kober, and Jan Peters. “Mixture of
Attractors: A novel Movement Primitive Representation for Learning Motor
Skills from Demonstrations”. In: IEEE Robotics and Automation Letters
(RA-L) 3.2 (2018), pp. 926–933.

[Mar+16] Alonso Marco, Philipp Hennig, Jeannette Bohg, Stefan Schaal, and Sebas-
tian Trimpe. “Automatic LQR Tuning Based on Gaussian Process Global
Optimization”. In: IEEE International Conference on Robotics and Automa-
tion (ICRA). Ed. by Danica Kragic, Antonio Bicchi, and Alessandro De
Luca. 2016, pp. 270–277. doi: 10.1109/ICRA.2016.7487144.

[MAR20] MARS development team. Machina Arte Robotum Simulans (MARS).
2020. url: https://github.com/rock- simulation/mars (visited on
05/27/2020).

[Mas12] Matthew T. Mason. “Creation Myths: The Beginnings of Robotics Re-
search”. In: IEEE Robotics Automation Magazine 19.2 (2012), pp. 72–77.
issn: 1070-9932. doi: 10.1109/MRA.2012.2191437.

[Mat+05] Takamitsu Matsubara, Jun Morimoto, Jun Nakanishi, Masa-Aki Sato, and
Kenji Doya. “Learning CPG-based biped locomotion with a policy gradi-
ent method”. In: IEEE-RAS International Conference on Humanoid Robots
(Humanoids). 2005, pp. 208–213. doi: 10.1109/ICHR.2005.1573569.

[Mát65] I. Mátyáš. “Random optimization”. In: Automation and Remote Control 26
(2 1965), pp. 246–253.

[MB15] Marcell Missura and Sven Behnke. “Online Learning of Bipedal Walking
Stabilization”. In: KI – Künstliche Intelligenz 29.4 (2015), pp. 401–405.
issn: 1610-1987. doi: 10.1007/s13218-015-0387-7.

[MB17] Jose R. Medina and Aude Billard. “Learning Stable Task Sequences
from Demonstration with Linear Parameter Varying Systems and Hid-
den Markov Models”. In: Conference on Robot Learning (CoRL). Ed. by
Sergey Levine, Vincent Vanhoucke, and Ken Goldberg. Vol. 78. Proceed-
ings of Machine Learning Research. PMLR, 2017, pp. 175–184. url: http:
//proceedings.mlr.press/v78/medina17a.html.

[MB90] Pattie Maes and Rodney A. Brooks. “Learning to Coordinate Behaviors”.
In: AAAI Conference on Artificial Intelligence. Ed. by Tom Dietterich
and Bill Swartout. AAAI’90. Boston, Massachusetts: AAAI Press, 1990,
pp. 796–802. isbn: 0-262-51057-X.

289

Bibliography

[MC89] Michael McCloskey and Neal J. Cohen. “Catastrophic Interference in Con-
nectionist Networks: The Sequential Learning Problem”. In: Psychology of
Learning and Motivation 24 (1989). Ed. by Gordon H. Bower, pp. 109–165.
issn: 0079-7421. doi: 10.1016/S0079-7421(08)60536-8.

[MC92] Sridhar Mahadevan and Jonathan Connell. “Automatic programming of
behavior-based robots using reinforcement learning”. In: Artificial Intelli-
gence 55.2 (1992), pp. 311–365. issn: 0004-3702. doi: 10.1016/0004-

3702(92)90058-6.

[MCM13] Stefano Michieletto, Nicola Chessa, and Emanuele Menegatti. “Learning
how to approach industrial robot tasks from natural demonstrations”. In:
IEEE Workshop on Advanced Robotics and its Social Impacts. Ed. by
Takashi Yoshimi, Hiroki Murakami, Sandra Hirche, and Katsu Yamane.
2013, pp. 255–260. doi: 10.1109/ARSO.2013.6705538.

[MD01] Jun Morimoto and Kenji Doya. “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning”. In: Robotics and Au-
tonomous Systems 36.1 (2001), pp. 37–51. issn: 0921-8890. doi: 10.1016/
S0921-8890(01)00113-0.

[Mei06] Nicolai Meinshausen. “Quantile Regression Forests”. In: Journal of Machine
Learning Research 7 (2006), pp. 983–999. issn: 1532-4435. url: http://
jmlr.csail.mit.edu/papers/v7/meinshausen06a.html.

[Met+14] Jan Hendrik Metzen, Alexander Fabisch, Lisa Senger, José de Gea Fer-
nández, and Elsa Andrea Kirchner. “Towards Learning of Generic Skills for
Robotic Manipulation”. In: KI – Künstliche Intelligenz 28.1 (2014), pp. 15–
20. issn: 1610-1987. doi: 10.1007/s13218-013-0280-1.

[Met15] Jan Hendrik Metzen. “Active Contextual Entropy Search”. In: Workshop
on Bayesian Optimization, Advances in Neural Information Processing Sys-
tems. Ed. by Nando de Freitas, Ryan P. Adams, Bobak Shahriari, Roberto
Calandra, and Amar Shah. Montreal, Quebec, Canada, 2015. url: http:
//arxiv.org/abs/1511.04211.

[Met16] Jan Hendrik Metzen. “Minimum Regret Search for Single- and Multi-Task
Optimization”. In: International Conference on Machine Learning (ICML).
Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings
of Machine Learning Research. New York, New York, USA: PMLR, 2016,
pp. 192–200. url: http://proceedings.mlr.press/v48/metzen16.html.

[Mew14] Florian Mewes. “Entwicklung einer dynamischen Spielstrategie auf der hu-
manoiden Roboterplattform NAO”. Available online at robocup.imn.htwk-
leipzig . de / documents / BA _ Florian _ Mewes . pdf. Bachelor’s thesis.
HTWK Leipzig, 2014.

290

[Mey+14] Johannes Meyer, Markus Kuderer, Jörg Müller, and Wolfram Burgard.
“Online Marker Labeling for Fully Automatic Skeleton Tracking in Op-
tical Motion Capture”. In: IEEE International Conference on Robotics and
Automation (ICRA). Ed. by Ning Xi and William R. Hamel. Hong Kong,
China, 2014, pp. 5652–5657.

[MF20] Jan Hendrik Metzen and Alexander Fabisch. Bayesian Optimization
(Python library). 2020. url: https : / / github . com / rock - learning /

bayesian_optimization (visited on 06/05/2020).

[MFH15] Jan Hendrik Metzen, Alexander Fabisch, and Jonas Hansen. “Bayesian Op-
timization for Contextual Policy Search”. In: Machine Learning in Planning
and Control of Robot Motion (MLPC) Workshop, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Aleksan-
dra Faust. 2015. url: https : / / www . cs . unm . edu / ~afaust / MLPC15 _

proceedings/MLPC15_paper_Metzen.pdf.

[MFW85] Virgil Mathiowetz, Susan Federman, and Diana Wiemer. “Box and Block
Test of Manual Dexterity: Norms for 6–19 Year Olds”. In: Canadian Jour-
nal of Occupational Therapy 52.5 (1985), pp. 241–245. doi: 10 . 1177 /

000841748505200505.

[MGR18] Horia Mania, Aurelia Guy, and Benjamin Recht. “Simple random search of
static linear policies is competitive for reinforcement learning”. In: Advances
in Neural Information Processing Systems. Ed. by Samy Bengio, Hanna
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Ro-
man Garnett. Curran Associates, Inc., 2018, pp. 1800–1809. url: http:
//papers.nips.cc/paper/7451-simple-random-search-of-static-

linear-policies-is-competitive-for-reinforcement-learning.pdf.

[MHM10] Takamitsu Matsubara, Sang-Ho Hyon, and Jun Morimoto. “Learning Stylis-
tic Dynamic Movement Primitives from multiple demonstrations”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Ren C. Luo and Huei-Yung Lin. 2010, pp. 1277–1283. doi:
10.1109/IROS.2010.5651049.

