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Abstract

Two emerging hardware trends will dominate the database system technology in
the near future: increasing main memory capacities of several TB per server and
massively parallel multi-core processing. Many algorithmic and control techniques
in current database technology were devised for disk-based systems where I/O domi-
nated the performance. In this work we take a new look at the well-known sort-merge
join which, so far, has not been in the focus of research in scalable massively paral-
lel multi-core data processing as it was deemed inferior to hash joins. We devise a
suite of new massively parallel sort-merge (MPSM) join algorithms that are based
on partial partition-based sorting. Contrary to classical sort-merge joins, our MPSM
algorithms do not rely on a hard to parallelize final merge step to create one com-
plete sort order. Rather they work on the independently created runs in parallel.
This way our MPSM algorithms are NUMA-affine as all the sorting is carried out
on local memory partitions. An extensive experimental evaluation on a modern 32-
core machine with one TB of main memory proves the competitive performance of
MPSM on large main memory databases with billions of objects. It scales (almost)
linearly in the number of employed cores and clearly outperforms competing hash
join proposals – in particular it outperforms the “cutting-edge” Vectorwise parallel
query engine by a factor of four.

1 Introduction

Increasing main memory capacities of up to several TB per server and highly parallel pro-
cessing exploiting multi-core architectures dominate today’s hardware environments and
will shape database system technology in the near future. New database software has to
be carefully targeted against the upcoming hardware developments. This is particularly
true for main memory database systems that try to exploit the two main trends – increas-
ing RAM capacity and core numbers. So far, main memory database systems were either
designed for transaction processing applications, e.g., VoltDB [26], or for pure OLAP
query processing [4]. However, the upcoming requirements for so-called real-time or op-
erational business intelligence demand complex query processing in “real time” on main
memory resident data. SAP’s Hana [11] and our hybrid OLTP&OLAP database system
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HyPer [17], for which the presented massively parallel join algorithms were developed, are
two such databases. The query processing of in-memory DBMSs is no longer I/O bound
and, therefore, it makes sense to investigate massive intra-operator parallelism in order to
exploit the multi-core hardware effectively. Only query engines relying on intra-query and
intra-operator parallelism will be able to meet the instantaneous response time expecta-
tions of operational business intelligence users if large main memory databases are to be
explored. Single-threaded query execution is not promising to meet the high expectations
of these database users as the hardware developers are no longer concerned with speeding
up individual CPUs but rather concentrate on multi-core parallelization.

Consequently, in this paper we develop a new sort-based parallel join method that
scales (almost) linearly with the number of cores. Thereby, on modern multi-core servers
our sort-based join outperforms hash-based parallel join algorithms which formed the basis
for multi-core optimization in recent proposals. The well-known radix join algorithm of
MonetDB [20] pioneered the new focus on cache locality by repeatedly partitioning the
arguments into ever smaller partitions. The recursive sub-partitioning, rather than directly
partitioning into small fragments, preserves TLB cache locality by restricting the random
write of the partitioning phase to a small number of pages whose addresses fit into the TLB
cache. The join is carried out on small cache-sized fragments of the build input in order
to avoid cache misses during the probe phase. Because of this cache-affine behavior the
radix join became the basis for most work on multi-core parallel join implementations, e.g.,
[18, 15]. In addition to the cache locality, He et al. [15] and Kim et al. [18] also focussed on
low synchronization overhead and avoidance of dynamic memory allocation. Both aspects
were achieved by computing histograms of the data to be partitioned and then deriving the
prefix sums to determine the exact array positions into which parallel threads write their
partitioned data. Unfortunately, merely relying on straightforward partitioning techniques
to maintain cache locality and to keep all cores busy will not suffice for the modern
hardware that scales main memory via non-uniform memory access (NUMA). Besides
the multi-core parallelization also the RAM and cache hierarchies have to be taken into
account. In particular the NUMA division of the RAM has to be considered carefully. The
whole NUMA system logically divides into multiple nodes, which can access both local and
remote memory resources. However, a processor can access its own local memory faster
than non-local memory, that is, memory local to another processor or memory shared
between processors. The key to scalable, high performance is data placement and data
movement such that threads/cores work mostly on local data – called NUMA-friendly
data processing.

To back up this claim, Figure 1 shows the results of a few micro-benchmarks we ran on
a one TB main memory machine with 32 cores (cf. Section 6). We therefore instantiated
32 threads to work on one relation with a total of 1600M (throughout the paper we use
M = 220) tuples, each consisting of a 64-bit sort key and a 64-bit payload, in parallel. (1)
We first chunked the relation and sorted the chunks of 50M tuples each as runs in parallel.
In the “green” NUMA-affine benchmark, the sorting of each core was performed in the
local NUMA RAM partition whereas in the unfavorable “red” case the sort was performed
on a globally allocated array. We observe a severe performance penalty of a factor of three
if NUMA boundaries are ignored. (2) We then analyzed the performance penalty of fine-
grained synchronization. For this the 32 threads partitioned the global relation into 32
chunks each being stored as an array. In the “red” experiment the next write position was
individually read from a (test-and-set) synchronized index variable of the corresponding
partition array. In the “green” experiment all threads were allocated precomputed sub-
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Figure 1: Impact of NUMA-affine versus NUMA-agnostic data processing

partitions that could be written sequentially without synchronization. This experiment
proves that fine-grained synchronization (even with wait-free test-and-set variables) is a
“no-go” for scalable data processing. (3) Finally, in the last microbenchmark we analyzed
the tolerable performance penalty of sequentially scanning remote memory in comparison
to local memory. Each of the 32 parallel threads merge joins two chunks of 50M tuples
each. Thereby, each thread works on one local run. The second run is either in remote
(“yellow”) or local (“green”) NUMA partitions. The negative impact of the second chunk
being accessed remotely compared to the second chunk being local, too, is mitigated by
the hardware prefetcher as the accesses are sequential. We thus conclude that sequential
scans of remote memory are acceptable from a performance perspective.

This observation and further micro-benchmarks led us to state the following three
rather simple and obvious rules (called “commandments”) for NUMA-affine scalable multi-
core parallelization:

C1 Thou shalt not write thy neighbor’s memory randomly – chunk the data, redistribute,
and then sort/work on your data locally.

