Scheduling and Packing Under Uncertainty

vorgelegt von
Franziska Eberle, M.Sc.

geboren in Kempten (Allgau)

Vom Fachbereich 3 — Mathematik und Informatik
der Universitat Bremen
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
— Dr. rer. nat. —

genehmigte Dissertation

Gutachter: Prof. Dr. Nicole Megow
Prof. Dr. Anupam Gupta

Tag der wissenschaftlichen Aussprache: 13. November 2020

Bremen 2020

Acknowledgements

I am grateful beyond words for the support of my family, friends, and colleagues which made
this thesis possible in the first place. First and foremost, I thank my advisor Nicole for
her constant encouragement, support, and the always open office door. Telling me about
optimization under uncertainty, inviting me to join her in Bremen, and introducing me to this
research community are only some parts that contributed to the very inspiring environment.

Many thanks also go to Cliff for welcoming me in New York for a research visit, which
led to co-authoring one paper. Further, I am very grateful to Anupam for taking the second
assessment of this thesis.

Moreover, I thank my colleagues, most of whom I now call friends, for the great collabora-
tion and for reading parts of this thesis. I especially appreciated being welcomed with open
arms at my very first MAPSP more than three years ago and the great atmosphere that our
early (sorry!) morning runs and late evening discussions created at every single conference
or workshop. I owe special thanks to Lukas, for completely reading this thesis and for the
conversations about all topics, including research and dinner plans.

I am also very grateful for my friends and the many hours spent laughing, cooking, hiking,
skiing, playing games, bouldering, going for a run, exploring new and old cities, and discussing
crazy ideas about life. Special thanks go to Lena and Isa for proofreading parts of this thesis
and for always believing in my abilities.

Moreover, I thank my family for their constant support and for never questioning my path,
even if it led me and will lead me far away from home. In particular, I thank my parents for
teaching me to never stop asking questions or seeking answers. Last but not least, I thank my
little brother for proofreading parts of this thesis and, in general, for always having my back
and being up for new adventures.

Flo, although the last months have been incredibly hard for you, you still pushed me to
finish my thesis. I would not be at this point without you. This is for you!

Bremen, November 2020 Franziska Eberle

Table of Contents

Introduction 1
Preliminaries 5)
2.1 Basic Notation e e 5
2.2 Algorithm Analysis and Complexity 6
2.3 Scheduling and Packing 8
2.3.1 Scheduling Problems 8
2.3.2 Packing Problems 9
2.4 Scheduling and Packing Under Uncertainty 10
2.4.1 Stochasticlnput 11
242 Onlinelnput e 15
2.4.3 Dynamically Changing Input 18
Stochastic Minsum Scheduling 21
3.1 Introduction e e e 22
3.2 Lower Bound for Index Policies, 24
3.3 Upper Bound for Bernoulli-Type Instances 27
3.4 Further Results on Bernoulli-Type Instances 34
3.4.1 Less Stochastic Than Deterministic Jobs 34
3.4.2 Many Long Stochastic Jobs in Expectation 35
3.4.3 Bounded Processing Times of StochasticJobs 36
3.4.4 Bounded Makespan of Deterministic Jobs 36
345 At least m — 1 Expected Long Stochastic Jobs 37
3.46 Discussion e 38
3.5 Concluding remarks 39
Online Load Balancing with Reassignment 41
4.1 Introduction e 42
4.2 Online Flows with Rerouting 44
4.3 Online Load Balancing with Reassignment 46
431 UnitSizeJobs 46
432 SmallJobs 47
433 Arbitrary Jobs L Lo 52
4.4 Concluding Remarks 53
Online Throughput Maximization o
5.1 Introduction e 56

5.2 The Threshold Algorithm oo
5.2.1 The Threshold Algorithm
5.2.2 Main Result and Road Map of the Analysis

5.3 Successfully Completing Sufficiently Many Admitted Jobs

5.4 Competitiveness: Admitting Sufficiently Many Jobs
5.4.1 A Class of Online Algorithms
5.4.2 Admitting Sufficiently Many Jobs

5.5 Lower Bound on the Competitive Ratio

5.6 Concluding Remarks

Online Throughput Maximization with Commitment

6.1 Introduction
6.2 The Blocking Algorithm
6.3 Completing All Admitted Jobson Time
6.4 Competitiveness: Admitting Sufficiently Many Jobs
6.5 Lower Bounds on the Competitive Ratio
6.6 Concluding Remarks L

Dynamic Multiple Knapsacks
7.1 Introduction
7.2 Data Structures and Preliminaries L.
7.3 Dynamic Linear Grouping
7.3.1 Algorithm L
7.3.2 Analysis e
7.4 ldentical Knapsacks e
7.4.1 Algorithm
742 Analysis
7.5 Ordinary Knapsacks When Solving Multiple Knapsack
7.5.1 Algorithm e
7.5.2 Analysis
7.6 Special Knapsacks When Solving Multiple Knapsack
7.6.1 Algorithm
7.7 Solving Multiple Knapsack
7.7.1 Algorithm
7.7.2 Analysis e
7.8 Concluding Remarks L

References

Vi

102
105
106
107
111
111
114
130
130
134
145
145
147
148
151
154

155

Introduction

Incomplete information is a major challenge when translating combinatorial optimization re-
sults to recommendations for real-world applications since problem relevant parameters change
frequently or are not known in advance. A particular solution may perform well on some spe-
cific input data or estimation thereof, but once the data is slightly perturbed or new tasks
need to be performed, the solution may become arbitrarily bad or even infeasible. Thus, either
solving the problem under uncertainty or efficiently updating the solution becomes a necessity.
This thesis explores several models for uncertainty in various problems from two fundamental
fields of combinatorial optimization: scheduling and packing.

Scheduling problems cover a variety of real-world applications. They arise whenever scarce
resources have to complete a set of tasks while optimizing some objective. Possible applications
range from the industrial sector with production planning via the service sector with delivery
tasks to the information sector with data processing and cloud computing. Given the undeni-
able effects of climate change we are facing today and the rising pressure to cut costs to keep
up with competitors, efficient solutions to any of these problems are paramount. Efficiency
might refer to the minimal necessary duration for which the system is running to process all
tasks or the maximal achievable throughput in a given time interval.

Packing problems typically appear whenever items have to be assigned to resources with
capacities. The most obvious applications are transportation processes, e.g., loading of trucks,
that take place at every stage of the manufacturing process until the delivery to the client.
Further, packing problems can also be found in computing clusters and financial applications:
Capacities have to be obeyed and costs have to be minimized, when assigning virtual machines
to real servers in computing clusters. Or, when making new investment decisions, certain
aspects, such as risk or overall volume, have to be bounded while maximizing profit. These
examples can all be considered as packing problems since they require compliance with certain
capacity constraints while maximizing the overall value of successfully packed items.

Incomplete information may be caused by various reasons, such as the unpredictable arrival
of new tasks or having only estimates of input parameters at hand. In any of these cases, we

are interested in finding provably good solutions in reasonable time. In other words, we would

1 Introduction

like to design algorithms that deal with incomplete information while performing sufficiently
well. This thesis focuses on three models of uncertainty in the input.

(i) If the precise input is unknown and only estimates of the relevant parameters are given,
the setting can be modeled via random variables, whose specific outcome is unknown but
which provide some knowledge about possible scenarios. While there are various branches of
stochastic optimization, we focus on stochastic scheduling.

(ii) Models where the data of an instance is only incrementally revealed and no full knowledge
about the instance is given in advance are called online. Since waiting for the last piece of
information to be revealed is often impossible or infeasible, immediate and possibly irrevocable
actions have to be taken as new information is revealed.

(iii) Lastly, problems where the input is subject to small perturbations such as the deletion
or addition of objects from or to an instance are called dynamic. Since only minor changes
happen, we are interested in quickly computing a new solution of good quality based on the

previously obtained results.

Outline of the Thesis

We investigate several combinatorial optimization problems and develop algorithms that per-
form provably well under incomplete information. Chapter 2 gives a brief overview over the
necessary concepts for analyzing algorithms. Moreover, we introduce the problem types con-
sidered and how to formally model uncertainty. We mostly measure the performance of an
algorithm in terms of the quality of the solution it finds. To this end, we also briefly explain
how to adapt the analysis of algorithms when facing uncertainty in the input. The remainder

of the thesis is organized as follows.

Stochastic Scheduling

In Chapter 3, we investigate a scheduling problem where the job set is given in advance but
(almost) no information about the duration, the processing time, of a job is available. More
precisely, the processing times are modeled as independent random variables and the scheduler
only has access to their distributional information but not to their exact realization. The
goal is to schedule the jobs on m parallel machines such that the expected value of the total
completion time is minimized. We rule out distribution-independent performance guarantees
for a highly useful and widely used class of algorithms, so-called indez policies. We also show
that giving the algorithm slightly more freedom in choosing the scheduling order of the jobs
enables us to obtain a performance guarantee linear in m for the type of instances we used
in our negative result. We complement this with a closer look at these special instances and

providing a set of rules for which even constant performance guarantees are possible.

Online Scheduling with Reassignment

In Chapter 4, we consider an online scheduling problem where n jobs are incrementally revealed
and, on arrival, have to be assigned immediately to one of the machines to minimize the
latest completion time of a job. However, each job may only be processed by a subset of
the machines. There exist strong lower bounds on the performance of any online algorithm,
that has to irrevocably assign jobs on arrival, by Azar, Naor, and Rom [ANR92]. Therefore,
Gupta, Kumar, and Stein [GKS14] weaken the traditional irrevocability assumption for online
algorithms and allow their algorithm to moderately reassign jobs in order to maintain a good
solution. They bound the number of such changes which is usually referred to as online
optimization with recourse. We are able to generalize their result to the setting where each job
comes with its individual cost that has to be paid upon (re)assigning it. We obtain a matching
performance guarantee linear in loglog(mn) with a bound on the incurred reassignment cost
linear in the total assignment cost. This model also generalizes online optimization with

migration that is concerned with bounding the volume of changes an online algorithm makes.

Online Deadline-Sensitive Scheduling

In Chapters 5 and 6, we investigate a scheduling problem where jobs arrive online over time at
their release date and have to be processed by identical parallel machines before their respective
deadlines. The goal is to maximize the throughput, i.e., the number of jobs that complete before
their deadlines. As shown by Baruah, Haritsa, and Sharma [BHS94], hard instances for online
algorithms involve “tight” jobs, i.e., jobs that need to be scheduled immediately and without
interruption in order to complete on time. To circumvent these difficulties, we require that the
instance does not contain tight jobs and thus enforce some relative slack for each job in the
interval defined by its release date and its deadline. We assume that each job’s interval has
length at least (1 + ¢) times its processing time for a given slackness parameter ¢ > 0.

In Chapter 5, we develop an online algorithm for maximizing the throughput. In fact, this
algorithm is quite similar to the one designed by Lucier et al. [LMNY13] for maximizing the
total weight of jobs finished on time. With a completely different analysis, we show that its
worst-case performance depends linearly on % in the unweighted case. By giving a matching
lower bound for any online algorithm, we also prove that this algorithm is best possible.

In Chapter 6, we introduce the notion of commitment to the model. That is, any scheduler
either has to commit to the completion of a job at some point between its release date and
its deadline or discard the job completely. We investigate the impact various commitment re-
quirements have on the performance of online algorithms and we rule out any online algorithm
with reasonable performance if the commitment is required immediately upon arrival of a job.
For two less strict commitment requirements, we develop an algorithm with provably good
performance. Surprisingly, when the scheduler has to commit upon starting a job, we obtain

the same asymptotic performance guarantee as in the setting without commitment. Requir-

1 Introduction

ing J-commitment means that the commitment decision has to be made when the slackness
assumption reduces from ¢ to d, for § € (0,¢). Since this commitment requirement tightens to
commitment upon arrival when ¢ tends to ¢, it is not surprising that the performance guarantee
diverges with increasing . However, if § is bounded away from e, then we recover the same
performance guarantee as in the model without commitment. We supplement this chapter

with further lower bounds for online scheduling with commitment.

Dynamic Packing

In Chapter 7, we design and analyze a dynamic algorithm for knapsack problems. Here we are
given a set of items with sizes and values as well as a set of knapsacks with capacities. Both sets
are subject to small changes, specifically, the deletion or addition of an item or a knapsack. The
goal is to maintain an assignment of items to knapsacks that does not exceed their capacities
and maximizes the total value of packed items. We give a dynamic algorithm that deals with a
change in the instance in poly-logarithmic time while maintaining an almost optimal solution.
At the heart of our result lies a novel and dynamic approach to linear grouping of items. For
the special case of many identical knapsacks, we can do even better and give a significantly
faster algorithm. We also show that it is impossible to obtain similarly fast algorithms for few
knapsacks, unless P = NP.

Preliminaries

We introduce notation and concepts used throughout this thesis. Further, we give a
short overview over scheduling and packing problems as well as a brief introduction to
the concepts of uncertainty considered.

We assume some knowledge of the basic concepts of combinatorial optimization and refer
to the books by Korte and Vygen [KV02] and by Schrijver [Sch03] for an overview. For an
in-depth introduction to network flows, we point to the book by Ahuja, Magnanti, and
Orlin [AMO93]. For a introduction to the theory of linear programming, we recommend
the textbook by Bertsimas and Tsitsiklis [BT97]. Further, we assume some familiarity
with probability theory and refer to the books by Biagini and Campanino [BC16] and
Gut [Gut13]. For an overview over discrete probability distributions, we recommend the
book by Johnson, Kemp, and Kotz [JKKO05] and the references therein.

Table of Contents

21
2.2
2.3

24

Basic Notation 5
Algorithm Analysis and Complexity Lo 6
Scheduling and Packing L 8
2.3.1 Scheduling Problems L 8
2.3.2 Packing Problemso 9
Scheduling and Packing Under Uncertainty 10
241 Stochastic Input L. L L e e 11
242 Onlinelnput o o L e e e e 15
2.4.3 Dynamically Changing Inputo 18

2.1 Basic Notation

We use Ny and N to refer to the set of natural numbers with and without 0, respectively.

Further, Z, Q, and R denote the sets of integral, rational, and real numbers, respectively.

By ZT, Q" and RT™ we refer to the sets of non-negative integral, rational, and real numbers,

2 Preliminaries

respectively. For a natural number n € N, we define [n] to be the set of all natural numbers
up to n, that is, [n] = {1,...,n}. For two real numbers z and y € R, let [z, y]| be the closed
interval, (z,y) the open interval, and [z,y) as well as (z,y] the half-open intervals from z to y
in R; note that any of these intervals is empty if y < z and only [z,y] is non-empty if z = y.
We use log x to refer to log, x for some z > 0.

Let f : Rt — RT and g : Rt — RT. We use the Big-O Notation for classifying the
asymptotic growth of a function f in terms of a function g when x tends towards infinity.
Formally, if there is a 9 > 0 and a constant ¢ > 0 such that f(z) < cg(z) for all z > xo,
then f € O(g). Similarly, if there is a g > 0 and a constant ¢ with f(z) > cg(z) for all x > x,
then f € Q(g). If f € O(g)NQ(g), then f € O(g). Intuitively, if f does not grow faster than g
does, then f € O(g), while f not growing slower than g means f € Q(g). If these two functions
asymptotically grow with the same speed, then f € O(g).

2.2 Algorithm Analysis and Complexity

In this thesis, we design and analyze algorithms for scheduling and packing problems, which we
informally introduced in the previous chapter and which will be formally defined in the next
section. In general, an algorithm is a finite sequence of instructions that solves a particular
problem. It takes an instance of a given problem as input and returns a solution for this
instance after finitely many computational steps. The performance of an algorithm can be
measured, e.g., in terms of its time complexity and the quality of its solution. For evaluating
the time complexity of an algorithm, we compare its running time, i.e., the number of basic
computational steps, with the size of the input data under a particular encoding scheme; we
usually assume binary encoding of the data. Ideally, we design an algorithm that obtains a
provably optimal solution with worst-case running time that is bounded by a polynomial in
the input size. If a problem admits such a polynomial-time algorithm that finds the optimum
for all instances, then its decision variant belongs to the class P of polynomial-time solvable
problems. The decision variant of an optimization problem poses the question of whether the
optimal solution value is at least or at most a certain value f* € Z. Note that rational numbers
can be ignored due to scaling, and we omit irrational numbers since encoding them in bounded
time is impossible.

For most combinatorial problems investigated in this thesis, it is not known whether they
admit optimal polynomial-time algorithms. In fact, it is widely believed that these problems
are not polynomial-time solvable. For clarifying the notion of computational complexity, let
us focus on decision problems, that is, problems for which the answer is either YES or NO. If
there is a certificate, e.g., a solution, such that one can verify that the correct answer is YES in
polynomial time based on this certificate if and only if the instance is a YES-instance, then this
problem belongs to the class NP of non-deterministically polynomial-time solvable problems.

Intuitively, non-deterministic implies that, if we are able to guess a correct solution and the

2.2 Algorithm Analysis and Complexity

instance is a YES-instance, then we can check this in polynomial time. Clearly, all problems
in P are also in NP since we can use the polynomial-time algorithm corresponding to the
problem to solve and thus decide the problem. Ever since Cook [Coo71] and Karp [Kar72] laid
the foundations of complexity theory, it is a major open question whether all problems in NP
admit polynomial-time algorithms or whether P is a proper subset of NP. A particularly
interesting subset of problems in NP is the set of N'P-complete problems since they act as
representatives of the entire class N'P. If one NP-complete problem admits a polynomial-time
algorithm, then all problems in NP are polynomial-time solvable and P = N'P.

An optimization problem describes the task to optimize a certain objective function subject
to some constraints. We observe that the decision and the optimization variants are equivalent
in the following sense: If we have an algorithm for one of them, then we can translate it
to an algorithm for the other in polynomial time as follows. On the one hand, having an
algorithm finding an optimal solution, we simply compare the returned solution value to f*,
the parameter of the decision problem. On the other hand, having an algorithm for the decision
variant, we can use binary search over f* to solve the optimization problem. This leads to
the notion of N'P-hardness for all problems that are at least as hard to solve as any NP-
complete problem, i.e., a polynomial-time algorithm for a A/P-hard problem implies P = N'P.
In particular, the optimization variants of NP-complete problems are NP-hard.

A particular class of NP-hard problems are the so-called strongly N'P-hard problems: They
remain N'P-hard even if the appearing numbers are polynomially bounded in the input size.
(A number is bounded exponentially in the length of its binary encoding.) In particular, un-
less P = N'P, such problems do not admit pseudopolynomial-time algorithms, i.e., algorithms
whose running time is polynomially bounded in the size of the input and the appearing num-
bers in the input. For a thorough introduction to complexity theory, please refer to the book
by Garey and Johnson [GJ79].

Approximation algorithms Since it is widely assumed that P # NP, we cannot hope to find
an optimal polynomial-time algorithm for every instance of a N'P-hard problem. In this thesis,
we relax the notion of optimality and develop polynomial-time algorithms that find provably
“good” solutions. More precisely, for a minimization (maximization) problem, we are interested
in a polynomial-time algorithm for which we can prove that, for every instance, the objective
value of the returned solution is at most « (at least %) times the value of an optimal solution
for some o > 1. In this case, we say that the algorithm is an a-approzimation algorithm or
short a-approximation. The infimum « such that the algorithm is an a-approximation is called
the approrimation ratio or approximation factor of the algorithm.

An approximation scheme is a family of polynomial-time algorithms (.A;).~¢ such that, for
every ¢ > 0, A is a (1 + ¢)-approximation algorithm. Based on how well the running time
scales with decreasing parameter €, we distinguish Polynomial Time Approximation Schemes

(PTAS) with arbitrary dependency on e, Efficient Polynomial Time Approzimation Schemes

2 Preliminaries

(EPTAS) where arbitrary functions f(g) may only appear as a multiplicative factor but not
as exponents of the input size, and Fully Polynomial Time Approzimation Schemes (FPTAS)
with polynomial dependency on % For a thorough introduction to approximation algorithms
and their analysis, we refer to the textbooks by Vazirani [Vaz0l] and by Williamson and
Shmoys [WS11].

2.3 Scheduling and Packing

Scheduling and packing problems are two of the most fundamental problem classes in combi-
natorial optimization. In this section, we give a brief introduction into the particular problems

we consider in this thesis: machine scheduling and knapsack problems.

2.3.1 Scheduling Problems

Scheduling problems arise in every imaginable aspect of our daily lives whenever we need to
assign a set of tasks to scarce resources. Therefore, they have been studied extensively over
the last decades. With the rise of new technologies, also the applications and variations of
scheduling problems changed over time and have become more ubiquitous. The beginnings of
the theoretical analysis of scheduling problems were highly motivated by aspects of production
planning arising in economic and industrial applications [AF55, Bel56, Joh54, Wagh9], while
research today is additionally driven by, e.g., questions appearing in large-scale computing
clusters [AKL*15, ALLM18, FBK*12, LMNY13].

In this thesis, we focus on one particular class of scheduling problems, the so-called machine
scheduling problems. Here, we are given a set J of n jobs, i.e., J = [n], which must be
processed by a set of m machines. We usually use the index i to refer to a particular machine
if m > 1. Each job j € J specifies parameters such as its non-negative processing time pj,
its weight wj, its release date rj, and its deadline d;. In order to complete, job j needs to
be assigned for p; units of time during the interval [r;,d;) to either one or a subset of the
machines. This job-to-machine assignment needs to guarantee that no job is processed on
several machines at the same time and that no machine is working on more than one job
at any given time. We usually refer to such an assignment as schedule. Depending on the
particular problem, there may be additional constraints that any schedule needs to satisfy in
order to be feasible. In general, one is interested in selecting a feasible schedule that optimizes
some objective function.

In 1979, Graham et al. [GLLRK79a] introduced the 3-field notation o| 3|~ to classify the
plethora of different scheduling models. In the following, we use this classification scheme to
introduce the building blocks of the scheduling models considered in this thesis.

The first field, «, refers to the machine environment. Single-machine models are represented

by a« = 1. When all jobs can be processed by m parallel, identical machines, we use a = P

2.3 Scheduling and Packing

to express this. The restriction to scheduling problems with exactly m machines is denoted
by a = Pm. When jobs can only be processed by some machines and their respective processing
times depend on the machine, we denote this by o = R and use p; ; to indicate for how many
time units job j has to be processed if assigned to machine i. We will only consider the
restricted assignment problem where p; ; € {p;, o0} for p; > 0.

The second field, f, is used for giving job specific parameters. If jobs can be preempted, i.e.,
interrupted and resumed at a later point, we denote this by pmitn € 5. In some settings, we
distinguish between migratory and non-migratory preemption where the processing may be
resumed on any machine or only on the machine a job was initially started on. In the presence
of release dates and deadlines, we sometimes add r; and d;, respectively, to the field 8 as well.

The third field, ~, denotes the particular objective function of the problem. Let C; refer
to the completion time of job j in a particular schedule. For minimizing the makespan, i.e.,
the maximal completion time of a job, we use v = Chax, Where Chpax = max; C;. Since
this problem is equivalent to minimizing the maximal completion time of the machines, we
also refer to this problem by load balancing. Setting v = >, Cj or v = 3 ; w;C; refers to
minimizing the sum of completion times or the total weighted completion time, respectively.
Let U; indicate whether job j does not complete on time, i.e., U; = 1if C; > d; and 0 otherwise.
Originally, v = 3_; w;U; denotes the objective of minimizing the total weight of jobs completing
after their deadline [GLLRK79a]. From an approximation point of view, approximating the
minimum of an objective function that can become zero is equivalent to finding the optimum.
Hence, we resort to the equivalent maximization problem and denote this by v = >, w;(1-Uj).
Since this objective function asks for maximizing the total weight of jobs completing by their
deadline, we also refer to it by weighted throughput maximization. The unweighted case is
denoted by v = Zj(l — Uj). The last two objective functions differ from the previous ones in
the sense that we do not require that each job is scheduled at some point. Instead, we may
discard jobs completely at the cost of paying their weight.

The theoretical analysis of scheduling problems dates back several decades and is still grow-
ing. As a starting point for a more detailed investigation of scheduling models and algorithms,

we refer to the textbook by Pinedo [Pinl6] and to the survey articles edited by Leung [Leu04].

2.3.2 Packing Problems

Packing problems describe the task of assigning a set of items to resources with bounded capac-
ities. They arise in a variety of applications in, e.g., logistics, such as in cutting stock, vehicle
loading, or pallet packing problems [CKPT17, GG61,Ram92], as well as in computer science,
such as placing virtual machines or processes in computing clusters or allocating resources in
cloud networks [Stol3, BKB07, BB10]. More applications can be found in the financial sec-
tor, e.g., on client level, such as investment selection, or on an institutional level, such as
asset-backed securitization and interbank clearing systems [Wei66, GJLI8, MP04].

2 Preliminaries

In this thesis, we concentrate on one particular type of packing problems, the KNAPSACK
problem. Here, we are given a set J of n items, i.e., J = [n], with sizes s; € N and value v; € N
for j € J. Further, we have one knapsack of capacity S and the task is to find a subset P C [n]
of maximal total value v(P), where v(P) = 3, p v;, such that its total size does not exceed S.
The decision variant of this problem is N"P-complete and it belongs to the famous list of 21 N'P-
hard problems by Karp [Kar72]. This problem has been studied extensively since the early
days of optimization, which is also reflected by the books on knapsack problems by Martello
and Toth [MT90] and by Kellerer, Pferschy, and Pisinger [KPP04]. As observed in the latter,
the relevance of this problem is also illustrated by the fact that many important concepts in
combinatorial optimization such as approximation schemes and dynamic programming were

introduced for or explained by the KNAPSACK problem.

A straightforward generalization is the MULTIPLE KNAPSACK problem where there are
given m knapsacks with capacities S; for i € [m]. The task is to select m pairwise disjoint
sets P; C [n] such as to maximize the total value >, v(P;) while the total size of set P; does
not exceed S;. In contrast to the KNAPSACK problem, MULTIPLE KNAPSACK is strongly N P-
hard even for identical knapsack capacities because it generalizes the strongly NP-hard prob-
lem 3-PARrTITION [KPP04,GJ79].

Since we also consider scheduling problems, we would like to point out that MULTIPLE
KNAPSACK with m identical knapsacks is equivalent to maximizing the weighted throughput
of n jobs with release dates 0, processing times s;, weights v;, and identical deadlines S
for j € [n] on m machines, denoted in the 3-field notation by P |d; = d| >°; w;(1 — Uj).

2.4 Scheduling and Packing Under Uncertainty

This thesis focuses on solving combinatorial optimization problems while dealing with uncertain
information. Investigating classical problems under uncertainty is an important step towards
bridging the gap between theoretical aspects of optimization that often assumes a simplified
view and real-world applications where the future often is unknown. We consider stochastic
information where the instance is given up-front but certain characteristics, e.g., job processing
times or item sizes, are only given as random variables following known probability distribu-
tions. The major source of incomplete information in this thesis stems from online information
where the input is gradually revealed to the optimizer and decisions must be made without
complete knowledge about the instance. A closely related concept of uncertain information
is dynamic input where the input evolves constantly. Elements of the instance, e.g., jobs in
scheduling problems or items in packing problems, arrive and depart. In contrast to online

optimization, the solution of a dynamic algorithm is allowed to change alongside the instance.

10

2.4 Scheduling and Packing Under Uncertainty

2.4.1 Stochastic Input

In some real-world applications of combinatorial optimization problems, practitioners have
some historic information at their disposal which can be used to forecast the future. Based on
their expertise, they are able to compile some knowledge about the input such as the job set
(in scheduling problems) or the item set (in packing problems) while only the specifics such as
processing times or item sizes remain unknown. Using statistical and data-analytical methods,
experts can justify knowing the underlying probability distributions of the unknown input.
In the following, we give a brief summary of important notions, concepts, and techniques of

probability theory before we formally introduce stochastic scheduling.

Probability theory As we assume that the reader is familiar with basic concepts and tech-
niques of probability theory (and thus with measure theory), we only give a short introduction
to the notation used throughout this thesis without formally defining the underlying princi-
ples. To this end, let (2, F,P) be a probability space. If E € F, then P[E] denotes the
probability that E occurs. Usually, we refer to F € F as an event. For two events F, F € F
with P[F] > 0, the probability that £ happens under the assumption that F' is known to
occur is P[E| F] := P[IP?[;]F | is; in short, the probability of E given F. Two events E and F
are independent if P[E N F] = P[E]P[F]. In this case, P[E|F| = P[E]. Intuitively, having
information about F' does not increase the information about F.

Let X : 2 — R be a real-valued random variable. If X follows the probability distribution D,

we say X ~ D. Moreover, E[X] denotes the expected value and Var[X]| = E[X?]-E[X]? denotes
Var[X
=]ET)E]QL

the variance of a random variable X. Sometimes we are also interested in SCV[X]
the squared coefficient of variation.
Two random variables X,Y : Q — R are independent if, for all measurable sets I, I’ C R, it
holds that
P{X eI} n{Y e I'}] =P[X € I|P[Y € I'].

Intuitively, independence of X and Y implies that having knowledge about the realization of X

does not increase the information about the realization of Y.

In the following, we give some important properties of random variables. Since these are

commonly known results from probability theory, we refer to book (chapters) for proofs.

The Law of Total Expectation gives us a way of calculating the expected value of X by
evaluating E[X] separately on a set of disjoint events. A proof can be found in the book by

Biagini and Campanino [BC16].
Theorem 2.1 (Law of Total Expectation). Let {E;}icr be a countable partition of Q. Then,
E[X] =) E[X|E]PE].

el

11

2 Preliminaries

The following inequality is known as Markov’s Inequality. A proof for this famous inequality
can be found in Chapter 3.1 of the book by Gut [Gut13].

Theorem 2.2 (Markov's Inequality). Suppose that E[|X|] < oo for a random variable X. Then,

E[X|

Pl X| > z] <

The following concentration result for independent random variables distributed in [0, 1] is
a very useful variant of the Chernoff-Hoeffding bound. A proof can be found in the book by
Dubhashi and Panconesi [DP09].

Theorem 2.3 (Chernoff-Hoeffding Bound). For j € [n], let X; be independently distributed in [0, 1]
and let X := 377 1 X;. For 0 <e <1, it holds that

(i) PIX > (1+ B[X]| < exp (- 2 EX) and
.. E
(it) P[X < (1 —¢)E[X]] < exp (_ 2 %)
where exp(x) denotes the exponential function of x.

For a deeper introduction to probability theory, we refer the reader to some introductory
textbooks such as the one by Gut [Gut13] or the one by Biagini and Campanino [BC16]. Since
discrete probability distributions play a major role in those chapters of this thesis dealing with
stochastic information, we recommend the book by Johnson, Kemp, and Kotz [JKKO05] and
the references therein.

The two main discrete distributions occurring in this thesis are Bernoulli and binomial
distributions. We say that a random variable X follows a Bernoulli distribution with success
probability ¢ € [0, 1] or, short, X ~ Ber(q), if

For a Bernoulli random variable it holds that E[X | = ¢ and Var[X] = ¢(1 — ¢).
A random variable X is binomially distributed with success probability ¢ € [0, 1] and size
parameter n € N or, short, X ~ Bin(n,q), if

n .
P[X = k]= <k>qk(1 —)" "
for k € {0,1,...,n}. If X ~ Ber(n,q), then E[X]| = ng and Var[X]| = ng(1 — ¢). If X},

for j € [n], are n independent Ber(q)-distributed random variables, then X := 37" X follows
a Bin(n, ¢) distribution.

12

2.4 Scheduling and Packing Under Uncertainty

Stochastic scheduling In stochastic scheduling, the uncertainty in the input is modeled via
random processing times. More precisely, we are given a set J of n jobs whose processing
times P; are random variables for j € J. We assume complete knowledge about the distribution
of the random processing time P; > 0 and use p; to refer to a particular realization of P;. For
two jobs, we impose independence on their processing times. This restriction is not inherent in
stochastic scheduling but extremely helpful due to certain methods borrowed from probability
theory. Other job characteristics such as release dates or deadlines are known in advance,

which is also the case for the machine environment.

As the processing times are not deterministic anymore, the solution to a problem is not a
schedule but a so-called scheduling policy. A scheduling policy decides in an “online” matter
which jobs to schedule next on which machine. Here, the “online” nature of the problem lies
in the fact that the scheduling policy obtains information about the instance by scheduling
jobs and by observing how the conditional distributions of the processing times of currently
processed jobs evolve. Then, these observations and the a priori knowledge about the instance

guide the decision process of the scheduler.

This intuition is made more precise by Mohring, Radermacher, and Weiss [MRW84, MRW85]:
a scheduling policy II specifies a set of possible actions at decision times t. An action comprises
a set of jobs to start at time ¢t and the next (tentative) decision time ¢'. If an action is taken
at time ¢, the next decision has to be made at time ¢’ or upon a job’s release or completion
at time ¢ < t/. The decision for a certain action at time ¢ only depends on the t-past of the
realization, i.e., the information observed up to time ¢. This information consists of the realized
processing times of jobs already completed at time ¢ and the conditional distributions of the
jobs started before time ¢ but not yet completed. Such a policy is called non-anticipatory. A
particular class of non-anticipatory policies are the elementary policies where decisions only
happen upon release or completion of a job.

Then, C]H, the completion time of job j under scheduling policy II, is a random variable
depending on II as well as the realization of the processing times. Since simple examples
already show that a point-wise optimal scheduling policy, i.e., optimal for each realization, does
in general not exist [MR85], we are interested in minimizing the cost function in expectation.

That is, for an instance Z, we are interested in finding an optimal policy II* with
E[f(IT*,Z)] = min {E[f(H,I)] : IT non-anticipatory scheduling policy},

where f(II,Z) denotes the (random) objective function value for instance Z under policy II.
We emphasize that the scheduling policies considered in this thesis can be adaptive in the sense
that the set of actions at time ¢ is allowed to depend on the t-past. Further below we briefly

discuss the class of non-adaptive scheduling policies.

It has been shown that for some processing time distributions and some objective functions
such an optimal policy does exist and can easily be expressed [Gla79, BDF81, WVW86, Rot66].

13

2 Preliminaries

However, as Pinedo and Weiss [PW87] show, this optimal policy is hard to describe for gen-
eral processing time distributions. Therefore, we resort to approximate policies as introduced
by Méhring, Schulz, and Uetz [MSU99] that are closely related to approximation algorithms
previously discussed. Due to the stochastic nature of the underlying problem, we only require
that the decision of a policy can be computed in polynomial time while, there is no such bound

on the time horizon of the schedule itself.

Definition 2.4 («-approximate policies). Let o > 1. A scheduling policy I1 that can be computed

in polynomial time is an a-approximate policy if
E[f(ILZ)] < oE[f(II",Z)]

holds for all instances T, where II* denotes an optimal policy for instance . We also use a-
approximation to refer to such a policy Il. The infimum « such that 11 is an a-approrimation

1s called approximation factor or approximation ratio.

Not requiring a bound on the time horizon is mostly due to the fact that we consider random
variables with (possibly) exponential or even unbounded support. In particular, already for
a single job on a single machine there might be a non-zero probability that the realization of
its processing time is exponentially larger than indicated by, e.g., its expected value. Hence,
for some realizations a polynomial encoding might not be possible. As discussed by Skutella,
Sviridenko, and Uetz [SSU16], it is not likely that such a situation occurs due to Markov’s
Inequality (Theorem 2.2), but one should be aware of this possibility.

Most results on approximation policies consider the problem of minimizing the total weighted
completion time and variations thereof while the approximation guarantee mostly depends
linearly on A [MSU99,SU05,SSU16, MUV06, GMUX20, JS18]. Here, A is an upper bound on
the squared coefficients of variation of the processing times. An exception worth mentioning is
the O(log? n +m log n)-approximate policy by Im, Moseley, and Pruhs [IMP15] for minimizing
the expected weighted total completion time.

When minimizing the makespan on parallel machines, approximation becomes easier: It is
common knowledge that LIST SCHEDULING is already (2 — %)—approximate. In fact, this

approximation guarantee even holds per realization.

Non-adaptive scheduling A line of work that is orthogonal to the adaptive setting is the non-
adaptive model. The assignment of jobs to machines happens upfront before the randomness
is revealed. Hence, the non-adaptive model is sometimes also called fized assignment. Since
approximation algorithms are again evaluated relative to an optimal algorithm of the same
nature, the adaptive and the non-adaptive models are mutually incomparable.

When minimizing the total completion time objective, this model immediately reduces to

its deterministic counterpart by linearity of expectation. Any result obtained there transfers

14

2.4 Scheduling and Packing Under Uncertainty

to the stochastic setting by using E[P;] as deterministic surrogate for the processing time of
job 7. As shown by Skutella, Sviridenko, and Uetz [SSU16], the adaptivity gap for minimizing
the weighted completion time on identical machines is ©Q(A). That is, the ratio between
the best fixed-assignment policy and the optimal adaptive scheduling policy is at least Q(A).
Nevertheless, some of the results in the adaptive setting use fixed machine assignments [SSU16,
GMUX20,MUVO06]. This indicates that fixed-assignment policies are seemingly more tractable
for this particular objective function.

Conversely, makespan minimization seems to be the more difficult objective function in
the non-adaptive setting. Kleinberg, Rabani, and Tardos [KRT00] were the first to obtain
constant approximation ratios for parallel machines. Recently, Gupta et al. [GKNS18| were
able to obtain the first constant approximation guarantee for load balancing on unrelated

machines. They also looked into the problem of minimizing the g-norm of the load vector

q
logq

improved to a constant factor approximation by Molinaro [Moll9]. Gupta et al. [GKNS18]

and obtained the first non-trivial approximation guarantee of (’)() This result was later

logm
loglogm

showed an adaptivity gap of Q() for makespan minimization even for identical jobs on

parallel identical machines.

Stochastic packing problems Here, the item sizes follow independent random variables, and
a subset or the complete set of items has to be packed to optimize some objective function
subject to some constraints. Such a constraint could be the satisfaction of a bound on the
overflow probability, i.e., the probability to exceed the capacity of a bin or a knapsack. For
special probability distributions, Goel and Indyk [GI99] derive constant approximation guar-
antees for STOCHASTIC BIN PACKING and STOCHASTIC KNAPSACK. Kleinberg, Rabani, and
Tardos [KRTO00] consider special distributions and relax either the capacity constraint or the
bound on the overflow probability. Dean, Goemans, and Vondrak [DGVO08] consider another
variant of STOCHASTIC KNAPSACK: The items have to be packed into the knapsack following
an adaptive or a non-adaptive order, and upon placing an item, its size is realized. The goal
is to pack as much value as possible before the first item “overflows” the knapsack. They
derive O(1)-approximate policies in both models. Interestingly, the value attained by their

non-adaptive policy is within a constant factor of the optimal adaptive policy.

2.4.2 Online Input

In the online model, the instance is revealed only incrementally and the optimizer has to take
irreversible actions without complete knowledge about the future. From an algorithmic point of
view, this implies that, no matter the future input, the taken actions can either not be undone
anymore or only at an extremely high cost which then influences the overall performance of the
online algorithm. Conversely, an offline algorithm has access to the entire instance in advance

and bases its decisions on this complete knowledge.

15

2 Preliminaries

As observed by Borodin and El-Yaniv [BE9S8], some problems, such as scheduling and pack-
ing, are meaningful and natural in the offline and the online world: In one’s own computing
cluster, the workload usually is known and can be scheduled accordingly, while a cloud com-
puting provider does not know the computing requests before their submission to the system.
For a logistics company, the delivery of goods can be planned according to the trucks’ capac-
ities, while the pickup of goods possibly leads to decision making “on the fly” or, in other
words, online. Other problems, such as paging or routing packets in a computer network, are
intrinsically online, and asking for an offline algorithm neglects a major part of the problem.

For a thorough introduction to online algorithms, their applications, and analysis, we refer
to the book by Borodin and El-Yaniv [BE9S8|, the collection of surveys by Fiat and Woegin-
ger [FWO8], and the survey by Albers [Alb03]. The surveys by Sgall [Sga96] and by Pruhs,
Sgall, and Torng [PST04] put a special emphasis on online scheduling algorithms. Regarding
the way new information is released, Pruhs, Sgall, and Torng [PST04] coined two different

terms, which we now briefly summarize.

Online-list model Under this paradigm, the unknown elements are ordered in some list;
hence the term online-list model. Once the element is revealed, the algorithm knows all its
characteristics, such as size or processing time. Based on the information seen so far, the
algorithm has to deal with the element before the next element is observed. After the decision
how to deal with the newly revealed element is made, the algorithm is not allowed to change
or revoke it. In scheduling problems, this implies that a job has to be scheduled on a machine
(satisfying the specific problem requirements) without knowledge about the remaining job set.
This variant models, e.g., load balancing decisions in computing clusters. Since usually there
are no time horizons in packing problems, their online counterparts are mostly modeled in this

setting as well.

Online-time model In contrast to the online-list model, the online-time model also takes into
account the time between the assignment of jobs. That is, jobs arrive online over time at their
release dates which is when their characteristics become known to the online algorithm. Hence,
the time horizon itself plays a major role in this paradigm and has to be taken into account
when decisions are made. This implies that the scheduler can sometimes delay decisions at a
certain problem-specific cost. Depending on the particular problem, the algorithm can alter
the current schedule in favor of newly arrived jobs. This model covers admission decisions
for computing clusters since the requests are typically submitted over time at the point most

convenient for the client.
Competitive analysis Since an online algorithm cannot base its decision on complete knowl-

edge of the instance, it typically cannot find an optimal solution. To be able to evaluate a

particular algorithm or compare two with each other, we can use a similar approach as for

16

2.4 Scheduling and Packing Under Uncertainty

approximation algorithms: worst-case analysis where the performance of an algorithm is com-
pared to the optimal solution. In the context of online algorithms, the optimal solution has
complete knowledge about the instance, and hence is called offline optimum, while an online
algorithm gains access to this knowledge depending on the particular model. Sleator and
Tarjan [ST85] introduced the term competitive analysis for this method of worst-case analysis.

Let A denote a particular online algorithm for a given problem and let f(.A4,Z) denote the
objective function value achieved by A for instance Z. Similar to the notion of approximation
algorithms, the definition of a competitive algorithm depends on the optimization goal, i.e., it

depends on the problem being a minimization or a maximization problem.

Definition 2.5 (c-competitive algorithm). Let ¢ > 1. An online algorithm A is c-competitive for

a minimization problem if, for all instances T,

f(AT) <c- fA(D),

where f*(Z) denotes the objective function value of an offline optimum for instance Z. For a

maximization problem, a c-competitive algorithm must satisfy, for all instances T

1,
If ¢ is the infimum such that A is c-competitive, then c is called the competitive ratio of A.

We emphasize that competitiveness of an online algorithm does not imply any bounds on the
computational power since the key difficulty is decision making under uncertainty and strict

irrevocability constraints. Nevertheless, many known algorithms do run in polynomial time.

Migration and recourse For some problems, there exist strong lower bounds on the compet-
itive ratio of online algorithms that are not allowed to revoke decisions. That is, it can be
shown that the lack of information prevents every online algorithm for such a problem from
having a competitive ratio less than ¢. For many problems, the irrevocability assumption of
online algorithms is overly pessimistic, and in some applications changes are rather sensible as
long as these changes are bounded in some way. To address these issues, concepts to soften the
irrevocability requirement have been developed. There are two major streams towards more
adaptive models with a softened irrevocability requirement: online optimization with recourse
and with migration. Both models permit an online algorithm to change previously made deci-
sions upon gaining more knowledge about the instance. Of course, if these changes were not
bounded in some way, the online nature of the problem would be lost since an algorithm could
simulate the current offline optimum. One can enforce such a bound in average over the first k
arrivals or per round, leading to an amortized or non-amortized bound on the changes.

With recourse, we refer to the possibility to change decisions under the requirement that
the number of such changes remains bounded [MSVW16,IW91, GGK16, GKS14]. This model

17

2 Preliminaries

may be employed when the underlying change in a solution is negligible, e.g., when the cost of
reassigning an item does not depend on the size of the item that has to be moved.

The term migration is used to refer to a bound on the volume of changes [SSS09,SV16,JK19].
That is, the cost for repacking an item or rescheduling a job is proportional to their respective
size. This models the fact that a change in the solution might lead to the need for physically
adapting the assignment which in turn is cheaper if the element in question is small.

The model that we consider in this thesis is a generalization of the former two: bounding
the reassignment cost [AGZ99, Wes00]. Specifically, each element comes with an individual
(re)assignment cost that needs to be paid upon (re)assigning the element and the task is to
maintain a good solution with moderate reassignment cost. Since we only consider scheduling
and packing problems, we use the term “reassignment” to refer to scheduling a job on another
machine or packing an item in another knapsack. By choosing uniform reassignment costs or
setting them equal to the size of the respective element, we recover online optimization with

recourse or migration, respectively.

2.4.3 Dynamically Changing Input

A seemingly related concept that deals with uncertain input is that of dynamic algorithms. An
algorithm is said to be dynamic if it maintains a solution to a certain problem even if the in-
stance undergoes small modifications in each round. For packing problems, these modifications
may include the arrival or departure of an item or a knapsack/bin. Similarly, for scheduling
problems, the instance may be modified by removing or inserting a job or a machine as well as
by changing the weight of a job. The task is to maintain a good solution in each round while
spending only little computation time per round. Depending on the hardness of the underlying
static problem, “good” refers either to optimal or near-optimal solutions.

The dynamic algorithm can be seen as a data structure that efficiently supports updates,
i.e., modifications of the instance, and that is then, given these updates, used to construct a
solution if queried. That is, explicit solutions that allow for linear access time of a solution
are not required. Instead, only implicit solutions are maintained that answer certain queries
sufficiently fast. Usually, such a query asks for the output of the entire solution or for the status
of a certain element in the solution, e.g., for the knapsack in which the queried element is packed
or the machine on which the queried job is processed. This relaxation on the representation of a
solution allows for a trade-off between the update and the query time. Hence, when comparing
dynamic algorithms to traditional algorithms that compute an explicit solution, one should be
aware of this difference.

Since the motivation behind dynamic algorithms are applications with mostly local changes,
we would like to use the solution computed prior to the update in order to obtain a new solution
significantly faster than when starting from scratch. Further, the new solution should reflect the

changes made to the instance and is thus allowed to change as well. For example in scheduling

18

2.4 Scheduling and Packing Under Uncertainty

problems, a noticeable amount of jobs can be assigned to another machine in each round as
long as the reassignment can be computed, not executed, sufficiently fast. We emphasize this
difference to the previously introduced models of online optimization with reassignment.

Typically, dynamic algorithms are investigated in the context of graph problems, and we
refer to the surveys [DEGI10,Hen18,BP11] for an overview on dynamic graph algorithms. For
some connectivity problems [HK99, HILTO01], such as MINIMUM SPANNING TREE or 2-EDGE
CONNECTIVITY, and for VERTEX COVER [BHN17,BK19], there are dynamic algorithms with
poly-logarithmic update time although the majority of graph problems did not seem to allow
for fast algorithms. Only recently, researchers started to investigate the reasons for this lack
of efficient algorithms and proved conditional lower bounds; see, e.g., [AW14]. SET COVER
admits near-optimal approximation algorithms with poly-logarithmic update times and has
been studied extensively [BHN19, BHI15, GKKP17, AAG*19].

There is little research on efficient near-optimal algorithms for scheduling or packing prob-
lems. A notable exception is a %—approximate algorithm with poly-logarithmic update time for
BIN PACKING by Ivkovic and Lloyd [IL98|. For a detailed introduction to dynamic algorithms
in the context of combinatorial optimization problems, we refer to the survey by Boria and
Paschos [BP11].

19

Stochastic Minsum Scheduling

Minimizing the sum of completion times when scheduling jobs on m identical parallel
machines is a fundamental scheduling problem. Unlike the well-understood determin-
istic variant, it is a major open problem how to handle stochastic processing times.
We show for the prominent class of index policies that no such policy can achieve a
distribution-independent approximation factor. This strong lower bound holds even
for simple instances with only deterministic jobs of uniform size and identically two-
point distributed stochastic jobs. For such instances, we give an O(m)-approximate list
scheduling policy. Moreover, we derive further bounds on the instance parameters that
allow for O(1)-approximate list scheduling policies.

Bibliographic Remark: Parts of this chapter are joint work with F. Fischer, J. Ma-
tuschke, and N. Megow and correspond to or are identical with [EFMM19].

Table of Contents

3.1 Introduction Ll 22
3.2 Lower Bound for Index Policies L 24
3.3 Upper Bound for Bernoulli-Type Instances 27
3.4 Further Results on Bernoulli-Type Instances 34
3.4.1 Less Stochastic Than Deterministic Jobs 34
3.4.2 Many Long Stochastic Jobs in Expectation 35
3.4.3 Bounded Processing Times of Stochastic Jobs 36
3.4.4 Bounded Makespan of Deterministic Jobs 36
3.45 At least m — 1 Expected Long Stochastic Jobs 37
346 Discussion Lo e e e e 38
3.5 Concluding remarks L oL e e e 39

21

3 Stochastic Minsum Scheduling

3.1 Introduction

Scheduling jobs on identical parallel machines with the objective to minimize the sum of
completion times is a classical and well-understood problem. Here, we are given a set J of n
jobs, where each job j € J has a processing time p; that indicates for how many time units it
has to be processed non-preemptively on one of the m given machines. At any point in time,
a machine can process at most one job. The objective is to find a schedule that minimizes the
total completion time, 3, 7 Cj, where C; denotes the completion time of job j. This problem
is denoted by P|| 3" C; in the standard three-field notation [GLLRKT79al. It is well known that
scheduling the jobs as early as possible in SHORTEST PROCESSING TIME (SPT) order solves
the problem optimally on a single [Smi56] as well as on multiple machines [CMMG67].

Stochastic scheduling Uncertainty in the processing times is ubiquitous in many applications.
Although the first results on scheduling with probabilistic information date back to the 1960s,
the question how to schedule jobs with stochastic processing times is hardly understood.

We investigate a stochastic variant of the minsum scheduling problem. The processing time
of a job j is modeled by a random variable P; with known probability distribution. We assume
that the processing time distributions for individual jobs are independent. The objective is to
find a non-anticipatory scheduling policy II that decides for any time ¢, with ¢t > 0, which jobs
to schedule. A non-anticipatory policy may base these scheduling decisions only on observed
information up to time ¢ and a priori knowledge about the distributions. In particular, the
policy is not allowed to use information about the actual realizations of processing times of
jobs that have not yet started by time ¢. For a more in-depth introduction to non-anticipatory
scheduling policies we refer to Section 2.4.1.

