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Abstract

The capability to perceive the working environment is crucial for autonomous and

automated systems. For instance, an assembly robot needs to know accurately the

position of the assembly parts in order to grasp them successfully. However, the

design synthesis of perception systems is associated with high engineering efforts

due to a large number of interdependent design choices and high reliability and

accuracy requirements. This is especially problematic for flexible assembly system,

where an effortless adaptation to new products is necessary. The design process

includes different steps. First, one or multiple sensors must be chosen from a large

set of alternatives and placed in the working environment. Then, data processing

steps must be chosen, combined, and parameterized in order to form a working

perception pipeline. The space of possible system configurations is large and the

solution space comparatively small. Noise and uncertainty are immanent in the data

and have a strong effect on the system performance. Additionally, small variations in

task, environment, and parameterization can decrease the performance or render the

entire system dysfunctional.

In this thesis, models and methods are introduced and investigated in order to

automate the perception system design process for flexible assembly systems. First,

a common representation grounded in set-theory is introduced, which allows to

represent procedural and declarative models for perception systems hierarchically, i.e.

on different levels of abstraction. The hierarchical structure allows to represent

different levels of computationally less demanding approximations of the models,

which facilitates an efficient exploration of the space of system configurations. Based

on the common representation a design synthesis method is introduced, which allows

to jointly optimize the structure and parameterization of perception pipelines. In

order to address geometric uncertainties, we propose an uncertainty model based on

factor graphs, which is embedded in a planning-based synthesis approach and allows

to efficiently estimate pose uncertainties of sequences of perceptual actions. Finally,

a synthesis method based on hierarchical planning is introduced. This hierarchical

approach increases the synthesis efficiency and enables the runtime adaption and



failure handling of perception system. The contributions are validated on the example

of industrial assembly applications in simulated and real-world environments.
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Zusammenfassung

Umgebungswahrnehmung ist eine Kernfähigkeit für autonome und automatisierte

Systeme, wie beispielsweise Roboter und Fertigungsanlagen. Ohne eine zuverlässige

und ausreichend genaue Lokalisierung von beweglichen Objekten im Arbeitsraum ist

ein vollautomatischer Betrieb nicht möglich. Die Auslegung von Wahrnehmungssys-

temen ist jedoch mit hohem Aufwand verbunden. Passende Sensoren müssen

platziert und eine Vielzahl von Datenverarbeitungsschritten in geeigneter Weise

parametrisiert und kombiniert werden. Dies ist beim Einsatz von flexiblen Automa-

tisierungssystemen problematisch, da hier eine schnelle Anpassung an neue Produkte

benötigt wird. Der resultierende Konfigurationsraum ist riesig und der Lösungsraum

klein. Rauschen und Unsicherheit, insbesondere auch geometrischer Natur, sind

omnipräsent in Roh- und weiterverarbeiteten Daten, was Fehlinterpretationen nach

sich zieht. Schon kleine Änderungen an Aufgabe, Umgebung und Parametrisierung

des Wahrnehmungssystems können die Erfolgsquote erheblich reduzieren oder zum

Scheitern der Wahrnehmung führen.

Im Rahmen dieser Arbeit werden daher neuartige Modelle und Methoden für die

Automatisierung des Auslegungsprozesses eingeführt und untersucht. Zunächst

einmal werden gemeinsame Repräsentationen und Schnittstellen auf Basis der

Mengenlehre eingeführt, die es erlauben prozedurale und deklarative Modelle

für Wahrnehmungssysteme auf verschiedenen Abstraktionsebenen hierarchisch zu

beschreiben. Dies ermöglicht eine effiziente Exploration des Konfigurationsraumes

mithilfe abstrakter und weniger rechenintensiver Surrogat-Modellen. Aufbauend

auf der gemeinsamen Repräsentation wird ein Ansatz zur Synthese von Datenverar-

beitungsketten eingeführt, der es ermöglicht die Struktur der Datenverarbeitungs-

kette und die individuellen Parameter der Operatoren gemeinsam zu optimieren.

Zur Berücksichtigung von geometrischen Unsicherheiten wird ein Ansatz eingeführt,

der es ermöglicht Unsicherheiten explizit mithilfe von Faktor-Graphen zu repräsen-

tieren, abzuschätzen und in der Synthese zu berücksichtigen. Abschließend wird

eine Synthesemethode auf Basis von hierarchischer Planung beigetragen, die durch

Ausnutzung des hierarchischen Modells die zeitliche Effizienz der Synthese steigert.



Dadurch wird eine Anpassung und Reaktion auf Fehler zur Laufzeit ermöglicht.

Die wissenschaftlichen Beiträge und Ansätze werden in Simulation und auf echten

Robotersystemen am Beispiel von Montageaufgaben validiert.
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Chapter1

Introduction

Automation in manufacturing enables the efficient production of industrial and

consumer goods. From basic products such as screws up to highly complex products

such as airplanes and cars, numerous steps are required in the manufacturing process.

In a simplified example of a gearbox, a housing must be cast, machining has to

provide accurate surfaces, housing and gears must be transported to an assembly

station, where the gearbox can finally be assembled. Automation ensures consistent

quality levels, high production output and low production costs. It therefore enables

to efficiently satisfy the demands of modern production systems.

The term automation is rooted in the Greek word "automatos", which signifies "self-

acting", (Gupta and Arora, 2009). An automation system is therefore characterized

by the ability to perform an action independently, without external control. An

automation system is comprised of actuators, sensors and control units. Actuators,

such as robot arms and grippers are used to physically interact with the world, e.g.,

to grasp parts and to assemble products. Sensors provide information about the state

of the world, for instance the locations of available objects or attributes thereof. The

control units interpret incoming sensor data and provide commands for the actuators.

Three different types of automation in manufacturing can be differentiated: fixed,

programmable and flexible automation (Gupta and Arora, 2009), see also Fig. 1.1.

Fixed automation is realized using custom designed, special purpose hardware and

typically addresses very high production volumes and specialized processes. An

example is the production of car bodies, where high capital investment is required

for the special machinery, which is then able to produce the same product at very

high throughput for multiple years. Programmable automation is characterized by

the reuse of general-purpose equipment, such as a robot, which is reprogrammed
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manually for each product. It is characterized by hardware that can be adapted

by rewriting the program. A milling machine with computerized numerical control

(CNC), for example, can be reprogrammed for each part to be processed. Due to the

programming effort, it is suitable especially for medium production batch sizes, such

as a dozen or few hundred pieces and upwards. With additional software tooling

for the automated generation of a CNC program flexible automation is feasible.

Flexible automation addresses production environments where the product or the

environment changes often and only low number of parts are produced. Here, the

cost to adapt the automation system to a new product must be minimal, even if this

means that the production process itself is slower. In the ideal case, the adaptation to

a new product is software-defined and fully automatic. However, an adaptation of

the hardware is often necessary and can be realized for instance via automated tool

changing systems.

Figure 1.1: A ŕexible automation system for assembly. It does not use őxtures at all and
is characterized by an advanced control system which allows to adapt the program auto-
matically to new tasks. Here, the task is to mount an electric cabinet module on a hat rail.
No őxtures are given and the parts must be localized. Therefore, perception is key for this
kind of ŕexibility.

The need for automation and especially flexible automation is increasing due to

several factors. First, most western countries have an aging population. According

to (Fuchs et al., 2017), the workforce in Germany will decrease by 6 million persons

until 2030 if only demographic effects are taken into account. This will result in a

major labor shortage if automation cannot fill the gap. Another important aspect is

the global competition, which forces local manufacturers to increase their productivity.

Often, automation is the most effective solution to increase productivity. Furthermore,

product life-cycles are decreasing with higher innovation speeds. At the same time,

product customization and variability increase. This results in an increasing need for

flexible automation.
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Figure 1.2: Relative costs for the design and deployment of a robotic spot welding automa-
tion solution (Boston Consulting Group, 2015).

However, the cost for automation is still high, especially due to the engineering effort

involved. In Fig. 1.2 a distribution of the costs of a robotic automation system for

spot welding in the automotive industry is shown. The systems engineering, which

includes programming, is a major cost point, which inhibits cost effective adaptation

to varying products. Therefore, software-defined design approaches are required

in order to reduce and automate the engineering for automation systems. Here,

software-defined means, that new designs are created and validated in a software

environment without the use of hardware and real tests.

Ideally, such approaches can be used and reused in the distinct phases of offline

engineering and online adaptation. Offline engineering addresses the initial design of

an automation system, where there is still freedom in the design decision. Online

adaptation addresses the reconfiguration of an automation system, when the product

or production process changes, or when unexpected situations or failures occur.

Perception plays a crucial role for cost effective, flexible automation. Flexible automa-

tion systems have to cope with unstructured environments, where the exact locations

of the parts can be unknown and have to be inferred using a perception system,

see Fig. 1.1. In a fixed automation system on the contrary fixtures are used, which

are special product specific hardware parts that cannot be re-used across different

products. The flexible automation system in Fig. 1.1 consists of two industrial robot

arms with grippers as actuators and multiple cameras as sensors. The task is to

3
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assemble an electric cabinet, which is a good example for a task that requires flexible

automation. The typical production volume for electrical cabinets is low and the

degree of customization high. The required parts are placed loosely on the table.

Without a way to estimate the position of the parts, successful manufacturing is

impossible. This is what the perception system provides. The perception system alone

does require significant engineering effort and as key enabler for flexible automation,

this thesis will address the automated design synthesis of perception systems.

World

Sensors

Data
Processing

Actuators

Control

Perception System

Data Noise

Information

Uncertainty

Automation System

Design
Synthesis

Task

Goals Constraints

adapt

actsense

Actions

adapt

evaluate

Errors

Model
approximate

use

Figure 1.3: High-level overview of design synthesis of perception systems in industrial ap-
plications. The perception system is part of the control loop of an automation system, with
inherent noise and uncertainty. The design synthesis considers goals and constraints from
a task deőnition. It can adapt and evaluate the perception system in order to satisfy the
task.

A high-level overview of design synthesis of perception systems is given in Fig. 1.3.

An automation system interacts with the world via a control loop which involves

sensing and acting. Sensing is done via sensors, which we define as:

Definition 1 - Sensor

A sensor is a physical device, which is capable of converting physical properties or

environmental attributes into machine readable data (Mitchell, 2012).

There are many different types of sensors, such as radar sensors, lidar sensors, and

cameras. Let us consider the example of a camera. A common 2D camera converts

light that is reflected from the surfaces of a scene into an image, an array of digital

values which encode the light intensity at different positions on the screen of a

camera. So light is converted into intensity data.

4



The raw intensity data of a camera is not useful for most applications, unless the

application requires an estimate of the light intensity. Therefore, data processing is

required in order to extract information. For instance, object recognition algorithms

can be applied in order to recognize the type of an object seen in the image. The

description of a scene via an object category is a more condensed representation

as the intensity data and allows more complex decision taking. We define data

processing as:

Definition 2 - Data Processing

Data processing is the “collection and manipulation of items of data to produce

meaningful and condensed information”, Oliver et al. (1992, p. 2).

Information in general is the structured, organized, and processed data, which allows

to answer relevant questions or take decisions. Information can be associated with

uncertainty. In the context of automated industrial applications, such as assembly,

logistics, and bin-picking, relevant information includes the location of objects,

product identifiers, and the presence of defects.

A perception system is now the sum of components which are required in order to

derive the necessary information of a task. More formally, the term perception system

can be defined as:

Definition 3 - Perception System

A perception system provides task relevant information about its environment. It is

comprised of sensors, data processing, and computation units.

An exemplary perception system is depicted in Fig. 1.4. The data from the sensor is

processed by a sequence of parameterized steps, which yield the required information,

for instance the position of an object.

In Fig. 1.3 the relation between task, design synthesis and perception system is

highlighted as well. The task defines goals and constraints, which are to be fulfilled

within a design synthesis process. Therefore, the perception system needs to be

adapted and evaluated. This can be done in virtual environments if a simulation

of sufficient quality is available. The high-level goal of this work is to reduce the

engineering effort for automation systems, specifically the perception sub-system. In

the next section the engineering and synthesis process are introduced in more detail.
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Perception System

λ

λ

λ

Computation Unit

RobotSensor

Figure 1.4: Exemplary perception system with a single sensor and a computation unit,
where a data processing pipeline comprised of parameterized operators is executed in
order to generate task relevant information. The symbol λ denotes the parameters for the
operator.

1.1 Perception System Design Synthesis

The design synthesis of perception systems is embedded in the overall systems

engineering process. According to (Lightsey, 2001) the process can be structured via

three major steps, which are in brief:

• Requirement analysis: Definition of system requirements by considering cus-

tomer, engineering team, and management, as well as laws and regulation.

• Functional analysis / allocation: Definition of functional interfaces as well

as a functional architecture by a decomposition and distribution of the system

requirements.

• Design synthesis: Transition from functional architecture to physical architec-

ture by selecting and parameterizing suitable components.

The steps are interconnected and an iteration between them can be required. We can

define system design synthesis as:
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Definition 4 - System Design Synthesis

System design synthesis is a part of the overall systems engineering process. “The

objective of design synthesis is to combine and restructure hardware and software

components in such a way as to achieve a design solution capable of satisfying the

stated requirements.”, Lightsey (2001, p. 57).

The result of the system design synthesis is a system configuration within the available

configuration space. It can be defined as:

Definition 5 - System Configuration

A system configuration denotes the selection, parameterization, and combination of

hardware and software components for a specific task. It represents a point in the

multi-dimensional configuration space.

We now discuss the systems engineering process for perception systems based on

an example. The engineering of perception systems is closely linked with the target

application and is typically performed by a perception engineer. Let us consider an

assembly application as displayed in Fig. 1.5. Here, a peg must be inserted into a

hole, which is a common assembly task. For instance within the manufacturing of

gear boxes, a shaft must be inserted into gears, bearings or the housing.

Peg

Hole

Figure 1.5: Peg in hole task

We target a flexible automation system, where no fixtures can be designed in an

economically feasible manner. Here, the parts are delivered loosely without exact

information about their positions. How does a perception engineer approach the task

of designing a perception system for such an application?

First, the application requirements must be clearly defined. For the assembly pro-

cedure it is important, that both objects are well localized and aligned, such that

7
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the assembly procedure can be performed successfully. As depicted in Fig. 1.6 on

the left side, when peg and hole are well aligned, successful assembly is possible.

If not, a collision may occur, which prevents the assembly and might even destroy

or deteriorate the product. In general, the task defines a dependency of the success

probability of the assembly process on the localization accuracy provided, c.f. Fig. 1.6,

right. This dependency can be used to determine a threshold for the accuracy of

the localization as requirement. Note here, that force-feedback controlled robot

movements can be used in order to decrease the accuracy requirements. However,

search motions may leave scratches on the surface and can therefore not be applied

in arbitrary applications. Furthermore, tactile sensing is also part of the perception

domain.

Su
cc
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s
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ty

Pose ErrorSmall Pose Error Large Pose Error

Figure 1.6: Process requirements for peg-in-hole task. Large pose errors can lead to failures
within the assembly.

In practice, we have an interdependency between the product design, the design

of the overall automation system, and the design of the perception system, which

go hand in hand. The product designer can enlarge the chamfers of the peg in

order to reduce the requirements of the localization accuracy. The automation

system designer can provide fixtures for improved localization. This is especially true

for the offline engineering phase, when a new product and automation system is

created from scratch. Here, it would be desirable to represent all the different design

decision in a single software-defined framework, that may consider all at once. But a

prerequisite thereof is that the individual design processes can be automated as well

in a software-defined manner. Consequently, for the design of the perception system

we can assume, that the requirements are quantified, and the problem is to design a

system that fulfills them. Additionally, different types of requirements exist. There

are functional requirements like the minimum accuracy and there are non-functional

requirements such as the overall cost of a system and preferred hardware or software

standards.
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With the set of requirements at hand, the perception engineer now must select

appropriate hardware and software modules, i.e., sensors, data processing and

computing units in order to fulfill the task requirements. The computing unit is often

given by the automation system, but also specialized hardware might be required

such as graphics processing units and accelerators for neural networks. But the

selection of the different components depends on each other and the task. Algorithms

that require color images cannot be applied on depth data. Sensors which produce

high quality data can be too expensive for the task at hand. The sensor might not

be suitable for the environment or the targeted objects. Specific computing units

may not be suitable or too slow to run the selected algorithms. Additionally, the

individual components must be parameterized. The camera must be positioned and

a large number of individual parameters of the data processing pipeline must be set.

A perception engineer uses different sources of information for this task. First, during

his training he would learn mathematical models and abstractions, which allow to

estimate system characteristics. For instance, he would learn to quantify the error

characteristic of stereo cameras and how it depends on the distance between object

and camera. Furthermore, he would determine to read and interpret datasheets

of sensors and how to understand performance evaluations of different perception

algorithms. In general, we can define a model as:

Definition 6 - Model

A model is an abstract description of the real world giving an approximate repre-

sentation of more complex functions of physical systems (Papalambros and Wilde,

2000).

So, a perception engineer uses models in order to make predictions about the

performance of specific perception system configurations. But not only mathematical

models are used, also experience plays an important role, which can be seen as a

data-informed model. The engineer for instance knows by experience, that specific

algorithms do not work well for small or symmetric objects. Both types of models

can help to take promising design decisions early on.

Another important source of insight are experiments. At some point it is required

to try out and test the system configuration in order to reduce the error induced by

model approximations. Here it is required that the tests cover the range of situations,

that the perception system might be confronted with. So even system tests can only

approximate the system’s performance across its application spectrum, as it is often

not possible to test every variation.
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In Fig. 1.7 the overall task of the perception engineer is visualized. First, he receives a

description of the task together with a specification of the requirements, for instance,

the targeted pose estimation accuracy. Then he chooses appropriate hardware and

software components from the available set. Finally, he assembles the components

together and parameterizes each of them. This includes the positioning of the sensor,

the combination of different algorithms as well as the choice of individual parameter

values.

Perception
Engineer

Sensor

λ λ

λ λ

Perception System

Task

Sensors Algorithms

Su
cc

es
s
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Pose Error

Peg

Hole

Pose Distribution

Figure 1.7: Overview of the system design by a perception engineer. A perception engineer
chooses sensors and algorithms in order to design a perception system which fulőlls the
task requirements.

Different system configurations have impact on the performance of the system.

Consider the three different setups in Fig. 1.8. In the solution instance A, a stereo

camera is used that provides point clouds and RGB images. Therefore, a pipeline

can be designed that works on both modalities and provides small pose errors. In

solution B only a RGB camera is used and placed at the same position. This setup

results in a lower pose accuracy. A repositioning of the RGB camera closer to the

object, as shown in solution C can improve the accuracy to a level of solution A.

The configuration space consists of the sensor choice, the system setup, the pipeline

structure, and the pipeline parameterization, as depicted in Fig. 1.9. The choice

of the sensor primarily defines the type of the available sensor data and the noise

characteristic that it exhibits. Depth and RGB are two examples for commonly used

data modalities in the context of industrial automation. Others include radar or

infrared images, which for instance are used for autonomous driving. Different

sensors can have distinct noise characteristic (Pomerleau et al., 2012). A good

example are stereo cameras that provide depth data. Here, the depth error is

inverse proportional to the distance between the cameras, the baseline (Gallup et al.,

10
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Sensor

λ λ

λ λ

Perception System

Pose Distribution
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Figure 1.8: Performance comparison of different perception systems. Depending on
the sensor type, placement, and data processing different pose error distributions are
achieved.

2008). Thus, different stereo cameras with different baselines have a different noise

characteristic.

Another configuration space dimension is the hardware placement, which comprises

the positioning of the camera and possibly object fixtures and additional lighting.

Especially the positioning of the camera has a strong influence on the noise, which

increases with higher distance between camera and scene for common depth sen-

sors (Nguyen et al., 2012). Therefore, it is important to choose the positioning well

according to the task.

λS

λI

Λ

Ψ

Θ

Φ

Sensor

Placement

Pipeline
Structure

Pipeline
Parameterization

Figure 1.9: Conőguration space dimension: sensor choice, sensor placement, pipeline
structure, and pipeline parameterization.
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Furthermore, the third dimension of the configuration space is the perception pipeline

structure. Different perception algorithms for filtering, object detection, pose esti-

mation, pose refinement, etc. can be combined in order to form a pipeline. Often it

is necessary to combine multiple algorithms, as an individual one does not perform

sufficiently. Finally, the algorithms must be parameterized, which is the configuration

space dimension of the pipeline parameterization.

1.1.1 Problem Statement

The perception system design problem can be formalized as a design optimization

problem (Papalambros and Wilde, 2000). The task is denoted as T . First, we define

a perception system configuration γ from the configuration space Γ(T ), as a tuple:

γ = ⟨ϕ, θ, ψ, λ⟩, (1.1)

where

• ϕ denotes a sensor from the set of available sensors Φ(T ),

• θ denotes a sensor placement from the set of possible sensor placements Θ(T ),

• ψ denotes the structure of a data processing pipeline from the set of possible

data processing pipelines Ψ(T ), and

• λ denotes a parameterization of the data processing pipeline from set of possible

parameterizations Λ(T ).

The configuration space and its dimensions depend on the application. Now, the

optimization problem can be formalized as (Papalambros and Wilde, 2000):

min
γ

f(γ, T ) (1.2a)

subject to hi(γ) = 0, i ∈ H(T ) (1.2b)

gj(γ) ≥ 0, j ∈ G(T ) (1.2c)

and γ ∈ Γ(T ), (1.2d)

where

• γ is the system configuration vector,

• f(γ, T ) is the objective function,
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• hi(γ) are a set of m1 equality constraints,

• gj(γ) are a set of m2 inequality constraints, and

• Γ is the configuration space for the presented problem.

For the application in industrial pose estimation tasks, different target variables can

be addressed as for instance the system cost, the reliability and the runtime. This,

however, is application specific. An exemplary objective function which addresses

the aforementioned variables is given in the following:

f(γ, T ) = c(γ) + w1 ∗ r(γ, T ) + w2 ∗ t(γ, T ) (1.3)

where

• c represents the cost of the system,

• r represents the reliability of the system,

• t represents the perception runtime of the system, and

• w1 and w2 are weights which allow to prioritize between the different parts of

the objective function.

The objective of this thesis is to provide modeling and synthesis methods in order to

facilitate and automate the design synthesis process. The overall approach should

address the main challenges, which arise in the problem domain and which are

introduced in the following.

The domain which serves as concrete example and evaluation target within this

thesis is pose estimation for programmable and flexible automation. Pose estimation

denotes the process of determining the translation and orientation of a known object

or object primitive with respect to a reference coordinate frame. It may entail the

use of different information sources, such as sensory data, e.g., color images, point

clouds, and force data, and available scene knowledge, such as supporting planes.

Pose estimation can be performed passively, by evaluation of already available sensor

data, or may involve active perception steps, such as a camera viewpoint adaptation.

Programmable and flexible automation pose special requirements especially regard-

ing the offline engineering and online adaptation phase. Generally, the offline

engineering use case addresses the initial design of a system and therefore the full

configuration space is available. In the online adaptation case, the hardware setup

is fixed and only software components and their parameterizations can be adapted.
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Additionally, the online adaptation may require quick response, while the offline

engineering may take more time. Both use cases should be supported for automated

design synthesis. But the focus of the offline synthesis lies in adaptations without

hardware changes, which can typically be realized in programmable and flexible

automation systems.

Configuration Space
Automated
Synthesis

Synthesis Problem

Goal Definition

Configuration

Synthesis Solution

Metrics

Online
Task

Offline
Task

Online
Solution

Real System

Simulated System

Offline
Solution

act sense

Automation System

World

Offline
Task

Offline
Solution

System Engineer

adapts uses

Figure 1.10: Automated synthesis for offline engineering and online adaptation. Offline
engineering and offline adaptation tasks are converted into a synthesis problem, which is
solved by an automated synthesis approach. The latter can leverage a simulation of the
automation system as well as directly interact with a real automation system.

In Fig. 1.10 an overview over the actors, components, and synthesis loops is given.

The central steps are the setup of the synthesis problem, the automated synthesis

and the use and evaluation of the synthesis results. At the offline engineering phase,

the system engineer needs to pose and solve synthesis problems. For automated

synthesis, the problem is formalized via the configuration space and a goal definition.

The solution of the synthesis procedure is a set of configurations and associated

metrics, such as runtime and accuracy. The automation system can be instantiated in

simulation, especially in early design phases, or in real world. Once the real system

is deployed design synthesis is required to adapt the system to new situations and

tasks. This adaptation phase covers online tasks, which require fast feedback and
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offline tasks, which are less time sensitive. The automated synthesis can access the

simulated and or real automation system if required.

1.1.2 Challenges

The challenge of the task stems from multiple origins. First, the typical configuration

space is very large. The four dimensions of sensor, positioning, pipeline structure,

and parameterization form a mixed discrete-continuous space with infinitely many

different configurations, due to the continuous variables. Even if continuous variables

are discretized, there are easily millions of possible configurations.

Furthermore, sensor data and algorithm performance are subject to noise and uncer-

tainty. Noise in the input of operators naturally leads to degraded and varying results

for the operators which are applied on the input. Additionally, every operator does

have its own characteristic. Consider Fig. 1.11, where the distribution of the pose esti-

mation error for different operators is plotted. Here the operator poseEstimationFPFP,

based on fast point feature histograms (Rusu et al., 2009), produces a broad spectrum

of results given the parameter set. In order to achieve higher accuracies, if required,

additional operators can be employed that allow for higher accuracy. For instance,

a pose refinement based on iterative closest points (refineICP) or a pose refinement

based on physics simulation (refinePhysics). Even though refineICP produces results

with a positional distance below 5mm, accuracies below 1mm are hard to achieve.

Here a combination with the operator refinePhysics can help. Performing a reliable

online estimate of uncertainties is still subject to research and is addressed for in-

stance within the Probabilistic Object Detection Challenge (Hall et al., 2020) for

spatial and semantic uncertainty of bounding boxes.

In an automation task we can distinguish five different sources of uncertainty:

• Environments: The environment of the automation system can change. For

instance, at different times of the year, different lighting conditions can be

given.

• Sensors: Sensor data is inherently subject to noise and errors. The effects

range from drift, bias, nonlinearity, white noise to discretization errors.

• Actuators: When the automation system is interacting with the world, e.g., via

robotic actuators it may induce uncertainty itself.
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Figure 1.11: Distribution of the positional error of different perception operators for a single
object and multiple scenes (Dietrich et al., 2020). Different operators clearly have different
capabilities and properties. The operator reőneICP provides low error results but requires
a good initial estimate in order to work.

• Models: As noted before, models are abstractions which are inherently inaccu-

rate. Every model contains simplifications, often deliberately in order to keep

the computational effort low.

• Computation: Reaction times and computational resources are constrained,

which can require to algorithmically trade accuracy versus speed. Furthermore,

algorithms and their implementations can be non-deterministic, which may

lead to variations in the results. And, as noted before, due to the uncertainty in

the input, there is inherent uncertainty in the output as well.

The list is inspired by Thrun et al. (2005), where robots are denoted as source of

uncertainty instead of actuators.

Due to noise and uncertainty, it is required to assess a specific configuration for a po-

tentially large number of scenes, i.e., object poses and environmental conditions, and

a potentially large number of noisy inputs. This leads to high computational effort to

evaluate a single system configuration. The state-of-the-art BOP benchmark (Hodan

et al., 2018) for 6D pose estimation operators uses 7450 images from seven datasets

in order to capture the variability of scenes and poses. It furthermore shows that the

performance of an operator depends on the scene and object.

Industrial applications are challenging due to additional requirements as summarized

in a study for pose estimation by Hagelskjær et al. (2018). The runtime of the

perception needs to be low in order to enable high throughput. High robustness

is required especially if erroneous detections can lead to damage. Furthermore, it

is desired to have low costs associated with the components and the engineering

process. Finally, the overall development time needs to be as low as possible.
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The problem of synthesizing perception systems in an offline and online fashion

lies at the intersection of multiple specialized research fields. It requires techniques

from, among others, computer vision, data fusion, model-driven systems engineering,

and design optimization. An engineer can manually plug and combine different

components, write the necessary glue code, parameterize the components, and test

the system against given use cases. For an automated design synthesis, however,

these steps must be performed automatically. Therefore, it is required that different

components and techniques have interoperable interfaces and can be tested with

available or simulated data. Furthermore, the generation and use of abstract models

is required in order to exploit prior knowledge and reduce the effort for the configu-

ration space exploration. Here a tight integration between modeling and execution

can reduce the engineering effort which is induced by tool and system boundaries.