C2 Thou shalt read thy neighbor’s memory only sequentially – let the prefetcher hide
the remote access latency.

C3 Thou shalt not wait for thy neighbors – don’t use fine-grained latching or locking
and avoid synchronization points of parallel threads.

By design, the massively parallel sort-merge join algorithms (called MPSM) we present
in this paper obey all three commandments whereas the previously proposed hash join vari-
ants violate at least one of the commandments and, therefore, exhibit scalability problems
of various forms.

We will show that the carefully engineered NUMA-friendly MPSM exhibits an out-
standing performance when compared to the Wisconsin hash join [1] and Vectorwise [16].
Our performance evaluation proves the scalability of MPSM for very large main mem-
ory databases with hundreds of GB data volume. For large numbers of cores (up to 32)
MPSM outperforms the recently proposed hash-based Wisconsin join by up to an order of
magnitude. MPSM scales (almost) linearly in the number of cores and compared to the
TPC-H endorsed “world champion” query processor Vectorwise even achieves a factor of
four.
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The remainder of the paper is structured as follows: In Section 2 we depict the basic
idea of MPSM in comparison to the radix join and the Wisconsin hash join. In Section 3
and Section 4 we address the concrete implementations of the MPSM concept in detail
and in Section 5 we discuss the skew resilience of MPSM. We evaluate MPSM in Section 6
and cover related work in Section 7. Finally, we conclude our work in Section 8.

2 The Basic Idea of MPSM

We will first present the very basic idea of the NUMA-affine MPSM in comparison to
radix join and Wisconsin hash join. Later, we will discuss important refinements regarding
performance improvement and skew resilience.

The recently proposed Wisconsin hash join [2] is based on a global shared hash table
which has to be built across the NUMA partitions by a large number of threads. These
concurrent accesses to a single hash table need synchronization via latches. Therefore,
during the parallel build phase “commandments” C2 and C3 are violated. During the
probe phase random reads to the hash table are performed across the NUMA memory
partitions, which again violates C2 as the hardware prefetcher cannot hide the access la-
tency. In Figure 2a we illustrate the random writes and reads within the NUMA partitions
using different-colored arrows and the required synchronization with locks.

The radix join of MonetDB [20] and Oracle/Intel [18] writes across NUMA partitions
during the initial partitioning phase as illustrated in Figure 2b. The radix join repeatedly
partitions the arguments in order to achieve cache locality of the hash table probes despite
their random nature. Unfortunately, the price for this locality is the partitioning of both
join arguments across the NUMA memory during the first partitioning step.

Our massive parallel sort-merge (MPSM) join is designed to take NUMA architectures
into account which were not yet in the focus of prior work on parallel join processing
for main memory systems. As illustrated in Figure 2c each data chunk is processed, i.e.,
sorted, locally. Unlike traditional sort-merge joins we refrain from merging the sorted runs
to obtain a global sort order and rather join them all in a brute-force but highly parallel
manner. We opt to invest more into scanning in order to avoid the hard to parallelize
merge phase. Obviously, this decision does not result in a globally sorted join output
but exhibits a partial sort order that allows for sort order based subsequent operations,
e.g, early aggregation. During the subsequent join phase, data accesses across NUMA
partitions are sequential, so that the prefetcher mostly hides the access overhead. We
do not employ shared data structures so that no expensive synchronization is required.
Therefore, MPSM obeys all three NUMA-commandments by design.
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2.1 The B-MPSM algorithm

The basic MPSM algorithm starts by generating sorted runs in parallel. These runs are
not merged as doing so would heavily reduce the “parallelization power” of modern multi-
core machines. Instead, the sorted runs are simply joined in parallel. In the following,
we first describe the MPSM algorithm in its basic form (B-MPSM) which is absolutely
insensitive to any kind of skew. Then we present an improved MPSM version based on
range partitioning of the input by join keys (P-MPSM). Further, the MPSM can effectively
be adapted to non-main memory scenarios, i.e., scenarios in which intermediate data must
be written to disk. We call this the disk-enabled MPSM algorithm (D-MPSM).

The B-MPSM algorithm is sketched in Figure 3 for a scenario with four worker threads.
The input data is chunked into equally sized chunks among the workers, so that for in-
stance worker W1 is assigned a chunk R1 of input R and another chunk S1 of input S.
Each worker sorts its data chunks, thereby generating sorted runs of the input data in
parallel. In the following, we call R the private input and S the public input. After the
sorting phase is finished each worker processes only its own chunk of the private input
but sequentially scans the complete public input. We will later devise the range parti-
tioned variant where this complete scanning is avoided to speed up the join phase even
more beyond parallelization. During run generation (phase 1 and phase 2), each worker
thread handles an equal share of both the public and the private input. These phases do
not require any synchronization between the workers and are performed in local memory
which we have shown to be advantageous for the sort operator (cf. Figure 1). Even if data
has to be copied from remote to local chunks this can be amortized by carrying out the
first partitioning step of sorting while copying. In phase 3, each worker joins its sorted
private input run with the sorted public input runs using merge join. The join phase
requires reading non-local memory, however, only sequentially. As we have shown before,
sequential scans heavily profit from (implicit processor) prefetching and cache locality and
therefore do not affect performance significantly.

The basic B-MPSM algorithm is absolutely skew resistant and obeys the three “com-
mandments” for NUMA-affine design we stated above: During the run generation phases
for public and private input, only local memory is written. In the join phase, all runs
(local and remote) are scanned sequentially. Furthermore, B-MPSM requires only one
synchronization point as we need to make sure that the public input runs Si are ready
before we start the join phase. Note that the sort phase of the private data R need not be
finished before other threads start their join phase. Thus, the synchronization is limited to

R1 R2 R3 R4

S1 S2 S3 S4

sort

sort

… … 

smaller

larger

smaller

larger

W1 MJ
W4 MJ

W1 W2 W3 W4

Phase 2

Phase 3

Phase 1 S data

R data

Figure 3: B-MPSM join with four workers Wi
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ensure that all other workers have finished their sorting of the public input chunk before
phase 3 (join) is entered. The fact that the output of each worker is a sorted run may be
leveraged by subsequent operators like sort-based aggregation. Also, presorted relations
can obviously be exploited to omit one or both sorting phases.

