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Abstract

In recent decades, computational models have gained popularity for predictions of
biological activities and physicochemical properties. This new and rapidly developing field
of research is referred to as QSAR/QSPR (Quantitative Structure-Activity/Property
Relationship) and is especially applicable in drug design and in environmental risk
assessment (ecotoxicology), where screening of large datasets of compounds is required.

The major limiting point of computational models is questionable reliability of
predictions. Computational models are not guaranteed to give equally accurate predictions on
the whole chemical space; in other words, the computational models have limited domain of
applicability. At present, the lack of a proper definition for the applicability domain (AD) of
a model is one of the major issues restraining the practical application of computational
models. The problem of the AD assessment is addressed in this work. 

The work introduces the methodology for the AD assessment and conveys a
comprehensive benchmarking analysis of existing and new approaches. The practical AD
assessment is demonstrated in a number of studies on prediction of such properties as
mutagenicity (Ames test), toxicity (inhibition growth concentration), lipophilicity and
cytochromes inhibition. It is shown that the AD approaches allow to estimate the prediction
accuracy for every compound individually and, thereby, to discriminate highly accurate
predictions with the accuracy close to that of experimental measurements. All the introduced
AD methods are implemented as a part of a new platform for chemical modeling (OCHEM)
and are publicly available online at http://ochem.eu.
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1 Introduction

1.1 Motivation
Pharmacology has made a considerable effect on our life. Drugs contributed to

the increase of the length and the quality of life of billions people; pain relievers,
vaccines, anti-cancer medicines and antibiotics can inhibit or completely cure the
disorders that otherwise would have lead to a strong discomfort, severe health damages
or even death. 

However, modern pharmacology (and drug design in particular) faces serious
challenges: a typical drug takes 10-12 years from the beginning of research to the
availability of the drug on the market, while many drugs fail on the early development
stages. The main reason for failure of potential drugs is their toxicity and pure
pharmacokinetics, so called ADME/T (Absorption, Distribution, Metabolism, Excretion
and Toxicity) [1]. Revealing a pure ADME/T profile on an early stage of the drug
development can filter out unsuitable compounds as early as possible and, therefore,
can save significant efforts and expenses thus making the drugs available at lower costs.
An extremely cheap and fast method to screen chemical compounds for ADME/T and
other properties, a method that does not require experimental measurements or even
synthesis of a compound, is the prediction of properties of interest with computational
models.

A rapidly developing field, that deals with prediction of physicochemical and
biological properties of molecules with computational models, is referred to as QSAR
(Quantitative Structure-ActivityRelationship1). In recent decades, there was a
significant number of studies that proved the success of the QSAR approach for
prediction of various properties, such as solubility, lipophilicity, toxicity, mutagenicity
[2-5]. Nowadays, QSAR has proven to be an important tool in the workflow of the
modern drug design.

Drug design
• screening large number of compounds on

early stage of drug development
• assuring the desired properties before the

compound is synthesized

Environmental toxicity
• screening of REACH compounds
• reduction of animal testing

Activities
• protein inhibition
• protein activation

Toxicity
• mutagenicity (Ames test)
• growth inhibition
• cytochromes inhibition

Properties
• solubility, lipophilicity
• ADME properties 

Figure 1.1. An overview of QSAR: the applications and predicted properties.

1 QSAR models are sometimes distinguished for QSPR (Quantitative Structure Property Relationship)
models. The first type of models deals with prediction of biological activities, whereas the latter one
deals with prediction of physicochemical properties. In this work, we will use the QSAR term to
denote both the types of computational models.
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The QSAR applications are not limited to drug design: a new European
Community Regulation on safe use of chemicals, REACH (Registration, Evaluation,
Authorization and Restriction of Chemical substances) strongly encourages the use of
alternative methods to determine toxicity of chemical compounds, the methods that
allow to avoid animal testing or costly and time-consuming experimental measurements
[6]. In the REACH context, QSAR models could be used to estimate the environmental
hazard of chemicals. 

The major problem restraining the practical application of QSAR models is the
unassessed reliability of predictions. The computational models that have a good
prediction accuracy for the compounds that were used to create and validate the model
are not guaranteed to perform equally good on the new dissimilar compounds. There is
no universal computational model that works equally well on the whole chemical space.
However, this fact is often disregarded. The application of models for prediction of new
compounds is often based on intuition. At present, there is no strict set of rules for
determination of whether a computational model is applicable to a particular chemical
compound. The failure to specify the chemical subspace, where the model is valid and
is likely to give accurate predictions, i.e. the failure to specify the area of the model
applicability, is the limiting point for the practical application of computational models. 

The problem of uncertainty in the accuracy and the reliability of predictions is
addressed in an emerging area of research, a subdomain of QSAR called the
applicability domain (AD) research. A simple example on the following figure
illustrates the problem of AD assessment. 

Figure 1.2. An illustrative example for the applicability domain problem. In the green region, the
data are very well approximated with a linear model (red line). However, outside the green
region, the approximation is not valid. Thus, the green region ([-1, 1] interval) defines the
applicability domain of the linear model.

From the above figure, it is apparent that the data generated on the basis of sine
function in the green region is very well approximated with a simple linear dependency
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(red line). Indeed, in mathematics and physics, it is a known and widely used fact that
the approximation sin(x)~x is accurate for small x but is completely invalid if x is large.
In this example, it is of crucial importance that the application of the linear model is
limited only to small x values, e.g. to the [-1, 1] interval, which defines the model
applicability domain.

The need for the AD assessment for QSAR models was clearly stated in the
document adopted by OECD (Organization for Economic Cooperation and
Development). On 37th Joint Meeting of the Chemicals Committee and Working Party
on Chemicals, Pesticides and Biotechnology, the OECD member countries adopted the
five requirements for QSAR models used for regulatory purposes: a model should have
a defined endpoint, an unambiguous algorithm, appropriate measures of goodness-of fit,
a mechanistic interpretation and, importantly, a defined domain of applicability. Thus,
an adequate AD assessment is a strict requirement for any QSAR model intended for
regulatory purposes.

This work aims to create a rigid framework for determination of the model
applicability domain and to verify this framework in practice using real QSAR
problems. The methodology proposed in this study investigates the variability of the
prediction accuracy in the chemical space and provides a set of rules that allow to
determine whether a particular model can give a reliable prediction for a particular
chemical compound. The proposed methods for AD assessment are verified on a
number of QSAR studies for both biological and physicochemical properties such as
toxicity, lipophilicity, mutagenicity and cytochrome inhibition.

Furthermore, the work addresses a second important problem – the absence of
publicly available tools to perform QSAR research, estimate the applicability domain of
QSAR models and publish the results. Nowadays, there are hundreds of predictive
models that were published, forgotten and never used after the publication, since a
significant effort is required to reproduce the published computational model. Indeed, to
recreate the model, a researcher must recollect the dataset with the experimental
measurements, obtain the software to calculate necessary molecular descriptors and
train the model with the parameters used in the publication. Thus, it is often extremely
tedious or even infeasible to reproduce the model. The work includes development of a
unique novel online platform that allows both to perform QSAR research and to publish
the results online. This platform, the Online Chemical Modeling Environment
(OCHEM), includes the database of experimental measurements and the tools for
creation of predictive models and, importantly, for estimation of applicability domains.
The database includes already more than a million experimental measurements of
physicochemical and biological properties and a dozen of published models.
Additionally, all the AD-related methods and studies presented in this work are
available in OCHEM. The developed platform is publicly available online at
http://ochem.eu

The author hopes that the work will contribute to the practical application of
reliable computational models in drug design.

1.2 Thesis roadmap
The structure of the work aims to outline the four aspects related to the problem

of QSAR predictions and AD assessment: the methodology, the implementation, the
benchmarking and the practical applications. The approaches introduced in the
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“Methodology” section are further comprehensively benchmarked and applied for two
QSAR studies in the “Benchmarking studies” and “Application” chapters, respectively.
The implementation of the platform that served as the main tool for the research within
this work is outlined in the “OCHEM – Online Chemical Modeling Environment”
chapter. 

The results are summarized in the “Discussion” chapter and presented as a
number of key points.
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2 Methodology

This chapter introduces the basic definitions, terminology and methodology of the
QSAR research in general and of the applicability domain research in particular. The
concepts and methods introduced here will be extensively used in the further chapters
of the work.

2.1 QSAR research

2.1.1 Overview
The domain of QSAR, Quantitative Structure-Activity Relationship, encompasses

computational predictions of various biological activities and physicochemical
properties of molecules. The main assumption of QSAR is that similar molecules have
similar properties. In other words, a “small” modification of molecular structure results
into a “small” change of its biological activities and physiochemical properties. 

An important question in QSAR studies is how to define the similarity of
chemical compounds. When we define whether two molecules are similar, we may
address e.g. similarities of the molecular graphs, presence or a number of particular
functional groups, similarities of the shapes of 3D structures, similarities of the polar
surfaces, etc. Speaking mathematically, the definition of similarity corresponds to the
definition of a metrics in the space of chemical compounds. Thus, there is a vast variety
of methods on how the similarity of molecules can de defined; the choice of an
appropriate metrics is the key success point for QSAR predictions. Generally, the
similarity of molecules is defined by representing a chemical compound with a set of
numerical features, referred to as molecular descriptors. Simple examples of molecular
descriptors are the molecular weight, the number of atoms of a particular type, the
number of aromatic rings etc. Various types of molecular descriptors are described
further in Section 2.1.2.

In QSAR, prediction of a particular biological activity of a physicochemical
property is based on the information about the known property values for a set of
molecules referred to as the training set, which usually contains the results of
experimental measurements. This point is important and specific for QSAR: the
prediction is not based solely on the basic laws of physics and chemistry (indeed, it is
very difficult to explain particular property in terms of the essential laws such as laws of
quantum chemistry), but uses information from a training set for prediction of new
compounds, whose property values are yet unknown. The process of creation of such
predictive model is referred to as supervised learning and is based on the machine
learning methods described further in Section 2.1.3

2.1.2 Molecular descriptors
All machine learning methods are abstract mathematical methods; they operate

with a particular numerical representation of chemical compounds. For most machine
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learning methods, to build a predictive computational model, the chemical compounds
must be ultimately represented as a set (a vector) of numerical features. These numbers,
which describe a chemical compound in the mathematical way, are referred to as
molecular descriptors. Obviously, molecules are complex objects and can be
represented by numbers in a virtually unlimited number of ways. Thus, there is a need
for an optimal choice of descriptors, specific for a particular prediction problem.

At present, there exist numerous types of molecular descriptors and their software
implementations. Generally, molecular descriptors can be categorized as follows: 

• linear or 1D (one-dimensional) descriptors, such as molecular weight,
number of particular types of atoms or functional groups, number of
fragments etc

• 2D descriptors, based on the graph of the molecular structure

• 3D descriptors, based on three-dimensional structure of a molecule. Such
descriptors require to calculate the optimized stable 3D conformation(s) of
a molecule

A more complete and elaborate review of different molecular descriptors can be
found in an excellent book edited by Todeschini [7]. Here, we overview the descriptors
used for the studies that are a part of this work.

E-State descriptors (electrotopological state descriptors). For every atom in a
compound, E-State descriptors combine the information about electron richness
(electronegativity) and the topological information. A detailed information on E-State
indices can be found in the work by Hall and Kier [8]. These descriptors were used for
most of the studies encompassed within this work and proved to provide good results
for various prediction problems of both chemical and biological properties.

Molecular fragments counts (MFC). To calculate MFC descriptors, a molecule
is split into sub-fragments of a particular size (for example 2-5 atoms in a sub-
fragment). Thereafter, the appearances of every fragment in a molecule are counted.
The software to calculate MFC descriptors used in our research was ISIDA Fragmentor
utility[9]; therefore, these descriptors are also referred to ISIDA fragments.

LogP and LogS values (log of the octanol-water partition coefficient and
aqueous solubility) are important in QSAR modeling, since they implicitly affect many
other physicochemical and biological properties of molecules. Therefore, LogP and
LogS are of particular interest as molecular descriptors. Most often, experimentally
measured values for molecules used in modeling are not available and are substituted
with their predicted values. To obtain predictions for LogP and LogS, we used ALogPS
software. This program was recently top-ranked amid 18 competitors for logP
prediction using > 96,000 in house molecules from Pfizer and Nycomed [10]. It was
also reported to be “the best available off-the-shelf package for intrinsic aqueous
solubility prediction” at F. Hoffmann-La Roche [11].

Dragon descriptors are named after the software developed by the group of Prof.
Todeschini [12]. These descriptors encompass a vast variety of 1D, 2D and 3D
descriptors separated into 20 logical blocks. Covering a vast variety of descriptor types,
the Dragon descriptors are very popular and are often used for QSAR modeling of
various properties. These descriptors were used by a number of the research groups that
contributed their QSAR models investigated in the “Benchmarking studies” chapter.
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2.1.3 Machine learning methods
The machine learning methods typically used for QSAR predictions are based on

supervised learning. These methods, given the knowledge about a particular property or
activity from a training set with known (usually measured experimentally) values of the
predicted property, aim to generalize this knowledge in order to predict the property for
new chemical compounds, for which the property is unknown. The most commonly
used machine learning methods include: k-nearest neighbors, simple and ridge linear
regression, neural networks and support vector machines (SVM). Additionally, the
linear methods can be generalized using kernel techniques, which map the initial space
of molecular descriptors to a space with a higher number of dimensions and, thereby,
allow to apply linear methods to non-linear prediction problems. Kernel extensions of
machine learning methods are very popular in QSAR modeling. A detailed description
of the kernel techniques can be found in literature [13,14].

Here follows a brief summary of the aforementioned machine learning methods.
A physicochemical property or biological property that needs to be predicted will be
referred to as target property. We will use capital letter J for denoting a chemical
compound, xi(J) – for denoting the i-th descriptor of a compound J, y(J) and y J 
for real and predicted values of the target property, M and N – for denoting the number
of the used molecular descriptors and the number of molecules in the training set,
respectively.

Linear regression is one of the simplest methods, which estimates a property as a
linear combination of the input variables. The target property is calculated as

y  J =w0∑
i=1

M

wi⋅xi J  (2.1)

where w0 is the shift and wi are the regression weights of each molecular descriptor. A
linear model is completely described by the vector w = {w0 | i = 0..N}, which is chosen
to minimize the sum of squares of the prediction errors on the training set: 

f  w =∑
i=1

N

 yi  J i ,w− y  J i
2min (2.2)

where yi J i , w is the prediction value for compound Ji by the model defined by the
regression weights w

Ridge linear regression is a generalization of the linear regression, which
minimizes a modified target function:

f  w = l⋅∣w∣∑
i=1

N

 yiJ i , w − y  J i
2min (2.3)

where the term l is an optimizable parameter. Because the term l⋅∣w∣ is also
minimized, the absolute values of optimized regression weights tend to be reasonably
low and the method is more stable than the simple linear regression, which minimizes
only the sum of error squares (Expression 2.2) and does not have any limit on the
regression weights. The simple linear regression involves inversion of a multivariate
matrix, which can be ill-conditioned and thus result into the large values of the
regression weights and, therefore, into a more complex model that has poor
generalization ability. The l⋅∣w∣ component present in the optimization function of
the ridge regression addresses the problem of inversion of the ill-conditioned matrix and
helps to obtain a simpler model with a possibly lower fitting score on the training set
but with a higher predictive ability.
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K-nearest neighbors method (KNN) uses the mean of the target property values
for K compounds, nearest to the predicted compound. The K nearest compounds are
determined using any metric (usually the Euclidian distance) in the space of molecular
descriptors. The advantage of this method is its simplicity and absence of any training
process (except of selection of the optimal K - number of nearest neighbors). A model
merely needs to store the molecular descriptors for the reference compounds from the
training set.

Neural networks, or, more specifically, multilayered perceptrons, use a
simplified mathematical model of a biological neuron, defined by Expression 2.4, to
predict the target property. More precisely, a number of neurons is organized in
consequent layers, where an input of every neuron from the next layer is an output of a
neuron from the previous layer. 

y x1, ... , xn= f ∑
i=1

n

wi⋅xi (2.4)

where x1..xn are inputs, wi are weights of a neuron and f is a non-linear response
function. A neural network is completely defined by the set of neuron weights W = {wij,
i = 1..L, j = 1..Ni}, where L is the number of layers, and Ni is the number of neurons in
i-th layer. During the training of a network, the weights are optimized to minimize the
sum of squares of errors (similarly to linear models, as in Expression 2.2). There are
numerous methods for training of neural networks varying on the quality and the
calculation speed. In this work, we used the Levenberg-Marquardt method, which is
relatively slow and computationally demanding but allows extracting most of the
information from the training set [15,16].

If a neural network is modified using the LIBRARY correction (explained in the
next section), it is referred to as associative neural network (ASNN) [15]. Associative
neural networks are extensively used in all the studies encompassed in this work.

Support vector machines (SVM) is the method originally intended for
classification problem. SVM constructs a descriptor space hyperplane that separates the
training set samples into two classes. The hyperplane is chosen to provide the maximum
margin (i.e., maximum distance from the hyperplane to the samples of either class). The
algorithm for constructing such a hyperplane is based on quadratic programming and
can be found in the work by Boser and Vapnik [17]. In case of more than two classes,
multiple hyperplanes are constructed. 

If the separation of the classes by a hyperplane is impossible, the “soft margin”
modification is used. This modification allows misclassified samples but includes a
penalty component for them [18]. 

In QSAR modeling, SVM is often used with the kernel modification [14]. In
brief, SVM is performed not in the original space but in the feature space obtained via a
non-linear kernel transformation of the original space. The feature space has a higher
dimensionality (often, it has an infinite number of dimensions), which makes it possible
to separate classes that were not linearly separable in the original non-transformed
space.

The algorithm was also generalized for regression problems [19]; in this case, it is
referred to as support vector regression (SVR).
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2.1.4 Meta-learning techniques

A.  Model ensembles and bagging

It has been shown [20] that, instead of building a single model, it is often
favorable to build a set of different models (referred to as model ensemble) and use the
average value of their predictions to get a better performance. Such “average” model is
referred to as consensus model. Obviously, the models within an ensemble should be
different; to get different models based on the same training set, one can train multiple
copies (often 100) of the same model with different training subsets replicated
randomly on the basis of the complete training set. The replication of multiple training
sets can be done using sampling with replacement. This approach, referred to as
bagging (bootstrap aggregating)[20], was shown to improve the prediction accuracy in
comparison to using single models. The effect of averaging of multiple predictions
given by model ensembles is investigated in the benchmarking studies described in
Chapter 4 of this work.

B.  LIBRARY model correction

Given a predictive model and an additional set of new experimental
measurements (referred to as “library”), it is possible to correct the model by taking into
account these measurements. The process is called LIBRARY model correction
(because we complement a model with a “library” of experimental measurements) and
is performed as follows.

To obtain a corrected prediction for a molecule J, we calculate the original (non-
corrected) prediction y J  given by the original model and find K molecules from
the “library” {Ji, i = 1..K} nearest to the molecule being predicted. The nearest
compounds are defined by the correlation coefficient in space of model predictions.
Then, we calculate the expected residual for the molecule J as the average residual for
the K nearest compounds according to the following expression:

 
 J =

∑
i=1

K

 y J i− y J i

K
(2.5)

Finally, we correct the original prediction by subtracting the average residual:

ycorr J = y J −J  (2.6)

Thus, the LIBRARY correction assumes that for a new compound a model will
behave similarly to compounds from the “library”. Such technique is especially useful
in case if retraining of the original model is infeasible due to high computational
complexity or unavailability of the original training set. The LIBRARY technique was
introduced by Tetko and was shown to significantly increase the prediction accuracy for
the lipophilicity and distribution coefficient models [10,21-23].

2.1.5 Validation of models
To estimate the accuracy of computational models, it is unreasonable to test a

model on the data that were used for the model training. In fact, this approach can be
misleading, because, given a sufficient number of the input variables (molecular
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descriptors), it is possible to achieve perfect predictions on the training set. Such a
model would merely “remember” the property for the compounds from the training set,
thus providing the perfect prediction accuracy on the training set but having low
predictive ability for other compounds. In machine learning, this type of models is
referred to as over-fitted models. Over-fitted models have no practical use and should be
avoided. Therefore, it is of crucial importance to estimate the real predictive ability of
models.

There are several techniques typically used to estimate the predictive ability of a
QSAR model. The simplest and most straight-forward method is to split the available
data with experimental measurements into two parts: the training set and the validation
set (also called external set). An improved validation approach, which allows to
estimate a model's predictive ability for the whole dataset, is the cross-validation, an
approach, where the data is randomly split into N (often 5) folds, one of which is used
for validation while the others – for training of the model. Thus, N models are built,
where each of the model has one of the folds “reserved” for validation. A special case of
cross-validation is Leave One Out (LOO) validation, where the number of folds is equal
to the number of compounds in a set; thus, in LOO, each of the validation models
excludes one compound from the training set for validation purposes.

The validation of the whole dataset can also be done using the bagging approach,
described above in Section 2.1.4. In more detail, when randomly replicating multiple
copies (often 100) of the training set, in each replication case, a part of molecules will
not be present in the training set and, therefore, can be used for the validation purposes.
Having a sufficiently large number of validation sets, every molecules will be present in
at least one (but usually more then one) validation set. In fact, given that the dataset is
sufficiently large, every compound is assigned to the validation set with about 37%
probability, which means that on average there will be 37 validation predictions for
each compound. The average prediction values from these validation sets are used to
estimate the predictive ability on the whole set. 

All the three validation methods (external validation set, cross-validation and
bagging-validation) can be combined. In QSAR, the most commonly used technique is
cross-validation. However, in some cases the bagging validation is favorable since it (a)
can improve prediction accuracy for new compounds [20] and (b) it provides multiple
predictions, which can be used to calculate the statistical information for estimating the
AD of the model. The main disadvantage of the bagging technique is its high
computational complexity: it requires to train 100 models, whereas the cross-validation
requires only 5-10 models. An external validation set is the optimal choice for testing a
model's performance with compounds not present the training set. This method is often
used for historical reasons, since it is considered a robust technique to test a model on
compounds, not used for the model training. However, in many cases N-fold cross-
validation is favorable since it uses the same principle but allows to estimate the model
performance for the whole available dataset. 

Whatever validation method is used, it is crucially important to ensure that the
same compounds are not present in the training and validation sets simultaneously;
ignoring this rule can provide misleading results, which do not estimate the real
predictive ability of a model.

The correct validation is ensured in the implementation of the OCHEM platform,
introduced further in the Chapter 3.
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2.1.6 Prediction accuracy
To estimate the performance and applicability of the model, the prediction

accuracy must be quantified. There are several numerical measures for the prediction
accuracy, the most commonly used ones are described below. In the following
expressions, N denotes the number of compounds in the set, for which the prediction
accuracy is estimated; yi and yi denote predicted and real values of the predicted
property for i-th compound in the set; E  y  and E  y  are the means of the
predicted and real property values; sigma (ϭ) denotes the standard deviation.

The measures of the prediction accuracy are different for regression and
classification models.

A.  Regression models

Root mean square error (RMSE) is calculated accordingly to the expression:

RMSE=∑i=1

N

 y i− yi
2

N
(2.7)

Mean absolute error (MAE) is calculated as follows:

MAE=
∑
i=1

N

∣ yi− yi∣

N
(2.8)

R-square (r2, square of the Pearson correlation coefficient) shows how well the
variations of predictions are explained by the variations of actual values of a property.
More precisely, the R-square is calculated as follows:

r2=
∑
i=1

N

 yi−E  y  yi−E  y 

 y ⋅  y 
(2.9)

where  y  and  y  are the standard deviations of predicted and observed
property values in the investigated dataset. The ideal case is r2 =1, which signals a direct
linear dependency between the predicted and observed values but, however, does not
guarantee a perfect model, since r2 does not take into account bias.

Coefficient of determination (denoted as q2) is often reported in QSAR
publications complementary to r2, it is calculated as follows: 

q2=1−RMSE
 y 

=1−
∑
i=1

N

 y i− yi
2

∑
i=1

N

 y i−E  y 
2

(2.10)

q2 can be interpreted as the percentage of the variance in the property, explained
by the model. In case of a “mean” model, which always gives the mean value E(y) as
prediction, the q2 is zero, whereas in case of a perfect error-free model (and only in this
case), the q2 equals to one. Theoretically, if the investigated model is less accurate than
the “mean” model, q2 can be negative.

The aforementioned accuracy measures, RMSE, MAE, r2 and q2, describe the
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model performance in different ways and should be used together. For example, MAE
and RMSE are similar, but RMSE is more sensitive to high residuals. Because of being
dimensionless, r2 is convenient to compare performances of completely different
models, even if they predict different properties. Indeed, r2 ranges in the [0, 1] interval
and has a universal scale, whereas there is no universal scale for RMSE and MAE.
However, the two latter measures provide a more meaningful interpretation, because
they are measured in the units of the predicted property. In particular, the RMSE and
MAE can be used to calculate the confidence interval.

B.  Classification models

For classification problems, a commonly used measure of prediction accuracy is
Correct Classification Rate (CCR), which is simply the percentage of compounds
correctly classified by a model. CCR (denoted as  ) is appropriate for balanced sets,
i.e sets that have approximately same numbers of compounds from each class.

Sensitivity and specificity are measures of the prediction accuracy for binary
classification problems that divide all compounds into two classes, “positive” and
“negative” compounds. The properties that give rise to such classes are, for example,
mutagenicity (positive compounds are mutagens), blood-brain permeability
(compounds, that pass the barrier are positive), etc. Sensitivity is the percentage of
actually positive compounds that are predicted as positive, whereas specificity is the
percentage of actually negative compounds that are predicted as negative. A 100%
sensitive model never misses an actually positive compound, but can give false
positives. On the contrary, a 100% specific model will never give false positives, but
can miss an actual positive and report it as negative.

The prediction accuracy measures used in most of the studies introduced further
in this work are RMSE (for regression models) and CCR (for classification models).

2.1.7 Detection of statistical significancy
Comparison of different computational approaches is usually based on some

numerical criteria (e.g., RMSE, sensitivity, specificity etc). For example, to compare
performances of QSAR models, we usually compare their prediction accuracies, as
described in the section above. However, if we determine the superiority of one method
over another one according to some criteria, we also have to check whether this
superiority is not caused by a mere chance, but is significant in the statistical sense.

The commonly used approach for checking for significant difference involves
determination of two hypotheses: the null-hypothesis, which claims that the
performance of the two methods is same, and the alternative hypothesis, which claims
the presence of a difference in performance. The approach is to calculate the probability
of the null hypothesis given the data on hand and compare this probability (referred to
as p-value) with a predefined level of significancy (usually 0.05). If the p-value is less
than the needed level of significancy , the null -hypothesis is rejected and the alternative
hypothesis (claiming that the difference is statistically significant) is accepted. In
contrary, if the p-value is more than the level of significancy, the null -hypothesis
cannot be rejected, and we cannot claim the statistically significant difference.

There are several tests based on p-values subdivided into two main categories:
parametric and non-parametric tests. Parametric tests rely on particular assumptions
about the distribution of the analyzed data. Often, the data is supposed to be normally
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distributed. For our purposes, we used the non-parametric tests that have fewer
assumptions and, therefore, they are more universal and can be used in a wider context.

The main statistical test used in this work was the so called bootstrap test.

The bootstrap test is based on construction of many multiple replications of the
same dataset by sampling with replacement. For example, to compare RMSE of two
predictive models according to the bootstrap test, we sample N replicas from the
original validation dataset, calculate RMSE of the models for all N replicated datasets
and compare N pairs of RMSE values. If RMSE of the first method is less than that of
the second method in 95% or more cases, than the first method is “better with 0.05 level
of significancy”.

2.1.8 Representation of molecules
In literature, a molecule is normally referenced by a name and represented by a

2D depiction, which is not suitable for computational purposes. In QSAR, the
commonly used formats for representation of molecules are SMILES, SD-files (SDFs),
MOL2-files and InChi.

SMILES (Simplified Molecular Input Line Entry Specification) is a compact,
convenient and human-readable format of molecules. In this format, every molecule is
represented as a single line. A molecule can have several different SMILES
representations; however, the canonical SMILES, generated according to a specific rule,
is always unique for a molecule. The SMILES is an open standard and the specification
is available online at http://www.opensmiles.org/spec/open-smiles.html. The advantage
of SMILES is its simplicity and being human-readable; the disadvantage is its inability
to represent 3D structures and any supplementary information. The SMILES
specification can be used to represent stereochemistry, but it does not keep 3D
coordinates. Therefore, in SMILES format, the information about the exact
conformation is lost.

Notes
CC

C(=O)(N)N

c1cccc1

Compound SMILES code
Ethanol Hydrogens are implicit

Urea brackets denote a branch in the graph

Benzene small «c» denotes a carbon in an aromatic bond
«1» denotes a connection in a cycle

Table 2.1. Examples of SMILES codes for simple molecules.

SDF (Structure Data Format), in comparison to SMILES, is more complex to
read and generate for a human, but it provides the important possibility to specify 3D
structure of molecule. Additionally, the SDF format allows to provide supplementary
information, such as the name of a molecule and other properties. A more detailed
descript ion of the SDF format can be found at the EPA web-si te
http://www.epa.gov/ncct/dsstox/MoreonSDF.html.

MOL2 is a molecule format that is similar to SDF by contents but additionally
provides a possibility to store partial charges of every atom. This format was developed
by Tripos company for the SYBYL software and has gained popularity in
chemoinformatics and in QSAR research. The format specification of this format can be
found at http://www.tripos.com/data/support/mol2.pdf.

InChi is a relatively new canonical representation of molecules, which has gained
popularity in the recent years [24,25]. A complement to this format, InChi-Key, is a 14

Methodology 13



character hash-code, that is unique for every compound; that is, it does not depend on
3D coordinates, numbering of atoms and a particular way of depicting a compound.
Thus, InChi-Key can serve as a canonical identifier of a molecule in databases and can
be used to group same molecules, for example for purposes of a correct model
validation. In particular, InChi-Key was used as the identifier for molecules in out
modeling platform described in the third chapter of this work.

2.2 Applicability domain of QSAR models

2.2.1 Basic definitions
The general definition of applicability domain (AD) was formulated by Netzeva

and colleagues within the 52th workshop of the European Centre for the Validation of
Alternative Methods (ECVAM)[26]: “The applicability domain of a QSAR model is the
response and chemical structure space in which the model makes predictions with a
given reliability”.

To assess the applicability domain of the model, this work addresses another,
more general problem, the assessment of the accuracy for every prediction. Typically, to
assess the prediction accuracy, a QSAR model is validated against an external
validation set (or a cross-validated training set) and the average prediction accuracy on
this set is reported as the ultimate indicator of the model performance. There is a
significant flaw in this reasoning, since the performance of the model on compounds
that are dissimilar from the training and validation sets is likely to be different from the
estimated accuracy. Moreover, even within the validation set, the accuracy may be
inhomogenious and variable. There can be clusters of compounds that are predicted
with an accuracy that is significantly higher (or lower) than the average accuracy. Thus,
considering only the average prediction accuracy for an inhomogenious set does not
reflect the complete information on the performance of the model and, therefore, can be
misleading.

If we could find a way to discriminate predictions of high and low accuracy or,
more generally, if we could estimate the prediction accuracy for every particular
compound, then we would automatically assess AD using the simple rule: a compound
is inside AD if its estimated prediction accuracy is within a predefined threshold and
outside AD otherwise.

A synthetic example. To illustrate the idea of the accuracy discrimination, let us
consider a simple synthetic example and predict an imaginary property y that is linearly
dependent on the descriptor x1 but has also an amount of noise that is partially
dependent on the descriptor x2:

y=a⋅x1cN 0,σ1x2⋅N 0,σ 2 ,where x20,σ2σ 10 (2.11)
where a and c are some constants, N(0, σ1) is the simulated normally distributed
background noise and N(0, σ2) is the noise that depends on chemical structures. Given
that the noise is unknown and unpredictable, the best model for prediction of the
property y on basis of the descriptors {x1; x2} is a simple linear model:

y=a⋅x1c (2.12)

It is obvious that the compounds having lower values of x2 will be predicted better
because of a less amount of noise represented by the component x 2⋅N 0,σ 2 in
Expression 2.11. Indeed, after we generated 1,000 input samples on basis of (2.11) and
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predicted it with the model (2.12), we observed that RMSE for compounds with x2 <
0.3 was 0.51, for compounds with x2 > 0.3, the RMSE was 0.77 , whereas the average
RMSE for all the compounds was 0.72. The scatter plots for the compounds with a
higher (the green dots) and a lower (the red dots) prediction accuracy are shown in
Figure 2.1. 

Figure 2.1. An example of the accuracy discrimination. As it can be seen on the scatter plots,
the green compounds have higher prediction accuracy (the leftmost plot, RMSE 0.51) than the
red compounds (the middle plot, RMSE 0.77). When mixed together, the compounds have
RMSE of 0.72 (the rightmost plot).

This synthetic example demonstrates that prediction accuracy can be variable in
the chemical space and, more importantly, can be estimated using a discriminating
variable. Here, the discriminator of the accuracy was the descriptor x2, which controlled
the amount of the compounds-dependent noise. The compounds with lower values of x2

had a better prediction accuracy than the compounds with high x2 values. In this work,
all the numerical measures that possess this kind of discriminating ability will be
referred to as distances to models. These measures form the core of the methods used
for the AD assessment in this work and are defined more precisely in the following
section.

2.2.2 Distances to models
The key abstract concept used in this work for assessment of AD is distance to

model (DM), defined as follows:

Distance to a model is any numerical measure of the prediction uncertainty
for a given compound by the model.

Distances to models were also used in earlier QSAR studies to estimate the AD of
predictive models. However, the concept was firstly introduced by Tetko et al and
clearly formalized, investigated and applied by the author of the current work in the
published studies [27-30] and in this thesis work.

A distance to model assesses how “far” is the compound from the model. The
compounds that are “further from the model”, which have larger values of DM, are by
definition expected to have lower prediction accuracy than compounds that have
smaller values of DM. It should be clearly stated that prediction accuracy correlates
with DM only in average: for example, compounds with DM in range [0.5, 0.6] will on
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average have higher prediction accuracy than compounds with DM in range [0.6, 0.7]
but, nonetheless, the prediction errors for some compounds from the first interval can
be bigger than for some compounds from the second interval. In other words, the key
property of a DM is the discriminating ability, i.e. the ability to discriminate predictions
of high and low accuracy.

Importantly, DMs estimate the reliability of predictions. While accuracy is an
objective measure that has a rigid calculation procedure, reliability is subjective and can
be estimated in numerous ways. Therefore, there is a number of different DMs that
assess the reliability of predictions from different perspectives. Here, we briefly
overview the DMs used for the AD assessment in this work.

A.  Leverage 

Leverage is one of the simplest DMs that corresponds Euclidian distance to the
center of the training set in the space of molecular descriptors corrected by considering
correlations between the descriptors. Leverage for a compound J is calculated as:

LEVERAGE J =x  J ⋅X T⋅X −1⋅x J T (2.13)
where x J  is a vector of molecular descriptors for the compound J, X is a matrix of
descriptors for compounds from the training set. It can be seen that if descriptors are
normalized, centered to zero and they do not correlate with one another, then the matrix
X T⋅X  is identity and leverage corresponds to the Euclidian distance of the

descriptor vector to the zero vector.