Overall, the challenges in the design of perception systems can be summarized as:

• Variability: On one hand there exists a large variety of perception tasks and

applications. On the other hand, there is a diverse set of sensing domains,

perception operators and data types. This variability needs to be representable

and searchable.

• Uncertainty: Perception operators are generally subject to uncertainty and er-

rors in their predictions. Therefore, single data points are not enough to assess

the system performance. Rather large datasets must be used, which are compu-

tationally demanding to evaluate. Furthermore, a quantification and estimation

of the uncertainty is desired, which would allow to react appropriately.

• Sensitivity: Despite current advances, perception pipelines are still sensitive to

the application setting. Varying lighting conditions, sensor noise, ranges, and

texture can all contribute to decreasing performance in different application

settings. This is true for model-based (classical) operators and data-driven

operators such as neural networks, which often highly depend on the provided

training data. The dependency of pipeline performance on object properties

can be clearly seen in the BOP benchmark (Hodan et al., 2018).

• Complexity: The number of possible sensors, sensor placements, operators,

and pipeline structures as well as the parameter space are large, which leads

to a combinatorial explosion. Not all variants and parameter settings can be

evaluated in a brute force fashion. Therefore, approaches are required to

efficiently structure and reduce the configuration space.
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1.2 Contribution

The core contributions of this thesis are automated methods for the design synthesis

of perception systems for the phases of offline engineering and online adaptation,

which are grounded in a common, hierarchical modeling formalism.

Contribution C1:

Declarative and procedural hierarchical model for perception systems based on set

theory which facilitates configuration space exploration for design synthesis.

The hierarchical modeling formalism has multiple advantages. First, it allows to

model and generate compatible interfaces for components and algorithms from dif-

ferent origins and thus reduce the need for glue code. The generated models are

executable, which allows to apply meta-techniques for configuration space explo-

ration, such as optimization and planning. The meta-techniques for configuration

space exploration are represented as first class citizens as so-called meta-operators.

Therefore, a reuse within configuration space exploration methods is facilitated. Fur-

thermore, model abstraction hierarchies are represented, which allows to model the

perception system domain at different levels of abstraction. This allows to guide the

configuration space exploration via more abstract and computationally less expensive

models, as exploited within hierarchical planning. A superior synthesis runtime with

respect to a non-hierarchical baseline model is enabled and validated.

Contribution C2:

Design synthesis approach based on pipeline templates and sequential model-based

optimization which allows to jointly optimize the structure and parameterization of

perception pipelines for offline perception system design synthesis.

For offline design synthesis a pipeline structuring and operator matching approach is

introduced which builds upon the hierarchical modeling formalism from Contrib. C1.

A pipeline is modeled as a template, which consists of multiple structural elements

which can accommodate a set of connected perception operators. Operator matching

is used to match operators from an available set to the individual structural elements.

The overall structuring approach allows to reduce the configuration space and to

employ black box optimization techniques for the pipeline structure as well as the

operator parameters. It is modeled as meta-operator, which can be easily transferred

to different domains. The optimization is performed on annotated datasets, which
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allows to consider scene variability and sensor uncertainty. The applicability is vali-

dated in an industrial assembly setting, where accurate pose estimates are required

for successful assembly. The design synthesis approach allows to find pipeline con-

figurations and associated operator parameterizations, which improve the overall

success rate.

Contribution C3:

Uncertainty model based on factor graphs, which allows to consider graphs of

heterogeneous pose observations and can be successfully integrated in online design

synthesis.

For offline synthesis, uncertainty can be considered implicitly via the scene distri-

bution of a dataset. Explicit representations of uncertainty, however, are beneficial

when performing online synthesis. They can allow to assess the current belief quality

as well as the outcome of additional perceptual actions. Therefore, we introduce

an approach to handle geometric uncertainties across different coordinate frames

and observations in an automation system, which can be used for online synthesis.

It is based on a factor graph representation to fuse different observations and prior

beliefs while considering their respective uncertainty. The approach is integrated

into a hierarchical model, based on Contrib. C1. For the evaluation we formulate an

online synthesis problem in an assembly setup with multiple sensors and a robot arm

which allows to adjust the sensor pose.

Contribution C4:

Hierarchical design synthesis approach based on hierarchical planning, which includes a

quality metric model and enables online synthesis with superior runtime properties with

respect to a non-hierarchical baseline.

Furthermore, online perception system synthesis requires quick responses especially

for industrial automation use cases. Therefore, we introduce a design synthesis

method based on hierarchical planning, where the abstraction hierarchy in the model

is leveraged in order to synthesize perception pipelines fast enough. This synthesis

method builds upon the contribution Contrib. C1. We introduce quality metric

models across the abstraction hierarchy, which allows to assess sensory and belief

data at runtime. The approach is validated in an industrial assembly scenario for

multiple objects and sensors and compared with a non-hierarchical baseline planner.
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1.3 Experimental Validation Setup

In the following we introduce the hardware setup for the experimental validation,

which is embedded in a research demonstrator for flexible autonomous assembly.

In Fig. 1.12 the hardware setup is displayed, consisting of two KUKA IIWA robot

Figure 1.12: Flexible assembly cell with two manipulators, a static RGBD camera and two
end-effector mounted RGB cameras. The system is designed to autonomously perform as-
sembly processes without pre-programming and őxtures. Perception is a core capability
for this process. Therefore, this ŕexible assembly cell is used for the experimental valida-
tion.

arms with 2-finger grippers. The sensors of the perception system are industrial RGB

cameras at the end-effectors and an ASUS Xtion consumer RGBD camera mounted

in between the robot arms. The system is designed as a research demonstrator for

flexible and autonomous assembly. The vision is to have an automation system that

needs no programming at all in order to adapt to a new task. It takes a description of

the task, the objects involved, and a description of its own capabilities as input and

can infer all necessary motions and perceptual actions in order to fulfill the task.

Exemplary tasks are visualized in Fig. 1.13. On the left is an assembly task of an

electrical cabinet, where different individual parts must be mounted on a hat rail. In

the middle is the assembly task of a box, whose lid is fixed using four screws. On

the right is a peg in hole task from the Siemens Robot Learning Challenge (Siemens,

2017).
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Electronic Cabinet Assembly Siemens Robot Learning ChallengeBox Assembly with Screws

Figure 1.13: Different assembly tasks which can be performed by the ŕexible assembly sys-
tem.

1.4 Outline

Including the introduction, this thesis is comprised of 7 chapters, which are listed

and briefly introduced in the following.

• Chapter 2: Introduction of mathematical models and fundamental concepts.

• Chapter 3: Introduction of the common approach to represent procedural and

declarative models and to incorporate hierarchy in order allow for hierarchical

task decomposition and planning. Furthermore, it is presented how the model

generation can be partially automated via the use of harvesting methods.

Addresses Contrib. C1.

• Chapter 4: Presentation of a pipeline structuring approach, that builds on the

common model and enables the offline optimization of perception pipelines.

Depends on Chapter 3 and addresses Contrib. C2.

• Chapter 5: Building on the semantic model, introduction of an online con-

figuration approach rooted in planning, where geometric uncertainty across

different coordinate systems can be considered. Depends on Chapter 3 and

addresses Contrib. C3.

• Chapter 6: Extension of the hierarchical model regarding metric modeling

and application of the hierarchical planning approach of Chapter 5 to an

online perception system synthesis task. Depends on Chapter 3 and addresses

Contrib. C4.

• Chapter 7: Discussion of the presented work and conclusion
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Chapter2

Fundamentals of Perception and
Design Synthesis

In this chapter we introduce fundamental concepts, that are required to understand

the task at hand. Furthermore, we sketch the architecture of our approach and the

distinct components. The purpose is to provide background knowledge and show

how components interact and depend on each other.

Due to the large variety of perceptual problems available in industry, we focus on

industrial pose estimation as the running example and evaluation domain. We define

it as:

Definition 7 - Pose Estimation

Pose estimation denotes the process of determining the translation and orientation

of a known object or object primitive with respect to a reference coordinate frame.

It may entail the use of different information sources, such as sensory data, e.g.,

color images, point clouds and force data, and available scene knowledge, such

as supporting planes. Pose estimation can be performed passively, by evaluating

already available sensor data, or may involve active perception steps such as camera

viewpoint adaptations.

The translation and rotation of the object determine its location in the three-

dimensional space and allow to interact with the object. This allows to grasp an

object or perform an assembly task. An important aspect is the reference frame of the

translation and rotation, which means, with respect to which coordinate system both

are defined. Depending on the application a global frame may be defined, or local
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frame, such as the robot end-effector may be used. We will go into more detail on

reference frames in the following sections. An exemplary setup for a pose estimation

task is shown in Fig. 2.1, where an object from a peg-in-hole task is to be localized

accurately.

Data Processing

Robot
Camera

Camera

static

dynamic

Figure 2.1: Perception system consisting of two different cameras, where one is static and
the other one is mounted on a robot arm. The task is to estimate the pose of the presented
object with sufficient accuracy.

In this chapter, we start with the introduction of fundamental mathematical concepts

which are needed within the thesis. Then, individual components of perception

systems and models to approximate their behavior are discussed. Subsequently,

the overall engineering process is introduced in more detail and the role of design

synthesis is specified. Finally, we give an overview of the automated synthesis

procedure and necessary models. The sections 2.2.2.1, 2.2.2.2, 2.2.2.4, and 2.2.2.5

are based on the prior publication (Dietrich et al., 2019).

2.1 Fundamental Concepts

Fundamental concepts for the modeling of perception systems for pose estimation

tasks are the mathematical models for coordinate frames, poses, pose uncertainty,

and measurement error. In the following, the models are introduced and discussed

with respect to their role for the design of automation systems. The introduction of

the mathematical apparatus for handling poses is restricted to the needs within the

thesis. The formalization is partially based on (Corke, 2017) and (Barfoot, 2017), to

which we refer to for an in-depth introduction.
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2.1.1 Model

A general definition of the term model has been already given in Def. 6 in Chapter 1.

Models are omnipresent and used throughout all scientific disciplines and engineering

activities. Different types of models can be distinguished. Mathematical models for

instance can be used to describe physical processes, systems, and relationships via

mathematical formulae which model the relationship between variables and param-

eters. Data models standardize how pieces of data are represented and how they

relate. In the context of programming, data models can refer to actual data structures.

On the software engineering side, there are models and modeling languages such

as the Unified Modeling Language (UML) (Rumbaugh et al., 2004), which allows to

model different aspects of software systems in a graphical way. This facilitates the

understanding and communication between engineers.

For the automated design synthesis, we define two major classes of models: procedu-

ral and declarative models.

Definition 8 - Procedural Model

A procedural model represents procedural knowledge of how to perform a task or

process. It is executable and thus allows to predict the outcome of or actually perform

an action. Procedural models do not necessarily have to provide information about

their inner working and therefore can be black box models.

Definition 9 - Declarative Model

A declarative model states facts and relations about a system. Depending on the

formalization, interpreters can be executed on the model to extract additional in-

formation. Such interpreters are part of the procedural knowledge and can be

represented using procedural models.

Examples for declarative models are flow diagrams and data models. Mathematical

models defined as formulae are declarative as well and can be transformed into an

executable procedural model. If a machine-readable formula description language is

used, this transformation can be automated.

Procedural models, as defined, play an important role for automation systems and

autonomous systems. Every possible action of a system can be represented using a

procedural model, such as the change of a viewpoint, the acquisition of a camera

image or the conversion of data types. As the procedural model is executable it

allows for instance to predict the outcome of actions as part of a system simulation.

27



Chapter 2. Fundamentals of Perception and Design Synthesis

A real-world execution of an action can similarly be performed using a procedural

model.

2.1.2 Coordinate Frame

A coordinate frame is a set of axes which are orthogonal to each other and intersect

at the origin of the coordinate frame. It is also denoted as Cartesian coordinate frame

and can have an arbitrary number of dimensions, even though we will only need

the two-dimensional and three-dimensional case. The position of a point in space

with respect to a coordinate frame FA can be described as a vector v⃗A, where A is an

identifier. Different coordinate frames can have different positions and rotations in

space and therefore the position vector v⃗B with respect to a coordinate frame FB can

differ from v⃗A, as depicted in Fig. 2.2.

FA

FB

Point

v⃗A

v⃗B

Coordinate frame A

Coordinate frame B

Figure 2.2: The location of a point can be described by a vector within a coordinate frame.
Here, two different two-dimensional coordinate framesFA andFB are given, which results
in two different vectors v⃗A and v⃗B to describe the location of the point.

Coordinate frames can be static or dynamic within the targeted scope. A dynamic

coordinate frame changes its relative location with respect to static frames over time.

2.1.3 Pose

The combination of the position and orientation of a coordinate systems is named

pose. It requires a reference coordinate frame and is therefore also denoted as

relative pose or transform between coordinate frames. If no reference coordinate

frame is explicitly given a hypothetical world frame is assumed. In order to denote
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the relative pose of the coordinate frame FB with the reference frame FA we use the

notation pA B, see Fig. 2.3.

FA

FB

Coordinate frame A

Coordinate frame B

pA B

Figure 2.3: Visualization of the relative pose pA
B
between the coordinate systems FA

and FB.

Poses can be composed, which yields a new pose. As the operation differs with

respect to addition in the realm of numbers, the symbol ⊕ is used. In Fig. 2.4 the

pose composition is visualized. A new coordinate frame FC is introduced and the

pose of FC with respect to FA can be denoted as

pA C = pA B ⊕ pB C. (2.1)

FA

FBpA B

FC

pA C

pC B

pB C

Figure 2.4

Furthermore, poses can be inverted, which is denoted by the operator ⊖. The inverse

of pB C is

⊖ pB C = pC B. (2.2)
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The operator symbol ⊖ is also used to denote a composition with the inverse:

pA B = pA C ⊕ (⊖ pB C)

= pA C ⊖ pB C

= pA C ⊕ pC B.

(2.3)

Mathematically, poses constitute a group, where identity, an inverse and an associa-

tive binary operator, the composition, are defined. For the two- and three-dimensional

case the groups are denoted as the special Euclidean groups SE(2) and SE(3). Addi-

tional algebraic rules hold for poses:

p ⊕ 0 = p,

p ⊖ 0 = p,

p ⊖ p = 0,

⊖p ⊕ p = 0,

pA B ⊕ pB A ̸= pB A ⊕ pA B,

(2.4)

where 0 is a zero pose without relative translation or rotation. The composition is

not commutative as stated in the last rule.

A pose can be represented as a tuple of translation ppos and rotation prot:

p = ⟨ppos, prot⟩. (2.5)

Note here, that a pose can as well be represented via a transformation matrix

acting on homogeneous coordinates. The different representations have different

advantages and disadvantages, depending on the application. The translation ppos in

three dimensions is a vector of length three:

ppos = (x, y, z), with x, y and z ∈ R and ppos ∈ R
3. (2.6)

For the rotation in three dimensions we introduce the representation as Euler angles

and quaternion. Euler angles represent individual rotations via the angles α1, α2

and α3 around the coordinate axes which are applied successively. There exist

twelve different conventions, which can lead to serious interfacing problems, if the

convention is not ensured.

Quaternions are an alternative rotation representation. They are a generalization of

complex numbers and represent a four-dimensional vector space. They consist of a

real component and three imaginary components denoted as i, j and k. Thus, every
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quaternion q can be represented using four real numbers x0, x1, x2 and x3:

q = x0 + x1i+ x2j+ x3k (2.7)

Among different applications, quaternions can be used to represent rotations. Com-

pared to rotation matrices the multiplication of quaternions is more efficient. Ad-

ditionally, quaternions are numerically advantageous compared to matrix multipli-

cations. Due to rounding errors, regular normalization is required, which is also

computationally more efficient when working with quaternions.

The matrix, Euler and quaternion representations have different advantages and

disadvantages. The Euler representation is in many cases more intuitive, especially

when rotations must be defined manually. Although, from a computational perspec-

tive, problems with singularities may arise. Additionally, the plethora of different

conventions yield the Euler representation particularly error prone when interfacing

heterogeneous systems. Quaternions on the other side are well suited for computation

and represent rotations in a unique manner. However, they are more difficult to read,

as the average engineer is more familiar with angular representations. Matrices have

the advantage that rotation and translation can jointly be represented. Furthermore,

matrices can be used to provide different types of operations, such as scaling and

projection. In summary, the choice of a rotation representation depends on the use

case and a mix of representations can be used via conversion.

2.1.4 Pose Uncertainty

Similar to the rotation, pose uncertainty can also be modeled in different ways.

Arbitrary distributions can be represented using particles. Here, the pose distribution

is characterized by a set of pose particles. The probability is implicitly given by the

particle density. However, the model is not compact and requires large numbers of

particles. Memory and computation demand can therefore be high, especially when

a large number of chained uncertain poses have to be considered in real-time. But

the particle representations is suitable for parallelization. The set of particles can be

easily distributed on a set of computing resources such as threads and propagated

independently. The set of independently computed particles represents the resulting

pose distribution.

A more compact representation are Gaussian distributions. Here, the distribution is

approximated by uni-modal or multi-modal multivariate Gaussians. This is perfectly

valid for the Euclidean Space of positions. Rotations, however, can not as easily
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be represented using Gaussians. Depending on the representation, there are jumps

and singularities, as for instance with Euler angles. Other representations, such as

matrices and quaternions require to be normalized. Therefore, their parameters are

not independent by design. As a result, specialized approaches have been developed

such as mixtures of projected Gaussians (Feiten et al., 2009). Even specialized,

discretized representations can be used for instance the case of symmetric objects as

proposed in (Hafez et al., 2019). Again, the representations have different advantages

and disadvantages and the suitability depends on the application.

Also, pose uncertainty may not be sufficient, for instance in the case of unknown

surface geometry. Here, for instance truncated signed distance functions can be

leveraged to represent surface uncertainty, as proposed and validated in (Dietrich

et al., 2016; Chen et al., 2016, 2018).

2.1.5 Frames and Poses in Automation Systems

Various coordinate frames are of importance in the context of pose estimation for

industrial applications such as assembly. Consider again the peg-in-hole application

as introduced within the first chapter, as visualized in Fig. 2.5. First, any object such

Robot
Camera

Camera

static

dynamic

Peg

Part with hole

End-effector
Fs−cam

Fd−cam

Fe−eff

Fpeg

Fobj

Fobj−hole

Fworld

Figure 2.5: Exemplary frames which are relevant for pose estimation in an automation
system that covers a robot and a static as well as a dynamic sensor.

as the part with the hole can have multiple frames. In fact, arbitrary frames can be

defined. In the example the part with the hole has a base frame Fobj, which is the

coordinate frame of the CAD model. Additionally, a frame Fobj−hole is defined which

specifies the location of the hole. Throughout this work, we assume rigid objects.
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This means that the objects are not deformable, or the deformation can be neglected

within the targeted scope. Therefore, frames which are defined for the same rigid

object have constant relative poses. Compound objects with a static connection, e.g.,

being the results of an assembly process, can be modeled as a single rigid object.

The hardware of the automation system requires additional frames. The common

reference frame is the world frame Fworld which here is defined in the base of the

robot. With respect to the overall automation system it is static, but in general the

automation system could be placed on a moving base, so in the factory context it

might be dynamic. The choice of the base of the robot arm is arbitrary it could be

also the corner of the working table. The cameras have each a coordinate frame, that

corresponds to the optical frames. We will go into more detail on the optical frame in

the following sections. Typically, other frames such as the hardware mounting point

are defined. For the robot the frame of the end-effector Fe−eff is shown, which is the

mounting point for a gripper.

We now discuss relevant relative poses and how they are determined, based on Fig. 2.6.

The pose between the robot end-effector and its base pworld
e−eff is determined based

Fs−cam

Fd−cam

Fe−eff

Fpeg

Fobj
Fworld

pworld
s−cam

pe−eff
d−cam

pworld
e−eff

pe−eff
peg

pd−cam
obj

ps−cam
obj

pworld
obj

Figure 2.6: Relevant relative poses for pose estimation in an automation system that covers
a robot and a static as well as a dynamic sensor.

on encoder values in the joint angles and a forward kinematics calculation. The

relative pose between base and end-effector is subject to errors due to measure-

ment errors in the encoders and uncertainty in the relative poses between joints.

For industrial robot arms, these errors can vary from a tenth of a millimeter up to

millimeters and more. Various techniques can be used to improve this accuracy such
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as error compensation (Karan and Vukobratović, 1994) and stiffened mechanical

design (Courteille et al., 2009).

The camera poses pe−eff
d−cam and pworld

s−cam are required in order to spatially align

pose estimation results with respect to the application. They are typically determined

using a calibration procedure, which is performed during system setup. Although

highly accurate calibrations targets are used, calibration is subject to errors as well,

which results in deviations in the calibrated poses with respect to reality.

Finally, the pose estimation results ps−cam
obj and pd−cam

obj are the results of the data

processing of sensor data from the static and the dynamic camera respectively. Here

again, the uncertainty in the data processing results in errors, which will be discussed

in more depth in the following sections.

Overall, the relative poses and the coordinate frames form a graph. Tree-like rep-

resentations, such as a transform tree (Foote, 2013), can help to resolve relative

transformations. But the tree is only an approximation of the underlying graph struc-

ture. Furthermore, uncertainty is prevalent in all relevant poses and it is important

to consider uncertainty for positioning, calibration, and pose estimation accuracy in

order to determine the object’s pose sufficiently well.

2.1.6 Measurement Error

Every measurement is subject to measurement errors, which we define as follow:

Definition 10 - Measurement Error

The measurement error is the deviation of a perceived value with respect to the true

value.

The true value is not always known. For discrete values such as the number of

objects to be counted, an objectively true value can be determined. The true value

of continuous values such as the illumination cannot be determined without a

measurement that is subject to errors itself. Therefore, more accurate reference

measurements may be used as replacement. If we define zt as the true value of the

targeted variable and zm as the measured value, the measurement error e is:

e = zm − zt. (2.8)

The measurement error can be classified into systematic error and random error (Bal-

azs, 2008). Systematic error has the same constant effect on repeated measurements.
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An estimate of the systematic error is denoted as measurement bias. Random errors

on the other hand are unpredictable with respect to a single measurement and occur

in a stochastic manner. Both error types may vary in their intensity depending on

external factors such as temperature and time. With es as the systematic error and er

as the random error, the measurement error can be described in its composite form:

e = es + er. (2.9)

2.2 Perception System Components

The primary components of perception systems on the hardware side are sensors and

computing units. On the software side the components are individual data processing

steps and interfaces to external components. The primary effort is associated with

the data processing, which itself depends on the chosen sensor hardware.

2.2.1 Sensor

Perception starts with the acquisition of data about the environment using sensors.

Sensors exist in all kinds of types and sizes, from photodiodes to integrated smart

sensors which consist of multiple components and elaborate data-processing, such

as smart cameras with integrated image processing. In the following, we introduce

common sensors for pose estimation in industrial environments, which are cameras

and depth sensors.

Camera

A camera is a device, which allows to acquire images. The word camera originates

from the Latin term camera obscura, which means dark chamber. With a small hole

towards the outside of dark chamber, an image of the outside can be projected to

a wall of the chamber. This setup is a pinhole camera. For industrial automation

purposes digital cameras are used. They consist of optics, a digital image sensor,

and a processing unit. A schematic overview of a digital camera is given in Fig. 2.7.

The optics ensure, that incoming light from a point in space maps to a point on
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the image sensor. Furthermore, as opposed to a pinhole camera the incoming light

is bundled to increase the intensity. The image sensor is a two-dimensional array

of photodiodes, where the incoming light intensity is converted to an electronic

signal. Using a filter pattern, such as a Bayer filter, the intensity for different wave

lengths can be measured and a colorized image reconstructed using demosaicing.

The processing unit can perform such post-processing and handle the communication

of raw image data or higher-level information. Camera systems which provide higher

level information such as object positions are typically denoted as smart cameras.

Optics Image Sensor

Camera

Processing Unit
Optical Axis

Communication

Camera symbol:

Figure 2.7: Schematic overview of the components of a digital camera. Incoming light is
focused on the image sensor using optical lenses. A processing unit reads out the individ-
ual pixels of the image sensor and transfers the resulting image via a communication bus.
Smart cameras may also provide on-board processing and interpretation of the image.

Cameras are widely used in robotic applications, such as bin-picking and quality

inspection. The intensity or color image that the camera produces are the input for

following data processing steps such as object or defect detection.

The relationship between the 2D coordinates on the image sensor and the view

direction of the incoming light can be represented using mathematical models. In the

following we present the pinhole camera model. As every model, it contains modeling

errors, such as geometric distortions or object blurring due to the optical lenses. The

projection from a point in the three-dimensional space to the two-dimensional image

screen is visualized in Fig. 2.8. The central coordinate frame of the camera is the

optical frame, which is denoted as Fcam. The image plane is parallel to the xy-plane

of the optical frame and in a distance of zscreen = f , where f is the focal length of

the lens. In case of an actual pinhole camera without lens, the distance zscreen is the
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Fcam

(Px, Py, Pz)

(Pˆ︁u, Pˆ︁v)

x

y

z

u

v

(cx, cy)

(0, 0, f)

Figure 2.8: In the pinhole projection model it is assumed that the camera optics behave as
a pinhole. Therefore, each visible 3D point in space can be associated with a pixel on the
image sensor by projection along a light ray.

distance between screen and hole. The z-axis of the optical frame is the so-called

optical axis.

First, we represent the two-dimensional image plane by the centered coordinate

axes x and y, whose origin is on the optical axis. The 2D location (Pˆ︁u, Pˆ︁v) on the

image plane of a 3D point P = (Px, Py, Pz) in the environment is geometrically the

intersection of the straight line formed between the point P and the origin of the

optical frame and the image plane. Based on the intercept theorem this relation can

be formalized mathematically as

Pˆ︁u

Px
=

Pˆ︁v

Py
=

f

Pz
. (2.10)

Thus, the 2D projection of point P can be calculated as

Pˆ︁u = f
Px

Pz
and

Pˆ︁v = f
Py

Pz
.

(2.11)

By convention, image coordinates are used, which are centered in the top left corner

of an image. This reflects the underlying matrix data structure and allows to map
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matrix indices to points in the environment. The coordinate axes for the top left origin

are named u and v. Therefore, two new variables cx and cy are introduced, which

denote the shift between the coordinate frames. Additionally, it can be considered

that the scaling in x and y direction is not necessarily equal. Therefore, separate

focal lengths fx and fy are defined. Typically, the deviations are small and depend on

manufacturing inaccuracies or pixels which are non-square. This yields the adapted

projections

Pu = Pˆ︁u + cx = fx
Px

Pz
+ cx and

Pv = Pˆ︁v + cy = fy
Py

Pz
+ cy.

(2.12)

The projection can also be represented using matrix notation. Therefore, we introduce

the intrinsic matrix K with

K =

⎡
⎢⎢⎢⎣

fx 0 cx

0 fy cy

0 0 1

⎤
⎥⎥⎥⎦ . (2.13)

Using the intrinsic matrix, the 3D to 2D projection can be denoted as

⎛
⎜⎜⎜⎝

Pu

Pv

1

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

fx 0 cx

0 fy cy

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Px

Py

Pz

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.14)

Again, this is only a basic projection model. There are additional effects such as lens

distortions that can be considered, see Fig. 2.9. Models that cover lens distortion

have additional parameters that need to be determined. Moreover, there are different

types of camera optics, such as telecentric lenses and fisheye lenses, both of which

require different mathematical models. In general, there is again a range of models

with varying complexity and computational demand. The achievable error depends

not only on the quality of the model, but also on the quality of estimated model

parameters, which are determined using model calibration.
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(a) No distortion (b) Barrel distortion (c) Pincushion distortion

Figure 2.9: There are different types of lens distortions, which can be corrected algorithmi-
cally. The effect of both barrel distortion and pincushion distortion increases with distance
to the image center.

Depth Camera

Depth images and point clouds are an important input domain for robotic applications.

By covering the three dimensions, more geometric information can be contained

than in a 2D RGB image. There are different types of measurement techniques that

may provide depth information, such as time of flight measurement and triangula-

tion (Hartley and Zisserman, 2003). Time-of-flight cameras rely on light pulses, by

light emitting diodes or a laser. The emitted light is reflected by the environment

back to the image sensor, where the time of flight between the emission of a pulse to

the arrival is measured for each pixel. As the speed of light in air is approximately

constant, it can be used to calculate the traveled distance based on the time of flight

for each pixel its corresponding view direction.