[MHN13] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. “Rectifier nonlin-
earities improve neural network acoustic models”. In: Workshop on Deep
Learning for Audio, Speech, and Language Processing, International Con-
ference on Machine Learning (ICML). Ed. by Sanjoy Dasgupta and David
McAllester. 2013.

[MKP11] Katharina Mülling, Jens Kober, and Jan Peters. “A biomimetic approach
to robot table tennis”. In: Adaptive Behavior 19.5 (2011), pp. 359–376.

[ML93] Matthew T. Mason and Kevin Lynch. “Dynamic Manipulation”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Masatsugu Kidoe and Tomomasa Sato. Vol. 1. 1993,
pp. 152–159.

291

Bibliography

[MM98] Olvi L. Mangasarian and David R. Musicant. “Successive Overrelaxation
for Support Vector Machines”. In: IEEE Transactions on Neural Networks
10 (1998), pp. 1032–1037.

[Mni+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. “Human-level control through deep
reinforcement learning”. In: Nature 518.7540 (2015), pp. 529–533. issn:
00280836. doi: 10.1038/nature14236.

[Mni+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
“Asynchronous Methods for Deep Reinforcement Learning”. In: Interna-
tional Conference on Machine Learning (ICML). Ed. by Maria Florina Bal-
can and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, 2016, pp. 1928–1937.

[Moh+19] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih.
“Monte Carlo Gradient Estimation in Machine Learning”. In: CoRR
abs/1906.10652 (2019). arXiv: 1906.10652.

[Mor88] Hans Moravec. Mind Children: The Future of Robot and Human Intelli-
gence. Cambridge, MA, USA: Harvard University Press, 1988. isbn: 0-674-
57616-0.

[MRG03] Shie Mannor, Reuven Rubinstein, and Yohai Gat. “The Cross Entropy
Method for Fast Policy Search”. In: International Conference on Machine
Learning (ICML). Ed. by Tom Fawcett and Nina Mishra. ICML’03. Wash-
ington, DC, USA: AAAI Press, 2003, pp. 512–519. isbn: 1577351894.

[MT19] Aditya Modi and Ambuj Tewari. “Contextual Markov Decision Processes
using Generalized Linear Models”. In: International Conference on Machine
Learning (ICML), Workshop RL4RealLife. Ed. by Alborz Geramifard, Li-
hong Li, Yuxi Li, Csaba Szepesvari, and Tao Wang. 2019. url: https:
//openreview.net/forum?id=Bklh0SiQiN.

[Mül+07] Heiko Müller, Martin Lauer, Roland Hafner, Sascha Lange, Artur Merke,
and Martin Riedmiller. “Making a Robot Learn to Play Soccer Using Re-
ward and Punishment”. In: KI: Advances in Artificial Intelligence. Ed. by
Joachim Hertzberg, Michael Beetz, and Roman Englert. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 220–234. isbn: 978-3-540-74565-5.

[Mül+13] Katharina Mülling, Jens Kober, Oliver Krömer, and Jan Peters. “Learning
to Select and Generalize Striking Movements in Robot Table Tennis”. In:
International Journal of Robotics Research 32.3 (2013).

292

[Mun+16] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare.
“Safe and Efficient Off-Policy Reinforcement Learning”. In: Advances in
Neural Information Processing Systems. Ed. by D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett. Curran Associates, Inc., 2016,
pp. 1054–1062.

[Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012. isbn: 978-0-262-01802-9.

[Nag+17] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine.
“Neural Network Dynamics for Model-Based Deep Reinforcement Learn-
ing with Model-Free Fine-Tuning”. In: CoRR (2017). arXiv: 1708.02596
[cs.LG].

[ND02] Chrystopher L. Nehaniv and Kerstin Dautenhahn. “The Correspondence
Problem”. In: Imitation in Animals and Artifacts. Ed. by Kerstin Daut-
enhahn and Chrystopher L. Nehaniv. Cambridge, MA, USA: MIT Press,
2002, pp. 41–61. isbn: 0262042037.

[Nel+12] Gabe Nelson, Aaron Saunders, Neil Neville, Ben Swilling, Joe Bondaryk,
Devin Billings, Chris Lee, Robert Playter, and Marc Raibert. “PETMAN:
A Humanoid Robot for Testing Chemical Protective Clothing”. In: Journal
of the Robotics Society of Japan 30.4 (2012), pp. 372–377. doi: 10.7210/
jrsj.30.372.

[Nem+18] Bojan Nemec, Ken’ichi Yasuda, Nathaneal Mullennix, Nejc Likar, and Aleš
Ude. “Learning by Demonstration and Adaptation of Finishing Operations
Using Virtual Mechanism Approach”. In: IEEE International Conference
on Robotics and Automation (ICRA). Ed. by Kevin Lynch. 2018, pp. 7219–
7225.

[Neu11] Gerhard Neumann. “Variational Inference for Policy Search in changing
situations”. In: International Conference on Machine Learning (ICML). Ed.
by Lise Getoor and Tobias Scheffer. Bellevue, Washington, USA, 2011. isbn:
978-1-4503-0619-5.

[Nie+15] Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara
Marthi, and Andrew G. Barto. “Learning grounded finite-state repre-
sentations from unstructured demonstrations”. In: International Jour-
nal of Robotics Research 34.2 (2015), pp. 131–157. doi: 10 . 1177 /

0278364914554471.

[Nik+13] Stefanos Nikolaidis, Przemyslaw Lasota, Gregory Rossano, Carlos Mar-
tinez, Thomas Fuhlbrigge, and Julie A. Shah. “Human-robot collaboration
in manufacturing: Quantitative evaluation of predictable, convergent joint
action”. In: International Symposium on Robotics (ISR). 2013, pp. 1–6. doi:
10.1109/ISR.2013.6695625.

[Nil09] Rickard Nilsson. “Inverse kinematics”. MA thesis. Luleå University of Tech-
nology, 2009.

293

Bibliography

[NM65] John A. Nelder and Roger Mead. “A Simplex Method for Function Mini-
mization”. In: The Computer Journal 7.4 (1965), pp. 308–313. issn: 0010-
4620. doi: 10.1093/comjnl/7.4.308.

[Noc80] Jorge Nocedal. “Updating quasi-Newton matrices with limited storage”. In:
Mathematics of Computation 35 (151 1980), pp. 773–782. doi: 10.2307/
2006193.

[Nor13] Donald A. Norman. The Design of Everyday Things. Revised and expanded
edition. Basic Books, 2013. isbn: 9780465050659.

[NR00] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement
Learning”. In: International Conference on Machine Learning (ICML). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 663–670.
isbn: 1-55860-707-2.

[NŽU17] Bojan Nemec, Leon Žlajpah, and Aleš Ude. “Door opening by joining rein-
forcement learning and intelligent control”. In: International Conference on
Advanced Robotics (ICAR). 2017, pp. 222–228. doi: 10.1109/ICAR.2017.
8023522.

[OG08] David E. Orin and Ambarish Goswami. “Centroidal Momentum Matrix of
a humanoid robot: Structure and properties”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Raja Chatila,
Jean-Pierre Merlet, and Christian Laugier. 2008, pp. 653–659. doi: 10.

1109/IROS.2008.4650772.

[OGL13] David E. Orin, Ambarish Goswami, and Sung-Hee Lee. “Centroidal dynam-
ics of a humanoid robot”. In: Autonomous Robots 35.2 (2013), pp. 161–176.
issn: 1573-7527. doi: 10.1007/s10514-013-9341-4.

[OHB10] Stefan Oßwald, Armin Hornung, and Maren Bennewitz. “Learning reliable
and efficient navigation with a humanoid”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). Ed. by Wesley Snyder and Vijay
Kumar. 2010, pp. 2375–2380. doi: 10.1109/ROBOT.2010.5509420.

[OK04] Pierre-Yves Oudeyer and Frederic Kaplan. “Intelligent adaptive curiosity:
a source of self-development”. In: International Workshop on Epigenetic
Robotics. Ed. by Luc Berthouze, Hideki Kozima, Christopher G. Prince,
Giulio Sandini, Georgi Stojanov, G. Metta, and C. Balkenius. Lund Uni-
versity Cognitive Studies, 2004, pp. 127–130.