2.2 Complexity of B-MPSM

B-MPSM basically executes T sort-merge joins in parallel, where T is the number of worker
threads. In each of these sort-merge joins, 1/T th of the input relations is processed. A crude
complexity approximation per worker Wi results in:

|S|/T · log(|S|/T) sort chunk Si of size |S|/T
+ |R|/T · log(|R|/T) sort chunk Ri of size |R|/T
+ T · |R|/T process run Ri for all S runs
+ T · |S|/T process all S runs

= |S|/T · log(|S|/T) + |R|/T · log(|R|/T) + |R|+ |S|

On the bottom line, each thread sorts “its” chunks of R and S and processes all sorted
S runs. Thereby, the own R run is read several (T ) times as each of the S runs possibly
joins with the local run.

The formula above reveals that the sort phases of B-MPSM scale well with the number
of worker threads T . The join phase, however, requires each worker to process the complete
public input regardless of the processing parallelism given. For I/O bound disk-based
processing in D-MPSM this is hidden by the I/O latency. However, for pure in-core
processing we address this issue by including a prologue phase to range partition and
assign the private input data to the workers in a way that allows saving much of the work
during the join phase. This variant is called (partitioned) P-MPSM and is explained in
detail in this paper.

2.3 Sorting

Efficient sorting is decisive for the performance of MPSM. As we deal with (realistic)
large join keys and payloads that need to be sorted we cannot utilize the specialized
bitonic sorting routines that exploit the SIMD registers [6], as these are limited to 32-bit
data types. Instead we developed our own three-phase sorting algorithm that operates as
follows:

1. recursive in-place Radix sort [19] that (in each recursion step) generates 28 = 256
partitions according to the 8 most significant bits (MSD). This works by computing a
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256 bucket histogram and determining the boundaries of each partition. Then the data
elements are swapped into their partition. We illustrate one recursion step for 22 = 4
partitions in Figure 4. The tuples are processed from left to right, i.e., beginning with
the left-most partition containing the smallest key values. Tuples not yet processed
are shown black, already processed tuples are shown green. When all tuples of the
first partition have been processed, some of the tuples in the subsequent partitions
are likely to be already at the correct position, i.e., they have already been processed.
Therefore, the algorithm can omit these tuples and proceed with the first non-processed
tuple. This is denoted by the arrows shown above the partitions. The number of tuples
to process in each partition decreases from left to right and usually is 0 in the last
partition.

2. one final IntroSort (Introspection Sort) [21] for partitions containing less than 100
elements results in the total ordering.

We analyzed that this sorting routine is about 30% faster than, for example, the STL
sort method – even when up to 32 workers sort their local runs in parallel. Note that we
do not employ synchronization-heavy parallel sorting – each worker sorts a separate chunk
of data into a run.

2.4 Implementations of MPSM

So far, we presented the basic concept of MPSM which (in object-oriented terminology)
is only an abstract class for several algorithmic specializations. We present two derived
implementations:

B-MPSM
D-MPSMP-MPSM

P-MPSM is a pure main memory version that range partitions the input data thereby pro-
viding scalability with respect to processing cores. D-MPSM is a RAM-constrained version
that spools runs to disk. Both scenarios are common in main memory DBMSs and re-
quire attention when database operators are designed. We carefully consider both variants
detailed enough to allow for an implementation and considerations about performance.

3 Memory constrained disk MPSM

The presented MPSM can effectively be adapted to scenarios in which the intermediate
result data is too large to be kept in main memory. Even in main memory database systems
like HyPer that retain the entire transactional database in RAM, the query processor spools
intermediate results to disk to preserve the precious RAM capacity for the transactional
working set. Therefore, it is important to support both pure main memory algorithms
and a disk-based processing mode with a very small RAM footprint.

The disk-enabled MPSM (D-MPSM) processes the left and right input runs by syn-
chronously moving through the key domain which is sorted. The resulting data locality
allows to spill already processed data to disk and to prefetch data that is to be processed
soon. Figure 5 illustrates the approach: both R and S runs are stored on disk, only the
currently processed pages (white) need to be main memory resident. Already processed
data is not touched again and thus can be released from RAM (red) and soon to be
processed data is prefetched from disk asynchronously (yellow).
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Figure 5: Disk-enabled MPSM join: the four workers Wi progress synchronously through
their Ri run and all S runs, thereby only active parts of the runs are in RAM

For this purpose, we maintain a page index which is ordered page-wise by key value.
The index is built during run generation and contains pairs 〈vij , Si〉 where vij is the first
(minimal) join key value on the jth page of run Si. Figure 5 depicts a simplified page
index (only run identifiers) on the left. It actually contains the following information:

sorted by vij
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
v11 v41 v21 v12 v31 v41 v32 v42 . . .
S1 S4 S2 S1 S3 S4 S3 S4 . . .

where v11 ≤ v41 ≤ . . .≤ v42. Both the prefetcher and the workers process the S input data
in the order specified by the index, thereby synchronously moving through the key domain
and allowing to keep only a small part of the data in memory during join processing. All
page index entries already processed by the “slowest” worker, e.g., W1 in the illustration,
point to run pages that may be released from RAM (green). The prefetcher is supposed to
pre-load run pages according to the index before they are accessed by any worker (yellow).
Implicitly, the workers’ private input runs Ri are read from disk, processed, and released
from RAM in ascending order of join keys. Please note that the common page index
structure does not require any synchronization as it is accessed read-only.

Obviously, the performance of D-MPSM is determined by the time to write (run gen-
eration) and read (join phase) both inputs. Therefore, in order to exploit the power of
multiple cores a sufficiently large I/O bandwidth (i.e., a very large number of disks) is
required.

