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Introduction to Sensitivity
Analysis

1.1 MODELS AND SENSITIVITY ANALYSIS

What is a model? What model input is considered in a sensitivity

analysis? What is the role of uncertainty and sensitivity analyses in

model building? Main approaches to the propagation of uncertainty

within and across models. Implications for model quality.

1.1.1 Definition

A possible definition of sensitivity analysis is the following: The study of
how uncertainty in the output of a model (numerical or otherwise) can be
apportioned to different sources of uncertainty in the model input (Saltelli
et al., 2004). A related practice is ‘uncertainty analysis’, which focuses
rather on quantifying uncertainty in model output. Ideally, uncertainty
and sensitivity analyses should be run in tandem, with uncertainty analysis
preceding in current practice.

For this definition of sensitivity analysis to be of use, it must first be made
clear what is meant here by ‘model’, numerical or otherwise, as well as by
the terms ‘input’ and ‘output’ which will be used throughout this book.
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2 INTRODUCTION TO SENSITIVITY ANALYSIS

1.1.2 Models

A view of modelling that may help to illustrate the role of sensitivity analysis
in the scientific process is offered in Figure 1.1, taken from the work of
biologist Robert Rosen (1991) (see also Saltelli et al., 2000, pp. 3–4). On
the left in Rosen’s diagram we have the ‘world’, that is the system which
forms the subject of our investigation. We have reason to believe that the
system, whether natural or artificial, is governed by rules which we have
the ambition to uncover, or to use to our advantage. To this end we craft
or hypothesize a set of structures in a model (depicted on the right-hand
side of the figure). For example, a hypothesized growth mechanism for a
species contained in the world can be translated into a differential equation
in a model. While our species continues growing and dying quietly in the
world, following the forces of its own systemic causality (which we aim
to understand), our differential equation can be solved using the rules of
mathematical calculus. The intuition of Rosen is that while the species
in the world obeys rules, and the differential equation in the model has
‘rules’ as well, whether formal or mathematical, no ‘rule’ whatsoever can
dictate how one should map the hypothesized rules in the world onto the
rules in the model. In the words of Rosen, while the world and the model
are each internally ‘entailed’, nothing entails the world with the model.
Among the reasons for this paradox is the fact that the portion of the world
captured by the model is an arbitrary ‘enclosure’ of an otherwise open,
interconnected system.1 This is the case when the world is part of a natural
system, the main concern of Rosen’s inquiry. Yet experience has shown
that even when the world is indeed a well-defined and closed system, for
instance an artefact, an artificial device or a piece of machinery, different
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Figure 1.1 Modelling after Rosen (1991)

1 Even more so when the purpose of a model is to learn about the nonobservable parts of a
system.
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modellers can generate different nonequivalent descriptions of it, that is,
models whose outputs are compatible with the same set of observations but
whose structures are not reconcilable with one another.

While this may be disturbing to a student accustomed to the beauty and
apparent self-evidence of physical laws, practitioners of modelling have
come to live with the rather unpleasant reality that more than one model
may be compatible with the same set of data or evidence. Some have gone
so far as to coin a word for this paradox: equifinality – Beven (1993,
2001), see also Saltelli et al. (2004, pp. 173–178) – meaning that different
models can lead to the same end. Others refer to the phenomenon as model
indeterminacy.

Since Galileo’s time scientists have had to deal with the limited capacity
of the human mind to create useful maps of ‘world’ into ‘model’. The
emergence of ‘laws’ can be seen in this context as the painful process
of simplification, separation and identification which leads to a model of
uncharacteristic simplicity and beauty.

1.1.3 Models and Uncertainty

What makes modelling and scientific inquiry in general so painful is uncer-
tainty. Uncertainty is not an accident of the scientific method, but its
substance.2

Modellers and philosophers of science have debated the issue of model
indeterminacy at length (Oreskes et al., 1994). Most modellers today would
probably agree that a model cannot be validated, in the sense of ‘be proven
true’. Rather, it is more defensible and correct to say that a model has
been extensively corroborated, meaning by this that the model has survived
a series of tests – be they formal, of internal consistency, or relative to
the model’s capacity to explain or predict the ‘world’ in a convincing and
parsimonious way.

When models fail publicly, the ensuing controversy can be devastating
for the scientific parties involved.3 Models are often used in highly polar-
ized contexts and uncertainty may be used instrumentally. ‘All parties deal
with environmental information in a selective way, or even manipulate it’,
observed a Dutch environmental scientist (In ’t Veld, 2000). Fabricated

2 ‘That is what we meant by science. That both question and answer are tied up with uncer-
tainty, and that they are painful. But that there is no way around them. And that you hide
nothing; instead, everything is brought out into the open’ (Høeg, 1995).
3 For the modelling credibility crisis in the Netherlands’ RIVM Laboratories see Van der Sluijs
(2002). See also Mac Lane (1988) for another example.
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Figure 1.2 Uncertainty/stakes diagram after Funtowicz and Ravetz (1990)

uncertainty is a common concern in relation to important disputes over
health or the environment (Michaels, 2005).

In short, models are part of the scientific method and hence subject
to epistemological debate. A way of framing present-day debate on the
scientific method is offered by Post-Normal Science (PNS, see Figure 1.2
and Funtowicz and Ravetz, 1990, 1993; Funtowicz et al., 1996).

In PNS one distinguishes between three types of scientific production
modes, depending on the system’s uncertainties and the stakes involved.
Applying this to modelling, different requirements and practices pertain:

• In applied science, when a model is written and employed within a closed
consortium of experts who are the sole users of the model, e.g. when
this is used to solve a circumscribed chemical kinetics problem;

• In ‘consultancy’ when the model is more likely to be scrutinized, e.g.
as part of a cost–benefit analysis for the construction of a new road or
bridge that will affect a community;

• When computing climate sensitivity in the context of global change.
In this latter case we are in the domain of PNS, where science (and
its models) is called on to provide evidence under circumstances of
conflicting stakes and beliefs.

Like scientific theories, models may be given pedigrees which help us
to judge their quality. Pedigrees take account of past usage of the model,
status of its proponents, degree of acceptance by peers and so on (Van der
Sluijs, 2002; Craye et al., 2005). In pedigrees, model quality is more closely
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associated with ‘fitness for purpose’ – that is, with a specific purpose – than
with the model’s intrinsic fabric.

A post-normal view of the modes of scientific production in relation to
policy is given in Funtowicz (2004). Models as metaphors are discussed in
Ravetz (2006).

1.1.4 How to Set Up Uncertainty and Sensitivity Analyses

As mentioned at the beginning of the chapter, our definition of sensitivity
analysis involves models, model input and model output. We now try to
define model input in relation to the nature and purpose of the model, as
well as to the set-up of the uncertainty and sensitivity analyses. A model
can be:

• Diagnostic or prognostic. In other words, we try to distinguish between
models used to understand a law and models used to predict the
behaviour of a system given a supposedly understood law. Models can
thus range from wild speculations used to play what-if games (e.g. models
for the existence of extraterrestrial intelligence) to models which can be
considered accurate and trusted predictors of a system (e.g. a control
system for a chemical plant).

• Data-driven or law-driven. A law-driven model tries to put together
accepted laws which have been attributed to the system, in order to
predict its behaviour. For example, we use Darcy’s and Ficks’ laws to
understand the motion of a solute in water flowing through a porous
medium. A data-driven model tries to treat the solute as a signal and to
derive its properties statistically. Advocates of data-driven models like to
point out that these can be built so as to be parsimonious, i.e. to describe
reality with a minimum of adjustable parameters (Young et al., 1996).
Law-driven models, by contrast, are customarily overparametrized, as
they may include more relevant laws than the amount of available data
would support. For the same reason, law-driven models may have a
greater capacity to describe the system under unobserved circumstances,
while data-driven models tend to adhere to the behaviour associated with
the data used in their estimation. Statistical models (such as hierarchical
or multilevel models) are another example of data-driven models.

Many other categorizations of models are possible,4 and the definition of
model input depends on the particular model under study. For the purpose

4 Bell et al. (1988) distinguish between formal (axiomatic), descriptive and normative models
(rules an agent should follow to reach a target). The examples in this book are descriptive
models.
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Figure 1.3 Parametric bootstrap version of uncertainty and sensitivity analyses

of uncertainty and sensitivity analyses we could liberally classify as input
everything that can drive a variation in the output of the model.

Consider the scheme in Figure 1.3. Here we have observations (assumed
error-free for simplicity’s sake) and a model whose parameters are esti-
mated from the data. Estimation can take different courses. Usually it is
achieved by minimizing, e.g. by least squares, some measure of distance
between the model’s prediction and the data. At the end of the estimation
step, ‘best’ parameter values as well as their errors are known. At this
point we might consider the model ‘true’ and run an uncertainty analysis
by propagating the uncertainty in the parameters through the model, all the
way to the model output. In this case the estimated parameters become our
factors.

One way of doing this is through Monte Carlo analysis, in which we
look at the distribution functions of the input parameters, as derived from
the estimation. For example, we may have the following scheme:

• We start from a factor � ∼ N ��̄����, which reads: after estimation �
is known to be normally distributed with mean �̄ and standard devia-
tion ��.

• Likewise for factors ��� and so on. Contrary to what logic would
suggest, and for the sake of simplicity, we assume that the factors are
independent of each other. This issue is discussed later in the chapter.

• For each of these factors, we draw a sample from the respective
distributions, i.e. we produce a set of row vectors ���j����j�� 	 	 	 � with
j = 1�2� 	 	 	 �N in such a way that ���1����2�� 	 	 	 ���N�� is a sample
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from N��̄���� and likewise for the distribution function of the other
factors. ⎡

⎢⎢⎢⎢⎣
��1� ��1� ��1� 	 	 	
��2� ��2� ��2� 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

��N−1� ��N−1� ��N−1� 	 	 	
��N� ��N� ��N� 	 	 	

⎤
⎥⎥⎥⎥⎦ (1.1)

• We can then compute (‘run’ is the conventional term) the model for all
vectors ���j����j�� 	 	 	 � thereby producing a set of N values of a model
output Yj .

5 ⎡
⎢⎢⎢⎢⎣

y�1�

y�2�

	 	 	
y�N−1�

y�N�

⎤
⎥⎥⎥⎥⎦ (1.2)

These steps constitute our uncertainty analysis. From these we can
compute the average output, its standard deviation, the quantiles of its
distribution, confidence bounds, plot the distribution itself and so on. It is
clear that in this analysis, sometimes called a ‘parametric bootstrap’,6 our
inputs are the model’s parameters. Having performed this uncertainty anal-
ysis we can then move on to a sensitivity analysis, in order to determine
which of the input parameters are more important in influencing the uncer-
tainty in the model output. However, we defer this step in order to continue
our discussion of model input.

Note that for the purpose of the uncertainty analysis just described we
consider as relevant inputs only our estimated parameters. All other types
of information fed into the model, e.g. the observations, physical or math-
ematical constants, internal model variables (e.g. number of grid points if
the model needs a mesh), are disregarded – that is, we do not allow them
to vary and hence they cannot cause variation in the output.