In linear modeling, the leverage, which is frequently notated as h, ranges between
1/N and 1 and averages (K+1)/N for the N compounds in the learning data set, where K
is the number of model variables. The residual of a compound a variance of σ2(1 - h) in
the dataset and σ2(1 + h) for external compounds. 

High leverage values signal that one starts extrapolating outside the training set
range and it is no more guaranteed that the model is valid and applicable. Often,
compounds with leverage exceeding a particular threshold h* (referred to as the
“warning leverage”, eq. 2.14) are considered outside of the AD of the model [31]:

h*=
3⋅K1

N (2.14)

An example of the leverage DM effect in a two-dimensional space of descriptors
is shown in Figure 2.2

B.  Standard deviation of the ensemble predictions (STD)

The standard deviation of the predictions obtained from an ensemble of models can
be used as an estimator of model uncertainty. The general idea is that if different models
yield significantly different predictions for a particular compound, then the prediction
for this compound is more likely to be unreliable. The sample standard deviation can be
used as an estimator of model uncertainty. 

Assuming that Y(J) = {yi(J), i=1..N} is a set of predictions for a compound J given
by a set of N trained models, the corresponding distance to model (STD) is:

d STD J =stdev Y J =∑ yi J −y 2

N−1
(2.15)
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Figure 2.3 shows three predictions with the same (zero) mean but different
standard deviations. There are several subtypes of STD, depending on the type of an
ensemble used to calculate the standard deviation: CONS-STD (consensus STD) for an
ensemble of models based on different machine learning techniques, ASNN-STD for an
ensemble of associative neural networks, BAGGING-STD for an ensemble of models
created using the bagging technique.

The STD DM has been proven to provide excellent results for discrimination of
highly accurate predictions in case of regression models [28,27,32] and is extensively
used and benchmarked in the studies encompassed within this work.

Figure 2.2. An illustrative example of the leverage DM. Leverage penalizes the compounds that
are far from the center of the training set in the space of molecular descriptors. According to
leverage, such compounds are unreliably predicted.

Figure 2.3. An example of three predictions with different standard deviations (STD). According
to the STD DM, reliable predictions have a low prediction “spread”, which corresponds to the
disagreement of individual predictions within an ensemble of models. 

Methodology 17



C.  Tanimoto similarity

The Tanimoto index is a measure of similarity between two compounds based on
the amount of common molecular fragments in these compounds. To calculate the
Tanimoto similarity, we enumerate all unique fragments of a particular length in two
compounds; then the Tanimoto similarity between the compounds J and I is defined as:

TANIMOTO J , K =
∑
i=1

N

x J ,i⋅xK ,i

∑
i=1

N

 xJ , i⋅xJ ,i∑
i=1

N

 xK ,i⋅xK ,i−∑
i=1

N

 xJ ,i⋅x K , i
(2.16)

where N is the number of unique fragments in both the compounds, xJ, i and xK, i are the
counts of the i-th fragment in the compounds J and K. Based on Expression 2.16, the
distance between two compounds J and K is 1 – TANIMOTO(J, K) and the distance of a
compound to a model is the minimum distance between the investigated compound and
compounds from the training set of the model.

D.  Correlation of prediction vectors (CORREL)

This measure is based on the correlation of vectors of ensemble's predictions for
the target compound and compounds from the training set [15,33]. Similarly to the
STD, this measure is applicable only for ensembles of models. More precisely,
CORREL measure for the target compound J is calculated according to the following
expression:

d CORREL J =1−max
i=1.. N

[corr y T i  ,y  J ] (2.17)

where y T i and y  J  are the vectors of ensemble's predictions for the
training set compound Ti and the target compound J, corr designates Spearman rank
correlation coefficient between the two vectors and N is the number of compounds in
the training set. The low value of CORREL (i.e., high Spearman correlation coefficient)
indicates that for target compound J there is a compound Tk from training set for which
predictions of the ensemble of models are strongly correlated. Indeed, if a compound Tk

has the same descriptors as J, than predictions of models will be identical for both
molecules and thus CORREL(J) = 0. Compounds with high correlation coefficient
values are considered to be “near to the model”. It has been shown [34], that the
Spearman correlation outperformed several alternative measures, e.g. Euclidean
distance and Pearson correlation coefficient, because of its higher accuracy and
practical requirements to store ensemble predictions for all training set molecules.

E.  Rounding effect (CLASS-LAG) 

CLASS-LAG is a simple measure of prediction uncertainty, specific for binary
classification problems. For such a problem, the labels (i.e. the values to be predicted by
a computational model) are discrete and are selected as -1 and 1 for the two classes of
compounds respectively. However, most machine learning methods give a numeric
(continuous) number as a result of prediction, which is then rounded to the nearest label
to identify the class of compound. The less amount of rounding is required, the more
reliable the prediction is expected to be. This assumption is utilized by the CLASS-
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LAG DM. Namely, the absolute value of difference between the prediction value and
the nearest of the labels can be used as a measure of prediction uncertainty. This
measure is calculated according to the following expression:

 d CLASS−LAGJ =min {∣−1− y J ∣ ,∣1− y J ∣} ( 2.18)

Thus, this measure punishes deviations from target class labels {-1,1}, both
positive and negative deviations (i.e. both 1.2 and 0.8 predicted values have the same
DM). Obviously, punishing negative deviations applies only to models that have
prediction values outside of the [-1, 1] interval.

The effect of CLASS-LAG is visually shown in Figure 2.4 with an example of a
binary classification model that divides compounds into two classes, “active” and
“inactive”, which have classification labels “1” and “-1”. Green and red dots represent
reliable and unreliable predictions, respectively. The CLASS-LAG DM reaches its
maximum in the borderline region, where the prediction value is close to zero and,
therefore, the model is uncertain whether the compound is active or not.

Figure 2.4. Graphical demonstration of the CLASS-LAG DM. According to this measure, the
most unreliable predictions (i.e., the highest CLASS-LAG values) are near to the borderline that
divides active and inactive compounds.

F.  Concordance of a classification ensemble

The maximum number (or the respective percentage) of the models, that give the
same prediction can be used as a measure of the concordance of an ensemble. For
example if there are 5 models, that give predictions {1; -1; 1; 1; 1}, then the
concordance is 4 (or 80%). The measure that is opposite to the concordance (i.e. 1-
CONCORDANCE) can be used as a distance to model. The idea behind this DM is

Methodology 19



similar to that of the standard deviation (STD) DM, but is adapted for classification
models and qualitative predictions.

G.  Rounding effect and standard deviation combined (STD-PROB)

The STD-PROB combines the two sources of the prediction uncertainty: (a) the
uncertainty related to rounding of predictions and (b) the uncertainty the disagreement
of different models. Instead of a “point” prediction, we consider a distribution of
probabilities. We assume that the distribution is Gaussian with mean y(J) and standard
deviation that corresponds to the STD value. The suggested distance to model STD-
PROB is calculated as follows:

dSTD−PROB J =min {
Probability c0∣N  y J  , d STDJ 
Probability c0∣N  y J  , d STDJ 

} (2.19)

Or, more precisely:

dSTD−PROB J =min
∫

0

∞

N x , y J  , dSTD J dx

∫
−∞

0

N x , y  J  , d STDJ dx
(2.20)

where N x , y J  , d STD  J  is the normal distribution density function with a
mean y(J) and a standard deviation dSTDJ  . Here y(J) is the actual prediction of the
analyzed model for a compound J and d STD  J   is the STD DM calculated according
to equation (2.3).

This measure can be graphically illustrated as a part of the area under the curve of
the normal distribution density function. Four exemplary prediction cases are shown in
Figure 2.5, where the rounded prediction value is always fixed to “+1” but the numeric
prediction values and the STD values are different. It is obvious that shifting the curve
away from the center (decreasing CLASS-LAG) results into decrease of the filled area.
The same effect appears when we make the curve less flat, i.e. decrease the STD value.
Thus, STD-PROB combines information about uncertainty from both the measures:
CLASS-LAG and STD.

The STD-PROB values have a simple interpretation: values close to 0.5 indicate
equal probability to find given compound in either class, which means that the model
cannot provide a reliable prediction. In contrary, values close to 0 indicate high
probability to find the compound in one of the classes. 

It should be clearly stated that, as well as all the other described DMs, STD-
PROB is an empirical measure of the prediction reliability. This measure was
introduced by the author of this work in a methodological study [29] and was
benchmarked in the Ames test study described in Chapter 4.
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Figure 2.5. An example of four predictions with different reliability according to the STD-PROB
DM. The reliability is affected by two factors: the standard deviation (the “flatness” of the curve)
and the shift of the curve from the center. Ultimately, these two factors are combined into a
single numerical representation, which corresponds to the filled area and is referred to as STD-
PROB.

H.  Descriptor-based and property-based DMs

The described above distances to models can be classified into two types: (a) the
DMs in the space of descriptors and (b) the DMs in the space of properties. The DMs of
the first type use only information about chemical structures represented by a number of
molecular descriptors. Examples of such DMs are leverage and the Tanimoto similarity.
On the contrary, the DMs of the second type use outputs of the models. Such DMs
include the standard deviation (STD), the rounding effect (CLASS-LAG) and STD-
PROB.

The descriptor-based DMs rely on the assumption that two compounds with
similar molecular descriptors will have similar properties. These DMs are very popular
and are nowadays explicitly or implicitly used in many QSAR studies [35-40].
However, recently an assumption was made [27] that the property-based DMs provide
significantly better estimation of prediction accuracy, since they are based not only on
descriptors, but also incorporate information about the analyzed model itself. This
assumption is comprehensively investigated and validated in this work.
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2.2.3 Analysis of prediction accuracy

A.  Accuracy averaging

Nowadays, in many published QSAR studies, the prediction accuracy
(represented by RMSE, MAE, R2 etc) is averaged over the whole available set and
reported as a single value. However, this approach does not reflect the complete
information about the prediction accuracy. For a particular group of compounds, the
prediction accuracy may be significantly higher than the average, while for some
compounds the model may completely fail to predict the target property. In this work,
we refer to this phenomenon as “accuracy variability”.

As it was mentioned in the previous section, the particular measures referred to as
distances to models possess the ability to discriminate predictions of high and low
accuracies. Thus, the average accuracy should be calculated while taking DM into
account. Here, we introduce the DM-based approaches to the accuracy averaging.

Bin based averaging (BBA) splits DM values into non-overlapping intervals
(bins) and averages the prediction accuracy for the compounds within each bin
separately. By the nature of DM, the accuracy should not increase as the DM increases.
Thus, if the average accuracy in a bin is higher than in a previous bin, the accuracy
from the previous bin is used. The bin-based averaging results into a BBA plot, which
shows dependency of the prediction accuracy from DM. This plot is often combined
with a plot of residuals (so called Williams plot). An example is shown in Figure 2.6.

Sliding window averaging (SWA) aims to provide a continuous dependency and
is performed on N adjacent compounds sorted by DM (where N is the window size,
which controls smoothness). These N compounds form the averaging window. The
advantage of sliding window averaging is that it is more stable to noisy data and,
therefore, provides more smoothed dependencies.

According to the cumulative averaging, the accuracy is averaged over all the
compounds with DMs less than a particular (variable) threshold. Often, it is more
convenient to represent DM value not in the absolute scale but in the percentage scale
related to a set of compounds. For example, according to the percentage scale, a DM
value of “10%” would mean that 10% of the compounds from the set have DM values
less than this DM value. The cumulative averaging in combination with the DM
percentage scale results into a cumulative accuracy plot, which shows the prediction
accuracy for best 10%, 20% etc compounds (see Figure 2.7). This cumulative averaging
is easily interpretable and very stable against noise. In fact, it provides the smoothest
dependencies when compared to the aforementioned SWA and BBA. However, due to
the cumulative nature of this averaging, the result is dependent on the composition of
the investigated set, whereas for the BBA and the SWA, the result is expected to be the
same for different sets as long as the sets are sufficiently large.

The above examples were based on regression models, but the same approaches
are readily applicable to classification models. The only difference for classification
problems is that the correct classification rate is used instead of RMSE.
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Figure 2.6. The bin-based averaging (BBA) of the prediction accuracy. The red dots represent
the compounds from the investigated set; the black lines represent the averaged errors (RMSE)
over different DM intervals (“bins”).

Figure 2.7. An example of a cumulative accuracy plot. This plot shows the RMSE of
the predictions with DM less than a variable threshold. “100%” corresponds to the
RMSE of all the predictions for the investigated set. Two percentages are
highlighted: RMSE of 40% compounds of most reliable predictions is around 0.34,
whereas RMSE of 100% compounds (the global RMSE) is around 0.49.

B.  Estimation of prediction accuracy

Importantly, the accuracy averaging can be used to estimate the prediction
accuracy for new compounds, which were not present in the training or validation sets.
To obtain an accuracy estimate for a new compound, we calculate its DM value and
define the corresponding accuracy using BBA or SWA plots (Figure 2.6). If an estimate
for a set of compounds is required, it is calculated as an average of estimates for all
compounds in the set as follows. For example, an estimate for RMSE of the set is
calculated as:

=∑i=1

N

  J i
2

N
( 2.21)
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where Ji is the i-th compound in the set, N is the size of the set,  J i is the estimate
of RMSE for the compound Ji, calculated according to the accuracy averaging.
Similarly, an estimate for the correct classification rate (CCR) is determined as 

=
∑
i=1

N

 J i 

N
(2.22)

The estimated accuracy can be explicitly used to sort compounds into the “inside
AD” and “outside AD” groups. More precisely, if the estimated prediction accuracy for
a compound is within the predefined threshold, the compound is considered to be within
the AD of the model and outside of the AD otherwise. Thus, to define AD, we
determine the maximum value of DM (referred to as critical DM and denoted as dAD)
that ensures the required prediction accuracy. All the compounds with DM less than dAD

are considered to be inside AD.

2.2.4 Comparison of applicability domains

A.  Discriminative power of DM

The ability to discriminate predictions of high and low accuracy is different for
every particular distance to model. Therefore, to compare different DMs and
applicability domains of models, there is a need to quantify the performance of DMs.
There are several ways to evaluate performance of a particular DM. 

Accuracy coverage. This approach considers the percentage of the validation set
compounds that are predicted with the predefined accuracy. This criterion, referred to as
accuracy coverage, is useful to determine, for example, the coverage of the validation
set that are predicted with the accuracy of experimental measurements. The expected
prediction accuracy can be determined from one of the accuracy averaging procedures:
the bin-based averaging, the sliding window averaging or the cumulative averaging, as
described in Section 2.2.3 on page 22. An example of the accuracy coverage criterion in
combination with a cumulative plot is shown in Figure 2.8. This plot is based on one of
the QSAR models for the Ames test prediction, described further in this work in the
“Benchmarking studies” chapter. For comparison, three different DMs (the red, green
and blue curves) and two thresholds (85% and 90%) are shown.

There are two drawbacks of the aforementioned accuracy coverage criterion.
First, as it is apparent from Figure 2.8, the coverage depends on the chosen accuracy
threshold and different thresholds could possibly results into different ranks of the
analyzed DMs. Second, the accuracy coverage depends not only on the ability of DM to
separate highly accurate predictions, but also on the performance of the analyzed
model. Indeed, the models having higher prediction accuracies will have higher
accuracy coverages.

The AUC (area under curve) criterion. Another criterion for the DM
performance that does not have the aforementioned drawbacks is the area under curve
(AUC), calculated as the area of the square between the bin-based averaging curve
(alternatively, the sliding window averaging curve) and the line of the average model
performance. More formally, the AUC is calculated as integral:

AUC=∫
xmin

xmax

∣a x −a∣⋅d  p x  (2.23)
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where x is the DM value in the absolute scale and p(x) in the percentage scale, a(x) is
the average prediction accuracy for this DM value, a is the global average accuracy of
the model. Practically, a(x) obtained using SWA or BBA provides a discrete
dependency. Thus, the integral in the above expression is replaced with a normal sum.

On Figure 2.9, AUC corresponds to the area of the square between the SWA (red)
curve and the horizontal line. AUC is higher for the DMs with better separation of
compounds with higher and lower accuracies. In this work, we will use AUC as a
complement for the accuracy coverage criterion.

Figure 2.8. Identification of the accuracy coverage using the cumulative plot based on three
DMs and the Ames test classification model. With 90% threshold, the “red” DM is superior to the
others; it covers about 45% of the compounds from the validation set, while the other two DMs
cover about 30% and 15% respectively. With 85% threshold, there is no difference between the
“red” and “blue” DMs; both cover about 65% of the compounds.

Figure 2.9. The area-under-curve (AUC) criterion corresponds to the filled area between the
SWA plot and the average accuracy (the horizontal line).
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B.  Fitness of probability distribution

The mentioned above approaches estimate the ability of a DM to discriminate
predictions of high and low accuracy. However, if the investigated dataset is
homogeneous, such separation might not be possible and, namely, not because of a low
discriminative power of a DM but because of the specifics of the dataset. For example,
if the residuals of the model are distributed normally and do not depend on structures,
then no separation of high and low accuracy predictions can be virtually possible. The
alternative approach to addresses this problem considers how well the estimated
distribution of residuals (EDR) suggested by a DM fits the actual distribution. 

For regression models, the EDR can be approximated as a mixture of Gaussian
distributions (MGD) with the same (zero) mean but with different standard deviations
obtained from the bin-based averaging (BBA) procedure. In this case, the fitness of
EDR is calculated as the likelihood criterion:

S=∑
i=1

K

logN 0,  J i , ei (2.24)

where K is the number of the compounds in the set, N is the probability density function
of the normal distribution, ei is the residual (prediction error) for the i-th compound
 J i is the estimated RMSE for i-th compound in the investigated dataset; the

RMSE can be estimated according to BBA (see section “Estimation of prediction
accuracy“ on page 23). The likelihood score defined by (2.24) can be used to assess the
quality of a DM.

Approval test. How can we evaluate whether the likelihood score is “sufficient”
and, therefore, the DM can adequately estimate the accuracy? The score in expression
2.24 is the likelihood for the estimated MGD suggested by BBA procedure. If this
estimated distribution is adequate, it should approximate the actual distribution
significantly better than a much simpler single Gaussian distribution (SGD). To check
whether MGD approximates the actual distribution better than SGD, we calculated the
difference of likelihood scores for MGD and SGD:

D=SMGD−S SGD=∑
i=1

K

logN 0,  J i , ei−∑
i=1

K

logN 0,0,ei (2.25)

where 0 is the standard deviation of the SGD corresponding to the standard
deviation of the complete dataset. If this score was more than zero (and the difference
was statistically significant), then the DM was approved. To evaluate the statistical
significance, the bootstrap test was used. In more detail, using all the available
residuals, we replicated 10,000 sets of residuals, calculated 10,000 scores according to
expression 2.25 and identified the p-value as the percentage of scores less than zero. If
the p-value was less than the required level of significancy (usually 0.05) then the D
score was higher than zero in the statistically significant sense and, therefore, the DM
was approved. 

Confidence consistency plot. To visually estimate how well the estimated
distribution of residuals (EDR) approximates the actual distribution, we used an
auxiliary plot referred to as confidence consistency plot and generated as follows. Every
EDR has the area of confidence, i.e an area where we expect 90%, 80%, 70% etc of all
residuals. The actual percentage of residuals in the area of confidence is usually
different from the estimated percentage. The confidence consistency plot maps the
estimated percentages against the actual ones. The ideal EDR will result into the
identity line one the plot. An example of confidence consistency plots for two
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hypothetical (single- and multi-gaussian) distributions is shown in Figure 2.10. This
chart, generated on basis of a predictive model for growth inhibition concentration
(reviewed in more detail in the “Benchmarking studies“ chapter), shows that SGD is not
a good approximation of the residuals distribution, whereas MGD fits significantly
better and, therefore, the DM should be approved.

Figure 2.10. An example of confidence consistency plots. The black line is the optimal (identity)
plot, the blue and red lines are based on SGD and MGD distributions; apparently, in this
example the MGD approximates the optimal plot better. The scale is adjusted to highlight the
higher percentages.

As there are no residuals for the classification models, the described above
methods are relevant only for regression models. These methods are used in a
benchmarking study for the prediction of the growth inhibition concentration for T.
Pyriformis described further in this work in the “Benchmarking studies” chapter.

2.2.5 Interpretation of applicability domains
In this work, the applicability domain of a QSAR model has a mathematical

definition, which relies on the measures of prediction uncertainty, so called “distances
to models” (DMs, page 15). However, it is often more practical to interpret AD in the
chemical sense. Basically, such an interpretation should provide a meaningful (rather
than a mathematical) answer to the question: which molecules are predicted accurately
and why?

Our approach for interpreting applicability domains is based on the substructure
analysis of molecules, performed as follows. First of all, we split all the molecules from
the analyzed dataset into molecular fragments. Secondly, for each unique fragment, we
calculate the number of molecules containing it. The key point is that the number of the
fragment-containing molecules is calculated separately for the most and the least
reliably predicted compounds. The most (and the least) reliable predictions are selected
accordingly to the lowest (and the highest) values of a particular DM. Thus, for each
fragment, we obtain two numbers, which we will designate as NINSIDE_AD and NOUTSIDE_AD.
Finally, we determine whether NINSIDE_AD is greater (or less) than NOUTSIDE_AD in the
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statistically significant sense, with the significancy level of 0.05.

The statistically significant difference in NINSIDE_AD and NOUTSIDE_AD would signal
that the investigated fragment is over-represented in (or outside of) AD, which in turn
would mean that this fragment affects the prediction accuracy. Namely, if
NINSIDE_AD>>NOUTSIDE_AD, then the molecules containing this fragment tend to have high
prediction accuracy and, in contrary, if NOUTSIDE_AD<<NINSIDE_AD, the molecules with this
fragment are not reliably predicted.

Complementary to the substructure analysis, one can perform a simple analysis of
molecular weight to determine whether large (or small) molecules are predicted more
reliably. Similarly, one can analyze how the prediction accuracy depends on solubility,
lipophilicity, number of atoms and heteroatoms, etc. Additionally, it is possible to
analyze whether the value (both observed and predicted) of the property affects the
accuracy of predictions.

2.3 Analyzed datasets

2.3.1 Datasets of experimental measurements
This work used 4 datasets with experimental measurements, three of them for

biological activities (inhibitory growth concentration, Ames test, CYP-450 inhibition)
and one for a physicochemical property – octanol-water partition coefficient. These
datasets were used for benchmarking of various QSAR and AD approaches (Chapter 4)
and for the practical application of these approaches (Chapter 5). These four datasets
are overviewed in Table 2.2 and are described in detail below.

Dataset Size Type of QSAR model Measured property/activity
Ames test 6,542 classification Mutagenicity according to the Ames test

1,093 regression

Pt complexes lipophilicity 178 regression

CYP450 inhibitors 7,486 classification Inhibition of cytochrome P450 (enzyme 1A2)

T. pyriformis toxicity Growth inhibition concentration
for the ciliated protozoan T. pyriformis 
Octanol-water partition coefficient 
for Platinum complexes

Table 2.2. An overview of the datasets of experimentally measured properties.

A.  Ames test dataset

The Ames test is a biological assay used to identify the mutagenic activity of a
chemical compound using histidine-dependent strains of Salmonella Typhimurium. The
mutagenic activity of a compound determined by the Ames test may signal that the
compound is a potential carcinogen [41]. 

There are different protocols for the Ames test: the test can be carried out with
different bacteria strains and with or without the metabolic activation using liver cells.
For this study, all such diverse data were pooled together. A molecule was considered as
active if it demonstrated the mutagenic activity for at least one Salmonella strain. Since
not all the molecules were tested with all strains, this could contribute to a significant
variance of results. Moreover, the different authors used slightly different thresholds to
decide whether a given molecule is active. 

The dataset collected from literature (referred to as the “Ames dataset”) contained
6,542 compounds, 3,516 (54%) and 3,026 (46%) thereof with and without the
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mutagenic activity respectively. The complete Ames dataset set was randomly divided
into a training set and an external test set. The training set contained 4,361 compounds,
including 2,344 (54%) mutagens and 2,017 (46%) non-mutagens. The external test set
contained 2,181 compounds (1/3 of initial set) including 1,172 (54%) mutagens and
1,009 (46%) non-mutagens. 

The accuracy of experimental measurements, expressed as the inter-laboratory
agreement of Ames test measurements is reported to be 75-85%. In this work, we
performed our own analysis of the Ames test variability, which was based on the more
recent data. This analysis, described in more detail further in the work (page 62),
identified the inter-laboratory concordance of 90%.

B.  T. pyriformis toxicity dataset

The growth inhibition (IG) of the ciliated protozoan Tetrahymena pyriformis is an
established toxicity screening tool developed by Schultz and colleagues [42-44]. The
often employed quantitative representation of the IG toxicity is minus logarithm of 50%
growth inhibition concentration, denoted as pIGC50. 

In recent decades, the Schultz group has published the results of pICG50
measurements for more than a thousand compounds, which were used in this work to
assess the AD of QSARs for IG predictions. The initial dataset collected from Schultz
publications and the Tetratox website (http://www.vet.utk.edu/) contained 983 unique
compounds and was randomly split into the training and validation sets containing 644
and 339 compounds respectively. The data from the most recent Schulz publication [42]
contained pIGC50 measurements for additional 110 compounds that were not present in
the initial dataset. These 110 compounds formed an additional external validation set.

Thus, the complete dataset contained 1,093 compounds split into 644 (the training
set), 339 (the 1st validation set) and 110 compounds (the 2nd validation set). The pICG50
values within the complete set had mean of 0.23 and 95% of the values were within the
[-1.8, 2.3] interval.

The accuracy of experimental measurements. The experimental analysis of
reproducibility of toxicity against T. pyriformis was performed by Seward et al.[44] for
51 molecules. The authors divided all the molecules into two groups according to the
expected mechanism of their toxicological action: the reactive and narcosis modes of
action. The authors reported higher variability of measurements for the molecules with
the reactive mode of action. Using the data collected by Seward et al[44], we estimated
RMSE of 0.38, MAE of 0.24 and RMSE of 0.21, MAE of 0.13 for 27 and 24 molecules
with the reactive and narcosis modes of toxicological action, respectively.

C.  Platinum complexes lipophilicity dataset

We gathered a literature dataset containing 178 LogP (octanol/water)
experimental measurements for 137 Platinum complexes: 145 measurements for 122
Pt(II) complexes and 33 measurements for 27 Pt(IV) complexes. The data were
collected from 18 publications and were quite diverse, since they included
measurements carried out with different measurement methods and different pH
buffers. Namely, LogPo/w was measured using the shake-flask (108 measurements),
HPLC (9 measurements) and RP-HPLC (61 measurements) methods with extrapolated
methanol 0% (24 measurements), 30% methanol (42 records), NaCl (43 measurements)
and saline (5 measurements) used as pH buffers.
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D.  CYP450 inhibitors dataset

The CYP dataset contained experimentally determined inhibitors and non-
inhibitors of cytochrome P450 (family 1A2) enzyme measured by NIH (National
Institute of Health) Chemical Genomics Center and collected from NCBI web-site
(http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=410). The dataset contained
7,486 compounds; 4,016 (54%) thereof were active (inhibitors of cytochrome P450
1A2) and 3,470 non-active compounds. Thus, the dataset had little imbalance of active
and non-active compounds. 

2.3.2 Datasets of chemical compounds
In order to analyze the applicability of QSAR models investigated in this work to

new data, we used a number of the industrial datasets with diverse chemical
compounds. These datasets are summarized in Table 2.3 and are described below in
more detail.

Dataset Number of compounds Description

228,899

EINECS 68,778

HPV 2,355

Enamine Drug-like compounds synthesized and 
screened by the Enamine company
Compounds produced in Europe 
in amounts of 1 tone per year or more
Compounds produces in United States 
in amounts of 1 millions pounds per year or more

Table 2.3. A brief overview of the investigated industrial datasets of chemical compounds.

A.  Enamine dataset

The Enamine dataset contained over 287,000 chemical compounds that were
synthesized by the Enamine company (http://www.enamine.net/) in 2009. These
compounds possessed improved ADMET profiles, in particular they had molecular
weight not more than 350 and cLogP not more than 3, which made them significantly
more water soluble and less lipophilic. Thus, the Enamine contained mostly drug-like
compounds that can be used for screening purposes in drug design.

B.  EINECS dataset

The EINECS (European INventory of Existing Commercial chemical
Substances) dataset contained 68,779 unique chemical compounds that are produced or
imported in Europe in amounts of more than one tone per year. These compounds are
intended for the registration in REACH program and, therefore, they are of particular
interest for the assessment of their environmental hazard.

C.  HPV dataset

HPV (High Production Volume) dataset contained the chemicals produced or
imported in the United States in quantities of 1 million pounds or more per year;
collecting these compounds was a part of EPA (Environmental Protection Agency) HPV
Challenge program (http://www.epa.gov/ncct/dsstox/sdf_hpvcsi.html). After filtering
out composite substances, stereoisomers and metals, 2,355 compounds remained. Being
produced in high volumes, these compounds are interesting for estimation of their
environmental harm. In this work, we investigated the applicability of QSAR models
for the prediction of toxicity and mutagenicity to the HPV dataset. 
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2.4 Summary
In QSAR, prediction of biological and physicochemical properties of molecules is

based on application of machine learning techniques to datasets with experimental
measurements. To be able to apply the quantitative analysis to chemical compounds,
they are represented as a set of numerical features, so called molecular descriptors. The
knowledge extracted from datasets of experimental measurements is represented in a
mathematical form with a help of machine learning techniques. Such mathematical
representation of the knowledge is referred to as a predictive model, which aims to
predict the investigated property for new compounds. 

An important part of QSAR modeling is determination of the applicability
domain (AD) of models, i.e. a subspace of the chemical space, where a model can be
applied and give reliable predictions. In this work, a generalized approach to AD was
used, which complements every prediction with an estimate of the prediction accuracy.
Thus, the AD can be determined by taking only the molecules that have the estimated
prediction accuracy higher than the predefined threshold. The assessment of prediction
accuracy is done using auxiliary numerical measures referred to as distances to models
(DM). Distances to models possess an important feature: they correlate with the
prediction accuracy and, therefore, can be used for its estimation. The methodology for
such estimation is based on the DM-based accuracy averaging. Additionally, the chapter
described the methods for the chemical interpretation of AD based on the analysis of
molecular sub-fragments.
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3 Online chemical modeling
environment – OCHEM

This chapter presents an online platform for QSAR research on the Web
(OCHEM, accessible at http://ochem.eu). The platform allows to simplify and automate
the process of the QSAR modeling. Moreover, it supports all the methods introduced in
this work and makes their use publicly available online. The platform served as the
main tool for most of the research performed in the scope of this thesis work.

3.1 Motivation
Creation of a predictive QSAR model involves a number of time-consuming and

tedious steps including data search and preparation, selection and calculation of
appropriate molecular descriptors, application of a particular machine learning method,
evaluation of results and assessment of the model applicability domain. A particularly
difficult step is collecting high quality experimental data. This step involves time-
consuming work with scientific literature, manual extraction of experimental data from
the literature and preparation of the data for further steps of the modeling process. On
the next step, a researcher often uses external tools to calculate molecular descriptors
for the data and to finally train a model using a machine learning method of choice.
Further follows the evaluation of the model performance, the applicability domain
assessment, the investigation of the outliers and irregularities in the data, the revision of
the initial dataset and repetition of the whole process. To sum up, the process of
modeling is tedious and iterative.

It is interesting that there are hundreds or possibly even thousands of models
published every year (e.g., more than 50 models were estimated to be published only
for lipophilicity, logP, and water solubility in 2005) [45,46]. However, for most models,
a publication marks the end of their life cycle. Only seldom models continue as
software tools and perform practical prediction of new data, i.e. they seldom serve the
purpose that they were developed for. Thus, after spending a considerable effort on data
preparation, development and publication, there is virtually no use of these models at
the end of this endeavor. Attempts to reproduce the published models are not always
successful and can be an art of their own.

One of the difficulties in the reimplementation of models is data availability.
Indeed, models built with so-called memory-based approaches, such k-Nearest
Neighbors (kNN), Support Vector Machines, Probabilistic Neural Networks, etc. require
the initial data that was used to train the models. Nonetheless, many models are still
being published without these data. Many published models may include only names of
molecules or only calculated descriptors. Unfortunately, chemical names are often
ambiguous, while calculated descriptors are subjected to the same implementation
problems as aforementioned for models. Thus, substantial efforts could be necessary for
reproducing published results.
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There is a variety of online tools to store chemical information of small
compounds (i.e online databases) and tools to create predictive models. However, most
of these tools lack essential facilities required for modeling. For example, some data
providers (PubChem, ChemSpider, DrugBank, Chempedia, ChemExper [47-52])
provide storage of chemical information but lack modeling tools. Furthermore, some
databases do not provide essential information required for data verification and
modeling: the source of information and the conditions under which the experiments
have been carried out. The quality of such data, which is very important to create a
predictive model, cannot be easily verified. A number of online tools [53,54] provide
modeling facilities, but lack integration with a chemical database and cannot provide a
stable workflow of typical QSPR modeling steps.

This chapter presents a unique and innovative online platform, the Online
Chemical Modeling Environment (OCHEM, http://ochem.eu  )  , which allows to perform
and partially automate the aforementioned steps of the QSAR modeling process. The
platform includes two major subsystems: the database of experimental measurements
and the modeling framework. The database subsystem includes the storage of
experimental measurements and tools to efficiently introduce, search and manipulate
chemical data. The modeling framework provides facilities to use these data in the
modeling process and perform all the steps of a typical modeling workflow. Most
importantly, the developed and published OCHEM models are publicly available
(together with the data used to develop them) to the scientific community and can be
freely used on the Web to predict new molecules.

The author of this work has made the key contribution to the development of
OCHEM. More precisely, this contribution included the development of the global
framework and concept, the structure of the database, the modeling framework and,
importantly, the tools for applicability domain assessment.

3.2 The database of experimental measurements

3.2.1 Structure overview
The database contains results of experimental measurements of biological and

physicochemical properties of small molecules together with the conditions under
which the experiments have been carried out and the sources where this data was
published. The structure of the database is schematically presented in Figure 3.1.

Figure 3.1. A schematic overview of the OCHEM database.
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The experimental measurements are the central entities of the database, which
combine all the information, related to the experiment, in particular the result of the
measurement, which can be either numeric or qualitative, depending on the measured
property. 

An experimental measurement record includes information about the property
that was measured and the chemical compound. The compounds and the properties can
be marked with particular keywords, also known as tags, which allow convenient
filtering and grouping of the data. Exemplary tags are “ADME properties”, “toxicity”,
“perfluorinated compounds” etc.

For every measurement stored in the OCHEM, it is mandatory to specify the
source of the data. This is usually a publication in a journal or a book. The OCHEM
strict policy is to accept only the experimental records that have their source specified.
This restriction improves the quality of the data and allows to verify it by checking the
original publication. 

The OCHEM database stores the original units of measurements (i.e., as provided
in a publication) and can interconvert between different units, thus allowing to use data
with different units for modeling. Units are grouped by categories (for example Kelvin,
Celsius and Fahrenheit degrees belong to the “Temperature” category of units and can
be automatically interconverted to each other). Each numeric property has a
corresponding category of units, for example, the category of units for Inhibition
Concentration 50% (IC50) is “Concentration”. Values in units within the same category
can be automatically interconverted.