[Ola15] Chris Olah. Neural Networks, Types, and Functional Programming. 2015.
url: http://colah.github.io/posts/2015-09-NN-Types-FP/ (visited
on 02/11/2020).

294

[Ope+19a] OpenAI, : Christopher Berner, Greg Brockman, Brooke Chan, Vicki Che-
ung, Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer,
Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Ols-
son, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szy-
mon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. “Dota
2 with Large Scale Deep Reinforcement Learning”. In: CoRR (2019). arXiv:
1912.06680 [cs.LG].

[Ope+19b] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz
Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn
Powell, Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter
Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang.
“Solving Rubik’s Cube with a Robot Hand”. In: CoRR (2019). arXiv: 1910.
07113 [cs.LG].

[Ope+20] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józe-
fowicz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert,
Glenn Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Pe-
ter Welinder, Lilian Weng, and Wojciech Zaremba. “Learning dexterous
in-hand manipulation”. In: International Journal of Robotics Research 39.1
(2020), pp. 3–20. doi: 10.1177/0278364919887447.

[Ope18] OpenAI. OpenAI Five. 2018. url: https://blog.openai.com/openai-
five/ (visited on 03/26/2020).

[Ope19] OpenAI. OpenAI Five Defeats Dota 2 World Champions. 2019. url: https:
//openai.com/blog/openai-five-defeats-dota-2-world-champions/

(visited on 03/26/2020).

[OPL15] Omair Ali, Affan Pervez, and Dongheui Lee. “Robotic Calligraphy: Learning
from Character Images”. In: International Workshop on Human-Friendly
Robotics. Munich, Germany, 2015.

[Osa+18] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell,
Pieter Abbeel, and Jan Peters. “An Algorithmic Perspective on Imitation
Learning”. In: Foundations and Trends in Robotics 7.1–2 (2018), pp. 1–179.
issn: 1935-8253. doi: 10.1561/2300000053.

[Ott15] Marc Otto. “Crossing the “reality gap” with the Transferability Approach”.
MA thesis. Bremen, Germany: University of Bremen, 2015.

[Par+13] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neu-
mann. “Probabilistic Movement Primitives”. In: Advances in Neural In-
formation Processing Systems. Ed. by C. J. C. Burges, Leon Bottou, M.
Welling, Z. Ghahramani, and K. Q. Weinberger. Curran Associates, Inc.,
2013, pp. 2616–2624. url: http : / / papers . nips . cc / paper / 5177 -

probabilistic-movement-primitives.pdf.

295

Bibliography

[Par+15] Simone Parisi, Hany Abdulsamad, Alexandros Paraschos, Christian Daniel,
and Jan Peters. “Reinforcement learning vs human programming in teth-
erball robot games”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Ed. by Jianwei Zhang and Alois Knoll. 2015,
pp. 6428–6434. doi: 10.1109/IROS.2015.7354296.

[Par+18] Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neu-
mann. “Using probabilistic movement primitives in robotics”. In: Au-
tonomous Robots 42.3 (2018), pp. 529–551. issn: 1573-7527. doi: 10.1007/
s10514-017-9648-7.

[Pas+09] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. “Learn-
ing and generalization of motor skills by learning from demonstration”. In:
IEEE International Conference on Robotics and Automation (ICRA). Ed.
by Kazuhiro Kosuge and Katsushi Ikeuchi. 2009, pp. 763–768.

[Pas+11] Peter Pastor, Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou,
and Stefan Schaal. “Skill learning and task outcome prediction for manip-
ulation”. In: IEEE International Conference on Robotics and Automation
(ICRA). Ed. by Zexiang Li and Yuan Fang Zheng. Shanghai, China, 2011,
pp. 3828–3834.

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019,
pp. 8024–8035. url: http://papers.nips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[Pea01] Karl Pearson. “On lines and planes of closest fit to systems of points
in space”. In: The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science 2.11 (1901), pp. 559–572. doi: 10 . 1080 /

14786440109462720.

[Pen+17] Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne.
“DeepLoco: dynamic locomotion skills using hierarchical deep reinforcement
learning”. In: ACM Transactions on Graphics 36.4 (2017), pp. 1–13. issn:
07300301. doi: 10.1145/3072959.3073602.

[Pen+18] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
“DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-
Based Character Skills”. In: ACM Transactions on Graphics 37.4 (2018).
issn: 0730-0301. doi: 10.1145/3197517.3201311.

296

[Pen+20] Xue Bin Peng, Erwin Coumans, Tingnan Zhang, Tsang-Wei Lee, Jie Tan,
and Sergey Levine. “Learning Agile Robotic Locomotion Skills by Imitating
Animals”. In: CoRR (2020). arXiv: 2004.00784 [cs.RO].

[Pet+12] Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, and Oliver
Krömer. “Robot Skill Learning”. In: European Conference on Artificial In-
telligence. Ed. by Luc De Raedt, Christian Bessiere, Didier Dubois, Patrick
Doherty, and Paolo Frasconi. 2012, pp. 40–45.

[Pet+14] Tadej Petrič, Andrej Gams, Leon Žlajpah, and Aleš Ude. “Online learning of
task-specific dynamics for periodic tasks”. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). Ed. by Kevin Lynch and
Lynne Parker. 2014, pp. 1790–1795. doi: 10.1109/IROS.2014.6942797.

[Pfe+17] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Ce-
sar Cadena. “From perception to decision: A data-driven approach to end-
to-end motion planning for autonomous ground robots”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). Ed. by I-Ming
Chen and Yoshihiko Nakamura. 2017, pp. 1527–1533. doi: 10.1109/ICRA.
2017.7989182.

[PG16] Lerrel Pinto and Abhinav Gupta. “Supersizing self-supervision: Learning to
grasp from 50K tries and 700 robot hours”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). Ed. by Danica Kragic, Antonio
Bicchi, and Alessandro De Luca. 2016, pp. 3406–3413. doi: 10.1109/ICRA.
2016.7487517.

[PGA18] Dario Pavllo, David Grangier, and Michael Auli. “QuaterNet: A
Quaternion-based Recurrent Model for Human Motion”. In: British Ma-
chine Vision Conference. Ed. by Hubert P. H. Shum and Timothy
Hospedales. BMVA Press, 2018.

[PH04] Nancy S. Pollard and Jessica K. Hodgins. “Generalizing Demonstrated Ma-
nipulation Tasks”. In: Algorithmic Foundations of Robotics V. Ed. by Jean-
Daniel Boissonnat, Joel Burdick, Ken Goldberg, and Seth Hutchinson.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 523–539. isbn:
978-3-540-45058-0. doi: 10.1007/978-3-540-45058-0_31.

[PHS08] Peter Pastor, Heiko Hoffmann, and Stefan Schaal. “Movement generation by
learning from demonstration and generalization to new targets”. In: Adap-
tive Motion of Animals and Machines (AMAM). 2008.

[Pin+19] Robert Pinsler, Peter Karkus, Andras Gabor Kupcsik, David Hsu, and Wee
Sun Lee. “Factored Contextual Policy Search with Bayesian optimization”.
In: IEEE International Conference on Robotics and Automation (ICRA).
Ed. by Ayanna Howard. 2019, pp. 7242–7248.

[Pla98] John Platt. Sequential Minimal Optimization: A Fast Algorithm for Train-
ing Support Vector Machines. Tech. rep. MSR-TR-98-14. Microsoft Re-
search, 1998.

297

Bibliography

[PMA10] Jan Peters, Katharina Mülling, and Yasemin Altün. “Relative Entropy Pol-
icy Search”. In: AAAI Conference on Artificial Intelligence. Ed. by D. Poole
Fox M. Atlanta, Georgia, USA: AAAI Press, 2010, pp. 1607–1612. isbn:
978-1-577-35463-5.

