Lehrstuhl flir Genomorientierte Bioinformatik
Der Technischen Universitat Miinchen

Dissertation

Experimental design methods to increase
the accuracy of in silico models

Stefan Brandmaier

Supervisor: Prof. Hans-Werner Mewes
Advisor: Dr. Igor V. Tetko






TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl flir Genomorientierte Bioinformatik

Experimental design methods to increase
the accuracy of in silico models

Stefan Brandmaier

Vollstandiger Abdruck der von der Fakultat Wissenschaftszentrum Weihenstephan
fir Erndhrung, Landnutzung und Umwelt der Technischen Universitat Miinchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. I. Antes

Priifer der Dissertation:

1. Univ.-Prof. Dr. H.-W. Mewes
2. apl. Prof. Dr. Dr. K.-W. Schramm

Die Dissertation wurde am 19.12.2013 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultdt Wissenschaftszentrum Weihenstephan fiir
Erndhrung, Landnutzung und Umwelt am 30.04.2014 angenommen.






Abstract

“Several applications, such as risk assessment within REACH or drug discovery,
require reliable methods for the design of experiments and efficient testing strategies.
Keeping the number of experiments as low as possible is important both from a
financial and an ethical point of view, as exhaustive testing of compounds requires
significant financial resources and animal lives. With a large initial set of compounds,
experimental design techniques can be used to select a representative subset for
testing. Once measured, these compounds can be used to develop QSAR models to
predict properties of the remaining compounds. This reduces the required resources
and time.”[a]

Most of the commonly used experimental design methods are developed to select all
new samples at once (i.e., static approaches). However, due to restricted capacities,
the practical applications of these methods mostly perform the experimental testing
of the suggested compounds in a sequential manner. Moreover, some measured
samples are usually available before the experimental design and they should be
incorporated by the selection procedure. Therefore, 1 developed several new
sequential approaches (also called adaptive or stepwise) to apply established
selection approaches, such as the D-Optimal criterion, the Kennard-Stone algorithm
and similarity-based sampling to larger collections of chemical compounds. The
stepwise approaches iteratively refine the representation of the chemical space after
each measurement cycle. This is realized by the use of a property-oriented depiction
of the chemical space, utilizing techniques, such as PLS latent variables, selected
descriptors, predicted properties and the ensemble based applicability domain
estimation. Furthermore, | investigated the usability of a static (not stepwise)
experimental design approach based on the k-Medoid clustering.

A comparison of the proposed stepwise and classical static approaches was based on
statistical performance of models derived from selections of samples using the
respective approaches. I validated the performance on five regression datasets with
different endpoints, representing toxicity, physicochemical properties and
bioconcentration and on two classification datasets. To estimate the quality of the
approaches, I evaluated them on criteria, such as the error performance, reliability,
consistency, stability and the robustness against structurally diverse compounds.

I show that application of commonly used approaches in a stepwise procedure, which
is taking the correlation to the target property into consideration, contributes to the
quality of the experimental design. Compared to models derived from static
approaches on principal components, models derived from the selection on property-
oriented variables had a lower RMSE and a higher Q2 and RZ2. Our results indicate
that a property-oriented representation of the chemical space enables a more flexible
and purposive selection of compounds.

Furthermore, of all the models derived with static approaches, only those derived
with the k-Medoid approach showed a significantly improved performance compared
to a random selection for all analyzed datasets.






Zusammenfassung

In zahlreichen chemischen Anwendungsgebieten, beispielsweise der Risikobewertung
im Rahmen der REACH Gesetzgebung oder bei der Entwicklung neuer Medikamente
werden zuverldssige Methoden zur statistischen Versuchsplanung und effizienten
Stichprobenanalyse bendtigt. Die Anzahl erforderlicher experimenteller Versuche
hierbei maoglichst gering zu halten ist sowohl aus wirtschaftlicher, als auch als
ethischer Sicht geboten, da zahlreiche Standardtests nicht nur hohe finanzielle
Kosten verursachen konnen, sondern auch Tierversuche beinhalten. Ausgehend von
einer grofseren Sammlung relevanter Molekiilen wdhlen die Methoden zur
statistischen Versuchsplanung reprdsentative Stichproben. Sobald diese Chemikalien
experimentell untersucht wurden, kann die erhaltene Information benutzt werden
um QSAR Modelle zu entwickeln, die relevanten Eigenschaften auch fiir die
verbleibenden Chemikalien vorhersagen.

Die meisten Verfahren zur statistischen Versuchsplanung sind darauf ausgerichtet
alle Stichproben in nur einem Auswahlschritt zu bestimmen. In Anbetracht
eingeschrdnkter Laborkapazititen werden die anschliefsenden Versuche jedoch in
einer Vielzahl der Fdlle der Reihe nach durchgefiihrt. Abgesehen davon liegen fiir die
meisten Endpunkte bereits Messwerte aus verdffentlichten Studien vor und sollten bei
der statistischen Versuchsplanung berticksichtigt werden. Um diesen Umstdnden
Rechnung zu tragen habe ich mehrere sequenzielle Verfahren (auch adaptive oder
schrittweise genannt) entwickelt um bewdhrte Selektionsverfahren, wie das D-
optimale Kriterium oder den Kennard-Stone Algorithmus auf gréfSere chemische
Datensdtze anzuwenden. Die schrittweisen Verfahren verfeinern hierbei die
Darstellung des chemischen Suchraumes nach jedem experimentellen Arbeitsgang.
Dies wird durch eine, auf die Zielvariable ausgerichtete Neuberechnung des
chemischen Raumes bewerkstelligt. Zugrundeliegende Analyseverfahren sind hierbei
Deskriptoren-Selektion, PLS Regression und die statistische Verfahren zur Bewertung
des Vorhersagebereiches. Weiterhin wurde die Verwendbarkeit eines statischen
(nicht schrittweisen) Verfahrens, basierend auf dem k-Medoid Clustering untersucht.

Um einen Vergleich der entwickelten schrittweisen Verfahren mit klassischen,
statischen Verfahren zu ermédglichen, wurde die statistische Performanz von
Modellen die aus die Stichproben, die mit den betreffenden Ansdtzen gezogen
wurden, ausgewertet. Fiinf Regressionsdatensdtze mit unterschiedlichen Endpunkten
(unter anderem aquatische Toxizitdt, ein Adsorptionskoeffizienten und
physikochemische Eigenschaften) und zwei Klassifizierungsdatensdtze wurden zur
Validierung benutzt. Um die Leistungsfdhigkeit der verschiedenen Ansdtze zu
bewerten wurden mehrere Kriterien, wie der Vorhersagefehler der resultierenden
Modelle, ihre Konsistenz, ihre Stabilitit und die Widerstandsfdhigkeit gegen
Molekiile mit abweichender Grundstruktur untersucht.

Die Ergebnisse zeigen, dass eine schrittweise, adaptive und auf die Zielvariable
ausgerichtete  Anwendung  gebrduchlicher =~ Verfahren  die  statistische
Versuchsplanung signifikant verbessern kann. Verglichen mit Vorhersagemodellen
die durch statische Ansdtze entwickelt wurden, weisen diejenigen, die mit einer
schrittweisen Versuchsplanung entwickelt wurden geringere Fehlerwerte und héhere
Korrelationswerte auf. Eine, auf die Zielvariable ausgerichtete Darstellung des



chemischen Raumes ermdglicht eine flexiblere und zugleich zweckmdifSigere Auswahl
ermaglichen.

Weiterhin zeigt diese Arbeit, dass von allen Modellen, die auf statischen
Selektionsverfahren beruhen, nur diejenigen die Ergebnisse einer Zufallsauswahl
verbessern konnten, die auf dem k-Medoid Ansatz beruhen.
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1 Introduction

1.1 Motivation

“The REACH legislation?! includes the requirement that every chemical compound
produced in or imported to the European Union in an amount of more than one ton
has to be registered regarding a number of endpoints. Experimental determination
of these properties for all compounds would require high-throughput testing.
According to Rovida and Hartung, the financial requirements for such testing are
about €9.5 billion.?2 For potentially hazardous, dangerous, or hardly degradable
substances, registration also requires information about their bioaccumulation
and toxicity. Apart from cost and time efficiency - a sample for e.g.
bioconcentration requires around two months and can cost more than €200 - this
also leads to ethical problems, as experimental determination of endpoints
associated with toxicity and bioaccumulation is achieved by animal tests.

Figure 1. The problem of selecting a representative subset.

The necessity to keep the overhead of (animal) testing as low as possible is also
important in many other research areas, for example the chemical or
pharmaceutical industries. One common strategy to address this problem is to use
structure-activity modeling® and to predict the required properties rather than
performing experimental measurements. This strategy entails testing only a small
subset of all the compounds of interest and constructing a predictive model using
the experimentally determined values. This basic task can be reduced to the
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problem of drawing a representative subsample of a larger set. This method is
important in other fields of research - e.g, Quantitative Structure Activity
Relationship (QSAR) development,* large-scale database scanning,® in-silico drug
design,® and compound prioritization” - as well as in experimental design for risk
assessment within REACH.8°"[a]

Experimental design in computational chemistry consists of the sampling of
representative compounds and aims to deliver a sensitive subset of a predefined
chemical space and for a certain, predefined endpoint. The insight gained by the
knowledge of this subset is intended to be the basis of a prediction model or QSAR,
which can be applied to new (not yet tested) compounds.

Such techniques are crucial in terms of time and cost efficiency as their goal is to
enable the calculation of highly predictive models at a low experimental extent.10
The challenge in this context, which is indicated in Fig. 1, is to select a combination
of compounds for experimental testing, which later on facilitates the calculation of
a highly reliable model to predict a given property also for compounds, which are
lacking of experimental measurements.

There are numerous approaches!?12 for the selection of a representative subset of
compounds that are supposed to deliver the most reliable model. These
approaches aim to select the subsets by various criteria. They all have in common
that their selection is based on the variance of structural characteristics. The
selection is done in a one-step procedure, and does not take into account
correlations between the structural features and the target property.
Unfortunately, an extended variation within a certain structural feature does not
necessarily condition that the structural feature is significant for the considered
property. In the cases of numerous chemical properties, the contribution of certain
structural features is minor. Therefore, the compounds selected with respect to
these features may not be optimal for the modeling of a given property.

Furthermore, the exclusive description of the chemical space by structural
characteristics with high variance, as it is common for the classical approaches,
produces a remarkable fact: For a given dataset, given descriptors and a given
number of compounds to be selected, the molecules chosen for experimental
testing is identical for all endpoints, irrespective if this endpoint is
physicochemical, chemical, biological or toxicological.

Taking a look at the practical course of action in laboratories, the modus operandi
of the standard approaches to select all compounds in one single step seems to be
quite artificial. Given, for example, a set of 600 compounds of interest and the
limitations of being able to test only 100 of these compounds, almost no laboratory
will test all these 100 compounds in parallel, due to restricted capacities and will
rather do this in a stepwise procedure.

Such a procedure implicates that information about the measured property is

gathered from testing cycle to testing cycle. In the standard approaches, that select
all compounds in one step, this growing amount of information is not taken into
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consideration, although exactly this information could be used to refine and
thereby significantly increase the quality of the experimental design approach.

The question is whether there are strategies that could provide a better selection
of compounds by taking into consideration the correlation to the target property
and available data.

1.2 Aims

This thesis aims to provide novel approaches for experimental design, which
significantly decrease the number of required experiments. The main focus of
attention is hereby on adaptive procedures. Adaptive procedures are executed in a
stepwise manner and after each step the representation and description of the
chemical space and the compounds populating it is refined. For this rearrangement
the accumulating knowledge about the target property, which is growing with each
(hypothetical) measurement cycle, is taken into consideration.

In this study three different basic ideas of how to iteratively refine the depiction of
the chemical space are suggested and implemented. The applied techniques to
correlate the alignment of the chemical space with the target property are partial
least squares, supervised descriptor selection and ensemble based applicability
domain estimation.

These techniques are combined with generally accepted methods to select
representative subsamples. The newly developed approaches are compared to
commonly used experimental design approaches in a validation using seven
datasets of different characteristics, all of them relevant for recent QSAR research.
Additionally, as stepwise procedures are not always feasible, a novel non-adaptive
approach using the k-Medoid clustering is introduced and evaluated similarly to
the adaptive approaches.

The developed approaches are analyzed regarding the resulting error in
prediction, stability, reliability and robustness against structurally diverse
compounds and examined with respect to a mechanistic interpretation.
Investigations on limitations and applicability restrictions are enclosed.

It is shown that adaptive approaches, which take the correlation to a certain target
property into consideration, can significantly contribute to the quality of the QSAR
models resulting from the selection of an experimental design approach.
Furthermore, it is indicated that adaptability and variability is the underlying
principle, which enables this improvement in performance.

1.3 Thesis roadmap

The subsequent part of this introduction provides a short overview of the basic
idea of QSAR modeling and the common techniques and methods used in this field
of research. The basic ideas of experimental design and commonly used
experimental design approaches are also explained. The contents within this
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section only recapitulate the state of the art and prerequisites for the
understanding of this thesis.

The next chapter (Materials) extensively introduces the datasets used in this study.
The detailed discussion of those datasets aims to illustrate the workface diversity
within current QSAR research. Concerning this matter and to provide an example
of the practical application of QSAR, as well as its limitations, the subsequent
section (Methods) starts with the exemplification of the development of a
statistical model predicting aquatic toxicity. The rest of the section focuses on the
development of new experimental design approaches.

The second part of the method section firstly elaborates the underlying theory,
which is basic for the developed adaptive concepts. A detailed description of the
implementation, as well as the introduction of a non-adaptive, cluster-based
approach (to handle problems that make a stepwise testing procedure impossible)
and the description of the validation pipeline will be presented.

[ State of the art ]
<
Adaptive and Bayesian applications Static approaches
[ Variations in chemical representation ] [ Clustering approach ]
Y
Proof of concept ]
Y
[ Practical extension ]
v

G—TTEE B
\

[ Critical discussion ]

Figure 2. The thesis roadmap.

The following chapters (Results and Discussion, Conclusion) investigate the ability
of these new approaches to improve the reliability and performance within
experimental design. Fig. 2 visualizes the proceedings starting at this point.

The results and discussion arranges the scientific findings and observations
retained from the evaluation on the adaptive approaches in a gradual structure.
Starting with a proof of concept, the conceptual principle is successively extended.

In parallel, the performance of the cluster-based approach is examined. The final
and exhaustive comparison combines all examined selection approaches with the
developed adaptive concepts to represent the property space. The section is closed
with a critical disputation of experimental design in general and the adaptive
concept, referring to the observations, findings and insights gathered in this study.
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1.4 State of the art

1.4.1QSAR modeling

The abbreviation QSAR stands for ‘quantitative structure activity relationship’ and
describes a field of research that aims to systematically map structural features of
chemical compounds to certain properties. These properties can be
biologicall31415 (e.g. enzyme inhibition, biodegradation), chemicall617.18 (e.g.
lipophilicity, solubility), or physicall®2021 (e.g. melting point, boiling point). The
underlying assumption is the frequently cited presumption that similar structures
condition similar qualities and QSAR attempts to find which specific structural
features are correlated to a certain property.

The first accordant observations supporting this assumption were reported in the
end of the 19t century, focusing mostly on the correlation of the molecular size or
weight to properties, such as the boiling point of alkenes?2 or the narcotic effect of
primary alcohols.?23 These days QSAR research has reached a high level of
complexity, incorporating knowledge of different fields of science, such as
quantum chemistry, toxicology, proteomics, informatics and machine learning, and
data mining.

Modern QSAR242526 combines the mathematical description of chemical
compounds with advanced machine learning techniques and statistical evaluation
procedures. The motivation behind can be reduced to two basic requirements:

* Knowledge amplification
QSAR can provide a deeper insight into the mechanisms of chemistry,
physics and biology, as it describes correlations that have previously not
been observed or recognized.

* Predictive ability
QSAR can be used to predict properties for new compounds which
otherwise have to be experimentally measured. Depending on the property,
the measurement procedure can be time consuming or financially
expensive.

These two aims are generating an area of conflict, as the models with the highest
predictive power are usually calculated with complex approaches. The resulting
models are complex as well, which prevents from an easily accessible mechanistic
interpretation of the retained correlations. On the other hand, simple approaches
can provide a good insight in the underlying mode of action, but their predictive
quality is often less than optimal. Finding an appropriate balance between these
antipodal targets is one of the most important aims in modern QSAR.

14.1.1 Descriptors

A basic requirement in QSPR and QSAR modeling is the description of chemical
compounds and their structure in a way which can be processed by statistical
methods. This description should be informative and encode chemical features of
the molecules, which are relevant for the analyzed property. The common

17



approach to reach this is the calculation of the so called molecular descriptors to
numerically represent molecules.272829 Generally spoken, each numerical value
derived from a chemical compound can be used as a molecular descriptor. An
example thereof is the number of atoms in a molecule. The number of possible
descriptors is - as a matter of principle - not limited, but they can be categorized
into four main classes:

* 1D descriptors

1D descriptors are the simplest descriptors in QSAR modeling. They consist
of those descriptors, which do not take the connectivity of the atoms in a
molecule into account, but just their number, presence or absence. 1D
descriptors can be derived from the chemical formula. Examples of this are
the molecular weight and the number of occurrences of a certain atom or
atom type (e.g., halogens, metals) within the compound. The yellow circles
in Fig. 3a) indicate all substructures, which contribute to a descriptor
counting the occurrence of nitrogen atoms.

e 2D descriptors
2D descriptors are those that comprise a molecule as a two dimensional
graph, with the atoms as nodes and the bonds as edges (or in rare cases the
other way round). They are the most frequently used descriptors in QSAR
modeling. Typical examples are fragment-, group- or substructure counts
and 2D autocorrelations.3%31 Fig. 3b) shows such a 2D descriptor,
analogously to Fig. 3a). The decisive element hereby is an O-CH3 group.

* 3D descriptors

3D descriptors are those derived from a three dimensional depiction of the
molecule. Commonly before the descriptor calculation, a structural
optimization of the underlying compound is performed. The intention of
this optimization is to find a minimum energy conformation, as this is more
likely to coincide with the natural structure. The optimization can be
accomplished using a simple force field approach, semi-empirical tools such
as MOPAC,32 or ab initio calculations. Examples for such descriptors are the
surface area, geometric and topological characteristics regarding the
molecule’s latitude or topological distances between certain atoms and/or
chemical groups, as indicated in Fig. 3c).

* 4D descriptors
4D Descriptors take the flexibility of chemical compounds into
consideration. They are calculated on an ensemble of supposable
conformations of a compound and their use in QSAR modeling is limited.

Apart from these main classes, there are two more classes of descriptors, which
can be interpreted as independent groups, although they are frequently referred to
as subgroups of the main groups.

*  Quantum chemistry descriptors

Quantum chemistry descriptors can be seen a subset of the 3D descriptors,
as they are derived from a three dimensional representations of the
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molecule. Typical examples are the highest occupied molecular orbital
(HOMO) energy and the lowest unoccupied molecular orbital (LUMO)
energy,33 as well as the dipole momentum or the total energy of a structure.

e String descriptors

String descriptors can be seen as a special subset of 2D descriptors. They
are derived from any string representation of a compound. This
representation can be a standardized nomenclature, such as the IUPAC
name of a substance, or a notation like the chemical SMILES.34 The
standardized names contain information about the presence of certain
chemical groups and their connectivity. Examples for this kind of
descriptors are substring counts within the string representation.

Figure 3. A depiction of different types of commonly used descriptors in chemoinformatics. The yellow
circles and lines indicate the decisive structural element. This can be a certain atom (a), a chemical
group (b) or a topological distance (c).

Each descriptor has a specific numeric range. If different descriptors types are
combined, their respective scales can vary by orders of magnitude. With this said,
it is recommended to scale them to a unique order of magnitude. The two most
common treatments are thereby the normalization and the standardization.
Normalization rescales the values to a predefined range, which usually is [0,1].
Standardization on the other hand rescales the values to a predefined arithmetical
mean (usually 0) with a predefined standard deviation (usually 1).

1.4.1.2 Multivariate data analysis

As mentioned in the previous paragraph, there is almost no limitation to the
number of hypothetical descriptors. The number of fragment-based descriptors
derived on a dataset of several hundred compounds, for instance, can easily exceed
a number of 2000 descriptors. Although a high number of descriptors contribute to
a unique and precise representation of each chemical compound, there are also
disadvantages linked to such an exhaustive representation of the chemical
substances. Complications that usually arise are, first of all, that a certain
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percentage of the descriptors are not statistically relevant. The information
content of a fragment that is present in only one or few compounds within the
dataset is limited. Furthermore, the computational performance has to be taken
into consideration. Every descriptor can be interpreted as a dimension in the
chemical space and the computational efforts required for the calculation of a
QSAR model increase with the dimensionality of the descriptor space.

Last but not least, the higher the number of used descriptors is, the higher is the
probability of inter-correlations and redundancies within the descriptors. An
example thereof is that a descriptor indicating the presence of a minimum of nine
carbon atoms in a compound is highly correlated with a descriptor indicating the
presence of eight carbon atoms, just as the presence of nine or more carbons
implies also the presence of eight carbons. Such redundancies are surely
unwanted, as they can overweight certain latent properties. Latent properties are
characteristics of a compound that are not explicitly defined, but which are
implicitly specified by several descriptors. The size of a molecule is such a latent
property and qualities, like the molecular weight, the number of atoms, the
number of bonds, etc. are descriptors that cipher this property. Latent properties
are of crucial importance, as they describe the basic characteristics of a chemical
compound, which are fundamental for predictive modeling of certain endpoints.

A
X2

X1

Figure 4. A schematic depiction of the orthogonal transformation resulting from a principal component
analysis. The black arrows represent the original coordinate system, the yellow dots represent
instances in the space spanned by these axes and the blue axes indicate the newly calculated
coordinate system.

The principal component analysis (PCA) allows addressing these problems.3> PCA
is an orthogonal transformation of the descriptor space with a rearrangement of
the axes according to their variance in the descriptor space. A schematic
visualization of the way PCA works can be seen in Fig. 4.
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The effects of this transformation is that the new set of orthogonal axes with the
highest variance and thereby putatively with the most information content are
selected for representation of the chemical space. Furthermore, it helps to
drastically reduce the complexity of the chemical space. In practice, the first five to
ten axes of the PCA often cover more than 80% percent of the variance in the
original data. Thereby, descriptors without statistical significance get eliminated.
Apart from that, the axes of the PCA are pairwise orthogonal, which means that
they are not inter-correlated.

There are several variants of the principal component analysis, but they all work
on the same principle: In the first step, given N instances and M available
descriptors, the descriptor matrix D is built. It contains a row for each compound
and a column for each descriptor. Then the data columns are centered, so that the
mean of the data is zero. In the next step the covariance C matrix is calculated.

1
C=——0D'D
N-1

The covariance matrix is a quadratic matrix and each field contains the pairwise
covariance of two descriptors. The covariance matrix is used to calculate its
Eigenvectors x; , ., and the according Eigenvalues 4, , .

C* x;= Aj*x;

The Eigenvectors are orthogonal and they represent the new coordinate system
for the data. The ranking of the Eigenvalues indicates the ranking of the principal
components, or expressed in other words, the first principle component is the
Eigenvector with the highest Eigenvalue, the second principle component is the
Eigenvector with the second highest Eigenvalue and so on. After the selection of an
appropriate number of principal components to significantly describe the original
data, the data points are transformed referring to the new principal components.
This is the final step of the PCA and the retained data is reduced in dimensionality
and free of redundancies.

Two expressions frequently used in conjunction with the PCA, as well as with any
other orthogonal transformation are:

* Scores
PCA scores are assigned to compounds. They describe which characteristic
a compound has regarding the new coordinate system and thereby also
regarding the newly derived principal properties. Or expressed in other
words, the score of a compound regarding the first principal component is
its x-coordinate referring to the orthogonally transformed descriptor space.

* Loadings
PCA loadings are assigned to the original descriptors. They describe the
contribution of a certain descriptor to each of the resulting principal
components.
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Based on the appropriate preprocessing of the descriptors (normalization,
standardization, centering, etc.) PCA (as any other orthogonal transformation) can
also handle variables that are not normally distributed. In fact, most fragment
descriptors (which will be extensively used in the following) show a distribution,
which is similar to a chi-squared distribution. Furthermore, depending on the
implementation of the method, PCA can also deal with discrete descriptors. Such
variables can be deconstructed into several variables, one of them for each discrete
value, displaying the absence or presence of the certain value.

1.4.1.3 Machine learning algorithms

The statistical techniques used to find and extract the correlations and
dependencies between a property and the descriptor space are machine learning
methods, developed in the field of data mining and artificial intelligence. Machine
learning methods can be divided into two groups: classification methods; which
make a decision if an instance has to be assigned to a certain class or not and
regression methods which assign a specific value to an instance.

-1.0

-1.5

Property space

2.0

-2.5

1.0 1.5 2.0 2.5
Descriptor space

Figure 5. The principle within the regression idea. The solid grey curve shows the correlation between
the descriptor space and the property space, the ret dots indicate available measurements that are
used for the approximation of a linear function, which is indicated by the dashed red line.

Literature provides a variety of implementations and variants for each of the
approaches based on Bayesian theory,3%37 graph theory,3%3° rule-based
interpretation#%,41 and brain science.#243 The following chapter will only focus on
those that will be used in this thesis. Further, this chapter will just provide a basic
overview of the principles and most common implementations of each approach.
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1.4.1.3.1 Regression methods

Contrary to the classification methods that work with a discrete separation of the
descriptor space, the regression methods detect continuous correlations between
the descriptor space and a target property. A typical regression problem in QSAR
modeling is the prediction of the value of a certain property, e.g. the boiling point
of a compound.

1.4.1.3.1.1 Linear regression

The most commonly used regression technique in chemoinformatics and
computational chemistry is the multiple linear regression (MLR). The underlying
principle of this approach is the description of a target property y as a linear
combination of input variables. Given a set of M descriptors, x4, x5, ..., X,,, the aim
is to express the target property y as an equation in the form of:

M
y:C+ W; * X;
i=1

where w; is the specific weight of a descriptor and c is a constant factor, called the
bias. The optimization process hereby aims to find the weights and bias that
minimize the sum of squared errors over all instances and most commonly uses
the ordinary least squares (OLS) estimator:

Wy
Wy | =XTX)" 1« XTy
Wm

Hereby the data matrix X and the property vector Y for N observations are defined
as:

1 x11 xlz e xlm }’1

1 x X - X Yn
X = 21 22 2m : Y =

1 X1 X2 o Xom Yn

A special case of the linear regression is the simple regression, which describes the
target property as a function of only one descriptor. The underlying dependencies
between descriptor and property space are often of a complex order, but can be
approximated with a linear function. Fig. 5 describes such an approximation
process.

Often a linear regression is built only on a small set of preselected descriptors, but

there are also implementations that aim to filter a large number of input variables
in an optimal way.
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1.4.1.3.1.2 PLS regression

Several studies show that multiple linear regression is to some extent prone to
misinterpretations for a high number of input variables, especially if those are
inter-correlated.3>#* Furthermore, the computational time required to calculate
the weights, drastically increases because of the need to calculate (XTX)™ 1. A step
ahead to automatically solve this problem was the development of PCA regression.
The PCA regression combines the principal component analysis with linear
regression.

= I -
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= ¢

Figure 6. The PLS analysis works with decomposition of both the target properties and the descriptors.
The derived score matrices T and U are related to retain the orthogonal transformation.

Inner
relationship

The advantages arising from the reduction in dimensionality and the elimination of
redundant information are obvious. Nevertheless, the decrease of information
content involved with the decrease in dimensions is not only beneficial. PCA ranks
the components (sometimes also called principal properties) by their variance in
descriptor space, but a high variance within such a component does not
necessarily imply a high relevance for a certain target property. Quite the contrary,
the elimination of dimensions can lead to a loss of information that is crucial for
the target property. The partial least squares regression can solve this problem.

Partial least squares (PLS)*> contains an orthogonal transformation of the
descriptor space, but contrary to the PCA transformation, the components are not
just ranked by their variance in descriptor space, but by their correlation to the
target property. Additionally, PLS can also be used to predict several properties
simultaneously.

Technically, PLS separately calculates the principal components both for the
descriptor space and the space spanned by the properties. This decomposition is
called the outer relationship. Fig. 6 shows a breakdown of the descriptor space X
into the score matrix T, the loading matrix P and the error term E.

X=TxP+E
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Analogously the property space Y is broken down into into the score matrix Z, the
loading matrix Q and the error term F.

Y=UxQ+F

In the following step, the scoring matrices are related to each other by the matrix
B, which becomes the new transformation matrix.

U=Bx*T

This is called the inner relationship and can be seen as a regression model between
the two score matrices.

PLS regression is the most frequently used method within this thesis. Reasons
therefore are amongst others the efficient calculation, the conservation of linear
dependencies, the mechanistic interpretability and the high acceptance the method
is given.

1.4.1.3.2 Classification methods

A typical classification problem in QSAR modeling is, for instance, if a compound is
an inhibitor to a certain protein or if it is not. Such binary classification problems,
which can be seen as Yes-or-No decisions, are the most common problems in QSAR
modeling. Although most classification methods can handle also multi-class
problems, these problems will not be considered in the following. The reason for
this is that within this thesis, such problems were not analyzed. Furthermore, each
multi-class problem can be expressed as an aggregation of binary classification
problems.

1.4.1.3.2.1 k-Nearest-Neighbors

The simplest and most intuitive approach for classification is the k-Nearest-
Neighbor (kNN) approach. It examines the neighborhood around each instance
and assigns new instances referring to these compounds. The neighborhood is
usually defined as a distance function in descriptor space. Commonly the Euclidean
distance is used, but also other metrics, e.g. the Manhattan distance can be used.

In the original implementation, the decision, which class an instance should be
assigned to, is a majority decision. Derived from the given parameter k, which
defines the number of compounds that should be taken into consideration, each
instance is categorized to majority of the neighborhood. The influence of the
parameter k on this decision can be seen in Fig. 7. Each dot represents a chemical
compound in the chemical space. The red and blue coloring symbolizes the
affiliation to a certain classification category. The black dot should be classified
regarding the nearest neighbor criterion. If five nearest neighbors are taken into
consideration, the instance is assigned to the red class, but taking 15 nearest
neighbors into consideration, the instance is assigned to the blue class.
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Naturally, the majority decision works well only for balanced sets.#647 A set is
called balanced, if the number of instances assigned to the first class is
approximately similar to the number of compounds in the second set.
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Figure 7. The k-Nearest-Neighbor approach. The new compound is assigned referring to the majority
class within a certain range. The assignment value can change for a different number of neighbors
taken into consideration.

There are numerous suggestions how to extend and improve the kNN approach,
e.g. the weighting of instances according to the overall partition of their classes, the
weighting of the k nearest instance referring to their distances,*34° or the
incorporation of fuzzy logic.>? The use of kNN in computational chemistry is rather
limited. The reason for this is two-fold: firstly, there are more advanced
approaches, and secondly, the prediction of new instances is relatively time
expensive, when compared to other approaches.