An important feature of the database, which is also unique among the other
chemical databases, is the possibility to store conditions of experiments. This
information is crucial for modeling: in many cases, it is useless to specify the result of
an experimental measurement without specifying the conditions under which the
experiment was carried out. For example, it does not make sense to specify boiling
point without pressure. Such conditions can be indicated as obligatory, i.e., it is strictly
required to specify them for every experimental measurement for this property.
Similarly to values of the experimental measurements, the condition values can be
numeric (with unit of measurement), qualitative or even textual.

3.2.2 Sources of information
One of the basic principles of the OCHEM database policy is a strict requirement

to provide the source of information for every experimental measurement introduced to
the database. Most chemical databases do not store this information, which makes it
difficult to verify the data and to correct errors. 

The OCHEM supports two types of sources: articles (publications in scientific
journals) and books (or chapters of books). There is a number of supplementary fields
for every type of source: title, abstract, journal, PubMed identifier, DOI identifier, ISBN
number, web link etc. For every source, it is possible to store a PDF file, which makes it
easier to verify the data later on. Articles and books can be either entered manually or
uploaded automatically (from PubMed database [55], external file, by ISBN number
etc)

All publications can be accessed from the article browser, which allows to search
publications by author, PubMed ID, ISBN, title, journal etc. Additionally, from the
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article browser, a user can navigate to the experimental measurements associated with a
particular publication.

3.2.3 Data access and management
After data has been introduced to the OCHEM database, the experimental

measurements can be navigated (by the measured property, by the conditions of
experiment, by publication, etc.) and organized in the sets that can eventually be used to
train a QSAR model.

Data search and filtering. Every entity in the OCHEM database has a
corresponding dialog referred to as browser, where the records can be accessed,
searched and modified. An example of the browser of experimental measurements can
be found in Figure A1 on 133 in Appendix. In every browser, the filters are used to
focus on a certain subset of the data, e.g. a training set to create a new predictive model.
Records can be filtered by literature source (article or book where the data has been
published), physicochemical property or experimental condition and structural
information, e.g. molecule name or InChI key as well as by molecular sub-fragments.
Additionally, there are the comprehensive filter options to find duplicated
measurements, errors in molecular structures, the measurements with a particular range
of property values etc. 

A typical scenario of the dataset preparation is to filter data by a property (e.g.,
the octanol-water partition coefficient), by particular conditions of experiments (e.g.,
partition coefficient measured in 30% methanol solution) or by substructure (e.g., the
measurements only for Platinum complexes).

Baskets. Experimental measurements can be combined in sets referred to as
baskets. The typical use of a basket is to create a set for further use in the modeling
process as a training or a validation set. In the basket profile, a user can see an overview
of publications with experimental data used to create the basket, the number of unique
compounds, etc. 

Duplicates management. To ensure data consistency, it is essential to avoid
redundancy in the database. Thus, there is a need for strict rules for definition of
duplicates. In the OCHEM, two experimental records of a physicochemical or
biological property are considered to be duplicates if they are obtained for the same
compound under the same conditions, had the same measured value (with a precision
up to 3 significant digits) and are published in the same article. We refer to these
records as strong duplicates, as opposite to weak duplicates, for which only part of the
information is the same. The OCHEM database does not forbid strong duplicates
completely, but forces all the duplicates (except for the record introduced first) to be
explicitly marked as error. This ensures that there are no strong duplicates among the
valid (i.e, non-error) records.

Importantly, the uniqueness of chemical compounds is controlled by the special
molecular hashes, referred to as Inchi-Keys.[56] Namely, for the determination of
duplicated experimental measurements, two chemical structures are considered same if
they have identical Inchi-keys.

The OCHEM allows weak duplicates (for example, completely identical
experimental values, published in different articles) and provides facilities to find them.
Moreover, in the modeling process, it is always automatically ensured that the same
compounds in the training set appear only in one fold of the N-fold cross-validation
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process. 

3.3 Modeling framework

3.3.1 Overview
An essential part of the OCHEM platform is the modeling framework. Its goal is

to provide facilities for building predictive QSAR models. The framework is integrated
with the database of experimental data and supports all the necessary steps required to
build a computational QSAR model: data preparation, calculation and filtering of
molecular descriptors, application of machine learning methods, analysis of the model
performance and, importantly, assessment of the applicability domain.

The modeling framework allows combining inhomogenious experimental data
measured under different conditions of experiments and represented in different
measurement units. The conditions can be passed as additional inputs for calculation
models, whereas data in different measurement units are automatically converted to the
default unit of measurement.

The framework supports calculation both of classification models (i.e. qualitative
predictions: active vs. non-active, mutagenic vs. non-mutagenic etc) and of regression
models (predictions of numeric properties such as lethal dose or concentration, partition
coefficient, melting point). Importantly, every experimental measurement used to train a
model can be tracked and analyzed individually, which allows to identify the reasons
for outliers and other irregularities in the data.

Finally, the OCHEM provides an assessment of applicability domain by
complementing each prediction with an estimation of the prediction accuracy, which is
based on the approaches introduced in the “Methodology” chapter.

This section gives an overview of these features and of the steps required to build
a computational model in the OCHEM.

3.3.2 Calculation of models
Generally, to create a predictive model, it is necessary to specify the training and

(optionally) validation set, to choose and configure the machine learning method, to
select and configure descriptors and configure the filtration rules. Finally, the calculated
model is reviewed based on various statistical measures (RMSE, MAE, r2, etc.) and on
the prediction plots.

Training and validation datasets. One of the most important necessary steps to
create a predictive model is the preparation of the input data, i.e. the training set that
contains experimentally measured values of the predicted property. The property is
identified automatically based on the contents of the training set. If the training set
contains multiple properties, they will be predicted by the model simultaneously, which
allows the knowledge about different (but related) properties to be combined into a
single model. This feature is referred to as multi-learning [57]. Multi-learning was
shown to significantly increase overall performance in comparison to models developed
for each property separately.

For each predicted property, it is necessary to select the default measurement unit.
All the input data will be automatically converted to this unit and the model will give
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predictions in this unit. Conversion in a single unit allows combining inhomogeneous
data with different units of measurements. 

Figure 3.2. The first step of the model creation: the selection of training and validation sets, the
machine learning method and the validation protocol.

The machine learning method. After having specified the training and
validation sets (Figure 3.2), a user selects a machine learning method and the validation
protocol. Currently, the OCHEM supports linear and kernel ridge regression,
associative neural networks, kernel partial least squares (KPLS), correction-based LogP
model, support vector machines (SVM), Fast Stage-wise Multivariate Linear
Regression (FSMLR) and k nearest neighbors (kNN). These machine learning methods
are overviewed in the “Methodology” chapter on page 7.

Validation of models. The OCHEM offers two possibilities to validate a model:
N-fold cross-validation and bagging (refer to page 9 for the description). Although it is
possible to build a model without validation, it is strongly recommended to always use
one of the two validation options since the absence of a proper validation may result
into misleading results and an over-fitted model [58,59]. Moreover, the bagging
validation has an additional purpose: it is used to calibrate the estimation of the
accuracy of the predictions, since it provides multiple predictions that can be used to
calculate the standard deviation DM. 

If cross-validation is chosen, the whole process of model development, including
filtering of descriptors, is repeated N (by default 5) times with a different split of the
initial set into training and validation sets. Only respective training set data are used in
each step for model development. 

In case of bagging validation, the system generates N (by default 100) training
sets and builds N models, based on these sets. The N sets are generated from the
original training sets by random sampling with replacement. The compounds that were
not included in the training set of a particular model are used to validate the
performance of this model; the final prediction for a compound is the mean prediction
over all the models where this compound was in the validation set. 

For both cross-validation and bagging, duplicated molecules (regardless of
stereochemistry) are used either in training or validation sets, but never in both

38 Online chemical modeling environment – OCHEM



simultaneously. 

3.3.3 Descriptors
The OCHEM supports all of the molecular descriptors outlined in the

“Methodology” chapter and a number of additional descriptor types. The available
descriptors are grouped by the software that contributes them: ADRIANA.Code [60],
CDK descriptors [61], Chirality codes [62-66], Dragon descriptors [7], E-State indices
[8], ETM descriptors [67,68], GSFrag molecular fragments [69], inductive descriptors
[70], ISIDA molecular fragments [9], quantum chemical MOPAC 7.1 descriptors [71],
MERA descriptors [72-75], MolPrint 2D descriptors [76], ShapeSignatures [77] and
logP and aqueous solubility calculated with ALOGPS program [10]. Many of the
descriptor types have additional configuration options; for example, for ISIDA
fragments, it is necessary to provide minimum and maximum length of the molecular
sub-fragments taken into account; for Dragon descriptors, it is possible to individually
select several of the 20 logical descriptor blocks, etc. The descriptor selection screen is
shown in Figure 3.3. 

Figure 3.3. Choice and configuration of molecular descriptors.
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3.3.4 Conditions of experiments
A unique feature of the OCHEM is the possibility to use conditions of

experiments for modeling. The properties of chemical compounds usually depend on a
number of conditions under which the experiment was carried out. Examples of such
conditions are temperature, pressure, pH, measurement method, etc. The OCHEM
allows to use these conditions in the modeling process as descriptors. 

This feature makes it possible to combine the data measured under different
conditions. For example, the boiling point data measured under different pressures can
be combined into a single training set and used to develop a computational model.
Another example is combining LogP values measured in different pH buffers, e.g. pure
water, 30% methanol or saline. The case with different pH buffers occurred in one of
the studies described further in this work, the prediction of octanol-water partition
coefficient for Platinum complexes.

3.3.5 Configuration of the machine learning methods
There is a number of configuration options that are specific for each particular

machine learning method. The available machine learning methods are associative
neural networks (ASNN), k nearest neighbors (KNN), kernel ridge regression and
kernel partial least squares (KRR and KPLS), the LogP model, multiple linear
regression analysis and fast stage-wise multivariate linear regression (MLR and
FSMLR) and support vector machines (SVM). These machine learning are described in
detail in the section “Machine learning methods” on page 7. 

The basic configuration options and their effects on the modeling are summarized
below in Table 3.1. In general, there are three types of effects of a parameter. First, a
parameter can control how fast a model is calculated, whereas longer calculation times
may result into better models. Second, a parameter can provide the data-specific effect
and should be optimized for every problem individually. Third, the parameter can
control the goodness of fit for predictions on the training set. A high fitness usually
results in a more complex model, which can perform good on the training set but have a
poor predictive ability in general. Basically, this parameter type controls over-fitting.

Machine learning method Configurable parameter

Associative neural networks (ASNN)
The number of neurons in the hidden layer

speed vs. qualityThe number of iterations
The training algorithm

KNN
The metrics in the descriptors space

data-specificThe number of neighbors

KPLS and KRR
The kernel type data-specific
The grid-search optimization parameters speed vs. quality

LogP - -
MLR The significancy level for variable selection

FSMLR
The relative size of the internal validation set
Shrinkage

SVM
SVM type

data-specificKernel type
The grid-search optimization parameters speed vs. quality

Effect of 
the parameter

goodness of fit 
vs.

generalization ability

Table 3.1. The configurable parameters of the machine learning methods in OCHEM and their
effects. 

40 Online chemical modeling environment – OCHEM



3.3.6 Model calculation
After the modeling process has been initiated, the calculation task is posted to the

system of distributed calculations (described further). In case of a moderately large
model (based on several thousands of compounds in the training set and several
hundreds of molecular descriptors), the calculation can take from several hours to
several days depending on the utilized machine learning method. All the pending (in
calculation) models are stored in a special registry (referred to as “pending tasks”, see a
screenshot in Figure 3.4). After the training of a model has been completed, it can be
fetched from the registry of pending tasks and saved for further use.

Figure 3.4. A screenshot of the registry of the pending QSAR models.

Importantly, multiple models can be trained simultaneously. For example, in case
of the study for LogPow predictions described further in this work, we trained 20
models in parallel simultaneously. Moreover, as these models used bagging, each of
these 20 models was in fact an ensemble of 100 individual models. Thus, there were
2,000 models that were trained in parallel.

3.3.7 Distributed calculations
QSAR modeling is often very intensive in terms of the required time and

computational power. Both the calculation of molecular descriptors and training of
models with thousands of compounds require intensive calculations. The time required
for the calculation of ensembles of models is even higher: instead of one model, a
hundred of models should be trained and afterwards applied for prediction of new
compounds. The calculation of ensembles is essential for the calculation of the STD
DM (page 16) and the assessment of the AD. For example, in case of the Ames test
study described further in the work, the neural networks model alone had to be trained
100 times using a dataset with more than 6,000 compounds and then applied to about
300,000 compounds. Being performed on a single computer, these calculations could
take up-to several months of calculations, which is infeasible for a regular research.

Thus, for QSAR research, there is a clear need for a distributed calculation
system. This problem was addressed and in the OCHEM system. All the calculations
are distributed to almost 200 CPUs, which include LSF (Load Sharing Facility) servers
of Helmholtz Centre in Munich and a number of desktop computers (Figure 3.5). The
calculation tasks are controlled by a central unit, the Metaserver, which receives,
assigns and stores calculation tasks. The calculation task types distributed over the
calculation servers include the machine learning algorithms (neural networks, support
vector machines etc), the molecular descriptors and the management servers, which
control the general flow of tasks in a typical QSAR modeling process.

The distributed calculation system was capable to reduce the calculation time up-
to 100 times. The distribution of calculations was indispensable for the Ames test and
cytochromes inhibition studies, which were based on the datasets with thousands of
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measurements and ensembles with hundreds of individual models. 

Figure 3.5. Distribution of calculations in OCHEM.

3.3.8 Analysis and management of models
The OCHEM provides with a variety of statistical instruments to analyze the

performance of models, to find outliers in the training and validation sets, to discover
the reasons for the outliers and to assess the applicability domain of the model. In this
section, we briefly overview these instruments.

Regression models. The commonly used measures of a regression model
performance are the root mean square error (RMSE), the mean absolute error (MAE)
and the squared correlation coefficient (r2). The OCHEM system calculates these
statistical parameters for both the training and the validation sets.

For a convenient visual inspection of the results, the OCHEM is equipped with a
graphical tool that allows to create the observed-vs-predicted chart (see Figure 3.6).
This type of chart is traditionally used to visualize the model performance and to
discover outliers. Each compound from the input dataset is represented as a dot on this
chart, where the x-coordinate of the dot corresponds to the value of the property,
observed experimentally and y-coordinate is the value, predicted by the model.
Importantly, each dot on the chart is interactive; a click on the dot opens a window with
the detailed information about the compound: the compound name, the measured and
predicted property values, the publication, conditions of experiment, etc. The possibility
to track each compound to the reference source is a very important feature for
understanding of the reasons why the compound is considered to be an outlier. A user
can quickly check why a bad prediction happened, whether it is due to an error in the
dataset, differences in the experimental conditions or due to the failure of the model to
predict the compound properly. This seemingly simple feature is a good example of the
advantage of integrating the database with the modeling framework.
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Classification models. In case of classification models, the performance measure
is the average correct classification rate (in %). The accuracy is complemented with a
confusion matrix, which shows the numbers of compounds classified correctly for every
class, as well as details for misclassified compounds, e.g., how many compounds from a
class A are classified as belonging to a class B (see Figure 3.7).

Figure 3.6. Basic statistics for a predictive model. The training set has a link that opens a
browser of experimental records where a user can examine properties of all compounds used
to in the model. A click on a dot in the observed-vs-predicted chart opens a similar browser
information window for the corresponding compound.

Figure 3.7. Statistics of a classification model. Summarized are the prediction accuracies and
the confusion matrices for the training and test sets.

Comparison of multiple models. Often, it is useful to compare different models
that are built on a basis of the same data but with different QSAR approaches, that is
with different molecular descriptors and machine learning methods. The OCHEM
supports a collective view of the models sharing the same training set. An example of
such an overview is presented in Figure 3.8, which shows several models for prediction
of the octanol/water partition coefficient, a study, which is reported further in the
“Applications” chapter. Each point is clickable and allows to track every experimental
measurement used in the models and, thereby, to investigate irregularities in the data
and outliers. 
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Figure 3.8. An overview of the models based on the same training set.

Automatic recalculation of models. Since the OCHEM is a public database that
is populated by users, the data may contain errors. Therefore, data may be changed
during verification and correction by other users over time. It may lead to a significant
alteration of the training sets and to invalidation of the previously developed models. To
address this problem, the OCHEM provides a possibility to recalculate existing model
preserving the previous workflow parameters (e.g. by applying the same machine
learning method with the same parameters and descriptors) and to compare new results
with the original model.

The registry of models is a dialog that shows the previously trained and saved
models (Figure 3.9). The dialog displays a brief summary of the model: the name, the
predicted property, the training and validation sets and their sizes, the date of creation of
the model. If necessary, it is possible to export a model in Excel or CSV format for
further offline analysis. Here, the models can be published to the publicity so that every
user on the Web can access the model. Such a model receives a unique web link, which
makes it convenient to share models and reference them from publications.

Figure 3.9. The registry of models in the OCHEM system.

3.3.9  Application of models
After a model has been successfully trained and saved, it can be applied to predict

new compounds. The models to be applied are selected from the registry of models
(Figure 3.9). The target compounds can be either provided in an SDF file or drawn
manually in a molecule editor. Alternatively, the compounds can be selected from a
prepared before basket.

After the molecules have been selected, a user submits a prediction job and is
forwarded to the waiting screen. When the model calculation is completed, a user is
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provided with the predictions by the selected models for all the target compounds. The
predictions can be exported into an Excel file for offline analysis.

3.3.10 Applicability domain assessment
Importantly, the OCHEM modeling framework contains tools that allow to assess

the applicability domain of the QSAR models and to estimate the prediction accuracy
for each particular compound individually. The AD assessment is based on the methods
developed in this thesis work and presented earlier in the “Methodology” chapter. 

A.  DMs and accuracy averaging

The heart of our AD assessment methodology is the concept of “distance to
model” (DM). The DM concept and examples are discussed in detail on pages 15-22.
The OCHEM supports a number of DMs: LEVERAGE, ASNN-STD, BAGGING-STD,
CORREL, CLASS-LAG and STD-PROB. The use of each DM is limited by several
(partially technical) restrictions summarized as follows.

1. The BAGGING-STD can be used with any model as long as it is validated
using the bagging protocol, which provides an ensemble of the models required to
calculate the standard deviation.

2. The LEVERAGE can be used if the size of the training set is bigger than
the number of descriptors used for the modeling. The LEVERAGE cannot be used
with LogP-LIBRARY model since this model does not involve calculation of
molecular descriptors.

3. The CLASS-LAG can be used for any classification model based on
neural networks and KNN methods. The STD-PROB can be used only for neural
networks.

4. The ASNN-STD and CORREL can be used only with neural networks.

Once a QSAR model is trained and the chosen DMs are calculated, it is possible
to analyze the prediction accuracy of the model based on a particular DM. This analysis
is based on the accuracy averaging procedure (see section “Analysis of prediction
accuracy” on page 22). In the OCHEM, the accuracy can be averaged using the bin-
based accuracy averaging (BBA), the sliding window averaging (SWA) and the
cumulative averaging. The BBA is used to estimate the prediction accuracy for new
compounds, whereas the SWA – to inspect the dependency of the prediction accuracy
from a DM visually. The cumulative accuracy averaging is useful for interpretation of
the DM since it shows what percentage of the compounds from the training set in
average are predicted with a particular accuracy. A user can interactively select the
averaging type and recalculate the averaging dynamically.

To quantify the prediction accuracy, the OCHEM uses several measures: root
mean square error (RMSE), mean absolute error (MAE), the Pearson correlation
coefficient and the coefficient of determination for regression models and the correct
classifications rate (CCR) for classification models. However, for AD assessment, only
RMSE and CCR are used for regression and classification models, respectively. The
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reason for the use of RMSE is that it allows an easy estimation of the confidence
interval under assumption that the errors are distributed normally.

An example of BBA is shown in Figure 3.10, which is based on the BAGGING-
STD DM and a KRR model for the prediction of the octanol-water partition coefficient,
developed as a part of a study reported further in the “Applications” chapter. In this
figure, the red dots represent the compounds from the training set, where the y-axis
value corresponds to the residuals of predictions. The black “steps” represent the BBA
itself, which is also summarized in Table 3.2. Thus, the values of DM less than 0.13 (the
first “step” in the BBA) correspond to the highly accurate predictions with RMSE of
0.21, whereas the values of DM more than about 0.5 (the last “step” in the BBA)
correspond to the predictions with a low accuracy and RMSE of 0.85. 

The estimated RMSE values allow to estimate the confidence interval for a
prediction. Namely, if the errors within a bin are distributed normally, then 95% of all
residuals within this bin will be inside the [-1.96σ, 1.96σ] interval, where σ is the
standard deviation (see an example in Table 3.2).

Figure 3.10. An example of the bin-based accuracy averaging, which is used in OCHEM for the
estimation of prediction accuracy.

The interval of the DM Estimated RMSE

< 0.13 0,21 ±0,42
(0.13, 0.18) 0,36 ±0,70
(0.18, 0.23) 0,42 ±0,82
(0.23, 0.29) 0,45 ±0,89
(0.29, 0.31) 0,74 ±1,45
(0.31, 0.51) 0,77 ±1,51

> 0.51 0,85 ±1,66

95% confidence interval
for the predictions

Table 3.2. The details of the bin-based average example.

B.  Estimation of the prediction accuracy

Once the prediction procedure is completed, the OCHEM shows the estimated
RMSE, the 95% confidence interval and the DM value for every prediction. For
classification models, the correct classification rate (CCR) is used instead if RMSE. In
order to discover the most reliable predictions, the compounds can be sorted by the
prediction accuracy. An exemplary prediction of the inhibitory growth concentration
(log(ICG50-1)) by 3 different models is shown in Figure 3.11.
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Figure 3.11. The prediction for new compounds and the estimation of the prediction accuracy in
the OCHEM system.

3.4 Implementation aspects
The OCHEM is mainly based on the Java platform. The methods with high

requirements to computational resources (ASNN, kNN, MLRA) were developed using
C++ code. The data is stored in a MySQL database. All queries are executed using the
Java Hibernate technology that provides an intermediate abstract layer between Java
code and the database.

The JAXB library is used to create XML files and XSLT transformations to
convert XML files to HTML web-pages. To connect design and functionality, we used
the MVC methodology with the Java Spring framework. To make the client side
dynamic and user friendly, we used Java-script and AJAX, which makes the system
look more like a dynamic online application rather than a static Web site.

For chemistry-related features, we used the JME molecule editor[78], the CDK
toolkits [79] and the ChemAxon (http://www.chemaxon.com) Standartizer. The CDK
[79] is used for various chemoinformatics tasks such as preprocessing and
fragmentation of molecules as well as calculation of descriptors. The visualization of
molecules as well as interconversion of molecules between SDF, SMILES and MOL2
formats is done using the ChemAxon toolkit. 

The OCHEM comprises about 100,000 lines of Java, C++, and shell script code.
Several of its critical components, e.g., the task management system, were inspired by
the Virtual Computational Chemistry Laboratory (VCCLAB, http://www.vcclab.org)
[53].

3.5 Summary and outlook
The Online Chemical Modeling Environment (OCHEM) contains a set of tools

for easy creation, publication and use of predictive models for physicochemical and
biological properties. The user-contributed database allows upload of large amounts of
experimental data. The database allows storing supplementary information, like
conditions of experiments, units of measurements with automatic interconversions,
sources of the data (scientific publications, books), etc. 

The database is strongly integrated within the modeling framework; the data can
be flexibly filtered and used for the training of predictive computational models. The
modeling framework in the OCHEM supports all the typical steps of QSPR modeling:
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data preparation, calculation and filtering of molecular descriptors, application of
machine learning methods (both classification and regression), analysis of the model,
assessment of the models domain of applicability and using the model to predict
properties for new molecules. The complexity of the modeling process is hidden behind
a convenient user interface. Models can be published on the Web and publicly used by
others.

The OCHEM is available at http://ochem.eu and comes in two versions: the main
database and the “sandbox”. The latter is intended for users to test and get acquainted
with the system. Currently, the main database contains about 120,000 publicly available
experimental measurements for about 300 properties. We developed tools that facilitate
the migration of data from other databases and used them to introduce about 1,700,000
e x p e r i m e n t a l m e a s u r e m e n t s f r o m t h e C h e m B L d a t a b a s e
(http://www.ebi.ac.uk/chembldb  )   to the “sandbox”. Recently, we have also uploaded
more than 23,000 records from the ChemExper (http://www.chemexper.com) for
physical properties such as boiling point, melting point and density. To keep the data
up-to-date, the update server periodically uploads new data from the ChemExper
database. A similar server is currently being implemented for automatic data retrieval
from the ChemSpider (http://www.chemspider.com). The developed methodology can
be used to incorporate any other database. The OCHEM modeling framework uses a
cluster of more than 100 CPUs that allows calculations of models with large data sets in
a reasonable amount of time.

On the practical aspect, the OCHEM was used to build the predictive models and
estimate their AD for all the QSAR studies reported in this thesis work: the prediction
of the Ames test, inhibition growth concentration (pIGC50) against T. Pyriformis, the
octanol-water partition coefficient for platinum complexes and the inhibition of
cytochromes.

Our intention is to make OCHEM the platform of choice to perform QSPR/QSAR
studies online and share them with other users on the Web.
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4 Benchmarking studies

The QSAR techniques presented in “Methodology” chapter were benchmarked in
two studies, a qualitative modeling (classification) study and a quantitative modeling
(regression) study. The first study involved the in silico prediction of mutagenicity (the
Ames test); the second study – the prediction of the toxicity on Tetrahymena pyriformis.
In both the studies, we benchmarked a number of DMs in combination with different
QSAR approaches.

4.1 Prediction of Ames mutagenicity

4.1.1 Ames test and mutagenicity
Ames test is a rapid and inexpensive bacterial assay for the assessment of

mutagenicity of chemical compounds. This assay uses genetically modified strains of
Salmonella Typhimurium and checks whether a chemical compound can cause a reverse
gene mutation [41]. As there is a strong evidence that a mutagenic compound is also
likely to be carcinogenic [80], the Ames test can be used to identify potential
carcinogens. The test is widely used in industry and pharmacology for screening and
filtering out potential carcinogens on early stage before performing epidemiological
surveys and expensive animal tests [81].

This study, based on the data from the Ames Challenge 2009 [82], aims to deeply
investigate applicability domain of QSAR models for prediction of the Ames test
results. 

4.1.2 Methods and datasets

A.  QSAR approaches

Twelve international teams submitted 29 models to the 2009 Ames mutagenicity
challenge. All models were evaluated according to the 5-fold cross-validation
procedure. Each group also developed models using the whole training set that were
“blindly” applied to predict test set compounds. The consensus model was calculated by
averaging predictions of all 29 individual models developed using whole training set
data. 

The descriptors used by the participating models included several types: Dragon
descriptors, molecular fragments count (ISIDA fragments) and E-State indices (see
section “Molecular descriptors” on page 5). Additionally, in this study, a number of
research groups used two specific descriptor types: inductive electronegativity scale[83]
(referred to as “inductive descriptors”, abbreviated as ID) and SiRMS[84] (SImplex
Representation of Molecular Structure).

The machine learning methods included simple and associative neural networks
(NN and ASNN), PLS, linear regression, decision tree, random forest, SVM, KNN and
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naïve Bayes classifier (see section “Machine learning methods” on page 7). All the
participating groups are summarized in Table 4.1 and the participating QSAR models in
Table 4.2.

Group name Abbreviation

UI 2
Technical University of Berlin TUB 2 1
Lanzhou University ULZ 2
Linnaeus University LNU 1 1

OCHEM 1 1

University of British Columbia UBC 2

ULP 4 4

Moscow State University MSU 2 2

PCI 3 3

UMB 1
University of North Carolina UNC 7 6
Environmental Protection Agency, EPA EPA 2 2
Total models 29 20

The number of 
provided models

Models with numeric 
prediction values

University of Insubria

Helmholz-Zentrum Munich, 
OCHEM group

Louis Pasteur University, 
Laboratory of Chemoinformatics

Physico-Chemical Institute of 
the National academy of Sciences of Ukraine
University Milano-Bicocca

Table 4.1. The 12 international groups and their models for the Ames test predictions.

Model name Descriptors used Training method Numeric predictions Own DM
CONS - - + -
EPA_2D_FDA PCID FDA + ELLIPS
EPA_2D_NN PCID Neural networks +
LNU_Drag_PLS Dragon PLS +
MSU_FRAG_LR Fragments Linear regression +
MSU_FRAG_SVM Fragments SVM + SVM1 AD

OCHEM_ESTATE_ANN E-State indices +

PCI_Drag_RF Dragon Random forest +
PCI_SiRMS.Drag_RF SiRMS Random forest +
PCI_SiRMS_RF SiRMS Random forest +
TUB_3DDrag_RF Dragon Random forest DA Index
TUB_3DDrag_SVM Dragon SVM DA Index
UBC_ID_IWNN Inductive descriptors Weighted NN
UBC_ID_NN Inductive descriptors NN
UI_Drag_KNN Dragon KNN
UI_Drag_LDA Dragon LDA
ULP_ISIDA_NB ISIDA Fragments + Trust level
ULP_ISIDA_SQS ISIDA Fragments SQS + Trust level
ULP_ISIDA_SVM ISIDA Fragments SVM + Trust level
ULP_ISIDA_VP ISIDA Fragments Voted Perceptron + Trust level
ULZ_3DDrag_KNN Dragon KNN
ULZ_3DDrag_SVM Dragon SVM
UMB_Drag_DT Dragon Decision Tree
UNC_Drag_KNN Dragon KNN
UNC_Drag_RF Dragon Random forest +
UNC_Drag_SVM Dragon SVM + AD Mean
UNC_SiRMS.Drag_RF SiRMS+Dragon Random Forest +
UNC_SiRMS.Drag_SVM SiRMS+Dragon SVM + AD Mean
UNC_SiRMS_RF SiRMS Random forest +

SCAvg

Associative 
neural networks

Naïve Bayes

Table 4.2. The models that participated in the Ames test AD benchmarking.
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The chosen classifications labels were “-1” and “1” for non-mutagenic and
mutagenic compounds, respectively. Numeric (continuous) prediction values were
available only for 20 models including the consensus model, while the other 9 models
had only discrete (“-1” and “1”) predictions available. As some of the investigated DM
required continuous prediction values, only these 20 models were used in most of the
further analysis. Several DMs that could be used with qualitative predictions were
applied to all 30 models, including the consensus model (see Tables 4.1 and 4.2).

B.  Applicability domain assessment

The AD assessment was based on a number of reliability measures referred to as
distances to models (DMs). We compared a number of general DMs (STD,
concordance, leverage, STD-PROB, CORREL, CLASS-LAG); these measures are
described on pages 15-18 of the “Distances to models” section, which provides the
general definition for DM as well as the description of every particular DM. Three STD
measures were analyzed: the standard deviation of a neural networks ensemble (ASNN-
STD) and the standard deviation of qualitative and numeric predictions (CONS-STD
and CONS-STD-QUAL based on 20 and 29 models, respectively). Based on these three
STD DMs, three corresponding STD-PROB DMs were analyzed: ASNN-STD-PROB,
CONS-STD-PROB and CONS-STD-QUAL-PROB.

Additionally, we analyzed a number of individual DMs provided by participants
of the Ames challenge separately:

DA-Index. The applicability domain employed by the TUB group is based on the
kappa, gamma and delta indices introduced by Harmeling et al. [85]. The first two
indices are heuristics that have been previously used in the chemoinformatics
community: kappa and gamma are the maximum and the mean Euclidian distances to
the k-nearest neighbors in the descriptor space. The delta index corresponds to the
length of the mean vector to the k nearest neighbors. Since kappa and gamma are only
based on distances, they do not explicitly indicate whether interpolation or extrapolation
is expected for prediction. The delta index is capable of this distinction and indicates the
degree of extrapolation. Input descriptors for all indexes were weighted following the
development of Gaussian Process Classification model [86]. The arithmetic mean
values of gamma and delta indices were used to estimate prediction confidence. A
threshold value determined using training set was used to decide whether a test-
compound was inside or outside of the AD. The output of this decision process was
denoted DA-Index.

AD_MEAN values were provided by UNC group for SVM models that were
developed using three sets of descriptors (SiRMS, Dragon and combined). AD_MEAN
corresponds to the average Euclidean distance between a compound and its three
nearest neighbours in the training set. The distances were calculated using the entire
pool of descriptors. As AD_MEAN values were available for two models,
UNC_SiRMS_SVM and UNC_Drag_RF, we investigated the two respective measures,
AD_MEAN1 and AD_MEAN2.

ELLIPS values were calculated using the EPA_2D_FDA model. According to this
DM, a prediction is within the applicability domain of the model if the test chemical is
within the multidimensional ellipsoid defined by the ranges of descriptor values for the
chemicals in the cluster (for the descriptors appearing in the cluster model). The model
ellipsoid constraint is satisfied if the leverage of the test compound (h00) is less than the
maximum leverage value (hmax) for all the compounds used in the model [87]. The ratio

Benchmarking studies 51



h00/hmax was denoted as ELLIPS. 

SCAvg (average similarity coefficient). The cosine similarity coefficient to the
three nearest neighbours used in the EPA_2D_NN method was used as SCAvg DM.

Two groups (ULP and MSU) classified predicted molecules into several classes
with different prediction quality as described below.

Trust level. The applicability domain for the models provided by ULP group was
based on a measure referred to as trust level. This measure has values in the range of
{1,2,..5}, where the “5” corresponds to the highest trust level ("optimal") and 1 - to the
lowest trust level ("none"). The trust score for a particular compound is based on 3
factors: (i) the number of models having the compound in their local applicability
domain, MINDIFF-OK, as described in [88], (ii) number of dissident predictors in the
set (i.e., models that gave predictions, different from the mean prediction) and (iii) the
average prediction value, where values close to 0.5 are considered as less reliable. The
further details on the calculation of trust score are shown in Figure A2 in Appendix on
page 134.

SVM1 AD. The Applicability Domain for the MSU group models was computed
using the one-class classification approach (novelty detection) based on the 1-SVM
method [89]. The parameters of 1-SVM method were chosen as follows: the RBF-
kernel parameter γ was taken from the same value used for building classification SVM
models, while the value of ν was fixed at 0.01. 

The SVM1 AD procedure associates the applicability domain of QSAR/QSPR
models with the area in the input descriptor space where density of training data points
exceeds a certain threshold. The main assumption of this procedure is that the predictive
performance of the models tends to be high for the test compounds inside the high
density areas, since outside the high density area all test objects are located far from
training objects, which makes interpolation of properties from training to test objects
unreliable. Instead of searching a decision surface separating high and low density areas
in the input space, the one-class classification 1-SVM approach looks for a hyperplane
in the feature space associated with the RBF-kernel. The ability of novelty detection
models to be used as AD of machine learning models was earlier demonstrated by
Bishop [90]. The use of 1-class SVM novelty detection method to assess the
applicability domain of models based on structured graph kernels has recently been
suggested by Fechner et al [91]. 