For a non-anticipatory policy II, the value of the objective function }_; C]»H is a random vari-
able. A natural generalization of the deterministic problem P||}" C} is to ask for minimizing
the expected wvalue of this random variable, i.e., to minimize E[ZC]H}, where the expecta-
tion is taken over the randomness in the processing time variables. We drop the superscript
whenever the policy is clear from the context. This stochastic scheduling problem is denoted

by P|[E[3C;].

List scheduling and index policies An important class of policies in (stochastic) scheduling
is LIST SCHEDULING as defined by Graham [Gra69]. A LIST SCHEDULING policy maintains
a (static or dynamic) priority list of jobs and schedules at any time as many available jobs
as possible in the order given by the list. The aforementioned SPT rule falls into this class.
List scheduling policies are the simplest type of elementary policies, that is, policies that
start jobs only at the completion times of other jobs (or at time 0). For further details on

the classification of (non-preemptive) stochastic scheduling policies, we refer to the work of

22

3.1 Introduction

Mohring, Radermacher, and Weiss [MRW84, MRWS85].

A prominent subclass of list scheduling policies is called index policies [Git89, Wal88]. An
index policy assigns a priority index to each unfinished job, where the index for a job is
determined by the (distributional) parameters and the current state of execution of the job
itself but independent of other jobs. If job preemption is not allowed, then these priority
indices are static, that is, they do not change throughout the execution of the scheduling
policy. Moreover, index policies assign to jobs with the same probability distribution the same
priority index and do not take the number of jobs or the number of machines into account.

In the first paper on stochastic processing times [Rot66], Rothkopf showed that scheduling
the jobs in WEIGHTED SHORTEST EXPECTED PROCESSING TiME (WSEPT) order, i.e., in
non-increasing order of %ﬁﬂ, is optimal for minimizing the total expected weighted comple-
tion time on one machine. If the processing times follow a geometrical distribution, Glaze-
brook [Gla79] showed that LIST SCHEDULING in order of SHORTEST EXPECTED PROCESSING
TiME (SEPT) is optimal for minimizing ; E[C;] on parallel identical machines. For expo-
nentially distributed processing times, SEPT is also optimal according to Bruno, Downey, and
Frederickson [BDF81]. Weber, Varaiya, and Walrand [WVW86] generalize these results to
instances where the processing times are totally ordered stochastically. That is, for every two
jobs j,k € J, their processing times P; and P} are stochastically comparable, meaning that
either P[P; > z| < P[P, > z]or P[P, >] < P[P; > z] for all z € R.

Other index policies that perform provably well for certain stochastic scheduling settings are,
e.g., LIST SCHEDULING in LONGEST EXPECTED PROCESSING TIME (LEPT) order as shown
by Weber [Web82], the LARGEST VARIANCE FIRST (LVF) rule as observed by Pinedo and
Weiss [PW8T7], and the Gittins Index [Git79]. For an overview on theory and applications of
index policies (with a focus on interruptible jobs) we refer to the works by Gittins, Glazebrook,

and Weber [GGW11] and by Glazebrook et al. [GHKM14].

Further related results For arbitrary instances of P||E[> C}], no optimal policy is known.
Thus, research focuses on approximate policies. Starting with the seminal paper by Mdohring,
Schulz, and Uetz [MSU99], several scheduling policies were analyzed for this problem (with
arbitrary job weights) and generalizations, such as precedence constraints [SUO05], heteroge-
neous machines [GMUX17,SSU16], and online models [GMUX17,MUV06,Sch08]. In all cases,
the approximation guarantee depends on the probability distributions of the processing times.
More precisely, the guarantee is in the order O(A), where A is an upper bound on the squared
, ?é?gﬁé] < A for all j.

Besides linear programming relaxations, the (W)SEPT policy plays a key role in the afore-

coefficients of variation of the processing time distributions P;, that is

mentioned results. This index policy, being optimal on a single machine, has been studied
extensively as a promising candidate for solving P| |E[3" C;] with bounded approximation ra-
tio. Recently, the upper bound for WSEPT has been decreased to %\/i_l)(l + A) by Jager
and Skutella [JS18]. On the negative side, it has been shown independently that neither

23

3 Stochastic Minsum Scheduling

WSEPT [Lab13] nor SEPT [CFMM14,IMP15] can achieve approximation factors independent
of A when there are non-constantly many machines.

A remarkable result is a LIST SCHEDULING policy for P||E[}" C;] with the first distribution-
independent approximation factor of @(mlogn + log?n) by Im, Moseley, and Pruhs [IMP15].
This policy is based on SEPT, but in addition, it carefully takes into account the probability
that a job turns out to be long.

Nevertheless, it remains a major open question whether there is a constant factor approx-
imation for this problem even if all weights are equal. Interestingly, there is an index policy
with an approximation factor 2 for the preemptive (weighted) variant of our stochastic schedul-
ing problem by Megow and Vredeveld [MV14]. It is natural to ask whether index policies can

achieve a constant approximation factor also in the non-preemptive setting.

Our contribution As our main result, we rule out any constant or even distribution-indepen-
dent approximation ratio for index policies. More precisely, we give a lower bound of Q(Al/ 4
for the approximation ratio of any index policy for P||E[} C;]. This strong lower bound
implies that prioritizing jobs only according to their individual processing time distributions
cannot lead to better approximation ratios. More sophisticated policies are needed that take
the entire job set and the machine setting into account. Somewhat surprisingly, our lower bound
holds for very simple instances with only two types of jobs, deterministic jobs of uniform size
and stochastic jobs that all follow the same two-point distribution. For this class of instances,
we provide an alternative list scheduling policy — carefully taking into account the number of
jobs and machines— and show that it is an O(m)-approximation. If the deterministic jobs are

identical, we obtain constant approximation ratios for certain combinations of parameters.

3.2 Lower Bound for Index Policies

In this section, we prove our main result, a distribution-dependent lower bound on the approx-

imation factor of any index policy.
Theorem 3.1. Any index policy has an approzimation factor Q(AY*) for P|[E[3Z, Cj].

To prove this lower bound, we consider a simple class of instances that we call Bernoulli-type
instances. This class consists of two types of jobs, deterministic jobs J; and stochastic jobs Js.
A job j € Jq has deterministic processing time p; while a job j € J, has processing time 0 with
probability ¢ € (0,1) and ! with probability 1 — g, where I > 0. Let ng = | 74| and ns = |Js|.

For the stochastic jobs, i.e., j € T, let X; =11p,—;3. That is, X; is a Bernoulli-distributed
random variable that indicates whether or not j € Js is long, i.e., Pj = 1. Let X =3} .. 7 Xj.
Since the processing time variables P; are independent, the same holds for X;, 7 € J;. Hence, X
follows a binomial distribution with success probability ¢, size parameter ns, and expected

value ng - q. In other words, X counts the number of jobs that turn out to be long.

24

3.2 Lower Bound for Index Policies

Proof of Theorem 38.1. Let A > 0; it will act as an upper bound on the squared coefficients
of variation. We define two families of Bernoulli-type instances, Z; (A, m) and Zy(A, m). The
instances differ only in the number of deterministic and stochastic jobs but not in the processing
time distributions. We define the processing time for deterministic jobs in 73 to be equal to 1,

ie., pj =1if j € Jy4, and for stochastic jobs j € J; we define

P 0 with probability 1 — %
! A3/2 with probability %

Note that E[P;] = A2 and Var[P;] = A? — 1 for j € J;. Hence, the squared coefficients
of variation are at most A.

For such Bernoulli-type instances, there are only two index policies, one where the deter-
ministic jobs have higher priority, denoted by J; < Js, and one where the stochastic jobs have
higher priority, denoted by Js < Jz. We show that for any fixed A > 1, there exists a value
of m such that the cost of the schedule produced by J; < Js on instance Z; (A, m) is greater
by a factor of Q(Al/ 4) than the cost of the schedule produced by J, < Jy and vice versa
for instance Zo(A, m). Since the instances Z; (A, m) and Zo(A, m) are indistinguishable by an

index policy, this result implies the lower bound.

Instance Z;(A,m) Instance Z;(A,m) is defined by letting ng = A%*m and ng = %Am;

without loss of generality we assume 7¢ € Z. We distinguish both priority orders.

Deterministic jobs before stochastic jobs When the deterministic jobs are scheduled first,

no job in Js starts before time ”—nj Thus,

Stochastic jobs before deterministic jobs Let X be the random variable counting the
number of jobs in J; that turn out to be long. That is, X ~ Bin(n,, 1) and E[X |= 2. We
distinguish two cases based on the value of X.

fxX< %m, every stochastic job starts at time 0. Hence,

3 3

> G

JETs

At least 7 machines are free for scheduling deterministic jobs, Jy, at total cost bounded by

< ng(ng + 1)

— 1
Zm

3
E X< om < 8A3/ %,

> C

JETd

25

3 Stochastic Minsum Scheduling

In the case X > %m, we get a (very crude) upper bound on the expected cost by assuming

that all jobs have processing time A3/2 and then scheduling them on a single machine:

E

>.C;

JET 4 2

1
X > 3m1 < Z(ng + ng)(ng + ng + 1)A%2 < 3AT2m?2.

By the Chernoff-Hoeffding bound (Theorem 2.3), the probability of the second case is at
most exp (%) Using the Law of Total Expectation (Theorem 2.1),

El chl SIP’[X < im]E[> G

JjeT JeT
A3 2m 4+ 8A32m, + exp <—72Z> 3A72m? € O(AY?m)

x I 8 > Sue

> G

JjET

3

<

=~ w

for sufficiently large m. Thus, on sufficiently many machines, the index policy J; < Js has
total cost greater by a factor of Q(A'/4) than that of policy J, < Jyu-.

Instance Z»(A,m) Instance To(A,m) is defined by ng = A%*m and n, = 2Am; we assume
without loss of generality 72 € Z. Let X denote again the number of jobs in J, that turn out
to be long, i.e., X ~ Bin(2Am, x) and hence, E[X]= 2m. We analyze both index policies.

Deterministic jobs before stochastic jobs We condition on two disjoint events regarding
the realized value of X. If X < 3m, every (stochastic) job has completed by time A%/*4+3A3/2,
Further, the cost of J; < Js is upper bounded by the that of the following policy: Assign to
every machine at most 74 = A5/% deterministic jobs and at most three long stochastic jobs.
Thus,

2
X <3m | < 2Lt (A% 4 30%2) 0, € O(A?m)
m

E[ZC]-

JjeT

The case X > 3m happens with probability at most exp (%) by the Chernoff-Hoeffding
bound (Theorem 2.3). Using again the fact that scheduling all jobs on one machine and
assuming P; = A3/2 for j € J yields an upper bound,
< 3AT/2m2,

E X >3m

>.C

JjeT

With the Law of Total Expectation (Theorem 2.1),

E e O(A%2m).

> G

JjeT

26

3.3 Upper Bound for Bernoulli-Type Instances

Stochastic jobs before deterministic jobs Here, we condition on the event X > m. The
probability of the event X < m is bounded from above by exp (%) by Theorem 2.3. There-
fore, P[X > m]> % for m > 4. If X > m, then every machine receives at least one stochastic

job before it starts processing the first deterministic job. Thus,

E[Z(Jj

VISNE

X>m|> A3/2nd — A4,

With the law of total expectation we conclude that

E X >m | e QA

> Cj

jeT

> G

> E
JjET

Thus, on sufficiently many machines, the index policy Js < Jy has total cost greater by a
factor Q(A1/4) than that of policy Jy < Js.

In summary, we have provided two instances I1(A,m) and I(A,m) which are indistin-
guishable by any index policy. On the one hand, the policy J; < Js has total expected cost
greater by a factor of O(A/4) than the policy J, < Jy for the first instance I; (A, m). On the
other hand, the total expected cost of the policy Js < J; is greater by a factor of Q(AI/ 4
than J; < Js on the second instance I(A,m). Therefore, the approximation ratio of any
index policy is at least Q(A/4). O

3.3 Upper Bound for Bernoulli-Type Instances

In this section, we show that taking the number of machines and jobs into account allows for
a list scheduling policy that is O(m)-approximate even if the deterministic jobs have different
sizes. The stochastic jobs still follow the same distribution. The main result is the following

theorem. (In [EFMM19], we prove a similar result restricted to identical deterministic jobs.)

Theorem 3.2. There exists an O(m)-approximate LIST SCHEDULING policy for Bernoulli-type
instances of P||E[> Cj].

For proving this result, we scale the given instance such that E[P;] = 1 for j € J,. That is,
we assume without loss of generality that deterministic jobs j € [J; have processing time p; and
stochastic jobs j € J, have processing time 0 with probability 1 — % and [with probability %,
where [> 0.

Regarding the total scheduling cost of any policy, we observe the following.

Observation 3.3. Individually scheduling Jy (in SPT order) or Js on m machines starting at
time 0 gives a lower bound on the cost of an optimal policy. We denote these job-set individual

scheduling costs by 3 ;c 7, E[CY], where t € {s,d}. The sum of both also is a lower bound on

27

3 Stochastic Minsum Scheduling

the optimum cost,
STE[C;] > Y E[CY+ Y E[CY),
JjeT Jj€TJa VISVE

where C3 denotes the (random) completion time of j under a fized optimal policy.

We prove the result of this section, the existence of an O(m)-approximation, through a careful
analysis of the relation between the parameters of a Bernoulli-type instance. In the following,
the two policies Js < Jg and Jy < Js refer to LIST SCHEDULING where the deterministic jobs
additionally are ordered in SHORTEST PROCESSING TIME order, i.e., in non-decreasing p;.
Clearly, the sorting of jobs as well as following the respective priority order when scheduling

the jobs has polynomial time complexity. Hence, we make the following observation.
Observation 3.4. The policies Js < Jg and Jq < Js are polynomial-time policies.
First, we consider instances with few deterministic or few stochastic jobs.

Lemma 3.5. Lett,t' € {s,d}, witht # t', refer to the two different job types. The policy Ty < Ty
is a 3-approximate policy for Bernoulli-type instances satisfying ny < 2m with non-uniform

deterministic job sizes.

Proof. By Observation 3.4, the policies Js < J3 and J3 < Js run in polynomial time.

The cost of J; < Jy is at most the cost of scheduling J; and the cost of scheduling the ith
and the (m +i)th job in Jy on machine i (if these jobs exist), starting after the jobs of J; on
machine ¢ have completed. Let S; denote the (random) starting time of job j € J under the
policy J; < Jy¢. By linearity of expectation,

dE[C;)] = Y E[C+ > E[S; + Pj]

Jjeg JET: JET!
<3 Y E[C]]+) E[C]]
JET: JETy
<3) E[C]].
JET

d

Based on this result, we assume ns > 2m and ng > 2m for the remainder of this section.
Next, we distinguish two cases depending on the number of stochastic jobs relative to the
number of deterministic jobs. Both cases rely on a careful analysis of the job-set individual
cost for the stochastic jobs. More precisely, we show for a set J; C Jy with | 7| < ng that the
cost of Js < Jy is bounded by O(m) ¥ ;e 7,07, E[C} |-

Lemma 3.6. Let J; C Jq with ns > |Jj| > 2m. Then, Js < J; is an O(m)-approximation for
the job set JTjU Js.

28

3.3 Upper Bound for Bernoulli-Type Instances

For the proof of this lemma, we use the following technical result that gives some properties
of the random variable X counting the number of long stochastic jobs. Recall that X is the
random variable indicating whether or not P; is equal to [. That is, X; ~ Ber(%), and X can
be written as >_;c 7 X

We consider arbitrary Bernoulli trials with success probability ¢ € (0,1). Let X; ~ Ber(q)
for j € [n] and let X = 377 ; X;. Let Z; be the random variable denoting the position of
the ith success, i.e., the ith variable in {X; : X; = 1,5 € [n]}. The following lemma states

some elementary properties of Z;.
Lemma 3.7. Let m € N with 2m < n. Let i € [Am] with X € H%H and let k € [n]. Then,
(i) ElZi | X = k] = g7 (n+1),

(i) E[Z; | o m < X < (A+1)m] <)\mﬂ(n—{—l), and

(iti) Eln — Zp, | m < X < 2m] >

Lm
Proof. For r € [n], the random variable X () := > =1 X follows a binomial distribution with
size parameter r and success probability ¢ as the X; are independent Bernoulli-distributed
random variables with success probability ¢.

Let us recall that P[F | F] = H?{?f] for two events FE and F with P[F]> 0.
Ad (i) For i,z € [k] with i < z,

{Zi=2}={X.=1}n{XCV =i-1},

i.e., the event that the ¢th success happens in trial z is equivalent to observing that the zth
trial is a success after having seen ¢ — 1 successes among the first z — 1 trials.

Intersecting with the event {X = k}, we obtain
(X, =13n{XCE VD =i —1}n{X =k} ={X. = 1}n{XEV =i -1} n{X - X® = —i}.

Since the underlying Bernoulli trials of the three events on the right side are independent,

these events are as well. We conclude

]P’[Zi — 2| X = k]: PIX, = 1]'P{X(271) =4 — 1}~[F’[X —_x® = k—i} _ (5711) (2:5)

where we used that X*~Y and X — X(®) are binomially distributed with success probability ¢
and size parameter z — 1 and n — z, respectively.
With the convention (2) =0 for r,q € N with ¢ > r , it follows that

(Z)E[Zi | X = k]:;}zp[zi = 2| X = k] (Z)

29

3 Stochastic Minsum Scheduling

The last equality follows from the index shift

S-S0

and the following observation: The last line in the above calculation asks in how many ways
one can pick k4 1 successes among n + 1 trials. We can partition this based on the position of
the (i + 1)st success for a fixed i. The (i + 1)st success can be positioned between the (i + 1)st
and the (n — k +4)th trial. If the (i + 1)st success is at position z, there have to be ¢ successes
among the first z — 1 trials and, since we want to pick k£ + 1 successes, the remaining n+1 — z
trials have to contain k — i successes. Summing over all positions | of the (i + 1)st success

yields the equality.

Ad (ii) With the Law of Total Expectation (Theorem 2.1), we can use (i) to prove the
statement as follows. Conditioning Z; on the event {X =k |Am <k < (A4 1)m} yields

(A+1)m—1
E[Zi | <X <A+Dm]= > E[Z|X=kPX=Fk|[Im<X<(A+1)m].
k=Xm

Applying (i), we get that this equals
(A+1)m—1

>

k=Am

= < .
k+1(n+1)P[X ElAdm <X < (A+1)m]
Since Am + 1 clearly is a lower bound on the denominator of every summand, this is at most

(A+1)m—1
(n+1) Y PX=k|dm<X<(A+1)m]
k=Xm

m+1

The Law of Total Expectation, Theorem 2.1, concludes the calculation with

7
E|Z; <X 1 < 1).
[Zi | dm <X <A+)m]_)\m+1(n+)
Ad (iii) With (i) it follows that
m
Eln—Z2,|X= =n-— 1
[n | X=m]=n———=(n+1)
_nm—i—n—nm—m
- m—+1
n
>7>
— 4m

30

3.3 Upper Bound for Bernoulli-Type Instances

where we used n > 2m for the last inequality. Using again the Law of Total Expectation as

in (ii), the statement follows. O

Proof of Lemma 3.6. By Observation 3.4, the policy Js < J; runs in polynomial time.

We analyze the performance of J; < 7 by conditioning on the number X of long jobs. We
index the deterministic jobs in order of their processing times, i.e., p <--- < p T

For the case 0 < X < m, let k € N with 0 < k < m. If a realization satisfies X = k, then
there exists at least one machine that does not schedule stochastic jobs and starts processing

deterministic jobs at time 0 in SPT order. Thus,

X=k

> G

jeJ

<k-l+ > jp
JET]

Using a bound by Eastman, Even, and Isaacs [EEI64] on the single-machine scheduling cost

in terms of the cost of a schdule on m machines, we have
_ 0
Y G| X=k|<k-l+m) .
jeJ . JeTy
Since the optimal policy also has to process the k long stochastic jobs,
_ 0
NorlX=k|2k-1+) C
jeJ . Jjegy
where C7 denotes the completion time of j under an optimal policy. Thus,

_ Y e X_k:]

jeT

S Cj|X=k|<mE
JjeJ .

Consider now the case Am < X < (A+1)m for X € { {
finished at the latest by time (A + 1)I. Hence, from time (/\ +

deterministic jobs only. Thus,

J} All stochastic jobs are

m
1)1 on, all machines process

SE[C) | dm < X < (A+1)m] < D E[CY | xm < X < (A+1)m] + (A+ 1)IIT]].
jed jeJ

As noted in Observation 3.3, the first term is a lower bound on the optimal cost and it remains
to bound the second term, i.e., (A + 1)I|7;|.

Note that a non-anticipatory policy does not know the positions of the long jobs. Thus, such
a policy cannot start any of the stochastic jobs coming after the first (k- m) long ones before
time k- [for 1 < k < A. Recall that Z,, is the (random) position of the (k- m)th long job.
Hence, ns — Zj,, stochastic jobs are delayed by at least k - [.

For A = 1, Lemma 3.7 (iii) implies that scheduling only J, costs at least [7=, i.e

1
DY E[CY |m< X <2m] > o 2
m &m

Jj€Ts

(A + D174

31

3 Stochastic Minsum Scheduling

For 2 < A < [%], with Lemma 3.7 (ii) it follows

ST EIC) [Am < X < (A+1)m
JETs

Ng — Zgm | Am < X < (A +1)m]

||My

m — km
>in, S AL 0
- ng::l 2\m

ATl
8

1
> .
> g+ DI

>

Using again the Law of Total Expectation (Theorem 2.1) and combining the above results,

z E[C;] < max{16,8m} Z E[CT].

JjeET €T

This concludes the proof.]

If the instance contains less deterministic jobs than stochastic jobs, then Lemma 3.6 imme-

diately implies that Js < Jg is an O(m)-approximate policy.
Lemma 3.8. The policy Js < Ty is O(m)-approzimate if 2m < ng < ns.

For the case with more deterministic jobs than stochastic jobs, we partition the deterministic
jobs into two parts J;1 and Jz2 and use the LIST SCHEDULING order Jy31 < Js < J42 where
the deterministic jobs are again ordered by non-decreasing processing times. The first set Jg 1
contains the deterministic jobs {1,...,j4} and the second set Jg2 the jobs {jq +1,...,n4}.
Choosing job j; maximal such that nstQd <>jed C']Q allows us to simultaneously bound the
cost incurred due to scheduling J, after Jy1 and due to scheduling Jy2 after J;. This job
exists since ng < ng and Eje T C]Q > ngCY. (Recall that the job-set individual cost for the

deterministic jobs corresponds to scheduling in SPT order.)
Lemma 3.9. LIST SCHEDULING in the order Jg1 < Js < Ja2 is an O(m)-approximate policy.

Proof. Since } ;¢ 7, C]Q can be computed in polynomial time, job j; can be determined in
polynomial time as well. Hence, the policy J4z1 < Js < Jg,2 runs in polynomial time.
The scheduling cost of the policy J31 < Js < Ja,2 can be naturally split into the three parts

corresponding to the respective job sets. Clearly,

Y E[C1<)l

J€Ta1 VISVE

Observe that the policy starts scheduling stochastic jobs no later than C]Qd by construction.

32

3.3 Upper Bound for Bernoulli-Type Instances

Hence, the cost incurred by the stochastic jobs can be bounded by

> E[C;] <nsCh + Y E[C] < > E[CY].
JETs J€Ts JjeTJ

It remains to bound the cost of scheduling ;2 after the stochastic jobs in Js. These cost are

bounded by LIST SCHEDULING at time 0 in the order Js < Ju2 and adding \de]CJQ

Ly e

S E[C] < |JalC) + > E[CP]
JE€Td,2 J€JT4,2UTs

The first term on the right side is upper bounded by the set-individual scheduling cost of the
deterministic jobs as SPT implies CJQ < C,g for j < k. The second term can be bounded with
Lemma 3.6 if | 742| < ns. As jq was chosen maximal, it holds that nsC?dH > ied, C?. This

implies

0 0 | Taz] 0
> CF = 1Ja2lClpa > > G
J€Td,2 5 jedy
where C]Q, for j € Jy2, refers to the set-individual cost when scheduling all deterministic jobs.

Rearranging yields

0
Zj €J4,2 Cj <
~ 0 SNs
>jeg. Cj

Lemma 3.6 and the above observation on completion times under SPT imply that

< ng

| T2

dYOE[CI< > CY+0(m) > E[C;]

J€J4,2 VISVE JEITsUT4,2

Combining the cost individually incurred by the sets Jy1, Js, and Jq2, we obtain

> E[C;]1<O(m) > E[C]].

JjeJ jeT

We conclude with a policy for scheduling Bernoulli-type instance.

Algorithm 3.1: List scheduling policy for Bernoulli-type instances with non-uniform determin-
istic jobs
At any time when a machine is idle, select the next job to schedule according to the following
priority order:
ifm=1do
use SEPT
else-if ng < 2m do
use Js = Jq

else-if ng < 2m do

33

3 Stochastic Minsum Scheduling

use Jg < Js
else-if ng > ng do
use Js < Ja

else
ja + max{j € Jy:n,C) < ¥, ., CR}
Ja1 ~{1,...,ja}
Ja2 +— {Ja+1,....,n4}
use Ja1 < Js < Ja2

Proof of Theorem 3.2. Algorithm 3.1 is a list scheduling policy that selects one out of four
index policies, SEPT, Jq < Js, Js < Ja, and Jg1 < Js < Ja2, depending on the numbers of
jobs and machines. The approximation ratio follows from the fact that SEPT is optimal on
a single machine [Rot66] and from Lemmas 3.5, 3.8, and 3.9. Since we can select the correct
case in polynomial time and any of these policies runs in polynomial time, Algorithm 3.1 is

indeed an O(m)-approximate policy. O

3.4 Further Results on Bernoulli-Type Instances

After having shown the O(m)-approximate policy for Bernoulli-type instances with arbitrary
deterministic jobs, we further analyze instances with identical deterministic jobs. We are
particularly interested in relationships between relevant parameters that allow us to obtain
constant approximate scheduling policies. This interest guides the structure of this section:
We dedicate a part to each combination of parameters for which we are able to obtain constant
approximation ratios. Interestingly, there remains a gap depending on the expected number
of long stochastic jobs. Hence, this section does not provide an O(1)-approximate policy for

every Bernoulli-type instance.

3.4.1 Less Stochastic Than Deterministic Jobs

We show that J; < Js is O(1)-approximate if there are less stochastic than deterministic jobs.

Lemma 3.10. Let ¢ € N. The policy J; < Js is a (2c+ 1)-approximate policy for Bernoulli-type

instances with uniform deterministic job sizes if ng > m and ns < cny.

Proof. When scheduling in order J; < Js, machines start processing jobs in Js no later than
time [%-‘ p <274 p when all jobs in Jy have completed. Thus, the total cost of scheduling Js
after Jy is
ng
> E[C)] + ns - 22 p < > E[CY]+2¢ > E[CY].
JE€ETs JE€TSs J€Td
Adding the job-set individual cost of the deterministic jobs J; implies the approximation

ratio (2¢ + 1) and Observation 3.4 bounds the running time. O

34

3.4 Further Results on Bernoulli-Type Instances

3.4.2 Many Long Stochastic Jobs in Expectation

Recall that X; denotes the random variable indicating whether or not P; = [and X counts the
number of such stochastic jobs j. Motivated by Lemma 3.7, that analyzes the expected number
of stochastic jobs after having observed a certain number of long ones, we consider instances
where, in expectation, the number of stochastic long jobs is at least a constant fraction more
than the number of machines. We show that J; < J; achieves a constant approximation ratio
if additionally ng < ng holds.

Lemma 3.11. For Bernoulli-type instances satisfying ng < ns and E[X] > (1 4 €)m, the

4+3€

scheduling policy Js < Jyq is a -approzimate policy.

Proof. Again, Observation 3.4 bounds the running time of Js < Jg.

The cost for stochastic jobs incurred by the policy Js < J; is bounded by the set-individual
scheduling cost, i.e., by > ;c 7 E[CJQ]. Hence, it remains to bound the cost for scheduling
the deterministic jobs after all stochastic jobs finish. This cost can be bounded from above
by 14Cmax(Ts) + 2 jeq, € Y where Chax(Js) is a random variable representing the makespan
of the stochastic jobs. Slnce we use LIST SCHEDULING, the makespan of J; is given by l[%w,

which is at most l(% + 1). Hence, in expectation, the scheduling cost of the deterministic jobs

is bounded by

[)

ndE[Cmax(js)] Slnd <]E[)q+1> :lnd+ ngns < (1+ 1)n’
m m l+e/ m

where we used ng < n, and %= = E[X] > (14+¢)m
For bounding the term on the right side, we use a valid inequality for any scheduling policy I1
and any subset of jobs J' C J discovered by Mohring, Schulz, and Uetz [MSU99:

JjeJ’ JjeJ’ JEJ’ JjeJ’

S E[PE [C“]z:;;,(ES].) + = }:1E _47;5, Var[Pj).

Note that the set-individual cost of the stochastic jobs is given by the cost of LiST SCHEDUL-
ING in an arbitrary order. Applying this observation and the above bound to J' = J, and
using E[Pj] = 1 as well as Var[P;] = [— 1, we obtain

3" E[C? ;(ZQ+»ZZ—E; (1-1)

jEJs]EJS]6\73]EJS
2

n; ngl

2m 2
e n?

>_ - '
“2(14+¢e)m

v

35

3 Stochastic Minsum Scheduling

where we used again that "+ > (1 + ¢)m by assumption. Combining these two bounds yields

1 2 443
SEGI< (142) 2+ ¥)+ B < T E T E(CL
jeT tesmo e, jeds € jer

3.4.3 Bounded Processing Times of Stochastic Jobs

In this section, we consider Bernoulli-type instances where the processing time of the stochastic
jobs is bounded from above by the average load per machine caused by deterministic jobs. We
show that, if P; < 2% for all jobs and all realizations, then J; < Jy achieves a constant

approximation ratio.

Lemma 3.12. For Bernoulli-type instances satisfying nqg < ng, E[X] < (1+¢e)m and | < 2742,
the policy Js < Jq is a (9 4 4e)-approximate policy.

Proof. As in the proof of Lemma 3.11, the cost for scheduling the deterministic jobs after
finishing all stochastic jobs is bounded from above by 14Cmax(Js) + > jed, C}). In expectation,
the first term can be bounded by

Ngns

ndE[Cmax(js)] < lnd + m .
Using first %+ < (14 ¢)m and then I < 2742 yields

2
naE[Conax (T3)] < 2(2 + £) 242

m
By a result of Eastman, Even, and Isaacs [EEI64], this term can be bounded by

ndE[Cmax(js)] < 4(2 +<‘5) Z CJO

JE€ET4

Combining these results with Observation 3.3 on the job-set individual cost and Observation 3.4

on the running time of Js < Jy concludes the proof. O

3.4.4 Bounded Makespan of Deterministic Jobs

In this section, we analyze the policy J; < Js for Bernoulli-type instances where the makespan
of deterministic jobs is bounded by a constant. We show that this policy achieves a constant

approximation ratio.

Lemma 3.13. If a Bernoulli-type instance satisfies % < ¢, then J3 < Js is a (c + 2)-

approzimate policy.

Proof. For the policy J; < Js, the scheduling cost caused by the deterministic jobs coincides
with the corresponding job-set individual cost, i.e., with >-,c 7 CJQ. The cost of scheduling
the stochastic jobs after the deterministic jobs, is at most 7,Cmax(Ja) + > ez, E[C]]. As

36

3.4 Further Results on Bernoulli-Type Instances

the deterministic jobs are processed without idle time by LIST SCHEDULING, the first term is
bounded by

m

nscrnax(Jd) = Ns ’VW—‘ <n (1 + dp)
m

Since)¢ 7, E[Pj] = ns is a valid lower bound on the job-set individual cost for the stochastic

jobs and since “4¥ < ¢ by assumption, we have
nsCmax(jd) < (C + 1) Z E[C]O]
JE€Ts

Combining these bounds and using Observations 3.3 and 3.4 shows the statement. 0

3.4.5 At least m — 1 Expected Long Stochastic Jobs

In this part, we consider Bernoulli-type instances where the number of expected long jobs is at
least m —1, i.e., E[X'] > m — 1. Depending on the size of deterministic jobs relative to E[P} |,
we distinguish two cases. If p <E[P;], then we show that J; < Js is a constant approximate
policy while Js < J; achieves a constant approximation ratio if p > E[P;].

A key ingredient to both results of this section is again the following valid inequality by
Mohring, Schulz, and Uetz [MSU99)| for any scheduling policy II and any job subset J' C J:

jeJ’ JEJ’ jeTJ’

ZE[}@]E[C}TPl(ZE j) +5 2 ElP —72Var
Applied to J' = Js U Ty, we simplify this to

Z { }‘HDZ []>Lm<n +2ndn5p+ndp)+%(ns—|—ndp2)—

jejs]ejd

m—1
=1
—n,(1 - 1)

(3.1)

ngan
> dsp’

m

where we used that E[X | > m — 1 implies that ns > (m — 1)(I — 1).

Lemma 3.14. For any Bernoulli-type instance satisfying p < 1, %2 > 1, and E[X] > m — 1,
the policy J3 < Js s a 3-approximate policy.

Proof. We bound again the cost of scheduling the stochastic jobs after the deterministic jobs
by 1nsCmax(Ja) + >jed. [C |, where the first term is bounded:

n 2ngn,
nscmax(jd) < ng <7;lf + 1) :ndp.

37

3 Stochastic Minsum Scheduling

Recall that E[Pj] =1 for j € Js. Using this and p < 1, we apply Equation (3.1) to obtain

JjeT JETSs J€ETa

Therefore, the policy J; < Js achieves an approximation ratio of 3. Further, Observation 3.4
bounds the running time of J; < Js. O

Lemma 3.15. For any Bernoulli-type instance satisfying p > 1 and E[X] > m —1 > 1, the
policy Js < Jg is a 4-approrimate policy.

Proof. Observation 3.4 gives the desired polynomial bound on the running time.
The cost for scheduling the deterministic jobs after the stochastic jobs can again be bounded

by ndl[%w + 2 jeq, C'JQ per realization. In expectation, the first term is at most nd<% + l).

Using the assumption E[X | > m —1 in the form [< ey < 2777;5, this term is at most nd<%).
In order to bound this term, we use again Equation (3.1) to obtain
* * ngnsp
pZE[Cj]ZZE[Pj]E[Cj]Z =
; “ m
jed jedJ
Dividing by p bounds the cost of the scheduling policy Js < Ja by 43¢ 7 E[C7]. O

3.4.6 Discussion

By combining the previous results, we observe that the remaining cases for Bernoulli-type
instances satisfy ngs > nq, % > cand E[X | < m — 1. The difficulty with such instances lies
in the fact that there is a positive probability that Js < Jy blocks all machines and delays all
deterministic jobs past time [, the long processing time of the stochastic jobs.

As we have also seen in Section 3.3, if the realized number of long jobs exceeds the number
of machines by at least a constant fraction, then the set-individual cost for scheduling the
stochastic jobs is sufficient for bounding the cost of the deterministic ones. However, if we only
have constantly many more realized long jobs than machines, then the set-individual cost only
allows for an O(m)-approximate policy but does not yield a constant performance guarantee.

Interestingly, known results about stochastic scheduling policies can be used to obtain O(1)-
approximate policies if the expected number of long jobs is at least m — 1 which in turn implies
a better lower bound on any scheduling policy. If an instance has at most m — 2 long jobs in
expectation, then the large processing time of stochastic jobs (and hence the additional cost for
delaying the deterministic jobs by [) is too large to be balanced by the probability that many
stochastic processing times turn out to be long. Hence, the cost of J; < J; cannot be bounded
with the lower bounds on an optimal policy that are currently in use. Similarly, with the lower
bounds currently known, the sheer number of stochastic jobs prevents Jy < Js from being O(1)-

approximate. We also tried to analyze “mixed” policies where we schedule stochastic jobs

38

3.5 Concluding remarks

until a constant fraction of machines is blocked with long jobs before completely switching to
deterministic jobs. The problem here is that we force ourselves to delay a considerable fraction
of stochastic jobs to be scheduled after all deterministic jobs while an optimal policy might be
lucky in the same realization and schedule all of these jobs at time zero.

It remains an interesting open question whether Bernoulli-type instances allow for O(1)-
approximate policies. We believe that better lower bounds on the cost of the optimal scheduling
policy are necessary to improve upon our O(m)-approximate policy. Except for the bound
by Moéhring, Schulz, and Uetz [MSU99], we are not capable of exploiting the fact that any
policy has to schedule both types of jobs and hence incurs some “mixed” cost, i.e., the cost
for scheduling a subset of the jobs of one type before the other type (and thus delaying the

second) or assigning a particular type of jobs only to a subset of machines.

3.5 Concluding remarks

In this chapter, we rule out distribution-independent approximation factors for minsum schedul-
ing for simple index policies, including LisT SCHEDULING in SEPT, LEPT, and LVF order.
This strong lower bound holds even for Bernoulli-type instances. It may surprise that such
simple, yet stochastic, instances already seem to capture the inherent difficulties of adaptive
stochastic scheduling. We believe that understanding the seemingly most simple Bernoulli-
type instances is a key for making progress on approximate policies for stochastic scheduling
problems. The general importance of high-variance jobs has also been observed in earlier
work [MSU99, MUV06,Sch08,IMP15, GMUX17].

For Bernoulli-type instances with arbitrary deterministic jobs, we also give an O(m)-approx-
imate list scheduling policy. The key ingredient to this analysis is the improved lower bound on
the optimal cost due to exploiting the properties of the underlying probability distributions.
It would be a major improvement to generalize this lower bound to arbitrary probability
distributions. Generally, it is a common understanding that improving upon lower bounds is
fundamental for designing O(1)-approximate scheduling policies.

The setting with a fixed number m of machines is of particular interest. While the special
case m = 1 is solved optimally by SEPT [Rot66], even the problem on m = 2 machines is open.
For Bernoulli-type instances, the index policy we give in this note is, in fact, a constant-factor
approximation. Any generalization would be of interest. Notice that our lower bound for
arbitrary index policies as well as earlier lower bounds on SEPT [CFMM14,IMP15] rely on a
large number of machines. Thus, even SEPT or some other simple index policy might give a
constant factor approximation for constant or bounded m.

For general instances, our lower bound for index policies suggests that future research on

more sophisticated scheduling policies is necessary for O(1)-approximate policies.

39

Online Load Balancing with
Reassignment

We investigate an online variant of load balancing with restricted assignment. In the
offline setting, there are n jobs given which need to be processed by m machines with
the goal to minimize the maximum machine load. Each job j has a processing time p;
and can only be processed by a subset of the machines. In the online variant of this
model, the jobs are only revealed incrementally and have to be immediately assigned to
a machine before the next job is revealed.

Since there exist strong lower bounds even for the special case of p; = 1 for all j, we
allow our online algorithm to reassign a job j at a cost of ¢; > 0. This model contains
two online models as special cases: The model with unit reassignment cost is referred
to as recourse model while migration refers to ¢; = p;. In this chapter, we generalize
a result by Gupta, Kumar, and Stein [GKS14] on online load balancing with recourse
to the setting with arbitrary cost. That is, for unit processing times, we maintain a
constant competitive assignment with reassignment cost linear in > ;G- For arbitrary
processing times, we give an O(loglogmn)-competitive algorithm with reassignment
cost O(1) 3, ¢;.

Bibliographic Remark: This chapter is based on unpublished, joint work with
S. Berndt and N. Megow.

Table of Contents

4.1
4.2

4.3

4.4

Introduction 42
Online Flows with Rerouting 44
Online Load Balancing with Reassignment 46
43.1 Unit-Size Jobs L 46
432 SmallJobs L e 47
433 Arbitrary Jobs . . . L Lo e e 52
Concluding Remarks oL Lo 53

41

4 Online Load Balancing with Reassignment

4.1 Introduction

We analyze an algorithm for an online scheduling problem. A set 7 of n jobs has to be assigned
to m machines to minimize the maximum load Ca.x. We focus on the case of restricted
assignment where each job is characterized by a processing time p; € N and a set of machines
it is allowed to be processed by. The online model we consider is based on the online-list
model, where jobs are revealed one by one and any online algorithm has to irrevocably assign
the job to one of its machines before the next job is revealed. That is, the jobs are revealed in
the order 1,...,n, and upon arrival of job j, the scheduler learns the processing time p; and
the set of machines that can process j. The algorithm has to assign j to one of its machines
before job j + 1 is revealed.

Restricted assignment is a special case of scheduling on unrelated machines where each job j
has a processing time p; ; that depends on the machine 7 the job is assigned to. Restricted
assignment can be modeled by requiring p;; € {p;, oo} for each job j and each machine i.
We note that all known lower bounds on the competitive ratio of online algorithms for load
balancing on unrelated machines already hold for restricted assignment.

Azar, Naor, and Rom [ANR92] give a lower bound of (logn) for any online algorithm,
even if p; ; € {1,00}. In recent years, several models have been developed to circumvent such
lower bounds by either giving the online algorithm more power or decreasing the knowledge
or power of the adversary. In this chapter, we choose the former model where the online
algorithm is allowed to revoke assignment decisions at a certain cost. That is, upon arrival of a
new job, previously revealed and assigned jobs might be reassigned at a job-dependent cost. Of
course, if one did not impose any bound on these reassignment cost, then the algorithm could
simulate the current offline optimum. Therefore, we assume that each job j has a non-negative
assignment cost ¢; that any scheduler has to pay when it (re)assigns j to a particular machine.
In particular, the assignment cost of an offline optimum is given by the sum of the assignment
costs of the current set of jobs.

As described in Chapter 2, we use competitive analysis to evaluate the performance of an
online algorithm. That is, an online algorithm is c-competitive if, for each instance and after

each arrival of a new job, its makespan is bounded by c¢C} .., where CZ

max? ax 18 the minimal

makespan of any feasible schedule for the current job set. Further, we say that an online
algorithm has a reassignment factor of B if its amortized reassignment cost over the first k
rounds is bounded by 3 Zle ¢; for each k € [n]. The aim is to design a c-competitive online

algorithm with bounded reassignment factor.

Migration and recourse The model with reassignment cost generalizes both the recourse
model — by setting ¢; = 1—and the migration model with ¢; = p;. We refer to these special
reassignment factors by recourse and migration factor, respectively. We note that in these

two special cases the first assignment usually does not incur any cost. Both models have been

42

4.1 Introduction

analyzed from an amortized as well as from a worst-case point of view. In the latter, the
reassignment cost in round k is required to be bounded by Sc¢y. Clearly, any worst-case bound

translates to a bound in the amortized setting while the reverse is not necessarily true.

Westbrook [Wes00] is the first to consider online scheduling with reassignments. He con-
siders the case where jobs may arrive and depart. Here, the optimal makespan may decrease
over time. Therefore, he designs algorithms that are c-competitive against the current optimal
load. He gives constant competitive algorithms with constant migration factor and constant

recourse factor, respectively, for identical as well as related machines. For arbitrary reassign-
max;{c;/p;}
min;{¢;/p;}
max; {c;/p;}

—20l5) - Andrews, Goemans, and Zhang [AGZ99] improve
min;{c;/p;}

upon these results giving algorithms that are constant competitive against the current optimal

ment costs, the algorithm is O (logs)—competitive with reassignment factor O(4) for

some parameter § with 1 < ¢§ <

load with constant reassignment factor for identical and related machines.

Even for load balancing on identical machines, there is a lower bound of v/3 ~ 1.88 on the
competitive ratio of online algorithms by Rudin and Chandrasekaran [IC03] while the best
known algorithm achieves a competitive ratio of 1.92 and is due to Albers [Alb99]. Sanders,
Sivadasan, and Skutella [SSS09] improve upon this lower bound when using migration. More
precisely, they obtain a %—competitive algorithm with worst-case migration factor %. Moreover,
they design a family of (1 + ¢)-competitive algorithms with worst-case migration factor g(e)
allowing for trade-off between the quality of a solution and its migration cost. In the online
setting, they call such a family of algorithms robust PTAS. Also for identical parallel machines,
Skutella and Verschae [SV16] develop a robust PTAS for two problems, minimizing the maxi-
mum load and maximizing the minimum load on any machine, with an amortized bound on the
migration factor. When jobs can be preempted, Epstein and Levin [EL14] give a 1-competitive,

i.e., optimal, algorithm with worst-case migration factor 1 — %

Awerbuch et al. [AAPWO01] investigate (among other problems) load balancing on unrelated
machines and give an O(logm)-competitive algorithm reassigning each job at most O(logm)
times. For the special case where p; j € {1,000} for each job j and each machine i, their algo-

rithm is 16-competitive using O(logm) recourse if the optimal makespan is at least (logm).

Gupta, Kumar, and Stein [GKS14] give an online algorithm for the general restricted assign-
ment problem that is O(loglog mn)-competitive with constant recourse. For the special case of
restricted assignment with unit-size jobs, they give a O(1)-competitive algorithm with constant
recourse. Further, they consider an online flow problem with a single source where sinks arrive
online that want to receive one unit of flow from the source. If there is a feasible offline solu-
tion with cost C*, then the algorithm violates the capacities by a factor at most (2 + ¢) with
rerouting cost at most (1 + %)C * for € > 0. The rerouting cost are defined as follows: If the

flow on an arc is increased or decreased, then an arc-dependent cost has to be paid per unit.

For restricted assignment with unit-size jobs, Bernstein et al. [BKP117] give an 8-competitive

online algorithm with constant recourse that simultaneously achieves the competitive ratio for

43

4 Online Load Balancing with Reassignment

every {p-norm for p € [1,00]. That is, if [= (ly,...,l,) is the load vector of a given job-
to-machine assignment, then the /,-norm of [is defined by C/ M P for p < oo and o
is max; l;. They achieve this by carefully following a particular optimal assignment with ma-

chine loads (I}, ...,1},) such that [; < 8If after each arrival.

Further related work Azar, Naor, and Rom [ANR92] give a strong lower bound of Q(logm)
on the competitive ratio of any online algorithm for the restricted assignment problem, even
if p; ; € {1, 00}. Since in their example n = m, this additionally gives a lower bound of (log n).
They also give an online algorithm matching this lower bound for the general load balancing
problem with restricted assignment. For randomized algorithms, they show that the exact
competitive ratio is in [ln m, In m~+1], where In m denotes the natural logarithm of m for m > 0.

If jobs may arrive and depart, Azar, Broder, and Karlin [ABK94| give a lower bound
of Q(y/m) and, since n = O(m) in their lower bound example, simultaneously of Q(y/n).
Azar et al. [AKP197] give an algorithm with matching competitive ratio O(y/m).

Recourse and migration in online optimization has been studied for a variety of additional
problems; among them matching problems [GKS14, BKP*17, BHR19], connectivity problems,
such as MINIMUM SPANNING TREE and TRAVELING SALESPERSON [MSVWI16] as well as
STEINER TREE [GGK16,IW91], and packing problems [EL09, EL13, BJK20, JK19]. Online
optimization with reassignment cost has been considered for load balancing problems [Wes00,
AGZ99] and for BIN PAcKING [FFGT18].

Our contribution We generalize the result by Gupta, Kumar, and Stein [GKS14] on on-
line load balancing with recourse to the setting where job reassignments incur job-dependent
costs. We are able to match their competitive ratio of O(loglogmn) (up to constants) with
reassignment cost O(1)3>°7_; c;. We note that our result also implies a competitive ratio

of O(loglog mn) with constant migration factor for online load balancing with migration.

4.2 Online Flows with Rerouting

Our results rely on and are inspired by the online flow algorithm with rerouting designed by
Gupta, Kumar, and Stein [GKS14]. Hence, we describe their algorithm in this section.

We consider the following online flow problem. We are given a directed graph G = (V, A)
with vertices V' and arcs A. Each arc a € A has a capacity u, € Z4 and a cost ¢, > 0.
Moreover, there is a source vertex s € V. In round ¢, vertex vy € V is specified as sink and
the task is to (unsplittably) send one unit of flow from s to v, in addition to the unit flows
already being routed from the source to the vertices vq,...,v:—1, without violating the arc
capacities u,. Throughout this chapter we assume that the underlying offline problem admits

a feasible solution while an online algorithm may violate some capacity constraints.

44

4.2 Online Flows with Rerouting

Easy examples show that, in order to satisfy all the demands specified by the various sinks,
any deterministic online algorithm has to violate the arc capacities to some extent. Then, for
determining the quality of an algorithm, we are interested in two properties: (i) the minimal
factor by which any arc capacity is violated and (ii) the total cost of the flow. In round ¢,
that is after satisfying the demand of vertices v1,. .., v, let (fu(t))aca € N4 denote the flow
found by the online algorithm. We say that the algorithm is c-competitive if f,(t) < cu, holds
for each arc a and each round ¢. Although this notion of competitiveness is orthogonal to
the classical use of describing the ratio between the cost of the optimum and the cost of the
algorithm, it allows for an easier description when we ultimately talk about load balancing
with restricted assignment.

We observe that this problem generalizes load balancing with restricted assignment and
unit-size jobs in the following way. In the offline problem, we create for each machine and for
each job one vertex and add one vertex s as source. Given the optimal makespan C} ., the

max’

source connects to each machine-vertex 7 by an arc with capacity us; = C} ., and cost ¢;; = 0.

max
Further, between each machine-vertex i and each job-vertex j, we draw an arc (7,) with
capacity 1 and cost ¢; if and only if j can be scheduled by machine 4, i.e., if p;; = 1. By
specifying each job-vertex as sink with unit demand, we obtain an instance of the offline
version of the above introduced flow problem. The online flow problem assumes that the
graph is known upfront while online load balancing is characterized by having the jobs, i.e., in
the reduction the job-vertices, revealed one by one. We emphasize that the graph we created
has a very special structure. Before a job-vertex is specified as a sink, sending flow along its
incident arcs violates the flow conservation at this vertex since all incident arcs are entering
this node. Thus, any algorithm that always maintains a feasible solution to the flow problem
will not use any of these arcs. The shortest-augmenting-path algorithm designed in [GKS14]
satisfies this condition.

The just developed reduction implies that the lower bound of (logm) on the competitive
ratio for any online algorithm without reassignment for load balancing with restricted assign-
ment also holds for the online flow problem using the above definition of competitiveness for
this problem. To beat this strict lower bound, we allow the online algorithm to reroute flow at
a certain cost. More precisely, every time the flow sent along an arc a is decreased or increased
by one unit, the cost ¢, has to be paid. Let C* be the cost of an optimal solution after the
first ¢ rounds. We aim at developing algorithms that violate the arc capacities by at most a
constant factor and simultaneously reroute flow at a cost bounded by O(C*).