1.4.1.3.2.2 Decision trees

A decision tree is the representation of a classification procedure as a connected
graph without cycles.>! Most decision trees are built hierarchically in a top-down-
manner by splitting the underlying data referring to the most informative
attributes.>2 The attributes are represented by the graph’s nodes, whereas the
edges represent particular values of the sourcing node. In classical decision trees,
these attributes are binary (or discrete). But if the decision tree is extended by a
directed discretization, it can process also continuous or numeric attributes. Fig. 8
shows such a tree, which is based on a young man’s decision if he should wash his
car at a certain day.

The commonly used criteria to evaluate the most informative attribute are the
‘GINI impurity’ (or ‘GINI index’) or the ‘Information gain’. The ‘GINI index’ works
on statistical dispersion, whereas the ‘Information gain’ focuses on the level of
entropy. Both criteria produce decision trees with similar performances. If no stop
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criterion is given, the branching within a decision trees is carried forward until all
cases in a node fall into the same classification category. Furthermore, it is worth
mentioning that two branches can use the same attribute on different levels. Every
decision tree can be translated into a set of rules, and the other way round.

Should | wash my car today ?

Supday Weekday
Sunshine
Yés Ne
Location Rendezvous in the evening
Desert City Other Yes No

do s Mem Nem Ml

Figure 8. A decision tree for a binary decision problem. Although the decision problem is binary, the
tree does not have to be binary too.

1.4.1.3.2.3 Support vector machines

Support vector machines (SVM) work with a linear separation of the descriptor
space. Thereby, the so-called hyper-plane is used to define a border that separates
the two classes.53 The adjustment of the hyper-plane is dependent only on the
nearest training instances, on the support vectors and it is determined to maximize
the margin. The margin is defined as the orthogonal Euclidean distance of the
support vectors to the hyper-plane. Fig. 9 depicts the mode of operation of an SVM.

For many classification problems, a clear linear separation is not possible. This can
result from measurement errors or dependencies, which are not covered by the
used descriptors. To enable the accomplishment of such problems, the concept of a
‘soft margin’ allows misclassifications. Thereby the cost-factor is used to control
the tradeoff between the acceptance of misclassification and the rigidness of the
margin.>* The higher the cost-factor is set, the higher the investment of
computational expenses will be to find an optimal separation. The tradeoff value
for misclassifications is usually selected according to cross-validation procedures.

Apart from isolated instances that cannot be fit into a linear separation, there are

data distributions that make such a disjunction counterproductive, for example if
the underlying classification problem is non-linear. The solution for such problems
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is the transformation to space of higher dimensionality. A simple example of such a
higher dimensional space is the extension of the original space by the cross
product of the original descriptors. Fig. 10 visualizes this transformation for a
dataset that is not separable in the original space.

Support vectors

ugﬁ.lewlugﬁ.lew

Figure 9. The separation of the chemical space with a SVM. The support vectors that define the hyper-
plane are indicated with black circles.

Obviously this procedure has two disadvantages: Firstly the computational
requirements to calculate the additional descriptors; and secondly the increased
computational requirements due to the higher dimensionality of the feature space.
In some cases the dimensionality of the new space can be an infinite one. A radial
basis function, for example is equivalent to mapping the data into an infinite
dimensional Hilbert space.
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Figure 10. The transformation of a classification problem that is not separable in the original space
(right). The transformation to the higher order space on the right shows that the classes can be
discriminated with only one dimension.
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To avoid these problems, the transformation to a higher dimensional space is
implemented using a Kernel function.>>>¢ The kernel function works in the original
space, but ‘behaves’ like a dot product in a higher order space. Therefore it
eliminates the explicit calculation of additional dimension.

1.4.1.3.2.4 Artificial neural networks

Artificial neural networks (ANN) originate from the effort of implementing a
simplified replication of the human brain. The basic component within such
networks is the artificial neuron. The best-known artificial neuron is the so-called
perceptron.>7:5859 Fig. 11 shows the graphical representation of such a perceptron.
Given a vector x of n input variables, the artificial neuron i is defined by n weights
Wi1, Wiy, ..., Wiy, a transfer function Z, an activation function f and a threshold 6.
The transfer function sums the weighted input Z’J?zl w;j * xj and the activation
function is applied to the resulting sum. If the output of f exceeds 8, the neuron
‘fires’, otherwise not. Thereby the artificial neuron imitates the biological model
and its underlying ‘all-or-nothing’-principle.

Wiq

Wi3
Figure 11. A schematic artificial neuron with its transfer function X and an activation function f.

In artificial neural networks, the neurons are arranged in layers and the neurons of
a layer are interconnected with the neurons of the subsequent layer. Fig. 12 shows
the scheme of such a network. It consists of an input layer, which processes a
vector of descriptors, followed by a customizable number of hidden layers. The
input of the neurons in a hidden layer is the output of the neurons of the preceding
layer. The final layer of the neural network is the output layer. It usually consists
only of one neuron, which emits the result of the classification procedure.

The training procedure of an ANN consists of the optimization of the weights of the
neurons and aims to minimize the errors in prediction. The other parameters
(%,f,0) are generally predefined. There are numerous suggestions for the
optimization procedure, using amongst other techniques such as the back-
propagation algorithm®%6162 or genetic algorithms.%3

Classically, the ANN is a directed, acyclic graph and only neurons in neighboring
layers are connected, but there are also implementations allowing cycles or edges
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overlapping one or more layers. The artificial neural networks used in this thesis
are associative neural networks (ASNN).4 ASNNs benefit from the supposedly
LIBRARY mode,’> which uses local corrections. These local corrections are
calculated using a nearest-neighbor method which uses the predictions of an
ensemble of models as new descriptors.

Input layer Hidden layer Output layer
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Figure 12. An artificial neural network. The neurons are arranged in layers. The connections between
the neurons are directed towards the output layer with only one neuron.

1.4.1.4 Model validation

To obtain a reliable estimation of the predictive quality of a statistical machine
learning model it is incorrect to rely on the performance reached only using data
that were used for model training. This can be clearly seen when considering a
hypothetical kNN approach using only one neighbor. In the chemical space the
distance of a compound to itself is naturally zero, the prediction for a compound
will surely be exactly the value (regardless if the model is for a discrete or
continuous endpoint), which is already provided in the training set. Therefore all
instances will be predicted correct and precise, although the values have just been
learned by heart.
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To avoid this problem, several approaches have been developed, all of them with
approximately similar reliability and significance. The four most commonly used
techniques are:

* n-fold cross validation

For the n-fold cross validation, the dataset is split into n folds of similar size.
Usually this splitting is done randomly, but also stratified implementations,
which distribute the compounds in a way that the instances in each split
have a similar distribution regarding the target property, are used. In the
next step a model is trained on each possible combination of n-1 splits,
which leads to a final number of n models. All of these models are trained
with the same initial parameterization and they are used to predict each
instance in the excluded split. The number of folds used for this validation is
usually in the range from five to twenty.

* Leave one out cross validation

The leave one out cross validation (CVie) is a special case of the n-fold
cross validation, where the number of splits is exactly the number of
compounds in the dataset. This means that for the validation of each
instance in a dataset, a model is trained on all other compounds within the
dataset. Because of the high computational requirements, the application of
this evaluation procedure is mostly used for small datasets with less than
200 instances.

e External test set validation
In case of the external validation, the initial dataset is split into a training
set, which is used to develop and train a model, and a validation (or test)
set, which is then used to evaluate the predictive quality of a developed
model. If the number of instances in the validation set is smaller than the
number of compounds in the training set, this procedure is similar to the n-
fold cross-validation but just using one out of n possible folds. It can be
recommended for large sets or for situations, when the computational costs
of performing all analyses are too high.
The procedure of splitting the dataset is hereby of high importance. For
sufficiently big datasets, a random procedure is the favorable one, but
especially in case of smaller datasets (less than 50 instances), the
probability to obtain an inappropriate distribution of the compounds
grows. In case of a classification dataset this can for instance be that almost
all instances of a certain class are assigned to either the test or the
validation set. This can lead to an under-estimation of the predictive quality
of the resulting model. Stratified approaches, as described for the cross-
validation can help to avoid such side effects.
It is of high importance that the split into training and validation set is done
before the model development, and that it is completely independent of the
model evaluation. Unfortunately, this basic requirement is often violated.
The percentage of compounds used in each of the two splits is thereby
highly dependent of the dataset size. In case of datasets with less than 100
instances, a validation set size between 20 and 35 percent is reasonable, but
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in case of huge datasets, containing thousands of instances, a validation set
size of 90-95% of instances can be reasonable as well.

* Bagging validation

The bagging validation works with an ensemble of models. In contrast to
the cross fold validation, which produces exactly one prediction per
instance, the bagging validation produces several predictions per
compound and returns the average prediction value. A predefined number
of splits of the data into a validation and a training partition are executed.
The usual procedure to divide the dataset is the random sampling with
replacement. In case of a dataset of n instances, the training set is formed by
n times drawing an instance from the whole data pool. Taking into
consideration the probability to draw the same instance multiple times, the
training set contains n* (1 — e™!) compounds (= 63.2% ) and the
validation setn * e~! compounds. To ensure that each compound of the
dataset is at least once present in any of the validation sets, the number of
folds for the bagging validation is usually set to a minimum of 32 folds, but
already for a number of 10 folds the probability that a compound is not
present in any of the validation folds is approximately one percent.

All of these procedures have advantages, as well as disadvantages. The external
validation makes it easiest to keep the strict separation between training and
validation set and it can be convincing to the final reader. However it uses only a
partition of the available data and thereby it can be biased. The leave-one-out cross
validation (as well as the cross validation in general) can provide too optimistic
predictions if the dataset contains duplicate measurements while the bagging
procedure is computationally expensive.

Table 1. The four categories to distinguish binary classifications, depending on the observed and the
predicted class.

Measured / observed class

@ True positives False positives
S fp fp

<

Q

-~

g

}3 False negatives True negatives
A fn tn

To quantify and numerically express the predictions quality obtained within the
model validation procedures several statistical coefficients have been established.

1.4.1.4.1 Classification models
In case of classification models, each predicted instance gets assigned one out of

four labels. These labels contain information if the instance is predicted to be
within a certain classification category (positive) or not (negative) and if this
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prediction is correct (true) or incorrect (false). Table 1 shows this differentiation,
regarding the observed and predicted class. The decision which class is assigned
the positive or negative label is done before the modeling and it depends on the
nature of the analyzed property.

All statistical coefficients used to express the prediction quality of a classification
model are based on the quantitative partition into four labels. The most commonly
used ones are:

e Accuracy
The accuracy reports the proportion of correctly predicted instances.

tp + tn
tp+tn+fp+fn

Accuracy =

It is the simplest measure for the prediction quality of a model. However,
this measure should not be used if the analyzed dataset is strongly
unbalanced, as its expressiveness is limited. A model that classifies all
instances as member of the majority class has an accuracy identical to the
proportion of the majority class. If the majority class contains 90% of
instances the accuracy of such a model is also 90%, although the model
does not have any predictive power.

* Recall
The recall (or sensitivity) describes the proportion of correctly predicted
instances of the positive class.

tp
Recall = ———
tp+ fn
* Precision
The precision reports the proportion of true predictions within all instances
predicted to belong to the positive class.

tp

Precision = ————
tp + fp

* Specificity
The specificity corresponds to the recall of the negative class.

tn

Specificity = o
* F-Measure
Recall and precision are usually used simultaneously, as the combination of
these two measurements is appropriate to identify models with low
predictive power. Referring to a classification model on a balanced dataset,
that assigns all instances to the majority class, either recall or precision is
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Balanced accuracy =

very low. A measurement to express the combination of these two values is
the F-Measure. The F-Measure is the harmonic mean of recall and precision
and it provides a reliable estimation of the overall quality of a prediction
model, especially as is takes also the difference between recall and
precision values into account.

Precision * Recall 2 *tp
Precision + Recall 2 xtp + fp + fn

FMeasure = 2 *

Balanced accuracy

The most frequently used measurement to express the predictive quality of
a QSAR classification model is the balanced accuracy. The balanced
accuracy is the arithmetic mean of sensitivity and specificity.

Sensitivity + Specificity 0.5 ( tp N tn )
= D ok
2 tp+fn tn+fp

1.4.1.4.2 Regression models

The statistical coefficients for regression models basically estimate the differences
between the measured values y; and the predicted values ¥; for all compounds i
out of a dataset of size N.

Root mean square error

The root mean square error (RMSE) quantifies the mean of the squared
prediction errors of a model. As a value on its own, the RMSE retained from
a specific model gives no information about the predictive quality, as it does
not take the range and distribution of the target property into
consideration. However, RMSE can be easily used if the performance of
models is compared using exactly the same dataset.

— jzﬁ“_l(yi - 5

N

Mean absolute error

The mean absolute error (MAE) is complementary to the RMSE. It is less
sensitive to large outlying predictions, which can heavily affect RMSE. Its
use in QSAR modeling is less common.

Z?’:lb’i - Fil

MAE =
N

Coefficient of determination

The coefficient of determination (Q?) is a standardized value that enables
the estimation of the model quality without further knowledge about the
underlying data. Q2 describes the variance in data explained by the model.
The highest value of Q? is one (100% explained variance). There are
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numerous implementations of the Q2, whereas the most commonly used
version is calculated as follows:

, . (RMSEN* BN (i — §0)°
¢ =1-(5qy) - ¥ (i~ ED))?

* Correlation coefficient
The linear Pearson correlation coefficient (CC) describes the linear
correlation between the predicted and the real values. The correlation
coefficient gives only an overview of a similar development of measured
and predicted value, but does not take the bias into account.

YL — EG) * (i —EW))

o= o) * o)

The square correlation coefficient is often denoted R2. It is worth mentioning that
literature provides several inconsistencies with the usage of Q% and R2. R? is often
used to describe the Q? for the training set and sometimes both denotations are
interchanged. To avoid any misinterpretations, in this thesis the coefficients are
strictly used as described above.

1.4.1.4.3 Statistical significance

Given a specific dataset, the application of the aforementioned criteria can detect
the superiority of a certain prediction approach (e.g. the combination of a certain
machine learning approach with a certain descriptor set) towards others.
However, the numerical values retained by these criteria allow just the
interpretation of this very narrow excerpt, but without further ado they cannot be
used to deduce a general superiority. Differences in performance derived with one
single comparison are not necessarily generalizable, as they might be caused by
chance. The exclusion or consideration of only one chemical compound can
influence the performance of a certain approach. It is therefore necessary to
evaluate statistical methods, such as QSAR modeling on a wider scope.

A commonly used method that is used to enable such a generalization is the
examination of the statistical significance. The underlying idea of the statistical
significance is the refutation of the so-called null hypothesis (Ho). When comparing
two methods, Ho usually claims that both methods perform equally well. The
validity of Ho is estimated from an ensemble of observations. These observations
are used to estimate the statistical probability (p-Value) that Ho is correct. There
are numerous statistical tests to detect the level of significance, depending on,
which statistical coefficients are compared, e.g. the mean values or variances of the
examined distributions. The most reliable and most comprehensible method is the
binomial test, which is based on the Bernoulli distribution.

In this thesis, the pairwise comparison of results using the binomial test is the only

method to detect statistical significance. Furthermore, we follow the most common
recommendation to set the level of significance to refuse Ho to a p-Value of < 0.05.
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Additionally, results that are obtained with p-Values < 0.001 are called highly
significant.

In QSAR, as well as in many other areas of statistical applications, the so-called
confidence intervals are frequently used as an indication of statistical significance.
The confidence intervals usually display the standard deviation or the standard
error. Overlapping confidence intervals are thereby used to show that the
observed difference is non-significant, whereas non-overlapping confidence
intervals are used to show that the observed difference is significant. This has been
shown to be basically wrong in several publications.66.67

Therefore, in this thesis the standard error and the standard deviation are only

used to estimate the uncertainty in prediction, as well as predictive confidence of a
model.

36



1.4.2Experimental design approaches

The problem of optimizing scientific experiments, to obtain the maximum
information with a minimum number of tests, is well known since more than 200
years. First efforts to systematically design efficient experiments are reported from
health studies in the middle of 18% century. The development towards an
established area of scientific research and the attempt to generate general
solutions can be traced back to the beginning of 19t century.

The optimal design of experiments for regression models with known depending
variables was subject to exhaustive research in the beginning of the 20% century.
Although QSAR mainly deals with regression problems, these approaches are not
applicable to current chemoinformatics problems, basically because in most cases
the depending variables are not known and their detection is part of the
experimental design problem.

In general, the problem of experimental design in computational chemistry can be
seen as the problem to select the most representative subset of compounds from a
larger collection. The selected subset should describe the original set of interest to
a high extent and moreover, it should represent it respective to a certain property
of interest. The subset should also enable both the detection of relevant structural
features to describe the property of interest, as well as the quantification of these
features. According to this, the basic task is to find a combination of compounds
that fulfills two criteria:

1. Each selected compound should be representative for a preferably high
number of other compounds in the dataset.
2. The information contained in the selected subset should not be redundant.

With these requirements given, it is obvious that, with regards to the first
prerequisite, the selection of structurally diverse compounds should be avoided, as
their chemical features might not be applicable to other compounds within the
dataset of interest. On the other hand, respective to the second prerequisite, it
should be avoided that the final selection contains highly similar compounds.

A variety of different approaches111268697071 have been developed, all of them
aiming to select a representative subset of compounds to deliver the most reliable
model. All these approaches work with a depiction of the chemical space, which is
exclusively based on descriptors. Usually a PCA is applied to these descriptors to
extract the principal properties, which are used to span the chemical space to
select compounds. Although the statistics literature also provides a large variety of
sequential approaches?? that refine the representation of the chemical space in a
stepwise manner, as well as Bayesian approaches’3 that take preliminary
information into account, their application in QSAR is very limited.

The difference between the selection approaches is established by the way they
evaluate the representativeness of a certain compound or the quality of a
combination of compounds. All these approaches can be reduced to three general
ideas: firstly the concept of selecting the most descriptive compounds, which is
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referred to as similarity selection; secondly the concept of selecting the
combination of compounds, which provide the most diverse information, which is
referred to as dissimilarity selection; and thirdly, the concept of representing the
whole chemical space of interest, referred to as partition based approaches.

In the next chapters these approaches will be explained in more detail as well as
their basic features and the advantages and disadvantages linked to them.

1.4.2.1 Dissimilarity selections

The underlying idea of all dissimilarity selection approaches is that the most
diverse compounds provide the most widespread information and that they
therefore reach the highest coverage of relevant knowledge. Fig. 13 exemplifies
their mode of action in a two dimensional space, with the main principle
components representing the axes and each black dot representing a compound
within the dataset. Compounds surrounded by a red circle indicate those
compounds that were selected.

Typically for dissimilarity approaches, the selected compounds are mainly located
at the periphery of the data cloud. This bias towards compounds beyond the center
of the distribution results in a high sensitivity against the underlying data
distribution.

Principal component 2

Principal component 1
Figure 13. Compound selection with a dissimilarity approach. The selected instances (indicated with
red circles) are all at the periphery of the data cloud.

On the one hand, dissimilarity selections work well for datasets, with limited
chemical diversity that cover only a compact, not too widespread subspace of the
chemical space. In the case of linear problems and known depending variables,
dissimilarity selections perform with a high reliability. On the other hand, they
reveal a tendency towards the selection of outliers, which results in negative
effects, especially for datasets with structurally diverse compounds or in high
dimensional spaces.1!
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The most frequently used variants that belong to this group of selection
approaches are the Kennard-Stone algorithm’4 and the D-Optimal design.*47576

1.4.2.1.1 D-Optimal criterion

“D-Optimal design, which has been recommended as the favorable alternative for
linear models in several publications,*+7> selects the most representative
combination of compounds for linear models.”® In this method, each possible
subset of a given size is evaluated to derive the information matrix.”[a]
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Figure 14. The results of the D-Optimal selection using a) linear terms only, b) linear, cross, and square
terms. [a]

The information matrix I is hereby derived from the data matrix X, as it was
introduced in 1.4.1.3.1.1.

I=XTx)™1

“The most distinct and thereby most optimal of all possible subsets is the one with
the maximum determinant of the information matrix. This is equivalent to the set
with the maximum entropy.”” An advantage of the D-Optimal selection criterion is
that in the design problems that are analyzed in this work, the training set is
selected from a limited candidate set. Pronzato has shown that when the data
space is limited, a sequential D-optimal design, given that some conditions are met,
is asymptotically optimal.”8
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Fig. 14a) shows the result of a D-Optimal selection. The x-axis and the y-axis
represent two first principal components, while each dot represents a chemical
compound. Dots marked red are the compounds that were selected using the D-
Optimal criterion.”[a]

As mentioned in the previous chapter, the application of the D-Optimal criterion to
principal components is particularly capable of problems with linear
dependencies. In contrast, the performance of models derived from compounds
selected with the D-Optimal criterion is clearly decreased for non-linear
dependencies, such as quadratic or hyperbolic ones. An explanation therefore can
be seen in Fig. 15a-f. The x-axis shows the descriptor space and the y-axis the
property space. The grey line shows the real dependency between the structural
properties and the endpoint of concern, whereas the red and green dots illustrate
available measurement values.

The D-Optimal criterion selects compounds from the periphery of the descriptor
space, which causes a high structural diversity. The maximum structural
dissimilarity usually causes also a dissimilarity regarding a certain endpoint.
Extreme structures often account for extreme values regarding certain endpoints.
The compounds selected by the D-Optimal criterion are therefore in most cases the
ones with the highest or lowest value regarding the target property. This can be
problematic if the dependency between the descriptor space and the property
space is non-linear.

If the selection of compounds contains only those with extreme values, as
indicated by the red dots in Fig. 153, the derived regression line (dashed, red),
which is added in Fig. 15b enables good predictions in the area of the extreme
values, as they were used for the resulting model. But for intermediate values,
which are allocated in the center of the descriptor space (and which usually are the
most frequent ones), the prediction error is relatively high, which is illustrated by
the red arrow in Fig. 15c. Taking additional compounds from the distribution
center into consideration can eliminate suchlike effects. The green dots in Fig. 15d
represent such compounds. They can be interpreted as a correction factor, to get a
better indication of the shift (or bias) that is added to the new regression line,
which is shown as a green dashed line in Fig. 15e. Although the prediction error for
values at the borders of the descriptor space increases, the overall prediction
quality is clearly increased, whereas the maximum error is decreased.

To address this problem, the D-Optimal criterion is frequently applied not only to
the principal components but also to a set of meta descriptors. “These meta
descriptors contain the normalized components from PCA, their square terms, and
their pairwise cross terms.”? For a set of v input variables, d,,d,,...,d, ,
additionally the square terms d%,d3,..,d2 and the cross terms d;d; with i =
1,2,..,v,j=1,2,..,vandi # j. This extension increases the dimensionality of
the search space by a quadratic factor from v input variables to v * (1.5 + 0,5 * v)
meta descriptors.
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Figure 15. Problems arising from a compound selection that takes only extreme compounds with
values of the target property into account (a-c) and the effects of the inclusion of values with
intermediate values of the target property (d-f). Whereas the consideration of only extreme values
results in a comparably high prediction error at in the center of the data distribution, which is usually
the most densely populated area, the additional consideration of intermediate values can clearly
improve the prediction quality.
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This contributes to the quality of the outcoming sample, as the selected
compounds are not located exclusively on the periphery of the data cloud in the
chemical space but also in the center. Fig. 14b) shows the resulting selection on the
same dataset as Fig. 14a). “[a]

1.4.2.1.2 Kennard-Stone algorithm

The Kennard-Stone algorithm74 selects compounds in a fixed order. Derived from
an initial selection, the compounds are chosen sequentially. From this initially
selected seed, each step in the selection process extends the collection of chosen
compounds by that one that has the highest Euclidean distance to its closest
neighbor within the previously selected ones.

1.4.2.1.3 Sphere exclusion

A further variation of the dissimilarity selection is the sphere exclusion
method.8%81 Similar to the Kennard-Stone algorithm, the sphere exclusion method
selects compounds in a fixed order. The selection starts with the compound with
the largest sum of Euclidean distances to all other compounds in the dataset.
Referring to a predefined sphere exclusion radius, all compounds that are closer to
the selected compound than this radius, are supposed to be represented by the
selected compound and they are removed from the list of selectable molecules. The
next compound to be selected is the one most distant from all previously selected
compounds. All compounds within the sphere exclusion radius are also removed
from the list of selectable compounds. This procedure is iteratively repeated until
the list of selectable compounds is empty. Contrary to the D-Optimal criterion and
the Kennard-Stone algorithm, the sphere exclusion method cannot select a
predefined number of compounds, as the underlying stop criterion depends on the
exclusion radius.

1.4.2.2 Similarity selections

The general assumption of the similarity selection approaches is diametrically
opposed to that of the dissimilarity selections. The basic idea is that QSAR works
on the similarity, not on dissimilarity of molecules.’%71 Therefore the most
informative and descriptive compounds within a dataset might be those with a
high similarity to a preferably high number of other compounds within the dataset
of interest. Similarity based approaches usually work in a sequential manner and
their mode of action is shown in Fig. 16. Starting with an instance in the center of a
densely populated area, which is represented by the highlighted dot in the top
right corner, they assign the compounds within a defined area around the selected
compound as represented and do not take them into consideration in all further
steps.

The advantage of similarity selection approaches is their comparably high

robustness against structurally diverse compounds in a dataset. These approaches
focus on the center of the data distribution, which minimizes the influence of
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structurally diverse compounds on the selection. Additionally, as these approaches
select compounds with a high structural similarity to a preferably high number of
other compounds, they converge fast and deliver reasonable predictions even with
a low number of selected compounds.
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Principal component 1
Figure 16. The selection mode of a similarity based approach. Compounds are selected in a stepwise
manner and compounds in densely populated areas are preferred.

Similarity based approaches are successful in detecting natural clusters within the
data distribution, but their selection approach is arbitrary if such clusters are
missing. Similarity approaches can hardly handle equally distributed or centric
data and furthermore, they reveal a bias towards disregarding the periphery of the
data clod. An additional disadvantage, which makes the application of such
approaches uncommon, is that most of them require an elaborate
parameterization.

1.4.2.2.1 MDC selection

“The most descriptive compound selection (MDC) aims to select compounds that
are located in the dense regions of the chemical space and therefore highly
representative of the other compounds of interest. The algorithm is based on the
pairwise distances of the compounds and the deduced information content for all
other compounds. The criterion hereby is to select the compounds with a low sum
of pairwise distances to other compounds, as these compounds are estimated to
provide the highest information content for all other compounds. The compounds
are selected sequentially, and after each new compound is selected, the
contribution of that compound is eliminated.”[b]

1.4.2.2.2 Other similarity based approaches
Apart from the MDC approach, there are other implementations that rank the

compounds’ representativeness by their pairwise structural similarity to all other
compounds, but as mentioned before, all these methods require expert knowledge
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for a proper parameterization. All these approaches result in selections
comparable to the one resulting from the MDC selection and are therefore not
discussed in detail, and will not be used within this thesis.

1.4.2.3 Partition based approaches

The last relevant group of selection approaches are those that aim to cover the
whole chemical space of interest, namely the partition based approaches. The full
(or fractional) factorial designl? and space filling designs®® are examples thereof.
Partition-based approaches attempt to select a sample that is representative for all
relevant compound, by separating the descriptor space into subspaces and finding
a representative compound for each of these subspaces.1? Fig. 17 exemplifies the
underlying idea to use a ‘grid’ to partition the two-dimensional chemical space into
subspaces of similar size.

One of the disadvantages all the partition based approaches suffer from, is that the
number of compounds to be selected cannot be fixed.!! The reason therefore is
that in general the molecules’ distribution in the chemical space is heterogeneous.
The resulting consequence are cells (or subspaces), which are unoccupied as, due
to the laws of chemistry, no compound with the required structural qualities
exists. Although the partition based approaches work well for equally distributed
datasets, they reveal problems with inhomogeneous data distributions.

An additional problem is that such approaches allow only the use of a very limited
number of dimensions to span the search space. This is due to an exponential
increase in the number of subspaces with each additional dimension which is
taken into consideration.**
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Figure 17. The basic idea behind partition based approaches. The chemical space is divided into
subspaces and from each subspace a representative compound is chosen.

The classical factorial designl® works with a binary representation of each
variable, which is used to describe the search space. Instead of a numerical value,
the compounds are assigned the labels ‘high’ or ‘low’ for each considered variable.
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For n relevant variables, this results in 2™ possible combinations. The full factorial
design aims to find one representative for each of these combinations plus the
most central point in the dataset as a respective calibration point.

The procedure for the fractional factorial design works in a similar manner, with
the difference being that only a fraction of all possible combinations is selected.
This is usually reached, by the precondition that all instances in the final selection
are required to differ in the label-values of at least two variables. Contrary, the
compounds in the final selection of the full factorial design have to vary in the label
of only one variable. This is equivalent to a 50% decrease in the number of
required measurements.

1.4.2.4 Selection of a design approach

All the aforementioned approaches revealed problems for certain preconditions. It
is therefore impossible to refer to one of these approaches as ‘the best’. Fig. 18
shows that apart from the shape of data distribution, several other parameters
have to be taken into consideration.
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Figure 18. The problem of finding the optimal experimental design approach. Each purple rectangle
represents a specific condition that is relevant in terms of the decision for a certain approach.

&

Kennard-Stone algorithm

Prior knowledge about (linear) correlations between the descriptor space and the
target property might suggest the D-Optimal criterion as the most reasonable
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choice, whereas a structurally unrestricted dataset might result in a preference of a
space filling design. Other parameters, such as the intended type of machine
learning algorithm to train the model, the dataset size or the endpoint of relevance
should have an influence on the final decision. Furthermore, the mentioned
parameters for the decision for a certain approach can be ambiguous, or result in
conflicting suggestions.

Still, the most relevant predicate for the evaluation of a selection approach is the
underlying data. With this in mind, the next chapters will exhaustively introduce
and discuss the datasets that were used for the evaluation of the results (presented
later in this thesis).

46



2 Materials

To validate the performance of the stepwise method, five regression datasets and
two classification datasets, were collected from the literature. All seven datasets
varied regarding the considered endpoint. These endpoints were selected with
respect to the REACH legislation and risk assessment in general. Amongst others,
the endpoints contained of a physicochemical property, an adsorption coefficient,
toxicity measurements against freshwater fish and a protozoa and protein
inhibition. Furthermore, to cover a broad spectrum of possible applications and to
better examine the performance of newly developed method, the sets collected
varied in several other criteria: size, modeling and measurement complexities.