In summary, 16 different DMs were analyzed in this study: 3 STD measures, 3
STD-PROB measures, CONCORDANCE, CLASS-LAG, CORREL, DA Index,
AD_MEAN, ELLIPS, SCAvg, Trust level and SVM1-AD. Among these DMs, 5 were
based on the space of descriptors and 11 – on the space of properties.
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C.  Benchmarking criteria

For most of the investigated models, the SWA and BBA averaging resulted into
noisy dependencies (they do not fall monotonically, see an example in Figure 4.1) and,
thus, BBA was inconvenient to identify the accuracy coverage. Therefore, to compare
the performances of the DMs, we used the accuracy coverage criterion based on the
cumulative averaging (see page 24 for the definition of the cumulative averaging). 

As it was shown in the further analysis (page 62), the accuracy of inter-laboratory
variations within the Ames challenge dataset was 90%. Therefore, the 90% accuracy
threshold was selected for the accuracy coverage criterion. The accuracy coverage
values for the training and test sets were denoted as cTRAIN-90% and cTEST-90%.

Complementary to the accuracy coverage, we used the area under curve (AUC)
criterion to validate the results.

Figure 4.1. The prediction accuracy of the neural network model as a function of CONS-STD
and CONS-STD-PROB. The solid lines (sliding-window averaging) show the averaged accuracy
on the moving window with 200 compounds. Although there is a trend that the accuracy of
prediction decreases with an increase of the DMs, the dependency is not smooth and there are
significant fluctuations. The cumulative averaging (dashed lines) smooths the variations, which
makes it more suitable for the comparison of DMs.
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4.1.3 Results and analysis

A.  Comparison of distances to model

As mentioned in the methods section above, the comparison of DMs was based
on two criteria: the accuracy coverage (cTRAIN-90% and cTEST-90 %, for training and test set
respectively) and the area under curve (AUC). Instead of comparing the absolute values
of the criteria, we gave a rank to each DM for every model. Thus, the DM with the
highest value of a criterion received rank “1”, the second-highest DM – rank “2” and so
on. Thereafter, the ranks were averaged over all 20 models.

The results for cTRAIN-90% and cTEST-90% criteria are summarized in Table 4.3, where
the DMs are sorted accordingly to their rank based on cTEST-90% value. The complete set
of cTRAIN-90% and cTEST-90% values can be found in Table A1 in Appendix, page 127. The
CONS-STD-QUAL-PROB measure appeared to be the best one, considering averaged
ranks over all models on the test set. According to the bootstrap test, the top 3 models
(CONS-STD-QUAL-PROB, CONDCORDANCE and CONS-STD-PROB) were not
significantly different from each other with p>0.05 for both the training and test sets,
but were significantly better (p<0.05) than the other investigated measures. 

The ranks based on the accuracy coverage (Table 4.3) were not significantly
different from those based on the AUC (Table 4.4). More precisely, the ranks changed
for the 4 lowest-ranked DMs (LEVERAGE, SCAvg, CORREL and AD_MEAN2),
which were, however, not significantly different from each other. The single significant
difference of the AUC ranks from the accuracy coverage ranks was that, according to
the AUC criterion, the CLASS-LAG outperformed the ASNN-STD-PROB. Thus, the
two criteria provided consistent results and, for all the further analysis, we used the
accuracy coverage criterion (cTRAIN-90% and cTEST-90%) because of its simpler and more
intuitive interpretation.

Remarkably, the DMs based on the descriptor space (AD_MEAN1 and
AD_MEAN2, ELLIPS, SCAvg and LEVERAGE) are in bottom of the ranking list
according to both the criteria. It leads to the assumption that the property-based DMs
(with an exception of CORREL) perform systematically better than the descriptor-based
DMs.

According to the PCA (principal components analysis) plot on Figure 4.2, some
of the models were quite similar, since they were based on the same descriptors and
machine-learning methods, e.g. UNC_Drag_RF and PCI_Drag_RF, PCI_SiRMS_RF
and UNC_SiRMS RF. Indeed, agreement within these pairs of models was about 95%,
whereas the average pairwise agreement of the models was only 83%. Therefore, it
might be reasonable to combine these models when calculating the consensus-based
DMs (CONS-STD, CONS-STD-PROB) to avoid redundancy. However, combining
these four models in two by averaging their predictions did not affect the DM-based
sorting of compounds. Therefore, the rankings of the DMs, given in Tables 4.3 and 4.4
were not affected after similar models were united.

54 Benchmarking studies



Distance to model Average rank (according to the accuracy coverage)
Training set Test set

CONS-STD-QUAL-PROB 2,15 1,83
CONCORDANCE 1,65 2,15
CONS-STD-PROB 3,38 2,95
CONS-STD-QUAL 3,7 4,95
ASNN-STD-PROB 6,4 5,48
CONS-STD 4,88 5,75
CLASS-LAG 7,5 6,68
ASNN-STD 8,4 7,78
ELLIPS 9,15 8,98
AD_MEAN1 12,43 10,18
CORREL 10,35 11,65
SCAvg 11,08 11,85
AD_MEAN2 11,3 12,33
LEVERAGE 12,65 12,48

Table 4.3. The average ranks of the DMs considering their coverage of the 90% prediction
accuracy.

Distance to model
Average rank (according to the AUC criterion)

Training set Test set
CONS-STD-QUAL-PROB 2,15 1,95
CONCORDANCE 1,4 2,1
CONS-STD-PROB 3,4 2,75
CONS-STD-QUAL 3,8 4,9
CLASS-LAG 6 4,95
ASNN-STD-PROB 6,4 5,65
CONS-STD 5,3 6,1
ASNN-STD 8,05 7,9
ELLIPS 12,1 9,6
AD_MEAN1 10,9 11,25
LEVERAGE 12,85 11,3
SCAvg 11,6 11,7
CORREL 9,95 11,85
AD_MEAN2 11,1 13

Table 4.4. The averaged rankings of the DMs ranked by the AUC criterion.

.
Figure 4.2. The PCA plot of the Ames challenge models based on the space of predictions for
t h e t e s t s e t . F o u r m o d e l s (UI_Drag_LDA, UBC_ID_IWNN, ULZ_3DDrag_SVM,
ULZ_3DDrag_KNN) are not shown, since they were apparent outliers.
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Figure 4.3. The cumulative accuracy-coverage plot for CONS-STD-PROB DM based on the
test set predictions. The curves show the accumulative accuracy for a particular (variable)
percentage of compounds. The curves clearly show that CONS-STD-PROB is highly correlated
with the prediction accuracy.

Figure 4.4. The cumulative accuracy-coverage plot for CLASS-LAG based on the test set
predictions.
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The dependency of the model performances from the CONS-STD-PROB DM is
shown on the cumulative accuracy-coverage plot (Figure 4.3). The plot indicates that
35-70% of all compounds (depending on the model) are predicted with 90% accuracy.

The same kind of plot for the CLASS-LAG DM (Figure 4.4) reveals its poorer
performance. The difference is visually apparent: for a part of the models the CLASS-
LAG was not able to separate predictions with 90% accuracy. In Figure 4.4, these
models correspond to the curves under 90% line. The visual difference in Figures 4.3
and 4.4 clearly indicates that combining CLASS-LAG with STD (resulting in CONS-
STD-PROB) increased the quality of AD assessment.

As it can be observed in Figure 4.4, the performance of the CLASS-LAG DMl was
very dependent on a model (see also the complete table of accuracy coverages in Table
A1 on page 127 in Appendix). The poor performance of CLASS-LAG for a part of the
models may be explained by the specifics of the distribution of their predictions.
Indeed, the two histograms in Figure 4.5 reveal that the prediction values of
UNC_SiRMS_SVM are similar to discrete values {-1, 1}. Therefore, these prediction
values contained less information than predictions by PCI_SiRMS.Drag_RF, which
were distributed more uniformly. Indeed, the CLASS-LAG DM failed for the first
model (cTest-90% =0% coverage), and yielded excellent results for the second one (cTest-90%
=62% coverage).

Figure 4.5. The distribution of the prediction values for two exemplary models. The prediction
values of the model on the left chart resemble rounded discretized “-1” and “1” values, whereas
the values on the right chart have a continuous distribution and, therefore, provide more
information for the estimation of prediction reliability. This fact is confirmed in practice: CLASS-
LAG of UNC_SiRMS_SVM (left chart) has poor performance (0% coverage of 90% accuracy) in
contrary to PCI_SiRMS.Drag_RF (right chart), which separates 63% of compounds with 90%
prediction accuracy.
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The measures, on which DA Index was based (namely, delta-index and gamma-
index), did not outperform DA Index itself. Therefore, they were not analyzed
separately. The LEVERAGE DM could not separate 90% accuracy predictions for any
model altogether (cTEST-90% = cTRAIN-90% = 0); therefore, it was not analyzed further.

Figure 4.6 demonstrates that AD_MEAN (solid lines) results that are apparently
worse as compared to CONS-STD-PROB (dashed lines).

Figure 4.6. A comparison of AD_MEAN DM (solid lines) with CONS-STD-PROB DM (dashed
lines) for the UNC SVM models. Apparently, CONS-STD-PROB provides a better separation of
highly accurate predictions.

It was interesting to compare the performance of descriptor-based and property-
based DMs. The DMs based on the descriptor space (LEVERAGE, DA Index, ELLIPS,
SCAvg and AD_MEAN) identified only small percentages of molecules with > 90%
accuracy. For example, the LEVERAGE and DA Index DMs completely failed to
identify compounds 90% (cTRAIN-90% = cTEST-90% = 0)2, whereas AD_MEAN could identify
such highly accurate predictions only for a small part of the models. ELLIPS was
successful for almost all the models (17 out of 20 models); however, its cTRAIN-90% and
cTEST-90% values were significantly lower than that of the property-based DMs (e.g., 0%-
16% for ELLIPS and 41%-69% for CONS-STD-PROB). Thus, the property based DMs
performed significantly better than the descriptor-based DMs.

2 For full details on the accuracy coverage for all models, refer to Table A1 in Appendix on page 127
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A remarkable point is that the percentage of active (mutagenic) compounds
within the area of 90% prediction accuracy is 51-55%, which is not significantly
different from the percentage of active compounds in the whole test set (53%).
Therefore, mutagenic compounds are neither overrepresented nor underrepresented in
the applicability domain of the models. Moreover, prediction accuracy, sensitivity and
specificity of all the models were not significantly different within the area of 90%
prediction accuracy. Thus, a separate analysis of specificity and sensitivity would have
been redundant and was not performed. 

The PCA plot of the DMs (Figure 4.7), calculated using the DM-based rankings
of Ames challenge compounds, reveals the high similarity of the five DMs, which are
based on the global consensus model. Indeed, these models explore slightly different
aspects of basically the same data and are strongly intercorrelated (see Table A2 in
Appendix on page 128). The CONS-STD, CONS-STD-QUAL and CONCORDANCE
DMs form one cluster within which the CONCORDANCE DM provided the best
discrimination of the highly accurate predictions (Tables 4.3 and 4.4).

Figure 4.7. A principal components plot for the analyzed DMs. The PCA was based on the
rankings that the DMs gave to the compounds from the training and test sets. Apparently, the 5
consensus-based DMs form two close clusters: CONS-STD, CONS-STD-QUAL and
CONCORDANCE in the first cluster and CONS-STQ-QUAL-PROB and CONS-STD-PROB in
the second one.

B.  Analysis of the qualitative AD measures

As it was mentioned above, several groups provided qualitative AD measures for
their models. Here, these measures are compared to the CONS-STD-PROB DM. For
reference, the performance of CONST-STD-PROB for the relevant models binned on
several intervals is shown in Table 4.5.
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The prediction accuracy

ULP_ISIDA_SQS TUB_3DDrag_SVM TUB_3DDrag_RF MSU_FRAG_LR MSU_FRAG_SVM
500 96% 93% 93% 94% 95%
500 86% 89% 90% 89% 90%
500 76% 79% 81% 80% 83%
500 53% 64% 65% 66% 68%
181 48% 61% 55% 54% 54%
2181 75% 80% 80% 80% 81%

Number 
of 

compounds

Table 4.5. Accuracy of predictions according to the CONS-STD-PROB. For first 500
compounds, it achieved the accuracy as high as 93-96%.

TRUST LEVEL. This AD-related information provided by ULP group is a generic
estimation of the degree of trust for the prediction of a particular compound. The trust
level had values of OPTIMAL, GOOD, MEDIUM and POOR depending on the
agreement of individual models and the number of models that had the compound in
their ADs (see the detailed schema in Figure A2 on page 134 in Appendix). We grouped
the test set compounds by trust level and computed de-facto prediction accuracy within
each group. The results are summarized in Table 4.6. 

Trust level Number of compounds Observed prediction accuracy
Trust level CONS-STD-PROB

OPTIMAL 1,221 81% 89%
GOOD 512 79% 69%
MEDIUM 415 53% 46%
POOR (or less) 33 70% 45%
Overall test set 2,181 75%

Table 4.6. The CONS-STD-PROB and TRUST LEVEL juxtaposed for the ULP_ISIDA_SQS
model.

Prediction accuracy apparently dropped with decrease of trust level (excluding the
POOR trust level that included only 33 compounds, which may not be sufficient for the
evaluation of prediction accuracy). Apparently, this measure had worse results than
CONST-STD-PROB. 1,221 most reliable predictions had the accuracy of 89%
according to CONS-STD-PROB and only 81% according to TRUST LEVEL.

One-class classification AD (SVM1 AD). This measure was provided by MSU
group. Accuracies grouped by the SVM1 AD are summarized in Table 4.7. Majority of
the compounds from training and test sets were predicted to be inside AD. The
prediction accuracy for these compounds was on average 5% higher than those outside
of AD. The CONS-STD-PROB method provided much better separation of molecules
with differences up to 40% for reliable and non-reliable predictions (Table 4.5).

SVM1 AD Number of compounds
Observed prediction accuracy

MSU_FRAG_LR MSU_FRAG_SVM
SVM1 AD CONS-STD-PROB SVM1 AD CONS-STD-PROB

Training set
Inside (= 1) 4194 79% 80% 80% 81%
Outside (= -1) 167 75% 59% 79% 53%
Overall training set 4361 79% 80%
Test set
Inside (= 1) 2046 81% 82% 81% 83%
Outside (= -1) 135 73% 53% 79% 55%
Overall test set 2181 80% 81%

Table 4.7. The CONS-STD-PROB and SVM1-AD DMs juxtaposed for the MSU models.

DA Index. The TUB group provided the DA-Index DM summarized in Table 4.8.
The most compounds (1,819, or 83% of the test set) had DA-Index value of 0, which
corresponds to the highest expected accuracy. However, the increase of the accuracy 2-
6% was not significant for both TUB models, TUB_3DDrag_SVM and
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TUB_3DDrag_RF. For the same models, 500 most accurately predicted compounds
identified using CONS-STD-PROB had 93% classification accuracy for both models,
Table 4.5.

 

DA Index Number of compounds
Observed prediction accuracy

TUB_3DDrag_SVM TUB_3DDrag_RF
DA Index CONS-STD-PROB DA Index CONS-STD-PROB

0 1819 81% 83% 80% 84%
Between 0 and 1 183 75% 62% 78% 61%
1 179 75% 60% 80% 60%
Overall test set 2181 80% 80%

Table 4.8. The CONS-STD-PROB and DA-Index DMs juxtaposed for the TUB models.

 Tables 4.5-4.8 show that the CONS-STD-PROB could separate predictions of
high and low accuracy better than any of the investigated qualitative DMs. For
example, the 681 most unreliably predicted compounds (i.e., molecules with the largest
CONS-STD-PROB values) had the accuracy as low as 52% (Table 4.5), i.e. almost the
same as the accuracy of a random guess. None of the qualitative DM measures could
identify predictions of such low accuracy. 

Moreover, none of the qualitative DMs allowed to identify predictions with the
accuracy of 90%, which corresponds to the inter-laboratory agreement of the Ames test.
On the contrary, 500 of the most reliably predicted compounds according to CONS-
STD-PROB DM had accuracy of as high as 95-96%.

In summary, the CONS-STD-PROB performed better than all the aforementioned
qualitative DMs: TRUST LEVEL, SVM1-AD and DA-Index.

C.  Ability to estimate the prediction accuracy

So far, we investigated the ability of DMs to distinguish accurate and inaccurate
predictions. As the main criteria for this kind of performance, we used the percentage of
compounds that were predicted with 90% accuracy on the training and test sets (cTRAIN-

90% and cTEST-90%) identified by the analyzed DM. However, it is also important to ensure
that a DM is capable of estimating the prediction accuracy for new compounds. 

Under assumption that a model is correctly cross-validated and the investigated DM
is consistent, the prediction accuracy for the compounds from the training set and the
test set within the same DM threshold should not be significantly different. Thus, the
DM threshold selected for the training set should should provide about the same
prediction accuracy on the test set. 

In order to check this assumption, we selected a DM threshold that provides the
90% prediction accuracy on the training set and calculated the prediction accuracy for
the compounds within the same threshold on the test set. The comparison was
performed for all the models in combination with all the investigated DMs. There were
20 models tested against 12 DMs, which resulted into 20x12 = 240 comparison cases.
We found that the prediction accuracy for the training and test sets was consistent with
significance level p=0.01. With the significance level of p=0.05, the estimated and
observed accuracies were significantly different only for 2 cases, which does not exceed
the statistically expected number of failures (for 240 comparison cases, 12 failures at
0.05 level of significance). 

Thus, the estimated accuracy based on the training set was in agreement with the
actual accuracy observed on the test set.
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D.  Interpretation of the AD

To determine which types of molecules are predicted accurately and, in contrary,
which types of molecules have the lowest predictions accuracy, we analyzed the
molecular sub-fragments which tend to induce high and low prediction accuracy. The
methodology of this analysis is described in the methodological section “Interpretation
of applicability domains” on page 27.

An overview of the significant fragments is presented in Figure 4.8. Apparently,
the molecules containing long carbon chains, nitro-groups, thiophene-groups as well as
acridine- and phenatrene derived molecules were overrepresented in the applicability
domain. After a more detailed investigation, we found out that long non-saturated
carbon chains were mostly presented in non-mutagenic compounds, whereas nitro- and
thiophene-groups as well as acridine and phenathrene – in mutagenic compounds. For
the prediction of such compounds, there was a high level of agreement between the
models (and, therefore, such compounds had low values of CONS-STD-PROB). In
contrary, the compounds containing halocarbons, sulfonate- and epoxide-groups were
not reliably predicted by the QSARs investigated in this study. 

Presumably, the low accuracy for particular sub-fragments was due to a particular
mechanism of mutagenicity. For example, the mechanism of action of C-C-Halogen
fragments can be explained by the electrophilic attack of a compound on the DNA
backbone. A partial positive charge on a carbon atom is attracted to a negative charge of
an oxygen or nitrogen atom in the DNA backbone, which results into covalent bonding
to DNA with halogen release. Alkylated DNA is then prone to replication problems
and/or impaired information transfer for protein synthesis, which ultimately lead to cell
mutation or apoptosis. 

As such fragments are very reactive, the aforementioned mechanism of
mutagenicity can be affected by metabolisation of the compound by liver cells, which
makes the prediction particularly difficult. For the stable and less reactive compounds
containing fused aromatic rings (i.e. acridines and phenatrenes), the metabolisation is
not likely to affect the structure and, thus, their mutagenic effect is stable and is easily
predicted by the models.

E.  Data variability analysis

There were several studies that analyzed the variability of Ames test experiments.
Let us critically review them for a better understanding of the results of our modeling.

The first study by Benigni et al [92] assessed the Ames tests carried out by 12
laboratories for 42 compounds. For every pair of laboratories, we calculated the level of
agreement as the number of the concordant measurements divided by the total number
of measurements. The distribution of agreements of 66 lab-pairs is shown on Figure 4.9.
The average pairwise agreement is only 75%. At the same time, Figure 4.9 reveals that
agreement of results between some laboratories can be sometimes higher than 90%.
This result was observed for 4 out of 66 pairs of laboratories (7% of all data).
Moreover, it is possible to expect a higher agreement if the data is measured within
same laboratory.
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Figure 4.8. The molecular sub-fragments presented in the reliably and non-reliably predicted
compounds. Shown are the sub-fragments that were significantly overrepresented in the
molecules having the most and the least reliable 400 predictions (A and B) according to the
CONS-STD-PROB DM. Below the fragments are the numbers of the relevant molecules with
the most reliable (left of the dash) and the least reliable (right of the dash) predictions.

Figure 4.9. The distribution of the pairwise agreements of the Ames test measurements carried
out by 12 laboratories. The 0.5 value on x-axis corresponds to the complete disagreement of
two laboratories. The data for the plot was taken from a study by Benigni et al [92].
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In the study by Piegorsch and Zeiger [93], the experimental concordance between
different laboratories was reported in range of 70 to 87% for different definitions for the
concordance measures. Each molecule in this set was measured in several experiments
either in different labs or in the same lab but at different times. The outcomes of
experiments were positive (+), weak positive (+W), negative (-) and questionable (?).
Similar to as it was done in the analysis by the original authors, we considered positive
and weak positive as AMES mutagens and ignored non-decisive experiments, which,
are usually expected to be re-measured. Then, we defined the accuracy of a
measurement of a compound as the maximum number of positive or negative tests
divided by the total number of the decisive experiments. Such accuracy could be
expected for our analysis, if we assume that molecules were tested on average just once.
The average accuracy of the AMES test was 93% and 90% if we considered molecules
with at least two (209 molecules) or three (49 molecules) decisive measurements,
respectively.

We further explored this result by estimating the variability of the measurements
used in our study. For this analysis, we used the Ames test data collected and publicly
available at the OCHEM http://ochem.eu. The database contains results for 3,205 of the
6,542 Ames challenge compounds. We used the same definition of accuracy as above
and calculated average accuracy of 94% for the compounds that had at least three
measurements (1,680 compounds selected from 189 articles). The variation of the
minimal number of measurements from 4 to 7 did not change this number for more than
+-0.3%. The 94% agreement is conformable with the achievable prediction accuracies
of the models investigated in this study. 

In this analysis, we mainly calculated the intra-laboratory variation, as compared
to the inter-laboratory and mixture of the inter- and intra-laboratory variations estimated
in works of Benigni et al [92] and Piegorsch&Zeiger [93], respectively. Unfortunately,
it was impossible to do an inter-laboratory analysis in our study. First, there was a small
overlap in molecules between different articles. Second, in the rare cases where it was
possible, several authors (in particular Errol and Zeiger) contributed to majority of
articles thus invalidating the goal of the inter-laboratory study. Therefore, for the
comparison of the DMs, we selected the accuracy of 90% obtained in work of
Piegorsch&Zeiger [93] as a conservative threshold for inter-laboratory comparison.

F.  Reliability of predictions vs. variability of experimental measurements 

Different subsets of molecules may differently behave in experiments: some of
them may have easily reproducible results (either mutagenic or non-mutagenic) while
the other molecules may show higher variability, e.g. because of various difficulties in
experimental measurements such as metabolic stability, low solubility etc. It is
interesting whether DMs can differentiate such chemicals.

We analyzed the variability of measurements for the molecules from the
Piegorsch dataset [93]. The total set had 239 molecules, but 3 of them did not have
structures defined and were excluded from our analysis. We developed a new ASNN
model using all the Ames challenge molecules with an exception of these 236
molecules, which formed the test set. The reliability of predictions was determined
using the ASNN-STD-PROB DM. Amid 50 compounds with the highest and the lowest
prediction reliability, we selected the molecules that had at least three decisive
measurements. There were 14 and 9 such molecules with an agreement of experimental
measurements of 96% and 89% respectively. Moreover, there were also 13 and 21
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compounds with questionable measurements within the same intervals. 

We applied a similar analysis to the 1,680 Ames challenge compounds having at
least three measurements. We found that 150 molecules with the highest and the lowest
reliability of predictions had an agreement of experimental measurements of 97% and
91%, respectively. Thus the confidence of predictions determined by the DM correlated
with the variability of experimental measurements: the molecules with higher
confidence of predictions have better agreements of experimental measurements and
vice versa.

Additionally to the above analysis, it is interesting to check out whether the
molecules having an experimental uncertainty are differentiated by DMs. For such
analysis, we selected all the Ames challenge compounds, which had at least one non-
concordant measurement. Thus, e.g. if there were 10 “active” results and one “non-
active” result, we considered the measurements for this compound as non-concordant.
Obviously, such analysis can be done only for compounds with two or more
measurements. A summary of such compounds is provided in Table 4.9.

Set
Training set 4,361 1,265 186

Test set 2,181 640 103

Total number 
of molecules

Thereof with 
multiple measurements

Thereof with 
non-concordant measurements

Table 4.9. A summary of non-concordant measurements.

Then, we calculated the DM values (CONS-STD-PROB) for such compounds
using the percentage scale and plotted the distribution density (Figure 4.9). Apparently,
for both the training and test sets, the non-concordant molecules tend to have larger than
average values of the DM. This furthermore confirms the aforementioned assumption:
the DM-based prediction reliability is affected by the uncertainty of experimental
measurements. 

Figure 4.10. The distribution of CONS-STD-PROB (in percentage scale) for the molecules
having at least one non-concordant (falling out) Ames test result. The green and red curves
correspond to the training and test sets. Apparently, such molecules have bias towards larger
values of CONS-STD-PROB. This fact further confirms the hypothesis: the prediction
uncertainty determined by the DM is partially explained by the uncertainty of experiments.
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G.  Reliable predictions for ENAMINE, EINECS and HPV databases

In order to estimate the applicability of the investigated Ames test models to
diverse chemical compounds, the OCHEM_ESTATE_ANN model was applied to the
ENAMINE, EINECS and HPV databases (described in more detail in the section
“Analyzed datasets” on page 28). Here, we will refer to the predictions having an
estimated prediction accuracy of at least 90% as “reliable predictions”. 

The accuracy of predictions was estimated using sliding-window averaging
(SWA) based on ASNN-STD-PROB DM. For HPV and EINECS datasets, the
percentages of reliable predictions were 30% and 16% respectively, which is close to
the percentage in the original dataset, used for training (25%). However, the percentage
of reliable predictions in ENAMINE dataset was only 4%, probably due to a higher
chemical diversity of the ENAMINE compounds in comparison to the training set. 

Figure 4.11. The estimated prediction accuracy for the original Ames challenge dataset, HPV,
EINECS and ENAMINE datasets. The black curve, based on SWA, plots the prediction
accuracy (left y-axis) against the ASNN-STD-PROB DM. The colored curves show the
percentage of compounds from the 4 datasets (right y-axis), having DM not more than a
threshold (x-axis).
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Figure 4.12. The percentage of compounds (y-axis) from the 4 datasets having the estimated
prediction accuracy not less than a required accuracy (x-axis). This plot is based on the plot
from Figure 4.11 with the DM-axis eliminated.

From the statistics in Table 4.10, it is evident that the number of predicted non-
mutagens is significantly higher than of mutagens for all three datasets.

 

Predicted value EINECS dataset
All Reliable All Reliable All Reliable

Non-mutagens 171,758 12,696 55,143 14,271 1,945 805
Mutagens 57,141 153 13,635 1,350 410 85
Total 228,899 12,849 68,778 15,621 2,355 890

Enamine dataset High production volume 
(HPV)

Table 4.10. Reliable Ames test predictions for ENAMINE, EINECS and HPV databases.
* “reliable” predictions are those with the estimated prediction accuracy of at least 90%, which
corresponds to the inter-laboratory variations.

Since the ENAMINE dataset contains the compounds with improved ADME
profiles, this dataset is of particular interest in the context of drug discovery. The
absence of mutagenic effects is one of essential requirements for a drug. In the
ENAMINE dataset 12,696 from 228,899 compounds (5.5%) were reliably predicted as
non-mutagens. Exactly these 12,696 compounds can be recommended for further
screening. Moreover, this number can be increased by relieving the requirements for the
prediction accuracy, e.g. to 85%, 80%, etc.

4.1.4 Summary
Based on 29 QSAR models used and the dataset in the Ames challenge 2009, we

analyzed the problem of AD assessment for binary classification models. 

The DM-based approaches allowed to distinguish the predictions of high and low
prediction accuracy. The most reliable predictions of the Ames test achieved the
experimental accuracy (ca 90%) while non-reliable predictions had the accuracy of the
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random guess (50%). The predictions of the later compounds are useless; one should
measure such compounds experimentally rather than rely on predictions.

 The several DMs were benchmarked. The top-ranked DMs were based on the
disagreement of the models: CONS-STD-PROB, CONS-STD-QUAL-PROB and
CONCORDANCE, which were also strongly inter-correlated. Another simple measure,
CLASS-LAG, was outperformed by the three aforementioned DMs but, nonetheless,
was not significantly different for the consensus model. It is important to mention, that
a l l t h r e e m e a s u r e s ( C O N S - S T D - Q U A L - P R O B , C O N S - S T D - P R O B ,
CONCORDANCE) implicitly use the predictions given by the consensus model. As the
consensus model was the best of all 30 models, these DMs may have had an advantage
because they incorporate information from the best (consensus) model. If we left out the
consensus-based DMs, the best measures were the CLASS-LAG and the ASNN-STD-
PROB. To sum up, the best performance was achieved by the STD-based DMs and the
CLASS-LAG.

We discovered that, for all the models, the best separation of the reliable and non-
reliable predictions was provided by the same DMs. In other words, the compounds
having the best prediction accuracy were the same for all the models, regardless of the
descriptors or/and the machine-learning technique used to develop them. This
phenomenon attests to the “universality” of DMs: a DM that was developed for one
model can be used for other models that are based on the same training set.

Another important result of this study is the discovery of a correlation between
the prediction uncertainty and the variability of experimental measurements. Namely,
we showed that the molecules with more reliable predictions had a higher agreement of
experimental measurements and, vice versa, the molecules with less reliable predictions
showed a higher disagreement of experimental measurements. Indeed, the molecules
from the first group contributed “cleaner” training sets and, thus, allowed the models to
achieve a higher prediction accuracy for their analogs. 

Using the DM-based approaches, we estimated the prediction accuracy for three
datasets with diverse chemical compounds: the EINECS, Enamine and HPV datasets.
The accuracy of 90%, which is the estimated inter-laboratory variance, was achieved
for 30% and 21% of HPV and EINECS databases of compounds using the ASNN
model. However, for the larger and more diverse Enamine dataset, only 6% of
compounds were predicted with such a high accuracy, presumably because of a higher
chemical diversity of the Enamine collection. Thus, to increase the accuracy of
predictions for such compounds, new experimental measurements are required.

The model developed using the OCHEM system (see Chapter 3) is publicly
available at http://ochem.eu/models/1.
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4.2 Toxicity against T. Pyriformis

4.2.1 Introduction
According to the requirements of the REACH program (Registration, Evaluation,

Authorisation and Restriction of CHemical substances), the compounds that are
produced in Europe in amounts of more than 1 tone per year must be registered in order
to estimate their environmental hazard. The are a number of the official human health
and environmental endpoints that need to be reported, e.g., aquatic toxicity on fish [94].
The number of compounds that need to be registered by year 2018 is more than
140,000, the amount which is infeasible to test experimentally. Moreover, the REACH
guidelines strongly encourage the usage of the alternative approaches for toxicity
assessment [6]. One of such approaches is the in-silico virtual screening using QSAR
models.

Thus, if QSAR models could provide reliable predictions with an accuracy
comparable to that of experimental measurements, then such models would constitute a
cheap, fast and reliable substitution for (or a complement to) experimental
measurements.

Nowadays, the growth inhibition of the ciliated protozoan Tetrahymena
pyriformis is an established screening tool for toxicity. This activity is often
quantitatively expressed as the logarithm of the growth inhibitory concentration
(pIGC50) and can be subjected to QSAR modeling. Although the toxicity on
Tetrahymena is not an explicit REACH endpoint, it has been shown that there is a
similarity in toxic potency of T. pyriformis and fish [95] and, therefore, pIGC50 on T.
pyriformis can be useful in the REACH context as a surrogate endpoint.

This study, based on the dataset with more than a thousand of pIGC50
measurements (introduced on page 29 of this work), investigates the applicability
domain of QSAR models for pIGC50 predictions.

4.2.2 Methods
For a better understanding of the methods used in this study, a reader may refer to

a number of concepts introduced in the methodological section “Applicability domain
of QSAR models“. The relevant concepts are distance to model (DM, page 15), bin-
based averaging (BBA, page 22), multi-gaussian distribution (MGD, page 26),
approval test for a DM (page 26).

A.  QSAR approaches

In total, eleven QSAR models built by 5 international scientific groups were
investigated. The models differed in the types of descriptors and modeling techniques.
All the models were developed using the training set, which contained 644 compounds
and were tested on 2 validation sets containing 339 and 110 compounds respectively. In
more detail, the datasets are described in the section “Analyzed datasets” on page 29. 

The models were based on 5 descriptor types: E-State indices, ISIDA fragments
and descriptors calculated by Dragon (see section “Molecular descriptors” on page 5).
Additionally, specifically for this study, two more software packages were involved for
the calculation of descriptors: MolconnZ (http://www.edusoft-lc.com/molconn/) and
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CODESSA-Pro (COmprehensive DEscriptors for Structural and Statistical Analysis,
http://www.codessa-pro.com/).

Table 4.11 summarizes QSAR approaches used and Table 4.12 summarizes the
statistical parameters for all models. Initially, all the eleven QSAR models were
developed using only the training set and their accuracy was estimated using the Leave-
One-Out (LOO) cross-validation. Following this analysis, we performed a “blind”
prediction of them molecules from both the validation sets and calculated RMSE on
these sets. The obtained RMSE values were used to compare the predictive ability of
the model.

Consensus Model. Additionally to the eleven individual models, a consensus
model was calculated as a simple non-weighted average the predictions given by the
individual models listed in Table 4.11. The statistical parameters of both individual and
consensus models are summarized in Table 4.12. The consensus model had a similar
prediction ability to that of the Associative Neural Network (ASNN) model for all the
three sets.

nn group descriptors abbreviation
distance to models 

1 UNC MolconnZ kNN-MZ EUCLID STD

2 UNC Dragon kNN-DR EUCLID STD

3 VCCLAB ASNN-ESTATE

4 ULP kNN kNN-FR

5 ULP MLR MLR-FR

6 UI OLS Dragon OLS-DR LEVERAGE
7 UK PLS Dragon PLS-DR LEVERAGE PLSEU
8 UNC SVM MolconnZ SVM-MZ
9 UNC SVM Dragon SVM-DR

10 ULP SVM SVM-FR

11 ULP MLR MLR-COD

12 Average of all the models - CONS STD

modeling 
techniques descriptor 

space
property-

based space
ensemble of 

192 kNN 
models

ensemble of 
542 kNN 
models

ensemble of 
100 neural 
networks

E-state 
indices

CORREL,
STD

ISIDA 
Fragments

EUCLID, 
TANIMOTO

ISIDA 
Fragments

EUCLID, 
TANIMOTO

ISIDA 
Fragments
Molecular 
properties 

(CODESSA-
Pro)

Table 4.11. A summary of the analyzed QSAR approaches for pIGC50 prediction.
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training set validation sets 
internal LOO 5-CV set 1 set 2

RMSE RMSE RMSE RMSE
ASNN-ESTATE 0.84 0.42 0.82 0.44 0.85 0.41 0.66 0.52
kNN-DR 0.92 0.3 0.8 0.5 0.84 0.41 0.59 0.57
kNN-FR 0.77 0.51 0.73 0.55 0.71 0.56 0.37 0.71
kNN-MZ 0.91 0.32 0.76 0.53 0.83 0.43 0.49 0.64
MLR-COD 0.72 0.55 0.69 0.59 0.71 0.57 0.58 0.58
MLR-FR 0.94 0.26 0.74 0.55 0.49 0.56 0.43 0.67
OLS-DR 0.75 0.53 0.77 0.51 0.77 0.5 0.58 0.58
PLS-DR 0.88 0.36 0.79 0.48 0.81 0.46 0.59 0.57
SVM-DR 0.93 0.28 0.81 0.46 0.7 0.57 0.53 0.61
SVM-FR 0.95 0.24 0.8 0.48 0.76 0.51 0.38 0.7
SVM-MZ 0.89 0.35 0.77 0.51 0.77 0.5 0.58 0.58
CONS 0.92 0.31 0.83 0.44 0.85 0.4 0.67 0.51

model
abbreviation

R2 R2 R2 R2

Table 4.12. The statistical parameters of the investigated pIGC50 models.