[PML17] Affan Pervez, Yuecheng Mao, and Dongheui Lee. “Learning deep move-
ment primitives using convolutional neural networks”. In: IEEE-RAS In-
ternational Conference on Humanoid Robots (Humanoids). Ed. by Tamim
Asfour. 2017, pp. 191–197. doi: 10.1109/HUMANOIDS.2017.8246874.

[Pol+02] Nancy S. Pollard, Jessica K. Hodgins, Marcia J. Riley, and Christopher G.
Atkeson. “Adapting human motion for the control of a humanoid robot”. In:
IEEE International Conference on Robotics and Automation (ICRA). Ed.
by William R. Hamel and Anthony A. Maciejewski. Vol. 2. 2002, pp. 1390–
1397. doi: 10.1109/ROBOT.2002.1014737.

[PS06] Jan Peters and Stefan Schaal. “Policy gradient methods for robotics”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Yunhui Liu and Ning Xi. 2006, pp. 2219–2225.

[PS07] Jan Peters and Stefan Schaal. “Reinforcement Learning by Reward-
weighted Regression for Operational Space Control”. In: International Con-
ference on Machine Learning (ICML). Ed. by Zoubin Ghahramani. ICML
’07. Corvalis, Oregon, USA: Association for Computing Machinery, 2007,
pp. 745–750. isbn: 9781595937933. doi: 10.1145/1273496.1273590.

[PS08a] Jan Peters and Stefan Schaal. “Natural Actor-Critic”. In: Neurocomputing
71.7-9 (2008), pp. 1180–1190. issn: 0925-2312.

[PS08b] Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills with
policy gradients”. In: Neural Networks 21.4 (2008). Robotics and Neuro-
science, pp. 682–697. issn: 0893-6080. doi: 10.1016/j.neunet.2008.02.
003.

[PVS05] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. “Natural Actor-Critic”.
In: European Conference on Machine Learning. Ed. by J. Gama, R. Cama-
cho, P. Brazdil, A. Jorge, and L. Torgo. Vol. 3720. Springer, 2005, pp. 280–
291.

[Qua20a] Qualisys AB. 5+, 6+ and 7+ series. 2020. url: https://www.qualisys.
com/hardware/5-6-7/ (visited on 05/27/2020).

[Qua20b] Qualisys AB. Qualisys Track Manager (QTM). 2020. url: https : / /

www.qualisys.com/software/qualisys- track- manager/ (visited on
04/04/2020).

[Qui+09] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Y. Ng. “ROS: an
open-source Robot Operating System”. In: Workshop on Open Source Soft-
ware, IEEE International Conference on Robotics and Automation (ICRA)
3 (2009).

298

[Rah+18] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Aman Behal, and Ladislau
Bölöni. “From Virtual Demonstration to Real-World Manipulation Using
LSTM and MDN”. In: AAAI Conference on Artificial Intelligence. Ed. by
Sheila McIlraith and Kilian Weinberger. 2018. url: https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/16194.

[Rai+08] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter. “Big-
Dog, the Rough-Terrain Quadruped Robot”. In: IFAC World Congress. Ed.
by Dongil Cho and Shinji Hara. Vol. 41. 2. 2008, pp. 10822–10825. doi:
10.3182/20080706-5-KR-1001.01833.

[Raj+17a] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John
Schulman, Emanuel V. Todorov, and Sergey Levine. “Learning Complex
Dexterous Manipulation with Deep Reinforcement Learning and Demon-
strations”. In: CoRR abs/1709.10087 (2017). arXiv: 1709.10087.

[Raj+17b] Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and Sham M.
Kakade. “Towards Generalization and Simplicity in Continuous Control”.
In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Curran Associates, Inc., 2017, pp. 6550–6561. url: http :

/ / papers . nips . cc / paper / 7233 - towards - generalization - and -

simplicity-in-continuous-control.pdf.

[Rat90] Roger Ratcliff. “Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions”. In: Psychological Review 97
(2 1990), pp. 285–308.

[Rau+12] Christian Rauch, Tim Köhler, Martin Schröer, Elmar Berghöfer, and Frank
Kirchner. “A Concept of a Reliable Three-Layer Behaviour Control System
for Cooperative Autonomous Robots”. In: KI: Advances in Artificial Intel-
ligence. Ed. by Birte Glimm and Antonio Krüger. 2012.

[Rau+19] Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Jürgen Schmidhu-
ber. “Hindsight policy gradients”. In: International Conference on Learning
Representations (ICLR). Ed. by Sergey Levine, Karen Livescu, and Shakir
Mohamed. 2019. url: https://openreview.net/forum?id=Bkg2viA5FQ.

[RE13] Paul Ruvolo and Eric Eaton. “Scalable Lifelong Learning with Active
Task Selection”. In: AAAI Spring Symposium: Lifelong Machine Learning.
Vol. SS-13-05. AAAI Technical Report. AAAI, 2013.

[Rec71] Ingo Rechenberg. “Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution”. PhD thesis. Berlin, Germany:
TU Berlin, 1971.

[RF18] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”.
In: CoRR abs/1804.02767 (2018). arXiv: 1804.02767.

299

Bibliography

[RG07] Martin Riedmiller and Thomas Gabel. “On Experiences in a Complex and
Competitive Gaming Domain: Reinforcement Learning Meets RoboCup”.
In: IEEE Symposium on Computational Intelligence and Games. Ed. by
Alan Blair, Sung-Bae Cho, and Simon M. Lucas. 2007, pp. 17–23. doi:
10.1109/CIG.2007.368074.

[RGB11] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. “A Reduction of Im-
itation Learning and Structured Prediction to No-Regret Online Learn-
ing”. In: International Conference on Artificial Intelligence and Statistics
(AISTATS). Ed. by Geoffrey Gordon, David Dunson, and Miroslav Dudík.
Vol. 15. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, 2011, pp. 627–635.

[Rie+09] Martin Riedmiller, Thomas Gabel, Roland Hafner, and Sascha Lange. “Re-
inforcement learning for robot soccer”. In: Autonomous Robots 27.1 (2009),
pp. 55–73. issn: 1573-7527. doi: 10.1007/s10514-009-9120-4.

[Rie05] Martin Riedmiller. “Neural Fitted Q Iteration - First Experiences with a
Data Efficient Neural Reinforcement Learning Method”. In: European Con-
ference on Machine Learning. Ed. by J. Gama, R. Camacho, P. Brazdil, A.
Jorge, and L. Torgo. Springer, 2005, pp. 317–328.

[RK17] Nemanja Rakicevic and Petar Kormushev. “Efficient Robot Task Learn-
ing and Transfer via Informed Search in Movement Parameter Space”. In:
Workshop on Acting and Interacting in the Real World: Challenges in Robot
Learning, Advances in Neural Information Processing Systems. Ed. by Ing-
mar Posner, Raia Hadsell, Martin Riedmiller, Markus Wulfmeier, and Ro-
han Paul. 2017.

[RMD07] Martin Riedmiller, Michael Montemerlo, and Hendrik Dahlkamp. “Learning
to Drive a Real Car in 20 Minutes”. In: Frontiers in the Convergence of
Bioscience and Information Technologies. Ed. by Daniel Howard, Phill Kyu
Rhee, Saman Halgamuge, and Seong-Joon Yoo. 2007, pp. 645–650. doi:
10.1109/FBIT.2007.37.

[RMG17] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “A Motion Retargeting
Method for Effective Mimicry-Based Teleoperation of Robot Arms”. In:
ACM/IEEE International Conference on Human-Robot Interaction. Ed. by
Astrid Weiss and James Young. HRI ’17. Vienna, Austria: Association for
Computing Machinery, 2017, pp. 361–370. isbn: 9781450343367. doi: 10.
1145/2909824.3020254.

[RMG18] Daniel Rakita, Bilge Mutlu, and Michael Gleicher. “RelaxedIK: Real-time
Synthesis of Accurate and Feasible Robot Arm Motion”. In: Robotics: Sci-
ence and Systems (RSS). Ed. by Hadas Kress-Gazit, Siddhartha Srinivasa,
Tom Howard, and Nikolay Atanasov. 2018. isbn: 978-0-9923747-4-7. doi:
10.15607/RSS.2018.XIV.043.