In Figure 1.4 we have played the uncertainty analysis game differently by
sampling the observations rather than the parameters. We have a limited
set of observations, and we are aware that different subsets of these could

5 Note that this model output Yj may be different from the model output used in the estimation
step.
6 Bootstrapping is the process of repeatedly sampling ‘with replacements’. For example, if we
want to estimate the average sum of three Bingo chips, we could do this by extracting three
random chips from the Bingo bag, computing their average, putting the chips back into the
bag and extracting again. With a sufficiently large number of extractions we could determine
the average sum being sought, and this strategy would be called a bootstrap of the Bingo chips.
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Figure 1.4 Bootstrapping of the modelling process (Chatfield, 1993)

potentially lead us to try one model rather than another to fit the data.
What we can do in order to be fair to the data is to select a subset of the
observations, choose a model based on these data using a pre-established
model selection rule, estimate the corresponding parameters using the same
sampled data, and run the model to compute Yj . We have drawn the
sample with replacement, and we can now repeat the process, identifying a
potentially different (or indeed the same) model, estimating the parameters
(which may differ in number from those of the previous run if the model is
different), and so on for a total of N times, until we yield our desired sample
for the uncertainty analysis. This approach can be called ‘bootstrapping of
the modelling process’ (Chatfield, 1993).

The input for this uncertainty analysis is the data which have been boot-
strapped, since we have assumed that all the rest (from model selection to
parametric estimation) is done automatically given the data and hence adds
no variation to model output.

Finally in Figure 1.5 we compare a set of plausible models with the
data. Using Bayesian analysis it is possible to derive posterior probabilities
for the models as well as distributions of the related parameters (Saltelli
et al., 2004). Once this model update and parameter estimation step is
complete, a model averaging can be used in uncertainty analysis. This is
done by propagating the uncertainty through the system by sampling both
the model and the parameters according to their distributions, to produce a
sample of model outcome Yj . This procedure is known as Bayesian model
averaging,7 and the inputs in this case are both models and parameters, or

7 For a thorough account of this approach see Kass and Raftery (1995) and Hoeting et al.
(1999). See Saltelli et al. (2004, pp. 151–192) for related sensitivity issues.
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Figure 1.5 Bayesian model averaging

more precisely the probabilities of the different model representations and
the distributions of the parameters. In a Monte Carlo framework, a trigger
variable would be sampled to select a model according to its posterior
probability, while the parameters would also be sampled and the model
outcome determined. A sensitivity analysis could be executed at this point,
and a question that it might address is the following: how much of the
uncertainty is due to the model selection and how much to the estimation
of the parameters?

1.1.5 Implications for Model Quality

The superficial illustration given above of approaches to uncertainty and
sensitivity analyses has shown that what constitutes an input for the analysis
depends upon how the analysis is set up. The input is that which is allowed
to vary in order to study its effect on the output. A sensitivity analysis will
in turn instruct the modellers as to the relative importance of the inputs in
determining the output. An obvious consequence of this is that the modeller
will remain ignorant of the importance of those variables which have been
kept fixed. This is of course a hazard for the modeller, as a variable deemed
noninfluential and kept fixed could haunt the results of the analysis at
a later stage. For example, it would be unfortunate for the modeller to
discover a posteriori that the mesh size had been too large, and that the
number of grid points had had a dramatic effect on the model output.

It seems, therefore, that one should be as careful and objective as possible
in deciding on the input for uncertainty and sensitivity analyses. Clearly,
the more variables we promote to the rank of input, and allow to vary, the
greater the variance to be expected in the model prediction. This could lead
to a situation in which we discover that, having incorporated all uncertain-
ties, the model prediction varies so wildly as to be of no practical use. This
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trade-off has been brilliantly summarized by the econometrician Edward
E. Leamer (1990):

I have proposed a form of organized sensitivity analysis that I call ‘global sensi-
tivity analysis’ in which a neighborhood of alternative assumptions is selected and
the corresponding interval of inferences is identified. Conclusions are judged to
be sturdy only if the neighborhood of assumptions is wide enough to be credible
and the corresponding interval of inferences is narrow enough to be useful.

Note Leamer’s emphasis on the need for ‘credibility’ in the selection of
assumptions. The easiest way to invalidate a model is to demonstrate it
fragile with respect to shaky assumptions. Note, however, that the trade-off
may not be as dramatic as one might expect, and that increasing the number
of input factors does not necessarily lead to an increased variance in model
output. Practitioners have recorded that in most uncertainty and sensitivity
analyses the input factors’ importance is distributed similarly to wealth
in nations, with a few factors creating almost all the uncertainty and the
majority making only a negligible contribution. Hence, if the ‘key’ factors
have been judiciously chosen, adding further variables to the analysis may
add to its completeness and defensibility without adversely increasing the
variance in the output.

As mentioned, the quality of a model is largely a function of its fitness for
purpose. If modelling is a craft and models cannot be proven true (because
of the pervasive nature of uncertainty and the difficulty of separating obser-
vation from observer and facts from values),8 then the modeller has a
moral obligation, and indeed it is in the modeller’s own practical interest,
to be as rigorous as possible when assessing the robustness of model infer-
ence. Doing so should produce better and more parsimonious models, and
will strengthen the analyst’s defence of the results in the case of scientific
controversy or public policy debate.

1.2 METHODS AND SETTINGS FOR SENSITIVITY
ANALYSIS – AN INTRODUCTION

What methods are available? How can a particular method be

related to a problem-specific question? How can we define a factor’s

importance unambiguously? Suggested practices.

8 ‘Values’ here mean ethical judgements. Cases in which the separation of facts and values
becomes arduous are many, e.g. when models try to assess the impact of the adoption of new
technologies, the relevanceof environmental threats, distributional issues in economicsand soon.
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1.2.1 Local versus Global

As we shall learn in the following chapters, sensitivity analysis can serve a
number of useful purposes in the economy of modelling. It can surprise the
analyst, uncover technical errors in the model, identify critical regions in
the space of the inputs, establish priorities for research, simplify models and
defend against falsifications of the analysis. In the context of models used
for policy assessment, sensitivity analysis can verify whether policy options
can be distinguished from one another given the uncertainties in the system,
and so on. What methods would one choose to perform sensitivity analysis
for any or all of the above?

It is not by chance that most of the sensitivity analyses met in the literature
are based on derivatives. Indeed the derivative 
Yj/
Xi of an output Yj

versus an input Xi can be thought of as a mathematical definition of the
sensitivity of Yj versus Xi.

Sometimes computer programs that implement complex physical, chem-
ical or genetic models are augmented by special routines that allow the
efficient computation of large arrays of system derivatives, which are subse-
quently used for model calibration, model reduction or verification and
model inversion (Rabitz, 1989; Turanyi, 1990; Varma et al., 1999; Cacuci,
2003; Saltelli et al., 2000, pp. 81–101).

The derivative-based approach has the attraction of being very efficient in
computer time. The model needs to be executed few times compared to the
dimension of the array of derivatives to be computed. However, it is inef-
ficient in terms of the analyst’s time. One has to intervene in the computer
program, inserting ad hoc coding, to perform this operation efficiently. Yet
the fatal limitation of a derivative-based approach is that it is unwarranted
when the model input is uncertain and when the model is of unknown
linearity. In other words, derivatives are only informative at the base point
where they are computed and do not provide for an exploration of the rest
of the space of the input factors. This would matter relatively little for linear
systems, in which the property at a point away from the baseline can be
computed quickly by linear extrapolation using first-order point derivatives,
but it would matter greatly for nonlinear ones. The focus of this book is on
quantitative uncertainty and sensitivity analysis in the presence of uncer-
tain inputs. We shall therefore make use of methods based on exploring
the space of the input factors, based on the consideration that a handful
of data points judiciously thrown into that space is far more effective, in
the sense of being informative and robust, than estimating derivatives at
a single data point in the centre of the space. In this book, when we use
derivatives, or rather incremental ratios such as �Yj �Xi +�Xi�−Yj�Xi��/�Xi,
we will normally compute them at a set of different points in the space of
the input factors, in order to obtain an average response of Yj when moving
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a factor Xi of a step �Xi at different points in the input space, i.e. for
different values of X∼i.

9

However, in order to introduce the methods of sensitivity analysis, we
shall start from derivatives, taking a very simple test case.

1.2.2 A Test Model

Imagine the model has a linear error-free form

Y =
r∑

i=1

�iZi (1.3)

where the input factors are X = ��1��2� 


	 	 	 �r�Z1�Z2� 	 	 	 Zr�.
We have dropped the subscript j of the model output Y for simplicity.

Model equation (1.3) has just a single output variable. Let us assume first
that the �’s are fixed coefficients, so that the true (active) factors for model
(1.3) are just the Z1�Z2� 	 	 	 Zr . Y could be a composite indicator, for
example a sustainability index or a greenhouse gas emission index, in which
the �’s are the weights attached by experts to the individual Z-variables. For
the sake of the example we consider the weights fixed, while the individual
variables have been characterized as independent and distributed normally
with mean zero, i.e.

Zi ∼ N �0��Zi
� i = 1�2� 	 	 	 � r
 (1.4)

If the model were indeed a composite indicator with ‘standardized’ vari-
ables10 all �Zi

’s would be equally one.
It is easy to verify (see the Exercises) that, given the Equations (1.3, and

1.4), Y will also be normally distributed with parameters

ȳ =
r∑

i=1

�iz̄i (1.5)

�Y =
√

r∑
i=1

�2
i �

2
Zi


 (1.6)

9 Here, and in the following, X∼i denotes the vector of all factors but Xi.
10 Standardization of a variable is achieved by subtracting from the variable its sample mean
and dividing the result by its standard deviation.
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For the sake of the example we would also like to assume that for this
particular index the variables have been ordered from the less uncertain to
the most uncertain, i.e.

�Z1
< �Z2

< 	 	 	 < �Zr
�

and that the weights �’s are all equal and constant:

�1 = �2 = 	 	 	 = �r = constant
 (1.7)

1.2.3 Scatterplots versus Derivatives

Figure 1.6 shows the scatterplots Y�Zi that we obtain by performing
a Monte Carlo experiment with our model. As already mentioned (and
described in more detail in Chapter 2), Monte Carlo methods are based
on sampling factors’ values from their distribution. In most cases factors
are assumed independent so that the samples are taken from the marginal
distribution of each factor. An input sample is thus produced:

M =

⎡
⎢⎢⎢⎢⎢⎣

z
�1�
1 z

�1�
2 	 	 	 z

�1�
r

z
�2�
1 z

�2�
2 	 	 	 z

�2�
r

	 	 	 	 	 	 	 	 	 	 	 	

z
�N−1�
1 z

�N−1�
2 	 	 	 z

�N−1�
r

z
�N�
1 z

�N�
2 	 	 	 z

�N�
r

⎤
⎥⎥⎥⎥⎥⎦ (1.8)

Computing Y for each row of matrix (1.8) using model (1.3) produces the
desired output vector

Y =

⎡
⎢⎢⎢⎢⎣

y�1�

y�2�

	 	 	
y�N−1�

y�N�

⎤
⎥⎥⎥⎥⎦ (1.9)

where y�1� is the value obtained by running Equation (1.3) with the input
given by the row vector z

�1�
1 � z

�1�
2 � 	 	 	 � z

�1�
r , and so on for the other rows of

matrix (1.8).
With this sample of model input and output one can produce r scatter-

plots by projecting in turn the N values of the selected output Y (assumed
here to be a scalar) against the N values of each of the r input factors.
These scatterplots can be used to investigate the behaviour of models.
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Figure 1.6 Scatterplots of Y versus Z1� 	 	 	 �Z4. Which is the most influential
factor? One can compare occupancy of quadrants I and III versus that of II and IV
to decide where the positive linear relationship is stronger

The scatterplots show that Y is more sensitive to Z4 than it is to Z3, and
that the ordering of the input factors by their influence on Y is

Z4 > Z3 > Z2 > Z1
 (1.10)

Such a conclusion can be drawn from Figure 1.6, as there is more shape
(or a better pattern) in the plot for Z4 than for Z3, and so on.