B.  Applicability domain assessment

The study analyzed the applicability domain of the 12 individual models based on
the concept of distance to model (DM). The DM concept and examples can be found in
the section “Distances to models” on page 15 of this work. Each participating group
provided their own definitions of DMs; these DMs are analyzed in this study and are
briefly overviewed below.

University of North Carolina at Chapel Hill in the United States (UNC). This
group used the ensemble of variable selection k Nearest Neighbors (kNN) and Support
Vector Machine (SVM) methods, which were applied to the descriptors calculated using
the Dragon and MolconnZ software packages.

The AD for models derived using kNN approach was calculated from the
distribution of similarities between each compound and its k nearest neighbors in the
training sets. The similarities were defined as distances between a molecule i and a
training set. They were computed as the average Euclidean distance to the k nearest
neighbors of this molecule in the training set. The distances were calculated not with all
variables, but only with a subset of variables identified by the modeling procedure as
optimal. More precisely:

EU M=
∑
j=1

k

d j

k
(4.1)

where dj is the distance of a query compound to its kth nearest neighbor and m is index
of the model. The distribution of distances (pairwise similarities) between each
compound and its k nearest neighbors in the training set was computed to produce an
applicability domain threshold, DT, calculated for each kNN model as follows:

DT=yZ  (4.2)

Here, y  is the average Euclidean distance of the k nearest neighbors of each
compound within the training set, σ is the standard deviation of these Euclidean
distances, and Z is an arbitrary parameter to control the significance level. Typically, the
default value of this parameter was set at 0.5, which formally places the boundary for
which compounds will be predicted at one-half of the standard deviation (assuming a
Boltzmann distribution of distances between each compound and its k nearest neighbors
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in the training set). Thus, if the distance of an external compound from all of its nearest
neighbors in the training set exceeded this threshold, the prediction was considered
unreliable.

In total M=192 and M=542 individual models were calculated using MolconnZ
and Dragon descriptors, respectively. The average values of the distances to each
individual model m=1,…,M

EUCLID= EU m=
∑
j=1

M

EU j

M
(4.3)

was used to estimate a distance of a molecule to the final ensemble of models. Notice,
that the minimal value of EUCLID is observed when the training set model was built
with k=1. The same definition of DM was also used for models built with the SVM
method.

University of Louis Pasteur in France (ULP). This group used the kNN, SVM
and Multiple Linear Regression (MLR) methods with the fragmental descriptors
calculated using the ISIDA software [9]. Applicability domains for the ISIDA-MLR and
ISIDA-kNN models were estimated with an approach similar to that of the UNC group
(EUCLID DM) with an exception that only one ISIDA-MLR and one ISIDA-kNN
model were calculated. Thus, no ensemble was built and there was no averaging over
the models. For both the approaches, the distances were calculated using k=3, which
was the optimal number of nearest neighbors for the kNN model. 

Additionally, to define the applicability domain, the ULP group considered the
minimal and maximal occurrences of fragments (which were selected by the regression)
within compounds in the training set for the ISIDA-MLR model. These values defined
an acceptable range for each fragment, resulting in a so called “descriptor bounding
box”. The compounds outside the bounding box (i.e. having an unacceptable number of
occurrences of a sub-fragment) were considered to be outside of the model's AD. For
the validation set compounds, the distance to the training set was considered as infinite
if at least one of its fragment descriptors was outside the corresponding range defined
on the training set.

University of Insubria in Italy (UI). This group used an Ordinary Least Squares
regression (OLS) and the genetic algorithm with the descriptors calculated using the
Dragon software. To assess the AD for their model, the UI group used the leverage DM
with a “warning” threshold calculated accordingly to Expression 2.14 (page 16). The
compounds with DM that exceeded the “warning” leverage threshold were considered
unreliable.

University of Kalmar in Sweden (UK). This group used Partial Least Squares
(PLS) method and Dragon descriptors. To assess the applicability domain, the UK
group used two DMs. The first DM was leverage, which was also employed by the UI
group. However, since different descriptors were selected in OLS and PLS models, the
nominal leverage values in both models were different. The second DM was the
distance to the PLS model, PLSEU, which was calculated using the UNSCRAMBLER
program as described in its manual or in the book [96]. In brief, PLSEU corresponds to
the distance of the descriptor vector in to its projection on the hyperplane of latent
variables (the PLS hyperplane). The idea behind PLSEU is that if the distance to the
projected vector is relatively high, a part of the information is lost during the projection
and, therefore, the prediction accuracy for this chemical compound may be
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compromised.

Additionally, we applied the ASNN machine learning method with E-state
indices. On the basis of this model, we calculated the CORREL DM (see page 18) and
used the cut-off value of 0.7.

In addition to the 4 types of DMs that were provided by individual participants,
we used two general DMs: the standard deviation (STD) based on a neural network
ensemble (STD-ASNN) and a consensus ensemble (STD-CONS), and the Tanimoto
similarity (TANIMOTO). A detailed description for these measures can be found in the
section “Distances to models”.

Thus, our study included 14 DMs of 6 different types (EUCLID, LEVERAGE,
PLSEU, CORREL, STD and TANIMOTO). The DM was named by combining its type
(STD, EUCLID, etc) and abbreviation of the method (see Table 4.11) in which the DM
was calculated.

C.  Benchmarking criteria

Similarly to the Ames test study, we compared the DMs according to the
cumulative accuracy coverage criterion and the AUC criterion (page 24 in
“Methodology” chapter). As the accuracy threshold, we used the accuracy of
experimental measurements for compounds with the narcosis mode of action (RMSE of
0.38). 

Additionally to these two criteria, we performed the analysis of the residuals
distribution. Namely, we checked how accurately the distribution of residuals is
approximated by the estimated distribution of residuals, suggested by bin-based
accuracy averaging (BBA, see section “Accuracy averaging” on page 22). To
approximate distribution of residuals, we used the mixture of Gaussian distributions
(MGD) with zero mean, but different standard deviations, which corresponded to the
estimated RMSE values, evaluated from the BBA procedure. The goodness of fit was
estimated quantitatively according to the likelihood score and visually according to
confidence consistency plots (page 26).

The likelihood score was also used for the DM approval tests (see page 26 for
definition). Namely, the likelihood score of the MGD was compared with the score of
the single Gaussian distribution (SGD). If the score of MGD was significantly higher
than the score of SGD, then the DM was considered as approved. To check whether the
difference between MGD and SGD is not caused by a mere chance but is statistically
significant, we calculated p-values on basic of the bootstrap test with 10,000 replicas.
The p-values are reported in Tables A3 and A4 in Appendix on pages 129-131. 
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4.2.3 Results

A.  Analysis of individual models

ASNN model. An example in Figure 4.13 demonstrates the variability of the
prediction accuracy for the ASNN model. 

First, a plot in Figure 4.13-D shows that the SGD was not a good approximation
for the distribution of residuals. The MGD generated using bin-based averaging (BBA)
over STD-CONS provided a significantly better approximation. The STD-CONS and
STD-ASNN had the best likelihood scores for both the training and validations sets.

Second, Figures 4.13A,B demonstrate that the prediction accuracy was variable
and correlated with the investigated DMs. The MGD calculated using STD-CONS DM
allowed the best separation of molecules with small and large errors. For example,
molecules from the training set with STD-CONS<0.19 and STD-CONS>0.73 had
average errors of 0.19 and 0.78 log units, respectively. Thus, the most and least reliably
predicted molecules had errors, which differed by the factor of four. 

The other DMs performed worse as compared to STD-ASNN and STD-CONS.
The EUCLID-kNN-MZ distance had a smaller likelihood score and provided a worse
discrimination of molecules with small and large errors. The most reliable predictions
according to this measure had the average error of 0.31 log units while the least reliable
predictions had the average error of 0.57 log units for EUCLID-kNN-MZ values of
<0.23 and >0.75, respectively. Figures 4.13A,B demonstrate that the ASNN model
errors correlated better with the STD-CONS distance and not with the EUCLID-kNN-
MZ for the training set (red line). This difference, however, is not so obvious for the
validation set (black line on Figures 4.13-A,B), for which both the DMs had similar
performances. The confidence consistency plot for the STD-CONS was closer to the
“optimal” plot compared to the EUCLID-kNN-MZ (Figure 4.13-D) thus indicating a
higher discrimination ability of the former DM. 

The LEVERAGE OLS, as well as several other DM (Table A3 on page 129), did
not calculate MGD with a significant score and thus did not discriminate molecules
with small and large errors for the training set. This result was also apparent from the
absence of correlations between this DM and errors (Figure 4.13C).

OLS model. The OLS model included six Dragon descriptors

log  IGC 50
−1=−18±0.70.065 ±0.002⋅AMR−0.50±0.04⋅O056

−0.30±0.03⋅O058−0.29±0.02⋅nHAcc0.046±0.005⋅H 04616±0.7⋅Me
(4.4)

Figure 4.14 shows that, although the MGD based on the LEVERAGE DM
discriminated molecules with low and large errors, the STD-CONS provided
significantly better results. Indeed, the former DM identified predictions with =0.5
and =0.66 for molecules with lowest and largest errors from the joint validation
set. For the same set, the STD-CONS DM had the minimum =0.36 and the
maximum =1.2 , respectively. Thus, the discriminative ability of the STD-CONS
was significantly better as compared to the LEVERAGE.

Depending on the purpose of the analysis, the latter metric could be used to
identify molecules that are predicted either accurately (e.g., registration within
REACH) or inaccurately (e.g., selection of new molecules to extend the model AD).
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The small discrimination power of the LEVERAGE DM did not allow performing such
selection efficiently.

Figure 4.13. Analysis of the ASSN-ESTATE model. The MGD for the training and joint
validation sets are shown for STD-CONS (A) and EUCLID-kNN-MZ (B) DMs. The MGDs are
based on the bin-based averaging (BBA). As it is seen in (C), the distribution of errors for the
LEVERAGE-OLS-DR did not calculate a significant MGD. The confidence consistency plot for
two exemplary DMs is shown in (D).

Figure 4.14. Analysis of the OLS-DR model given by eq 4.4. The STD-CONS DM (right plot)
provides a better discrimination of molecules with low and large errors compared to that of
LEVERAGE-OLS DM (left plot). The vertical line on the left plot corresponds to the leverage
threshold 3(K+1)/N = 3*7/664 = 0.033 (the “warning” leverage).
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Mechanism based model. Schultz et al [42] analyzed a simple model

log  IGC50
−1=0.545⋅logP16.2⋅Amax−5.91 (4.5)

N=392, R2=0.83, RMSE=0.31
which was developed using N=384 molecules (8 outlying molecules were excluded).
This model was based only on two descriptors, the octanol-water partition coefficient
(log P) and Maximum Acceptor Superdelocalizability (Amax). This equation predicted
molecules from the test set (the second validation set in our study) with RMSE=0.54 log
units. 

The authors of this model pointed out that the distance to the descriptor centroid
did not allow them to differentiate molecules with low and large errors [42]. However,
the BBA calculated using, e.g. STD-ASNN (Figure 4.15), successfully accomplished
this goal for molecules from both the training and validation datasets. 

Interestingly, five out of the eight outlying molecules (Benzoyl isothiocyanate,
Pentafluoronitrobenzene, Pentafluorobenzyl alcohol, a,a,a-4-Tetrafluoro-o-toluidine, 4-
Chloro-3,5-dinitrobenzonitrile, 1,5-Difluoro-2,4-dinitrobenzene), which were excluded
from the original equation, in fact had large STD-ASNN deviations (>0.27) and
contributed to the Gaussian distribution with the largest =0.49 . Thus, the low
prediction ability of the mechanism-based model (eq. 4.5) for these five outlying
molecules could be due to their structural diversity as compared to the other molecules
in the training set. This structural diversity was successfully captured by the STD-
ASNN DM, which identified that the predictions for the aforementioned compounds are
unreliable.

Figure 4.15. The BBA for the mechanism-based model (eq 4.5). The use of STD-ASNN DM
allowed for the discrimination of molecules with low and large errors in both training and
validation sets.

B.  Comparison of distances to models

For all three comparison criteria, we ranked all the 14 DMs separately for each of
the 13 models (the best DM received rank 1, the worst rank 14) and averaged the ranks
over all the models. The averaged ranks were calculated separately for the training (5-
fold cross-validation) set and the joint validation set. In case of the likelihood-score
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criterion, the DMs that did not pass the approval tests were not used in the scoring. The
results are summarized below in Tables 4.13, 4.14 and 4.15 for the accuracy coverage
criterion, the AUC criterion and the likelihood-score criterion respectively.

Apparently, STD-ASNN and STD-CONS are in top according to all three criteria.
We confirmed that superiority of these two DMs was statistically significant (p-value
less than 0.05 according to the bootstrap test). Another STD-based measure, STD-
KNN-MZ is ranked as third according to the accuracy coverage and AUC criteria and as
fourth according to the likelihood-score criterion. 

Although there were minor discrepancies in the ranks provided by the three used
comparison criteria, the general picture is the same: the STD-based DMs outperform
other DMs. This result is concordant with the results of the Ames test benchmarking:
the STD-based DMs (based on ensembles of neural networks and the consensus model)
are universal and work well for all the models. Thus, the compounds having the highest
prediction accuracy were the same for all the investigated QSAR approaches.

Distance to model
Ranking (RMSE 0.35 coverage)

5FCV Validation
STD-CONS 1,92 1,67
STD-ASNN 1,17 3,58
STD-KNN-MZ 11,25 4,54
EUCLID-KNN-MZ 8 5,42
EUCLID-KNN-FR 7,17 6,33
STD-KNN-DR 6,58 6,54
EUCLID-KNN-DR 7,58 7,04
AD-Si-PLS 9,04 7,5
TANIMOTO-MLR-FR 7,54 7,92
TANIMOTO-KNN-FR 5,96 9
LEVERAGE-OLS-DR 10,42 9,46
CORREL-ASNN 7,92 10,42
EUCLID-MLR-FR 7,83 12,25

Table 4.13. The averaged rankings of the DMs according to the accuracy coverage criterion
(sorted by rankings based on the validation set)

Distance to model Ranking (AUC)
5FCV Validation

STD-CONS 2,67 2,25
STD-ASNN 1,17 3,75
STD-KNN-MZ 7,17 3,83
EUCLID-KNN-FR 3,33 5,08
EUCLID-KNN-DR 6,42 5,92
AD-Si-PLS 7 6,25
EUCLID-KNN-MZ 10 7,17
STD-KNN-DR 5,75 7,75
TANIMOTO-MLR-FR 9,67 7,75
TANIMOTO-KNN-FR 5,92 9
LEVERAGE-OLS-DR 12,83 11,17
CORREL-ASNN 10,58 11,25
AD-Hi-PLS 12,42 11,5
EUCLID-MLR-FR 10,08 12,33

Table 4.14. The average rankings of the DMs according to the AUC criterion (sorted by
rankings based on the validation set)
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Distance to model average rank failures of approval tests
5-CV Valid. 5-CV Valid.

STD-CONS 1,8 1,1
STD-ASNN 1,2 2,5

4,3 4,1
8,3 5,3
4,9 5,4

LEVERAGE-PLS 5 6,3
7,1 6,4
6,1 6,8

TANIMOTO-MLR-FR 8,3 9 1
CORREL-ASNN 10,8 9,4 1
LEVERAGE-OLS-DR 12,6 11,1 2
EUCLID-MLR-FR 9,3 11,5 7
PLSEU-PLS 11,8 11,5 7

STD-kNN-DR
STD-kNN-MZ
EUCLID-kNN-DR

EUCLID-kNN-MZ
TANIMOTO-kNN-FR

Table 4.15. The averaged rankings of the DMs according to the likelihood-score criterion and
the number of models, for which the DMs failed to pass the approval tests

C.  Ability to estimate the prediction accuracy

As described in Methods chapter (section “Estimation of prediction accuracy” on
page 23), we used the bin-based averaging procedure performed on the training set to
estimate the prediction accuracy for new compounds. 

The BBA procedure calibrated on 5-fold cross-validation (5CV) residuals was
used to predict the RMSEs for the molecules from the validation sets. An example of a
BBA calculated using 5CV procedure is shown on Figure 4.13A as a blue line. This
BBA-plot mapped the STD-CONS distances to the estimated RMSE values (denoted as
 , we use tilde to denote estimated values). For example, the STD-CONS distances

in the range of [0, 0.15] corresponded to =0.25 , while distances larger than 1.1
corresponded to =0.80 . These ranges and values   were used to predict errors
for molecules from the validation sets. To do this we, firstly, calculated STD-CONS for
each new molecule and, secondly, estimated the prediction error using the BBA-plot
based on the 5CV procedure. Thus, for a molecule with STD-CONS=0.1, which
belongs to the [0, 0.15] interval, we predicted its average square of the error as
  0.12=0.25⋅0.25=0.0625 . We made such predictions for all molecules from the

validation set, i=1,…, M, and estimated the RMSE error for the validation set
accordingly to Expression 2.21 (page 23), as a root mean of squares of estimated
RMSEs for all the validation set compounds.

Table 4.16 reports a summary of the performances of the analyzed DMs (for the
complete details, refer to Table A4 in Appendix on page 131, which reports the
performance of analyzed DMs for all models). 

First, all the DMs correctly recognized a higher complexity of the second
validation set and predicted higher errors for this set as compared to the first validation
set. Thus, all the DMs were useful to discriminate datasets of different complexity on
the qualitative basis.

 Second, the STD-ASNN DM was top-ranked, which is consistent with the results
calculated on the training set (Tables 4.13-4.15). This means that STD-ASNN not only
was able to discriminate the predictions of high and low accuracy on the training set,

78 Benchmarking studies



but also provided a relatively accurate estimation for the prediction accuracy on the
validation sets.

Distance to model rank
calibrated on 5-CV set on validation set 1

validation set 1 validation set 2
RMSE RMSE

STD-ASNN 5 0,53 0,06 0,62 0,05 0,58 0,07
LEVERAGE-PLS 5,7 0,5 0,04 0,54 0,07 0,52 0,09

7,9 0,45 0,05 0,51 0,1 0,57 0,06
8,4 0,45 0,05 0,52 0,09 0,57 0,07

LEVERAGE-OLS-DR 10 0,5 0,04 0,52 0,09 0,51 0,09
10,4 0,5 0,04 0,54 0,07 0,52 0,08
11,2 0,46 0,05 0,52 0,09 0,56 0,07

TANIMOTO-MLR-FR 11,2 0,51 0,04 0,53 0,07 0,52 0,09
CORREL-ASNN 11,4 0,49 0,04 0,54 0,07 0,53 0,08
STD-CONS 12 0,65 0,16 0,72 0,12 0,54 0,07

EUCLID-MLR-FR 12 0,49 0,04 0,52 0,09 0,52 0,09
PLSEU-PLS 12 0,49 0,04 0,5 0,1 0,5 0,11

12 0,48 0,04 0,56 0,05 0,59 0,06
12 0,5 0,04 0,52 0,09 0,5 0,1

0,49 0,6 0,6

RMSE1 Δerr2 Δerr Δerr

EUCLID-kNN-MZ
EUCLID-kNN-DR

TANIMOTO-kNN-FR
STD-kNN-DR

STD-kNN-MZ
EUCLID-kNN-FR

average error3

Table 4.16. Estimated errors on the validation set. 1average predicted RMSE (e.g., using STD-
ASNN DM we predicted RMSE for all 12 analyzed models and averaged them). 2 average
absolute differences between predicted and actual RMSE for all methods (e.g., using STD-
ASNN DM we predicted RMSE for all 12 models and calculated average absolute difference
between predicted and RMSE errors for all models).

Remarkably, although the STD-CONS DM had an excellent discriminative power
on the training set, it received a low rank when applied to predict errors on the
validation set. This fact can be explained by the incorrect validation for a part of the
individual models, which performed the variable selection procedure before the cross-
validation and, therefore, may have provided over-fitted models. This assumption is
furthermore confirmed with the fact that STD-ASNN, which was based on a properly
validated model, was still on the top of the list (Table 4.16). Thus, the performance of
the STD-ASNN DM was consistent on all the investigated datasets.

The case described above points out that a proper validation is important not only
for avoiding over-fitted models but also for obtaining consistent DMs.

It was also possible to calibrate the BBA procedure on the first validation set to
estimate the prediction accuracy on the second validation set. We performed such
analysis and fitted the BBA using results calculated for the first validation set (Table A4
in Appendix on page 131). The errors predicted with these BBAs were similar to those
fitted on 5-fold cross-validation results.
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D.  Interpretation of the AD

Substructural analysis. The substructural analysis was performed as described
in the methodological section “Interpretation of applicability domains” on page 27,
similarly to the analysis in the Ames test study (page 62). For this purpose, we re-
developed the ASNN model using the complete set with 1,093 compounds. The model
had the overall cross-validated RMSE of 0.47. As a result of the substructural analysis,
we identified the molecular fragments for which the containing molecules had
prediction accuracy significantly different than the average accuracy. Such fragments
are summarized in Table 4.17.

 

Fragment name Number of compounds Accuracy Significance, p-value
Prediction accuracy significantly higher than average

C-O 447 0,35 <0.001
CCCC 355 0,38 <0.001
   CCCCC 240 0,34 <0.001
      CCCCCC 157 0,31 <0.001

Prediction accuracy significantly lower than average
Sulfur 62 0,85 <0.001
   S=O 17 1,21 <0.001
      O=S=O 11 1,38 <0.001
   S-C 26 0,98 0,001
Br 103 0,64 0,008
   Br-C 59 0,76 0,002

Table 4.17. The compounds predicted by the ASNN model with the accuracy significantly higher
(or lower) than the average accuracy of the model (0.47)

Apparently, the molecules that contained sulfur and bromine atoms were
predicted relatively inaccurate and had RMSEs of 0.85 and 0.64 (compared to the
average RMSE of 0.47). Furthermore, the sulfones (11 compounds) had even lower
prediction accuracy with RMSE of 1.38. When we observed the sulfones in detail, we
found out that, notwithstanding with a visual similarity of these compounds, their
pIGC50 values have wide range, from -2.20 (methyl sulfone) to 1.41 (divinyl sulfone).
Presumably, there might be a specific mechanism of toxicity, which was present in a
part of sulfones and which was not captured by the model. This assumption was
confirmed by investigations in a study by Seward et al (2001) [97], where the authors
showed that large toxicity values are associated with electrophilic toxicants, whereas
most of the investigated compounds have the neutral (narcotic) toxicity mechanism. A
study by Schultz et al [43] confirms that, presumably, vinyl containing sulfones have
the electrophilic toxicity mechanism. Importantly, the low prediction accuracy for
sulfones was correctly captured by the STD-ASNN DM: all the 11 sulfones were
among 25% of the highest DM values in the set and, therefore, they were correctly
identified as unreliably predicted compounds.

In contrary, the molecules with long saturated carbon chains were predicted with
the accuracy significantly higher than the average model accuracy. The molecules
containing four subsequent carbon atoms (355 compounds) were predicted with RMSE
of 0.38 and the molecules with six subsequent carbon atoms (157 compounds) – with
RMSE of 0.31. In both the cases, the RMSEs are significantly different (in the statistical
sense) than the average model RMSE 0.47.
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Analysis of pIGC50 values. To check whether the toxicity (pIGC50) of a
compound affects its prediction accuracy, we plotted the average RMSEs (over all 13
models) as a function of pIGC50 (the red curve Figure 4.16). Apparently, the more toxic
compounds compounds with pIGC50 > 1 (about 20% of compounds) had RMSE as
high as 0.6-0.8, whereas the more toxic compounds with pIGC50 in the [-0.7, 1] had
RMSE as low as 0.35-0.45. Thus, the investigated QSARs tend to have relatively poor
prediction accuracy for highly toxic compounds. Presumably, this phenomenon can be
explained by some unknown and rather strong mechanism of toxicity, which is different
from the toxicity mechanism of the majority of the training set compounds. For
example, as it was shown above with the sulfone-vynyl containing compounds, the
highly toxicant compounds may have the electrophilic mechanism of toxicity, which
was not captured by the model.

From a practical point of view, the usage of pIGC50 values for estimation of the
prediction accuracy is infeasible, since pIGC50 values are not available for new
predicted compounds. When we substituted the observed pIGC50 values with the
predicted ones, the accuracy did not have any clear dependency from pIGC50 (the
green curve on Figure 4.16). 

Figure 4.16. The average prediction accuracy (RMSE) depending on pIGC50 values.
Apparently, prediction s are more accurate for compounds with average or less than average
pIGC50 values ([-0.7, 1.0]); such compound have RMSE of as low as 0.35. Predictions with
high (more than 1.0) pIGC50 values have low accuracy (RMSE up-to 0.9). However, when the
real pIGC50 values are substituted with the predicted ones (the green curve), they cannot
discriminate predictions of high and low accuracy.
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E.  Reliable predictions for HPV, EINECS and ENAMINE databases

The ASNN-ESTATE model and STD-ASNN DM provided ones of the most
accurate predictions and estimation of the errors. Therefore, we decided to evaluate the
performance of this method for prediction of molecules from the three industrial
databases, similarly to as it was done for the Ames test study. For this analysis we re-
developed the ASNN model with the complete dataset (1,165 compounds).

To estimate the accuracy of predictions for new compounds, we used the bin-
based accuracy averaging (the dashed curve on Figure 4.17). We estimated the
percentage of predictions with RMSE not less than 0.38 and 0.21, which corresponds to
the accuracy of experimental measurements for compounds with the reactive and
narcosis modes of action. The results of the accuracy estimation are summarized in
Table 4.18 and demonstrated visually on Figures 4.17 and 4.18. 

There was an apparent dramatic difference in the performance of the model on the
training set compared to the external sets. Namely, the percentage of predictions with
RMSE of 0.38 was 92% for the training set and only 36%, 20% and 1% for HPV,
EINECS and ENAMINE datasets. If we count only predictions with RMSE less than
0.21, the percentage was 10% for the training set in comparison to 2% for HPV dataset
and close to 0% for EINECS and ENAMINE datasets. Thus, the number of accurate
predictions is much less in external datasets in comparison to the training set. Therefore,
the investigated model has a very limited domain of applicability.

Investigated set
Num % Num %

1,165 1,071 92% 118 10%
HPV 2,355 856 36% 41 2%
EINECS 68,778 13,568 20% 170 0%
ENAMINE 228,899 1,504 1% 5 0%

Number of 
compounds, 

total

Thereof with error less 
than 0.38

Thereof with error less 
than 0.21

Original (T. Pyriformis)

Table 4.18. The percentages of accurate predictions in the original training set and 3 external
sets. In comparison to the training set, the external sets have drastically low percentages of
accurate predictions, which shows that the applicability domain of the model is very limited.
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Figure 4.17. The estimated prediction accuracy for the original T. Pyriformis dataset (1,093
compounds), HPV dataset (2,355 compounds), EINECS (68,778 compounds) and ENAMINE
(228,899 compounds) datasets. The black dashed curve, based on bin-based averaging, plots
the prediction accuracy (left y-axis) against ASNN-STD DM. The colored curves show
percentages of compounds from 4 datasets (right y-axis), having DM not more than a threshold
(x-axis). Apparently, the distributions of the external datasets dramatically differ from the original
dataset distribution.

Figure 4.18. The percentages of compounds having a particular prediction accuracy. The plot is
based on the previous figure. There is a dramatic difference in the training set and the external
sets: while about 90% of the original compounds have RMSE of 0.4, a very low percentage
(about 1%) of compounds from EINECS reach this accuracy.
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4.2.4 Summary
This study furthermore confirmed that the prediction accuracy is variable in the

chemical space: there are clusters of compounds that are predicted with relatively low
and high accuracies. Again, the prediction reliability could be assessed using the
concept of “distances to models” (DMs).

In accordance with the Ames test benchmarking, the results of this study indicated
that the standard deviation of the models in an ensemble provided the best estimation of
the prediction accuracy of models for toxicity on T. pyriformis. For example, although
the average prediction accuracies were not high (RMSE of 0.44-0.59 for different
QSAR approaches), STD-ASNN and STD-CONS could identify the predictions of a
high accuracy, which was close to the accuracy of experimental measurements (RMSE
of 0.21 and 0.38, depending on the mode of action of the compound). When we
considered the threshold of 0.21, these DMs could identify such highly accurate
predictions for up-to 26% of the training set and 7% of the validation set compounds. In
case of the threshold of 0.38, the percentages are 90% and 72%. If the prediction
accuracy is estimated in the traditional way, i.e. by averaging the accuracy over the
training or validation set, it is infeasible to identify predictions of such high accuracies.

However, the situation was dramatically different for the prediction of the
external diverse datasets of compounds: HPV, EINECS and ENAMINE. Only 36%,
20% and 1% of these 3 sets were estimated to have the prediction RMSE of 0.38 or
better. When we further increased the accuracy requirements and considered the
threshold of 0.21, the percentages decreased to 2% for HPV dataset and was close to
zero for EINECS and ENAMINE datasets. Thus, these datasets contain a very limited
number of compounds that can be reliably predicted by the investigated QSAR
approaches. 

We have also shown that a DM developed with one method and one set of
descriptors could be also used to estimate the accuracy of models developed with a
different set of descriptors or/and machine learning methods. For example, the DMs
developed with neural networks, STD-ASNN, k- Nearest Neighbors (STD-kNN-DR) or
the consensus model (STD-CONS), in most cases provided better discrimination of
molecules with low and large errors for all analyzed models, even if these models were
developed with different sets of descriptors and different machine learning methods.
Moreover, we have also demonstrated that the STD-ASNN successfully discriminated
molecules with low and large errors for the mechanism-based model based on logP and
the Maximum Acceptor Superdelocalizability descriptors. Considering that the distance
to the descriptors centroid did not allow the authors of the mechanism-based model to
differentiate molecules with low and large errors, our approach can complement the
methods based on the mechanism of action by estimating the prediction errors of such
models for each chemical compound. This could be particularly useful for the
prediction of new scaffolds of molecules, for which determination of the mechanism
can be difficult.
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5 Applications

The two further QSAR studies demonstrate the practical application of the
methods introduced in this work and benchmarked in the previous chapter. The first
study aims to predict the octanol-water partition coefficient for platinum complexes,
which are nowadays established as important anti-cancer drugs. The second study
investigates QSAR models for the identification of cytochrome inhibitors.

In the previous chapter, it was shown that the DMs based on the standard
deviation (STD) provide the best estimation of prediction accuracy and, therefore, the
highest quality of the AD assessment. For this reason, the analysis in the following two
studies was performed using only the STD-based approaches.

5.1 Lipophilicity of Pt complexes

5.1.1 Introduction
In recent decades, platinum complexes proved to be promising medicines for

cancer treatment. One of the most known and most efficient drugs from this family is
cis-platin [98]. However, there are several issues that limit the usage of cis-platin and
other existing platinum-based anticancer drugs: these are their toxicity and the
resistance (inherent and acquired) to these compounds. Therefore, there is a need for
new active platinum complexes that possess the anticancer activity but at the same time
are less toxic and have less resistance [99].

Besides the anticancer activity, the candidate platinum complexes must be
capable of entering the cell. As it has been shown in a number of studies [100,101], the
cellular uptake of platinum complexes strongly correlates with their lipophilicity or,
more precisely, with the octanol-water partition coefficient (LogPo/w). For large numbers
of compounds, many of which are possibly virtual, it is time consuming and expensive
to synthesize and measure LogPo/w for every compound. This problem can be partially
addressed with a help of in silico (QSAR) predictions, which can identify a low
lipophilicity of a compound before it is synthesized and, thereby, filter out the virtual
platinum complexes that have low cellular uptake. 

There is a number of existing computational models for LogPo/w

[34,102,103,101]. A part of the models were based on the training sets that did not
contain any Platinum complexes. The usage of such models for the prediction of Pt
complexes is limited. Additionally, in many cases there is no information on AD of the
models, i.e there is no clear rule to identify whether LogPo/w for a particular compound
can be predicted by the model with a desired accuracy.

This study aimed to investigate performance of various QSAR approaches based
on a literature set containing LogPo/w experimental measurements for more than 200
Platinum complexes. The study made a particular focus on the reliability of predictions
and the AD assessment.
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5.1.2 Methods

A.  Dataset and the variability of measurements

The dataset used to create the QSAR models contained 178 measurements for 137
unique compounds. The dataset is described on page 29. As the dataset contained
several compounds with multiple measurements, it was possible to estimate the
variability of LogPo/w experimental measurements. For this analysis, we selected the
compounds with at least 3 measurements (there were 8 such compounds). The statistical
parameters of experimental measurements for these compounds are reported in Table
5.1. The results suggest that the standard deviation of LogPo/w measurements is 0.15-
0.38 log units and the average (root mean square) standard deviation is 0.26. Since we
had only a limited number of compounds with multiple measurements, the 0.26 figure
is only an approximate estimate. We used this value as a reference to evaluate
performance of the analyzed QSARs.

Compound Number of measurements Mean LogPow Standard deviation
7 -2.20 0.29
5 -1.61 0.15
5 -1.17 0.23

JM216 5 -0.02 0.19
5 -1.76 0.38
4 -2.26 0.21
3 -0.40 0.32
3 -1.67 0.26

Average (root mean square) 0.26

cis-platin
oxaliplatin
ormaplatin

carboplatin
dichloroethylenediamineplatinum(II)
cis-dichlorobis(pyridine)platinum(II)
ethylenediaminemalatoplatinum(II)

Table 5.1. The variability of LogPo/w measurements for 8 compounds that had at least 3
available measurements.

B.  QSAR approaches and AD assessment

For modeling, we used E-States and ISIDA molecular fragments (see section
“Molecular descriptors” on page 5). As additional descriptors, we used LogP and LogS
predictions provided by AlogPS software, which was benchmarked as a top-ranked
software for LogP predictions [21,22], but did not contain any platinum complexes in
the training set. Therefore, the AlogPS software was not directly applicable in this study
(for the investigated dataset, we estimated RMSE of as high as 0.84) and was used
implicitly as an additional model input.