“To assure consistency of the datasets and to avoid problems resulting from
different experimental methods, we applied several filters to all collected
measurements. As the measurements for toxicity are sensitive to laboratory
conditions and experimental procedures, we limited the data points within one
dataset to one source only. This means that the measurements had to be either
from only one lab, or they had to be taken from a previously reviewed
collection.”[a]

In order to avoid problems in descriptor calculation, we excluded inorganic
compounds, radicals, charged molecules, and salts from all collected datasets (both
for regression and for classification). Further, from all regression datasets we
removed compounds for which no exact values, rather an interval or only
minimum or maximum values, were given. All datasets were free of duplicate
compounds and only of them was structurally restricted thus the sets represent a
wide chemical diversity.

“For each dataset, a collection of two types of descriptors was calculated. The first
type was calculated using the ALOGPS 2.1 program® and contained two
descriptors: solubility and lipophilicity of molecules. ALOGPS was the top-ranked
model for prediction of logP.83 The second type included E-State indices848> These
are electrotopological descriptors calculated for each atom and each bond in a
compound and then summed according to their types over all atoms. The number
of descriptors for the second type is determined by number of different chemical
groups and thus it was not a fixed one.

The Online CHEmical database and Modeling environment (OCHEM)8¢ was used
for the calculation of the descriptors. To represent the chemical space of each
dataset the descriptors were normalized to a [0,1] range. The rational to use
normalization instead of standardization is that standardization works on the
underlying assumption that the objects are normally distributed. This assumption
is not true for descriptors determined for chemical groups, e.g., in particular for
the E-State indices. As they are linked to the presence of certain substructures, for
most compounds, their value is just zero.”[c]

In the following chapter, all seven datasets will be highlighted regarding their

endpoint and the underlying data source. Furthermore, to allow a more detailed
insight, we analyzed the datasets regarding their data distribution in chemical
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space and their eligibility in terms of QSAR modeling. Both examinations are of
high relevance, to correlate the performance retained from the following
experimental design to expectable results and to facilitate the applicability of
different selection approaches to certain data distributions and comprise the
limitations.

The distribution analysis was performed using PCA to extract the five dataset-
characteristics with the highest variance and therefore with the highest
descriptive power. The subsequent modeling of the data was realized in a five-fold
cross validation using the PLS technique. The descriptors used for both
multivariate techniques were the E-State indices, as well as ALog_PS descriptors.
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2.1 Regression datasets

In this chapter, we will introduce the datasets on regression endpoints that were
used for this study. The five regression datasets build the core entity for the
evaluation of selection approaches. Detailed statistical specifications, as well as
other characteristics are shown in Table 2.

Table 2. Comparison of the five regression datasets. The analysis takes into consideration general
characteristics, such as the measurement intricacy of the endpoint or the size of the dataset (shaded
green), as well as the chemical representation and distribution of the data (shaded orange) and the
results of the evaluation of the developed PLS models (shaded blue).

Boiling logKoc logBCF logLCso -log(1GCso)
Point

Endpoint Physico- Sorption | Biological Toxicity Toxicity

chemical coefficient
Measurement Low Medium High High Medium
uncertainty
Compounds 1198 648 238 535 1093
Structural Halogenated No No No No
restrictions
Minimum -85.7 0 -0.22 -7.92 -2.67
Maximum 378.9 7.05 5.97 -0.04 3.34
Standard 85.3 1.25 1.37 1.34 1.05
deviation
Descriptors 232 232 122 178 182
Distribution Dense, loose | Triangular, | Centered, | Consistently, | Clustered,

periphery | no outliers | scattered expanded few

outliers outliers

PLS latent 12 4 3 5 7
variables
Variance 41.7% 21.5% 27% 24.8% 37%
covered
RMSE 24.8942 0.4645 0.5899 0.6835 0.4635
Correlation 0.9569 0.9281 0.9028 0.8595 0.898
coefficient
Q2 0.9148 0.8615 0.8157 0.7383 0.8062

2.1.1Boiling point

The first dataset was collected for the boiling point (BP). The experimental
determination of this physicochemical property is straightforward and usually
without complications. Correspondingly, the metering precision is high. The only
experimental condition that has to be taken into consideration is the ambient
pressure.

Measurements for the same compounds, but gathered from different sources,

usually vary less than 0.5°C, and only in extreme cases more than 1.0°C. With this
in mind, the requirement to limit the data to measurements from only one
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laboratory, is needless and we decided to use data extracted from the EPI suite.8”

The EPI suite contains a collection of physicochemical measurements derived from
various sources.

As a consequence of the fast and comparably cheap testing procedure, literature
provides large amounts of measurement results, which is reflected in an amount of
more than 5.500 boiling point values for different compounds, contained in the EPI
suite. In order to decrease the number of considered compounds to a reasonable
size, and to enable also the examination of the selection approaches on structurally
restricted datasets, we kept only measurements on compounds, containing
bromine, chlorine and/or fluorine and disregarded all other measurements.
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Figure 19. The compound distribution for the boiling point dataset in PCA space. Dark red dots
represent compounds with a high boiling point, yellow dots represent those with a low boiling point.

The resulting collection contained 1198 measurements for halogenated
compounds, all of them obtained at 1.0 atm ambient pressure. As no further
structural filters were applied, and as halogenated compounds do not form a
homogeneous chemical class, this set still provided a broad diversity with regards
to the molecule size and chemical structures, which can also be seen in the
comparably wide range of contained boiling point values (450°C).

An analysis of the five most important principal components revealed that these
components encode for: 1) the compounds aromaticity; 2) fluorine substitutions;
3) polarity; 4) hydrophobicity; and 5) the bond saturation.

The data distribution is illustrated in Fig. 19. The x-axis displays the first principal

component, whereas the second principal component is displayed by the y-axis.
Each compound is represented by a dot and the colors of the dot display the value
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of the target property. Those compounds with high measured values are
highlighted in red and the compounds with low measured values are indicated in
yellow. The distribution shows a densely crowded center of the chemical space,
with three comparably crowded outgrowths around. The distribution on the
periphery beyond this center is loose. Only few compounds reveal a significant
discrimination towards the majority of compounds, hence no real outliers are
observable. Furthermore, a slight correlation to the target property can be
identified in the PCA distribution. The aromatic compounds (on the left in the
figure) are those with a higher BP, whereas the fluorine containing compounds
(top) are aligned with a low BP.
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Figure 20. Measured versus predicted values for the boiling point model [°C].

Furthermore, these five components covered 10% of the data variance that is
contained within the 232 used descriptors. Other important statistical values are:
e 35 components covered 50% of the data variance
e 87 components covered 80% of the data variance
* 129 components covered 95% of the data variance (56% of the used
descriptors)

This small coverage provides an indication how widespread the variability of
compounds within the dataset still is, despite the limitation of halogenated
molecules.

Fig. 20 shows the results of the PLS regression on the dataset. The x-axis displays
the measured values and the y-axis displays the predicted values and the grey
diagonal indicates the area of optimal predictions. It is obvious that the majority of
compounds are predicted with a high accuracy, which is emphasized by a Q2 >0.9.
The model exhibits a low prediction quality for only a few compounds. Particularly
for compounds with measured boiling point values from 20°C to 300°C; the
correlation between measured and predicted values is high, whereas the
predictions for compounds beyond those borders reveal a tendency towards
frazzling.
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Correlating to the high measurement precision, also the modeling of the endpoint
is relatively simple. Furthermore, the boiling point is one of the properties which
have undergone exhaustive research. This is reflected in the variety of available
global208889 and local models.?99192 Global models mainly depend on the
compound size and polar properties, but topological, topo-chemical and
geometrical variables in general were shown to improve global models.?3 With
local models, which are trained only on a certain class of compounds, the property
can be predicted to a precision up to 1-2°C. Although our boiling point dataset is
structurally restricted to halogenated compounds, it contains a variety of different
chemical and structural classes. The observation that the prediction accuracy in
our model is clearly lower (30°C) is a logical consequence.

2-1-2|08K0c

The endpoint of the second dataset is an adsorption coefficient, namely logKoc. The
dataset contained 648 measurements and it was based on the reviewed collection
of Meylan et al.?* Although logKoc is no REACH endpoint, it is of high importance
for risk assessment.?> logKoc is frequently referred to as a partition coefficient,
which is incorrect. In fact, it is a log-scaled adsorption coefficient, and it describes a
material's tendency to adsorb to soil particles.
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Figure 21. The compound distribution for the logKoc dataset in PCA space. Dark red dots represent
compounds with a high logKoc, yellow dots represent those with a low logKoc.

The properties, represented by the five most important principal components are:
1) the length of the skeletal backbone; 2) non-aromatic substitutions with
inorganic groups; 3) the compound size; 4) aromaticity; and 5) lipophilicity. Fig. 21
displays the distribution of the measurements referring to the first and second
principal components. The basic shape of the data cloud is triangular, which can be
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frequently observed for depictions that are dependent on a descriptor or
component, which represents the compound size or length.

A dense accumulation of high logKoc values can be observed for high values of the
first PC and intermediate values for the second PC, still in the same area there are
also numerous compounds with very low values for logKoc. In general the first two
PCs deliver a very unordered depiction which does not allow any conclusion about
the target property. Furthermore, the dataset contains no structural outliers.

Five components covered 14% of the data variance contained within the 232 used
descriptors. Further specifications regarding the variance are:
e 28 components covered 50% of the data variance
e 72 components covered 80% of the data variance
* 114 components covered 95% of the data variance (49% of the used
descriptors)

This indicates the widespread chemical diversity within this intermediate size
dataset.
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Figure 22. Measured versus predicted values for the logKoc model [log unit].
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Fig. 22 displays the model predictions for the logKoc dataset. The legend is the
same as for Fig. 20. As the measurement intricacy is low (although not comparable
to that of the boiling point) the related model provides the second highest Q2 value.
Additionally, the number of latent variables used for the PLS model is low. This is
reasonable, as the soil organic carbon-water partitioning coefficient is known to
mostly depend on the lipohilicity of a compound.?6.97.98,99

Regarding the distribution of property values, the dataset consists of measured
logKOC values with a range of more than 7 log units, but the majority of
compounds exhibits values within a range from 1.3 - 4.5. Especially in areas with
high logKoc values, the predictions reveal a bias towards an underestimation.
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2.1.3logBCF

“The endpoint of the smallest of the datasets was the log-scaled bio-concentration
factor (logBCF) in fish. The set contained 238 different compounds and was taken
from a study done by Gramatica et al.l% The authors originally split the
measurements into a training set of 179 compounds and a validation set of 59
compounds. These datasets are freely accessible in the QMRF database of the
European commission,101 as well as in the On-line CHEmical database and
modeling environment (OCHEM).8¢ The dataset, as we used it in our study, was
merged from the original split.”[e] The underlying measurements were primarily
collected by Lu et al.192 and subject to other publications as well.103
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Figure 23. The compound distribution for the logBCF dataset in PCA space. Dark red dots represent
compounds with a high bioconcentration factor, yellow dots represent those with a low one.

Although the examination of the bioconcentration factor has been conducted since
the late 70s,104105106 the research on this endpoint gained importance with the
upcoming REACH regulation.107.108109 The bioconcentration factor gives an
overview of how intensively a compound is accumulated in an organism. It
depends on numerous experimental conditions, such as the temperature, the time
of exposure, the lipid content of the considered tissue, or the test duration, and
experimental testing is expensive. The conditions within the used measurement
collection were not consistent, but varied for example regarding the fish species.
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Within all datasets used in this study, the one on logBCF is the smallest. It mainly
consists of typical environmental contaminants, which originates from agricultural
and industrial use. The dataset contains halogenated benzenes, phthalates, anilines
and biphenyls amongst others.

The first five principal components encoded were the: 1) size of the organic
backbone; 2) degree of branching; 3) aromaticity; 4) lipophilicity; and 5) content of
Nitrogen, Sulfur or Phosphor. The effect of the backbone length in a PCA depiction,
as mentioned in the previous chapter, is reflected in the compound distribution
(Fig. 23). The triangular shape, as it is observable for the logKoc dataset, is
appearing for logBCF as well. Furthermore, the majority of compounds are located
in a very narrow subspace of the chemical space with the remaining compounds
sparsely located as outliers in the periphery.

Several widespread compounds surround a dense cluster of small molecules (x-
axis) with an intermediate degree of branching (y-axis). The dots located on the
bottom of the left side encode for larger molecules with a sequential backbone,
whereas those located on the top encode for larger, branched molecules. The
triangular shape is most likely resulting from the preprocessing of the dataset in
terms of model building. Additionally, the disordered agglomeration of the
majority of compounds indicates that the principal components provide only
limited information about the target property.
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Figure 24. Measured versus predicted values for the logBCF model [log unit].

The first five components covered 28% of the data variance, which is the highest
coverage within the datasets used in this study. Furthermore:
* 11 components covered 50% of the data variance
e 25 components covered 80% of the data variance
* 41 components covered 95% of the data variance (34% of the used
descriptors)

The performance of the PLS regression shows good results, which was expected, as

the dataset was used for a published linear model. Furthermore, the prediction
accuracy works equally well for the whole range of considered logBCF values,
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which are shown in Fig. 24. A closer look at this figure reveals that the values of the
target property are equally distributed over the whole range. This gives an
indication that the dataset was undergoing a pre-filtering of compounds. The

dispersion of the values of the target property usually follows a normal
distribution.

The cross validation performance of Q2 > 0.8 is remarkable as only three latent
variables are used for the underlying model. This results from two specifications of
the data collection: Firstly the dataset is comparably small, so that only few
dependencies can be extracted with statistic reliability; and secondly, which is of
even greater importance, the logBCF is mainly correlated with hydrophobicity.

214|ogLC50

“The endpoint for the first toxicity dataset was the log scaled aquatic LCso value on
the fathead minnow. The measurements were taken from the fathead minnow
acute toxicity databasel10 of the Environment Protection Agency (EPA).”[c]

“As the measurements for toxicity are sensitive to laboratory conditions and
experimental procedures, we limited the data points within the dataset to this
source only.”[b] No structural filters were applied to the collected compounds,
implying the dataset contains a widespread structural diversity. All measurements
we used in this dataset were produced with test durations of 96 hours.
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Figure 25. The compound distribution for the logLCso dataset in PCA space. Yellow dots represent
compounds with a high level of toxicity, red dots represent those with a low one.

“The log-scaled lethal concentration against fish is one of the key properties
towards aquatic risk assessment and the aquatic toxicity against the fathead
minnow as a model organism has been subject to numerous
studies111112113114115116 gnd published models.117.118119,120 The fathead minnow
has been reported as a good model organism by Ankley and Villeneuve,121
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coherently, the variety of models to predict the toxicity against this species
available in literature is large. A frequently used source for these models is the
EPA’s fathead minnow database.ll© Measurements of this database are also the
informational basis for several QSARs in the JRC’s QMRF database.101

Most of the available models work on data collections ranging from approximately
70 to 550 compounds. Their complexity covers a wide range, from a twelve-
descriptor model derived with an artificial neural network, developed by the JRC,
to a one-descriptor model relying exclusively on logP, developed by Pavan et
al.”[d]
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Figure 26. Measured versus predicted values for the logLCso model [log(mole/L)].
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The measurements on this endpoint are characterized by a high variance and
uncertainty. This is a consequence of multiple factors: 1) the estimation of the
precise concentration that was reached when the fish died is difficult; 2) the
endpoint is sensitive to laboratory conditions, in spite of keeping the same
measurement protocol; 3) the resistance against a certain toxic compound can
vary for more than two log units between two individuals of the same species.
With respect to this, the modeling usually concentrates on basic properties, such as
molecular weight, chemical groups of known toxic effects and lipophilicity.

An analysis of the five most important principal components revealed that these
components encode for: 1) the backbone length; 2) the number of benzene rings;
3) the compound saturation; 4) the atom count; and 5) sulfonic substitutions. The
resulting data distribution is shown in Fig. 25. Almost the whole chemical space
spanned by the first two principal components is populated. The backbone length
shows no influence on the endpoint, but a tendency towards higher toxicity for
compounds with benzene rings is observable.

Five components covered 15% of the data variance, and:
* 24 components covered 50% of the data variance
* 60 components covered 80% of the data variance
* 92 components covered 95% of the data variance (52% of the used
descriptors)
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Regarding the Q2 from the cross-validation, the performance of the logLCso model
(Fig. 26) shows the worst performance of all regression models. This is expected,
due to the measurement uncertainty and as logLCso is an unspecific endpoint,
which is dependent on numerous modes of action. In areas of low toxicity (high
logLCso values) the prediction is quite precise, whereas the number of compounds
with high prediction error increases for highly toxic compounds.

2.1.5-|ogIGC50

“The last regression dataset contained 1093 measurements of toxicity against T.
pyriformis. The endpoint was the negative, log-scaled inhibition of growth
concentration (-loglGCso). All measurements in this dataset were taken from our
previous study!?2 and originated from Tetratox database!?3 and several studies of
Schulz et al.124125126 The fact that all these measurements were obtained by the
same laboratory ensured consistency and helped to avoid problems resulting from
different experimental procedures or laboratory conditions.”[e]
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Figure 27. The compound distribution for the -loglGCso dataset in PCA space. Red dots represent
compounds with a high level of toxicity, yellow dots represent those with a low one.
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The dataset was subjected to the CADASTER toxicity prediction challenge2” with
more than 100 contributions from 90 participants all over the world. Further
worth mentioning, a prediction model submitted by Fabian Buchwald and Stefan
Brandmaier reached the seventh best performance and is listed within the first
pass winners of the challenge. Although -loglGCso is an in-vivo toxicity
measurement, such as logL.Cso, the measurement uncertainty is clearly lower.
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Figure 28. Measured versus predicted values for the -loglGCso model [-log(mmol/L)].

The PCA resulted in the finding that the five most important principal components
encode for: 1) the chain length; 2) heterogeneity in the skeletal chain; 3) oxygen
content; 4) the substitutions with nitro groups; and 5) the content of amino
groups. The distribution of the dataset referring to the first two components is
shown in Fig. 27.

The first observation from this depiction is that the compounds are arranged in
three layers lying upon one another. The lowermost layer is a large cluster,
containing the majority of compounds. These compounds in this cluster are those
with a distinct heterogeneity in the skeletal backbone, whereas the loose and
clearly smaller cluster above consists of a backbone containing not only carbon.
Finally, the two outliers on the top of the data distribution are highly
heterogeneous regarding their skeletal backbone. The second observation is a non-
linear gradient in the lowermost layer regarding the value of target property. The
arrangement is circular with low -loglGC50 measurements in the center of the
cluster and increasing values towards the periphery.

The five most important components covered 15% of the data variance and:
e 26 components covered 50% of the data variance
* 67 components covered 80% of the data variance
* 99 components covered 95% of the data variance (54% of the used
descriptors)

Fig. 28 shows the measured values on the x-axis and the predicted values, derived

in a cross validation on the y-axis. Although the observed Q? is lower than the one
for the boiling point dataset, the logKoc dataset and even the logBCF dataset, the
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model performance is decent, with most compounds predicted well, but some
clearly under predicted molecules for high -loglGCso values.
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2.2 Classification datasets

As the requirements for a meaningful sample of a classification dataset are most
likely to be not identical to those for a regression set, we decided to evaluate the
experimental design approaches also on binary classification datasets. The
endpoints we use in this thesis consist of an in-vivo test for mutagenicity test and
the in-vitro inhibition of an enzyme. Detailed information is given in Table 3.

Table 3. Comparison of the two classification datasets. The analysis is similar to the one presented on
the regression sets, but the statistical parameters to evaluate the prediction models are adapted to the
needs of classification problems.

AMES CYP inhibition

Endpoint Mutagenicity Protein inhibition
Measurement Medium Medium
uncertainty
Compounds 4359 7481
Structural No No
restrictions
Active/Inactive 2343/2016 3465/4016
Ratio 1.16 0.863
Descriptors 364 428
Distribution Scattered, multiple Centered loose

outliers periphery
PLS latent 7 8
variables
Variance 27.4% 35.3%
covered
Accuracy 0.7857 0.8245
Balanced 0.7855 0.8248
accuracy
F-Measure 0.7983 0.8137

Still, as the REACH legislation mostly requires information on continuous
endpoints and as this thesis therefore focuses on regression datasets, the analysis
of the classification datasets will not be as exhaustive. Hereby it is also important
to keep in consideration that classification assignments in computational
chemistry modeling are mostly derived by the discretization of continuous values.

2.2.1AMES mutagenicity

The AMES test, as it was applied to produce the measurements used in this study,
detects the mutagenic effect of a small chemical compound to a histidine-
dependent strain of Salmonella typhimurium, which is a gram-negative bacteria.
The exposure to a mutagen is expected to restore the original ability to synthesize
histidine. Such a mutagenic effect would be observable in a growth of bacterial
colonies on a medium deficient in histidine. The measurable mutagenic ability of a
compound provides an indication about its potential carcinogenicity.128
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The dataset we use contained 4359 compounds, whereby 2343 of them were
determined to be active, 2016 to be inactive. This dataset was derived from a
bigger dataset described in one of our previous studies.’?® The compounds we
used in this study have been limited to those used in the training set of Sushko et
al.’s study on the applicability domain of classification models.130
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Figure 29. The compound distribution for the AMES dataset. The red dots represent compounds with
mutagenic ability, whereas the blue dots represent all other compounds.

The distribution of the compounds in the dataset is shown in Fig. 29. The two axes
represent the two main principle components and each dot represents a
compound. The colors of the dots discriminate mutagenic active (red) from
inactive (blue) compounds. For both classes the majority of compounds are located
in a very narrow subspace of the chemical space. The two principle components
with the highest variance seem inappropriate for the differentiation of the two
classes. Beyond the center of data cloud, there is a small partition of sparsely

distributed compounds, which also do not show any correlations to the principal
components.

Similar to the regression datasets, the method to build a classification model for
the AMES dataset was PLS. The cross validation statistics showed an accuracy
value as well as a balanced accuracy of 79%. The results are illustrated in Fig. 30.
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The color of the dots corresponds to the measured class, whereas the color of the
background corresponds to the predicted class. The majority of active, as well as of
inactive compounds, is predicted correctly. The number of false negatives (red
dots on blue background) and false positives (blue dots on red background) is
minor.

Measured active Measured inactive

Predicted active

Predicted inactive

Figure 30. Results of the classification model for the AMES dataset. The background color refers to the
predicted class, the dot color to the measured class. Each dot represents a compound in the dataset.
The majority of compounds are predicted correctly.

2.2.2Cytochrome P450 inhibition

“The second classification set we collected contained 7481 measurements of
human cytochrome 1A2 inhibition activity of small molecules, which were taken
from the bioassay AID410 in the PubChem database. The assay was deposited in
October 2007 and the dataset was used in a previous study on comparative
modeling of cytochrome inhibition.131 The original dataset obtained from this
bioassay contained 8348 compounds.”[e]

“Compounds that were labeled ‘inconclusive’ were excluded from the dataset.
Further, if the same molecule was present in both the ‘active’ and the ‘inactive’ set,
it was removed from all sets. The final distribution of the remaining 7481
compounds was almost balanced, as 4016 were labeled ’active’ and 3465
‘inactive’.“[e]

The distribution of the majority of compounds is more widespread, compared to
the distribution of the compounds in the AMES dataset. Furthermore the
structurally diverse compounds beyond the center of distribution are actively
measured active in a large part. Although the graphical representation, shown in
Fig. 31, indicates a slight shift of inactive compounds towards lower values of the
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first principal components, the majority of compounds within the two classes are
overlapping.
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Figure 31. The compound distribution for the CYP inhibition dataset. The red dots represent inhibiting
compounds, whereas the blue dots represent non-inhibiting compounds.

The classification results (shown in Fig. 32) derived on the CYP inhibition set are
comparable to those derived on the AMES dataset. The statistical parameters for
accuracy and balanced accuracy are increased by three percent.

Measured active Measured inactive

Predicted active

Predicted inactive

Figure 32. Results of the classification model for the CYP inhibition dataset. The background color
refers to the predicted class, the dot color to the measured class. Each dot represents a compound in
the dataset. The majority of compounds are predicted correctly.
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2.3 Structural outliers

“One of the aims of this study was to investigate the influence of structurally
diverse compounds on the selection and accuracy of the resulting models.
Therefore each of the three datasets was extended by the inclusion of a compound,
which was characterized as a structural disrupter. We defined a structural
disrupter as a data point that (a) influences the recalculated loadings of the first or
the second principal component in such a manner that the principal properties
represented by these components are changed and (b) results in one or more
instances in the data set that are - according to the distribution of the instances in
that principal component - at least five standard deviations from 97% of all other
compounds.
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Figure 33. The change in the principal components view due to one structural outlier in the dataset.
The principal components were calculated for the dataset with (b, ¢) and without (a) structural outlier.
ALOGPS and E-State indices were used(a, b), as well as DRAGON descriptors (c). The protocol to
calculate the principal components was always the same. [c]

Structural outliers like the ones used in this study are not artificial, but can result
from several reasons, e.g. (a) from few compounds within the dataset, which have
a specific chemical group that is different from other compounds and functionally
is not relevant, (b) from the choice of a specific descriptor set, or (c) from a certain
procedure within the multivariate analysis (centering or not the data, usage of raw,
normalized or standardized data).

The structural outliers in our study were (a) ethyl 2-chloro-3-[2-chloro-5-[4-
(difluoromethyl)-3-methyl-5-0x0-1,2,4-triazol-1-yl]-4-fluorophenyl]propanoate
(carfentrazone-ethyl) for the boiling point dataset, (b) (1R,4aR,4bS,7S,10aR)-7-
ethenyl-1,4a,7-trimethyl-3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-
carboxylic acid (isopimaric acid) for the logLCso dataset and (c) (1,2-dimethyl-3,5-
diphenyl-pyrazol-1-yl) methyl sulfate for the logKoc dataset. All these three
compounds were retrieved from the same source as the rest of the respective
dataset. Fig. 33a shows the first two principal components of the boiling point
dataset without outliers whereas Fig. 33b shows the first principal components of
the same dataset with the structural disruptor. The structural disrupter has a red
color. The principal components were derived from the whole set of normalized
ALOGPS descriptors and E-State indices and thus no variable selection was
performed. Furthermore, the data were not centered before the orthogonal
transformation.
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0.47

Figure 34. The structural outlier and similar compounds in the dataset. The most significant unique
structural feature of the outlier is a triazole group. [c]

To show how the concerted outlier for boiling point structurally fits into the
dataset, we calculated its Tanimoto distance to all other compounds. ISIDA
fragments3! were used therefore. Fig. 34 shows the outlier in the center and the
four most similar compounds around. The value assigned to the edges indicates
the similarity score. It is obvious that the outlier is a larger molecule and contains a
triazole group, which is absent in other compounds. Such types of outliers could
naturally happen to be present in the datasets. The appearance of such outliers
depends on the used descriptors. Fig. 33c shows, if DRAGON descriptors32 are
used, this compound is not anymore an outlier (although it is located at the
periphery of the data cloud). Indeed, Dragon software calculates many more
descriptors and in their space the analyzed molecule does not have descriptors,
which make it to be the outlying point in the PCA space. Thus, a property of a
molecule to be a structural outlier depends on the used set of descriptors, i.e. on
the representation of the molecule.”[c]
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3 Methods

The first part of this chapter is intended to enable an estimation of the applicability
of QSAR in terms of model building with respect to the REACH regulation and to
deepen the ability to assess the peculiarities and pitfalls attached to statistical
modeling in general and to computational chemistry in particular. A critical
discussion about the current status of and conflicts within QSAR modeling is
followed by a case study, in which I step wisely demonstrate the line of action that
is required to build a valid QSAR model, which is reliable in terms of its predictive
ability and explanatory in terms of the underlying mechanistic.

The subsequent parts of this chapter provide an overview about the techniques
that are examined regarding their contribution to experimental design. Starting
with a short overview of established methods that were implemented for this
thesis and special customizations and parameterizations they have been subject to,
[ proceed with a detailed description of the conceptual innovations, this work
focuses on.

Different to the approaches presented in the introduction of this thesis, all
following methods were newly developed for experimental design in QSAR
modeling. Furthermore, apart from a detailed description of all methods, a deeper
insight into the underlying ideas of the newly developed concepts is given. I will
explain the principle of stepwise, adaptive approaches and the expected effects on
the resulting selection and I will outline the idea of a cluster based experimental
design.

Finally, the last section of this chapter describes the validation procedure we

adapted to enable a representative, statistically valid estimation of the
performance derived with the used approaches.
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3.1 QSAR modeling with respect to the REACH legislation

This chapter is intended to discuss the difficulties attached to statistical modeling
in general and the proposed solutions referring to QSAR modeling in particular. A
reliable estimation of the benefits of an approach requires information about the
respective limitations and peculiarities as well. As a matter of fact, the predictions
of a statistical model on large amounts of data work well to provide a
representative overview of the general predictive ability of the model, but still the
quality and reliability of predictions for single instances may vary to a large extent.

It is therefore of crucial importance to carve out the process of model development
with all required steps, such as the collection of sound data, the identification and
analysis of observable correlations, the validation procedure, the definition of an
applicability domain and the identification of resulting benefits, when compared to
prior knowledge referring to the same question.

3.1.1Constraints in QSAR modeling

Although efforts to correlate molecule structures with chemical properties are
carried out since more than 100 years, QSAR and computational chemistry are
scientific disciplines with a disunity regarding general questions. Furthermore to
enable a proper evaluation of the discussed methods, it is of concern to be aware of
these issues. Statistical approaches to prioritize chemical compounds are well
established in the field of pharmaceutical research, but they are critically eyeballed
in for regulatory purposes. Partially this is based on the fact that statistical
methods are prone to systematic errors. It is therefore required to highlight these
errors.

3.1.1.1 Area of conflicts

Referring to several basic questions there are opposed directions in research
within the scientific community. The most relevant of these questions will be
briefly introduced in the following paragraphs.

31.1.1.1 Interpretability versus performance

One of the most frequently discussed issues in QSAR and computational chemistry
is whether the crucial requirement towards a computational model is its predictive
ability or its descriptive character. Whereas statistical scientists tend to prefer the
version of a reliable statistical tool with the major task to predict well, chemists
tend to distrust models without an explicative mechanistic interpretation.

Naturally both qualities are of high concern and the optimal model should deliver
the best possible predictions lined with a proper chemical reasoning of the
observed effects. But such models are exceptional. In most instances modeling
approaches, which are of a higher complexity, result in a higher predictive
accuracy. But modeling methods of higher complexity, such as for example an SVM
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with a non-linear kernel, or neural networks elude from a simple and
straightforward interpretation, as the resulting regression formula usually does
not allow a simple weighting of the contribution of different descriptors.

Whereas linear regression approaches enable a simple access to the underlying
mechanistic principles, the predictive performance of resulting models is often not
optimal. Nature is more complex and in particular biological properties often
cannot be expressed with only three or four variables, as they are preferred in
linear models. To compensate for this, the models are often trained to match
available observations, which results in good predictions on the training set and a
decrease in statistical reliability.

On the contrary, machine-learning approaches of higher complexity and with
comparably better predictive performance, such as SVMs or ASNNs deliver mostly
blackbox models, which prevent an interpretation. They produce either
incomprehensible, highly complex equations or none at all.