However, if we used the straightforward derivative of Y versus Zi for the
sensitivity analysis, i.e. if we decided upon the relative importance of the
Zi’s using the measure

S
p
Zi

= 
Y


Zi

� (1.11)

which gives S
p
Zi

= �i for Equation (1.3), we would have to conclude that
all factors are equally important, based on Equation (1.7), irrespective of
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the values in �. This is clearly not reasonable. Note that we have used
the superscript p for ‘partial derivative’ in Equation (1.11), and that the
derivative is nonnormalized, i.e. it is based on the raw values of both
input and output. Note also that the scatterplots in Figure 1.6 are more
convincing than formula (1.11) as a sensitivity analysis tool. This is a rather
general conclusion. Input/output scatterplots are in general a very simple
and informative way of running a sensitivity analysis – we will use them
often in this book, since they can provide an immediate visual depiction
of the relative importance of the factors. For example, a scatterplot with
little ‘shape’, e.g. plot Z1 in Figure 1.6, which presents a rather uniform
cloud of points over the range of the input factor on the abscissa, is an
almost sure sign that the parameter is less influential than factor Z4. We say
‘almost’ because there are instances in which a bidimensional scatterplot
can be deceiving, leading to type II errors (nonidentification of an influential
factor).11 These are, however, very special cases, see Saltelli et al. (2004,
pp. 160–161).

Most sensitivity analysis measures developed by practitioners aim to
preserve the rich information provided by scatterplots in condensed format.
The challenge for sensitivity analysis, in situations with many input factors,
is how to rank the factors rapidly and automatically without having to look
at many separate scatterplots. Another problem with scatterplots is that
some uncertain factors might be sets, that is, groups of factors, and while
compact sensitivity measures can be defined for sets, the sensitivities of sets
cannot be visualized via simple two-dimensional scatterplots.12

1.2.4 Sigma-normalized Derivatives

Can we improve Equation (1.11) in such a way as to obtain a sensitivity
measure that would rank the input factors consistently with Figure 1.6? A
good possibility is

S�
Zi

= �Zi

Y

�Y 
Zi


 (1.12)

11 In sensitivity analysis, we refer to type I error when erroneously defining as impor-
tant a noninfluential factor. Type II error occurs when we classify an important factor as
noninfluential. It is nowadays common practice in modelling to include a third type of error:
type III. This is typically a framing error, where right answers are sought for the wrong ques-
tion. Sensitivity analysis is unable to help against type III errors. To make an example, if the
range of plausible values for a factor taken as input for a sensitivity analysis is totally off the
mark, the result of the sensitivity analysis will be of little help.
12 In fact, one can force multidimensional scatterplots into a bidimensional plane by scanning
the space of the input factors with a search curve. See Chapter 5.
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This derivative is normalized by the input–output standard deviations
(hence the � in the superscript). Applied to model (1.3) this would
give S�

Zi
= ��Zi

/�Y ��i. Squaring this and comparing with the square of

�Y =
√∑r

i=1 �2
i �

2
Zi

(Equation (1.6) above) we obtain

�2
Y =

r∑
i=1

�2
i �

2
Zi

and
(
S�

Zi

)2 =
(

�Zi

�Y

�i

)2

(1.13)

which gives �2
Y = �2

Y

∑r
i=1

(
S�

Zi

)2
, and finally

r∑
i=1

(
S�

Zi

)2 = 1
 (1.14)

Measure (1.12) is more convincing than measure (1.11), see Table 1.1: first,
because the relative ordering of the Zi’s now depends on both vectors, �
and �, just as it should; and second, because the sensitivity measures are
neatly normalized to one.

Note that Equation (1.12) is a measure recommended for sensitivity
analysis by a guideline of the Intergovernmental Panel for Climate Change
(IPCC) (1999, 2000).

1.2.5 Monte Carlo and Linear Regression

Let us return briefly to the scatterplots of Figure 1.6. As mentioned, these
are the result of a Monte Carlo simulation in which a matrix such as

M =

⎡
⎢⎢⎢⎢⎢⎣

z
�1�
1 z

�1�
2 	 	 	 z

�1�
r

z
�2�
1 z

�2�
2 	 	 	 z

�2�
r

	 	 	 	 	 	 	 	 	 	 	 	

z
�N−1�
1 z

�N−1�
2 	 	 	 z

�N−1�
r

z
�N�
1 z

�N�
2 	 	 	 z

�N�
r

⎤
⎥⎥⎥⎥⎥⎦ (1.15)

Table 1.1 Derivatives and normalized derivatives for the model
(1.3, 1.4), where r = 4, � = �2�2�2�2� and � = �1�2�3�4�

Sa
Zi

(
S�

Zi

)2

Z1 2 0
036
Z2 2 0
14
Z3 2 0
31
Z4 2 0
56
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has been fed into model (1.3) to produce the desired output vector

Y =

⎡
⎢⎢⎢⎢⎣

y�1�

y�2�

	 	 	
y�N−1�

y�N�

⎤
⎥⎥⎥⎥⎦ (1.16)

where y�1� is the value obtained running Equation (1.3) with the input given
by the row vector z

�1�
1 � z

�1�
2 � 	 	 	 � z

�1�
r , and so on for the other rows of the

matrix.
Note that N is the size of the Monte Carlo experiment (N = 1000 in

Figure 1.6). N corresponds to the number of times we have computed
Equation (1.3). In a sensitivity analysis experiment we shall have in general,
instead of Equation (1.3), a computer program that calculates Y . Running
the program to obtain a vector as Equation (1.9) is customarily the most
expensive part of the analysis in terms of computer time, as the model may
be complicated, while the sensitivity analysis measures are easy to compute.
Thus N is referred to as the cost of the analysis. Note that computer
time is not to be confused with analysis time. A derivation of the factors’
uncertainty distribution such as Equation (1.4) is in practice the most time-
consuming and financially expensive part of an analysis, especially when
this is based on formal elicitation of expert opinion (Helton et al., 2006;
see also Saltelli et al., 2000, pp. 101–152).

Note also that care has to be taken so that each column

z
�1�
1

z
�2�
1

	 	 	

z
�N�
1

in matrix (1.8) is a sample from the respective distribution Zi ∼ N�z̄i��Zi
�. In

general, and unless otherwise specified, we assume that the input factors are
independent of each other, so that each one can be independently sampled
from its marginal distributions (Equation (1.4) in the present examples).

As mentioned above, analysts would like to summarize the results in plots
such as Figure 1.6 with a single number per scatterplot. This is, after all,
what a sensitivity measure is intended to do. The most popular method
for this is to try a simple linear regression on the data of matrix (1.8) and
vector (1.9), of the form

y�i� = b0 +
r∑

j=1

bZj
z

�i�
j � (1.17)
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where the coefficients b0� bZj
are determined by least-square computation,

based on the squared differences between the y-values produced by the
regression (meta)model13 and the actual model output produced by the
Monte Carlo simulation. Because the points have been generated using a
linear model, we expect that the linear regression will re-discover it, i.e.
we would expect that b̂0 � 0� b̂Zi

� �i� i = 1�2� 	 	 	 � r, where the symbol �
means that this is what we would obtain if N were large enough and the
hat denotes estimates as in standard usage.

Results for the points in Figure 1.6 (N = 1000) are given in Table 1.2.14

All available software for regression analysis will compute not only
b̂0� b̂Zi

, but also their standardized equivalents �̂Zi
= b̂Zi

�Zi
/�Y . The �’s

are known as standardized regression coefficients (sometime indicated with
their initial as SRC), and are in general more widely used than the raw
regression coefficients b’s. For our model (1.3), the regression coefficients,
again for N tending to infinity, will tend to

�̂Zi
= b̂Zi

�Zi
/�Y � �i�zi

/�Y 
 (1.18)

Comparing this formula with that previously obtained for the �-normalized
derivatives, i.e. S�

Zi
= ��Zi

/�Y ��i, we can conclude that in the special case
of our model (1.3) the two measures of sensitivity coincide:

�̂Zi
= S�

Zi
for model (1.3)
 (1.19)

Table 1.2 Linear regression coefficients and standardized coefficients
for the model of Equations (1.3), (1.4), where r = 4, � = �4�3�2�1�
and � = �2�2�2�2�, N = 1000

b �2
Zi

SZi
Analytic (see Exercises)

Intercept 0
Z1 2 0
034 0.03
Z2 2 0
14 0.13
Z3 2 0
31 0.3
Z4 2 0
53 0.53

13 Metamodels are surrogate models which are built to substitute for computationally inten-
sive simulation models. Metamodels can be built with a variety of strategies (e.g. simple
linear regression as discussed above) and purposes (e.g. to perform a sensitivity analysis). See
Chapter 5.
14 The results in Table 1.2 have been obtained with a simple piece of software for regression
analysis. Yet, as explained in the next chapter, given that our model (1.3, 1.4) is linear, and
the model does not contain any error term, we could have computed exact (analytic) values
of the regression coefficients using only five runs and then applying the Kramer formula for a
system of five equations (runs) in the five unknowns b0� 	 	 	 b4.
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As a result it will also be true for the �’s that

r∑
i=1

(
�̂Zi

)2 = 1 (1.20)

when the model is linear.
The fact that the two measures coincide for our model can be generalized

only to linear models and no further. If the model is nonlinear, the two
measures will be different. Yet the �’s will be a more robust and reliable
measure of sensitivity even for nonlinear models. First of all, the �’s are
multidimensionally averaged measures. Unlike S�

Zi
, which is computed at

the midpoint of the distribution of Zi while keeping all other factors fixed at
their midpoint, �̂Zi

is the result of an exploration of the entire space of the
input factors – the limit being in the dimension N of the sample. For small
N and large r, however, the �’s will be rather imprecise. Even in sensitivity
analysis there is no such thing as a free meal, and one cannot expect to have
explored a high-dimensionality space with a handful of points. Nevertheless
a handful is better than just one. Statistical significance tests are available
for the �’s, so that the analysts can at least know the extent of the problem.