4 Range partitioned MPSM

The range partitioned MPSM (P-MPSM) extends the B-MPSM algorithm by a prologue
phase to range partition and assign the private input data to the workers in a way that
allows saving much of the work during the join phase. The different phases of the algorithm
are sketched in Figure 6 for a scenario with four workers, choosing R as private input and
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Figure 6: P-MPSM join with four workers Wi

S as public input. In phase 1, the public input is chunked and sorted locally, resulting
in runs S1 to S4. Subsequently, in phase 2, the private input is chunked into C1 to C4

and those chunks are range partitioned. We always employ a histogram-based technique
to ensure that the range partitions are balanced (cf. refsec:skew) even for skewed data
distributions. Thereby, the private input data is partitioned into disjoint key ranges as
indicated by the different shades in Figure 6 ranging from white over light and dark gray
to black. In phase 3, each worker then sorts its private input chunk and in phase 4, merge
joins its own private run Ri with all public input runs Sj.

By refining the MPSM to use range partitioning, each thread conducts only the join
between 1/T th of the join key domain of R and S. This reduces the complexity per worker
Wi to

|S|/T · log(|S|/T) sort chunk Si of size |S|/T
+ |R|/T range-partition chunk Ri

+ |R|/T · log(|R|/T) sort chunk Ri of size |R|/T
+ T · |R|/T process run Ri for all S runs

+ T · |S|/T 2 process 1/T th of each S run

= |S|/T · log(|S|/T) + |R|/T + |R|/T · log(|R|/T) + |R|+ |S|/T

Compared to the complexity approximation of B-MPSM, range partitioning pays off
if the cost of range-partitioning R is smaller than the savings in join processing, i.e., if

|R|/T ≤ |S| − |S|/T

For a parallelism greater than or equal two and |R| ≤ |S| it pays off. The performance
of P-MPSM thus scales almost linearly with the number of parallel threads T which is
decisive for the effective multi-core scalability of P-MPSM, as our experimental evaluation
will also prove.
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In general, the two input relations to a join operation are not equally sized but usually
consist of a larger (fact) table and smaller (dimension) tables. Assigning the private input
role R to the smaller of the input relations and thus the public input role S to the larger
yields the best performance. Thereby, only a small fraction (depending on the number
of worker threads T ) of the remote public input needs to be processed while the smaller
private input is scanned several times with almost no performance penalties. We will
present evaluation results quantifying the performance impact of reversed public/private
input roles in Section 6.4.

4.1 Partitioning the private input (phase 2)

We design the re-distribution of the private input chunks Ci to be very efficient, i.e., branch-
free, comparison-free, and synchronization-free. (1) branch-freeness and comparison-freeness
are achieved by using radix-clustering [20] on the highest B bits of the join key where
log(T ) ≤ B. For log(T ) = B, radix-clustering results in exactly T clusters. By increasing
B, we can account for skew in both R and S as we will discuss in Section 5. (2) We then
range partition the private input chunks, thereby guaranteeing synchronization-freeness
by letting each worker write sequentially to precomputed sub-partitions within all runs.
For this purpose, each thread builds a histogram on its chunk of the global relation R. The
local histograms are combined to obtain a set of prefix sums where each prefix sum repre-
sents the start positions of each worker’s partitions within the target runs. Each worker
then scatters its input chunk to the partitions using the prefix sums and updating them
accordingly. This approach was adapted from the radix join of [15] and is also described
by Cieslewicz and Ross [7].

We demonstrate the partitioning of R in Figure 7 for two workers, B = 1 and a join
key range of [0, 32). Each worker thread Wi scans its own chunk Ci and probes for each
tuple into a histogram array depending on its highest bit (which we show underlined), i.e.,
join key values < 16 are assigned to the first position and join key values ≥ 16 are assigned
to the second. According to h1, chunk C1 contains four entries for the first and three for
the second partition. The two partitions are shown as white and black entries. From the
combined histograms prefix sums are computed that point to the subpartition into which
the workers scatter their chunk’s tuples. For example, the prefix sum ps1 denotes that W1

scatters its entries for the first and second partition starting at position 0. According to
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ps2, W2 scatters tuples belonging to the first partition beginning at position 4 (asW1 writes
to positions 0 to 3), and those belonging to the second partition beginning at position 3.
In general, the ps-entries are computed as

psi[j] =

{

0, if i = 1
∑i−1

k=1 hk[j], else

Actually, the psi contain pointers to the positions, no index values, as shown by the
dotted arrows in Figure 7, i.e., psi[j] = &Rj[(

∑i−1
k=1 hk[j])]. The prefix sums psi per

worker Wi, which are computed from the combined local histograms, are essential for
the synchronization-free parallel scattering of the tuples into their range partition. Every
worker has a dedicated index range in each array Ri into which it can write sequentially.
This is orders of magnitude more efficient than synchronized writing into the array – as
shown in Figure 1 (2).

Note that depending on the actual join key value distribution, in particular the min-
imum and maximum join key values, it might be necessary to preprocess the join keys
before applying radix-clustering. This can usually be done efficiently using bitwise shift
operations.

Although we use radix-clustering for partitioning the private input, the approach is
not restricted to integer join keys. However, if long strings are used as join keys, MPSM
should work on the hash codes of those strings, thereby giving up the meaningful sorting
of the output. Furthermore, main memory DBMSs usually employ dictionary encoding so
that joins on strings are usually internally executed as joins on integers anyway.

4.2 Sorting the public input (phase 1)

We efficiently integrate the chunking of the public input with the subsequent sort phase.
This way, we eliminate one complete pass through the public input data chunk. As
illustrated in Figure 8 for an example using a fanout of 4, i.e., 2 bits, the first step of
Radix sort is not conducted in-place, but is used to copy the data into the private memory
of each worker. In the example, worker W2 copies the tuples belonging to chunk S2 into
its local memory and at the same time conducts the first radix partitioning phase of
Radix sort. The next write position within each partition is maintained as a pointer and
incremented accordingly. For this purpose, each worker initially builds a histogram for its
data chunk and computes the prefix sum as described in detail in Section 4.1.
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4.3 Join phase (phase 4)

Due to partitioning, the private input data chunks contain only a fraction of the key value
domain and thus probably join only with a fraction of each public input data chunk. As
indicated in Figure 6, the public input runs are therefore implicitly partitioned – by the
sorting order. Sequentially searching for the starting point of merge join within each public
data chunk would incur numerous expensive comparisons. Thus, we determine the first
public input tuple of run Sj to be joined with the private input run Ri using interpolation
search as sketched in Figure 9.

Sj

Ri

key domain

sj1

ri1

sjnsjk

1.

2.