3.1.1.1.2 Local versus global models

A further critical issue is the question whether to prefer the development of global
models, which are trained on a variety of chemical classes and intended to deliver
reliable predictions for widespread areas of the chemical space, or to rely on local
models, which are restricted to a comparably narrow sector of the chemical space.

On the one hand, every constraint to the use of available data increases the risk to
rely on chance correlations, on the other hand, due to a lack of experimental data,
the calculation of a statistically significance is often impossible. In most cases
chemical dependencies can be linearly approximated, at least on a local model.
Especially for a constricted variation in the underlying structures the convergence
is sufficient, which supports the use of local models in terms of the interpretability.
But these models often lose track of the global context. Nevertheless, a study by
Puzyn et al.l33 on aquatic solubility resulted in the conclusion that the
improvement reached with local models is negligible small and statistically not
significant.

3.1.1.1.3 Statistical modeling in general

The arising question, why not to switch from a statistical modeling approach with
a subsequent mechanistic interpretation to a direct mechanistic modeling, can be
answered by the complexity of the chemical space. Contrary to many biological
macromolecules, such as amino acids or DNA, small chemical compounds are not
sequential, but branched. Therefore the structural variability is clearly higher so
that neither current methodologies, nor the available experimental data enable the
application of such approaches.

Furthermore, the urgent problem to identify persistent organic pollutants (POPs)

and curtail their dispersion requires efficient solutions.134 Pesticides are detectable
in human milk,135136 per- and polyfluorinated compounds are highly
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persistent137.138 and their presence can be observed all over the Atlantic Ocean.13?
The in-utero exposure to low concentrations of polybrominated diphenyl ethers
have been shown to cause severe effects on motor activity and male fertility.140
The precocious recognition of the dispersion, persistence and toxicity of such
compounds is highly important.

To address the problem of individual unreliable predictions, numerous studies
focus on the question, how to distinguish reliable predictions from those, which
are unreliable.141.142143,144 This problem is generally referred to as the definition of
an applicability domain.

The suggested approaches to estimate the domain of applicability, or in other
words, if a model provides a reliable prediction for a certain compounds, are of
different assumptions. There are similarity based approaches,14>146 as well as
prediction based ones,3%.147 but as a general rule of thumb, the more a compound
differs to the molecules the model was trained on, the higher is the uncertainty in
prediction.148

3.1.1.2 Regulatory restrictions

To bring these areas of conflict to a balanced consensus and to establish general
guidelines for model development, the member countries of the Organisation for
Economic Co-operation and Development (OECD) released a list of five principles
for QSAR modeling. These principles are referred to as the ‘OECD’ principles.14°

3.1.1.2.1 OECD principles and QMRF

The main motivation behind the OECD principles is to ensure a basic quality
standard for predictive models, which are intended to support regulatory
purposes. The defined requirements are:

a defined endpoint

an unambiguous algorithm

a defined domain of applicability

appropriate measures of goodness-of-fit, robustness and predictivity
a mechanistic interpretation, if possible

SRR M

To help scientist to respect these principles and to simplify the evaluation QSAR
models in terms of regulatory purposes, the QSAR modeling report format (QMRF)
was established. The QMRF is xml based and enforces information about used
descriptors, the underlying selection process, a model equation, the description of
a validation set, as well as the conformation to a predefined validation protocol.

All this required information should furthermore contribute to enable a fast and
simple reproduction of QSAR models. However, the increased use of 3D
descriptors in recent years has shown a new difficulty arose, regarding the model
transparency. The structural optimization of molecules is in general not
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deterministic, so that also the descriptor values resulting from these optimized
structures vary.

Further issues arising from the five principles are, e.g. the question if a defined
endpoint can comprise more than one species, or if the validation of a model
requires an external test set. Although the OECD principles do not state a
specification for acceptable or not acceptable machine learning algorithms, for the
most part, models that are used in the practical regulatory work are linear, limited
to one specific species and validated on an external test set.

3.1.1.2.2 Consequences

The studies presented in this thesis were initiated within and financed by the
CADASTER project. CADASTER aims to provide a risk assessment framework that
is exemplary within REACH.

With respect to this, we only use linear models (PLS). PLS models enable
interpretability, which is not directly derivable from descriptors, but principal
properties. Furthermore, with respect to the complexity of the biological
endpoints, relevant for REACH, robust modeling approaches seem favorable. It has
to be taken into consideration, that the measurements of most biological endpoints
are derived with in-vivo experiments, which causes a high uncertainty.
Furthermore, properties, such as the lethal concentration are unspecific. The
underlying mechanism, why a certain compound is toxic can be versatile.
Hundreds, if not thousands of modes of action are possible.

3.1.1.3 Pitfalls in QSAR modeling

Finally a critical look on QSAR additionally requires the consideration of pitfalls
attached to any kind of statistical modeling.1>® Numerous published models lack of
statistical reliability or of an established explanation of the underlying modes of
action. Although we are aware of examples for each of the following pitfalls, for
obvious reasons, we disclaim references in this paragraph.

3.1.1.3.1 Overfitting

The most frequent problem in statistical modeling is overfitting. A model, which is
mainly trained to fit the underlying measurements, but without predictive ability
for new instances is referred to as overfitted. The sources of overfitting can be
numerous.

* Descriptor selection on the whole dataset

The statistically questionable modus operandi, which is most frequently not
even recognized as a severe source of error, is an improper validation
procedure for the descriptor selection. A supervised descriptor selection is
often interpreted as a part of the preprocessing of the data. Actually, it is a step
within the modeling procedure. Therefore it is inappropriate to use the
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validation results, retained within the optimization process as a reference for
the goodness of fit. An independent external validation or a double cross
validation has to be performed.

* Use of too many descriptors

The variety of available descriptors is huge. The DRAGON 6.0 descriptor
package offers a selection of almost 5.000 variables to describe a chemical
compound. Furthermore, packages, such as ISIDA, which are mining the
compounds for available substructures can easily exceed the number of 10.000
variables, depending on the concerned length of the substructures, even for
small datasets. The smaller the dataset is and the larger the number of
available descriptors is, the more likely it is to find a correlation that is just
caused by chance. Although several established criteria, such as the Akaike
information criterion,151152  the Bayesian information criterion,>3 or the
Hannan-Quinn information criterion!’>* can help to prevent from using an
exceeding number of variables, there is no guarantee that the correlation of a
certain variables to the target property is mechanistically reasoned or just the
side effect of a non representative or too small sample of the chemical space.

* Measurement uncertainty is not taken into consideration

Especially in case of biological endpoints, with measurements derived from in-
vivo experiments, the measurement uncertainty has to be taken into
consideration. For example measurements on bioaccumulation, for the same
compound and for the same species in average vary at least one log unit.
Furthermore, variations by two log units are frequent. Therefore, a model
predicting bioaccumulation with a reported average error of 0.5 log units is
most likely trained too much to match the available observations.

3.1.1.3.2 Nonsense interpretations

Apart from statistically unreliable models, even for properly validated models the
interpretation in terms of underlying mechanisms is a frequent source of errors or
sloppiness. To be sure, model analyses lacking from a well-founded interpretation
do not influence the quality of the underlying prediction approach or the model
itself. Still, they might cause systematical error in the generation process of new
models as such interpretations might be used to define a precondition for a
descriptor selection.

* Correlation is not causality
The most common error in the interpretation of statistical models is the
confusion of correlation and causality. A simple example for such a kind of
nonsense interpretation is the development of the mosquito population around
Finnish lakes. Whereas the number of mosquitos drastically increases from
June to September, their number drops to zero from December to February.
The same development is observable for tourists visiting the Finnish lakes.

This is a correlation, but not a dependency. The idea to increase the
appearance of tourist by importing mosquitos is therefore not too promising.
Neither do the tourists visit the lakes because of the mosquitos, nor do the
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mosquitos come to watch the tourists. The underlying reason is the weather, or
more precisely, the temperature.

* Face-value interpretations

Another way to shoot a serious interpretation down, is accepting descriptors at
face value, without questioning the principle property they represent. If a
model for the boiling point of organic compounds mostly relies on a descriptor,
which displays the number of carbon atoms in a compound, the effective
reference to the concerned endpoint is not the one to the descriptor itself. The
descriptor represents a latent variable, which is most likely to be the molecule
size. Such over-interpretations could be easily identified by an analysis of
further descriptors with a comparable correlation to the target property and a
high correlation to the used descriptor.

3.1.1.33 Intentional cheating

Finally, apart from the impure use of statistical methods, published QSAR models
may lack of trustworthiness, as they use oblique procedures to ‘prettify’ the
statistical results derived with a certain model.

* Dataset pruning

A frequently observable habit is the exclusion of available data. The usual
practice is to extract i.e. 50 compounds of a certain chemical class from a
dataset, whereas the underlying dataset provides 65 of such chemicals. The
disregarded 15 compounds are not even mentioned in the publication, but the
application of the model to those compounds reveals, that the observed
correlation does not fit to those compounds.

To be sure, the exclusion of available measurements from a dataset is not
axiomatically wrong. But there should be good reasons for disregarding
individual compounds and. Such reasons might be a high structural diversity to
all other compounds within a dataset or a highly deviant molecular weight.
Furthermore, putatively erroneous measurements have to be disregarded
within the modeling process, but the reasoning to exclude a compound from a
dataset should not be that the compound did not fit into the model.

* Biased splits between validation set and test set

Another way to manipulate statistical values is to use a non-representative
split between a training and validation set. By a directed selection of only well
fitted compounds for the test set, the statistics derived from the external
validation appear better than they really are. A way to detect such biased splits
is by a repeated random splitting of the whole underlying data and to
recalculate the statistics to get a representative overview about expectable
statistics.
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3.1.2Modeling aquatic toxicity

In order to constitute and critically assess the facilities and restrictions connected
to statistical methods and in order to exemplify the application of techniques to
implement the requirements of REACH and the OECD principles, I will present a
feasible procedure for the development of QSAR models with a demonstration of
all required steps.

The following case study presents “an easily interpretable mechanistic and
generalized model for aquatic toxicity against fish, which is not limited to only one
species. We collected 1358 measurements in total for LCso against different fish,
e.g. Pimephales promelas, Oncorhynchus mykiss, Danio rerio and others from a
broad literature research.

We calculated a collection of 7595 descriptors for the underlying compounds and
applied a genetic algorithm to select a fixed number of three descriptors. Those
descriptors were subject to a linear regression to derive a model, which is
explaining aquatic toxicity as a combination of hydrophobicity, mass
autocorrelation and the presence of alkyl or cyanide groups.

We compared the performance of our model to the results derived with more
complex approaches on the same dataset and show that the three-descriptor
solution, we propose, is sufficiently good. Further, to assess the performance of our
model in terms of regulatory purposes, we compared it to the quantitative read-
across model published by Schiilirmann et al.1>5”[d]

3.1.2.1 Data collection

“From a literature review on numerous publications,110.114156,157 gnline databases
such as the PPDB158 and the JRCs QMRF databasel®® we collected 2391 toxicity
measurements in total on several species of fish. The endpoint of all these
measurements was the lethal concentration for 50% of the population and the test
duration was 96 hours. We excluded measurements on inorganic compounds,
radicals, charged molecules and removed compounds for which no exact values,
rather an interval or only minimum or maximum values, were given. Additionally,
all measurements from the PPDB, which were assigned with the quality code ‘1’
(lowest rating), were refused. All remaining measured values were then
transformed to log-scaled concentration values (mole/L).

In the next step, we used the Chemaxon standardizer to standardize and neutralize
the remaining compounds, as well as to remove salts. The Hamiltonian AM1
algorithm,!>° implemented in MOPAC 7.132 was used to structurally optimize the
compounds. The ration to choose the AM1 algorithm for optimization was that the
derived atomic charges and LUMO energies were found to correlate well with
several properties.1®0 Measurements on compounds for which the structural
optimization or the following descriptor calculation failed were excluded.
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Finally, to manage duplicate measurements on the same compounds, we
implemented a strict decision pipeline. It allowed to better understand, which
measurements should be retained and which ones to be discarded. We ranked the
priority of a measurement thereby as follows:

1.

2.
3.
4

Measurements from the fathead minnow database
Measurements on the fathead minnow
Measurements from the PPDB

Other measurements

Species

Salmonidae
Rasbora heteromorpha
Poecilia reticulata
gther .

ryzias latipes

Lepomis macrochirus

Danio rerio

Oncorhynchus mykiss Cyprinidae

Sources

EPA

PPDB QC5

PPDB QC4
Others

PPDB QC3 PPDB QC2

Figure 35. Data sources and species in the resulting dataset. Regarding the underlying species, half of
the measurements were derived on the fathead minnow and one third on the rainbow trout.

If the pool of duplicates consisted of several measurements with the same priority,
the decision was as follows: if three or more measurements on the same
compound were available, we decided for the median; if only two duplicates were
available and if their values did not differ by more than log one unit, one of the
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measurements was arbitrarily refused; in all other cases, both measurements were
removed from the set.

After all these filtering steps, we retrieved a dataset containing 1358
measurements for unique compounds. Approximately half of these measurements
(660) were taken on Pimephales promelas, one third on Oncorhynchus mykiss (450)
and the rest on different species (Danio rerio, Poecilia reticulata, Cyprinidae,
Percoidei, etc.). Regarding the source of data, most values were taken from the
PPDB (617) and from the fathead minnow toxicity database (553). The remaining
compounds were collected from a variety of publications and QMRFs. Fig. 35
visualizes these distributions. ”[d]

3.1.2.2 Descriptors selection

“For the storage, management, organization and filtering of the measurements as
well as the calculation of an initial pool of descriptors to work with, we used the
Online CHEmical database and Modeling environment (OCHEM).8¢ Following sets
of descriptors were calculated for all the compounds:

* ALogPS8?

* [SIDA fragments3!

* MERA, MERSY161162

* E-State indices8485

* DRAGON 6.0132

* (Chemaxon!63

e (CDK164

* MOPAC%

* Inductivel66

* Spectrophores167.168

The resulting number of descriptors was 7595. This collection was intended to
cover a broad spectrum of chemical representation, as it contains fragment-based
descriptors (ISIDA, E-States), topological 2D and 3D descriptors (DRAGON),
quantum chemical descriptors (MOPAC, MERA, MERSY), hydrophobicity (ALogPS)
and others.

To prevent from over-fitting, and to remove descriptors with only a low or by
chance correlation, we used a leave-one-out cross-validation to calculate the
correlation coefficient (R) of each descriptor to the target property and excluded
those with R < 0.1. A genetic algorithm was customized to select a prefixed number
of descriptors in a double cross validation. The aim of this study was to deliver a
model with a high degree of simplicity in terms of interpretability and to avoid
over-fitting our model to the measurement uncertainty, resulting from various
factors (differences in laboratory techniques, individuals, species, etc.). Therefore
we selected a fixed number of three descriptors.

In each generation of the genetic algorithm 250 offspring were produced, 30 of

them assigned to be the survivors for the next generation. The offspring inherited
one descriptor from the first parent and the second descriptor from the other
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parent. The third descriptor was chosen randomly from the remaining pool and
the number of generations was 25. The criterion to select the ‘fittest’ combination
of descriptors was the correlation coefficient derived by a multiple linear
regression in a ten-fold internal cross validation. ”[d]

3.1.2.3 Regression and validation

“To build the final model, we used a MLR analysis on the descriptors selected by
the genetic algorithm. The validation - using the root mean square error (RMSE),
the correlation coefficient and the Q2 referring to Schiiirmann et al.1%® as
measurements of quality - consisted of two parts: firstly, a leave one out cross
validation on the whole dataset (CVwioo); and secondly a statistical evaluation by
random splitting. We therefore generated 1000 splits on the dataset, each
containing 62% of the compounds in the training set and 38% for the validation
set, which is corresponding to a theoretical split of (1-e1). The result of the
external validation is therefore an average Q? value as well as the corresponding
standard deviation, which can be interpreted as a confidence interval. We
explicitly refuse to select one particular split as ‘the’ validation set, as we believe,
that the use of an average value instead gives a better insight to the reliability of
the model.”[d]

3.1.2.4  Model calculation

“The three descriptors derived applying the genetic algorithm were Se1C2C3ts,
ALogPS_logP and ATSm2. The first descriptor, Se1C2C3ts, is an E-State index for
single bonds between two carbon atoms, one of them with two skeletal bonds (one
of these bonds is a triple bond), the other one with three skeletal bonds.
ALogPS _logP corresponds to the hydrophobicity of a compound calculated with the
ALOGPS 2.1 program. ATSm2 is derived from the CDK package and it refers to the
Moreau-Broto autocorrelation of a topological structure. It specifically describes
the distribution of the mass for topological distances of length 2.

Table 4. Pairwise correlation between the selected descriptors and the target property.

Se1C2C3ts ALogPS_logP | ATSm2 logLCso
Se1C2C3ts - 11.0% 7.9% 22.4%
ALogPS_logP | 11.0% - 50.8% 74.0%
ATSm2 7.9% 50.8% - 63.5%
logLCso 22.4% 74.0% 63.5% -

Tab. 4 shows the (absolute) pairwise correlation between these three descriptors
and the target property. The correlation coefficient of hydrophobicity to logLCso is
thereby the highest. It covers almost three fourth of the variance within the
dataset. The correlation of the target property to ATSm2 is slightly lower, but still
covering approximately two third of the variance. The inter-correlation of these
two descriptors is around 50%, which is indicating that - referring to the target
property - they are at least partially independent. Finally, the E-State index has a
comparably lower correlation to the target property, which is logical, as it
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describes only one specific bond type but shows high orthogonality with the other
descriptors.

The formula resulting from the linear regression on these descriptors is:
logLCso = -(2.21 + 0.945*Se1C2C3ts + 0.473*ALogPS_logP + 0.0465*ATSm2)
The corresponding model validation statistics are shown in Tab. 5. The last

column contains the average values from the 1000-fold external validation on
random splits. The according standard deviation is indicated in brackets.

Table 5. Statistics derived from the model validation.

Internal CVLoo External bagging
Correlation coefficient | 0.809 0.808 0.81 (0.01)
RMSE 0.847 0.850 0.85 (0.02)
Q2 - 0.653 0.65 (0.02)

The internal validation (applying the model trained on all instances) results in a
correlation of 80.9% with an RMSE of 0.847. The statistics retrieved from the leave
one out validation and the external validation, using a 1000-fold split do not
significantly vary from the results derived with the internal validation.”[d]

3.1.2.5  Evaluation of the model performance

“The achieved performance of Q2 = 0.65 is surely not comparable to that of local
models or models for an endpoint of lower complexity; however, to achieve a
performance like that was not the intention of this study. Several aspects have to
be taken into consideration: first, we did not apply any structural restriction to the
compounds in the dataset; second, the data was collected from various sources;
and finally, we used a variety of species in this study.

Table 6. Q2 values derived with other methods.

E-States + | MERA + CDK Chemaxon | ISIDA

ALogP$S MerSy
KNN 0.61 0.57 0.64 0.61 0.43
FSMLR 0.63 0.57 0.0 0.62 0.67
PLS 0.66 0.52 0.64 0.63 0.64
ASNN 0.70 0.66 0.71 0.70 0.70
SMOreg * 0.70 0.65 0.71 0.69 0.62
MG5P * 0.68 0.59 0.67 0.66 0.65

To estimate the explanatory power of our three-descriptor model, we used OCHEM
to apply a variety of combinations of different descriptor sets and machine
learning methods to the collected dataset. The results derived from a leave-one-out
cross-validation are shown in Tab. 6. Models marked with (*) were calculated with
WEKA.170 The descriptors were filtering to eliminate redundant ones with a pair-
wise correlation coefficient larger than 0.95. The parameterization of the machine
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learning methods were default ones, except for the support vector regression
(SMOreg), which used a normalized, quadratic poly-kernel.

The only linear model that reached a better performance than our models was a
fast stage-wise multiple linear regression (FSMLR) model built on 18 out of 660
ISIDA fragments and a PLS regression model on ALogPS descriptors and E-State
indices. The PLS model was calculated with nine latent variables derived from 212
descriptors. In any other case, the linear approaches could not improve the results
of our regression, neither for PLS regression, nor for the FSMLR. Overall, the k-
Nearest-Neighbor approach (kNN) showed the weakest performance, while the
associative neural network (ASNN) delivered the best results. The performance of
a support vector machine and a tree learner (M5P) were comparable.

In summary, all the models that delivered a better performance than our
regression on three selected descriptors had a clearly higher complexity: firstly,
the ASNN, M5P and SMOreg models used correlations of higher order, whereas our
model only used the linear dependencies; secondly, the PLS model and the FSMLR
model, as well as the ASNN, M5P and SMOreg models, were built on a multiple
number of descriptors, compared to our model with only three descriptors.

Table 7. Model performance for different number of selected descriptors.

Number of RMSE AIC
variables

1 0.94 0.89
2 0.87 0.77
3 0.84 0.71
4 0.83 0.70
5 0.81 0.66
6 0.80 0.65

Additionally, we used the genetic algorithm to select a fixed number of 1, 2, 4, 5
and 6 descriptors and applied a linear regression to them. Tab. 7 contains the
number of selected descriptors, the RMSE derived in the double cross-validation
and the corresponding Akaike Information Criterion (AIC). Our results indicated
that the improvement in the RMSE derived with more than two descriptors was
minimal. The decrease in the average error was 0.07 log units for two instead of
one descriptor and additional 0.03 log units for using a third descriptor. In
contrast, the improvement derived with a number of four or more descriptors, is
small. Compared to the performance with three descriptors, a six-descriptor model
decreased the error only 0.04 log units.”[d]

3.1.2.6 Comparison with an established model of regulatory relevance

“To investigate the performance of our regression model in comparison to a model
of regulatory relevance, we applied the read-across model for aquatic toxicity
against fish, published by Schiitirmann et al., 155 to our dataset. This model is based
on a k-NN approach taking into consideration the three nearest neighbors.
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The similarity between the compounds is thereby defined by atom centered
fragments (ACF).145171172 The underlying source of data was the EPA’s fathead
minnow toxicity database, which results in a model that is trained on only one
species. The assessment of the reliability of the derived predictions is ACF-based
as well and works with similarity thresholds. We compared the prediction quality
of both models, taking into consideration the suggested similarity levels (0.8 and
0.9), as well as the different species in our data set. The retrieved results can be
seen in detain in Tab. 8.

Table 8. Results derived from a comparison of the developed model (3Desc) with those of the read-
across approach (R-A). The results are discriminated with reference to the similarity thresholds (Simi)
and the underlying fish species. In addition to RMSE, Q2 and Rz, also the model bias, the maximum
positive error (MPE) and the maximum negative error (MPE) are shown.

Species | Simi | Comp. | Model | RMSE| R2 | Q2 | MNE | MPE | Bias

n/a | 1358 | 3Desc [ 085 [ 065 [ 065 [ 2.26 [ 263 [ 0
RA | 089 | 068 | 062 | 323 | 440 | 021

3Desc | 0.73 | 073 | 072 | 211 | 260 | 0

All 0.8 | 769 RA | 053 | 086 | 085 | 221 | 3.00 | 0.05
00 | esg | 3Desc | 071 [ 071 [ 070 [ 211 | 245 | -0.03

RA | 043 | 090 | 089 | 223 | 2.07 | 0.02

n/a | 660 | 3Desc | 076 [ 0.68 [ 067 | 222 [ 251 [-0.06

RA | 053 | 085 | 084 | 329 | 427 | 001

Fathead | o [ o, | 3Desc [ 071 [ 070 [70.69 | 1.90 | 2.45 | -0.05
minnow | - RA | 037 | 092 | 092 | 1.94 | 225 | 0
00 | sgq | 3Desc | 0.71 [ 069 | 068 | 190 | 245 | -0.05

RA | 033 | 094 | 093 | 138 | 146 | 0

n/a | 4so | 3Desc [ 094 [055 [053 | 214 [ 263 [ 012

RA | 1.16 | 053 | 028 | 240 | 440 | 0.49

Rainbow [ o | o | 3Desc [ 078 [ 079 | 076 | 142 | 2.36 | 0.27
trout ' RA | 085 | 078 | 071 | 2.05 | 236 | 0.36
0o | 43 |3Desc | 0.66 | 077 | 075 | 1.22 | 174 | 045

RA | 078 | 070 | 065 | 1.50 | 2.07 | 0.24

nja | 24 | 3Desc [ 091 [ 056 [ 055 [ 226 [ 260 [ -0.03

RA | 1.07 | 052 | 037 | 269 | 409 | 022

3Desc | 0.81 | 044 | 038 | 211 | 2.60 | 0.05

Others | 0.8 74 R-A | 095 | 048 | 0.14 | 221 | 3.00 | 0.02
00 | 3, | 3Desc | 076 | 041 [ 029 [ 211 | 192 | 0.08

RA | 099 | 038 | -020 | 2.23 | 1.67 | -0.10

The first observation is that the read-across model shows an excellent
performance for measurements on the fathead minnow in general and for
measurements on chemicals with high similarity templates in the training set in
particular. This was expected, as the EPA database is the basic source of
measurements also for our model and given a similarity threshold of 0.8, the read-
across model covers 45% of measurements with a Q2=0.92. Concerning the whole
of these compounds, the read-across model is clearly preferable to ours, which
performs with a Q2<0.7.
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The evaluation of the results derived on other species is more difficult, as most
measurements were affecting compounds beyond the applicability domain of the
read-across model. Only 20% of the measurements for the rainbow trout and 30%
of the measurements for other fish passed the medium similarity threshold of 0.8.
In general, the three-descriptor model reached a more reliable performance on
species different to the fathead minnow and for compounds failing the medium
similarity threshold.

Remarkably, the three descriptor model resulted in a lower maximum prediction
error for all examined partitions of the dataset, except for compounds on the
fathead minnow with a similarity level > 0.9. This means that it has a lower decline
to under-estimate the toxic level of a compound.”’[d]

3.1.2.7 Mechanistic interpretation

“The dependency between logP and (chronic) toxicity has been frequently
reported and is reasonable.l’® An increased hydrophobicity (which is in general
exquivalent with lipophilicity) causes an increased bioconcentration factor.
Therefore, the duration until a chemical is excreted increases and its toxic effect
swells. Further, a recent study reports a correlation between the protein binding
affinity and logP.174 This relationship also increases the effects of toxic metabolites
of a compound.

ATSm2 describes how the mass is distributed along the topological structure. It
has very low values for small molecules and linear, especially aliphatic compounds,
while it reaches high values for large, branched molecules containing heavier
atoms at a topological distance of two. Fig. 36 shows this mechanism for two
compounds of similar molecular mass (350) and comparable predicted logP (4.7).
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Figure 36. Visualization of the mass autocorrelation (ATSM2) for diethion (left) and butyl benzyl
phtalate (right). Both compounds have a comparable molecular weight and comparable logP value.
Their difference in toxicity can be explained by the mass autocorrelation. [d]

The molecule on the left is diethion and the right one is butyl benzyl phthalate. The
blue arrows indicate the autocorrelation according to the ATSM2 descriptor. The
darker an array is, the higher also the mass autocorrelation is. The difference in the
aquatic toxicity (more than two log units) of these two compounds can be
attributed to the different mass autocorrelation. Whereas the only noteworthy of
these autocorrelations for the phthalate are between two pairs of oxygen (256
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each), the diethion contains numerous autocorrelations of at least the same
intensity. The highest impact thereby results from three pairs of sulfur (1024
each).

As an articulative example, dithiophosphates fall into this category with dioxathion
(78-34-2), an insecticide, having the largest descriptor value of all followed by
besultap (17606-31-4), an ester of thiosulfonic acid (also an insecticide). Other
thiophosphates such as diethion (563-12-2) follow closely. lonophores such as
Monensin (similar to 17090-79-8) and Lasalocid, widely used polyether
antibiotics, which act by its ability to transport metal cations through cellular and
subcellular membranes, also have high values. Both Monensin and Lasalocid have
some degree of activity on mammalian cells and thus toxicity is common,
especially horses and dogs are very susceptible to the toxic effects and it comes to
no surprise that fish are affected as well. Perhaloginated compounds (4234-79-1,
173584-44-6, 4151-50-2), PCBs and sulfuramides (86209-51-0) also achieve high
ATSm2 descriptor values, especially when coupled with nitro groups like
Bromethalin (63333-35-7), a rodenticide.

Table 9. Differentiation of compounds containing triple bonds.

Non-zero Zero pX
Cyanides 10 42 52
Alkynes 3 21 24
pX 13 63

Although the value of the E-State descriptor (Se1C2C3ts) is non-zero for only 13
out of 1358 compounds (1 % of the dataset), it has an overall correlation of 22.4%
to the target property. It is highly specific and affects mostly cyanic compounds (10
out of the 13). This is reasonable, as cyanides form highly toxic prussic acid upon
metabolization, which halts cellular respiration. The other 3 compounds are highly
reactive alkynes, which affect protein functions. Tab. 9 shows this distribution in
detail.

Out of a total of 76 structures containing triple bonds, 52 are cyanides. Out of
these, 10 are relevant for Se1C2C3ts. In general, cyanides are already classified as
toxic by logP and ATSm2. Se1C2C3ts was non-zero only for those cyanides that are
easily accessible and thus rapidly metabolized. This makes them very strong
poisons such as Cyfluthrin (68359-37-5) - and separates them from the less toxic
such as adiponitrile (629-40-3), a common nylon precursor with delayed
metabolization, neonicotinoids such as thiacloprid, or benzyl cyanides.

The other 3 compounds, for which SelC2C3ts was non-zero, are secondary
alkynols containing a terminal alkyne unit next to a secondary alcohol group.
Sel1C2C3ts distinguishes these from the bulky and less reactive 21 tertiary
alkynols, e.g. 3,6-dimethylhept-1-yn-3-ol (19549-98-5). Secondary alkynols are
known GABA receptor blockers and strong poisons. Well-known members of this
class are cicutoxin and aethusin.

Although the E-State descriptor is relevant only for a small partition of the dataset
(< 1%) its contribution to the prediction quality, especially in regions of high
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toxicity is disproportionate. Fig. 37 shows the effect of the descriptor for all 13
compounds that are affected. The x-axis shows the measured values, whereas the
y-axis displays the predicted values. The red dots show the values predicted by a
regression model derived only from ATSm2 and AlogPS_logP. Apparently the
toxicity of all compounds is underestimated. The green dots show the prediction
values derived with the three-descriptor model. The prediction error is clearly
increased for twelve out of the 13 compounds. The influence on the remaining
1345 compounds was negligible.
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P . T " . >

Measured values

Figure 37. The influence of the E-State descriptor on the resulting model. The red dots show the values
predicted by a model limited to two descriptors (ATSm2 and AlogPS_logP), whereas the green dots
show the prediction values for the same compounds derived with the developed three descriptor
model. [d]

Se1C2C3ts is therefore the only descriptor in our regression model that is directly
associated with a toxic group (cyanides), whereas the other two descriptors
mainly depict general qualities of a compound (lipophilicity and a combination of
size, ramification and content of heavier atoms in a topological distance of 2 bonds
like dithiophosphates).”[d]

3.1.2.8 Applicability domain estimation

“Naturally, the applicability domain of this model is predefined by the scope of the
databases that sourced the measurements used for the models. As a solid
foundation (profound basis), the fathead minnow database was used to ensure a
wide coverage. It is based on an U.S. industrial chemical inventory of discrete
organic chemicals.l”> We have specifically extended the applicability domain to
pesticides by adding data from the pesticide properties database with a wide
coverage of the field. These compounds were optimized towards a balance of
strong toxic effects that are typically controlled in mammals by specific adsorption,
distribution, metabolism, and or binding effects.
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Out of the 46 compounds with an absolute prediction error larger than 2 log units,
33 were underestimated regarding their toxicity potential. The 20 compounds
with the largest absolute error were all ‘underpredicted’. A careful analysis
revealed that this is partly due to the systematic errors of defined compound
classes. In addition, several compound classes could be identified as out of the
applicability domain of this model.