To this end, we have a closer look at the shortest path algorithm developed by Gupta,
Kumar, and Stein [GKS14]. Let f be the flow in graph G after round ¢. We define the residual
network G; on the vertex set V as follows: For every arc a € A let a be its backward arc,
ie., a = (v,w) and a = (w,v). Set ul, = cu, — f, and ul, = f,, where c is the competitive
ratio we are aiming for. Moreover, let ¢!, = c. = ¢,. That is, in contrast to the classical

shortest-augmenting-path algorithm, the backward arc of every arc with positive flow has cost

45

4 Online Load Balancing with Reassignment

identical to its forward arc. If vertex vy is specified as sink in round ¢, then use a shortest path
algorithm to find P, a shortest path from s to v; in the residual network G;. We augment
the flow f along P by one unit, i.e., if a € P, then the flow along a is increased by one unit,
while @ € P implies that f, is decreased by one unit.

Gupta, Kumar, and Stein show that this algorithm maintains a (2 + €)-competitive flow
while the cost of rerouting the flow is at most (1 + %) times the cost of an offline optimum.

We restate their main result on maintaining flows online. For the proof we refer to [GKS14].

Theorem 4.1 (Theorem 6.1 in [GKS14]). If there is a feasible solution f* to the flow instance G
with source s and sinks vi,...,vs of cost C*, the total cost of augmentations performed by
the adapted shortest-augmenting-path algorithm on instance G is at most (1 + %)C* The

capacities on the arcs are violated by at most a factor of (2 +¢).

4.3 Online Load Balancing with Reassignment

In this section, we prove the main result of this chapter, namely, the existence of a ran-
domized O(loglogmn)-competitive online algorithm for load balancing with restricted assign-
ment, whose reassignment cost is bounded by O(1) > j—1¢j. We start by explaining a result
by [GKS14] for the special case of unit-size jobs as an immediate corollary of Theorem 4.1.
Then, we proceed similarly to the proof of Theorem 8.1 in [GKS14]: We partition the set of
jobs according to their processing times into big and small jobs with the classification being
relative to the current guess of the makespan. For small jobs, we use the algorithm developed
for unit-size jobs to obtain a fractional assignment that will then guide the assignment prob-
abilities of our randomized algorithm. Big jobs are further classified into groups of roughly
equal processing time such that the algorithm for unit-size jobs can explicitly handle their
assignment. Since we treat each of the O(loglogmn) classes of big jobs separately, the loss in

the competitive ratio compared to the online flow problem is immediate.

4.3.1 Unit-Size Jobs

We start by giving an intuition on how we will use the result on online flows for online load
balancing with restricted assignment. Consider again the special case with p;; € {1, 00} for
each job j and each machine i. As explained above, this problem can directly be translated

to the online flow problem assuming that C}

ax> the optimal makespan, is known in advance.

This assumption is not a restriction as we can employ a standard guess-and-double framework
at the cost of losing an additional factor of 2 in the competitive ratio. Specifically, we start by
guessing C) =1, i.e., we assign the arcs (s,7) for i € [m] a capacity of (2 + ¢), where £ > 0
is the parameter that describes the trade off between competitive ratio and reassignment cost
in Theorem 4.1. That is, our algorithm will be 2(2 + ¢)-competitive with reassignment cost

at most (1 + %) In general, let round t refer to the point in time when job j; is revealed.

46

4.3 Online Load Balancing with Reassignment

In general, if C} . is the guess of the optimal makespan in round t, then the arcs (s,1)

max

for i € [m] have capacity (2 4 ¢)C}

max*

If the shortest augmenting path algorithm does not
find a feasible flow in this network, then Theorem 4.1 implies that the true optimum is strictly

Hence, we double C} .

greater than C7

 ax- and rerun the shortest augmenting path algorithm

on the residual network G with the updated capacities us; = (2 + €)Cjix-

As the failure of the shortest augmenting path algorithm before doubling gives a lower bound

on the optimal makespan, we obtain the following corollary; see also Section 7 in [GKS14].

Corollary 4.2. Let 0 < € < 1. If there is a feasible solution with makespan C

rax and assign-

ment cost C* to the (offline) load balancing problem with restricted assignment and unit-size
jobs, then the shortest augmenting path algorithm combined with a guess-and-double frame-
work maintains a schedule with makespan at most 2(2 + €)Cr .. and reassignment cost at
most (1 + %)C*

We note that this result may overestimate the actual reassignment cost due to the following
observation: In the online flow problem, increasing or decreasing the flow along an arc a by
one unit costs ¢,. When balancing load online with reassignment, the reassignment of job j
costs ¢;. However, the reduction we use implies that reassigning one unit-size job j from
machine ¢ to machine ¢ is equivalent to decreasing the flow along the arc (4,;) by one unit
while simultaneously increasing the flow along the arc (i, j) by one unit. This implies that the

cost for rerouting the unit-flow associated with job j is 2¢;.

4.3.2 Small Jobs

Our algorithm classifies jobs as big and small depending on the current guess of the optimal
makespan and the total number of jobs. Let us assume that we know n, the number of jobs,
and C¥

max?

for the complete instance. Let v = logmn. We say a job j is big if p; >

the optimal makespan. We justify this assumption when designing the algorithm
Chax

, and otherwise,
the job is small. Our algorithm treats these jobs differently, and we start by only considering

the small jobs, Jg, of the instance. We prove the following result.

Theorem 4.3. There is a randomized online algorithm maintaining an assignment of the small

jobs Js with expected makespan at most O(1)CY . while incurring an expected reassignment

max

cost at most O(1) 3¢ 7, ¢j-

For simplicity, we assume that the set Jg of small jobs is indexed in the order of the arrival
of jobs, ie., Js = {1,...,ng}, where ng = |Js|. For scheduling the small jobs, we first
consider a fractional assignment of the jobs to machines in each time step. We interpret this
fractional assignment as a probability distribution of the jobs over the machines and would
like to obtain an integral assignment by applying classical rounding schemes. However, as we

aim at designing an online algorithm with bounded reassignment cost, we cannot round the

47

4 Online Load Balancing with Reassignment

solution in round t independently of the solution after round ¢ — 1 while hoping to control the

total reassignment cost. Thus, we follow the careful rounding scheme developed by [GKS14].

Formally, for job j with processing time p; and assignment cost c;, we generate p; unit-size
jobs with reassignment cost ;—; and consider them as an input to online load balancing with
unit-size jobs as solved in Section 4.3.1. The set of machines that are able to process a unit-size
job associated with j is identical to the set of feasible machines for job j. We interpret the

assignment of the associated unit-size jobs as fractional assignment of the original job.

Consider round t, i.e., the assignment after job ¢ has arrived and was fractionally assigned
by the algorithm in p, steps, one part per step. We are only interested in the final assignment
(of all unit-size jobs) and discard the intermediate assignments while job ¢ was only partially
assigned. Let z;;(t) be the number of unit-size jobs of job j that are assigned to machine ¢
at time t. Then, the total load on machine ¢ at time ¢ is given by [;(t) = 22:1 xij(t).
Consider a machine ¢ with ; j(t) = x; j(¢t —1). Then, no unit-size job is moved from or to
machine i. Hence, the reassignment cost for such a machine is equal to zero. For machine ¢
with z; ;(t —1) > x; j(t), exactly x; j(t — 1) — x; j(t) unit-size jobs are moved from machine i to
machines ¢’ with z; ;(t — 1) < zy ;(t). By definition, reassigning one unit-size job associated
with j has actual cost ;—j However, as observed in Section 4.3.1, the transformation to the
online flow problem implies that reassigning one unit-size job from i to i’ costs us 2;—; as it
involves decreasing the flow on the edge between j and ¢ and increasing the flow on the edge

between j and i’. Hence, the assignment cost incurred due to the arrival of job ¢ is given by

2ig(t—1) = @i (8)]. (4.1)

m t Ca
w)=3 3
i:lj:lp]

If there is a schedule with makespan C? __, the algorithm maintains a fractional schedule with

max?

makespan at most 6C

and reassignment cost at most Zgzl c(s) <3 Z§:1 c;j by setting e = 1
in Corollary 4.2.

Since we are interested in an assignment of the original jobs j, we need to translate the frac-

tional assignment (x; j(t));; at time ¢ to an integral assignment without significantly increasing
i,;(t)
j
ability distribution over the possible assignments of job j to the machines. In other words,
zij(t)
pj
Since the unit-size jobs associated with j have the same set of feasible machines, z; ;(t) = 0

m
the reassignment cost. A standard approach is to interpret the variables () _ asa prob-
1=

if X;(t) € [m] is the random variable dictating the assignment of j, then P[X(¢) = i| =

if p; ; = co. Hence, the assignment given by X;(t) for 1 < j <t is feasible.

However, simply drawing the random variables X;(t) according to the distribution given
by (xlp”ij(t)):il does not allow us to bound the reassignment cost of the actual jobs in terms of
the bound ¢(t) defined in Equation (4.1). Therefore, we use the rounding approach developed
by [GKS14] that takes the realization of X;(t — 1), i.e., the assignment of j in round ¢ — 1, into

account when drawing the new assignment X;(¢). In round ¢, the newly arrived job ¢ is always

48

4.3 Online Load Balancing with Reassignment

assigned according to the probabilities (%t(t))j; since there is no previous assignment that
needs to be taken into account.

Fix a small job j € Jg with j < t. We construct the following complete bipartite directed
graph G(t) with vertex set V(t—1)UV (¢) and arc set V(¢ —1) x V (¢), denoted by A(t). The two
vertex sets V(¢ — 1) and V(¢) contain one vertex for each machine, i.e., V(s) = {i(s) : i € [m]}
for s € {t — 1,t}. An arc a = (i(t — 1),4'(t)) has cost ¢, = 0 if i« = i’. Otherwise, the cost

for arc a € A equals the reassignment cost of one of j’s unit sized jobs, i.e., ¢ := ;—] Each
J
vertex i(t — 1) is a source with demand d;;_1) = —;;(t — 1), while each vertex i(t) is a sink

with demand d;;) = x;;(t). Since >3-, x;j(t — 1) = p; = >_; i j(t), we can solve the min-cost
transportation problem for the p; units of flow from V(¢ —1) to V(¢); for details please refer to
the book on network flows [AMO93]. Consider now the integral assignment X;(t—1) =i of j at
time ¢. Then, pick one of the x; j(t —1) units placed at i uniformly at random independently of
other jobs j’ # j. Suppose this unit is sent to node #'(t) by the solution to the transportation
problem. Set X;(t) = i’. The following lemma gives some useful properties of the random
variables that enable us to bound the reassignment cost of the integral assignment. As these

properties are only mentioned but not proven in [GKS14], we provide a full proof here.
Lemma 4.4. The random variables X;(t) for 1 < j <t < ng satisfy the following properties:
(i) X;(t) and X (t) are independent for j # j',
. ‘ it
(ii) PLX;(t) = i] = 29 and

(1) PIX;(t—1) # X;0] =2 icim): p%.(xi,j(t —1) — 2, (t))*, where 27 = max{z, 0}.
PIX; (t—1)=i]>0

Proof. We fix a time t.
Ad (i) Solving the transportation problem independently for each job implies Property (i).

Ad (ii) We prove this by induction on round ¢. Consider j = 1, the first small job that arrived.
Clearly, P[X1(1) =i] = x%fl) by definition. Suppose now that (ii) holds for all jobs 1 < j < ¢—1
in round ¢ —1. Consider the fractional assignment (z;;(t)); ; after job t arrived. Let f; ; denote
the flow from machine vertex i(t—1) to vertex #'(t) as given by the optimal solution to the min-
cost transportation problem. If X;(¢ — 1) = 4, then the probability that X;(t) = ¢ is wlﬁgl_l)
By the Law of Total Expectation (Theorem 2.1) and by the induction hypothesis,

PX;(t) =i = > PX;(t) =7 | X;(t — 1) = i P[X;(t — 1) = 4]
P[Xj(zte—[ql)}::ibo

_ Z fig xij(t—1)
Pt zij(t—1) pj
P[X; (t—1)=i]>0

_ xi/,j(t)
pj

49

4 Online Load Balancing with Reassignment

where the last equality follows from f;;» being a feasible solution to the transportation problem.

Ad (iii) Recall that c;;_1 ;¢ = 0. For a machine i with x;;(t — 1) > ;;(t), the optimal

solution to the transportation problem sends x; j(t — 1) — x; ;(¢) unit jobs to other machines.
, i (=)= 4 (t o

Thus, P [X;(8) # X;(t = 1) | X;(t = 1) =] = 220200 For i with 2;(t 1) < 2,5(t) the

optimal solution to the transportation problem sends z; ;(t — 1) unit jobs from i(t — 1) to i(¢).

Thus, P{Xj(t) #X;t-1)|X;(t—-1)= z} = 0. Therefore,

PN £ X -] = X B0 # X0 -)Xt 1) = i|P[X;(t - 1) =]
P[X; zteyln)}:z} >0

= X

i€[m]:
P[X; (t—1)=i]>0

(xm-(t -1) - xi,j(t))+ xij(t—1)
xij(t—1) Py

l’
S (it = 1) = @iy(1))
i€[m]: Pj
P[X (t—1)=i]>0

where the first equality holds because of the Law of Total Expectation (Theorem 2.1) and the

second equality follows from Property (ii) and the observation discussed above. O

Proof of Theorem 4.3. We first show that the above described algorithm incurs a total cost
of at most 32?21 c¢j while maintaining a solution that has a small load on each machine in
expectation. To this end, let L;(t) := > X;(t)=i P denote the random load on machine 7 at
time ¢. We start with showing that E[L;(t)] < 6C

max for all 1 <4 < m. Since a bound on the

expected load per machine is not sufficient to bound the expectation of the maximum load,

i.e., E[max; L;(t)], afterwards, we show how to guarantee a makespan less than 18CY,,, with

probability one at the loss of another constant factor in the reassignment cost.
With Lemma 4.4, it follows

mmmzzm&@ﬂm=2”§%zum
j=1

j=1
where [;(t) is the fractional load on machine i after having assigned job t. By Corollary 4.2,
we know that maxi<ij<m li(t) < 6C;;

max if there exists a feasible solution with makespan Cf;

max*
Now consider the reassignment cost ¢(t) our algorithm incurs over the course of the arrival of ¢
small jobs. For 1 < j < t, the algorithm pays ¢; whenever X;(t — 1) # X,(t). Thus, with

Property (iii) of Lemma 4.4, we have
¢

E[&(t)] = Pt — 1) # X;(0)]e;

Jj=1

50

4.3 Online Load Balancing with Reassignment

=Y D) - myt- 1)t

=1 iem: P

s
<> pfj,|~"31,j(t) — zij(t — 1)

Again, with Corollary 4.2, the expected total cost of the randomized algorithm is bounded
by >ty c(t) <3371 ¢

Unfortunately, bounding E[L;(t) | does not imply a bound on E[maxi<;<m L;(t) | as noted
by [GKS14]. Indeed, a simple balls into bins argument shows that even though the expected

load of each machine is at most a constant, the expected maximum of the loads is 2 (blgofgo Tgnm)

We use the fact that we are only considering small jobs in order to get a better bound.
Consider a time t as well as a machine i. Define the random variable Y; ;(t) to indicate
whether or not j is assigned to ¢ at time t. So, Y;;j = Lix;n=i) and Li(t) = 3 c 7, PjYi;-
We have E{Zjejs pj)/;j(t)} = [;(t) < 6C}.«(t) as discussed above. Here, C} . (t) denotes
the optimal makespan in round ¢. Now, we bound the probability that the makespan of our
schedule exceeds 18CF

max

(t) in round ¢t. We start by giving a union bound on this probability

P[m?xzi() > 18C* (¢)} Plﬂi DY > 180t)]

JE€Ts: X (t)=i

P

IA
NE

> ;i > 18C . (1)]

J€Ts: X (t)=1i

Yi;(t)p; > 18]

1

.
Il

P

.

2 Ctalt)

=1

Fix a machine 7 and a round ¢ and observe that the random variables 7 (t)(% are indepen-

dently distributed in [0, 1] with E{Z] cJs 72* 4t)(Ig } =gt (t)(5 < 67 Applying the Chernoff-

Hoeffding bound (Theorem 2.3) with ¢ = 18 ‘l“a(’;)(t) — 1 and thus &2 > 18 m?")(t) yields

1

P W'

> ,ch(t)pj > 187] < exp (e blin > < exp(—67) <

= T T 3Chs(D)

Inserting this in the bound calculated above gives

1
mot6’

P[max (1) > 1805 ()] <

Hence, for one instance with n jobs, the probability that the makespan of our algorithm

51

4 Online Load Balancing with Reassignment

exceeds 18C*

 ax(t) in some round ¢ is bounded by

ns 6
P[3t: max (1) > 18Ch.(D)] < Z%gmi%<@

md

ot

Hence, whenever the randomized rounding algorithm incurs a makespan more than 18C% .., w
just restart the algorithm from scratch and fast-forward to time ¢. Then, we reassign all small
jobs accordingly incurring a reassignment cost of at most C':= 3 ;¢ 7 ¢;. If we observe such a
failure mode, we run the algorithm independently of all previous runs. Hence, the probability
that we observe such a failure mode k times for one instance is bounded by (1 02)k < 2%

for m > 2. Thus, the expected cost of possible failure modes is bounded by
00 1\
> Ck (2> =2C
k=1

if m > 2. We conclude that the algorithm is O(1)-competitive in expectation with expected

reassignment cost at most O(1) 3¢ 7, ¢; when combined with the failure mode. O]

4.3.3 Arbitrary Jobs

The main result of this section is the following theorem.

Theorem 4.5. There is a randomized online algorithm maintaining an assignment with ex-
pected makespan at most O(loglogmn)C} .. while incurring an expected reassignment cost of

max
at most O(1) 3°7_4 cj, where C}

ax 1S the optimal makespan.

The proof of the theorem follows the idea in [GKS14] for the proof of their Theorem 8.1.
Consider an arbitrary job set J and let p); := 2llogp;| Define p;; =p;if pij = pjand p} ; = oo
otherwise. By a fairly standard argument, this implies that the optimal makespan of the
original instance is at most twice the optimal makespan of the modified instance. Hence, at
the loss of an additional factor 2 in the competitive ratio, we assume from now on that the
processing times are powers of two and say job j belongs to class Cy, if p; € [2F—1 2F) for k € N,

For simplicity, let us start with supposing that we know n, the number of jobs we will

encounter, and C”

o axs the optimal makespan. Based on these two values, we classify each

arriving job as big or as small. We use Jp and Jg to refer to these two types of jobs.

Let v = logmn. We say a job j is big if p; > C;E‘/a", and otherwise, the job is small. As jobs
may only arrive, each job makes the transition from big to small at most once. Hence, using

again a guess-and-double framework for C}

 ax and the current value of n enables us to justify

this assumption.
Our algorithm treats these jobs differently: A small job j is assigned by the randomized
algorithm described in Section 4.3.2

52

4.4 Concluding Remarks

For big jobs, we use the partitioning into classes C; and consider each class separately. The
rounding of the processing times upon arrival implies that jobs in the same class have the same
processing time, and, thus, we obtain an instance of online load balancing with unit-size jobs
by scaling the instance by 2+~1.

Formally, after the arrival of the first job 1, we round down p; to the next power of 2 before
setting C .. = 2p;. Given m, we additionally set v = logm as n = 1 currently holds. With
each new job, we update v = log mn.

Then, we classify each job as big job if its processing time is at least %, otherwise the
job is small. Based on the type of job j, we run the algorithm for small jobs (Section 4.3.2),
or we invoke the algorithm for unit-size jobs (Section 4.3.1) for class Cj, where k = |logp;].
Whenever the shortest-augmenting-path algorithm used a class of big jobs reports that it

cannot find a solution with makespan at most 3C}

rax OF the randomized algorithm for small

jobs cannot find a solution with makespan at most 18C} .., we double C%

max; rax- 1f a previously

big job becomes small due to such an update of %, we treat this transition as a new arrival
of a small job and invoke the algorithm for small jobs before assigning the new job j.

Before proving the main result of this chapter, we need to analyze the algorithm’s perfor-
mance when assigning big jobs. The rounding of the processing times upon arrival implies that
jobs in the same class have the same processing time, and, thus, we obtain an instance of online
load balancing with unit-size jobs by scaling the instance by 2¥~1. Since there are O(loglog mn)

classes of big jobs, Corollary 4.2 immediately yields the following result on big jobs.

Corollary 4.6. There is an online algorithm maintaining an assignment of the big jobs Jp with

expected makespan at most O(loglogmn)C:

max and reassignment cost at most O(1) 3¢ 7, ¢;-

Proof of Theorem 4.5. Theorem 4.3 guarantees that the algorithm maintains a schedule for

the small jobs of makespan at most O(1)C} ., while incurring a reassignment cost of at

max
most O(1) 3¢ 7, ¢j- Corollary 4.6 implies that the schedule for the big jobs has makespan
with total cost bounded by O(1)3;c7,cj- Hence, the algo-
rithm achieves a makespan of at most O(loglogmn)Cy .. with total reassignment cost at

most O(1) 3¢ 7 ¢ O

at most O(loglogmn)C

max

4.4 Concluding Remarks

In this chapter, we design an online algorithm for load balancing with reassignment cost.
Somewhat surprisingly, the competitive ratios achieved in all three reassignment models is
equal (up to constants). It remains an interesting open question whether the problem admits a
constant competitive algorithm in any reassignment model with constant reassignment factor
or if there even exists an online algorithm allowing for tradeoff between the competitive ratio
and reassignment factor. We would like to point out that the analysis of the algorithm is tight,

and thus for affirmatively answering these questions one needs to design a new algorithm.

53

4 Online Load Balancing with Reassignment

Further interesting research directions include maximizing the minimal load and considering
the fully dynamic setting where items might leave as well. The difficulty in both settings is
that there might be time points where the optimum is equal to 0 which makes these types of
problems notoriously difficult for approximation. One way to overcome these difficulties would
be to aim for competitive ratios with an additive constant; such an approach is developed, e.g.,

in [BRVW20], for online load balancing on identical machines.

54

Online Throughput Maximization

We study an online scheduling problem where jobs with deadlines arrive online over
time at their release dates, and the task is to determine a preemptive schedule on m
machines which maximizes the number of jobs that complete before their deadline. To
circumvent known impossibility results, we make a standard slackness assumption by
which the feasible time window for scheduling a job is at least 1 4 ¢ times its processing
time, for some € > 0. We design a simple admission scheme that achieves a competitive
ratio of (’)(%) This is best possible as our matching lower bound shows.

On the technical side, we develop a combinatorial tool for analyzing the competitive
ratio of a certain class of non-migratory online algorithms. As the next chapter shows,
this tool is also of interest in a closely related problem.

Bibliographic Remark: The lower bound and an early version of the algorithm for
one machine as well as parts of its analysis are based on joint work with L. Chen,
N. Megow, K. Schewior, and C. Stein [CEM*20]. The generalization to multiple
machines and the remaining parts of the analysis are based on joint work with N.
Megow and K. Schewior [EMS20]. Therefore, some parts correspond to or are identical
with [CEM*20] and [EMS20].

Table of Contents

51
5.2

53
54

55
5.6

Introduction e e e e e 56
The Threshold Algorithm o o e 58
5.2.1 The Threshold Algorithm o 58
5.2.2 Main Result and Road Map of the Analysis 59
Successfully Completing Sufficiently Many Admitted Jobs 60
Competitiveness: Admitting Sufficiently Many Jobs 68
5.4.1 A Class of Online Algorithms 68
5.42 Admitting Sufficiently Many Jobs oo oo 73
Lower Bound on the Competitive Ratio 75
Concluding Remarks oL oL 7

55

5 Online Throughput Maximization

5.1 Introduction

We consider a model in which jobs arrive online over time at their release date r; > 0. Each job
has a processing time p; > 0, and a deadline d; > 0. In order to complete, a job must receive
a total of p; units of processing time in the interval [r;,d;). There are m identical machines
to schedule jobs. We allow preemption, that is, the processing of a job can be interrupted and
resumed at some later point in time. Further, we distinguish migratory and non-migratory
algorithms. If an algorithm is migratory or it is allowed to use migration, then any preempted
job may resume processing on any machine while it may only be completed by the machine it
first started on otherwise. In a feasible schedule, no job is run in parallel with itself and no
machine processes more than one job at any time. If a schedule completes a set .S of jobs, then
the cardinality |S| of the set S is its throughput, which has to be maximized.

We analyze the performance of algorithms using standard competitive analysis [ST85] in
which the performance of an algorithm is compared to that of an optimal offline algorithm
with full knowledge of the future. More precisely, an online algorithm A is called c-competitive
if it achieves for any input instance Z a total value of |A(Z)| > %‘OPT(IN, where OpT(Z) is
the set of jobs scheduled by an optimal (offline) algorithm and A(Z) the one scheduled by \A.

The problem becomes hopeless when preemption is not allowed: whenever an algorithm
starts a job j without being able to preempt it, it may miss the deadlines of an arbitrary
number of jobs that would have been schedulable if j had not been started. Therefore, we
focus on preemptive online throughput maximization.

Hard examples for online algorithms tend to involve jobs that arrive and then must im-
mediately be processed since d; — r; ~ p;. It is entirely reasonable to bar such jobs from a
system, requiring that any submitted job contains some slack. That is, we must have some
separation between p; and d; — ;. To this end, we say that an instance has e-slack if every
job satisfies d; —r; > (14 €)pj. We develop an algorithm whose competitive ratio depends
on ¢; the greater the slack, the better we expect the performance of our algorithm to be.
This slackness parameter captures certain aspects of Quality-of-Service provisioning and ad-
mission control, see, e.g., [GGP97,LWF96], and it has been considered in previous work, e.g.,
in [AKL"™15, BH97, GNYZ02, Gol03,LMNY13,SS16]. Other results for scheduling with dead-
lines use speed scaling, which can be viewed as another way to add slack to the schedule; see,
e.g., [ALLM18,BCP11,IM18,PS10].

Related work Preemptive online scheduling and admission control have been studied rigor-
ously. There are several results regarding the impact of deadlines on online scheduling; see,
e.g., [BHS94, GNYZ02, Gol03] and references therein.

For maximizing the throughput on a single machine, Baruah, Haritsa, and Sharma [BHS94]
show that, in general, no online algorithm achieves a bounded competitive ratio. Thus, their

result justifies our assumption on e-slackness of each job. Moreover, they consider special

56

5.1 Introduction

cases such as unit-size jobs or agreeable deadlines where they provide constant-competitive al-
gorithms even without further assumptions on the slack of the jobs. Here, deadlines are agree-
able if r; < r; for two jobs j and j’ implies d; < dj. Despite the strong impossibility results
for general instances, Kalyanasundaram and Pruhs [KP03] give a randomized O(1)-competitive
algorithm. No deterministic algorithm has been known prior to our © (%)—competitive algo-
rithm [CEM™20].

When the scheduler is concerned with machine utilization, i.e., she wants to maximize the
total processing time of completed jobs, the problem becomes more tractable. On a single ma-
chine, Baruah et al. [BKM 191, BKM 92| provide a best-possible online algorithm achieving a

competitive ratio of 4, even without any slackness assumptions. Baruah and Haritsa [BH97] are
1+e
13

algorithm which is asymptotically best possible. For parallel machines (though without mi-

the first to investigate the problem under the assumption of e-slack and give a -competitive
gration), DasGupta and Palis [DP00] show that a simple greedy algorithm achieves the same
performance guarantee of % and give an asymptotic matching lower bound. Schwiegelshohn
and Schwiegelshohn [SS16] show that migration helps the online algorithm and improve the

competitive ratio to T{*/g for m machines. We emphasize that this result is in contrast to our

results as our non-migratory algorithm is also C’)(%)—competitive in the migratory setting.

For maximizing the weight of the completed jobs, Lucier et al. [LMNY13] give an O(g%)—
competitive algorithm in the most general weighted setting. Prior to considering slackness,

Baruah et al. [BKM191] showed a lower bound of m for any deterministic single-machine

max,; w;
max; w;/Pj g the importance ratio of a given instance. Koren and
min; w; /p;

Shasha give a matching upper bound [KS95] and generalize it to ©(In k) for parallel machines
if k> 1 [KSO4].

online algorithm, where k =

Our contribution We give an (’)(%)-competitive online algorithm, the threshold algorithm,
for maximizing throughput on parallel identical machines. As we originally developed this
algorithm for a more general setting, we considerably simplify the exposition when compared
to the algorithm in [CEM™'20]. We observe that, due to this simplification, the single-machine
variant of our algorithm is now identical (up to constants) to the algorithm developed by
Lucier et al. [LMNY13] for maximizing the weighted throughput. On parallel machines, the
algorithms are closely related although we do not need to select the machine a job is assigned
to as carefully as they do. Our tight analysis shows that this algorithm is O(%)—competitive
for maximizing the throughput. In contrast to the analysis in [LMNY13] based on dual fitting,
we give a purely combinatorial analysis. We also prove that our algorithm is optimal by giving
a matching lower bound (ignoring constants) for any deterministic online algorithm.

As a key contribution on the technical side, we give a strong bound on the processing volume
of any feasible non-migratory schedule in terms of the accepted volume of a certain class of

online algorithms. It is crucial for our analysis and might be of independent interest.

57

5 Online Throughput Maximization

5.2 The Threshold Algorithm

In this section, we present our algorithm for online throughput maximization. Further, we state
the main result and provide a road map for its proof. We assume that an online algorithm is

given the slackness constant € > 0.

5.2.1 The Threshold Algorithm

To gain some intuition for our algorithm, we first describe informally the underlying design
principles. The threshold algorithm never migrates jobs between machines. In other words,
a job is only processed by the machine it initially was started on. We say the job has been
admitted to this machine. Moreover, a running job can only be preempted by significantly
smaller-size jobs, i.e., smaller by a factor of at least § with respect to the processing time, and
a job j cannot start for the first time when its remaining slack is too small, i.e., less than $p;.

We note that the algorithm developed in [LMNY13] also follows these design principles: It
only admits jobs that are smaller by a factor of v, the threshold parameter, with respect to the
processing time of the currently running job. Second, it only starts jobs for the first time if the
remaining slack is at least u—1, where p is the gap parameter. By setting v = § and = 1+ 5,
we essentially recover the algorithm developed in [LMNY13]. For the sake of self-containment,
we give a formal description of the threshold algorithm adapted to our setting.

At any time 7, the threshold algorithm maintains two sets of jobs: admitted jobs, which
have been started before or at time 7, and available jobs. A job j is available if it is released
before or at time 7, is not yet admitted, and 7 is not too close to its deadline, i.e., r; < 7 and
dj —1 > (1 + %) pj. The intelligence of the threshold algorithm lies in how it admits jobs.
The actual scheduling decision then is simple and independent of the admission of jobs: at
any point in time and on each machine, schedule the shortest job that has been admitted to
this machine and has not completed its processing time. In other words, we schedule admitted
jobs on each machine in SHORTEST PROCESSING TIME (SPT) order. The threshold algorithm
never explicitly considers deadlines except when deciding whether to admit jobs. In particular,
jobs can even be processed after their deadline.

At any time 7, when there is a job j available and a machine i idle, i.e., i is not processing any
previously admitted job j’, the shortest available job j* is immediately admitted to machine 4
at time aj+ := 7. There are two events that trigger a decision of the threshold algorithm:
the release of a job and the completion of a job. If one of these events occurs at time 7, the
threshold algorithm invokes the preemption subroutine. This routine iterates over all machines
and compares the processing time of the smallest available job j7* with the processing time of
job j that is currently scheduled on machine i. If pj« < gp;, job j* is admitted to machine i
at time aj~ := 7 and, by the above scheduling routine, immediately starts processing. We

summarize the threshold algorithm in Algorithm 5.1.

58

5.2 The Threshold Algorithm

Algorithm 5.1: Threshold algorithm

Scheduling routine: At any time 7 and on any machine 4, run the job with shortest processing time
that has been admitted to ¢ and has not yet completed.

Event: Upon release of a new job at time 7:
Call threshold preemption routine.

Event: Upon completion of a job j at time 7:
Call threshold preemption routine.

Threshold preemption routine:
J* < a shortest available job at 7, i.e., j* € argmin{p; |j € J,r; <7 and d; — 7 > (1+ 5)p;}
141
while 5* is not admitted and ¢ < m do
j < job processed on machine ¢ at time 7
if 7 =0 do
admit job j* to machine ¢
call threshold preemption routine
else-if pj» < £p; do
admit job j* to machine ¢
call threshold preemption routine
else
1 1+1

5.2.2 Main Result and Road Map of the Analysis

In the analysis we focus on instances with small slack as they constitute the hard case. Note
that instances with large slack clearly satisfy a small-slack assumption. In such a case, we
simply run our algorithm by setting € = 1 and obtain constant-competitive ratios. Therefore,

we assume for the remainder that 0 < e < 1.

Theorem 5.1. Let 0 < ¢ < 1. The threshold algorithm is 6(%) -competitive for online throughput

maximization.

This is an improvement by a factor % upon the best previously known upper bound [LMNY13]
(given for weighted throughput).

Road map During the analysis, we use the fact that our algorithm never migrates jobs. In the
analysis, we first compare the throughput of our algorithm to the solution of an optimal non-
migratory schedule. We then use a well-known result by Kalyanasundaram and Pruhs [KP01]
to compare this to an optimal solution that may exploit migration. Here, w,, is the maximal
ratio of the throughput of an optimal migratory schedule to the throughput of an optimal

non-migratory schedule.

Theorem 5.2 (Theorem 1.1 in [KPO1]). wy, < 81=5.

m

For relating the throughput of the threshold algorithm to the throughput of an optimal
(non-migratory) schedule, we rely on a key design principle of the threshold algorithm, which

59

5 Online Throughput Maximization

is that, whenever the job set admitted to a machine is fixed, the scheduling of the jobs follows
the simple SPT order. This enables us to split the analysis into two parts.

In the first part, we argue that the scheduling routine can handle the admitted jobs suf-
ficiently well. That is, an adequate number of the admitted jobs is completed on time; see
Section 5.3. Here, we use again that the threshold algorithm is non-migratory and consider
each machine individually.

For the second part, we observe that the potential admission of a new job j* to machine 7
is solely based on its availability and on its size relative to j;, the job currently processed by
machine 7. More precisely, given the availability of j*, if pj» < §pj;, and ¢ is the first machine
with this property, then j* is admitted to machine 7. This implies that § times the maximum of
the processing times of the jobs j; acts as a threshold, and only available jobs with processing
time less than this threshold qualify for admission by the threshold algorithm. Hence, any
available job that the threshold algorithm does not admit has to violate the threshold.

Based on this observation, we develop a general charging scheme for any non-migratory
online algorithm satisfying the property that, at any time 7, the algorithm maintains a time-
dependent threshold and the shortest available job smaller than this threshold is admitted
by the algorithm. We formalize this description and analyze the competitive ratio of such

algorithms in Section 5.4 before applying this general result to our particular algorithm.

5.3 Successfully Completing Sufficiently Many Admitted Jobs

In this section, we show that the threshold algorithm completes half of all admitted jobs on
time. Since the threshold algorithm is non-migratory, it suffices to consider each machine
separately. We start by defining interruption trees to capture the intricate structure of the
processing intervals. This enables us to construct a worst-case instance for the threshold algo-
rithm where “worst” is with respect to the ratio between admitted and successfully completed

jobs. The main result of this section is the following theorem.

Theorem 5.3. Let 0 < € < 1. Then the threshold algorithm completes at least half of all admitted
jobs before their deadline.

Interruption trees To analyze the performance of the threshold algorithm on a given instance,
we consider the final schedule per machine and investigate it retrospectively. Our analysis
crucially relies on understanding the interleaving structure of the processing intervals that the
algorithm constructs. This structure is due to the interruption by smaller jobs and can be
captured well by a tree or forest in which each job is represented by one vertex. A job vertex
is the child of another vertex if and only if the processing of the latter is interrupted by the
first one. The leaves correspond to jobs with contiguous processing. We also add a machine

job M; for i € [m] with processing time oo and admission date —oco. The children of machine

60

5.3 Successfully Completing Sufficiently Many Admitted Jobs

job M; are all jobs admitted to machine ¢ that did not interrupt the processing of another job.
Thus, we can assume that the instance is represented by m trees which we call interruption
trees. An example of an interruption tree is given in Figure 5.1.

Let 7(j) denote the parent of j. Further, let T; be the subtree of the interruption tree rooted
in job j and let the forest T_; be T; without its root j. By slightly abusing notation, we denote

the tree/forest as well as the set of its job vertices by T.

t

Figure 5.1: Gantt chart of a single-machine schedule generated by the threshold algorithm and
the resulting interruption tree

Instance modifications The proof of Theorem 5.3 relies on two technical results that enable
us to restrict to instances with one machine and further only consider jobs that are contained in
the interruption tree created on this instance. We start with the following observation. Let 7
be an instance of online throughput maximization with the job set J and let J C J be the set
of jobs admitted by the threshold algorithm at some point. It is easy to see that a job j & J
does not influence the scheduling or admission decisions of the threshold algorithm. The next

lemma formalizes this statement and follows immediately from the just made observations.

Lemma 5.4. For any instance I for which the threshold algorithm admits the job set J C 7, the
reduced instance ' containing only the jobs J forces the threshold algorithm with consistent tie

breaking to admit all jobs in J and to create the same schedule as produced for the instance I.

The proof of the main result compares the number of jobs finished on time, F' C J, to the
number of jobs unfinished by their respective deadlines, U = J \ F. To further simplify the
instance, we use that the threshold algorithm is non-migratory and restrict to single-machine
instances. To this end, let F() and U® denote the finished and unfinished, respectively, jobs

on machine 3.

Lemma 5.5. Let i € [m]. There is an instance ' on one machine with job set J' = FOUU®),
Moreover, the schedule of the threshold algorithm for instance I' with consistent tie breaking is
identical to the schedule of the jobs J' on machine i. In particular, F' = F® and U = U®.

61

5 Online Throughput Maximization

Proof. By Lemma 5.4, we can restrict to the jobs admitted by the threshold algorithm. Hence,
let Z be such an instance with F() U U® being admitted to machine i. As the threshold
algorithm is non-migratory, the sets of jobs scheduled on two different machines are disjoint.
Let 7' consist of the jobs in J’ := F® UU® and one machine. The threshold algorithm on
instance Z admits all jobs in 7. In particular, it admits all jobs in 7’ to machine 4.

We inductively show that the schedule for the instance Z’ is identical to the schedule on
machine ¢ in instance Z. To this end, we index the jobs in [J’ in increasing admission time
points in instance 7.

It is obvious that job 1 € J’ is admitted to the single machine at its release date r; as
happens in instance Z since the threshold algorithm uses consistent tie breaking. Suppose
that the schedule is identical until the admission of job j* at time a;+ = 7. If j* does not
interrupt the processing of another job, then j* will be admitted at time 7 in 7’ as well.
Otherwise, let j € J' be the job that the threshold algorithm planned to process at time 7
before the admission of job j*. Since j* is admitted at time 7 in Z, j* is available at time T,
satisfies pj» < Zpj, and did not satisfy both conditions at some earlier time 7’ with some
earlier admitted job j’. Since the job set in Z’ is a subset of the jobs in Z and we use consistent
tie breaking, no other job j* € J’ that satisfies both conditions is favored by the threshold
algorithm over j*. Therefore, job j* is also admitted at time 7 by the threshold algorithm in
instance Z’. Thus, the schedule created by the threshold algorithm for J’ is identical to the

schedule of 7 on machine ¢ in the original instance. O

We want to show that the existence of a job j that finishes after its deadline implies that
the subtree T} rooted in j contains more finished than unfinished jobs. To this end, we prove a
stronger statement about the number of finished and unfinished jobs in any subtree 7} based
on the length of the interval [a;, C;) where a; is again the admission date of job j and Cj is
its completion time. We want to analyze the schedule generated by the threshold algorithm in
the interval [a;, C}), i.e., the schedule of the jobs in Tj. Let F; denote the set of jobs in T} that
finish on time. Similarly, we denote the set of jobs in T} that complete after their deadlines,
i.e., that are unfinished at their deadline, by Uj; we call these jobs unfinished for simplification

throughout the proof.
Lemma 5.6. If Cj —a; > (B + 1)p; for B >0, then |F;| —|U;| > {gJ

To prove this lemma, we further restrict the instances we need to consider. Lemma 5.4,
Lemma 5.5, and the next lemma justify this restriction. After restricting to single-machine
instances and excluding all jobs not contained in the interruption tree for this machine, we
exploit the special structure of the schedule generated by the threshold algorithm when proving
the next lemma. To this end, we introduce some notation to talk about the position of a
particular job in the tree relative to the root of the tree. More precisely, we define the height
of an interruption tree to be the edge-length of a longest path from root to leaf and the height
of the node j in the tree to be the height of T}.

62

5.3 Successfully Completing Sufficiently Many Admitted Jobs

Lemma 5.7. Let j be a job in the interruption tree with Cj—a; > (B+1)p; and |Fj|—|U;| < {%J
There exists an instance ' with |Fj| —|Ul| = |Fj| — |U;| and an unfinished height-1 job j* in I'
satisfying the following properties.

(P1) No job is admitted in [djx, Cjx).
(P2) The union of the processing intervals of the children of j* is an interval.
Before proving this lemma, we use it to show Lemma 5.6.

Proof of Lemma 5.6. Toward a contradiction, suppose that there is an instance such that there
is a job j admitted by the threshold algorithm with C; —a; > (8+1)p; and |F};|—|U;| < {%J :
Among all such instances let Z be an instance with the minimal number of jobs.

The goal is to construct an instance Z' that satisfies Cj —a; > (8+1)p; and |Fj|—|U;| < L%J
although it uses fewer jobs than Z. By Lemma 5.7, we can assume without loss of generality that
the instance Z satisfies the Properties (P1) and (P2). These assumptions enable us to create a
new instance Z’ that merges three jobs to one larger job without violating C; —a; > (54 1)p;
or increasing |Fj| — |U;j|. The three jobs will be leaves with the same (unfinished) parent j*
in 7;. In fact, if j* is an unfinished job, then Cj+» —ajx > (1 + 5)p;+. Any job k that may
postpone j* satisfies pr, < $pj~. Hence, if the children of j* are all leaves, there exist at least
three jobs that interrupt j*.

To this end, consider an unfinished job j* as in Lemma 5.7. The modification has three
steps. In the first step, we merge three jobs in 7_j«. In the second step, we replace j* by a
similar job j* to ensure that the instance still satisfies the e-slack assumption. In the third
step, we adapt jobs k ¢ T_j» to guarantee that j* is admitted at the right point in time. Then,
we show that the resulting instance still satisfies |Fj| — |U;| < {gJ and Cj —a; > (B + 1)p;.

Parts of the instance Z and Z’ are shown in Figure 5.2.

/
C

(")
j*
| | | |
T T

! !
T T T T
T T
Qa* dj* Cj* Tl CC/ = Qaj* Cj*

Figure 5.2: Modifications to obtain instance Z’ in the proof of Lemma 5.6. The deadline of
job j* satisfies dj« > C)s and is not shown anymore.

Since j* is admitted at aj+ < dj« 4 (1 4 §)pj+ and not finished by the threshold algorithm

on time, Cj» — aj~ > (14 §)pj~. Any job that may postpone j* satisfies p; < $pj~. Hence,
there have to be at least three jobs that interrupt j*. Among these, consider the first three

63

5 Online Throughput Maximization

jobs ¢1, co, and ¢3 (when indexed in increasing order of release dates). We create a new instance
by deleting c1, 2, and c3 and adding a new job ¢’ such that ¢’ is released at the admission date

of j* in Z and it merges c1, c2, and cs, i.e.,
Te 1= aj*7 De = Y2 +p62 +p637 and dc’ =T + (1 + 5)pc/'

Second, we replace j* by a new job j* that is released at rj« := ajx + pr, has the same
processing time, i.e., pj» = p;+, and has a deadline dj := max{d;+,rj + (1 4+ ¢)p;- }.

In the third step of our modification, we replace every job k with r € [rjx,aj] and py < pj»
by a new job k' that is released slightly after j*, i.e., 7y := 7+ + o for o > 0. More precisely,
we choose g such that ¢ < (1 — %) pi for each job k that is subjected to this modification.
It is important to note that we do not change the processing time or the deadline of k',
i.e., pv = pr and dp = dj. This ensures that &’ finishes on time if and only if k finishes on

time. This modification is feasible, i.e., d — rir > (1 + €)pys, because of two reasons. First,
Cjr —rj = Cjr = (aj» + per) = Cjr — ajr — (Pey + Pey + Pes) = pj»

as c1,c2, and c3 postponed j* by their processing times in Z. Second, dj, — Cj» > (1 =+ %)pk
because we only consider jobs that are admitted at some point later than Cj« by the threshold
algorithm. Then,

€

dk/—Tk/:dk—Cj*—f-Cj*—Tj*—QZ (1+2

)pk +pjr—02 <2+ ;)pk —o0=(1+e&)pw,
where the last but one inequality follows from the fact that only jobs with p;, < p;« are affected
by the modification and the last inequality is due to the sufficiently small choice of p.

So far, we have already seen that the resulting instance is still feasible. It is left to show
that ¢ completes at ro + po as well as that j* is admitted at rj» and it completes at Cj«.

Since it holds that p» < %pj* < pj*, the new job ¢ is the smallest available job at a;j» = ry
and any job that was interrupted by j* is interrupted by ¢’ as well. The jobs in T« are released
one after the other by Property (P2) and r., > a;+. Thus, if j* has at least one child ¢4 left after
the modification, it holds that rc, = r¢; +pe; +Pey +Dey = aj* +per + (¢, —aj«) > rj=. Hence, no
remaining child is released in [ry,7;«] in the modified instance. Any other job k € T} released
in [ry,rj«] satisfies py, > pj» as k ¢ T_j«. Because po < pj;«, this implies that p > §p» holds
as well, i.e., no such job k interrupts ¢’. Therefore, ¢ completes at r;=.

Job j* is admitted at r;« if it is the smallest available job at that time. We have already
seen that none of the remaining children of j* is released in [aj~,7;+] that might prevent the
threshold algorithm from admitting j* at 7;«. Furthermore, the third step of our modification
guarantees that any job k € T} \ T+ that has processing time at most pj« is released after rx.
Therefore, j* is the smallest available job at time 7;+ by construction, and it is admitted. As

argued above, the modified instance is still feasible and the interval [a,(jx), Cr(;j~)) is still the

64

5.3 Successfully Completing Sufficiently Many Admitted Jobs

interval of the schedule of jobs in T7 ;).

However, the second step of our modification might lead to Cj+ < dj+ which implies that j*
finishes on time while j* does not finish on time. This changes the values of |Fj| and |Uj].
Clearly, in the case that j* completes before d;-, |U}| = |Uj| — 1. By a careful analysis, we see
that in this case the number of finished jobs decreases by one as well because the three finished
jobs ¢1, co and cg are replaced by only one job that finishes before its deadline. Formally, we
charge the completion of ¢’ to ¢1, and the completion of j* to co which leaves c3 to account
for the decreasing number of finished jobs. Hence, |Fj| — |Uj| = |Fj| — U] If j* does not
finish by dj«, then |F/| — [U| = (|Fj| —2) — |U;|. Therefore, the modified instance I’ also
satisfies || — |UJ| < {?J but contains fewer jobs than Z does. This is a contradiction. [J

Now we proceed with proving Lemma 5.7.

Proof of Lemma 5.7. Let T be an instance and let job j be a job in its interruption tree
satisfying |F;| — |U;| < {%J and Cj —a; > (B + 1)p;. The construction of the instance Z'
consists of several modifications that maintain |Fj| — |Uj| < {%J and Cj —aj > (B + 1)p;
without increasing the number of jobs compared to Z. We use *' to refer to the object in
the modified instance Z’ corresponding to * in Z. The modifications are shown in Fig. 5.3.
By Lemmas 5.4 and 5.5, we can assume that there is only one machine in this instance and
that the instance Z contains only the jobs admitted by the threshold algorithm. We start by

showing the following three claims.

(C1) The instance contains at most |T;| + 1 jobs.
(C2) The height of the interruption tree T} is at least two.

(C3) Each job of height one is unfinished.

Ad (C1) We observe that p;, < p; for any job k € T_;. Hence, a; < rj, for any such job by
definition of the threshold algorithm. We distinguish two cases to prove the claim.

If dj —a; > (1+¢)p;, we set r; = a;, p; = pj, and d; = d; and do not modify the remaining
jobs in T to define the set T]’ Then, we set J' = Tj’ to create a new feasible instance Z’ with
slack €. Clearly, the schedule produced by the threshold algorithm on instance Z' is identical
to the schedule of the threshold algorithm for instance Z in the interval [a;, C;) when using
consistent tie breaking.

If dj — a; < (1+ ¢€)pj, then 7; < a;. Therefore, we set 77 = dj — (1 + €)p; and do not
change any other parameter of the jobs in T} to obtain the set T]’ . The modified instance 7'
consists of the jobs in TJ’» plus one additional job 0 to ensure that the threshold algorithm
indeed produces the same schedule in the interval [a;,C};) in both instances. More precisely,
let 7 = dj — (1 +¢€)pj, pp = (1 + €)pj — (dj — a;) , and dy = rj + (1 +€)pp. As py < pj = pj,
the threshold algorithm admits job 0 at 7 and finishes this job at time 7 4+ py = a;. Thus, the

65

5 Online Throughput Maximization

threshold algorithm admits job j also in instance Z’ at time a; as it is the smallest available job.
Since the remaining jobs have the same parameters in both instances, the schedules produced

by the threshold algorithm for the interval [a;, C;) are identical.

Ad (C2) We show that the height of T} is at least two. Toward a contradiction, suppose
that Tj is a star centered at j. Since any leaf finishes by definition of the threshold algorithm,
the root j is the only job that could possibly be unfinished. As |F;| — |U;| < {%J — 1, this

implies that there are at most { J leaves in Tj. Then,

45
—(lj Zpk <pj+ \‘ J 4p] _pj+/8p]7
keT)

where we used pj, < §p; for each leaf k € T;. This contradicts C; — a; > (8 + 1)p;

Ad (C3) Let k be a finished job of height one and let ¢ be the last completing child of k.
The parent m(k) of k exists because the height of Tj is at least two by (C2) and k is of height
one. We create a new instance by replacing ¢ by a job ¢ with release date ry := C}, — p; and
identical processing time, i.e., py := pp. The deadline of ¢' is dy :=rp + (1 4 €)pyr.

