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Abstract

Positron emission tomography (PET) has contributed greatly to the medicine field
over the last decade, since it provides bio-functional information in vivo which can
improve clinical diagnosis and treatment management. In contrast to a static scan,
dynamic PET offers us an opportunity to understand the evolution of a radioac-
tive tracer, analyze the underlying pharmacokinetics and quantitatively estimate
corresponding physiologies from reconstructed images. However, the reconstruction
quality is often limited by the low signal-to-noise (SNR) ratio of PET acquisitions.
The frame-by-frame estimation of dynamic PET images suffers from inconsistent
SNR and poor reconstruction quality.

This thesis focuses on the development and validation of dynamic PET recon-
struction. It explores the integration of temporal coherence and tracer pharmacoki-
netics to reduce reconstruction artifacts and enhance image quality. The impact on
physiological quantification resulting from these improvements in reconstruction is
investigated as well.

Due to finite acquisition angles, a streak artifact typically appears in filtered
back projection (FBP) reconstructed images. The strong streak artifact due to
extremely high signals usually affects anatomical identification and clinical diagnosis.
This thesis has proposed a framework based on the temporal coherence of PET
measurements for artifact reduction. The framework was evaluated using realistic
simulations as well as a physical phantom. Clear improvements in artifact reduction
and quantitative analysis were observed in the corrected images.

The limited SNR of PET acquisitions hampers the development of simultaneous
multi-tracer PET imaging. Though tracer separation is feasible by exploring its
distinct pharmacokinetics, the quantification accuracy is affected when a multi-
tracer kinetic model with a large number of fitting parameters is adopted. In this
thesis, an algorithm has been proposed for tracer separation, which integrates the
multi-tracer model in reduced parameter space into the reconstruction. Evaluations
were performed for validating the algorithm using numerical phantoms as well as
preclinical PET data. Enhanced reconstruction and reliable recovery of individual
tracer components were observed.

A better estimation of PET images can be achieved when additional temporal
information is incorporated into reconstruction. However, whether these improve-
ments in reconstruction can give additional value to physiological quantification is
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not yet clear. In this thesis, preclinical PET images generated with/without the
incorporation of temporal information were compared with a biological reference.
Evaluation results demonstrate that the reconstruction combining temporal data
leads to a better quantification of tumor physiology.

Overall, this thesis utilizes temporal coherence and tracer pharmacokinetics to
cope with image reconstruction for improving PET quantification. The tempo-
ral information was used to reduce streak artifacts and to achieve simultaneous
spatial-temporal reconstruction for SNR optimization. In particular, this thesis has
confirmed that improvements in reconstruction can enhance PET quantification of
pathological features and have the potential to improve clinical diagnosis.
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Zusammenfassung

Die Positronen-Emissions-Tomographie (PET) hat im medizinischen Fachgebiet be-
sonders dazu beigetragen, dass in den letzten 10 Jahren, seit sie bio-funktionelle
Informationen in vivo zur Verfügung stellt, die klinische Diagnostik und das Be-
handlungsmanagement verbessert werden konnten. Im Gegensatz zum statischen
Scannen bietet uns das dynamische PET die Gelegenheit, die Entwicklung eines
radioaktiven Tracer nachzuvollziehen, die zugrunde liegende Pharmakokinetik zu
analysieren und entsprechende Physiologien anhand der rekonstruierten Bilder quan-
titativ einzuschätzen. Allerdings ist die Rekonstruktionsqualität oft aufgrund des
niedrigen Signal-Rausch-Verhältnisses (signal-to-noise-ratio: SNR) der PET Auf-
nahmen begrenzt. Die Bild-basierte der dynamische PET-Analyse leidet an inkon-
sistentem SNR und mangelhafter Rekonstruktionsqualität.

Diese Arbeit konzentriert sich auf die Entwicklung und Überprüfung der dy-
namischen PET-Rekonstruktion. Sie erforscht die Integration der temporalen Ko-
härenz und Tracer-Pharmakokinetik, um die Rekonstruktionsartefakte zu reduzieren
und die Bildqualität zu verbessern. Außerdem ist die Auswirkung auf die physi-
ologische Quantifizierung, die sich aus den Verbesserungen in der Rekonstruktion
ergeben hat, untersucht worden.

Infolge von begrenzten Messwinkeln erscheint normalerweise ein Streifen in den
rekonstruierten Bildern als Störung in der gefilterten Rückprojektion (FBP). Der
große Streifenartefakt beeinflusst aufgrund von extrem hohen Signalen im Normal-
fall die anatomische Identifizierung und die klinische Diagnose. Die Verfasserin
dieser Arbeit hat ein Rahmenwerk vorgeschlagen, das auf der temporalen Kohärenz
der PET-Messungen für die Verminderung der Artefakte basiert. Das Rahmenwerk
wurde sowohl mit realistischen Simulationen als auch mit physikalischen Phan-
tomen ausgewertet. In den korrigierten Bildern sind klare Verbesserungen in der
Reduzierung der Artefakte und der quantitativen Analyse beobachtet worden.

Die begrenzte SNR der PET-Messungen erschwert die Entwicklung der simul-
tanen Multi-Tracer-PET-Bildgebung. Obwohl die Trennung der Tracer aufgrund
ihrer ausgeprägten Pharmakokinetik durchführbar ist, ist die Genauigkeit der Quan-
tifizierung betroffen, wenn ein kinetisches Multi-Tracer-Modell mit einer hohen An-
zahl an zu bestimmenden Parametern angenommen worden ist. In dieser Arbeit
wurde ein Algorithmus für die Tracer-Trennung vorgeschlagen, welcher das Multi-
Tracer-Modell im reduzierten Parameter-Raum in die Rekonstruktion integriert hat.
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Die Berechnungen für die Bewertung der Algorithmen wurden sowohl mit numerisch-
en Phantomen als auch mit präklinischen PET-Daten durchgeführt. Eine verbesserte
Rekonstruktion und zuverlässige Wiederherstellung der individuellen Tracer Kom-
ponenten wurde beobachtet.

Eine bessere Beurteilung der PET-Bilder kann dadurch erreicht werden, wenn
zusätzliche temporale Information in die Rekonstruktion eingebunden wird. Jedoch,
ob Verbesserungen in der Rekonstruktion einen zusätzlichen Wert für die physiolo-
gische Quantifizierung geben können, ist noch nicht klar. In dieser Arbeit wurden
präklinische PET-Bilder, mit bzw. ohne die Einbindung der temporalen Informa-
tion erzeugt, mit einer biologischen Referenz verglichen. Die Bewertungsergebnisse
demonstrieren, dass die Rekonstruktion, verbunden mit temporalen Daten, zu einer
besseren Quantifizierung der Tumorphysiologie führt.

In dieser Arbeit werden temporale Kohärenz und Tracer-Pharmakokinetik ver-
wendet, um die Bildrekonstruktion und gleichzeitig die Quantifizierung zu verbessen.
Temporale Information wurde benutzt, um Streifenartefakte zu reduzieren und si-
multane sowie räumlich-temporale Rekonstruktion verbesserte das Bildtauschen.
Im Besonderen bestätigt diese Arbeit, dass Verbesserungen in der Rekonstruktion
Merkmale aufwerten können und das Potenzial haben, klinische Diagnosen zu un-
terstützen.
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Symbol Quantity Dimension

α Attenuation correction factor NLOR × 1
β Regularization constant 1× 1
λ Radioactivity decay constant 1× 1
µ Attenuation coefficients 1× 1

C
Radioactive concentration in tissue

NT × 1
(Time activity curve, or TAC)

Ĉ Modeled time activity curve NT × 1

ĈP
Radioactivity concentration in whole blood

NT × 1
(Arterial input function, or AIF)

k Tracer exchange rates between compartments NK × 1
VB Fractional blood volume 1× 1
p Kinetic parameters, containing k and VB (NK + 1)× 1
w Weighting factors NT × 1
i Index of lines-of-response (LORs) 1× 1
j Index of voxels 1× 1
k Index of kinetic parameters 1× 1
t Index of frames/measured time points 1× 1
I Set of LORs 1× 1
Ij Set of LORs across the jth voxel 1× 1
J Set of voxels 1× 1
Ji Set of voxels relevant to the ith LOR 1× 1

NLOR Number of LORs 1× 1
NT Number of frames / time points 1× 1
Nvox Number of image voxels 1× 1
NK Number of kinetic parameters 1× 1

A = {aij} System matrix NLOR ×Nvox

P = {pjk} Parametric images Nvox ×NK

X = {xjt} True tracer activity distribution Nvox ×NT

X̂ = {x̂jt} Modeled tracer activity distribution Nvox ×NT

Y = {yit} Projection data; PET measurements NLOR ×NT

Y = {yit} Modeled projection data NLOR ×NT

R = {rit} Random events NLOR ×NT

S = {sit} Scattered events NLOR ×NT
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Introduction

1.1 Positron Emission Tomography

Positron emission tomography (PET) is a nuclear medicine imaging technique [1].
Differing from computed tomography (CT) or magnetic resonance imaging (MRI) for
acquiring anatomical information, PET utilizes injected radioactive isotopes (trac-
ers) to acquire the underlying biological and functional information in vivo.

The procedure of PET imaging is sketched in Fig. 1.1. Before the patient is im-
aged, a radioactive tracer is administrated. As the tracer circulates with the blood,
it may concentrate and chemically incorporate into the tissue ”regions of interest”
(ROIs). During the interaction procedure, a series of physical reactions occur: the
radioisotope undergoes beta decay and generates positron particles, which imme-
diately annihilate electrons within a short distance [2]. In theory, the annihilation
produces a pair of photons with the same energy (∼511 KeV) traveling in the oppo-
site directions along a line (called the ”line-of-response”, or LOR). It may be detected
by the PET scanner as a true coincident event (or a coincidence) and 1 count at a
certain LOR is recorded. As photon pairs are continuously detected during the emis-
sion scan, the number of events accumulates. In the end, PET measures the count
of coincident events per time unit per volume, at each detector pair (LOR) [3]. With
this information, PET images that reflect the radioactivity distribution1 within the
patient can be generated using proper reconstruction methods [4–8].

Photon information can be grouped into a ”sinogram”. This format characterizes
a LOR by its viewing angle θ and distance d to the center. As plotted in Fig. 1.2a,
when the point source within the patient is detected at the LOR of the angle θ0

and the distance d0, the corresponding count rate of coincident events at this LOR
is recorded at the point (θ0, d0) in the sinogram coordinate system. As the point
source is imaged from all angles, a sine-shape curve is formed in the sinogram image

1The PET image has a unit of becquerel/ml (or Bq/ml). One Bq is defined as one radioactive
decay per second.
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1. Introduction

Figure 1.1: A sketch of the PET scan procedure

Figure 1.2: Sketches of (a) the coincident event from a point source detected at a
line-of-response (LOR) and (b) the sinogram image corresponding to the source

as shown in Fig. 1.2b. Therefore this format for storing data is named as the
sinogram. In practice, a tracer is normally uptaken by the whole body of the patient.
The body image is discretized into fine voxels, each of which can approximate a
point source. By imaging all these sources, the sine-shaped curves for each voxel are
added and make up the final sinogram corresponding to the whole body image. From
another point of view, the sinogram coordinate system is also termed ”the projection
space”. As a viewing angle θ0 is specified, the counts at various d form a parallel
projection of the source signal along this angle, and the whole sinogram consists of
sets of parallel projections at each angle (0-180◦). PET image reconstruction can be
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1.1. Positron Emission Tomography

achieved based on either the LOR measurements or the sinogram data. This thesis
focuses on the latter which is commonly used in the clinic.

In practice, the signal-to-noise (SNR) ratio of a PET measurement is often af-
fected by several physical effects. Besides the true coincidences (Fig. 1.3a), other
types of coincident events also occur during PET imaging. For instance, a ”scat-
tered event” (Fig. 1.3b) arises when one or both of the photons from a single positron
annihilation is scattered by the patient. A ”random event” (Fig. 1.3c) takes place
when two photons originating from different annihilations are detected as a true co-
incidence. These events lead to incorrect estimations of LORs and adds statistical
noise into PET measurements [9–11]. An accurate measurement of the scattered
and random events is challenging. Nowadays, these effects are often modeled from
the measurements or simulations of PET and CT [12–16].

Figure 1.3: Sketches showing different types of coincident events: (a)a true event;
(b)a scattered event and (c)a random event

Figure 1.4: A sketch of the attenuation effect

3



1. Introduction

On the other hand, the PET signal is attenuated during the acquisition process.
As the photon beam interacts with the patient, its intensity is reduced by scattering
and absorption, resulting in a reduced count rate of events [3]. As shown in Fig 1.4,
the extent of attenuation depends on the ”attenuation coefficient” (µ, unit: cm−1)
of a certain material and the total thickness of the attenuator where the photon pair
passes through. Attenuation correction is often required in clinical practice. Given
the attenuated signal I, the original signal intensity I0 can be recovered when the
corresponding µ-map of the imaged patient is provided [17–20].

The application of PET in the clinic is being promoted by the fast development
of radioactive tracers. Each tracer is designed to investigate a distinct aspect of the
tumor phenotype and to acquire specific physiological and diagnostic information
of living organisms. For instance, [18F]Fluordeoxyglucose (FDG) is used in daily
practice to show the glucose metabolism in vivo, which enhances the diagnosis of
tumor and neurodegenerative diseases [21]. 3’-[18F]fluoro-3’-deoxythymidine (FLT)
is employed for imaging cell proliferations and it exhibits a relatively higher tumor
specificity than [18F]FDG [22]. [18F]Fluoromisonidazole (FMISO) is designed to
be trapped in tissues with a low oxygenation level to detect tumor hypoxia [23].
[11C]L-methionine (MET) can be applied as for imaging glioma [24].

1.2 PET Image Reconstruction

Medical image reconstruction is a technique to estimate the tomographic image of
the patient from data measured using medical scanners. From the mathematical
point of view, image reconstruction techniques aim to solve an inverse problem,
which is, from the observations (or acquisitions) Y, to compute the source X that
most likely leads to such observations. For PET applications, Y includes the count
rate of coincident events and X is the distribution of radioactivity in the patient.
The estimation of X can be achieved using an analytical method or iterative tech-
niques [4,25]. The main difference between these two categories is the mathematical
model used for mapping the source X to the acquisition Y.

1.2.1 Analytical reconstruction

1.2.1.1 The Radon transform

Conventionally, the detection of photon pairs in PET naturally leads to a line-
integral model for estimating the acquisition Y at each LOR from the source X.
The model is based on the assumption that the total count of coincidences at a
LOR is proportional to the integral of the source density along this LOR. When Y
is considered as parallel projections, the model is given by the Radon transform [7]:

4



1.2. PET Image Reconstruction

Figure 1.5: A sketch illustrating the Radon transform

Yθ(d) =

∫
(θ,d)line

X(x, y)ds =

∫ ∞
−∞

∫ ∞
−∞

X(x, y)δ(xcosθ + ysinθ − d)dxdy (1.1)

where δ is the Dirac delta function, which is used to retrieve the projection at a
certain d.

As illustrated in Fig. 1.5, the value of the point Yθ0(d0) in the projection space
is modeled as the line integral of X along the straight line s specified by the corre-
sponding θ0 and d0 in the image space.

With the relationship between the acquisition and source (captured in Eqn. 1.1),
PET images can be reconstructed using analytic inversion methods. Among these
methods, the filtered back projection (FBP) algorithm achieves accurate reconstruc-
tion with high efficiency and is routinely used in clinical practice.

1.2.1.2 Filtered back projection

FBP was developed based on the Fourier slice theorem [25], which states that the
Fourier transformation of a parallel projection of the source at a specified viewing
angle, gives values of a slice of the 2D Fourier transformation of the source at this
angle. Mathematically, it is expressed as:

5



1. Introduction

Figure 1.6: Sketches (a) explaining the Fourier slice theorem: the Fourier transfor-
mation of the parallel projection Yθ0(d) gives the value of the slice AA’, which is a
slice of the 2D Fourier transformation of the source; (b) showing slices at different
viewing angles and the numerical interpolation points for estimating gaps in between
slices

Sθ(w) =
∫∞
−∞Yθ(d)e−j2πwdd(d)

F (u, v) = F (wcosθ, wsinθ) =
∫∞
−∞

∫∞
−∞X(x, y)e−j2πw(xcosθ,ysinθ)dxdy

Sθ(w) = F (u, v)

(1.2)

where Sθ(w) is the 1D Fourier transformation of the parallel projection Yθ(d) at an
angle θ, and F (u, v) is the 2D Fourier transformation of the source X(x, y) at the
same angle θ.