One of the major systematically ‘underpredicted’ compounds are carbamates and
dithiocarbanates. The complete dataset consisted of more than 70 compounds
belonging to these classes. These compounds were ‘underpredicted’ by an average
of 0.6 log units, and generally showed no quality prediction results (Q2=0.0).
Activated alkenes and alkynes (those next to -C=0, CN, C(O)N, NOz or SOz groups),
were also not so well predicted (Q%2=0.2) and should be considered out of the AD of
this model.

Toxicological intermediates can create a variety of hazardous effects in vivo due to
their special behavior and should also be considered out of the applicability
domain. They especially include thiocarbonyls and quinones accounting for 5 out
of the 20 most underestimated predictions.

To analyze if our model is predicting especially well for a certain group of
chemicals, we used the structural alerts implemented in OCHEM7¢ to assign 248
functional groups to the compounds in the dataset. In the next step, we dropped all
those groups, which did not apply to a minimum of 20 compounds and calculated
the Q2 for the compounds assigned to the remaining 66 groups. Tab. 10 shows the
result for the ten best predicted structural groups in detail.

Table 10. The ten best predicted structural groups within the dataset and their according Q2 values.

Structural group ?:rﬁll?:lll'rgs Q2

Nitriles 50 0.88
Secondary amines 63 0.85
Tertiary mixed amines (aryl alkyl) 28 0.83
Secondary mixed amines (aryl alkyl) |29 0.83
Tertiary alcohols 40 0.81
Diarylethers 54 0.81
Primary aliphatic amines 40 0.81
Aryl bromides 33 0.79
Secondary aliphatic amines 29 0.78
Primary amines 117 0.77
Overall 354 0.84

It is obvious that the prediction of both nitriles and amines in general is reliable.
Furthermore, tertiary alcohols, diarylethers and aryl bromides belong to the well
predicted structural compound classes. Due to the overlap within different
structural groups, the aggregation of all compounds in these ten groups resulted in
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a dataset of 354 different compounds. The Q2 we retained from the model to
predict them was 0.84, which is of regulatory relevance.

Apart from those well predicted groups, we also investigated the worst performing
ones and found five structural groups predicted with an R? lower than 0.35. Those
were carboxylic acid tertiary amides (47 compounds), ureas (45), hydrocarbons
(34), thioethers (34) and thiocarbamic acid derivatives (20). They are therefore
clearly out of the applicability domain of the model. A further observation was that
37 sulfonic acid derivatives and 25 sulfonamides revealed an acceptable R2 (> 0.5),
while the according Q2 was 0 in both cases. This resulted from a systematic error
in the model, which estimated the toxicity of those compounds in average 0.7 log
units too low.

Finally, we decided to assess the justified application of our three-descriptor
model by comparing it to a linear regression model, exclusively derived from the
estimated logP. We therefore used the ALogPS_logP descriptor. Within all available
logP estimates, it showed the highest correlation to the measured LCso values. A
CVvioo of the derived model delivered an RMSE=0.96, a correlation coefficient of
74%, a Q?=0.54 and an MPE=3.2 log units. Referring to the three-descriptor model,
the RMSE is increased by more than 0.1 log units and the Q2 decreased by 0.11.

Table 11. Comparison of the difference in prediction error of the logP model and the three descriptor
model.

Agrr Our model logP model
0.0-0.1 150 (11.0%) 140 (10.3%)
0.1-0.2 143 (10.5%) 108 (8.0%)
0.2-0.3 136 (10.0%) 95 (7.0%)
0.3-0.4 151 (11.1%) 78 (5.7%)
0.4-05 113 (8.3%) 36 (2.7%)
0.5-0.6 54 (4.0%) 16 (1.2%)
0.6-0.7 37 (2.7%) 7 (0.5%)
0.7-0.8 24 (1.8%) 14 (1.0%)
0.8-0.9 11 (0.8%) 8 (0.6%)
09-1.0 5 (0.4%) 2 (0.1%)

>0.1 19 (1.4%) 11 (0.8%)

> 843 (62.1%) 515 (37.9%)

To gain a deeper insight we calculated the difference in the absolute prediction
error (Agr) between the logP model and our three-descriptor model for all
considered measurements. For 843 out of the 1358 compounds, the three-
descriptor model performed better. Tab. 11 shows this distribution depending on
the value of Agr. For more than 770 compounds, the prediction error was
inconsiderable (Agr < 0.3). In the range of an intermediate difference in the
prediction quality (0.3 < Agr < 0.6) for 318 out of the affected 448 compounds
(71%) the three-descriptor model delivered a higher accuracy. Similarly, in the
range of a significant difference in the prediction error (0.6 < Agr) for 71% of
affected compounds the three-descriptor model was preferable.
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The attempt to correlate the Ag,r with the ISIDA fragments (length 2-5) in order to
define a structurally based applicability domain to decide in which cases the
predictions derived from the three descriptor model are favorable (or
disadvantageous) compared to those of the logP model, revealed two major
findings: 1) the three descriptor model performs significantly better on cyanides
and alkynes. This is logical, as these are the compounds, which are covered by the
E-State descriptor; 2) the three descriptor model reveals worse predictions in case
of per- or polyflurinated compounds. A possible reason therefore is that
substitutions with fluorine increase the value of the mass autocorrelation and
thereby the predicted toxicity, which is equivalent to an overestimation. The acute
toxicity of such compounds is known to be relatively low and the major problem
resulting from them is their persistence and low degradability.177

Apart from that, the examination was unspecific. The improvement in prediction
that we derived cannot be linked to certain chemical groups, but is a mostly global
observation without explicit reasoning in small substructures.”[d]

3.1.2.9 Closing remarks

“The endpoint logLCsp is highly complex, as it is not limited to one or few modes of
action, for instance, the inhibition of a certain protein. The possibility to cover this
complexity with current QSAR approaches is ambitious, if not impossible.
Therefore, we believe that a general solution is preferable. Our model uses three
descriptors and delivers a reasonable mechanistic explanation of aquatic toxicity.
It is not limited to a certain species, but takes into account a variety of them.
Furthermore, the model was trained and validated on measurements from
numerous sources. This is important in terms of reliability and robustness.

Diarylethers

Predicted values

-6 -4
Measured values
Figure 38. Measured versus predicted values for five chemical groups with high prediction accuracy in

our model. Remarkably, the model reveals a prediction error exceeding one log unit for only few
compounds that belong to these groups. The prediction accuracy thereby approximately concurs with
the measurement accuracy.
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The improvement of the predictive quality that we reached by applying higher
complex models was negligible. This shows that the limitation to three variables is
not so much of an over-simplification, rather than the reduction to the
dependencies we can reliably confirm.

Our model clearly improves the global estimation of aquatic toxicity compared to a
simply logP based estimation. And although the performance of read-across
models is clearly better in those areas of the chemical space, which are
experimentally covered with a high density, our models shows a comparably
robust performance in the areas that are no more applicable with such read across
models. Referring to the chemical groups we determined to be predicted with a
high reliability (amines, nitriles, etc.), our model can be of regulatory relevance for
compounds belonging to those classes.”[d] Fig. 38 shows representative structures
for each of the classes, as well as the comparably low discrepancy between the
measured and predicted values for the majority of affected compounds.

“Furthermore, our model provides an intuitive access to the estimation of the
toxicity of a compound. Except the hydrophobicity of a compound, all other criteria
used in the model can be deduced from a simple look at the compound’s structure,
that is the existence of a cyan group, molecular size, or the number of heavy atom
pairs with two bonds in between.”[d]
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3.2 Customized implementation of experimental design approaches

In order to enable an overview of the performance of frequently used experimental
design approach and to enable a comparison with more complex approaches, I
implemented at least one example procedure for each of the conceptual ideas
(dissimilarity-based, similarity-based and partition-based). Hereby, the focus was
to enable the application of these approaches with the precondition of prior
knowledge, amongst other criteria.

3.2.1D-Optimal design

“The D-Optimal selection criterion was implemented as suggested in the
literature.l’8 Fedorov’s heuristic approach!’® was used to optimize the selection
speed. Further, the implementation was extended by the option to add a fixed seed
to the selection. This additional feature enables us to perform a compound
selection that depends on a preselected set of compounds. Newly selected
compounds are therefore not only most distinct to one another but also to the
preselected compounds. This enhancement was implemented by adding the
preselected compounds to the model matrix.”[a]

3.2.2Kennard-Stone algorithm

As the Kennard-Stone algorithm was developed, to start from a predefined seed of
instances, no efforts were required to customize it for the use of a fixed seed. The
initially selected compound is the central point within the dataset. The central
point is defined to be the compound with the minimum sum of Euclidean distances
to all other compounds within the dataset.

3.2.3MDC selection

Due to the concept of using reciprocal ranks, instead of directly using the pairwise
distances of compounds, a customization of the MDC selection to work with an
initial seed is not feasible. Furthermore, the original implementation, by Hudson et
al.7! provides a stop criterion, which limits the number of compounds to be
selected. “As this study concentrates on a comparison of a fixed number of selected
compounds, the compounds are used regarding their selection order.”[b]

3.2.4Space filling design

The space filling design is an extension of the full factorial design. Instead of a
simple binary representation of each variable, it works by partitioning the
chemical space into subspaces of equal size. This fragmentation is derived by the
division of each axis into the same number of bins. Consequently, for a number of b
bins and a number of a axes, the number of resulting subspaces is b%. To avoid the
problem of exceeding the number of relevant subspaces, we limited the number of
considered dimensions to a maximum of three. “From each of the resulting
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subspaces a compound is selected, but as the compounds are not equally
distributed in the chemical space, subspaces can be completely without a
representative compound. It is therefore difficult to fix the number of finally
selected compounds.”[c]

“To address this problem in our implementation, the number of bins, the axes are
separated into, is not preliminary fixed, but automatically detected. Therefore, the
number of bins is iteratively increased as long as the number of subspaces,
occupied by at least one compound, is not higher than the number of compounds
to be selected. Finally, from each occupied subspace the compound with the lowest
Euclidean distance to the center of the subspace is selected. As this approach
focuses on the separation of the chemical space and not on the distribution of the
compounds, the number of selected compounds can be smaller than desired.”[b]
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3.3 Stepwise selection approaches

Taking a look at the practical course of action in laboratories, the modus operandi
of the standard approaches, to select all compounds in one single step, seems to be
quite artificial. Given, for example, a set of 600 compounds of interest and the
limitations of being able to test only 100 of these compounds, almost no lab will
test all these 100 compounds in parallel, but due to restricted capacities, in a
stepwise procedure.

A stepwise procedure like that implicates, that information about the measured
property is gathered from testing cycle to testing cycle. In the standard
approaches, that select all compounds in one step, this growing amount of
information is not taken into consideration, although exactly this information
could be used to refine and thereby significantly increase the quality of the
experimental design approach.

Traditional T Stepwise
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Multivariate
characterization

[ Compound
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Figure 39. Comparison of the traditional workflow (left) and the suggested stepwise selection (right).
Instead of measuring all compounds at the same time, the stepwise approach works with an iterative
refinement of the depiction of the chemical space.[a]

Another difficulty is that the selection of compounds is performed in the principal
property space. Although the application of PCA to extract the principal
components is a powerful tool, there is no guarantee, that a principal component is
correlated with the target property. Principal components are selected just by
ranking the variation in descriptor space. But in exceptional cases, for a certain
endpoint, principal components can represent nothing else than noise without any
relevant information.
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Principal components are maintained from just the descriptors, irrespective of the
target property. This leads to the fact, that an experimental design and thereby the
selected compounds, derived from the classical approaches, is identical for all
endpoints, Irrespective if, this endpoint is physicochemical, chemical, biological or
toxicological. The question is whether there is a strategy that could provide a
better selection of compounds by taking into consideration the correlation to the
target property and available data.

“The adaptive experimental design approaches we use, work in a stepwise manner,
where each step consists of two phases. In the first phase the representation of the
chemical space is refined. This is done by using the preliminary gathered
information from the target property and analyzing its correlation to the chemical
space. In the second phase a selection algorithm is executed on the newly arranged
chemical space. The selection is hereby taking all previously selected compounds
into consideration. These phases are executed in an alternating way until a
prefixed number of compounds are reached.”[c]

“The most important differences between the stepwise approaches and the
traditional selection approaches are shown in Fig. 39. Whereas the traditional
method (left side of the figure, in pink) selects all compounds at the same time, the
stepwise approach (right side of the figure, in blue) constantly increases the
number of compounds cyclically. Further, the chemical space to represent the
compounds is refined with each cycle.”[a]

3.3.10rdering the chemical space

“The idea behind the iterative rearrangement of the chemical space is to adjust the
design of an experiment to a certain endpoint and consequently to reach a faster
increase in the resulting model performance. Experimental designs derived from
PCA space are not aligned to the target property, but are identical for the same
selection algorithm and executed on the same compound collection, regardless of
the endpoint. For this reason they are unspecific and most probably not
optimal.”[c]

3.3.1.1 Underlying theory

A further disadvantage of the PCA-based representation of the chemical space is
shown in Fig. 40a. The axes represent the first principal components and the dots
represent the compounds in the logLCso dataset. The coloring of the compounds
corresponds to the target property. Compounds with high logLCso values are
indicated red, whereas compounds with low values are indicated yellow.

It is obvious that there is no or only low correlation between the target property
and he principal components. This results in a distribution of similar logLCso
values over the whole chemical space. Given a partition based experimental design
approach or a dissimilarity selection, there is an increased probability that the
collection of selected compounds contains multiple molecules with similar
endpoint intensity. For obvious reasons, this is adverse in terms of modeling. A
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representative selection should contain a representative overview of the value
facet.
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Figure 40.The chemical space of the logLCso dataset represented by a) the first principle components;
b) PLS latent variables; and c) selected descriptors. The coloring of the compounds represents the
value of the target property. The PCA representation results in an unordered distribution.

3.3.1.1.1 PLS latent variables

“Latent variables from PLS are comparable to the principal components of a PCA.
However, in contrast to PCA components, which are selected to maximize the
variance of the dataset (i.e., to cover as much of the data variability as possible),
the PLS latent variables are selected to maximize the covariance (i.e., to provide
maximum correlation) with the target variable. Therefore, in addition to PCA
components, the latent variables contain information about the target variable.”[a]

Fig. 40b shows the logLCso dataset as well, but the axes represent the first PLS
latent variables. The depiction of the chemical space with latent variables
contributes to a clearly higher degree of order in the chemical space, compared to
a PCA depiction. Thereby it minimizes the probability of selecting samples, which
are not optimal in terms of the representation of the target property.

3.3.1.1.2 Supervised descriptor selection

The concept of a supervised descriptor selection is similar to the concept of PLS.
Variables are ranked by their correlation to the target property and their
contribution to explain the variance in the data. But contrary to PLS, the descriptor
selection does not work with an orthogonal transformation of the chemical space,
but directly on selecting relevant descriptors. Literature provides a variety of
sophisticated approaches, which are based on neural networks,180.181 simulated
annealing,!82 or other ideas.183.184
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Fig. 40c shows the logLCso dataset represented by selected descriptors. The first
observation is the similarity to the representation based on PLS latent variables.
The underlying selection procedure is explained in chapter 5.1.1.3.2.

3.3.1.2 PLS-Optimal

“PLS-Optimal is an adaptive approach that combines the D-Optimal criterion with
the partial least squares technique (PLS). The representation of the chemical space
within this approach is realized with PLS components instead of PCA
components.”[c]

“In the first phase of the stepwise approach, a traditional D-Optimal design is used
to select an initial subset, containing a fixed number of compounds. Therefore, a D-
Optimal selection is applied to a fixed number of principal components derived
from a PCA on a set of descriptors for all compounds within the set of relevant
compounds. For all further steps, the compounds selected in the previous steps are
considered to be already tested and a PLS model is built on them. The developed
PLS model is then used to calculate the latent variables for all compounds, and the
D-Optimal selection is performed utilizing these latent variables instead of the
principal components. Further, this selection is taking the fixed seed into
consideration and all preliminarily tested compounds are members of the
resulting set of the D-Optimal design.

As the number of measurements increases from cycle to cycle, each new model is
an improvement of the previous one. Based on these iteratively refined latent
variables, an initially selected set of compounds is extended in a stepwise manner.
A similar idea was proposed by Lundstedt and Thelin.18> The authors used a two-
step process consisting of a synthesis step and a purification step in which they
alternated between PCA and PLS. However, their aim was to select the most
important variables for a model, while the aim of our method is to find the most
informative compounds for model development.”[a]

3.3.1.3 DescRep

“The next approach, DescRep works in a similar way as PLS-Optimal. However, it
combines a similarity-based approach (instead of a dissimilarity based one) with a
representation of the chemical space using selected descriptors (instead of PLS
components). As for PLS-Optimal, the preselected compounds are used as
reference information to evaluate the most important descriptors.“[c]

3.3.1.3.1 Similarity based selection approach

“As a stepwise experimental design procedure requires a selection method, which
is able to take a preselected initial seed of compounds into consideration, it is not
possible without further ado to use the MDC selection, as its concept of ranking
distances cannot be adapted to this precondition. Therefore we developed a

93



selection method based on the idea that structural similarity of compounds also
conditions similar values regarding a certain endpoint.

We select an initial seed of compounds starting from a k-Means-based partition of
the chemical space (represented by the principal components) into a predefined
number of clusters. The initial seed contains the most representative compound of
each cluster. The most representative one is hereby defined as that compound
with the lowest sum of pairwise distances to all other compounds within the same
cell. The k-Means clustering was initialized 15 times with randomly assigned
starting compounds. The finally picked clustering was the one with the lowest sum
of pairwise differences within each cluster.

In each further step the chemical space is represented by a selection of descriptors
based on the preselected compounds. The preselected compounds are extended by
new ones, which are assigned to be the most informative ones for all other
compounds based on a priority score (PS) calculated for each compound. PS
estimates how well a compound is represented by all previously selected
compounds.

Initially, all compounds are assigned a PS of 1.0 and the distance matrix DM,
containing the pairwise distances between all compounds, is calculated. The
distance matrix (normalized to [0,1] range) is used as PS to select the first
compound.

For all following compounds, the normalized pairwise distances of N preselected
compounds to the remaining compounds in the dataset are used to determine how
well each compound is already represented and select the least represented ones.
Each compound x within the set gets assigned a correction factor CFy for each
preselected compound i. The correction factor refers to a hyperbolic distance
function and it is used to adjust the PS to the preselected compounds.

N
P, new = P, | | CEa
i=1

The correction factor is calculated as CF,; = (1 — (1 — DM,;)*P).

The exponent exp is not fixed, but depends on the distribution of the data in the
descriptor space and the number of compounds to be selected. It is recalculated in
each selection cycle. Referring to the most central point within the dataset (which
is again defined as the one with the lowest sum of pairwise distances to all other
compounds) exp is determined as the value for which the number of preselected
compounds and compounds to be selected in the present cycle has to have a value
of (1 — DM,;)®*P, which is higher than a given threshold. The threshold value we
used in this study was A=0.75. For the calibration datasets on density,
bioconcentration, lipophilicity and solubility were used. We experimentally
determined that this is an appropriate value.
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This additional feature of the recalculated exponent enables one to also handle
exceptional data distributions. The method is not sensitive to the
parameterization. We tried different versions of A within the range of 0.5-0.9 and
did not observe significant changes in the method performance. Moreover, it
should be mentioned that parameterization and an appropriate distance function
are general issues for similarity-based selections.”!

Based on these prior conditions, the correction factors for all combinations of not
yet selected compounds are calculated. The collection of compounds finally
selected for testing is the one that minimize the sum of priority scores over all
compounds.”[c]

3.3.1.3.2 Supervised descriptor selection

“The search space for DescRep is spanned by a fixed number of selected
descriptors. The selection process follows a simple idea and is therefore straight
and efficient.

In the first step a scoring list S, containing the correlation coefficient of each
descriptor to the target property, is built. This correlation coefficient is derived
only from the preselected compounds, which are already ‘measured’. Additionally,
the correlation matrix M, containing the absolute pairwise correlation of any
combination of two descriptors, is built.

According to the scoring list, the descriptor that should be selected is the one with
the highest score, which is initially equivalent to the one with the highest
correlation to the target property. After the selection of a descriptor x the scores
are updated to avoid pairwise correlations in the final selection. Regarding the
compound i, its score S; gets updated to S; * (1 — M;,)3. Thereby the scores of
descriptors, which are highly correlated to the preselected ones are decreased,
which helps to avoid the selection of redundant information. The underlying idea
of selecting variables with a high correlation to the target property and the
elimination of inter-correlated variables is similar to partial least squares. This
procedure is repeated until a predefined number of descriptors are selected.”[c]

3.3.2Applicability domain approaches

The use of a descriptor-based representation of chemical compounds in terms of
experimental design is established and well founded. In the classical meaning, also
the latent variable representation we use for the PLS-Optimal approach, is member
of such a representation, as the PLS components are an orthogonal transformation
of the descriptor space. Still, the relation and correlation of chemical compounds
can be represented in other ways.

We developed a workflow to apply “a novel adaptive projection that moves from a
descriptor-based construction of the chemical space towards a predicted property
based view. We investigate three strategies for experimental design: One of them
uses the predicted properties to define the chemical search space, the others
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utilize the concept of the ‘distance to model’-parameter (DM) suggested by Tetko
et al.122.130.147 to estimate the uncertainty of prediction for each compound within a
data collection. We are not aware of other studies in computational chemistry,
using this parameter for compound selection.”[e]

3.3.2.1 Underlying theory

The following paragraphs are intended to give a short overview of the ensemble
based applicability domain approaches and their potential use in terms of
experimental design.

3.3.2.1.1 Uncertainty and error

“The underlying theory on the ensemble based applicability domain estimation is
that compounds, which are predicted with a high reliability, are less prone to small
variations in the training data set and that there is a correlation between the
uncertainty in prediction and the prediction error. The simulation of the variations
in the dataset could be done using a bagging approach to generate a predefined
number of subsets by resampling with replacement. For this study we fixed the
number of bags to 64. Each of these subsets is then used to build a prediction
model for either an endpoint of continuous values or a classification model. The
resulting collection of models can then be used to predict the target property for
new compounds. By receiving not only one prediction but a whole set of them, not
only the average value, which is used as the prediction value, can be calculated, but
additionally the variance in the predictions as a measurement of uncertainty could
also be determined.

AD-Estimation

3.0

error

Prediction

0.5

0.0

Standard deviation

Figure 41. The correlation between prediction uncertainty (variation of prediction) and prediction
error for a model on environmental toxicity of 1093 molecules against T. pyriformis. [e]

Previous studies®5122130,147 haye shown the correlation between the uncertainty of
the prediction and the prediction error. Fig. 41 illustrates this correlation for the -
loglCGso dataset. Each red dot represents a compound, the x-axis represents the
standard deviation of the ensemble predictions and the y-axis represents the
prediction error. The black line depicts the cumulative error of all compounds
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predicted within a certain standard deviation and the grey line depicts the average
error of a sliding window.”[e]

3.3.2.1.2 Unification of the chemical space

“An additional feature of the predictions derived with the bagging approach is that
they define a compound referring to the property space, instead of the descriptor
space. This enables the representation of a dataset to a higher extent of
independence of a certain descriptor set.

Descriptors Predicted properties

Dragon

E-States

QNPR

Figure 42. Principal components of a dataset on descriptors (left) and predicted properties (right). [e]

To visualize this, we calculated DRAGON 6.0 descriptors,132 E-State indices and
quantitative name property relationship (QNPR) descriptors3* (derived from a
SMILES representation of the compounds) for the -loglGCso dataset and reduced all
three representations of the dataset to two principal components. The left column
of Fig. 42 shows the results. The coloring of the compounds is just a topological
one to enable the identification of changes in the dataset depiction, it has no
functional meaning.
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Additionally, we used the bagging approach to calculate 64 partial least squares
(PLS) regression models'8 on each descriptor set and reduced the derived
predictions for each molecule to two principal components. The results are shown
in in the right column of Fig. 42. Also in this depiction, the coloring has only
topological meaning. It is obvious, that both the distribution of single compounds,
as the overall shape of the distribution and the variance within the principal
components is harmonized to a higher extent in the predicted properties view."[e]

3.3.2.2 Implementation

“The DM-based approaches decide on testing a compound either exclusively on the
prediction uncertainty, or they combine this parameter with a compound’s
hypothetical contribution in decreasing the prediction uncertainty of other
relevant compounds. The estimation of this contribution is based on the
correlation in ensemble predictions, a concept that is the basis of the ASociative
Neural Networks (ASNN)®> and which is also used in the ASNN LIBRARY mode to
make local corrections.83

Based on a predefined selection of compounds, the stepwise approaches extend
this seed in a stepwise manner and based on the predicted properties and thereby
the applicability domain estimation. After each (hypothetical) measurement cycle,
a new ensemble of 64 bagging models is calculated, using partial least squares
(PLS) regression.’6.186”[e]

3.3.2.2.1 Distance-based selection

“The first approach we implemented (referred to as ‘AD-Fetcher’) uses the
predictions of the bagging models and the derived standard deviation for the
compound selection. Based on the (simplified) assumption that a high variance in
prediction implies a high uncertainty, in each step it selects the compound with the
highest standard deviation. This can improve the experimental design
performance in two ways: firstly, it extends the existing selection (and implicitly
also the resulting model) with a compound that is not yet within the applicability
domain and therefore with new information; secondly, the selected compound,
which was predicted with a high uncertainty, does not have to be measured
anymore.

To prove if this concept works, we executed this approach in a one-by-one
selection on the logKoc dataset. We compared the performance of a PLS model
derived on the selected compounds and applied it to the remaining ones with that
of the k-Medoid approach, the Kennard-Stone algorithm and a random selection.
The results are shown in Fig. 43.

The x-axis shows the number of selected compounds and the y-axis the RMSE on
the non-selected compounds. As the RMSE for the Stepwise approach is initially
low, and as the performance is constantly better than that of the Kennard-Stone
algorithm and of higher stability than that of the random approach, the concept
appears to work.
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On a larger scale, and for the practical application, a selection and testing of
compounds one by one is inappropriate. Therefore in all further applications, the n
compounds, which should be selected in a measurement cycle, are the n
compounds with the highest variance in prediction. Further, the initial seed of
compounds is selected with a clustering approach.”[e]
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Figure 43. Proof of concept for AD-Fetcher. [e]
3.3.2.2.2 Representativeness-based selection

“The second approach does not take only the uncertainty of prediction into
account, but combines it with the representativeness of a compound, which is
deduced from the correlation in the predictions. The underlying estimation is that
correlated predictions imply a common mode of action and that the extension of
the selected set by a certain compound also leads to an increased uncertainty and
prediction error in correlated compounds.

As in the previous approach, we start with the assumption that the variance in
prediction is proportional to the prediction error. Further, we assume that the
extension of a model with a certain compound decreases the uncertainty in
prediction of another compound proportionally to the correlation in the
predictions of these two compounds. A similar concept has been successfully
applied for the local corrections in the logP prediction by Tetko et al.82 and is called
LIBRARY mode. Both assumptions, as we use them in this study, are simplifications
of a more complex context. Nevertheless, these assumptions should be sufficient
for the prioritization of representative compounds in a dataset. Additionally, one
has to take into consideration that experimental design aims towards efficiency,
not towards exhaustiveness.
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Reasoning from our two estimations, the compound, which has to be chosen in
each measurement cycle is the compound which decreases the prediction error of
all remaining compounds to the highest extent. Our implementation of this concept
works with one matrix and two vectors: First, the standard deviation vector S,
which contains the compound-wise standard deviation of the predictions; secondly
the correlation matrix C, which contains the pairwise correlation of the prediction
of each compound; and thirdly, the decision vector D, which is initially derived
from a matrix multiplication of C and S and which displays the representativeness
of each compound. The first compound to be selected in a measurement cycle is
the one with the highest representativeness. It is the compound with the highest
correlation to those compounds with the highest variances.

After the selection of a compound, the decision matrix has to be updated to remove
the estimated contribution of the recently selected compound. The correction
factor for a compound is thereby calculated from the correlation between the
recently selected compound and the compound itself. The decision score is
multiplied with the difference between 1 and this correlation.”[e]

3.3.2.2.3 Predicted property representation
Additionally, to investigate the direct use of predicted properties in terms of

experimental design, we applied principle component analysis to them and used
the obtained variables to span the search space for selection approaches.
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3.4 Cluster-based selection approach

“In the recent past, approaches using density-based!? or hierarchical clustering!8”
were suggested. Partition-based approaches, utilizing the k-Means clustering, were
also introduced; however, these approaches use the derived clusters to apply other
selection algorithms to them.188 Although pharmaceutical publications mention the
possibility of using the clusters derived by k-Means to select exactly one
representative from each cluster,'? we are not aware of a study evaluating this
technique in QSAR experimental design, comparing its performance to other
experimental design techniques. The idea of assigning the compounds to different
clusters and choosing a representative from each cluster seems to be appropriate
for chemical compound selection, as the implied separation of the chemical space
into clusters is adaptive to the real distribution of compounds rather than to a
hypothetical distribution.”[b]

Furthermore, in terms of a meaningful partition of the chemical space, an approach
that divides the chemical space into hyper-dimensional spheres seems to be more
appropriate in terms of experimental design, than density based approaches, such
as DBSCAN189 or OPTICS.190

3.4.1Implementation

“The basis for the selection approach was an implementation of the k-Medoid
clustering. The k-Medoid clustering, partitions a set of data points into a given
number of subsets, the clusters. Each data point is assigned to one cluster only and
each cluster must contain at least one data point. The problem of finding the
optimal partitioning belongs to the class of NP-hard problems,°1 which are
computationally very expensive. Heuristics are therefore used to find a local
minimum by iteratively reassigning data points to certain clusters until
convergence is reached.