These types of descriptors were tried in various combinations. Importantly, the
pH buffer was also used for the modeling as a qualitative descriptor. To incorporate
information about pH buffer into the models, we used 5 additional inputs, that
corresponds to the number of the used buffers. During the training, for every input
sample one of the inputs was set to 1 and others to zero, depending on the pH buffer of
the experimental measurement, associated with the given sample. This preprocessing
was done automatically by the OCHEM platform. In names of the models, we denoted
E-States as “E”, ALogPS as “A”, pH buffer as “B” and ISIDA fragments as “I”; e.g.
“ASNN EA” referred to an ASNN model, based on E-states and ALogPS descriptors.
Thus, we used 5 different sets of descriptors denoted as E, EB, EA,EAB and I.

To train the models, we used associative neural networks (ASNN), support vector
machines (SVM), kernel ridge regression (KRR), fast stage-wise multivariate linear
regression (FSMLR) and ALogPS model, trained using the so called LIBRARY
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correction mode (refer to pages 7-9 for detailed description of these machine learning
techniques). The AlogPS model was based on E-State indices while the first 4 methods
were tried with all five sets of descriptors, which resulted in 4x5+1 = 21 models.
Additionally, we calculated the consensus model as the average of all the 21 individual
models.

For the validation, we used two protocols: the N-fold cross-validation technique
and the bagging technique (page 9). In the benchmarking studies, the bagging protocol
could not be employed for all QSAR models, since they were provided “as is” by a
number of international groups and we could not replicate multiple copies of the
models. Here, we investigate whether the bagging validation protocol is superior to the
N-fold cross-validation. In contrast to the previous studies described in this work, we
did not use external validation set because of a small dataset size (only 178
measurements in comparison to 6,542 and 1,093 measurements for the Ames test and T.
Pyriformis toxicity datasets, respectively).

For some compounds, there were several experimental values per compound
(there were 178 measurements for 137 compounds) since the measurements were
carried out using different methods, different pH buffers and in different experiments.
Importantly, the measurements for the same compound were included either in the
training set or in the validation set but never in both simultaneously. This ensures that
the model is not over-fitted.

As it was shown in the chapter “Benchmarking studies”, the standard-deviation
(STD) based DMs provide the best separation of accurate and inaccurate predictions
and, thereby, provide AD assessment of the highest quality. For this reason, we did not
analyze other DMs here but used the STD DM exclusively. To obtain STD values, we
used the ensemble of models created according to the bagging procedure3; we denoted
the DM obtained in such a way as BAGGING-STD. This procedure was applied to each
QSAR approach, which resulted into 21 different BAGGING-STD DMs. Additionally,
we calculated the standard deviation of predictions given by 21 models, a DM referred
to as STD-CONS. We compared performances of these 22 DMs for all 22 models
according to the accuracy coverage and the AUC criteria. As a threshold for the
accuracy criteria, we used the average RMSE of experimental measurements, which
was estimated above as 0.26.

5.1.3 Results

A.  Comparison of the QSAR approaches

We built 21 models using one linear (FSMLR) and 3 non-linear (ASNN, SVM
and KRR) machine learning methods with different combination of descriptors and
ALogPS model in the LIBRARY mode. Each model was build and validated two times:
using bagging validation and 10-fold cross-validation. The RMSEs of the models are
reported in Tables 5.2 and 5.3 for cross-validation and bagging, respectively.

3 In the two benchmarking studies described in the previous chapter, the bagging validation was
infeasible since the models were provided “as is” by a number of international groups
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Descriptors / Method ASNN SVM KRR FSMLR AlogPS LIBRARY Lowest RMSE
Estate 0.61 0.54 0.62 0.89 0.56 0.54
Estate + Buffer 0.65 0.55 0.61 0.91 - 0.55
Estate + AlogPS 0.68 0.58 0.59 0.64 - 0.58
Estate + AlogPS + Buffer 0.72 0.56 0.61 0.64 - 0.56
ISIDA 0.76 0.60 0.62 0.69 - 0.60
Lowest RMSE 0.61 0.54 0.59 0.64 0.56 0.54

Table 5.2. The cross-validated RMSEs of the 21 investigated models

ASNN SVM KRR FSMLR AlogPS LIBRARY
0.56 0.53 0.61 0.70 0.56 0.53
0.57 0.54 0.60 0.71 - 0.54
0.55 0.52 0.59 0.64 - 0.52
0.55 0.52 0.59 0.63 - 0.52

ISIDA 0.58 0.69 (*) 0.60 0.63 - 0.58
0.55 0.52 0.59 0.66 0.56 0.52

0.50

Descriptors / Method Lowest RMSE
Estate
Estate + Buffer
Estate + AlogPS
Estate + AlogPS + Buffer

Lowest RMSE
Consensus model RMSE
Table 5.3. The bagging-validated RMSEs of the 21 investigated models and the consensus
model

The lowest RMSE was 0.52 for bagging validation and 0.54 for cross-validation.
Additionally, we calculated the lowest RMSE achieved by each set of descriptors and
each machine learning method. The lowest RMSEs were 0.52-0.58 when grouped by
descriptors and 0.52-0.63 when grouped by machine learning method. The bootstrap
statistical test showed that neither of the descriptor sets and neither of the non-linear
machine learning methods was superior with a statistically significant difference.
Remarkably, in the consensus (average) model was better than all of 21 models. This
model had RMSE of as low as 0.50, while the best of 21 individual models, SVM-EA-
Bag had RMSE of 0.52. This result is similar to that of the benchmarking studies
described in the previous chapter: the consensus model systematically showed a better
performance than any of the individual models. 

A specific behavior was observed with the linear FSMLR method. Namely, this
method performed best when the descriptor set contained AlogPS descriptors. This
suggests that the LogPo/w cannot be accurately approximated as a linear combination of
only E-State indices and ISIDA fragment counts; this dependency is rather non-linear.
However, adding AlogPS descriptors increases the accuracy of the linear
approximation. In contrary, the non-linear methods could provide accurate predictions
using E-States and ISIDA, e.g ASNN-E-Bag model had RMSE of 0.56 and was among
the best models. Thus, as one might have expected, linear methods were limited to
particular descriptors and, therefore, the non-linear methods are more universal and
should be favored.

The performance of the ALogPS model in the LIBRARY mode (RMSE 0.56) was
not significantly different form the best achieved performance (RMSE of 0.52 for
SVM-EA-Bag model).

In general, the above results suggest that the performance of the LogPo/w

predictions depends mostly on the size, diversity and quality of the training dataset
rather than on choice of particular QSAR approach.

A remarkable point is that, as compared to the cross validation, the bagging
validation provided better results for almost all the models (compare Tables 5.2 and 5.3)
except of a few exceptions. The lowest RMSE achieved using bagging (0.52) was also
better than without bagging (0.54). This result is concordant with the observations of
the author of the bagging method Leo Breiman, who showed that bagging reduces the
noise (non-systematic error) of predictions [20].

Surprisingly, the use of the pH buffer as a descriptor did not significantly increase
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the performance of the models. Probably, the QSARs were not able to apprehend the
dependency of LogPo/w from pH buffers due to a low number of compounds (only 19
of 137) that were measured with multiple buffers.

B.  Assessment of prediction accuracy and applicability domain

Similarly to the Ames and pIGC50 QSAR studies described in previous chapters,
we used the average ranks to compare different STD-based DMs. Namely, using the
accuracy coverage and the AUC criteria, we ranked the 9 DMs for every model
separately and averaged the ranks over all 21 models. The results are reported in Table
5.4. Apparently, according to both the criteria, the consensus-based standard deviation
outperformed all the other DMs. The CONS-STD could identify up-to 53% highly
accurate predictions, whereas for the other DMs the percentage was 12%-36%. About a
half of all DMs (10) failed to identify any highly accurate predictions (0% coverages in
Table 5.4)

DM
STD-CONS 1.48 53% 1.04

4.39 31% 9.87
5.89 36% 6.09
6.46 33% 8.61
7.17 23% 7.65
8.48 20% 14
8.85 20% 9.35
9.48 19% 6.74
10.63 15% 13.43
14.54 15% 21.3
15.02 12% 19.26
15.04 15% 4.48
15.09 12% 9.61
15.35 0% 4.43
15.35 0% 13.57
15.35 0% 15.3
15.35 0% 13.04
15.35 0% 10.3
15.35 0% 12.78
15.35 0% 19.74
15.35 0% 16.04
15.35 0% 18.7

Accuracy coverage rank Maximum coverage AUC rank

STD-KRR-EAB-Bag
STD-KRR-EA-Bag
STD-KRR-EB-Bag
STD-KRR-E-Bag
STD-SVM-EA-Bag
STD-FSMLR-EB-Bag
STD-SVM-EAB-Bag
STD-ASNN-I-Bag
STD-FSMLR-EAB-Bag
STD-FSMLR-EA-Bag
STD-ASNN-EB-Bag
STD-ASNN-EA-Bag
STD-KRR-I-Bag
STD-FSMLR-I-Bag
STD-ASNN-E-Bag
STD-SVM-I-Bag
STD-SVM-E-Bag
STD-ASNN-EAB-Bag
STD-SVM-EB-Bag
STD-FSMLR-E-Bag
STD-LIBRARY-Bag
Table 5.4. The average rankings of the DMs generated by different models. The consensus-
based standard deviation (STD-CONS) significantly outperformed all other DMs.
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To demonstrate the ability of the DMs to separate highly accurate predictions, we
plotted cumulative accuracy plots for three DMs: STD-CONS (the top-ranked DM),
STD-KRR-E (a middle-ranked DM) and STD-LogP (one of the lowest-ranked DMs);
the plots are shown on Figure 5.1. For the purpose of comparison, the plots are shown
for two models: the consensus model and the LogP model.

Figure 5.1. The cumulative accuracy plots based on three selected DMs for the consensus and
LogP models. The STD-CONS (red curves) was able to separate highly accurate predictions for
both the models, STD-KRR-E (green curves) – only for the consensus model, and STD-
LIBRARY – for none altogether.

For STD-CONS (the red curve) and STD-KRR-E (the green curve), there is a
clear increasing dependency; the prediction error increases with the increase of the DM.
The STD-LogP (the blue curve), on the contrary, provided a noisy dependency, which
does not always show an increasing trend. The three analyzed DMs differed also in their
ability to separate highly accurate predictions, i.e predictions with RMSE of 0.26,
corresponding to the average accuracy of experimental measurements. Thus, the
CONS-STD could identify the highly accurate predictions for both the models, about
53% for the consensus model and 24% for the LogP-Bag model; the STD-KRR could
identify such predictions (21%) only for the consensus model, whereas the STD-LogP
failed to identify highly accurate predictions altogether.

C.  Interpretation of the AD

Analysis of LogPo/w values. The Figure 5.2 shows the dependency of the
prediction accuracy (RMSE) from the lipophilicity (observed and predicted LogPo/w

values). Apparently, the highest prediction accuracy was achieved for non-lipophilic
compounds; the compounds with LogPow between -2 and 0 had RMSE of as low as
0.2-0.4. On the contrary, the highly lipophilic compound had a dramatically worse
prediction accuracy with RMSE up-to 1.2 (the red curve in the right [0, 1] region). This
figure is based on KRR-E-Bag model, but the dependency is similar for all the 21
models.

Obviously, the measured LogPow values for new compounds are unknown and
cannot be used to estimate the prediction accuracy on practice. If we substitute the
measured values with predicted ones, the dependency is distorted and noisy (dashed
curve on Figure 5.2); the accurately predicted compounds have predicted values in
ranges [-2, -1.5] and [-0.8; -0.2]. Moreover, the dependencies for the other investigated
QSARs are different. Thus, the predicted values cannot be reliably used for accuracy
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estimation. The rule of a thumb is that the highly lipophilic compounds are likely to
have low prediction accuracy, which can be explained by the deficiency of such
compounds in the training set (82% of all the available measurements have LogPow
less than zero).

Figure 5.2. The dependency of the prediction accuracy of KRR-E-Bag from observed (the red
curve) and predicted (dashed curve) values of LogPo/w.

Substructural analysis. In contrary to the Ames test and the T. Pyriformis
studies, for the LogPo/w QSAR we could not identify any molecular fragments that were
over-represented inside or outside of the AD. In other words, there were no particular
fragments that affected the prediction accuracy of the investigated models. A possible
reason for this is significantly smaller size of the training dataset in comparison to the
aforementioned studies. Thus, the interpretation of the AD in this study is based solely
on lipophilicity of the predicted compounds.

5.1.4 Summary
This study investigated the problem of the AD assessment of QSAR models for

prediction of the octanol-water partition coefficient (LogPo/w) for Platinum complexes,
which are nowadays promising anti-cancer agents. In total, 21 QSAR models based on
different descriptors and machine learning techniques were created and compared. The
models were trained on the biggest publicly available dataset of LogPow measurements
for platinum complexes, which contained 178 measurements for 137 compounds. Based
on this dataset, we estimated the variability of LogPo/w measurements: the average
standard deviation was 0.26 log units. We also compared the DMs based on the
standard deviation derived from a bagging ensemble of each of the investigated
QSARs.

Remarkably, the bagging approach used in this study was not only helpful for
STD calculation, but also provided the consensus models with higher accuracies than if
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the models were trained and validated using simple cross-validation. This fact
furthermore confirms the hypothesis stated by Leo Breiman, the inventor of the bagging
method: ensembles of models tend to be superior to individual models.

Similarly to the previous studies, the consensus (average) model based on 21
different QSAR approaches had the lowest prediction error (RMSE of 0.50), which was
lower than the errors of all the 21 individual models (RMSE 0.52-0.69). Moreover, the
DM, based on the consensus standard deviation (STD-CONS) was significantly better
than all the other STD-based DMs. This DM was able to identify the highly accurate
predictions for about a half (53%) of the dataset. Thus, consensus models can be helpful
not only for increasing prediction accuracy but also for the applicability domain
assessment. This result is consistent with the benchmarking studies described in
Chapter 4.

We found out that the prediction accuracy was strongly dependent on the
lipophilicity of the predicted compounds. The highest prediction (RMSE as low as 0.2)
was achieved for the hydrophilic compounds having LogPo/w between -2 and 0, whereas
the highly lipophilic compounds (LogPo/w > 1) had the highest prediction errors (RMSE
of 0.8 and higher). This dependency was correctly captured by the investigated DMs,
which had relatively high values for highly lipophilic compounds.
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5.2 Cytochrome P450 inhibition

5.2.1 Introduction and methods
Cytochromes P450 are a family of enzymes that actively participate in the

catalysis of metabolisation of both endogenous and exogenous substances. These
enzymes include three big families, where the enzymes of the first family (including
1A1, 1A2 and 1B1) are very important in the first phase of metabolism of many
xenobiotic compounds [104]. Many modern medicines interact with cytochromes,
which is usually considered as a negative side effect that should be avoided. In silico
predictions could assist to identify the compounds that are likely to inhibit cytochromes
even before the compounds are synthesized. Thus, in silico models could filter out the
compounds with the unwanted effects related to the inhibition of cytochromes on the
earliest stage of the drug development.

This study investigated a QSAR model for the prediction of CYP1A2 inhibition
activity. The model was based on the dataset that contained 7,486 compounds; 4,016
thereof were active (inhibitors of CYP1A2) and 3,470 non-active compounds. In more
detail, the dataset is described in section “Analyzed datasets” on page 30. For the
modeling purposes, the dataset was randomly split into training and validation sets,
which contained 3,745 and 3,741 compounds respectively. As the validation set was
selected randomly, the balance of active and non-active compounds in was similar to
that of the original set.

For this study, we used only one QSAR approach, which was based on E-State
indices and the neural networks (ASNN), since this approach showed a good
performance in the benchmarking studies described in the previous chapters of this
work. 

For the prediction accuracy estimation and the AD assessment, we used the STD-
PROB DM based on the standard deviation provided by a bagging ensemble.

5.2.2 Results

A.  QSAR modeling

The performance of ASNN model validated the bagging approach is summarized
in Table 5.5. The model provided the correct classification rate of 81% for both the
training and validation sets. On both the sets, the model had a little higher sensitivity,
which could be caused by a minor imbalance of active and inactive compounds in the
training set.

Dataset Accuracy Sensitivity Specificity
The training set 81% 83% 79%
The validation set 81% 83% 80%

Table 5.5. The performance of the ASNN model for prediction of p450 inhibition.

B.  AD assessment

Figure 5.3 shows the cumulative accuracy plot and sliding window averaging plot
(SWA-plot) based on the STD-PROB DM. The plots were built using the prediction
accuracy of the ASNN model for the validation set compounds. Apparently, the highest
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accuracy was 100% and was achieved for about 8% of the validation set compounds
with the lowest values of STD-PROB. The accuracies of 95% and 90% were achieved
for 33% and 62% of the validation set compounds, respectively. The reasons for such a
high accuracy is discussed further in the interpretation section.

From the dashed curve (sliding window accuracy averaging), it is apparent that
the accuracy of the most unreliable predictions was close to the accuracy of a random
classifier (50%). Obviously, the compounds with such predictions are outside of the
applicability domain of the model.

Figure 5.3. The prediction accuracy of the ASNN model for prediction of p450 inhibition
depending on the STD-PROB DM (in percentage scale). The solid curve shows the cumulative
accuracy for a different percentages of the validation set compounds. whereas the dashed
curve shows the sliding window accuracy averaging.

C.  Interpretation of the AD 

Substructural analysis. We analyzed the molecular sub-fragments that were
significantly over-represented in the most reliably predicted compounds. For this
analysis, we considered the compounds with the highest and the lowest values of the
STD-PROB DM (200 + 200 compounds) and considered significant fragments as
described in the “Methodology” chapter (refer to page 27 for details). The sub-
fragments that were present in the most reliably predicted compounds are shown in
Figure 5.4; these compounds are quinazoline, pteridinone and 4-Pyrimidinamine
derivatives, all having pyrimidine as a common sub-fragment. The correct classification
rate for the molecules derived from these sub-fragments had high prediction accuracies
(92%-98% of correct classifications). When we analyzed the inhibition profile of such
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compounds, we discovered that majority (more than 90%) were CYP inhibitors.
Furthermore, almost all such compounds were classified by the model as inhibitors,
which resulted into the 100% sensitivity and the correct classification rate of 92%-
100%. However, most of the rarely occurring non-inhibitors among pteridinone,
quinazoline and 4-Pyrimidamine derivatives were misclassified as inhibitors, thus
resulting into a near zero specificity (0% for quinazoline-, 7% for pteridinone- and 27%
for 4-Pyrimidinamine derivatives). 

The reliability of the predictions for such compounds was captured by the STD-
PROB DM, which is apparent from the distribution of DM values in Figure 5.5. Thus, a
very high rate of correct classifications for pyrimidine-containing compounds is due to
the tendency of such compounds for CYP inhibition, which was correctly apprehended
both by the investigated QSAR model and DM.

Figure 5.4. The sub-fragments that were significantly over-represented in the most reliable
predictions of CYP inhibition. Most of the highly reliable predictions contained two fused
aromatic rings containing nitrogens. The most of such compounds were CYP inhibitors. Green
and red numbers show inhibitors and non-inhibitors containing the sub-fragment.

Figure 5.5. The distribution of DM values (in the percentage scale) of quinazoline, pteridinone
and 4-Pyrimidinamine derivatives. Apparently, such compounds tend to have low values of DM,
which means they have high reliability of predictions.
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Remarkably, despite the sensitivity of the compounds with the aforementioned
fragments is high (100%), for the rest of compounds the sensitivity of the model is only
69%.

Analysis of active and non-active compounds. As it was shown above, the
active compounds (inhibitors) dominated among the most reliably predicted
compounds. This is confirmed by the explicit analysis: among first 10% of the most
reliably predicted compounds (374 compounds with the lowest DM values), 91% (332
compounds) thereof are inhibitors. Thus, a very high correct classification rate of the
model for these compounds (98%) is due to a high sensitivity (99%), whereas the
specificity of the model is not higher than average (80%).

D.  Reliable predictions for HPV, EINECS and ENAMINE datasets

Similarly to the Ames test study (page 66), to investigate applicability of the CYP
model to diverse chemical compounds, the model was applied to the ENAMINE,
EINECS and HPV datasets (page 28). The results are summarized in Table 5.6 and
depicted on Figures 5.6 and 5.7 (which are analogues of Figures 4.11 and 4.12 for Ames
test study, page 66). Interestingly, the percentage of reliable predictions (i.e. having the
estimated prediction accuracy of at least 90%) for all 3 datasets is almost equal (11-
13%), whereas for the training set the percentage is 45%. This phenomenon can also be
observed on Figures 5.6 and 5.7: the “original” curve is apparently higher than the
curves for ENAMINE, EINECS and HPV datasets. The low percentage of reliable
predictions in the external datasets attests to a limited applicability domain of the CYP
model, presumably due to a lack in chemical diversity in the training set.

Predicted value
Enamine dataset EINECS dataset High production volume (HPV)

All Reliable All Reliable All Reliable
Non-inhibitors 131390 19516 30192 4160 1073 121
Inhibitors 97509 6588 38586 4496 1282 169
Total 228899 26104 68778 8656 2355 290

Table 5.6. The reliable predictions of CYP450 inhibitors for the ENAMINE, EINECS and HPV
datasets.
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Figure 5.6. Estimated prediction accuracy for the original p450 inhibitors dataset in comparison
to the HPV, EINECS and ENAMINE datasets. Black curve, based on SWA, plots the prediction
accuracy (left y-axis) against ASNN-STD-PROB DM. Colored curves show percentages of
compounds from 4 datasets (right y-axis), having DM not more than a threshold (x-axis).

Figure 5.7. Percentages of compounds (y-axis) in 4 datasets having the estimated prediction
accuracy not less than a required accuracy (x-axis). This plot is based on the plot from Figure
5.6 with DM-axis eliminated.
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5.2.3 Summary
The study investigated the applicability domain of a classification model for the

prediction of cytochrome P450 (CYP1A2) inhibition. 

In general, the model had a good predictive ability providing 81% of correct
classifications on the validation set. Furthermore, by taking only the most reliable
predicted compounds identified by the STD-PROB DM, the accuracy could be
increased up-to 95% for 33% of the validation set compounds and even up-to 100% for
8% of the compounds. At the same time, the DM allowed to identify unreliable
predictions: the lowest detected accuracy was close to the accuracy of a random
classifier (50%). Thus, similarly to the Ames test study, the STD-PROB was successful
for the discrimination of accurate and inaccurate predictions.

Importantly, we could interpret such a high achievable accuracy. We showed that
most of the highly reliable predictions were derivatives of quinazoline, pteridinone and
4-Pyrimidamine, the majority of which were inhibitors of CYP1A2. Due to the
abundance of such compounds in the training set, the model captured this behavior and
predicted most of such compounds as inhibitors, thus providing a 100% sensitivity and
about 95% of correct classifications. The STD-PROB DM successfully captured the
high reliability of such predictions.

Application of the investigated model to the HPV, EINECS and ENAMINE
datasets showed that applicability of the model to these diverse chemical datasets is
limited. Indeed, while the model could achieve 85% accuracy for at least 45% of the
training and validation sets compounds, for the HPV, EINECS and ENAMINE datasets
the percentage was only 11-13%. Thus, to enlarge the applicability domain of QSARs,
it is necessary to perform more experimental measurements for diverse chemical
compounds.
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6 Discussion

A.  Prediction accuracy of QSARs is variable

The current work has shown that the accuracy of QSAR models monotonically
decreases with increase of the abstract measures of uncertainty, referred to as distances
to models (DMs). The phenomenon of accuracy variability was apparent both
quantitatively and visually (e.g., in Figures 4.1, 4.3 ,4.15, 5.3 on pages 53, 56, 76 and
94). 

Particularly, the variability of the accuracy was apparent for the classification
problems. In this work, we investigated two classification problems: the identification
of mutagenic compounds (Ames test) and of cytochrome P450 inhibitors. While the
average classification accuracy for both the modeling problems was 80-81%, the
accuracy of highly reliable predictions was 95-100% and, on the contrary, the accuracy
of non-reliable predictions was close to 50%, which is the accuracy of a random guess
(Table 6.1). Traditionally, these predictions are not discriminated and only the average
accuracy (in this case 80-81%) is reported, which ignores the fact of the accuracy
variability. The DM approach suggested and investigated in this work allowed to
discriminate the predictions of high and low accuracy and to estimate the prediction
accuracy for every particular chemical compound individually.

75-81% 97% 60%

81% 100% 55%

Classification problem
Classification accuracy of investigated QSARs

Average (all compounds) 10% most reliable predictions 10% least reliably predictions

Mutagenicity (Ames test)

CYP inhibition

Table 6.1. The accuracy variability identified by a DM for the classification QSARs.

A similar tendency was observed for the two regression QSARs investigated in
this work (Table 6.2). For example, for the growth inhibition QSAR, the average root
mean square error (RMSE) was 0.43; however, the RMSEs of 10% most and 10% least
reliable predictions identified by a DM were 0.28 and 0.78, respectively. Thus, there
was almost three times difference between the RMSEs of the reliable and non-reliable
predictions. For the second regression problem, the prediction of lipophilicity of
Platinum complexes, the difference was even more drastic: the RMSEs of the most and
least reliable predictions were 0.12 and 1.12, which makes almost ten times difference.

0.43 0.28 0.78

0.51 0.12 1.12

Regression problem
RMSEs of investigated QSARs

Average (all compounds) 10% most reliable predictions 10% least reliably predictions
Growth inhibition for 
T. Pyrirofmis (pICG50)
Pt complexes lipophilicity

Table 6.2. The accuracy variability for the regression QSARs.

The ability of DMs to estimate the prediction accuracy can be directly applied to
the problem of AD assessment. On the contrary to previous approaches to AD, which
use strict separation of the chemical space into compounds “inside” and “outside” of the
AD, the DM-based methodology provides a more flexible separation, which depends on
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the required prediction accuracy. For example, the study with predictions of toxicity
against T. pyriformis showed, that only 6% of HPV database can be predicted with
RMSE of 0.24 log units; however, if higher prediction errors are acceptable, the AD can
be extended to 27% resulting into RMSE of 0.48. Thus, our definition of AD is based
on a tradeoff between the prediction accuracy and the coverage of compounds.

B.  Ensembles of models improve AD assessment

Ensembles of models were useful both for obtaining high prediction accuracies
and for AD assessment.

First, it has been shown that ensembles can increase the prediction ability of
QSAR models. Namely, when we took several different predictive models and created
the average model, this model (so called consensus model) had a better prediction
accuracy than any of the individual models. This phenomenon was observed for all the
studies that involved the consensus model, the studies for predictions of the Ames test,
the growth inhibition concentration and the octanol-water partition coefficient of
platinum complexes (Table 6.3). The consensus model had lower RMSEs for the
regression models and higher percentages of correct classifications for the classification
models. Only for pIGC50, one of the models had the accuracy close to the consensus
model (RMSE of 0.44); but that accuracy was achieved by the ASNN model, which
itself is based on an ensemble of neural networks. Thus, based on these results, our
general recommendation is to always create an ensemble of diverse models, which can
be based either on different training sets (the bagging approach) or on completely
different QSAR methods (the consensus approach).

Predicted property Performance
Individual models Consensus model

The Ames test Correct classifications 75%-81% 83%
Lipophilicity of Pt complexes RMSE 0,52-0,70 0,5
Growth inhibition concentration (pICG50) RMSE 0,44-0,59 0,44

Performance
measure

Table 6.3. Performance of consensus models versus individual models

Second, ensembles of models provided a way to estimate the prediction
reliability. More precisely, the standard deviation (STD) of predictions given by an
ensemble of models, which indicates how well the individual models agree on a
particular prediction, was shown to strongly correlate with the prediction accuracy.
Higher levels of agreement (and, thus, lower STD values) corresponded to higher
prediction accuracies. This feature of STD allowed us to use it as a distance to model
(DM) and, thereby, to estimate the prediction accuracy. Moreover, in the benchmarking
studies encompassed within this work, the STD and the other STD-based DMs (STD-
PROB, CONCORDANCE) were shown to be superior to all other investigated DMs.

The superiority of the STD-based DMs was proven with different tests. In the
benchmarking study for T. Pyriformis pIGC50 QSAR, the test for the fitness of
probability distribution showed that STD of ensemble of neural networks provided the
best approximation for the distribution of residuals. Moreover, in the pIGC50 study the
STD showed the best ability to estimate prediction accuracy. Finally, in the Ames study,
the STD-PROB could provide the widest applicability domain: up to 60% of the Ames
validation set could be predicted with the accuracy of inter-laboratory variation, which
was estimated as 90%.

The ensemble of models can be created either using the bagging technique with
different training sets or the consensus technique with different QSAR approaches. The
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bagging serves 3 goals simultaneously: (a) it improves the prediction accuracy by
reducing non-systematical errors (b) it can be used as a validation technique instead of
N-fold cross validation and finally (c) it provides multiple predictions for every
compounds, which allows to calculate the standard deviation. The consensus technique
utilizes more diverse models, which are based on different descriptor sets and machine
learning methods. Furthermore, the consensus technique can be combined with
bagging, whereby an individual model from the consensus ensemble is created using
bagging. 

Our benchmarking studies showed that both the bagging STD and the consensus
STD are good estimators of the prediction accuracy.

C.  Property-based DMs instead of descriptor-based DMs

Importantly, the distances to models that rely on the model outputs (prediction
values) were proven to systematically outperform DMs that rely on model inputs
(molecular descriptors). The first category (referred to as DMs in the property space)
includes such DMs as STD, STD-PROB, CORREL and CLASS-LAG. Interestingly, in
many QSAR studies [35-40], mostly descriptor-based DMs were used for the AD
assessment. Many of these studies used Euclidian or leverage distances in the space of
descriptors. Although this approach is simple and intuitive, it takes into account only
the descriptor values but not the actual predictive model, which can lead to inadequate
estimation of the prediction accuracy. 

What is a possible reason for the poor performance of descriptor-based DMs? The
similarity of structures, i.e. similarity of molecular descriptors of two chemical
compounds does not guarantee similarity of their properties. The dependency of a
property from descriptors can be complex and non-linear, where a small change in
descriptors can result into a significant change in the property. This phenomenon is
referred to as “activity cliff” [105], i.e. a significant and poorly predictable change in
the property/activity of a compound with a small change of its molecular descriptors.
The “activity cliffs” are invisible in the descriptor space but can be visible in the space
of predictions. The predictive model integrates information about the property
dependency and is likely to have a high uncertainty (or disagreement) of predictions for
the compounds on “activity cliffs”. This explains the superiority of such measures as
STD and CLASS-LAG over the descriptor-based DMs.

To sum up, our benchmarking analysis confirmed the hypothesis stated by Tetko
[27] that the property space DMs are superior to the descriptor-based DMs for both
regression and classification models. 

D.  Distances to models are universal 

As it was demonstrated in Chapter 4 in both the benchmarking studies, the DMs
developed using one model can be successfully used with other models, based on the
same training set. This phenomenon can be interpreted as follows: the most accurately
predicted compounds are the same for different models based on different QSAR
approaches but the same training set. 

For example, the T. pyriformis growth inhibition QSAR study showed that the
standard deviation of a neural networks ensemble (STD-ASNN) was a good estimator
of prediction accuracy for the models based on the other machine learning methods, e.g.
partial least squares, linear regression, k-nearest neighbors and support vector
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machines. Similarly, in the study for the prediction of lipophilicity of Platinum
complexes, the STD based on ensembles of kernel ridge regression models (STD-KRR)
was among the best DMs for all the other models, based on such machine learning
methods as support vector machines, neural networks and linear regression.

The universality of DMs suggests that a compound that had an accurate
prediction by a particular QSAR approach is likely to have relatively accurate
predictions with other QSAR approaches. This result leads to an important conclusion:
the prediction accuracy for a particular compound mostly depends not on the modeling
approach (i.e molecular descriptors, a machine learning method) but on the training
dataset or, more precisely, on the relation of this compound to the other compounds in
the training set.

E.  Which compounds are well predicted?

Importantly, the work not only delivered the mathematical framework for
estimation of prediction accuracy but also suggested a methodology for the
interpretation of the results. 

The main interpretation method was the analysis of molecular sub-fragments.
Such analysis allowed identifying the molecular sub-fragments of the compounds that
tended to induce high (or low) prediction accuracy. For example, in the study for the
mutagenicity prediction, we discovered that a significant part the compounds that were
predicted with the highest accuracy contained nitro-groups, long non-saturated carbon
chains, thiopene groups, acridines and phenathrenes. A more detailed analysis showed
that mutagenicity of such compounds could be deduced using simple rules. Namely, the
compounds containing long non-saturated carbon chains were mostly non-mutagens
and, on the contrary, the compounds containing nitro groups and the compounds
derived from thiophene, acridine and phenathrene were mutagenic. These simple rules
were correctly apprehended by the QSAR models, which resulted into a high prediction
accuracy for such compounds. A similar case was observed with the study for the
cytochrome P450 inhibition: the most accurately predicted compounds (with up-to
100% of correct classifications) were derivatives of pteridinone, 4-pyrimidinamine and
quinazoline, most of which were active (inhibitors of P450). Thus, a high prediction
accuracy was achieved for the compounds containing a particular sub-fragment that has
a simple prediction rule.

On the other side, there was a number of the “bad” sub-fragments, which
contributed to a low prediction accuracy. This phenomenon was observed in the studies
for the prediction of mutagenicity and growth inhibition concentration. A detailed
analysis revealed that such “bad” sub-fragments contributed to a particular mechanism
of action that was dissimilar from the majority of compounds. For example, halogen
containing fragments like C-C-Cl or C-C-Br had the mutagenicity mechanism based on
the electrophilic attack. In the study for the prediction of growth inhibition
concentration, the vinyl-containing sulfones had the electrophilic mechanism of
toxicity, which, by its nature, is dissimilar from the narcotic mode of action that was the
“default” mode assumed for the majority of the training set compounds. These
compounds had a low prediction accuracy. Thus, in both the studies, the reason for low
prediction accuracy of the “bad” fragments was a specific mechanism of action.

Another important cause of the low prediction accuracy is the uncertainty of
experimental measurements. The mutagenicity study showed that the compounds with
high disagreement of measurements (carried out in different experiments) tend to have
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low prediction accuracies. Namely, we discovered that the average agreement of the
Ames tests for 150 compounds with the highest confidence of predictions was 97%,
while for the 150 compounds with the lowest confidence of predictions was only 91%.
The difference between these two figures was statistically significant. Thus, the
accuracy of predictions is affected by the uncertainty of experimental measurements.

F.  Accuracy of experimental measurements is achievable with QSARs 

It was shown that, for some part of chemical compounds, QSAR models can
deliver the prediction accuracy comparable to the accuracy of experimental
measurements. Despite the average model accuracy for a particular validation set may
be relatively low, by using the accuracy assessment techniques described in this work, it
is often possible to separate highly accurate predictions with an accuracy comparable to
the that of experimental measurements. 

The percentage of highly reliable predictions was estimated for the datasets of
diverse chemical compounds: HPV, EINECS and ENAMINE datasets (Table 6.4). For
example, in the study for prediction of mutagenicity (the Ames test) based on more than
6,000 compounds, it was possible to achieve the accuracy that corresponds to the inter-
laboratory agreement (90%) for up-to 25% of the 2,181 validation set compounds, 30%
of 2,355 HPV set compounds, 18% of 68,778 EINECS set compounds and 4% of
228,899 ENAMINE set compound. 