Figure 9: Interpolation search for rj1 in Si

Depending on which of the first values of each run – sj1 and ri1 – is larger (in general
this will be ri1 because the key range of R runs is limited while the key range of S runs is
not), we search for it within the other run by iteratively narrowing the search space. The
most probable position in each iteration is computed by applying the rule of proportion
using the minimum and maximum index positions and the minimum and maximum key
values of the current search space, and the difference of the searched key value and the
search space minimum key value. The computed index per iteration is always relative to
the search space starting index. In the illustration in Figure 9, only two steps are required
to find the starting point for merge join:

1. the search space is [sj1, sjn], i.e. from indexes 1 to n, thus we compute 1 + (n− 1) ·
(ri1 − sj1)/(sjn − sj1) = k

2. the search space is narrowed to [sj1, sjk], i.e. from indexes 1 to k, so we compute
1 + (k − 1) · (ri1 − sj1)/(sjk − sj1)

and find the start index of the light gray partition.

5 Skew Resilience of P-MPSM

The basic B-MPSM as well as the disk variant D-MPSM are completely skew immune as
they do not range partition.

So far, we discussed P-MPSM using statically determined partition bounds. In case of
uniform data distribution the presented algorithm assigns balanced workloads (i.e., equally
sized chunks) to the workers. It is important to note that the location of the data – e.g.,
if by time of creation clustering small values appear mostly before large values – within
the relations R and S has no negative effect. The location skew among the R and S runs
is implicitly handled by range partitioning the R data and thereby limiting the S data
each worker has to process. Of course, location skew may cause slight NUMA effects that
cannot be controlled lastly. As our evaluation in Section 6.5 shows, these effects usually

12



have a positive impact on performance as the join partners of a partition Ri are better
clustered in S.

We now present a more elaborate version of P-MPSM that can handle distribution skew
while incurring only very little overhead to the overall performance. Skew resilience is
achieved by not determining the partition bounds statically but computing them based on
dynamically obtained information about the key value distributions inR and S. We exploit
the sort order of the public input S to compute arbitrarily precise histograms representing
the key value distribution of S en passant, i.e., in almost no time. Further, we increase the
number B of bits used for the histogram computation for radix-clustering of the private
input R and thereby also obtain very precise histograms representing the private input
join key value distribution. We then determine global load-balancing partition bounds
based on the computed distributions. We show that the presented approach adds only
very little overhead to the overall join processing.

For better illustration, we split the range partition phase 2 into the following sub-
phases: The histogram on S is determined in phase 2.1 using a cumulative distribution
function (CDF). The histogram on R is determined in phase 2.2 using probing as described
above but increasing the number of leading bits B used for fine-grained histogram bound-
aries. In phase 2.3 we combine the information about the key value distributions in R and
S to find global partition bounds, called splitter, balancing the costs for sorting R chunks
and joining. This way, we ensure that each worker thread is assigned a balanced workload
to make sure that they all finish at the same time which is very important for subsequent
query operators.

5.1 Global S data distribution (phase 2.1)

We gain insight in the global S data distribution in two steps: First, each worker thread
Wi computes an equi-height histogram for its local input run Si. Building the equi-
height histograms comes at almost no costs as the data is already sorted. Then, the local
histograms are merged to provide a global distribution view. The procedure is exemplified
in Figure 10 for four runs S1 to S4 with skewed data, i.e., small join key values occur much
more often than large join key values. The local equi-height histogram bounds bij for each
worker Wi computed during the first phase are marked as red dotted lines within the input
runs. In the example, each worker collects four local bounds, i.e., the local histograms are
of size four. In the second phase, the local partition bounds of all workers are collected as
input to a global cumulative distribution function (CDF).

Using the local equi-height histograms we can only estimate the gradient of the step
function by approximating each step to be equally high. Of course, the real global dis-
tribution deviates (slightly) from this as the different workers’ equi-height partitions have
overlapping key ranges. In the example in Figure 10, each worker thread determines T = 4
local bounds, in general we propose to compute f · T local bounds for better precision.
By increasing f and thus the number of local bounds determined by each worker, more
fine grained information about the global data distribution can be collected at negligible
costs.

Note that the CDF allows for configuration changes concerning the number of workers.
Appropriate partition limits are then found using interpolation as denoted in Figure 10
by the diagonal connections between steps. This also allows to combine the global S
data distribution represented by the CDF with the R data distribution in order to handle
uncorrelated or even negatively correlated skew in R and S as we will show below.
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Figure 10: P-MPSM CDF computation: example with skewed input (mostly small key
values)

5.2 Global R distribution histogram (phase 2.2)

In phase 2.2, each worker scans its private input chunk Ci and computes a local histogram
on it using radix-histogramming. Thereby, the number of leading bits B determines the
precision of the histogram, i.e., using B bits we obtain a histogram of size 2B. Building
a more fine-grained histogram does only incur little overhead but allows for a much more
precise computation of global R bounds. By merging some of the clusters to form T
partitions with a balanced workload (cost(sort(Ri))+cost(Ri⊲⊳S)) we obtain the global
partition bounds. On the left hand side of Figure 12 we see that higher precision of radix-
histogramming comes at no additional cost. On the right hand side we see the inferior
performance of comparison-based partitioning.

In Figure 11 this is exemplified for a scenario with two workers clustering two initial
chunks and redistributing them to two target partitions. They first build a local histogram
of size 4 (B = 2) each, dividing the skewed input data with key domain [0, 32) into four
partitions: < 8, [8, 16), [16, 24), ≥ 24. The histograms reveal that the chunks contain
many more small key values than large key values, in particular, there are a total of seven
values in the first partition, three values in the second, three values in the third, and one
value in the fourth partition.

5.3 Partitioning the private input R (phase 2.3)

We use the global CDF for S determined in phase 2.1 and the global R distribution
histogram from phase 2.2 to heuristically determine global partition bounds using a com-
plexity approximation that takes into account both the sort costs of the R chunks and the
join costs per worker Wi:
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are skewed (mostly small)

split-relevant-costi =
|Ri| · log(|Ri|) sort chunk Ri

+ T · |Ri| process run Ri

+ CDF(Ri.high)− CDF(Ri.low) process relevant S data

where Ri.low and Ri.high denote the radix boundaries for which we probe in the CDF.
Note that because of the sorting S can be partitioned at any position. The boundaries
are determined at the radix granularity of R’s histograms.