Finally, by computing
∑r

i=1

(
�̂Zi

)2
or a related statistic, one will obtain a

number, in general less than one, equal to the fraction of linearity of the
model. More precisely, this number – known as the model coefficient of
determination, and written as R2

Y – is equal to the fraction of the variance
of the original data which come from our model (Equations 1.3, 1.4, in
this case), which is explained by the regression model of Equation (1.17).
Again, this fraction should be equal to one for our model; however, to
give a different example, if R2

Y were instead to be of the order of 0.9, then
the model would be 90% linear and one could use the �’s for sensitivity
analysis, at the risk of remaining ignorant of some 10% of the variance of
the problem.15

Note that
r∑

i=1

(
�̂Zi

)2 = 1 =
r∑

i=1

(
b̂Zi

�Zi
/�Y

)2
� (1.21)

so that
r∑

i=1

(
b̂Zi

�Zi

)2 = �2
Y = V�Y �� (1.22)

where V�Y � indicates the variance of Y . Equation (1.22) is to highlight that
both Equations (1.12) and (1.20) are variance decomposition formulas. As a

15 This discussion holds for linear regression. More sophisticated metamodelling techniques
which can overcome these shortcomings are described in Chapter 5.
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sensitivity analysis tool, these formulas allow us to decompose the variance
of the model output, taken as a descriptor of output uncertainty. Although
most practitioners tend to agree on this usage of variance as a proxy for
uncertainty, one should remember that the two things are not identical. For
example, a measure of uncertainty could be defined on the basis of entropy
of model output (see Saltelli et al., 2000, pp. 56–57). In this book we shall
use variance decomposition schemes for sensitivity analysis whenever the
setting of the analysis allows it.

Wrapping up the results so far, we have seen formulas for decomposing
the variance of the model output of interest according to the input factors.
Yet we would like to do this for all models, independently of their degree
of linearity; that is, we would like to be able to decompose the variance of
Y even for models with a low R2

Y . We want to find what is referred to in
the literature as a ‘model-free’ approach. One such ‘model-free’ sensitivity
measure is based on averaged partial variances, which we now move on to
describe along two separate lines.

1.2.6 Conditional Variances – First Path

We have a generic model

Y = f�X1�X2� 	 	 	 �Xk� (1.23)

like model (1.3) above. Each X has a nonnull range of variation or uncer-
tainty and we wish to determine what would happen to the uncertainty of
Y if we could fix a factor. Imagine that we fix factor Xi at a particular value
x∗

i . Let VX∼i
�Y � Xi = x∗

i � be the resulting variance of Y , taken over X∼i (all
factors but Xi). We call this a conditional variance, as it is conditional on
Xi being fixed to x∗

i . We would imagine that, having frozen one potential
source of variation (Xi), the resulting variance VX∼i

�Y � Xi = x∗
i � will be less

than the corresponding total or unconditional variance V�Y �. One could
therefore conceive of using VX∼i

�Y � Xi = x∗
i � as a measure of the relative

importance of Xi, reasoning that the smaller VX∼i
�Y � Xi = x∗

i �, the greater
the influence of Xi. There are two problems with this approach. First, it
makes the sensitivity measure dependent on the position of point x∗

i for
each input factor, which is impractical. Second, one can design a model that
for particular factors Xi and fixed point x∗

i yields VX∼i
�Y � Xi = x∗

i � > V�Y �,
i.e. the conditional variance is in fact greater than the unconditional (see the
Exercises at the end of this chapter). If we take instead the average of this
measure over all possible points x∗

i , the dependence on x∗
i will disappear.
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We write this as EXi

(
VX∼i

�Y � Xi�
)
. This is always lower or equal to V�Y �,

and in fact:

EXi

(
VX∼i

�Y � Xi�
)+VXi

(
EX∼i

�Y � Xi�
) = V�Y �
 (1.24)

Hence a small EXi

(
VX∼i

�Y � Xi�
)
, or a large VXi

(
EX∼i

�Y � Xi�
)
, will

imply that Xi is an important factor. Note that, by Equation (1.24),
VXi

(
EX∼i

�Y � Xi�
) ≤ V�Y �. The conditional variance VXi

(
EX∼i

�Y � Xi�
)

is
called the first-order effect of Xi on Y and the sensitivity measure:

Si = VXi

(
EX∼i

�Y � Xi�
)

V�Y �
(1.25)

is known as the first-order sensitivity index of Xi on Y . Si is a number
always between 0 and 1.16 A high value signals an important variable. And
vice versa? Does a small value of Si flag a nonimportant variable? We leave
this question for later and move directly on to the second path for Si.

1.2.7 Conditional Variances – Second Path

Let us go back to the scatterplots of Figure 1.6. We have said before that
what identifies an important factor is the existence of ‘shape’ or ‘pattern’
in the points, while a uniform cloud of points is a symptom (though not a
proof) of a noninfluential factor. What, then, constitutes shape? We could
say that we have a pattern when the distribution of Y -points over the
abscissa, i.e. over the factor Xi, is nonuniform. In other words, if the Xi axis
is cut into slices, does one see differences in the distribution of Y -points over
the slices (Figure 1.7)? Does the mean value of Y in each slice vary across
the slices (Figure 1.8)? From Figure 1.7 (which is the same as Figure 1.6,
with the addition of ‘slices’) and Figure 1.8 we can see that factor Z4 is
more influential than Z1, and that the ordering of factors by importance
is Z4 > Z3 > Z2 > Z1, according to how much the mean value of Y varies
from one slice to another.

We thus suggest as a sensitivity measure the quantity:

Variation over the slices of the expected value of Y within each slice.

16 Here and in the following we shall tend to use the synthetic notation Si when the factors
considered are labelled X, while we use the lengthier notation, e.g SZi

or S�i
, when the factor

has a symbol different from X.
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Figure 1.7 Cutting the scatterplots into slices 	 	 	

Taking the limit of this for very thin slices we rediscover VXi

(
EX∼i

�Y � Xi�
)
.

Note indeed that the expected value of Y over a very thin slice corre-
sponds to keeping Xi fixed while averaging over all-but-Xi, which is exactly
EX∼i

�Y � Xi�. The variance operator is also easily understood.
The issue of cutting the scatterplot into slices will be taken up again in

Chapter 5 in the context of metamodelling, at which point a useful approxi-
mation of the function expectation value in the slices will be introduced. We
anticipate here that EX∼i

�Y � Xi� will be the best predictor of Y based on Xi.

1.2.8 Application to Model (1.3)

Having defined the new sensitivity measure Si we are eager to apply it
to our model of Equation (1.3). It will come as no surprise that for our
well-behaved, linear model we obtain
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Figure 1.8 	 	 	 and taking the average within each slice. Looking at the ordinate,
it is clear that Z3 and Z4 control more variation than Z1 and Z2

SZi
= VZi

(
EZ∼i

�Y � Zi�
)

V�Y �
= �2

Zi
(1.26)

(See Table 1.2 for a comparison between �2
Zi

and the analytic value of
SZi

.) The identity of Equation (1.26) holds for linear models, as we would
expect given that SZi

is a model-free generalization of �2
Zi

. For nonlinear
models the two measures will differ, as we shall see in a moment. Another
important difference between SZi

and �2
Zi

is that while
∑r

i=1 �2
Zi

= 1 only
for linear models, the relationship

∑r
i=1 SZi

= 1 holds for a larger class: that
of additive models. By definition, a model is additive when it is possible
to separate the effects of its input variables in a variance decomposition
framework. For example, Y = ∑

i Z
2
i is a nonlinear, additive model in the

Z’s; Y = ∏
i Zi is nonlinear and nonadditive.

For nonadditive models the first-order terms do not add up to one,
i.e.

∑r
i=1 SZi

≤ 1. This is also how nonadditive models are defined. We
shall turn to this presently, after first discussing the need for ‘settings’ in
sensitivity analysis.
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1.2.9 A First Setting: ‘Factor Prioritization’

Experience shows that a poor definition of the objective of the sensitivity
analysis (i.e. the reason we are investigating the importance of the factors,
and indeed what we mean by ‘importance’) can lead to confused or incon-
clusive results. There are many statistics which can be used for sensitivity
analysis, and one can easily imagine a table showing for each uncertain
factor a battery of statistical measures defining the factor’s importance. In
general, each measure of sensitivity will produce its own ranking of factors
by importance. Since this is the case, how can we tell which factor is impor-
tant? To avoid this kind of confused result, it is in the analyst’s best interests
to define beforehand what definition of a factor’s importance is relevant
for the exercise in question. We call this a ‘setting’ (Saltelli et al., 2004,
pp. 49–56). A setting is a way of framing the sensitivity quest in such a way
that the answer can be confidently entrusted to a well-identified measure.
By way of example, we describe here the Factor Prioritization (FP) setting.

In this setting one assumes that all factors, e.g. all Z’s in Equation (1.3),
have a true, albeit unknown value.17 Ideally all factors could be ‘discovered’
by the appropriate experiments. If all experiments have the same cost, our
quest or venture is to identify which factor, once ‘discovered’ and fixed at
its true value, would reduce V�Y � the most.

One way to answer this question would be to determine or discover the
value of the factors, for example, through more measurements. Yet if we
were to do this we would have gone beyond uncertainty and sensitivity
analyses. The challenge, therefore, is to identify the appropriate factors
before any of them are measured or discovered, i.e. when the value to
which each factor should be fixed is unknown. This suggests that a good
contender for the title of ‘most influential factor’ would be that factor which,
on average, once fixed, would cause the greatest reduction in variance.
‘On average’, in this case, means that we must average the fixing of the
factor over the distribution of the factor itself. It is straightforward to
see that in this setting EXi

(
VX∼i

�Y � Xi�
)

is the measure to use. The lower
EXi

(
VX∼i

�Y � Xi�
)
, and hence the higher VXi

(
EX∼i

�Y � Xi�
)
, the more probable

it is that factor Xi is the factor that one should measure first in order to
reduce the variance most. We have thus linked the FP setting to a measure,
the first-order sensitivity index Si. This is a gamble, as we do not know

17 In most circumstances one will have factors susceptible of determination, for which
a true unknown value can be hypothesized (e.g. the failure rate of a component type,
the value of an activation energy for a chemical reaction), as well as factors intrinsically
uncertain (the time of failure of a specific component, the wind direction at a given time
and location). These are termed epistemic and stochastic uncertainties respectively. For
the purpose of illustrating the setting it is convenient to imagine all factors epistemically
uncertain.
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the position of the true value of a factor over its distribution. Someone
actually measuring a given factor could still beat our sensitivity analysis-
based guess and reduce the variance by more than we have guessed, or
reduce the variance using a factor other than the one we identified via
sensitivity analysis.