Triangulation on the contrary is a geometric approach. An exemplary setup with two

cameras is depicted in Fig. 2.10. Two cameras which are placed in parallel with a

distance d, also called baseline. If the same point of an object is seen in both images

and its respective pixel locations can be identified, the distance can be calculated

by applying trigonometry. The critical aspect is the matching of identical points in

both images, which is denoted stereo matching and addressed by several different

algorithms, see (Lazaros et al., 2008). Stereo matching errors in the range of a single

pixel can already introduce depth errors, which grow with increasing distance to

the object. This effect can be alleviated by using larger baselines, although this can

increase the minimum distance, where depth can be perceived due to non-overlapping

fields of view.

Generally, both measurement principles have advantages and disadvantages. Time-

of-flight sensors do require less computation and can provide images at a higher rate.

But the light pulses may interfere with ambient light and can be reflected multiple
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Camera 1

Camera 2

Object

d

α

β

(x, y)
z

γ

Figure 2.10: Exemplary visualization of stereo triangulation. If the same point on an object
can be identiőed from different views, it’s distance to the camera z can be calculated using
trigonometry.

times. Depth estimation based on triangulation is computationally demanding, due

to the stereo matching. Also, the stereo matching depends on the texture in the scene

and may fail for non-textured and shiny surfaces. The use of projected patterns in

visible or infrared light can alleviate this. Such projected patters are also denoted as

structured light and can be either static or adapted dynamically.

The properties of a depth camera clearly depend on design choices such as the

measurement principle and the baseline. Additionally, there is a dependency on the

scene: Triangulation and stereo matching work well for textured objects, time-of-

flight sensors may not work well in bright sunlight, etc. In Fig. 2.11 the different

noise characteristic of different depth sensors is displayed. The usability of a sensor

clearly depends on the application and the required task accuracies.

Clearly, data processing is involved in the determination of depth, either by calculating

the traveled distance by the light or by performing stereo matching and triangulation.

This processing can be implemented using hardware or software.

Composite Sensors

Multiple sensors can be combined to form composite sensors. Common sensors for

robotic applications are RGBD-sensors that provide color (RGB) and depth images (D).

Popular models are depicted in Fig. 2.12. Additional to an internal processing unit,

they are composed of multiple cameras and components such as infrared projectors.

Sensors can be composed in a hierarchical manner, an Intel D435 is composed of
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Figure 2.11: Comparison of point clouds of a time-of-ŕight camera Senz3D (red) and a Kinect
camera (blue), which uses structured light and triangulation (Dietrich et al., 2016). Even
though the time-of-ŕight camera is placed closer to the object, a 3D printed Stanford
Bunny, it displays more noise. The noise depends on the actual setup of the individual
camera system.

multiple cameras, which are composed of image sensors which are composed of

photodiodes. The same is true for the data processing which is performed on every

level of the sensor. Depending on the task, a different detail level will be chosen.

For instance, an image sensor developer needs to go into detail on photodiodes,

whereas a camera developer needs to consider different variants of image sensors.

The developer of an automation systems for industrial applications will typically

choose between different types of composite sensors, such as RGBD-cameras and will

not look into detail of the actual photodiodes of the sensor.

Camera Noise and Uncertainty

Cameras introduce different sources of errors. First, the quality of the intrinsic and

extrinsic calibration affects the resulting accuracy. The extrinsic calibration depends

on the calibration target, the set of acquired data points and the positioning accuracy

of the actuator which moves the calibration target (camera to world) or the camera

(camera to robot). It can be modeled using an uncertain 3D pose, as described

in Sec. 2.1.4. Errors in the intrinsic calibration lead to erroneous projections.
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Asus Xtion Intel D435

Infrared Projector

RGB camera

Infrared Camera

RGB camera

Infrared Camera

Infrared Camera

Infrared Projector

Figure 2.12: Two exemplary composite sensors, the ASUS Xtion, and the Intel D435, based
on (Li Yang Ku, 2012) and (Intel, 2020). Both consist of multiple image sensors and addi-
tionally contain infrared pattern projectors.

An additional source of errors is the image sensor itself. Noise is induced among

others due to dark currents, discretization, pixel non-uniformity, quantization, and

general electronic circuit noise (Corke, 2017). Depending on the characteristics,

the noise can be modeled for instance as normal distribution (Gaussian noise) or as

Poisson process (shot noise, salt-and-pepper noise).

For depth sensors, different models for the noise exist as well. One approach is

to represent lateral and axial noise with respect to the optical axis as Gaussian, as

visualized in Fig. 2.13 (Nguyen et al., 2012). Here, axial noise characterizes the

depth variation along the view axis and lateral noise is defined to characterize invalid

depth values in the boundary regions of objects. For a depth camera which employs

Fcam

y

z

Depth Camera

3D point

Axial noise

Lateral noise

Measured distribution

Figure 2.13: Depth error model with Gaussian axial and lateral noise. Axial noise is de-
őned along the view axis and lateral noise perpendicular to the view axis. Figure inspired
by (Nguyen et al., 2012)

triangulation as measurement principle, as introduced in Sec. 2.2.1.2, the standard

deviation of the axial error increases quadratically. Lateral noise only increases linear
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as shown empirically for a Kinect camera in Fig. 2.14. For a realistic simulation of

Figure 2.14: Plot of the distance dependency of axial and lateral noise for a Kinect 3D cam-
era as determined by (Nguyen et al., 2012). Lateral noise σL is proportional to the distance,
while the axial noise σz depends on the square of the distance z .

synthetic depth data, a large number of real-world effects have to be considered. In

addition to axial and lateral noise, the interaction with specular and non-specular

surfaces has to be regarded, lens distortions and quantization have to be taken

into account, and the effect of motion and the shutter as well as shadows need to

be considered, as shown in (Planche et al., 2017). The more accurate the model

reflects real physical effects, the better it can be used to compensate them. Or, in the

case of the generation of synthetic data, improved model accuracy can improve the

performance of perception operator which are trained on the synthetic data.

Camera Calibration

Sensor models must be parameterized to fit to the targeted device. Therefore, we

introduce and define calibration:

Definition 11 - Calibration

Calibration is the determination of the measurement error characteristics of a device

under test and optionally the correction the aforementioned error.

The correction of the measurement error is only possible partially, as there always
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remains a measurement error, even if arbitrarily small. Also, the correction is optional

in the base definition, but throughout the thesis the correction step is generally

included as integral part of calibration.

Model calibration is the act of determining model parameters. For cameras this

includes the intrinsics (intrinsic matrix) as well as the so-called extrinsics, which is the

pose of the optical frame, with respect to a reference coordinate frame. The names

indicate, that the intrinsics denote parameters within the camera, e.g., the optics and

image sensor, and the extrinsics are parameters that describe the camera with respect

to its environment.

2.2.2 Data Processing

After the general introduction of the term data processing in the introduction,

see Def. 2, in this section we go into more detail on data-processing and its con-

stituents. In a typical pose estimation context, the pose of a single or multiple target

objects in the environment is required, but images from depth and RGB cameras are

given as sensor data. Given sensor data as input data processing provides the means

to produce the condensed information of, for example, an object pose.

First, it is to note that different types of data are involved, such as RGB images, depth

images, point clouds, clusters, segments, and poses. Each of these can be represented

in different ways, which depend on the mathematical model and the implementation

environment. The different data types need to be represented coherently even if

different implementation environments and parties are involved. The data types are

denoted as concepts and actual pieces of data as instances.

Operator

Data processing is typically composed of individual data processing steps, which we

denote as operators. A perception operator is depicted in Fig. 2.15, which extracts

a pose from an RGB image. An operator is an executable implementation of an

algorithm. It generally has one or multiple inputs and one or multiple outputs and

can be parameterized using a set of parameters. Parameters of an operator are

values, which influence the behavior of an operator and are often kept constant

across different inputs.
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λ

RGB Pose

Figure 2.15: Exemplary operator, which extracts an object pose from an RGB image.

In the following, the operator model is formalized. An operator O ∈ O denotes a

function that maps a set of input instances to a set of output instances and optionally

takes a parameter vector λ:

O :

⎧
⎨
⎩
C1
in × ...× Cnin

in × Λ → C1
out × ...× Cnout

out

(i1in, ... , inin
in , λ) ↦→ (i1out, ... , inout

out )
, nin, nout ∈ N, (2.15)

with Cj
in, j = 1, . . . , nin,, and Ck

out, k = 1, . . . , nout, being input and output concepts

of the operator, ijin and ikout the respective instances of aforementioned concepts, Λ

the set of parameterizations, and O the set of operators. A set of instances is denoted

as I, such as the set of input instances Iin and output instances Iout.

We can distinguish different purposes of operators in the context of perception:

• Data acquisition: Data needs to be gathered from available sources, such as

sensors or data storages.

• Data pre-processing: The available data is in many cases not directly suitable

for the task at hand. An algorithm may for instance require a point cloud,

while only a depth image is available. The purpose of pre-processing is the

preparation for the following processing steps and may include operations such

as data conversion (e.g. point cloud to depth or vice versa) and noise reduction

(e.g. image smoothing via sigma filter (Lee, 1983) and bilateral filters (Tomasi

and Manduchi, 1998)).

• Data extraction: Data extraction addresses the computation of condensed

representations, such as feature vectors, object bounding boxes (Redmon et al.,

2016), segmentation masks (Abdulla, 2017), and also poses (Tekin et al., 2018)

from given data. However, the quality of the input data does not always allow

successful, fast and reliable data extraction. Therefore, additional techniques

such as data pre-processing, reduction, and fusion can be required.

• Data reduction: Data reduction serves to reduce the size of data, which

can be beneficial for the computation times. Although too much reduction

leads to loss of information and reduces the quality of the outcome of the
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overall pipeline. Exemplary operations are cropping (Vaquero et al., 2010),

down-sampling (Orts-Escolano et al., 2013), and compression (Vijayvargiya

et al., 2013). Also, the use of object or instance segmentation results, e.g., for

background removal falls into the category of data reduction.

• Data fusion: Multiple sources of data and information can be combined to

improve the quality of an estimation task. This process is called data fusion

and is used in many applications (Linn et al., 1991). It can be applied on all

levels, from low-level sensor data to high-level interpretations. For instance,

multiple raw point clouds from different viewpoints can be combined to a single

and more accurate surface representation (Dietrich et al., 2016). On a higher

level, object estimates from different sources can be combined (Aeberhard and

Kaempchen, 2011).

• Data generation: The design and parameterization of perception pipelines can

require large amounts of data, which is not always available for real sensors.

Data generation techniques include photo-realistic rendering (Hinterstoisser

et al., 2019), domain randomization (Tremblay et al., 2018), and domain

adaptation (Csurka, 2017). Generated data is primarily used for offline engi-

neering (Hafez et al., 2020), but rendered images of object hypotheses can also

be used during online adaptation.

Furthermore, there are meta operators, which act upon other operators such as

planning and optimization. Optimization addresses the determination of parameters

of a model or system in order to improve overall performance and satisfy constraints.

It covers for instance the training of neural networks (Le et al., 2011). But also

inference algorithms, e.g. for factor graphs (Pfeifer et al., 2016), can be based on

optimization. Planning is the process of determining a plan of actions in order to

achieve a defined goal. It plays a major role for instance for the task and motion

planning of autonomous systems, e.g., for autonomous object manipulation (Schmitt

et al., 2017).

Pipeline

In order to solve a perception task, a single operator is often not sufficient. Therefore,

multiple operators can be combined in a so-called pipeline. For pose estimation

applications different operators are visualized in Fig. 2.16. The MaskRCNN oper-

ator Fig. 2.16 (a) (Abdulla, 2017) does not predict a pose, but rather masks of
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classified objects. But the masks can be used to reduce the search space, i.e., crop

the point cloud for an operator such Fig. 2.16 (b). This benefits the pose estimation

operator Fig. 2.16 (b) as the size of the point cloud is otherwise be too cluttered and

large leading to false matches.

Pose

λ

Pose

λ

RGB Pose

λ

Point Cloud Pose

λ

RGB Instance Masks

Point Cloud

(a) MaskRCNN

(c) SingleShotPose

(b) FastPointFeatureHistograms

(d) Iterative Closest Points

Figure 2.16: Illustration of different perception operators and their inputs and outputs. For
the RGB based operators, 2D and 3D bounding boxes are used for the visualization. For
the point cloud operators the estimated pose is visualized in yellow using the CAD model.

Now consider the SingleShotPose operator Fig. 2.16 (c) (Tekin et al., 2018), which

predicts the 3D pose of an object. The pose estimates are based on a 2D image only

and therefore strong errors can occur due to calibration errors and projection. These

can be reduced by combining the operator with an additional pose refinement step

using iterative closest points Fig. 2.16 (d), although this requires a point cloud of
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sufficient quality. This means, the noise in the point cloud cannot be too high. Here,

pre-processing can help in order to reduce the noise in the point cloud.

In general, different operators have different strengths and weaknesses and can be

useless when not combined. The combination of operators is denoted as pipeline.

A pipeline P ∈ P is composed of several operators whose inputs and outputs are

connected in a graph structure. The set P denotes the set of all possible pipeline

structures, which depends on the available instances and operators and may be

restricted by additional constraints.

λS

RGB Hypotheses

SingleShotPose

λI

Hypotheses

ICP
Point Cloud

Figure 2.17: Real perception pipeline consisting of hypothesis generation based on a neural
network and a RGB image, which is reőned using an iterative closest point matching on a
point cloud.

In Fig. 2.17 the combination of operator (c) and (d) of Fig. 2.16 is shown. By

combining both operators, the pose uncertainty can be reduced.

In summary, data processing is prevalent at all levels of a perception system. Within

the camera pixel individual illumination values are accumulated to images. Multiple

images are used in order to compute a depth image and a point cloud. Images and

point clouds are processed via pipelines which extract the desired information. The

individual operators are itself a combination of elementary operators, which at the

lowest level can be multiplications and additions.
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Data Processing Uncertainty

As data-processing can cover a large field of different algorithms, models for the

characterization of induced uncertainty and noise are as diverse. In the context

of industrial pose estimation pipelines two kinds of metrics are especially relevant:

metrics for object classification and metrics for pose estimation.

For object classification confusion matrices show the accuracy of the classifier for

different object classes. An example is shown in Fig. 2.18. The rows correspond to

predicted object classes and the columns to ground truth object classes, and each

cell denotes the number of observations. Cells on the diagonal represent correct

predictions, while non-diagonal cells contain numbers of erroneous predictions. In

the example, the object called rail was interpreted once as the object TM and that

switches were seen as TM four times. Condensed as a single number, metrics such

as precision, recall, average precision (AP) and mean average precision (mAP) are

defined. However, metrics have uncertainty on their own, as they depend on the

choice and amount of ground truth data, the data split and the annotation quality of

ground truth data.

Figure 2.18: Exemplary confusion matrix from an instance segmentation task in the assem-
bly cell used for validation (Hafez et al., 2020).

For object detection task as bounding boxes or segments, additional metrics such

as intersection over unit are defined. It denotes the ratio between the area of the

intersection of the detection and the ground truth and the area of the unit of both.

In order to characterize the error of an object pose different methods have been

introduced in literature, such as visual surface discrepancy (VSD) (Hodan et al.,

2018) or the average distance of the model points (ADD) (Hinterstoisser et al., 2012).

In summary, different data-processing operators can require different metrics for the

characterization of uncertainty. They are calculated on datasets in order to compare

and rank operators and assess their performance. Note here, that it can be hard to

distinguish the effects of errors introduced by an operator or by the noise and errors

which are present in the input data. Also, the metrics are not always ideal, as can be

seen for the case of symmetrical objects, where there is still ongoing work to improve
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the metrics (Hodaň et al., 2016). Metrics can have inherent uncertainty and thus

have to be chosen and calculated carefully.

Dataset

The targeted application domain of a perception pipeline or perception system can

be characterized via a given annotated dataset D. The dataset needs to reflect the

application properties, e.g., the expected distributions of scenes, sensor noise, and

environment conditions. A dataset can be modeled as a list of scene instance sets dj ,

with j = 1, . . . ,m (Dietrich et al., 2019):

D = {d1, d2, ..., dm},m ∈ N, (2.16)

where each scene instance set contains the data for a specific scene. The scene

instance sets are composed of input instances Iin, ground truth instances Igt, and

expected pipeline output instances Iexp:

d = (Iin, Igt, Iexp), with Iin, Igt, Iexp ⊆ M. (2.17)

Input instances include different sensor data inputs, such as images and point clouds,

and prior knowledge. Ground truth instances describe the scene state in different

(intermediate) representations such as object poses, masks, and bounding boxes. Ex-

pected output instances represent the information that is required by the application,

such as a list of objects and their poses. The expected output instances are typically a

subset of the ground truth instances.

Error Metrics

In order to formulate a synthesis problem, a metric is required to quantify the pipeline

performance. Therefore, we define the metric eD for the parameterized pipeline Pλ

and the dataset D as the average of the individual error for each scene instance

set ed(Pλ , dj):

eD(Pλ ,D) =
1

m

m∑︂

j=1

ed(Pλ , dj),

with dj ∈ D,m = |D|.

(2.18)
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The scene instance set error ed(Pλ , dj) requires the execution of the pipeline and

computation of the instance error metric ei between the pipeline output Iout and the

expected instances Iexp:

ed(Pλ , dj) = ed(Pλ , (Iin, Igt, Iexp))

= ei(Pλ(Iin), Iexp)

= ei(Iout, Iexp).

(2.19)

The instance error metric ei depends on the application and the type of expected

pipeline output instances Iexp and needs to be chosen accordingly.

2.2.3 Engineering Design Synthesis

Now that the individual components of a perception system, sensor, operator, pipeline,

dataset and error metrics are introduced we can address the design synthesis, c.f. Def. 4,

of the perception system. Within the design synthesis the hardware and software

components and their connections are chosen and parameterized. An overview of

the perception system design synthesis process is given in Fig. 2.19, which builds

upon prior work of Hagelskjær et al. (2018). It consists of multiple steps, targeting

the different dimensions of the configuration space. Furthermore, an online and

offline view with distinct optimization loops are defined. In the following, we discuss

the different steps on the example of the flexible assembly system as introduced

in Sec. 1.3. Note here, that the sequential ordering of the selection steps does not

strictly apply in practice. The choices can be done in arbitrary order. For instance,

the choice of a data processing step can be done first and influence the choice of the

sensor. However, once the sensor is ordered and available a change involves higher

cost. In that sense, the left to right ordering in Fig. 2.19 reflects the cost and effort to

revoke a decision, which decreases towards the right.

Hardware Selection

The first step is the hardware selection. Here, appropriate sensors are selected

and positioned. In the flexible assembly use case different aspects must be taken

into account. First, the measurement principle and type of sensor is to be cho-

sen. RGB cameras are more typically more compact than depth or RGBD sensors
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Figure 2.19: Design Process for Perception Systems which covers an offline and an online
optimization loop, based on Hagelskjñr et al. (2018).

and in most cases cheaper. Although there is a difference between industrial and

consumer cameras. Consumer cameras are cheaper, but often not suitable for the

harsh environments and durability requirements in an industrial application. The

sensor choice does influence the set of possible data-processing steps and there is an

interdependency between both. If no suitable data-processing pipeline is available

for depth data, no depth sensor should be chosen. It is also possible to decide for a

set of multiple sensors and select a subset of the sensors for sub-tasks.

Furthermore, hardware interfaces must be taken into account. The sensors need to

be fixated such that vibrations induced by moving actuators do not move the sensor

too much. For a fully automated configuration, structural simulations or calculations

are required in order to assess the stiffness of a given structure. Communication

interfaces may also pose constraints. For instance, the full bandwidth within the USB

3.0 standard is only specified up to a cable length of 0.5m. And placing a sensor on a

movable robot arm requires to have reliable and endurable cabling connection.

In the exemplary flexible assembly cell, a setup of three cameras is chosen. A

consumer RGBD camera is placed statically in between the robot arms and covers

the working area of the robot arms. Additionally, an industrial RGB camera is placed

at each end-effector, which allows to closely look at objects of interest. The industrial

RGB cameras are connected via Ethernet, for which the use of spiraled cables and

long distances are feasible.
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Viewpoint Selection

The sensor or sensors must be positioned. Here, different aspects have to be consid-

ered. As noted in Sec. 2.2.1.4, axial depth noise for instance increases quadratically

with the distance. Also, the closer the camera, the higher the ratio of pixels which

show the object with respect to the overall number of pixels. Therefore, a camera

should generally be placed as close as possible, while still covering the required

working area. Another aspect is to place sensors statically or dynamically. A dynamic

sensor is placed such that it can be repositioned at runtime, e.g., on a robot arm. A

static sensor has a fixed position. Therefore, it is not subject to motion blur due to

its own movement. It can be used, when the manipulators are moving. Dynamically

placed sensors may require to stop the task and take sensor data from a static posi-

tion. This can increase the cycle time of the task. But in some applications sufficient

accuracy can only be achieved, when the sensor is placed very close to the target

object. Here, a dynamic sensor placement is advantageous, as it can be adapted to

the given task.

Data Processing Selection

The next step is the selection of the data processing. It depends on the hardware

sensor setup, as the hardware defines the type of sensor data as well as the quality

of the data in terms of noise and errors. Accessible data sources for the selection

are (scientific) publications, books, manuals, tutorials, and benchmarks. Especially

benchmarks are an important resource as they provide a performance comparison.

For object pose estimation, the BOP benchmark is notable and clearly shows that the

performance of different methods depends on the type of object and task (Hodan

et al., 2018). The available information again represents abstract performance

models via error metrics such as the visual surface discrepancy. The performance

models may help in selecting appropriate algorithms, but an evaluation with real

data from the actual task setup is required to increase the level of confidence.

In practice, performance may not be the main criterion. The task is to achieve the

goal while reducing the overall engineering and system costs. Therefore, operator

availability plays a crucial role. Perception operators are organized within libraries

such as OpenCV, Point Cloud Library (PCL) or Halcon. But operators can also be

provided as individual repositories. A reimplementation of algorithms and approaches

can take significant engineering effort. Therefore, it is necessary to be able to easily
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integrate and quickly evaluate operators of arbitrary origin. Although in some cases

a reimplementation is necessary in order to keep the software architecture of the

perception system clean.

Parameterization

Once, the hardware and software are set up, the parameterization of the overall

system can be addressed. As noted before, the sensors itself may contain data-

processing and parameters which can be adapted such as focus, shutter and gain.

The following data-processing pipeline needs a parameterization as well. Operators

can have from a few, over dozens up to millions of parameters. For a low number of

parameters, the manual selection of parameter values can be an option. For larger

amounts, optimization based on labeled input data is required. The latter is the case

for processing steps based on machine learning. Here, a hierarchy of optimization

problems is given with the training of, for instance, a neural network at its core.

Around the core there are other so-called meta parameters, such as the learning rate,

the choice of the dataset, etc.

Additionally, some operators require the pre-computation of perception models

which allow to reduce the runtime or encode object knowledge. Examples are

Linemod (Hinterstoisser et al., 2011), SSD (Liu et al., 2016), and 3D shape-based

matching as implemented in the Halcon library (Ulrich et al., 2011).

Offline Optimization Loop

The offline optimization loop addresses the design synthesis for a static configuration.

This is the typical case in classical automation systems, where tasks do not change.

Here, the system can be optimized once and remain unchanged. In a flexible

automation setting additional online adaptation is required, which is outlined in the

next section.

Two major steps are involved, the offline performance characterization and the

choice of a new configuration. The offline performance characterization involves the

computation of performance metrics based on a set of annotated data points. The

annotated data points are, for instance, specific scenes or object placements which

occur within a task which are annotated with expected results of the perception

system. If all requirements from the task are fulfilled the current configuration is
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accepted as a solution. If not, a new configuration is selected and evaluated as part

of the offline optimization. Here, the costs of evaluating a new configuration must

be considered. The change of hardware components involves high costs and should

be avoided if possible. Good performance predictions, e.g. via simulation or by

experience can help to reduce the risk of having to change the hardware.

Online Optimization Loop

Once the perception system is deployed, as in the example of the flexible assembly

cell, it is confronted dynamically with new tasks as well as variations and deviations

in their execution. The online adaptation allows to adapt the perception system

dynamically during runtime. The main difference here is that no ground truth data is

available for the optimization. Therefore, metrics are required which can assess the

quality of the current belief. Theses metrics are subject to error.

Furthermore, the configuration space is reduced during online optimization. For

instance, no sensors can be changed and only dynamically positioned sensors can be

repositioned. Also, the search in the complete parameter space can take too long and

may not be feasible as in the offline optimization loop. Fast reaction is required.

2.3 Automated Synthesis

In the prior sections different aspects of the design synthesis of perception system for

industrial applications are highlighted. In this section we focus on the automation

of the synthesis process, which is the goal of this thesis. First, requirements are

summarized and then a high-level overview over the automated procedure and

involved models is given.

A summary of important aspects for the modeling and execution of automated

synthesis is given in the following:

• Abstraction via Models: Models are required to abstract reality and to be able

to evaluate configurations without costly experiments in the real world. This is

true for the online and the offline use case.

• Procedural and declarative models: There is a demand for declarative and

procedural models. The description of the properties of a sensor can done
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within a declarative model. The performance model of an operator is procedural

and may require its execution for the evaluation on given input data.

• Inherent Hierarchy: The synthesis of perception systems is done on different

levels of abstraction and granularity. Sensors can range from single photodi-

odes, to complex integrated smart cameras with multiple image sensors and

complex data-processing. In the same way, data-processing operators are com-

posed of other data-processing operators and in that sense are pipelines of more

elementary operators. Therefore, a hierarchy of descriptive granularity is given.

Furthermore, models inherently represent a hierarchy of abstractions. At the

most concrete level of the abstraction hierarchy is the real world and different

model representations approximate the real world with different degrees of

abstraction and modeling errors.

• Uncertainty: Models are approximations and the degree to which they are

wrong can often be uncertain. In general, uncertainty is prevalent at all levels

of the design synthesis, sensor data is noisy, data-processing induces errors,

pose uncertainty models are only approximations, and performance estimates

and metrics are subject to errors as well.

• Heterogeneous fields: The synthesis of perception systems covers different

perception disciplines such as sensor fusion, pose estimation, and object clas-

sification. Each discipline has own models and specialized approaches which

need to be represented and possibly combined.

• Large configuration space: The configuration space is large and cannot be

evaluated in its entirety via experiments. Models allow for lowered computation

demand but may induce approximation errors. Also, it does not need to be

searched in its entirety all the time depending on the engineering phase.

• Heterogeneous search methods: On the different levels of the overall prob-

lem hierarchy different approaches for the synthesis can be required.

• Online and offline synthesis phases: The design synthesis has the distinct

phases of online and offline synthesis, where different requirements are given.

In the offline case, ground truth annotations are available, whereas in the

online case no such information is given. A common infrastructure for both

phases is desired.

• Heterogeneous software environments: Due to the variability in specialized

problem domains, the software environments vary. The integration of different
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software environments poses a major engineering hurdle and therefore should

be facilitated.

Therefore, we introduce a modeling and synthesis approach, which addresses large

parts of the aforementioned aspects.

2.3.1 Synthesis Procedure

In Fig. 2.20 a general overview over the major steps in the design synthesis procedure

is given. As introduced before, there is a need to cover two different phases, the

offline engineering with an engineer in the loop and the adaptation phase with

the automation system in the loop. We differentiate between three different steps

within the synthesis, the problem instantiation, the configurations space exploration,

and the evaluation. The instantiation serves to formulate the incoming task as a

synthesis problem. This entails the definition of the configuration space as well as

the constraints and goals. Depending on task and synthesis method, different data

structures are required.

Instantiation

Online
Task

Offline
Task

Exploration

Online
Solution

Real System

Simulated System

Offline
Task

Offline
Solution

Offline
Solution

Act Sense

Automation System

System Engineer

World

Evaluation

uses

Synthesis
Problem

Configuration

Metric

adapts

Figure 2.20: Synthesis procedure represented as the three major steps: instantiation, ex-
ploration, and evaluation.
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Exploration and evaluation are tightly coupled. The exploration steers the overall

search procedure and provides new configurations which are to be evaluated. This

requires knowing the performance metrics of prior evaluated configurations. Within

the evaluation step the performance of a configuration is evaluated. Furthermore, as

part of the evaluation, a suitable solution is selected and returned.