For the k-Medoid approach, a number of k randomly selected data points are
initially assigned as cluster centers. In the second step, each data point that is not
assigned as a cluster center is assigned to the nearest cluster center (according to
the Euclidean distance). In the third step, the cluster centers are reassigned to the
data point within a cluster that has the lowest sum of pairwise distances to all
other data points in the cluster. In case of two data points with identical values for
the sum of pairwise distances, the decision, which of them to assign as cluster
center is arbitrary. Following that, steps two and three are executed alternatingly,
until convergence is reached, which means that the clusters, and thereby also the
cluster centers do not change anymore. For each assigned cluster a representative
is returned, which in our case is the cluster center. As the cluster center is the
point with the lowest sum of pairwise distances to all other points within a cluster,
this point can be also seen as the most representative point within the cluster.”[b]

An example of the data partitioning derived with the k-Medoid clustering can be

seen in Fig. 44. The underlying dataset is the boiling point collection. The red dots
indicate the cluster centers and according to this the compounds selected for
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experimental testing. The distribution of these compounds is covering most of the
occupied chemical space, with an adequate structural differentiation between
them.
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Figure 44. A k-Medoid data partitioning on a two-dimensional scale. Each compound is represented as
a dot in a space spanned by the principal components. The coloring of the compounds indicates their
affiliation to a certain cluster. The cluster centers are indicated red.

“The standard implementation of k-Medoid checks the membership of a data point
to a certain cluster in an undefined order and reassigns the cluster centers each
time a data point is assigned to a new cluster. Therefore, the final clustering is not
deterministic, but depends on the order of the data points to be assigned to a new
cluster.

This means that the clustering on a dataset, starting with a fixed set of initial
cluster centers, can deliver different results if the order in which the data points
are reassigned to new clusters is changed. To address this problem, our
implementation does not reassign the cluster center before each data point has
been assigned to a cluster. This modification results in a higher runtime
requirement but contributes into the stability of the outcome.”[b]

3.4.2Initial cluster centers

“A second specification of the k-Medoid clustering approach that prevents a
deterministic result is the randomized selection of the initial cluster centers. To
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address this problem and to investigate the influence of the initial centers, we
implemented two different approaches to assign the initial cluster centers. The
first utilizes the selection derived with using another approach - in our study the
D-Optimal criterion and the Kennard-Stone algorithm - and initializes the k-
Medoid clustering with these data points as initial cluster centers. The second
approach follows the standard implementation and works with a random selection
of the initial centers. To avoid getting stuck in a disadvantageous local minimum
because of an unfortunate selection of initial cluster centers, 15 of these initial
assignments were made, with the finally accepted clustering the one with the
highest density.”[b]
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3.5 Validation pipeline

To enable a reliable comparison of the selection approaches in terms of
experimental design and model building, we implemented a robust validation
pipeline. A schematic overview of the steps that are included in this procedure is
given in Fig. 45. It starts with a random sampling, in order to simulate small
variations within the dataset. In the next step the underlying data is characterized,
using multivariate techniques or a supervised descriptor selection, followed by the
application of the selection approaches. Subsequently, the collected measurements
are used for model building and finally, these models are evaluated referring to
distinct criteria, such as reliability, performance and robustness.

Bagging
250-fold

\

Characterizing

\

Compound selection

\

PCA
Selected descriptors
Predicted properties
PLS

D-Optimal
Kennard-Stone
FFD

an1e PLS regression
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Evaluation Adaptiveness

Robustness

Figure 45. The validation pipeline contains of a random selection to enable a statistical evaluation of
the observed results, a predefined representation of the compounds, an unambiguous modeling
algorithm and several quality criteria.

3.5.1Procedure

“All datasets (both regression and classification) were split into two partitions. The
first partition (design set) was used to execute the selection approaches and the
second partition was used as a respective validation set. To retrieve a statistically
meaningful foundation to evaluate and compare the approaches, an ensemble of
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these splits was generated. Each of these splits was used for the evaluation of each
of the selection approaches.”[c]

If not otherwise stated the design set contained 84% of the compounds in the
original collection and the validation set contained the remaining 16%. A split of
that size was chosen as default value, as it guarantees a minimum overlap of two
thirds in two arbitrarily chosen design sets. Furthermore, the default number of
validation splits used in this thesis was 250.

“As a standard, for the logLCso, the 1ogBCF and the logKoc dataset a number of 5, 7,
10, 15, 20, 25, 30 and 40 compounds were drawn in the predefined order. For the -
loglGCso and the boiling point dataset, an additional number of 50 and 60
compounds were drawn. As the classification datasets contained a number of
compounds, which was at least four times higher than the number of compounds
in the largest regression dataset, we selected samples of 10, 20, 30, 40, 60, 80, 100
and 120 compounds.

The selection process for the non-adaptive approaches (random sampling, as well
as the k-Medoid clustering and the approaches on principal components) was
started from scratch for each sample size. Contrary for the stepwise approaches,
the selection process was strictly based on the sequence as mentioned above.
Thereby the compounds selected in each previous step are in the next step used as
a known seed, and the newly selected compounds, just extend this seed.”[e]

“To obtain comparable information about the quality of the compound selection,
we used PLS to train a linear regression model on the selected compounds. The
number of latent variables for the final model was determined in a five-fold cross-
validation on all selected compounds using the coefficient of determination as
criterion for the optimal number.*> The reason why we chose PLS for evaluation of
the final selection is the robustness of the method. As it uses a projection of the
descriptors, it reliably finds linear correlations of the target property in the
descriptor space. Furthermore, by taking the target property into account, PLS
removes noise in the descriptor space. The cross and square terms we used to span
the search space for the D-Optimal criterion were not used for development of the
PLS models.

The performance of the developed model was then calculated for two different
splits of the datasets. The first split was the external validation set and the second
split the selection set without the compounds that were suggested for testing. The
validation was performed on these two splits to represent different targets or
intentions for the compound selection. The performance on the external validation
set gives a measurement of a global validity, as it contains only compounds
excluded from the selection. It is thus an independent measurement that enables
estimation of the model quality for new compounds. Another point of relevance is
the performance of the model for compounds of interest that were not selected for
testing. In most cases, it is the performance for precisely these compounds that is
the underlying motivation for the experimental design.”[a]
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“PLS regression was also used for the classification dataset set and the retained
continuous values were discretized into two bins.” [e]

3.5.2Criteria

“In QSAR modeling and chemoinformatics the focus within the evaluation of a
novel approach is often exemplified with a spot check on a particular dataset.
Statistical evaluations, taking performance measures such as reliability and
robustness of an approach into consideration are rare. Due to chance correlations,
this can result in misleading conclusions about the applicability of an approach.”[c]

“The measurement of quality was the root mean squared error (RMSE), as well as
the correlation coefficient and the Q? for the regression datasets. The balanced
accuracy as well as the F-Measure was used to estimate the quality of the
classification models.”[e]

3.5.2.1 Average performance

We use the mean values of RMSE, Q2 and the correlation coefficient for all
validations splits as a basic reference to assess the applicability of a certain
approach. The mean values are an accessible reference for a first evaluation and
enable a fast direct comparison of different approaches.

“The statistical significance of the different performances (derived by different
approaches) is estimated according to a binomial test, using the binomial
distribution corresponding to the number of models used in our study.”[e]

3.5.2.2 Reliability in performance

Given a first collections of ten samples, five of them labeled with the value ‘1’, the
other five labeled with the value ‘0’ and given a second collection of ten samples,
all of them labeled with ‘0.5’, the average value of both collections is 0.5.
Nevertheless, the explanatory power of the average value is restricted. Whereas
the assumption that the majority of values within a data collection is close to its
average value is true for the second dataset, it is basically wrong for the first
dataset. This is referred to as the level of uncertainty.

The level of uncertainty can be expressed by the standard deviation, which is 0.5
for the first dataset and 0.0 for the second dataset. It expresses the variance within
the underlying data.

The same effect that the average value on its own has only limited expressiveness
is observable for the observation of the performance on the n validation samples,
we use. Therefore, we use the belonging standard deviation and standard error as
measurements of reliability. The standard deviation gives information about the
adaptability of an approach to the small variations in the dataset, resulting from
the random sampling that was used to generate the validation splits.
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Once again to clarify this, the standard deviation is only used as an indicator for
the reliability, but we do not use it as an indicator for statistical significance.

3.5.2.3  Steadiness in prediction

Another important criterion is a steady decrease in the prediction error with the
selection of additional molecules. The general assumption hereby is that the
performance quality of a model increases with a higher number of compounds in
the training set.

3.5.2.4 Robustness against structurally diverse compounds

The adaptability to small variations within a dataset is not the only indicator for a
powerful experimental design approach, but also the ability to handle structurally
diverse compounds. In order to investigate if this capability is ensured in the
selection approaches, we compare the average model quality derived with the
selection approaches applied to the datasets with and without the structural
outliers, specified in chapter 3.3.
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4 Results and Discussion

This chapter contains the results of five studies that were made on the newly
developed experimental design approaches, as well as a practical application of
these selection approaches.

Hereby, the first study, which focuses on the combination of the partial least
squares technique with the D-Optimal criterion, acts as proof of the concept, that
an iterative refinement of the representation of the chemical space can be
beneficiary in terms of a representative compound selection.

In the second study, the paradigm of the adaptive approaches is generalized and
shown to work for the combination of a similarity-based approach with selected
descriptors as well. Furthermore, the approaches are also compared with various
frequently used experimental design approaches.

The third study focuses on a cluster based selection approach, which is mainly
examined as a static approach (non-adaptive), which selects all compounds at the
same time.

The fourth study, on the other hand, emancipates of the descriptor-based
interpretation of the chemical space and shows the benefits of approaches using
predicted properties and to define the chemical space. Hereby the compounds
similarity is not anymore defined by their pairwise Euclidean distance in the
descriptor space, but by their correlation is the property space and the
applicability domain estimation is used to prioritize them.

In the fifth study, all previously used approaches are extensively compared on the
whole collection of regression datasets, which were used in this thesis. Hereby the
comparison refers to the underlying data representation, as well as to the selection
paradigm. Finally, the gained findings and insights are used to execute a purposive
prioritization of compounds that are commonly used in chemical laboratories,
respective to the required voltage to dissociate a chemical compound. As the
phase of experimental testing is still in progress, the final results of this study are
open.

109



4.1 PLS-Optimal: A proof of concept

The first study we carried out was intended to be a proof of concept, that property
based experimental design approaches are appropriate to improve the
performance of the resulting models. Thereby the focus was to show that a certain
selection algorithm performs more efficient, if it is applied to an iteratively refined,
property-correlated chemical space, instead of principal components.

We decided to select PLS-Optimal for this study and investigate its advantage over
the classical D-Optimal criterion. The reasons to decide for the D-Optimal criterion
as the selection criterion were: firstly its high acceptance within the scientific
community; and secondly, the comparably simple adaption of the approach, to deal
with preselected instances.

The study was limited to four datasets with regression, endpoints. Those
endpoints were the boiling point, the logKoc, logLCso and -logIGCso. “The initial -
loglGCso dataset contained more than one thousand compounds. However, to
evaluate the performance of the developed approach on a relatively small dataset,
a subset of 96 compounds was randomly selected.

Both the classical and stepwise approach were used to select a fixed number of
compounds, which included 10, 20, 30, 40, 60, 80, 100, 130, and 160 compounds
for the three large datasets (logKoc, boiling point, and logLCso) and 6, 10, 14, 18,
and 21 compounds for the small dataset (-loglGCso).”[a]

As the main purpose of this study was to display the applicability of concept, we
decided to use only 100 validation splits. Furthermore, to ensure a higher
variability within those splits, we increased the size of the validation sets to 25%.

4.1.1Comparison of the performance

4.1.1.1 Linear search space

“To compare the methods, we used three and six components alternatively for the
three large datasets and two and four components alternatively for the -loglGCso
dataset.” [a] The order of variables used to define the search space was assigned by
the variance in the descriptor space for the PCA components and by the correlation
to the target property for the PLS latent variables. “The performance of the
developed models is shown in Fig. 46(a-d). The performance of the models built
with PCA regression was significantly worse than that of PLS regression for all
analyzed datasets. Therefore PCA regression results are no further provided.

The selection of these numbers of components for comparison is a reasonable one.
The lower number of PLS or PCA components (3 or 2) shows the performance for a
low dimensionality search space, which is particularly interesting regarding
runtime requirements. The higher number of PLS or PCA components (6 or 4)
adopts the OECD principles'4° regarding the number of descriptors to be used for a
linear model.
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There are several important observations. First, with an increasing number of
selected compounds the model performance also improves. Second, with an
increasing number of latent variables (or principal components for the traditional
method) the performance of the resulting models also increases. This observation
is particularly clear for the stepwise approach, with the exception of the logLCso
dataset.

This is an expected result. A larger number of molecules allows the development of
better models, while higher dimensionality in the search space provides a more
diversified representation of the compounds and thereby increases the
information content of the search space.
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Figure 46. The average error on the a) logLCso, b) logKoc, c) -loglGCso, and d) boiling point datasets
using a linear search space. The performance of the PLS-Optimal approach is shown in red (for six
latent variables) and yellow (three latent variables); the performance of the traditional approach is
shown in brown (six principal components) and green (three principal components). On the x-axis the
number of compounds used to build the according 100 models is displayed. For the traditional D-
optimal design (using principal components) all compounds were selected simultaneously. For the
stepwise approach (using latent variables) the preliminary selected compounds were extended with
new ones each cycle. The y-axis shows the average performance of RMSE. [a]

Let us take a closer look at the performance of the methods on the external
validation split. It is clear that for all datasets, except for boiling point, error
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decreases faster with the stepwise method. Further, using the stepwise approach a
point of convergence, where the performance of the outcoming model no longer
changes, is reached with a lower number of compounds. For the logLCso dataset
(Fig. 46a), the logKoc dataset (Fig. 46b), and the -loglGCso dataset (Fig. 46c), the
performance of the stepwise approach is better than that of the traditional
approach using the same number of latent variables or principal components and
the same number of compounds selected.

This improvement is statistically significant with a p-value < 0.05 for 40
compounds and a p-value < 0.001 for the range 60 to 130 selected compounds for
the logLCso dataset according to the binomial test (the binomial distribution with
N=100 trials corresponding to the number of models used in our study). The
sequential approach using 40 selected compounds and six latent variables
provides the same accuracy of prediction as the traditional approach using 60
selected compounds.

The results for the validation on the logKoc dataset are similar. The increase in
performance derived with the sequential approach using six components in the
range of 40 to 130 compounds selected is significant and on average 0.037 log
units. For the same range of compounds, the increase of RMSE for three
components is 0.079 log units.

For a search space of two dimensions, the performance of PLS-Optimal on the -
loglGCso dataset is better with statistical significance (p < 0.001) for the whole
range from 10 to 21 compounds (14%-30%). The greatest difference in the
performance of the methods is found for 18 selected compounds: in 90 of 100
cases, the models built with the stepwise selection delivered a better result than
those built on the traditional selection.

Comparison of the performance of both approaches on the boiling point dataset
(Fig. 46d) reveals results that differ from those of the other datasets. The
performance of the traditional approach using PCA components is better. In the
case of six principal components used to define the search space, the incline in the
error is steep for the first 40 compounds selected. Beyond that, until 100 selected
compounds, there is almost no improvement in performance.

The results for the compounds in the design set that was not used to train the
model were very similar and are therefore not explicitly discussed in this or the
following sections.”[a]

4.1.1.2 Cross and square terms

“The same calculations as for the linear search space were also performed for the
search space using square and cross terms of the PCA or PLS components. For the
traditional approach, the number of principal components was fixed to the same
values as for the linear approach. The number of resulting meta descriptors was
thus also fixed to 27 and 9 for the three large datasets and to 14 and 5 for the small
dataset. In contrast, the number of PLS latent variables for the stepwise approach
was automatically optimized for this calculation. The procedure for estimating the
optimal number was the same as for estimating the number of components to
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evaluate the resulting mode. We also tried to optimize the number of principal
components in a similar way, regarding the error on reconstruction.192,193
However, our examinations indicated that the performance of the resulting models
improves with any further principal component.
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Figure 47. Development of the average error on the a) logLCso, b) logKoc, c) -l1oglGCso, and d) boiling
point datasets using a search space extended by cross and square terms. For all endpoints, the bold red
line represents the development of the stepwise approach; the development of the traditional
approach on six principal components is represented by a dark red line and on three principal
components by a red-brown line. [a]

The results for the validation on the square terms are shown in Fig. 47a-d. The
axes are similar to Fig. 46. Similar to the linear search space, the performance of
the resulting models improves with an increasing number of compounds selected.
A further observance on all endpoints, except for the boiling point (Fig. 47d), is
that the performance of the traditional approach improves with the number of
principal components used. The selection performance on six principal
components (or 4 for -logIGCso) is better than the selection performance on three
(or 2) principal components for the whole examined range. Additionally, for six or
four principal components and the use of cross terms and square terms, the
development of the error describes a constant curve with a continuously
increasing incline, without the inconstancies observed for the linear search space.
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Although the performance for six or four principal components converges with
that of the stepwise approach, the models built on the compounds selected by PLS-
Optimal are still better for most of the examined ranges on the logLCso dataset (Fig.
47a), the logKoc dataset (Fig. 47b), and the -loglGCso dataset (Fig. 47c). For logLCso,
this improvement is significant from 40 to 130 compounds selected. The average
error for 40 selected compounds is 6% lower for the selection derived using the
stepwise approach. A model with better performance than that, derived from 100
selected compounds using the traditional approach, could be achieved with the 80
compounds selected with the stepwise approach.

For logKoc the development is similar. After an almost similar performance on the
first 40 compounds selected, the stepwise approach performs significantly better
in the range from 60 to 160 compounds (12% - 33%). The average error within
that range is 0.022 log units (3.5%) lower than for the traditional approach. The
development on the -loglGCso dataset is almost analogous. After a similar
performance for the first 10 selected compounds, the average error of the stepwise
approach decreases more quickly than for the traditional approach on four
principal components. We also evaluated the models built on the selected
compounds on the 1000 compounds excluded from this dataset for this study and
found the results to be similar.

For the cross and square-term usage, too, the development on the boiling point
dataset differs from the other datasets. Both the stepwise and the traditional
approaches on six or three latent variables derived from PLS gave almost the same
performance. The error for the PLS-Optimal approach converges faster in the
range from 20 to 40 selected compounds; however, the performance of the
traditional approach is better in the range from 100 to 160 selected
compounds.”[a]

4.1.1.3 Decreased step-size

“As the quality of the crossed traditional approach seems to increase with any
additional principal component, it is interesting to take a look at the selection of
only very few compounds. As it is a requirement for the D-Optimal criterion to
work that the model matrix has more observations than variables, the number of
components to be used is strictly limited. Therefore, on the three large datasets
another examination within the range from 5 to 35 selected compounds was
initiated. We used the meta descriptors containing the normalized components,
their square products and cross products. The number of PLS latent variables used
in the stepwise approach was automatically determined, whereas the number of
principal components used for the traditional approach was fixed to the maximum
that could be used, respective the number of compounds to select. This means one
component for less than six selected compounds, two for less than 10, three for
less than 15, four for less than 21, five for less than 28, and six components for less
than 30 selected compounds.

The results in Fig. 48a —c show that the stepwise approach clearly achieves better

performance for all three endpoints. This improvement is significant (p < 0.001)
for the whole range from 10 to 35 selected compounds. In the case of the logKoc
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dataset (Fig. 48b) and for the range from 13 to 24 selected compounds, the
stepwise approach performed better for more than 90 out of 100 splits.
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Figure 48. Results of the error validation for cross and square terms with a low number of compounds.

[a]

Regarding the boiling point (Fig. 48c), the average RMSE performance for 24
compounds selected by the traditional approach could be achieved with only 13
compounds selected in a stepwise procedure. Furthermore, in the range from 13 to
32 selected compounds, the improvement of the average RMSE for the same
number of selected compounds is better by at least 9 degrees. For logLCso (Fig.
48a), the average performance with 24 compounds selected in a stepwise manner
could not be achieved with less than 32 compounds selected based on principal
components. In the case of the logKoc dataset, the stepwise approach delivers an
average performance for 13 selected compounds that cannot be achieved with less
than 24 compounds utilizing the traditional method. The RMSE for that dataset
was on average 21% less in the range from 10 to 35 selected compounds.
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Finally, comparing the results of the stepwise approach applied to a sequence of
10, 20, and 30 selected compounds with the results of the stepwise approach
applied to the increased step size, the latter delivers better model quality for the
same number of compounds selected. The average RMSE for 28 selected
compounds using the smaller step size is 0.19 log units better for the logKoc
dataset and 0.03 log units better for the logL.Cso dataset.”[a]

4.1.2Interpretation

“Our results, derived from examination of the PLS-Optimal performance on the
logLCso, logKoc, and -loglGCso datasets within a range of 5% to 35% of compounds
selected, show that the stepwise approach utilizing PLS latent variables can
significantly increase the quality of the resulting model and thereby help to save
resources. Compared to a model based on selection of compounds by the
traditional D-Optimal design approach, the model derived from the same number
of compounds selected using the stepwise approach delivered a decreased RMSE
and an increased R? and Q2 for both the linear search space and a search space
extended by cross and square terms. The convergence of the error to a minimum
was clearly faster and the improved performance can be observed in the whole
range from approximately 10% to 30% of compounds selected.

Principal component 2

Principal component 1
Figure 49. Compounds of the logLCso dataset in PCA space. The color of the data points represents the
measured value. [a]

The performance on the boiling point dataset can be explained by the depiction,
shown in Fig. 49, of the chemical space using the principal components. The x-axis
represents the first principal component, the y-axis the third principal component,
and the color of the data points displays the endpoint values. We can clearly see
that not only the first principal component but also the third is strongly correlated
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to the endpoint. Furthermore, the principal components are not just correlated
with the endpoint; they are almost similar to the PLS latent variables, derived on
the whole dataset. Tab.12 shows this correlation for the first PLS and PCA
component. The correlation in the second and third dimension is comparable.
While the PLS-Optimal approach tries in a stepwise manner to find a stable
depiction and correlation, the PCA used for the traditional approach provides them
exactly. As the boiling point is a very simple endpoint and widely cleared up, this
effect was a foreseeable one. Nevertheless, it is a good depiction of the limitations
of the developed approach and we suggest using the stepwise approach
particularly for experimental designs for complex endpoints.

Table 12. The loadings and rank of five descriptors for the first PLS latent variable and the first
principal component

Descriptor PLS loading Rank PLS PCA loading Rank PCA
SeaC2C3aa 0.506 1 -0.33 1
SaaCH 0.471 2 -0.321 2
SeaC2C2aa 0.332 3 -0.272 3
SsF -0.273 4 0.167 8
Se1C3Cl1a 0.273 5 -0.249 4

The models built on PLS-Optimal design deliver a more stable performance
regarding the error development for all four examined endpoints. Whereas with
the classic approach the performance shows some variability and deviations with
an increasing number of selected compounds, the performance development of the
PLS-Optimal design is much smoother and approximates a hyperbolic function.
This is observable even for a search space of only three variables.

Whereas a principal component can be completely uncorrelated to the target
property and thereby lead to an accumulation of noise, the PLS components
contain only correlated information. Furthermore, they are ranked by their
importance for the specific endpoint, whereas the principal components are
ranked solely by their variance. This leads to an accumulation of irrelevant
information in the principal components. Therefore, the number of principal
components required to capture the same amount of information for an endpoint
is usually higher than the required number of PLS latent variables. This is
important, both in terms of stability and efficiency, in order to keep the
dimensionality of the search space as low as possible.

The effect that PLS components are less prone to noise can be observed for the
selection of only a small number of compounds, in particular when using cross
terms. In the range from 5 to 35 selected compounds, PLS-Optimal delivers
significantly improved performance compared to the traditional D-optimal design.

We repeated the whole study with raw (non-normalized) and standardized
descriptors, which resulted in a worse performance of the resulting models. The
average error performance was worse and the development of the error was less
stable for both analyzed approaches. We also compared the stepwise approach
with the traditional one on other descriptor sets, i.e. ISIDA fragments3! and QNPR
descriptors.3* The results were similar and did not influence our conclusions.”[a]
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4.2 DescRep: A generalization of the adaptive concept

The results of our first study support the theory that adaptive, property-oriented
experimental design approaches result in a compound selection, which enables the
building of significantly improved models, still, results were obtained for only one
selection approach. Therefore, our second study aimed towards the generalization
of the stepwise adaptive approach we introduced with the PLS-Optimal design.
Furthermore, it was intended to give a more widespread overview of the
performance of adaptive approaches in comparison to the variety of available
static approaches.

We therefore decided to use a similarity based selection algorithm instead of a
dissimilarity based on and combine it with a representation of the chemical space
by selected descriptors. This approach is referred to as DescRep. Additionally we
wanted to enable the estimation of the applicability of such approaches to
classification datasets. Therefore we examined the performance of the selection
approaches not only on the three regression datasets for logLC50, logKOC and the
boiling point, but also on the AMES classification dataset. The dimensionality of the
search space wax fixed to five components for all datasets and approaches.

In contrast to the evaluation of PLS-Optimal, which mainly focused on the average
error performance, we also investigated the quality of the resulting models
referring to criteria, such as outlier robustness, stability and reliability. The
parameterization of the validation pipeline was according to the default values.

4.2.1Comparison of the results
4.2.1.1 Regression datasets

42.1.1.1 Model performance

“To enable a comparison of the quality of the models resulting from the examined
selection approaches, we calculated the average RMSE performance and the
average correlation coefficient for each number of compounds selected. Fig. 50a-c)
shows the results of this comparison using the prediction error, whereas Fig. 50d-
f) shows the comparison using the correlation. The x-axis displays the number of
selected compounds and the y-axis the measurement of quality.

The first general observation on all of the datasets and selection approaches is that
with an increasing number of selected compounds the average error decreases,
whilst the average correlation in the models increases. This is expected as a larger
number of molecules provide an increase in the amount of information obtained
and thereby enables one to build a better model. Furthermore, for all datasets the
stepwise approaches reach a good performance, which is constantly within the
range of the best approaches.

PLS-Optimal reveals problems with the BP dataset, these problems were explained

in our previous study with the similarity between the loadings of the PLS latent
variables and the loadings of the principal components. The average performance
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of models derived from compounds selected with DescRep is also the best for the
boiling point.

Boiling point logkOC logLC50
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Figure 50. Average performance of the models resulting from the selections of the examined
approaches, displayed as a-c) RMSE and d-f) correlation coefficient on the datasets for a, d) boiling
point, b, e) logKoc and c, f) logLCso. The stepwise approaches are displayed by the dashed orange lines
(DescRep) and the dashed yellow lines (PLS-Optimal). The color assigned to the random selection is
black, red for the MDC selection, green for the space filling design and blue for the dissimilarity
selections. [c]

A further observation is the smooth hyperbolic development of the average error
performance on the 250 splits for each dataset. Whereas the static approaches
result in unexpected deviations, there are no irregularities for the stepwise
approaches, neither in the error, nor in the correlation development. MDC is the
only systematic approach that derives selections resulting in a performance, which
is as comparably good, although it reveals similar problems as the other
approaches for the boiling point and the logKoc dataset until 20 selected
compounds.

The models derived from the selection of both stepwise approaches show a low
initial prediction error. The performance of PLS-Optimal for seven selected
compounds is better than e.g. than that of the D-Optimal criterion for 25 selected
compounds on the boiling point dataset, for 15 compounds on the logKoc dataset
and on the logLCso dataset for 20 compounds. Further worth mentioning, is the
good performance of models resulting from the random selection. Like the
stepwise approaches, the random selection provides models that reliably decrease
in average error and increase in average correlation for a growing number of
compounds selected.
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Regarding the correlation coefficient, MDC shows the fastest increase of all
examined methods for the boiling point and the logL.Cso dataset. The models from
the MDC selection on the logKoc dataset, clearly show a worse initial correlation
for less than 20 selected compounds. Although the convergence in the correlation
for the stepwise approaches is not that fast, it works equally well on all datasets
and it is still faster in comparison to all other systematic approaches.

Referring to the binomial test, we found that the observed improvements in the
resulting models derived with DescRep are of high statistical significance (p <
0.001) for the range of 7 to 20 selected compounds for the boiling point dataset, 7
to 25 selected compounds for logKOC and 15 to 40 selected compounds for
logLC50, when compared to the random selection. Regarding a comparison of PLS-
Optimal with a random approach, we observed this level of statistical significance
for the range of 10 to 25 selected compounds for the logKOC dataset and 7 to 15
selected compounds for the logLC50 dataset. Furthermore, DescRep performed
better than MDC (the best static approach) with high statistical significance (p <
0.001) over the whole examined range for the boiling point and for 5 to 15 selected
compounds for the logKOC dataset.”[c]

4.2.1.1.2 Consistency and stability

“In addition to the average error, the reliability and stability in the performance of
the resulting models have to be taken into consideration. We therefore calculated
the standard deviation within the models of the 250 trials on each dataset, for each
number of selected compounds, and for each selection approach. The results are
shown in Fig. 51. The colors are identical to that of Fig. 50 and the y-axis displays
the standard deviation, whereas the x-axis displays the number of compounds
selected.
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Figure 51. Comparison of the standard deviation of the selection approaches on a) the boiling point, b)
the logKoc and c) the logLCso dataset. [c]

The first general observation is that with an increasing average error the standard
deviation also increases for most of the approaches. The exceptions are the models
derived with the Kennard-Stone algorithm on the logKoc dataset, as they show an
increase in standard deviation by a factor of two for 20 compounds selected in
comparison to 10 compounds selected.” [c] As this extraordinary behavior is
affecting exclusively the static approaches, whereas the development of the
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standard deviation of the stepwise approaches is as expected, it demonstrates the
exceeding sensitivity of the all-in-one approaches to small variations in the dataset.
This is likely to be reasoned by the distribution of the compounds in the logKoc
dataset, when represented with principal components (Fig. 21). Most compounds
with high values for logKoc are located on the right peak of the data distribution.
However, the affected area of the descriptor space contains compounds with low
logKoc values as well. The exclusion of a certain compound with a high property
value from the design might therefore consequence in the selection of a locally
proximate compound, with a completely different value regarding the target
property, which consequences in a decrease in the logKoc range, taken into account
for modeling.

“Regarding the random approach, the variations in the initial performance are
high. This high level of uncertainty in the resulting models is why this approach is
frequently found inappropriate, in spite of its reasonable average performance.

The space filling design has the lowest standard deviation for the resulting boiling
point and logKoc models, whereas the MDC approach, the only systematic method
that could at least partially reach the same performance as the stepwise
approaches, has a significantly higher standard deviation than DescRep on all
datasets and for the whole range of selected compounds.

a) D-Optimal b) Kennard-Stone C) PLS-Optimal
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Figure 52. All 250 models on the logKoc dataset. [c]

Fig. 52 provides a more detailed insight into the distribution of performance of the
resulting models and the development of particular validation splits. It shows the
RMSE development of all 250 validation splits on the logKoc dataset for a) the D-
Optimal criterion, b) the Kennard-Stone algorithm, c) PLS-Optimal, d) the random
selection, e) the MDC selection and f) DescRep.