As shown in Figure 10 and on the left of Figure 11 using blue dashed lines, the tentative
R histogram bounds are used to probe into the CDF to determine the anticipated S costs
for the currently considered R partition [low, high). If the key values in R and S are
uniformly distributed or skewed in a correlated way, the global R partition bounds will
be similar to the global S partition bounds and thus all Ri will be approximately equally
sized. If the key value distribution is uncorrelated, they may be very different so that we
need to weight their effect on the overall performance to find the final global partition
bounds.

We opt to partition R and S such that each worker is assigned the same amount of
work, i.e., we determine the partition bounds such that they minimize the biggest cost
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Algorithm 1: Splitter computation based on the global R and S data distributions
and the split-relevant-cost function (adapted from [24])

Data: cardinality of private input |R|, cardinality of public input |S|, number of splitters k, cost
function split-relevant-cost, cost bound b, global R data distribution histogram H , global S
data distribution CDF

1 idxR ← 0;
2 i← 0;
3 while split-relevant-cost(R− idxR, S − idxS) > b do

4 if i ≥ k then

5 return error;
6 end

/* the function max-key(p) returns the upper bound of partition H [p] */

7 find largest q among idxR, . . . ,H.size− 1 such that split-relevant-cost(c1, c2) ≤ b where
c1 =

∑

idxR≤j≤q H [j] /* number of R tuples within examined key range */

c2 = CDF(max-key(q)) − CDF(max-key(idxR)) /* number of S tuples within examined

key range */

8 splitter[i] = max-key(q);
9 i← i+ 1;

10 idxR = q + 1;

11 end

12 return splitter[0], · · · , splitter[i− 1];

split-relevant-costi over all 1 ≤ i ≤ T . We give the basic splitter computation adapted from
Ross and Cieslewicz [24] in Algorithm 1. The splitter computation algorithm is provided
the cardinalities and key value distributions of R and S as well as a cost function and an
upper bound for the processing cost of one partition as inputs. Further, an upper bound
for the number of computed splitters is specified. The algorithm returns the computed
splitters which we use to create T partitions with equal workloads. In contrast to [24], we
consider only the bucket bounds of the global R histogram as possible partition bounds
and probe into the CDF to determine the corresponding S partition cardinality.

In the example in Figure 11, to simplify matters we assume the key value distribution
of S to be correlated to that of R. Therefore, when probing into the CDF using 8 and
32 as [low,high) values for R2, those bounds divide S in equally sized partitions. Thus,
according to the histograms h1 and h2 and the CDF of S, the first cluster < 8 becomes
the first partition and the other three clusters ≥ 8 form the second partition.

We then partition the private input chunks using the global partition bounds. Thereby,
we avoid synchronization by letting each worker write sequentially to precomputed parti-
tions. For this purpose, the local histograms are combined to a set of prefix sums where
each prefix sum represents the workers’ partitions within the target runs. In phase 2.3, each
worker scatters its input chunk to the partitions using the prefix sums via the indirection
of the splitter vector sp, i.e., worker Wi scatters its next tuple t as follows:

memcpy(psi[sp[t.key≫ (64− B)]]++, t, t.size)

psi contains pointers, not indexes because each worker scatters to different arrays. Ac-
cording to the global R partition bounds b1 = 8 and b2 = 32, there are four values of
chunk C1 falling into the first partition and three (1+2+0) falling into the second. From
chunk C2, three values belong to the first and four (2+1+1) to the second partition. The
local histograms (which are computed per chunk) are combined to global prefix sums. The
values in ps1, for instance, denote that worker W1 should scatter its data falling into the
first partition to run R1 beginning at position 0, whereas worker W2 should write its data
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Figure 13: Intel 32 core, 1 TB server (HyPer1)

for the first partition to run R1 beginning at position 4. Thereby, psi is incremented for
each tuple scattered. Please note that – depending on the key distribution in R – the
resulting runs might not be of equal size. It is more important that the cost is balanced
rather than the size (cf. Section 6.6). Unlike radix join, MPSM can partition the private
input R completely independent of S. The public input S is partitioned implicitly via the
sorting and thus does not incur any partitioning overhead.

6 Experimental Evaluation

We implemented the MPSM join variants in C++, and the join query plans are compiled
as employed in our HyPer query processor [22]. All experiments are such that the data is
completely in main memory. For the disk-enabled Vectorwise this is achieved by executing
the query several times and reporting only the execution times of runs after the data was
fully resident in RAM. In order to cover the most important scenarios, we report bench-
mark results using datasets representing join input relations of different sizes, different
multiplicities, and different data distributions. We consider the common case that two
relations R and S are scanned, a selection is applied, and then the results are joined. So,
no referential integrity (foreign keys) or indexes could be exploited.

Due to space limitations we will concentrate our experimental evaluation on the in-
memory range-partitioned variant P-MPSM and leave the analysis of the disk variant for
future work.

6.1 Platform and benchmark scenarios

We conduct the experiments on a Linux server (kernel 3.0.0) with 1TB main memory and
four Intel(R) Xeon(R) X7560 CPUs clocked at 2.27GHz with 8 physical cores (16 hardware

17



contexts) each, resulting in a total of 32 cores (and due to hyperthreading 64 hardware
contexts) as in Figure 13. This machine has a list price of approximately e40000 which
makes it a good candidate for the real time business intelligence scenario on transactional
data for which our HyPer main memory DB is intended (therefore the machine is called
HyPer1 in our lab).

As “contenders” we chose the most recent research system, published by the Wisconsin
database group [1] and the “cutting-edge” Vectorwise query engine which holds the world
record in single-server TPC-H power test. According to our tests it currently has the
best-performing parallel join processing engine which is based on the pioneering MonetDB
work on cache-friendly radix joins [20]. This is also testified by Vectorwise’s record TPC-H
powertest performance on “small” main memory fitting databases up to one TB on a single
machine. (Actually, the TPC-H record numbers were obtained on a similar machine as
our HyPer1.) For the SIGMOD2011 Wisconsin hash join benchmarks we use the original
code [1]. The Vectorwise benchmarks were conducted on Vectorwise Enterprise Edition
2.0.