We argue that k finishes at ry in the new instance and that ¢ finishes at Cj. Since / is not

interrupted, rp — ay = Cy, — pgy — ay = Cy, — Cy, which is the remaining processing time of &
at ag. If we can show that k is not preempted in [ag,r) in the new instance, k completes
at ag + Cy, — Cp = rp. Since £ is the last child of k, any job k' released within [as, Cy) is
scheduled later than Cj. (Recall that, after a;, we restrict to jobs in the interruption tree 77.)
Thus, pyr > §pr. > pe. Hence, k is not interrupted in [as,) and completes at ry < Cy < dj,.
At time ry, job ¢ is the smallest available job and satisfies py < (%) D < (%)Qp,r(k). Thus, ¢ is
admitted at ry and is not interrupted until ry + py = Ci by a similar argumentation about the
jobs k’ that are released in [ay, Ck). Hence, ¢’ completes at 7y + py < dy. Moreover, outside
the interval [ag, C) neither the instance nor the schedule changed. Since ¢ is released after k
completes, ¢’ becomes a child of 7(k). This modification does not alter the length of [a;, C;)
or the number of finished and unfinished jobs. However, k now has one less child. Iteratively
applying this modification to any child of k£ yields that k is now a finished job of height zero.
Modifying each finished job of height one proves the claim.
Ad (P1) We prove that no child of j* is completely scheduled in [dj«,Cj+). If there is a
child ¢ with dj» < a., it does not prevent the algorithm from finishing j* on time. Hence, it
could become a child of 7(5*) in the same way we handled the last child of an finished job in
the previous claim. That is, we can create a new instance in which ¢ is a child of 7(j*) and j*
is still unfinished. (See red job in Fig. 5.3.)

Ad (P2) We show that the processing intervals of the children of j* form an interval with
endpoint max{d;s, Cmax } where Cppax 1= maxcer_, Cc. We further prove that they are released

and admitted in increasing order of their processing times. More formally, we index the children

66

5.3 Successfully Completing Sufficiently Many Admitted Jobs

in increasing order of their processing times, i.e, pc, < pe, < ... < p,. Then, we create a new
instance with modified release dates such that each child is released upon completion of the
previous child. That is, r¢, := max{d;, Cax} — p¢, and 1, =1 —pc,_, for h € {2,... t}
where the processing times are not changed, i.e., p’Ch = P, - In order to ensure that the modified
instance is still feasible, we adapt the deadlines d, :=r, + (14 ¢)p[, -

It is left to show that the modifications did not affect the number of finished or unfinished
jobs. Obviously, the threshold algorithm still admits every job in T}.. A job k ¢ T” ;. released
in [a;«,Cj~) satisfies py > pj= > pc for all ¢ € T_j~. Hence, these jobs do not interrupt
either j* or any of its children. They are still scheduled after Cj+, and every child ¢ € T" j*
completes before its deadline. We also need to prove that j* still cannot finish on time.

If Crnax < dj=, every child is completely processed in [a;+,d;+). Hence, job j* is still inter-

rupted for the same amount of time before dj« in 7’ as it is in Z. Thus,

Cix = ajp+pj-+ D, pe=ap+pp+ > pe=Cj >dj.
tET’_].* CET_]-*

If Crnax > dj, let £ be the child in 7 with Cy = Ciax. Then, ry = Cmax =1, < Cr—pg < djx,
where we used that no child is completely processed in [dj«,Cj) by (P1) and that ¢; is the
child of j* with the largest processing time. Thus, the delay of j* in [ajx,d;~) is identical
0 Xeer . Pe— (C¢ — dj«). Hence, j* still cannot finish on time. In this case, C. = Cj+ holds

as well. Hence, the modified jobs in Z’ still cover the same interval [aj«, Cjx). O

Figure 5.3: Modifications to obtain instance Z’ in the proof of Lemma 5.7

Proof of Theorem 5.3

Proof of Theorem 5.3. Let U be the set of jobs that are unfinished by their deadline but whose
ancestors (except the machine jobs M;) have all completed on time. Every job j € U was

admitted by the algorithm at some time a; with d; —a; > (1 + %)pj. Since j is unfinished,
we have Cj —a; > d; —a; > (1 + %)pj. By Lemma 5.6, |Fj| — |U;| > {4'5/1 = 2. Thus,

)

T = [F5] + |Uj] < 2|F5] — 2 < 2|Fj].

67

5 Online Throughput Maximization

Since every ancestor of such a job j finishes on time, this completes the proof. O

5.4 Competitiveness: Admitting Sufficiently Many Jobs

This section shows that the threshold algorithm admits sufficiently many jobs to be (’)(%)—
competitive. As mentioned before, this proof is based on the observation that, at time 7,
the threshold algorithm admits any available job if its processing time is less than § max; pj,
where pj, is the job processed by machine 7 at time 7. We start by formalizing this observation
for a class of non-migratory online algorithms before proving that this enables us to bound the
number of jobs any feasible schedule successfully schedules during a particular period. Then,

we use it to show that the threshold algorithm is indeed O(%)—competi‘cive.

5.4.1 A Class of Online Algorithms

In this section, we investigate a class of non-migratory online algorithms. To this end, we
generalize the notion of an available job as follows: Let § € (0,e). We say a job j is available
at time 7 if it is released before or at time 7, d; — 7 > (1 4+ §)p;, and is not yet admitted by
the online algorithm.

We consider a non-migratory online algorithm A satisfying the following properties.
(P1) A only admits available jobs.

(P2) Retrospectively, for each time 7 and each machine i, there is a threshold u;, € [0,]
such that any job j that was available and not admitted by A at time 7 satisfies p; > u; »

for every i.

(P3) The function u® : R — [0, 00],7 — u; r is piece-wise constant and right-continuous for
every machine ¢ € [m|. Further, there are only countably many points of discontinuity.

(This last property is used to simplify the exposition.)

Key Lemma on the Size of Non-Admitted Jobs

For the proof of the main result in this section, we rely on the following strong, structural
lemma about the volume processed by a feasible non-migratory schedule in some time interval
and the size of jobs admitted by a non-migratory online algorithm satisfying (P1) and (P2) in
the same time interval. We define u, = max; u; » for each time point 7.

Let o be a feasible non-migratory schedule. Without loss of generality, we assume that o
completes all jobs that it started on time. Let X7 be the set of jobs completed by ¢ and not
admitted by A. For 1 <i <m, let X7 be the set of jobs in X7 processed by machine 7. Let C;,

be the completion time of job z € X? in 0.

Lemma 5.8. Let 0 < (3 < (2 and fix v € X7 as well as Y C X7\ {z}. If

68

5.4 Competitiveness: Admitting Sufficiently Many Jobs

(R) 74 > C1 as well as ry > (i forally €Y,
(C) Cp >Cy forally €Y, and

(P) Zerpy > 5%5(@ — (1)

hold, then p, > u¢,, where ug, = max;u; ¢, s the threshold imposed by A at time (3. In

particular, if u¢, = 0o, then no such job x exists.

Proof. We show the lemma by contradiction. More precisely, we show that, if p, < uc,, the
schedule o cannot complete z on time and, hence, is not feasible.

Remember that © € X7 implies that A did not admit job x at any point 7. At time (2, there
are two possible reasons why « was not admitted: p, > u¢, or dy — (2 < (1 4+ 6)p,. In case of
the former, the statement of the lemma holds. Toward a contradiction, suppose p, < u¢, and,
thus, dy — (2 < (14 0)p, has to hold. As job z arrives with a slack of at least ep, at its release

date r, and r, > (1 by assumption, we have
GQ—CG=CQ@—dit+de—15>—(140)ps + (1 +)ps = (€ — 0)pa- (5.1)

Since all jobs in Y complete earlier than = by Assumption (C) and are only released after ¢;
by (R), the volume processed by o in [(1, C;) on machine i is at least =5(¢2 — (1) +p2 by (P).
Moreover, o can process at most a volume of (¢ — (1) on machine ¢ in [(7,(2). These two

bounds imply that ¢ has to process job parts with a processing volume of at least

)
€i5(42—41)+px—(42—41)>6_5

(5 - 5)pz + Pz = (1 + 5)px

in [(2, C,), where the inequality follows using Inequality (5.1). Thus, C, > (o + (14 96)ps > d,
which contradicts the feasibility of o.

Observe that, by (P1) and (P2), the online algorithm A admits an available job that satis-
fies pj < ur. In particular, if u, = oo for some time point 7, then A admits any available job.
Hence, for 0 < ¢; < (o with u¢, = 0o, there does not exist a job x € X7 and aset Y C X7\ {z}
satisfying (R), (C), and (P) for any machine q. O

Bounding the Number of Non-Admitted Jobs

In this section, we use the Properties (P1), (P2), and (P3) to bound the throughput of a non-
migratory optimal (offline) algorithm. To this end, we fix an instance as well as an optimal
schedule with job set OPT. Let A be a non-migratory online algorithm satisfying (P1) to (P3).

Let X be the set of jobs in OPT that the algorithm A did not admit. We assume without loss
of generality that all jobs in OPT complete on time. Let X C X be the set of jobs scheduled on
any fixed machine with highest throughput, i.e., no machine in the optimal schedule processes

more jobs from X than |X|. Without loss of generality, let 1 be a machine where A achieves

69

5 Online Throughput Maximization

lowest throughput. Assumption (P3) guarantees that the threshold u; ; is piece-wise constant
and right-continuous, i.e., u*) is constant on intervals of the form [7¢, 7¢+1). Let I represent
the set of maximal intervals I; = |7, 7¢+1) where 1) is constant. That is, w1, = u holds for
all 7 € Iy and uy 5., # u, where u; := uy,, The main result of this section is the following

theorem.

Theorem 5.9. Let X be the set of jobs that are scheduled on a machine with highest throughput
in an optimal schedule. Let I = {Iy,...,Ir} be the set of mazximal intervals on a machine of A
with lowest throughput such that the machine-dependent threshold is constant for each interval

and has the value us in interval Iy = 14, Te41). Then,

T

~ € Tt+1 — Tt
X<§ — 4T
’ ‘_tzlg_é Ut + ’

where we set % =0 if uy = 00 and % =00 if {r, Te41} N{—00,00} # 0 and uy < co.

We observe that T' = oo trivially proves the statement as X contains at most finitely many
jobs. The same is true if * =" = oo for some t € [T]. Hence, for the remainder of this
section we assume without loss of generality that I only contains finitely many intervals and
that £~ < oo holds for every ¢ € [T].

To pr;wa this theorem, we develop a charging scheme that assigns jobs x € X to intervals
in I. The idea behind our charging scheme is that OPT does not contain arbitrarily many jobs
that are available in I; since u; provides a natural lower bound on their processing times. In
particular, the processing time of any job that is released during interval I; and not admitted
by the algorithm exceeds the lower bound u;. Thus, the charging scheme relies on the release
date r, and the size p, of a job z € X as well as on the precise structure of the intervals
created by A.

The charging scheme we develop is based on a careful modification of the following parti-
tion (F;)I_, of the set X. Fix an interval I; € I and define the set F; C X as the set that
contains all jobs # € X released during I, i.e., F; = {z € X : r, € I;}. Since, upon re-
lease, each job z € X is available and not admitted by A, the next fact directly follows from
Properties (P1) and (P2).

Fact 5.10. For all jobs x € Fy it holds py > us. In particular, if uy = oo, then Fy =).

In fact, the charging scheme maintains this property and only assigns jobs in X to intervals I;
if p, > u;. In particular, no job will be assigned to an interval with u; = oo.

We now formalize how many jobs in X are assigned to a specific interval I;. Let

Pt = Lﬁ%J +1

70

5.4 Competitiveness: Admitting Sufficiently Many Jobs

if uy < 00, and ¢y = 0 if w4 = co. We refer to wu; as the target number of I;. As discussed
before, we assume ™ —*

sets Fy satisfies |Fy| < ;t, then Theorem 5.9 immediately follows. In general, |F}| < ¢; does not

< o0, and, thus, the target number is well-defined. If each of the

have to be true since jobs in OPT may be preempted and processed during several intervals I;.
Therefore, for proving Theorem 5.9, we show that there always exists another partition (Gy),
of X such that |G| < ¢ holds.

The high-level idea of this proof is the following: Consider an interval I} = [ry, 74+1). If F}
does not contain too many jobs, i.e., |Fi| < ¢, we would like to set Gy = F;. Otherwise, we

find a later interval Iy with |Fy| < ¢y such that we can assign the excess jobs in F; to Iy.

Proof of Theorem 5.9. As observed, it suffices to show the existence of a partition G = (Gy)7_,
of X such that |G| < ¢; in order to prove the theorem.

In order to repeatedly apply Lemma 5.8, we only assign excess jobs z € F} to Gy for t < t' if
their processing time is at least the threshold of Iy, i.e., p, > uy. By our choice of parameters,
a set Gy with ¢p many jobs of size at least uy “covers” the interval Iy = 1/, 7p41) as often

as required by (P) in Lemma 5.8, i.e.,

I Tyr — Ty 13
me>gpt,.ut/:<L_5t+1 tJ_|_1>.ut/>€_6(Tt/+1—Tt/). (5.2)

IEGt/ %

The proof consists of two parts: the first one is to inductively (on t) construct the parti-
tion G = (Gy)]_; of X, where |G| < ¢; holds for t € [T — 1]. The second one is the proof that
a job x € Gy satisfies p, > u; which will imply |Gr| < ¢7. During the construction of G we
define temporary sets A; C X for intervals I;. The set Gy is chosen as a subset of F; U A; of
appropriate size. In order to apply Lemma 5.8 to each job in A; individually, alongside A, we
construct a set Y, ; and a time 7,; < r, for each job x € X that is added to A;. Let C; be
the completion time of some job ¥ € X in the optimal schedule OPT. The second part of the

proof is to show that x, 7, ¢, and Y, ; satisfy
(R) 7y > 7y for all y € Yy,
(C) C; > Cy for all y € Yy, and
(P) ZyGYz,t Py = E%(Tt — Tat)-

This implies that =, Y = Y., (1 = 72, and (3 = 7 satisfy the conditions of Lemma 5.8,

and thus the processing time of x is at least the threshold at time 7, i.e., pr > ur, > w.
Constructing G = (G¢)[_;. We inductively construct the sets Gy in the order of their

indices. We start by setting A; = () for all intervals I; with t € T. We define Y, ; = () for each

job x € X and each interval I;. The preliminary value of the time Tzt 18 the minimum of the

71

5 Online Throughput Maximization

starting point 7 of the interval I; and the release date r, of x, i.e., 7+ := min{m,r,}. We
refer to the step in the construction where G; was defined by step t.

Starting with ¢ = 1, let I; be the next interval to consider during the construction with ¢t < T.
Depending on the cardinality of F} U A;, we distinguish two cases. If |F; U A;| < ¢y, then we
set Gy = F; U A;.

If |F, U Ay| > ¢4, then we order the jobs in Fy U A; in increasing order of completion times in
the optimal schedule. The first ¢; jobs are assigned to G; while the remaining |F}; U A¢| — ¢4
jobs are added to A;y;. In this case, we might have to redefine the times 7,11 and the
sets Yz (41 for the jobs x that were newly added to A;41. Fix such a job z. If there is no
job z in the just defined set G; that has a smaller release date than 7., we set 7,141 = 7oy
and Yy 441 = Y, UGy Otherwise let z € Gy be a job with r, < 7,; that has the smallest
time 7, ;. Weset 7,441 =T, and Y11 =Y, UGy

Finally, we set Gt = FrUA7r. We observe that ur < oo implies 7 = oo because 7741 = o0.
Since this contradicts the assumption ¢; < oo for all ¢ € [T'], this implies ur = oco. We will

show that p, > ur for all x € Gp. Hence, Gy = (. Therefore |Gr| = ¢ = 0.

Bounding the size of the jobs in G;. We consider the intervals again in increasing order of
their indices and show by induction that any job x in G satisfies p, > u; which implies G; = {)
if u; = oco. Clearly, if x € F; N Gy, Fact 5.10 guarantees p, > u;. Hence, in order to show the
lower bound on the processing time of z € Gy, it is sufficient to consider jobs in Gy \ Fy C Ay.
To this end, we show that for such jobs (R), (C), and (P) are satisfied. Thus, Lemma 5.8
guarantees that p; > u,, > u; because ur, > uj r, = u; by definition. Hence, A; = () if u; = 00
since in this case the global bound is also unbounded, i.e., u,, > u; = co.

By construction, A; = (). Hence, (R), (C), and (P) are satisfied for each job x € A;.

Suppose that the Conditions (R), (C), and (P) are satisfied for all x € A, for all 1 < s < ¢.
Hence, for s < ¢, the set G only contains jobs z with p, > u,. Fix x € A;. We want to show
that p, > us. By the induction hypothesis and by Fact 5.10, p, > u;—1 holds for all y € Gy—;.
Since x did not fit in G;_1 anymore, |Gi—1| = p—1.

We distinguish two cases based on G;_1. If there is no job z € Gy—; with r, < 7541,
then 7, = 7,1, and (R) and (C) are satisfied by construction and by the induction hypoth-

esis. For (P), consider

dopy= D Pyt Dy

YEY ¢ YEY 11 yeGi—1
> ;76(7}_1 — Tet—1) + Ut—1 " Pr—1
> . i 6(Tt_1 — Typt—1) + . i 5(7'1: —Te_1)
= —=(n—720),

72

5.4 Competitiveness: Admitting Sufficiently Many Jobs

where the first inequality holds due to the induction hypothesis. By Lemma 5.8, p; > ur, > u;.

If there is a job z € Gy—1 with r, < 7,41 < 741, then z € A;_1. In step t — 1, we chose 2
with minimal 7, ;1. Thus, r, > 7,y 1 > 7y 1 forally €e Gy_rand ry > 7501 > 1, > 7241
which is Condition (R) for the jobs in G;—1. Moreover, by the induction hypothesis, r, > 7, ;1
holds for all y € Y, ;1. Thus, 7,4 and Y, satisfy (R). For (C), consider that C} > C, for
all y € Gy—1 by construction and, thus, C; > C7 > Cy also holds for all y € Y, ;1 due to the
induction hypothesis. For (P), observe that

dopy= D byt Yy
YEY 2 ¢ YeEYz t—1 yeGi—1
€
— 6<Tt—1 — Tat—1) T Ut—1 - P11
€
e—90
13

eE—20

Y

€
(Te—1 — To—1) + - (1t — T¢—1)

-0

v

(1e — Tm,t)-

Here, the first inequality follows from the induction hypothesis and the second from the defi-
nition of u;—1 and ¢;—1. Hence, Lemma 5.8 implies p, > u,, > u;.
We note that p, > u; for all z € Gy and for all t € [T].

Bounding | X|. By construction, we know that [J_; Gy = X. We start with considering
intervals I; with u; = co. Then, I; has an unbounded threshold, i.e., ur = oo for all 7 € I,
and F; = () by Fact 5.10. In the previous part we have seen that the conditions for Lemma 5.8
are satisfied. Hence, Gy = 0)if uy = co. For ¢t with u; < 0o, we have |G| < ¢ = {%%J +1.

As explained before, this bounds the number of jobs in X. O

5.4.2 Admitting Sufficiently Many Jobs

In this section, we show the following theorem and give the proof of Theorem 5.1.

Theorem 5.11. An optimal non-migratory (offline) algorithm completes at most a factor <§—|—4)
more jobs on time than admitted by the threshold algorithm.

Proof. As in the previous section, fix an instance and an optimal solution OPT. Let X be the set
of jobs in OPT that the threshold algorithm did not admit. We assume without loss of generality
that all jobs in OPT finish on time. Further, let J denote the set of jobs that the threshold
algorithm admitted. Then, X U .J is a superset of the jobs in OPT. Thus, |X| < (g + 3) |J|
implies Theorem 5.11.

To this end, let X C X denote the jobs in OPT scheduled on a machine with highest
throughput. Without loss of generality, let 1 be again a machine where the threshold algorithm
achieves lowest throughput. Let J denote the jobs scheduled by the threshold algorithm on the
first machine. Then, showing |X| < (§ + 3) |.J| suffices to prove the main result of this section.

73

5 Online Throughput Maximization

Given that the threshold algorithm satisfies Assumptions (P1), (P2), and (P3), Theorem 5.9
already provides a bound on the cardinality of X in terms of the intervals corresponding
to the schedule on the least loaded machine. Thus, it remains to show that the threshold
algorithm indeed qualifies for applying Theorem 5.9 and that the bound developed therein can

be translated to a bound in terms of |J|.

We start by showing that the threshold algorithm satisfies the assumptions necessary for
applying Theorem 5.9. Clearly, as the threshold algorithm only admits a job j at time 7
if dj —17 > (1 + %)pj, setting 0 = § proves that the threshold algorithm satisfies (P1).
For (P2), we retrospectively analyze the schedule generated by the threshold algorithm. For a
time 7, let j; denote the job scheduled on machine i. Then, setting u;, := §pj, or u;; = o0
if no such job j; exists, indeed provides us with the machine-dependent threshold necessary
for (P2). This discussion also implies that 19 has only countably many points of discontinuity

as there are only finitely many jobs in the instance, and that «(is right-continuous.

Hence, let I denote the set of maximal intervals I; = [, 7y41) for ¢t € [T] of constant
threshold uq - . Thus, by Theorem 5.9,

T
~ € Tt+1 — Tt
X < —+T. 5.3
X< oo (5.3)

As the threshold wu; , is proportional to the processing time of the job currently scheduled
on machine ¢, the interval I; either represents an idle interval of machine 1 (with u; , = 00) or
corresponds to the uninterrupted processing of some job j on machine 1. We denote this job
by ji if it exists. We consider now the set I; C I of intervals with j; = j for some particular
job j € J. As observed, these intervals correspond to job j being processed which happens for
a total of p; units of time. Combining with u, = §p; for I; € I, we get

Ti+1 — Tt Py 74

3

En.
ti[tElj % 4pJ

As § = 5, we additionally have that _=5 = 2. Hence, we rewrite Equation (5.3) by

€
2

- _ 8
Xl<il+T.

It remains to bound 7" in terms of |.J| to conclude the proof. To this end, we recall that the
admission of a job j to a machine interrupts the processing of at most one previously admitted

job. Hence, the admission of |J| jobs to machine 1 creates at most 2|J| + 1 intervals.

If the threshold algorithm does not admit any job to machine 1 with lowest throughput,
i.e., [J| =0, then u; , = oo for each time point 7. Hence, there exists no job in the instance
that the threshold algorithm did not admit. Thus, |X| < |J| = |J| which completes the proof.

74

5.5 Lower Bound on the Competitive Ratio
Otherwise, 2|J| + 1 < 3|.J|. Therefore,
— 8
X< (Z+3) 121
€
Combining with the observation about X and J previously discussed, we obtain
— 8 8
|OPT| < | XUJ| <m|X|+|J|<m|=-+3)|J|+|[J|<(=-+4)]]],
€ €
which concludes the proof. O

Finalizing the proof of Theorem 5.1

Proof of Theorem 5.1. In Theorem 5.3 we show that the threshold algorithm completes at
least half of all admitted jobs J on times. Theorem 1.1 in [KP01] (Theorem 5.2) gives a
bound on the throughput of an optimal migratory schedule in terms of the throughput of
an optimal non-migratory solution. In Theorem 5.9, we bound the throughput |OpPT| of an
optimal non-migratory solution in terms of |J|. Combining these theorems shows that the
threshold algorithm achieves a competitive ratio of c=6-2 - (% + 4) = 96—6 + 48. O

5.5 Lower Bound on the Competitive Ratio

We give a lower bound, that (up to constants) matches our upper bound in Theorem 5.1. This

shows that the threshold algorithm is best possible for online throughput maximization.

Theorem 5.12. Fvery deterministic online algorithm has a competitive ratio Q(%)

The proof idea is as follows: We release Q(%) levels of jobs. In each level, the release date of
any but the first job is the deadline of the previous job. Whenever an online algorithm decides
to complete a job from level ¢ (provided no further jobs are released), then the release of jobs
in level ¢ stops and a sequence of O(%) jobs in level £ 4 1 is released. Jobs in level ¢ + 1 have
processing time that is too large to fit in the slack of a job of level £. Thus, an algorithm has
to discard the job started at level £ to run a job of level £ + 1. This implies that it can only

finish one job while the optimum can finish a job from every other level.

Proof of Theorem 5.12. Let € < % such that 8—15 € N. Toward a contradiction, suppose there
is an online algorithm with competitive ratio ¢ < é. We construct an adversarial instance in
which each job j belongs to one of 2 - [c¢ + 1] levels and fulfills d; = r; + (1 +¢) - p;. The
processing time for any job j in level ¢ is p; = p) = (2¢)f. This (along with the interval
structure) makes sure that no two jobs from consecutive levels can both be completed by a
single schedule, which we will use to show that the online algorithm can only complete a single

job throughout the entire instance. The decrease in processing times between levels, however,

75

5 Online Throughput Maximization

makes sure that the optimum finishes a job from every other level, resulting in an objective

value of [¢+ 1], which contradicts the algorithm being c-competitive.

The sequence starts with level 0 at time 0 with the release of one job j with processing
time p(o) = 1 and, thus, deadline d; = 1 + . We will show inductively that, for each level ¢,
there is a time ¢, when there is only a single job j, left that the algorithm can still finish, and
this job is from the current level ¢ and, thus, p;, = pl) = (25)6. We will also make sure that
at ty at most a (%)—fraction of the time window of j, has passed. From t; on, no further jobs
from level ¢ are released, and jobs from level ¢+ 1 start being released or, if £ =2 [c+ 1] — 1,

we stop releasing jobs altogether. It is clear that ¢y exists.

Consider some time ty, and we will release jobs from level £ 4+ 1 leading to time tyy1. The
first job j from level £+ 1 has release date t; and, by the above constraints, d; = ty+(1+¢)-pj;,
where p; = pltD) = (2e)*1. As long as no situation occurs that fits the above description
of tyy1, we release an additional job of level £ + 1 at the deadline of the previous job from
this level (with identical time-window length and processing time). We show that we can find
time tgy1 before é jobs from level £+ 1 have been released. Note that the deadline of the éth
job from level £+ 1 is ty+ g - (1 +¢) - 2 - p'¥, which is smaller than the deadline of d;,
since dj, —t; > % -p by the induction hypothesis and ¢ < %. This shows that, unless more
than 8—16 jobs from level £ 4 1 are released (which will not happen as we will show), all time

windows of jobs from level £ 4+ 1 are contained in that of j,.

Note that there must be a job j* among the 8—15 first ones in level £ 4+ 1 that the algorithm
completes if no further jobs are released within the time window of j*: By the induction
hypothesis, the algorithm can only hope to finish a single job released before time t, and the
optimum could complete é jobs from level £ + 1, so j* must exist for the algorithm to be ¢
competitive. Now we can define jsy1 to be the first such job j* and find ¢y41 within its time
window: At the release date of j*, the algorithm could only complete j,. However, since the

algorithm finishes jy11 if there are no further jobs released, and € < %, it must have worked

pltD 0+1)
2

exceeds the slack of j;, meaning that the algorithm cannot finish j, anymore as the slack of jy

on jyy1 for more than units of time until ry1 + % pf

=: ty11. This quantity, however,

is epl¥) = 2¢et+1 . Therefore, te+1 has the desired properties.

This defines 5.1.417, and indeed the algorithm will only finish a single job. We verify that
an optimal algorithm can schedule a job from every other level. Note that, among levels of
either parity, processing times are decreasing by a factor of 4% between consecutive levels. So,
for any job j, the total processing time of jobs other than j that need to be processed within

the time window of j adds up to less than

s s 4e
(4eh)" pj =46 (4 pj = —— - p;
; 1—4e
=1 (=0
< 4 1 < d
<5 ep<epi=di—ri—pj
10 1—m

76

5.6 Concluding Remarks

which completes the proof. O

5.6 Concluding Remarks

We provide an online algorithm for scheduling deadline-sensitive jobs on identical parallel
machines. We close the problem with the best (up to constants) competitive ratio © (%)

Our lower bound points at two research directions: First, it is constructed on a single machine
and it is not immediately clear how to translate this to the multiple-machine setting. In fact,
the impossibility result for jobs without slack also relies on a single machine and, up to date, it
is not yet answered if slack is even necessary for achieving non-trivial competitive ratios in the
presence of multiple machines. Moreover, for the more tractable problem of machine utilization
the competitive ratio even improves with an increasing number of machines as shown in [SS16].

Second, we only use unit-weight jobs in the lower bound as this is the setting we are mostly
interested in. However, there is no better lower bound in the weighted setting. That is,
there is still a gap between our lower bound Q(%) and the upper bound (’)(%2) by Lucier et
al. [LMNY13]. It would be interesting to close this gap. The analysis of our algorithm crucially
relies on the fact that jobs are only preempted by significantly smaller jobs. In the weighted
variant, interruption must also happen for longer yet more valuable jobs, which shows that one
would need to develop new techniques to improve the analysis. Of course, it is also possible
that there is another algorithm with yet another analysis that closes this gap.

Another interesting question asks whether randomization allows for improved results. On a
single machine, there is indeed an O(1)-competitive randomized algorithm, even without any
slack assumption [KP03]. We are not aware of lower bounds that rule out similar results on

multiple machines.

77

Online Throughput Maximization
with Commitment

We consider again online throughput maximization where jobs with deadlines arrive
online over time at their release dates. The task is to find a preemptive schedule on m
machines maximizing the number of jobs that finish on time. We quantify the impact
that provider commitment requirements have on the performance of online algorithms.
We require again that jobs contain some slack ¢ > 0. We present the first online

algorithm for handling commitment on parallel machines for arbitrary slack e. When

the scheduler must commit upon starting a job, the algorithm is @(é)—competitive.
Somewhat surprisingly, this is the same optimal performance bound (up to constants)
as for scheduling without commitment. If commitment decisions must be made before a
job’s slack becomes less than a d-fraction of its processing time, we prove a competitive
ratio of (9(6%5) for 0 < d < e. This result nicely interpolates between commitment
upon starting a job and commitment upon arrival. For the latter model, we show that
no (randomized) online algorithm admits a bounded competitive ratio.

Finally, we observe that for scheduling with commitment restricting to unit weights is
essential; for job-dependent weights, we rule out competitive deterministic algorithms.
Bibliographic Remark: The presented lower bounds are based on joint work with L.
Chen, N. Megow, K. Schewior, and C. Stein [CEM*20]. The algorithm and its analysis
are based on joint work with N. Megow and K. Schewior [EMS20]. Therefore, some

parts correspond to or are identical with [CEM™20] and [EMS20].

Table of Contents

6.1
6.2
6.3
6.4
6.5
6.6

Introduction L e e e e 80
The Blocking Algorithm L 83
Completing All Admitted Jobson Time 87
Competitiveness: Admitting Sufficiently Many Jobs 89
Lower Bounds on the Competitive Ratio 91
Concluding Remarks oL oL 94

79

6 Online Throughput Maximization with Commitment
6.1 Introduction

The model we consider in this chapter is almost identical to the one in Chapter 5. To recap,
jobs from an unknown job set J arrive online over time at their release dates ;. Each job j € J
has a processing time p; > 0 and a deadline dj. There are m identical parallel machines to
process these jobs or a subset of them. A job is said to complete if it receives p; units of
processing time within the interval [rj,d;). We allow preemption, i.e., the processing of a job
can be interrupted at any time. We distinguish schedules with and without migration. If we
allow migration, then a preempted job can resume processing on any machine whereas it must
run completely on the same machine otherwise. The task is to find a feasible schedule with
maximum throughput. In the three-field notation by Graham et al. [GLLRK79b], this problem
is denoted by P |online rj, pmtn| > (1 — Uj).

We assess the performance of online algorithms with standard competitive analysis. This
means, we compare the throughput of an online algorithm with the throughput achievable by
an optimal offline algorithm that knows the job set in advance. To circumvent known lower
bounds involving “tight” jobs with d; —r; ~ p;, we require that jobs contain some slack e > 0,
i.e., every job j satisfies d; —r; > (1 +¢)p;. As in the previous chapter, the competitive ratio
of our online algorithm will be a function of €; the greater the slack, the better should the

performance of our algorithm be.

In contrast to Chapter 5, we focus on the question how to handle commitment requirements
in online throughput maximization. Modeling commitment addresses the issue that a high-
throughput schedule may abort jobs close to their deadlines in favor of many shorter and more
urgent tasks [FBK™12], which may not be acceptable for the job owner. Consider a company
that starts outsourcing mission-critical processes to external clouds and that may require a
certain provider-side guarantee, i.e., service providers have to commit to complete admitted
jobs before they cannot be moved to other computing clusters anymore. In other situations, a
commitment to complete jobs might be required even earlier just before starting the job, e.g.,
for a faultless copy of a database as companies tend to rely on business analytics to support
decision making. Since analytical tools, which usually work with copies of databases, depend
on faultless data, the completion of such a copy process must be guaranteed once it started.

We distinguish three different models for scheduling with commitment: (i) commitment upon
job arrival, (ii) commitment upon job admission, and (iii) d-commitment. In the first, most
restrictive model, an algorithm must decide immediately at a job’s release date if the job will
be completed or not. In the second model, an algorithm may discard a job any time before its
start, its admission. This reflects the situation when the start of a process is the critical time
point after which the successful execution is essential (e.g., faultless copy of a database). In the
third model, d-commitment, an online algorithm must commit to complete a job when its slack
has reduced from the original slack requirement of at least an e-fraction of the job size to a

d-fraction for 0 < 0 < e. Then, the latest feasible time for committing to job j is d; — (14 6)p;.

80

6.1 Introduction

This models an early-enough commitment (parameterized by ¢) for mission-critical jobs.

Previous results For related work on online throughput maximization without commitment

requirements, we refer to the previous chapter and the references therein.

Commitment upon job arrival In the most restrictive model, Lucier et al. [LMNY13] rule
out competitive online algorithms for any slack parameter € when jobs have arbitrary weights.

The special case w; = pj;, or machine utilization, is much more tractable than weighted
or unweighted throughput maximization. A simple greedy algorithm achieves the best possi-
ble competitive ratio % on a single machine, even for commitment upon arrival, as shown
by the analysis of DasGupta and Palis [DP00] and the matching lower bound by Garay et
al. [GNYZ02]. For scheduling with commitment upon arrival on m parallel identical ma-
chines, there is an O(§/1/¢)-competitive algorithm and an almost matching lower bound by
Schwiegelshohn and Schwiegelshohn [SS16]. When preemption is not allowed, Goldwasser and
Kerbikov [GKO03] give a best possible (2 + %)—competitive algorithm on a single machine. Very
recently, Jamalabadi, Schwiegelshohn, and Schwiegelshohn [JSS20] extend this model to par-
allel machines; their algorithm is near optimal with a performance guarantee approaching In %

as m tends to infinity.

Commitment upon admission and J-commitment In our previous work [CEM*20], we
give a more elaborate variant of the threshold algorithm that achieves the first non-trivial upper
bound for both models on a single machine. For commitment upon job admission, Lucier et
al. [LMNY13] give a heuristic that empirically performs very well but for which they cannot
show a rigorous worst-case bound. In fact, later, Azar et al. [AKL'15] show that no bounded
competitive ratio is possible for weighted throughput maximization for small . For § = §
in the d-commitment model, they design (in the context of truthful mechanisms) an online
algorithm that is @(ﬁ_l

if € > 3. They leave open if this latter condition is an inherent property of any committed

+ (g/ﬁ_ly)—competitive if the slack ¢ is sufficiently large, i.e.,

scheduler in this model, and our lower bound for weights answers this affirmatively.

Machine utilization is better understood: We note that, as commitment upon arrival clearly
is more restrictive than commitment upon admission and d-commitment, the previously men-
tioned results immediately carry over and provide bounded competitive ratios. Without pre-

emption, Goldwasser [Gol03] gives an optimal (2 + %)—competitive algorithm on a single ma-

chine and Lee [Lee03] gives an O(%)—competitive algorithm on m parallel identical machines.

Our contribution Our main result is an algorithm that is best possible (up to constant
factors) for online throughput maximization with commitment on parallel identical machines.

Our algorithm does not migrate jobs and still achieves a competitive ratio that matches the

81

6 Online Throughput Maximization with Commitment

general lower bound for migratory algorithms. Further, we show a strong lower bound for

scheduling with commitment upon job arrival, even for randomized algorithms.

Impossibility result for commitment upon job arrival In this most restrictive model, an
algorithm must decide immediately at a job’s release date if the job will be completed or not.
We show that no (randomized) online algorithm admits a bounded competitive ratio. Such a
lower bound has only been shown by exploiting arbitrary job weights [LMNY13, Yan17]. Given

our strong negative result, we do not consider this commitment model any further.

Scheduling with commitment For scheduling with commitment upon admission, we give
an (up to constant factors) optimal online algorithm with competitive ratio © (%) For schedul-
ing with d-commitment, our result interpolates between the models commitment upon starting
a job and commitment upon arrival. If 6 > 5, the competitive ratio is @(%) which is best
possible as we showed in Chapter 5. For § — ¢, the commitment requirement essentially im-
plies commitment upon job arrival which has unbounded competitive ratio. Note that we give
the first online algorithms for online throughput maximization with commitment on parallel
identical machines with bounded competitive ratio for arbitrary slackness parameter e.

Instances with arbitrary weights are hopeless without further restrictions. We show that
there is no deterministic online algorithm with bounded competitive ratio for d-commitment.
Informally, our construction implies that there is no deterministic online algorithm with bounded
competitive ratio in any commitment model in which a scheduler may have to commit to a
job before it has completed. This is hard to formalize but may give guidance for the design of
alternative commitment models. Our lower bound for J-commitment is as follows: For §,e > 0
with 0 < e < 14§, no deterministic online algorithm has a bounded competitive ratio. In
particular, this rules out bounded performance guarantees for € € (0,1). We remark that for
sufficiently large slackness, i.e., ¢ > 3, Azar et al. [AKL"15] provide an online algorithm that
has bounded competitive ratio. Our new lower bound answers affirmatively their open question
whether high slackness is indeed required.

Finally, our impossibility result for weighted jobs and the positive result for instances without

weights clearly separates the weighted from the unweighted setting.

Our techniques The challenge in online scheduling with commitment is that, once we com-
mitted to complete a job, the remaining slack of this job has to be spent very carefully. The
key component of our algorithm is a job admission scheme which is implemented by different

parameters. The high-level objectives are:
(i) Never start a job for the first time if its remaining slack is too small (parameter ¢),

(ii) during the processing of a job, admit only significantly shorter jobs (parameter +), and

82

6.2 The Blocking Algorithm

(iii) for each admitted shorter job, block some time period (parameter) during which no

other jobs of similar size are accepted.

The first two goals are quite natural and have been used before (see Chapter 5 and [LMNY13]),
while the third goal is crucial for our new tight result when scheduling with commitment. The
intuition is the following: suppose we committed to complete a job with processing time 1 and
have only a slack of O(g) left before the deadline of this job. Suppose that ¢ substantially

% arrive, where c is the competitive ratio we aim for. On the one hand,

smaller jobs of size
if we do not accept any of them, we cannot hope to achieve c-competitiveness. On the other
hand, accepting too many of them fills up the slack and, thus, leaves no room for even smaller
jobs. The idea is to keep the flexibility for future small jobs by only accepting an e-fraction of

jobs of similar size (within a factor two).

We distinguish two time periods with different regimes for accepting jobs. During the
scheduling interval of job j, a more restrictive acceptance scheme ensures the completion of j
whereas in the blocking period we guarantee the completion of previously accepted jobs. In
contrast to the threshold algorithm in Chapter 5, where the processing time of the currently
scheduled job provides a uniform acceptance threshold, this distinction enables us to ensure

the completion of every admitted job without being too conservative in accepting jobs.

6.2 The Blocking Algorithm

In this section, we describe the blocking algorithm which handles scheduling with commitment.
We assume that the slackness constant € > 0 and, in the d-commitment model, § € (0,¢) are
given. If ¢ is not part of the input or if § < 5, then we set § = 5.

The algorithm never migrates jobs between machines, i.e., a job is only processed by the
machine that initially started to process it. In this case, we say the job has been admitted to
this machine. Moreover, our algorithm commits to completing a job upon admission. Hence, its
remaining slack has to be spent very carefully on admitting other jobs to still be competitive.
As our algorithm does not migrate jobs, it transfers the admission decision to the shortest
admitted and not yet completed job on each machine. Thus, a job only admits significantly
shorter jobs and prevents the admission of too many jobs of similar size. To this end, the
algorithm maintains two types of intervals for each admitted job, a scheduling interval and
a blocking period. A job can only be processed in its scheduling interval. Thus, it has to
complete in this interval while admitting other jobs. Job j only admits jobs that are smaller
by a factor of v = % < 1. For an admitted job k, job j creates a blocking period of length
at most Bp, where 5 = %, which blocks the admission of similar-length jobs (cf. Figure 6.1).
The scheduling intervals and blocking periods of jobs admitted by j will always be pairwise

disjoint and completely contained in the scheduling interval of j.

83

6 Online Throughput Maximization with Commitment

scheduling interval blocking period
l)02 05
I |

Figure 6.1: Scheduling interval, blocking period, and processing intervals

Scheduling jobs Similar to the threshold algorithm, the blocking algorithm follows the
SHORTEST PROCESSING TIME (SPT) order for the set of uncompleted jobs assigned to a
machine, which is independent of the admission scheme. SPT ensures that j has highest

priority in the blocking periods of any job k admitted by j.

Admitting jobs The algorithm keeps track of available jobs at any time point 7. A job j
with r; < 7 is called available if it has not yet been admitted to a machine by the algorithm
and its deadline is not too close, i.e., dj — 7 > (14 0)p;.

Whenever a job j is available at a time 7 and when there is a machine ¢ such that time 7
is not contained in the scheduling interval of any other job admitted to ¢, the shortest such
job j is immediately admitted to machine i at time a; := 7, creating the scheduling interval
S(7) = laj,e;), where ej = aj + (1 + §)p; and an empty blocking period B(j) =). In general,
however, the blocking period is a finite union of time intervals associated with job j, and its
size is the sum of lengths of the intervals, denoted by |B(j)|. Four types of events trigger a
decision of the algorithm at time 7: the release of a job, the end of a blocking period, the end
of a scheduling interval, and the admission of a job. In any of these four cases, the algorithm
calls the class admission routine. This subroutine iterates over all machines i and checks if j,
the shortest job on ¢ whose scheduling interval contains 7, can admit the currently shortest
available job j*.

To this end, any admitted job j checks if pjx < yp;. Only such jobs qualify for admission
by j. Upon admission by j, job j* obtains two disjoint consecutive intervals, the scheduling
interval S(j*) = [a;*, ej+) and the blocking period B(j*) of size at most Bp;+. At the admission
of job j*, the blocking period B(j*) is planned to start at e;+, the end of j*’s scheduling
interval. During B(j*), job j only admits jobs k with pj < %pj*.

Hence, when job j decides if it admits the currently shortest available job j* at time 7, it
makes sure that j* is sufficiently small and that no job k of similar (or even smaller) processing
time is blocking 7, i.e., it checks that 7 ¢ B(k) for all jobs k with py < 2p;« admitted to the
same machine. In this case, we say that j* is a child of j and that j is the parent of j*,
denoted by m(j*) = j. If job j* is admitted at time 7 by job j, the algorithm sets aj« = 7
and ejx = a;j» + (1 +)p;+ and assigns the scheduling interval S(j*) = [a;«,e;+) to j*.

84

6.2 The Blocking Algorithm

If ej~ < ej, the routine sets fj» = min{e;, ej« + Bp;«} which determines B(j*) = [ej», fj*).
As the scheduling and blocking periods of children k of j are supposed to be disjoint, we have
to update the blocking periods. First consider the job k with p; > 2p;» admitted to the
same machine whose blocking period contains 7 (if it exists), and let [e}, f;.) be the maximal
interval of B(k) containing 7. We set f; = min{ej, f; + (1 + d + S)p;+} and replace the
interval [e}, ;) by [e}, T) U [T+ (148 + B)pj=, fi). For all other jobs k with B(k) N [r,00) # 0
admitted to the same machine, we replace the remaining part of their blocking period [e},, f7.)
by (e}, + (1 + 0 + B)pj=, f/) where f;! := min{e;, f; + (140 + 8)p;+}. In this update, we follow
the convention that [e, f) = 0 if f < e. Observe that the length of the blocking period might
decrease due to such updates.

Note that ej+ > e; is also possible as j does not take the end of its own scheduling interval e;
into account when admitting jobs. Thus, the scheduling interval of j* would end outside j’s
scheduling interval and inside j’s blocking period. During B(j), the parent w(j) of j, did
not allocate the interval [ej, e;jx) for completing jobs admitted by j but for ensuring its own
completion. Hence, the completion of both j* and 7(j) is not necessarily guaranteed anymore.
To prevent this, we modify all scheduling intervals S(k) (including S(j)) that contain time 7
of jobs admitted to the same machine as j* and their blocking periods B(k). For each job k
admitted to the same machine with 7 € S(k) (including j) and ejx > e we set e, = ej«. We
also update their blocking periods (in fact, single intervals) to reflect their new starting points.
If the parent 7(k) of k does not exist, B(k) remains empty; otherwise we set B(k) := [eg, fx)
where fi = min{e, (), ex + Bpx}. Note that, after this update, the blocking periods of any but
the largest such job will be empty. Moreover, the just admitted job j* does not get a blocking
period in this special case.

During the analysis of the algorithm, we show that any admitted job j still completes
before a; 4+ (14 6)p; and that e; < a; + (1 4+ 20)p; holds in retrospect for all admitted jobs j.
Thus, any job j that admits another job j* tentatively assigns this job a scheduling interval of
length (1 + d)p;+ but, for ensuring its own completion, it is prepared to lose (1 4 20)p;« time
units of its scheduling interval S(j). We summarize the blocking algorithm in Algorithm 6.1.

Algorithm 6.1: Blocking algorithm
Scheduling routine: At all times 7 and on all machines 4, run the job with shortest processing time

that has been admitted to ¢ and has not yet completed .

Event: Upon release of a new job at time 7:
Call admission routine.
Event: Upon ending of a blocking period or scheduling interval at time 7:
Call admission routine.
Admission routine:
j* < a shortest available job at 7, i.e., j* € argmin{p; |j € J,r; <7 and d; —7 > (1 +d)p;}
141

while j* is not admitted and ¢ < m do

85

6 Online Throughput Maximization with Commitment

K < the set of jobs on machine i whose scheduling intervals contain 7
if K=0do
admit job j* to machine ¢
aj» < 7 and ejx < ajx + (1 + 0)pj«
S(5*) < [a;«,e;+) and B(5*) < 0
call admission routine
else
j < argmin{py | k € K}
if j* < yp; and 7 ¢ B(j’) for all 7/ admitted to ¢ with p; < 2p;~ do
admit job j* to machine ¢
a;» < 7 and ejx < a;x + (14 0)p;«
if e+ < e; do
fjx < min{e;, e« + Bp;+}
S(5*) < laj+, e5+) and B(5*) < [ej+, fi+)
else
S(5*) « laj«,ej+) and B(j*) « 0
modify S(k) and B(k) for k € K
update B(j') for 5/ admitted to machine ¢ with B(j’) N [r,00) # 0
call admission routine
else
1+ 1+1

Main Result and Road Map of the Analysis During the analysis, it is sufficient to concentrate
on instances with small slack, as also noted in Chapter 5. For ¢ > 1, we run the blocking
algorithm with ¢ = 1, which only tightens the commitment requirement, and obtain constant

competitive ratios. Thus, we assume 0 < ¢ < 1.

Theorem 6.1. Consider throughput maximization on parallel identical machines with or without

migration. There is an (’)(#)—competitive online algorithm with commitment, where §' = 5

[

in the commitment-upon-admission model and 6’ = max {5, 5} in the d-commitment model.

We note that, in the J-commitment model, committing to the completion of a job j at an
earlier point in time clearly satisfies committing at a remaining slack of dp;. Therefore, we
may assume J € [5,¢) and thus avoid dealing with ¢

As in the previous chapter, we exploit that the blocking algorithm does not migrate any job.
In other words, we compare again the throughput of our algorithm to the solution of an optimal
non-migratory schedule. Then, we use the result by Kalyanasundaram and Pruhs [KPO1,
Theorem 1.1 on optimal migratory and non-migratory schedules to extend the analysis to the
migratory setting; see Theorem 5.2.

The special structure of the blocking algorithm allows us again to split the proof of the result
into two parts. The first part, Section 6.3, is to show that the blocking algorithm completes all
admitted jobs on time. In the second part, Section 6.4, we show that the blocking algorithm

86

6.3 Completing All Admitted Jobs on Time

belongs to the class of online algorithms analyzed in Chapter 5 for bounding the throughput of
an optimal, non-migratory solution. Then, our strong structural result (Theorem 5.9) enables

us to prove that the blocking algorithm admits sufficiently many jobs to be competitive.

6.3 Completing All Admitted Jobs on Time

We show that the blocking algorithm finishes every admitted job on time in Theorem 6.3. As
the blocking algorithm does not migrate jobs, it suffices to consider each machine individually
in this section. The proof relies on the following observations: (i) The sizes of jobs admitted
by job j that interrupt each others’ blocking periods are geometrically decreasing, (ii) the
scheduling intervals of jobs are completely contained in the scheduling intervals of their parents,
and (iii) scheduling in SPT order guarantees that job j has highest priority in the blocking
periods of its children. We start by proving the following technical lemma about the length
of the final scheduling interval of an admitted job j, denoted by |S(j)|. In the proof, we use
that w(k) = j for two jobs j and k implies that p; < vp;.

Lemma 6.2. Let 0 < § < ¢ be fizred. If v > 0 satisfies (1 + 25)y < 6, then the length of the
scheduling interval S(j) of an admitted job j is upper bounded by (1 + 25)p;. Moreover, S(j)

contains the scheduling intervals and blocking periods of all descendants of j.

Proof. By definition of the blocking algorithm, the end point e; of the scheduling interval of
job j is only modified when j or one of j’s descendants admits another job. Let us consider
such a case: If job j admits a job k whose scheduling interval does not fit into the scheduling
interval of j, we set e; = e = ay + (1 + §)pi to accommodate the scheduling interval S(k)
within S(j). The same modification is applied to any ancestor j' of j with e;; < ej. This
implies that, after such a modification of the scheduling interval, neither j nor any affected
ancestor j’ of j are the smallest jobs in their scheduling intervals anymore. In particular, no job
whose scheduling interval was modified in such a case at time 7 is able to admit jobs after 7.
Hence, any job j can only admit other jobs within the interval [aj,a; + (1 + d)p;). That is,
ap < aj+ (14 0)p; for every job k with 7(k) = j.