Predicted property
Validation set HPV set EINECS set ENAMINE set

Ames test 90%* 75%-81%* 25% 30% 18% 4%

pIGC50 0,38** 0,44-0,59** 92% 36% 20% 1%

0,26** 0,50-0,70** 53% - - -

Accuracy of
experimental 

measurements

Average
prediction 
accuracy

% of compounds predicted with 
experimental accuracy

LogPow for 
Platinum complexes

Table 6.4. The percentage of compounds predicted with the average accuracy of experimental
measurements. 

Remarks: *The percentage of correct classifications (for accuracy of experimental
measurements – the inter-laboratory agreement of measurements). ** The standard deviation
(root mean square error, RMSE). 

For the chemicals predicted with a high accuracy, in silico predictions can be used
to avoid the experimental measurements. For example, it was estimated that Ames
mutagenicity test QSARs can deliver the predictions with an accuracy corresponding to
inter-laboratory agreement for more than 13,000 out of 229,000 compounds from the
ENAMINE set, which contains drug-like compounds. These 13,000 compounds are
non-mutagens with 90% accuracy and can be used for further filtering with other
QSARs or high-throughput screening techniques. 

G.  More diverse measurements for better models

The above analysis of highly reliable predictions (Table 6.4) also indicates that
the AD of the investigated models is limited. Indeed, although the models could reliably
predict a significant part of the validation set compounds (25%-92%), of the the HPV
compounds (30-36%) and of the EINECS compounds (about 20%) but, nonetheless, the
percentage of reliable predictions for a larger and more diverse ENAMINE dataset was
significantly lower. For example, only 1% of the ENAMINE compounds were
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estimated to have reliable predictions, while for the original validation dataset the
percentage was as high as 92%. Presumably, the lack of accurate predictions is caused
by a limited diversity of the training set compounds, which results into a poor predictive
ability for the majority of ENAMINE compounds. Moreover, this assumption attests to
our previously mentioned claim: the prediction accuracy depends not on the modeling
approach but on the relation of the predicted compound to the training set compounds.

Thus, these results deliver an important practical conclusion: to broaden
applicability domains of QSAR models, it is necessary to ensure a high diversity of
compounds within the datasets with experimental measurements used for model
training. To make QSAR models more universal, experimentalists should focus not on
making more measurements, but on measuring more diverse compounds.

The AD approaches introduced in this work can be used to aid the experimental
design. Namely, valuable measurements would be for the compounds outside of AD of
existent models. Therefore, our recommendation for experimental design is to measure
the compounds that have the lowest estimated prediction accuracy, i.e. the compounds
having the largest values of DMs. For example, in case of using STD as a DM, it is
recommended to measure the compounds that have the highest level of disagreement in
predictions given by different models. Such compounds would significantly extend
applicability domains of existent QSAR models.
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7 Conclusions and outlook

A model can be used successfully only if its limitations are known. This rule
applies to all kind of models: for example, in physics, the Newtonian mechanics is valid
only for speeds that are significantly lower than the speed of light. No model describes
the reality ultimately, every model has its limitations, its domain of applicability. The
current thesis work showed that this fact is especially true for QSAR models: based on
the knowledge collected from a limited set of chemicals, QSAR models can reliably
predict only a part of the chemical space and under no circumstances are guaranteed to
give accurate predictions for the whole chemical space.

In this work, I introduced the methodology and developed the practical tools to
build QSAR models and to assess their domain of applicability. The methodology is
based on abstract measures of the prediction uncertainty, referred to as distance to
models (DMs). The DM approach allowed to estimate the accuracy of every prediction
individually, thus allowing to restrict the applicability domain (AD) of the model to the
compounds predicted with the required accuracy. 

The work provides not only the methodology but also a robust implementation.
Namely, all the AD methods introduced in this work as well as the already established
QSAR techniques were integrated into the novel online platform for QSAR research,
the Online Chemical Modeling Environment – OCHEM, which supports all the steps of
a typical QSAR research: collection and preparation of data, calculation of molecular
descriptors, application of machine learning methods and, finally, the AD assessment.
The database integrated within this platform already contains more than 160,000
experimental measurements of more than 300 biological and physicochemical
properties. These data have a significant value for the potential QSAR studies. The
OCHEM is open on the Web and is intensively used for various QSAR studies.

The introduced methods were benchmarked with and applied to a number of
practical studies, which involved predictions of both biological and physicochemical
properties such as mutagenicity, lipophilicity, toxicity and CYP450 inhibition. The
studies confirmed that the prediction accuracy is variable in the chemical space and,
more importantly, it can be estimated. For all the modeling studies, it was possible to
identify highly accurate predictions with the accuracy comparable to that of
experimental measurements. On the other side, it was possible to identify unreliably
predicted compounds, which had accuracy of a random guess. Thus, the studies attested
to the irrelevance of the question “Is the model accurate?” and provided the answer to
the appropriate question “Can the model accurately predict this particular compound?”.

The limited applicability domain of the computational models does not invalidate
them and does not prevent their successful practical application. In the main fields of
QSAR research, drug design and environmental toxicity assessment, QSAR models can
be used successfully, but only if their limitations are made clear. Precisely this problem,
that is the determination of the restrictions of QSAR models, has been addressed in this
work. 
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Outlook. A problem that is interesting for the future work concerns a
methodology for the interpretation of prediction accuracy. For using the proposed
approaches in industry, it is not sufficient just to be aware that the prediction for a
particular compound is unreliable. It is of crucial importance to understand the reason
for a low prediction accuracy. Why the activity of an investigated compound cannot be
explained by the model? Is it caused by a particular mechanism of action that was not
captured by the model or is it just an inaccurate measurement? The “black box”
approach cannot provide an ultimate answer to this question and should be
complemented with a comprehensive methodology for the interpretation of results.

The proposed approaches for AD assessment are promising in the area of
experimental design. Often, there is a need to estimate a particular property for a large
number of compounds, while the number of possible experimental measurements is
limited with budget and time. The AD approaches can identify which compounds
cannot be reliably predicted with existent QSAR models and, thereby, can help to
identify valuable experimental measurements. The application of the proposed
approaches in experimental design is a promising direction of research in future.

 The author hopes that this thesis work will contribute to the widespread use of
computational QSAR models in the drug design and ecotoxicity assessment fields.
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Appendix
Table A1. The 90% accuracy coverages of the compounds from the Ames test

training and validation datasets. The coverages are shown for all the analyzed
DMs.

Model name ASNN-STD CONS-STD CLASS-LAG CORREL CONS-STD-QUAL CONCORDANCE CONS-STD-PROB
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

ULP_ISIDA_SQS 20% 16% 47% 39% 31% 30% 0% 0% 52% 44% 63% 57% 49% 48%

UNC_SiRMS_RF 20% 25% 53% 46% 62% 62% 3% 0% 61% 53% 65% 64% 67% 60%

UNC_Drag_RF 24% 21% 57% 48% 55% 58% 5% 0% 67% 53% 65% 58% 61% 60%

LNU_Drag_PLS 20% 25% 39% 39% 10% 37% 0% 5% 42% 44% 62% 57% 42% 48%

UNC_SiRMS.Drag_RF 21% 25% 56% 48% 59% 64% 3% 0% 67% 61% 65% 59% 64% 67%

UNC_SiRMS_SVM 9% 18% 50% 46% 0% 0% 3% 5% 52% 44% 69% 62% 50% 48%

UNC_Drag_SVM 7% 16% 46% 37% 0% 0% 0% 0% 52% 33% 63% 57% 55% 53%

UNC_SiRMS.Drag_SVM 20% 18% 52% 48% 0% 0% 2% 5% 61% 53% 64% 63% 56% 60%

PCI_SiRMS_RF 17% 23% 53% 48% 59% 62% 3% 0% 61% 53% 64% 64% 63% 64%

PCI_Drag_RF 24% 23% 56% 48% 57% 64% 3% 0% 61% 53% 65% 58% 61% 64%

PCI_SiRMS.Drag_RF 22% 23% 57% 48% 61% 62% 3% 0% 67% 61% 65% 59% 65% 60%

MSU_FRAG_LR 22% 25% 52% 39% 48% 48% 3% 5% 52% 44% 64% 63% 60% 55%

MSU_FRAG_SVM 23% 23% 53% 53% 49% 57% 3% 5% 61% 61% 64% 64% 58% 64%

EPA_2D_NN 5% 7% 41% 37% 0% 0% 3% 0% 42% 33% 61% 60% 50% 48%

EPA_2D_FDA 0% 5% 38% 37% 15% 0% 0% 0% 30% 33% 66% 60% 41% 34%

ULP_ISIDA_NB 0% 2% 46% 39% 0% 41% 0% 0% 42% 44% 56% 52% 42% 48%

ULP_ISIDA_SVM 0% 2% 48% 41% 0% 0% 0% 0% 42% 44% 61% 52% 47% 46%

ULP_ISIDA_VP 0% 2% 54% 46% 0% 0% 0% 0% 42% 44% 62% 58% 48% 53%

OCHEM_ESTATE_ANN 24% 25% 44% 37% 44% 44% 3% 5% 42% 33% 62% 62% 55% 55%

CONS_QUANT 23% 28% 60% 53% 70% 71% 10% 5% 67% 61% 65% 59% 69% 67%

Table A1 (continuation).

Model name CONS-STD-QUAL-PROB ASNN-STD-PROB LEVERAGE AD_MEAN1 AD_MEAN2 ELLIPS
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

ULP_ISIDA_SQS 53% 53% 36% 46% 0% 0% 2% 3% 1% 0% 1% 7% 1% 0%

UNC_SiRMS_RF 67% 67% 58% 57% 0% 0% 0% 14% 2% 0% 5% 14% 1% 5%

UNC_Drag_RF 63% 62% 54% 55% 0% 0% 0% 7% 1% 0% 7% 12% 1% 0%

LNU_Drag_PLS 48% 50% 33% 37% 0% 0% 0% 5% 0% 0% 5% 7% 0% 0%

UNC_SiRMS.Drag_RF 67% 67% 54% 60% 0% 0% 0% 14% 2% 0% 8% 16% 0% 0%

UNC_SiRMS_SVM 59% 51% 20% 21% 0% 0% 0% 5% 0% 0% 7% 7% 0% 5%

UNC_Drag_SVM 58% 55% 24% 32% 0% 0% 0% 5% 1% 0% 3% 10% 1% 0%

UNC_SiRMS.Drag_SVM 59% 59% 24% 21% 0% 0% 0% 3% 0% 0% 7% 10% 0% 5%

PCI_SiRMS_RF 65% 64% 53% 55% 0% 0% 0% 5% 1% 0% 5% 12% 1% 0%

PCI_Drag_RF 63% 67% 52% 55% 0% 0% 0% 7% 1% 0% 8% 12% 1% 0%

PCI_SiRMS.Drag_RF 65% 62% 53% 60% 0% 0% 0% 7% 1% 0% 9% 12% 0% 0%

MSU_FRAG_LR 62% 60% 50% 44% 0% 0% 0% 5% 1% 2% 8% 12% 1% 0%

MSU_FRAG_SVM 62% 67% 47% 53% 0% 0% 0% 3% 1% 0% 6% 12% 2% 0%

EPA_2D_NN 53% 52% 38% 41% 0% 0% 0% 0% 1% 0% 6% 7% 1% 0%

EPA_2D_FDA 48% 37% 7% 12% 0% 0% 0% 5% 1% 0% 6% 12% 1% 0%

ULP_ISIDA_NB 45% 51% 17% 32% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

ULP_ISIDA_SVM 50% 51% 34% 30% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

ULP_ISIDA_VP 51% 58% 33% 35% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

OCHEM_ESTATE_ANN 57% 57% 34% 41% 0% 0% 0% 7% 1% 2% 2% 12% 1% 0%

CONS_QUANT 69% 71% 60% 62% 0% 0% 0% 7% 5% 0% 8% 12% 4% 5%

SCAvg
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Table A2. The rank-based correlation coefficients between the DMs. The
correlation coefficients are based NOT on the absolute values of the DMs, but on
the ranks, given by them to the Ames challenge compounds

ASNN-STD CONS-STD CLASS-LAG CORREL CONCORDANCE LEVERAGE AD_MEAN1 AD_MEAN2 ELLIPS

ASNN-STD 1 0.42 0.36 0.37 0.42 0.42 0.44 0.44 0.75 0.73 0.46 0.29 0.1 0.28
CONS-STD 0.42 1 0.49 0.24 0.95 0.86 0.8 0.82 0.55 0.2 0.13 0.16 0.15 0.16
CLASS-LAG 0.36 0.49 1 0.23 0.53 0.59 0.85 0.8 0.82 0.15 0.13 0.14 0.12 0.18
CORREL 0.37 0.24 0.23 1 0.22 0.23 0.27 0.25 0.34 0.36 0.4 0.32 0.11 0.5
CONS-STD-QUAL 0.42 0.95 0.53 0.22 1 0.92 0.81 0.87 0.58 0.18 0.12 0.15 0.16 0.16
CONCORDANCE 0.42 0.86 0.59 0.23 0.92 1 0.81 0.87 0.63 0.18 0.13 0.17 0.16 0.19
CONS-STD-PROB 0.44 0.8 0.85 0.27 0.81 0.81 1 0.96 0.83 0.2 0.15 0.16 0.14 0.19
CONS-STD-QUAL-PROB0.44 0.82 0.8 0.25 0.87 0.87 0.96 1 0.79 0.19 0.14 0.15 0.15 0.18
ASNN-STD-PROB 0.75 0.55 0.82 0.34 0.58 0.63 0.83 0.79 1 0.47 0.32 0.23 0.12 0.25
LEVERAGE 0.73 0.2 0.15 0.36 0.18 0.18 0.2 0.19 0.47 1 0.58 0.34 0.08 0.24
AD_MEAN1 0.46 0.13 0.13 0.4 0.12 0.13 0.15 0.14 0.32 0.58 1 0.13 0.04 0.33
AD_MEAN2 0.29 0.16 0.14 0.32 0.15 0.17 0.16 0.15 0.23 0.34 0.13 1 0.1 0.46
ELLIPS 0.1 0.15 0.12 0.11 0.16 0.16 0.14 0.15 0.12 0.08 0.04 0.1 1 0.1

0.28 0.16 0.18 0.5 0.16 0.19 0.19 0.18 0.25 0.24 0.33 0.46 0.1 1

CONS-
STD-QUAL

CONS
STD-PROB

CONS-STD-
QUAL-PROB

ASNN-
STD-PROB SCAvg

SCAvg

128 Appendix



Table A3. T. Pyriformis toxicity study: MGD scores and probabilities calculated
for all the analyzed models

LOO (training set) 5-fold cross-validation (training set) join validation set

DM Score p-value DM Score p-value DM Score p-value
Model: ASNN Model: ASNN Model: ASNN
STD-CONS 188 0 STD-ASNN 250 0 STD-ASNN 225 0
STD-ASNN 236 0 STD-CONS 317 0 STD-CONS 232 0

301 0 335 0 STD-kNN-MZ 240 0
TANIMOTO-MLR-FR 304 0 STD-kNN-DR 336 0 CORREL-ASNN 243 0.01
STD-kNN-DR 307 0 TANIMOTO-MLR-FR 338 0 EUCLID-kNN-MZ 244 0
EUCLID-MLR-FR 312 0 EUCLID-kNN-DR 340 0 244 0.01
EUCLID-kNN-DR 317 0 STD-kNN-MZ 341 0 STD-kNN-DR 246 0
EUCLID-kNN-MZ 322 0 EUCLID-kNN-MZ 342 0 LEVERAGE-PLS 249 0.01
LEVERAGE-PLS 323 0.01 LEVERAGE-PLS 343 0 EUCLID-kNN-DR 250 0.01
STD-kNN-MZ 323 0 CORREL-ASNN 347 0 TANIMOTO-MLR-FR 252 0.04
CORREL-ASNN 331 0.01 EUCLID-MLR-FR 368 0.01 LEVERAGE-OLS 260 0.06 1
PLSEU-PLS 344 0.07 1LEVERAGE-OLS 378 0.04 EUCLID-MLR-FR 265 0.2 1
LEVERAGE-OLS 345 0.05 1EUCLID-kNN-FR 379 0.06 1 PLSEU-PLS 266 0.18 1
EUCLID-kNN-FR 346 0.11 1PLSEU-PLS 380 0.03 EUCLID-kNN-FR 267 0.14 1
SGD score 358 SGD score 391 SGD score 269

Model: kNN-Dr Model: kNN-Dr Model: kNN-Dr
STD-CONS 16 0 STD-ASNN 335 0 STD-CONS 235 0
STD-ASNN 50 0 STD-CONS 367 0 STD-ASNN 242 0
EUCLID-MLR-FR 90 0 EUCLID-kNN-DR 396 0 STD-kNN-DR 252 0
EUCLID-kNN-MZ 98 0 STD-kNN-DR 397 0 STD-kNN-MZ 254 0
STD-kNN-DR 100 0 EUCLID-kNN-MZ 402 0 EUCLID-kNN-MZ 254 0
EUCLID-kNN-DR 101 0 LEVERAGE-PLS 403 0 EUCLID-kNN-DR 256 0
STD-kNN-MZ 104 0 405 0 LEVERAGE-PLS 263 0.01

104 0 STD-kNN-MZ 411 0 CORREL-ASNN 263 0.02
LEVERAGE-PLS 106 0 EUCLID-MLR-FR 412 0 265 0.03
TANIMOTO-MLR-FR 109 0 TANIMOTO-MLR-FR 416 0 TANIMOTO-MLR-FR 266 0.03
CORREL-ASNN 113 0.03 PLSEU-PLS 425 0 LEVERAGE-OLS 274 0.04
LEVERAGE-OLS 118 0.02 CORREL-ASNN 430 0 EUCLID-MLR-FR 276 0.09 1
EUCLID-kNN-FR 119 0.05 LEVERAGE-OLS 432 0 PLSEU-PLS 284 0.13 1
PLSEU-PLS 121 0.06 1EUCLID-kNN-FR 439 0.01 EUCLID-kNN-FR 285 0.43 1
SGD score 132 SGD score 462 SGD score 286

Model: kNN-Fr Model: kNN-Fr Model: kNN-Fr
STD-CONS 321 0 STD-CONS 425 0 STD-CONS 345 0
STD-ASNN 414 0 STD-ASNN 443 0 STD-ASNN 360 0
STD-kNN-DR 434 0 EUCLID-kNN-DR 462 0 STD-kNN-DR 365 0
STD-kNN-MZ 434 0 STD-kNN-DR 467 0 EUCLID-kNN-DR 368 0
EUCLID-kNN-DR 436 0 LEVERAGE-PLS 475 0 369 0
LEVERAGE-PLS 436 0 EUCLID-kNN-MZ 481 0 LEVERAGE-PLS 375 0
EUCLID-kNN-MZ 438 0 CORREL-ASNN 482 0 TANIMOTO-MLR-FR 378 0.01
CORREL-ASNN 439 0 EUCLID-MLR-FR 489 0 EUCLID-kNN-MZ 380 0
EUCLID-MLR-FR 447 0 PLSEU-PLS 490 0 CORREL-ASNN 395 0.01

449 0.01 STD-kNN-MZ 490 0 STD-kNN-MZ 396 0.01
PLSEU-PLS 450 0.01 500 0 LEVERAGE-OLS 397 0.09 1
TANIMOTO-MLR-FR 451 0.01 TANIMOTO-MLR-FR 503 0 PLSEU-PLS 400 0.11 1
LEVERAGE-OLS 452 0.01 LEVERAGE-OLS 505 0 EUCLID-MLR-FR 405 0.31 1
EUCLID-kNN-FR 459 0.06 1EUCLID-kNN-FR 515 0.01 EUCLID-kNN-FR 408 0.32 1
SGD score 477 SGD score 533 SGD score 410

Model: kNN-MZ Model: kNN-MZ Model: kNN-MZ
STD-CONS 64 0 STD-ASNN 387 0 STD-CONS 266 0
STD-ASNN 110 0 STD-CONS 415 0 STD-ASNN 278 0
EUCLID-kNN-DR 144 0 LEVERAGE-PLS 443 0 EUCLID-kNN-DR 279 0
EUCLID-MLR-FR 147 0 EUCLID-kNN-DR 445 0 STD-kNN-DR 279 0
STD-kNN-DR 147 0 STD-kNN-DR 448 0 EUCLID-kNN-MZ 279 0
EUCLID-kNN-MZ 148 0 EUCLID-kNN-MZ 453 0 STD-kNN-MZ 279 0
LEVERAGE-PLS 149 0 455 0 LEVERAGE-PLS 290 0

152 0.01 EUCLID-MLR-FR 458 0 294 0.02
CORREL-ASNN 154 0.01 TANIMOTO-MLR-FR 461 0 CORREL-ASNN 295 0.01
TANIMOTO-MLR-FR 155 0 STD-kNN-MZ 464 0 TANIMOTO-MLR-FR 296 0.03
STD-kNN-MZ 159 0.01 PLSEU-PLS 467 0 LEVERAGE-OLS 299 0.01
PLSEU-PLS 162 0.03 LEVERAGE-OLS 471 0.01 EUCLID-MLR-FR 302 0.01
LEVERAGE-OLS 165 0.04 CORREL-ASNN 474 0 PLSEU-PLS 311 0.06 1
EUCLID-kNN-FR 168 0.1 1EUCLID-kNN-FR 492 0.02 EUCLID-kNN-FR 315 0.36 1
SGD score 176 SGD score 506 SGD score 315

Model: CODESSA Model: CODESSA Model: CODESSA
STD-CONS 390 0 STD-CONS 466 0 STD-CONS 344 0
STD-ASNN 468 0 STD-ASNN 475 0 STD-ASNN 356 0
EUCLID-kNN-MZ 500 0 LEVERAGE-PLS 529 0 STD-kNN-DR 367 0
EUCLID-kNN-DR 507 0 EUCLID-kNN-MZ 530 0 LEVERAGE-PLS 367 0
LEVERAGE-PLS 507 0 STD-kNN-DR 536 0 EUCLID-kNN-DR 369 0
CORREL-ASNN 510 0 EUCLID-kNN-DR 538 0 TANIMOTO-MLR-FR 371 0.02
EUCLID-MLR-FR 511 0 CORREL-ASNN 540 0 372 0
STD-kNN-MZ 511 0 540 0 EUCLID-kNN-MZ 374 0.02

513 0 STD-kNN-MZ 540 0 LEVERAGE-OLS 374 0.02
STD-kNN-DR 514 0 TANIMOTO-MLR-FR 542 0 STD-kNN-MZ 374 0.01
PLSEU-PLS 515 0.01 EUCLID-MLR-FR 543 0 EUCLID-MLR-FR 377 0.1 1
TANIMOTO-MLR-FR 515 0 EUCLID-kNN-FR 544 0 PLSEU-PLS 378 0.03
EUCLID-kNN-FR 517 0.01 PLSEU-PLS 547 0 CORREL-ASNN 378 0.1 1
LEVERAGE-OLS 520 0.03 LEVERAGE-OLS 553 0.02 EUCLID-kNN-FR 379 0.09 1
SGD score 534 SGD score 574 SGD score 384

Model: MLR-Fr Model: MLR-Fr Model: MLR-Fr
STD-CONS 17 0 STD-ASNN 355 0 STD-CONS 302 0
STD-ASNN 35 0.03 STD-CONS 380 0 339 0
TANIMOTO-MLR-FR 40 0.1 1LEVERAGE-PLS 429 0 STD-ASNN 340 0
CORREL-ASNN 41 0.18 1STD-kNN-DR 441 0 STD-kNN-DR 344 0
STD-kNN-MZ 41 0.11 1STD-kNN-MZ 445 0 STD-kNN-MZ 344 0

42 0.12 1 449 0 EUCLID-kNN-DR 347 0
LEVERAGE-PLS 43 0.13 1EUCLID-kNN-DR 450 0 LEVERAGE-PLS 349 0
PLSEU-PLS 43 0.15 1EUCLID-kNN-MZ 453 0 TANIMOTO-MLR-FR 356 0.01
EUCLID-MLR-FR 43 0.25 1TANIMOTO-MLR-FR 458 0 EUCLID-kNN-MZ 359 0
EUCLID-kNN-MZ 45 0.4 1EUCLID-MLR-FR 465 0 EUCLID-MLR-FR 359 0.01
LEVERAGE-OLS 45 0.3 1CORREL-ASNN 468 0 CORREL-ASNN 361 0.01
EUCLID-kNN-FR 46 0.48 1LEVERAGE-OLS 495 0.02 LEVERAGE-OLS 378 0.02
STD-kNN-DR 46 1 1PLSEU-PLS 500 0.01 PLSEU-PLS 395 0.16 1
EUCLID-kNN-DR 46 1 1EUCLID-kNN-FR 504 0.02 EUCLID-kNN-FR 402 0
SGD score 46 SGD score 528 SGD score 402

ns ns ns

TANIMOTO-kNN-FR TANIMOTO-kNN-FR

TANIMOTO-kNN-FR

TANIMOTO-kNN-FR
TANIMOTO-kNN-FR

TANIMOTO-kNN-FR

TANIMOTO-kNN-FR

TANIMOTO-kNN-FR
TANIMOTO-kNN-FR

TANIMOTO-kNN-FR
TANIMOTO-kNN-FR TANIMOTO-kNN-FR

TANIMOTO-kNN-FR
TANIMOTO-kNN-FR

TANIMOTO-kNN-FR

TANIMOTO-kNN-FR

TANIMOTO-kNN-FR TANIMOTO-kNN-FR
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Table A3 (continuation)
LOO (training set) 5-fold cross-validation (training set) join validation set

DM Score p-value ns DM Score p-value ns DM Score p-value ns
Model: OLS Model: OLS Model: OLS
STD-CONS 302 0 STD-ASNN 388 0 STD-CONS 297 0
STD-ASNN 386 0 STD-CONS 397 0 STD-ASNN 302 0
TANIMOTO-kNN-FR 444 0 LEVERAGE-PLS 432 0 LEVERAGE-PLS 313 0
LEVERAGE-PLS 447 0 STD-kNN-DR 443 0 EUCLID-kNN-DR 325 0
TANIMOTO-MLR-FR 454 0 EUCLID-kNN-DR 444 0 STD-kNN-DR 326 0
STD-kNN-DR 454 0 EUCLID-MLR-FR 450 0 EUCLID-kNN-MZ 327 0
EUCLID-kNN-DR 457 0 TANIMOTO-kNN-FR 452 0 STD-kNN-MZ 329 0.01
EUCLID-MLR-FR 458 0 STD-kNN-MZ 453 0 PLSEU-PLS 331 0.01
EUCLID-kNN-MZ 463 0 EUCLID-kNN-MZ 453 0 TANIMOTO-kNN-FR 331 0.02
PLSEU-PLS 465 0 PLSEU-PLS 455 0 TANIMOTO-MLR-FR 332 0.07 1
CORREL-ASNN 475 0 TANIMOTO-MLR-FR 456 0 CORREL-ASNN 334 0.04
STD-kNN-MZ 480 0.01 CORREL-ASNN 463 0.02 LEVERAGE-OLS 337 0.04
EUCLID-kNN-FR 485 0.07 1LEVERAGE-OLS 467 0.02 EUCLID-MLR-FR 343 0.13 1
LEVERAGE-OLS 490 0.04 EUCLID-kNN-FR 471 0.05 EUCLID-kNN-FR 345 0.18 1
SGD score 504 SGD score 484 SGD score 347

Model: PLSR Model: PLSR Model: PLSR
STD-CONS 247 0 STD-ASNN 353 0 STD-CONS 259 0
STD-ASNN 288 0 STD-CONS 370 0 STD-ASNN 262 0
EUCLID-kNN-DR 322 0 STD-kNN-DR 392 0 STD-kNN-MZ 274 0
STD-kNN-DR 335 0 EUCLID-kNN-DR 400 0 STD-kNN-DR 280 0
LEVERAGE-PLS 335 0 TANIMOTO-kNN-FR 400 0 EUCLID-kNN-MZ 282 0
EUCLID-kNN-MZ 335 0 LEVERAGE-PLS 403 0 EUCLID-kNN-DR 282 0
STD-kNN-MZ 338 0 STD-kNN-MZ 404 0 LEVERAGE-PLS 282 0
EUCLID-MLR-FR 340 0 EUCLID-kNN-MZ 404 0 TANIMOTO-kNN-FR 284 0
TANIMOTO-kNN-FR 343 0 TANIMOTO-MLR-FR 408 0 TANIMOTO-MLR-FR 288 0.01
LEVERAGE-OLS 347 0 EUCLID-MLR-FR 413 0 LEVERAGE-OLS 291 0.01
PLSEU-PLS 347 0 CORREL-ASNN 418 0 CORREL-ASNN 300 0.01
TANIMOTO-MLR-FR 350 0.01 LEVERAGE-OLS 423 0.02 EUCLID-MLR-FR 301 0.04
CORREL-ASNN 355 0 EUCLID-kNN-FR 425 0.02 PLSEU-PLS 302 0.03
EUCLID-kNN-FR 364 0.06 1PLSEU-PLS 428 0.03 EUCLID-kNN-FR 307 0.15 1
SGD score 382 SGD score 442 SGD score 312

Model: SVM-Dr Model: SVM-Dr Model: SVM-Dr
STD-CONS 35 0 STD-ASNN 311 0 STD-CONS 284 0
STD-ASNN 78 0 STD-CONS 338 0 STD-kNN-DR 292 0
TANIMOTO-kNN-FR 90 0.03 STD-kNN-DR 360 0 STD-ASNN 293 0
EUCLID-MLR-FR 91 0.03 EUCLID-kNN-DR 364 0 EUCLID-kNN-DR 296 0
STD-kNN-MZ 92 0.02 TANIMOTO-kNN-FR 367 0 STD-kNN-MZ 300 0
TANIMOTO-MLR-FR 94 0.07 1TANIMOTO-MLR-FR 371 0 EUCLID-kNN-MZ 301 0
STD-kNN-DR 94 0.04 STD-kNN-MZ 372 0 LEVERAGE-PLS 317 0
EUCLID-kNN-MZ 95 0.12 1EUCLID-kNN-MZ 373 0 CORREL-ASNN 341 0
EUCLID-kNN-FR 96 0.32 1LEVERAGE-PLS 374 0 EUCLID-MLR-FR 343 0
EUCLID-kNN-DR 96 0.12 1EUCLID-MLR-FR 381 0 PLSEU-PLS 348 0
CORREL-ASNN 99 0.3 1CORREL-ASNN 390 0 TANIMOTO-kNN-FR 351 0
PLSEU-PLS 102 1 1LEVERAGE-OLS 392 0 LEVERAGE-OLS 355 0
LEVERAGE-PLS 102 1 1PLSEU-PLS 395 0.02 TANIMOTO-MLR-FR 363 0.02
LEVERAGE-OLS 102 1 1EUCLID-kNN-FR 402 0.07 1EUCLID-kNN-FR 386 0.21 1
SGD score 102 SGD score 415 SGD score 393

Model: SVM-Fr Model: SVM-Fr Model: SVM-Fr
STD-CONS -63 0 STD-ASNN 280 0 STD-CONS 282 0
STD-ASNN -41 0.02 STD-CONS 316 0 STD-kNN-DR 311 0
TANIMOTO-MLR-FR -35 0.03 LEVERAGE-PLS 349 0 EUCLID-kNN-DR 312 0
LEVERAGE-PLS -25 0.09 1EUCLID-kNN-DR 359 0 STD-kNN-MZ 313 0
TANIMOTO-kNN-FR -25 0.08 1STD-kNN-DR 360 0 STD-ASNN 315 0
CORREL-ASNN -20 0.16 1EUCLID-kNN-MZ 373 0 TANIMOTO-kNN-FR 316 0
STD-kNN-MZ -16 0.18 1TANIMOTO-kNN-FR 376 0 LEVERAGE-PLS 324 0
PLSEU-PLS -15 0.21 1TANIMOTO-MLR-FR 381 0 EUCLID-kNN-MZ 325 0
STD-kNN-DR -14 0.39 1STD-kNN-MZ 385 0 TANIMOTO-MLR-FR 329 0
EUCLID-kNN-MZ -13 0 EUCLID-MLR-FR 390 0 CORREL-ASNN 338 0.01
EUCLID-MLR-FR -13 1 1CORREL-ASNN 393 0 EUCLID-MLR-FR 341 0.01
LEVERAGE-OLS -13 1 1PLSEU-PLS 397 0 LEVERAGE-OLS 354 0.02
EUCLID-kNN-FR -13 0.49 1EUCLID-kNN-FR 423 0.07 1PLSEU-PLS 368 0.11 1
EUCLID-kNN-DR -13 0 LEVERAGE-OLS 423 0.05 EUCLID-kNN-FR 378 0.36 1
SGD score -13 SGD score 438 SGD score 379

Model: SVM-MZ Model: SVM-MZ Model: SVM-MZ
STD-CONS 122 0 STD-ASNN 371 0 STD-CONS 272 0
STD-ASNN 184 0 STD-CONS 380 0 STD-kNN-MZ 276 0
TANIMOTO-MLR-FR 207 0 TANIMOTO-MLR-FR 414 0 EUCLID-kNN-MZ 280 0
TANIMOTO-kNN-FR 213 0.02 TANIMOTO-kNN-FR 414 0 STD-ASNN 282 0
EUCLID-kNN-DR 218 0.06 1LEVERAGE-PLS 415 0 STD-kNN-DR 287 0
STD-kNN-DR 219 0.03 STD-kNN-DR 423 0 LEVERAGE-PLS 288 0
PLSEU-PLS 220 0.04 EUCLID-kNN-DR 424 0 EUCLID-kNN-DR 288 0
EUCLID-MLR-FR 223 0 EUCLID-kNN-MZ 430 0 TANIMOTO-kNN-FR 296 0
LEVERAGE-PLS 224 0.06 1STD-kNN-MZ 433 0 TANIMOTO-MLR-FR 302 0.01
EUCLID-kNN-MZ 233 0.14 1PLSEU-PLS 438 0 LEVERAGE-OLS 306 0.01
CORREL-ASNN 235 0.16 1EUCLID-MLR-FR 439 0 CORREL-ASNN 311 0.01
STD-kNN-MZ 240 0.18 1LEVERAGE-OLS 446 0 EUCLID-MLR-FR 312 0.06 1
EUCLID-kNN-FR 241 0.37 1CORREL-ASNN 453 0.02 PLSEU-PLS 315 0.02
LEVERAGE-OLS 243 0.28 1EUCLID-kNN-FR 455 0.02 EUCLID-kNN-FR 326 0.21 1
SGD score 245 SGD score 483 SGD score 343