Therefore, by transforming a parallel projection at a certain angle, values of
F (u, v) in the frequency space can be partially recovered as a slice, as illustrated
in Fig. 1.6a. With an infinite number of parallel projections, the estimated source
image X̂(x, y) can be accurately recovered by directly calculating the inverse 2D
Fourier transform of F (u, v). In practice, the number of projections is limited.
Thus numerical interpolation is required to fill the gaps between slices as shown in
Fig. 1.6b. However, radial points get sparser as one gets farther away from the center
of F (u, v), and larger errors are introduced to X̂’s components at higher frequencies.

Based on the projection model and the theorem, FBP was developed to achieve
faster and more accurate reconstruction than the interpolation methods [25]. As
shown in Fig. 1.6b, all slices in the Fourier space are independent of each other except
for the common DC (or direct current) component. This enables FBP to employ
a filter on individual slice assuming other slices are zero and inversely transforms
the nonzero slice back to the image space. This filter is defined as 2π|w|Na (where
Na is the number of projections), resulting in a filtered slice (2π|w|Na)Sθ(w) of the
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1.2. PET Image Reconstruction

Figure 1.7: A sketch showing the effect of using the filter which results in the filtered
slice having the same ”mass” as the pie-shape gap between slices

same ”mass” as the pie-shaped gap in between the two adjacent slices (shown in
Fig. 1.7). This approximation of the gap has been proved to be more accurate than
the approximation using interpolation methods [25]. With the filtered slice, ”the
filtered projection” Qθ(d) is calculated by using the inverse Fourier transform:

Qθ(d) =

∫ ∞
−∞

Sθ(w)|w|ej2πwtdw (1.3)

The reconstruction of filtered projections from the projection space to the image
space is a back projection procedure [25], as described in Eqn. 1.4:

X̂(x, y) =

∫ π

0

Qθ(xcosθ + ysinθ)dθ (1.4)

During the back projection procedure, Qθ0(d) equally spread back over the image
plane. For instance, as shown in Fig. 1.8, the intensity of the point Qθ0(d0) is equally
divided across all points (x, y) on the line MN. The final FBP image is the summation
of all the image planes reconstructed from the filtered projections acquired at all
viewing angles.

FBP has gained its reputation in tomographic reconstruction mainly owing to
its high efficiency [26], which is achieved by the analytical calculation of images
from the projection data. Especially for the applications using CT (or PET/CT
in the nuclear medicine area), which measures projection data angle by angle, the
efficiency of reconstruction can be further improved. As FBP is employed each time
for a single projection, it enables reconstruction as soon as a projection (at a certain
angle) is acquired and can therefore be applied during a CT measurement.

7
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Figure 1.8: A sketch explaining the back projection procedure

1.2.2 Iterative methods

1.2.2.1 The system matrix

Though the analytical methods normally result in effective reconstruction, the image
quality is limited by using the fixed line-integral model. The model does not take
account of the statistical variations inherent in PET acquisitions, and may not be
accurate enough to describe the physical effects in the photon detection procedure.

Alternatively, the iterative methods relates the acquisition Y with the source X
through a linear model (or ”the system matrix”) A:

Y = AX (1.5)

where Y = {yi} ∈ RNLOR , X = {xj} ∈ RNvox , and A = {aij} ∈ RNLOR×Nvox ; NLOR

is the total number of LORs and Nvox is the number of voxels.

The idea behind iterative methods is rather intuitive. Eqn. 1.5 presents a forward
projection process: given the initial estimation X̂(0) = {x̂(0)

j } and the system matrix

A, Y can be modeled from Eqn. 1.5. By comparing the modeled projection Ŷ(0) =
{ŷ(0)

i } and the real measurement Y, X̂ is reversely adjusted (backward projection).
The updated estimation X̂(1) is used in the next iteration to calculate Ŷ(1) for
the comparison. Convergence is reached when the difference between Y and Ŷ is
reduced to an acceptable level, and X̂(n) is considered the best approximation of X.

8



1.2. PET Image Reconstruction

Figure 1.9: A sketch showing the photon emission and detection processes

To achieve a modeled projection Ŷ that can best resemble the real acquisition,
the matrix A is desired to be as realistic as possible. Generally, A models the
probability of a photon emission from the a certain image voxel being detected by a
certain LOR, based on the geometric information of the PET scanner. Particularly,
in order to handle the statistical variations in the photon emission process, the
system matrix has been developed to include the noise model of the PET data, which
is normally considered to have a Poisson distribution, using a maximum-likelihood
(ML) method [27]. Detailed discussions are given below.

As illustrated in Fig. 1.9, it is assumed that a photon originating from the jth

voxel has a Bernoulli distribution and the average emission rate is x̂j within a unit
time interval. Then photons arising from the jth voxel have a Poisson distribution
with the expectation x̄j [28]. It should be noted that X̄ = {x̄j} and X̂ are equiva-
lent, since the image of the expected photo emission rate (or the count rate of the
coincidences, or radioactivity) of the source is exactly the image that needs to be
reconstructed. Therefore, X̄ is used instead of X̂ throughout this section. Given
the probability aij for an emission from the jth voxel being detected by the ith LOR,
the measurement yi also has a Poisson distribution with the expectation ȳi, which
is equivalent to the total count rate of all voxels across the ith LOR [28]:
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Pr(yi|x̄) ∼ Poisson(
∑Nvox

j∈Ji aijx̄j)

yi = e−ȳi(ȳi)
yi/(yi!)

ȳi =
∑Nvox

j∈Ji aijx̂j

(1.6)

where Ji denotes the set of image voxels that are crossed by the ith LOR (red voxels
in Fig. 1.9).

Eqn. 1.6 gives the conditional probability (or the likelihood function) Pr(yi|x̄)
at the ith LOR, and the conditional probability with respect to all LORs is given by
Pr(Y|X̄) =

∏
i(Pr(yi|x̄)). The best approximation X̄ of the source is considered

the one that maximizes the likelihood Pr(Y|X̄), or maximizes the equivalent log-
likelihood function of Pr(Y|X̄), which is expressed as:

LL(X̄|Y) = ln(Pr(Y|X̄)) =

NLOR∑
i

[yiln(
Nvox∑
j

aijx̄j)−
Nvox∑
j

aijx̄j − ln(yi!)] (1.7)

where LL denotes the log-likelihood function and ln is the natural logarithm.

1.2.2.2 Maximum likelihood expectation maximization

The maximization of the first ln term in Eqn. 1.7 with respect to x̄j is challeng-
ing. Expectation Maximization (EM) is a general approach to solve the ML prob-
lem [29]. This approach has been adopted for iterative PET image reconstruction,
and is known as the ”Maximum likelihood expectation maximization (MLEM)” re-
construction [4, 30, 31].

In general, EM consists of an ”expectation-step (E-step)” and a ”maximization-
step (M-step)”. In the E-step, this approach introduces a set of ”complete data”,
which simplifies the likelihood function and make the ML problem solvable. Then
the M-step is used to iteratively optimize the expectation of the simplified likelihood
function. Detailed discussions are given below.

E-Step (expectation-step): The condition Y in Eqn. 1.7 is considered the
”incomplete data set” as it only provides the information of the number of counts
of coincidences at a certain LOR but no knowledge of the origins of photon pairs.
Therefore, in the E-step, a complete data set X = {xij} is introduced, which includes
information of the origins (the jth voxel) as well as the destinations (the ith LOR) of
detected photon pairs. With X, a log-likelihood function that is easier to optimize
is then constructed:

LL(X̄|X) = ln(Pr(X|X̄)) =

NLOR∑
i

∑
j∈Ji

[−aijx̄j + xij ln (aijx̄j)− ln (xij!)] (1.8)
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1.2. PET Image Reconstruction

Given Y and current estimation X̄(n), the expectation of LL(X̄|X) with respect
to xij is deduced:

E(LL(X̄|X)|Y, X̄(n)) =

NLOR∑
i

∑
j∈Ji

[−aijx̄j +ln(aijx̄j)
aijx̄

(n)
j yi∑

l∈Ji ailx̄
(n)
l

]+Constant (1.9)

where the constant term which is irrelevant to X̄ is omitted during the optimization.
M-Step (maximization/minimization-step ): To optimize Eqn 1.9, the par-

tial derivative of the function in regard to each image voxel x̄j is calculated and set
to zero:

∂E(LL(X̄|X)|Y, X̄(n))

∂x̄j
= 0 (1.10)

Eqn. 1.10 deduces a closed-form update function for estimating X̄ at each iter-
ation:

x̄
(n+1)
j =

x̄
(n)
j∑

i∈Ij aij

∑
i∈Ij

aij
yi∑

l∈Ji ailx̄
(n)
l

(1.11)

where Ij denotes the set of LORs crossing the jth voxel.

Eqn. 1.11 can be explained explicitly.
∑

l∈Ji ailx̄
(n)
l represents the forward pro-

jection procedure to model yi. By comparing the model to measurements, a ratio
sinogram (yi

ŷi
) is acquired and back projected to the image space by inner multiply-

ing with aij, resulting in a ratio image to update the current estimation x̄
(n)
j [4].∑

i∈Ij aij is the normalization term.
The system matrix A based on the Poisson noise model was introduced. A

more realistic model may take into account of other effects, such as the estimated
attenuation correction factors α, scattered (S = {si}) and random events (R =
{ri}) [3]:

x̄
(n+1)
j =

x̄
(n)
j∑

i∈Ij aij/αi

∑
i∈Ij

aij
αiyi∑

l∈Ji ailx̄
(n)
l /αi + ri + si

(1.12)

In addition, the convergence speed of MLEM can be improved using ordered sub-
sets expectation maximization (OSEM) [32] which groups projections into subsets
for simultaneous calculations:

x̄
(n+1)
j =

x̄
(n)
j∑

i∈IS aij/αi

∑
i∈IS

aij
αiyi∑

l∈Ji ailx̄
(n)
l /αi + ri + si

(1.13)

where IS are ordered subsets of LORs specified for reconstruction.
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1. Introduction

However, due to the use of subsets, the OSEM optimization function circles
around but will not achieve the MLEM solution [33]. Nevertheless, as the conver-
gence speed of OSEM is number-of-subsets times faster than MLEM, it is more
frequently applied in practice [3].

1.2.3 Comparison between analytical and iterative recon-
struction methods

Both FBP and MLEM (or OSEM) are routinely used in the clinic. To compare their
performances, an example is presented here based on the numerical phantom shown
in Fig. 1.10a. To simulate a PET acquisition, the phantom was forward projected
into the projection space using the Radon transform (Eqn. 1.1). For simplicity,
noise, scattered/random events, or the attenuation effect were not considered in the
simulation. The resulting sinogram (Fig. 1.10b) was reconstructed using the FBP
and MLEM algorithms.

To illustrate the back projection procedure of FBP, the reconstructed image
planes with the increasing number of projections are exhibited in Fig. 1.10c-f. With
limited projections, a streak artifact is shown in the reconstructed images (Fig. 1.10c-
e). This artifact was caused by the improper combinations of the positive and
negative components of the filtered projections, which were projected back to the
image plane. The artifact was reduced when more projections were used. Usually,
as the artifact has an intensity that is far smaller than the intensity of the rest of
the image, it does not strongly affect visual diagnosis or ROI-based quantitative
analysis [34]. However, when a small area has a much higher intensity than the rest
of the image, the artifact around that area becomes severe and hampers anatomical
identifications and physiological quantifications. This problem is further discussed
in chapter. 2.

For iterative algorithms, the iteration number needs to be set carefully to achieve
reliable reconstruction. As shown in Fig. 1.10g&h, with the limited number of iter-
ations, the likelihood function of MLEM was far from convergent and the resulting
images are therefore blurry. As the iteration number increased, the reconstructed
images resembled the phantom more closely. However, image noise also increased
as the iteration proceeded. To balance the tradeoff between the noise and recon-
struction accuracy, an early stopping rule is often performed [35,36] which stops the
optimization procedure before convergence, to ensure the quality of the reconstruc-
tion is sufficient for diagnosis.

In summary, FBP and MLEM have respective strengths and limitations. FBP is
computationally effective and able to produce unique results due to the analytical
calculation. However, when a severe streak artifact appears in reconstructed images,
it may influence clinical diagnosis [37]. MLEM, on the other hand, provides better
image quality, as it integrates the scanner geometry, noise model, and physical effects
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F
ig

u
re

1.
10

:
P

lo
ts

of
(a

)
a

p
h
an

to
m

w
it

h
a

re
gu

la
r

sh
ap

e;
(b

)
th

e
co

rr
es

p
on

d
in

g
si

n
og

ra
m

,
in

cl
u
d
in

g
p
ro

je
ct

io
n
s

at
ea

ch
an

gl
e
θ;

re
co

n
st

ru
ct

ed
im

ag
es

u
si

n
g

F
B

P
w

it
h

(c
)

1,
(d

)
4,

(e
)

64
,

an
d

(f
)

18
0

p
ro

je
ct

io
n
s;

re
co

n
st

ru
ct

ed
im

ag
es

u
si

n
g

M
L

E
M

w
it

h
(g

)
2,

(h
)

16
,

(i
)

25
2

or
(j

)
10

24
it

er
at

io
n
s

13



1. Introduction

Figure 1.11: [18F]Fmiso PET images (coronal view) of a mouse at different time
intervals

among others into iterative reconstruction. However, the intensities of image voxels
changes over iterations and the convergence rate depends on the individual data
set. Since a common iteration number for all cases is difficult to find, a convergence
evaluation is normally recommended before the final reconstruction, as discussed in
chapter. 4.

1.3 Pharmacokinetic Modeling

After injection of a radioactive tracer into a living organism, it interacts with the
organism through many processes. These interactions can be characterized by the
pharmacokinetics of the injected substance, reflecting the intrinsic reaction of the
specific tracer in a living organism [38]. PET is able to record these pharmacokinetic
processes by scanning the organism dynamically. The measured coincident events
are assigned to pre-defined time frames according to their acquisition time, forming a
series of sinograms [3]. By reconstructing these sinograms, dynamic PET images are
generated. These images record the changes of tracer activity distribution over time
in the living organism (Fig. 1.11). Investigating the variations of a voxel or a ROI
shown on the dynamic images, a ”time-activity curve” (TAC) is drawn, reflecting
the temporal development of the tracer on local tissue [3].

1.3.1 The 2-tissue compartment models

A TAC can be mathematically described by a pharmacokinetic model [38], which
usually takes into account of the delivery, metabolism and clearance of the tracer in
target tissues. For different tracers and their distinct physiologies, various kinetic
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1.3. Pharmacokinetic Modeling

Figure 1.12: (a) A sketch of the two-tissue compartment model and (b) a plot of an
exemplary curve fitting procedure

models have been developed. Here the two-tissue compartment model is introduced.
This model is suitable for modeling popularly applied PET tracers in clinic prac-
tice and covers a wide range of applications (e.g., [18F]FDG, [18F]FLT, [18F]FET,
[11C]MET, [11C]PiB and [18F]Florbetapir) [39–44].

As shown in Fig. 1.12a, the two-tissue compartment model describes the follow-
ing situation: when the tracer enters into tissue from plasma, a portion incorporates
into biologically active molecules due to chemical reactions and the other portion
diffuses back into the plasma [3]. These situations are captured by the two-tissue
compartment model using compartments: CP represents the concentration of trac-
er in the whole blood (”the arterial input function”, or AIF); Cbound denotes the
tracer concentration interacting with surrounding tissue; and Cfree denotes the un-
bound tracer concentration exchange between CP and Cbound. Mathematically, the
interactions between tracer and tissue compartments are expressed by the following
differential equations:

{
dCfree

dt
= K1CP − (k2 + k3)Cfree + k4Cbound

dCbound

dt
= k3Cfree − k4Cbound

(1.14)

p = {K1, k2, k3, k4} are ”kinetic parameters” which are constants describing tracer
exchange rates between tissue compartments.

By solving Eqn. 1.14, Cfree and Cbound are acquired. The modeled tissue TAC
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1. Introduction

Ĉ is specified as:

Ĉ(t) = Cfree + Cbound
= K1

α2−α1
[(k3 + k4 − α1)e−(α1+λ)t + (α2 − k3 − k4)e−(α2+λ)t]⊗ CP (t) + VBCP (t){

α1 = 1
2
[(k2 + k3 + k4)−

√
(k2 + k3 + k4)2 − 4k2k4]

α2 = 1
2
[(k2 + k3 + k4) +

√
(k2 + k3 + k4)2 − 4k2k4]

(1.15)
where t is the index of measured time points, the additional term VB is the fractional
blood volume, λ is the decay constant of the radioactive isotope, and ”⊗” denotes
the convolution operator.