1.2.10 Nonadditive Models

In order to gain confidence with nonadditivity in models, we return to the
input for our elementary model (1.3), Y = ∑r

i=1 �iZi, and complicate it by
allowing both the Z’s and the �’s to become factors – the �’s are no longer
constants. We do this to generate a nonadditive model, as we shall see
presently. The additivity of a model depends upon the characteristics of its
input factors, so that it is sufficient to change a constant of the model into a
factor in order to change the model from additive to nonadditive, although
the model is left unchanged in the form (1.3). Our input description becomes

Zi ∼ N�z̄i��Zi
� z̄i = 0

�i ∼ N��̄i���i
� �̄i = ic

i = 1�2� 	 	 	 � r
 (1.27)

The distribution of the Z’s remains unchanged, while the �’s, so far
constant, become input factors with normal distribution. Their mean is not
zero as it is for the Z’s, but rather some number other than zero – we shall
explain why in the Exercises at the end of this chapter. For the sake of
the example we have made the means of the �’s nonequivalent and equal
in value to the product of the integer i (used as counter) and a positive
constant c. This is simply a way to make the means of the �’s increase, so
that Equation (1.7) is no longer true. Instead

�̄1 < �̄2 < 	 	 	 �̄r 
 (1.28)

The input factors for the analysis are

X = �Z1�Z2� 	 	 	 �Zr��1��2� 	 	 	 ��r� (1.29)

and the total number of factors is k = 2r. We now perform another Monte
Carlo experiment, sampling both the Z’s and the �’s from their respective
distributions in Equation (1.27). Remember that we assume all factors inde-
pendent, so each factor is sampled from its marginal distribution with no
consideration of where the other factors are sampled. How the Monte Carlo
sample is used to produce estimates Ŝi of the first-order sensitivity measures
Si is explained later in this book (see Chapter 4). We anticipate the results
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Table 1.3 First-order indices Si (analytic) and squared
standardized regression coefficient �2

i for model (1.3, 1.27),
where r = 4, c = 0�5, � = �1�2�3�4� for both �i and Zi, and
N = 40�000 for the regression analysis. Such a large sample
was used to show the convergence between Si and �2

i

Si �2
i

Z1 0
0006 0
Z2 0
009 0.01
Z3 0
046 0.05
Z4 0
145 0.14
�1 0 0
�2 0 0
�3 0 0
�4 0 0

in Table 1.3, where the squared standardized regression estimates �̂2 are
also reported for comparison.

It is evident from Table 1.3 that while ŜZi
are still greater than zero, the

Ŝ�i
are practically zero. Furthermore

k∑
i=1

ŜXi
=

r∑
i=1

ŜZi
+

r∑
i=1

Ŝ�i
< 1
 (1.30)

We had already anticipated that for a nonadditive model the sum of the
first-order indices would be less than one.

However, it might seem puzzling that the � input factors seem to have
no influence. In fact, it is not difficult to understand why S�i

must be zero
(Figure 1.9).

Let us go back to our definition of Si, Equation (1.25):

Si = VXi

(
EX∼i

�Y � Xi�
)

V�Y �
� (1.31)

and let us compute it for �i,

S�i
=

V�i

(
EX∼�i

�Y � �i�
)

V�Y �

 (1.32)

We focus on the inner expectation EX∼�i
�Y ��i� which we now have to write

explicitly as EX∼�i
�Y � �i = �∗

i � in order to remind ourselves that we have
fixed �i.
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Zi

Y

ωi
∗

Figure 1.9 Y versus Zi for fixed values of X∼Zi

Note that EX∼�i
now means that the mean is taken over all Zj ’s, including

Zi, and over all �j ’s but �i.
Figure 1.9 shows the plot of Y versus Zi for a fixed nonzero value of �∗

i

of input factor �i in the case that all the remaining �j ’s, with j �= i, are
fixed to zero. This straight line will be shifted up or down vertically when
the �j ’s, with j �= i, are fixed to values other than zero.

Positive and negative values of Y will hence be equally probable and
equally distributed, so that EX∼�i

�Y � �i = �∗
i � will be zero. Figure 1.10

shows how this emerges from Monte Carlo generated scatterplots of Y
versus Zi and Y versus �i. It is clear that if EX∼�i

�Y � �i = �∗
i � is zero for

any value �∗
i , its variance over all possible values of �∗

i will also be zero,
so that both V�i

�EX∼�i
�Y � �i�� and S�i

will be zero for all factors �i.
We now understand that the measure S�i

is zero, but we retain the belief
that factors �i should have some influence, especially since this is suggested
by the conical pattern evident in Figure 1.10. It seems therefore that there
may be a problem with our sensitivity measure. A regression coefficient
�̂�i

would produce a straight horizontal line through the horizontal conical
plot of Y versus �i in Figure 1.10. However, it is clear from the shape of
this plot that variable �j is influential. A possible interpretation is that �̂�i

fails as a sensitivity measure in this case. Does the fact that S�i
is zero imply

that also S�i
fails?

Indeed it is unfair to say that ��i
fails in Figure 1.10. ��i

is a linear
measure, so clearly it should not be used on a nonlinear model. S�i

, however,
is a model-free measure, and must be applicable to nonlinear models. Indeed
this is the case, and we can say that if S�i

is zero, this means that �i has
no effect on Y ‘at the first order’ (recall that we have thus far discussed
first-order sensitivity indices). The reader familiar with experimental design
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Figure 1.10 Scatterplots of Y versus Z4 and versus �4 for model (1.3, 1.27), at
sample size N = 1000. The first-order sensitivity index for Z4 is greater than zero
while that for �4 is zero
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will already have guessed that the effect of �i must be captured by some
higher-order effect, as we now proceed to discuss.

1.2.11 Higher-order Sensitivity Indices

We continue our game with conditioned variances by playing with two
factors instead of one. Take for instance

V�E�Y � Zi�Zj��

V�Y �
� (1.33)

with i �= j. We have dropped the indices of both the E and V operators.
Indeed we do not need them if we accept the convention that the argument
conditioning the inner operator, Zi�Zj in this case, is also the set over which
we apply the outer operator, i.e. the variance is taken over Zi�Zj (we should
have written VZi�Zj

). By default, the inner operator, the average E, must
be taken over all-but-�Zi�Zj�. What would happen if we could compute
(1.33), with i �= j, and compare it with the corresponding measure for the
individual factors Zi�Zj? We would observe that

V�E�Y � Zi�Zj��

V�Y �
= SZi

+SZj
for i �= j� (1.34)

while

V�E�Y � �i��j��

V�Y �
= 0� (1.35)

and

V�E�Y � Zi��i��

V�Y �
> SZi

+S�i

 (1.36)

We anticipate from Chapter 4 that, given two generic factors Xi�Xj , the
following result holds:

V�E�Y � Xi�Xj�� = Vi +Vj +Vij� (1.37)

where

Vi = V�E�Y � Xi��

Vj = V�E�Y � Xj�� (1.38)

Vij = V�E�Y � Xi�Xj��−Vi −Vj
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The term Vij is the interaction term between factors Xi�Xj . It captures that
part of the response of Y to Xi�Xj that cannot be written as a superposition
of effects separately due to Xi, and Xj . Recalling our previous examples of
Y = ∑

i Z
2
i (a nonlinear, additive model) and Y = ∏

i Zi (nonlinear, nonad-
ditive), the latter model will have nonzero second-order terms such as Vij ,
while the former model will not.

Looking at Equations (1.37, 1.39) and remembering that for our model all
S�i

are zero, we are now ready to grasp the results of Equations (1.34–1.36)
(see also Table 1.4).

• Equation (1.34) holds because the interaction term between Zi and Zj is
zero, which is evident from the form of Equation (1.3).

• Equation (1.35) holds because the S�i
and S�j

as well as their interaction
term are zero.

• Equation (1.36) can be rewritten as

V�E�Y � Zi��j��

V�Y �
= SZi

+S�i
+SZi��i

�

where S�i
= 0, SZi��i

= VZi��i
/V�Y � and the term VZi��i

is the only type of
nonzero second-order term in model (1.3).

If we now sum all the nonzero first-order and and second-order terms we
get

Table 1.4 First- and second-order indices for model (1.3,
1.27, analytic), where r = 4, c = 0�5, � = �1�2�3�4� for both
�i and Zi

Factor Si�Sij Factor Sij Factor Sij

Z1 0
0006 Z1��2 0 Z3��3 0
183
Z2 0
009 Z1��3 0 Z3��4 0
Z3 0
046 Z1��4 0 Z4��1 0
Z4 0
145 Z2�Z3 0 Z4��2 0
�1 0 Z2�Z4 0 Z4��3 0
�2 0 Z2��1 0 Z4��4 0
578
�3 0 Z2��2 0
036 �1��2 0
�4 0 Z2��3 0 �1��3 0

Z1�Z2 0 Z2��4 0 �1��4 0
Z1�Z3 0 Z3�Z4 0 �2��3 0
Z1�Z4 0 Z3��1 0 �2��4 0
Z1��1 0
002 Z3��2 0 �3��4 0
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r∑
i=1

(
SZi

+SZi�i

) = 1
 (1.39)

This means that even for a nonadditive model we have found a
way to recover (that is, to understand) 100% of the variance of Y .
Thus variance-based sensitivity measures provide a theoretical framework
whereby – provided one has the patience to compute all interaction terms –
one can achieve a full understanding of the model’s sensitivity pattern.
Patience is indeed required, as in principle a model can have interactions
of even higher order. Again anticipating one result from Chapter 4, a full
analysis of a model with k factors is composed of

∑
i

Si +
∑

i

∑
j>i

Sij +
∑

i

∑
j>i

∑
l>j

Sijl + 	 	 	 +S123 	 	 	 k = 1
 (1.40)

Model (1.3) can only have nonzero terms up to the second order, and this
can be seen ‘by inspection’, as the structure of the model is very simple. In
practical applications the subject model of our analysis will be a computer
program, and the only way to ascertain whether an interaction exists or not
will be to estimate it numerically. The problem is that the series development
of Equation (1.40) has as many as 2k −1 terms. For k = 3 this gives just 7
terms, i.e. S1� S2� S3
S12� S23� S13� S123; for k = 10 it gives 1023, too many to
look at in practice.

In fact, the variance-based analysis can help us in these circumstances, by
computing for each factor a ‘total effect’ term, which we describe next.

1.2.12 Total Effects

What is a total effect term? Let us again use our extended model
(1.3, 1.27), and ask what we would obtain if we were to compute
V
(
E
(
Y � X∼�i

))
/V�Y �. We are conditioning now on all factors but �i. In

other words

V�E�Y �X∼�i
��

V�Y �
= V �E �Y � �1��2� 	 	 	 ��i−1��i+1� 	 	 	 �r�Z1�Z2� 	 	 	 �Zr��

V�Y �



(1.41)

By analogy with our discussion of second-order terms, Equation (1.41)
should include all terms of any order that do not include factor �i. As the
sum of all possible sensitivity terms must be 1, the difference
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(
1− V�E�Y �X∼�i

��

V�Y �

)

must be made up of all terms of any order that include �i. For our model,
which has only first- and second-order terms, this gives

(
1− V�E�Y �X∼�i

��

V�Y �

)
= S�i

+SZi�i
(See Table 1.5) (1.42)

To consider a different example, for a generic three-factor model, one
would have

ST 1 =
(

1− V �E �Y � X−1��

V�Y �

)
= S1 +S12 +S13 +S123 (1.43)

and

ST 2 = S2 +S12 +S23 +S123

ST 3 = S3 +S13 +S23 +S123�

where STi denotes the total effect of factor Xi. We recall that we tend to
use the synthetic notation (Si� STi�Vi� Sij) when the factors considered are
labelled X, while we use the lengthier notation (SZi

� STZi
�V�i

� SZi�i
) when

the factor has a symbol other than X.