Thus, by induction, it is sufficient to show that ay+ (14 20)pr < a;+ (1+25)p; for admitted
jobs k and j with w(k) = j. Note that 7(k) = j implies py < yp;. Hence,

ap + (14 20)pr < (aj + (14 0)pj) + (1 +28)vp; < aj + (14 25)p;,

where the last inequality follows from the assumption (1 + 26)y < 6. Due to the construction
of B(k) upon admission of job k by job j, we also have B(k) C S(j). O

Theorem 6.3. Let 0 < d < € be fized. If 0 <~ <1 and 5 > 1 satisfy

B/2

IPER TS (146 —2(1420)7) >1, (6.1)

87

6 Online Throughput Maximization with Commitment

then the blocking algorithm completes a job j admitted at a; < dj — (14 6)p; on time.

Our choice of parameters guarantees that Equation (6.1) is satisfied.

Proof. Let j be a job admitted by the blocking algorithm with a; < d; — (1 + d)p;. Showing
that job j completes before time d;- := a; + (14 60)p; proves the theorem. Due to scheduling in
SPT order, each job j has highest priority in its own scheduling interval if the time point does
not belong to the scheduling interval of a descendant of j. Thus, it suffices to show that at

most 0p; units of time in [a;, d}) belong to scheduling intervals S(k) of descendants of j. By

!
Lemma 6.2, the scheduling intei“val of any descendant k' of a child k of j is contained in S(k).
Hence, it is sufficient to only consider K, the set of children of j.

In order to bound the contribution of each child £ € K, we impose a class structure on
the jobs in K depending on their size relative to job j. More precisely, we define (C.(j))cen,
where C(j) contains all jobs k € K that satisfy 52rp; < px < 5:pj. As k € K implies p < vpj,
each child of j belongs to exactly one class and (C.(j))cen, indeed partitions K.

Consider two jobs k, k" € K where, upon admission, k interrupts the blocking period of %’.
By definition, we have p; < %pk/. Hence, the chosen class structure ensures that k£ belongs
to a strictly higher class than k', i.e., there are ¢, € N with ¢ > ¢ such that k € C.(j)
and k' € C»(j). In particular, the admission of a job k € C.(j) implies either that k is the first
job of class C.(j) that j admits or that the blocking period of the previous job in class C.(7)
has completed. Based on this distinction, we are able to bound the loss of scheduling time
for j in S(j) due to S(k) of a child k.

Specifically, we partition K into two sets. The first set K7 contains all children of j that
where admitted as the first jobs in their class C.(j). The set K5 contains the remaining jobs.

We start with K. Consider a job k € C.(j) admitted by j. By Lemma 6.2, we know
that |S(k)| = (1 + ud)py, where 1 < pu < 2. Let kK’ € C.(j) be the previous job admitted
by j in class C.(j). Then, B(k’) C [exs, ar). Since scheduling and blocking periods of children
of j are disjoint, j has highest scheduling priority in B(k’). Hence, during B(k") U S(k) job j
is processed for at least |B(k')| units of time. In other words, j is processed for at least

a %—fraction of B(k') U S(k). We rewrite this ratio as

[B(K) By _ v
[B(K)US(k)| Bpw + (L +pd)pe v+ (1+ pd)’

where v 1= % € (%, 2]. By differentiating with respect to v and p, we observe that the last

term is increasing in v and decreasing in pu. Thus, we lower bound this expression by

BON B2
|B(K'YUS(k)] — B8/2+ (1+26)

Therefore, j is processed for at least a ﬁ/ﬁ%)—fraction in Ugere B(k) UUkeg, S(k).

88

6.4 Competitiveness: Admitting Sufficiently Many Jobs

We now consider the set K. The total processing volume of these jobs is bounded from above
by 2 5p; = 29p;. By Lemma 6.2, [S(k)| < (14 20)pg. Combining these two observations,
we obtain ‘UkeKl S(k)‘ < 2(1 + 26)yp;. Combining the latter with the bound for K, we

conclude that j is scheduled for at least

B/2

a;,d Sk:‘> 14+6)—2(1+26 >

o)\ U (0|2 g7 (1 am (149 =20+ 2007)p; > p,

units of time, where the last inequality follows from Equation (6.1). Therefore, j completes
before d; = a; + (1 + &)p; < dj, which concludes the proof. O

6.4 Competitiveness: Admitting Sufficiently Many Jobs

After having proved that the blocking algorithm indeed completes all admitted jobs on time in
the previous section, it remains to show that the blocking algorithm admits sufficiently many

jobs to achieve the competitive ratio of O (ﬁ) where ¢’ = § for commitment upon admission

and § = max{%,é } for d0-commitment. To this end, we show that the blocking algorithm
belongs to the class of online algorithms considered in Section 5.4.1. Then, Theorem 5.9
provides a bound on the throughput of an optimal non-migratory schedule. We restate the

necessary properties of an online non-migratory algorithm A for convenience.

(P1) A only admits available jobs.

(P2) Retrospectively, for each time 7 and each machine i, there is a threshold u; , € [0, 00]
such that any job j that was available and not admitted by A at time 7 satisfies p; > w; »

for every i.

(P3) The function u(: R — [0,00],7 + u;, is piece-wise constant and right-continuous for

every machine i € [m]. Further, there are only countably many points of discontinuity.

The first property is clearly satisfied by the definition of the blocking algorithm. For the
second and the third property, we observe that a new job j* is only admitted to a machine 4
during the scheduling interval of another job j admitted to the same machine if pjx < ~p;.
Further, the time point of admission must not be blocked by a similar- or smaller-size job k
previously admitted during the scheduling interval of j. This leads to the bound p;+ < %pk for
any job k whose blocking period contains the current time point. Combining these observations
leads to a machine-dependent threshold u; » € [0, 00| satisfying (P2) and (P3).

More precisely, fix a machine ¢ and a time point 7. Using j — i to denote that j was
admitted to machine i, we define u;; = min;. ;_,; ~cg(;) 7p; if there is no job k admitted to
machine ¢ with 7 € B(k). As usual, we have min() = oo. Otherwise, we set u;, = %pk.

We note that the function u(?) is piece-wise constant and right-continuous due to our choice

89

6 Online Throughput Maximization with Commitment

of right-open intervals for defining scheduling intervals and blocking periods. Moreover, the
points of discontinuity of () correspond to the admission of a new job, the end of a scheduling
interval, and the start as well as the end of a blocking period of jobs admitted to machine 3.
Since we only consider instances with a finite number of jobs, there are at most finitely many
points of discontinuity of u(Y. Hence, we can indeed apply Theorem 5.9.

Then, the following theorem is the main result of this section.

Theorem 6.4. An optimal non-migratory (offline) algorithm can complete at most a factor a+5

more jobs on time than admitted by the blocking algorithm, where o := 5(26 + H_T%)

Proof. We fix an instance and an optimal solution OPT. We use X to denote the set of jobs in
OpT that the blocking algorithm did not admit. Without loss of generality, we can assume that
all jobs in OPT complete on time. If J is the set of jobs admitted by the blocking algorithm,
then X U J is a superset of the jobs successfully finished in the optimal solution. Hence,
showing | X| < (a + 4)|J| suffices to prove Theorem 6.4.

We compare again the throughput of a highest loaded machine of the optimal solution to the
throughput on a least loaded machine of the blocking algorithm. More precisely, let X C X
be the jobs in OPT scheduled on a machine with highest throughput and let J C J be the jobs
scheduled by the blocking algorithm on a machine with lowest throughput. With Theorem 5.9,
we show |X| < (a + 4)|J| to bound the cardinality of X in terms of |.J|.

To this end, we retrospectively consider the interval structure created by the algorithm on the
machine that schedules J; let this without loss of generality be the first machine. Let I be the
set of maximal intervals Iy = |1y, T441) such that uy » = uy 5, for all 7 € I;. We define u; = uy 7,
for each interval I;. As discussed above, the time points 7, for ¢ € [T] correspond to the
admission, the end of a scheduling interval, and the start as well as the end of a blocking
period of jobs admitted to machine 1. As the admission of a job adds at most three time
points, we have that [I] < 3|J| + 1.

As the blocking algorithm satisfies Properties (P1) to (P3), we can apply Theorem 5.9 to

obtain

T
Z Tt+1 + m < Z Tt+1 (3|l| 4 1)‘

It remains to bound the first part in terms of |J|. If u; < o0, let j, € J be the smallest job j
with 7 € S(j) U B(j). Then, at most -=5™ =" (potentially fractional) jobs will be charged
to job j; because of interval I;. By deﬁnltlon of u;, we have u, = vp;, if I; C S(ji), and
if I; € B(j;), we have u; = %Pjt- The total length of intervals I; for which j = j; holds sums
up to at most (1 + 26)p; for I; C S(/) and to at most 25p; for I; C B(j). Hence, in total, the
charging scheme assigns at most _=5(28 + 1+25) = a jobs in X to job j € J. Therefore,

X| < (a+3)1J]+1.

90

6.5 Lower Bounds on the Competitive Ratio

If J = 0, the blocking algorithm admitted all jobs in the instance, and |X| < |J| follows.
Otherwise, | X| < (a + 4) ||, and we obtain

|OpT| < | X UJ| <m|X|+|J| <m(a+4)J|+|J] < (a+5)]]]|,
which concludes the proof. O

Finalizing the proof of Theorem 6.1

Proof of Theorem 6.1. In Theorem 6.3 we show that the blocking algorithm completes all
admitted jobs J on time. This implies that the blocking algorithm is feasible for the model
commitment upon admission. As no job j € J is admitted later than d; —(1+46)p;, the blocking
algorithm also solves scheduling with d-commitment. Theorem 1.1 in [KPO01] (Theorem 5.2)
gives a bound on the throughput of an optimal migratory schedule in terms of the throughput
of an optimal non-migratory solution. In Theorem 6.4, we bound the throughput |[OPT| of an
optimal non-migratory solution by |.J|, the throughput of the blocking algorithm. Combining

these theorems shows that the blocking algorithm achieves a competitive ratio of

c:6(a+5):6< < (25+1:25)+5>.

eE—20

Our choice of parameters g = % and v = 1% implies ¢ € O(ﬁ). For commitment upon
arrival or for J-commitment in the case where 0 < 5, we run the algorithm with ¢’ = §.
Hence, c € 0(555,) = O(%) If 6 > 5, then we set ¢ = ¢ in our algorithm. Thus, & € O(1)
and, again, ¢ € O(ﬁ). O

6.5 Lower Bounds on the Competitive Ratio

We emphasize that the blocking algorithm matches the lower bound presented in the previous
chapter for online throughput maximization when scheduling without commitment. In this
section, we give an impossibility result even for randomized algorithms for scheduling with
commitment upon arrival. Since the J-commitment requirement essentially tightens to com-
mitment upon arrival if § converges to ¢, the divergence of the competitive ratio of the blocking
algorithm for § — ¢ is justified.

Further, we develop several lower bounds for scheduling with commitment in the presence

of weights.

Commitment Upon Arrival

We substantially strengthen earlier results for weighted jobs [LMNY13, Yan17] and show that

the model is hopeless even in the unweighted setting and even for randomized algorithms.

91

6 Online Throughput Maximization with Commitment

Theorem 6.5. No randomized online algorithm has a bounded competitive ratio for commitment

upon arrival.
In the proof of the theorem, we use the following algebraic fact.

Lemma 6.6. If some positive numbers q1, ..., qx, c € Ry satisfy the properties
(i) St_1qe < 1 and
(it) Zzzl g2 > 2 S forallj=1,....k,

then ¢ > %

Proof. We take a weighted sum over all inequalities in (ii), where the weight of the inequality
corresponding to j < k is 2°77~! and the weight of the inequality corresponding to j = k is 1.
The result is

k
Zqﬁ ok— 1>(k+1) quz(k“‘l)‘
=t 2c

If ¢ < E£L | this contradicts (i). O
We proceed to the proof of the theorem.

Proof of Theorem 6.5. Consider any € > 0 and an arbitrary v € (0, 1). Toward a contradiction,
suppose that there is a (possibly randomized) c-competitive algorithm, where ¢ may depend
on €.

Let k € N with k£ > 2¢. The instance consists of one machine and at most k& waves of jobs,
but the instance may end after any wave.

Wave /¢ has 2¢ jobs Fach job from the fth wave has release date % -7, deadline 1, and
processing time 2—1[s +E
Further, note that the total volume of jobs in wave ¢ adds up to no more than 1 — ~

Choosing p; < :LZ for all jobs j ensures that d; —r; > (14 ¢)p;.

Define ¢ to be the expected total processing time of jobs that the algorithm accepts from
wave £. We observe:

(i) Since all accepted jobs have to be scheduled within the interval [0,1], we must have
Sio1qe < 1.

(ii) For each ¢, possibly no further jobs are released after wave ¢. Since, in this case, the
optimum schedules all jobs from wave ¢ and the jobs’ processing times decrease by a
factor of 2 from wave to wave, it must hold that Z] 19 2t-1 > 2j ~ for all j € [k].

This establishes the conditions of Lemma, 6.6 for ¢1,..., gy, which 1mphes c > % > ¢. This

gives a contradiction. O

Commitment on Job Admission and d-commitment.

Since scheduling with commitment is more restrictive than scheduling without commitment,
the lower bound () from Theorem 5.12 holds for throughput maximization with commitment

upon job admission and d-commitment.

92

6.5 Lower Bounds on the Competitive Ratio

In the remainder of this section, we consider weighted throughput maximization where jobs

may have arbitrary weights or where the weights are equal to their processing times.

Commitment upon admission For scheduling with arbitrary weights, Azar et al. [AKL*15]
rule out any bounded competitive ratio for deterministic algorithms. Thus, our bounded
competitive ratio for the unweighted setting (Theorem 6.1) gives a clear separation between

the weighted and the unweighted setting.

Scheduling with §-commitment We give a lower bound depending on parameters € and 0.

Theorem 6.7. Consider scheduling weighted jobs in the §-commitment model. For 6, > 0

with § < e < 1+ 4, no deterministic online algorithm has a bounded competitive ratio.

Proof. We reuse the idea of [AKL™15] to release the next job upon admission of the previous
one while heavily increasing the weights of subsequent jobs. However, the scheduling models
differ in the fact that the d-commitment model allows for processing before commitment which
is not allowed in the commitment-upon-admission model.

Toward a contradiction, suppose that there is a c-competitive algorithm. We consider the
following instance with one machine and n jobs with the same deadline d, where d = 1 + €.
Job j € [n] has weight (c+ 1)/ which implies that any c-competitive algorithm has to admit
job j at some point even if all jobs 1,...,j — 1 are admitted. In the d-commitment model,
the commitment to job j cannot happen later than d — (1 + 0)p;, which is shortly before the
release date of job j + 1.

More precisely, the first job is released at r; = 0 with processing time p; = 1. If jobs 1,...,j
have been released, then job j +1 is released at rj;1 = d — (14 9)p; + ¢p;, for ¢ € (0,4), and

has processing time

Pj+1 = - - 1+¢

d—rjyr d—(d—(1+08)pj+epj) 14+5—0 (1+d0-p i
1+¢ 14+¢ 14 7 '

An instance with n such jobs has a total processing volume of

) n
n n—1 14+6—¢ J 1_(141-?’_—90)
P e e =

7=0 1+e

Any c-competitive algorithm has to complete the n jobs before d = 1 + £. This also holds
for n — oo and ¢ — 0, and thus ;%g < 1+ ¢ is implied. This is equivalent to ¢ > 1+ 4. In

other words, if € < 1+ ¢, there is no deterministic c-competitive online algorithm.]

In particular, there is no bounded competitive ratio possible for € € (0,1). A restriction of &
appears to be necessary since Azar et al. [AKLT15] provide such a bound when the slackness
PP Yy b

is sufficiently large, i.e, ¢ > 3. In fact, our bound answers affirmatively the open question

93

6 Online Throughput Maximization with Commitment

in [AKL'15] whether or not high slackness is indeed required. Again, this strong impossibility
result gives a clear separation between the weighted and the unweighted problem as we show

in the unweighted setting a bounded competitive ratio for any € > 0 (Theorem 6.1).

Proportional weights For scheduling with commitment, it is known that simple greedy algo-
rithms achieve the best possible competitive ratio @(%) [DP00, GNYZ02]. In this section, we

show a weaker lower bound for randomized algorithms.

Theorem 6.8. Consider proportional weights (w; = p;). For commitment on job admission and

the §-commitment model, the competitive ratio of any randomized algorithm is Q(log %)

Proof. Let k = {log (8—18)J, and consider a c-competitive algorithm. The instance consists of
one machine and at most k jobs, where job j € [k]| arrives at 2¢ Zz;i 2¢=1 and has processing
time 277! and slack €271, The release date of job j is
j—1
% 2l=1 9. . 9log(1/(8¢)) <

1
(=1 4

at which time any job j/ < j that the algorithm has committed to has at least p; — % = % units

of processing time left. However, the slack of j is at most

e. 9971 < o . 9llog(1/(8e))]-1 ~
- — 16
This implies that no algorithm should commit to two jobs at the same time. If ¢, is the
probability that the algorithm commits to job ¢, then 2’,;:1 q < 1.
Further, if the algorithm commits to j < k, then this has to happen at the latest at time

Jj—1 J
rj+e2 =2y 2071 2l < 2 > 2 =y,
=1 (=1
That is, unknowing whether j + 1 will be released or not, the algorithm has to be competitive
with the optimum that only schedules job j. As such an optimum achieves a value of p; = i1,
any c-competitive algorithm has to satisfy >>7_, ¢/ 2t=1 > ?
Therefore, we are able to apply Lemma 6.6 to g1, ..., qx, showing ¢ > % = Q(log é) O

6.6 Concluding Remarks

We answer the major open questions regarding online throughput maximization with com-
mitment requirements and give an optimal online algorithm on identical parallel machines for
the problem P |online r;, pmtn | >°(1 —U;) when scheduling with commitment upon admission

or with d-commitment. Surprisingly, the asymptotic performance of an online scheduler does

94

6.6 Concluding Remarks

not change significantly under these moderate, yet valuable commitment requirements. For
the most restrictive model, commitment upon arrival, we rule out any online algorithm with
bounded competitive ratio.

As observed in the previous chapter, our lower bounds on the competitive ratio are based
on single-machine instances. Hence, it remains open whether the problem where m is not
part of the input admits an online algorithm with a better competitive ratio as is the case
for Pm |online r;, pmtn | > p;(1 — U;) [SS16].

95

Dynamic Multiple Knapsacks

In the MULTIPLE KNAPSACK problem, we are given multiple knapsacks with different
capacities and items with values and sizes. The task is to find a subset of items of
maximum total value that can be packed into the knapsacks without exceeding the
capacities. We investigate this problem and special cases thereof in the context of
dynamic algorithms and design data structures that efficiently maintain near-optimal
knapsack solutions for dynamically changing input. More precisely, we handle the arrival
and departure of individual items or knapsacks during the execution of the algorithm
with worst-case update time poly-logarithmic in the number of items. As an optimal
and any approximate solution may change drastically with changing input, we only
maintain implicit solutions and support certain queries in poly-logarithmic time, such
as asking for the packing of an item or the solution value.

While dynamic algorithms are well-studied in the context of graph problems, there is
hardly any work on packing problems and generally much less on non-graph problems.
Given the theoretical interest in knapsack problems and their practical relevance, it is
somewhat surprising that KNAPSACK has not been addressed before in the context of
dynamic algorithms. Our work bridges this gap.

Bibliographic Remark: This chapter is based on joint work with M. Bohm, N. Megow,
L. Nolke, J. Schlster, B. Simon, and A. Wiese [BEM*20]. Therefore, some parts corre-
spond to or are identical with [BEM™20], which is submitted for publication at SODA
2021. The proofs of Sections 7.6 and 7.7 will (also) appear in the PhD thesis by L.
Nolke.

Table of Contents

7.1
7.2
7.3

7.4

Introduction oL L e e e e 98
Data Structures and Preliminaries 102
Dynamic Linear Grouping L e e 105
7.3.1 Algorithm L L e e e 106
7.3.2 Analysiso e e e e e e 107
Identical Knapsacks L L L e e 111
741 Algorithm . . . L L e 111

97

7 Dynamic Multiple Knapsacks

742 Analysis . . .o e e 114
7.5 Ordinary Knapsacks When Solving Multiple Knapsack 130
7.5.1 Algorithm L L e e e 130
7.5.2 Analysis e 134
7.6 Special Knapsacks When Solving Multiple Knapsack 145
7.6.1 Algorithm L e e e 145
7.7 Solving Multiple Knapsack 147
7.7.1 Algorithm oL 148
T.7.2 Analysis . . . L e e e e e 151
7.8 Concluding Remarks L 154

7.1 Introduction

Knapsack problems are among the most fundamental optimization problems, studied since the
early days of optimization theory. In the most basic variant, the KNAPSACK problem, there
are given a knapsack with capacity S € N and a set J of n items, where J = [n], and each
item j has a size s; € N and a value v; € N. The goal is to find a subset of items, P C [n],
with maximal total value v(P) = 3_,cpv;, and with total size s(P) = 3" p s, that does not
exceed the knapsack capacity S. In the more general MULTIPLE KNAPSACK problem, we are
given m knapsacks with capacities S; for i € [m]. Here, the task is to select m disjoint subsets
Py, ..., P, C J such that subset P; satisfies the capacity constraint s(FP;) < .S; and the total
value of all subsets Y ;" v(F;) is maximized.

The KNAPSACK problem is N/P-complete in its decision variant — in fact, it is one of the 21
problems on Karp’s list of NP-complete problems [Kar72]— and it admits pseudo-polynomial
time algorithms. The first published pseudopolynomial-time algorithm for KNAPSACK from
the 1950s has running time O(n - S) [Bel57]. The decision variant of MULTIPLE KNAPSACK
is strongly NP-complete, even for identical knapsack capacities, since it is a special case of
BIN PackING [GJ79, KPP04]. Hence, it does not admit pseudopolynomial-time algorithms,
unless P = N'P.

As a consequence of these hardness results, each of the knapsack variants has been studied
extensively over the years through the lens of approximation algorithms. Of particular interest
are approximation schemes, families of polynomial-time algorithms that compute for any con-
stant £ > 0 a (1 + ¢)-approximate solution, i.e., a feasible solution with value within a factor
of (1 + ¢) of the optimal solution value (see also Chapter 2). The first approximation scheme
for the KNAPSACK problem is due to Ibarra and Kim [IK75] and has running time polynomial
in n and % This seminal paper initiated a long sequence of follow-up work, with the latest

improvements appearing only recently [Chal8, Jin19].

98

7.1 Introduction

MULTIPLE KNAPSACK is substantially harder and does not admit (1 + &)-approximate al-
gorithms with running time polynomial in é, unless P = NP, even with two identical knap-
sacks [CK05]. However, some approximation schemes with exponential dependency on % are
known [Kel99, CK05] as well as improved variants, where the dependency on f (%) for some
function f is only multiplicative or additive [Jan09, Jan12]. The currently fastest known ap-
proximation scheme has a running time of 20(og"(1/¢)/¢) +poly(n) [Jan12]. All these algorithms
are static in the sense that the algorithm has access to the entire instance, and the instance is
not subject to changes.

The importance of knapsack problems in theory and practice is reflected by the two dedi-
cated books [MT90, KPP04]. Given the relevance of knapsack applications in practice and the
ubiquitous dynamics of real-world instances, it is natural to ask for dynamic algorithms that
adapt to small changes in the packing instance while spending only little time to recompute
the solution. More precisely, during the execution of the algorithm, items and knapsacks arrive
and depart, and the algorithm has to maintain an approximate knapsack solution with a small
update time, preferably poly-logarithmic in the current number of items. A dynamic algo-
rithm for knapsack problems can be seen as a data structure that supports update operations
to insert or remove an item or a knapsack as well as relevant query operations to output the
current solution. We use update time to refer to the running time that is needed to update
the underlying data structure and to compute the new solution. We are the first to analyze
knapsack problems in the context of dynamic algorithms.

Generally, dynamic algorithms constitute a vibrant research field in the context of graph
problems. We refer to the surveys [DEGI10, Hen18 BP11] for an overview on dynamic graph
algorithms. For packing and, generally, for non-graph-related problems, dynamic algorithms
with small update time are much less studied. A notable exception is a result for BIN PACK-
ING that maintains a 2-approximate solution with O(logn) update time [IL98]. This lack
of efficient dynamic algorithms is in stark contrast to the aforementioned intensive research
on computationally efficient algorithms for knapsack problems. Our work bridges this gap

initiating the design of algorithms that efficiently maintain near-optimal solutions.

Our Contribution

In this chapter, we present dynamic algorithms for maintaining approximate knapsack solutions
for two problems of increasing complexity: MULTIPLE KNAPSACK with identical knapsack sizes
and MULTIPLE KNAPSACK without further restrictions. Our algorithms are fully dynamic
which means that in an update operation they can handle both, the arrival or departure of an
item and the arrival or departure of a knapsack. Further, we consider the implicit solution or
query model, in which an algorithm is not required to store the solution explicitly in memory
such that the solution can be read in linear time at any given point of the execution. Instead,

the algorithm may maintain the solution implicitly with the guarantee that a query about the

99

7 Dynamic Multiple Knapsacks

packing can be answered in poly-logarithmic time. Since KNAPSACK is already N/P-hard even
with full knowledge of the instance, we aim at maintaining (1 + ¢)-approximate solutions.

We give worst-case guarantees for update and query times that are poly-logarithmic in n,
the number of items currently in the input, and bounded by a function of £ > 0, the desired
approximation accuracy. For some special cases, we can even ensure a polynomial dependency
on % In others, we justify the exponential dependency with N P-hardness results. Denote

by vmax the currently largest item value and by Spax the currently largest knapsack capacity.

e For MULTIPLE KNAPSACK, we design a dynamic algorithm that maintains a (1 + ¢)-

o(1/e)

approximate solution with update time 27(1/¢) (%) (log mlog Spaz log vmax)o(l),

where f(1/e) is quasi-linear, and query time O (IOE#—Hog m) for single items (Section 7.7).

e The exponential dependency on é in the update time for MULTIPLE KNAPSACK is indeed

necessary, even for two identical knapsacks. We show that there is no (14 ¢)-approximate

o1
dynamic algorithm with update time (% log n) (), unless P = NP (Section 7.2).

e For MULTIPLE KNAPSACK with m identical knapsacks, we maintain a (1+¢)-approximate
o@ oa

solution with update time (% log nlog Sz log vmax) W and query time (élog n) @
it m > ?loan (Section 7.4). For small m, we refer to Section 7.6 for a high-level

overview and to [BEM™20] for the details.

In each update step, we compute only implicit solutions and provide queries for the solution
value, the knapsack of a queried item, or the complete solution. These queries are consistent
between two update steps and run efficiently, i.e., polynomially in log n and log vmax and with a
dependency on € and the output size. We remark that it is not possible to maintain a solution
with a non-trivial approximation guarantee explicitly with only poly-logarithmic update time
(even amortized) since it might be necessary to change §2(n) items per iteration, e.g., if a very
large and very profitable item is inserted and removed in each iteration. Therefore, instead of
packing an item implicitly, we transform items into types and for those, we only store slots

that are then filled with items of the correct type upon query.

Methodology

Dynamic linear grouping We develop this technique to cluster a (sub)set of items into so-

called item types of roughly the same size and value in time (% log n)o(l). Traditionally, linear
grouping is applied for solving bin packing problems, where any feasible solution has to pack
all items [dIVL81]. This property is crucial since the cardinality of the groups depends on the
number of packed items. In knapsack problems, however, a feasible solution may consist of
only a subset of items. We handle this uncertainty by simultaneously executing classical linear
grouping for O(log; . n) many guesses of the cardinality of an optimal solution, and thus we

simulate the possible choices which subset to select; see Section 7.3.

100

7.1 Introduction

Identical knapsacks As a special case, we consider MULTIPLE KNAPSACK with identical
capacities in the dynamic setting. We call an item type small or big if its size is at most
or at least an e-fraction of the knapsacks’ capacity, respectively. As the number of big items
per knapsack is bounded, we use a configuration integer linear program (ILP) to explicitly
assign these items via configurations to knapsacks. Conversely, the ILP assumes that small
items can be packed fractionally and thus assigns those only via a placeholder. Even after
applying dynamic linear grouping, the number of variables is still prohibitively large. Hence,
we would like to apply the Ellipsoid Method with an approximate separation oracle to the
dual problem similar to its application in [KK82,PST95, Rot12]. However, we cannot use any
of their approaches directly due to two additional variables in the dual problem. Instead, we
add an objective function constraint to the dual problem and carefully exploit the connection
between feasible and infeasible dual solutions to obtain a basic feasible solution for the primal

problem. This enables us to approximately solve the LP relaxation and round the so found

o(1
solution in time (% log nlog Syqz log vmax> = if m is sufficiently large; see Section 7.4.

MuLTiPLE KnAPSACK We design a dynamic algorithm for MULTIPLE KNAPSACK with up-
: logn) ©(1/€)

date time (%)

the given knapsacks based on their capacity, creating two subproblems of MULTIPLE KNAP-

(log M 10g Spaz 10g Vmax)®. We accomplish this goal by partitioning

SACK. This separation allows us to design algorithms that exploit the structural properties
specific to each subproblem. One subproblem consists of relatively few (though non-constantly
many) knapsacks, but they are the largest of the instance. While the small number of these
special knapsacks offers more algorithmic freedom, this freedom is necessary since great care
has to be taken when computing a solution. After all, there may be items of high value that
only fit into special knapsacks. The second subproblem contains almost all remaining smaller
knapsacks. The sheer number of these ordinary knapsacks results in a reversed problem, with
the algorithmic handling of the numerous knapsacks being a major hurdle. On the upside,
mistakes are forgiven more easily, allowing us to even discard a small fraction of knapsacks
entirely. Additionally, we create a third partition of knapsacks that lies in-between the two
subproblems (with respect to knapsack capacity). It consists of knapsacks that contribute
negligible value to an optimal solution. This property induces the precise partitioning and
allows us to consider the knapsacks as empty extra knapsacks, which we use to place leftover
items not packed in the subproblems.

The major challenge with this divide-and-conquer approach is to decide which item is as-
signed to which of the two subproblems. Clearly, for some — special —items this question is
answered by their size as they only fit into special knapsacks, unlike the remaining— ordi-
nary —items. In fact, for them the allocation is so problematic that we resort to downright
putting a number of high-value ordinary items into extra knapsacks. To handle the remainder,
we guess the total size of ordinary items that are put into special knapsacks by an optimal

solution. We then add a virtual knapsack — with capacity equal to this guess—to the ordinary

101

7 Dynamic Multiple Knapsacks

subproblem and solve it with the not yet packed ordinary items as input. The input for the
special subproblem then consists of all special items together with bundles of the ordinary
items packed in the virtual knapsack. In Section 7.5, we explain in detail how the ordinary

subproblem is solved while Section 7.6 gives an overview of the special subproblem.

Related Work

Ever since the first approximation scheme for KNAPSACK due to Ibarra and Kim [IK75], running
times have been improved steadily over the last decades [GL79, Law79, GL80, KP04, Rhel5,
Chalg, Jin19] with O(n log% + (é)gﬂl) by Jin [Jin19] currently being the fastest. Recent
work on conditional lower bounds implies that KNAPSACK does not admit an FPTAS with
running time (’)((n + %)276), for any 6 > 0, unless (min, +)-convolution has a subquadratic
algorithm [CMWW19, MWW19).

A PTAS for MuLTIPLE KNAPSACK was first discovered by Chekuri and Khanna [CKO05]
and an EPTAS due to Jansen [Jan09] is also known. The running time of this EPTAS
is 20(0(1/2)/=°) . poly(n). Jansen [Jan12] later presented a second EPTAS with an improved
running time of 20(log"(1/2)/) 4 poly(n). These algorithms are all static and do not explicitly
support efficient update operations except when being run from scratch after each update.
Hence, directly applying such an approximation scheme after each update is prohibitive since
a single item arrival can change a packing solution completely, requiring a full recomputation
with running time polynomial in the input size.

At the heart of the two EPTASs [Jan09, Jan12] lies a configuration ILP for rounded items
and/or knapsacks of exponential size. Even though near-optimal solutions to the LP relaxation
can be found and rounded in time O(poly(n)), this is beyond the scope of the poly-logarithmic
update time we are interested in. Additionally, the configuration ILPs still contain Q(n)
many constraints and variables which is yet another obstacle when aiming for dynamically
maintaining approximate solutions with poly-logarithmic running time. Hence, to improve the
running time according to our goal of poly-logarithmic update time, a more careful approach

for rounding items has to be developed before similar configuration ILPs can be applied.

7.2 Data Structures and Preliminaries

From the perspective of a data structure that implicitly maintains near-optimal solutions for
MurLTiPLE KNAPSACK, our algorithms support several different update and query operations.
These allow for the input to MULTIPLE KNAPSACK to change, which causes the computation
of a new solution, or for (parts of) that solution to be output, respectively. The supported

update operations are as follows.

e Insert Item: inserts an item into the input

102

7.2 Data Structures and Preliminaries

e Remove Item j: removes item j from the input
e Insert Knapsack: inserts a knapsack into the input
e Remove Knapsack i: removes knapsack ¢ from the input

These update operations compute a new solution which can be output, entirely or in parts,

using the following query operations.

e Query Item j: returns whether item j is packed in the current solution and if so,

additionally returns the knapsack containing it
e Query Solution Value: returns the value of the current solution

e Query Entire Solution: returns all items in the current solution, together with the

information in which knapsack each such item is packed

Since the solution is allowed to change only after an update, these queries are consistent in-
between two update operations. Nevertheless, the answers to queries are not independent of
each other but depend on the precise order of the queries. This is mostly due to our approach
of reserving slots for items of a particular type and filling these slots with items explicitly only
upon query.

To provide the above functionality, we require the use of additional data structures and
make a few basic assumptions which we now discuss. First, while the model imposes no time
bounds on the computation of an initial solution, we can compute such an initial solution
by inserting one item/knapsack at a time and computing the implicit solution after all the
insertions in time nearly linear in n and m and with additional dependencies on £ and vyax
as in the respective algorithms. For simplicity, we assume that elementary operations such
as addition, multiplication, and comparison of two values can be handled in constant time.
Clearly, this is not true as the parameters involved can be as large as vpmax and Spax. However,
as we will show, the number of elementary operations is bounded, and thus their results do not
grow arbitrarily large but are in fact bounded by a polynomial in log n, logm, Shax, and vmax
and some function of % Thus, we do not explicitly state the size of the involved numbers.
Lastly, we make some standard assumptions on €. By appropriately decreasing e, we assume
without loss of generality that % € N and € < 1. Further, we present our results in the form
of (1 + O(e))-approximate algorithms to simplify the exposition. For achieving the required
approximation guarantee of 1+ ¢, we can appropriately choose some &’ € ©(¢g) for running the

algorithms without changing the asymptotic dependency of the running time on e.
Rounding Values A crucial ingredient to our algorithms is the partitioning of items into only

few value classes V; consisting of items j for which (1+¢)* < v; < (1+¢)*!, for £ € Ny. Upon

arrival of an item, we calculate its value class Vy; and store j together with vj, s;, and £; in

103

7 Dynamic Multiple Knapsacks

the appropriate data structures of the respective algorithm. We assume all items in V} to have
value (1+¢)*. Since this technique is rather standard, we do not provide a formal proof of the

next lemma but only give its statement.
Lemma 7.1. (i) There are at most O(bg”%) many value classes.

(ii) For optimal solutions OPT and OPT’ to the original and rounded instance respectively,
we have (1 + &)v(OPT’) > v(OPT).

Data Structures The targeted running times do not allow for completely reading the instance
in every round but rather ask for carefully maintained data structures that allow us to quickly
compute and store implicit solutions. For access to the input, we maintain an array that for
each item stores the item’s size, value, and value class, and similarly for knapsacks. However,
our dynamic algorithms mostly rely on maintaining sorted lists of up to n items or m knapsacks,
respectively. For all orderings, break ties according to indices. For sorting the items, we will
mostly use their size or their density, the ratio between the value v; and the size s; of an
item j € J.

Since our goal is to design algorithms with poly-logarithmic update times, it is crucial that
the data structures enable accordingly efficient insertion, deletion, and access times. Bayer and
McCreight [BM72] developed such a data structure in 1972, the so-called B-trees that were
later refined by Bayer [Bay72] to symmetric binary B-trees. These trees store elements sorted
according to some key value in their nodes. In contrast to this early work, in each node k, we
additionally store information about the total size, the total value, the total number, or the
total capacity of the elements in the subtree rooted at k.

As observed by Olivié [Oli82] and by Tarjan [Tar83], updating the original symmetric bi-
nary B-trees can be done with a constant number of rotations, i.e., by constantly often re-
arranging subtrees. For our variant of B-trees, this implies that only a constant number of
internal nodes are involved in an update procedure. In particular, if a subtree is removed or
appended to a certain node, only the values of this node and of its predecessors need to be
updated. The number of predecessors is bounded by the height of the tree which is logarith-
mic in the number of its leaves. Hence, the additional values stored in internal nodes can be
maintained in time O(logn) or O(logm). Storing the additional values such as total size of a
subtree in its root allows us to compute prefixes or the prefix sum with respect to these values
in time O(logn) or O(logm). Prefix computation refers to finding the maximal prefix of the
sorted list such that the elements belonging to the prefix have values that are or whose sum is

bounded by a given input. We return a prefix by outputting the index of its last element.

Lemma 7.2. There is a data structure storing n’ elements sorted with respect to a key value.
Insertion, deletion, or search by key value or index of an element takes time O(logn'), and pre-

fizes and prefix sums with respect to additionally stored values can be computed in time O(logn’).

104

7.3 Dynamic Linear Grouping

Hardness of Computation To conclude this section, we provide a justification for the dif-
ferent running times of our algorithms for MULTIPLE KNAPSACK depending on the number
of knapsacks. It is known that MULTIPLE KNAPSACK with two identical knapsacks does not
admit an FPTAS, unless P = NP [CKO05].

We are able to extend this result to the case where m < 3—16 More precisely, we show that
a (1 + e)-approximation algorithm for MULTIPLE KNAPSACK with m < é and running time
polynomial in n and é would imply that 3-PARTITION can be decided in polynomial time.
For the dynamic setting, this implies that there is no dynamic algorithm with update time
polynomial in n and %, unless P = NP. We note that this result can be extended to a
larger number knapsacks with arbitrary capacities by adding an appropriate number of small

knapsacks that cannot be used to pack any item.

Theorem 7.3. Unless P = NP, there is no algorithm for MULTIPLE KNAPSACK that maintains

a (1 + e)-approzimate solution in update time polynomial in n and % form < 3—15

Proof. Consider the strongly NP-hard problem 3-PARTITION where there are 3m items with
;’21 a; = mA. The task is to decide whether there exists a parti-
tion (P;){2; of [3m] such that |P;| = 3 and 3 ,cp a; = A for every j € [3m]. We note that this

problem remains strongly A'P-hard even if the item sizes a; satisfy % <aj < % [KPP04,GJ79].

sizes a; € N such that

Consider the following instance of MULTIPLE KNAPSACK: There are m knapsacks with
capacity S = A and 3m items. Each item corresponds to a 3-PARTITION item with s; = a;
and vj; = 1 for j € [3m]. Observe that the 3-PARTITION instance is a YEs-instance if and only
if the optimal solution to the KNAPSACK problem contains 3m items.

If MurLTIPLE KNAPSACK admits an algorithm with approximation factor (1+¢) and running
time polynomial in % and n where m < 3—16, such an algorithm is able to optimally solve
the KNAPSACK instance reduced from 3-PARTITION. Therefore, such an algorithm decides
3-PARTITION in polynomial time which is not possible, unless P = N'P. O

7.3 Dynamic Linear Grouping

We describe and analyze our dynamic approach to linear grouping for an item set J' C J
and a number n’ < |J’| such that any optimal solution can pack at most n’ items of J'. We
consider J' instead of J because one of our dynamic algorithms only uses dynamic linear
grouping on a subset of items. The aim of linear grouping (and of our dynamic version) is to
transform the items into item types of identical size and value to simplify the computation and

achieve the desired update times.

Theorem 7.4. Given a set J' with |OpT N J'| < n' for all optimal solutions OPT, there is an
algorithm with running time O(bi#) that transforms the items in J' into (’)(%ﬂ/) item
types T and ensures v(OPTT) > %

the modified instance induced by the item types T and their multiplicities and the items J\ J'.

v(OpPT). Here, OPTT is an optimal solution for

105

7 Dynamic Multiple Knapsacks

7.3.1 Algorithm

We now describe the algorithm that we use for proving Theorem 7.4. In the following, we use
the notation X’ for a set X to refer to X N J’ while X” refers to X \ J’. Further, we fix
an optimal solution OPT. Recall that, upon arrival, item values of items in J are rounded to
natural powers of (1+¢) to create the value classes V;, where each item j € V; is of value (1+¢)".

The idea of the algorithm is based on the following observation: Knowing ny := |OPTNV}/| is
sufficient to determine the exact subset of V; packed in OPT since, without loss of generality,
the smallest ny items are packed. Given ny, the classical linear grouping approach developed by
de la Vega and Lueker [dIVL81] could be applied to create item groups that ultimately reduce
the number of different items. However, in a dynamic context, computing (or even guessing) ny
is intractable. Hence, the algorithm creates item groups simultaneously for various guesses of ny
before rounding the item sizes according to linear grouping. Illustrations of linear grouping

and dynamic linear grouping are shown in Figures 7.1 and 7.2, respectively.

DN

ny

type t1 type t2 type t3 type t4 type ts

Figure 7.1: Linear grouping for items in V; given n,. Dark rectangles correspond to the original
item sizes and light rectangles indicate the rounding to item types.

TERE A AT

T g 0y N Ny
t1 to t3 ta ts te t7 tg tg tio t11

Figure 7.2: Dynamic linear grouping for items in V;/. Each color corresponds to one guess of ny.

The algorithm assumes that £ax, the largest index of a value class with V/NOPT # 0, is given
as input. Next, we set Limin ‘= fmax — [logHa %ﬂ Each item j € V) for £ ¢ {lmin,- .., {max}
is discarded. For each value class £ € {{iin,-..,lmax} and each [€ {0,...,|log; . n]}, we

106

7.3 Dynamic Linear Grouping

consider [(1+ ¢)!] as guess for n; and do the following. We determine the first n; items of V/
(sorted by non-decreasing size) and create é almost equal-size groups G1(ny), ..., G1/-(n).
Group G1(ng) contains the |en,| smallest items in V), and, for general k € [ﬂ, Gr(ny) contains
the [eng| or [en,] smallest items in V; not contained in Gy(ny) for k' < k. If eny ¢ N, we
ensure that |Gg(ng)| < |Grr(ng)| for k < K. 1If % was not yet considered as guess for ny, then
we also create G (%), cees GI/E(%), where er) contains the kth smallest item in V.

For one guess of ny, let ji(ng) be the last job in V; belonging to group Gy (ns). After having
determined ji(ny) for each possible value ny (including %) and for each k € [%], the size of
each item j € V/ is rounded up to the size of the next larger item j* with j* = jx(n,) for some
combination of k£ and ny. That is, each item belongs to an item type ¢ with size s; and value vy.
We summarize the algorithm in Algorithm 7.1. Without loss of generality, we use the position

of an item j € V}/, when V} is sorted by non-decreasing size, to refer to the item itself.

Algorithm 7.1: Dynamic linear grouping
Umax — guess of the largest index of a value class with V;/ N OPT # §)
Cmin < lmax — [logy . n?/—|
for £ = limin, - - - , bmax do
for 1 =0,...,[logy,.n'| do
ne ¢ [(1+)]
forkzl,...,% do
determine G (ng) and ji(ng) < max{j : j € Gg(ns)}
if 1 # [(14¢)"] for some I € {0,..., [log,,.n']} do
determine Gl(%), . .,Gl/a(%)
forkzl,...,% do
Jr(g) + max{j : j € Gp(2)}
for j € V/ do
J* = ming {7k (1) © je(ne) > j}
8j < 8
for £ < linin and £ > fpax do
discard each item j € V)

7.3.2 Analysis

We start by observing that the loss in the objective function due to rounding item values to
natural powers of (1 + ¢) is bounded by a factor of 1—}%; see Lemma 7.1. Let V}, . be the
highest value class with Vé’ N OPT # (. As fni, is chosen such that n’ items of value at
most (1 +¢)%min contribute less than an e-fraction to v(OPT), the loss in the objective function
by discarding items in value classes V/ with ¢ & {{min, ..., {max} is bounded by a factor (1 —¢)

as we show in Lemma 7.6. By taking only {(1 + ¢)llog1+e WJ-‘ items of V/ instead of ng, we lose

107

7 Dynamic Multiple Knapsacks

at most a factor of I—Jlre; see Lemma 7.7. Observing that the groups created by dynamic linear
grouping are an actual refinement of the groups created by the classical linear grouping for a
fixed number of items, we pack our items as done in linear grouping: Not packing the group
with the largest items allows us to “shift” all rounded items of group G (n¢) to the positions
of the (not rounded) items in group Gjy1(ng) at the expense of losing a factor of (1 — 2¢) as

we see in Lemma 7.8. Combining these results then shows the following lemma.

Lemma 7.5. There is an index byax such that v(OPTT) > %

optimal packing for the modified instance induced by the item types T and their multiplicities
and the set J".

v(OPT), where OPTT is an

Let P; be the set of solutions that may use all items in J” and uses items in J’ only of
the value classes V; with £ € {lmin,...,max}. Let OPT; be an optimal solution in P;. The

following lemma bounds the value of OPT; in terms of OPT.
Lemma 7.6. v(OpPT1) > (1 — €)v(OPT).

Proof. From being given £y,ax, we know that v(OPT) > (14-¢)fmax, As n' is an upper bound on
the cardinality of OPT’, the items in the value classes V; with £ < f,;, contribute at most n’ —1
items to OPT’ while the value of one such item is bounded by (14-¢)%min. Thus, the total value

of items in Vp, ..., V, . _; contributing to OPT’ is bounded by

n/(l + E)Zmin — n/(l + E)Kmax_[lOgqua n’/s—l S E(]. _|_ E)Zmax S E’U(OPT),

while the items in V; with £ > /.« do not contribute to v(OPT).
Let J1 be the set of items in OPT’ restricted to the value classes V; with £ € {fiin, - - - , fmax }-
Clearly, J; and OPT” together can be feasibly packed. Hence,

v(OPTy) > v(J1) + v(OPT") > v(OPT') — ev(OPT) + v(OPT") > (1 — £)v(OPT),
which concludes the proof.]

From now on, we only consider packings in Pp, i.e., we restrict J’ to items in the value
classes V;, with £ € {€min, - - -, fmax }- Let Vg be a value class contributing to OPT}. As explained
above, knowing n; = |V N OpT;| would be sufficient to determine the items of V}/ in OpTy,
i.e., to determine V; N OpT;. In the following lemma, we show that we can additionally
assume that ny = 0 or ny = [(1 + ¢)*] for some k;, € Ng. To this end, let Py contain all the
packings in P; where the number of big items of each value class V; is either 0 or [(1 +)]

for some ky € Ng. Let OPT3 be an optimal packing in Ps.

Lemma 7.7. v(OpPT2) > (1i€)v(OPT1).

108

7.3 Dynamic Linear Grouping

Proof. Consider OpPTy, an optimal packing in P;. We construct a feasible packing in P» that

achieves the desired value of a—}rs)v(OPTl). Let J2 be the subset of OPT}] where each value
class V/ is restricted to the smallest [(1 + ¢)logi+e WJ] items in V; if V/ N OPT; # 0.
Fix one value class V; with V;/ N OPT; # (). Restricting to the first [(1 + ¢)llogi+e ”ZJW items

in V, N OPT) implies

o(ViNJo) > (14 e)logreenel (1 4 6)f > 141_8(1 +e)fny = v(V, N OPTY).

1+e¢

Clearly, Jo U OPTY is a feasible packing in Py. Since v(OPT}) = Yymy (V] N OPTy),

1
v(OPTy) > v(Je) + v(OPTY) > mv(OPT’l) +v(OPTY) > v(OPTY).

1+4+¢
This proves the statement of the lemma.]

From now on, we only consider packings in P,. This means, we restrict the items in J’
to value classes V/ with ¢ € {fmin,. .., max} and assume that n, = [(1 + &)k for k, € Ny
or ny = 0. Even with ny being of the form [(1 + £)*], independently guessing the exponent
for each value class V is infeasible in time polynomial in logn and % To resolve this, the
dynamic linear grouping creates groups that take into account all possible guesses of ny. The
dynamic linear grouping results in item types 7, and their multiplicities for the set V//.

Let Py be the set of all feasible packings for the modified instance induced by the item
types Ty for lpin < £ < lpax and their multiplicities and the set J”. That is, instead of
the original items in J’, the packings in Py pack the corresponding item types. Note that
packings in Py are not forced to pack a specific number of items per value class. Let OpT7 be
an optimal solution in Py. The next lemma shows that v(OPTT) is at most a factor (1 — 2¢)

less than v(OPT2), the optimal solution value of packings in Ps.
Lemma 7.8. v(OpTT) > (1 — 2¢)v(OPTy).

Proof. We construct a feasible packing in Py based on the optimal packing OpPTs. The items
in OPTy are packed exactly in the same way as they are packed in OPTy. For items in J’,
we individually consider each value class V/ N OPTy with ¢ € {{in, - .., {max} and construct a
set J; C (V/ N OPT2) to obtain Jr := Uéi}’;m Ji. Our packing in Py corresponds then to the
items in OPTHUJ7. We show that the items in J; can be packed into the space of the knapsacks
where the items in V) N OPTy are placed while ensuring that v(Jr) > (1 — 2¢)v(Ve N OPTS).

If V) N OpTy = 0, then we set J; = 0 and both requirements are trivially satisfied.

If [V/ N OPTy| < L, we set J; = V/ N OPT,. Clearly, v(J;) > (1 — 2e)v(V; N OPT)). For
packing Jp, we observe that 7T, contains the smallest % items as item types. Hence, their sizes
are not affected by the rounding procedure and we can pack theses items as is done by OPTs.