Model: CONS Model: CONS Model: CONS
STD-CONS 33 0 STD-ASNN 247 0 STD-CONS 214 0
STD-ASNN 87 0 STD-CONS 296 0 STD-ASNN 220 0
TANIMOTO-kNN-FR 125 0 TANIMOTO-kNN-FR 322 0 TANIMOTO-kNN-FR 232 0
EUCLID-MLR-FR 126 0 STD-kNN-DR 323 0 STD-kNN-MZ 235 0
TANIMOTO-MLR-FR 126 0 LEVERAGE-PLS 326 0 TANIMOTO-MLR-FR 235 0.01
STD-kNN-DR 132 0.01 EUCLID-kNN-DR 328 0 LEVERAGE-PLS 236 0
EUCLID-kNN-MZ 134 0.01 TANIMOTO-MLR-FR 328 0 STD-kNN-DR 236 0
LEVERAGE-PLS 134 0 EUCLID-MLR-FR 332 0 EUCLID-kNN-DR 237 0
EUCLID-kNN-DR 135 0.02 EUCLID-kNN-MZ 333 0 EUCLID-kNN-MZ 239 0
STD-kNN-MZ 137 0.02 STD-kNN-MZ 338 0 CORREL-ASNN 241 0.02
CORREL-ASNN 137 0.04 CORREL-ASNN 346 0 LEVERAGE-OLS 249 0.04
PLSEU-PLS 142 0.05 1PLSEU-PLS 353 0.01 EUCLID-MLR-FR 257 0.16 1
EUCLID-kNN-FR 144 0.13 1LEVERAGE-OLS 358 0.01 PLSEU-PLS 257 0.08 1
LEVERAGE-OLS 146 0.12 1EUCLID-kNN-FR 362 0.03 EUCLID-kNN-FR 261 0.26 1
SGD score 151 29 SGD score 381 2SGD score 261 12
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Table A4. T. Pyriformis toxicity study: Predicting RMSE for the validation sets 

MGD calibrated on the 5-CV set MGD calibrated on the 5-CV set MGD calibrated on the validation set 1
DM set 1 set 2 set 2
Model: ASNN scores RMSE RMSE pred p Model: ASNN scores RMSE RMSE pred p Model: ASNN scores RMSE RMSE pred p
STD-ASNN 163 0.41 0.47 0.06 TANIMOTO-MLR-FR 80 0.52 0.47 0.23 EUCLID-kNN-DR 82 0.52 0.45 0.44
EUCLID-kNN-MZ 168 0.41 0.41 0.08 STD-kNN-DR 81 0.52 0.46 0.37 STD-kNN-MZ 82 0.52 0.49 0.42
LEVERAGE-PLS 169 0.41 0.45 0.03 STD-kNN-MZ 81 0.52 0.5 0.3 EUCLID-kNN-MZ 85 0.52 0.47 0.71
TANIMOTO-kNN-FR 169 0.41 0.44 0.13 EUCLID-kNN-DR 82 0.52 0.46 0.45 TANIMOTO-kNN-FR 85 0.52 0.44 0.66
EUCLID-kNN-FR 177 0.41 0.44 0.17 TANIMOTO-kNN-FR 82 0.52 0.48 0.43 CORREL-ASNN 86 0.52 0.45 0.66
TANIMOTO-MLR-FR 177 0.41 0.45 0.32 EUCLID-kNN-MZ 83 0.52 0.46 0.55 STD-kNN-DR 86 0.52 0.46 0.75
EUCLID-kNN-DR 177 0.41 0.4 0.3 LEVERAGE-PLS 85 0.52 0.47 0.62 TANIMOTO-MLR-FR 88 0.52 0.43 0.78
STD-kNN-MZ 178 0.41 0.42 0.35 STD-CONS 85 0.52 0.6 0.65 LEVERAGE-OLS 88 0.52 0.42 0.85
EUCLID-MLR-FR 181 0.41 0.44 0.48 LEVERAGE-OLS 86 0.52 0.45 0.73 LEVERAGE-PLS 88 0.52 0.44 0.79
STD-kNN-DR 181 0.41 0.4 0.49 PLSEU-PLS 86 0.52 0.45 0.77 PLSEU-PLS 89 0.52 0.41 0.87
LEVERAGE-OLS 183 0.41 0.44 0.68 EUCLID-kNN-FR 91 0.52 0.45 0.96 EUCLID-MLR-FR 95 0.52 0.43 0.94
PLSEU-PLS 184 0.41 0.44 0.8 CORREL-ASNN 96 0.52 0.47 0.88 EUCLID-kNN-FR 98 0.52 0.42 0.98
STD-CONS 185 0.41 0.55 0.62 EUCLID-MLR-FR 100 0.52 0.45 0.84 STD-CONS 98 0.52 0.46 0.77
CORREL-ASNN 190 0.41 0.44 0.64 STD-ASNN 109 0.52 0.58 0.94 STD-ASNN 106 0.52 0.49 0.94
One Gauss, S(G0) 181 One Gauss, S(G0) 83 One Gauss, S(G0) 83

Model: kNN-Dr Model: kNN-Dr Model: kNN-Dr
STD-ASNN 162 0.41 0.52 0.06 STD-kNN-DR 87 0.57 0.51 0.14 STD-kNN-MZ 92 0.57 0.49 0.33
EUCLID-kNN-MZ 165 0.41 0.45 0.06 TANIMOTO-MLR-FR 90 0.57 0.53 0.11 EUCLID-kNN-DR 94 0.57 0.46 0.51
EUCLID-kNN-DR 168 0.41 0.43 0.12 EUCLID-kNN-MZ 94 0.57 0.5 0.5 STD-kNN-DR 97 0.57 0.46 0.69
EUCLID-MLR-FR 174 0.41 0.48 0.22 STD-kNN-MZ 94 0.57 0.55 0.56 EUCLID-kNN-MZ 98 0.57 0.48 0.75
STD-kNN-DR 175 0.41 0.44 0.27 TANIMOTO-kNN-FR 95 0.57 0.54 0.61 TANIMOTO-MLR-FR 103 0.57 0.43 0.86
TANIMOTO-kNN-FR 179 0.41 0.49 0.4 EUCLID-kNN-DR 96 0.57 0.49 0.61 PLSEU-PLS 107 0.57 0.41 0.97
STD-kNN-MZ 180 0.41 0.46 0.44 CORREL-ASNN 96 0.57 0.53 0.59 TANIMOTO-kNN-FR 108 0.57 0.44 0.95
LEVERAGE-OLS 182 0.41 0.49 0.51 LEVERAGE-PLS 97 0.57 0.54 0.65 CORREL-ASNN 109 0.57 0.44 0.94
LEVERAGE-PLS 188 0.41 0.49 0.71 STD-CONS 99 0.57 0.7 0.73 EUCLID-kNN-FR 109 0.57 0.42 0.98
TANIMOTO-MLR-FR 189 0.41 0.5 0.7 PLSEU-PLS 103 0.57 0.5 0.89 LEVERAGE-PLS 110 0.57 0.43 0.97
EUCLID-kNN-FR 189 0.41 0.49 0.83 LEVERAGE-OLS 103 0.57 0.5 0.92 LEVERAGE-OLS 111 0.57 0.43 0.98
CORREL-ASNN 190 0.41 0.49 0.69 EUCLID-kNN-FR 104 0.57 0.51 0.99 STD-CONS 113 0.57 0.47 0.77
PLSEU-PLS 196 0.41 0.48 0.98 STD-ASNN 117 0.57 0.6 0.93 STD-ASNN 121 0.57 0.49 0.95
STD-CONS 199 0.41 0.64 0.79 EUCLID-MLR-FR 125 0.57 0.51 0.83 EUCLID-MLR-FR 122 0.57 0.44 0.99
One Gauss, S(G0) 182 One Gauss, S(G0) 94 One Gauss, S(G0) 94

Model: kNN-Fr Model: kNN-Fr Model: kNN-Fr
STD-ASNN 255 0.56 0.57 0.01 TANIMOTO-kNN-FR 114 0.71 0.59 0.22 STD-CONS 111 0.71 0.61 0.21
TANIMOTO-MLR-FR 266 0.56 0.56 0.03 CORREL-ASNN 115 0.71 0.61 0.36 EUCLID-kNN-DR 112 0.71 0.65 0.06
TANIMOTO-kNN-FR 269 0.56 0.55 0.02 LEVERAGE-PLS 116 0.71 0.6 0.4 EUCLID-kNN-MZ 113 0.71 0.65 0.2
LEVERAGE-PLS 278 0.56 0.55 0.15 STD-kNN-DR 117 0.71 0.57 0.44 STD-kNN-DR 115 0.71 0.65 0.31
STD-CONS 279 0.56 0.73 0.38 STD-kNN-MZ 117 0.71 0.63 0.41 TANIMOTO-kNN-FR 116 0.71 0.58 0.42
EUCLID-kNN-MZ 284 0.56 0.49 0.38 STD-ASNN 120 0.71 0.66 0.57 STD-ASNN 118 0.71 0.67 0.49
LEVERAGE-OLS 286 0.56 0.55 0.46 TANIMOTO-MLR-FR 120 0.71 0.57 0.71 STD-kNN-MZ 119 0.71 0.61 0.74
STD-kNN-MZ 287 0.56 0.53 0.45 STD-CONS 122 0.71 0.8 0.65 LEVERAGE-PLS 119 0.71 0.6 0.63
EUCLID-kNN-DR 290 0.56 0.48 0.53 EUCLID-kNN-DR 123 0.71 0.56 0.73 TANIMOTO-MLR-FR 119 0.71 0.58 0.62
CORREL-ASNN 294 0.56 0.55 0.7 EUCLID-kNN-FR 127 0.71 0.57 0.93 EUCLID-kNN-FR 124 0.71 0.56 0.92
EUCLID-kNN-FR 298 0.56 0.55 0.93 EUCLID-kNN-MZ 129 0.71 0.56 0.9 LEVERAGE-OLS 124 0.71 0.59 0.82
STD-kNN-DR 305 0.56 0.49 0.86 LEVERAGE-OLS 129 0.71 0.56 0.93 PLSEU-PLS 126 0.71 0.58 0.9
PLSEU-PLS 324 0.56 0.54 0.89 EUCLID-MLR-FR 145 0.71 0.56 0.96 CORREL-ASNN 127 0.71 0.57 0.84
EUCLID-MLR-FR 346 0.56 0.53 0.7 PLSEU-PLS 148 0.71 0.55 0.96 EUCLID-MLR-FR 158 0.71 0.56 0.83
One Gauss, S(G0) 287 One Gauss, S(G0) 117 One Gauss, S(G0) 117

Model: kNN-MZ Model: kNN-MZ Model: kNN-MZ
STD-ASNN 177 0.43 0.56 0.1 STD-kNN-DR 95 0.63 0.55 0.02 STD-kNN-MZ 104 0.63 0.5 0.39
EUCLID-kNN-MZ 183 0.43 0.47 0.16 EUCLID-kNN-DR 99 0.63 0.54 0.11 EUCLID-kNN-DR 107 0.63 0.47 0.64
EUCLID-kNN-DR 186 0.43 0.47 0.11 TANIMOTO-MLR-FR 100 0.63 0.56 0.07 EUCLID-kNN-MZ 108 0.63 0.48 0.65
STD-kNN-DR 189 0.43 0.48 0.27 EUCLID-kNN-MZ 101 0.63 0.55 0.23 STD-kNN-DR 109 0.63 0.47 0.73
EUCLID-MLR-FR 189 0.43 0.51 0.33 STD-CONS 102 0.63 0.74 0.25 LEVERAGE-PLS 117 0.63 0.45 0.93
TANIMOTO-kNN-FR 196 0.43 0.53 0.58 LEVERAGE-PLS 102 0.63 0.57 0.29 STD-CONS 119 0.63 0.48 0.73
LEVERAGE-PLS 197 0.43 0.53 0.69 STD-kNN-MZ 103 0.63 0.58 0.21 TANIMOTO-MLR-FR 119 0.63 0.45 0.94
LEVERAGE-OLS 198 0.43 0.52 0.7 TANIMOTO-kNN-FR 104 0.63 0.57 0.37 TANIMOTO-kNN-FR 120 0.63 0.45 0.96
STD-kNN-MZ 200 0.43 0.52 0.76 CORREL-ASNN 106 0.63 0.57 0.49 CORREL-ASNN 123 0.63 0.45 0.98
CORREL-ASNN 204 0.43 0.52 0.78 PLSEU-PLS 108 0.63 0.53 0.63 LEVERAGE-OLS 124 0.63 0.45 0.99
TANIMOTO-MLR-FR 205 0.43 0.53 0.88 LEVERAGE-OLS 110 0.63 0.55 0.84 PLSEU-PLS 127 0.63 0.43 0.99
EUCLID-kNN-FR 206 0.43 0.53 0.95 EUCLID-kNN-FR 111 0.63 0.54 0.94 EUCLID-kNN-FR 127 0.63 0.43 1
PLSEU-PLS 207 0.43 0.52 0.99 STD-ASNN 114 0.63 0.65 0.74 EUCLID-MLR-FR 128 0.63 0.45 0.99
STD-CONS 213 0.43 0.66 0.88 EUCLID-MLR-FR 123 0.63 0.55 0.7 STD-ASNN 139 0.63 0.48 0.95
One Gauss, S(G0) 194 One Gauss, S(G0) 105 One Gauss, S(G0) 105

Model: CODESSA Model: CODESSA Model: CODESSA
STD-ASNN 266 0.57 0.62 0.01 EUCLID-kNN-DR 95 0.58 0.6 0.5 STD-kNN-DR 93 0.58 0.61 0.09
STD-kNN-DR 274 0.57 0.56 0.01 PLSEU-PLS 95 0.58 0.59 0.39 EUCLID-kNN-DR 94 0.58 0.64 0.31
LEVERAGE-PLS 275 0.57 0.59 0.03 TANIMOTO-MLR-FR 95 0.58 0.61 0.36 LEVERAGE-PLS 94 0.58 0.59 0.41
LEVERAGE-OLS 277 0.57 0.59 0.01 EUCLID-kNN-MZ 96 0.58 0.6 0.62 PLSEU-PLS 95 0.58 0.57 0.5
TANIMOTO-kNN-FR 278 0.57 0.59 0.06 STD-kNN-MZ 97 0.58 0.65 0.69 STD-CONS 96 0.58 0.62 0.53
TANIMOTO-MLR-FR 280 0.57 0.6 0.06 STD-kNN-DR 97 0.58 0.61 0.72 TANIMOTO-MLR-FR 97 0.58 0.59 0.73
EUCLID-kNN-DR 281 0.57 0.54 0.05 TANIMOTO-kNN-FR 98 0.58 0.63 0.89 TANIMOTO-kNN-FR 98 0.58 0.6 0.92
EUCLID-kNN-FR 281 0.57 0.59 0.08 LEVERAGE-PLS 98 0.58 0.63 0.8 STD-kNN-MZ 98 0.58 0.62 0.73
EUCLID-MLR-FR 284 0.57 0.57 0.29 LEVERAGE-OLS 99 0.58 0.6 0.99 CORREL-ASNN 98 0.58 0.59 0.93
EUCLID-kNN-MZ 287 0.57 0.54 0.46 EUCLID-kNN-FR 100 0.58 0.62 1 EUCLID-kNN-MZ 99 0.58 0.62 0.96
PLSEU-PLS 287 0.57 0.58 0.46 STD-CONS 103 0.58 0.81 0.95 EUCLID-kNN-FR 100 0.58 0.58 0.99
STD-kNN-MZ 288 0.57 0.56 0.53 CORREL-ASNN 106 0.58 0.61 0.94 LEVERAGE-OLS 101 0.58 0.58 0.99
STD-CONS 295 0.57 0.75 0.69 EUCLID-MLR-FR 110 0.58 0.6 0.98 EUCLID-MLR-FR 103 0.58 0.58 0.91
CORREL-ASNN 304 0.57 0.58 0.93 STD-ASNN 111 0.58 0.69 0.99 STD-ASNN 104 0.58 0.65 0.98
One Gauss, S(G0) 288 One Gauss, S(G0) 95 One Gauss, S(G0) 95

Model: MLR-Fr Model: MLR-Fr Model: MLR-Fr
LEVERAGE-PLS 238 0.56 0.55 0.02 TANIMOTO-MLR-FR 105 0.68 0.58 0.02 TANIMOTO-MLR-FR 102 0.68 0.62 0.05
STD-ASNN 242 0.56 0.6 0.03 TANIMOTO-kNN-FR 109 0.68 0.6 0.27 STD-kNN-DR 107 0.68 0.66 0.12
EUCLID-kNN-DR 251 0.56 0.48 0 STD-kNN-MZ 111 0.68 0.63 0.44 STD-kNN-MZ 111 0.68 0.73 0.45
STD-kNN-DR 253 0.56 0.5 0.1 STD-CONS 112 0.68 0.86 0.5 STD-CONS 111 0.68 0.62 0.41
TANIMOTO-kNN-FR 259 0.56 0.54 0.12 CORREL-ASNN 113 0.68 0.61 0.49 EUCLID-kNN-DR 112 0.68 0.68 0.51
EUCLID-kNN-MZ 263 0.56 0.47 0.06 STD-kNN-DR 118 0.68 0.58 0.77 TANIMOTO-kNN-FR 112 0.68 0.59 0.46
TANIMOTO-MLR-FR 271 0.56 0.55 0.22 PLSEU-PLS 122 0.68 0.56 0.89 EUCLID-kNN-FR 116 0.68 0.56 0.8
LEVERAGE-OLS 274 0.56 0.54 0.23 EUCLID-kNN-DR 123 0.68 0.6 0.89 CORREL-ASNN 116 0.68 0.64 0.66
EUCLID-MLR-FR 274 0.56 0.53 0.28 EUCLID-kNN-FR 125 0.68 0.57 0.95 EUCLID-kNN-MZ 118 0.68 0.66 0.8
PLSEU-PLS 281 0.56 0.54 0.28 EUCLID-kNN-MZ 131 0.68 0.55 0.97 PLSEU-PLS 120 0.68 0.58 0.91
STD-kNN-MZ 295 0.56 0.5 0.58 LEVERAGE-OLS 131 0.68 0.57 0.96 LEVERAGE-OLS 122 0.68 0.59 0.93
CORREL-ASNN 300 0.56 0.54 0.69 STD-ASNN 132 0.68 0.73 0.93 STD-ASNN 125 0.68 0.66 0.85
EUCLID-kNN-FR 301 0.56 0.55 0.93 LEVERAGE-PLS 132 0.68 0.6 0.95 EUCLID-MLR-FR 134 0.68 0.63 0.93
STD-CONS 454 0.56 0.75 0.96 EUCLID-MLR-FR 170 0.68 0.57 0.96 LEVERAGE-PLS 145 0.68 0.6 0.96
One Gauss, S(G0) 286 One Gauss, S(G0) 112 One Gauss, S(G0) 112
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Table A4 (continuation)

MGD calibrated on the 5-CV set MGD calibrated on the 5-CV set MGD calibrated on the validation set 1
DM set 1 set 2 set 2

Model: OLS Model: OLS Model: OLS
STD-ASNN 217 0.5 0.55 0 STD-kNN-DR 94 0.58 0.53 0.37 EUCLID-kNN-DR 93 0.58 0.56 0.09
LEVERAGE-PLS 230 0.5 0.52 0.01 TANIMOTO-MLR-FR 95 0.58 0.55 0.36 STD-kNN-DR 94 0.58 0.55 0.28
EUCLID-kNN-MZ 237 0.5 0.47 0.02 TANIMOTO-kNN-FR 96 0.58 0.55 0.46 PLSEU-PLS 95 0.58 0.51 0.45
PLSEU-PLS 239 0.5 0.5 0.1 LEVERAGE-PLS 97 0.58 0.55 0.59 TANIMOTO-MLR-FR 96 0.58 0.53 0.56
TANIMOTO-kNN-FR 244 0.5 0.51 0.27 CORREL-ASNN 97 0.58 0.54 0.62 LEVERAGE-PLS 96 0.58 0.53 0.53
EUCLID-kNN-DR 244 0.5 0.47 0.23 STD-kNN-MZ 97 0.58 0.55 0.56 CORREL-ASNN 100 0.58 0.53 0.73
LEVERAGE-OLS 244 0.5 0.51 0.2 EUCLID-kNN-DR 98 0.58 0.53 0.67 STD-ASNN 100 0.58 0.61 0.71
STD-kNN-MZ 245 0.5 0.48 0.27 PLSEU-PLS 98 0.58 0.52 0.66 EUCLID-MLR-FR 101 0.58 0.52 0.85
EUCLID-kNN-FR 245 0.5 0.51 0.15 STD-CONS 99 0.58 0.71 0.72 LEVERAGE-OLS 102 0.58 0.52 0.88
EUCLID-MLR-FR 249 0.5 0.51 0.51 EUCLID-kNN-MZ 100 0.58 0.52 0.8 TANIMOTO-kNN-FR 102 0.58 0.54 0.83
STD-kNN-DR 249 0.5 0.47 0.46 EUCLID-kNN-FR 102 0.58 0.53 0.96 EUCLID-kNN-MZ 103 0.58 0.58 0.86
TANIMOTO-MLR-FR 250 0.5 0.51 0.58 LEVERAGE-OLS 102 0.58 0.53 0.86 STD-CONS 104 0.58 0.56 0.69
CORREL-ASNN 253 0.5 0.51 0.7 STD-ASNN 104 0.58 0.64 0.85 STD-kNN-MZ 104 0.58 0.58 0.65
STD-CONS 259 0.5 0.65 0.63 EUCLID-MLR-FR 111 0.58 0.53 0.88 EUCLID-kNN-FR 107 0.58 0.52 0.99
One Gauss, S(G0) 249 One Gauss, S(G0) 96 One Gauss, S(G0) 96

Model: PLSR Model: PLSR Model: PLSR
STD-ASNN 182 0.46 0.51 0 STD-kNN-MZ 82 0.57 0.54 0 STD-kNN-MZ 86 0.57 0.55 0
TANIMOTO-kNN-FR 200 0.46 0.48 0.07 TANIMOTO-MLR-FR 87 0.57 0.52 0.13 EUCLID-kNN-DR 87 0.57 0.51 0.05
LEVERAGE-OLS 201 0.46 0.48 0.02 STD-ASNN 88 0.57 0.59 0.27 STD-ASNN 90 0.57 0.54 0.33
EUCLID-kNN-DR 201 0.46 0.43 0.03 EUCLID-kNN-DR 91 0.57 0.48 0.42 EUCLID-kNN-MZ 92 0.57 0.53 0.43
LEVERAGE-PLS 202 0.46 0.48 0.01 LEVERAGE-PLS 91 0.57 0.51 0.34 STD-CONS 92 0.57 0.5 0.44
EUCLID-kNN-MZ 207 0.46 0.44 0.14 TANIMOTO-kNN-FR 92 0.57 0.53 0.44 STD-kNN-DR 93 0.57 0.51 0.5
TANIMOTO-MLR-FR 208 0.46 0.48 0.2 EUCLID-kNN-MZ 93 0.57 0.48 0.48 PLSEU-PLS 94 0.57 0.46 0.61
EUCLID-kNN-FR 209 0.46 0.48 0.1 LEVERAGE-OLS 93 0.57 0.5 0.47 LEVERAGE-PLS 94 0.57 0.47 0.53
EUCLID-MLR-FR 210 0.46 0.47 0.31 CORREL-ASNN 95 0.57 0.5 0.66 TANIMOTO-kNN-FR 94 0.57 0.49 0.54
STD-kNN-DR 210 0.46 0.44 0.29 STD-CONS 97 0.57 0.66 0.68 LEVERAGE-OLS 94 0.57 0.48 0.61
STD-kNN-MZ 212 0.46 0.46 0.37 STD-kNN-DR 98 0.57 0.5 0.74 TANIMOTO-MLR-FR 96 0.57 0.48 0.61
CORREL-ASNN 213 0.46 0.48 0.45 EUCLID-kNN-FR 98 0.57 0.5 0.84 CORREL-ASNN 98 0.57 0.48 0.82
STD-CONS 214 0.46 0.6 0.48 PLSEU-PLS 101 0.57 0.48 0.67 EUCLID-MLR-FR 100 0.57 0.48 0.82
PLSEU-PLS 225 0.46 0.47 0.76 EUCLID-MLR-FR 106 0.57 0.49 0.81 EUCLID-kNN-FR 104 0.57 0.47 0.95
One Gauss, S(G0) 214 One Gauss, S(G0) 93 One Gauss, S(G0) 93

Model: SVM-Dr Model: SVM-Dr Model: SVM-Dr
STD-ASNN 219 0.57 0.49 0 EUCLID-kNN-MZ 94 0.61 0.47 0.11 EUCLID-kNN-DR 86 0.61 0.72 0.03
EUCLID-kNN-MZ 248 0.57 0.42 0 EUCLID-kNN-DR 96 0.61 0.47 0.23 STD-kNN-MZ 90 0.61 0.77 0.1
EUCLID-kNN-DR 253 0.57 0.41 0.01 LEVERAGE-PLS 96 0.61 0.5 0.25 EUCLID-kNN-MZ 90 0.61 0.7 0.1
LEVERAGE-PLS 260 0.57 0.46 0.02 STD-kNN-MZ 97 0.61 0.49 0.22 LEVERAGE-PLS 92 0.61 0.64 0.16
TANIMOTO-kNN-FR 264 0.57 0.46 0.1 CORREL-ASNN 99 0.61 0.49 0.35 STD-CONS 93 0.61 0.64 0.27
EUCLID-MLR-FR 280 0.57 0.45 0.17 PLSEU-PLS 101 0.61 0.47 0.48 TANIMOTO-MLR-FR 95 0.61 0.62 0.14
PLSEU-PLS 282 0.57 0.45 0.23 TANIMOTO-MLR-FR 101 0.61 0.49 0.47 PLSEU-PLS 96 0.61 0.59 0.26
TANIMOTO-MLR-FR 287 0.57 0.47 0.39 LEVERAGE-OLS 103 0.61 0.47 0.6 LEVERAGE-OLS 99 0.61 0.6 0.36
CORREL-ASNN 288 0.57 0.45 0.39 TANIMOTO-kNN-FR 106 0.61 0.49 0.71 TANIMOTO-kNN-FR 99 0.61 0.62 0.29
STD-kNN-MZ 290 0.57 0.44 0.46 STD-ASNN 106 0.61 0.58 0.63 STD-ASNN 100 0.61 0.76 0.46
EUCLID-kNN-FR 305 0.57 0.46 0.71 EUCLID-kNN-FR 112 0.61 0.47 0.9 EUCLID-kNN-FR 101 0.61 0.58 0.48
LEVERAGE-OLS 312 0.57 0.46 0.72 EUCLID-MLR-FR 128 0.61 0.47 0.96 STD-kNN-DR 103 0.61 0.72 0.55
STD-kNN-DR 344 0.57 0.41 0.86 STD-kNN-DR 128 0.61 0.48 0.85 CORREL-ASNN 105 0.61 0.68 0.69
STD-CONS 365 0.57 0.58 0.71 STD-CONS 150 0.61 0.63 0.74 EUCLID-MLR-FR 105 0.61 0.65 0.64
One Gauss, S(G0) 291 One Gauss, S(G0) 101 One Gauss, S(G0) 101

Model: SVM-Fr Model: SVM-Fr Model: SVM-Fr
LEVERAGE-PLS 224 0.51 0.48 0.1 STD-CONS 115 0.7 0.72 0.43 EUCLID-kNN-DR 111 0.7 0.61 0.16
STD-kNN-DR 225 0.51 0.42 0.1 TANIMOTO-MLR-FR 117 0.7 0.51 0.56 STD-kNN-MZ 112 0.7 0.65 0.07
EUCLID-kNN-MZ 227 0.51 0.43 0.04 STD-kNN-MZ 119 0.7 0.54 0.63 STD-CONS 118 0.7 0.56 0.55
TANIMOTO-MLR-FR 229 0.51 0.48 0.06 TANIMOTO-kNN-FR 119 0.7 0.53 0.63 TANIMOTO-MLR-FR 119 0.7 0.54 0.64
STD-ASNN 229 0.51 0.51 0.15 STD-kNN-DR 138 0.7 0.5 0.89 STD-kNN-DR 121 0.7 0.61 0.74
TANIMOTO-kNN-FR 232 0.51 0.47 0.12 LEVERAGE-OLS 139 0.7 0.49 0.96 TANIMOTO-kNN-FR 121 0.7 0.54 0.72
EUCLID-MLR-FR 236 0.51 0.47 0.2 CORREL-ASNN 141 0.7 0.52 0.96 CORREL-ASNN 128 0.7 0.58 0.85
EUCLID-kNN-DR 243 0.51 0.41 0.31 EUCLID-kNN-MZ 141 0.7 0.49 0.97 EUCLID-kNN-MZ 129 0.7 0.6 0.89
LEVERAGE-OLS 243 0.51 0.47 0.19 STD-ASNN 145 0.7 0.59 0.93 EUCLID-kNN-FR 129 0.7 0.51 0.94
PLSEU-PLS 251 0.51 0.47 0.43 EUCLID-kNN-FR 145 0.7 0.49 0.99 PLSEU-PLS 129 0.7 0.51 0.93
STD-kNN-MZ 258 0.51 0.45 0.56 PLSEU-PLS 146 0.7 0.48 0.96 LEVERAGE-OLS 132 0.7 0.52 0.91
EUCLID-kNN-FR 264 0.51 0.48 0.81 EUCLID-kNN-DR 154 0.7 0.48 0.95 EUCLID-MLR-FR 143 0.7 0.56 0.94
CORREL-ASNN 300 0.51 0.47 0.84 LEVERAGE-PLS 158 0.7 0.53 0.98 STD-ASNN 145 0.7 0.58 0.94
STD-CONS 374 0.51 0.65 0.97 EUCLID-MLR-FR 175 0.7 0.49 0.98 LEVERAGE-PLS 145 0.7 0.54 0.88
One Gauss, S(G0) 253 One Gauss, S(G0) 116 One Gauss, S(G0) 116

Model: SVM-MZ Model: SVM-MZ Model: SVM-MZ
LEVERAGE-PLS 195 0.5 0.51 0 LEVERAGE-PLS 90 0.58 0.55 0.17 STD-kNN-MZ 89 0.58 0.62 0.18
EUCLID-kNN-MZ 198 0.5 0.47 0 EUCLID-kNN-DR 91 0.58 0.54 0.18 EUCLID-kNN-DR 90 0.58 0.63 0.2
EUCLID-kNN-DR 205 0.5 0.47 0 EUCLID-kNN-MZ 92 0.58 0.52 0.26 EUCLID-kNN-MZ 93 0.58 0.6 0.38
STD-ASNN 207 0.5 0.54 0.01 LEVERAGE-OLS 92 0.58 0.53 0.24 TANIMOTO-MLR-FR 95 0.58 0.54 0.5
STD-kNN-DR 216 0.5 0.46 0.08 TANIMOTO-MLR-FR 94 0.58 0.54 0.38 LEVERAGE-PLS 95 0.58 0.56 0.5
EUCLID-MLR-FR 218 0.5 0.49 0.1 STD-CONS 95 0.58 0.77 0.55 PLSEU-PLS 98 0.58 0.49 0.79
TANIMOTO-kNN-FR 219 0.5 0.51 0.06 CORREL-ASNN 97 0.58 0.55 0.65 EUCLID-MLR-FR 98 0.58 0.53 0.73
TANIMOTO-MLR-FR 225 0.5 0.52 0.07 STD-kNN-MZ 98 0.58 0.56 0.67 STD-kNN-DR 100 0.58 0.59 0.74
CORREL-ASNN 225 0.5 0.5 0.02 EUCLID-kNN-FR 99 0.58 0.53 0.92 TANIMOTO-kNN-FR 101 0.58 0.56 0.83
LEVERAGE-OLS 228 0.5 0.51 0.04 TANIMOTO-kNN-FR 100 0.58 0.55 0.81 STD-CONS 105 0.58 0.57 0.77
EUCLID-kNN-FR 236 0.5 0.51 0.2 STD-kNN-DR 103 0.58 0.53 0.8 EUCLID-kNN-FR 109 0.58 0.53 0.98
PLSEU-PLS 238 0.5 0.51 0.4 PLSEU-PLS 116 0.58 0.5 0.98 LEVERAGE-OLS 112 0.58 0.53 0.89
STD-kNN-MZ 250 0.5 0.48 0.59 STD-ASNN 123 0.58 0.61 0.91 CORREL-ASNN 115 0.58 0.58 0.98
STD-CONS 341 0.5 0.65 0.88 EUCLID-MLR-FR 125 0.58 0.53 0.93 STD-ASNN 118 0.58 0.6 0.84
One Gauss, S(G0) 246 One Gauss, S(G0) 95 One Gauss, S(G0) 95

Model: CONS Model: CONS Model: CONS
STD-ASNN 146 0.4 0.46 0 STD-kNN-MZ 78 0.51 0.49 0.22 EUCLID-kNN-DR 78 0.51 0.45 0.19
TANIMOTO-kNN-FR 153 0.4 0.43 0.02 STD-kNN-DR 78 0.51 0.45 0.26 STD-kNN-MZ 79 0.51 0.47 0.24
EUCLID-kNN-MZ 159 0.4 0.4 0.03 TANIMOTO-MLR-FR 81 0.51 0.46 0.41 EUCLID-kNN-MZ 85 0.51 0.46 0.77
LEVERAGE-PLS 162 0.4 0.44 0.02 STD-CONS 82 0.51 0.61 0.55 STD-kNN-DR 85 0.51 0.45 0.74
EUCLID-kNN-DR 162 0.4 0.39 0.08 LEVERAGE-PLS 84 0.51 0.47 0.67 TANIMOTO-MLR-FR 86 0.51 0.43 0.74
TANIMOTO-MLR-FR 165 0.4 0.44 0.16 TANIMOTO-kNN-FR 84 0.51 0.47 0.67 LEVERAGE-PLS 87 0.51 0.42 0.76
STD-kNN-MZ 170 0.4 0.42 0.36 CORREL-ASNN 86 0.51 0.45 0.7 LEVERAGE-OLS 87 0.51 0.42 0.87
LEVERAGE-OLS 172 0.4 0.43 0.33 EUCLID-kNN-DR 86 0.51 0.44 0.73 PLSEU-PLS 89 0.51 0.41 0.89
STD-kNN-DR 172 0.4 0.4 0.35 EUCLID-kNN-MZ 87 0.51 0.44 0.83 TANIMOTO-kNN-FR 91 0.51 0.44 0.89
EUCLID-kNN-FR 173 0.4 0.44 0.43 PLSEU-PLS 89 0.51 0.44 0.85 EUCLID-kNN-FR 93 0.51 0.41 0.96
PLSEU-PLS 176 0.4 0.43 0.61 LEVERAGE-OLS 90 0.51 0.45 0.93 EUCLID-MLR-FR 94 0.51 0.42 0.95
STD-CONS 189 0.4 0.56 0.78 EUCLID-kNN-FR 90 0.51 0.45 0.97 CORREL-ASNN 95 0.51 0.43 0.89
CORREL-ASNN 189 0.4 0.43 0.76 STD-ASNN 108 0.51 0.53 0.94 STD-CONS 95 0.51 0.45 0.73
EUCLID-MLR-FR 191 0.4 0.42 0.75 EUCLID-MLR-FR 146 0.51 0.45 0.98 STD-ASNN 102 0.51 0.47 0.91
One Gauss, S(G0) 174 One Gauss, S(G0) 81 One Gauss, S(G0) 81
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Figure A1. A screenshot of the browser of experimental measurements in the
OCHEM system. 
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Figure A2. The algorithm for calculation of the “trust score” used by the ULP
group in the Ames mutagenicity challenge
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