Within this thesis, multiple synthesis approaches are introduced and applied to the

different phases. They share a common modeling infrastructure but provide different

solutions for the exploration and evaluation.

2.3.2 Model Structure

In order to facilitate reuse and abstraction, a hierarchical modeling approach is used

for the procedural and declarative models of the perception domain as well as the

synthesis system. This is illustrated in Fig. 2.21.

The modeling of perception systems requires multiple levels of a model hierarchy. The

foundational model is the meta model, where declarative models such as operator,

pipeline, and hierarchy are defined. Procedural models in the meta model contains

operators which can act on instances of the declarative models. For instance, a plan-

ning or optimization algorithms composes, combines and parameterizes operators in

order to achieve a goal.

Different other sets of models are defined which build on another. Elementary sets

of models are mathematical models where elementary mathematical concepts and

operators can be described. More complex and domain specific sets of models are

defined for the robotics and the perception domain. In addition to the hierarchy of

model sets, each individual model, e.g., of the sensor can be defined on different

levels of abstraction itself. This means that hierarchy is given in different ways.

For each set of models declarative and procedural models are kept together. The

rationale behind this decision is that with declarative models alone only a limited

set of usable inferences can be performed. The combination of procedural and

declarative models allows to translate models into executable actions.

Furthermore, we noted that different sub domains may employ distinct models which

are not directly interoperable. Here, the approach is to allow heterogeneous models

and add executable procedural models which allow to convert different represen-

tations. Furthermore, the meta-model allows techniques for model exploration,

transformation, and generation.

58



2.3. Automated Synthesis

Automation System

Procedural
Model Hierarchy

Declarative
Model Hierarchy

Simulated
System

Real
System

Synthesis System

Procedural
Model Hierarchy

Declarative
Model Hierarchy

System Engineer

Offline
Task

Offline
Solution

Online
Task

Online
Solution

Figure 2.21: Procedural and declarative hierarchical models for the automation system and
the synthesis system.

In the next chapter, the modeling approach and infrastructure are introduced in

more detail. In Chapter 4 an approach for efficient offline optimization is introduced

and evaluated in a real-world assembly application on the research demonstrator.

In Chapter 5 online reconfiguration will be addressed and how uncertainty across the

coordinate frames can be considered. In Chapter 6 the exploitation of hierarchical

models for online reconfiguration will be presented and evaluated in an assembly

context.
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Chapter3

Hierarchical Modeling Approach
and Infrastructure

In the prior chapters, the importance of models for the perception system synthesis

has been highlighted. In this chapter the modeling approach that we employ, as well

as employed models for the perception system domain are discussed. An overview of

the modeling infrastructure and associated processes is given in Fig. 3.1. At the center

is the hierarchical model. It is comprised of a hierarchy of procedural models and a

hierarchy of declarative models. Both define abstract representations of procedural

and declarative knowledge.

The declarative and procedural models can be differentiated into meta models and

domain models. Meta models include concepts such as operator and pipeline as well

as executable procedural models such as planners and optimizers which can act upon

operators and pipelines. In order to render models executable a code generation

procedure is employed where the implementation agnostic models are converted into

executable procedural models in one of different available implementation languages.

Models can be created in different ways. A manual model engineering approach

involves a combination of engineering knowledge and experience for the implemen-

tation of procedural and declarative models. But also an automated generation of

models is possible, which we denote as model harvesting. Here, the source code and

documentation of a library are used in order to generate declarative and procedural

models with minimal manual intervention.

The hierarchical model is then employed for the synthesis of perception systems as

shown in the lower part of Fig. 3.1. It has two major steps, the problem instantiation
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Figure 3.1: Overview of the modeling system. Manual model engineering and automated
model harvesting are used in order to generate domain models. The hierarchical model is
comprised of procedural and declarative models on different levels of abstraction. A code
generation step provides executable models. The hierarchical model allows to instanti-
ate the perception synthesis problem and provides meta models for conőguration space
exploration.
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and the configuration space exploration. The former formalizes the perception

problem and represents it using concepts and operators of the hierarchical model.

The latter step, the configuration space exploration denotes the search and evaluation

of different solutions variants. It reuses meta models for exploration such as planning

and optimization algorithms and furthermore requires executable procedural models

of the domain. The result is a solution for the given perception problem.

In this chapter the modeling approach as well as the different procedures of the

modeling system are introduced and discussed for the perception domain.

3.1 Set-Theoretic Formal Model

The formalization of declarative and procedural models in this section is based on and

was first presented in the prior publications (Kast et al., 2019a,b,c, 2020). In order

to allow handling and representation of different levels of abstraction, both model

categories provide consistent hierarchical structures. No distinction is done between

symbolic and sub-symbolic entities, which therefore facilitates the transition between

both worlds. As mathematical apparatus, set-theory is used to formalize the models.

The declarative models are represented via so-called concepts and the procedural

models via so-called operators, which are both introduced in the following.

3.1.1 Concepts

A concept describes entities in our domain. Let’s consider the example of the concept

sensor. Different sensors, such as RGB cameras and temperature probes are sensors,

but represent distinct sets within the sensor concept. Thus, the concept sensor is

more abstract than the concepts of camera and temperature probe. We capture the

desired properties with the following set-theoretic definitions:

• A concept base BΓ is the set of instances, not necessarily finite.

• A concept C is a subset of BΓ, i.e., C ⊆ BΓ. Therefore, it also represents a set

of instances.

• A concept class Γ is the set of concepts Ci that have a common concept base

BΓ, i.e., ∀ Ci ∈ Γ, b ∈ Ci : b ∈ BΓ.
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• A partial order M, describing more detailed than, can be defined on Γ: (Ci, Cj) ∈

M iff Ci ⊂ Cj .

BΓ Bˆ︁Γ

C1

C2

C3

Γ ˆ︁Γ
C4

Figure 3.2: Exemplary visualization of the set-theoretic relations between base, class, and
concept. The three concepts C1, C2, C3 are subsets of a common concept base BΓ and
therefore form the concept class Γ. Concept C4 in contrary has the concept base Bˆ︁Γ

and
concept class ˆ︁Γ. Concept C3 is more detailed than C1, which is not true for any other pair
of concepts in the example.

This definition allows to capture the sensor example from the previous paragraph,

where the camera and temperature probe concepts are more detailed than the sensor

concept. Concepts can also be composed of different sub-concepts. For instance, an

industrial camera is typically composed of a body and a lens. Additionally, application

relevant properties such as the camera intrinsics need to be modeled. In order to

capture composition and properties, we introduce so-called composite concepts:

• Given an ordered set R of identifiers, e.g. strings, its elements r ∈ R are

called roles. Thus, for each subset Ri ⊆ R with nRi
:= |Ri| there exists a

bijective mapping J to NnRi
:= {1, . . . , nRi

}, i.e., J (r) ∈ NnRi
∀r ∈ Ri and

J −1(n) ∈ Ri ∀n ∈ NnRi
.

• A composite, recursively defined concept C = Πr∈RC
Cr = Cr1 ×Cr2 × ...×Crj

with RC being the specific set of roles for this composite concept and j := |RC |.

Therefore, a composite concept can be represented as a (directed) graph. An exem-

plary and oversimplified concept graph for a camera is depicted in Fig. 3.3. Nodes

correspond to concepts and edges correspond to roles. Edges point from a concept

to a sub-concept. The extension of the scope of roles to ordered, finite lists and

unordered finite sets is possible and is denoted by curly and square brackets: r[]

and r{}. The ordering and uniqueness of the roles allows for efficient instance and

concept comparison, which is important for meta-operators such as planning. The

partial order M can be generalized for composite structures using recursion. Given
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Figure 3.3: Exemplary composite concept of a camera that consist of body and lens, which
are both speciőed as a PhysicalPart concepts with manufacturer and part-identiőer given.
Additionally the property with the identiőer intrinsics is modeled as a concept of type
Intrinsics. Each graph vertex corresponds to a concept and each graph edge to a role.
Colors and box structures are used to facilitate the identiőcation of type and structural
relations.
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Figure 3.4: Two variants of the concept PhysicalPart are displayed as a graph with two
vertices and an edge that points from the more general to the more detailed concept. The
more detailed concept has the additional roles cost and weight and the roles from the
more general concept are preserved.

C,C ∈ Γ, we define M as

(C,C) ∈ M iff (Cr, Cr) ∈ M ∀r ∈ RC .

Therefore, the sub-concept C requires all roles from the concept C, which can be

formally represented as:

C ∼= Πr∈RC∩R
C
Cr ×Πr∈RC\R

C
Cr ⊆ C ×Πr∈RC\R

C
BΓ(r).

A minimal example of a concept hierarchy is depicted in Fig. 3.4. Here, two

additional roles for cost and weight have been added to the original concept of

PhysicalPart. A more complex example is illustrated in Fig. 3.5 with different variants

of the Camera concept. For the visualization a directed acyclic graph is used whose

vertices represent concepts and whose edges point from more general to more

detailed concepts.

An actual element of the set of a concept is an instance. In order to define an instance,

the values of all leaf concepts of the concept tree need to be specified. In the example

of the more general definition of the PhysicalPart in Fig. 3.4, this means that an

instance specifies the String concepts manufacturer and part-identifier, for example

with values "Industrial Camera Manufacturer Corporation" and "cam-12345". This

means that an instance of a more detailed concept can be converted to or extends an
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Camera

Camera

Camera

Camera
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Figure 3.5: A concept hierarchy of multiple variants of the Camera concept. The deőnition
of the partial order allows that a a concept specializes multiple concepts, as for instance
the top right Camera concept.

instance of a more general concept. This is similar to inheritance in object oriented

programming languages.

An important aspect, e.g. for planning purposes, is the ability to compare instances.

Therefore, a compare relation FC is defined. Two instance bi, bj of concept C are

similar if (bi, bj) ∈ FC . For instances of composite concepts similarity applies when

all leaf instances are similar. The compare relation does not necessarily require two

instances to be identical, but can be defined differently. The intended meaning is

that the second instance does not add information on the level of abstraction of the

domain.

3.1.2 Operators

The declarative models as introduced only provide limited use, unless there exist

executable procedural models acting on them. These procedural models are given

in the form of so-called operators, which we define as follows:

• An operator π ∈ P maps given input concepts Iri to output concepts Orj with

given input roles ri ∈ Rπ,I and output roles rj ∈ Rπ,O, i.e., π : Πri∈Rπ,I
Iri →

Πrj∈Rπ,O
Orj .
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Figure 3.6: Example of an operator. It is named GetImage and takes an instance of the
Camera concept as input and produces an Image instance. The input is not consumed, as
a camera instance is still available after the operator execution.

• The operator mapping can be defined explicitly in the form of a symbolically-

representable mapping, e.g. a mathematical formula, or implicitly as the result

of a computation or real world execution.

• Operators can modify instances, which is realized by invalidating the input in-

stance. Invalidated inputs are called consumed. The set of roles corresponding

to inputs that are consumed by the operator is denoted by Rc
π ⊆ Rπ,I .

• Operators do not have an internal state and are thus fully functional.

An example for an operator is shown in Fig. 3.6. The operator takes an instance of

the Camera concept as input and produces an Image instance.

Operators are elements of a functional space and therefore are modeled as instances

of an Operator concept on a higher level of abstraction. This higher abstraction layer

will be denoted as meta domain. On this meta domain, operators can be defined

that act on other operator instances as inputs, e.g. planning algorithms. The actual

operator concept from the meta domain as used throughout this work is depicted in

Fig. 3.7. The Operator concept contains input and output roles, as well as reference

to executable code. The actual executable code is referenced within operator_callable.

A hierarchy of operators can be established automatically based on the concept

hierarchy of inputs and outputs. If the following conditions hold true, operator π1 is

more detailed than π2:

• all input and output roles of operator π2 are elements of the role set of operator

π1: Rπ2,I ⊂ Rπ1,I and Rπ2,O ⊂ Rπ1,O,
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Figure 3.7: The Operator concept in themeta domain as used throughout this work. Among
others, it contains references to different concepts of executable functions, e.g. opera-
tor_callable. The consumed property of the input roles as introduced as part of the oper-
ator deőnition is part of the Role concept.
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• all (common) input concepts Ir,1 and outputs Or,1 of operator π1 are more

detailed than those of operator π2: (Ir,1, Ir,2) ∈ M∀r ∈ Rπ2,I and (Or,1, Or,2) ∈

M ∀r ∈ Rπ2,O.

3.2 Perception System Models

In this section we cover how the perception system related components as introduced

in Chapter 2 can be represented within the hierarchical modeling formalism. Based

on the examples from the perception system domain different design decisions and

alternatives are discussed. We start with pose representations and object models,

which are elementary and reused multiple times. We proceed with camera models,

sensor data types, state, and belief representations. Furthermore, models for parame-

ters and perception algorithms are introduced, which are an important part of the

configuration space. Finally, models for datasets and simulation are introduced. The

presented models are used throughout the following chapters. Additionally some

implementation aspects are covered, as the compatibility of the modeling approach

with existing operators of different kind is important to its usability and applicability.

3.2.1 Pose Model

Different representations for poses, which represent different abstraction models are

defined. In Fig. 3.8 an excerpt of the pose hierarchy as modeled is visualized, which

covers two dimensional as well as three dimensional pose models.

Pose6D_Stamped

Pose2D

Pose6DCov_Stamped

Pose_Base

Figure 3.8: Excerpt of the pose model hierarchy, which represents 2D and 6D poses with
and without associated uncertainty.
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A detailed model of the most detailed concept Pose6DCov_Stamped is shown in Fig. 3.9.

Here it is composed of a position and a quaternion, which is one of the possible

representations, which are introduced in Sec. 2.1.3. Additionally, each of them is

associated with a 3x3 covariance matrix, which models the inherent uncertainty.

Furthermore, identifiers are given for the start frame and the target frame, which are

represented by the pose. Additionally a time stamp is given in this model instance.

The structure is similar to the pose message definitions in the Robot Operating System

(ROS) (Quigley et al., 2009) and in Sec. 3.3.2 the automated import of concepts

from a middleware such as ROS will be highlighted. The main difference with

respect to the message definitions of a middleware with focus on communication and

deployment are the inherent hierarchical abstractions which allow the planning and

execution of operators on different levels of granularity.

Position3D

Identifier

Doublex

Double

z Double

y

Uncertainty

uncertainty

Identifier

String

value

Timestamp

Stringvalue

Intunix_time

Quaternion

Double
x

Doubley

Double

w

Double

z

Uncertainty

uncertainty

Pose6DCov_Stamped

position

start_frame

target_frame

timestamp

orientation

Figure 3.9: Model of the most detailed pose from the presented hierarchy. The pose models
position and orientation in the three dimensional space which are associated with uncer-
tainty.

Common procedural knowledge involved in handling poses includes the composition

and the inversion, as introduced in Sec. 2.1.3. In Fig. 3.10 the pose composition is
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displayed. Each operator can operate on the given input concepts as well as more

detailed instances of the input concepts.

Pose6D_Stamped

Pose6D_Stamped

composePose

pose

pose

Pose6D_Stamped

pose

Figure 3.10: Procedural model for the composition of poses.

The operator model does contain not only the definition of inputs and outputs, but

also the definition of internal code in a programming language of choice. Both

are used to generate executable code. For the interfacing of operators in different

implementation languages a code generation layer is implemented, which provides

auto-generated conversion code based on (Beazley et al., 1996). This modeling

approach allows to modify and create models, as required on the meta level.

The presented declarative and procedural models only provide an excerpt of the

domain. More operators exist, e.g., for conversion and visualization.

3.2.2 Object Model

The model for objects reuses the pose definition. A realization is visualized in Fig. 3.11

and shows the basic components, an identifier, a mesh, and a pose. Certainly, more

properties can be required and easily added to the model. But the modeling approach

premise is to only model declarative knowledge, which is actually used, e.g., within

procedural models. Unless it is used, it could be denoted as "useless". Therefore, the

model is kept lean to the concepts which are actually used in the application context.

The object model hierarchy is visualized in Fig. 3.12. The differentiation between the

different models are the attributes and the modeling details of the attributes. At an

abstract level, the pose of an object is not required, for instance to state which types

of objects an assembly process requires. A camera is also modeled as an object and is

introduced in the following.
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Model3D_File

Pose6DCov_Stamped
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StateObjectM

mesh

identifier
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Figure 3.11: Basic object model, which is comprised of an identiőer, a mesh, and a pose.
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Figure 3.12: Hierarchy of object models on different levels of abstraction. A camera for
instance is a specialized type of object and has additional attributes.
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3.2.3 Camera Model

The camera model is based on the mathematical model as introduced in Sec. 2.2.1.1

and shown in Fig. 3.13a. In addition to the object it contains attributes for intrinsics

and a noise model. Different abstractions and representations of intrinsic or noise

models are available and can be used to model different camera variants.

Intrinsics

Model3D_File

NoiseModel

Pose6DCov_Stamped

Identifier

CameraM
intrinsics

noise_model

mesh

identifier

pose

(a) Camera Model

Double

Double

Double

Double

Double

NoiseModel

std_dev_c

std_dev_b
std_dev_a

nan_ratio

overlay_wave_length_px

(b) Camera noise model

Figure 3.13: Models for a camera and the noise of the camera. Here the parameters
std_dev_a, std_dev_b, and std_dev_c describe a quadratic approximation of the depen-
dency of the standard deviation on the distance as introduced in Sec. 2.2.1.4.

The depth camera noise model is shown in Fig. 3.13b with different parameters for

different kinds of noise types. The values std_dev_a, std_dev_b, and std_dev_c for

instance represent a quadratic model of the axial standard deviation depending on

the distance.

Furthermore, procedural knowledge is defined to act on the camera model. For

instance, in Fig. 3.14 an operator model is visualized for the acquisition of a depth

image from a camera.
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getDepthImage

DepthImage

depth_image

CameraM

camera

Figure 3.14: Procedural model for the acquisition of a depth image from a camera. This
operator applies to a real camera and internally uses the communication interface of the
camera. There also exists a simulated variant, where a depth image is rendered based on
camera model and scene, as shown in Fig. ??.

3.2.4 Sensor Data Models

Depending on the sensor and data-processing, different data types and models can

be defined. In the context of industrial pose estimation the most important data

types are point clouds, RGB images and depth images. As example, we show the

models for a depth image and a point cloud in the following Fig. 3.15a and Fig. 3.15b

respectively. For theses models different design decisions have to be noted. The

NPY_Array

CameraM

DepthImageM

numpy_array

camera

(a) Depth image model

O3D_PointCloud

QualityMetricPointCloud

PointCloudM

point_cloud

camera

quality_metric

CameraM

(b) Point cloud model

Figure 3.15: Models for the common sensor data types depth image and point cloud. Both
contain a model of the originating camera and the actual sensor data.

model of the originating camera is added to the concept. Alternatives are to model

solely the identifier of the camera and access the camera properties via a database or

to leave out the camera at all. Both can be implemented with the given modeling

formalism. Furthermore, in order to represent low-level data, it is possible to add

new library specific base types such as a Numpy array (Walt et al., 2011) or an

open3d point cloud (Zhou et al., 2018). This allows to use data types which allow

high performance for certain operations. It is of course possible to model a point

cloud as a list of points with coordinates. But with a custom model every operator
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has written from scratch or significant overhead for type conversion to and from the

target library is introduced. For that reason, the modeling environment supports

the reuse of existing data types of external libraries, such as Numpy. This easy

integration of custom and specialized types in a modeling environment allows for

higher performance and reuse of existing operators. Also note here, that in case no

pre-computed point cloud is provided by the sensor additional operators are required

to perform for instance stereo-matching in order to produce a point cloud. This is

fully compatible with the presented models and modeling approach.

3.2.5 State and Belief Model

In the robotics domain world state and belief have to be represented. The actual state

is the ground truth state, which is only known exactly for simulations or with errors

for annotated scenes. The belief denotes the state representation which is available

at runtime within the control system of an autonomous systems.

StateObject

ros__Time

Camera

SimpleStateMM

objects[]

cameras[]

stamp

(a) State model

SimpleState

QualityMetricBeliefSimpleBeliefM

simple_state

quality_metric

(b) Belief model

Figure 3.16: Models for state and belief. For the belief representation, the state model is
reused. Furthermore a metric is added the assess and estimate the quality of the belief.

In Fig. 3.16a a state model is visualized which is suited for perception tasks and

covers cameras and objects in a scene. Here the implicit assumption is that poses are

given with respect to a common world frame. If this cannot be assured in the task

context, additionally a transform tree or graph can be added to the state model.
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The corresponding belief model is shown in Fig. 3.16b. Here, the state model

is reused, which does not include uncertainty representations. If needed, particle

representation of states or uncertainty representations for each object can be modeled

and added.

3.2.6 Parameter Model

Parameters play an essential role for the configuration of perception operators.

In Fig. 3.17a an excerpt of the parameter model hierarchy is shown, of which the

parameter ParamDoubleMinMax is visualized in more detail in Fig. 3.17b. Common

properties are the name, the description and the optimize flag. The latter allows to

keep a parameter fixed during optimization.

ParamStringDiscrete

ParamIntMinMax

ParamDoubleMinMax

ParamDoubleDiscrete

Param

(a) Model of parameter hierarchy

String

Double

String

Bool

Double

Double

ParamDoubleMinMax

description

name

optimize

max

min

value

(b) Continuous parameter model

Figure 3.17: Parameter model hierarchy and example. The individual parameters contain
range descriptions, such as minimum and maximum values, such that the conőguration
space can be restricted.

Parameters can be bundled to parameter sets in different ways. A generic way

is shown in Fig. 3.18a, where a parameter set is specified as a list of individual

parameters. This allows iteration over the parameters in the set and is well suited,

when generic operations are to be performed. Additionally, parameter sets can be

modeled as named attributes as shown in Fig. 3.18b for the parameter model of a

RANSAC operator (Fischler and Bolles, 1981). This approach is well suited for model

the specific parameter sets for operators. Both modeling approaches coexist and can

be converted into each other depending on the need.
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(a) Parameter set model
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(b) RANSAC parameter model

Figure 3.18: Generic and specialized parameter set models. Specialized parameter sets
can be converted to the generic representation which allows more generic deőnition of
operators acting on the parameter set.

The weights of neural networks are similarly modeled. Due to the size and amount of

weights for typical computer vision the storage as a file on disk is common practice.

Therefore, the weight location is modeled as a path parameter.
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3.2.7 Perception Algorithms

Perception algorithms are modeled as operators based on the introduced concepts on

different abstraction levels. In Fig. 3.19a and Fig. 3.19b two different abstractions

of the refineICP operator are displayed. It is clearly visible how, the input and

output concepts of the more abstract operator refineICP_abs are less detailed than

the concepts of the operator refineICP. The more detailed operator works on an

instantiated point cloud and can therefore be used on the lowest level for a real world

execution. The abstract operator only acts on an abstract model of a point cloud.

ParamSetICP

PointCloud_Abs

refineICP_Abs

StateObjectMesh_Abs

SimpleBelief_Abs

SimpleBelief_Abs

(a) Abstract ICP operator model

PointCloud

StateObjectMesh

SimpleBelief

refineICP

ParamSetICP

SimpleBelief

(b) Reőne ICP operator model

Figure 3.19: Exemplary models for the ICP operator at different levels of abstraction. The
abstract operator does not receive the actual points as input, but rather works on an
abstract representation, where the instance quality is approximated via metrics.

The operator refineICP is furthermore modeled on a relatively high level if compared

to raw perception operators as given in perception libraries. It takes a belief as

input and output, which are custom concept and not available in a typical perception

library. Internally it is a pipeline of operators, which are modeled at an even more

elementary level as shown in Fig. 3.20. Here, elementary data types, such as point

clouds from the open3d library are used. So a composition hierarchy as well as an

abstraction hierarchy can be represented.

An abstraction can be modeled for any kind of operator as shown in the excerpt of

the operator hierarchy as shown in Fig. 3.21. Here single abstraction layer is added

above the operators which act on lowest level data. But in general, the modeling
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Figure 3.20: Open3d ICP operator model, which is used internally within the reőneICP op-
erator

approach allows an arbitrary number of abstraction layers. The choice and modeling

of abstraction layers is so far a manual approach and in the responsibility of the

perception system engineer. But the possibility to generate models using an API is

given, which allows the design of meta operators which learn and automatically

generate abstract model layers.

FPFHPoseEstimation_Abs

GetPointCloud_Abs

FPFHPoseEstimation

IterativeClosestPoint_Abs

GetPointCloud

PhysicsPoseRefinement_Abs

IterativeClosestPoint

PlaneRemoval_Abs

PhysicsPoseRefinement

SmoothPointCloud_Abs

PlaneRemoval

SmoothPointCloud

Figure 3.21: Operator hierarchy between abstract operator approximations and the actual
operator implementations.

3.2.8 Datasets

Finally, the model of datasets is introduced, as it plays a central role in the design syn-

thesis of perception systems. We structure datasets with so-called SceneInstanceSets,

in accordance with Sec. 2.2.2.4 and based on (Dietrich et al., 2019). Each instance
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set contains data which describes a static object and sensor setup. As instance types

we distinguish input instances, ground truth instances and expected instances. Input

instances include different sensor data inputs, such as images and point clouds and

prior belief knowledge. Ground truth instances describe the scene state in different

(intermediate) representations such as object poses, masks, and bounding boxes. Ex-

pected output instances represent the information that is required by the application,

such as a list of objects and their poses. The expected output instances are typically a

subset of the ground truth instances.

MetaConcept

MetaConcept

MetaConcept

DataSet
SceneInstanceSet

scene_instance_sets[]

input_instances[]

ground_truth_instances[]

expected_instances[]

Figure 3.22: Dataset model, which consists of a list of SceneInstanceSets.

The dataset model is generic and therefore allows to cover a wide range of perception

tasks. For an exemplary image classification task, the input instances contain an

image and the ground truth and expected instances contain a class label or object

instance. Pose estimation tasks can be modeled accordingly. The differentiation

between ground truth instances and expected instances allows to encode the task

in a dataset. In a pose estimation task an instances of objects with poses are given

within the expected instances. And the ground truth instances additionally contain

the object masks in the image. This allows to train an instance segmentation network

as prior to a subsequent pose estimation operator instead of enforcing a end to end

approach.

Furthermore, datasets need to be generated, which requires additional operators such

as simulators or interfaces to data annotation services. These are equally modeled

within the presented formalism.

3.3 Concept and Operator Acquisition

A core question is how operators and concepts are added to the system. The current

speed of technological development leads to an strong growth of the number of
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available perception operators, as can be seen in the growth numbers of publications

and open source repositories. A core requirement is to keep the engineering effort

low, while working with heterogeneous software environments.

One approach is to manually model and integrate operators and concepts from

different origin. While this approach provides flexibility, it does not cost effectively

scale when significant amounts of manual labor are involved. Therefore, we introduce

two different examples where existing software environments, notably software

libraries and middlewares, are automatically processed and used for the automatic

generation of executable declarative and procedural models.

3.3.1 Library Parsing

This section is based on the joint work of Galanis et al. (2020). As noted before,

different perception libraries such as HALCON, PCL and OpenCV are used especially

for pose estimation in industrial tasks (Hagelskjær et al., 2018). In order to generate

executable models of such libraries, implementation details have to be taken into

account. Furthermore, a large knowledge source for generating usable models lies in

the documentation of the individual operators. In the following, we present a model

extraction system (MES) which addresses the automatic generation of executable

models via the interpretation of documentation and automated code generation. An

overview is given in Fig. 3.23, based on (Galanis et al., 2020).

The model extraction system is designed to be modular and expandable. This is

achieved by using the abstract semantic graph (ASG) of the targeted library as

knowledge base throughout the analysis. The ASG is extracted from the target library

using static source code analysis and represents all the code components that are part

of the source as nodes and the semantic relationships between the nodes as edges.

The system is designed in such a way that all modules have access to the current

knowledge in the form of the ASG. Any information that is extracted by the modules,

like the extracted semantic value for each parameter or whether a parameter is an

input or output, is then added directly to the correct nodes in the ASG themselves.

Figure 3.23 illustrates this design and the implemented modules. In the following,

the three different phases are outlined in more detail.