300

[RN94] Gavin Adrian Rummery and Mahesan Niranjan. On-line Q-learning using
connectionist systems. Tech. rep. CUED/F-INFENG/TR 166. Engineering
Department, Cambridge University, 1994.

[Rob52] Herbert Robbins. “Some aspects of the sequential design of experiments”.
In: Bulletin of the American Mathematical Society 58.5 (1952), pp. 527–
535.

[Röf18] Thomas Röfer. “CABSL - C-based Agent Behavior Specification Language”.
In: RoboCup: Robot Soccer World Cup. Ed. by Hidehisa Akiyama, Oliver
Obst, Claude Sammut, and Flavio Tonidandel. Lecture Notes in Artificial
Intelligence. Springer, 2018.

[Ros+13] Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, An-
dreas Wendel, Debadeepta Dey, J. Andrew Bagnell, and Martial Hebert.
“Learning monocular reactive UAV control in cluttered natural environ-
ments”. In: IEEE International Conference on Robotics and Automation
(ICRA). Ed. by Lynne E. Parker. 2013, pp. 1765–1772.

[Roz+15] Leonel Rozo, Danilo Bruno, Sylvain Calinon, and Darwin G. Caldwell.
“Learning optimal controllers in human-robot cooperative transportation
tasks with position and force constraints”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Ed. by Jianwei
Zhang and Alois Knoll. 2015, pp. 1024–1030. doi: 10.1109/IROS.2015.
7353496.

[RP20] Filipe Rodrigues and Francisco C. Pereira. “Beyond Expectation: Deep
Joint Mean and Quantile Regression for Spatiotemporal Problems”. In:
IEEE Transactions on Neural Networks and Learning Systems (2020),
pp. 1–13.

[RSF13] Eric Rohmer, Surya P. N. Singh, and Marc Freese. “V-REP: A versatile and
scalable robot simulation framework”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). Ed. by Shigeki Sugano and
Makoto Kaneko. 2013, pp. 1321–1326. doi: 10.1109/IROS.2013.6696520.

[Rub99] Reuven Rubinstein. “The Cross-Entropy Method for Combinatorial and
Continuous Optimization”. In: Methodology And Computing In Applied
Probability 1 (2 1999), pp. 127–190. doi: 10.1023/A:1010091220143.

[Rue+15] Elmar Rueckert, Jan Mundo, Alexandros Paraschos, Jan Peters, and Ger-
hard Neumann. “Extracting low-dimensional control variables for move-
ment primitives”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). Ed. by Lynne Parker and Nancy Amato. 2015, pp. 1511–
1518. doi: 10.1109/ICRA.2015.7139390.

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, 2005.

301

Bibliography

[Sal+17] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever.
“Evolution Strategies as a Scalable Alternative to Reinforcement Learning”.
In: CoRR (2017). arXiv: 1703.03864 [stat.ML].

[San+18] Jose Sanchez, Juan-Antonio Corrales, Belhassen-Chedli Bouzgarrou, and
Youcef Mezouar. “Robotic manipulation and sensing of deformable objects
in domestic and industrial applications: a survey”. In: International Journal
of Robotics Research (2018), pp. 1–29. issn: 0278-3649. doi: 10.1177/

0278364918779698.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. 2nd ed. MIT Press, 2018. isbn: 9780262039246.

[SBS10] David Silver, J. Andrew Bagnell, and Anthony Stentz. “Learning from
Demonstration for Autonomous Navigation in Complex Unstructured Ter-
rain”. In: International Journal of Robotics Research 29.12 (2010), pp. 1565–
1592. issn: 0278-3649. doi: 10.1177/0278364910369715.

[SBW92] Richard S. Sutton, Andrew G. Barto, and Ronald J. Williams. “Reinforce-
ment learning is direct adaptive optimal control”. In: IEEE Control Sys-
tems Magazine 12.2 (1992), pp. 19–22. issn: 1066-033X. doi: 10.1109/37.
126844.

[SC78] Hiroaki Sakoe and Seibi Chiba. “Dynamic programming algorithm opti-
mization for spoken word recognition”. In: IEEE Transactions on Acoustics,
Speech, and Signal Processing 26.1 (1978), pp. 43–49. issn: 0096-3518. doi:
10.1109/TASSP.1978.1163055.

[Sch+04] Stefan Schaal, Dagmar Sternad, Rieko Osu, and Mitsuo Kawato. “Rhythmic
movement is not discrete”. In: Nature Neuroscience 7.10 (2004), pp. 1137–
1144.

[Sch+14] Jakob Schwendner, Thomas M. Roehr, Stefan Haase, Malte Wirkus, Marc
Manz, Sascha Arnold, and Janosch Machowinski. “The Artemis Rover as
an Example for Model Based Engineering in Space Robotics”. In: Work-
shop on Modelling, Estimation, Perception and Control of All Terrain Mo-
bile Robots, IEEE International Conference on Robotics and Automation
(ICRA). Ed. by Philippe Martinet, Kasuya Yoshida, and Marcel Berger-
man. Hong Kong, China: IEEE, 2014. url: http://wmepc14.irccyn.ec-
nantes.fr/material/paper/paper-Artemis.pdf.

[Sch+15a] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. “Universal
Value Function Approximators”. In: International Conference on Machine
Learning (ICML). Ed. by Francis Bach and David Blei. Vol. 37. Proceedings
of Machine Learning Research. Lille, France: PMLR, 2015, pp. 1312–1320.

[Sch+15b] Tobias Schubert, Alexis Gkogkidis, Tonio Ball, and Wolfram Burgard. “Au-
tomatic initialization for skeleton tracking in optical motion capture”. In:
IEEE International Conference on Robotics and Automation (ICRA). Ed.
by Lynne Parker and Nancy Amato. 2015, pp. 734–739.

302

[Sch+15c] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. “Trust Region Policy Optimization”. In: International Conference
on Machine Learning (ICML). Ed. by Francis Bach and David Blei. Vol. 37.
Proceedings of Machine Learning Research. Lille, France: PMLR, 2015,
pp. 1889–1897.

[Sch+16a] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prioritized
Experience Replay”. In: International Conference on Learning Representa-
tions (ICLR). Ed. by Samy Bengio and Brian Kingsbury. Puerto Rico,
2016.

[Sch+16b] Tobias Schubert, Katharina Eggensperger, Alexis Gkogkidis, Frank Hutter,
Tonio Ball, and Wolfram Burgard. “Automatic bone parameter estimation
for skeleton tracking in optical motion capture”. In: IEEE International
Conference on Robotics and Automation (ICRA). Ed. by Danica Kragic,
Antonio Bicchi, and Alessandro De Luca. 2016, pp. 5548–5554.

[Sch+16c] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. “High-Dimensional Continuous Control Using Generalized Advan-
tage Estimation”. In: International Conference on Learning Representations
(ICLR). Ed. by Samy Bengio and Brian Kingsbury. 2016.

[Sch+17a] Connor Schenck, Jonathan Tompson, Sergey Levine, and Dieter Fox.
“Learning Robotic Manipulation of Granular Media”. In: Conference on
Robot Learning (CoRL). Ed. by Sergey Levine, Vincent Vanhoucke, and
Ken Goldberg. Vol. 78. Proceedings of Machine Learning Research. PMLR,
2017, pp. 239–248. url: http : / / proceedings . mlr . press / v78 /

schenck17a.html.

[Sch+17b] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. “Proximal Policy Optimization Algorithms”. In: CoRR
abs/1707.06347 (2017). arXiv: 1707.06347.

[Sch+19] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. “Green AI”.
In: CoRR abs/1907.10597 (2019). arXiv: 1907.10597.

[Sch14] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”.
In: CoRR abs/1404.7828 (2014). arXiv: 1404.7828.