The tracer trapped in Cbound has undergone chemical reactions such as phospho-
rylation. However, these reactions may be reversed (e.g., dephosphorylation) and
part of the tracer may be released back into Cfree. In this case, k4 > 0 and the
model is referred to as a ”reversible two-tissue compartment model”. On the other
hand, when these reactions are not reversible (k4 = 0), the model is regarded as an
”irreversible two-tissue compartment model”. As k4 = 0, the irreversible model has
a simpler expression as follows:

Ĉ(t) = K1[ k2
k2+k3

e−(k2+k3+λ)t + k3
k2+k3

]⊗ CP (t) + VBCP (t) (1.16)

1.3.2 Model fitting

In practice, we are dealing with the inverse problem of kinetic modeling, i.e., giv-
en the model configuration, estimate the kinetic parameters. These parameter-
s are distinct for different tissue/tracer types and contain the underlying func-
tional information of the physiological processes [38]. With the knowledge of the
model configuration, the AIF CP and the measured TAC C, kinetic parameters
p = {K1, k2, k3, k4, VB} can be estimated using the commonly known least-squares
optimization [3, 45]:

arg min
p

=

NT∑
t

wt(Ct − Ĉt(p))2 (1.17)

where NT is the total number of measured time points and w = {wt} denotes the
weightings factors.

Quantitatively, Eqn. 1.17 aims to find an optimal set of p, which minimizes the
sum squared difference between Ĉ and C. It is equivalent to finding the p that
results in a specific model prediction, which can best fit the measured curve. The
weighting factor is optionally imposed on each fitting point according to prior knowl-
edge of variance [45]. For instance, w can be set to be positively proportional to
the measurement duration for each data point. Therefore, a longer measurement,
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which is expected to have a higher SNR, gains more weight (authority) for model
fitting. More frequently, w is set to be uniform (w = 1.0), and no preference is im-
posed during model fitting [45]. The optimization of Eqn. 1.17 is commonly achieved
using numerical nonlinear regression methods, such as trust region or Levenberg-
Marquardt [46]. A sample fitting result is given in Fig. 1.12b. With the AIF (red)
and the noisy measurement (black), the modeled TAC (blue) calculated from the
estimated p fits the measurement well and can reflect the truth TAC (green).

1.4 Direct Parametric Image Reconstruction

As introduced above, pharmacokinetic parameters p are estimated by applying a
kinetic model to TACs extracted from reconstructed dynamic PET images. When
the model fitting is applied to TACs for each voxel (”the voxel-wise modeling”), a
set of parametric images are generated. Different from a PET image, the parametric
images give the spatial distribution of each kinetic parameter. This reconstruction-
modeling two-step method is often referred to as the ”indirect parametric image
generation” method [47,48].

In practice, the coincidences acquired during PET imaging are limited in num-
bers, and errors are introduced due to attenuation, scattering, and random effects.
Thus, a PET measurement is usually considered to have a relatively low SNR [3].
This makes the voxel-wise modeling procedure challenging. To improve the quality
of model fitting, a ”direct parametric image reconstruction” (DPIR) method has
been proposed [47]. It combines reconstruction and modeling into one step and
enables the parameter estimation directly from the projection data. In principle,
DPIR integrates a temporal model into the iterative reconstruction model [47, 49].
The dynamic images X̂ is then expressed as a temporal function multiplying with
model parameters (x̂jt = fjt(p)). When a pharmacokinetic model is used as the tem-
poral function, the model parameters are then equivalent to the pharmacokinetic
parameters.

By substituting X̂ in Eqn. 1.8 as the function of p, the objective function with
respect to the kinetic parametric images P = {pjk} ∈ RNvox×NK (NK is the number
of kinetic parameters) is written as:

p(n+1) = arg max
p

∑
i∈Ij

aij
αi

NT∑
t

(−fjt(p) +
f

(n)
jt (p)yi∑

l∈Ji ailf
(n)
lt (p)/αi + ri + si

) (1.18)

The optimizing difficulty in Eqn. 1.18 depends on the complexity of f(p). For
linear models, p is separable from the temporal basis function f , enabling the ex-
pression of X̂ as the inner production of p and f [47, 50]:

17



1. Introduction

Figure 1.13: Sample parametric images reconstructed by (a) the indirect
FBP+kinetic modeling method, (b) the indirect MLEM+kinetic modeling method
and (c) the direct parametric image reconstruction method

X̂ =

NK∑
k

pjkfkt (1.19)

where k is the subscript of kinetic parameters.
As later discussed in chapter. 4, the integration of Eqn. 1.19 will result in a closed-

form update function for iteratively updating the kinetic parameters p [47–54]. How-
ever, as most kinetic models are nonlinear, the optimization procedure becomes
challenging and may be limited to a specific model [55, 56]. Approximations and
functional substitution are often required for optimization as discussed in chap-
ter. 3 [49,57–59].

Recently, DPIR has drawn more and more attention [60]. It has been proven to
generate parametric images with improved image quality and fewer statistical errors,
compared to the indirect parametric image generation methods [47–63]. Fig. 1.13
presents an example illustrating the effects of using DPIR for parametric image
reconstruction. As shown, the image generated by DPIR has the highest SNR com-
pared to those obtained from indirect methods. A possible explanation is: for indi-
rect methods, reconstruction and modeling are separate steps, and only partial data
with limited SNR has been used in each individual procedure. In the reconstruction
step, image frames are calculated independently. In the voxel-wise fitting step, TACs
are modeled independently. On the other hand, DPIR is applied simultaneously to
the complete 4D (3D spatial + 1D temporal) PET data of the maximized SNR for
both reconstruction and modeling [48]. Thus DPIR can provide parametric images
of higher quality.

Though DPIR has shown promising potential to be applied in clinical practice,
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there are remaining challenges. For instance, a kinetic model with a large param-
eter dimensionality (e.g., multi-tracer models) may limit the performance of DPIR
(discussed in chapter. 3). In addition, though DPIR enables the improvement of
image quality, whether this gives additional value to physiological quantification in
clinical diagnosis is not yet clear. These issues require further investigations.

1.5 Thesis outline

This thesis proposes mathematical algorithms to improve dynamic PET reconstruc-
tion by utilizing temporal coherence and pharmacokinetics. An overview of PET
imaging, reconstruction methods, and pharmacokinetic modeling is presented in
chapter. 1. This thesis makes efforts to improve the two types of the reconstruction
methods. Chapter. 2 proposes a framework to reduce sever streak artifacts, which
arises from the analytically FBP reconstruction. On the other hand, an iterative
DPIR method is proposed in chapter. 3 to particularly deal with a multi-tracer mod-
el of a large parameter dimensionality and improve tracer separation. In addition,
the physiological value resulting from the improvements of PET reconstruction is
initially evaluated in chapter. 4. Conclusions are given in chapter. 5.

19





2

Streak Artifact Reduction in
Filtered Back Projection

Filtered backprojection (FBP) is an analytical image reconstruction method for com-
puting tomographic images. It is widely used in practice for its high computational
efficiency and high reliability for PET physiological quantification [64]. However, an
intrinsic artifact appearing as a streaking effect (”the streak artifact”) overspreads
all FBP images. This artifact does not influence clinical diagnosis unless it becomes
severe, due to the overwhelmingly high tracer uptake in some organs, a situation
which often occurs in practice. To reduce the severe streak artifacts in dynamic
FBP images, a framework is proposed in this chapter, which utilizes the temporal
information of PET data for artifact reduction in the image space. Both simula-
tions and real measurements were used for method validation. Tomographic images
generated from the proposed framework were quantitatively compared with those
calculated by using the original FBP method.

Part of this work has been published in [65].

2.1 The Streak Artifact

The streak artifact is typically seen in FBP images. It arises from the back projection
procedure during reconstruction. After a filtered projection is inversely transformed
from the Fourier domain, negative and positive contributions are projected back to
the image plane. Ideally, with an infinitesimal projection angle interval (M θ → 0),
both contributions between neighboring lines counteract properly and the streak
artifact is avoided. In reality, due to the limited angle sampling, streak artifacts
appear in FBP images. However, they are usually far smaller than the normal
signal (Fig 2.1b), which is acceptable for clinical diagnosis. Nevertheless, when the
reconstructed image contains one or more regions of overwhelmingly high signals,
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Figure 2.1: Plots of: (a) a phantom image consisting of two ROIs which have com-
parable signal levels; (b) the corresponding FBP image of (a); (c) a phantom image
consisting of two ROIs which have incomparable signal levels; (d) the corresponding
FBP image of (c)

the striking contrasts at the regions’ borders result in an amplified streak effect,
destroying the rest of the image dramatically (Fig 2.1d).

In practice, the severe streak artifact hampers the application of FBP. For in-
stances, in CT imaging, the artifact is caused by metallic implants (e.g., hip prosthe-
ses or dental fillings), which degrades the accuracy of examinations and influences
dose calculations [66]; In the area of nuclear medicine, the artifact is mainly due
to tracer accumulation in e.g., the bladder, which leads to severe distortions of the
abdomen image and complicates the diagnosis of prostate or cervical cancer [37].

Many approaches have been proposed to reduce the streak effect. Efforts have
been focused on either linear or higher order interpolations between two successive
projections [67, 68] or on the incorporation of modified iterative expectation maxi-
mization (EM) algorithms with additional constraints [69, 70]. However, with most
interpolation methods, areas around high signal intensity regions are still distorted.
For the modified iterative methods, the imposed non-negative constraints may lead
to biased reconstructions with less quantitative value.

In addition, there has been constant debate and comparison between FBP and
iterative algorithms [64,71–73]. As discussed in Sec. 1.2.3, both methods have their
respective strengths and limitations. Iterative reconstruction may provide better vi-
sual quality. However, FBP has superior computational efficiency and quantitative
stability. These merits are desired for dynamic PET applications and pharmacoki-
netic estimations.
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Reduction

Figure 2.2: A plot of the flow chart of the proposed framework

2.2 Time-Activity Curve based Sinogram Decom-

position for Streak Artifacts Reduction

This chapter proposes a framework to automatically reduce the severe streak arti-
facts in dynamic PET images which are reconstructed using FBP. Concerning the
severe artifact arising due to the existence of incomparable signal levels in the image
plane, the new method utilizes the temporal information of dynamic PET data to
distinguish signal levels and accordingly decompose the data in the projection space
(sinogram). The decomposed sinograms corresponding to higher signal levels are
particularly processed to reduce severe streak artifacts before the final reconstruc-
tion.

More specifically, the framework consists of 4 steps as illustrated in Fig. 2.2: 1.
pre-reconstruction; 2. clustering TACs of comparable levels; 3. decomposition in
the projection space based on the mean clustered TACs; 4. reconstruction of the
decomposed sinograms and reassembling. A detailed explanation of each step is
given below.

2.2.1 Pre-reconstruction of dynamic PET acquisitions

The proposed method utilizes TACs extracted from dynamic PET images to identify
incomparable signal levels. Pre-reconstruction is thus required and can be achieved
effectively using the original FBP method described in Sec. 1.2.1. It is assumed that
reconstructed images X̂(t) contains in total T temporal frames and Nvox voxels per
frame. The intensity of the jth voxel over time xj(t) = [xj(1), xj(2), · · · , xj(L)]T ∈
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2. Streak Artifact Reduction in Filtered Back Projection

RT represents a TAC of length T . Therefore X̂ is also considered as a vector
set of Nvox TACs of length T . When incomparable signal levels exist, this pre-
reconstructed X̂ is ruined by severe streak artifacts.

2.2.2 Extraction of characteristic TACs

To differentiate incomparable signal levels, characteristic temporal courses of indi-
vidual signal levels with comparable intensities are extracted from the Nvox TACs
by clustering areas of similar temporal development in the image plane. Clustering
is achieved using the K-Mean algorithm with the Euclidean distance as similarity
metrics [74]. The Nvox TACs are grouped into M clusters, with the mean curve
C̄m(t) and the variance σm of each cluster m (m = 1, 2, · · · ,M,M � Nvox) under
the condition:

σm � σ/M

where σ is the variance of x̂j(t).

As the result, TACs of similar variance (i.e., similar signal intensities) are clas-
sified into one group. Different groups are considered at different signal levels.
C̄(t) = {c̄m(t)} represents the characteristic TACs of each group and are used to
guide the decomposition of PET data in the projection space.

2.2.3 Decomposition in projection space

For 4D PET data, individual TACs are associated with spatial regions of specific
physiological properties, relating to distinct components in the projection space.
With the clustering of TACs in the temporal domain, sinograms in the projection
space can be distinguished [75].

Recalling that the dynamic PET acquisitions in the projection space Y(t) =
{yi(t)} ∈ RNLOR are related to the source X(t) using radon transformations as
described in Eqn. 1.5. The projection model A maps the intensity of each image
voxel to the projection space to form projections. Therefore with the knowledge of
A, it is able to back retrieve for each voxel or group of voxels the corresponding
sinogram portions from the projection space.

By grouping voxels in a physiological region according to the similarity of their
temporal development, each sinogram that corresponds to the respective character-
istic TAC is extracted. From the mathematical point of view, the characteristic
TACs representing each physiological region in the image plane are considered as
temporal basis functions. The sinogram Y(t) in the projection space is decomposed
into weights to each basis function:
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
y1(t)
y2(t)

...
yNLOR

(t)

 =


b1,1 b1,2 · · · b1,M

b2,1 b2,2 · · · b2,M
...

... · · · ...
bNLOR,1 bNLOR,2 · · · bNLOR,M




z1(t)
z2(t)

...
zM(t)

 (2.1)

or in the matrix format:
Y(t) = BZ(t) (2.2)

where Z(t) ∈ RM is a set ofM characteristic TACs. Each TAC zm(t) = [zm(1), zm(2),
· · · , zm(T )] is considered a temporal basis function corresponding to a physiological
region. B = {bi,m} ∈ RNLOR×M and bi,m is the weight for voxels detected by the ith

LOR, meanwhile possessing the same mth characteristic TAC. Thus the matrix B
contains the decomposed sinograms corresponding to each of the M TACs.

The sinograms at the same signal level have similar intensities. Therefore B
at each signal level is considered to be rather smooth. This prior expectation is
included in Eqn. 2.3 by adding the `2-norm to regularize the solution of B, leading
to a minimization of the following term [76]:

arg min
B

(‖Y −Bz‖2 + β‖B‖2) (2.3)

where β is the constant term for regularization.
With the additional regularization term, the solution B is preferred to have a low

norm (i.e., to be smooth) such that the cost function in Eqn. 2.3 can be optimized.
Optimizing Eqn. 2.3 results in a closed-form function for calculating B:

Bim = (
∑
t

Yitz
T
mt)/(

∑
mt

zmtz
T
mt + β); (2.4)

where T is the transpose operator.
As B is acquired, the weight is normalized to [0, 1.0] for each sinogram frame.

Sinogram decomposition is then achieved by multiplying the original Y with the
decomposed weight B at each frame.

Here, the clustered mean curves C̄m(t) in Sec. 2.2.2 are taken as characteristic
TACs for the sinogram decomposition. Considering that the incomparable signals
usually appear after a few minutes when the radioactive tracer has metabolized for a
while, the decomposition starts from the frame l0 when obvious incomparable signals
appear (max(c̄m,l0)/min(c̄m,l0) > φ, φ is a constant).

2.2.4 Resembling of reconstructions

When the sinogram has decomposed into parts with different signal levels, each
part can be reconstructed individually using FBP. The sinograms with high signal
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levels will still result in strong streak artifacts in the reconstructed images, but these
artifacts can be easily filtered out using standard algorithms such as clustering or
thresholding. Reconstructing the rest of the sinogram with FBP leads to normal
images. Though streak artifacts remain in these images, but they are comparatively
small. The final images are reassembled from all the reconstructions of decomposed
sinograms.

2.3 Algorithm Evaluation

To evaluate the performance of the proposed algorithm, both numerical simulations
as well as real PET data were acquired. The artifacts-corrected images are compared
with traditional FBP images. This section presents the data acquisition procedures
and quantification methods for analyzing results.

2.3.1 Simulation study

As shown in Fig.2.3, a numerical abdomen phantom was constructed with realistic
anatomical structures including bladder, prostate, etc. A 18F-FDG dynamic PET for
60 minutes was simulated, where TACs associated with each tissue area except for
the bladder were calculated using the irreversible two-tissue compartmental model
(Eqn. 1.16) based on physiological parameters taken from literature as listed in
Tab. 2.1. The bladder TAC cannot be described by the irreversible model and
thus it is extracted from a preclinical PET data. For proof of concept, the TAC
was normalized and interpolated to the measurement points consistent with other
tissue TACs. Over all, the phantom consists of 256 × 256 pixels and 43 frames
(frame duration: 1s - 2.5 min) according to a real PET protocol. The tracer was
continuously cleaned during metabolism and accumulated in the bladder, leading to
at least 30 times higher activity concentration than in other tissues over 20 minutes.
Each image slice was forward-projected and binned into a sinogram (128 bins, 64
projection views). Poisson noise was generated in each LOR. In total, the simulated
acquisition consisted of 43 frames and 128× 64 LORs per frame.