Preprocessing In the preprocessing phase, the abstract semantic graph of the targeted

library is built and filtered. The ASG generation relies on the header files only and

thus allows to parse libraries which are distributed in binary format. The filtering
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Figure 3.23: Overview of the different modules used in the model parsing. Every block
corresponds to a module of the harvester. The structure of this system can be divided into
three phases. Preprocessing (blue), annotation (orange) and export (green). Each phase
is divided into several modules.

step reduces the size of the ASG and removes entries belonging to dependencies of

the library, as those are not user-facing code that requires generated models.

Annotation In the annotation phase, background knowledge is extracted and an-

notated to the ASG. This is an important aspect of the model harvesting, as the

code itself does not guarantee, that it contains enough information for the model

generation. For instance, the ASG does not specify whether a parameter is an input

or output of a function, especially if passed as reference. Furthermore, a language

related fundamental type such as string can have higher level semantic meaning such

as being a file path. This information is desired on the modeling level. Therefore, the

annotation phase allows to annotate the ASG using different methods. First of all,

heuristics can be applied, which can be language and library specific. For instance,

a const qualifier for a parameter in C++ can denote an input. Subsequently, the

documentation is parsed in order to be interpreted using natural language processing.

The parsing depends on the documentation formalism and representation and can

be customized. Natural language processing then provides the means to extract

information, which is provided in a human-readable format within the function

description. In particular, we analyze the parameter comments, as they contain

the information about a parameter’s mode (input or output) as well as its semantic

content. To extract this knowledge, a pre-trained neural network that is based on the

transformer architecture, is used. This network is then fine-tuned on two tasks:
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1. Input/Output classification and

2. Semantic type classification.

The trained network is then used to classify the parameters and the resulting labels

are added to the corresponding node in the ASG.

The final step of the annotation phase merges possibly contradictory annotations.

Consider the information whether a function parameter is an input or output. During

the analysis in the MES, several modules like the HeaderParser, or the NLPDoc

module might classify the parameter into input and output. In case these information

sources contradict each other, a way to fuse both information sources is needed. To

accomplish this, the Merger module uses a weighted majority vote to determine the

final result for each of the two classification tasks given the results of several modules.

This implementation was chosen to be flexible enough to allow for additional modules

that might be added in the future.

Export Once the needed information is extracted and merged, the MES generates

the necessary glue code. This code is responsible for calling the underlying function

using the inputs provided by the input concepts of the operator as well as passing

the outputs of the function to the output concepts. By using automatically generated

bindings, the underlying C++ library can be called directly within Python, which

simplifies the code generation process. Finally, the concept and operator models

are generated, which can then be reused within the automated perception system

synthesis.

The general feasibility of the approach has been demonstrated in Galanis et al. (2020),

where models not only are harvested, but also successfully used for the automated

planning of a perception task. However, the natural language processing is still

far away from reaching human level understanding of code and its documentation.

Nonetheless, approaches like the presented have large potential to reduce the general

engineering effort like writing boilerplate code in the future.

3.3.2 Middleware Parsing

A middleware is a “software that acts as a bridge between an operating system or

database and applications, especially on a network”, Lexico (2021). It mediates

between different pieces of software or applications and allows communication and

interaction. In the robotics domain, the Robot Operating System (ROS), is a com-
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monly used middleware, which provides standardized interfaces for communication

and service provisioning (Quigley et al., 2009). Furthermore an entire ecosystem

with a large number of tools is available based on ROS. As it addresses robotics

tasks such as motion planning and perception it is a valuable source of concepts and

operators. Therefore, ROS serves as a middleware example for which the automated

generation of concepts and operators is demonstrated in the following.

Within ROS a compositional hierarchy of messages is defined for the exchange of

information between nodes using an implementation independent interface definition

language (Quigley et al., 2009). Language specific code generation provides language

specific instantiations and serialization. The message definition is used for the

different communications patterns via topics, services and actions.

Service
Definitions

ROS
parsing

Concept
Definitions and
Interface Code

Message
Definitions

Action
Definitions

Operator
Definitions and
Interface Code

Figure 3.24: High level view on the ROS parsing. Message, service and action deőnitions
are interpreted in order to generate concepts and operators.

Our approach for automated model generation is visualized in Fig. 3.24. It accesses

the message and service definitions via the ROS API for a specific package and can

generate concepts for messages and operators for services and actions. Therefore,

it builds upon the modeling API as introduced before. A basic requirement for this

procedure is to have common primitive types, such as string and float, which are

represented in the std_msgs packages within the ROS message type system. A manual

mapping between the ROS primitive types and primitive types within the modeling

systems is performed within the automated model generation.

An exemplary auto-generated declarative model for a stamped transform is given

in Fig. 3.25. The hierarchical composition of different concepts of different types is

clearly visible. The primitive type std_msgs__String is mapped internally to the base

type String.
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Figure 3.25: Auto-generated model of ROS geometry_msgs\TransformStamped.

In summary, it is equally possible to auto-generate large parts of the model infras-

tructure for middlewares to avoid re-engineering and allow heterogeneous systems.

It is furthermore generally feasible to also auto-generate conversion operators be-

tween model from different origin with the same purpose, e.g., of modeling a pose.

Although this meta-modeling capability is not yet implemented. The main distinction

of the general modeling formalism with respect to the message definitions of a mid-

dleware with focus on communication and deployment are the inherent hierarchical

abstractions. They allow the planning and execution of operators on different levels

of granularity and thus enable efficient design synthesis. Furthermore, it is to note,

that the interface generation for other perception related middlewares and commu-

nications standards such as GEN<i>CAM, (EMVA, 2021), is conceptually feasible,

but associated with an initial engineering effort. It provides benefit if different users

define individual messages.

3.4 Models for Conőguration Space Exploration

In this section a high-level modeling view on different configuration space exploration

approaches is provided. The approaches are applied in the following chapters to

different task setups.

First, we define the term configuration space exploration in the following.
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Definition 12 - Configuration Space Exploration

Configuration space exploration is part of the overall optimization process. It denotes

the efficient search of suitable points in the configuration space with respect to their

performance for a given task.

For perception system synthesis the computational demand for the evaluation of a

single configuration is very high, due to the dimensionality of data, uncertainty and

state variability. The latter means, that, e.g., the objects in a scene can be arranged

in often arbitrary ways. Therefore, large amounts of test data are required to ensure

performance for the possible object arrangements. Overall, computational efficiency

within the exploration is paramount.

There exist different approaches to reduce the computational effort. If the overall

performance model can be differentiated with respect to the configuration, gradients

are available to steer the search process. This is done for the training of neural

networks or differentiable algorithm networks (Karkus et al., 2019). In general, the

evaluation of a perception system configuration is not differentiable. Although sub-

problems in the overall problem hierarchy can be differentiable. This also motivates

the possible use of different exploration methods at different layers of the problem

hierarchy.

For non-differentiable problems black-box optimization methods can be applied, for

instance using a surrogate model. A surrogate model is an approximation model of

the performance of a process, which is either difficult or (computationally) expensive

to measure or calculate. In the perception system synthesis context, it allows to

predict the performance of a configuration with less computational effort. But it has

to be taken into account, as with any model, that only an approximation is given,

whose error depends on the type of model, the calibration and the modeled system.

In the one dimensional case, curve fitting is equivalent to building a surrogate model.

Multiple steps are involved when working with surrogate models. First, the model

has to be chosen according to the task. Exemplary models are random forests, support

vector machines and artificial neural networks. Furthermore, the model parameters

have to be calibrated based on given data point from more accurate models or

real systems. Here the approximation error clearly depends on the amount of data

available as well as the coverage of the configuration space. Therefore, often iterative

schemes are used, where the costly evaluation of the detailed model is sequentially

alternated with model calibration (Hutter et al., 2011).

In the following we introduce the models for different exploration approaches for

the online and the offline phase.
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3.4.1 Black-Box Optimization

In order to integrate black-box optimization generically into the modeling framework,

interfaces have to be defined. A typical interface for black-box optimization operators

consists of the function to be minimized, which receives a parameter vector as input

and returns the cost as a scalar value. Overall, three major steps are required for the

integration:

1. The configuration space has to be represented as a parameter vector with

specified bounds for the different parameters as required by the optimizer.

2. During optimization, an instantiated parameter vector needs to be converted

back to an executable system or pipeline instantiation, which can be evaluated

for a specific set of inputs.

3. The cost of the configuration has to be calculated via a given cost function,

which may depend on the application at hand.

The last two steps are integrated within the target function to be minimized.

In Fig. 3.26 the meta operator for optimization as modeled is visualized. It takes as

input an instance of the ConfigurationSpace model as well as a ParameterSet which

allows to set optimization parameter, such as the maximum number of iterations.

Additionally, operators have to be specified for the conversion between the configu-

rations space models and the parameter specification of the optimizer. The target

function needs to be given as well. A template is given in Alg. 3.1. The parameter

specification from the optimizer is converted back to a configuration, which is exe-

cuted for each item of the data set. Then, the configuration is executed for each data

point of the dataset. Finally, the cost metric is computed for the overall output and

returned.

Algorithm 3.1 TargetFunction
function TARGETFUNCTION(ParamVector)

Config ← convertToConfig(ParamVector)
OutputList ← []
for DataPoint in DataSet do

Output ← executeConfig(Config, DataPoint)
OutputList.append(Output)

end for

Cost ← calculateCosts(OutputList)
return Cost

end function
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Figure 3.26: Black-box optimization model, which takes as input the conőguration space
and a target function, which is executed during optimization. The output is a system con-
őguration as well as associated performance metrics.

Within the optimization procedure as shown in Alg. 3.2, the target function is passed

to the parameterized optimizer. Conversions between the configuration space model

and the parameter modeling approach as required by the optimizer are needed as

well.

Algorithm 3.2 OptimizeMeta
function OPTIMIZEMETA(ConfigSpace, TargetFunction, OptParameters)

ParamSpace ← convertToParam(ConfigSpace)
ParamVector, Cost ← optimize(ParamSpace, TargetFunction, OptParameters)
Config ← convertToConfig(ParamVector)
return Config, Cost

end function

On this level of modeling, the optimizer is a black box itself. Depending on the

optimization approach a surrogate model is used, as for instance in sequential model

based algorithm configuration (Hutter et al., 2011). The surrogate model can be

represented with the presented modeling formalism as well. One approach is shown

in the following section about hierarchical planning.
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3.4.2 Planning

An alternative way to explore the configuration space is planning, which can be

employed for offline or online phases of the synthesis process. Planning algorithms

are commonly used for sequencing robot actions (Kast et al., 2019c) and for the

generation of feasible motions and trajectories for robotic actuators (LaValle, 2006).

But planning can be applied as well for a very broad set of tasks, such as solving a

rubic’s cube and optimizing the logistics of a warehouse.

A planning problem can be defined via a model of state, actions and a goal. Planning

algorithms are used in order to determine suitable sequences of actions in order

to satisfy the goal. Actions act on a state and lead to a new state. Continuous

and discrete action and state spaces can be targeted, depending on the task and

the abstraction level of the model. So for instance, a task can be described on a

solely symbolic level with discrete state descriptions, such as stating that an object

is localized. Here, no information is given about the quality of the localization and

the actual pose and its reference frame, which are needed for real world interaction.

But if the planning model is well designed for a task, it can still be used to reduce

the overall search space. The suitability depends on the problem. If in a warehouse

discrete storage locations for pallets are given and the storage and retrieval process

are reliable and deterministic, they can be abstracted as discrete actions which

only require the identifier of the storage location. So the abstract model requires

real world equivalent actions, which satisfy the sub-symbolic, continuous nature of

reality.

Common strategies for planning are forward chaining and backward chaining. In the

former the search is started at the initial state until a goal is reached. In the latter

case the search is started at the goal and actions are explored backwards from the

goal until the start state is reached. Furthermore, the search graph can be build in a

breath-first or a depth-first manner. For a detailed introduction and formalization we

refer to (LaValle, 2006).

Planning can be considered as a meta-operator in the presented model hierarchy.

Exemplary, the procedural model for a breath-first forward chaining planner is visu-

alized in Fig. 3.27. It takes a planning box as input, which describes the planning

problem via facts, goals and available operators and is detailed in Fig. 3.28. Further-

more, the maximum number of plans can be specified. The output is a list of plans

and the planner state, or, if applicable an exception. The model is kept generic, and

allows to handle different planning domains, as given by the fact, goal and operator

instances.

90



3.4. Models for Conőguration Space Exploration

SimplePlanningBox Planner
planning_box

IntOption

max_plans

ExceptionNoPlanSPState

PlannerState

Plan

ex_noplan

planner_state

plans[]

Figure 3.27: Planner model, which acts on a planning box, where the planning problem
is described. The output is a planner state and a set of plans or, in case of failure, an
exception.

Modeling meta-operators such as planners and optimizers provides the ability to

construct a hierarchy of problems which can be solved with different methods at

different layers. This is done with the hierarchical planning procedure as presented

in the following.

3.4.3 Hierarchical Planning

As discussed before, a planning domain is generally an abstract model of a real

world process and therefore is subject to modeling and abstraction errors. There are

multiple ways to address this issue. Either, highly detailed and accurate models can be

used within the planning domain, which increases the computational effort associated

with the planning. The reason is that the modeled actions in the planning domain are

executed during planning and detailed models require higher computational effort.

Another approach is to use backtracking, where a plan is executed in the real world,

until a mismatch between the modeled state and the expected state occurs. In this

situation, the planner is triggered again and can provide an alternative solution.

Although, this is not possible for arbitrary modeling errors in the planning domain

and it can lead to non-recoverable situations, such as unreachable objects in a scene.

The computational effort involved in planning can be reduced by exploiting the model

abstraction hierarchy in the procedural and declarative knowledge as introduced
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SimpleOperator
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SimplePlanningBox

operators[]
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Figure 3.28: Simple planning box, which describes a planning problem via facts, goals and
given operators.

in Sec. 3.1. In the following we will introduce the hierarchical planning approach

based on the joint work (Kast et al., 2020). The basic idea of is to divide the overall

planning problem into small subproblems. This process is performed repeatedly and

allows to face the curse of dimensionality by formulating subproblems which do not

address the entire problem dimension at once. This is done by planning in an abstract

domain first. In this abstract domain the goal can be reached with a relatively small

number of steps, as the abstracted operators cover huge changes of the state. For

instance, a state change can be modeled on a purely symbolic level on this domain.

Additionally, this reduces the branching factor, as only a small number of operators

exist and can be applied in the abstract domain.

Once a solution on the coarse level is found, each applied operator in this plan by itself

defines a new sub-planning problem with its inputs as starting values and outputs as

goals. The creation of subproblems, also called refinement, is applied recursively to

each of the newly generated planning problems until there is no further refinement

for the operators. However, there can be errors and unsolvable subtasks on any level,

as the abstracted domains and their planned solutions are only approximations of

the real behavior. In our approach the downward refinement property (Bacchus

and Yang, 1991) is not strictly enforced, which means that the successful execution

of an abstract operator does not guarantee the successful execution of its more

concrete operator counterparts. This property is hard to ensure in real world robotic

systems and enforces strong constraints on the abstract models. Our solution to

avoid dependency on the downward refinement property is backtracking. Here, if a

refinement fails, plans on the abstract level are dismissed and new plan sequences to

the goal on the abstract level are calculated. In our system, the real execution is the
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final refinement. Error handling requires no special care, it is a case of backtracking.

Therefore, the planning approach represents a model predictive control scheme,

where abstract domain representations are used for the prediction. Both execution

and error handling are first class citizens within our hierarchical planning approach.

Under ideal conditions, when the coarse level is a good approximation to the behavior

of the real-world, the planning approach can scale linearly with the length of the

task, as shown in (Kast et al., 2020). This, however, holds only true if the downward

refinement property is always guaranteed. For a bad approximation the number of

visited nodes still grows exponentially as the full problem is np-hard.

Additionally, the solutions are not necessarily optimal. The solution quality depends

on the model of the abstract domains to propose good intermediate goals for factor-

ization. This, however, can be a burden to the overall system engineering, especially

when different stake holders model the levels of the domain according to their

respective user roles.

The hierarchy within the planning domain model can also be seen as a hierarchy

of surrogate models, where each level is a surrogate model of the underlying level.

Equally, its generation and parameterization can require a calibration procedure,

where the model is calibrated to the reality it is to represent.

ParentChildMapping

SiesarHP
parent_child_mapping

PlanningBox

meta_concept

HPlannerResult
h_planner_result

Figure 3.29: Top level view on the hierarchical planner.

The hierarchical planner equally has a model representation as operator in the meta-

domain, as shown in Fig. 3.29. Internally it uses the executable model of the single

level planner as introduced in Sec. 3.4.2 in order to solve sub-planning problems.
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3.5 Related Work

The modeling approach addresses different lines of research, from general knowledge

representation to specific modeling for automation and robotics. Knowledge represen-

tation is a subfield of artificial intelligence with the goal of designing representations

of knowledge which allow to solve complex problems, typically using automated

reasoning. Knowledge is therefore represented using specialized languages which are

declarative models of the domain. A knowledge representation language is tightly

coupled with an inference engine, which allows to derive conclusions and new facts

from the declarative model, also called reasoning. The inference engine is therefore

a procedural model which acts on the declarative model. According to Davis et al.

(1993) five different roles can be identified for knowledge representation:

1. A knowledge representation is a surrogate

2. A knowledge representation is a set of ontological commitments

3. A knowledge representation is a fragmentary theory of intelligent reasoning

4. A knowledge representation is a medium for efficient computation

5. A knowledge representation is a medium of human expression

First-Order-Logic (FOL) is a common formalism being used for knowledge represen-

tation and reasoning. It can be used to model facts, objects and their relations and

infer new instances thereof using logical inference. Although the expressive power is

high, its use on the shop floor is limited so far. It is mostly adopted in research (Radig

et al., 1992) and for expert systems (Metaxiotis et al., 2002). One reason for this

is the fact that the average software developer is used to different programming

paradigms, such as procedural and object oriented programming. Furthermore, the

engineer brings in a lot of background knowledge when designing an automation

system, which allows to reduce the programming tasks to problems, which can be

represented well using the aforementioned paradigms. A crucial part of that back-

ground knowledge is a symbolic and sub-symbolic action-effect simulation, which an

engineer can perform intuitively.

An important concept for knowledge representation and reasoning are ontologies,

which on a high level are “an explicit specification of a conceptualization”, Gruber

et al. (1993), which is formal and can be shared (Studer et al., 1998). An ontology is

typically represented in First-Order-Logic or in the Web Ontology Language (OWL)

and is comprised of individuals, classes, functions, relations and axioms. In a robotics
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context it allows to state knowledge such as a camera is a sensor and an automation

system has a manipulator and a sensor. But also more complex knowledge can be

represented such as constraints between individuals and general rules.

Ontologies have been successfully applied to the robotics and automation application

domain (Stenmark and Malec, 2013; Tenorth and Beetz, 2013; Diab et al., 2019).

Especially Stenmark and Malec (2013) target industrial applications, while most

other approach are focused on service robotics, where a larger variety of scenes,

tasks, and objects to interact with is given. For a review of different approaches we

refer to (Olivares-Alarcos et al., 2019). Ontologies provide especially declarative

knowledge, which can be used and queried by the automation system at runtime. But

recent developments target the integration of simulation to form a hybrid knowledge

processing architecture (Beetz et al., 2018; Haidu et al., 2018). Here, parts of the

robot control program are leveraged in order to gather experiential knowledge in

simulation.

Standardization efforts are undertaken in order to specify common ontologies for the

robotics and automation domain (Fiorini et al., 2017). However, an ontology alone

is not sufficient to create the control system for a robotic system. Parameterizable

and executable software components are required in addition, which are linked and

connected with the ontology.

In the fields of industrial automation and systems engineering other specialized

models and representations are available. For instance the automation modeling

language AutomationML (Drath et al., 2008) is a standardized set of representations

for topology, geometry, kinematics, and controller logic based on the Extensible

Markup Language (XML) (Bray et al., 2000). It allows to declaratively model automa-

tion systems as a hierarchy of objects and their attributes and relations. Procedural

knowledge can be represented declaratively using the PLCopen standard (van der

Wal, 2009) and executed using specialized execution engines. However, program-

ming techniques targeted for programmable logic controllers (PLC) do not fit well

for programming the perception of advanced autonomous robots. Currently, the

perception domain is not yet represented within AutomationML, but first approaches

regarding sensor modeling exist (Gonçalves et al., 2019).

For systems engineering the Systems Modeling Language (SysML) (Hause et al.,

2006) was designed based on the Unified Modeling Language (UML) (Rumbaugh

et al., 2004). It can be used to model system requirements and exchange system

information without disambiguation between different stakeholders. It is mainly a

tool for system engineers and is not targeted to be used directly in the control system

in the online phase. In the field of system modeling and simulation the Functional
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Mock-up Interface (FMI) (Blochwitz et al., 2012) is defined. It allows to exchange

executable simulation models between different tools and developers. However, it

mainly targets the simulation of dynamic system.

Other approaches like OPC-UA (Leitner and Mahnke, 2006) thrive to standardize data

formats and communication on the factory floor. While it is focused on the low-level

data exchange, it provides data models and semantics, which can be leveraged for

data analysis and automated configuration. There is a specialized OPC-UA standard

for the machine vision domain (VDMA, 2021), which especially covers the recipe and

configuration management. The modeling of so-called vision skills such as object

detection are still future work (VDMA, 2021).

The aforementioned approaches from knowledge representation research and spe-

cialized modeling tools provide excellent tools for declarative modeling of different

domains. But the modeling and representation of procedural knowledge, i.e., exe-

cutable procedural models, are not in the general focus. The procedural knowledge

is encoded in inference, or execution engines which act on the abstract models.

It is not straight forward how to integrate existing code and libraries, which are

the core procedural knowledge about perception operators. Therefore, integration

effort is reduced, but automated design synthesis is only possible in a limited way.

Only executable procedural models allow for a detailed evaluation and automated

design synthesis down to the low level engineering decisions required for perception

systems.

The presented hierarchical modeling approach does only provide a subset of the

expressiveness, as for instance of OWL. This is due to the tree-based structures

rather than graphs. However, the executable procedural models, which are tightly

integrated with the declarative models allow to address robotic tasks without major

tool boundaries. In general there is a trade-off between expressiveness and ease

of use. It is desirable future work to ground the presented hierarchical modeling

approach in a formal ontology and leverage synergies. However, the presented

modeling approach allows to model hierarchies of abstraction levels which can be

leveraged across different tasks ranging from manipulation planning to perception

system synthesis. Furthermore meta-operators such as planning and optimization are

first class citizens, which targets the requirements of offline and online engineering

for the design and operation of autonomous systems.

One example of the integration of knowledge representation and inference for

perception in automation and robotics is the RoboSherlock system (Beetz et al.,

2015a), (Bálint-Benczédi et al., 2019). It builds on the Unstructured Information

Management Architecture (UIMA) (Ferrucci and Lally, 2004). The perception system
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is modeled using an ontology in OWL within the KnowRob knowledge base (Tenorth

and Beetz, 2013) and First-Order-Logic is used in order provide perception pipelines

given input queries. Uncertainty in the object classification can be taken into account

using markov-logic-networks (Nyga et al., 2014), which are trained on logged data.

The approach is not targeted for systems engineering, but focuses on robot autonomy

in unstructured environments. Furthermore, declarative and executable procedural

perception models are separated into different systems and the handling of ontologies

poses a challenge for industrial shop floor applications.

Different modeling languages exist in the context of planning, which relate to the

presented hierarchical approach. The following planning literature review is based

on the joint work (Kast et al., 2019c). There are many languages such as PDDL

(McDermott et al., 1998) and its variants that focus on the procedural knowledge

of a domain on the symbolic level. This language standardization combined with

a long series of planning competitions have resulted in a large set of fast planners

for PDDL domains such as (Helmert, 2006). Extensions to PDDL add support for

certain sub-symbolic properties such as time. An example is PDDL+ (Fox and

Long, 2002) that introduces events and processes to model exogenous change and

support domains with mixed discrete and continuous dynamics. Corresponding

solvers, such as (Cashmore et al., 2016) or (Piotrowski et al., 2016), make use of

this representation and handle domains with nonlinear continuous change. They

approximate the dynamics of the system and handle the resulting discretized model

with uniform time steps and step functions.

Another approach is partial-order planning (POP) (Young et al., 1994) which involves

partially specified action decompositions. In this approach, the planner is only

allowed to fill in missing pieces of a fixed plan template. This hugely reduces the

search space. However, it is difficult to ensure the separation of system and task

description with this approach, which reduces the flexibility.

A large community addresses hierarchical task networks (HTN) that refine each

abstract skill by a network of sub-methods, e.g. (Castillo et al., 2006), (Goldman,

2006), (Nau et al., 2003). In their basic form they were state-oriented and could

not deal with time constraints or concurrent actions. Nevertheless, the formalism is

more expressive than that of first principle planners (Erol et al., 1994), HTN methods

can improve planning times (Nau et al., 2003) and even support plan reparation

(Gateau et al., 2013). In (Bercher et al., 2016) an overview of HTN methods is

provided that discusses the expressiveness of hierarchical planning formalisms as

well as implications of preconditions and effects of abstract methods. A mandatory

and limiting condition for HTNs is the downward refinement property that enforces

refinements to all abstract solutions (Bacchus and Yang, 1994). Yet, the generation
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of suitable abstract models for a domain is a challenging or even impossible task and

often results in a coupling between task and system description.

To overcome the limitations induced by the downward refinement property, sev-

eral variants of HTN planning and hybrid planning (Kambhampati et al., 1998),

(Schattenberg, 2009) have been proposed. The hierarchical partial-order planner,

introduced in (Bechon et al., 2014), uses additional knowledge that describes sets

of abstract actions with optional methods to increase flexibility during refinement.

Another approach to improve versatility is the combination of HTN and POP in a

domain-specific planner with a strict separation between several hierarchical levels

(Castillo et al., 2003). In both approaches the effects of the downward refinement

property are mitigated at the cost of models which are dependent on the system and

the task at the same time.

In summary, the proposed modeling formalism stands out with respect to the state-of-

the-art in several points. First, it allows to natively model abstraction hierarchies and

declarative as well as procedural models. This allows efficient configurations space

exploration via abstract layers for mixed discrete continuous problems such as the

perception domain. Furthermore, the approach successfully combines techniques for

code generation and model harvesting in order to reduce engineering effort. Finally,

meta modeling allows to represent operators for configuration space exploration,

which can be easily recombined in sequential and even hierarchical manner.

3.6 Summary and Discussion

In this chapter, the hierarchical modeling approach is introduced. It is based on set-

theory and allows to represent procedural and declarative knowledge as a hierarchy

of procedural and declarative models. The hierarchy is multi-dimensional and

facilitates to represent a compositional hierarchy as well as an abstraction hierarchy.

This allows to model common concepts in the domain of perception, robotics, and

automation, as shown.

The benefits of the presented approach are of multiple origin. First, it allows a

tight integration between declarative and procedural models, which is not the case

for representations with strong focus on declarative models. Moreover, in its core

it is a language agnostic approach, where different programming languages can

be integrated and used interchangeably for executable procedural models. This

reduces engineering effort and facilitates the use of specialized libraries written

98



3.6. Summary and Discussion

in different programming languages. Furthermore, model harvesting approaches

allow to generate models by taking into account source code and documentation.

This allows to reduce the manual modeling effort even further. Reducing manual

modeling effort is an important aspect for model-driven design approaches, as there

always exists the risk to trade medium implementation efforts with high modeling

efforts.

The meta-modeling level facilitates the modeling of procedural knowledge for config-

uration space exploration. This enables the reuse of exploration approaches especially

when targeting problem hierarchies which result from a problem decomposition. For

instance, a sub-problem can be solved using a specialized optimizer, while the overall

problem hierarchy is addressed via hierarchical planning.

The synthesis of perception systems benefits from a unified modeling approach for

declarative and procedural knowledge. Declarative knowledge alone can hardly cover

all uncertainty and noise effects, executable procedural knowledge and real operator

execution is required to ground abstract models. Executable models furthermore

allow the optimization of sub-symbolic system parameters, which occur in large

numbers within perception systems. At the same time, an abstraction hierarchy of

arbitrary levels can be modeled, which allows to take advantage of abstract models

in order to steer the configuration space exploration and can allow to reduce configu-

ration times, especially for runtime purposes. Finally, the automatic generation of

models from a heterogeneous set of libraries allows to take advantage of fast paced

innovation cycles and reduces general engineering effort.
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Chapter4

Offline Pipeline Synthesis using
Structure Priors

After the introduction of the underlying models for perception and configuration

space exploration, this chapter is dedicated to pipeline synthesis via optimization. We

target the sub problem of generating and parameterizing an appropriate perception

pipeline. This step is associated with the highest engineering effort according to an

industry survey (Hagelskjær et al., 2018).