122



Both stepwise approaches produce only a small number of low performance
outliers, whereas the majority of the validation splits results in models with quite
similar performance. Additionally, for almost all splits, the initial performance of
the resulting model is lower than for the other approaches and the error
performance shows a fast convergence.

Furthermore, the error on the validation splits steadily decreases for a higher
number of selected compounds. Especially for the dissimilarity approaches this is
not the case, e.g. Kennard Stone selection delivers a worse model for 20 than for 15
selected compounds. And for the D-Optimal criterion these deviations of worse
models for a larger training set are widely spread over the whole range of selected
compounds.”[c]

4.2.1.1.3 Outlier robustness

“All calculations were repeated with the extended sets, each containing a
structural outlier. To compare the effects of such outliers to models derived by the
selection approaches, we determined the difference in the average RMSE between
the sets without and the sets with outliers. The results are shown in Fig. 53. The
colors are in accordance with all previous figures, and the y-axis displays the
difference in average performance. Approaches that result in models with a better
performance on datasets with structural outliers, have positive values, those
performing better on sets without structural outliers, have negative values.
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Figure 53. Effects of the structural outliers to the selection approaches to the examined datasets,
displayed by the difference in average RMSE performance. [c]

Both stepwise approaches show only small deviations in the resulting models.
Apart from an initial better performance of PLS-Optimal on the boiling point
dataset without structural outlier, the selections derived with the adaptive
approaches perform equally well on the extended datasets. Also the MDC selection
is mostly resistant to the outlier, whereupon a tendency to deliver better
selections on datasets with outliers is observable.

Contrary, the effect of only one additional compound on the other approaches was
incalculably. The models derived with the space filling design, the D-Optimal
criterion on principal components and the Kennard-Stone algorithm, have no clear
tendency towards the original or the modified dataset. The sign of the difference in
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the average error of the resulting models differs from dataset to dataset. This is
also the case for the space filling design, even within the logKoc dataset.”[c]

4.2.1.2 Classification dataset

“The examination of the influence of structural outliers in a classification set was
not considered in our study as we could not find a structural outlier in the dataset
with such a strong influence on the principal components. Furthermore, the size of
the dataset made it impossible to investigate the performance of the MDC
selection, as the runtime requirements exceeded more than one hour for one
sample. We therefore concentrated on the prediction quality of the models
resulting from the remaining selection approaches. The measurement of quality
therefore is the balanced accuracy and the deduced standard deviation as a
measurement of uncertainty.

As shown in Fig. 54, the random selection reveals the best performance, combined
with a low level of uncertainty. This is due to the relatively big size of the dataset.
The number of selected compounds therefore had to be larger, which resulted in a
significantly decreased probability of selecting an adverse and clearly
unrepresentative combination of compounds with the random approach.
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Figure 54. Performance on the classification dataset, showing a) the average F-measure and b) the
according standard deviation. [c]

Initially the performance of DescRep is equally good, but starting from 120
selected compounds the balanced accuracy is lower, and starting from 100
selected compounds, the standard deviation is higher, when compared to the
random approach. A direct comparison of the performance on the 250 splits
resulted in the finding that this difference in performance is not statistically
significant until 150 selected compounds. Further worth mentioning is the good
initial performance of DescRep for 20 selected compounds, which is better with
high significance than the performance of all other approaches for the same
number of selected compounds.
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The performance of PLS optimal is comparable to that of other systematic
approaches and significantly worse than that of the DescRep approach. By
example, the models resulting from 300 compounds selected with PLS-Optimal,
the space filling design, the Kennard-Stone algorithm or the D-Optimal criterion,
had a similar average prediction performance as the models derived with DescRep
selecting only 60 compounds. Furthermore, the development of the error curve of
all approaches, except the random selection and DescRep, shows numerous
inconsistencies and irregularities.”[c]

4.2.2Interpretation

“Both stepwise approaches: DescRep and PLS-Optimal, performed equally well on
the analyzed datasets. The error performance of their resulting models is in
general lower than that of the approaches that select all compounds at the same
time. The development of the error is smooth and reliable. Both methods reveal a
lower standard deviation compared to MDC, which is the best performing non-
stepwise approach. The average correlation coefficient develops in a similar way.
Neither on the logLCso dataset, nor on the logKoc dataset any of the classic
approaches was performing better than the stepwise approaches and on the
boiling point dataset, none of the classic approaches performed better than
DescRep.

This good performance can also be observed in the depiction of the specific models
in Fig. 52. At large, for both stepwise approaches an increase in the number of
selected compounds results in a decrease of the error. This is not the case for the
Kennard-Stone algorithm and the D-Optimal criterion where high variations in
performances were observed.
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Figure 55. Variability in selection. [c]

Overall, DescRep is superior over the PLS-Optimal approach, as it was able to
deliver high quality performance models even on the dataset where the
performance of PLS-Optimal was not ideal. Nevertheless, the decrease in the
performance accuracy of PLS-Optimal on the boiling point and the classification
dataset can be easily explained and is therefore avoidable. The boiling point
dataset resulted from a correlation between the PLS components and PCA
components. In the case of the classification dataset, the choice of a dissimilarity
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selection was quite inappropriate as the D-Optimal criterion selects compounds at
the periphery of the chemical space which are most likely furthest away from the
separating plain. It is important that DescRep is not affected with such problems.

To investigate the major difference between the stepwise and the non-stepwise
(static) approaches, we analyzed the compounds selected by the different methods
and compared their distribution in the design sets. To compare the variability in
the selections of the methods, we counted the number of different compounds
selected in the 250 trials. We found a significant difference between the stepwise
and the static approaches. Whereas the systematic approaches, which select all
compounds at the same time, have a comparably small pool of compounds that are
selected, the stepwise approaches are resulting in a higher variety of selected
compounds. This variability is shown in Fig. 55.

The stepwise approaches have a better adaptability to small variations in the
datasets. The observance that PLS-Optimal has a lower variability in selection than
DescRep is coherent as the D-Optimal criterion also has lower variability than
MDC. Still, the variability of DescRep is significantly lower than that of the random
approach. This shows that the selection process is still systematic and contributes
to better performance of DescRep compared to random selection.

It is interesting to note that despite step-wise approaches have a higher variation
in the number of selected compounds, the models developed with these
compounds have lower variation compared to those developed using static
approaches. The contradiction clearly indicates that the variability in selected
compounds in both stepwise approaches is a meaningful adaption to changes in
the dataset. Whilst the variation within the selected compounds is clearly
increased for the MDC approach compared to the stepwise approaches, the
resulting models show a significantly higher standard deviation than the stepwise
approaches.

Additionally, not only referring to the adaption of small variations in the dataset,
but also in terms of outlier adaption, the stepwise approaches show a convincing
performance. The average error of the resulting models is similar with or without
an outlier. The influence of structurally diverse compounds is only minor, when
compared to the changes in performance for the static approaches.

We repeated all calculations with design sets of different size (66% and 75% of

compounds) for all datasets and found no significant difference to the results
presented in this study.”[c]
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4.3 k-Medoid: An improved static approach

Our previous studies clearly indicate a better performance of models derived with
adaptive approaches. Still, there are design problems in applied chemistry, for
which the application of a stepwise or sequential measurement procedure is
absolutely inappropriate. This applies, for example, for endpoints that require
experiments with comparably low financial expenses, but which are highly time-
consuming. Accordingly, there is a need for efficient static approaches as well.

In our third study, we investigated the use of a cluster based experimental design,
utilizing the k-Medoid partitioning. We compared this approach to other static
experimental design approaches and examined the performance of models derived
from their selection for the logLCso dataset, the logKoc dataset and the data
collection on boiling point.

Once again, in terms of efficiency, we used only 100 validation splits with
validation sets containing 25% of the available data. “All approaches were used to
select a fixed number of compounds, namely 10, 20, 30, 40, 60, 80, 100, 130 and
160. For each of the datasets and for each selection approach, the compound
selection was achieved on three, five and seven latent variables.”[b]

Additionally, we used the 1ogBCF for the validation of the evaluation of the k-
Medoid approach, but instead of a representation of the dataset with ALog_PS
descriptors and E-State indices, we decided to use the five descriptors that were
suggested for optimal modeling by Gramatica et al.100

“For this dataset, two hundred and fifty splits were generated, each containing
90% of the compounds to be used in the selection process and 10% excluded from
it. Furthermore, the number of compounds selected was fixed to 5, 8, 10, 15, 20,
30, 40, 50, 75, 100, 125, 150 and 180; the selection of the compounds was
performed in a search space containing four principal components, derived from
the five descriptors.

The evaluation of the performance on this dataset took not only the predictions on
the compounds within the external validation set into consideration, but all
compounds that were not selected by the applied approach and which were
thereby not used for the training of the model. Further, the model for this dataset
was not built with PLS, but from a multiple linear regression on the five
descriptors used for the published model.”[b]

4.3.1Comparison of the performance

4.3.1.1 Performance of the collections logLCsg, logKoc and boiling point

“Fig. 56a-f) shows the results of the validation on the selection approaches for the
logLCso dataset (a-b), the logKoc dataset (c-d) and the boiling point dataset (e-f),
including the standard errors as dots. The number of principal components used in
each column is three (left column) and seven (right column). An exception
therefore is the random selection, as this is independent of the number of latent
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variables and the space-filling design, which was performed on a fixed number of
three latent variables. To provide a statistical reference, for each of the datasets, a
PLS model was built using a five-fold cross validation. These reference models
provided an RMSE of 0.77 for logLCso, 0.52 for logKoc and 35°C for the boiling
point.
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Figure 56. Performance of the approaches on the logLCso dataset, the logKoc dataset and the boiling
point dataset, with three and seven latent variables. k-Medoid is displayed in red, the space-filling
design in green and Kennard-Stone in purple; the D-Optimal criterion is blue or bright blue for a linear
or a quadratic search space, and the MDC approach is marked in yellow. The random selection is
shown by the black curve. The x-axis represents the number of selected compounds and the y-axis the
average RMSE of 100 trials. [b]
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To investigate the underlying chemistry, we analyzed, which descriptors spanned
the first and the second PLS-component. Tab. 13 contains these descriptors and
their loadings for all three datasets. The first component for the logLCso dataset is
highly correlated with lipophilicity whereas the second indicates the molecule size
as highly important. A similar mechanism can be seen for the logKoc dataset. Also
for the boiling point dataset the second component was mainly correlated with the
length of the carbon chain, but for the first component mostly polar properties are
crucial.

Furthermore, the performance derived from a selection on the D-Optimal criterion
using cross and square terms was examined for three latent variables only. The x-
axis in each figure indicates the number of compounds selected and the y-axis
shows the average RMSE performance. The initial cluster centers for the k-Medoid
approach in this section were assigned randomly.

The first observation is that with a greater number of selected compounds the
model performance also improves. This observation applies for all approaches and
it is expected, since a larger number of molecules allows better model
development. A second observation is that for all datasets the random selection
performs well. At first glance this may seem surprising but two facts have to be
taken into consideration. First, the shown error is an average value and although
this average value is quite well, single values can provide clearly worse
performances. And second, the three datasets used for the evaluation are
collections without chemical review. Their composition is thus not restricted to a
specific class of chemical compounds.

Furthermore and of greater interest, for all datasets for the whole range of
compounds selected and for each number of latent variables used to define the
search space, the performance of the k-Medoid approach (shown by the bold red
curve) is among the best. Compared to all other approaches, this approach shows
the best initial performance and a rapid decrease of the error.

Especially for a small number of selected compounds, in the range from 10 to 30
compounds, the models derived from the k-Medoid selection perform better than
for any other approach except the MDC selection on the logLCso dataset. This
improvement is statistically significant. For a binomial test from the direct method,
using the Binomial distribution and 100 trials, the p-Value is lower than 0.01.

The best initial performance for ten selected compounds is, for all six examples
derived from the selection of the k-Medoid approach. In the range of 80-160
selected compounds, the performances of the models derived by the k-Medoid
approach, the random selection, the MDC approach and the space-filling design
converge and are comparable.

Contrary to other approaches, the development of the error for the k-Medoid
approach describes a permanent curve with a constantly increasing incline,
without the inconstancies, that can be observed for the MDC approach, the space-
filling design and the D-Optimal design. The development of the performance of
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the k-Medoid approach is smoother and approximates a hyperbolic function,
regardless of the number of principal components used or the dataset.”[b]

4.3.1.2 Performance on the logBCF dataset

“For the validation of the performance on the logBCF dataset, we compared the k-
Medoid approach to a random selection, the Kennard-Stone algorithm, a space-
filling design, MDC and the D-Optimal criterion. As the dependency between the
endpoint and the descriptors is known to be linear, use of cross and square terms
is not required. Fig. 57 shows the results of the validation.

The first observation is that, compared to the other datasets, the decrease in the
error for all approaches is faster. The point of convergence, where the quality of
performance no longer increases significantly, is reached between 20 and 30
selected compounds for all approaches except the space-filling design. This results
not only from the increased set size, but also from the linear correlation between
the descriptors and the endpoint.

The area of interest for experimental design is thereby the range from 5 to 30
compounds selected. Comparison of the models derived using the different
selection approaches within that range reveals converse results to those on the
other datasets, as all approaches performed significantly better than the D-Optimal
criterion for logKoc, logLCso and boiling point. For the logBCF dataset, the D-
Optimal design delivers the best initial performance for five compounds selected
and a fast decrease of error. Furthermore, Kennard-Stone and the space-filling
design, which delivered good results for the other datasets, are significantly worse
than the other approaches in the range from 40 to 120 compounds selected. The
random selection, like the MDC approach, shows a high average error for 10 or
fewer compounds selected, and the standard error within that range of selected
compounds is high, compared to the other approaches.

logBCF

K-Medoid
Random

FFD
D-Optimal
Kennard-Stone
MDC

bEet

RMSE

06 08 10 12 14 16 18

T T T
0 50 100 150

Number of compounds selected

Figure 57. Performance of the approaches on the logBCF dataset. Colors and axes are as in Fig. 56. [b]

Only the k-Medoid approach performs equally as well on the logBCF dataset as on
the other datasets. It delivers the second-best initial performance and reaches an
average RMSE, which is lower than that derived with the D-Optimal design, for

130



seven compounds selected. Furthermore, for this dataset, too, the k-Medoid
approach shows a very smooth development of the error without any
deviations.”[b]

4.3.1.3 Initial cluster centers
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Figure 58. Comparison of the performance of the k-Medoid approach with different initial cluster
centers on three, five and seven latent variables. The 15-fold random approach is shown in red, the
approach utilizing the D-Optimal criterion for the initial selection is in green and Kennard-Stone is in
blue. [b]

“To investigate whether and how the selection of the initial compounds influences
the resulting selection and thereby the performance of the derived model, we
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compared the results of the standard approach using the 15-fold random approach
to results derived with a fixed initial selection of compounds. To select these initial
compounds, we used the Kennard-Stone algorithm and the D-Optimal criterion.
The performance was calculated on the logLCso dataset, the logKoc dataset and the
boiling point dataset for three, five, and seven latent variables. The results of this
examination can be seen in Fig. 58.

Our results show that contrary to other approaches, the number of latent variables
used for the search space does not influence the quality of the resulting model. The
average RMSE does not show any statistically significant difference regarding the
number of principal components used except for the boiling point dataset and the
logLCso dataset, using seven latent variables, and the D-Optimal criterion for the
initial selection. Taking the initially selected cluster centers into consideration, the
results are not so clear. While the performance seems to be independent of the
initial selection for the logLCso dataset, the best performance for the logKoc dataset
is achieved by the random selection. Regarding the boiling point dataset, both the
random selection and initial selection derived with the Kennard-Stone algorithm
work equally well.”[b]

4.3.2Interpretation

“The k-Medoid approach for the experimental design was the only one that
performed equally well on all datasets. We repeated the whole study with raw
(non-normalized) and standardized descriptors, which resulted in a decreased
performance of the resulting models. Both for the collections on logLCso, logKoc
and boiling point and on the dataset for logBCF with the linear dependency
between descriptor space and endpoint its performance was always among the
best. Whereas the D-Optimal criterion worked best for the logBCF dataset but
displayed a comparatively weak performance on the datasets with no explicit
linear correlation, and whereas approaches like MDC or FFD showed a good
performance on the three larger data collections but a poor initial performance or
a discontinuous development of the error on the logBCF dataset, k-Medoid always
displayed a fast and smooth decrease of the error, and a good initial performance.
Compared to the models resulting from the selections derived by other approaches
(i.e. MDC, D-Optimal, Kennard-Stone), models resulting from the selection derived
by the k-Medoid approach could often reach the same performance with 40% less
compounds used for training. This can be seen best in case of the logKoc dataset
and makes the k-Medoid approach the favorable one from an economic point of
view. Furthermore, k-Medoid was the only approach that performed better than
the random selection on all datasets.

To investigate the advantages on the level of PLS modeling, we executed the
selection algorithms on the whole logKoc dataset to draw a sample of ten
compounds.

Each selection was then used for PLS modeling and the first two PLS components
were examined regarding the contribution of the eight descriptors, most important
for the logKoc dataset. Fig. 59a-e) shows the loadings of these descriptors. The
loadings derived from the model on the whole dataset are indicated black, all other
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colors are accordingly to the Fig. 56-58. The grey arrows display the shift in the
loadings and descriptors encircled in red indicate those, that did neither contribute
to the first nor the second PLS component.” [b]
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The closer dots connected by an arrow are and the lower the number of encircled
black dots is, the closer the model resulting from a certain selection approach is to
the model derived on the whole dataset. “The results show, that even for a number
of only ten compounds selected, the k-Medoid approach finds the most relevant
correlations from the reference model on the whole dataset. Contrary to all other
approaches, the k-Medoid selection delivered a model, with only one of the
relevant descriptors disregarded. Furthermore, the shift in the loadings is lower
than for all other approaches.

Aside from this, the performance of the k-Medoid selection showed no statistically
significant difference for a search space of three, five or seven principal
components, if for the selection of the initial cluster centers a 15-fold random
approach was used. Thus it is less dependent on an appropriate number of latent
variables than other approaches. For the initial selection of the cluster centers with
the Kennard-Stone algorithm or the D-Optimal design and for a small number of
compounds selected, the problem occurs, as mentioned in the introduction, that
both approaches work as ‘outlier detectors’ for a higher dimensionality of the
search space. This can be best seen in the performance on the boiling point dataset,
where the initial selection of the cluster centers with both approaches leads to a
significantly decreased performance for seven principal components and ten
compounds selected.

Table 13. The five most important descriptors and their loadings for the two main PLS-components.

Component 1 Component 2
Descriptor Loading Descriptor Loading
logLCso ALogPS_logS 0.524 SdO 0.360
ALogPS_logP | -0.431 SaaCH 0.341
SeaC2C3aa -0.362 SssCH?2 -0.307
SaaCH -0.280 SeaC2C2aa 0.294
Se1C2H1a 0.232 SeaC2C3aa 0.282
logKoc ALogPS _logS -0.421 SsCH3 0.489
ALogPS_logP | 0.379 SeaC2C2aa -0.315
SeaC2C2aa 0.331 SsH -0.268
SaaCH 0.324 Se1C1C2ss -0.263
SeaC2C3aa 0.319 SaaCH -0.236
Boiling point | SeaC2C3aa 0.506 Se2C301s 0.419
SaaCH 0.471 Sdo 0.335
SeaC2C2aa 0.332 Se1C2H1s -0.267
Se1C3Clla 0.273 SssO 0.254
SsF -0.273 Se1C4F1s 0.249

A reason for the good performance of the k-Medoid approach is that it combines
the advantages of the three basic ideas and it minimizes their disadvantages:
* Like a space-filling design, it covers the whole chemical space, but one
corresponding to the real distribution.
* Like approaches based on selection of the most distinct compounds, each
point in the periphery of the data cloud is represented in a cluster.
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* From each cluster the most representative compound is selected, as the
criterion of the minimum distance is applied.

It is further worth mentioning that the k-Medoid approach is not subject to
restrictions as the other approaches. Whereas for the space-filling design it is
impossible to fix the number of compounds finally selected, with the k-Medoid
approach the resulting number of compounds can always be precisely defined.
Unlike MDC, k-Medoid has no stop criterion, and even a small number of
compounds can be selected from a high dimensional search space. This is not
possible with the D-Optimal criterion, as the number of compounds to be selected
must be higher than the number of principal components.

Regarding the examination on the published QSAR set for logBCF and the usability
of the examined approaches as tools to define the split between the training and
validation set, the D-Optimal approach clearly works best for a small number of
compounds selected; however, it is not an appropriate approach for this purpose.
The D-Optimal criterion works by selecting those compounds that are the most
distinct regarding the descriptor space, and these are the compounds that usually
occupy the minimum and maximum values on the axes of the descriptor space. As
the dependency between the target property and the selected descriptors is
known to be linear, the compounds with extreme values regarding the descriptor
space also exhibit extreme values regarding the target property. Therefore the
usage of the D-Optimal criterion for the split into test and validation set will lead to
an unbalanced selection of only compounds with maximum and minimum values
for the target property.”[b]

135



4.4 Ensemble based approaches: Using the applicability domain

The three previous studies worked with a representation of the chemical space
which was basically defined by descriptors. Although this is the most commonly
used concept of illustrating chemical similarity between molecules, it surely is not
the only one.

Our fourth study focused on selection approaches detaching from the paradigm of
a descriptor based view on chemical compounds. Therefore, we used concepts
obtained from the ensemble based applicability domain estimation to represent
the correlations between different molecules. We developed and examined AD-
Spider and AD-Fetcher two different approaches, aiming to detect and select
compounds of high statistical relevance. Furthermore, we investigated the benefits
of a combination of classical selection approaches with a chemical space that is
defined by predicted properties.

We statistically evaluated these approaches and compared them to non-adaptive
approaches, mainly focusing on the k-Medoid approach, as this turned out to be
the most efficient static selection algorithm. Therefore we used four regression
and two classification datasets. The considered endpoints were logBCF, logKoc, -
loglGCso, and the boiling point, as well as the AMES mutagenicity test and
cytochrome inhibition. The parameterization of the validation pipeline once again
was according to the default values.

4.4.1Comparison of the performance

4.4.1.1 Regression datasets

“Fig. 60 shows the average error performance on the non-selected compounds for
a) the logBCF dataset, b) the logKoc dataset, c) the boiling point dataset and d) the -
logICGso dataset. The x-axis represents the number of selected compounds and the
y-axis represents the average RMSE out of 250 trials. The random selection is
illustrated with the dashed black line, the k-Medoid approach with the blue lines
and the Kennard-Stone approach with the green lines. Referring to the underlying
data, the approaches have been executed on, the coloring of the lines is dark green
or blue for the static approaches on principal components derived from
descriptors or bright green and blue for adaptive approaches on principal
components, derived from the predicted properties. The coloring of the AD-
Fetcher approach that works only on the distance to model is yellow and for the
AD-Spider approach, which additionally takes the pairwise correlations between
the predictions into account, the coloring is red. The same coloring was used in all
further figures.

The first observation that can be deduced is that for all approaches and for all
datasets, the average error is decreasing with an increasing number of selected
compounds. A second observation for all datasets is that the performance of the
Kennard-Stone algorithm on principal components, derived from descriptors,
delivers the worst models. Although the use of principal components on predicted
properties improves the performance, it is still significantly worse than most other
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approaches. What is further noteworthy is the high initial average error for both
implementations of the Kennard-Stone approach, as well as the inconsistent
development of the error performance for the static implementation. The
development of all other approaches is smoother, approaching a hyperbola
function.
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Figure 60. Comparison of the average RMSE performance on the 250 splits for the regression datasets.

[e]

Referring to the logBCF dataset, the only approaches that performed significantly
better than the random approach, were the two k-Medoid approaches (on
principal components derived from descriptors or derived from predicted
properties). All other approaches performed worse with statistical significance
(p<0.05). Further, the approaches using the AD estimation performed similarly
and better than the Kennard-Stone approaches. On the logKoc dataset, all
systematic approaches except the Kennard-Stone approaches (AD-Spider, AD-
Fetcher, k-Medoid, k-Medoid on predicted properties), perform equally well and
significantly better than the random approach. Referring to its low initial average
error, the AD-Fetcher can be seen as the best working approach.
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The observations on the boiling point dataset are similar to those on the logKoc
dataset with the exception that the best initial performance is derived with the
clustering approaches and that the improvement to the performance of the
random approach is not so significant. Further, starting from 40 selected
compounds, the performance of the AD-Fetcher does not improve anymore.
Finally, on the -loglGCso dataset, only the AD-Spider approach performs
significantly better than the random approach. The k-Medoid approaches show a
similar performance as the random approach, whereas the clustering approach on
predicted properties is permanently performing better than the clustering
approach on descriptors. Still, this difference is not statistically significant.
Comparable to the performance on the boiling point dataset, the AD-Fetcher has a
good initial error performance, but reveals stagnation from 30 selected
compounds.

The evaluation of the performance referring to the correlation revealed no insight
beyond. The observations were equivalent to those on RMSE therefore it is not
discussed in detail in this paper. Furthermore, the development of RMSE and
correlation on the external validation set was similar to the development on the
non-selected dataset for all endpoints and methods.

To be enabled to do a comparison of the stability and reliability of the approaches
with one another, we calculated the standard deviation of the RMSE for all
approaches on all datasets. The results can be seen in Fig. 61a-d).

We explicitly choose not to show the standard deviation in the same plot as the
average RMSE, as this implicates the possibility to evaluate the significance of an
improved performance by overlapping intervals. In fact, due to the preceding
random exclusion of 16% of compounds from each design set, this is not the case.
A sampling on design sets showed that the performance derived from different
splits differs with more than two standard deviations. Still, the standard deviation
of the models derived with the selection approaches is a valid measurement to
estimate the uncertainty within one selection approach and compare it to that of
other approaches.

The observations on the standard deviation are similar for all datasets. Compared
to the other approaches, the initial standard deviation of the random approach is
higher, but furthermore, it is decreasing the fastest. For all other systematic
approaches the standard deviation decreases (and thereby the reliability of the
resulting models increases) with a growing number of selected compounds. The
standards deviation of the Kennard-Stone algorithm on descriptors reveals quite
an inconsistent development. For the logBCF it is permanently growing, for the
logKoc dataset, it has a peak at 20 selected compounds, for the boiling point
dataset, the peak is reached at 40 selected compounds. Only for the -loglCGso
dataset the development is similar to that of other systematic approaches.
Furthermore the model error development on the boiling point dataset is
remarkable when considering the reliability of the AD-Spider approach. For the
whole range from 15 to 40 compounds, we compared the models derived on each
of the 250 validation splits with the model derived in the previous step. We found
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that on the whole range, a minimum of 200 models (80%) improved with any
additional selected compound.”[e]
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Figure 61. Comparison of the standard deviation derived from the RMSE performance. [e]

4.4.1.2 Classification datasets

“Referring to the size of the CYP-inhibition dataset, the computational costs of the
AD-Fetcher approach (an overall number of 130,000 PLS models is required) and
taking into consideration its poor performance, we disclaimed a full statistical
validation of the approach on the classification dataset. The performance of the
other approaches is shown in Fig. 62a) and the according standard deviation in Fig.
62b). The y-axis shows the development of the balanced accuracy.

Similar to the results derived on the regression datasets, the performance of the
Kennard-Stone approaches was significantly worse than that of other approaches.
Further, the k-Medoid approaches are within the best methods for compound
selection. The performance of AD-Spider is significantly worse than that of the
clustering approach and also worse than the results derived from a random
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selection. A comparison regarding the F-measure as criterion of prediction quality
resulted in the same observations.”[e]
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Figure 62. RMSE and according standard deviation for the classification dataset. [e]

4.4.2Interpretation

4.4.2.1 AD-Spider

“The AD-Spider approach, which takes the variance and the correlation of
predictions into account, performs significantly better than the performance of a
random selection on the datasets for logKoc, boiling point and -loglGCso.
Furthermore, its performance was equally well as that of the k-Medoid approach
on the logKoc dataset and for the boiling point. In case of the -loglGCso dataset, it
performed even better with statistical significance.

Contrary, the average AD-Spider performance on the logBCF dataset was

significantly worse than for a random selection. The reason therefore can be found
in a depiction of the principal components derived from the E-State indices for the
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dataset. Fig. 63a) shows that most compounds are within a small subspace and the
remaining ones widely scattered and sparsely filling the rest of the chemical space.
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Figure 63. The principal components of the 1ogBCF dataset, derived from different descriptor sets. [e]

We therefore tried a comparison of the examined approaches on the same dataset,
but with different (not fragment based) descriptors. It was decided to use
Inductive descriptors®® and MERA descriptors!61162 for the representation of the
compounds. A depiction of the main principal components can be seen in Fig. 63b)
and 63c).
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Figure 64. RMSE performance for a random selection, k-Medoid and AD-Spider using inductive and
MERA descriptors to represent the logBCF dataset. [e]

We repeated the study with these descriptors, comparing the random selection,
the k-Medoid approach and AD-Spider. The results are shown in Fig. 64. Both for
the Inductive descriptors (Fig. 64a), as for the MERA descriptors (Fig. 64b) the
quality of the models derived from the approach increases, compared to the two
other selection approaches. It performs significantly better than a random
approach on both datasets and approaches the performance of the selection
derived from the k-Medoid clustering.

141



We also examined the performance for other descriptors which delivered a
similarly scattered depiction as the E-State indices did and derived a performance
worse than that derived by a random selection. Obviously the AD-Spider approach
is not appropriate for scattered compound distributions.

Furthermore, taking into consideration that in comparison to the k-Medoid
approach, the AD-Spider performs significantly worse for a dataset of 238
compounds, equally well for a dataset of 648 compounds and significantly better
for a set of 1093 compounds, implicates that there is a correlation between the size
of the dataset and the performance of AD-Spider on it. Such a dependency seems
logical as a chemical space defined by a lower number of compounds is less
densely populated. Therefore also the probability to find pairwise correlations in
predictions between the compounds is decreased or just arbitrary. As the
approach works on these correlations, small datasets affect its performance.
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Figure 65. Selection of highly representative compounds. [e]

Referring to the classification dataset, the performance of AD-Spider was not able
to reach the performance of the best approaches, in particular the clustering
approaches or the random selection. This can be justified with the use of
discretized PLS regression predictions to define the predicted property space. This
discretization can lead to a loss of information, as the resulting variance in
prediction differs from the one calculated of the continuous PLS predictions.

To gain a deeper insight into the mechanistic within the approach, we investigated
those compounds within the logKoc dataset, which have a high contribution to the
quality of the resulting model. Therefore we built 7000 models on the dataset, each
with 20 randomly selected compounds. We used these models to predict the
remaining compounds, which have not been used for model building and
calculated the RMSE. For each of the 648 compounds in the dataset, we the
calculated the average RMSE of all models it contributed to and used it as a
measurement of representativeness. Finally we used the selected compounds from
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the 250 validation trials, using AD-Spider to draw 20 compounds and counted in
how many cases each molecule had been chosen.