Table 2.1: Kinetic parameters of each tissue ROI

Fat Crassum Muscle Prostate Bone Spine Tumor

K1 0.018 0.150 0.027 0.251 0.160 0.260 0.522

k2 0.102 0.433 0.154 0.328 0.400 0.378 0.999

k3 0.055 0.112 0.076 0.190 0.083 0.114 0.438

Units: K1: mL/min/g; k2&k3: min−1

The sinogram acquisition was pre-reconstructed into an image series (256×256×
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Figure 2.3: (a) A plot of an abdomen phantom; (b) a zoom-in plot of TACs assigned
to tissues and (c) a full-view plot of the TACs (The color of each TAC is consistent
with the color of corresponding tissue regions.)

43) using the traditional FBP. Here the proposed algorithm was applied with a
φ = 20. Thus for each frame, when the maximum intensity of the high signal level
is 20 times larger than the minimum intensity of low signal level, the new algorithm
will be executed. The regularization parameter β was set to be 270 for sinogram
decomposition.

The dynamic PET images of the phantom were reconstructed using the proposed
method as well as the traditional FBP algorithm. Results from both methods were
quantitatively compared with the ground truth (GT) in terms of root mean square
error (RMSE, Eqn. 2.5). Here we focused on tissue ROIs of normal signal level to
evaluate the influence of streak artifacts.

RMSE =

√
1

Nj

∑
j∈ROIs

(Imgj −GTj)2 (2.5)

where Nj denotes the number of voxels within ROIs and Img stands for the recon-
structed tracer activity distributions (over all frames) or parametric images.

In addition, for dynamic PET study, tracer pharmacokinetics are of interests for
investigating the underlying physiological properties of target tissues. The physi-
ological accuracy may be affected by the reconstruction method and the artifacts.
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Figure 2.4: (a) A sketch of the phantom design with parameters and (b) a photo of
the physical phantom inserted with Eppendorf tubes with 18F-FDG

Thus the parametric images were generated for further evaluation of both methods,
by applying the irreversible two-tissue compartmental model to the reconstructed
images. The interesting K1 and k3 parametric images from both methods were
assessed in RMSE.

Furthermore, additional tests were designed to study the influence of the projec-
tion number on the performance of the proposed method. Thus data sets with 32
or 128 projections were also simulated and reconstructed under the same conditions
for comparison. Note that the parameter β in Eqn. 2.3 is case-dependent. The ac-
curacy of the reconstruction may vary as β changes. Thus various values of β coving
a wide range (from 0 to 1000) have been tested to optimize the regularization term
in Eqn. 2.3. Similarly, the results obtained from both methods were compared in
terms of RMSE.

2.3.2 Real data validation

To evaluate the algorithm for real applications, a dynamic scan of a physical phantom
was performed with a Siemens Inveon PET. The dynamic scan was created by static
measurements and each acquisition served as a period of dynamic measurements
framing up to a certain time point. The physical phantom consists of 7 holes for
insertable Eppendorf tubes (Fig. 2.4). These tubes were filled with 18F-FDG tracer
of different concentrations. For each scan, tracer activities were manually changed
in each tube according to realistic TACs. In total, the dynamic scan contains 35
frames: 8 x 5 s, 2 x 10 s, 8 x 30s, 12 x 150s, and 5 x 300s. The resulting acquisition
consists of 128×160 LORs and 159 planes per frame. Data were corrected for decay
to the starting time point of the experiment. Due to lack of ground truth, the results
of real measurements were evaluated mainly by visual comparisons.
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2.4. Results

Figure 2.5: An exemplary frame (frame #34) of (a) noisy sinograms and (b) FBP
reconstructed images; (c) a plot of two mean characteristic TACs (solid) of incom-
parable signal levels compared to the true TACs (dash)

2.4 Results

2.4.1 Performance evaluation on simulation data

Fig. 2.5b presents a sample frame (frame #34) of the normal FBP images pre-
reconstructed from the noisy sinogram (Fig. 2.5a). The image contains server streak
artifacts due to the high intensity of the bladder image. Panel c demonstrates the
clustering results where two mean characteristic TACs were extracted from the dyn-
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2.4. Results

Figure 2.7: An exemplary frame (frame #34) of (a) the ground truth; the recon-
structed images obtained from (b) traditional FBP and (c) the proposed method

amic FBP image, representing two incomparable signal levels (bladder and normal
tissue) of the tracer activity distributions. The clustered TACs were taken as the
basis function for sinogram decomposition. Here φ = 20 led to the decomposition
of frames 28 to 43.

As shown in Fig. 2.6, the decomposed sinogram with (β = 270) includes a high
activity concentration part (panel a) corresponding to the bladder, and a normal
activity concentration part (panel b) corresponding to the rest of the tissues. The
decomposed sinograms were reconstructed using the traditional FBP. The streak
artifacts in panel c of the high activity part were filtered out using a clustering
algorithm. The cleaned bladder image (panel e) was added to the reconstruction
obtained from the normal intensities (panel d), yielding the final result.

Fig. 2.7 shows a comparison between the final reconstructed images obtained
from the proposed algorithm and the traditional FBP. The proposed method has
achieved a significant reduction of artifacts compared to FBP. Quantitatively, as
compared to the phantom GT, the RMSE of the traditional method was 58% and
it has been reduced to 15% using the proposed method. A 75% improvements in
RMSE was thus achieved by the proposed method.

The exemplary K1 images generated from different methods are illustrated in
Fig. 2.8. In the traditional FBP image (panel b), regions such as the border of
the bladder are affected by the severe artifacts, which is not noticeable using the
new method. For quantitative analysis, the result shows that the reconstruction
using the new method has a better quantification accuracy than FBP. A 37% and
55% improvement in RMSE was gained for the interesting parameters K1 and k3

respectively. It should be noted that the bladder is not applicable for the two-tissue
compartment model which is usually excluded from quantitative analysis. Thus we
did not consider the bladder for RMSE.
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2. Streak Artifact Reduction in Filtered Back Projection

Figure 2.8: The K1 parametric images generated from (a) the GT (b) the traditional
FBP method and (c) the proposed method

Figure 2.9: A plot of the RMSE of tracer activity concentration of each time frame
between the ground truth, FBP(dash) and the new method (solid) using 32 (blue),
64 (red) or 128 projections (green)

Table 2.2: RMSE of kinetic parameters and tracer activity distributions

tracer

K1 k3 activity

distributions

Projections 32 64 128 32 64 128 32 64 128

FBP 0.039 0.032 0.030 0.435 0.293 0.141 102.78 63.70 57.77

New Method 0.022 0.019 0.019 0.069 0.064 0.064 19.24 15.19 14.55

Improvement(%) 43.59 40.63 36.67 84.14 78.16 54.62 81.28 76.15 74.81
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2.4. Results

Figure 2.10: A plot of the mean RMSE of tracer activity distributions over frames
as β changes, using 32 (blue), 64 (red) and 128 (green) projections

Regardless of the projection numbers (32, 64 or 128) investigated, RMSE im-
provements were achieved with the proposed method on the tracer activity distri-
butions as well as the parametric images as listed in Tab. 2.2. The improvement
is more obvious as fewer numbers of projections were used. This can be further
confirmed by Fig. 2.9, where the RMSE was measured for every image frame re-
constructed with 32 (blue), 64 (red) or 128 (green) projections. For both methods,
RMSE can be improved to some extent by including more projections. For the tra-
ditional method, a larger RMSE was observed as the frame index increased and the
error curve reflects the increasing differences between signal levels. For the proposed
method, RMSE was relatively low (RMSE ≈ 15) for all applied frames (frame #
28 to # 43) and all investigated projection numbers.

Fig. 2.10 evaluated the effects of the regularization parameter β. As shown, the
accuracy of the reconstructed tracer activity distribution varies as β changes. For
all projection numbers investigated, an optimum β that leads to the minimal RMSE
can be found within a relatively wide range (β : 220− 330).

2.4.2 Performance evaluation on real measurements

As shown in Fig. 2.11a, two characteristic TACs with incomparable signal levels were
extracted using K-Mean clustering from pre-reconstructed phantom images. The red
TAC corresponds to the high intensity area (Tube #4) while the blue TAC represents
the mean TAC of the remaining phantom regions. Sinograms were accordingly
decomposed into the low and high activity parts as presented in Fig. 2.11b&c.
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Figure 2.11: (a) A plot of the clustering result extracted from the pre-reconstructed
dynamic PET images of the physical phantom; (b) the decomposed sinogram corre-
sponding to the (red) characteristic TAC and the high activity area of the phantom;
(c) the decomposed sinogram corresponding to the (blue) characteristic TAC and
the low activity areas of the phantom

The reconstructed images using the traditional FBP method and the proposed
method are compared in Fig. 2.12. The image obtained from the proposed method
(φ = 20; β = 270) shows a clear improvement in image quality in comparison with
the results of the traditional FBP. With the proposed method, all of the seven rounds
of FDG activity are seen and are no longer covered by the severe streak artifacts seen
in the FBP images. Due to the technical problems of this complicated experiment,
a small portion of data is missing and is completed by interpolation. However, for
proof-of-concept, the reconstruction of this physical phantom has confirmed that a
better image quality can be obtained with the proposed algorithm.
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2.5. Discussion

Figure 2.12: An exemplary frame (frame #35) of the reconstructed images using (a)
the traditional FBP method and (b) the proposed method.

2.5 Discussion

This chapter proposes a framework to reduce severe streak artifacts in PET images
reconstructed using FBP. The framework utilizes the temporal information of tracer
in vivo to identify, extract and process part of the PET data, which normally lead
to severe artifacts, before the final image generation. The evaluation results of
simulation and phantom studies show a clear improvement in image quality as well as
in quantitative accuracy, as compared to the results from the original FBP method.

Generally, the new method is effective for reducing severe streak artifacts. As
shown in Fig. 2.3, when the tracer accumulates in the bladder over time, the differ-
ence between incomparable signal levels increases. Consequently a stronger streak
effect and a larger RMSE are shown in the traditional FBP images as time goes by
(Fig. 2.9). By employing the framework, the streak artifacts in the reconstructed
images are consistently suppressed regardless of time and the RMSE is kept at a
low level.

It is known that the fewer number of projections used in FBP reconstruction, the
more severe streak artifacts will be observed in the images. Our evaluation results
show that the performance of the new method is less affected by the projection
number. For example, for the tracer activity distributions, an increment of RMSE
by 78% was obtained when the projection number decreased from 128 to 32 using
the traditional FBP, while for the proposed method, the RMSE was increased by
32%. Thus the proposed methods was found more effective for correcting FBP
images when fewer projections were used. For 128 projections, a 75% reduction in
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RMSE of the reconstructed tracer activity distribution images was achieved using the
proposed method. For 32 projections, this number was increased to 81%. Consistent
results have been observed for the investigated parametric images; the improvements
in RMSE were more obvious when 32 projections was used for estimating K1 and
k3.

The `2-norm regularization term in Eqn. 2.3 was introduced to achieve a better
decomposition of the sinogram and consequently a better artifacts reduction. As
shown in Fig. 2.10, less RMSE may be achieved when the regularization term β > 0.
In addition, though β is case dependent, an optimum can be usually found within
a relatively wide range (in this simulation study, β : 220 ∼ 330); thus, the selection
of β does not influence the result significantly.

To sum up, this chapter proposes a time-activity curve based sinogram decom-
position algorithm for the reduction of streak artifacts in FBP reconstructions. The
simulation as well as physical phantom results have shown that the proposed method
can effectively reduce the severe artifacts caused by the incomparable signal levels ex-
isting in the reconstructed images. The corrected images are of better visual quality
as well as quantification accuracy (with lower RMSE). The proposed method is lim-
ited to applications when dynamic imaging is available. However, dynamic measure
is gaining more and more attention for PET applications as well as for other imag-
ing modalities. For instance, the dynamic contrast-enhanced imaging techniques
(e.g., DCE-MRI or DCE-CT) also requires the temporal information of biomarks
for physiological investigations [77,78]. Thus the proposed method has the potential
to be extended to other fields and applications.
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3

Direct Parametric Image
Reconstruction for Rapid

Multi-tracer PET

Multi-tracer PET aims to investigate the tumor phenotype from different perspec-
tives. The complementary tracer physiologies can significantly improve in tumor
detection and diagnosis [79–83]. However, multi-tracer PET imaging is achieved in
practice by separate scans, since overlapping tracers cannot be physically differen-
tiated. Recently, a rapid multi-tracer PET technique was developed, enabling the
detection of multiple tracers within one scan. The recovery of individual compo-
nents is achieved by investigating physiologically distinct tracer pharmacokinetics.
Nevertheless, this technique is limited by the low SNR of PET measurements and
the high complexity of kinetic models. This chapter presents a direct parametric
image reconstruction for the rapid multi-tracer PET (MT-DPIR) method to over-
come these problems. Following the idea of DPIR, MT-DPIR utilizes the temporal
information of the mixed signal and integrates it into iterative reconstruction. The
proposed MT-DPIR method has been verified using numerical simulations as well
as preclinical PET data. Its performance was compared with indirect parametric
image generation methods.

Part of this work has been published in [84,85].

3.1 Multi-Tracer PET imaging

The physiological features of the tumor microenvironment, such as glycolysis, angio-
genesis, proliferation, and hypoxia, can be captured by PET imaging using different
radiolabeled tracers. In practice, multiple tracers targeted to distinct physiologies
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Figure 3.1: A sketch of the rapid multi-tracer PET imaging protocol (AIFs indicates
tracer injections within a short time interval and a tracer TAC is measured by the
summation of single tracer responses (dash lines) to the AIFs.)

can be injected into patients to obtain complementary diagnostic and therapeu-
tic information. The clinical value of combining tracers in oncological detection,
staging, localization, and individualization of cancer therapy has been confirmed
in several clinical studies [79–82]. For example, the combination of [18F]FDG and
[18F]FLT has significantly improved sensitivity and specificity in the diagnosis of
lung nodules [83].

However, as photons originating from different PET tracers will be detected
at the same energy level (∼511 KeV), the overlapping sources cannot be physically
discriminated. In practice, multi-tracer PET imaging is achieved by scanning tracers
separately, which involves waiting for the full decay and clearance of each tracer,
meaning the whole procedure takes days. This also imposes additional doses on the
patient due to multiple CT scans of PET/CT as well as increased labor and financial
costs. The possible physiological and anatomical discrepancy due to separate scans
may even reduce the expected clinical value. These limitations hamper a wider
application of multi-tracer PET imaging.

Dynamic rapid multi-tracer PET imaging aims to distinguish the physically iden-
tical signals of different tracers, based on the intrinsic differences of tracer pharma-
cokinetics. As shown in Fig. 3.1, in practice tracers are injected sequentially with a
short time interval (e.g., 10-15 mins) in between the administrations. The activities
of different tracers are separated by fitting a traditional multi-tracer model [86–88]
(Sec. 3.2) to reconstructed dynamic PET images [86–96]. However, this method suf-
fers from the high complexity of the multi-tracer model and the low SNR of TACs.
The poor quality of the model fitting makes the separation of tracers unstable and
failure prone.
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Figure 3.2: A sketch illustrating the multi-tracer model

3.2 Multi-Tracer Pharmacokinetic Model

With the application of rapid multi-tracer PET imaging, the tracer separation task
becomes a mathematical fitting problem. To model the temporal development of
the mixed uptake of L tracers, the pharmacokinetic model is defined as the linear
superposition of the corresponding L single tracer models [90, 93] as illustrated in
Fig. 3.2. The measured tracer activity concentrations Ct for each voxel at time t is
then expressed as:

Ĉt(p) = VBC̄Pt +
L∑
l=1

hlt(pl, λl)⊗ CPlt (3.1)

where hlt(pl, λl) is the impulse response function of the lth tracer, specified by a
given kinetic model and corresponding parameters pl, and the radioactive decay
rate λl (min−1) and C̄Pt ,

∑L
l=1 CPlt denotes the superposition of AIFs.