We chose the datasets to be representative for a few realistic data warehouse scenar-
ios. Each dataset consists of two relations R and S. The cardinality of R is 1600M , the
cardinality of S is scaled to be 1 · |R|, 4 · |R|, 8 · |R|, and 16 · |R|. These database sizes
are one order of magnitude larger than in prior related studies [18, 1, 2] to account for
recent hardware improvements in RAM capacity and real-world requirements in opera-
tional business intelligence. For example, Amazon has a yearly revenue of $40 billion, for
which an estimated item price of $10 results in 4 billion orderline tuples – a size which
is covered by our experiments. It is interesting to note that the transactional sales data
of this largest merchandiser, if properly normalized and possibly compressed, fits into the
RAM of our 1TB machine which makes operational BI on main memory resident data a
reality – if the parallelization power of these machines can be effectively exploited.

Each tuple consists of a 64bit key within the domain [0, 232) and a 64bit payload:

{[joinkey : 64-bit, payload : 64-bit]}

We execute an equi-join on the tables:

SELECT max(R.payload + S.payload)

FROM R, S

WHERE R.joinkey = S.joinkey

This query is designed to ensure that the payload data is fed through the join while
only one output tuple is generated in order to concentrate on join processing cost only.
Further, we made sure that early aggregation was not used by any system. We chose
the data format both for scaling reasons (payload may represent a record ID or a data
pointer) as well as for ease of comparison reasons to the experiments presented in [1].
Our datasets of cardinality 1600M× (1+multiplicity) have sizes ranging from 50 GB to
400 GB which is representative for large main memory operational BI workloads. The
multiplicities between the relations R and S further cover a wide range, including not
only the common cases (4, as specified for instance in TPC-H and 8 to approximate the
TPC-C specification) but also extreme cases (1 and 16). We further experimented with
skewed datasets.
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Figure 14: MPSM, Vectorwise (VW), and Wisconsin hash join on uniform data

6.2 Comparison of MPSM, Vectorwise, and Wisconsin join on
uniform data

We compare MPSM, Vectorwise, and Wisconsin join on uniform data for different mul-
tiplicities (in the extreme case S is 16 times as large as R). The results are shown in
Figure 14. MPSM outperforms Vectorwise by a factor of four. Wisconsin is not adapted
to efficiently work for NUMA architectures as it builds and probes a global hash table
across NUMA partitions, which results in poor performance for such large data volumes
and numbers of cores. Therefore, we don’t consider it in further experiments.

6.3 Scalability in number of cores

We compare the scalability with respect to the number of cores for MPSM and Vectorwise
and report the results in Figure 15. MPSM scales almost linearly in the number of parallel
executing worker threads. As depicted in Figure 13, our server has 32 physical cores and a
total of 64 hardware contexts. When exceeding the number 32 of physical cores and using
hyperthreading (parallelism level 64), the performance of MPSM remains stable but does
not improve as all cores are already fully utilized at parallelism 32. From these results, we
are confident, that MPSM will scale well on future hardware with even hundreds of cores.

6.4 Role reversal

We mentioned in Section 4 that for P-MPSM it is advisable to consider role reversal for
performance improvements. In Figure 16 we compare the execution time for two relations
R and S where we vary the size of S to be multiplicity times that of R. Thereby, phase
1 (sorting the public input) and phase 3 (sorting the private input) are interchanged and
have the same execution time when summed up. However the effect of role reversal is
clearly visible for the range partition phase 2 and the join phase 4. For the multiplicity 1,
role reversal obviously has no effect on the join execution time (as both inputs have the
same size). However, the larger S grows, the more considerable is the effect that directly
follows from |R| < |S| and the complexity estimate in Section 4 (ignoring the equal sort
costs) as

|R|/T + |R|+ |S|/T < |S|/T + |S|+ |R|/T
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Figure 15: Scalability of MPSM and Vectorwise
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Figure 16: Effect of role reversal on join execution time

6.5 Location skew

We introduced location skew by arranging S in small to large join key order – no total
order, so sorting the clusters was still necessary. Location skew on R has no effect at all
as R is redistributed anyway. Extreme location skew of S means that all join partners
of Ri are found in only one Sj. This results in each worker Wi effectively producing join
results only with one local Si, respectively one remote Sj where i 6= j. This is the extreme
case as only/no local S data contributes to the join result and only one remote memory
area has to be accessed. Of course, all runs are still accessed using interpolation search,
however, no relevant data is found in (T − 1) of the S runs. This effectively reduces the
complexity from

|S|/T · log(|S|/T) + |R|/T + |R|/T · log(|R|/T) + |R|+ |S|/T

to
|S|/T · log(|S|/T) + |R|/T + |R|/T · log(|R|/T) + |R|/T + |S|/T
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Figure 17: Location skew (32 workers, multiplicity 4)

as the private Ri is only scanned once to produce all join results. If there is less pronounced
location skew in S, the algorithm performance lies between those two extremes shown in
Figure 17. Note that in all other experiments location skew was not present / exploited.

6.6 Skewed data with negative correlation

In this sort of experiments we analyze the quality of the splitter computation (cf. Figure 11)
to balance the load evenly across all workers. For this purpose we generated a dataset
with the worst possible skew for our join algorithm: negatively correlated skew in R and
S. (Positively correlated skew does not affect MPSM either due to the dynamic splitter
computation.) Our data set again contained 1600M tuples in R with an 80:20 distribution
of the join keys: 80% of the join keys were generated at the 20% high end of the domain.
The S data of cardinality 4 · 1600M was generated with opposite skew: 80% of the join
keys at the low 20% end of the domain. Let us refer to Figure 18a to intuitively explain
the necessity of balancing the load according to the data distribution of R and S. On
the left-hand side we show the effects of partitioning R into equal-cardinality partitions
thereby having wider ranges on the left and narrower ranges on the right. Because of the
negative correlation the corresponding S partitions are very unbalanced – so the combined
cardinality of the two partitions |Ri| + |SRi