Let ¢ be a value class with ny = [V/ N OPTo| > 1. Let Gi(ny),.. -y G1/e(ng) be the cor-

1

responding - groups of [eng] or [eng] many items created by dynamic linear grouping. We

109

7 Dynamic Multiple Knapsacks

set Jy = Gi(ng) U ... U Gyje_1(ng). Since v(Gyje(ng)) = [eng](1 4 ¢)" < 2eng(1 +¢)f, we
have v(Jy) > (1 — 2¢)v(V/ N OPTy). For packing the items in Jy, we observe that the item
types created by our algorithm are a refinement of G1(ny),...,Gy/.(n). Since the dynamic
linear grouping ensures that |Gy /.(n)| > --- > [G1(ny)], for k € E}, we can pack the items of
group G (ng) where OPTy packs the items of group Gy1(ng). Therefore,

V(OPTT) > v(J7) + v(OPTY) > (1 — 26)0(OPT)) + v(OPTY) > (1 — 26)u(OPTs)

which concludes the proof. O

logn'/e
log(1+¢)
ing Lolgo(glig)w + 1 different values for n, = |OpPT N V| suffices as explained above, the next

Since 7 contains at most %([

—‘ + 1) many different value classes and since us-

lemma follows.

Lemma 7.9. The algorithm reduces the number of item types to O(logE#).

Lemma 7.10. For a given guess {max, the set T can be computed in time (’)(log;"l).
Proof. Recall that n’ is an upper bound on the number of items in J’ in any feasible solution.
Observe that the boundaries of the linear grouping created by the algorithm per value class are
actually independent of the value class and only refer to the kth item in some class V. Hence,
the algorithm first computes the different indices needed in this round. We denote the set of
these indices by I’ = {ji,...} sorted in an increasing manner. There are at most |log; . n']
many possibilities for ny. Thus, the algorithm needs to compute at most %(logl 4o/ +1) many
different indices. This means that these indices can be computed and stored in time O(bf—znl)
Given the guess lpax and iy, fix a value class Vy with ¢ € {lpin, ..., fmax}. We want to
bound the time the algorithm needs to transform the big items in V} into the modified item
set Tp. We will ensure that the dynamic algorithms in the following sections maintain a balanced
binary search tree for each value class V; that stores the items in J’ sorted by increasing size.

37’L/

log_) to extract

13

Hence, the sizes of the items corresponding to I’ can be accessed in time O(
the item-type size s; for t € 7p. Given an item type t € 7T, its multiplicity n; can again be
pre-computed independently of the value class. Thus, 7y can be computed in time O(loge#).

As there are O(lof—{‘/) many value classes that need to be considered for a given guess fpax,

4 7
calculating the set 7 needs O(bg%) many computational steps. O

€

Proof of Theorem 7.4. Lemma 7.5 bounds the loss in the objective function, Lemma 7.9 bounds

the number of item types, and Lemma 7.10 bounds the running time. O

110

7.4 ldentical Knapsacks

7.4 ldentical Knapsacks

We give a dynamic algorithm that achieves an approximation ratio of (1 4 ¢) for MULTIPLE
KNAPSACK with identical knapsack sizes, i.e., S; = S for all ¢ € [m]. The running time of the
update operation is always polynomial in logn and % In this section, we assume m < n as
otherwise assigning the items in some consistent order to the knapsacks is optimal. We focus
on instances where m is large, i.e., m > l—? log? n but still dynamic. For m < i—? log? n, we use

the algorithm for few knapsacks we present in [BEM*20)].

Theorem 7.11. Let € > 0 and let U = max{Sm,nvmax}. If m > ?log2 n, there is a dy-
namic (1 + €)-approzimate algorithm for the MULTIPLE KNAPSACK problem with m identical

o1
knapsacks with update time (@) (

o)
answered in time (’)(10%) and O(1), respectively. The current solution P can be returned

in time \P!(bg")o(l).

£

) . . . ,
. Queries for single items and the solution value can be

7.4.1 Algorithm

Definitions and data structures We partition the items into two sets, Jp, the set of big
items, and Jg, the set of small items, with sizes s; > €S and s; < €S, respectively. For an
optimal solution OPT, define OpTg = OpT N J5 and OPTg = OPT N Js.

For this algorithm, we maintain three types of data structures. We store all items in one
balanced binary tree in order of their arrivals, i.e., their indices. In this tree, we store the
size s; and the value v; of each item j and additionally store the index ¢; of its value class
for big items. Big items are also stored in one balanced binary tree per value class V; sorted
by non-decreasing size while all small items are sorted by non-increasing density and stored in
one tree. Overall, we have at most 2 + log; ;. Umax many data structures to maintain. Upon
arrival of a new item, we insert it into the tree of all items and classify this item as big or
small depending on whether s; > &S or s; < eS. If the item is small, we insert it into the data
structure for small items. Otherwise, we determine the index of its value class ¢; and insert
it into the corresponding data structure. If the number m of knapsacks changes, we take this

into account by updating the parameter m in the algorithm.

Algorithm The high-level idea of the algorithm is to apply the dynamic linear grouping
approach developed in the previous section to big items. Given the thus significantly decreased
number of different item types, we set up an ILP to assign big items via configurations while
small items are only assigned via a (fractional) placeholder item.

More precisely, we guess the index £y .y of the highest value class that belongs to OpTp
by testing each possible value lax € {0,..., |l0g1 . Umax|}. Then, we use dynamic linear
grouping (Algorithm 7.1) with J' = Jp and n’ = min {%,]jB\} to obtain T, the set of item
types t with their multiplicities n;.

111

7 Dynamic Multiple Knapsacks

Given these item types, we create the set of all configurations C of big items. A configuration
consists of at most n; items of type ¢ € T and is such that its total size does not exceed
the knapsack capacity S. Hence, a configuration contains at most é big items. For ¢ € C
and t € T let n.; denote the number of items of type ¢ in configuration c. Let ve = > ,cne vt
and s. = Y ;7 nc¢s¢ denote the total value and size, respectively, of the items in c.

Next, we guess vg, the value of OPTg, up to a power of (1+¢). Let Pg be the maximal prefix
of small items with v(Ps) < vg and set sg = s(Pg). We solve the following configuration ILP
with variables y., for ¢ € C, for the current guesses {1« and sg. Here, y. counts how often a

certain configuration c is used.

max S et

ceC
subject to Zycsc < |(1—=3e)m]S — sg

ceC

Sue < L(0-3em))
ceC

Zycncvt < forallte T

ceC

Ye € Z>o forall ceC

The first and second inequality ensure that the configurations chosen by the ILP can be
packed into [(1 — 3e)m] knapsacks while reserving sufficient space for the small items. The
third inequality guarantees that only available items are used.

Clearly, we cannot solve the configuration ILP to optimality. Hence, we relax the integrality
constraint and allow fractional solutions. Given such a fractional solution, we round it to an
integral packing Pp using at most |em| additional knapsacks while ensuring that v(Pg) > vpp,
where v p is the optimal solution value for the LP relaxation.

Given an integral packing of the big items, it remains to pack the small items. Let Pg be
the maximal prefix of small items with v(Pg) < vg and let j* be the densest small item not
in Pg. We pack j* into one of the knapsacks kept empty by Pg. Then, we fractionally fill up
the [(1 — 2¢)m| knapsacks used by Pp and place any item that is cut, i.e., placed into more
than one knapsack, into the [em] additional knapsacks that are still empty. We can guarantee
that this packing is feasible and packs all items in Pg U {j*}.

We return the solution for the guesses /1,2« and vg that maximize the total attained value.
We note that the explicit packing of the items is only determined upon query. A possible

(implicit) solution is shown in Figure 7.3. We summarize the algorithm in Algorithm 7.2.

Algorithm 7.2: Dynamic algorithm for identical knapsacks

guess fmax, the largest index of a value class with big items in OpPT
use dynamic linear grouping for the big items to obtain T
guess vg, the value of small items
Ps + maximal prefix of small items with v(Ps) < vg

112

7.4 ldentical Knapsacks

ss ¢ s(Ps)

7* < densest small item not in Pg

solve (P) for sg and T

use a Next—Fit Algorithm to pack the small items Ps U {j*}

We remark that we simplified the algorithm for conciseness as follows: Even after applying
dynamic linear grouping to the big items, the number of feasible configurations is still pro-
hibitively large to directly solve it. Hence, instead of creating all configurations and solving
the LP relaxation of the configuration ILP, we use the Ellipsoid Method on the dual LP to
determine the important configurations and reduce the number of relevant variables. As we
will show, this reduces the number of configurations to a manageable amount, which enables

us to solve the LP relaxation in time polynomial in log n and %

| (1 — 2¢)m] knapsacks [em] knapsacks .
with configurations for cut items J
e e mln

L]
L
L]
L [0 L]

Figure 7.3: A possible solution of the Algorithm 7.2: Blue and green rectangles represent the
packed big item types. Red rectangles on the left side represent the space left empty
by the configurations and on the right represent the slots for cut items.

HinNiniN

Queries We explain how to efficiently answer different queries. Instead of explicitly storing
the packing of any item, we define and update pointers for small items and for each item type
that dictate the knapsack where the next queried item of the respective type is packed. To
stay consistent for the precise packing of a particular item between two update operations, we
additionally cache query answers for the current round in the data structure that stores items.

We give the technical details in the next section.

e Single Item Query: If the queried item is small, we check if it belongs to the prefix
of densest items that is part of our solution. In this case, the pointer for small items
determines the knapsack. If the queried item is big, we retrieve its item type and check
if it belongs to smallest items of this type that are packed by the implicit solution. In
this case, the pointer for this item type dictates the knapsack.

113

7 Dynamic Multiple Knapsacks

e Solution Value Query: As the algorithm works with rounded values, after having
found the current solution, we use prefix computation on the small items and on any
value class of big items to calculate and store the actual solution value. When queried,

we return the stored solution value in constant time.

e Entire Solution Query: We use prefix computation on the small items as well as on
the value classes of the big items to retrieve the packed items. Next, we use the single

item query to determine their respective knapsacks.

7.4.2 Analysis

Setting up the configuration ILP The first step is to analyze the loss in the objective function
value due to the linear grouping. To this end, set J' = Jp and n’ = min{"?, |7p|}. Moreover,
let OPT7 be an optimal packing for the instance induced by the item types 7 (obtained from
applying dynamic linear grouping to Jp) and their multiplicities as well as Jg. Then, the next

corollary immediately follows from Theorem 7.4.

Corollary 7.12. There ezists an index lmax such that v(OPTT) > “‘(i)iii)‘ff)v(OPT).

In the next lemma, we show that there is a guess vg with corresponding size sg such
that viLp + v(Ps) + vj, with the optimal solution value virp of (P), is a good guess for
the optimal solution value v(OPT7). Here, j* is the densest small item not contained in Pg,
and Pg is the maximal prefix of small items with v(Ps) < vg. The high-level idea of the proof
is to restrict an optimal solution OPT7 to [(1 — 3e)m]| most valuable knapsacks and to show
that sg underestimates the size of small items in these |(1 — 3¢)m] knapsacks. Transforming

these knapsacks into configurations yields a feasible solution for the configuration ILP.

Lemma 7.13. There is a guess vg with vi,p+ vg > llfésv(OPTT). Moreover, v(Ps) +vj* > vg.

Proof. Let Oprp 7 := OPTy N Jp and OPTg 1 := OpPTT N Jg. We construct a candidate
set JiLp of items that are feasible for (P) and obtain a value of at least (1 —4e)v(OpTp 7). To
this end, take an optimal packing OPT and consider the |(1—3e)m| most valuable knapsacks
in this packing. Let Jp 7 and Js 1 consist of the big and small items, respectively, in these

knapsacks. Since m > £ log?n, we have |(1 - 3¢)m| > (1 — 4)m. Hence,
o(Tp.T) +0(Ts1) > (1 — 4e)v(OPTT).

Create the variable values y. corresponding to the number of times configuration c is used
by the items in Jp 7. We observe that Jp 7 U Js 7 can be feasibly packed into |(1 — 3e)m|

knapsacks. Therefore,

S e < [(1 - 3e)m],

ceC

114

7.4 ldentical Knapsacks

and

> yese+ s(Ts) < L(1—32)m)S.

ceC

Since we guess the value of the small items in the dynamic algorithm up to a factor of (1+¢),
there is one guess vg satisfying vg < v(Js,7) < (1 + €)vg. Let Pg be the maximal prefix of
small items with v(Pg) < vg and let j* be the densest small item not in Ps. Hence,

1
v(Ps) +vjx > vg > 727 v(JTs,7)-
As Pg contains the densest small items, this implies sg := s(Pg) < s(Js,7). Thus,

3 yese < [(1—3e)m)S — s(Ts7) < L(1 - 3¢)m]S — ss.

ceC

Therefore, the just created y. are feasible for the ILP with the guess vg, and

(js T) >

(v(Tp,1) +v(Ts1)) >

viLp +vs > v(JIB,T) +

1+ “1+e

which concludes the proof. O

Solving the LP relaxation Next, we explain how to approximately solve the LP relaxation
of the configuration ILP (P) and round the solution to an integral packing in slightly more
knapsacks. Since any basic feasible solution of (P) has at most O (|T]) strictly positive vari-
ables, solving its dual problem with the Grotschel-Lovasz-Schrijver [GLS81] variant of the
Ellipsoid Method determines the relevant variables. We refer to the books by Bertsimas and
Tsitsiklis [BT97] and Papadimitriou and Steiglitz [PS82] for details on the Ellipsoid Method.

As we will show, the separation problem is a KNAPSACK problem, which we can solve only
approximately in time polynomial in log n and %, unless P = N'P. The approximate separation
oracle we develop correctly detects infeasibility while a solution that is declared feasible may
only be feasible for a closely related problem causing a loss in the objective function value of a
factor at most (1 —e). We cannot use the approaches by Plotkin, Shmoys, and Tardos [PST95]
or Karmarkar and Karp [KK82] directly because our configuration ILP contains two extra
constraints which correspond to additional variables in the dual and thus to two extra terms
in the objective function. Instead, we add an objective function constraint to the dual and
test feasibility for a set of geometrically increasing guesses of the objective function value.
Given the maximal guess for which the dual is infeasible, we use the variables corresponding
to constraints added by the Ellipsoid Method to solve the primal. The multiplicative gap
between the maximal infeasible and the minimal feasible such guess allows us to obtain a
fractional solution with objective function value at least 1 T Eva, where vpp is the optimal

objective function value of the LP relaxation of (P).

115

7 Dynamic Multiple Knapsacks

Lemma 7.14. Let U = max{Sm,nvmax}. Then, there is an algorithm that finds a feasible

solution for the LP relazation of (P) with value at least ﬁvLP and with running time bounded

b (£2)7"

For proving this lemma, we abuse notation and also refer to the LP relaxation of (P) by (P):

max Z YeVe

ceC
subject to Zycsc < (1 -=3e)m|S — sg

ceC

Sy < L(1-39)m))
ceC

Z Yellte < T4 forallte T

ceC

Ye > 0 forall ceC

Let v and 8 be the dual variables of the capacity constraint and the number-of-knapsacks
constraint, respectively. Let oy for ¢ € T be the dual variable of the constraint ensuring that

only n; items of type t are packed. Then, the dual is given by the following linear program.

min [(1—=3e)m|B+ ([(1 —3e)m]|S — ss)v + Z neoy
teT
subject to 8+ s.v + Z QN > v, forallce(C
teT (D)
o > 0 forallteT
By > 0

As discussed above, for applying the Ellipsoid Method, we need to solve the separation prob-
lem efficiently. The separation problem either confirms that the current solution (a*,5*,~v*)
is feasible or finds a violated constraint. As we will see, verifying the first constraint of (D)
corresponds to solving a KNAPSACK problem. Hence, we do not expect to optimally solve the
separation problem in time polynomial in logn and % Instead, we apply the dynamic program
(DP) for KNAPSACK by Lawler [Law79] after restricting the item set further and rounding the
item values. This modification is necessary to obtain a sufficiently small running time.

Let vy = vy — af — v*s; for t € T. If there exists an item type with v; > %, we return
the configuration using one item of this item type. Otherwise, we set ¥ = {%J - etpE,
By running the DP [Law79] for KNAPSACK for a knapsack of capacity S on the item set T
with multiplicities min {%, nt} and values ¥, we obtain a solution x* where z} indicates how
often item type t is packed. If), .+ x;0; > B*, we return the configuration defined by z* as
separating hyperplane. Otherwise, we return DECLARED FEASIBLE for the current solution.

We summarize the algorithm in Algorithm 7.3.

Algorithm 7.3: Separation oracle
fort € T do

116

7.4 ldentical Knapsacks

Vg <= Vg — 0 — Y8t
if vy > B* for some t do // separating hyperplane
return ¢ with n.; =1 for ¢ = ¢’ and n.+ = 0 otherwise
else
for t € T do
Uy |9e/(e*8)] - B
run DP to obtain z*
if Y, 2i0s > B* do // separating hyperplane
return z*
else

return DECLARED FEASIBLE

The next lemma shows that this algorithm approximately solves the separation problem by
either correctly declaring infeasibility and giving a feasible separating hyperplane or by finding
a solution that is almost feasible for (D). The slight infeasibility for the dual problem will

translate to a small decrease in the optimal objective function value of the primal problem.

Lemma 7.15. Given (a*,3*,v*), there is an algorithm with running time O <1°§i"> which

either guarantees that 5* + scv* + > e aine > (1 — €)ve holds for all ¢ € C or finds a
configuration ¢ € C with B* + scv* + > e af e < Ve.

Proof. Fix a configuration c¢ and recall that s, = > ,c7nss; and ve = Y ;7 n4evy. Then,
checking 8% + s.v* 4 > 7 ofnge > v for all configurations ¢ € C is equivalent to showing
maxeee Y e (Ve — af — 7*s¢)nge < B*. This problem translates to solving the following ILP

and comparing its objective function value to 5*.

max Z(vt —a; — 7y st)xy

teT
s.t. Sy < S
2 ©)
Ty < n forallteT
Tt e 7t

This ILP is itself a (single) KNAPSACK problem. Hence, the solution z* found by the Algo-
rithm 7.3 is indeed feasible for (S).

We start by bounding the running time of Algorithm 7.3. For each item type t € T, we
have vy = vy — of — 7y*s; and ¥ = {%J -e4p*. Observe that 7 only contains big items.
Hence, it suffices to consider min {%, nt} items per item type in the DP. It can be checked in
time (’)(IOE#), whether v, < * is violated for some ¢t € 7. Otherwise, the running time of
the DP is bounded by (9('%12) = 0("5:) [LawT9)

It remains to show that the solution z* either defines a separating hyperplane, i.e., a con-

figuration ¢ with 8* + scv* + X7 @fnee < v, or ensures B + sy + D e fnge > (1 — €)ve

117

7 Dynamic Multiple Knapsacks
forall ce C. If }_,c7 70y > B*, then

D woe = Y it > B
teT teT
and thus z* defines a separating hyperplane.
Consider now) ;7 xj0; < *. Toward a contradiction, suppose that there is a configura-

tion ¢/, defined by packing z; items of type t, such that

Z xt((l —e)u —ay — 'y*st> > 5.

teT

Since 7 contains only big item types, we have), z; < % This implies that there exists at

least one item type ¢ in 7 with zpy > 1 and (1 — e)vy — o, — v*sy > ¢/5*. Moreover,
v=v—a; =75t > (1 —e)vy —aof —v"s
holds for all item types ¢t € 7. This implies for ¢ that vy > ¢3*. Hence,

Z T4Vt > aL't’@t’ + Z $t((1 — €)Ut — Oé: — ’}/*St) > €f1t/ + ﬁ* > (1 + 62)ﬁ*.
teT teT

By definition of ¥, we have v; — ¥; < e*8* and YoieT (v —) < e3p*. This implies

Sowie =y wt— Ym0 —) > (L+%)5° - 25" = B,

teT teT teT
where the last inequality follows from ¢ < 1. By construction of the DP, z* is an optimal
solution for the instance induced by the values ¥; and multiplicities min {%, nt} and achieves

a total value at most 8*. Therefore,

B> vy > Y by > B

teT teT

which gives a contradiction. O

Proof of Lemma 7.14. As discussed above, the high-level idea is to solve (D), the dual of (P),
with the Ellipsoid Method and to consider only the variables corresponding to constraints
added by the Ellipsoid Method for solving (P).

As (S) is part of the separation problem for (D), there is no efficient way to exactly solve
the separation problem, unless P = N'P. Lemma 7.15 provides us a way to approximately
solve the separation problem. As an approximately feasible solution for (D) cannot be directly
used to determine the important variables in (P), we add an upper bound r on the objective

function as a constraint to (D) and search for the largest r such that the Ellipsoid Method

118

7.4 ldentical Knapsacks

returns infeasible. This implies that r is an upper bound on the objective function of (D) which

in turn guarantees a lower bound on the objective function value of (P) by weak duality.

Of course, testing all possible values for r is intractable and we restrict the possible choices
for r. Observe that vip € [Umax, MVUmax] Where vpp is the optimal value of (P). Thus, for £ € N
with [1og; . Vmax] < k < [logy ;. (nVmax)], we use r = (1+¢)* as upper bound on the objective

function. That is, we test if (D) extended by the objective function constraint

[(1—=3e)m|B+ ([(1 —3e)m]|S — sg)vy + Z ngoy < r
teT

is declared feasible by the Ellipsoid Method with the approximate separation oracle for (S).
We refer to the feasibility problem by (D).

For a given solution (a*, 8*,7*) of (D,) the separation problem asks for one of the two:
either the affirmation that the point is feasible or a separating hyperplane that separates
the point from any feasible solution. The non-negativity of o, 3*, and +* an be checked
in time O(|T|) = O(IOE#) In case of a negative answer, the corresponding non-negativity
constraint is a feasible separating hyperplane. Similarly, in time O(|7]), we can check whether
the objective function constraint [(1 — 3e)m |8 + ([(1 — 3e)m]S — sg)y + D e ey < 1 is
violated and add it as a new inequality if necessary. In case the non-negativity and objective
function constraints are not violated, the separation problem is given by the knapsack problem
in (S). Algorithm 7.3 either outputs a configuration that yields a valid separating hyperplane
or declares (a*,3*,~v*) feasible, i.e., * + s.v* + > e ofnge > (1 — €)v, for all ¢ € C. This
implies that (a*, *,v*) is feasible for the following LP. (Note that we changed the right side

of the constraints when compared to (D).)

min [(1 —3¢)m]|B+ (|[(1 —3e)m|S — ss)y + Z neoy

teT
s.t. B4 sey+ Z Qi Nie > (1—¢e)v, forallceC
teT
oy > 0 forallt e T
By > 0
(D02

Let 7* be minimal such that (D,) is declared feasible. Let vgfs) denote the optimal solution
value of (DU=9)). As (o, 8*,~*) is feasible with objective value at most 7*, we have vgfg) <r*.

Let v(1=9) denote the optimal solution value of its dual, i.e., of the following LP.

119

7 Dynamic Multiple Knapsacks

max > ye(l—e)ve

ceC
subject to Zycsc < (1 =3e)m|S — sg

ceC

> e < [(1-3e)m| (P(-9))
ceC

Z YeTlte < forallte T

ceC

Ye > 0 forall ceC

Then, y = 0 is feasible for (P(l_e)), and by weak duality, we have

,U(I—E) S ’US_E)

<r*.

Note that (P) and (P(!=%)) have the same feasible region and their objective functions only
differ by a factor (1 —). This implies that

vLp = (7.1)

1—¢ S 7z e
Because of this relation between vpp and r* it suffices to find a feasible solution for (P) with
objective function value close to r* in order to prove the lemma.

To this end, let C, be the configurations that correspond to the inequalities added by the
Ellipsoid Method while solving (D) for r = 1%5 Consider the problems (P) and (D) restricted
to the variables y., for ¢ € C,., and to the constraints corresponding to ¢ € C,, respectively, and
denote these restricted LPs by (P’) and (D’). Let v’ and v}, be their respective optimal values.

It holds that v}, > r as the Ellipsoid Method also returns infeasibility for (D’) when run
on (D) extended by the objective function constraint for r. As y = 0 is feasible for (P’)
and a = 0, 8 = max.ec, v., and v = 0 are feasible for (D’), their objective function values
coincide by strong duality, i.e., v' = v}, > r. If we have an optimal solution to (P’), then this

solution is also feasible for (P) and achieves an objective function value

*

v >

>1—€

1+¢e— 1+€ULP’

where we used Equation (7.1) for the last inequality.

It remains to show that the Ellipsoid Method can be applied to the setting presented here
and that the running time of the just described algorithm is indeed bounded by a polynomial
in logn, %, and log U. Recall that U is an upper bound on the absolute values of the denomi-

nators and numerators appearing in (D), i.e., on Sm and nvpyax. Observe that by Lemma 7.15,

4
the separation oracle runs in time O (10514”). The number of iterations of the Ellipsoid Method

will be bounded by a polynomial in logU and 72 € O(l‘)f#). Here, 7 is an upper bound on

the number of variables in the problems (D,) (and hence also (D(=9))).

120

7.4 ldentical Knapsacks

The feasible region of (D,) is a subset of the feasible region of (D(!=)), even when the
objective function constraint is added to the latter LP. The Ellipsoid Method usually is applied
to full-dimensional, bounded polytopes that guarantee two bounds: If the polytope is non-
empty, then its volume is at least v > 0. The polytope is contained in a ball of volume
at most V. As shown in the book by Bertsimas and Tsitsiklis [BT97], these assumptions
can always be ensured and the parameters v and V can be chosen as polynomial functions
of n and U. Since we cannot check feasibility of (D,) directly, we choose the parameters v
and V as described in [BT97, Chapter 8] for the problem (D(~9)) extended by the objective
function constraint for r. After N = O(ﬁ log %) iterations, the modified Ellipsoid Method
either finds a feasible solution to (D(1=9)) with objective function value at most r or correctly
declares (D,) infeasible. In [BT97, Chapter 8] it is shown that the number of iterations N
satisfies N = O(7*log(nU)) and that the overall running time is polynomially bounded in 7
and logU.

Hence, (P’), the problem (P) restricted to variables corresponding to constraints added by
the Ellipsoid Method, has at most N variables and, thus, a polynomial time algorithm for

. . . . D o)
linear programs can be applied to (P’) to obtain an optimal solution in time (@) .

Obtaining an integral solution Next, we show how to turn a fractional solution to a particular
class of packing LPs into a feasible solution using some additional knapsacks given by resource
augmentation. The LP relaxation of the configuration ILP considered here belongs to this class
of LPs, and the assumption m > i—? log? n ensures that we can round a basic feasible solution
to an integral packing of big items using at most [(1 — 2¢)m] knapsacks.

Formally, we consider a packing problem of items into a given set K of knapsacks with
capacities S;. These knapsacks are grouped to obtain the set G where group g € G contains my
knapsacks and has total capacity S,;. The objective is to maximize the total value without
violating any capacity constraint. Each item j has a certain type t, i.e., value v; = v; and
size s; = 54, and in total there are n; items of type t. Items can either be packed as single
items or as part of configurations. A configuration c, that packs n.; items of type ¢, has
total value v. = >, ne vy and size s, = Y ;ncesi. The set E represents the items and the
configurations that we are allowed to pack for maximizing the total value. Without loss of
generality, we assume that for each element e € F there exists at least one knapsack i where
this element fits, i.e, s, < S;.

Let 0 <0 <1ands > 0. Later we will choose § = 1 —©(¢e) since intuitively an ©(&)-fraction
of the knapsacks remains unused. Consider the packing ILP for the above described problem

with variables z. 4, where e € F and g € G. The ILP may additionally contain constraints of

Z seze,ggézSg—sand Z ze,ggézmg,

ecE,geg’ geg’ ecE’,geg’ geg’

the form

i.e., the elements assigned to a subset of knapsack types G’ do not violate the total capacity of

121

7 Dynamic Multiple Knapsacks

a d-fraction of the knapsacks in G’ while reserving a space of size s and a particular subset E’
of these elements uses at most a Jd-fraction of the available knapsacks.

Let v(z) be the value attained by a certain solution z and let n(z) be the number of non-
zero variables of z. The following lemma shows that there is an integral solution of value at
least v(z) using at most n(z) extra knapsacks. The high-level idea of the proof is to round
down each non-zero variable z. 4, and pack the corresponding elements as described by z. 4. For
achieving enough value, we additionally place one extra element e into the knapsacks given by
resource augmentation for each variable z. 4 that was subjected to rounding.

More precisely, for each element e and each knapsack group g, we define E’e,g = |Zeg]
and zg ;= [2ey — Zp 4]. Note that 2z’ 4 2" may require more items of a certain type than are
available. Hence, for each item type ¢ that is now packed more than n; times, we reduce the
number of items of type ¢ in 2z’ + z” by either adapting the chosen configurations if ¢ is packed
in a configuration or by decreasing the variables of type 2,4 if items of type t are packed as
single items in knapsacks of group g. Let 2z’ and 2” denote the solutions obtained by this
transformation. For some elements e, the packing described by z;g + 22’79 may now use more

or less elements than 2., due to the just described reduction of items.

Lemma 7.16. Any fractional solution z to the packing ILP described above can be rounded
to an integral solution with value at least v(z) using at most n(z) additional knapsacks of

capacity max;c g S;.

Proof. Consider a particular item type t. If 2’ + z” packs at most n; items of this type, then
the value achieved by z for this particular item type is upper bounded by the value achieved
by 2’ + 2”. If an item type was subjected to the modification, then 2’ + z” packs exactly n;
items of this type while z packs at most n; items. This implies that v(z" + 2”) > v(z).

It remains to show how to pack z’ 4+ z” (and, thus, 2’ + 2”) into the knapsacks given by K
and potentially n(z) additional knapsack. Clearly, z’ can be packed exactly as z was packed.
If 2y =0 for e € Eand g € G, then 2, , = 0. Hence, the number of non-zero entries in 2" is
bounded by n(z). Consider one element e € E and a knapsack group g with 2’6’79 =1 and let ¢
be a knapsack where e fits. Pack e into 1.

Since reducing the number of packed items of a certain type only decreases the size of the
corresponding configuration or the number of individually packed elements, the solution 2’ + 2"
can be packed exactly as described for z' 4 z”. Therefore, we need at most n(z) extra knapsacks

to pack z”, which concludes the proof. O

Having found a feasible solution with the Ellipsoid Method, we use Gaussian elimination
to obtain a basic feasible solution with no worse objective function value. We note that
this procedure has a running time bounded by (N|T|)°("), where N is the number of non-
zero variables in the solution found by the Ellipsoid Method. Since basic feasible solutions

have at most |7| + 2 non-vanishing variables, the assumptions §log2n <mand m < n

122

7.4 ldentical Knapsacks

imply i—? log?m < m. This in turn guarantees |7| + 2 < [em|. Hence, rounding the solution

as described above uses at most | (1 — 2¢)m] knapsacks and achieves a value of at least vrp.

Corollary 7.17. If ;—gloan < m, any feasible solution of the LP relazation of (P) with at
most N non-zero variables can be rounded to an integral solution using at most | (1 — 2e)m|

knapsacks with total value at least vyp in time (N|T])°0).

Given an integral packing of big items, we explain how to pack small items, i.e., items
with s; < &S5, using resource augmentation. More precisely, let K be a set of knapsacks and
let 7. é C J be a subset of items that are small with respect to every knapsack in K. Let J' C J
be a set of items admitting an integral packing into m = |K| knapsacks that preserves a space
of at least s(7§) in these m knapsacks. We develop a procedure to extend this packing to
an integral packing of all items J' U J§ in [(1 + e)m] knapsacks where the [em] additional
knapsacks can be chosen to have the smallest capacity of knapsacks in K.

We use a packing approach similar to NEXT FIT for the problem BIN PACKING. That is,
consider an arbitrary order of the small items and an arbitrary order of the knapsacks filled
with big items. We open the first knapsack in this order for small items. If the next small
item j still fits into the open knapsack, we place it there and decrease the remaining capacity
accordingly. If it does not fit anymore, we pack this item into the next empty slot of an
additional knapsacks (possibly opening a new one), close the current original knapsack, and

open the next one for packing small items. We call such an item cut.

Lemma 7.18. The procedure described above feasibly packs all items J' U J¢ in [(1 + e)m/]
knapsacks where the [em] additional knapsacks can be chosen to have the smallest capacity of

knapsacks in K.

Proof. We start by showing that all small items are packed after the last original knapsack
is closed. Toward a contradiction, suppose that there is a small item j left after all original
knapsacks were closed while packing small items. As a knapsack is only closed if the current
small item does not fit anymore, this implies that the volume of all small items that are packed
so far have a total volume at least as large as the total remaining capacity of knapsacks in K
after packing J'. Since j is left unpacked after all original knapsacks have been closed, the
total volume of all items in J' U J¢ is strictly larger than the total capacity of the original
knapsacks in K. This contradicts the assumption imposed on Jj and on J§. Hence, all items
in J¢ are packed. Therefore, the packing created by the procedure is integral and feasible.

It remains to bound the number of additional knapsacks. Observe that each item that we
packed into a knapsack given by resource augmentation while an original knapsack was still
available, implied the closing of the current knapsack and the opening of a new one. Hence, for
each original knapsack at most one small item was placed into the additional knapsacks. Thus,
at most m small items are packed into the additional knapsacks. Since by definition of small
items at least % items fit into one additional knapsack, we only need [em] extra knapsacks for

such items. O

123

7 Dynamic Multiple Knapsacks

Bounding the performance and the running time

Lemma 7.19. Let Pr be the solution returned by Algorithm 7.2 and let OPT be a current optimal

solution. It holds that v(Pr) > (176)281332(1748)U(OPT).

Proof. Fix OpT. The solution found by our algorithm achieves the maximal value over all
combinations of guesses vg, the value contributed by small items, and of £,,,,«, the largest index
of a value class of a big item in OPT. Thus, it suffices to find a combination of vg and £,y such
that P, the corresponding packing, is feasible and satisfies v(P) > (1_5)28;;82(1_46)v(OPT).
Let OPTp be the set of big items in OPT, let fyax := max{f: V;NOPTg # 0}, and let OPT
be the most valuable packing after linear grouping with £,,x. For this guess fyax, let PsU{j*}
be the set of small items of Lemma 7.13 such that vip + v(Ps) + vjx > 11;4;1)(OPT7-). By
Corollary 7.17, there is a set of big items Pp with a feasible packing into |(1—2¢)m] knapsacks

%UILP. Packing j* on its own and Pg following a NEXT-F1T-like
algorithm, we extend this to a feasible packing of Pg U PsU {j*} into [(1+¢)[(1—2e)m|]+1
knapsacks; see Lemma 7.18. Due to the assumption m > g log? n, we can bound the number

of total knapsacks indeed by m. With Lemma 7.13,

with total value at least

1—¢ (1—¢)(1—4e)

v(Pp) 2 v(P) = 1+€'UILP+US+U]'* > (1+2)? v(OPTT).
With Corollary 7.12 we get
(1—¢)%(1 —2¢e)(1 — 4¢)
v(Pp) > 150! v(OPT),
which concludes the proof. O

The next lemma bounds the running time of our algorithm. The proof follows from the
fact that the algorithm considers at most O(log; . Vmax) guesses for frax and O(logy . NVUmax)
guesses for vg, the running time for dynamic linear grouping bounded in Lemma 7.10, and the

running time for solving the configuration ILP as described in Lemma 7.14 and Corollary 7.17.

Lemma 7.20. Let U := max{Sm,nvmax}. The running time of our algorithm is bounded
logU o)
by () .

€

Answering Queries Note that, throughout the course of the dynamic algorithm, we only
implicitly store solutions. In the remainder of this section, we explain how to answer the
queries stated in Section 7.2 and bound the running times of the corresponding algorithms.
We refer to the time frame between two updates as a round and introduce a counter 7 that is
increased after each update and denotes the current round. Since answers to queries have to
stay consistent in a round, we cache existing query answers by additionally storing a round #(j)

and a knapsack k(j) for each item in the data structure for items where ¢(j) stores the last

124

7.4 ldentical Knapsacks

round in which item j has been queried and k(j) points to the knapsack of j in round ¢(j).
Storing ¢(j) is necessary since resetting the cached query answers after each update takes too
much running time. If j was not selected in t(j), we store and return this with k(j) = 0.

Let y,, for ¢ € C, be the packing for the big items in terms of the variables of the configuration
ILP. During the Ellipsoid Method and the rounding of the fractional solution to an integral
solution, the set C := {c € C : . > 1} was constructed. We assume that this set is ordered
in some way and stored in a list. In the following we use the position of ¢ € C in that list
as the index of c¢. For assigning 7, distinct knapsacks to ¢ € C we use the ordering of the
configurations and map the knapsacks Zi/_:ll Yo + 1,0, 01 Yo to c.

For small items, we store all items in a balanced binary search tree sorted by non-increasing
density. For simplicity, let Pg = {1,...,5* — 1} be the set of items (sorted by non-increasing
density) that translate the guess vg into the size sg of small items in the current solution.
Item j* is packed into its own knapsack. Any item j < j* — 1 is either packed regularly into
the empty space of a knapsack with a configuration or it is packed into a knapsack designated
for packing cut small items. Therefore, we maintain two pointers: k" points to the next
knapsack where a small item is supposed to go if it is packed regularly and ¢ points to the
knapsack where the next cut small item is packed. We initialize these values with " = 1
and k¢ = [(1 — 2e)m] + 1. To determine if an item is packed regularly or as cut item, we
store in p" the remaining capacity of k" initialized with ™ = S — s; where s; is the size of the
first configuration in C. We store in p¢ the remaining slots of small items in knapsack x¢ and
initialize this with p¢ = L.

For each type t of big items, we maintain a pointer k; to the knapsack where the next queried
item of type t is supposed to be packed. Moreover, the counter 7; stores how many slots k¢
still has available for items of type t. These two values are initialized with the first knapsack
that packs items of type ¢ and 7y = n.; where c is the configuration of ;. If no items of type ¢
are packed, we set k; = 0. Let ny denote the number of items of type t belonging to solution y.
We will only pack the first, i.e., smallest, n; items of type t. Figure 7.4 depicts the pointers
and counters after some items already have been queried.

Consider a queried small item j. If ¢(j) = 7, we return k(j). Otherwise, set ¢(j) = 7 and de-
termine whether j is currently part of the solution. If j does not belong to the densest j* items,
we return k(j) = 0. Otherwise, we determine where j is packed. If j = j*, we return k(j) = m.
Else, we figure out whether j is packed into the knapsack " or into ¢ If p" > s;, we simply
update p" to p" —s; and return k(j) = x". Otherwise, we decrease p® by one and pack j as cut
item in k¢, If p¢ = 0 holds after the update, we increase k¢ by one and set p¢ = % Further,
we need to close k" and update k" and p" accordingly. To this end, we increase k" by one and
determine p", the remaining capacity in knapsack ". Then, we return k(j).

Consider a queried big item j. If t(j) = 7, we return k(j). Otherwise, we set t(j) = 7
and compute whether item j is packed by the current solution. Let V; be the value class

of j. If ¢ ¢ {lmin, .., max}, we return k(j) = 0. Otherwise, we retrieve the type t of item j.

125

7 Dynamic Multiple Knapsacks

| (1 — 2¢)m] knapsacks [em] knapsacks N
with configurations for cut items

|||
I

m ([

L]

_Inninl

CICIEIE0C]

1
u
111

L]

K1 K2 Rg

h./’l‘

Figure 7.4: Pointers and counters used for answering queries: Lightly colored rectangles repre-
sent slots to be filled with items. Big (blue and green) items are packed one item
per slot. Item type 3 does not have any slots left. Small (red) items are packed
either until the slot is filled (left side) or one item per slot (right side). The not yet
queried, small item j* gets its own knapsack.

Given t, we determine if j belongs to the first n; items of type ¢. If this is not the case, we
return k(j) = 0. If this is the case, then we set k(j) = k; instead and we decrease n; by one. If
this remains non-zero, we return k(j) = x;. Otherwise, we find the next knapsack that packs
items of type ¢t and update x; and 7, accordingly before returning k(j). We summarize this

algorithm in Algorithm 7.4.

Algorithm 7.4: Answering item queries in round 7
if t(j) # 7 do
1j)
if s; < &S do // small item
if j>j*do
k(j) < 0 // not selected
else-if 7 = 5* do
B(G) < m
else-if s; < p” do
k() « A7
prept =8
else
B(j) K¢
K" < k" 4+ 1; update p"
pe—pt—1
update k¢ and p€ if necessary
else // big item

£ < value class of j

126

7.4 ldentical Knapsacks

if £ ¢ {fmin, - - max} do
k(j) < 0 // not selected
else
t « item type of j
if 7 not among the first n; items of type ¢t do
k(j) < 0 // not selected
else
k(j) = ke
me <—me — 1
update k¢ and 7y if necessary
return k(j)

For being able to return the solution value in constant query time, we actually compute the
solution value once after each update operation and store it. More precisely, the value achieved
by the small items, vg can be computed with a prefix computation of the first j* items in the
density-sorted tree for small items. For computing the value of big items, we consider each
value class V; with £ € {lnin, - .., lmax} individually. Per value class and per item type, we
use prefix computation to determine the value v; of the first n; items of type t. Lemma 7.25
guarantees that the running time is indeed upper bounded by the update time and, thus, does
not change the order of magnitude described in Lemma 7.20.

When queried the complete solution, we return a list of packed items together with their
respective knapsacks. To this end, we start by querying the j* densest small items using the
algorithm for item queries. For big items, we query the first n; items of each item type t € 7.

We prove the parts of the following lemmas individually.

Lemma 7.21. The solution determined by the query algorithms is feasible and achieves the

claimed total value. The query times of our algorithm are as follows:

(i) Single item queries can be answered in time O(logn -+ max { log 105", %})

(7i) solution value queries can be answered in time O(1), and

(iii) queries of the entire solution P can be answered in time (’)(\P\lof# log 10%)

Lemma 7.22. The solution determined by the query algorithms is feasible and achieves the

claimed total value.

Proof. By construction of ¢(j) and k(j), the answers to queries happening between two con-
secutive updates are consistent.

For small items, observe that 1,...,j* are the densest small items in the current instance.
By Lemma 7.18, the packing obtained by our algorithms is feasible for these items. In
Lemma 7.19 we argue that these items contribute enough value to our solution.

For big items, we observe that their actual size is at most the size of their item types. Hence,

packing an item of type ¢ where the implicit solution packs an item of type t is feasible. The

127

7 Dynamic Multiple Knapsacks

algorithms correctly pack the first 72; items of type t. A knapsack with configuration ¢ € C
correctly obtains n.; items of type t. Moreover, each configuration ¢ € C gets assigned .
knapsacks. Hence, the algorithm packs exactly the number of big items as dictated by the

implicit solution . O

Lemma 7.23. The data structures for big items can be generated in time O(lofgn). Queries for

big items can be answered in time (’)(logn + log 10%)
Proof. We assume that C is already stored in some list. We start by formally mapping knap-
sacks to configurations. To this end, we create a list a = ()7, where o, = 227:11 Yo is the
first knapsack with configuration ¢ € C. Using a, = a.—1 + y._1, we can compute these values
in constant time. Hence, by iterating once through C, list o can be generated in O(|C|).

We start by recomputing the indices needed for the dynamic linear grouping approach.
For each value class Vy with ¢ € {lin, ..., max}, We access the items corresponding to the
boundaries of the item types 7y in order to obtain the item types 7;. By construction, these

types are already ordered by non-decreasing size s;. By Lemma 7.10, these item types can be
log* n
4

computed in time (’)() and stored in one list Ty per value class V.

For maintaining and updating the pointer x;, we generate a list C; of all configurations ¢ € C
with n.; > 1. By iterating through each ¢ € C, we can add c to the list of t if ney > 1.
We additionally store n.; and o in the list C;. While iterating through the configurations,
we additionally compute n; = > 7 Y.nct and store ny in the same list as the item types Te.
Note that, since the list of C is ordered by index, the created lists C; are also sorted by index.
For each item type, we point k; to the first knapsack of the first added configuration ¢ and
set 1t = ncq. If the list of an item type remains empty, we set x¢ = 0. Since each configuration
contains at most % item types, the lists C; can be generated in time (’)(‘CLﬂ)

Now consider a queried big item j. In time O(logn), we can decide whether j has already
been queried in the current round. If not, let V; be the value class of j, which was computed
upon arrival of j. If £ & {luin, ..., max}, then j does not belong to the current solution and no

data structures need to be updated. Otherwise, the type of j is determined by accessing the
item types Ty in time O(log 10%) Once t is determined, n; can be added to the left boundary
of type t in order to determine if j is packed or not. If j belongs to the current solution,
pointer k; dictates the answer to the query.

In order to update x; and 7;, we extract ¢, the configuration of knapsack ; in time O(log|C|)
by binary search over the list o. If ks +1 < aeq1, then ky is increased by one and 7; set to n.s
in constant time. If not, then the next configuration ¢’ containing ¢ can be found with binary
search over the list C; in time O(log|C|). If no such configuration is found, we set x; = 0.
Otherwise, we set ks = a and 1 = ny . Overall, queries for big items can be answered in

time (9(max { log |C|, log IOE” }) .
Observing that |C| € O(|T|) = O(lofj"> completes the proof. O

128

7.4 ldentical Knapsacks

Lemma 7.24. Gliven the data structures for big items, the data structures for small items can
logn
I3

is O(logn+max{log logn 1})

g ¢

be generated in time (’)(log) The running time for answering quertes for small items

Proof. We initialize k< = 1 and p = S — s; where s; is the total size of the configuration
assigned to the first knapsack. For packing cut items, we use the pointer x¢ to the current
knapsack for cut items while p¢ stores the remaining slots of small items. We initialize these
values with k¢ = [(1 — 2e)m] + 1 and p® = 1. These initializations can be computed in
time O(log|C]) (for extracting sq).

Now consider a queried small item j. In time O(logn) we can decide whether j has already
been queried in the current round. In constant time, we can decide whether j > j*. If j > j*,
the answer is NOT SELECTED. If j = j*, we return m. If j < j*, the algorithm only needs to
decide if j is packed into k" or k¢, which can be done in constant time. Finally, k" and ¢ as well
as p" and p°© need to be updated. While k¢, k", and p° can be updated in constant time, we need
to compute the configuration ¢ and remaining capacity S — s. of knapsack k" when the pointer
is increased. By using binary search over the list «, the configuration can be determined in

time O(log |C|). Once the configuration is known, p" can be calculated in time O(%) Overall,
queries for small items can be answered in time (’)(logn + max { log |C]|, %})

Using that |C| € O(|T]) = (’)(105#) concludes the proof. O

log® n
!

Lemma 7.25. The total solution value can be computed in O() A query for the solution

value can be answered in time O(1).

Proof. The true value g achieved by the small items can be determined by computing the
prefix of the first j* items in the density-sorted tree for small items in time O(logn) by
Lemma 7.2.

For computing the value of a big item, we consider each value class V; with £ € {liin, .. ., fmax}

10ng”> many value classes by Lemma 7.6. For one value

individually. There are at most (’)(

log n
=2

class, in time (9(), iterate through the item types ¢t. For each item type, we can access
the total value of the first n; items in time O(logn) by Lemma 7.2.

As these running times are subsumed by the running time of the update operation, we
actually compute the solution value once after each update operation and store the value

allowing for constant running time to answer the query. O

Lemma 7.26. A query for the complete solution can be answered in time (’)(!P[log# log 10%),

where P is the set of items in our solution.

Proof. The small items belonging to P can be accessed in time O(j*logn) by Lemma 7.2. By
Lemma 7.24, their knapsacks can be determined in time (’)(logn + max { log losn l})

e e

129

7 Dynamic Multiple Knapsacks

loe%n) many value classes individually. In

For big items, we consider again at most (9(

time (9(1052”), we access the boundaries of the corresponding item types. In time O(nlogn),

we can access the ny items of type t belonging to our solutions by Lemma 7.2. Lemma 7.23

ensures that their knapsacks can be determined in time (’)(logn + log lofn).

In total, this bounds the running time by (9(|P| log’ log log”). O

et €

Proof of main result

Proof of Theorem 7.11. In Lemma 7.19, we calculate the approximation ratio achieved by our
algorithm. Lemma 7.20 gives the desired bounds on the update time while Lemma 7.21 bounds
the time needed for answering a query. Lemma 7.21 also guarantees that the query answers

are correct and consistent between two updates.]

7.5 Ordinary Knapsacks When Solving MuLTIPLE KNAPSACK

In this section, we consider instances for MULTIPLE KNAPSACK with many knapsacks and
arbitrary capacities. We show how to efficiently maintain a (1 + ¢)-approximation when given,

as resource augmentation, L additional knapsacks that have the same capacity as a largest
O(1/e)
1ogn)

. While we may pack items into the

knapsack in the input instance, where L € (=

additional knapsacks, an optimal solution is not allowed to use them. The algorithm will again
solve the LP relaxation of a configuration ILP and round the obtained solution to an integral
packing. However, in contrast to the problem for identical knapsacks, not every configuration
fits into every knapsack and we therefore cannot just reserve a fraction of knapsacks in order
to pack the rounded configurations since the knapsack capacities might not suffice. For this
reason, we employ resource augmentation in the case of arbitrary knapsack capacities.

Again, we assume that item values are rounded to powers of (1 +) which results in value

classes V} of items with value v; = (1 + £)*. We prove the following theorem.

Theorem 7.27. For every € > 0, there is a dynamic algorithm for MULTIPLE KNAPSACK that,
when given L additional knapsacks as resource augmentation, achieves an approrimation fac-

o1
tor of (1 + €) with update time (% log n) (/e (log M 10g Smax 108 Vmax) O, Item queries are

logn
22

can be output in time O(!P|b§¥(logm + 106#))

answered in time (’)(logm +), and the solution P that is maintained by our algorithm

7.5.1 Algorithm

Data structures In this section, we maintain three different types of data structures. For
storing every item j together with its size s;, its value v;, and the index of its value class ¢, we
maintain one balanced binary search tree where the items are sorted by non-decreasing time

of arrival. For each value class V;, we maintain one balanced binary tree for sorting the items

130

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

with ¢; = £ in order of non-decreasing size. We store the knapsacks sorted in non-increasing

capacity in one balanced binary tree.

Algorithm The algorithm we develop in this section is quite similar to the dynamic algorithm
for MULTIPLE KNAPSACK with identical capacities. First, we use dynamic linear grouping for
the current set of items to obtain item types. However, in contrast to identical knapsacks, one
particular item may be big with respect to one knapsack, small with respect to another, and
may not even fit in a third knapsack. Thus, we use the item types to partition the knapsacks
into groups to simulate knapsacks with identical capacities. Within one group, we give an
explicit packing of the big items into slightly less knapsacks than belonging to the group by
solving a configuration ILP. For packing small items, we would like to use a guess of the size of
small items per groups and later use again NEXT FIT to pack them integrally. However, since
items classify as big in one knapsack group and as small in another group, instead of guessing
the size of small items per knapsack group, we incorporate their packing into the configuration
ILP by reserving sufficient space for the small items in each group. More precisely, we assign
items as big items via configurations or as small items by number to the various groups. The
remainder of the algorithm is straight-forward: we relax the integrality constraint to find a
fractional solution and use the tools developed in Lemmas 7.16 and 7.18 to obtain an integral
packing.