Table 1.5 First-order and total effects
for model (1.3, 1.27, analytic), where
r = 4, c = 0�5, � = �1�2�3�4� for both
�i and Zi

Si STi

Z1 0
0006 Z1 0.003
Z2 0
009 Z2 0.045
Z3 0
046 Z3 0.229
Z4 0
145 Z4 0.723
�1 0 �1 0.002
�2 0 �2 0.036
�3 0 �3 0.183
�4 0 �4 0.578
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We have argued in a series of works (Saltelli et al., 2004, and references
therein) that a good, synthetic, though nonexhaustive characterization of
the sensitivity pattern for a model with k factors is given by the total set
of first-order terms plus the total effects. For a system with 10 factors this
makes 20 terms rather than 1023.

One last observation about the total effect terms is the following. For the
algebraic rule already mentioned in Equation (1.24) we have

EXi

(
VX∼i

�Y � Xi�
)+VXi

(
EX∼i

�Y � Xi�
) = V�Y ��

and hence

STi = 1− V �E �Y � X∼i��

V�Y �
= E �V �Y � X∼i��

V�Y �

 (1.44)

Equipped with this new sensitivity measure, the total effect, we are now
ready to introduce another useful ‘setting’ for sensitivity analysis.

1.2.13 A Second Setting: ‘Factor Fixing’

One use of sensitivity analysis is to simplify models. If a model is used
systematically in a Monte Carlo framework, so that input uncertainties
are always propagated through the output, it might be useful to ascertain
which of the input factors can be fixed anywhere in their range of variation
without appreciably affecting a specific output of interest Y . This could
help to simplify a model in a greater sense, since we might be able to
condense (lump) an entire section of our model if all factors entering that
section are noninfluential. From the preceding discussion it will be clear
that Si = 0 is a necessary but insufficient condition for fixing factor Xi.
This factor might be involved in interactions with other factors such that,
although its first-order term is zero, there might be nonzero higher-order
terms. This is exactly what happened with our factors �i in the model (1.3,
1.27).

Imagine now that a factor Xi is truly noninfluential. Let us compute
VXi

�Y � X∼i = x∗
∼i�, where we have fixed a point x∗

∼i in the multidimensional
space X∼i. If factor Xi is noninfluential, then VXi

�Y � X∼i = x∗
∼i� must be

zero, as the value of Y is totally determined by X∼i and there will be
no variance over Xi. Averaging over non-Xi will not change the result,
so that EX∼i

(
VXi

�Y � X∼i�
)

must be zero as well. Based on our convention
of not indicating the conditioning argument, we can also write this as
E �V �Y � X∼i�� = 0. These considerations prove that if Xi is noninfluential,
then STi = 0 by Equation (1.44) above.
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Conversely, if STi = 0 for factor Xi, then E �V �Y � X∼i�� = 0. As the vari-
ance can only be a positive number, the fact that the mean E �V �Y � X∼i��
is zero implies that V �Y � X∼i = x∗

∼i� is identically zero for any value of x∗
∼i,

which proves that Xi is noninfluential – there is no point in the hyperspace
of X where Xi has an effect. This demonstrates that STi = 0 is a necessary
and sufficient condition for Xi being noninfluential.

Note that the model simplification underpinned by the ‘factor fixing’
setting can become very important when models need to be audited, for
example in the face of a scientific controversy or for use in policy assessment.
In these situations one might wish to optimize the ‘relevance’ R of a model,
defined as the ratio (Beck et al., 1997):

R = number of factors that truly induce variations in the output of interest

total number of factors in the model



This approach would guard against the criticism that an overly complex
model was being used by one party to obfuscate or discourage investigation.

The concepts of parsimony or simplicity in the context of modelling
are illustrated by the works of Peter C. Young (Young et al., 1996;
Young, 1999a), who recommends the use of data-driven models, in which a
minimum of parameters are inferred directly from the data, as an alternative
to law-driven, usually overparametrized models. To give an example, the
hydrogeology of a catchment area can be modelled with a complex model
based on Darcy’s laws or with a low-order model based on direct interpreta-
tion of precipitation and runoff time series. Such a parsimonious description
of the system can also be thought of as a complement to a law-driven
model. More generally, for models to be used in impact assessment or other
regulatory settings, it might be advisable to have a back-of-the-envelope
version of the general model for the purpose of negotiating assumptions
and inferences with stakeholders. Sensitivity analysis may be instrumental
in deriving such a simplified model.

The foregoing discussion of possible settings for sensitivity analysis allows
us to make a few more observations on the rationale for sensitivity analysis.

1.2.14 Rationale for Sensitivity Analysis

Possible motivations for sensitivity analysis are:

• Model corroboration. Is the inference robust? Is the model overly depen-
dent on fragile assumptions?
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• Research prioritization. Which factor is most deserving of further anal-
ysis or measurement? ⇒ factor prioritization setting.

• Model simplification. Can some factors or compartments of the model
be fixed or simplified? ⇒ factor fixing setting.

• Identifying critical or otherwise interesting regions in the space of the
input factors. Identifying factors which interact and which may thus
generate extreme values. This is important, for example in system
reliability.

• Prior to parameter estimation, to help set up the (actual or numerical)
experiment in those conditions in which the sensitivity of the output to
the factor to be estimated is the greatest.

To illustrate the last point, imagine that one has actual measurements
against which to compare model predictions. Ideally, predictions and
measurements can feed into an estimation step. Yet before this is done, it is
worth investigating what drives, for instance, the sum of the squared differ-
ences between model prediction and actual measurements. Only factors
with this type of influence are good candidates for the estimation step. In
this way the analyst can decide which experimental conditions are more
interesting for the subsequent estimation (Saltelli et al., 2004, pp.151–191).

We have already mentioned that uncertainty and sensitivity analyses can
be run in tandem to ascertain whether different policies (e.g. strategies to
alleviate an environmental problem) are indeed different from one another
when compared in the overall space of the uncertainties. An example of
such an analysis is found in Saltelli et al. (2000 pp. 385–397).

It is worth noting in this case that high uncertainty in the inference is not
synonymous with low quality in the resulting assessment. Though uncertain,
the assessment might still allow policy A to be distinguished from policy B
(implying high quality) while the opposite is also possible, i.e. that the model
might not allow these options to be distinguished even with only moderate
uncertainties in the inference (implying a low-quality assessment). On a
similar ground, when confronted with a plurality of stakeholders’ views
and beliefs as to how an issue should be tackled or framed, we may use
sensitivity analysis to ascertain whether – within the latitude of the different
framings and assumptions – we still can reach some robust inference, i.e. a
high-quality assessment. We would call such an inference – or the resulting
preferred policy – ‘socially’ robust, as it is compatible with such a plurality
of viewpoints. On the contrary, we might find that the different framings
give rise to such great latitude in the resulting inference that no robust
policy can be identified.

Another general consideration with respect to the global, explorative
nonparametric methods for the sensitivity analysis just described is that
these have a better chance of being resilient towards type II errors than
local (derivative-based) methods. The possibility of important factors
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being overlooked or dangerous or critical combinations of input factors
neglected decreases with the level of exploration of the space of the
input factors (Farrell, 2007). The attention paid in global methods to
interaction effects is also a protection against type II errors. In Saltelli
et al. (2005) we show that, for even a relatively simple and well-
studied chemical reactor system, global sensitivity analysis and attention
to the interactions can lead to the identification of a larger ‘runaway’
portion in the space of the input factors than could previously be
identified.

Some of the motivations just described would demand being able to
apportion uncertainty not only among factors, but also among sets of
factors, for example to distinguish data uncertainty from experts’ uncer-
tainty, system uncertainty from policy option uncertainty and so on. We
offer a few tools for this in the following.

1.2.15 Treating Sets

An additional interesting feature of variance-based methods is that they
allow for a concise treatment of the sensitivity of sets of factors. Referring
again to model (1.3, 1.27), we can imagine computing a variance
measure conditioned on a subset of the input factors, e.g. on the set �,
S� = V �E �Y � ��� /V �Y �. From the description in the previous sections it
is easy to understand that S� will include all first-order terms related to
� plus second- and higher-order product terms including only members
of �. We already know that these are all zero. We can likewise compute
SZ = V �E �Y � Z�� /V �Y � for the set Z. This similarly contains all nonzero
first-order terms plus the null second- and higher-order terms internal to Z.
Finally we can compute

S��Z = V�Y �−S� −SZ� (1.45)

which will contain all cross-product terms not involved in S�� SZ. Going
back to our example of Equation (1.3) as a composite indicator with weights
� given by experts and variables Z coming from statistical offices, with
Equation (1.45) we have apportioned variance between data and experts
and an interaction between the two.

Similarly, we could share the uncertainty in Y among the couples Ai =
��i�Zi� and apply

∑
i

SAi
+∑

i

∑
j>i

SAiAj
+∑

i

∑
j>i

∑
l>j

SAiAjAl
+ 	 	 	 = 1
 (1.46)
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As we already know that for our model all cross-product terms with i �= j
are zero, this can be reduced to the convenient

r∑
i

SAi
= 1� (1.47)

in which uncertainty is divided among ‘themes’, each theme comprising
an indicator and its weight. It is easy to imagine similar applications. For
example, one could divide uncertainty among observational data, estima-
tion, model assumptions, model resolution and so on.

1.2.16 Further Methods

So far we have discussed the following tools for sensitivity analysis:

• derivatives and sigma-normalized derivatives;
• regression coefficients (standardized);
• variance-based measures;
• scatterplots.

We have shown the equivalence of sigma-normalized coefficients
S�

i = �Zi

Y/�Y 
Xi, regression coefficients �i and variance-based first-order

sensitivity indices Si for linear models, as well as how Si is a model-free
extension of the variance decomposition scheme to models of unknown
linearity. We have discussed how nonadditive models can be treated in the
variance-based sensitivity framework. We have also indicated that scatter-
plots are a powerful tool for sensitivity analysis and shown how Si can
be interpreted in relation to the existence of ‘shape’ in an Xi versus Y
scatterplot.

At a greater level of detail (Ratto et al., 2007) one can use modern regres-
sion tools (such as state-space filtering methods) to interpolate points in the
scatterplots, producing very reliable E �Y � Xi = x∗

i � curves. The curves can
then be used for sensitivity analysis. Their shape is more evident than that
of dense scatterplots (compare Figure 1.7 with Figure 1.8). Furthermore,
one can derive the first-order sensitivity indices directly from those curves,
so that an efficient way to estimate Si is to use state-space regression on the
scatterplots and then take the variances of these.

In general, for a model of unknown linearity, monotonicity and additivity,
variance-based measures constitute a good means of tackling settings such
as factor fixing and factor prioritization. We shall discuss one further setting
before the end of this chapter, but let us first consider whether there are
alternatives to the use of variance-based methods for the settings so far
described.
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Why might we need an alternative? The main problem with variance-
based measures is computational cost. Estimating the sensitivity coefficients
takes many model runs (see Chapter 4). Accelerating the computation of
sensitivity indices of all orders – or even simply of the Si� STi couple – is
the most intensely researched topic in sensitivity analysis (see the filtering
approach just mentioned). It can reasonably be expected that the estimation
of these measures will become more efficient over time.

At the same time, and if only for screening purposes, it would be useful to
have methods to find approximate sensitivity information at lower sample
sizes. One such method is the Elementary Effect Test.