The generation and parameterization of perception pipelines has multiple configura-

tion space dimension. First, individual operators have inputs and outputs and a set

of operators can be combined to a pipeline. So the first part of the task is to choose

operators from an operator library and connect their inputs and outputs such that a

pipeline is formed. This pipeline has to be compatible with the task in that it uses

provided inputs and produces the desired result. The second part is the selection

of appropriate parameters for the employed operators. The output of an operator

depends on the choice of parameters given. Therefore, the performance of a pipeline

strongly depends on the chosen parameterization of its individual operators. Overall,

these two configuration space dimensions already yield a large configuration space,

even when a small number of operators is given.

In Fig. 4.1 a high level overview over the optimization procedure and how it embeds

in the overall context is given. The approach targets the offline engineering phase,

where the system engineer designs a static pipeline for a specific perception task.

Among other, a specification of the criteria of the task as an error function is necessary,

which is used within the optimization procedure, see Sec. 2.2.2.5. A specialized

instantiation step converts the perception task into an optimization problem, while
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Figure 4.1: Offline pipeline synthesis via black-box optimization.

taking into account pipeline templates. Pipeline templates are introduced in Sec. 4.1.3

and employed to reduce the configuration space by restricting the pipeline structure.

The optimization procedure uses a surrogate model to determine promising configu-

rations, which are evaluated on real data. The synthesis and the automation system

are represented using hierarchical models as introduced in Chapter 3.

This chapter is based on and reuses excerpts of the publication of Dietrich et al.

(2019). In addition, a more detailed view on the top-level models for the synthesis is

given.

4.1 Pipeline Structuring and Optimization

In this section, the approach and it’s individual components are introduced. We

start with an overview and proceed with the pipeline structuring and optimization

methodology. The descriptions are accompanied with the respective models.

102



4.1. Pipeline Structuring and Optimization

4.1.1 Overview

The approach is displayed with more detail in Fig. 4.2. As inputs, an annotated dataset

of the application, an operator library as well as a pipeline structure template is

given. The input data represents the application. It contains sensor inputs, which are

annotated with ground truth information and expected instances by the application.

The operator library is a set of available perception operators. The pipeline structure

template enables to encode engineering knowledge and reduce the configuration

space. It will be introduced in Sec. 4.1. The output of the automatic configuration is

a parameterized perception pipeline.

buildConfigSpace...

...

Pipeline Template

Annotated Input Data

Operator Library

Pipeline
Config
Space

computeError

...

...

Parameterized Pipeline

generatePipeline

optimizePipeline

Pipeline
Structure and

Parameterization

Figure 4.2: Overview of the automatic configuration approach. A pipeline structure template
is used to reduce the search space. Operators from an operator library are automatically
placed and parameterized within the template within an optimization procedure in order to
fulfill the task as specified via an annotated data set.

The synthesis of pipeline structure and parameterization is formulated as the opti-

mization problem:

(P∗, λ∗) ∈ argmin
P∈P,λ∈Λp

eD(Pλ ,D), (4.1)

where ΛP is the parameterization space of pipeline P. Typically, this can only be

solved by derivative-free optimization methods due to missing derivative information

for most operators and structure adaptations. In this general problem representation,

the structural variety is encoded via P. In the following section, we introduce

structural elements and structure parameters to model and optimize the set of

pipeline structures.
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4.1.2 Pipeline Synthesis Meta-Operator

The pipeline synthesis is modeled as a meta-operator, which is shown in Fig. 4.3.

This facilitates the reuse of the operator and enables to use it solver for subsets of a

decomposed problem hierarchy. It uses the PipelineStructureTemplate and DataSet

model as introduced before. Furthermore, it requires the available operator set,

which is given as a list and an operator for the calculation of the error metric. The

additional input of prior instances allows to provide background information and

pre-trained models for available operators. In the latter experiments the neural

networks, which are trained on the dataset as part of a prior step, are given as input

for runtime reasons. But it is also conceptually feasible to include the training of, for

instance, neural network in the overall optimization. The output of the synthesis is a

parameterized perception pipeline together with performance metrics.

PipelineStructureTemplate

MetaConcept

synthesizePipeline

pipeline_structure_template

DataSet

SimpleOperator

data_set

SimpleOperator

available_operators[]

prior_instances[]

error_metric_op

ParameterizedPerceptionPipeline

PerformanceMetrics

parameterized_perception_pipeline

performance_metrics

Figure 4.3: Pipeline synthesis operator model

The pipelines synthesis is itself composed of two major steps, the initialization of

the configuration space model and a black-box optimization as shown in Fig. 4.4.

The black box optimization reuses the meta-operator as introduced in Fig. 3.26. It

implements the different strategies, which can be chosen via parameters.
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Figure 4.4: Pipeline synthesis operator internal structure

4.1.3 Pipeline Template Model

We employ a pipeline template model, where structural elements of the pipeline are

parameterized via structure parameters ψ̃ ∈ Ψ̃, Ψ̃ ⊆ Λ that encode the operator

instances and their sequence of execution. The model of the pipeline structure

template is visualized in Fig. 4.5. It consists of a list of structural elements as well as

a connection graph, which models the interconnections of the structural elements.
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input_types[]

MetaConcept

output_types[]
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id

ProceduralBiGraph

DrawableBiGraph

graph

DrawableBiGraph

interface_graph
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interface_mode

PrescribedProperties
prescribed_propertiesPipelineStructureTemplate

structural_elements[]

connection_graph

Figure 4.5: Pipeline structure template model
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The template we employed as working example is displayed in Fig. 4.6. We structure

the pipeline template in three main structural elements: hypothesis generation, hy-

pothesis refinement, and hypothesis scoring. The structural elements are configured

via the respective structure parameters ψ̃G, ψ̃R, and ψ̃S .

During hypothesis generation, the resulting hypotheses of different pose estimation

pipelines are accumulated to a common list of all initial hypotheses. In the following

hypothesis refinement phase, the list of hypotheses is subsequently refined by a

parameterized number of operators. Finally, all intermediate hypotheses are gathered

and scored. This structure represents an instance of a hypothesize-and-test strategy.

The actual operator instantiation of the structural elements is encoded via structure

parameters, which represent the employed operators as ordered lists. All different

variants are encoded in the set of parameter values, which depends on the available

operators G,R, S ∈ O for each structural element. For instance, given the two

operators R1 and R2, the set of parameterizations is

Ψ̃R({R1, R2}) = {∅, R1, R2, R1R2, R2R1}, (4.2)

with ψ̃R ∈ Ψ̃R({R1, R2}) and Ψ̃R ∈ Λ.

The pipeline structure template additionally defines conditions on the inputs and

outputs of the operators for different structural elements. In the working example,

hypothesis generation operators G must produce a hypothesis list as output and may

not require a hypothesis list as input. Refinement operators R require a hypothesis

list as input and must produce a hypothesis list as output. The hypothesis scoring

operators S transform hypotheses to scored hypotheses.

4.1.4 Optimization Strategies

In the following, we introduce two different optimization strategies on top of se-

quential model-based optimization (SMBO) Hutter et al. (2011). In brief, SMBO

performs black box optimization effectively by building a computationally efficient

performance prediction model, that is used to evaluate the majority of parameter

configurations.

With the different strategies we aim to gain insight, whether the joint optimization

of all parameters is to be preferred over a strategy where operators are optimized

individually as a prior step. We start with a description of common initializations and

proceed with the strategies.
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Figure 4.6: Pipeline template that is used as working example. It is separated in three parameterizable structural elements, hypothesis generation,
hypothesis refinement, and hypothesis scoring. The hypotheses can be generated by multiple operators. The refinement is a sequential procedure,
where each refinement operator gets its input hypotheses from the preceding operator. The structural elements are parameterized via the structural
parameters ψ̃G, ψ̃R, and ψ̃S .
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First, the available operators from the operator library are matched to the structural

elements of the pipeline template, which is performed based on the template con-

ditions for the different structural elements. Additionally, the required input of the

operators has to be given within the dataset. The set of values for the structure

parameters is initialized by generating the possible sequences of the operators for

each structural element. Finally, operator and structure parameters are added

to the optimization configuration space. The operator parameters are additionally

conditioned on the structure parameters such that they are only considered when the

operator is within the currently chosen operator sequence of the structure parameter.

The dataset D is split into a training set Dtrain and a test set Dtest. The test set is

used as a holdout dataset to assess the generalization of the pipeline structure and

parameterization. We furthermore perform the training of data-driven operators,

such as neural networks as initialization step. For this step only Dtrain as well as

additional simulated data can be used.

Joint-Optimization Strategy JointOpt

Within the joint-optimization strategy, structure parameters and operator individual

parameters are jointly optimized. Therefore, the responsibility to guide the search

process is solely with the optimizer.

Pre-Optimization Strategy PreOpt

For the pre-optimization strategy the assumption is made that individually optimized

operators are performing well within the pipeline structure. Therefore, prior to the

optimization of structural parameters, the parameters of individual operators are

optimized. This requires the following conditions to be fulfilled:

• input instances Iin and ground truth instances Igt must be available for the

input and output of the operator and

• the error metric ei(Iout, Iexp) needs to be defined for the operator output types.

The operator individual optimization is followed by a joint optimization of the struc-

tural parameters and the remaining operator parameters. The previously optimized

parameters of the individual operators are fixed.
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4.1.5 Test Metric

In order to evaluate the results and stop the optimization, we use a test error etest
where an acceptance threshold θ is applied on the instance error of the test dataset:

etest(Pλ ,Dtest) =
1

n

n∑︂

j=1

⎧
⎨
⎩
1 if ei(Pλ(Iin), Iexp) > θ

0 otherwise
, (4.3)

with dj = (Iin, Igt, Iexp) ∈ Dtest, n = |Dtest|. The threshold θ results from the applica-

tion requirements. The test error reflects the ratio of data instance sets where the

application requirements are not fulfilled.

4.2 Evaluation

We evaluate the proposed offline pipeline configuration approach in different exper-

iments. First, we use a subset of the T-LESS Dataset Hodan et al. (2017) for the

comparison of the optimization strategies and analysis of different aspects of the

overall approach. In the second experiment, the approach is applied to an industrial

assembly scenario, where the automatic configuration is used to determine a working

pipeline and parameterization for the given assembly task. As the experimental setup

is shared to significant parts, common elements are introduced first.

4.2.1 Setup

The set of operators used in the experiments is listed in Tab. 6.1. The operators

are chosen such that different approaches for 6D pose estimation and refinement

are represented. The shape refinement operator RH and depth adaptation opera-

tor RD are custom engineered. The operator GMP is composed of the MaskRCNN

operator OM and the Point Pair Feature Matcher OP. Individually, the operators OM

and OP are not matched within the pipeline template due to wrong output type and

missing input. In these experiments, each operator may only be inserted once in each

structural element. Therefore, the initialization of the structure parameters given the

set of operators results in 64 distinct pipeline structures.
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Figure 4.7: Error trajectories for the strategies JointOpt and PreOpt for different error
thresholds. For better visibility the outer hull and mean values of the individual trajec-
tories of the 6 different seeds are displayed. The initial plateau for the PreOpt strategy
represents the pre-optimization of individual operators. On average, the performance of
both strategies is similar.

The overall dataset with 100 data points is split into 50% training and 50% test data.

The pre-optimization is only performed on GMP according to the strategy definition.

The parameter default values and ranges are initialized according to recommended

values in the documentation, if available.

As error metric e, we use the visual surface discrepancy eVSD as defined in the

BOP benchmark Hodan et al. (2018), with the misalignment tolerance τ . We

set τ = 0.02m, in accordance to the BOP benchmark. We evaluate the results

for the acceptance thresholds θ = 0.3 and θ = 0.15. For the error calculation only the

hypothesis with the highest score computed via SR is considered.

The framework is written in Python. As sequential model-based black box optimizer

we use PySMAC version 0.10.0 Hutter et al. (2011). The experiments are computed

on a Intel Core i7-4810MQ CPU. The training time of the neural networks is not

considered in the following diagrams.

4.2.2 Strategy Comparison

In this first experiment, we apply our approach on a perception problem from the

T-LESS dataset Hodan et al. (2017) and compare the different optimization strategies.

Only the T-LESS scene scene_09 and object obj_03 are used for this experiment.

The strategy evaluation is performed on a randomly sampled subset of the overall

dataset with a size of 100 images, which is kept constant across all experiments.

110



4.2. Evaluation

Pipeline Test Error

θ = 0.15

Strategy Seed

JointOpt 4 GSGMP-RHRD-SR 0.08

PreOpt 5 GSGMP-RHRDRI-SR 0.09

PreOpt 2 GSGMP-RHRD-SR 0.11

JointOpt 0 GS-RHRD-SR 0.13

PreOpt 0 GSGMP-RHRDRI-SR 0.13

JointOpt 2 GSGMP-RHRD-SR 0.15

JointOpt 3 GMPGS-RHRD-SR 0.15

PreOpt 1 GSGMP-RH-SR 0.17

JointOpt 1 GSGMP-RHRDRI-SR 0.19

PreOpt 4 GMPGS-RHRD-SR 0.21

PreOpt 3 GS-RHRD-SR 0.24

JointOpt 5 GMPGS-RH-SR 0.36

Table 4.1: Test error for the best results for 6 different seeds of the PreOpt and JointOpt
strategies. Result are sorted by the test error with a threshold θ = 0.15

The strategies JointOpt and PreOpt are evaluated for 6 different optimization seeds.

The stopping criterion for the optimization is either a zero valued test error or a

maximum runtime. For the JointOpt strategy the maximum runtime is set to 24 h.

The PreOpt strategy consists in two optimization phases, the pre-optimization with a

maximum runtime of 9 h and the joint optimization with a maximum runtime of 15 h,

such that both strategies run within 24 hours.

In Fig. 4.7, the outer hull and mean of the resulting test error trajectory for the

different optimization seeds are displayed for both strategies for a threshold θ of

0.3 and 0.15 respectively. The pre-optimization duration of maximum 9 h of the

PreOpt strategy is displayed as default error plateau within the PreOpt strategy

of the minimal default pipeline GS-SR. Additionally, the resulting pipelines for the

different strategies and optimization seeds together with their test error are displayed

in Table 4.2.

Several characteristics can be observed. First, the resulting minimum absolute test

error and error variance is higher for the more difficult case of θ = 0.15, which is

the expected outcome. The best performing configuration for each seed is typically

found within the first 6 hours of optimization, which leads to a flat error curve.
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Pipeline Test Error

θ = 0.3

Origin

Pre 1 SMP-H-R 0.04

Pre 2 SMP-HD-R 0.04

Default 0 S-DHI-R 0.04

Pre 0 SMP-HDI-R 0.06

Joint 2 SMP-HD-R 0.06

Default 1 S-HDI-R 0.06

Default 2 S-DH-R 0.06

Default 3 MPS-DHI-R 0.06

Joint 0 S-HD-R 0.08

Default 4 SMP-DI-R 0.08

Joint 3 MPS-HD-R 0.08

Joint 1 SMP-HDI-R 0.09

Pre 3 S-HD-R 0.11

Table 4.2: Test error for the 5 best pipelines of theDefault strategy and the best results for 5
different seeds of the PreOptand JointOpt strategies. Result are sorted by the performance
with a threshold of 0.15

112



4.2. Evaluation

For θ = 0.3 the PreOpt strategy has higher variance, whereas for θ = 0.15 the error

trajectories of the JointOpt strategy display higher variance. The mean error in both

settings is slightly better for the PreOpt strategy. The PreOpt strategy also shows

a faster convergence rate, as the parameter search space is smaller once the pre-

optimization is finished. In this setup, no clear strategy preference can be deduced.

In terms of resulting pipeline structures, there is a strong presence of the refinement

operator RH, especially at the first position. The refinement pipeline RHRD is most

frequent within the results.

The resulting pipelines generally are compatible with engineering intuition. The RH

operator improves the orientation estimate, but remains with erroneous depth esti-

mation due to its RGB only input. The RD operator may correct the depth estimation

and is mostly placed afterwards. The ICP (operator RI) is placed last in the top

performing pipelines, which can be explained by the required accuracy in the initial

guess. Interestingly it is not used in most of the pipelines. This is possible since the

ICP may produce wrong hypotheses with good final depth score in the given setup.

Overall, there is a benefit of searching structure and parameter search space in order

to improve the perception performance in the given setup. But the sensitivity with

respect to the initial seed can be high. But not all configuration space dimensions are

explored in an automatic fashion. In the presented scenario the perception engineer

still has to decide on structure templates and the hardware setup to be used. Also,

the design of entirely new operators and perception algorithms is still out of scope.

4.2.3 Validation in Assembly Scenario

The second experiment is a real-world robotic assembly experiment. The task is to lo-

calize a control cabinet part and mount it on a hat rail. The part is a SIMATIC ET 200S

terminal module. The manipulators are two seven-axis robots with parallel 2-finger

grippers and the sensor is an ASUS Xtion PRO LIVE. The overall setup is displayed in

Fig. 4.8. For the manipulation planning and assembly motion generation we use the

approaches from Schmitt et al. (2017) and Wirnshofer et al. (2018).

In order to assess the benefit of using the pipeline parameter and structure optimiza-

tion, we compare the performance of different optimized pipelines based on the

assembly success. The used dataset for the pipeline configuration consists of 100

images with multiple object instances that were acquired using a slow but accurate

perception pipeline, where additional wrist-mounted cameras are placed close to

the objects in order to ensure high accuracy. As configuration strategy the JointOpt
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ASUS Xtion

Start configuration:

Target configuration:

reference point

Figure 4.8: Experimental setup for the pipeline evaluation in an assembly scenario. The object
is placed in 16 different orientations on a reference point. The goal is to mount the object on
the hat rail and success and failure are determined via successful snap-in. The experiment is
repeated twice, resulting in 32 trials overall.

strategy is used with a maximum runtime of 12 hours and different seeds. The

choice for the JointOpt strategy is arbitrary according to the comparison results.

The authors prefer it here, as structure and parameters are computed in the same

optimization step.

For the actual experiments the part is placed on the reference point, see Fig. 4.8,

either lying on the flat side or standing as depicted. These orientations correspond

to the acquired training data. Additionally, after each run the object is rotated

around the upright axis about 45◦ with respect to the previous pose. This yields 16

different poses overall. The experiment is performed twice, which results in 32

overall assembly trials. The trial is counted as success, when the part snaps and

remains on the hat rail. For the experiments the hat rail is localized with the same

pipeline as used for the dataset generation.

The results are shown in Table 4.3. The compared pipelines are the individually opti-

mized basic hypothesis generation pipelines Mask-RCNN + PPF (GMP) and Single

Shot Pose (GS) and two different resulting pipelines from the optimization GMPGS-

RHRDRI-SR and GS-RHRDRI-SR. The hypothesis refinement pipeline RHRDRI
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Assembly Success

Pipeline

GMPGS-RHRDRI-SR 26 / 32

GS-RHRDRI-SR 22 / 32

GMP-SR 16 / 32

GS-SR 5 / 32

Table 4.3: Pipeline performance in the assembly scenario, sorted by success rate.

Successful detections: Non successful detections:

Figure 4.9: Exemplary pose estimation results for successful and non-successful assembly
operations. Best viewed in color.

showed to be good in this experimental setting, whereas RHRD performs better

in the T-LESS use case.

In summary, it can be deduced, that the joint optimization of pipeline structure and

parameterization leads to higher success rates compared to the base operators GMP

and GS. Still, there remains a performance gap, due to high process requirements,

sensor noise, operator insufficiencies, and the distance to the object. It could be

addressed, for instance, by improved generation of training data for the neural

networks and a different choice and positioning of the sensor. The integration of

these configuration space dimensions is conceptually feasible and within the scope of

future work.
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4.3 Related Work

The configuration space modeling and exploration approach relates to different fields.

AutoML addresses the tuning of hyper-parameters, algorithm choice, and architecture

search for machine learning. For the former, approaches like Bayesian Optimiza-

tion (Falkner et al., 2018), Genetic Programming (Olson et al., 2016), and Sequential

Model-Based Optimization (Hutter et al., 2011) have been proposed. Tools such as

AutoWEKA (Thornton et al., 2013), Auto-sklearn (Feurer et al., 2015), AutoKeras (Jin

et al., 2018), and TPOT (Olson et al., 2016) are designed for specific machine learn-

ing libraries, while others such as SMAC (Hutter et al., 2011) and Hyperopt (Bergstra,

2016) are designed for general use. The authors of AutoWEKA (Thornton et al.,

2013) introduce the problem of Combined Algorithm Selection and Hyper-parameter

Optimization (CASH) for machine learning operators. We address a related problem

for a mixed set of perception operators. Neural Architecture Search (NAS) addresses

the adaptation of network architectures and is a promising field. For a review we

refer to (Elsken et al., 2019). In this publication we target mixed pipelines of classic

algorithms and neural networks, which is not in the scope of NAS.

AutoML techniques have been applied to data pre-processing pipelines (Quemy,

2019), parameter tuning, and algorithm selection for classification (Feurer et al.,

2015) and SAT solver parameter tuning (Hutter et al., 2011), among others. In this

work AutoML techniques and tools are applied in the concrete application domain

of perception pipeline parameter and structure configuration for a diverse set of

operators.

Another relevant field of research is the automated design of perception and sensor

fusion software systems, which is typically solved by some sort of design space

exploration. One line of research is the use of semantic models in order to describe

the task and generate appropriate perception pipelines, such as (Niemann et al.,

1990), (Koenderink-Ketelaars, 2010), (Fritze et al., 2017). Beetz et al. (2015a) use

a query-answering approach and semantic models in order to generate perception

pipelines at run-time. Hochgeschwender et al. (2015) use the Robot Perception

Specification Language (Hochgeschwender et al., 2014) in order to describe and

select perception pipelines and choose the pipeline parameterization from a pre-

configured set depending on the current environment state.

Other approaches directly target the online and offline adaptation of perception

pipeline parameters. For instance, Sakar Sarkar and Chavali (2000) model the

parameters within a Bayesian parameter dependence network in order to cope with

the search space complexity and dependencies. The authors of (Hu and Kantor,
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2017) propose an approach to automatically tune the system parameterization

online without expert supervision. Durner et al. (2017) use logged execution data

in order to optimize the parameterization of different perception pipelines. We

present an approach for the joint configuration of perception pipeline structure and

parameterization in contrast to previous work where both are regarded as separate

problems.

4.4 Summary and Discussion

In this chapter, we present an approach to perform automatic configuration of percep-

tion pipelines based on structure templates and sequential model-based optimization.

The approach allows to determine suitable parameters as well as a suitable pipeline

structure in order to adapt to the specific task setting.

The pipeline structuring approach allows to reduce the configuration space to a

manageable size. It is currently instantiated manually and can be seen as part of the

functional architecture. The black box optimization facilitates the optimization of

pipelines which are composed of classical model-based operators as well as learning-

based operators such as neural networks. The structuring as well as the configuration

space exploration are represented as declarative and procedural models. Therefore,

both can be easily be reused in different contexts.

In experiments on the T-LESS dataset as well as a real-world robotic assembly scenario

we could demonstrate that substantial performance improvements can be achieved

when both pipeline structure and parameterization are jointly configured.

However, no explicit model of uncertainty is used and the surrogate model is encoded

within the optimizer. These points are addressed in the following chapters.
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Chapter5

Perception planning under
Consideration of Geometric
Uncertainty

In Chapter 2 we highlighted that geometric uncertainty is prevalent in industrial

automation systems and has to be taken into account when designing and setting up

a perception system. An automation system has different frames with varying uncer-

tainty in its pose description. Observations, measurements and known coordinate

frames form a graph of relative poses with associated uncertainties.

In this chapter, we address how geometric uncertainty can be taken into account

in an automated fashion by using planning. In Fig. 5.1 a general overview of

central components is given. The planning procedure can be applied in the offline

engineering as well as the online adaptation phase. This depends on the actual

setup, as the planning times have to fulfill the runtime requirements. Therefore, we

employ an abstract model of geometric uncertainty based on factor graphs, which

provides a good compromise between expressiveness and computational efficiency.

During the planning procedure perceptual actions, such as viewpoint adaptations

and the execution of algorithms, as well as the structure of the factor graph are

explored. Furthermore, inference on the factor graph is used to estimate the resulting

uncertainty of the target pose given the planned perceptual actions.

We address multiple sub-problems, which can be derived from the problem of au-

tomated synthesis of perception systems. First, an approach is required in order to

handle geometric uncertainties across different coordinate frames. This means, that

uncertainty needs to be represented and more importantly, the uncertainty between
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Figure 5.1: Overview of the synthesis system for perception planning under geometric un-
certainty

the frames of interest needs to be estimated. To this end we present an approach

based on factor graphs, which allows to jointly represent different measurements

and priors. It thus serves as an approach for probabilistic multi sensor fusion.

Furthermore, we want to investigate whether the aforementioned approach allows to

support the synthesis of perception systems. Therefore, we address a pose estimation

task in a industrial environment with a static and a dynamic sensor, as shown

in Fig. 5.2. The configuration space not only entails the choice of sensor and the

choice of the data-processing, but also the movement of the robot. This means that

a different sub-set of the configuration space is addressed than in the prior chapter,

where the pipeline structure and parameterization where synthesized in an offline

fashion.

The automated synthesis requires consistent models and a suitable configuration

space formalization. Therefore, all required models are represented using the hi-

erarchical modeling formalism as introduced in Chapter 3. As configuration space

exploration approach, single level planning is used.

The overall interplay of components is visualized in Fig. 5.2. Using the semantic

hierarchical models as presented in Chapter 3 a perception task in an assembly

scenario is represented. The goal is to reduce the relative uncertainty between the
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Figure 5.2: Overview of the configuration approach for an exemplary assembly use case, where
a robot orob should assemble the part o1 into o2. Therefore, part o2 needs to be localized
precisely. The task and description is grounded in a semantic model, which comprises
concepts such as a RGB camera and actions such as an image based object detection. Using
the semantic description of the problem, the planner determines a sequence of actions to
satisfy the goal. The plan includes the automatic generation of a factor graph which is used
to estimate the object pose.

robot end-effector and a target part in the workspace. This uncertainty depends on a

graph of poses and observations, as given in the automation system. Therefore, a

planning problem can be instantiated, which is solved using a planner from the meta

domain.

In summary, this chapter mainly addresses Contrib. C3. In the following we intro-

duce the employed uncertainty model as well as the integration into the modeling

formalism. Furthermore, we show how design synthesis can be performed based on

the model using planning.

This chapter is based on and contains excerpts of the publication of Dietrich et al.

(2018). In addition, factor graphs and procedural models for their handling are

introduced.
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5.1 Factor Graphs for Pose Estimation

In this section we introduce basic theory of factor graphs and how they can be

leveraged for the estimation of poses and their uncertainty. Additionally, we present

the actual model how factor graphs were modeled and integrated in order to be used

within the automatic synthesis of perception systems.

5.1.1 Factor Graph Representation

In general, a factor graph represents the factorization of a function in the form

of a bipartite graph. Let’s consider the function g(x1, x2, x3, x4, x5) that can be

represented as the product :

g(x1, x2, x3, x4, x5) = fA(x1, x2)fB(x2)fC(x2, x3, x4, x5)fD(x4)fE(x5) (5.1)

The function g can be represented as the factor graph shown in Fig. 5.3. The variables

x1, . . . , x5 are represented as circles and the functions fA, . . . , fE as black squares.

The edges of the graph connect variables and the functions which take the variable as

inputs. Formally, a factor graph FG is composed of two types of nodes, factors ϕi ∈ U

and variables xj ∈ V , (Dellaert et al., 2017). Edges eij ∈ E always connect factors to

variables. Therefore, the factor graph has a bipartite structure, where no factor is

connected to another factor and no variable is connected to another variable. Overall,

the factor graph can be written as FG = (U ,V, E). The factorization represented by

the factor graph can be defined as:

ϕ(X) =
∏︂

i

ϕi(xi), (5.2)

with X being the state vector which contains the individual state variables.