Eqn. 3.1 is specified by certain tracer combinations. The model complexity is
decided by the involved single tracer models. Approximations have been made to
simplify the mathematical description of tracer kinetics. However, a pharmacokinet-
ic model for a single tracer needs to consider factors such as delivery, metabolism,
and excretion of the tracer to achieve acceptable accuracy [45]. When more than one
tracer is involved, the model complexity quickly increases along with the expansion
of the parameter space. Kinetic fitting of such a complicated multi-tracer model is
known to be challenging for typical optimization algorithms.
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3.3 Direct Parametric Image Reconstruction for

Rapid Multi-Tracer PET

This section presents a direct parametric image reconstruction for multi-tracer PET
(MT-DPIR) algorithm. This proposed method aims to improve the separation of
rapid multi-tracer PET signals by reducing the model complexity meanwhile enhanc-
ing the SNR for parametric image estimations. In general, it is achieved by inte-
grating a nonlinear multi-tracer model into the reconstruction procedure to estimate
parametric images directly from projection data (DPIR, refer to Sec. 1.4). Partic-
ularly, the model is beforehand analytically transformed into a ”reduced parameter
space” (RPS reformulation) to achieve the reduction of parameter dimensionality.
By evaluating the estimated kinetic parameters, individual tracer components are
recovered from the mixed measurements through modeling. The new algorithm,
including the RPS reformulation technique and the DPIR method for integrating
nonlinear multi-tracer models, is described as follows.

3.3.1 RPS reformulation

The formulation of pharmacokinetic models in the reduced parameter space is a con-
cept meant to improve the nonlinear model fitting [97,98]. It utilizes the measured
TAC as prior knowledge to regularize the model in Eqn. 3.1. The linear parameters
of the model can therefore be analytically expressed using nonlinear parameters to
achieve dimensionality reduction. The resulting RPS model usually possesses an
objective function with less than half of the original number of fitting parameter-
s. With a lower parameter dimension and a consequently less complicated fitting
environment, the optimization procedure of kinetic modeling has been reported to
reach fitting solutions quickly and robustly.

The mathematical descriptions of the RPS reformulation are presented here. To
achieve parameter reduction, the kinetic model Ĉt in Eqn. 3.1 is expressed using the
generalized kinetic model formulation, which enables the maximal separation of the
linear and nonlinear terms of the kinetic model [97, 99]:

Ĉt(θ,ν) = θBC̄Pt +
L∑
l=1

[θPlC̃Plt + θalFalt(νal) + θblFblt(νbl)] (3.2)


C̃Plt , e−λlt ⊗ CPlt
Falt(νal) , e−(νal)t ⊗ CPlt
Fblt(νbl) , e−(νbl)t ⊗ CPlt

(3.3)

where [θB, θPl, θal, θbl]
T and [νal, νbl]

T are intermediate parameters composed of tra-
ditional kinetic constants pl; T is the transpose operator. The modeled Ĉt(θ,ν) is
then expressed in the matrix format:
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Ĉt(θ,ν) = θT ft(ν) = [θB, θP1, θa1, θb1, · · · , θPL, θaL, θbL]︸ ︷︷ ︸
θ



C̄Pt
C̃P1t

Fa1t

Fb1t
· · ·
C̃PLt
FaL
FbLt


︸ ︷︷ ︸

f

(3.4)

where θ = [θB, θP1, θa1, θb1, · · · , θPL, θaL, θbL]T denotes the linear parameters of the L
tracers; ft(ν) denotes the nonlinear parts ([C̄Pt, C̃P1t, Fa1t, Fb1t, · · · , C̃PLt, FaL, FbLt]T ),
as a function of nonlinear parameters ν = [νa1, νb1, · · · , νaL, νbL].

As shown in Eqn. 3.4, by presenting the model Ĉ with intermediate parameters,
the linear parts θ and nonlinear parts ft are separable for RPS reformulation. To
express linear parameters with nonlinear ones, additional information is required
to set up the relationship between parameters. The RPS technique employs the
measured curve Ct. Ideally, Ct is noise-free and represents the ground truth (GT).
The weighted sum square error (WSSE) of the modeled Ĉt with respect to GT is
then measured by:

WSSE =

NT∑
t=1

wt(Ct − Ĉt)2 (3.5)

To minimize Eqn. 3.5, the derivative of WSSE to each linear parameter in vector
θ is measured and set to 0. It deduces:

Mθ = z (3.6)

where M is a symmetric matrix and z is a vector containing Ct for the estimation
of the linear parameter θ:

M =

NT∑
t

wt


(C̄Pt)

2C̃P1tC̄Pt Fa1tC̄Pt Fb1tC̄Pt . . .

. (C̃P1t)
2 Fa1tC̃P1tFb1tC̃P1t . . .

. . (Fa1t)
2 Fb1tFa1t . . .

. . . (Fb1t)
2 . . .

...
...

...
... . . .

 (3.7)

z =

NT∑
t

wtCt[ C̄Pt C̃P1t Fa1t Fb1t . . . ]T (3.8)
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By substituting the linear parameters θ in Eqn. 3.4 with M−1z, the reformulated
mode is expressed as:

Ĉt(ν) = [M−1z]T ft(ν) (3.9)

Compared to the traditional model (referred to ”the Trad-Model” for short) in
Eqn. 3.1, the reformulated multi-tracer model (”the RPS-Model”) Ĉt(ν) is reduced
to only non-linear parameters ν.

The reduced parameter space formulation is in general not restricted to a special
type of pharmacokinetic model, and it can be applied to various tracers with different
pharmacokinetics. In clinical practice, the most popularly applied PET tracers
are those with specific binding, which can be typically modeled with the general
two-tissue compartment model as introduced in Sec. 1.3.1. Thus, an exemplary
realization is demonstrated of the combination of L tracers modeled with two-tissue
compartment models. It is suitable for the combination of a variety of PET tracers,
such as [18F]FDG, [18F]FLT, [18F]FET, [11C]MET, [11C]PiB and [18F]Florbetapir,
which cover a wide scope of applications in oncology and neurology.

3.3.1.1 RPS reformulation of the multi-tracer irreversible two-tissue
compartment model

The traditional irreversible two-tissue compartment model for the lth tracer is pre-
sented in Eqn. 1.16, Sec. 1.3. Considering the L tracers’ case, the model is expressed
as:

Ĉt = VB
∑L

l=1CPlt +
∑L

l=1{
K1lk3l
k2l+k3l

∫ t
0
CPltdt+ K1lk2l

k2l+k3l

∫ t
0
CPlte

−(k2l+k3l+λl)(t−τ)dτ}

= [VB,
K11k31
k21+k31

, K11k21
k21+k31

, · · · , K1Lk3L
k2L+k3L

, K1Lk2L
k2L+k3L

]



∑L
l=1CPlt∫ t

0
CP1tdt∫ t

0
CPlte

−(k2l+k3l+λl)(t−τ)dτ
· · ·∫ t

0
CPLtdt∫ t

0
CPLte

−(k2L+k3L+λL)(t−τ)dτ



= [θB, θP1, θa1, · · · , θPL, θaL]



C̄Pt
C̃P1t

Fa1t(νa1)
· · ·
C̃PLt

FaLt(νaL)


(3.10)
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Therefore the parameters θ and ν in the reduced parameter space are expressed
as follows, considering the original kinetic parameters p:

νal = k2l + k3l + λl

νbl = 0

θB = VB

θPl = K1lk3l
k2l+k3l

θal = K1lk21
k2l+k3l

θbl = 0

(3.11)

As the parameter θbl = 0, elements containing θbl in M, z and f are omitted.
In this case, Ĉt is reformulated to be expressed by the L nonlinear parameter ν =
[νa1, νa2, · · · , νaL]T instead of the original 3L+1 parameters (3 k of each tracer plus
a common VB).

The upper and lower bounds of ν can be accordingly calculated as the constraints
of p are given. For instance, for k ∈ (0, 1.0], the corresponding νal of the irreversible
two-tissue compartment model then belong to (λl, 1.0+λl] and (λl, 2.0+λl], respec-
tively.

3.3.1.2 RPS reformulation of the multi-tracer reversible two-tissue com-
partment model

The traditional reversible two-tissue compartment model for the lth tracer is given
in Eqn. 1.15, Sec. 1.3. Similarly, the relationship between intermediate parameters
θ and ν with respect to p is given by:

νal,bl = αal,bl + λl

θB = VB

θPl = 0

θal = K1l

αbl−αal
(k3l + k4l − αal)

θbl = K1l

αbl−αal
(αbl − k3l − k4l)

(3.12)

As the parameter θPl = 0, elements containing C̃Plt in M, z and f are omitted.
In this case, Ĉt is reformulated to be expressed by the 2L nonlinear parameter
ν = [νa1, νb1, νa2, νb2]T instead of the original 8L+1 parameters (4 k of each tracer
plus a common VB).

The upper and lower bounds of ν are calculated according to the constraints
of k. For k ∈ (0, 1.0], the corresponding νal and νbl of the reversible two-tissue
compartment model are given by (λl, 1.0 + λl] and (λl, 2.6180 + λl], respectively.

43



3. Direct Parametric Image Reconstruction for Rapid Multi-tracer PET

Given the model configuration, M, z and f(ν) can be specified for constructing
the model Ĉ(ν) with Eqn. 3.9. Usually, the parameters ν are estimated from recon-
structed PET images using typical nonlinear regression solutions [100], such as least
square fitting. Once ν is calculated, θ is obtained from Eqn. 3.6 with the numerical
inversion of matrix M. At last, original kinetic parameters p can be retrieved from
ν and θ using their relation equations.

3.3.2 DPIR for multi-tracer modeling

Though RPS reformulation can reduce parameters, the fitting quality is still not
guaranteed due to the low SNR of PET measurements. The individual TACs for
indirect voxel-wise fitting are of even lower SNR due to this ignorance of spatial
correlations between voxels. As is known, DPIR is able to improve parameter esti-
mations in the single tracer cases [31,47–63,101]. Therefore the RPS reformulation
technique is integrated here with DPIR to further improve the model fitting and
eventually, tracer separation.

The relationship between PET image intensity xm(νj) and activity concentration

Ĉ(νj) in Eqn. 3.9 at voxel j is given by:

xt(νj) =

∫ te

ts

Ĉτ (νj)dτ (3.13)

where ts and te are the start and end times of frame t.
To estimate the parametric images ν from the dynamic PET measurements y,

ν̂ is sought to maximize the following log-likelihood function LL(y|ν):

LL(y|ν) =

NT∑
t=1

NLOR∑
i=1

yit log ȳit(ν)− ȳit(ν) (3.14)

In this work, the iterative parametric image estimation algorithm proposed by
Reader et al., [49] and Matthews et al., [57] is employed to approximate the log-
likelihood function. The algorithm performs a voxel-wise weighted nonlinear least
square (WNLS) fitting after each round of expectation-maximization (EM) recon-
struction of the dynamic data set. Here the ordered-subset version of the EM update
function is given [49,57]:

x̂
(n+1)
jt =

xt(ν
(n)
j )∑

i∈IS aij/αi

∑
i∈IS

aij
αiyit∑

j′ aij′xt(ν
(n)
j′ )/αi + rt + st

(3.15)

and ν is then updated by:

ν̂j = arg min
ν

∑
jt

wjt(x̂
(n+1)
jt − xt(ν(n)

j ))2 (3.16)
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By substituting Eqn. 3.13 into Eqn. 3.16, the multi-tracer model Ĉt(ν) is in-
tegrated into the dynamic PET reconstruction procedure. Eqn. 3.16 resembles a
1D curve fitting problem and can be solved using numerical optimization methods.
Here, the weighted nonlinear least square fitting is performed, for each iteration
directly after the update of all OSEM subsets. The weighting factor is defined as
wjt = (xt(ν

(n)
j ))−1 [57]. After updating ν, the Ĉt(ν) for each image voxel is calcu-

lated with Eqn. 3.9 to estimate xt(ν
(n)
j ) as the input of the next EM iteration.

3.3.3 Single tracer recovery

After regression, linear parameters θ are calculated by M−1z. The inversion of M
can be computed with common numerical methods. Here the singular value decom-
position (SVD) [46] is used. Kinetic constants p can then be retrieved accordingly
from θ and ν with their relative equations specified by the tracer models.

The dynamic activity distributions of individual tracers are recovered by applying
the corresponding single tracer models to the estimated parameter sets. This can
be performed on either the RPS-Model with intermediate parameters θ and ν using
Eqn. 3.9, or on the Trad-Model with the retrieved p using Eqn. 3.1. In this work
single tracer activity distributions are calculated directly from θ and ν to avoid
possible numerical errors due to the calculation of p.

3.4 Evaluation of the Algorithm

The proposed direct parametric image reconstruction method for multi-tracer PET
imaging (MT-DPIR) was validated using numerical simulations as well as preclinical
PET measurements. The respective contributions of using RPS reformulation and
DPIR on multi-tracer separation are tested in Sec. 3.4.1& 3.4.2. Following by the
evaluation of the integral performance of MT-DPIR as compared to the state-off-
art indirect parametric image generation method with the traditional multi-tracer
model based on simulation data in Sec. 3.4.3. In addition, MT-DPIR was further
evaluated using the [18F]FLT + [18F]FDG PET measurements of 4 mice in Sec. 3.4.4
The results were compared with corresponding single [18F]FDG scans of the same
mice measured on 1 day before the dual tracer scan.

For proof of concept, we focused on the combination of two tracers of different
isotopes (here F-18 and C-11) in simulation experiments, which requires the integra-
tion of decay constants (λ[18F ] = 6.3 × 10−3 min−1; λ[11C] = 3.4 × 10−2 min−1) into
pharmacokinetic modeling [93] and the respective corrections of decay on the recov-
ered single tracer activity concentrations. For both tracer, the reversible two-tissue
compartment model was considered for the performance evaluation. Mathematical-
ly, the implementation of the algorithm for the combination of tracers of the same
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3. Direct Parametric Image Reconstruction for Rapid Multi-tracer PET

Figure 3.3: A plot of simulated TAC (TAC ID # 20, noise realization ID # 80)
imposed with Gaussian noise of 6 levels (1%, 3%, 5%, 7%, 10% and 15%)

isotope or for the application of the irreversible model can be achieved with less com-
plexity. In addition, a constant time interval (15 mins) between tracer injections
was set for all tests. The influence of various time interval on tracer separations has
been studied in [88].

3.4.1 Evaluation of the RPS-Model

The proposed MT-DPIR integrates a RPS-Model to reduce the modeling complexity.
Although the reduction can improve the performance of the optimization procedure
as presented in [97], the objective function may be sensitive to noise due to the
compression of parameter space.

To investigate the influence of noise on the RPS-Model for multi-tracer signal
separation, the performance of the dual tracer RPS-Model for fitting TACs with d-
ifferent noise levels was evaluated and compared to the performance of Trad-Model.
In total, 32 sets of different FDG and MET pharmacokinetic parameters were gen-
erated randomly (0-1 for all p and VB). 32 noise-free TACs were then calculated
accordingly using the two reversible two-tissue compartment models. Gaussian noise
of 6 noise levels (1%, 3%, 5%, 7%, 10% and 15%) was imposed [102,103] as illustrated
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Figure 3.4: An exemplary frame of the phantom with a regular shape and different
pharmacokinetics

in Fig. 3.3. For each TAC 100 noise realizations were simulated at each noise level.
Kinetic parameter estimation was achieved using nonlinear least squares method

with an uniform weighting factor (w = 1.0) for all time points. The optimization was
achieved using the trust region algorithm [104] with pre-defined stopping criteria:
the maximum iterations was set to be 1000 and the optimization stopped when the
variation of objective function was less than 0.00001. The initial values of k and VB
were set to be 0.5 and ν values were calculated accordingly.

Individual tracer TACs were recovered with the estimated parameters and were
evaluated in terms of the mean percentage error (MPE%). MPE is calculated for
each investigated TAC by:

MPE% =
1

NT

NT∑
t=0

|Ĉt −GTt|
GTt

× 100% (3.17)

In addition, Chi-square was measured to assess the fitting quality for each TAC.
Finally, the mean and Std Dev of MPE and Chi-square were computed over 100
realizations for each TAC set. The results obtained from the RPS-Model and the
Trad-Model were compared at different noise levels.

3.4.2 Evaluation of DPIR with the RPS-Model

Direct parametric image reconstruction (DPIR) has been applied to improve the
performance of kinetic parameter estimations [47–63]. Here we aimed to clarify
whether or not this advantage can bring additional value to the RPS-Model fitting
and sequentially to tracer separation.