1.2.17 Elementary Effect Test

The Elementary Effect Test is simply an average of derivatives over the space
of factors. The method is very simple. Consider a model with k independent
input factors Xi� i = 1�2� 	 	 	 � k, which varies across p levels. The input
space is the discretized p-level grid �. For a given value of X, the elementary
effect of the ith input factor is defined as

EEi = �Y �X1�X2� 	 	 	 �Xi−1�Xi +�� 	 	 	 Xk�−Y �X1�X2� 	 	 	 �Xk��

�
� (1.48)

where p is the number of levels, � is a value in �1/�p−1�� 	 	 	 �1−1/�p−1��,
X = �X1�X2� 	 	 	 Xk� is any selected value in � such that the transformed
point �X+ ei�� is still in � for each index i = 1� 	 	 	 � k, and ei is a vector of
zeros but with a unit as its ith component. Then the absolute values of the
EEi, computed at r different grid points for each factor, are averaged

�∗
i = 1

r

r∑
j=1

�EE
j
i � (1.49)

and the factors ranked according to the obtained mean �∗
i .

In order to compute efficiently, a well-chosen strategy is needed for
moving from one effect to the next, so that the input space is explored with
a minimum of points (see Chapter 3).

Leaving aside computational issues for the moment, �∗ is a useful measure
for the following reasons:

1. It is semi-quantitative – the factors are ranked on an interval scale;
2. It is numerically efficient;
3. It is very good for factor fixing – it is indeed a good proxy for STi;
4. It can be applied to sets of factors.
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Due to its semi-quantitative nature the �∗ can be considered a screening
method, especially useful for investigating models with many (from a few
dozen to 100) uncertain factors. It can also be used before applying a
variance-based measure to prune the number of factors to be considered.
As far as point (3) above is concerned, �∗ is rather resilient against type
II errors, i.e. if a factor is deemed noninfluential by �∗ it is unlikely to be
identified as influential by another measure.

1.2.18 Monte Carlo Filtering

While �∗ is a method of tackling factor fixing at lower sample size, the next
method we present is linked to an altogether different setting for sensitivity
analysis. We call this ‘factor mapping’ and it relates to situations in which
we are especially concerned with a particular portion of the distribution of
output Y . For example, we are often interested in Y being above or below
a given threshold. If Y were a dose of contaminant, we might be interested
in how much (how often) a threshold level for this contaminant is being
exceeded. Or Y could be a loss (e.g. financial) and we might be interested in
how often a maximum admissible loss is being exceeded. In these settings
we tend to divide the realization of Y into ‘good’ and ‘bad’. This leads to
Monte Carlo filtering (MCF, see Saltelli et al., 2004, pp. 151–191 for a
review). In MCF one runs a Monte Carlo experiment producing realizations
of the output of interest corresponding to different sampled points in the
input factor space, as for variance-based or regression analysis. Having
done this, one ‘filters’ the realizations, e.g. elements of the Y -vector. This
may entail comparing them with some sort of evidence or for plausibility
(e.g. one may have good reason to reject all negative values of Y ). Or one
might simply compare Y against thresholds, as just mentioned. This will
divide the vector Y into two subsets: that of the well-behaved realizations
and that of the ‘misbehaving’ ones. The same will apply to the (marginal)
distributions of each of the input factors. Note that in this context one is
not interested in the variance of Y as much as in that part of the distribution
of Y that matters – for example, the lower-end tail of the distribution may
be irrelevant compared to the upper-end tail or vice versa, depending on
the problem. Thus the analysis is not concerned with which factor drives
the variance of Y as much as with which factor produces realizations of Y
in the forbidden zone. Clearly, if a factor has been judged noninfluential by
either �∗ or STi, it will be unlikely to show up in an MCF. Steps for MCF
are as follows:

• A simulation is classified as either B, for behavioural, or B, for nonbe-
havioural (Figure 1.11).

• Thus a set of binary elements is defined, allowing for the identification of
two subsets for each Xi: one containing a number n of elements denoted
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X Y

(X |B )

(X |B )
B

B

Figure 1.11 Mapping behavioural and nonbehavioural realizations with Monte
Carlo filtering

�X � B� and a complementary set
(
X � B

)
containing the remaining n =

N −n simulations (Figure 1.11).
• A statistical test can be performed for each factor independently,

analysing the maximum distance between the cumulative distributions
of the �X � B� and

(
X � B

)
sets (Figure 1.12).

If the two sets are visually and statistically18 different, then Xi is an
influential factor in the factor mapping setting.

X
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Figure 1.12 Distinguishing between the two sets using a test statistic

18 Smirnov two-sample test (two-sided version) is used in Figure 1.12 (see Saltelli et al., 2004,
pp. 38–39).
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1.3 NONINDEPENDENT INPUT FACTORS

Throughout this introductory chapter we have systematically assumed that
input factors are independent of one another. The main reason for this
assumption is of a very practical nature: dependent input samples are more
laborious to generate (although methods are available for this; see Saltelli
et al., 2000) and, even worse, the sample size needed to compute sensi-
tivity measures for nonindependent samples is much higher than in the case
of uncorrelated samples.19 For this reason we advise the analyst to work
on uncorrelated samples as much as possible, e.g. by treating dependen-
cies as explicit relationships with a noise term.20 Note that when working
with the MCF just described a dependency structure is generated by the
filtering itself. The filtered factors will probably correlate with one another
even if they were independent in the original unfiltered sample. This could
be a useful strategy to circumvent the use of correlated samples in sensi-
tivity analysis. Still there might be very particular instances where the use
of correlated factors is unavoidable. A case could occur with the para-
metric bootstrap approach described in Figure 1.3. After the estimation
step the factors will in general be correlated with one another, and if a
sample is to be drawn from these, it will have to respect the correlation
structure.

Another special instance when one has to take factors’ dependence into
consideration is when analyst A tries to demonstrate the falsity of an uncer-
tainty analysis produced by analyst B. In such an adversarial context, A
needs to show that B’s analysis is wrong (e.g. nonconservative) even when
taking due consideration of the covariance of the input factors as explicitly
or implicitly framed by B.

1.4 POSSIBLE PITFALLS FOR A SENSITIVITY
ANALYSIS

As mentioned when discussing the need for settings, a sensitivity analysis
can fail if its underlying purpose is left undefined; diverse statistical tests
and measures may be thrown at a problem, producing a range of different
factor rankings but leaving the researcher none the wiser as to which

19 Dependence and correlation are not synonymous. Correlation implies dependence, while
the opposite is not true. Dependencies are nevertheless described via correlations for practical
numerical computations.
20 Instead of entering X1 and X2 as correlated factors one can enter X1 and X3, with X3 being
a factor describing noise, and model X2 as a function of X1 and X3.
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ranking to believe or privilege. Another potential danger is to present sensi-
tivity measures for too many output variables Y . Although exploring the
sensitivity of several model outputs is sound practice for testing the quality
of the model, it is better, when presenting the results of the sensitivity anal-
ysis, to focus on the key inference suggested by the model, rather than to
confuse the reader with arrays of sensitivity indices relating to intermediate
output variables. Piecewise sensitivity analysis, such as when investigating
one model compartment at a time, can lead to type II errors if interactions
among factors of different compartments are neglected. It is also worth
noting that, once a model-based analysis has been produced, most modellers
will not willingly submit it to a revision via sensitivity analysis by a third
party.

This anticipation of criticism by sensitivity analysis is also one of the 10
commandments of applied econometrics according to Peter Kennedy:

Thou shall confess in the presence of sensitivity. Corollary: Thou shall anticipate
criticism [· · · ] When reporting a sensitivity analysis, researchers should explain
fully their specification search so that the readers can judge for themselves how
the results may have been affected. This is basically an ‘honesty is the best policy’
approach, advocated by Leamer, (1978, p. vi) (Kennedy, 2007).

To avoid this pitfall, an analyst should implement uncertainty and sensi-
tivity analyses routinely, both in the process of modelling and in the oper-
ational use of the model to produce useful inferences.

Finally the danger of type III error should be kept in mind. Framing
error can occur commonly. If a sensitivity analysis is jointly implemented
by the owner of the problem (which may coincide with the modeller) and a
practitioner (who could again be a modeller or a statistician or a practitioner
of sensitivity analysis), it is important to avoid the former asking for just
some ‘technical help’ from the latter upon a predefined framing of the
problem. Most often than not the practitioner will challenge the framing
before anything else.

1.5 CONCLUDING REMARKS

1. We have just shown different settings for sensitivity analysis, such as:

• factor prioritization, linked to Si;• factor fixing, linked to STi or �∗;
• factor mapping, linked to MCF;
• metamodelling (hints).
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The authors have found these settings useful in a number of applications.
This does not mean that other settings cannot be defined and usefully
applied.

2. We have discussed fitness for purpose as a key element of model quality.
If the purpose is well defined, the output of interest will also be well
identified. In the context of a controversy, this is where attention will be
focused and where sensitivity analysis should be concentrated.

3. As discussed, a few factors often account for most of the variation.
Advantage should be taken of this feature to simplify the results of
a sensitivity analysis. Group sensitivities are also useful for presenting
results in a concise fashion.

4. Assuming models to be true is always dangerous. An uncer-
tainty/sensitivity analysis is always more convincing when uncertainty
has been propagated through more than just one model. Using a parsi-
monious data-driven and a less parsimonious law-driven model for the
same application can be especially effective and compelling.

5. When communicating scientific results transparency is an asset. As the
assumptions of a parsimonious model are more easily assessed, sensitivity
analysis should be followed by a model simplification.

The reader will find in this and the following chapters didactic examples
for the purpose of familiarization with sensitivity measures. Most of the
exercises will be based on models whose output (and possibly the associ-
ated sensitivity measures) can be computed analytically. In most practical
instances the model under analysis or development will be a computational
one, without a closed analytic formula.

Typically, models will involve differential equations or optimization algo-
rithms involving numerical solutions. For this reason the best available prac-
tices for numerical computations will be presented in the following chapters.
For the Elementary Effects Test, we shall offer numerical procedures devel-
oped by Campolongo et al. (1999b, 2000, 2007). For the variance-based
measures we shall present the Monte Carlo based design developed by Saltelli
(2002) as well as the Random Balance Designs based on Fourier Amplitude
Sensitivity Test (FAST-RBD, Tarantola et al., 2006, see Chapter 4). All these
methods are based on true points in the space of the input factors, i.e. on actual
computations of the model at these points. An important and powerful class
of methods will be presented in Chapter 5; such techniques are based on meta-
modelling, e.g. on estimates of the model at untried points. Metamodelling
allows for a great reduction in the cost of the analysis and becomes in fact the
only option when the model is expensive to run, e.g. when a single simulation
of the model takes tens of minutes or hours or more. The drawback is that
metamodelling tools such as those developed by Ratto et al. (2007) are less
straightforward to encode than plain Monte Carlo. Where possible, pointers
will be given to available software.
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1.6 EXERCISES

1. Prove that

V�Y � = E�Y 2�−E2�Y �


2. Prove that for an additive model of two independent variables X1 and
X2, fixing one variable can only decrease the variance of the model.

3. Why in �∗ are absolute differences used rather than simple differences?
4. If the variance of Y as results from an uncertainty analysis is too large,

and the objective is to reduce it, sensitivity analysis can be used to suggest
how many and which factors should be better determined. Is this a new
setting? Would you be inclined to fix factors with a larger first-order
term or rather those with a larger total effect term?