The factor graph is a general formulation, that is beneficial when applied to uncer-

tainty modeling and handling. Perception and state estimation problems in robotics

can be formulated as a factor graph, where variables represent, e.g., poses of objects

or landmarks and factors represent observations and constraints. In the pose esti-

mation target domain, the individual state variables represent poses and the factors

represent observations and prior knowledge. Uncertainty in the observations is in-

cluded in individual factors and acts for instance as a weighting, such that uncertain

observations have less impact on the overall estimation result.
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x1 x2 x3 x4 x5

fA fB fC fD fE

Figure 5.3: Graphical visualization of a factor graph with 5 variables x1, . . . , x5 and the
functions fA, . . . , fE , which represent relations between variables.

5.1.2 Graph Construction

When working with probabilistic graphical models in an automated fashion, one step

is to create the graphical model. Therefore, procedural knowledge is required, that is

presented in the following.

The graph construction is represented as individual operators that add factors and

nodes to a world model factor graph. This process is subject to constraints that will

be discussed. A general overview is shown in Fig. 5.4. Initially, the world model

graph is empty (PGM-Graph 0). For the graph construction we distinguish between

two different types of operators:

1. Prior addition operator: Adds prior knowledge to the factor graph, for in-

stance an initial pose distribution of an object in a scene.

2. Observation addition operator: Adds the result of incoming observations to

the factor graph.

In the exemplary sequence, an operator of type 1, named PGM_AddPrior, adds prior

knowledge to the world model graph, which is converted to a factor which connects

two variables in the factor graph (PGM-Graph 1). In the subsequent step an operator

of type 2 is executed, which takes an observation as input. The observation is equally

converted into a factor and added to the graph (PGM-Graph 2).

The concrete operator being used at the lowest level of abstraction is illustrated

in Fig. 5.5. The operator requires that the pose of the input object is associated with

an uncertainty representation, such as a covariance matrix. Internally, it is assured

first, that the exact same prior information is not already available within the graph.

Otherwise the operator fails immediately. Next, the given pose is converted into a

factor which represents the 6D constraint weighted by the associated uncertainty.

Furthermore, the pose variables are added to the world model graph. Finally, the

factor is added to the underlying factor graph. In general, a prior can also be given
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Figure 5.4: Exemplary multi-step factor graph build-up, consisting of an addition of a prior
and an observation.

as a value without uncertainty. In this case the value can be used as starting value for

the optimization based inference as introduced in the next section. This represents a

weak prior that may improve the convergence characteristic of the inference step,

but not necessarily the result.

PGM-Graph

PGM_AddObjectPrior

graph

PGM-Graph

StateObject

state_object graph

Figure 5.5: Model for the addition of an object prior with uncertainty to the probabilistic
graphical model.

In Fig. 5.6 a concrete operator for 6D pose observations is depicted. Internally it is

mostly equivalent to the operator PGM_AddObjectPrior.

Different types of observations require different types of factors to be added to the

factor graph. This is realized by distinct operators. In Fig. 5.7, for instance, an

operator is depicted that can handle 2D observations, such as object bounding boxes.

Instead of generating and adding a 6D pose constraint, a 2D Point constraint is

added to the factor graph. This operator internally requires a camera with associated

intrinsics to be present in the world model graph. This information is added by a

different variant of the PGM_AddPrior operator acting on objects of type camera.

Overall, there are different reasons for this graph construction approach. Here, there

are individual operators for the graph construction which allows the overall synthesis
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Figure 5.6: Model for the addition of a 6D Pose observation
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Figure 5.7: Model for the addition of a 2D observation

to leave out specific information in order to speed up or improve the inference.

Similarly, a perception engineer chooses the type and amount of information and

representation thereof. Therefore it is crucial to give an automated synthesis system

similar freedom of decision on this low level. A common alternative would be

an approach where every given piece of information is added per default. But

this may lead to long inference times and it is not a generally valid approach for

computationally demanding algorithms and time constraints as present in robotic

applications.

5.1.3 Inference

There are two major activities with respect to uncertainty handling, quantification

and reduction. The inference on the factor graph falls under the first category. In this

context, inference does not refer to logical reasoning but to probabilistic reasoning
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in a Bayesian sense. More specifically, the goal is to derive information about the

probability distribution of a state vector X given a set of observation Z. Written as

probability density function, the inference can be denoted as:

p(X|Z). (5.3)

The factorized description as given by the factor graph can be used to initialize a

minimization problem. The following notation is based on (Kümmerle et al., 2011b).

The general formulation of the minimization problem is given by the following

equation:

x∗ = argmin
x

∑︂

k∈C

ek(xk, zk)
TΩkek(xk, zk), (5.4)

which denotes the minimization of an error sum across all available factors. Here,

x describes a vector of individual variables x = (xT1 , . . . , x
T
n )

T . The output of the

optimization is the value x∗, which best fulfills the constraints posed by the factors.

The term k denotes the current factor from the set of all factors. For a more detailed

introduction and especially handling of non-Euclidean spaces, as present in the

rotation representation, we refer to (Kümmerle et al., 2011b).

The presented procedural knowledge is encoded in the operator depicted in Fig. 5.8.

As input, an instance of a world model graph as well as a query is given. The query

includes the coordinate systems, whose relative transform is required. As output,

an instance of a 6D Pose is produced which describes the maximum a-posteriori

pose estimate given all factors, as well as its associated uncertainty as Gaussian

approximation. Internally, the presented minimization problem is initialized and

solved.

Query

PGM-Graph

PGM_QueryPose

query_pose

graph

Pose

pose

Figure 5.8: Model for the query of a 6D pose from the factor graph.
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5.2 Planning problem

We consider the problem of planning a sequence of data gathering, data linkage, and

inference steps to obtain a required set of information about the state of the robot

and its surroundings. The information about the unknown state x of our system is

represented as a probability distribution or belief bel (x). The focus in this chapter

is on geometric uncertainty as it plays an important role in many domains, such as

industrial assembly. As introduced, factor graphs are a well-suited representation

for distributions involving geometric uncertainty and allow efficient inference using

optimization techniques (Dellaert, 2012). Therefore, we encode the belief as a factor

graph FG.

A state within our planning problem is specified by the tuple s = (F, FG). In

this tuple, F denotes a set of facts that hold in the current state. These facts

encode currently available variables, such as encoder positions, as well as previous

measurements, such as outcomes of a object detection procedure or the robot’s

encoder values when this measurement was taken. The factor graph FG that encodes

the belief bel (x) is constructed using these facts. At all times the system can choose

from three types of actions:

• Data Gathering: By performing (simulated) perception actions, the planner

gathers new data, which corresponds to adding new facts to F . An example

is an object localization routine that produces a fact about the localization

outcome, e.g. a relative pose between camera and object.

• Data Linkage: This action type sets facts into relation with each other. In the

presented scenario, it is used to construct the factor graph FG. Following the

example of an object localization routine, the set of edges E of FG is extended

by the uncertain measurement. Depending on the already existing vertices

in V , new vertices are added, e.g. for the camera pose or the object.

• Inference: Actions of this type target the generation of new facts by inference.

In the localization example, an inference action may extract for instance a new

object pose estimate by optimizing the variables within the factor graph FG.
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5.2.1 Formalization

Formally, an action a ∈ A, with A being the set of all available actions, may only be

applied if the current state s fulfills its preconditions: s ∈ Pre(a). After action a is

applied we obtain a new state s′ = Post(s, a). With this we can define valid plans (of

length k ∈ N) as sequences of states {si}i≤k and actions {ai}i≤k−1:

Definition 13 - Valid Plan

A plan {si}i≤k, {ai}i≤k−1 is valid iff

1. si ∈ Pre(ai) for i ∈ 1...k − 1 and

2. si+1 = Post(si, ai) for i ∈ 1...k − 1.

Starting from an initial state sstart the aim of the planner is now to reach a desired

state of information within the set Sgoal. With this we can define feasible plans:

Definition 14 - Feasible Plan

A plan {si}i≤k, {ai}i≤k−1 is feasible iff it is valid and

1. s1 = sstart and

2. sk ∈ Sgoal.

An important assumption that we make during planning is that our system only

produces maximum likelihood measurements as proposed in (Platt Jr et al., 2010).

This has three key advantages:

• Deterministic planning domain: As our system’s actions do not increase uncer-

tainty, the belief state evolves as follows:

belt+1 (x) = γ p (z | x) belt (x) , (5.5)

where z is a measurement and γ a normalization variable. As the measure-

ment z is random, the evolution of the belief is random as well. Assuming

maximum likelihood measurements yields a deterministic evolution of the

belief and a deterministic planning domain.

128



5.2. Planning problem

• Decoupling of perception planning and construction of the factor graph: As

measurements always correspond to the mode of the measurement model, the

generation of new facts during planning does not require the evaluation of the

belief represented by the factor graph. This decouples planning of perception

steps and sensor data fusion.

• No repeated fusion of the same measurement: Our measurements are assumed

to be deterministic during planning. Therefore, perceiving objects with the same

algorithm from the same robot configuration results in the same measurement.

Thus the resulting fact is not added repeatedly to the set F . This prevents

adding the same or similar data repeatedly into the factor graph.

For the experimental evaluation, we use a basic breadth-first search that performs all

valid actions a ∈ A on s, where s ∈ Pre(a) holds.

5.2.2 Modeling

We use the generic graph-based modeling approach as introduced in Chapter 3 to

describe the perception domain. Every fact f ∈ F is an instance of a concept, which

models its properties. For instance, the RGB camera concept has an intrinsics concept,

which itself models the parameters of a pinhole camera model. Actions are modeled

via operators. The model does not contain an explicit formulation of pre- and post

conditions. The actions are implemented such that they fail upon execution if the

input facts do not fulfill the pre-conditions. An example is the move-close action as

introduced in Sec. 5.3.1.2, which requires to know the object position with certain

accuracy. Furthermore, actions may only be executed if actual facts of all modeled

input concepts are available in F .

5.2.3 Exemplary Planning Sequence

For the sake of comprehensibility, we use this section to visualize and describe the

mode of operation of our approach in a basic example with the help of Fig. 5.9. We

assume a setting where an object op is visible to a camera oc and has to be located

with respect to a reference coordinate system Fref . The goal is given by xref,p,-,

specifying a maximum positional uncertainty allowed for the task at hand. The
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Semantic Model of Perception System
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Figure 5.9: Exemplary visualization of the planning procedure for a basic setting with one
object and one camera. The goal is to reduce the belief uncertainty over the object pose
under a value specified within the goal set. In the upper part an exemplary model of the
perception domain is outlined. In the lower part, the different system states from the start
set s0 to the final state set s3, where the goal could be satisfied, are shown. A more detailed
description of this figure can be found in Sec. 5.2.3.

goal xref,p,- does not pose requirements on the time stamp of the result. A prior pose

estimate between Fref and the coordinate system Fp of op is given in form of a factor

in the factor graph FG,0. Additionally, the extrinsic calibration mref,c of oc is given

in form of a fact. This initial state is contained within s0. Note that all facts and

goals are grounded in a semantic model as indicated in the top part of Fig. 5.9. The

visualized model contains only the required concepts and actions, but is in no way

limited to these.

In the following, one feasible plan is presented in form of a possible sequence of

actions to reach the goal. In the first step, 3 independent actions specified in As0,s1

are executed: 2D-meas, add-meas, and query-FG. The action 2D-meas simulates

a perception algorithm that may provide an estimate of an object position in a 2D

image, e.g. the deep learning approach called YOLO (Redmon et al., 2016). As

input, 2D-meas requires a RGB camera and, if successful, produces a 2D measure-

ment. In the given example 2D-meas acts on op and oc and produces mc,p. It belongs

to the introduced subset of actions that gathers new facts from existing facts. The
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second action add-meas belongs to the subset of actions that link information in a

graph representation. In the example it inserts the measurement mref,c into the factor

graph FG,1 of s1. Finally, the third action query-FG performs an optimization of the

factor graph with respect to the reference frame of the goal input. As output, a pose

with uncertainty, specifically xref,p,t0 is produced. This pose, representing the pose

prior over op, does not fulfill the goal requirements. Therefore the action sequence

continues.

The next step, the transition between the states s1 and s2 is achieved by executing the

action set As1,s2 . The action set contains two actions add-meas and query-FG. Again,

a measurement is added to the factor graph, in this case the previously produced

2D projection mc,p. Note here that using factor graphs, we are able to handle quite

different pose constraints like a noisy 6D pose or a noisy 2D image projection. The

general procedure and effect of the action query-FG has been introduced in the

previous paragraph and is similar for this state transition. As can be seen in the

factor graph, the previously added extrinsic calibration mref,c of the camera has no

effect on the pose estimate between the reference frame Fref and the target object op
coordinate frame Fp. Therefore the output of query-FG is an equally uncertain pose

estimate xref,p,t1 as xref,p,t0 .

Finally, in the last step of the exemplary plan another factor graph optimization is

performed. This last action query-FG of As2,s3 acts on the factor graph FG,2 that

contains the measurement between target object and camera. The resulting pose

uncertainty is significantly lower and satisfies in this example the requirements

encoded in the goal set G.

5.3 Evaluation

We chose an assembly use case, where geometric uncertainties have significant effect

on the process success. After an introduction of the use case, we demonstrate the

capability of our approach to find plans that achieve the accuracy required by the

assembly process in minimal execution time.

The modeling and planning environment is a self-developed system that we intend

to use in larger extent for machine knowledge management and robot autonomy.

For the factor graph representation and optimization we build upon the open source

library GTSAM (Dellaert, 2012).
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Figure 5.10: Overview of the assembly use case. The symbol o denotes objects, F denotes
coordinate systems and m denotes pose constraints due to measurement or calibration. The
graph of black arrows visualizes the factor graph in its full extent.

5.3.1 Experiment

Setup

Industrial assembly is a domain with high requirements on geometric uncertainty

quantification as many assembly processes require tight positioning tolerances. In

our specific use case an object has to be grasped for a follow-up assembly process as

depicted in Fig. 5.10.

The perception goal consists of localizing the target object o2 with respect to the robot

end effector coordinate system Feff . There is a static camera osc as well as an end

effector camera orc mounted on the robot orob. Moreover, there exists an arbitrary

chosen reference coordinate system Fref . The overall application is to assemble o1

into o2, where the former already resides within the robot gripper. For the sake of

brevity, we assume that o2 has been localized and grasped with perfect accuracy.

Furthermore, to show that our approach can cope with different viewpoints, an

important parameter in perception tasks, we let the system decide to take a close

view of the object. The action move-close that performs this operation requires the

object to be known with a certain accuracy that is not given by the prior belief over

the object pose. If the relative uncertainty specified by the goal is met, the assembly
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process can be successfully executed. The uncertainty introduced by the relative

movement of the robot for the assembly process is not considered in this example.

Action Description

In this use case we allow the following actions:

• Data Gathering

– 2D-meas: Simulates an object detection algorithm working on RGB im-

ages that outputs the object center as a 2D point an the image screen. This

action is similar to the 2D projection action described in Sec. 5.2.3. The

chosen standard deviation in pixel σpx depending on the object distance d

is σpx(d) = 5 + 5 ∗ d.

– 6D-meas: Simulates a 6D pose estimation algorithm based on RGB im-

ages. For instance, it could represent the approach to estimate the 8

object bounding box corners using convolutional neural networks (BB8)

as described in (Rad and Lepetit, 2017). The chosen positional standard

deviation in meter σpos depending on the object distance d is σpos(d) =

0.0005 + 0.0045 ∗ d. And the chosen rotational standard deviation in de-

grees σrot depending on the object distance d is σrot(d) = 2+4 ∗d. Simple

linear approximations of the uncertainty are sufficient to evaluate the

proposed configuration system.

– move-close: Moves the robot orob such that the end-effector camera orc has

a closer and centered view on the object at a distance of d = 0.4m. The

pre-condition for this action is that the standard deviation of the positional

uncertainty σ1 of the target object o2 is lower than a threshold σthres =

0.1m. This is motivated by the fact that a robot cannot take a close look

on an object whose position is not known.

• Data Linkage

– add-meas: This action inserts a measurement to the factor graph. See also

Sec. 5.2.3.

• Inference

– query-FG: The graph query has a pose as input that specifies reference

frame and target frame. The action optimizes the factor graph with respect
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to the reference frame and returns the pose and uncertainty between

reference frame and target frame. See also Sec. 5.2.3.

5.3.2 Results

In the following, results of the experiment will be discussed from two different

viewpoints. First we analyze the reduction of uncertainty in the belief. Subsequently,

an analysis of the temporal characteristics of the generated plans is given.

Uncertainty Reduction

We only consider geometric uncertainty, more specifically positional and rotational

uncertainty. For the assembly use case we are interested in the maximum standard

deviation. Therefore, we define the standard deviations σ in the following as the

maximum of the principal components of the separate 3x3 covariance matrices for

position and rotation. The joint distribution of position and rotation is currently not

considered.

In Fig. 5.11 we visualize the positional and rotational uncertainty of all pose estimates

generated by the planning system. Note here again, that the pose estimate between

the robot end-effector coordinate system Feff and the target object coordinate sys-

tem F2 is considered. This has important implications for the following analysis.

Hereafter, we will discuss specific poses denoted by p and marked in the figure:

• p0: The pose p0 marks the initial belief over the target object o2. Positional

and rotational uncertainty are both relatively large.

• p1: The pose p1 denotes the belief after a 2D measurement between the static

camera and the target object msc,2. Due to the nature of the 2D measurement,

the rotational uncertainty is not reduced with respect to p0.

• p2: The pose p2 denotes the belief after a 2D measurement between the end-

effector camera and the target object mrc,2. The positional uncertainty is clearly

lower than p1. This is due to the application setting. The end-effector camera

is calibrated relative to the robot end-effector, with the calibration denoted

by mrob,rc. The uncertainty of p2 is most heavily influenced by the measurement

chain of camera calibration mrob,rc and measurement mrc,2, which is a subset of
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the full factor graph as depicted in Fig. 5.10. Contrarily, for the uncertainty of p1
the measurement chain of robot positioning uncertainty mref,rob, static camera

calibration mref,sc, and static camera observation msc,2 is decisive. Obviously,

this longer measurement chain including the robot positioning uncertainty

induces larger uncertainty. The influence of the prior mref,2 on p1 and p2

is identical for both cases. As we model the belief as a factor graph, all

measurement chains are jointly considered and the correct determination of

the uncertainties is automatically handled by our approach.

• p3: The pose p3 represents the belief after a 6D measurement with the static

camera. The uncertainty is much lower than solely using 2D measurements.

• p4: This pose marks the lowest achievable belief uncertainty for this exemplary

planning setting. It is based on the fusion of all 2D and 6D measurements

for all cameras and robot configurations, namely the static camera osc, the

end-effector camera Frc in the initial pose of the robot and the end-effector

camera Frc in the close view pose of the robot.
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Figure 5.11: Visualization of resulting pose uncertainties generated via the proposed configu-
ration system for the assembly use case. Note that due to the axis configuration this figure
reads from right to left and top to bottom as opposed to Fig. 5.12. A detailed description can
be found in Sec. 5.3.2.1. The corresponding experimental setup is visualized in Fig. 5.10.

Runtime

In this section we analyze the temporal extent of different plans. We therefore

assume that an image is directly available whenever a perception action is applied.
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In Fig. 5.12 all belief poses are visualized by time stamp and positional uncertainty.

Contrary to the previous section we will additionally address sets of poses denoted

by P . Furthermore, state transitions allowed in this planning problem are visualized

via gray arrows.

The different actions have different runtime characteristics, which we set to refer-

ence values in order to gain insight about the planning system. For the simulated

experiment we define the following values motivated by a real use case:

• 2D-meas: 30ms

• 6D-meas: 100ms

• move-close: 500ms

• add-meas: 1ms

• query-FG: 10ms
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Figure 5.12: Visualization of resulting pose uncertainties and the required execution time
in a real system to achieve the belief state quality. A detailed description can be found in
Sec. 5.3.2.2. The corresponding experimental setup is visualized in Fig. 5.10.

The achievable accuracy depends on the invested time. Therefore, the characteristic

of the different pose sets is discussed in the following.

• p0: The initial belief.

• Pa: Pose set Pa contains all poses that are estimated using fast 2D measure-

ments without moving the robot.

• Pb: Pose set Pb contains all poses that are estimated using at least one 6D

measurement without moving the robot.
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• Pc: To reach this set, the robot view pose is changed and further 2D measure-

ments are considered from the new robot pose. The motion of the robot takes a

large amount of time, and the uncertainty is not decreased with respect to the

pose set Pb. From application view it does not make sense to reach this belief.

• Pd: Pose set Pd is similarly reached via robot motion. Further it requires at

least one 6D measurement from the new view pose.

• Pe: Pose set Pe is the set with the lowest reachable belief uncertainty in the

given use case. It is reached by changing the view pose and fusing up to all

possible measurements.

Summary

Concluding, it can be seen that time can easily be incorporated into the approach.

Depending on the application requirements, the planning system generates different

action sets. For instance, in an application where a fast position estimate of an object

is required, the actions leading to Pa are sufficient. In a less demanding assembly

task, where the full pose needs to be known, the action sequence leading to Pb is

chosen. Finally, in an application which requires very high accuracy, moving the

robot to a better view pose is required and an action sequence leading to Pe is used.

The key is that the configuration system, including the planner, can autonomously

decide the right steps to take depending on the task.

The presented system represents an initial version of the general approach. To achieve

autonomous configuration for a broad range of applications, the action set needs to

be further extended and more advanced planning techniques evaluated to efficiently

cope with the complexity of the task.

5.4 Related Work

Several approaches have been proposed in the past for the problem of automatic

configuration of perception systems. An approach based on unstructured information

management is implemented in the RoboSherlock framework by Beetz et al. (2015a).

In combination with the knowledge bases KnowRob (Tenorth and Beetz, 2013)

and OpenEASE (Beetz et al., 2015b) and the Semantic Robot Description Language
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SRDL (Kunze et al., 2011), successful perception pipelines can be determined accord-

ing to situation requirements. The authors focus on semantic reasoning grounded in

OWL (Martin et al., 2004) ontologies, but also show how probabilistic reasoning can

be leveraged for perception, specifically for object classification (Nyga et al., 2014).

Geometric uncertainties induced by perception actions and calibration errors are not

in the main focus of the framework.

Another approach for modeling and situation aware adaption of perception actions

can be found in the work of Hochgeschwender et al. (2015). The authors introduced

and use the Robot Perception Specification Language RPSL (Hochgeschwender et al.,

2013) to describe the perception task and employ a reasoning mechanism to find a

suitable perception plan.

The research area of world modeling for autonomous systems does also provide

solutions for adaptive perception. Elfring et al. (2013) present an approach to keep

a consistent probabilistic world model based on probabilistic multiple hypothesis

anchoring. The probabilistic world model is further updated with strategies that

maximize information gain and allow for a basic task dependency (Elfring et al.,

2015).

Another relevant area of research is the field of active perception (Bajcsy, 1988). Re-

search ranges from view selection (Eidenberger and Scharinger, 2010) over adaptive

parameter tuning (Hu and Kantor, 2017) to concepts of a framework which enables

autonomous configuration of perception and sensor fusion (Govindaraj et al., 2017).

The latter work focuses on the underlying software framework and anticipates the

autonomous configuration as future work.

Handling geometric uncertainty, for instance in assembly applications does have a

long history. In early work from Su and Lee (1992) geometric relations including

uncertainty are modeled within a directed graph of transformations with covariance

matrices. Using uncertainty propagation and sensor fusion with Kalman filter, the

covariance and pose between coordinate systems is determined. Furthermore, the

authors provide an approach based on backward propagation to determine the

admissible set of actions as well as required perception actions. The approach for

handling geometric uncertainty is still commonly used, for example in the work

of Blumenthal et al. (2013). For applications such as simultaneous localization

and mapping, handling of uncertainty with factor graphs has become the dominant

approach (Cadena et al., 2016).

The most common way to express planning tasks is the Planning Domain Definition

Language PDDL (Fox and Long, 2003) subsuming, for example, the problems address-

able with the Stanford Research Institute Problem Solver STRIPS language (Fikes and
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Nilsson, 1971) and the Action Description Language ADL (Pednault, 1994). Two stan-

dard approaches to solve planning tasks are classical planning (Helmert, 2006), (Hoff-

mann and Nebel, 2001), and Hierarchical Task Network (HTN) planning (Erol et al.,

1994), (Nau et al., 2003). Planning represents an important step in the automatic

configuration of perception systems, but the performance depends on the model and

the specific task.

The handling of uncertainties is a wide field that is required in many domains, from

finance to biology. Therefore the literature review in this section is focused on

handling of uncertainties in the context of the synthesis of perception systems as

well as perception problems in robotic applications. Furthermore, the handling of

uncertainties is often closely linked with the representation of uncertainty. Hence, the

explanation of techniques for uncertainty handling may require to explain underlying

declarative representations.

A fundamental approach for handling uncertainties in the perception domain are

based on the Bayes’ theorem, which is a mathematical theorem about conditional

probabilities, (Bayes, 1763). It allows to infer a probability distribution of a (state)

variable conditioned on given measurements and their probability distributions. This

kind of inference falls under the term state estimation which is a common task of a

perception system. The Bayes’ theorem allows to derive the Bayes’ filter which is a

recursive probabilistic method for state estimation, (Thrun et al., 2005). It allows

to estimate state and uncertainty of a variable in a continuous manner based on

the last estimate and a new measurement. Important variants of the Bayes’ filter

are the Kalman filter, (Kalman, 1960), and the particle filter, (Del Moral, 1996).

The Kalman filter internally uses normal distributed variables and only produces

normal distributions as uncertainty estimate. The particle filter works with a particle

based representation of uncertainty, which allows the handling of more complex

distributions with the downside of higher computational demand. The choice of the

appropriate filter as part of the perception system synthesis for an application at

hand again depends on the type of application, the environment and the prevalent

dynamics.

Graphical models are a powerful formalism to model and perform inference for a

large set of probabilistic estimation problems, (Koller and Friedman, 2009), (Murphy,

2001). In fact, Bayes’ filters such as particle filters and the Kalman filter, as well

as problems such as decoding and genome analysis can be represented as graph-

ical models and computed based on generic algorithms acting on the graphical

model, (Kschischang et al., 2001), (Frey et al., 2005). The core idea is to represent

variables and their dependencies in form of a graph. On the one hand this allows to

visualize the structure of a problem in a clear and easily understandable manner. On
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the other hand, the graph structure can be exploited in order to efficiently perform

inference on the model, (Bishop, 2006). Prominent types of graphical models are

Bayes networks, Markov networks, and factor graphs. In this chapter we concentrate

on the factor graph representation.

Factor graphs are widely used for uncertainty handling in various perception tasks, (Del-

laert et al., 2017). The most common application is simultaneous localization and

mapping (SLAM), where the task is to build a map of the environment and deter-

mine the sensors location within the map, (Grisetti et al., 2010). A graph-based

formulation of the SLAM problem was introduced in 1997 by (Lu and Milios, 1997).

Other applications include calibration, (Kümmerle et al., 2011a), occupancy-grid

mapping, (Dhiman et al., 2014), and the connection of language to robot perception

, (Walter et al., 2014), as noted in (Dellaert et al., 2017). Factor graphs have also

been applied in the example domain of this thesis: pose estimation. (Desingh et al.,

2019) use a factor graph representation and a variant of a message passing algorithm

called Pull Message Passing algorithm for Nonparametric Belief Propagation in order

to estimate the pose and state of articulated objects such as a drawer given noisy

point clouds.

Uncertainty handling plays an important role for successful operation of robotic

systems in real world applications and various approaches have been proposed. In

the early work of (Su and Lee, 1992) a directed graph of transformations between

different coordinated systems, such as robot end-effector and object, is build and

associated with a covariance matrix to represent uncertainty. The tree allows to

propagate uncertainties along kinematic chains. In addition, the Kalman filter is

used for the fusion of different measurements. This underlying uncertainty handling

based on a normal distributed variables is used to perform forward and backward

propagation of actions to determine their applicability and success. This allows to

take uncertainty into account for the planning of action sequences for manipulation.

The approach does address pose uncertainty for gaussian uncertainty models, object

classification errors are not covered. The approach for handling geometric uncertainty

is still used, for instance in the work of Blumenthal et al. (2013).