More precisely, we guess £iax, the index of the highest value class that belongs to OPT and
use dynamic linear grouping with 7’ = J and n’ = n to obtain T, the set of item types ¢ with
their multiplicities n, by trying out every lmax € {0, ...,108 ;. Vmax}

Based on T, we group the knapsacks such that any item type is either big or small with
respect to every knapsack in a group or does not fit at all. Recall that an item j is small
with respect to a knapsack with capacity S; if s; < €5; and big otherwise. Hence, we consider
the knapsacks sorted non-increasingly by their capacity and determine for each item type for

which knapsacks a corresponding item would be big or small. This yields a set G of (’)(logi ”)

knapsack groups. In Figure 7.5, we show an example with 4 item types and the resulting
knapsack groups.

Denote by F, the set of all item types that are small with respect to group g, and by S, the
total capacity of all knapsacks in group g. Let my be the number of knapsacks in group g and
let Q(I/E) be the groups in G with my > % For each g € Q(I/E), define S, . as the total capacity
of the smallest [emg]| knapsacks in g. Similar to the ILP for identical knapsacks, the ILP
reserves some knapsacks to pack small cut items. We distinguish between G (1/¢) and G\ g (1/¢)
to restrict only large enough groups g, i.e, g € G179 to | (1 — £)mg| most valuable knapsacks
of g. Per remaining group, we use one knapsack given by resource augmentation to pack cut
small items.

For each group g € G, create all possible configurations of big items that fit into at least

one knapsack in group g and therefore consist of at most % items which are big with respect

131

7 Dynamic Multiple Knapsacks

1 is small

2 is small 2 is big

3 is small 3 is big

4 is big

g=1 g=2 g=3 g=4

Figure 7.5: Ttem types and resulting knapsack groups

log?n 1/e
€

to knapsacks in g. This amounts to O((7) /) configurations per group. Order the
configurations non-increasingly by size and denote their set by Cy = {cg1,...,¢co, }- Let mg,
be the total number of knapsacks in group g in which we could possibly place configuration cg .
Further, denote by n.; the number of items of type ¢ in configuration ¢ and by s. and v, the
size and value of ¢, respectively.

Then, we solve the following configuration ILP with variables y. and z4;. Here, y. counts
how often a certain configuration c is used, and z,; counts how many items of type ¢ are packed
in knapsacks of group g if type t is small with respect to g. Note that by the above definition

of C4, we may have duplicates of the same configuration for several groups.

max Z Z YeUe + Z Z Zg,tUt

g€G ceCy geGteF,

¢
s.t. Z Yegn < mgy for all g € G, ¢ € [kg]
h=1
> ye < [(1=¢&)my] forall gegl/e
ceCy
Z YeScq T Z Zg,tSt < 5 for all g € G\ G11/2)
cec, teF, (P)
D YeSeon + D Zgutst < S,—8,. forall gegl/e
ceCy teFy
SN yenes+ > oz < oy forallt € T
g€G ceCy gEG:tEF,
Ye € Zr forall g e G,ceCy
Zgt e Zt forallte T,g€g
Zgit =0 forallte T,ge G :t¢ Fy

132

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

The first inequality ensures that the configurations chosen by the ILP actually fit into the
knapsacks of the respective group while the second inequality ensures that an e-fraction of
knapsacks in G; /. remains empty for packing small cut items. The third and fourth inequality
guarantee that the total volume of large and small items together fits within the designated
total capacity of each group. Finally, the fifth inequality makes sure that only available items
are used by the ILP.

After relaxing the above ILP and allowing fractional solutions, we are able to solve it ef-
ficiently. Consider an optimal (fractional) solution to (P) with objective function value vrp.
With Lemma 7.16 we obtain an integral solution that uses the additional knapsacks given by
resource augmentation with value at least vpp. Let P denote this final solution.

Still, the small item types t € F, are only packed fractionally by P. Lemma 7.18 explains
how to pack the small items integrally. That is, we greedily fill up knapsacks with small items
and pack any cut small item into the knapsacks that were left empty by the configuration ILP
(or that are provided by the resource augmentation).

We use the solution corresponding to a guess /pax that maximizes the total value of packed

items. We summarize the algorithm in Algorithm 7.5. Figure 7.6 shows a possible solution.

Algorithm 7.5: Dynamic algorithm for arbitrary knapsacks with resource augmentation

guess fmax, the largest index of a value class with items in OPT
use dynamic linear grouping to obtain 7~
partition the knapsacks according to T
solve (P) for T
use NEXT FIT to pack the small items per group

Queries Since we do not maintain an explicit packing of any item, we define and update
pointers for each item type that dictate the knapsacks where the corresponding items are
packed. We note that special pointers are also used for packing items into the additional
knapsacks given by resource augmentation. To stay consistent between two update operations,
we cache query answers for the current round in the data structure that store items. We give

the details in the next section.

e Single Item Query: For a queried item, we retrieve its item type and check if it belongs
to the smallest items of this type that our implicit solution packs. In this case, we use

the pointer for this item type to determine its knapsack.

e Solution Value Query: After having found the current solution, we use prefix compu-
tation for every value class for the corresponding item types to calculate and store the

actual solution value. Then, we return this value on query.

e Entire Solution Query: With prefix computation on each value class, we determine

the packed items. Then, the single item query is used to determine their knapsack.

133

7 Dynamic Multiple Knapsacks

(I

g=1 g=2 g=3 g=4
[(1 — e)mz| knapsacks [ema] knapsacks knapsacks
with configurations for cut items given by resource augmentation

[0 [| | L L = |

Figure 7.6: Possible solution of the algorithm: Group 2 accommodates the knapsacks for cut
small items within the original knapsacks. Group 1, 3, and 4 use resource augmen-
tation.

7.5.2 Analysis

We start again by showing that the loss in the objective function value due to the linear
(1—€)(1—2¢)
(1+e)?
this end, let OPT be an optimal solution to the current, non-modified instance and let J

grouping of items is bounded by a factor of at most with respect to v(OpT). To
be the set of items with values already rounded to powers of (1 + ¢). Setting J' = J, we
apply Theorem 7.4 to obtain the following corollary. Here, OPT7 is a optimal solution for the

instance induced by the item types 7 with multiplicities n;.

Corollary 7.28. There ezists an index lmax such that v(OPTT) > %v(OPT).

We have thus justified the restriction to item types 7 instead of packing the actual items. In
the next two lemmas, we show that (P) is a linear programming formulation of the MULTIPLE
KNAPSACK problem described by the set 7 of item types and their multiplicities and that we
can obtain a feasible integral packing (using resource augmentation) if we have a fractional
solution (without resource augmentation) to (P). Let vpp be the optimal objective function

value of the LP relaxation of (P).

134

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

Similar to the proof of Lemma 7.13 we restrict an optimal solution OPT7 to the |(1—¢)my|
most valuable knapsacks of a group g if my > % and otherwise we do not restrict the part of

the solution corresponding to a group g with my < %
Lemma 7.29. It holds that vrp > (1 — 2¢)v(OPTT).

Proof. We show the statement by explicitly stating a solution (y, z) that is feasible for (P) and
achieves an objective function value of at least (1 — 2¢)v(OPTT).

Consider a feasible optimal packing OpTy for item types. The construction of (y,z) con-
siders each group g € G separately. We fix a group g ¢ G1/9). Let y. count how often a
configuration ¢ € C4 is used in OPT7 and let z,; denote how often an item that is small with
respect to g is packed by OPT7 in group g. By construction, the first and the third constraint
of (P) are satisfied. The part of the solution (y, z) corresponding to group g achieves the same
value as OPT7 restricted to this group.

If g € G/ e, if there are at least % knapsacks in group g, consider the (1 —¢e)mgy]| most
valuable knapsacks in group g with respect to OpTs. Define y. to count how often OpT,
uses configuration ¢ € C. in this reduced knapsack set and let z,; denote how often OPT7
uses item type t € F, in these knapsacks. Clearly, this solution satisfies the first constraint
of (P). By construction, > .cc, ye < [(1 —€)my| and, hence, the second constraint of the
ILP is also satisfied. Clearly, the [(1 — ¢)mgy| most valuable knapsacks can be packed into
the | (1 — e)my] largest knapsacks in g, which implies the feasibility for the fourth constraint
of the ILP. Observe that [(1 —e)my] > (1 —¢e)my —1 > (1 — 2¢)my. Thus, the value of
the corresponding packing is at least a (1 — 2¢)-fraction of the value that OPTs obtains with
group g.

As (y, z) uses no more items of a certain item type than OPT7 does, the last constraint of
the ILP is also satisfied. Hence, (y, z) is feasible and

vLp > Z (Z YeUe + Z zgﬂgvt) > (1 —2¢e)v(OPTT),

geg “ceCy teFy

with which we conclude the proof.]

The next corollary shows how to round any fractional solution of (P) to an integral solution
(possibly) using additional knapsacks given by resource augmentation. It follows immediately

from Lemma 7.16 if we bound the number of variables in (P). To this end, we observe that |G|
o1
and |T| are in O(lofj"), and |C, | € (log") (/e for every group g € G. Let L' denote the

£

o1
exact number of variables and let L = L' +|G|. Thus, L € (k’%) (/E).

Corollary 7.30. Any feasible solution (y,z) of the LP relazation of (P) with objective value v

can be rounded to an integral solution with value at least v using at most L extra knapsacks.

135

7 Dynamic Multiple Knapsacks

In the next lemma, we bound the value obtained by our algorithm in terms of v(OPT), for
an optimal solution OPT. Let Pr be the solution returned by our algorithm.

Lemma 7.31. v(Pp) > %v(OPT).

Proof. Fix an optimal solution OPT. Observe that our algorithm outputs the solution Pr with
the maximum value over all guesses of £i,x, the index of the highest value class in OPT. Hence,
we find a guess {pax and a corresponding solution P that satisfies v(P) > %v(OPT).

Let lmax = max{l : V;NOPT # O}. Then, £y is considered in some round of the algorithm.
Let vip be the optimal solution value of the configuration ILP (P) and let vpp be the solution
value of its LP relaxation. Corollary 7.30 provides a way to round the corresponding LP
solution (y,z) to an integral solution (y,z) using at most L extra knapsacks with objective
function value at least vrp > viLp. The construction of (y, z) guarantees that only small items
in the original knapsacks might be packed fractionally.

Consider one particular group g. Lemma 7.18 shows how to pack the small items assigned
by (z4) to group g into [(14¢&)m] knapsacks. If my < 1, we use one extra knapsack per group
to pack the cut items. If mg > %, then ¢ € G1/9) which implies that the configuration ILP
(and its relaxation) already reserved [emgy]| knapsacks of this group for packing small items.

Hence, the just obtained packing P is feasible. By Corollary 7.28 and Lemma 7.29,

(1—2¢e)%(1 —¢)

o(Pr) = o(P) =

v(OPT),

which gives the desired bound on the approximation ratio.]
Now, we bound the running time of our algorithm.

o1
> (e (log m10g Smax 10 Vmax)WY, the dynamic algorithm exe-

Lemma 7.32. In time (%logn

cutes one update operation.

Proof. By assumption, upon arrival, the value of each item is rounded to natural powers
of (14 ¢). The algorithm starts with guessing finax, the largest index of a value class to be
considered in the current iteration. There are log vy,x many guesses possible, where vy is
the highest value appearing in the current instance.
By Lemma 7.10, the dynamic linear grouping of all items has at most (’)(l()f#) iterations.
Let the knapsacks be sorted by increasing capacity and stored in a binary balanced search tree
as defined in Lemma 7.2. Then, the index of the smallest knapsack ¢ with S; > S or the largest

knapsack with S; < S can be determined in time O(logm), where S is a given number. Thus,

the knapsack groups depending on the item types can be determined in time (’)(logmlofin)

as the number of item types is bounded by (’)(log#). The number of big items per knapsack

. 1 . . 10g2 n 10g2 n 1/6
is bounded by < and, hence, the number of configurations is bounded by O =2~ (—4> .

et €

136

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

Let N be the number of variables in the configuration ILP. We have N € (10%)0(1/8).
Hence, there is a polynomial function g(N,log Smax, 10g Umax) that bounds the running time of
finding an optimal solution to the LP relaxation of the configuration ILP [BT97,PS82]. Clearly,
the computational complexity of setting up and rounding the fractional solution is dominated
by solving the LP. Thus, (é log n)O(I/E)

In similar time, we can store y and z, the obtained solutions to the configuration LP. Let y

(log mlog Smax log vmax)o(l) bounds the running time.

and z be the variables obtained by (possibly) rounding down y and z and let § and Z be the
variables corresponding to the resource augmentation as in Lemma 7.16. The time needed to

obtain these variables is dominated by solving the LP relaxation of the configuration ILP. [

Answering queries Since we only store implicit solutions, it remains to show how to answer
the corresponding queries. In order to determine the relevant parameters of a particular item,
we assume that all items are stored in one balanced binary search tree that allows us to access
one item in time O(logn) by Lemma 7.2. We additionally assume that this balanced binary
search tree also stores the value class of an item. We use again the round parameter t(j) and
the corresponding knapsack k(j) to cache given answers in order to stay consistent between
two updates. If j was NOT SELECTED in round ¢(j), we represent this by k(j) = 0. We assume
that these two parameters are stored in the same binary search tree that also stores the items

and, thus, can be accessed in time O(logn).

We now design an algorithm for non-cached items. The high-level idea is similar to the
algorithm developed in Section 7.4 for identical knapsacks. As the knapsacks have different
capacities in this section, the relative size of an item depends on the particular knapsack group:
An item can be big with respect to one knapsack and small with respect to another. Thus, the
distinction between small and big items does not hold for all knapsacks simultaneously anymore
and needs to be handled carefully. More precisely, upon query of an item j of type ¢, we start
by determining the group 7: in which the next item of type t is packed. The pointers and
counters we use correspond mostly to the ones in Section 7.4 except that we additionally have
a dependency on the particular group g for each parameter. Additionally, we use Rée), éy)

and R_((}Z) to refer to knapsacks given by resource augmentation for group g.

If t is small with respect to 7, then j is packed by NEXT FIT either as regular or as cut item.

We use the two pointers xy for packing small items regularly in group g and «j for packing cut

items. If there are at most é — 1 knapsacks in group g, then g points to the knapsack Rés)

given by resource augmentation. Otherwise, the configuration ILP left the smallest [emy]

(2)
qg,t

knapsack given by resource augmentation that is used for packing one item of type t if the

knapsacks in group g empty for packing cut small items. Further, we use R, ; to refer to the

variable z,; was subjected to rounding. Since we may only pack as many items of type ¢ in

group g as indicated by the implicit solution, the counter 1y determines how many items of

type t can still be packed in group - if ¢ is small with respect to ;.

137

7 Dynamic Multiple Knapsacks

If t is big with respect to ¢, then j is packed in the next slot for items of type ¢ determined
by the configuration ILP. To this end, we use again the counter x; to determine the knapsack
where the next item of type ¢ is packed and the counter 7 to determine how many items of
type t can still be packed in knapsack k; if ¢ is big with respect to «;. The knapsack RE{Q,
for ¢ € Cy4, refers to the knapsack given by resource augmentation used when the variable . 4
was subjected to rounding.

Table 7.1 summarizes the parameters and counters used to answer queries, and in Figure 7.7,
we give an example of the current packing after some items have been queried. Next, we define

the data structures for answering queries before we formally explain how to answer queries.

v =1 Yo=73=2 m=3
S _ S _
ny =1 nr =3
[(1 — e)mz| knapsacks [emg] knapsacks))
with configurations for cut items knapsacks in R;y) knapsacks in Ré")

K3 Kg) Kéc)

ny =1 Py =4

m|]

Figure 7.7: Counters and pointers for answering queries: Gray rectangles inside knapsacks rep-
resent small items. The next item of type 2 (dark green) is placed in the knapsack

given by resource augmentation Réz) since 75 = Zg9. Items of type 1 (light green)

already filled all their slots in group 2 and are now placed in group 3.

Data structures We assume that the knapsacks are sorted by non-increasing capacity and

stored in one binary search tree together with S;, the capacity of the knapsacks. The knapsacks

138

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

Table 7.1: Counters and pointers used during querying items

Counter/Pointer | Meaning

Cy Configurations that are used by group g¢

Qg First knapsack with configuration ¢ in group g
Rg/g) Knapsack in R® used for group g and configuration ¢
R;’ft) Knapsack in R used for group g and type t
Rée) Knapsack in R used for group ¢ with my < %

Gy Knapsack groups where items of type t are packed

Cot List of configurations ¢ € ég with ne; > 1

Y Current knapsack group where items of type t are packed
Kt Current knapsack for packing items of a big type ¢

171;9 Remaining number of slots for items of type t in

npP Remaining number of slots for items of type ¢ in ¢

Ky Current knapsack in g for packing small items regularly
Ky Current knapsack in g (or in R()) for packing cut small items
Py Remaining capacity in ry for packing small items

Py Remaining number of slots for small items in £y

given by resource augmentation are stored in three different lists, R®¥), R*®), and R needed

due to rounding y or z or because my, < %

, respectively. The knapsack groups are stored in
the list G sorted by non-increasing knapsack capacity. For each group g, we additionally store
the number m, of knapsacks belonging to g.

Let ¥, 9, z, and Z be the implicit solution of the algorithm. Here * refers to packing configu-
rations or items into the original knapsacks while % refers to the knapsacks given by resource
augmentation. Let C, be the set of configurations ¢ with Ye,gtUeq = 1 ordered in non-increasing
size s. and stored in one list per group. In the following, we use the position of a configura-
tion ¢ € C, in that list as the index of ¢. For mapping the configurations to knapsacks, we
assign the knapsacks Zg;ll my + 3574 Yo g+ 1., Zg,_l

. . —1 ~ ~
For the knapsacks in the resource augmentation, we set RE{{} = Zz’:l e, Yo g +2v<cUe g

Mg+ 01 Yo 4 to configuration c.

for each group g and each configuration ¢ € Cy.

For each item type t, let n; denote the number of items of type ¢ in the solution. We
maintain a pointer ; to the group where the next queried item of type ¢ is supposed to go.
We initialize ~; with the first group that packs items of type ¢. Since the number of items
of type t assigned to group g as small items is determined by z,; + Z,:, we additionally
use the counter 7}, initialized with Zopt + Zyt, to reflect how many slots group +; still has
for items of type t. For accessing the knapsacks R(®) given by resource augmentation, we
set Ré’?t) = Zg,_:ll DoveT Zg T+ Sty Zgw for each group g and item type t. Note that z,; =0
holds if ¢ is big with respect to g.

r
g

knapsack for packing items regularly or for packing cut items. The pointer ry is initialized

When packing small items in group g, we use group pointers xy and kg to refer to the

139

7 Dynamic Multiple Knapsacks

with k= Zg;l 1 mg + 1. Further, we use pj, to store the remaining capacity for small items

r
g

group g. If my > 1, we set k; = Zg,;ll mg + [(1 — e)my| + 1, while my < £ implies that x

points to the knapsack Rga) given by resource augmentation. The counter py stores again the

in k7 and initialize it with pg = Sy — 1, where s is the size of the first configuration in

remaining slots for cut small items in group ¢ and is initialized with %

If ¢ is big with respect to 7;, we use the pointer x; to direct us to the particular knapsack
where the next item of type ¢ goes, while n? stores how many slots x; still has available for
items of type t. Initially, x; points to the first knapsack with a configuration that contains ¢
in the first group where ¢ is packed as big item. If ¢ is the corresponding configuration, we
set nf = net. Because of resource augmentation, x; may point to a knapsack in RW | the

additional knapsacks for rounding y.

Queries Consider a queried, non-cached item j with value class Vy. If £ ¢ {lpin, - . ., fmax },
we return k(j) = 0. Otherwise, let ¢ be its type. We check if j belongs to the first n; items of
this type. If not, then k(j) = 0 is returned. Otherwise, let 7 be the group ~; where the next
item of type t is packed.

We first consider the case that ¢ is small with respect to group . Recall that ngq stores

the number of remaining slots of group v. If Y = Z~t, then all original slots of group v are

(2)
v,t

augmentation R(*) or to the next group. If Zyt = 1, then j is packed in k(j) = R(jg We

update ¥4 to point to the next group that packs items of type ¢t and update nts according to

already filled with items of type t. Hence, j either goes to the knapsack R:; from resource

the new group if ¢ is still small with respect to ;. (Otherwise the next item of type ¢ will
be packed according to k¢.) Then, we return k(j). Else, we update - to point to the next
group that packs items of type ¢ and update nf accordingly if ¢ is still small with respect to ;.
Then, the case distinction on the size of ¢ relative to 7; is invoked again. If n; > Z,;, then
we decrease 7y by one and pack j among the original knapsacks. We need to determine if j
is packed regularly or as a cut item. To this end, we compare s; with pl. If s; < pl, we
pack j in knapsack r7,. Next, p’ is decreased by s;, and we return k(j) = K. Otherwise, we
close knapsack rl for small items by increasing this pointer by one and pack j as cut item,
Le., k(j) = k5. We reflect this decision by decreasing pS by one. If this leads to p = 0, we
increase x5 by one and set pf = % Further, we update pg.

Now consider the case where t is big with respect to group . Then, the pointer x; dictates
the knapsack of j. We decrease 7 by one. If this leads to n = 0, we find the next knapsack
(either in group 7 or in the next group) that packs items of type t and update ry, nf , and
possibly 4 accordingly. This algorithm is summarized in Algorithm 7.6.

Algorithm 7.6: Answering item queries in round 7

ift(y) #71
t(j) < 7

140

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

¢ + index of the value class of j
if £ ¢ {lmin, - - - lmax do
k(j) < 0 // not selected
else
t < type of j, v < »
if j € first n; items do
if t small w.r.t. v do // case distinction for big and small items
if nf =Zytand Z,; =1 do // resource augmentation
k(j) « R
update ; to the next group
update 7y accordingly or use x; and nf if necessary
else-if ¥ = %, ; and %, = 0 do // next group
update v; to the next group
update 77 accordingly or use x; and nf if necessary
go to back to the case distinction for big and small items
else-if s; < p7 do // regular item
k(j) + 7
=y — 1
Py =Py — S5
else // cut item

k(j) K

e =1

Ky < Kk, +1

Py ps =1

if p5 =0
RS < K5+ 1
Py

else // big item
k(j) < ke

ne =1
update k¢, nP, and v; if necessary
else
k(j) < 0 // not selected
return k(7)

For calculating the value of the current solution, we need to calculate the total value of the
first n; items. We do this by iterating through the value classes once and per value class,
we iterate once through the list 7, of item types for value class V; to access the number 7.
Then, we use prefix computation twice in order to access the total value of the first 7n; items of
type t. Again, we do this computation once after each update operation. Lemma 7.36 bounds
the running time of these calculations and shows that incorporating these does not change the

order of magnitude of the running time given in Lemma 7.32.

For returning the complete solution, we iterate once through the value classes and for each

141

7 Dynamic Multiple Knapsacks

value class, we iterate through the list 7; to access the number 7n;. Then, we use prefix
computation based on the indices of the items for accessing the first n; items of type ¢t. Then,
we access and query each item individually.

We prove the parts of the next lemma again separately.

Lemma 7.33. The solution determined by the query algorithm is feasible as well as consistent

and achieves the claimed total value. The query times of our algorithm are as follows.

(i) Single item queries can be answered in time O(logm + loEan)'
(7i) Solution value queries can be answered in time O(1).

(iii) Queries of the entire solution P are answered in time (’)(\P\log#(logm + %))

Lemma 7.34. The query algorithms return a feasible and consistent solution obtaining the total

value given by the implicit solution.

Proof. By construction of k(j) and t(j), the solution returned by the query algorithms is
consistent between updates.

Observe that y and Zz is a feasible solution to the configuration ILP (P). Hence, showing that
the algorithm does not assign more than y, , times configuration ¢ and not more than z,; items
of type t to group g is sufficient for having a feasible packing of the corresponding elements into
the [(1 — €)mygy] largest knapsacks of group g if mg > % or into the m, knapsacks of group g
it mg < % When defining L, we made sure that the items and configurations specified by ¥
and Z fit into the knapsacks given by resource augmentation.

If the item type t is small with respect to the group g, then at most z,; items of type ¢ are
packed in group g. Thus, Lemma 7.18 ensures that all small items assigned to group g fit in
the knapsacks for regular and the cut items. Moreover, the treatment of nf = Z4,+ guarantees
that the value obtained by small items packed in ¢ and its additional knapsacks is as in the
implicit solution.

If ¢ is big with respect to group g, then the constructions of x; and 1’ ensure that ex-
actly Eceég (Yo + Yo)ne items of type t are packed in group g and in Réy). Hence, the total

value achieved is as given by the implicit solution. O

8 ed/e

Lemma 7.35. The data structures can be generated in (9<10g4n<10gm + 10g2/5">> many itera-

tions. Queries for a particular item can be answered in O(logm + 11#) many steps.

Proof. We start by retracing the steps of the dynamic linear grouping in order to obtain the
set T of item types. We store the types 7Ty of one value class in one list, sorted by non-decreasing
size. By Lemma 7.10, the set 7 can be determined in time (’)(105#).

We first argue about the generation of the data structures and the initialization of the various
pointers and counters. We start by generating a list (04679)0659 for each group g where a4

stores the first (original) knapsack of configuration c € Cy, i.e.,

Qeg = Qe-1,g T Ye14+ 1,

142

7.5 Ordinary Knapsacks When Solving Multiple Knapsack

—1
where g 4 = 25/:1 mg and yo,4 = 0. Next, we set

g—1 t
DD DRI TR DD

g=1teT t'=1

Ry
and

R%/ Zzycg’+ Z 370’797

ceCy,c'<c
where R(t) corresponds to the resource augmentation needed because of rounding z,; and R(y)
corresponds to the resource augmentation for rounding y.,. These lists can be generated by
. . .. A . . 1 log2/c n
iterating through the list Cy for each group g in time O(3 ¢ |Cy|) = (°g4” 054/5)

For maintaining and updating the pointer +;, we generate the list G; that contains all groups ¢
where items of type ¢ are packed in the implicit solution. By iterating through the groups once
more and checking Zce@, (Yeyg + Peg)net = L or Zgy + Zg4 > 1, we can add the corresponding
groups g to G;. Then, ~; points to the head of the list. While iterating through the groups, we

also calculate ny = ;g (Ece% (Ye,g+Ueg) + 290+ ég,t> and store the corresponding value to-

gether with the item type. The lists G; can be generated in O(|T| Y ¢g Cyl) = <1°g8 K logz/s)

prys
many iterations.

For maintaining and updating the pointer x; we create the list C4; storing all configura-
tions ¢ € C, with n.; > 1. While iterating through the groups and creating G;, we also add ¢
together with n.; to the list Cy; if n.; > 1. Initially, x4 points to the head of Cy;, where g

is the first group that packs t as big item. If ¢ is the corresponding configuration, we start
with 7 = n;. The time needed for this is bounded by O(|T|Y ¢ |Cgl) = (loggn 1054;:)

The pointer ry is initialized with kg = Zg, 1 Mg + 1. By using binary search on the list Cys

g
we get s1, the total size of conﬁguratlon 1 assigned to ry, and binary search over the knapsacks

allows us to obtain S,.;'r the capacity of knapsack ry. Thus, py = Ky — S1 can be initialized in
time O3 cg(log(|Cy| +logm)) = O (lofs n <log logn 4 jog m)) :

If mg > %, we set kg = Zg;ll mg + | (1 —e)mg] + 1, while my < % implies that sy points to

the knapsack R = [{¢ : ¢’ < g, My < %}| given by resource augmentation. The time needed
for initializing j is O(|G|). In order to determine the position of the next cut item, we also
maintain p°, initialized with pg = %, that counts how many slots are still left in knapsack xg.

Now consider the query for an item j. We can decide in time O(logn) if j has already been
queried in the current round. Upon arrival of j, we calculated the index /¢ of its value class.

If ¢ € {lmin,---,fmax}, then the item types T; together with their first and last item can be
logn

determined in time (9() by retracing the steps of the linear grouping,. By binary search,

the item type of j can be determined in time (’)(log log”) Once the item type is known, we
check if j belongs to the first n; items of this type. If not, then NOT SELECTED is returned.

143

7 Dynamic Multiple Knapsacks

Otherwise, the pointer ~; answers the question in which group item j is packed.

If j is small and 7 > Z.,, the knapsack k(j) can be determined in constant time by
nested case distinction and having the correct pointer (either x7, or x5,) dictate the answer.
In order to bound the update time of the data structures, note that packing j as regular item
only implies the updates of p,, and of 7, which take constant time. Hence, it remains to
consider the case where j is packed as a cut item. The capacity of the new knapsack 7, can
be determined in O(logm) by binary search over the knapsack list while the configuration ¢

of the new knapsack !, and its total size are determined by binary search over the list ., in

t
time O (log |€%|) =0 (% log k’%) Then, p, = Sﬂgt — Sc can be computed with constantly
many operations. If pS, = 0 after packing j in xf,, we increase the knapsack pointer by one
and update pf, = % In case nf = Zy,t = 1, item j is packed in the knapsack Rgi?t which
can be decided in constant time. Otherwise the group pointer 7; is increased and either 777;9
is updated according to the new group or s; and 1 are used. Updating 7; can be done by
binary search over the list G; in time O(log|G|). The pointer ~; is updated at most once before
determining k(7). Hence, the case distinction on the relative size of ¢ is invoked at most twice.

If j is big, the pointer k., dictates the answer which can be returned in time O(1). For
bounding the running time of the possible update operations, observe that 7; is updated in
constant time with values bounded by n. If ntB = 0 after the update, the knapsack pointer r;
needs to be updated as well. The most time consuming update operations are finding a new
configuration ¢’ and possibly even a new group ¢’. Finding configuration ¢’ € @%t can be done
by binary search in time O (log |@%]) =0 (% log 10%) To update ; and 1P, we extract x;
from the list o, and ny; from the list C., ; in time O (log \E%D =0 (% log lo%) by binary
search. If the algorithm needs to update ; as well, this can be done by binary search on the
list G; in time O(log |Gi]) = O (10g @)

In both cases, the running time of answering the query and possibly updating data structures
is bounded by the running time of the linear grouping step and by the routine to access one

particular knapsack, i.e., by (’)(logm + log"). O]

2

. . . log® n
Lemma 7.36. The solution value can be calculated in time (’)(8—4).

Proof. For obtaining the value of the current solution, we calculate the total value of the first n;
items. We do this by iterating through the value classes once and per value class, we iterate
once through the list 7, to access the number n;. Then, we use prefix computation twice in

order to access the total value of the first n; items of type ¢t. Lemma 7.2 bounds this time
log?n
4

by O(logn). By Lemma 7.9, the number of item types is bounded by (’)() Combining

these two values bounds the total running time by O(%). As this time is clearly dominated
by obtaining the implicit solution in the first place, we calculate and store the solution value

when computing the implicit solution value and thus are able to return it in constant time. [

144

7.6 Special Knapsacks When Solving Multiple Knapsack

Lemma 7.37. In time O(\P\%an(logm + 106#)) a query for the complete solution P can be

answered.

Proof. For returning the complete solution, we determine the packed items and query each
packed item individually. Lemma 7.35 bounds their query times by O(logm + 1‘1#) while
Lemma 7.2 bounds the running time for accessing item j. Lemma 7.9 bounds the number of
item types by O(loﬁf?—”). In total, the running time is bounded by (’)(\P\loﬁfé—" < logm + log")),

82
where P is the current solution. O

Proof of main result

Proof of Theorem 7.27. Lemma 7.31 gives the bound on the approximation ratio of our algo-
rithm and Lemma 7.32 bounds the running time of an update operation. Further, Lemma 7.35

gives the running time for query operations. O

7.6 Special Knapsacks When Solving MuLTIPLE KNAPSACK

We give a high-level overview of our dynamic algorithm for a MULTIPLE KNAPSACK instance
with arbitrarily many knapsacks. While theoretically applicable for any number of knapsacks,
the running time is reasonable when m = (% log n) -0 For the technical details and the
complete analysis we refer to [BEM120] and the PhD thesis of L. Nolke. Let v be an upper

bound on vy,x known in advance. The main result of this section is the following theorem.

Theorem 7.38. For ¢ > 0, there is a dynamic (1 + €)-approxzimate algorithm for MULTI-

o(1
PLE KNAPSACK with update time 2f(1/€)(% log(nvmax)) W + O(%logﬁlog n), with [quasi-

linear. Moreover, item queries are answered in time O(log ~log n), solution value queries in

time O(1), and queries of the entire solution P in time (’)(\P\ log ** log n)

7.6.1 Algorithm

Definitions and data structures Let OPT be the set of items used in an optimal solution
and OPT=z the set containing the 73 most valuable items of OPT; in both cases, break ties in
favor of s;naller items.

When computing the solution, we will assign low-value items fractionally. To this end,
consider an item j and let v be such that 0 < v < wv;. Then, the proportional size of item j of
value v is defined as sjv%.

To efficiently run our algorithm we maintain several data structures. We store the items of
each non-empty value class V; (at most [log;, . vmax| + 1) in a data structure ordered by non-
decreasing size. Second, for each possible value class V; (at most [log;,. 7| + 1), we maintain
a data structure ordered by non-increasing density that contains all items of value (1 + €)* or

lower. In particular, we maintain such a data structure even if V; is empty since initialization

145

7 Dynamic Multiple Knapsacks

is prohibitively expensive in terms of running time. We constantly maintain all data structures
leading to the additive term in the update time of O(lognlog; . 7). We use additional data

structures to store our solution and support queries.

Algorithm The approach itself can be divided into two parts that consider high- and low-
value items, respectively. The corresponding partition is guessed such that the high-value items
contain the %5 most valuable items of an optimal solution OPT and the low-value items the
remaining items of OPT. For the important high-value items, a good solution is paramount,
so we employ an EPTAS for MULTIPLE KNAPSACK. It is run on a low-cardinality set of
high-value candidate items together with 7 placeholders of equal size that reserve space for
low-value items. The values of placeholders are determined by filling them fractionally with
the densest low-value items.

More precisely, we start by guessing £y, the index of the highest value class with items
in OPT. Let £, denote the index of the lowest value class that we need to consider for the =
most valuable items, that is, Zmin = lpax — [logl Te amJ We consider each ¢ € {Zmin, ooy lmax }
as possible guess ¢ for the index of the lowest value class with items in OPTz. For this value
class, we additionally guess nyin, the number of items of value class V; belénging to OPT%.
There are at most 23 guesses to consider. Given these three guesses, let Hr denote the ;et
of candidates for the set OPT= . That is, H= contains the 5 smallest itemss from each value
class V; with ¢ € {Z +1,... ,E;ax} and the ninin smallest items from value class V;.

Now consider the data structure containing all the items of value at most (1 + 5)Z sorted
by decreasing density. From this data structure, we (temporarily) remove the nu;, smallest
items of value class V5. After having completed the calculation for the current set of guesses,
we insert the removed items again.

Next, we guess vy, the total value of low-value items in OpT. We use the just modified
data structure to determine the size of the densest low-value items that have a total value vy,
by possibly cutting the last item. That is, we consider the set J’ of densest items such

that >=.c 7 v; <wp <3cq vj + vjx, where j* is the densest item not in J'. Next, we add a

piece of item j* of value v, — 37 ;¢ 7 vj and proportional size sj*% to J'. Given this
J
“block” of items, we create bundles By,..., Bm of equal value vy by cutting the block at

appropriate points. The size of bundle By is the total size of the items completely contained
in By plus the proportional size of the at most two fractional items belonging to Bj.

Next, we consider an instance of MULTIPLE KNAPSACK with m knapsacks, the items Hm |
and an item per placeholder bundle By, with the size as detailed above and value -vr. 611
this instance, we run the EPTAS designed by Jansen [Jan12], parameterized by ¢, to obtain a
packing P.

Among all guesses, we take the solution P with the highest value and retrace the removal
of high-value items to obtain the data structure corresponding to the solution. These items

are inserted again right before the next update operation. For each knapsack, we place the

146

7.7 Solving Multiple Knapsack

items in Hm as indicated by P and all low-value items completely contained in any bundle By,
that is packed by P in this knapsack. While used candidates (and their packing) can be
stored explicitly, low-value items are given only implicitly by storing the correct guesses and

recomputing By on a query. We summarize the algorithm in Algorithm 7.7.

Algorithm 7.7: Dynamic algorithm for special knapsacks
guess lmax, £, and nmin
compute high-value candidates H 2
guess vy, ‘
create placeholder bundles of low-value items B, ..., Bm
run an EPTAS on HF% and Bi,...,Bn

Queries We briefly explain how to handle the different types of queries.

e Single Item Query: If the queried item is contained in H=, its packing is stored ex-
plicitly. For low-value items, we store the first and last items completely contained in a
bundle. On query of an item, we decide its membership in a bundle by comparing its den-
sity with the pivot elements (breaking ties by index). The packing of the corresponding

bundle is given again explicitly.

e Solution Value Query: After each update operation, we compute and store the solution
value. To this end, we compute the total value of the packed items in H= . For low-value
items, we compute the total value of the items completely contained ;n a bundle that
is assigned to a knapsack. Prefix computation on the data structure of low-value items
enables us to handle this efficiently. Summing the total value of the candidates and the

values of those low-value items yields the value of the current solution.

e Entire Solution Query: For the packed candidates, we output their stored packing.
For the low-value items, we iterate over the items in packed bundles in the density sorted
data structure and skip all fractionally packed items and all bundles not packed by the

current solution.

7.7 Solving MULTIPLE KNAPSACK

Having laid the groundwork with the previous two sections, we finally show how to main-
tain (14-¢)-approximate solutions for arbitrary instances of the MULTIPLE KNAPSACK problem

and give the main result of this chapter.

Theorem 7.39. For each € > 0, there is a dynamic (1+4¢)-approxzimate algorithm for MULTIPLE

O(1
KNAPSACK with update time 2f(1/5)(10%> (/E)(logmlog Smaz 10g vmax)o(l), where f(%) is

147

7 Dynamic Multiple Knapsacks

.. , L. o) .
quasi-linear. Item queries can be answered in time O(logm) (k’%) and the solution P can
o)
. . logn
be output in time O(P| + logm) (T) :

We obtain this result by partitioning the knapsacks into three sets, special, extra, and ordi-
nary knapsacks, and solving the respective subproblems. This has similarities to the approach
in [Jan09]; however, there it is sufficient to have only two groups of knapsacks. In Section 7.5 we
develop the algorithmic techniques used for solving the ordinary subproblem, and Section 7.6

gives a high-level overview of the algorithm for the special subproblem.

7.7.1 Algorithm

Definitions and data structures Given n and ¢, let L denote the number of knapsacks needed

as resource augmentation by the algorithm for the ordinary subproblem (Section 7.5). We can
oa 4

choose L € <l°§”> (/6). 1)V

Further, we assume that m > (g) - L because otherwise the
algorithm for the special subproblem (Section 7.6) has update time polynomial in logn. Let

OPT denote the set of items in an optimal solution; we break ties by picking smaller-size items.

We partition the knapsacks into three parts that decrease in knapsack capacity but increase
in cardinality. We refer to them as special, extra, and ordinary knapsacks, with special denoting
the largest knapsacks, ordinary the smallest, and extra the in-between ones. We call an item
ordinary if it fits into the at least one ordinary knapsack and special otherwise. We denote the
set of ordinary and special items by Jp and by Jg, respectively.

Similar to the proportional size, we define the proportional value. For an item j with size s;
and value v; and a given size s < s;, the proportional value is given by vjsij.

Since we use the algorithms from Sections 7.5 and 7.6 as subroutines, we require the mainte-
nance of the corresponding data structures. However, the data structures containing all items
of value class at most V; will be set up on the fly. Hence, we do not maintain them with the
update operations. That is, we only maintain one data structure storing all items sorted by
index, one data structure for all knapsacks sorted by non-increasing capacity, and per value

class we store all its items sorted by non-decreasing size.

Algorithm The high-level idea of the algorithm is the following. We start by partitioning the
knapsacks into special, extra, and ordinary knapsacks; this partition depends on the current
instance and is computed in each update operation. The extra knapsacks provide additional
knapsacks needed when solving the special and the ordinary subproblems. Since ordinary
items may be packed in special and ordinary knapsacks, we also guess sp, the size of ordinary
items packed in special knapsacks up to powers of (1 4+ ¢). Next, we add a virtual knapsack
of size sp to the ordinary subproblem and solve the resulting instance with the algorithm for
ordinary knapsacks. Here, our choice for the cardinality of the extra knapsacks will enable us to

treat these as knapsacks given by resource augmentation. Items that are packed in the virtual

148

7.7 Solving Multiple Knapsack

knapsack are then (possibly fractionally) assigned to bundles. These bundles together with
the special items constitute the input to the special subproblem solved with the corresponding

algorithm.

special knapsacks extra knapsacks ordinary knapsacks

Figure 7.8: Special, extra, and ordinary knapsacks with special (5 and 6) and ordinary (1
through 4) items

5
. eoe
4
special subproblem with item bundles ordinary subproblem with virtual knapsack (dotted)

Figure 7.9: Special and ordinary subproblem
More precisely, we group the Lzll / 51 Tl) largest knapsacks of the instance in E sets of
geometrically increasing cardinality and non-increasing capacity. The first set contains the L
largest knapsacks and, in general, for ¢ € [ﬂ, the ith set contains the 53(%1) largest knapsacks
not yet contained in a set with smaller index. Then, we guess the index k of the last such
group that still contains special knapsacks. The next a% knapsacks are the extra knapsacks,

and all remaining knapsacks constitute the set of ordinary knapsacks.
Next, we apply dynamic linear grouping to transform the items into item types. Let Lg
denote the number of special knapsacks, i.e., Lg = Zf 1 53@ - We pack each of the 5 most
valuable ordinary items, denoted by Jg, in a separate extra knapsack, storing their exphclt

packing and removing them temporarily from the data structure of their respective value class.

149

7 Dynamic Multiple Knapsacks

The remaining ordinary items are now considered as input to the ordinary subproblem.
Further, we guess sp, the size of ordinary items packed in special knapsacks to create a virtual
ordinary knapsack of capacity sp. As guessing sp exactly is intractable, we only guess sp
up to a factor of (1 +). Next, we run the algorithm for ordinary knapsacks as specified in
Section 7.5. When doing this, we treat the virtual knapsack as its own group and do not create
configurations for this knapsack but restrict to the z variables, that place items of a particular
type by number. When rounding the variables (also for the virtual knapsack), we use the extra
knapsacks for providing resource augmentation. This gives a packing of ordinary items either

in ordinary knapsacks, in the virtual knapsack, or in the extra knapsacks.

Let spo denote the total size of ordinary items in the virtual knapsack. We sort the items
placed inside by type, i.e., first by value, then by size, and cut the virtual knapsack to create LE—S
bundles of equal size. This may lead to some ordinary items being contained fractionally in
more than one bundle. Such items will not be packed in the final solution but their proportional
value contributes to the value of a bundle. We denote by Bp the set of bundles, and, for each
bundle, we remember how many items of each type are completely contained. Then, each
bundle B is considered as one item of value equal to the proportional value of the items placed
in B; the size of B is f—g.

Next, we set up the data structures used in the special subproblem containing only special
items (as types) and the set of bundles Bp. That is, for each value class V; we create one data
structure that contains only the items of this value class sorted by increasing size and one data
structure that contains all items of at most this value class sorted by density. Note that the
values of the ordinary bundles are not necessarily rounded to powers of (1+¢). However, since
their number is bounded, we (possibly) create a value class for each new value and treat them
as we would treat the regular value classes. Note that we do not insert every special item but
only special item types and their multiplicities. Having set up these data structures, we run

the algorithm for special knapsacks as described in Section 7.6.

Algorithm 7.8: Dynamic algorithm for MULTIPLE KNAPSACK
guess k
partition knapsacks into special, extra, and ordinary knapsacks
guess fmax and use dynamic linear grouping
pack the % most valuable ordinary items into extra knapsacks
guess sp and create a virtual ordinary knapsack of size sp
solve the ordinary subproblem including the virtual knapsack
create bundles of ordinary items
set up the data structure for the special subproblem considering only special items and
these bundles
solve the special subproblem

150

7.7 Solving Multiple Knapsack

Queries For handling queries, we essentially use the same approach as in Sections 7.5 and 7.6
for the ordinary and special subproblem, respectively. By default, we pack the first n; items
of a type that contributes n; items to the implicit solution. However, we point out two steps
that change the routines slightly. First, we incorporate handling item types as described in
Section 7.5 by setting up pointers also for the special items assigned to special knapsacks.
Second, extra care has to be taken for the items in the virtual knapsack. To this end, we store
the number of items per type that are completely contained in bundles that are chosen by the
special subproblem and only add the number of such items to the overall number of packed
items of a certain type. Further, we additionally maintain a pointer for each type that points
to the bundle in the virtual knapsack where the next item of this type is assigned to. If the
query for an ordinary item returns the virtual knapsack, we use the corresponding pointer to
determine the bundle of this item. Then, we query the bundle as item in the special subproblem

and return the answer for this item.

7.7.2 Analysis

In this section, we analyze the performance of our algorithm in terms of the solution quality
and in terms of the update time. We heavily rely on the results of the previous sections that

guarantee that the solutions to our subproblems are sufficiently good.

Lemma 7.40. Let Pr be the final solution the algorithm computes and let OPT be an optimal

solution. We have v(Pg) > (1_96)((11;5)4(1_26)v(OPT).

Proof. Our algorithm returns the solution Pr that has the highest total value among all so-
lutions found when trying guesses. If we can construct another solution P that our algo-
rithm might have considered at some point, then the lemma follows since v(Pp) > v(P).
To this end, let OPT be an optimal solution and let ¢y« be the largest index of a value class
with V,NOPT # (). We fix an optimal solution OPT7 of the instance induced by the set of item
types T, obtained when running dynamic linear grouping with £y, and their multiplicities.

Further, we consider the % many groups of the largest knapsacks that we used to partition
the knapsacks into special, extra, and ordinary. As there are % many such groups, one of
these groups contributes at most ev(OPT) to the total solution value. Let k € E} be such
that the (k + 1)st group is such a low-value group. This value k gives us the partition for
the knapsacks: the first LZle 53(%” many knapsacks are the special ones, the knapsacks in
group k + 1 are the extra knapsacks, and all remaining knapsacks are ordinary. Based on this
partition, we also group the items into ordinary and special items.

Let 50 be the total size of ordinary items packed by OPT7 in special knapsacks. Thus, our
algorithm considered the combination of £y, k, and so = (1 + ¢)l°81+<30] at some point by
definition. The solution P is obtained by modifying OPTs in a way that allows P to be a

possible solution for the algorithm when considering these three guesses.

151

7 Dynamic Multiple Knapsacks

More precisely, we start by removing the items from the extra knapsacks to obtain a solu-
tion OPT7-. By our choice of k, we have v(OPT5) > (1 — £)v(OPT7). Let OPT_g denote an
optimal solution of the instance consisting of all items (as types) and the ordinary as well as

the special knapsacks. Thus,
v(OPT_g) > (1 — ¢)v(OPTY).

Now, we consider the ordinary subproblem, i.e., the instance of MULTIPLE KNAPSACK con-
sisting of all ordinary knapsacks plus the virtual knapsack and all ordinary items except Jg,
the high-value items our algorithm packs in extra knapsacks. Take the packing of items in
ordinary knapsacks as done by OpPT_g and greedily, sorted by non-increasing density, pack
the items that are packed in special knapsacks by OPT_pg in the virtual knapsack without
violating its capacity. As sp underestimates the size of these items, this causes a loss of at
most ev(OPT7) plus an ordinary item jo with v;, < minjey,v; < ev(OPTy). This pack-
ing is feasible for the ordinary subproblem as described above and achieves a value of at
least v((OPT_g N Jo) \ JE) — 2ev(OpPTT). For an optimal solution OPTo to this instance,

v(OPT) > v(OPT_g o) — 2ev(OPTT),

where OPT_E7O = (OPT_E N jo) \ JE.
We note that 53% > % + 2L. Hence, the extra knapsacks can indeed act as resource aug-

mentation for the ordinary subproblem. Let Pp denote the packing returned by the algorithm
described in Section 7.5. By Theorem 7.27,

1
1+e¢

v(Pp) > v(OPTQ).

With OpT_g g := OPT_g N Js and OPT_g g := OPT_g N Jg, we can rewrite OPT_g
as OPT,E,O U OPTfE,E‘ U OPT,E’S. Let P, = Ppo U OPT,Eyg U Jg. Thus,

v(P1) =v(Po)+v(OPT_gs) + v(JE)

Y

T 6v(OPTO) +v(OPT_E 5) + v(OPT_E E)

v

T 8v(OPT,E,O) — 2ev(OPTT) +v(OPT_E 5) + v(OPT_E E)

1
1+e¢

> (1 _T_i - 2€)U(OPTT).

v

v(OPT_E) — 2ev(OPTT)

Now, we use P; to obtain the packing P that our algorithm could have considered at some
point. To this end, we observe that P; still uses the virtual knapsack while our algorithm

packs ordinary items via bundles in special knapsacks. Thus, we take the items in the virtual

152

7.7 Solving Multiple Knapsack

knapsack in P, and transform them into % equal-size bundles (with possibly cut items) to
obtain the intermediate packing P». The packing of OPT_g g reserves sufficient space to pack
these bundles fractionally into the special knapsacks. If we arrange them such that the at
most Lg fractionally packed bundles are those that have lowest value, we can discard these at
a cost of at most ev(OPT7). Further, we remove the ordinary items that are now part of more
than one bundle. Since there are at most L?s such items and we packed the % most valuable

ordinary items in extra knapsacks, the cost of this removal is bounded by ev(OpT7). Hence,

v(Py) > v(Py) — 2ev(OPTT) > G_T_z — 45>U(OPTT) >

Further, combining the bundles of ordinary items and the special items creates a valid solution
to the special subproblem as solved in Section 7.6. Hence, the solution returned by the algo-
rithm on these particular guesses lnax, k, and so satisfies v(P) > 17_}_6'1)(P2) by Theorem 7.38.
Combining the calculations and using Theorem 7.4, we conclude

1 1—9¢ (1 -9¢)(1 —¢)(1 — 2¢)

> >
)2 50(OPTT) 2 (I+e)

v(Pr) > v(P) > m

v(OPT).

Next, we bound the update time of our algorithm.

O(1/e)

Lemma 7.41. The algorithm has update time 2f(1/5)(10%) (log mlog Spaz log Umax)o(l),

where [is a quasi-linear function.