| is much higher at the low end than at the
high end. SRi

denotes the relevant join range of S for the range of Ri. Note that RRi
is

composed of sub-partitions across all S1, · · · , ST but its size can effectively be estimated
from the CDF. For 32 workers operating on this equi-height R partitioning we obtain the
response times shown in Figure 18b. We see that the “blue” sort costs are balanced but
the “green” join processing takes much longer for the workers on the left that process the
low join keys. The correct splitter-based partitioning balances the load across all servers –
as shown in Figure 18c. The figure is idealized in balancing the cardinality of the two
corresponding partitions; in reality the sort+join costs are balanced. This is achieved by
considering the cardinality of each Ri in combination with its corresponding Si partition
which is obtained from the CDF. This balanced R-and-S partitioning is visualized in
Figure 18a on the right hand side. For this experiment we computed the R histograms
at a granularity of 1024 (B=10) to give the splitter computation sufficient opportunity to
find best possible balanced splitters.
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(b) Equi-height R partitioning (multiplicity 4)
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(c) Equi-cost R-and-S splitter partitioning (multiplic-
ity 4)

Figure 18: Balancing splitters

6.7 Experiments’ summary

We showed that MPSM scales to very large data volumes and scales almost linearly to
increasing number of cores. This indicates MPSM’s future potential as the upcoming
servers will have even more RAM and more cores – probably a few hundred soon to come.

The superior performance characteristics of MPSM are corroborated by the observation
that, in our experiments we neither

1) exploited any possibly existing sort order nor

2) exploited the quasi-sorted’ness of the result

In complete QEPs both aspects would favor the MPSM join even more in comparison to
hash-based variants.

MPSM achieves a join performance of up to 175 million tuples per second. It outper-
forms Vectorwise by a factor of four and the Wisconsin hash join by a factor of up to 17.
Further, MPSM performs better than the algorithm presented by Kim et al. [18], which
achieved 100-128 million tuples per second on smaller datasets (by more than an order of
magnitude) using smaller tuples (i.e., half-sized tuples of 32-bit key and 32-bit payload).
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7 Related Work

Parallel join processing originates from early work on database machines, e.g., Gamma [10],
where hash-based partitioning was used to distribute the join argument to multiple ma-
chines in a compute cluster. In this context some heuristics for skew handling were de-
veloped [9]. Teubner et al. [12, 25] present parallel joins for moderndistributed databases.
In multi-core parallel processing the distribution of the data is much more efficient as we
can exploit the shared memory, albeit regarding the consequences of the NUMA architec-
ture [23]. Our MPSM join is, to the best of our knowledge, the first work that consequently
takes NUMA into consideration, which is decisive for large scale in-core databases. Most
previous approaches to in-core parallel join processing were based on the radix join pri-
oneered by the MonetDB group [20, 3]. This join method achieves cache locality by
continuously partitioning into ever smaller chunks that ultimately fit into the cache. Ail-
amaki et al. [5] improve cache locality during the probing phase of the hash join using
software controlled prefetching. Our sort-based MPSM algorithm has high cache locality
and hardware prefetcher affinity by its very own merge join behavior that sequentially
scans a pair of runs.

An Intel/Oracle team [18] adapted hash join to modern multi-core CPUs. They also
investigated sort-merge join and hypothesized that due to architectural trends of wider
SIMD, more cores, and smaller memory bandwidth per core sort-merge join is likely to
outperform hash join on upcoming chip multiprocessors. Blanas et al. [1, 2] presented
even better performance results for their parallel hash join variants. We compare the
sort-based MPSM to their best-performing variant which we called Wisconsin hash join
here and thereby pick the competition between sort-merge join and hash join up once
again [13]. As a second contender we chose Vectorwise [16] that builds on the pioneering
radix join work of MonetDB [4] in addition to vector-based processing of X100.

He et al. [15] develop parallel nested-loop, sort-merge, and hash joins on GPUs. The
algorithms take advantage of massive thread parallelism, fast inter-processor communi-
cation through local memory, and histograms-based radix partitioning. We adapted the
histogram approach for synchronization-free partitioning of MPSM’s private input. For
sorting in MPSM we developed our own Radix/IntroSort. In the future however, wider
SIMD registers will allow to explore bitonic SIMD sorting [6].

MPSM does not produce completely sorted output. However, each worker’s partition
is subdivided into sorted runs. This interesting physical property might be exploited in
further operations [8]. Note that the algorithms we compare MPSM against do not exhibit
any interesting physical property in their output data and we did not exploit any possibly
pre-existing sorting in our comparative performance experiments.

Our disk-based D-MPSM was partly inspired by G-join [14] which also operates on
sorted runs instead of hash partitions [13]. However, G-join lacks the parallelism which is
in the focus of this paper.

8 Conclusions and Future Work

The two dominating hardware trends are increasing RAM sizes and ever more (soon hun-
dreds of) cores. Both facilitate the development of main-memory databases that are
essential to propel the operational / real-time business intelligence applications. To min-
imize query response times (in our main memory database system HyPer) we devised a
massively parallel algorithm for the most important query processing operator, the equi-
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join. MPSM merge joins in parallel sorted runs, which themselves were sorted by parallel
threads. The performance analysis revealsed that the MPSM can effectively join very
large main memory data of billions of tuples as it scales almost linearly with the num-
ber of cores. The scalable performance of the MPSM join is due to carefully exploiting
the NUMA characteristics of the modern high-capacity servers. We avoided fine-grained
synchronization and random access to remote NUMA memory partitions. The linear scal-
ability in the number of cores promises the MPSM join to scale even beyond our tested 32
core, 1TB server – which is currently the top of the line main memory server but will soon
be surpasseed by the next generations of servers with several TB capacity and hundreds
of cores.

In future work we will develop the algorithmic details of MPSM for other join variants,
e.g., outer, semi, and non-equi joins. Also, we are working on exploiting the “rough”
sort order that MPSM inherently generates due to its range-partitioned run processing.
This allows to optimize subsequent query plan operations analogously to traditional merge
joins. In this paper we concentrated on the response time optimal range partitioned in-
core variant of MPSM. In a follow-up paper we will also analyze in detail the memory
constrained disk-based processing of D-MPSM that, due to space limitations, we could
only sketch here. This variant is particularly promising for large batch query processing
tasks that take place in parallel with transactions and real-time BI analytics.
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