Nyga et al. (2014) use a graphical model, Markov logic networks, in order to handle

the uncertainty in object classification in a household robot scenario. An ensemble of

expert algorithms is applied in order to symbolically annotate properties of different

objects in a scene. A Markov logic network is trained based on a set of 50 ground

truth annotated scenes to learn the dependency between object class and the symbolic

annotations. At runtime, the Markov logic network can be used to infer the object

class probability distribution based on the present symbolic annotations. Lutz et al.

(2013) address the handling of classification uncertainty by fusing the results of
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multiple classification algorithms and by active repositioning of the sensor, see

also (Stampfer et al., 2012) and (Lutz et al., 2012). Here, the uncertainty model

is more basic than in Nyga et al. (2014), as it only contains a discrete object class

probability distribution for each perception result and does not need to handle the

diverse set of semantic annotations. But the active perception step addresses a

different dimension of the perception system configuration with large potential for

acquisition of reliable perception results.

Eidenberger and Scharinger (2010) handle pose uncertainty and classification uncer-

tainty in a unified manner. They represent the inherent uncertainty using multivariate

gaussian distributions and realize the active uncertainty reduction using a partially

observable markov decision process (POMDP) as underlying model.

In summary, the proposed approach stands out with respect to the state-of-the-art

by combining planning and factor-graph based uncertainty handling for the design

synthesis of perception systems.

5.5 Summary and Discussion

In this chapter we introduced a novel method to model and plan the configuration of

perception systems while taking into account geometric uncertainties across different

coordinate frames. The main contribution of this chapter is Contrib. C3. On the

uncertainty handling side, we introduce an approach to represent and infer geometric

uncertainties across different coordinate frames using factor graphs. The approach

allows to fuse multiple noisy measurements and take into account uncertainty of

given poses, such as the extrinsic calibration of the camera as well as the positioning

accuracy of a robot end-effector.

The factor graph construction and inference is represented using the hierarchical

modeling formalism, which is introduced in Chapter 3. This shows on the one hand,

that it is possible to represent the given problem sub-domain within the formalism.

On the other hand it allows to use meta-models for configuration space exploration,

such as planners.

In order to evaluate the uncertainty modeling, handling and configuration space

exploration, an online perception system synthesis problem is formulated. Here, the

configuration space is comprised of perception operators, robot movement as well

as data fusion and inference. The synthesis addresses the selection of sensor input

and perception algorithms, perception planning, and sensor fusion in an integrated
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yet modular fashion. We validated the approach in an industrial assembly scenario,

where our planner successfully employs different sensors, data processing steps and

view poses to localize the target part with sufficient accuracy, while keeping the

required time as low as possible.

The benefits of the presented uncertainty modeling and perception system synthesis

are of multiple origin. The factor graph representation allows to model and consider

constraints of different types. For instance, the 2D bounding box observations can

be seamlessly integrated, although they only pose a 2D constraint on the higher

dimensional 3D pose representation. In addition, the factor graph can be composed

individually depending on the task, as no static rule set is defined for its composition.

It is rather up to the meta-operators for configurations space exploration to decide on

a suitable factor graph composition. This enables automated adaptation to different

settings and requirements.

The planning of elementary operations, such as the building of the factor graph comes

at a cost: it increases the search space. Basic breath-first planning for configuration

space exploration does not scale well with problems of increasing complexity. There-

fore, we investigate hierarchical planning and the use of surrogate models within

the model hierarchy as approach to improve the configuration space exploration in

the following chapter. Furthermore, it is desirable to be able to arbitrarily switch

between different uncertainty representations, such as particles and mixture models,

while keeping a single factor graph. This is conceptually feasible, but requires further

investigation.
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Chapter6

Hierarchical Planning for
Perception System Synthesis

In the previous chapters, we showed how the modeling approach together with

configuration space exploration operators from the meta-domain allows to synthesize

perception system subsets. Parameter optimization allows to improve the system

performance and find suitable pipeline structures and parameterizations, as shown

in Chapter 4. However, the optimization is very time consuming and can only be

applied for offline engineering. In Chapter 5 planning via breath-first search is

employed as configuration space exploration method. Unfortunately, such a flat

planning approach does not scale with problem complexity and does not provide

means to look at a problem from different abstraction levels. Therefore, it can only

be used for online adaptation if the planning domain is sufficiently small and well

structured.

In this chapter we address online synthesis of perception systems by means of hi-

erarchical planning. Here, a surrogate model of the perception system is encoded

within the abstraction layers of a hierarchical model. A hierarchical planner allows

to explore the configuration space in an efficient manner, which allows for online

synthesis. This furthermore facilitates a model-predictive control scheme for percep-

tion system operation (Kast et al., 2019c). The system model is represented via the

abstract layers of the model hierarchy and adaptive control is realized via regular

goal comparison and backtracking.

A high level overview of the system is given in Fig. 6.1. The system is targeted primar-

ily towards the online adaptation phase, where the perception pipeline and sensor
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Figure 6.1: Overview of the synthesis system for online adaptation via hierarchical planning

viewpoint can be changed at runtime. However, the hierarchical model can be reused

for offline engineering. Exploration and evaluation within the configuration space

are handled by a hierarchical planner, which uses abstract and computationally cheap

upper layers of the hierarchy in order to find promising solutions. Evaluation refers

to the real execution of perceptual actions, which happens at the plan refinement at

the lowest level of the hierarchy. A direct interaction with the real robotic system is

possible.

The core contribution of this chapter is Contrib. C4. On the modeling side, we

introduce a hierarchical metric model for perception data types, which enables the

online quality estimation on different levels of abstraction. Furthermore, on the

exploration side, we show how the hierarchical planner, an operator from the meta-

domain, can be leveraged to provide fast configuration space exploration, which is

suitable for online use.

The hierarchical approach is motivated by the manual procedure of a perception

engineer. A perception engineer uses a combination of knowledge and experience in

order to steer a trail-and-error procedure to find a suitable configuration. For instance,

different algorithms have distinct output characteristics that additionally depend on
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the quality of the input data. The engineer implicitly knows these characteristics and

uses this knowledge to choose promising pipelines. Additionally, a human engineer

can perform a hierarchical task decomposition and start with high level decisions

such as the sensor choice, while roughly estimating the expected performance given

the sensor’s data quality.

An overview of the hierarchical synthesis procedure is given in Fig. 6.2. The

core is a hierarchical planning system which acts on a 2-layer hierarchical model

with a knowledge layer and an execution layer. The knowledge layer needs model

calibration which is performed with a ground truth annotated dataset of pipeline

executions. This planning system is able to determine a pipeline that converts a given

belief to a belief with a target quality specified by a given goal.

Current Belief

Hierarchical Planning

Knowledge Layer

Execution LayerGoal

Model
CalibrationDataset

New Belief

Pipeline

Figure 6.2: Schematic overview of the hierarchical perception system synthesis.

First, the hierarchical model is introduced, which is followed by an introduction of

the model calibration and an exemplary planning sequence. Finally, the experimental

setup and evaluations are presented and discussed.

This chapter is based on and integrates excerpts of the publication of Dietrich

et al. (2020). It is extended by an analysis of the runtime in comparison to a

non-hierarchical approach.

6.1 Hierarchical Task Formalization

Our approach is based on a hierarchical model combined with hierarchical planning

and model calibration as depicted in Fig. 6.2. The hierarchical model is based on

prior publications (Kast et al., 2019b) (Kast et al., 2019c) (Dietrich et al., 2019) and

allows to model algorithms, denoted as operators, and instance classes, denoted as

concepts, within the perception domain at different abstraction layers. This allows
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the hierarchical planner to search for solutions on cheap abstract domains and verify

or refine the plans up to a real execution (Kast et al., 2019c). The model contains

concepts such as pose, belief, point cloud and depth image. In this chapter we

employ only two different layers, the knowledge layer and the execution layer. The

former encodes symbolic knowledge and experience available for the domain. The

latter provides the ability to actually execute the available perception algorithms on

simulated or on real data.

6.1.1 Metric model

The key aspect is the systematic use and calibration of so-called metrics m ∈ M. The

metrics allow to assess properties, especially the quality of instances in a compact

manner. E.g., when a perception engineer looks at a point cloud he indirectly assesses

its quality and determines by experience which algorithm he should try next in order

to get the desired result. The operators on the knowledge layer can be parameterized

such that they encode this experience and model the relationship of the input metrics

and output metrics. We summarize the metric model as follows:

• A metric is single valued

• A metric can be associated with a distribution

• Multiple metrics can be associated with an instance

• We differentiate between computable and estimated metrics.

Computable metrics can be calculated at runtime based on the available data, as for

instance the size of a point cloud. Estimated metrics cannot be determined in an

exact manner at runtime and need to be approximated. E.g., the positional distance

with respect to ground truth is not known at pipeline runtime. Still, it has to be

estimated if the planning goal is formulated as positional distance. The set of input

and output metrics of an operator are denoted as MIN and MOUT respectively.

In order to work within the hierarchical modeling and planning approach, the metrics

require representation on different levels of abstraction. The role of the metrics

within the hierarchy is therefore shown exemplary in Fig. 6.3. A pose estimation

operator on the knowledge as well as the execution layer is displayed alongside

with input and output instances. Each instance is annotated with different metrics

that describe the quality of the instance. On the knowledge layer these are mostly
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estimated metrics that approximate the actual value. On the execution layer actual

values can be calculated for the some of the metrics. Due to uncertainties in data and

execution the operators on the execution layer not always yield results as predicted

on the knowledge layer. A subset relationship is defined for all concepts, which is

used during planning in order to identify such deviations and perform backtracking

if the relationship does not hold. Therefore, model inaccuracies at the knowledge

layer can be handled.

Knowledge layer (K)

Execution layer (E)

poseEstimation_E

poseEstimation_K

tOP = fT(MIN)

MOUT = fIO(MIN)

Belief

Point Delta mbel

0.0015 mm**

Pos. Delta mpos

0.0012 mm**

Belief

Point Delta mbel

0.0013 mm*

Pos Delta mpos

0.0009 mm**

Parameter Set

subset subset

Point Cloud

Point Delta mpcd

0.0012 mm*

# Points mnum

1280 x 960*

Point Cloud

Point Delta mpcd

0.002 mm**

# Points mnum

1280 x 960*

*computable metric
**estimated metric

Figure 6.3: Hierarchical view on a pose estimation operator on knowledge layer and execution
layer. Detailed explanation in Sec. 6.1.

The approximations on the knowledge layer and for estimated metric on the execu-

tion layer is encoded in the functions fT and fIO that model the runtime and the

relationship between inputs and outputs of the operator, see Fig. 6.3. Both can be

arbitrary functions that require parameterization. This step is performed initially

based on a dataset of already executed perception pipelines, cf. Fig. 6.2. In this

work we use linear models for the transfer functions and linear regression for the

calibration.

For the hierarchical planning we use the planner presented in (Kast et al., 2019c).

The framework is designed such that different planning or search algorithms can

be used at different layers. We use a scheduler at the knowledge level in order to

find the fastest pipeline that fulfills the application requirements. On the execution

layer breadth first search is used. On the knowledge layer no distinction between

different operator parameterizations is done. The parameterization is chosen in the

sub-problem planned within the execution layer. Additionally, only metrics are used

during planning that can be calculated or estimated during runtime. Therefore, the

presented system could also be used out of the box for online decision taking and

active perception. However, this is not the focus in this chapter.
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6.2 Evaluation

d = 25 cm,
α = 45°

d = 50 cm,
α = 45°

d = 25 cm,
α = 90°

d = 50 cm,
α = 90°

Target Object

d = 75 cm,
α = 90°

d = 75 cm,
α = 45° Object: base_plate

Object: shaft_1

Figure 6.4: Left: Application setup with 6 different view poses. Right: Target objects from the
Siemens Robot Learning Challenge.

We address two core questions regarding the presented approach:

• Is the model and the calibration approach suitable for the given application?

• Is the planning system capable of synthesizing working pipelines in a reasonable

amount of time?

6.2.1 Setup

The target application is an assembly scenario, where the robot perception system

should give accurate 6D poses of the objects base_plate and shaft_1 from the Siemens

Robot Learning Challenge1, see Fig. 6.4. The setup is simulated and two different

depth cameras are used, a Intel D435 consumer sensor equivalent and a Photoneo

PhoXi M industrial sensor equivalent. Distance dependent longitudinal noise is added

based on camera characteristics according to manufacturer data 2. Additionally,

the sensors are placed at six different poses in order to cover a range of different

hardware setups, see Fig. 6.4.

We used the following computable metrics on the execution layer:
1
https://new.siemens.com/us/en/company/fairs-events/robot-learning.html

2
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/

intel-realsense-technology/BKMs_Tuning_RealSense_D4xx_Cam.pdf and http://wiki.photoneo.

com/index.php/PhoXi_3D_scanners_family
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Table 6.1: Overview of used operators and their model calibration.3

Operator Comment # Param. Sets fT fIO

getPointCloud* point cloud rendering 0 - 0.030 s d → mpcd

prepareModel create object point cloud 1 1 0.050 s -

removePlane plane estimation and removal 3 1 0.013 s mnum → mnum

smoothTSDF using Signed-Distance Functions 2 1 0.288 s

(︄
mnum

mpcd

)︄
→

(︄
mnum

mpcd

)︄

poseEstimationFPFH using Fast Point Feature Histograms 8 2 mnum → t mpcd → mbel

refineICP Iterative Closest Point 2 2 mnum → t mbel → mbel

refinePhysics* achieve physical plausibility with plane 6 1 2.060 s mbel → mbel

• mnum: Number of points of the point cloud

• mpcd: average distance between points that can be a associated with known

objects in the scene, such as a plane, and those objects

• mbel: average distance between a depth rendering of the object estimate and

the point cloud

The position distance mpos between belief and ground truth cannot be computed at

runtime and has to be estimated. The mapping between mbel and mpos is therefore

as well approximated with a linear model during the model calibration. The available

operator set within the experiment is summarized in Tab. 6.1.

The model calibration is performed on a dataset of an exhaustive exploration of

pipelines on 2 scenes, 2 cameras and 6 viewpoints of the object base_plate . The

result of the calibration are parameterized models of the runtime behavior fT and

the input to output relation fIO. In this work we use single-input, single-output linear

models, but the approach supports models of arbitrary complexity and arbitrary

number of inputs and outputs. The choice of input and output types for the models

has been made by manual examination of the correlation. The relationship between

given and ground truth metrics is calibrated in addition to the operator behavior.

In Tab. 6.1 the calibrated input-output relationships for the different operators are

listed. Approximately constant values are directly shown. In the first row of Fig. 6.5

actual linear approximations for runtime and input-output relationship are displayed.

3Operators marked with * are implemented using Bullet (https://pybullet.org/), otherwise using
Open3D (http://www.open3d.org/)
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Figure 6.5: Top left: Linear model fit for runtime depending on input cloud size for poseEsti-
mationFPFH. Top right: Linear model fit for the output mbel depending on the input mbel.
Bottom left: Comparison between baseline and planned pipelines for sensor D435. Bottom
right: Comparison between baseline and planned pipelines for sensor Phoxi M.

6.2.2 Results

In order to assess the approach we compare the planning results with the results of

a greedy search, as shown in the bottom row of Fig. 6.5. The calibration has been

performed only on base_plate and results are displayed for both objects. Furthermore,

the planning was performed with two different goal settings: 0.005m and 0.0025m

as indicated by the colors and the horizontal lines.

We can make a few observations. First, longer runtimes lead to lower errors, which is

coherent with engineering intuition. Although this is not a general rule. For instance,

the removal of the plane can lead to higher accuracy and shorter runtime due to a

lower number of points for the pose estimation. Furthermore, we can observe that

the ground truth of the majority of the planned results fulfills the goal requirements.
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During planning only runtime metrics are used, which can only approximate the

ground truth. Therefore, the result may sometimes deviate from the ground truth due

to uncertainty and insufficient calibration. The goal is reached with high success rates

for the calibration object as well as the unseen object, which indicates that the model

generalizes and is sufficiently complex. Most of the outliers are associated with the

unseen and non calibrated shaft_1 object, which conforms with our expectations. A

further observation regards the runtime of the planned pipelines. On the knowledge

level a scheduler is used in order to find the fastest pipelines that reach the goal. The

experimental data shows that the planning system is actually capable of identifying a

suitable compromise between speed and accuracy. This is achieved with a median

planning time of about 51 s. Finally, we compare the results between the consumer

camera and the industrial camera. The more expensive industrial camera can achieve

higher accuracy overall. But while there are no outliers for 2.5mm the model still

leaves room for improvement as the outliers for a goal of 5mm imply.

In summary, both questions formulated at the beginning of this section can be gener-

ally answered positively. However, there is still potential within further investigation

to improve the model accuracy and decrease the synthesis times for actual use for

active perception.

Figure 6.6: Runtime comparison between hierarchical and non-hierarchical planning for
different planning goals generated with the sensor Phoxi M and the object base_plate .
The hierarchical approach clearly outperforms the non-hierarchical planning being more
than twice as fast. It can also be seen that the planning time generally raises with a more
difficult planning goal.

We furthermore compare the hierarchical approach with non-hierarchical planning.

In Fig. 6.6 a comparison of the planning duration for different target accuracies
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is given. The planning problem is a subset of the overall setup with the object

base_plate and the sensor Phoxi M at a distance of 25 cm. The more constrained setup

allows to isolate and compare the effects of the planning algorithm. The planning is

performed with 5 different seeds for each target accuracy.

Clearly, the hierarchical planning outperforms the planning without a knowledge

layer. The average planning duration is less the half the time of the non-hierarchical

planning. Furthermore, the planning time is increasing with higher accuracy require-

ments. This is mainly due to the fact that the planning includes the execution of

the real operators on real data within the execution layer. Higher accuracy requires

longer pipelines in the application setup and therefore a higher overall duration.

6.3 Related Work

In the computer vision community, the problem of automatic configuration or syn-

thesis has a long standing history. For instance, Radig et al. (1992) proposed a

toolbox in 1992 for automated design of image understanding systems that uses the

FIGURE system for knowledge based synthesis of pipelines by Messer (1992). The

approach is based in logical rules and descriptions, which are used to infer suitable

pipelines. The more recent work of Nagato and Koezuka (2016) applies genetic

programming and hierarchical program structuring in order to quickly adapt an

image processing pipeline to a changing production environment. The approach

was successfully demonstrated in a real production environment. Irgenfried et al.

(2017) address the automation of the design of entire inspection systems using

accurate sensor simulation and uncertainty quantification. Another notable approach

is the RoboSherlock framework by Beetz et al. (2015a) which leverages unstructured

information management and ontologies in order to generate perception pipelines

based on semantic queries. Our own prior work includes automatic configuration

of perception systems using single level planning and factor graphs for uncertainty

representation (Dietrich et al., 2018) and the joint optimization of pipelines and

parameters (Dietrich et al., 2019).

This work is grounded in robotics research and builds upon a hierarchical modeling

and planning system that has successfully been demonstrated for task and motion

planning (Kast et al., 2019c). This allows a tight integration between task planning

and perception planning. Additionally, the target domain is not restricted to computer

vision. General sensor fusion and state estimation algorithms, for instance using
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physics simulation, are targeted as well. Furthermore, a condensed model is trained

that encodes experience and can be used for relatively fast planning of pipelines.

6.4 Summary and Discussion

In this chapter, we presented an approach to synthesize perception pipelines using

hierarchical planning, which allows to find a sequence of operators with sufficient

accuracy for the task at hand. The hierarchical model consists of a knowledge layer,

which encodes engineering experience from data and steers the search procedure,

and an execution layer where actual operators are executed on the given data.

Scheduling on the top level ensures that pipelines with short runtime are preferred.

Experiments in simulation with different objects, sensor types, and sensor placements

show promising results. The knowledge layer is calibrated for one object and performs

well for a unseen test object. The duration of the synthesis process, including

execution, is mostly less than a minute and therefore allows rapid adaptation, e.g.,

for a product change.

The core contribution of this chapter is Contrib. C4. The modeling approach for data

types using metrics allows to build a model hierarchy, which can be exploited using

hierarchical planning. This allows to factorize the search space and provide more

efficient configuration space exploration than a flat planning approach. The approach

is validated in an industrial assembly scenario for multiple objects and sensors.

Different aspects have to be discussed critically. First, the presented abstract models

are only basic and should be interpreted as an example of how to approach the

task. However, more complex models can easily be incorporated. Also, the model

calibration represents a general issue, as the quality depends on the available data and

its distribution. Errors can occur due to wrong interpolations as well as extrapolations

of existing data points. Here, systematic simulated data generation and distribution

are a promising avenue of future work. Furthermore, only a single abstraction layer is

addressed in the current example. However, the approach conceptually handles well

problem formulations with higher numbers of layers, which could be investigated in

future work.
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Conclusion

In this thesis we automated substantial parts of the synthesis of perception systems

for engineering and runtime adaptation. The difficulty stems, among others, from

the large space of system configurations, the task variability, immanent noise, and

a high sensitivity to small deviations in task and setup. In addition, the failure

tolerance is very low in industrial robotic applications, as errors can lead to defective

products or even collisions. As foundation we introduced a hierarchical model as

well as different configuration space exploration methods, which are acting on the

hierarchical model. The modeling approach allows to represent the task, procedural

models, and declarative models at different levels of abstraction. Based on this

common model, we showed, that pipeline structure and parameterization can be

jointly optimized using pipeline structure templates. The approach is successfully

validated in a real-world assembly setup and allows to remove a large portion

of the engineering effort, when adapting an automation system to a new task.

Furthermore, and again based on the common model, we demonstrate how explicit

uncertainty representations can be leveraged for the synthesis process and that

uncertainty models can be constructed in an automated manner. Finally, we exploit

the abstraction hierarchy in order to provide online adaptation of perception systems

to a new task at runtime, which addresses the need for flexible automation system.

In the following, the individual contributions to the automation of the engineering

design process are summarized and discussed. In Chapter 3 we introduce a hier-

archical modeling formalism and apply it to the domain of perception synthesis,

as summarized in Contribution C1. It allows to define procedural and declara-

tive knowledge in a programming language agnostic way and on different levels

of abstraction. The hierarchical modeling formalism is grounded in set-theory and
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allows to apply hierarchical planning as configuration space exploration method.

Furthermore, additional methods for the exploration of the configuration space,

such as optimization and planning can be represented as meta-operators within the

presented formalism. This allows to apply suitable exploration methods depending

on domain, task, and engineering phase. Finally, methods to automatically generate

models from different origin are briefly highlighted, including an approach to use

natural language processing for the interpretation of existing code documentation.

Once a common model of the space of system configurations is given, it is required to

search the configuration space in order to satisfy the needs of the application. This is

part of the offline engineering phase, where the system is still under development and

time is available in order to evaluate the different options. Therefore, we introduce

in Chapter 4 an automated design synthesis approach based on pipeline templates and

sequential model-based optimization which allows to jointly optimize the structure

and parameterization of perception pipelines for the offline design synthesis of

perception system, as noted in Contribution C2. Prior engineering knowledge about

pipeline structures can be encoded in pipeline templates, which allows to substantially

reduce the search space. Model-based operators, e.g., using point-pair-features, and

data-based operators, using neural networks, are automatically combined. This

allows to improve the performance with respect to individual operators. A state-of-

the-art deep learning approach for instance did not perform sufficiently well when

not combined with suitable operators for the refinement of object hypotheses. The

design synthesis algorithm is represented in the common modeling formalism as a

meta-operator, which facilitates the reuse and combination with different methods.

The design synthesis is successfully applied in a flexible assembly setup, where the

perception system performance is substantially improved with respect to a baseline

of typical pipeline structures with optimized parameters.

As uncertainty and noise is immanent in the data generation and processing of

perception systems, explicit modeling and handling thereof is beneficial. A perception

engineer for instance knows uncertainty characteristics and takes them into account

in the design synthesis process. Especially geometric uncertainties play a crucial role

for assembly tasks. Therefore, in Chapter 5 we introduce an approach to model and

estimate geometric uncertainties across different observations and coordinate systems

by constructing and inferring over a factor graph, as highlighted in Contribution C3.

The construction and inference of this probabilistic graphical model is formulated

in a planning problem, which allows to jointly consider perceptual actions and data

fusion. The formulation as a planning problem is facilitated by using the introduced

modeling formalism. The approach is validated in a simulated assembly scenario,

where the goal is to satisfy the requirements on the geometric localization accuracy.
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It is shown that the automated planning allows to find suitable perception and data

fusion pipelines using the proposed uncertainty model. The formalization as planning

problem allows for general adaptability to new tasks, may however induce additional

overhead.

Flexible and autonomous assembly systems need to adapt quickly to new products

and even new situations. A static perception system design often does not work suffi-

ciently well for such dynamic requirements. In order to overcome this, we introduce

in Chapter 6 an approach to leverage the presented hierarchical models for online

design synthesis based on hierarchical planning, see also Contribution C4. Here an

abstract layer that approximates the behavior of real perception operators is used as

a surrogate in order to search for promising pipeline candidates. Once a candidate

is found, reduced planning problems are formulated using the real operators to

fulfill the intermediate goals of the top-level problem. This hierarchical approach

allows to reduce the planning time and copes with the curse of dimensionality. The

parameterization of the abstract model layer is calibrated using a log of real operator

execution. The approach is validated in a simulated assembly scenario, with different

cameras, camera placements, and objects. We could show that a successful pipeline

generation is possible within reasonable amounts of time, suitable for online adapta-

tion. Furthermore, the hierarchical approach clearly outperforms a non-hierarchical

baseline in terms of planning times.

However, the overall task of automating the entire design of perception systems

without human intervention is still subject to challenges. The presented approaches

focused primarily on the pipeline design and parameterization for online and offline

use. Here, successful design synthesis could be demonstrated, but not all dimensions

of the configuration space were open to change. Additional layers in the hierarchical

configuration system, for instance, are required in order to cover different aspects

such as system cost, hardware integration and deployment. This is conceptually

feasible in the presented modeling approach, but requires further research towards

individual model structure and scalability, especially due to the increased dimension-

ality of the configuration space. Furthermore, the availability and integration effort

of perception operators and models remains a challenge. Every existing operator

and sensor should provide standardized interfaces, abstract and detailed execution

models to approximate and test its behavior in different settings. Ideally, these should

be available globally, which requires suitable and scalable platforms. The presented

approaches for operator harvesting demonstrate that automation is possible, but still

require a manual support in understanding the domain. Additionally, a knowledge

base is required to store the experiences and different perception system configura-

tions. Here, the transfer of knowledge of the design synthesis of a single perception
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system to another application is an interesting avenue of future work. Finally, the use

of photo-realistic simulation for the data generation is a strong enabler for automated

design synthesis and we use simulation operators within the design synthesis pro-

cess. However, simulation represents an abstract model which approximates reality

and there is still ongoing research demand on bridging the simulation-reality gap,

depending on the use case.

In summary, we showed that an automation of typical engineering tasks involved

with the design of perception systems is possible and made substantial contributions

to different sub tasks, especially in the area of pipeline design and parameteriza-

tion for online and offline use. The contributions include a common model in a

hierarchical modeling formalism, uncertainty representation and handling, offline op-

timization of pipeline structure and parameterization, and online system adaptation

via hierarchical planning.
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Glossary

Glossary

concept Basic declarative model, see definition in Sec. 3.1.1.

configuration space The space of different system configurations, see also Def. 5

and Fig. 1.9

configuration space exploration Process of exploring different configurations in

the configurations space in order to solve given requirements. See also Sec. 3.4

declarative model See definition in Sec. 2.1.1

design synthesis See Def. 4 and Sec. 2.2.3

instance Actual element within the set of a concept, see also Sec. 3.1.1.

meta domain Top level models, that contains high level concepts such as operator.

offline engineering phase Phase in the design process, where the target system is

not yet in operation and time can be spent to evaluate different design choices.

See also Sec. 4.

online adaptation phase Phase in the design process, where the target system is

already in operation and has to adapt in short time to a new product, task or

situation. See also Sec. 2.2.3.6.

operator Basic procedural model, see definition in Sec. 3.1.2.

procedural model See definition in Sec. 2.1.1

RGB Denotes the color spectrum of a camera or image, which is comprised of the

colors red, green and blue.

RGBD Denotes the spectrum of a camera or image, which is comprised of the colors

red, green and blue and a depth channel. See also RGB.
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