Proof. Our algorithm heavily relies on solving the subproblems efficiently. The running times
of the algorithms are given in Theorems 7.27 and 7.38. However, we note that we do not
maintain the data structures for the special subproblem but create these on the fly after having
determined the item types. Hence, we do not have the additive term for maintaining the at
most O(log; . 7) data structures of items with value up to (1 +)¢ for ¢ € {0,..., |log;,. 7]}
sorted by non-increasing density.

Further, guessing k£ adds a factor of % to the update time. Placing the % most valuable ordi-
nary items in extra knapsacks and removing them from data structures takes time O (% log n)
which is within the time bound. The same holds for updating the ordinary data structures
and generating the special data structures as well as solving the respective subproblems.

It remains to show that the bundles of ordinary items stemming from the virtual knapsack
can be generated efficiently. To this end, we sort the item types in some fixed order and store
the number of items per type that are packed in the knapsack. There are at most (10%)0(1)

10gn>0(1/€)

2 many bundles. Hence, we can iterate through the list of

item types and at most (
item types and obtain the cutting points using prefix computation as explained in Section 7.2

within the desired time frame. O

153

7 Dynamic Multiple Knapsacks

Answering queries As explained above, the queries are handled as described in the respective
subproblems with the exception that the special subproblem also deals with item types and
that ordinary items packed in the virtual knapsack lead to an additional query of their bundle
in the special subproblem. Therefore, the bounds for answering queries given in the respective

section immediately imply the following lemma.

Lemma 7.42. The query times of our algorithm are as follows.
(i) Single item queries are answered in time O(logm + IOE# + M).

(ii) Solution value queries are answered in time O(1).

(iii) The entire solution P can be output in time O(!P[bf#(logm + IOE# + M)).

£

Proof of main result We are now ready to prove Theorem 7.39.

Proof of Theorem 7.39. Lemma 7.40 bounds the quality of the solution found by our dynamic
algorithm. Lemma 7.41 and Lemma 7.42 give the bounds on the running times of update and

query operations, respectively.]

7.8 Concluding Remarks

We have presented a robust dynamic framework for MULTIPLE KNAPSACK that implements
update operations (item and knapsack arrivals and departures) as well as query operations,
such as solution value and item presence in the solution. By having n items arrive one by
one, any dynamic algorithm can be turned into a non-dynamic framework while incurring an
additional linear term in the running time. Hence, the performance of any dynamic framework
is subject to the same lower bounds as non-dynamic approximation schemes.

We hope to foster further research within the dynamic-algorithm framework for packing,
scheduling and, generally, non-graph problems. For bin packing and for scheduling to minimize
the makespan on uniformly related machines, we note that existing PTAS techniques from
[KK82] and [Jan10,HS87] combined with rather straightforward data structures can be lifted

to a fully dynamic framework for the respective problems.

154

[AAG+19)

[AAPWOI]

[ABK94]

[AF55]

[AGZ99]

[AKL*+15]

[AKP+97]

[A1b99]
[A1b03]

[ALLM18]

[AMO93]

[ANRO2]

[AW14]

[BayT2]

References

A. Abboud, R. Addanki, F. Grandoni, D. Panigrahi, and B. Saha. Dynamic set cover:
Improved algorithms and lower bounds. In STOC, pages 114-125. ACM, 2019. doi:
10.1145/3313276.3316376.

B. Awerbuch, Y. Azar, S. A. Plotkin, and O. Waarts. Competitive routing of virtual
circuits with unknown duration. J. Comput. Syst. Sci., 62(3):385-397, 2001. doi:10.
1006/jcss.1999.1662.

Y. Azar, A. Z. Broder, and A. R. Karlin. On-line load balancing. Theor. Comput. Sci.,
130(1):73-84, 1994. doi:10.1016/0304-3975(94)90153-8.

S. B. Akers and J. Friedman. A non-numerical approach to production scheduling
problems. Journal of the Operations Research Society of America, 3(4):429-442, 1955.
do0i:10.1287/opre.3.4.429.

M. Andrews, M. X. Goemans, and L. Zhang. Improved bounds for on-line load balancing.
Algorithmica, 23(4):278-301, 1999. doi:10.1007/PL00009263.

Y. Azar, 1. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv. Truth-
ful online scheduling with commitments. In EC, pages 715-732. ACM, 2015. doi:
10.1145/2764468.2764535.

Y. Azar, B. Kalyanasundaram, S. A. Plotkin, K. Pruhs, and O. Waarts. On-line load
balancing of temporary tasks. J. Algorithms, 22(1):93-110, 1997. doi:10.1006/jagm.
1995.0799.

S. Albers. Better bounds for online scheduling. SIAM J. Comput., 29(2):459-473, 1999.
doi:10.1137/S0097539797324874.

S. Albers. Online algorithms: a survey. Math. Program., 97(1-2):3-26, 2003. doi:
10.1007/s10107-003-0436-0.

K. Agrawal, J. Li, K. Lu, and B. Moseley. Scheduling parallelizable jobs online
to maximize throughput. In LATIN, volume 10807, pages 755-776. Springer, 2018.
do0i:10.1007/978-3-319-77404-6_55.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Pren-
tice Hall, 1993. https://www.pearson.com/us/higher-education/program/
Ahuja-Network-Flows-Theory-Algorithms-and-Applications/PGM148966.html.

Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. In SODA,
pages 203-210. ACM/SIAM, 1992. http://dl.acm.org/citation.cfm?id=139404.
139450.

A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for
dynamic problems. In FOCS, pages 434-443. IEEE Computer Society, 2014. doi:10.
1109/F0CS.2014.53.

R. Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta
Informatica, 1:290-306, 1972. doi:10.1007/BF00289509.

155

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1006/jcss.1999.1662
https://doi.org/10.1006/jcss.1999.1662
https://doi.org/10.1016/0304-3975(94)90153-8
https://doi.org/10.1287/opre.3.4.429
https://doi.org/10.1007/PL00009263
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1006/jagm.1995.0799
https://doi.org/10.1006/jagm.1995.0799
https://doi.org/10.1137/S0097539797324874
https://doi.org/10.1007/s10107-003-0436-0
https://doi.org/10.1007/s10107-003-0436-0
https://doi.org/10.1007/978-3-319-77404-6_55
https://www.pearson.com/us/higher-education/program/Ahuja-Network-Flows-Theory-Algorithms-and-Applications/PGM148966.html
https://www.pearson.com/us/higher-education/program/Ahuja-Network-Flows-Theory-Algorithms-and-Applications/PGM148966.html
http://dl.acm.org/citation.cfm?id=139404.139450
http://dl.acm.org/citation.cfm?id=139404.139450
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1007/BF00289509

References

[BB10]

[BC16]
[BCP11]

[BDF81]

[BEOS]

[Bel56]

[Bel57]

[BEM*20]

[BHO7]

[BHI15]

[BHN17]

[BHN19]

[BHR19]

[BHS94]

[BJK20]

[BK19]

156

A. Beloglazov and R. Buyya. Energy efficient allocation of virtual machines in cloud
data centers. In CCGRID, pages 577-578. IEEE Computer Society, 2010. doi:10.1109/
CCGRID.2010.45.

F. Biagini and M. Campanino. FElements of Probability and Statistics. Springer, 1st
edition, 2016. doi:10.1007/978-3-319-07254-8.

N. Bansal, H. Chan, and K. Pruhs. Competitive algorithms for due date scheduling.
Algorithmica, 59(4):569-582, 2011. doi:10.1007/s00453-009-9321-4.

J. L. Bruno, P. J. Downey, and G. N. Frederickson. Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM, 28(1):100-113,
1981. doi:10.1145/322234.322242.

A. Borodin and R. El-Yaniv. Online computation and com-
petitive analysis. Cambridge University = Press, 1998. https:
//www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/
online-computation-and-competitive-analysis?format=PB.

R. Bellman. Mathematical aspects of scheduling theory. J. Soc. Indust. Appl. Math.,
4(3):168-205, 1956. doi:10.1137/0104010.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton,
NJ, USA, 1957. https://press.princeton.edu/books/paperback/9780691146683/
dynamic-programming.

M. Bohm, F. Eberle, N. Megow, L. Nolke, J. Schloter, B. Simon, and A. Wiese. Fully
dynamic algorithms for knapsack problems with polylogarithmic update time. CoRR,
abs/2007.08415, 2020. https://arxiv.org/abs/2007.08415.

S. K. Baruah and J. R. Haritsa. Scheduling for overload in real-time systems. IEFEE
Trans. Computers, 46(9):1034-1039, 1997. doi:10.1109/12.620484.

S. Bhattacharya, M. Henzinger, and G. F. Italiano. Design of dynamic algorithms via
primal-dual method. In TCALP (1), volume 9134 of Lecture Notes in Computer Science,
pages 206-218. Springer, 2015. doi:10.1007/978-3-662-47672-7_17.

S. Bhattacharya, M. Henzinger, and D. Nanongkai. Fully dynamic approximate maximum

matching and minimum vertex cover in O(log3 n) worst case update time. In SODA,
pages 470-489. STAM, 2017. doi:10.1137/1.9781611974782.30.

S. Bhattacharya, M. Henzinger, and D. Nanongkai. A new deterministic algorithm for
dynamic set cover. In FOCS, pages 406-423. IEEE Computer Society, 2019. doi:10.
1109/F0CS.2019.00033.

A. Bernstein, J. Holm, and E. Rotenberg. Online bipartite matching with amortized

O(log 2 n) replacements. J. ACM, 66(5):37:1-37:23, 2019. doi:10.4230/LIPIcs.ITCS.
2017.51.

S. K. Baruah, J. R. Haritsa, and N. Sharma. On-line scheduling to maximize task com-
pletions. In RTSS, pages 228-236. IEEE Computer Society, 1994. doi:10.1109/REAL.
1994 .342713.

S. Berndt, K. Jansen, and K. Klein. Fully dynamic bin packing revisited. Math. Program.,
179(1):109-155, 2020. doi:10.1007/s10107-018-1325-x.

S. Bhattacharya and J. Kulkarni. Deterministically maintaining a (2 + ¢)-approximate
minimum vertex cover in o(1/¢?) amortized update time. In SODA, pages 1872-1885.
SIAM, 2019. doi:10.1137/1.9781611975482.113.

https://doi.org/10.1109/CCGRID.2010.45
https://doi.org/10.1109/CCGRID.2010.45
https://doi.org/10.1007/978-3-319-07254-8
https://doi.org/10.1007/s00453-009-9321-4
https://doi.org/10.1145/322234.322242
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/online-computation-and-competitive-analysis?format=PB
https://doi.org/10.1137/0104010
https://press.princeton.edu/books/paperback/9780691146683/dynamic-programming
https://press.princeton.edu/books/paperback/9780691146683/dynamic-programming
https://arxiv.org/abs/2007.08415
https://doi.org/10.1109/12.620484
https://doi.org/10.1007/978-3-662-47672-7_17
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1007/s10107-018-1325-x
https://doi.org/10.1137/1.9781611975482.113

[BKB07]

[BKM*91]

[BKM*92]

[BKP*+17]

[BM72]

[BP11]

[BRVW20]

[BT97]

[CEM*20]

[CFMM14]

[Chal§]

[CKO5]

[CKPT17]

[CMM67]

[CMWW19]

[CooT1]

References

N. Bobroff, A. Kochut, and K. A. Beaty. Dynamic placement of virtual machines for
managing SLA violations. In Integrated Network Management, pages 119-128. IEEE,
2007. doi:10.1109/INM.2007.374776.

S. K. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. E. Rosier, and D. E. Shasha.
On-line scheduling in the presence of overload. In FOCS, pages 100-110. IEEE Computer
Society, 1991. doi:10.1109/SFCS.1991.185354.

S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D. E. Shasha,
and F. Wang. On the competitiveness of on-line real-time task scheduling. Real-Time
Systems, 4(2):125-144, 1992. doi:10.1007/BF00365406.

A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein. Simultaneously load
balancing for every p-norm, with reassignments. In ITCS, volume 67 of LIPIcs, pages
51:1-51:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017. doi:10.4230/
LIPIcs.ITCS.2017.51.

R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indices.
Acta Informatica, 1:173-189, 1972. doi:10.1007/BF00288683.

N. Boria and V. T. Paschos. A survey on combinatorial optimization in dynamic environ-
ments. RAIRO - Operations Research, 45(3):241-294, 2011. doi:10.1051/r0/2011114.

M. Buchem, L. Rohwedder, T. Vredeveld, and A. Wiese. Additive approximation schemes
for load balancing problems. CoRR, abs/2007.09333, 2020. https://arxiv.org/abs/
2007.09333.

D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization, volume 6 of
Athena Scientific Optimization and Computation Series. Athena Scientific, 1997. http:
//athenasc.com/linoptbook.html.

L. Chen, F. Eberle, N. Megow, K. Schewior, and C. Stein. A general framework for
handling commitment in online throughput maximization. Math. Prog., 183:215-247,
2020. doi:10.1007/s10107-020-01469-2.

M. Cheung, F. Fischer, J. Matuschke, and N. Megow. An Q(A'/?) Gap example on the
(W)SEPT Policy. Unpublished note, 2014.

T. M. Chan. Approximation schemes for 0-1 knapsack. In SOSA@SODA, volume 61
of OASICS, pages 5:1-5:12. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2018.
d0i:10.4230/0ASIcs.S0SA.2018.5

C. Chekuri and S. Khanna. A polynomial time approximation scheme for the mul-
tiple knapsack problem. SIAM J. Comput., 35(3):713-728, 2005. doi:10.1137/
S50097539700382820.

H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Approximation and online algo-
rithms for multidimensional bin packing: A survey. Comput. Sci. Rev., 24:63-79, 2017.
doi:10.1016/j.cosrev.2016.12.001.

R. Conway, W. Maxwell, and L. Miller. Theory of Scheduling. Adison-Wesley Pub. Co.,
1967.

M. Cygan, M. Mucha, K. Wegrzycki, and M. Wlodarczyk. On problems equivalent to
(min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1-14:25, 2019. doi:10.1145/
3293465.

S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151-158.
ACM, 1971. doi:10.1145/800157.805047.

157

https://doi.org/10.1109/INM.2007.374776
https://doi.org/10.1109/SFCS.1991.185354
https://doi.org/10.1007/BF00365406
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.4230/LIPIcs.ITCS.2017.51
https://doi.org/10.1007/BF00288683
https://doi.org/10.1051/ro/2011114
https://arxiv.org/abs/2007.09333
https://arxiv.org/abs/2007.09333
http://athenasc.com/linoptbook.html
http://athenasc.com/linoptbook.html
https://doi.org/10.1007/s10107-020-01469-2
https://doi.org/10.4230/OASIcs.SOSA.2018.5
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3293465
https://doi.org/10.1145/800157.805047

References

[DEGI10]

[DGV0S]

[dIVL81]

[DP00]

[DPOY]

[EEI64]

[EFMM19]

[ELOY]
[EL13]
[EL14]

[EMS20]

[FBK+12)

[FFG*18]

[FWOS]

[GG61]

[GGK16]

[GGPY7)

158

C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic Graph Algorithms,
pages 9:1-9:28. Chapman & Hall/CRC, 2 edition, 2010. doi:10.1201/9781584888239.

B. C. Dean, M. X. Goemans, and J. Vondrak. Approximating the stochastic knapsack
problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945-964, 2008. doi:10.
1287 /moor.1080.0330.

W. F. de la Vega and G. S. Lueker. Bin packing can be solved within 14epsilon in linear
time. Combinatorica, 1(4):349-355, 1981. doi:10.1007/BF02579456.

B. DasGupta and M. A. Palis. Online real-time preemptive scheduling of jobs with
deadlines. In APPROX, volume 1913 of Lecture Notes in Computer Science, pages 96—
107. Springer, 2000. doi:10.1007/3-540-44436-X_11.

D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, 1 edition, 2009. doi:10.1017/
CB09780511581274.

W. L. Eastman, S. Even, and I. M. Isaacs. Bounds for the optimal scheduling of n jobs on
m processors. Management Science, 11(2):268-279, 1964. doi:10.1287/mnsc.11.2.268.

F. Eberle, F. Fischer, J. Matuschke, and N. Megow. On index policies for stochastic
minsum scheduling. Oper. Res. Lett., 47(3):213-218, 2019. doi:10.1016/j.0r1.2019.
03.007.

L. Epstein and A. Levin. A robust APTAS for the classical bin packing problem. Math.
Program., 119(1):33-49, 2009. doi:10.1007/s10107-007-0200-y.

L. Epstein and A. Levin. Robust approximation schemes for cube packing. SIAM J.
Optim., 23(2):1310-1343, 2013. doi:10.1137/11082782X.

L. Epstein and A. Levin. Robust algorithms for preemptive scheduling. Algorithmica,
69(1):26-57, 2014. doi:10.1007/s00453-012-9718-3.

F. Eberle, N. Megow, and K. Schewior. Optimally handling commitment issues in online
throughput maximization. In ESA, volume 173 (to appear) of LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2020.

A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: Guaranteed
job latency in data parallel clusters. In FuroSys, pages 99-112. ACM, 2012. doi:10.
1145/2168836.2168847.

B. Feldkord, M. Feldotto, A. Gupta, G. Guruganesh, A. Kumar, S. Riechers, and D. Wajc.
Fully-dynamic bin packing with little repacking. In ICALP, volume 107 of LIPIcs, pages
51:1-51:24. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/
LIPIcs.ICALP.2018.51.

A. Fiat and G. J. Woeginger, editors. Online Algorithms, The State of the Art (the book
grow out of a Dagstuhl Seminar, June 1996), volume 1442 of Lecture Notes in Computer
Science. Springer, 1998. doi:10.1007/BFb0029561.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Oper. Res., 9(6):849-859, 1961. doi:10.1287/opre.11.6.863.

A. Gu, A. Gupta, and A. Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput., 45(1):1-28, 2016. doi:10.1137/
140955276.

L. Georgiadis, R. Guérin, and A. K. Parekh. Optimal multiplexing on a single link:
Delay and buffer requirements. IEEE Trans. Inf. Theory, 43(5):1518-1535, 1997. doi:
10.1109/18.623149

https://doi.org/10.1201/9781584888239
https://doi.org/10.1287/moor.1080.0330
https://doi.org/10.1287/moor.1080.0330
https://doi.org/10.1007/BF02579456
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1287/mnsc.11.2.268
https://doi.org/10.1016/j.orl.2019.03.007
https://doi.org/10.1016/j.orl.2019.03.007
https://doi.org/10.1007/s10107-007-0200-y
https://doi.org/10.1137/11082782X
https://doi.org/10.1007/s00453-012-9718-3
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.4230/LIPIcs.ICALP.2018.51
https://doi.org/10.4230/LIPIcs.ICALP.2018.51
https://doi.org/10.1007/BFb0029561
https://doi.org/10.1287/opre.11.6.863
https://doi.org/10.1137/140955276
https://doi.org/10.1137/140955276
https://doi.org/10.1109/18.623149
https://doi.org/10.1109/18.623149

[GGW11]

[GHKM14]

[GI99]

Git79]

[Git89]
[GIT7Y]

[GJL9S]

[GKO3]

[GKKP17]

[GKNS18]

[GKS14]

[GL79]

[GLS0]

[Gla79]

[GLLRK79a]

[GLLRK79b)

[GLSS1]

References

J. C. Gittins, K. D. Glazebrook, and R. R. Weber. Multi-Armed Bandit Allocation Indices.
John Wiley & Sons, Ltd, 2nd edition, 2011. doi:10.1002/9780470980033.

K. D. Glazebrook, D. J. Hodge, C. Kirkbride, and R. J. Minty. Stochastic scheduling:
A short history of index policies and new approaches to index generation for dynamic
resource allocation. J. Sched., 17(5):407-425, 2014. doi:10.1007/s10951-013-0325-1.

A. Goel and P. Indyk. Stochastic load balancing and related problems. In FOCS, pages
579-586. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814632.

J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Sta-
tistical Society, Series B, 41:148-177, 1979. doi:10.1111/3j.2517-6161.1979.tb01068.
X.

J. C. Gittins. Multi-Armed Bandit Allocation Indices. Wiley, 1989.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

M. M. Giintzer, D. Jungnickel, and M. Leclerc. Efficient algorithms for the clear-
ing of interbank payments. Fur. J. Oper. Res., 106(1):212-219, 1998. doi:10.1016/
S0377-2217(97)00265-8.

M. H. Goldwasser and B. Kerbikov. Admission control with immediate notification. J.
Sch&i,6(3)2697285,2003.doi:10.1023/A:1022956425198.

A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Online and dynamic algo-
rithms for set cover. In STOC, pages 537-550. ACM, 2017. doi:10.1145/3055399.
3055493.

A. Gupta, A. Kumar, V. Nagarajan, and X. Shen. Stochastic load balancing on unrelated
machines. In SODA, pages 1274-1285. STAM, 2018. d0i:10.1137/1.9781611975031.83.

A. Gupta, A. Kumar, and C. Stein. Maintaining assignments online: Matching, schedul-
ing, and flows. In SODA, pages 468-479. STAM, 2014. doi:10.1137/1.9781611973402.
35.

G. Gens and E. Levner. Computational complexity of approximation algorithms for
combinatorial problems. In MFCS, volume 74 of Lecture Notes in Computer Science,
pages 292-300. Springer, 1979. doi:10.1007/3-540-09526-8_26.

G. Gens and E. Levner. Fast approximation algorithms for knapsack type problems. In
Optimization Techniques, pages 185-194. Springer, 1980. doi:10.1007/BFb0006603.

K. Glazebrook. Scheduling tasks with exponential service times on parallel processors.
J. Appl. Probab., 16(3):65—689, 1979. doi:10.2307/3213099.

R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics,
5:287-326, 1979. doi:10.1016/S0167-5060(08)70356-X.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Discrete
Optimization II, volume 5 of Annals of Discrete Mathematics, pages 287 — 326. Elsevier,
1979. doi:10.1016/S0167-5060(08)70356-X.

M. Grotschel, L. Lovész, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169-197, 1981. doi:10.1007/
BF02579273.

159

https://doi.org/10.1002/9780470980033
https://doi.org/10.1007/s10951-013-0325-1
https://doi.org/10.1109/SFFCS.1999.814632
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1016/S0377-2217(97)00265-8
https://doi.org/10.1023/A:1022956425198
https://doi.org/10.1145/3055399.3055493
https://doi.org/10.1145/3055399.3055493
https://doi.org/10.1137/1.9781611975031.83
https://doi.org/10.1137/1.9781611973402.35
https://doi.org/10.1137/1.9781611973402.35
https://doi.org/10.1007/3-540-09526-8_26
https://doi.org/10.1007/BFb0006603
https://doi.org/10.2307/3213099
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1007/BF02579273
https://doi.org/10.1007/BF02579273

References

[GMUX17]

[GMUX20]

[GNYZ02]

[Gol03]
[Gra69]
[Gut13]

[HALTO1]

[Henl18]

[HK99]

[HS87]

[1C03]
[IK75]
[1L98)]

[IM18]

[IMP15]

[ITW91]
[Jan09]

[Jan10]

160

V. Gupta, B. Moseley, M. Uetz, and Q. Xie. Stochastic online scheduling on unrelated
machines. In IPCO, volume 10328 of Lecture Notes in Computer Science, pages 228-240.
Springer, 2017. doi:10.1007/978-3-319-59250-3_19.

V. Gupta, B. Moseley, M. Uetz, and Q. Xie. Greed works - online algorithms for unrelated
machine stochastic scheduling. Math. Oper. Res., 45(2):497-516, 2020. doi:10.1287/
moor.2019.0999.

J. A. Garay, J. Naor, B. Yener, and P. Zhao. On-line admission control and packet
scheduling with interleaving. In INFOCOM, pages 94-103. IEEE Computer Society,
2002. doi:10.1109/INFCOM.2002.1019250.

M. H. Goldwasser. Patience is a virtue: The effect of slack on competitiveness for admis-
sion control. J. Sched., 6(2):183-211, 2003. doi:10.1023/A:1022994010777.

R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.,
17(2):416-429, 1969. doi:10.1137/0117039.

A. Gut. Probability: A Graduate Course. Springer, 2 edition, 2013. doi:10.1007/
b138932.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM,
48(4):723-760, 2001. doi:10.1145/502090.502095.

M. Henzinger. The state of the art in dynamic graph algorithms. In SOFSEM, volume
10706 of Lecture Notes in Computer Science, pages 40—44. Springer, 2018. doi:10.1007/
978-3-319-73117-9_3.

M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polyloga-
rithmic time per operation. J. ACM, 46(4):502-516, 1999. doi:10.1145/320211.320215.

D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144-162, 1987. doi:10.1145/
7531.7535.

J. F. R. IIT and R. Chandrasekaran. Improved bounds for the online scheduling problem.
SIAM J. Comput., 32(3):717-735, 2003. doi:10.1137/30097539702403438.

O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463-468, 1975. doi:10.1145/321906.321909.

Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being (mostly) my-
opic helps. STAM J. Comput., 28(2):574-611, 1998. doi:10.1137/30097539794276749.

S. Im and B. Moseley. General profit scheduling and the power of migration on hetero-
geneous machines. In SPAA, volume 10807 of Lecture Notes in Computer Science, pages
755-776. Springer, 2018. doi:10.1007/978-3-319-77404-6_55.

S. Im, B. Moseley, and K. Pruhs. Stochastic scheduling of heavy-tailed jobs. In STACS,
volume 30 of LIPIcs, pages 474-486. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015. doi:10.4230/LIPIcs.STACS.2015.474.

M. Imase and B. M. Waxman. Dynamic steiner tree problem. SIAM J. Discret. Math.,
4(3):369-384, 1991. doi:10.1137/0404033.

K. Jansen. Parameterized approximation scheme for the multiple knapsack problem.
SIAM J. Comput., 39(4):1392-1412, 2009. doi:10.1137/080731207.

K. Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relax-
ation with a constant number of integral variables. SIAM J. Discrete Math., 24(2):457—
485, 2010. doi:10.1137/090749451.

https://doi.org/10.1007/978-3-319-59250-3_19
https://doi.org/10.1287/moor.2019.0999
https://doi.org/10.1287/moor.2019.0999
https://doi.org/10.1109/INFCOM.2002.1019250
https://doi.org/10.1023/A:1022994010777
https://doi.org/10.1137/0117039
https://doi.org/10.1007/b138932
https://doi.org/10.1007/b138932
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/S0097539702403438
https://doi.org/10.1145/321906.321909
https://doi.org/10.1137/S0097539794276749
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.4230/LIPIcs.STACS.2015.474
https://doi.org/10.1137/0404033
https://doi.org/10.1137/080731207
https://doi.org/10.1137/090749451

[Jan12]

[Jin19]

[JK19]
[JKKO5]

[Joh5H4]

[JS18]

[78S20]

[Kar72]

[Kel99)]

[KK82]

[KPO1]
[KP03]

[KPO4]

[KPP04]
[KRT00]

[KS94]

[KS95]

References

K. Jansen. A fast approximation scheme for the multiple knapsack problem. In SOFSEM,
volume 7147 of Lecture Notes in Computer Science, pages 313-324. Springer, 2012. doi:
10.1007/978-3-642-27660-6_26.

C. Jin. An improved FPTAS for 0-1 knapsack. In ICALP, volume 132 of LIPIcs, pages
76:1-76:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/
LIPIcs.ICALP.2019.76.

K. Jansen and K. Klein. A robust AFPTAS for online bin packing with polynomial
migration. SIAM J. Discret. Math., 33(4):2062-2091, 2019. doi:10.1137/17M1122529.

N. Johnson, A. Kemp, and S. Kotz. Binomial Distribution. John Wiley & Sons, Inc., 3
edition, 2005. doi:10.1002/0471715816.

S. M. Johnson. Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1(1):61-68, 1954. doi:10.1002/nav.
3800010110.

S. Jager and M. Skutella. Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel
Machine Scheduling. In STACS, volume 96 of LIPIcs, pages 43:1-43:14. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.43.

S. Jamalabadi, C. Schwiegelshohn, and U. Schwiegelshohn. Commitment and slack for
online load maximization. In SPAA, pages 339-348. ACM, 2020. doi:10.1145/3350755.
3400271.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85-103. Plenum Press, New
York, 1972. doi:10.1007/978-1-4684-2001-2_9.

H. Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In RANDOM-APPROX, volume 1671 of Lecture Notes in Computer Science, pages 51-62.
Springer, 1999. doi:10.1007/978-3-540-48413-4_6.

N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In FOCS, pages 312-320. IEEE Computer Society, 1982. doi:
10.1109/S8FCS.1982.61.

B. Kalyanasundaram and K. Pruhs. Eliminating migration in multi-processor scheduling.
J. Algorithms, 38(1):2-24, 2001. doi:10.1006/jagm.2000.1128.

B. Kalyanasundaram and K. Pruhs. Maximizing job completions online. J. Algorithms,
49(1):63-85, 2003. doi:10.1016/S0196-6774(03)00074-9.

H. Kellerer and U. Pferschy. Improved dynamic programming in connection with an
FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5-11, 2004. doi:10.1023/B:
JOCO0.0000021934.29833.6b.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004. doi:
10.1007/978-3-540-24777-7.

J. M. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty connections.
SIAM J. Comput., 30(1):191-217, 2000. doi:10.1137/S0097539797329142.

G. Koren and D. E. Shasha. MOCA: A multiprocessor on-line competitive algorithm for
real-time system scheduling. Theor. Comput. Sci., 128(1&2):75-97, 1994. doi:10.1016/
0304-3975(94)90165-1.

G. Koren and D. E. Shasha. D°¥": An optimal on-line scheduling algorithm for overloaded
uniprocessor real-time systems. SIAM J. Comput., 24(2):318-339, 1995. doi:10.1137/
S0097539792236882.

161

https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.1007/978-3-642-27660-6_26
https://doi.org/10.4230/LIPIcs.ICALP.2019.76
https://doi.org/10.4230/LIPIcs.ICALP.2019.76
https://doi.org/10.1137/17M1122529
https://doi.org/10.1002/0471715816
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.4230/LIPIcs.STACS.2018.43
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-540-48413-4_6
https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1006/jagm.2000.1128
https://doi.org/10.1016/S0196-6774(03)00074-9
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1023/B:JOCO.0000021934.29833.6b
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1137/S0097539797329142
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1137/S0097539792236882

References

[KV02]

[Lab13)]

[Law79]

[Lee03]

[Leu04]

[LMNY13]

[LWF96]

[Mol19]

[MP04]

[MRS85]

[MRWS84]

[MRWS5]

[MSU99]

[MSVW16]

[MT90]

[MUV06]

[MV14]

[MWW19]

162

B. Korte and J. Vygen. Combinatorial Optimization. Springer, 2002. doi:10.1007/
978-3-662-56039-6.

B. Labonté. Ein Simulationssystem fiir stochastische Scheduling-Probleme und empirische
Untersuchung zur Approximationsgiite von Politiken. Master’s thesis, Technische Uni-
versitat Berlin, 2013.

E. L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper. Res.,
4(4):339-356, 1979. doi:10.1287/moor.4.4.339.

J. Lee. Online deadline scheduling: multiple machines and randomization. In SPAA,
pages 19-23. ACM, 2003. https://doi.org/10.1145/777412.777416.

J. Y. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. Chapman and Hall/CRC, 2004. http://www.crcnetbase.com/isbn/
978-1-58488-397-5.

B. Lucier, I. Menache, J. Naor, and J. Yaniv. Efficient online scheduling for deadline-
sensitive jobs: Extended abstract. In SPAA, pages 305-314. ACM, 2013. doi:10.1145/
2486159.2486187.

J. Liebeherr, D. E. Wrege, and D. Ferrari. Exact admission control for networks with a
bounded delay service. IEEE/ACM Trans. Netw., 4(6):885-901, 1996. doi:10.1109/90.
556345.

M. Molinaro. Stochastic ¢p load balancing and moment problems via the l-function
method. In SODA, pages 343—-354. STAM, 2019. doi:10.1137/1.9781611975482.22.

R. Mansini and U. Pferschy. Securitization of financial assets: Approximation in
theory and practice. Comput. Optim. Appl., 29(2):147-171, 2004. doi:10.1023/B:
COAP.0000042028.93872.b9.

R. H. Méhring and F. J. Radermacher. Introduction to stochastic scheduling problems.
In K. Neumann and D. Pallaschke, editors, Contributions to Operations Research, pages
72-130. Springer, 1985. doi:10.1007/978-3-642-46534-5_6.

R. H. Mohring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems I -
general strategies. Z. Oper. Research, 28(7):193-260, 1984. doi:10.1007/BF01919323.

R. H. Mohring, F. J. Radermacher, and G. Weiss. Stochastic scheduling problems II -
set strategies-. Z. Oper. Research, 29(3):65-104, 1985. doi:10.1007/BF01918198.

R. Moéhring, A. Schulz, and M. Uetz. Approximation in stochastic scheduling: The
power of LP-based priority policies. J. ACM, 46(6):924-942, 1999. doi:10.1145/331524.
331530.

N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for online MST
and TSP. SIAM J. Comput., 45(3):859-880, 2016. doi:10.1137/130917703.

S. Martello and P. Toth. Lower bounds and reduction procedures for the bin packing prob-
lem. Discret. Appl. Math., 28(1):59-70, 1990. doi:10.1016/0166-218X(90)90094-S.

N. Megow, M. Uetz, and T. Vredeveld. Models and algorithms for stochastic online
scheduling. Math. Oper. Res., 31(3):513-525, 2006. doi:10.1287/moor.1060.0201.

N. Megow and T'. Vredefeld. A tight 2-approximation or preemptive stochastic scheduling.
Math. Oper. Res., 39(4):1297-1310, 2014. doi:10.1287/moor.2014.0653.

M. Mucha, K. Wegrzycki, and M. Wlodarczyk. A subquadratic approximation scheme
for partition. In SODA, pages 70-88. SIAM, 2019. doi:10.1137/1.9781611975482.5.

https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1145/777412.777416
http://www.crcnetbase.com/isbn/978-1-58488-397-5
http://www.crcnetbase.com/isbn/978-1-58488-397-5
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1109/90.556345
https://doi.org/10.1109/90.556345
https://doi.org/10.1137/1.9781611975482.22
https://doi.org/10.1023/B:COAP.0000042028.93872.b9
https://doi.org/10.1023/B:COAP.0000042028.93872.b9
https://doi.org/10.1007/978-3-642-46534-5_6
https://doi.org/10.1007/BF01919323
https://doi.org/10.1007/BF01918198
https://doi.org/10.1145/331524.331530
https://doi.org/10.1145/331524.331530
https://doi.org/10.1137/130917703
https://doi.org/10.1016/0166-218X(90)90094-S
https://doi.org/10.1287/moor.1060.0201
https://doi.org/10.1287/moor.2014.0653
https://doi.org/10.1137/1.9781611975482.5

[O1i82]
[Pinl6]
[PS82]

[PS10]

[PST95]

[PSTO4]

[PWS7]
[Ram92]

[Rhel5)

[Rot66]
[Rot12]
[Sch03]

[Sch08]

[Sga96]
[Smi56)

[SS16]

[SSS09]
[SSU16]

[STS5]

References

H. J. Olivié. A new class of balanced search trees: Half balanced binary search trees.
RAIRO Theor. Informatics Appl., 16(1):51-71, 1982. doi:10.1051/ita/1982160100511.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer International Pub-
lishing, 5 edition, 2016. doi:10.1007/978-3-319-26580-3.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, 1982.

K. Pruhs and C. Stein. How to schedule when you have to buy your energy. In APPROX,
volume 6302 of Lecture Notes in Computer Science, pages 352-365. Springer, 2010. doi:
10.1007/978-3-642-15369-3_27.

S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res., 20(2):257-301, 1995. doi:10.1287/
moor.20.2.257.

K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In Handbook of Schedul-
ing. Chapman and Hall/CRC, 2004. http://www.crcnetbase.com/doi/abs/10.1201/
9780203489802.ch15.

M. Pinedo and G. Weiss. The “largest variance first” policy in some stochastic scheduling
problems. Oper. Res., 35(6):884-891, 1987. doi:10.1287/opre.35.6.884.

B. Ram. The pallet loading problem: A survey. International Journal of Production
Economics, 28(2):217-225, 1992. doi:10.1016/0925-5273(92)90034-5.

D. Rhee. Faster fully polynomial approximation schemes for knapsack problems. Master’s
thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/
98564.

M. H. Rothkopf. Scheduling with random service times. Manag. Sci., 12(9):707-713,
1966. doi:10.1287/mnsc.12.9.707.

T. Rothvofl. The entropy rounding method in approximation algorithms. In SODA, pages
356-372. SIAM, 2012. doi:10.1137/1.9781611973099.32.

A. Schrijver. Combinatorial Optimization. Springer, 2003. https://www.springer.com/
de/book/9783540443896.

A. S. Schulz. Stochastic online scheduling revisited. In COCOA, volume 5165 of Lec-
ture Notes in Computer Science, pages 448-457, Berlin, 2008. Springer. doi:10.1007/
978-3-540-85097-7_42.

J. Sgall. On-line scheduling. In Online Algorithms, volume 1442 of Lecture Notes in
Computer Science, pages 196-231. Springer, 1996. doi:10.1007/BFb0029570.

W. E. Smith. Various optimizers for single-stage production. Nawval Research Logistics
Quarterly, 3(1-2):59-66, 1956. doi:10.1002/nav.3800030106.

C. Schwiegelshohn and U. Schwiegelshohn. The power of migration for online slack
scheduling. In ESA, volume 57 of LIPIcs, pages 75:1-75:17. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.75.

P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Math. Oper. Res., 34(2):481-498, 2009. doi:10.1287/moor.1090.0381.

M. Skutella, M. Sviridenko, and M. Uetz. Unrelated machine scheduling with stochastic
processing times. Math. Oper. Res., 41(3):851-864, 2016. doi:10.1287/moor.2015.0757.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202-208, 1985. doi:10.1145/2786.2793.

163

https://doi.org/10.1051/ita/1982160100511
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1287/moor.20.2.257
https://doi.org/10.1287/moor.20.2.257
http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch15
http://www.crcnetbase.com/doi/abs/10.1201/9780203489802.ch15
https://doi.org/10.1287/opre.35.6.884
https://doi.org/10.1016/0925-5273(92)90034-5
http://hdl.handle.net/1721.1/98564
http://hdl.handle.net/1721.1/98564
https://doi.org/10.1287/mnsc.12.9.707
https://doi.org/10.1137/1.9781611973099.32
https://www.springer.com/de/book/9783540443896
https://www.springer.com/de/book/9783540443896
https://doi.org/10.1007/978-3-540-85097-7_42
https://doi.org/10.1007/978-3-540-85097-7_42
https://doi.org/10.1007/BFb0029570
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.4230/LIPIcs.ESA.2016.75
https://doi.org/10.1287/moor.1090.0381
https://doi.org/10.1287/moor.2015.0757
https://doi.org/10.1145/2786.2793

References

[Stol13]

[SU05]

[SV16]

[Tar83]
[Vaz01]
[Wag59]
[Walsg)]

[Web82]

[Wei66]
[Wes00]

[WS11]

[WVWS6]

[Yanl7]

164

A. L. Stolyar. An infinite server system with general packing constraints. Oper. Res.,
61(5):1200-1217, 2013. doi:10.1287/opre.2013.1184.

M. Skutella and M. Uetz. Stochastic machine scheduling with precedence constraints.
SIAM J. Comput., 34(4):788-802, 2005. doi:10.1137/30097539702415007.

M. Skutella and J. Verschae. Robust polynomial-time approximation schemes for parallel
machine scheduling with job arrivals and departures. Math. Oper. Res., 41(3):991-1021,
2016. doi:10.1287/moor.2015.0765.

R. E. Tarjan. Updating a balanced search tree in O(1) rotations. Inf. Process. Lett.,
16(5)2537257,1983.doi:10.1016/0020—0190(83)90099—6.

V. V. Vazirani. Approzimation Algorithms. Springer, 2001. http://www.springer.com/
computer/theoretical+computer+science/book/978-3-540-65367-7.

H. M. Wagner. An integer linear-programming model for machine scheduling. Naval
Research Logistics Quarterly, 6(2):131-140, 1959. doi:10.1002/nav.3800060205.

J. Walrand. An Introduction to Queueing Networks. Prentice Hall, Englewood Cliffs, NJ,
1988.

R. R. Weber. Scheduling jobs by stochastic processing requirements on parallel machines
to minimize makespan or flowtime. J. Appl. Probab., 19(1):167-182, 1982. doi:10.2307/
3213926.

H. M. Weingartner. Capital budgeting of interrelated projects: Survey and synthesis.
Manag. Sci., 12(7):485-516, 1966. doi:10.1287/mnsc.12.7.485.

J. R. Westbrook. Load balancing for response time. J. Algorithms, 35(1):1-16, 2000.
do0i:10.1006/jagm.2000.1074.

D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. http://www.cambridge.org/de/knowledge/isbn/
item5759340/7site_locale=de_DE.

R. Weber, P. Varaiya, and J. Walrand. Scheduling jobs with stochastically ordered pro-
cessing times on parallel machines to minimize expected flowtime. Journal of Applied
Probability, 23:841-847, 1986. doi:10.2307/3214023.

J. Yaniv. Job Scheduling Mechanisms for Cloud Computing. PhD thesis, Technion, Israel,
2017. http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/PHD/
PHD-2017-03.pdf.

https://doi.org/10.1287/opre.2013.1184
https://doi.org/10.1137/S0097539702415007
https://doi.org/10.1287/moor.2015.0765
https://doi.org/10.1016/0020-0190(83)90099-6
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
https://doi.org/10.1002/nav.3800060205
https://doi.org/10.2307/3213926
https://doi.org/10.2307/3213926
https://doi.org/10.1287/mnsc.12.7.485
https://doi.org/10.1006/jagm.2000.1074
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://doi.org/10.2307/3214023
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/PHD/PHD-2017-03.pdf
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2017/PHD/PHD-2017-03.pdf

Zusammenfassung

Unsicherheit ist allgegenwértig beim Lésen von praxisbezogenen Optimierungsproblemen und
stellt eine grofle Herausforderung dar, wenn Resultate der kombinatorischen Optimierung in
Handlungsempfehlungen fiir reale Anwendungen iibersetzt werden sollen, da sich Problempa-
rameter hiufig &ndern. Dadurch ist es sehr wahrscheinlich, dass die aktuelle Losung unter den
gegebenen Umstédnden gut funktioniert. Sobald jedoch die Inputdaten geringfiigig geéndert
oder neue Informationen bekannt werden, ist dies meist nicht mehr der Fall und neue Ansétze
miissen entwickelt werden.

Diese Arbeit beschéftigt sich mit Algorithmen, die selbst unter Unsicherheit beweisbar gute
Loésungen finden, und konzentriert sich dabei auf zwei fundamentale Gebiete der kombinatori-
schen Optimierung: Packungs- und Schedulingprobleme. Von Packungsproblemen spricht
man im Allgemeinen dann, wenn gewisse Objekte Behéltern mit beschréankten Kapazititen
so zugewiesen werden sollen ohne diese zu iiberschreiten. Schedulingprobleme beschreiben
die zeitliche Zuordnung von Aufgaben zu knappen Ressourcen oder Maschinen. Wir betrach-
ten drei verschiedene Arten von Unsicherheit und die zugehérigen mathematischen Modelle:
stochastische Informationen, online Modelle und dynamische Probleme.

Liegen Informationen iiber einen Problemparameter lediglich als stochastische Zufallsvari-
ablen vor, so spricht man von stochastischen Informationen. Diese modellieren die Moglichkeit,
Wissen aus vorherigen, d&hnlichen Problemen oder Probleminstanzen zu nutzen, um neue, un-
bekannte Projekte zu realisieren. Dabei werden problemrelevante Parameter, wie die Dauer
einer Aufgabe oder die Grofle eines Objekts, als Zufallsvariablen modelliert und zu Beginn
sind lediglich die zugrunde liegenden Wahrscheinlichkeitsverteilungen bekannt. Erst im Laufe
der Zeit erfahrt der Planer die Realisierung der Zufallsvariable und kann darauf basierend die
Planung anpassen.

Online Modelle werden verwendet, wenn kaum Wissen iiber die Probleminstanz bekannt
ist und dieses erst im Laufe der Planung verfiighar wird. Ein Planer muss auf der ihm zur
Verfigung stehenden Datengrundlage gute (und manchmal unwiderrufbare) Entscheidungen
treffen. Das Bekanntwerden von problemrelevanten Informationen kann dabei entweder schritt-
weise oder zu dem Planer unbekannten Zeitpunkten erfolgen.

Dynamische Probleme bilden die sich stédndig verindernde Wirklichkeit ab, indem in jeder
Runde die Probleminstanz lokalen Anderungen unterliegt. Solche lokale Anderungen kénnen
das Hinzufligen oder Entfernen von sowohl Objekten oder Aufgaben als auch von Behéltern
oder Maschinen sein. Die Schwierigkeit fiir dynamische Algorithmen liegt darin begriindet,
dass sie ihre Losung zwar den Umstdnden anpassen koénnen, diese jedoch schnellstméglich
berechnet werden muss.

In dieser Arbeit betrachten wir ein Schedulingmodell mit stochastischen Informationen, bei
dem der erwartete durchschnittliche Fertigstellungszeitpunkt der Aufgaben minimiert werden
soll. Wir schlieflen Giitegarantien, die unabhéngig von der den stochastischen Informationen
zugrunde liegenden Verteilungen sind, fiir sogenannte index-basierte Politiken mit Hilfe einer
einfachen Klasse von Instanzen aus. Fiir etwas allgemeinere Politiken gelingt es uns fiir diese

References

Klasse von Instanzen eben solche Giitegarantien zu zeigen.

Wir behandeln des Weiteren ein Online-Schedulingmodell, bei dem die Aufgaben schrittweise
nacheinander bekannt werden und lediglich von einigen der gegebenen Maschinen bearbeitet
werden kénnen. Unmittelbar bei Bekanntwerden einer neuen Aufgabe muss diese einer Ma-
schine zugewiesen werden. Das Ziel ist, die Maximallast der Maschinen zu minimieren. Wir
analysieren einen Online-Algorithmus, der Entscheidungen in begrenztem Mafle widerrufen
kann und dadurch eine gute Planung ermdoglicht.

Zusétzlich untersuchen wir ein online-Schedulingmodell, bei dem die Aufgaben jeweils erst zu
ihren Ankunftszeiten bekannt werden und dann von allen Maschinen bearbeitet werden kénnen.
Das Ziel ist es, die maximale Anzahl an Aufgaben vor ihren jeweiligen Deadlines fertigzustellen.
Wir entwickeln hierfiir einen Online-Algorithmus und analysieren seine Giitegarantie. Aufler-
dem zeigen wir, dass unser Algorithmus bestmoglich ist. In anderen Worten, kein Algorithmus,
der die Informationen im Laufe der Planung erhalt, kann bessere Entscheidungen treffen.

In diesem Modell betrachten wir auch die Auswirkungen von verbindlichen Fertigstellungs-
zusagen des Planers. Genauer gesagt untersuchen wir, wie sich die Giitegarantien von Online-
Algorithmen verhalten, wenn der Planer zu einem bestimmten Zeitpunkt garantieren muss,
dass eine bestimmte Aufgabe piinktlich fertiggestellt wird. Uberraschenderweise gelingt es uns
zu zeigen, dass einige moderate Fertigstellungszusagen keine allzu drastischen Auswirkungen
auf die Performance von Online-Algorithmen haben. Wenn die Zusage bei Ankunft der Aufgabe
gegeben werden muss, schliefen wir die Existenz von guten Online-Algorithmen aus.

Zuletzt betrachten wir ein dynamisches Packungsproblem, bei dem sowohl die Menge der
Objekte als auch die Behélter lokalen Anderungen unterliegen: In jeder Runde wird entweder
ein neues Objekt oder ein neuer Behélter hinzugefiigt oder ein Objekt oder ein Behélter ent-
fernt. Jedes Objekt ist durch seine Grofle sowie seinen Wert charakterisiert. Das Ziel ist es
hierbei, Objekte von maximalem Gesamtwert zu packen ohne die Kapazititen der Behélter
zu iberschreiten. In diesem Modell darf sich die Losung eines Algorithmus‘ den Umsténden
anpassen und beliebig verdndern, solange die neue Losung in sublinearer Zeit berechnet werden
kann. Wir beschreiben hierfiir einen Algorithmus, der nahezu optimale Loésungen liefert.

166

	Introduction
	Preliminaries
	Basic Notation
	Algorithm Analysis and Complexity
	Scheduling and Packing
	Scheduling Problems
	Packing Problems

	Scheduling and Packing Under Uncertainty
	Stochastic Input
	Online Input
	Dynamically Changing Input

	Stochastic Minsum Scheduling
	Introduction
	Lower Bound for Index Policies
	Upper Bound for Bernoulli-Type Instances
	Further Results on Bernoulli-Type Instances
	Less Stochastic Than Deterministic Jobs
	Many Long Stochastic Jobs in Expectation
	Bounded Processing Times of Stochastic Jobs
	Bounded Makespan of Deterministic Jobs
	At least m-1 Expected Long Stochastic Jobs
	Discussion

	Concluding remarks

	Online Load Balancing with Reassignment
	Introduction
	Online Flows with Rerouting
	Online Load Balancing with Reassignment
	Unit-Size Jobs
	Small Jobs
	Arbitrary Jobs

	Concluding Remarks

	Online Throughput Maximization
	Introduction
	The Threshold Algorithm
	The Threshold Algorithm
	Main Result and Road Map of the Analysis

	Successfully Completing Sufficiently Many Admitted Jobs
	Competitiveness: Admitting Sufficiently Many Jobs
	A Class of Online Algorithms
	Admitting Sufficiently Many Jobs

	Lower Bound on the Competitive Ratio
	Concluding Remarks

	Online Throughput Maximization with Commitment
	Introduction
	The Blocking Algorithm
	Completing All Admitted Jobs on Time
	Competitiveness: Admitting Sufficiently Many Jobs
	Lower Bounds on the Competitive Ratio
	Concluding Remarks

	Dynamic Multiple Knapsacks
	Introduction
	Data Structures and Preliminaries
	Dynamic Linear Grouping
	Algorithm
	Analysis

	Identical Knapsacks
	Algorithm
	Analysis

	Ordinary Knapsacks When Solving Multiple Knapsack
	Algorithm
	Analysis

	Special Knapsacks When Solving Multiple Knapsack
	Algorithm

	Solving Multiple Knapsack
	Algorithm
	Analysis

	Concluding Remarks

	References