To investigate the complementary effect of DPIR to the RPS formulation, 50
2D phantoms with a regular structure of different FDG and MET pharmacokinet-

47



3. Direct Parametric Image Reconstruction for Rapid Multi-tracer PET

Table 3.1: Kinetic parameters of tissue ROIs

Caudate GM1 GM2 Putamen Skin Skull Thalamus WM Tumor

FDG

K1 0.12 0.10 0.09 0.13 0.04 0.03 0.13 0.05 0.11

k2 0.17 0.14 0.13 0.16 0.18 0.37 0.16 0.11 0.10

k3 0.19 0.17 0.18 0.17 0.01 0.02 0.14 0.05 0.15

k4 0.016 0.013 0.013 0.010 0.007 0.001 0.012 0.006 0.015

MET

K1 0.06 0.08 0.11 0.09 0.16 0.07 0.07 0.04 0.13

k2 0.03 0.08 0.14 0.08 0.33 0.64 0.06 0.06 0.03

k3 0.07 0.10 0.20 0.13 0.003 0.004 0.12 0.04 0.06

k4 0.009 0.017 0.007 0.017 0.047 0.001 0.021 0.028 0.012

VB 0.101 0.103 0.140 0.092 0.042 0.047 0.152 0.026 0.173

Units: K1: mL/min/g; k2-k4: min−1; VB: unitless.

ics were constructed as presented in Fig. 3.4. For each phantom the corresponding
PET acquisitions were simulated with various count statistics. The phantom con-
tains a simple square in the center with a round shape as background. To test
signal separation, half of the square is assumed to take up both FDG and MET,
thus an overlapping signal appears in the middle of the square. The rest takes up
either FDG or MET. 50 different kinetic parameters of FDG and MET were select-
ed randomly (0-1). Tracer TACs were generated with a dual reversible two-tissue
compartment model and were assigned to corresponding ROIs of the phantom. For
each phantom, dynamic PET measurements of five different count levels (6M, 30M,
60M, 120M, 600M) were simulated (20% background events) by forward projection.
The simulated data were reconstructed by MT-DPIR. The post-fitting RPS-Model
combined with OSEM reconstructed images was used for comparison. The simula-
tion procedures and reconstruction configurations were the same as described later
in Sec. 3.4.3.

For each phantom, the reconstructed and separated tracer activity distributions
for FDG and MET were evaluated. Quantitatively, RMSE of the separated tracer
activity distributions was measured with the reference GT and normalized for each
dataset at the same count level. At last, the averaged results acquired from MT-
DPIR and the indirect method were compared at different count statistics.

3.4.3 Evaluation of MT-DPIR

Previous tests were carried out to evaluate the respective effects of RPS-Model and
DPIR on multi-tracer separations. This section presents the evaluation procedure of
the integral performance of MT-DPIR, based on a slice of the realistic Zubal brain
phantom [105] as shown in Fig. 3.5a. The 2D phantom (128 x 128 voxels) includes
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Figure 3.5: (a) The 2D brain phantom with an additional tumor; (b) a plot of AIFs
(dashed line) and dual-tracer TACs for each tissue type. (A TAC’s color corresponds
to the region where the TAC is associated to in (a).)

gray matter (2 types), white matter, caudate, putamen, skin, skull, thalamus. A
region representing a tumor was added. A set of pharmacokinetic parameters of
[18F]FDG and [11C]MET for the phantom tissues as well as the blood input functions
of each tracer were derived from literature and clinical data as listed in Tab. 3.1.
Artificial blood input functions of both tracers were created along the shape of real
measured AIF curves. Temporal development of tracer signals (TACs) was generated
by the reversible two-tissue compartment model from the assigned kinetics for 50
minutes (25 measurement points) with an interval of 15 minutes between the tracer
injections. AIFs and the obtained tissue TACs without radioactive decay correction
are shown in Fig. 3.5b.

Dynamic PET measurements of the phantom were simulated using a forward pro-
jection model following the procedures described in [55,57,59]. The model includes
object attenuation as well as the system geometry resembling the characteristics of
a real clinical scanner (Siemens biograph mMR [106], spatial resolution FWHM∼4.0
mm). With the scanner geometry described above, scatter events within the phan-
tom and detectors were simulated using GATE V6 [107]. These events were then
sorted out from the GATE output and formed the expectation of scatter sinogram.
In this simulation, 20% scatter and 20% uniformly distributed random events were
included. Poisson noise was then generated in each sinogram bin. At last, a set
of dynamic sinograms (90 bins, 160 projection views and 25 frames) was generated
with the expectation of total counts to be 60 million. The frame widths were set
according to the measurement points and are of varying durations: 4×0.25 mins,
2×0.5 mins, 2×1 mins, 2×3 mins, 1×5 mins, 4×0.25 mins, 2×0.5 mins, 2×1 mins,
2×3 mins, 3×5 mins, and 1×10 mins. In total, fifty datasets with different noise
realizations were simulated.

Based on the simulated dual-tracer acquisitions, we evaluated the performance
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of MT-DPIR for tracer separation and compared with the indirect method using
the Trad-Model in Eqn. 3.1. For the kinetic fitting procedure, nonlinear regression
was performed using the trust region algorithm [104]. Stopping criteria were set
such that the optimization procedure stopped when the variation of the objective
function was less than 0.0001 or the maximum iteration number was achieved. The
maximum iteration number for fitting each TAC was set to be 10 for MT-DPIR and
10 × effective iteration number ÷ subsets number for the indirect method [59]. For
the traditional kinetic model, the initial values of k of were set to be 0.01 for all
voxels and the lower and upper bounds of each parameter were set to be 0 and 1.0.
Equivalent initial values and fitting boundaries were set for the proposed method
using Eqn. 3.12.

The iteration number of OSEM reconstruction may influence the performance
of investigated methods on tracer separation. To compare different methods at
similar bias or variance level, various effective iteration numbers (from 32 to 512
iterations) [48,57] were evaluated. With the application of the two methods on the
simulation data, the respective FDG and MET tracer information was recovered
from mixed measurements. The separation results were assessed with respect to the
phantom ground truth (GT). We examined the tracer activity distribution images
and measured the reconstruction errors by investigating the bias-variance tradeof-
f [59]. Bias2 was calculated by the squared differences between the expectation of
reconstructed images and GT, while variance was the squared standard deviation at
each image voxel. The calculated quantities were normalized by frames and the mean
values were computed over all voxels for each investigated iteration number [108].
For PET image quantifications, we also evaluated the bias-variance tradeoff with-
in the interested tumor region, taking into account the spatial correlation between
voxels [59].

MT-DPIR and the traditional method were compared at similar bias levels with
fixed iteration numbers. By evaluating the bias-variation trade-off in Fig. 3.9, 240
iterations (15×16 subsets) and 192 iterations (12×16 subsets) were used for MT-
DPIR (FDG+MET Bias2 : 0.083) and the traditional method (FDG+MET Bias2

: 0.0832) respectively. For either method, the reconstruction at selected iteration
numbers represent a relative stable result ( The change of log-likelihood function <
1 x 10−4% ).

The tracer separation results at fixed iteration numbers were then compared with
GT . Spatially, we investigated the bias and standard deviation (Std Dev) images
of separated tracer activity distributions. Temporally, we evaluated the separated
tracer TACs from the dynamic reconstructions. Root mean square error (RMSE)
was measured for the retrieved FDG and MET TACs within each region-of-interest
(ROI) of the brain phantom. The parametric images (k and VB) of DPIR for FDG
and MET were estimated using the estimates of ν and θ. We measured bias and
standard deviation of parametric image voxels over all simulation datasets.
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3.4.4 Real data validation

The performance of MT-DPIR was further evaluated on real PET scans of 4 mice
with SUDHL-1 xenograft tumor using a preclinical PET/CT (Siemens, Inveon micro
PET/CT). On day 1, [18F]FDG (10-15 MBq) alone was injected after a CT scan.
Dynamically PET data were acquired for 50 minutes. On day 2, both [18F]FLT (10-
15 MBq, at 0 min) and [18F]FDG (10-15 MBq, at 15 min) were injected after CT for
another PET acquisition of 65 minutes. 2 venous blood samples (≈ 10µL per sample)
were taken and weighted directly after scanning. The activity concentration of mixed
FDG+FLT isotope in the blood was measured in a gamma-counter. The activities
of left ventricle (0-16 min) were extracted from the mouse data and concatenated
with blood activities. A combined three exponential model [109] were applied to
obtain individual AIFs of FLT and FDG. The separation of AIFs were verified by
analyzing the proportion of individual tracer components in the blood using the thin
layer chromatography (TLC) technique. All PET measurements were corrected for
non-uniform system response, physical decay, dead time and randoms. Attenuation
coefficients were generated based on the acquired CT data. For each mouse, dynamic
acquisitions were rebinned into 2D sinograms using single-slice rebinning (SSRB)
with 128 radial bins, 160 views, 159 direct planes and 65 frames (day 1: 39 frames)
of varying durations.

For tracer separation, both MT-DPIR and the traditional methods were inves-
tigated. The iteration number of OSEM reconstruction was set to be 128 (8×16
subsets) for both methods. The derived images were composed of 128×128×159
voxels per frame at a voxel size of 0.78×0.78×0.80 mm3. For the kinetic fitting pro-
cedure, the dual reversible two-tissue compartment model and the corresponding
RPS-Model were employed. The maximum iteration number for nonlinear fitting
was set to be 10 for MT-DPIR and 80 for the indirect method [59]. The initial value
of k were set to be 0.5. Other configurations were the same as in Sec. 3.4.3.

The separated FDG and FLT activity distributions were evaluated, by compar-
ing the FDG data acquired from single-tracer scans as a physiological reference.
Tumor volumes were manually outlined based on the fusion of CT and PET images
using PMOD software (version 3.2; PMOD Technologies, Zurich, Switzerland). The
standardized uptake value (SUV) of outlined volumes were measured from the last
frame of the FDG images separated from the mixed reconstruction. The FDG SUV
results obtained from MT-DPIR and the traditional method were compared, with
respect to the SUV measured from the FDG images of the single-tracer scan. It is
known that normal brain has very low uptake of FLT due to the blood-brain barrier
(BBB) [110,111] while it has generally high uptake of FDG. Therefore the brain SU-
V from separated FDG images was additionally measured to physiologically verify
the separation results.
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3.5 Results

3.5.1 Performance evaluation of the RPS formulation

For the tests on the performance of the RPS-Model at different noise levels (Sec. 3.4.1),
the separation of 32 sets of noisy dual-tracer TACs with the RPS-Model was com-
pared with the Trad-Model. As shown in Fig. 3.6, columns 1, 2 and & 3 show the
results at noise levels 1%, 7% and 15%, indicating that MPE increased for both
methods as the noise level increases. For low noise levels, the RPS-Model exhibites
generally better performance than the traditional model at noise level 1% (noise
level 7%) with on average 47% (4%) lower MPE for the mixed and separated TACs.
However, as noise increases, MPE of the RPS-Model increases more quickly and the
performance of the RPS-Model may be even worse than the Trad-Model.

In addition, the dual-tracer TAC fitting quality of nonlinear regression was mea-
sured by chi-square as shown in plots (d), (h) and (l). The Trad-Model may fall
into local minima and resulting in bad fitting quality even when the noise level
is low (noise level 1% for instance). While RPS-Model achieved constantly lower
chi-square values regardless of noise levels.

3.5.2 Effect of direct parametric image reconstruction

For evaluating the effects of DPIR on the RPS formulation and tracer separations
(Sec. 3.4.2), example tracer activity distributions of a phantom with 6 million (6M)
measured counts are shown in Fig 3.7. With the limited acquisition, the indirec-
t method may fail to separate the tracers in some voxels as demonstrated in this
example. The direct method performed better and can recover single tracer infor-
mation in the low SNR case. The corresponding mean absolute residual images
(averaged over frames) further confirm that results from the direct method exhibit
smaller differences between recovered single tracer images and the reference GT.

The mean RMSE of the recovered individual tracers at each counts level is illus-
trated in Fig. 3.8. The integration of DPIR generally reduced the RMSE of all the
investigated situations. The improvement for the RPS-Model with DPIR is larger
for the low count level than the high count level. For instance, the mean reductions
of RMSE for FDG and MET respectively are 0.06 and 0.17 at 6M count level, while
83% and 65% less reductions are observed at 600M level.
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3.5. Results

Figure 3.8: Plots of normalized RMSE calculated from separated tracer activity
distributions at each count level over 50 datasets

3.5.3 MT-DPIR for tracer separations

The effect of increasing number of iterations on tracer separation is presented in
Fig. 3.9a. For both MT-DPIR and the traditional methods, a decreasing bias and
an increasing variance of the mixed/separated tracer images are observed as itera-
tion proceeds. While comparing MT-DPIR and the traditional method at similar
bias levels, MT-DPIR consistently has lower variance than the traditional method
regardless of iteration numbers. Similar results are observed in the bias-variance
trade-off plots of the tumor ROI as shown in Fig. 3.9b. To compare MT-DPIR
and the traditional method at similar bias levels, 240 (FDG+MET Bias2 : 0.0830)
and 192 iterations (FDG+MET Bias2 : 0.0832) were employed respectively in the
performance evaluations.
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3. Direct Parametric Image Reconstruction for Rapid Multi-tracer PET

Figure 3.9: Plots of bias-variation curves of tracer activity distributions in (a) the
brain phantom and (b) the tumor region with variant iterations (32 to 512) using
MT-DPIR (red) and the traditional method (blue)

The separated FDG and MET activity distributions recovered from the mixed
dual-tracer signals of the brain phantom are presented in Fig. 3.10 (one example
frame is shown). Both, MT-DPIR and the traditional method were able to separate
the overlapping tracer distributions. Separated tracer images generated by MT-
DPIR shown better visual quality than those from the traditional method. The Std
Dev and bias of the recovered single tracer images over the 50 datasets are shown
in Fig. 3.11. The bias images for both methods are similar. Relatively high bias
is observed from the ROI contours where errors may be introduced due to partial
volume effects [112, 113]. A lower Std Dev are achieved with MT-DPIR than the
traditional method. Over all, MT-DPIR has reduced variance for the separated
FDG(MET) tracer activity distributions by 33% (42%) .
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3.5. Results

Figure 3.12: Plots of the mean TACs in the (a) tumor and (b) putamen areas over
50 datasets, showing that the FDG+MET TAC (black) was separated into 2 single
FDG (blue) and MET (red) TACs, using the traditional method (192 iterations)
and MT-DPIR (240 iterations) (TACs were decay corrected and compared to the
ground truth (dashed lines) in terms of RMSE.)

59



3. Direct Parametric Image Reconstruction for Rapid Multi-tracer PET

Figure 3.13: Bar plots of the root mean square error (RMSE) of TACs within each
phantom regions, using the proposed MT-DPIR method (red, 240 iterations) and
the traditional method (blue, 192 iterations)

Temporally, the separated tracer TACs within each phantom region were as-
sessed. Fig. 3.12 demonstrates the fitting results averaged over all datasets in two
example tissue regions (tumor and putamen). The reference GT curves (dashed
lines) and the corresponding mean modeled TACs from the proposed and tradition-
al methods are presented. Root mean square error (RMSE) of the mean TACs were
measured for FDG and MET and are displayed accordingly. Both, MT-DPIR and
the indirect method can generally resemble the reference curves. Compared to the
traditional method, MT-DPIR achieved more accurate results (with less RMSE).
RMSE of single tracer TACs in each phantom ROI are plotted in Fig. 3.13, where
for the 50 investigated datasets, MT-DPIR was able to improve the RMSE in most
ROIs. On average, a reduction of ROI RMSE by 13%±14 (FDG) and 19%±10
(MET) was achieved by MT-DPIR compared to the traditional method.
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3.5. Results

Table 3.2: Quantification results on parametric images over 50 noise realizations

Parametric images

FDG MET

K1 k2 k3 k4 K1 k2 k3 k4 VB

standard Traditional 0.040 0.40 0.36 0.32 0.035 0.32 0.43 0.42 0.035

deviation MT-DPIR 0.035 0.27 0.25 0.08 0.035 0.28 0.27 0.11 0.015

Bias
Traditional 0.017 0.28 0.25 0.19 0.009 0.16 0.39 0.50 -0.005

MT-DPIR 0.008 0.08 0.09 0.02 0.008 0.10 0.13 0.03 -0.001

Units: K1: mL/min/g; k2-k4: min−1; VB: unitless.

3.5.4 Multi-tracer parametric image estimations

Example parametric images of K1, k3 and VB of both FDG and MET tracers are
presented in Fig. 3.14. Compared to the parametric images from the traditional
method, results from MT-DPIR are relatively smooth and contain less voxels with
values above the colormap maximum, which were defined as the maximum value of
the corresponding kinetic parameters. However, for both methods, k3 images are in
general noisy, demonstrating that the recovery of k2 to k4 is still challenging.

Fig. 3.15 demonstrates the corresponding Std Dev and bias images acquired
from the 50 simulated datasets. In general, parametric images reconstructed using
MT-DPIR exhibit relatively lower Std Dev and bias than those from the traditional
method. In particular, though the k3 image are not satisfactory, a clear reduction in
bias/Std Dev for k3 were achieved with MT-DPIR. On average, the proposed method
reduced standard deviation by 37% and bias by 65% for the resulting parametric
images of the 50 simulated datasets. The mean standard deviation and bias of
individual parametric image voxels are listed in Tab. 3.2.