[Sen+14] Lisa Senger, Martin Schröer, Jan Hendrik Metzen, and Elsa Andrea Kirch-
ner. “Velocity-based Multiple Change-point Inference for Unsupervised Seg-
mentation of Human Movement Behavior”. In: International Conference on
Pattern Recognition (ICPR). Ed. by Cheng-Lin Liu, Rama Chellappa, and
Matti Pietikainen. 2014, pp. 4564–4569. doi: 10.1109/ICPR.2014.781.

[Ser+18] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric
Jang, Stefan Schaal, and Sergey Levine. “Time-Contrastive Networks: Self-
Supervised Learning from Video”. In: IEEE International Conference on
Robotics and Automation (ICRA). Ed. by Kevin Lynch. 2018, pp. 486–487.

303

Bibliography

[Set10] Burr Settles. Active Learning Literature Survey. Tech. rep. 1648. University
of Wisconsin–Madison, 2010.

[SFS98] Marco Santello, Martha Flanders, and John F. Soechting. “Postural hand
synergies for tool use”. In: Journal of Neuroscience 18 23 (1998), pp. 10105–
10115.

[Sha70] David F. Shanno. “Conditioning of quasi-Newton methods for function min-
imization”. In: Mathematics of Computation 24.111 (1970), pp. 647–656.
doi: 10.1090/S0025-5718-1970-0274029-X.

[SHS09] Ingo Steinwart, Don Hush, and Clint Scovel. “Training SVMs without off-
set”. In: Journal of Machine Learning Research 12 (2009), pp. 141–202.

[Sil+14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. “Deterministic Policy Gradient Algorithms”. In: In-
ternational Conference on Machine Learning (ICML). Ed. by Eric P. Xing
and Tony Jebara. Vol. 32. Proceedings of Machine Learning Research 1.
Bejing, China: PMLR, 2014, pp. 387–395.

[Sil+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. “Mas-
tering the Game of Go with Deep Neural Networks and Tree Search”. In:
Nature 529.7587 (2016), pp. 484–489. doi: 10.1038/nature16961.

[Sil+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George van den Driessche, Thore Graepel, and Demis Hassabis. “Mastering
the game of Go without human knowledge”. In: Nature 550 (7676 2017),
pp. 354–359. issn: 1476-4687. doi: 10.1038/nature24270.

[SK06] Luis Sentis and Oussama Khatib. “A whole-body control framework for hu-
manoids operating in human environments”. In: IEEE International Con-
ference on Robotics and Automation (ICRA). Ed. by Normal Caplan and
C.S. George Lee. 2006, pp. 2641–2648. doi: 10.1109/ROBOT.2006.1642100.

[SKB12] Bruno Castro da Silva, George Konidaris, and Andrew G. Barto. “Learning
Parameterized Skills”. In: International Conference on Machine Learning
(ICML). Ed. by John Langford and Joelle Pineau. ICML’12. Edinburgh,
Scotland: Omnipress, 2012, pp. 1443–1450. isbn: 9781450312851.

[SLB09] Satinder Singh, Richard L. Lewis, and Andrew G. Barto. “Where Do Re-
wards Come From?” In: Annual Conference of the Cognitive Science Society
(CogSci). Ed. by N. Taatgen. 2009, pp. 2601–2606.

304

[SLD17] Evan Shelhamer, Jonathan Long, and Trevor Darrell. “Fully Convolutional
Networks for Semantic Segmentation”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 39.4 (2017), pp. 640–651. issn: 0162-
8828. doi: 10.1109/TPAMI.2016.2572683.

[SLS99] Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung. “Handling concept
drifts in incremental learning with support vector machines”. In: Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD). Ed.
by Usama Fayyad, Surajit Chaudhuri, and David Madigan. New York, New
York, USA: ACM Press, 1999, pp. 317–321.

[Son+20] Xingyou Song, Wenbo Gao, Yuxiang Yang, Krzysztof Choromanski,
Aldo Pacchiano, and Yunhao Tang. “ES-MAML: Simple Hessian-Free
Meta Learning”. In: International Conference on Learning Representations
(ICLR). Ed. by Dawn Song, Kyunghyun Cho, and Martha White. 2020.

[SPE18] Hubert Soyer, Drew Purves, and Lasse Espeholt. Scalable agent architec-
ture for distributed training. 2018. url: https://deepmind.com/blog/
article/impala-scalable-distributed-deeprl-dmlab-30 (visited on
08/03/2020).

[SR20] Kai von Szadkowski and Simon Reichel. “Phobos: A tool for creating
complex robot models”. In: Journal of Open Source Software 5.45 (2020),
p. 1326. doi: 10.21105/joss.01326.

[SRD19] Stefan Scherzinger, Arne Roennau, and Rüdiger Dillmann. “Contact Skill
Imitation Learning for Robot-Independent Assembly Programming”. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Ed. by Dong Sun and Fumihito Arai. 2019, pp. 4309–4316.

[Sri+10] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger.
“Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design”. In: International Conference on Machine Learning
(ICML). Ed. by Johannes Fürnkranz and Thorsten Joachims. ICML’10.
Haifa, Israel: Omnipress, 2010, pp. 1015–1022. isbn: 9781605589077.

[SS12] Freek Stulp and Olivier Sigaud. “Path Integral Policy Improvement with
Covariance Matrix Adaptation”. In: International Conference on Machine
Learning (ICML). Ed. by John Langford and Joelle Pineau. ICML’12. Ed-
inburgh, Scotland: Omnipress, 2012, pp. 1547–1554. isbn: 9781450312851.

[SS19] Olivier Sigaud and Freek Stulp. “Policy search in continuous action do-
mains: An overview”. In: Neural Networks 113 (2019), pp. 28–40. issn:
0893-6080. doi: 10.1016/j.neunet.2019.01.011.

[Ste+04] Jochen J. Steil, Frank Röthling, Robert Haschke, and Helge Ritter. “Situ-
ated robot learning for multi-modal instruction and imitation of grasping”.
In: Robotics and Autonomous Systems 47.2 (2004). Robot Learning from
Demonstration, pp. 129–141. issn: 0921-8890. doi: 10.1016/j.robot.

2004.03.007.

305

Bibliography

[STS12] Freek Stulp, Evangelos A. Theodorou, and Stefan Schaal. “Reinforcement
Learning With Sequences of Motion Primitives for Robust Manipulation”.
In: IEEE Transactions on Robotics 28.6 (2012), pp. 1360–1370. issn: 1552-
3098. doi: 10.1109/TRO.2012.2210294.

[Stu+11] Freek Stulp, Evangelos A. Theodorou, Jonas Buchli, and Stefan Schaal.
“Learning to grasp under uncertainty”. In: IEEE International Conference
on Robotics and Automation (ICRA). Ed. by Zexiang Li and Yuan Fang
Zheng. Shanghai, China, 2011, pp. 5703–5708.

[Sut+00] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay
Mansour. “Policy Gradient Methods for Reinforcement Learning with Func-
tion Approximation”. In: Advances in Neural Information Processing Sys-
tems. Ed. by S. A. Solla, T. K. Leen, and K. Müller. MIT Press, 2000,
pp. 1057–1063. url: http://papers.nips.cc/paper/1713- policy-

gradient - methods - for - reinforcement - learning - with - function -

approximation.pdf.

[Sut88] Richard S. Sutton. “Learning to Predict by the Methods of Temporal Dif-
ferences”. In: Machine Learning 3.1 (1988), pp. 9–44. issn: 0885-6125. doi:
10.1023/A:1022633531479.

[Sut90] Richard S. Sutton. “Integrated Architectures for Learning, Planning, and
Reacting Based on Approximating Dynamic Programming”. In: Interna-
tional Conference on Machine Learning (ICML). Ed. by Bruce Porter and
Raymond Mooney. San Francisco (CA): Morgan Kaufmann, 1990, pp. 216–
224. isbn: 978-1-55860-141-3. doi: 10.1016/B978-1-55860-141-3.50030-
4.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence Learn-
ing with Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger. Curran Associates, Inc., 2014, pp. 3104–3112. url:
http : / / papers . nips . cc / paper / 5346 - sequence - to - sequence -

learning-with-neural-networks.pdf.