The result of this analysis is shown in Fig. 65a). The axes depict the principal
components and each data point represents one compound. Highly representative
compounds, which contributed to good models, are colored red, those contributing
to poor models are colored yellow. The size of the data points indicates how often
a compound was selected with the AD-Spider approach. Remarkably, almost all
frequently selected compounds have a high or very high representative quality.
Fig. 65b) shows the same correlation for the k-Medoid selection. Although also this
approach is favoring the selection of compounds with a good representativeness, it
is neither so successful in the highly representative compounds and the AD-Spider,
nor is its selection so specific to certain compounds. This allows the conclusion
that the good performance of the k-Medoid approach is in large part resulting from
its good statistical coverage of the chemical space, but that the good performance
of the AD-Spider approach is resulting from its ability to recognize highly
representative compounds. We repeated this comparison also for the boiling point
and the -logIGCso dataset and observed the same correlations.”[e]

4.4.2.2 AD-Fetcher

“The performance on the logBCF dataset is comparable to the one of AD-Spider
and over the whole range significantly worse than the random approach. The
dataset on logKoc is the only one where AD-Fetcher could perform similar to AD-
Spider and the k-Medoid approach and where it performs significantly better than
the random approach. For the boiling point dataset, it performed initially well, but
starting with 40 selected compounds, the performance of the approach is, contrary
to all other tried approaches, not improving significantly anymore. The same
observation can be made for the -loglGCso dataset. The approach works for less
than 30 selected compounds, but starting from this point, the performance is
significantly worse than for AD-Spider or the k-Medoid approach.

This observation, which is conflicting with the observation on the example in the
materials and methods section, where the approach was very stable, can be
explained by the changed parameterization. The decision for selecting a compound
is made exclusively by its variance in prediction. By selecting not only one
compound per measurement cycle, but five or ten, we do not ensure that the
selected compounds are not correlated. This means, we do not have a mechanism
to avoid drawing redundant information within a cycle.”[e]

4.4.2.3 Predicted properties

“Regarding the regression datasets, the use of a three dimensional PCA space
derived from predicted properties instead of search space defined by descriptors
or their orthogonal transformation has to be interpreted in two ways. Firstly, in
case of the k-Medoid clustering the performance did not significantly change.
Neither for the error performance, nor the standards deviation, nor the correlation
coefficient a clear tendency towards descriptor space or predicted property space
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was observable. Only when regarding the reliability in terms of improvement,
there is a slight (but not significant) bias towards favoring the predicted
properties. The switch in the search space representation neither improved nor
declined the performance of the selection approach. The robustness of the k-
Medoid approach against the dimensionality of the search space has already been
shown in our previous study. Furthermore, the results of this study indicate that it
also has no influence on the approaches performance, if the search space takes
information about the target property into account.

Secondly in case of the Kennard-Stone approach, the switch in the search space
significantly improved the performance on all regression sets, regarding error
performance and correlation. In case of the boiling point dataset and the logKoc
dataset, the initial performance with less than 20, respectively 15 selected
compounds the use of stepwise approach on predicted properties could not
improve the performance, but starting from this point it significantly improved.
For the two other datasets the performance was improved when using predicted
properties instead of principal components starting with only seven selected
compounds.

Regarding the classification dataset for cytochrome inhibition, the use of a
predicted property space could not just improve the performance of the Kennard-
Stone algorithm, but also the balanced accuracy of the k-Medoid approach could be
significantly improved for 20 to 60 selected compounds.”[e]

4.4.2.4 Comparison with models on the whole dataset

“To enable an overview of the examined approaches, we used OCHEM to calculate
reference models for each dataset. The reference models were built on the same
descriptors as the validation models for the selection using PLS regression on a
fixed number of three latent variables. For the evaluation a ten-fold cross
validation was used and as a measurement of uncertainty, one standard deviation
was used.

Table 14. Reference models on the whole dataset.

Dataset Reference | Reference | k-Medoid AD-k- AD-Spider
RMSE balanced Medoid
accuracy

logBCF 0.65%0.06 - 20 25 N/A
logKoc 0.65+0.05 - 20 25 20
Boiling 45+2.2 - 50 60 60
point

-logIGCso 0.62+0.04 - 40 40 30
CYP - 75.4%1.0 150 120 N/A

We investigated for the k-Medoid approach, the k-Medoid-Approach on predicted
properties and the AD-Spider approach, the number of required compounds to
reach a model of the same accuracy. The results can be seen in Tab.14. The first
column indicates the dataset, the second and third column contain information on
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the average performance and according uncertainty and the following columns
display the number of compounds required to build a model within one standards
deviation of the reference model. The best approaches, referring to the number of
required compounds, are indicated with a green background.

The AD-Spider approach delivers the best performance for the logKoc and the -
loglGCso dataset and it delivers models with similar performance for only 20 out of
648 (3.1%) and for 30 out of 1093 compounds (2.7%). The k-Medoid approach on
predicted properties is the best performing approach on the cytochrome dataset
with 120 out of 7481 compounds (1.6%).”[e]
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4.5 Exhaustive comparison

The four previous studies exemplified that the use of meaningful selection
approaches and an adaptive data representation can significantly improve the
performance of an experimental design. Still, the picture is not complete. Although
the results show the advantages for the combination of certain selection
approaches with a certain data representation, an exhaustive comparison is
missing. Finally, in this study, [ present the results of all selection approaches used
in this study carried into execution on all regression datasets and for all data
representation techniques that were presented in this study.

The D-Optimal criterion, the Kennard-Stone algorithm, space filling design, the
developed similarity selection and the k-Medoid approach are conducted on
principal components, latent variables, selected descriptors and predicted
properties. Additionally, to complete the overview, the random selection, MDC, AD-
Spider and AD-Fetcher are taken into consideration as well. The performance is
compared respective to two different characteristics: firstly, the used selection
paradigm; and secondly, the underlying data representation.

As the previous results indicate that none of the developed approaches is optimal
for classification problems, the binary classification datasets are not taken into
consideration in this study. The parameterization for the validation procedure
(number of dataset splits, split size, modeling procedure, etc.) uses the default
values given in paragraph 3.5.

4.5.1Method based view

Fig. 66 shows the performance of all approaches on the five regression datasets.
The coloring is in reference to the selection approaches. The approaches using the
Kennard-Stone algorithm are shown in bright blue, whereas those based on the D-
Optimal criterion are shown in a dark blue. The similarity selection is shown in
dark green the space filling design is depicted in a bright green and the cluster-
based approach is represented in ocher. The underlying data representation is
shown by differently dashed lines, whereas the random selection is represented by
a solid black line and AD-Spider, AD-Fetcher, as well as the MDC selection are
colored in shades of grey.

The first observation is that the best working approaches, regardless of the
structure of the dataset and the underlying data representation appear to be those
using the k-Medoid approach, whereas the approaches based on the space filling
design reveal a comparably poor performance.

The performance reached on the logBCF dataset is in line with this finding.
Furthermore, the performance of the Kennard-Stone approaches is not optimal as
well. The similarity selection performs clearly better, and the performance of D-
Optimal criterion is somewhere in between. The MDC selection works
exceptionally well whereas AD-Fetcher and AD-Spider cannot reach the
performance of the random selection.
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Figure 66. Performance of different approaches on the used regression datasets. The coloring is in
reference to the underlying selection approach. Especially the k-Medoid approach performs well for all
datasets and on any data representation.

This is reasonable, as the dataset is comparably small. This results in a limited
number of observable co-variances, which are essential for the two
aforementioned approaches. Furthermore, the logBCF dataset has to be identified
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as exceptional, as it was customized for modeling purposes, which is displayed by
scattered compound distribution in PCA space.

Respective to the logLCso dataset, the space filling approach is the worst, whereas
the approaches based on the similarity selection work well. Especially the
performance of the approaches based on the D-Optimal criterion is worth to be
paid attention, as there is no clear tendency in the observable performance.
Although a widespread applicability is shown, the PLS-Optimal as it was developed
for the first study performs well. This indicated that the initial idea to combine
latent variables with a dissimilarity selection was reasonable. Furthermore, worth
mentioning, numerous approaches perform better than a random selection. This
was not the case for the logBCF dataset, where almost only the cluster-based
approaches performed better than a random selection.

The observations on the logKoc dataset reveal similar observations. Again,
numerous approaches perform better than the random selection. Especially for the
k-Medoid approaches, this is true, as well as for implementations of the D-Optimal
criterion and the similarity selection, whereas the Kennard-Stone approach cannot
improve the performance of the random approach for any data representation.

The space filling design delivers the worst performance and AD-Spider, as well as
AD-Fetcher perform well, both for the logKOC dataset and the -logIGCso dataset.
Both dissimilarity-based approaches (Kennard-Stone, D-Optimal) perform similar.
The number of approaches performing better than a random selection is not as
high as for the logKoc and the logLCso dataset. Still it is clearly higher than for the
logBCF dataset.

Respective to the observations for the space filling approaches, as well as for the
cluster-based approaches, the boiling point dataset reassures the prior findings.
Furthermore, the number of approaches improving the performance of the
random selection is limited.

4.5.2Property based view

Fig. 67 shows the performance of all approaches on the five regression datasets.
The coloring is in reference to the data representation paradigm. The PCA-based
approaches are colored in yellow, whereas PLS-based approaches are shown in
orange. The approaches based on selected descriptors are shown in pink and the
approaches using predicted properties are represented in purple. The coloring of
the random selection, the AD-Spider and the AD-Fetcher approach, as well as of the
MDC selection is the same as in Fig. 66, underlying selection approaches are
indicated by differently dashed lines.
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Figure 67. Performance of different approaches on the used regression datasets. The coloring is in
reference to the underlying data representation. The interpretation is complex, but in general the data
representation with predicted properties delivers good and stable results.

Overall, the interpretation, respective to the underlying data representation is
more complex, compared to the interpretation respective to selection approaches.
This is particularly observable for the logBCF dataset. No clear order or bias
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towards a certain data representation paradigm is identifiable. This might be once
again due to the aforementioned, exceptional data distribution.

Taking a look at that logLCso dataset, the observations are more distinct. The PCA-
based approaches show the worst performance, the AD-based approaches perform
better than the random selection for a higher number of selected compounds,
whereas the best initial performance is reached with latent variables and selected
descriptors. It has to be taken into consideration, that the principal components
derived on this dataset were not correlated with the target property at all. The
poor performance of the PCA-based approaches is a consequence thereof.

A further indication that the correlation of the principal components to the target
property is crucial for the performance of the PCA-based approaches is given by
the logKOC dataset. In spite of a similarly balanced distribution of the compounds
in the chemical space (compared to the logLCso dataset), the performance of the
PCA-based approaches is clearly better. This is due to a natural order within the
target property along the principal components.

The performance on the boiling point dataset confirms this observation. As there is
some order in the chemical space, respective to the concerned endpoint, no clear
bias towards a certain linear data representation is observable. Latent variables,
selected descriptors and principal components enable a performance of similar
quality.

On the contrary, for the -loglGCso dataset, which is lacking of such a correlation, the
performance of the PCA-based approaches is not optimal. Furthermore worth
mentioning, or this dataset, the approaches based on predicted properties work
similarly well, compared to the approaches using selected descriptors. Generally,
for all of the datasets, except the one on logBCF, the AD-based approaches appear
to be performing best.

4.5.3General remarks

Overall, the most explicit finding is that the cluster-based approaches, using the k-
Medoid partition perform best. The partition-based approach is extremely robust
and its performance is almost independent of the data representation. This was
observable on all five datasets. Furthermore, the k-Medoid approaches enabled a
smooth development of the average error curve without exception.

Contrary, the use of the space filling design appears to be deprecated, as it did not
work well on any of the datasets. Even a change in the dataset representation did
not improve the poor performance. Usually it would be expected that the space
filling design reveals advantages for datasets with equally distributed compounds,
but the evidence gathered within this data contradicts this assumption.

Respective to the paradigm of data representation, except for the space filling

selection approach, the predicted properties constantly enable a smooth and
reliable decrease in the average error curve. Furthermore, latent variables and
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selected descriptors perform similarly well clearly better than principal
components.

The PCA-based representation is the most inconsistent one, with numerous
deviations. Additionally, we found indications that a natural order of the target
property in PCA space is required to make the selection approaches work properly
on principal components. As soon as a dataset lacks of this correlation, the PCA-
based approaches reveal problems.

Furthermore, our results indicate that the data distribution is a crucial criterion for
a reliable experimental design. It is remarkable that especially for those datasets
with a plain distribution and without outliers (logLCso, logKoc) a lot of
combinations could perform clearly better than a random approach, whereas the
number of well working approaches drastically increased for datasets with
outliers.
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4.6 Practical application

The purpose of this practical application was to design the experiments to select
representative compounds to build a reliable prediction model for the EC
(electrochemistry) starting voltage. The EC starting voltage is a physic-chemical
endpoint that was not taken into consideration in the previous studies. This is
caused by the circumstance that only little information on this endpoint is
available, which makes a statistical evaluation impossible.

The EC starting voltage describes the voltage that is required to initiate a
molecule’s decomposition. In order to measure this endpoint, a mass spectrometer
is combined with a commercial EC-cell setup. The working electrode potential is
applied within the range from 0 mV to 2,500 mV and mass spectra are recorded
after each change of the cell potential.1° The impressed voltage, when the mass
spectrometer shows a decrease in the amount of the starting material and
metabolites appear is then defined as the EC starting voltage.

The following study concentrates on the oxidative starting voltage detected with
electron-capture mass spectrometry. The motivation to investigate on this
endpoint is its potential relevance to predict the ecological fate of a chemical
compound, amongst others. It is intended to function as a simulation of oxidative
processes in the environment. Knowledge about the EC starting voltage might be
beneficial to prioritize hardly degradable persistent organic pollutants and to
improve the predictive quality of degradability models.

The starting point for our study was a list of available chemicals and twelve EC
starting values for twelve previously measured compounds.

4.6.1Evaluation of previous results

The initial step within the prioritization of compounds to increase the applicability
domain and accuracy of a model to predict the EC starting voltage of organic
compounds was the evaluation of the previously presented results of Kamel
Mansouri, as well as the model performance that could be derived with the known
values for twelve previously measured compounds.

Our analysis of relevant Dragon descriptors!3? revealed a strong bias to numerous
autocorrelation descriptors (Geary, Moran, Broto-Moreau) for lags of various
length. As these autocorrelation descriptors were not specific towards a certain
property (mass, polarizability, van der Waals volume) or a certain lag length the
descriptors are most likely to represent all the same principal property, which can
be referred to as ‘molecular size’.

A second, frequently detected group of descriptors was atom count descriptors.
Also these descriptors are closely related to the molecular size of a compound. This
finding was expected, as the results presented from Jilich indicate a correlation
between the number of aromatic rings and the EC starting voltage.
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The suggested models were calculated with descriptors, which were preselected
by their correlation on the whole dataset. To give a realistic insight into the
reliability of the descriptor selection, we believe, it has to be emphasized, that the
measurements contained one compound (PCB31) that revealed an EC starting
value which was three times higher than the second highest value in the data set.
Taking a closer look at the best suggested descriptor (GATS2m) the R? on the
whole dataset is 084, but applying a leave-one-out cross-validation (CVye0), the
correlation coefficient decreases to 0.61, a value which is comparable to that
derived with a CVio on the dataset without PCB31 and therefore more realistic.

|GATS2m

3.000

2.000 -

Predicted

1000 L 2e o
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® 11compounds ®CVloo @ Unvalidated
Figure 68. The correlation of GATS2m with EC starting voltage. Black dots represent the prediction
values for regression model trained on the whole dataset, green ones represent prediction values
resulting from a CVyoo. It is obvious that the predictions for PCB 31 (highlighted with yellow circles) get
worse, for a CVyoo.

Fig. 68 shows the measured EC starting voltage on the x-axis and the predicted
values on the y-axis. Predictions derived without validation are depicted black,
those from a CVyoo on all twelve compounds are depicted green. The predictions
for the compound PCB 31 are highlighted with a yellow circle and the correlation
analysis for all compounds, except PCB 31, are depicted red.

Table 15. R2 values derived from a CVyroo 0n eleven measurements.

Descriptors FSMLR | PLS
CDK 0.3 0.1
Dragon6 0.4 0
ALogPS + E-States 0 0
ISIDA 0 0.2
GSFrag 0.2 0.1
MERA + MerSy 0 0.3
Chemaxon 0.4 0.4
Inductive 0.1 0.2
Adriana 0 0.3
Spectrophores 0.2 0.4
ShapeSignatures n/a n/a
QNPR 0 0.3
Mass + nC 0 0.1
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Furthermore, we believe that the use of four or five descriptors to describe a
relation of twelve instances is not appropriate. Also literature recommends the
usage of not more than one or two variables for such an amount of data.#>186.195
Additionally, we found that the underlying dataset contained a duplication of the
compound tetrazene.

We used OCHEMS® to build properly validated linear OSAR models on the eleven
compounds (PCB 31 was excluded). Both FSMLR%¢ and PLS regression*> were
applied to various descriptor sets, but no approach exceeded an R2 of 0.4. The
derived results are shown in Tab. 15.

4.6.2Descriptor representation

The use of Dragon descriptors to find correlations in such a small amount of prior
knowledge (twelve measurements) is not unproblematic, as the Dragon package
provides almost 5,000 descriptors. This increases the probability of ‘chance’
correlations. We therefore decided to use raw (non-normalized) E-State
indices,848> to represent the chemical compounds. E-State indices contain implicit
information about a compound’s

* substructures / fragments

* size / weight

* electrotopological states

All three properties might be highly relevant for the target property EC starting
value and the E-State indices might therefore be optimal to span the chemical
space for relevant compound.

4.6.3Data set cleaning

Referring to the list of available compounds, we took only those into consideration,
for which a CAS registry number and therefore unambiguous structural
information was available. In the first step we performed an automatic exclusion of
compounds containing metals and uploaded the remaining 450 compounds to
OCHEM.

Table 16. The five principle components that characterized the dataset and the most relevant
descriptors.

Property Descl Desc2 Desc3 Desc4 Desc5
Size SsCH3 SssO SsH Se102P4sd SdsssP
B,ran(:hedness’ SeaC3N2aa SaaN SssNH SelC3H1s Se1C3C4ss
nitrogen

Aromat1c1ty, SaaCH SeaC2C3aa SeaC2C2aa SelC2H1a Se1H101s
alcohol

Oxygen, SsCl Sdo SelC4Cl1s Se2C301s SdssC
halogens

Phosphor SssCH2 Sel1C1H1s SdsssP Se102P4sd SaasC
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In the second step, we manually examined the compounds once again to exclude
inorganic compounds, polymers, compounds containing extraordinary atoms (e.g.
Ge, Si, etc.) and those compounds containing metal, which were not detected in the
automated approach. The resulting dataset contained 417 compounds.

We applied principle component analysis3> to the E-State descriptors to detect the
five most descriptive principle properties of the dataset and to enable the
exclusion of structural outliers. This step was performed three times and resulted
in the exclusion of 93 further compounds and a dataset containing 324 relevant
compounds, each of them organic and containing no other atoms than C, H, O, N, S,
P, and halogens. Fig. 69 shows the distribution of these compounds in the chemical
space.
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Figure 69. The compound distribution referring to the first principal components. The twelve
measured compounds are indicated green and the dot size correlates to the EC value.

An analysis of the derived principle components revealed that the most significant
property within the dataset was the compound size, but also aromaticity,
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branchedness, and the content of certain compounds contributed significantly to
characterize the dataset. Tab. 16 shows one principle component per row and the
five most contributing descriptors.

4.6.4Experimental design

Our previous studies indicate that for datasets of comparable size (>300
compounds), a number of 30 systematically selected compounds delivers a model
which is not anymore different with statistical significance from a model derived
on the whole dataset. As we already have a seed of twelve measured compounds,
but as we do not have any information about the underlying concept these
compounds were selected with, and as these compounds might therefore not be
free of redundant information, we decided to increase the number of required
measurements to 35. Therefore 23 further compounds need to be selected.

Furthermore, we decided for a two-step selection strategy. In the first step we
applied an approach that takes the available information about the target property
into account and in the second step we apply a PCA-based approach to ensure a
good statistical coverage of the whole chemical space of interest.

To guarantee a maximum level of reliability and stability in the selection process,
we generated 250 random samples, each containing 90% of the available 324
compounds. These 250 samples were used to investigate the frequency, each
compound was selected and thereby to estimate the representativeness of this
compound. This information was used to select the most reliable combination of
compounds within the 250 samples.

4.6.4.1 Property oriented selection step

In the first step the AD-Spider approach was used to select a fixed number of six
compounds from each sample. The AD-Spider approach uses an ensemble of PLS
predictions derived from an n-fold bagging approach (n=64) on the 12 compounds
with measurement values. This ensemble of predictions enables to calculate the
standard deviation within the predictions for each compound, which is referred to
as the distance to model (DM). The DM is then combined with the observed
correlations within the predictions. The AD-Spider approach was shown to select
compounds of high significance for resulting models. Still, due to the comparably
small number of measurements and the poor knowledge of the target property, we
decided to limit the number of compounds selected with this approach to only
50% of already available measurements.

Referring to the 250 generated samples, we counted the number of occurrences in
the resulting selection for each compound and used this number as a score of
representativeness for the compound. Out of all available selected combinations
derived from the 250 samples, we chose the one with the highest sum of
representativeness scores.
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The selected compounds, presented in Tab. 17, consisted of trichloroethanoic acid,
chlorosulfuron, alpha-naphthylflavone, coumafene, 3-aminopyrene and ethynyl
estradiol.
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Figure 70. Compounds selected with the AD-Spider approach indicated red. The compounds previously
measured are indicated green and the dot size represents the selection frequency in 250 trials.

Fig. 70 shows the results of the selection in a space spanned by the first two
principal components. The measured compounds are highlighted green, the
compounds selected by the AD-Spider approach are highlighted red and the dot
size represents the selection frequency. The most frequently selected compound
(trichloroethanoic acid) is located in the center of a densely crowded cluster with a
reasonable distance to all previously measured compounds. The selection of this
compound can be interpreted as a contribution to stabilizing the model, whereas
all other selected compounds are located beyond the periphery of the subspace
with experimentally measured compounds. Their contribution is therefore most
likely to increase the applicability domain of the resulting model.
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Table 17. Compounds selected with the AD-Spider approach and the respective representativeness
score.

CAS-RN Structure Count CAS-RN Structure Count
cl
cl cl
76-03-9 204 604-59-1 92
0 OH
64902-72-3 Y'TY h © 92 81-81-2 88

oy he
1606-67-3 QQO 80 57-63-6 % 47

4.6.4.2 Descriptor oriented selection step

In the second step we used the k-Medoid clustering on five principal components
derived from the E-State descriptors. The twelve compounds with available
measured values were used as an initial seed of cluster centers, as well as the six
compounds that were selected with the AD-Spider approach. Depending on these
data points 35 clusters were assigned to the dataset, so that an additional 17
compounds (the newly detected cluster centers) were selected.

The k-Medoid clustering was shown to work highly reliable, regardless of the
dimensionality of the underlying search space. It benefits from the good statistical
coverage of the chemical space and works with high robustness on datasets of
different distribution. The selection of the most representative clustering derived
from the 250 was done exactly as for the AD-Spider approach.

Fig. 71 shows the compound selected with the k-Medoid approach on the first
principal components. The coloring is similar to Fig. 69 and Fig. 70 and the newly
selected compounds are highlighted blue. The dot size indicates the selection
frequency within the 250 samples.
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Figure 71. Compounds selected with the k-Medoid approach indicated blue. The coloring of the other
compounds and the meaning of the dot size is similar to Fig. 70.

The full list of compounds that were selected with the k-Medoid approach can be
seen in Tab. 18. It apparently consists of a variety of structurally diverse
compounds. Referring to the PCA plot most of the selected compounds are located
in those areas of the chemical space, which is not yet covered by the previously
selected compounds, but which is still sufficiently crowded.

Table 18. Compounds selected with the k-Medoid approach.

CAS-RN Structure Count CAS-RN Structure Count

cl cl

Cl— JS
1024-57-3 0 199 6381-92-6 PSRt 177
“d ° .

cl
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4.6.5Summary

Knowledge about the EC starting voltage of the suggested compounds should
enable to build a model of sufficient prediction quality which is not limited to
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aromatic compounds, but applicable to the full range of small organic compounds
as they are contained in the dataset.

We employed a selection procedure to cover the whole range of the five most
significant characteristics of the underlying dataset. Experimental measuring of
the compounds we suggest should enable the detection of statistically reliable
correlations between structural features and the target property. Although it
suggests itself to use a combination of PLS regression and E-State descriptors for
the subsequent modeling, we recommend the application of a more exhaustive
comparison of different machine learning techniques and descriptor sets.
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5 Conclusion and outlook

5.1 Summary of presented work

In this thesis I presented the results of five different studies, four of them
published, one of them still in preparation, at the point of time this thesis was
finished, and a practical application, that is currently in the stage of experimental
testing.

[ firstly used a model on aquatic toxicityl®? to carve out and expose the
requirements and the course of action of current QSAR research with respect to
the REACH legislation.

The main focus in this study was on the improvement of existing experimental
design approaches and the development of new ones that we presented in four
published studies. Three of these studies were dedicated to examine the benefits of
stepwise, adaptive approaches, with two of them using classic selection
approaches to a property correlated data representation based on
descriptors!?819° and one of them introducing a newly developed concept of
predicted properties and a compound representation by the applicability domain
estimation.2%0 The fourth study investigated the usability of a static, cluster based
approach in terms of a representative subset selection.201

The results of these four studies were subject to a concluding comparison,
respective to the choice of an optimal selection approach and the choice of an
optimal data representation.

5.2 Significant findings

“The results of our study show that stepwise approaches, which take the
correlation to the target property into consideration, significantly improved the
quality of experimental design in terms of QSAR modeling.”[c]

The PLS-optimal design and DescRep operate in the property-correlated space;
“therefore, the selection of compounds is not only based on their structural
properties but is also tuned for a specific endpoint.”[a] Furthermore, “the variance
in prediction can not only be used to estimate the applicability domain of a model,
but it can also be used to make an intelligent and purposive selection of
representative compounds. A stepwise solution that iteratively refines the
depiction of the chemical space depending on prior knowledge is target-oriented
and can improve the results.”[e]

“With respect to the structural outlier, it was dramatic to see how the majority of
selection procedures were strongly affected with the inclusion of only one
compound, which was not representative of the analyzed set. This resulted in
higher variability of models developed with such sets. Compared to the static
approaches, the selection within stepwise approaches is not so focused on certain
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compounds, but on a harmonious context within the selection. Thus small
variations in the dataset get buffered in an efficient way.”[c]

Within the static approaches, used in this study, the k-Medoid selection was the
only systematic concept, which performed significantly better than a random
selection. Moreover, it performed similarly well, compared to the stepwise
approaches. The observed criteria of quality hereby were:
* The performance of the k-Medoid approach was one of the the best for all
examined datasets.
* Its performance was less dependent on the number of latent variables than
most other approaches.
¢ Italso performed well with a small number of compounds selected.
* The error decreased constantly with an increasing number of compounds
selected.

For several of the examined datasets (logLCso, logKoc, -logIGCso), the stepwise
approaches I developed were shown to result in models of the same average
performance with only 30%-50% of required compounds, compared to models
derived with the most commonly used static approaches. In case of the k-Medoid
approach, the number of required measurements for a comparably performing
model on these endpoints could be decreased to even 25%-35%.

5.3 Interpretation of the observations

“We recommend, whenever this is feasible, to design experiments in a stepwise
manner. Especially in the case of high cost experiments, e.g. measuring aquatic bio-
concentration factor,292 that allow only a limited number of tests, the stepwise
approaches can significantly decrease the financial effort to produce models of the
same predictive quality. These models can be used to predict the molecules
without measurements thus decreasing costs and time.

The PLS-Optimal approach is an appropriate choice for compounds and endpoints,
where a linear correlation between the target property and the descriptor space is
expected. For other kinds of dependencies, DescRep shows a fast convergence in
error, a reliable performance with a low standard deviation, and a high robustness
against structural outliers.”[c]

“The attempt to select compounds exclusively by their variation in predictions
appears to be inappropriate if not executed in a one-by-one manner. Therefore the
number of suitable applications is limited. On the contrary, combining this
variance with correlated development in predictions, which putatively indicates a
common mode of action, produced very good results. Especially for sufficiently big
regression datasets (more than 500 compounds) with a non-scattered distribution
of compounds, we could show the efficiency in this approach.”[e]

“The analyzed step-wise approaches explore different ideas for selection of

compounds based on similarity and dissimilarity measures. Still, they produced
comparable results. Thus, we can conclude that the major contribution to their
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performance was not the selection method, but the accounting for the resulting
property, i.e. informational basis on which the selection was performed. Similar
observations were done for QSAR modeling, where the underlying data, but not
the chosen machine learning method or descriptors determined the accuracy of
models. 203204131 ]

For initial situations that cast a stepwise experimental design into doubt, for
example resulting from financially cheap, but time consuming experimental
procedures, we suggest the k-Medoid approach. Deduced from the results of this
thesis, it “seems to be an excellent choice in terms of efficiency. It enables the
calculation of models with the same predictive quality with a low number of tested
compounds. Thereby the reliability, represented by the variance, is not negatively
affected.”[b]

5.4 Outlook

The sequential approaches are surely not limited to the use of selected descriptors,
predicted properties or PLS latent variables. In principle any representation based
on prior knowledge about the target property might be appropriate. Moreover, the
use of prior knowledge suggests the application of a Bayesian experimental design,
with the representation techniques we examined in this thesis. Measurements,
collected by a literature search could act as the basis of such variants.

We focused on the investigation of the benefits of linear techniques, but we did not
take non-linear kernel methods into consideration. With respect to the PLS-
Optimal approach, e.g. kernel PLS, could be an interesting work to further extend
the method we have developed in this article.

Furthermore, although not presented in this study, we conducted research on the
combination of data mining techniques, such as the apriori algorithm with a
compound representation using IUPAC names and hierarchical clustering
techniques. The results indicated that such approaches are not applicable to
comparably small, structurally diverse datasets, as they were used in this study.
Still, in terms of large-scale in-vitro scanning, such approaches might be valuable.
The application of structural alerts might be a promising field of study as well. As
the alerts contain information about the target property these alerts could, for
example, be used as preselected binary descriptors.

5.5 Final remarks

Finally, it has to be considered that the most important factor in the application of
statistical experimental design is the human expertise. None of the presented
approaches can be applied as a universal solution to any experimental design
problem. The presented concepts are intended to serve as a sufficient support to
thinking scientists.

The development of statistical models is carried out with a computer, but requires
the supervision and control. Datasets have to be cleaned and maintained, the
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selection of representative descriptors must be purposive, the decision for a
machine-learning algorithm needs to be target-oriented and resulting models
require an appropriate interpretation.

The same is true in terms of experimental design. Data cleaning, data

representation and appropriate selection criteria have to be subject to a human
decision. A permanent interaction is essential.
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