3.5.5 Preclinical evaluation

For the preclinical data assessment (Sec. 3.4.4), the separated FLT and FDG dis-
tribution of Mice #3 are shown (one frame) in Fig. 3.16 as an example. The cor-
responding image of Mice #3 from the single-tracer (FDG) scan is presented as
reference. In general, MT-DPIR provides relatively smoother images with less noisy
points as compared to the traditional methods. Both separated FDG images have
similar activity distributions as reference. In particular, the separated FLT image
from MT-DPIR exhibits low uptake in the brain area, while this is not obvious in
the FLT image obtained from the traditional method. The MT-DPIR results is
more consistent with physiological expectations.
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3.6. Discussion

Figure 3.17: Plots of the standardized uptake values (SUV) of tumor/brain vol-
umes outlined from the separated FDG images using the traditional method (blue,
128 iterations) or MT-DPIR (red, 128 iterations), with the reference volume SUV
outlined from the single FDG tracer data (black, 128 iterations)

The FDG SUV of the tumor and brain volumes are demonstrated in Fig. 3.17.
Both methods provide consistent results with the SUV measured from the single-
tracer images. On average, MT-DPIR has lower absolute SUV difference to the
reference in both tumor (0.16±0.12) and brain (0.31±0.15) volumes than the tradi-
tional method (tumor: 0.36±0.18, brain: 0.81±0.57).

3.6 Discussion

The identification of individual tracers from a mixed PET signal is challenging.
Although the feasibility of multi-tracer pharmacokinetic modeling has been demon-
strated [55], the limited SNR of PET measurements and the high complexity of
fitting models still remain as the two main obstacles to a wide application of such
methods. Thus, we investigated the MT-DPIR method to improve the performance
of multi-tracer modeling.

3.6.1 Reformulation in reduced parameter space

Multi-tracer kinetic modeling utilizes the intrinsic pharmacokinetic differences of
the physiologically distinct tracers for the recovery of individual signals from mixed
PET measurements [87]. However, when more than one tracer is involved, the model
complexity quickly increases along with the expansion of parameter space. Kinetic
fitting of such a complicated multi-tracer model is challenging for optimization algo-

65



3. Direct Parametric Image Reconstruction for Rapid Multi-tracer PET

rithms. Our results in Sec. 3.5.1 show that multi-tracer pharmacokinetic modeling
is unstable, sensitive to initial settings, and may suffer from local minima even at
low noise level. Although some strategies may be applied to reduce local minima,
such as using various initial values or even exhaustive searches, these methods are
difficult to apply in clinical practice due to high computational cost.

The RPS formulation has been reported to improve the model fitting [97,98]. By
expressing linear parameters using nonlinear ones, the RPS formulation normally
leads to a model representation with less than half of the original number of fitting
parameters. The reduction in the parameter dimensionality simplifies the topolog-
ical fitting environment, and the optimization procedure of kinetic modeling has
been reported to reach the solution as the original model with possibly fewer local
minima [97]. This is also confirmed by our results shown in Fig. 3.6. When limited
iterations were employed (without exhausted searched), the RPS-Model achieved
generally lower Chi-square and lower standard deviation as compared to the Trad-
Model, indicating a more stable fitting quality and less local minima for the inves-
tigated datasets.

However, the superior fitting quality of the RPS-Model may have a reduced value
for tracer separation if it is employed at high noise levels. As shown in Fig. 3.6i-l, at
noise level 15%, though the Chi-square of RPS-Model is still lower than the Trad-
Model, a higher MPE was also obtained for either FDG+MET or separated tracer
TACs. These results indicate that the performance of kinetic parameter estimation
using RPS reformulation may still be restricted to cases with high SNR.

3.6.2 Direct parametric image reconstruction

It is known that the acquired number of coincident events during PET imaging is
limited and errors are introduced due to attenuation, normalization, scattering, and
random effects. Thus, a PET measurement usually has low SNR. Pharmacokinetic
modeling on these data is often challenging. In particular, for indirect parametric
image generation methods, TACs are treated independently and the spatial corre-
lation between TACs is ignored, resulting in further limited SNR for kinetic fitting.
On the other hand, direct parametric image reconstruction (DPIR) includes the ki-
netic modeling into reconstruction to utilize the complete 3D spatial + 1D temporal
measurements simultaneously. When a nonlinear model is integrated, the spatial
and temporal information is combined by cycling between reconstruction and ki-
netic modeling [57], which iteratively restrict/correct each other and trade off the
bias and standard deviations ( [49,57–59]). Thus, by exploring the spatial-temporal
coherence of PET data, DPIR optimizes the SNR for both reconstruction and phar-
macokinetic modeling procedures [55,56,60].

Our results show that the integration of a RPS-Model into DPIR can reduce
the influence of noise and improve the performance of recovery of individual tracer
signals under low SNR (Fig. 3.7 & 3.8). Thus, DPIR is beneficial or even necessary
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3.6. Discussion

for the application of RPS reformulation, whose performance for tracer sepration
may be highly influenced under high noise levels.

3.6.3 Limitations and future work

3.6.3.1 Parametric image estimations

For the results presented in this chapter, the estimated k2−k4 from ν are still noisy
as demonstrated in Fig. 3.14, although an improvement compared to the traditional
method is observed. This can be further improved by using methods proposed in [97],
adding additional constraints for the RPS-Model on the recovered k2−k4 parameters
when they are transformed back from ν and θ. Nevertheless, in real application,
the restriction added to a kinetic parameter needs to be carefully selected to avoid
the introduction of errors. This can be achieved by analyzing patient data with
individual tracers. For a fair comparison and also to demonstrate both the merit and
limitation of the proposed algorithm, we did not include extra parameter boundaries
nor extra fitting processing in this work.

3.6.3.2 Convergence properties

The convergence property and convergence speed are the two most important issues
of an iterative algorithm. For both traditional and the proposed method, the em-
ployed OSEM and WNLS methods are not able to converge to the ML solution of the
Poisson log-likelihood function. A better evaluation would be achieved by using the
maximum likelihood expectation maximization (MLEM) algorithm combined with a
more accurate optimization transfer method (e.g. [58,59]) for parameter estimation.
An ordinary subsets number was applied here to compromise on the convergence rate
and computational efficiency [32, 63]. For fair comparison and simple implementa-
tion, the weighted iterative kinetic parameter estimation method was employed in
MT-DPIR, which utilizes the NLS with iteration-dependent weights for parameter
fitting.

To further evaluate the systematic bias that may be introduced by OSEM and
WNLS as compared to MLEM. The log-likelihood differences between the 3 methods
at 3 different count levels (6M, 30M and 60M) were investigated. The simulated
brain phantom were reconstructed using MT-DPIR , OSEM and MLEM with variant
iteration numbers (from 32 to 512 effective iterations). The plot of normalized log-
likelihood function (normalized to the MLEM value at 512 iterations) at each count
level is shown in Fig. 3.18.

As shown, both MT-DPIR and OSEM are biased from the MLEM results at 512
iterations. Furthermore, MT-DPIR includes WNLS and the log-likelihood is biased
from the OSEM result. This problem is improved at higher count levels.
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Figure 3.18: Plots of the normalized Log-likelihood comparisons of reconstructed
mixed-tracer activity distributions between MLEM (reconstruction) OSEM (recon-
struction) and MT-DPIR (reconstruction + WNLS fitting) methods of 1 to 32 iter-
ations at three different noise levels

Table 3.3: The absolute differences between Log-likelihood functions

Method
6M 30M 60M

(iteration no.)

MT-DPIR (32×16subsets)
0.0441% 0.0106% 0.0074%

v. s. MLEM (512)

OSEM (32×16subsets)
0.0148% 0.0071% 0.0059%

v. s. MLEM (512)

MT-DPIR (32×16subsets)
0.0293% 0.0035% 0.0015%

v. s. OSEM-DPIR (32x16subsets)

The resulting log-likelihood functions were compared at 512 iterations as listed in
Tab. 3.3. At 6M the absolute difference of the log-likelihood function between MT-
DPIR and MLEM at 6M is < 0.05% (between MT-DPIR and OSEM is < 0.02%).
Over 30M count level, the difference is ≤ 0.01%(< 0.01%). The combination of
OSEM and WNLS will not converge to the MLEM solution but can be considered
as a reasonably good approximation as reported in [59,60].

To further assess the reliability of the proposed method for PET quantifica-
tion. The performance of MT-DPIR and the traditional method were evaluated at
additional two count levels (6M and 30M) using the evaluation method described
in 3.4.3. MT-DPIR has constantly lower variance regardless of counts level and
iteration numbers as shown in Fig. 3.19 and in Tab. 3.4.

By comparing MT-DPIT and the traditional methods at the similar bias levels
(Bias2 ≈ 0.0830), MT-DPIR has achieved 34%-76% improvements in variance of
the reconstructed images for the investigated counts levels. Overall MT-DPIR can
provide relatively more reliable quantification results than the traditional method.
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3.6. Discussion

Figure 3.19: Plots of the bias-variance trade-off curved measured at different count
levels (6M, 30M and 60M) with variant iteration numbers (32 to 400 iterations)

Table 3.4: Variance comparisons at similar Bias2 level with different count levels

Method 6M 30M 60M

(Bias2) Variance Variance Variance

MT-DPIR (0.083) 0.19 0.030 0.015

Traditional (0.083) 0.29 0.098 0.063

3.6.3.3 Real data evaluations and practical applications

The preliminary evaluation uses a single FDG scan of the same mouse 1 day before
as physiological reference. This is not necessarily the optimal reference due to phys-
iological variation between the two measurements. Nevertheless, this is the optimal
solution for validating a multi-tracer applications in reality.

The blood input function plays a key role in kinetic modeling for dynamic PET
studies. The extraction of both AIFs for a dual-tracer study is even more challenging
than in single tracer cases. The combination of image based extraction and blood
samples are often used for identification of AIFs [86,88]. In the simulation studies, we
focused on the validation of the algorithm and thus AIFs are assumed to be known.
In real applications, we employed the thin layer chromatography for verifying the
separated AIFs. This may be further improved by following the method proposed
in [114].

For estimating tracer pharmacokinetics, DPIR requires dynamic acquisitions
which often take about an hour. Motion may occur during clinical acquisitions
which will influence the kinetic fitting and parameter estimation [115]. For direct
parametric reconstruction methods, motion correction is not yet incorporated. In
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our preclinical evaluations, mice were anesthetized and fixed in position during the
measurement to reduce the influence of motion as much as possible. For some clin-
ical applications, such as treatment planning before radiation therapy, patients are
usually immobilized during the imaging. The proposed method can be still applied
in these situations.

3.6.3.4 Algorithm configurations and future work

In theory, MT-DPIR is applicable to any tracer combination and any numbers of
pharmacokinetic models. However, as more models are included, the number of
fitting parameters increases also in the reduced parameter space, resulting in again
a complicated fitting environment. Although the proposed method may still per-
form better than the traditional model, the results may not be stable for proper
interpretation. In some clinical applications, the administration of 2 tracers can
already improve the diagnosis or therapy planning significantly [80, 83]. Thus it is
still practical to further test the proposed method for two tracers in clinical studies.
In addition, the multi-tracer model is designed to be the superposition of single
tracer models [88,93]. However, the general strategy of using DPIR combined with
the RPS reformulation can be extended to models that are not limited to such a
structure.

The performance of the recovery of an individual tracer from mixed measure-
ments may also be affected by the time interval between injections as well as the
order of tracer injections. For the traditional method, these effects have been dis-
cussed in [88] for the combination of [18F]FLT and [18F]FDG. This work aims to
propose and preliminarily evaluate the MT-DPIR algorithm for the tracer separa-
tions. In the future, the influences of these effects on the performance of MT-DPIR
will be carefully studied and optimized before further preclinical and clinical studies.

To conclude, this chapter proposes a direct rapid multi-tracer PET reconstruc-
tion algorithm (MT-DPIR) for recovering single tracer information from overlapping
acquisitions. In particular, a multi-tracer model with reduced number of parameters
is integrated into parametric image reconstruction. The tests on numerical simula-
tion data as well as on preclinical PET measurements have shown that the proposed
algorithm can improve the separation of overlapping PET signals. Though it still
has a long way to go, we believe the proposed method can promote the development
of the multi-tracer towards real medical application.
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4

Physiological Evaluation of Direct
Parametric Image Reconstruction

DPIR improves parametric images with better visual quality and fewer statistical
errors. For clinical applications, it is necessary to determine if these improvements
can have practical advantages for physiological estimations. However, it is often
challenging to verify physiological quantifications with real measurements due to
lack of reference. This chapter presents a preclinical assessment of the quantifica-
tion ability of DPIR on [18F]FMISO PET to investigate underlying tumor hypoxia
status. Hypoxia related PET quantities were acquired from both DPIR and indi-
rect parametric image generation methods using different reconstruction algorithms
(FBP & OSEM). In particular, a physiological factor obtained from immunohisto-
chemistry staining is used as reference in this work. PET quantities were compared
to the reference to evaluate the influence of reconstruction methods on physiological
quantification.

Part of this work has been published in [116].

4.1 Imaging Tumor Hypoxia

Cellular hypoxia is a situation where cells have been deprived of adequate oxygen
concentrations. Hypoxia is often seen in a solid tumor which rapidly outgrows its
blood supply, leaving tumor cells with significantly lower oxygen levels than healthy
tissues. As demonstrated in Fig. 4.1, the oxygen supply is sufficient for cells closest
to vasculature, whereas it diminishes further from the blood vessels. As the oxygen
supply decreases, cells become hypoxic and later necrotic. Locating hypoxic areas
is of great importance. Hypoxic cells are known to be 2 to 3 times more resistant
to ionizing radiation than ordinary cells, becoming the major resistance factor for
radiotherapy as well as many chemotherapy approaches [117, 118]. For treatment
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4. Physiological Evaluation of Direct Parametric Image Reconstruction

Figure 4.1: A Sketch of the tumor microenvironment

planning of radiation therapy, it is desirable to accurately outline hypoxic regions
where higher does can be imposed for effective treatments [119–122].

Microscopically, tumor hypoxia can be detected by immunohistochemistry stain-
ing of biopsies or tumor slices ex vivo [123]. Hypoxic cells are visualized using ex-
ogenous bio-reductive markers such as pimonidazole or EF5. As an example shown
in Fig. 4.2a, different antibodies have been applied to the tumor cryosection. Panel
a exhibits the H&E staining image which indicates the necrosis and vital tumor
areas. Panel b is the fluorescent image demonstrating the distribution of pimonida-
zole, Hoechst (a perfusion marker), and CD31 (a antibody for staining microvascular
endothelium marker).

The detection of hypoxic cells can be achieved non-invasively by PET imaging
using hypoxia-specific tracers such as [18F]fluoromisonidazole ([18F]FMISO) [124–
129]. PET imaging is recommended as the non-invasive measurement can provide
3D information in vivo, conjugated with CT for the application of biologically-guided
radiotherapy [130–132]. However, the image quality is limited by the intrinsic low
resolution of PET. In general, hypoxic regions are seen surrounding the vessels,
gradually increasing from the arterial to the venous end of the microvessels, and are
distributed irregularly and discontinuously throughout a tumor. Thus a macroscopic
imaging voxel of a tumor usually consists of a mixture of hypoxic and normoxic
regions, making the quantification of PET images very difficult. In addition, hypoxia
tracers usually have low uptake due to long diffusion distances for hypoxic regions,
which are typically not located close to functional blood vessels [133]. Due to the
low SNR of measurements, the quantification of hypoxia may become even more
challenging and sensitive to errors from reconstruction and model fitting procedures.
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4.2. Quantification of Hypoxia

Figure 4.2: (a) An exemplary H&E tumor cryosection staining, illustrating the
necrotic and vital tumor areas; (b) the microscopy view of the corresponding stained
tumor slice, exhibiting CD 31, Hoechst and Pimonidazole distributions.

A physiological reference is thus desired to assess the image generation procedure
and verify the PET quantities for the quantification of tumor hypoxia.

Immunohistochemistry staining provides precise information about the location
of hypoxic cells. It has been considered as a physiological reference to assess hypoxia
tracer uptake in autoradiography and the results of kinetic modeling in preclinical
studies [134, 135]. For instance, hypoxic fraction (HF, for representing the extent
of the hypoxia in immunohistochemistry data) has been used to verify the uptake
of hypoxia tracers such as [18F]FMISO [135], [18F]FAZA [136] or [18F]HX4 [137] in
practice. Here the HF index is employed as a physiological reference to assess the
quantification ability of [18F]FMISO PET imaging and to evaluate whether DPIR
has advantages for this physiological quantification compared to indirect methods.