[SW05] Reza Shadmehr and Steven P. Wise. The Computational Neurobiology of
Reaching and Pointing. MIT Press, 2005. isbn: 0-262-19508-9.

[SYL13] Daniel L. Silver, Qiang Yang, and Lianghao Li. “Lifelong Machine Learn-
ing Systems: Beyond Learning Algorithms”. In: AAAI Spring Symposium:
Lifelong Machine Learning. Vol. SS-13-05. AAAI Technical Report. AAAI,
2013.

[Sze+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing properties of
neural networks”. In: International Conference on Learning Representa-
tions (ICLR). Ed. by Aaron Courville, Rob Fergus, and Chris Manning.
2014. arXiv: 1312.6199.

306

[Tam+11] Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin Wörgötter.
“Learning to pour with a robot arm combining goal and shape learning
for dynamic movement primitives”. In: Robotics and Autonomous Systems
59.11 (2011), pp. 910–922. issn: 0921-8890. doi: 10.1016/j.robot.2011.
07.004.

[Tan+17] Voot Tangkaratt, Herke van Hoof, Simone Parisi, Gerhard Neumann, Jan
Peters, and Masashi Sugiyama. “Policy Search with High-Dimensional Con-
text Variables”. In: AAAI Conference on Artificial Intelligence. Ed. by
Satinder Singh and Shaul Markovitch. 2017, pp. 2632–2638.

[TBF05] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. isbn:
0262201623.

[TBS10a] Evangelos A. Theodorou, Jonas Buchli, and Stefan Schaal. “A Generalized
Path Integral Control Approach to Reinforcement Learning”. In: Journal
of Machine Learning Research 11.104 (2010), pp. 3137–3181. url: http:
//jmlr.org/papers/v11/theodorou10a.html.

[TBS10b] Evangelos A. Theodorou, Jonas Buchli, and Stefan Schaal. “Reinforcement
learning of motor skills in high dimensions: A path integral approach”. In:
IEEE International Conference on Robotics and Automation (ICRA). Ed.
by Wesley Snyder and Vijay Kumar. 2010, pp. 2397–2403.

[Tes92] Gerald Tesauro. “Practical issues in temporal difference learning”. In: Ma-
chine Learning 8 (3 1992), pp. 257–277. issn: 1573-0565. doi: 10.1007/
BF00992697.

[Tes95] Gerald Tesauro. “Temporal Difference Learning and TD-Gammon”. In:
Communications of the ACM 38.3 (1995), pp. 58–68. issn: 0001-0782. doi:
10.1145/203330.203343.

[TET12a] Yuval Tassa, Tom Erez, and Emanuel V. Todorov. “Synthesis and sta-
bilization of complex behaviors through online trajectory optimization”.
In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS). Ed. by Anibal T. de Almeida, Urbano Nunes, and Eugenio
Guglielmelli. 2012, pp. 4906–4913. doi: 10.1109/IROS.2012.6386025.

[TET12b] Emanuel V. Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics
engine for model-based control”. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Ed. by Anibal T. de Almeida,
Urbano Nunes, and Eugenio Guglielmelli. IEEE, 2012, pp. 5026–5033. isbn:
978-1-4673-1737-5.

[Tha+17] Brijen Thananjeyan, Animesh Garg, Sanjay Krishnan, Carolyn Chen, Lau-
ren Miller, and Ken Goldberg. “Multilateral surgical pattern cutting in 2D
orthotropic gauze with deep reinforcement learning policies for tensioning”.
In: IEEE International Conference on Robotics and Automation (ICRA).

307

Bibliography

Ed. by I-Ming Chen and Yoshihiko Nakamura. 2017, pp. 2371–2378. doi:
10.1109/ICRA.2017.7989275.

[The16] Theano Development Team. “Theano: A Python framework for fast com-
putation of mathematical expressions”. In: CoRR abs/1605.02688 (2016).
arXiv: 1605.02688 [cs.SC].

[Tib+14] Abraham Temesgen Tibebu, Bingbin Yu, Yohannes Kassahun, Emmanuel
Vander Poorten, and Phuong Toan Tran. “Towards Autonomous Robotic
Catheter Navigation Using Reinforcement Learning”. In: Joint Workshop
on New Technologies for Computer/Robot Assisted Surgery (CRAS). Ed.
by Leonardo Mattos, Paolo Fiorini, and Emmanuel Vander Porten. Genoa,
Italy, 2014, pp. 163–166.

[Tim18] Tim Head et al. scikit-optimize/scikit-optimize: v0.5.2. Deposited at Zen-
odo. 2018. doi: 10.5281/zenodo.1207017.

[TL05] Emanuel V. Todorov and Weiwei Li. “A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear stochastic sys-
tems”. In: American Control Conference. Ed. by Sivasubramanya N. Bal-
akrishnan. 2005, pp. 300–306.

[TL16] Lei Tai and Ming Liu. “Deep-learning in Mobile Robotics - from Percep-
tion to Control Systems: A Survey on Why and Why not”. In: CoRR
abs/1612.07139 (2016). url: http://arxiv.org/abs/1612.07139.

[TLL16] Lei Tai, Shaohua Li, and Ming Liu. “A deep-network solution towards
model-less obstacle avoidance”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Ed. by Il Hong Suh and Dong-Soo
Kwon. 2016, pp. 2759–2764. doi: 10.1109/IROS.2016.7759428.

[TM95] Sebastian Thrun and Tom M. Mitchell. “Lifelong robot learning”. In:
Robotics and Autonomous Systems 15.1 (1995), pp. 25–46. issn: 0921-8890.
doi: 10.1016/0921-8890(95)00004-Y.

[Tou11] Marc Toussaint. Lecture Notes: Gaussian identities. 2011. url: https://
ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

(visited on 04/17/2020).

[TSB99] Matthew C. Tresch, Philippe Saltiel, and Emilio Bizzi. “The construction of
movement by the spinal cord”. In: Nature Neuroscience 2 (2 1999), pp. 162–
167. doi: 10.1038/5721.

[TSL00] Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. “A Global
Geometric Framework for Nonlinear Dimensionality Reduction”. In: Science
290.5500 (2000), pp. 2319–2323.

[TSP20] Samuele Tosatto, Jonas Stadtmueller, and Jan Peters. “Dimensionality Re-
duction of Movement Primitives in Parameter Space”. In: CoRR (2020).
arXiv: 2003.02634 [cs.RO].

308

[UAS04] Holger Urbanek, Alin Albu-Schaffer, and Patrick van der Smagt. “Learn-
ing from demonstration: repetitive movements for autonomous service
robotics”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Ed. by Kazuhiro Kosuge and Hajime Asama. Vol. 4. 2004,
pp. 3495–3500. doi: 10.1109/IROS.2004.1389957.

[Ude+10] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Morimoto. “Task-Specific
Generalization of Discrete and Periodic Dynamic Movement Primitives”.
In: IEEE Transactions on Robotics 26.5 (2010), pp. 800–815.

[Ude+14] Aleš Ude, Bojan Nemec, Tadej Petrić, and Jun Morimoto. “Orientation
in Cartesian space dynamic movement primitives”. In: IEEE International
Conference on Robotics and Automation (ICRA). Ed. by Ning Xi and
William R. Hamel. 2014, pp. 2997–3004.

[Uni20] Universal Robots A/S. Meet the CB3 Family. 2020. url: https://www.
universal-robots.com/cb3/ (visited on 05/06/2020).

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aiden N. Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All you
Need”. In: Advances in Neural Information Processing Systems. Ed. by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Curran Associates, Inc., 2017, pp. 5998–6008. url: http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

[VB05] Miomir Vukobratović and Branislav Borovac. “Zero-Moment Point - Thirty
Five Years of its Life”. In: IEEE-RAS International Conference on Hu-
manoid Robots (Humanoids) (2005), pp. 157–173. url: http://www.cs.
cmu.edu/~cga/legs/vukobratovic.pdf.