5. Suppose X1 and X2 are uniform variates on the interval [0, 1]. What is
the mean? What is the variance? What is the mean of X1 +X2? What is
the variance of X1 +X2?

6. Compute Si analytically for model (1.3, 1.4) with the following values:
r = 2�� = �1�2� and � = �2�1�.

7. Write a model (an analytic function and the factor distribution functions)
in which fixing an uncertain factor increases the variance.

8. What would have been the result of using zero-centred distributions for
the �’s in Equation (1.27)?

1.7 ANSWERS

1. Given a function Y = f �X� where X = �X1�X2� · · ·Xk� and X ∼ p �X�
where p �X� is the joint distribution of X with

∫
p �X� dX = 1, then the

function mean can be defined as

E�Y � =
∫

f �X� p �X�dX�

and its variance as

Var�Y � =
∫

�f�X�−E�Y ��2p�X�dX

=
∫

f 2�X�p�X�dX+E2�Y �−2
∫

E�Y �f�X�p�X�dX

= E�Y 2�+E2�Y �−2E2�Y �

= E�Y 2�−E2�Y �


Using this formula it can easily be proven that Var�Y � = Var�Y + c�,
with c an arbitrary constant. This result is used in Monte Carlo-based
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variance (and conditional variance) computation by rescaling all values
of Y subtracting E�Y �. This is done because the numerical error in the
variance estimate increases with the value of Y .

2. We can write the additive model of two variables X1 and X2 as
Y = f1 �X1�+ f2 �X2�, where f1 is only a function of X1 and f2 is only a
function of X2.

Recalling that the variance of �Y � can be written as V�Y � = E
(
Y 2

)−
E2 �Y �, where E stands for the expectation value, and applying it to Y
we obtain

V�Y � = E
(
f 2
1 + f 2

2 +2f1f2

)−E2 �f1 + f2�


Given that E �f1f2� = E �f1� E �f2� for independent variables, then the above
can be reduced to

V�Y � = E
(
f 2
1

)+E
(
f 2
2

)−E2 �f1�−E2 �f2��

which can be rewritten as

V�Y � = V �f1�+V �f2� �

which proves that fixing either X1 or X2 can only reduce the variance of Y .
3. Modulus incremental ratios are used in order to avoid positive and

negative values cancelling each other out when calculating the average.
4. It is a new setting. In Saltelli et al. (2004) we called it the variance

cutting setting, when the objective of sensitivity analysis is the reduction
of the output variance to a lower level by fixing the smallest number of
input factors. This setting can be considered as relevant in, for example,
risk assessment studies. Fixing the factors with the highest total effect
term increases our chances of fixing, besides the first-order terms, some
interaction terms possibly enclosed in the totals, thus maximizing our
chances of reducing the variance (see Saltelli et al., 2004).

5. Both X1 and X2 are uniformly distributed in �0�1�, i.e.

p�X1� = p�X2� = U�0�1�


This means that p�Xi� is 1 for Xi ∈ �0�1� and zero otherwise. Thus

E�X1� = E�X2� =
∫ 1

x=0
p�x�xdx =

[
x2

2

]1

0

= 1
2




Further:

Var�X1� = Var�X2� =
∫ 1

x=0
p�x�

(
x− 1

2

)2

dx =
∫ 1

x=0

(
x2 −x+ 1

4

)
dx
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= �
x3

3
− x2

2
+ 1

4
x�1

0 = 1
3

− 1
2

+ 1
4

= 1
12

E�X1 +X2� = E�X1�+E�X2� = 1�

as the variables are separable in the integral.
Given that X1 +X2 is an additive model (see Exercise 1) it is also true

that

Var�X1 +X2� = Var�X1�+Var�X2� = 1
6




The same result is obtained integrating explicitly

Var�X1 +X2� =
∫ 1

x1=0

∫ 1

x2=0
p�x� �x1 +x2 −1�2 dx1dx2


6. Note that the model (1.3, 1.4) is linear and additive. Further, its prob-
ability density function can be written as the product of the factors’
marginal distributions (independent factors). Writing the model for r = 2
we have

Y�Z1�Z2� = �1Z1 +�2Z2

with

Z1 ∼ N �0�1� or equivalently p�Z1� = 1

�Z1

√
2�

e− �Z1�
2

2�2
Z1

and a similar equation for p�Z2�. Note that by definition the distributions
are normalized, i.e. the integral of each p�Zi� over its own variable Z1 is
1, so that the mean of Y can be reduced to

E�Y � = �1

∫ +�

−�
Z1p�Z1�dZ1

+�2

∫ +�

−�
Z2p�Z2�dZ2




These integrals are of the type
∫

xe−x2
dx, whose primitive −e−x2

/2
vanishes at the extremes of integration, so that E�Y � = 0. Given that the
model is additive, the variance will be

V�Y � = VZ1
+VZ2

= V ��1Z1�+V ��2Z2� 


For either Z1 or Z2 it will be

VZi
= V ��iZi� = �2

i V �Zi�


We write

V�Zi� = E�Z2
i �−E2�Zi� = E �Z2

i �
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and

E�Z2
i � = 1√

2��Zi

∫ �

�
z2

i e−z2
i /2�2

Zi dzi


The tabled form is ∫ +�

−0
t2e−at2

dt =
√

�

4
�

which gives with an easy transformation

E�Z2
i � = �2

Zi

so that

VZi
= �2

i �
2
Zi

and

V�Y � = �2
1�

2
Z1

+�2
2�

2
Z2

and

SZi
= �2

i �
2
Zi

V�Y �



Inserting the values � = �1�2� and � = �2�1� we obtain V�Y � = 8 and
SZ1

= SZ2
= 1

2 .
The result above can be obtained by explicitly applying the formula

for Si to our model:

SZi
= V�E�Y � Zi��

V�Y �
�

which entails computing first E�Y � Zi = z∗
i �. Applying this to our model

Y = �1Z1 +�2Z2 we obtain, for example, for factor Z1:

E�Y � Z1 = z∗
1� =

∫ +�

−�
p�z1�p�z2� ��1z

∗
1 +�2z2�dz1dz2 = �1z

∗
1


Hence VZ1
– the variance over z∗

1 of �1z
∗
1 – is, as before, equal to �2

1�
2
Z1

and

SZi
= �2

i �
2
Zi

�2
1�

2
Z1

+�2
2�

2
Z2
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7. We consider the model Y = X1 · X2, with the factors identically
distributed as

X1�X2 ∼ N �0���


Based on the previous exercise it is easy to see that

E�Y � = E �X1X2� = E �X1�E�X2� = 0�

so that

V�Y � = E
(
X2

1X2
2

) = E
(
X2

1

)
E
(
X2

2

) = �4


If X2 is fixed to a generic value x∗
2, then

E �X1x
∗
2� = x∗

2E �X1� = 0

as in a previous exercise, and

V�Y � X2 = x∗
2� = V �X1x

∗
2� = E

(
X2

1 �x∗
2�

2
)

= �x∗
2�

2 E
(
X2

1

) = �x∗
2�

2 �2


It is easy to see that V �X1x
∗
2� becomes bigger than V�Y � whenever the

modulus of x∗
2 is bigger than �.

Further, from the relation

V�Y � X2 = x∗
2� = �x∗

2�
2�2

one gets

E�V�Y � X2�� = �4 = V�Y �


Given that

E�V�Y � X2��+V�E�Y � X2�� = V�Y �

it must be that

V�E�Y � X2�� = 0�

i.e. the first-order sensitivity index is null for both X1 and X2. These
results are illustrated in the two figures which follow.

Figure 1.13 shows a plot of VX∼2
�Y � X2 = x∗

2�, i.e. VX1
�Y � X2 = x∗

2� at
different values of x∗

2 for � = 1. The horizontal line is the unconditional
variance of Y . The ordinate is zero for x∗

2 = 0, and becomes higher than
V�Y � for x∗

2 ∼ 1.
Figure 1.14 shows a scatterplot of Y versus x∗

1 (the same shape would
appear for x∗

2). It is clear from the plot that whatever the value of
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Figure 1.14 Scatterplot of Y versus x∗
1

the abscissa, the average of the points on the ordinate is zero, i.e.
EX∼1

�Y � X1� = EX2
�Y � X1� = 0. It is also clear from Figure 1.14 that even

VX1

(
EX2

�Y � X1�
)

will be zero, such that both S1 and S2 are zero for this
model and all variance is captured by the second-order term, i.e. S12 = 1.
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8. Referring to the previous exercise it is clear that if both Zi and
�i are centred in zero, all first-order terms will be zero and the
model will be purely interactive. In this case the only nonzero
terms are the four interactions (second order) relative to the couples
�Z1��1� � · · · �Z4��4�.

1.8 ADDITIONAL EXERCISES

1. Given the function

f�x� = sin�X1 sin�X2 sin�X3���

with X1�X2�X3 distributed normally with mean zero, can you guess
what the first-order indices will be?

2. Consider the model �1Z1 +�2Z2 with �1��2 as fixed constants and

Zi ∼ N ��Zi
��Zi

�� i = 1�2

with

�Zi
�= 0� i = 1�2

and compute the variance-based sensitivity indices S1� S2.
3. Consider the model Y = X1 · X2, where the two factors are normally

distributed as

Xi ∼ N ��i��i�� i = 1�2

with

�i �= 0� i = 1�2

and compute the variance-based sensitivity indices S1� S2, and S12.
4. Given a set of standardized variables X1�X2� 	 	 	 �Xk (all variables have

thus zero mean and unit standard deviation), and a linear polynomial
of the form f �X1�X2� 	 	 	 �Xk� = a0 +∑k

i=1 aiXi, where a0�a1� · · · �ak are
constants, write the formula for the first-order indices Si.

5. Repeat the previous exercise, for the case where both the a0�a1� · · · �ak

and the X1�X2� 	 	 	 �Xk are normally distributed:

Xi ∼ N
(
�Xi

��Xi

)
and

ai ∼ N
(
�ai

��ai

)
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1.9 SOLUTIONS TO ADDITIONAL EXERCISES

1. The first-order indices will be zero.
2. The solution is

SZi
= �2

i �
2
Zi

V�Y �

as for the case with

�Zi
= 0� i = 1�2

3. The solution is

S1 = �2
2�

2
1(

�2
1�

2
2 +�2

2�
2
1 +�2

1 �2
2

)
and analogous formula for S2, while

S12 = �2
1 �2

2(
�2

1�
2
2 +�2

2�
2
1 +�2

1 �2
2

) 


4. It is simply

Si = a2
i∑k

i=1 a2
i

�

i.e. each sensitivity index is proportional to the square of its coefficient.
5. The problem is additive in a0 and in the k sets �ai�Xi�. Using this and

the results from Exercise 3 it is easy to derive the solution.

Sai
= �2

Xi
�2

ai

V

SXi
= �2

ai
�2

Xi

V

SaiXi
= �2

ai
�2

Xi

V

V =
k∑

i=1

(
�2

ai
�2

Xi
+�2

Xi
�2

ai
+�2

ai
�2

Xi

)



By putting a0 = 0 the above solution can be used to compute the sensi-
tivity indices for model (1.3, 1.27).