[Vin+19] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Powell,
Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen,
Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L.
Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman
Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith,
Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris
Apps, and David Silver. “Grandmaster level in StarCraft II using multi-
agent reinforcement learning”. In: Nature 575 (7782 2019), pp. 350–354.
doi: 10.1038/s41586-019-1724-z.

[Vla+09] Nikos Vlassis, Marc Toussaint, Georgios Kontes, and Savas Piperidis.
“Learning model-free robot control by a Monte Carlo EM algorithm”. In:
Autonomous Robots 27.2 (2009), pp. 123–130. issn: 1573-7527. doi: 10.
1007/s10514-009-9132-0.

309

Bibliography

[Wan+16a] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos,
Koray Kavukcuoglu, and Nando de Freitas. “Sample Efficient Actor-Critic
with Experience Replay”. In: International Conference on Learning Repre-
sentations (ICLR). Ed. by Samy Bengio and Brian Kingsbury. 2016.

[Wan+16b] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando
De Freitas. “Bayesian Optimization in a Billion Dimensions via Random
Embeddings”. In: Journal of Artificial Intelligence Research 55.1 (2016),
pp. 361–387. issn: 1076-9757.

[Wan+16c] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and
Nando Freitas. “Dueling Network Architectures for Deep Reinforcement
Learning”. In: International Conference on Machine Learning (ICML). Ed.
by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings
of Machine Learning Research. New York, New York, USA: PMLR, 2016,
pp. 1995–2003.

[Wat89] Christopher Watkins. “Learning from Delayed Rewards”. PhD thesis. Cam-
bridge, UK: King’s College, 1989. url: http://www.cs.rhul.ac.uk/
~chrisw/new_thesis.pdf.

[WdK12] Malte Wirkus, José de Gea Fernández, and Yohannes Kassahun. “Realiz-
ing Target-Directed Throwing With a Real Robot Using Machine Learning
Techniques”. In: Workshop on Evolutionary and Reinforcement Learning for
Autonomous Robot Systems. Ed. by Stéphane Doncieux. 2012, pp. 37–43.

[Wei+19] Richard Wei, Dan Zheng, Marc Rasi, and Bart Chrzaszcz. Differentiable
Programming Manifesto. 2019. url: https : / / github . com / apple /

swift/blob/master/docs/DifferentiableProgramming.md (visited on
02/11/2020).

[Wie+14] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and
Jürgen Schmidhuber. “Natural Evolution Strategies”. In: Journal of Ma-
chine Learning Research 15 (2014), pp. 949–980. url: http://jmlr.org/
papers/v15/wierstra14a.html.

[Wik18] Wikipedia contributors. Glossary of climbing terms — Wikipedia, The Free
Encyclopedia. 2018. url: https://en.wikipedia.org/w/index.php?
title = Glossary _ of _ climbing _ terms & oldid = 859314596 (visited on
10/06/2018).

[Wil92] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning”. In: Machine Learning 8.3–4 (1992),
pp. 229–256. issn: 0885-6125. doi: 10.1007/BF00992696.

[Wir14] Malte Wirkus. “Towards Robot-independent Manipulation Behavior De-
scription”. In: International Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRob). 2014.

310

[WS01] Christopher K. I. Williams and Matthias Seeger. “Using the Nyström
Method to Speed Up Kernel Machines”. In: Advances in Neural Information
Processing Systems. Ed. by T. K. Leen, T. G. Dietterich, and V. Tresp. MIT
Press, 2001, pp. 682–688. url: http://papers.nips.cc/paper/1866-
using-the-nystrom-method-to-speed-up-kernel-machines.pdf.

[WS13] Wen Hao Lui and Ashutosh Saxena. “Tangled: Learning to untangle ropes
with RGB-D perception”. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). Ed. by Shigeki Sugano and Makoto
Kaneko. 2013, pp. 837–844. doi: 10.1109/IROS.2013.6696448.

[Xse20] Xsens Technologies B.V. MTw Awinda. 2020. url: https://www.xsens.
com/products/mtw-awinda (visited on 05/27/2020).

[Xu+17] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. “End-To-End Learn-
ing of Driving Models From Large-Scale Video Datasets”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). Ed. by Jim
Rehg, Yanxi Liu, Ying Wu, and Camillo Taylor. 2017.

[Yan+17] Brian Yang, Grant Wang, Roberto Calandra, Daniel Contreras, Sergey
Levine, and Kristofer Pister. “Learning Locomotion Primitives from Con-
textual Bayesian Optimization”. In: Workshop on Bayesian Optimization,
Advances in Neural Information Processing Systems. Ed. by José Miguel
Hernández-Lobato, Javier Gonzalez, and Ruben Martinez-Cantin. Long
Beach, USA, 2017. url: https://pdfs.semanticscholar.org/06f2/

c307c886f97e95a8f4cba99475f946e2c085.pdf.

[YCW19] Yuhui Yuan, Xilin Chen, and Jingdong Wang. “Object-Contextual Rep-
resentations for Semantic Segmentation”. In: CoRR (2019). arXiv: 1909.
11065 [cs.CV].

[YKL17] Chuanyu Yang, Taku Komura, and Zhibin Li. “Emergence of human-
comparable balancing behaviours by deep reinforcement learning”. In:
IEEE-RAS International Conference on Humanoid Robots (Humanoids).
Ed. by Tamim Asfour. 2017, pp. 372–377. doi: 10.1109/HUMANOIDS.2017.
8246900.

[Yu+18] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang,
Pieter Abbeel, and Sergey Levine. “One-Shot Imitation from Observing
Humans via Domain-Adaptive Meta-Learning”. In: International Confer-
ence on Learning Representations (ICLR), Workshop Track Proceedings.
Ed. by Iain Murray, Marc’Aurelio Ranzato, and Oriol Vinyals. 2018.

[ZBH07] Franziska Zacharias, Christoph Borst, and Gerd Hirzinger. “Capturing
robot workspace structure: representing robot capabilities”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Ed. by
Edward Grant and Thomas C. Henderson. 2007, pp. 3229–3236.

311

Bibliography

[ZDM19] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. “Residual Learning
Without Normalization via Better Initialization”. In: International Con-
ference on Learning Representations (ICLR). Ed. by Sergey Levine, Karen
Livescu, and Shakir Mohamed. 2019.

[Zha+18a] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Gold-
berg, and Pieter Abbeel. “Deep Imitation Learning for Complex Manipu-
lation Tasks from Virtual Reality Teleoperation”. In: IEEE International
Conference on Robotics and Automation (ICRA). Ed. by Kevin Lynch.
2018, pp. 5628–5635.

[Zha+18b] Leidi Zhao, Yiwen Zhao, Siddharth Patil, Dylan Davies, Cong Wang, Lu Lu,
and Bo Ouyang. “Robot Composite Learning and the Nunchaku Flipping
Challenge”. In: IEEE International Conference on Robotics and Automation
(ICRA). Ed. by Kevin Lynch. IEEE, 2018, pp. 3160–3165.

[Zhu+17] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. “Target-driven visual navigation in indoor
scenes using deep reinforcement learning”. In: IEEE International Confer-
ence on Robotics and Automation (ICRA). Ed. by I-Ming Chen and Yoshi-
hiko Nakamura. 2017, pp. 3357–3364. doi: 10.1109/ICRA.2017.7989381.

[ZP12] Vladimir M. Zatsiorsky and Boris I. Prilutsky. Biomechanics of Skeletal
Muscles. Human Kinetics, 2012. isbn: 9781450428842.

[Zuc+11] Matt Zucker, Nathan Ratliff, Martin Stolle, Joel Chestnutt, J Andrew
Bagnell, Christopher G. Atkeson, and James Kuffner. “Optimization and
learning for rough terrain legged locomotion”. In: International Jour-
nal of Robotics Research 30.2 (2011), pp. 175–191. doi: 10 . 1177 /

0278364910392608.

312