4.2 Quantification of Hypoxia

For immunohistochemistry data, hypoxic fraction (HF) is often used to represent the
relative severity (extent) of hypoxia [135–137]. It is defined as the area of hypoxic
cells divided by the area of vital tumor cells:

HF =
Areahypoxic
Areavital

(4.1)

Correspondingly, the necrotic fraction (NF) is specified as the area ratio of the
necrotic region over the whole tumor region:

NF =
Areanecrotic
Areatotal

(4.2)
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Figure 4.3: A sketch of the decoupled model, which is equivalent to the irreversible
two-tissue compartment model (refer to Fig. 1.12a)

For PET measurements, dynamic analysis such as pharmacokinetic modeling
is often recommended for the quantification of hypoxia PET imaging and for the
extraction of [18F]FMISO binding rates [126, 127, 133, 138, 139]. The irreversible
two-tissue compartment model has been reported to have the best physiological
correlation with immunohistochemistry staining [139] and oxygen tension (pO2)
measurements [138]. However, the nonlinear model often requires a long time for
computation and is sensitive to the noise due to the high dimensional fitting space.
The linearized model, such as the Patlak plot [140], is often preferred for voxel-wise
computing of parametric images [47, 48, 52] and has been applied to produce the
hypoxia-related physiological parameter [127].

4.2.1 The Gjedde-Patlak plot

As shown in Fig. 4.3, to achieve model linearization, a new model that decouples
the exponential part and the linear part of Eqn. 1.16 is used. It contains 3 kinetic
parameters κ, which are defined as combinations of parameters k, describing the
exchange rates between new compartments µ1 and µ2.

κ1 = K1k2
k2+k3

κ2 = k2 + k3

κ3 = K1k3
k2+k3

(4.3)

The tissue activity concentration C is calculated as the sum of activity con-
centration in the decoupled compartments µ1 and µ2, which can be simply treated
as a reversible one-tissue compartment model and the integral of AIF. The Patlak
plot further considers the situation when free tracer components have reached their
steady state, so that the ratio C

CP
becomes time independent. Therefore at late time

points, the reversible unit µ1 will also approach its steady state:
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µ1 →
κ1

κ2

CP (4.4)

In the steady state, the ratio C
CP

at image voxel j is expressed as:

Cj(t)

CP (t)
= Slopej

∫ t
0
CP (τ)dτ

CP (t)
+ Intj{

Slopej = κ3 = K1k3
k2+k3

Intj = κ1
κ2

= K1k2
(k2+k3)2

(4.5)

Representing data in this form is called the Patlak plot. The interesting param-
eter Patlak Slope indicates the net transfer rate of the tracer in the steady state.
Equality in Eqn. 4.5 is valid only when the steady state has been reached. A status
evaluation is necessary before model fitting to achieve reliable results.

4.2.2 DPIR of the Patlak model

Except for the numerical stability and efficiency of calculation, linear models have
their advantages for direct parametric image reconstruction. As separate coefficients
exist for each linear parameters, a closed-form update function can be deduced for
estimating kinetic parameters directly from projection data [47] instead of the 2-step
procedure in [49,57–59]. For instance, in the Patlak case, after multiplying with CP
on both sides of Eqn. 4.5, C can be represented by kinetic parameter weighted
temporal basis functions as shown in Eqn. 4.6:

Ct = pkbkt = [Slope, Int][b1t, b2t]
T{

b1t =
∫ t

0
CP (τ)dτ

b2t = CPt

(4.6)

where b ∈ RNK×NT is a matrix consisting of temporal basis functions corresponding
to the parameters [Slope, Int] for each image voxel. C stands for a TAC associated
with a voxel. The dynamic PET images X̂ contain Nj TACs and it can be expressed

as X̂ = PB = {pjkbjkt}. Recalling that to optimize Eqn. 1.18, ∂x̂
∂p

is calculated. For
linear models, since B is not a function of P, there is:{

∂x̂j
∂Slopej

= b1jt

∂x̂j
∂Intj

= b2jt

(4.7)

Then a closed-form update function can be deduced from Eqn. 1.18 for estimating
P directly from the projection data [47,48], which is written as:
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Figure 4.4: A sketch of the evaluation procedure

p
(n+1)
jk = p

(n)
jk

1∑
t,i∈IS aijt/αibkt

∑
t,i∈IS

aijt
αi

(
αipjt∑

j′,k aij′tp
(n)
j′,kbkt/αi + ri + si

bkt) (4.8)

4.3 Material and Methods

The preclinical evaluation procedure is presented in Fig. 4.4. In general, mice with
grown tumor were scanned by PET dynamically. The Patlak Slope images were
reconstructed by direct or indirect parametric image generation methods. For im-
munohistochemistry study, mice were executed and tumors were cut, sliced and
stained for measuring the hypoxia fraction (HF). The Slope parameters were com-
pared to HF and the Pearson correlation coefficient was computed to assess para-
metric image generation methods. Detailed description of each step is given below.
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4.3. Material and Methods

Figure 4.5: The segmentation result of the pimonidazole signal using the K-Mean
clustering algorithm: (a) Pimonidazole image (b) 4 clusters (cluster 1 indicates the
background) (c) cluster 2 is considered as part of vital tumor while cluster 3+4 is
the hypoxic areas

4.3.1 Animal preparation

Human head and neck cancer cell lines FaDu and CAL33 (DSMZ, Braunschweig,
Germany) were established for generating xenografted tumors. 2-3 days before tu-
mor transplantation, 7-week old female NMRI nu/nu mice (n=16, Charles River
Laboratories, Sulzfeld, Germany) were whole-body irradiated with 4 Gy (RS225A,
Gulmay Medical Ltd., UK) at a dose rate of 1 Gy/min (200 kV X-rays) for com-
plete immunosuppression. A 1 mm3 tumor piece was transplanted subcutaneously
into the right hind leg of each anesthetized mouse (0.714 µg/g Medetomidin +7.14
µg/g Midazolam +0.07 µg/g Fentanyl, i.v.). Tumors were allowed to grow to 7 - 10
mm in diameter [141]. The animal studies were approved according to international
guidelines and German welfare regulations (EU guidelines: 86/609).

4.3.2 Immunofluorescence study

The hypoxia marker pimonidazole (Hypoxyprobe, Burlington, MA, USA) was in-
jected i.p. at 0.1mg/g body weight in a volume of 0.1 mL saline directly before
injecting [18F]FMISO. After the PET scan, the Hoechst 33342 (Sigma, Deisenhofen,
Germany) perfusion marker was injected i.v. at 15 µg/g body weight in a volume
of 0.1 mL and 1 min. later each animal was sacrificed, immediately followed by
tumor excision. Thereafter, the tumors were shock frozen in liquid nitrogen and
stored at -80C. Cryosections (10 µm thick) were generated from the apical, central
and basal layers [142] of each tumor and stored at -80C. Shortly before staining,
cryosections were fixed in cold (4C) acetone, air dried and rehydrated in phosphate
buffered saline (PBS). Pimonidazole was stained with a monoclonal FITC-labeled
anti-pimonidazole antibody (Hypoxyprobe, Burlington, MA, USA) diluted 1:50 in
primary antibody diluent (PAD; Serotec, Oxford, UK) by incubating for 1 h at
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37C in the dark. Microvascular endothelium was stained using a purified rat anti-
mouse CD31 antibody (MEC 13.3, BD PharMingen, Heidelberg, Germany) diluted
1:100 in PAD. Anti-CD31 was detected using the secondary antibody AlexaFluor
594 (Invitrogen, Eugene, OR, USA) diluted 1:200 in PBS for 1 h at 37C in the dark.
The cryosections were then embedded in fluorescent mounting medium (DAKO,
Glostrup, Denmark) and stored at 4C [142].

For the Immunohistochemistry stained tumor slices, necrotic tumor regions in
the cryosections were outlined manually based on H&E staining and excluded from
the analysis and the necrotic fraction was measured. The hypoxia area can be
measured by manual outline or using reproducible clustering methods applying on
the pimonidazole image. Here pimonidazole signals were segmented using the k-
means clustering algorithm (ImageJ 1.43m, NIH, USA) [143] and were characterized
as background, moderate hypoxia and severe hypoxia as demonstrated in Fig. 4.5.
The hypoxic fraction (HF) of each cryosection was defined as the ratio of the area
of moderate and severe hypoxia over the area of the viable tumor.

4.3.3 PET image generation

Mice were anesthetized with isoflurane and imaged using a preclinical PET/CT
(Siemens, Inveon micro PET/CT). 10-15 MBq [18F]FMISO was injected intravenous-
ly after a CT scan (80 kVp, ¡ 5 mins) and dynamic PET data were acquired for 2
hours. 2 venous blood samples (2-7 µL) were taken directly after scanning, weighed,
and the activity concentration of the [18F]FMISO isotope in the blood was measured
in a gamma-counter. The AIFs were modeled using three exponential model indi-
vidually [109]. All measurements were corrected for non-uniform system response,
physical decay, dead time and randoms. Attenuation coefficients were generated
based on the acquired CT data. For each mouse, dynamic PET acquisitions were
rebinned into 2D sinograms using single-slice rebinning (SSRB) with 128 radial bins,
160 views, 159 direct planes and 46 frames of varying durations: 20 × 1 s, 4 × 5
s, 2 × 10 s, 2 × 30 s, 4 × 60 s, 2 × 120 s, 4 × 300 s, 6 × 600 s, 2 × 900 s. Both
direct and indirect parametric image generation algorithms were investigated. The
derived images were composed of 128×128×159 voxels per frame at a voxel size of
0.78×0.78×0.80 mm3.

The arterial input function (AIF) used for kinetic modeling was obtained accord-
ing to the method described by Wong [144]. Concerning the restricted blood volume
of mice, AIF for real data was derived based on the left ventricle (LV) data at an
early time from pre-reconstructed dynamic FBP images and corrected for delay (1.77
s), dispersion (1.20 s) and partial volume (recovery coefficient = 0.83). Then the
data were concatenated with the activity of the corresponding venous blood samples
at the end of the scan, and interpolated using a four exponential model [145]. The
coefficient of determination (R2) was calculated to assess the fitting quality of linear
regression of the Patlak model.
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Figure 4.6: A plot demonstrating the segmentation procedure at a threshold of 20%
of Slopemax for outlining hypoxic and vital tumor volumes on PET images

The parametric Slope images generated from FBP+Patlak, OSEM+Patlak and
POSEM with different configurations were assessed visually and quantitatively. Tu-
mor volumes were manually outlined and their size was measured based on the
fusion of CT and the average of the 46 frames of dynamic PET images using PMOD
software (version 3.1; PMOD Technologies, Zurich, Switzerland). Within the whole
tumor area, an adaptive threshold was applied to exclude the necrotic regions in the
PET data. The threshold was adjusted to ensure that the necrotic fraction from
PET was consistent with the NF derived from the microscopic images (Tab. 4.1).

The quantification of PET images was also carried on static reconstructed tracer
uptake images (using either analytical or iterative reconstruction). For static analy-
sis, the normalized standard uptake value (SUV = Image

InjectionDose(MBq)×ObjectWeight(g)
)

is usually measured from reconstructed image at late time points [128]. For com-
parison to results of pharmacokinetic modeling, SUV was calculated based on the
last frame of the dynamic PET scan (2 h p. i., duration 15 min) and the weight and
injection dose of the animal as listed in Tab. 4.1.

Furthermore, the mean or maximum voxel value within a region of interest (ROI)
of PET images is usually taken as a representative index for a quantity [146–148].
Thus, for the intensity-based comparison, the mean and maximum value of the
quantities derived from parametric PET images were employed for the quantification
of the hypoxia status. As accurately outlining hypoxic volume on the tumor area
based on PET images is challenging, ten different thresholds (10, 20 and 100%
of Slopemax) were tested for segmenting the tumor into hypoxic and vital tumor
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volumes as demonstrated in Fig. 4.6. The mean Slope parameters in the resulting
hypoxic volumes were measured. At last, the mean Slope, Slopemax as well as
SUVmax were then compared to HF derived from the immunohistochemistry study,
and the Pearson correlation coefficient was computed to assess parametric image
generation methods. p-values < 0.05 were considered to be significant.

4.4 Results

4.4.1 Tumor characteristics

The NF and HF of a tumor were assessed as the average of three selected cryosec-
tions from the apical, central and basal tumor layers. The characteristics of the
investigated mice and tumors are shown in Tab. 4.1, including mice weight (10±2
g), injection dose (23±2 MBq), tumor volume (375±407 mm3), average vital tumor
area (35±20 mm2), HF (0.27±0.08), and NF (0.36±0.13). Tumors of a large range
of volumes (34-1353 mm3) were generated, resulting in HFs from 0.14 to 0.36.

Table 4.1: General characteristics of the investigated mice
Mouse Tumor Mouse Injection Tumor Average vital Necrotic Hypoxic

ID line weight dose size tumor area fraction fraction
(g) (MBq) (mm3) (mm2) (NF) (HF)

# 1 FaDu 24 11 495 66 0.326 0.140
# 2 FaDu 28 10 1287 77 0.343 0.274
# 3 CAL-33 25 7 97 23 0.284 0.224
# 4 CAL-33 26 10 359 35 0.171 0.286
# 5 CAL-33 26 9 119 21 0.250 0.195
# 6 CAL-33 23 11 477 23 0.484 0.257
# 7 CAL-33 25 9 61 12 0.613 0.149
# 8 FaDu 21 13 1354 39 0.533 0.381
# 9 FaDu 19 13 444 53 0.447 0.334
# 10 FaDu 25 11 537 46 0.321 0.314
# 11 FaDu 23 8 113 51 0.223 0.287
# 12 FaDu 20 9 151 34 0.380 0.355
# 13 FaDu 22 14 288 32 0.354 0.359
# 14 CAL-33 23 13 101 16 0.231 0.281
# 15 CAL-33 22 13 88 14 0.299 0.239
# 16 CAL-33 22 10 34 9 0.579 0.166
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4.4.2 Preparations for PET parametric image reconstruc-
tion

To achieve reliable quantification results, tests were done to determine the iterative
number for reconstruction and to varify the steady state for Patlak modeling. The
evaluation procedures and results are described below.

4.4.2.1 Convergence evaluation for iterative reconstruction methods

The convergence properties of OSEM+Patlak and POSEM were evaluated on two
data sets (mice # 2 and # 11). Both methods employed 8 subsets and were initial-
ized with a uniform image for reconstruction. 17 different iteration numbers (from 8
to 392 subiterations per plane) were tested for reconstruction. The averaged Slope
and Int values within the tumor area were compared with those from FBP+Patlak.

Fig. 4.7 shows the average kinetic parameters Slope and Int in whole tumor
areas of POSEM and OSEM+Patlak with different numbers of iterations compared
to FBP+Patlak for tumors from mice # 2 and # 11. The two kinetic parameters
of both methods approach the values obtained from FBP+Patlak as the number of
iterations increases. OSEM+Patlak converged faster than POSEM, which is con-
sist with the results in [63, 149]. After 88 iterations, the averaged parameters of
OSEM+Patlak were relatively stable (≤ 0.1%) and after 344 iterations, the estima-
tions of POSEM were relatively stable.

As the convergence speed is different, different iteration numbers were set for
OSEM+Patlak and POSEM for fair comparisons. In this study, 88 and 344 it-
erations were chosen for OSEM+Patlak and POSEM respectively to optimize the
performance of each method. Though the convergence has not been reached, both
methods can provide a relatively stable estimation of kinetic parameters without
exaggerating the noise [36]. Increasing the number of iterations decreases the fitting
quality of OSEM+Patlak due to excessive noise [149] and may further affect the
quantitative performance. To fully explore the influence of over iterated reconstruc-
tion on physiological analysis, OSEM+Patlak was additionally computed for 344
iterations and compared with the early-stopped reconstruction.

4.4.2.2 Steady state validation for Patlak modeling

The equilibrium of tracer uptake for the starting point of the Patlak plot in the
tumor areas was investigated. As the steady state has been reached, the ratio C

CP

tends to be a constant value and a linear relationship is achieved between C and
CP . Therefore a high fitting quality is expected for Patlak modeling only if the
equilibrium has been reached.

The Patlak modle was applied to each TAC starting at 30 min. The coefficient of
determination (R2) was calculated to assess the fitting quality of linear regression.
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Figure 4.7: Plots of the comparison between the average slope and intercept param-
eters of the whole tumor of mice # 2 and # 11 using FBP+Patlak, OSEM+Patlak
and POSEM
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Figure 4.8: Plots of (a) example time-activity curves (TACs) from the tumor area
of Mouse # 15; (b) Patlak fitting of corresponding TACs

The results has shown in Fig. 4.8, three example TACs from the tumor area of
mouse # 15 and the corresponding fitting results are displayed. The high linearity
(R2 ≥ 0.96) of the fitted line indicates that equilibrium of [18F]FMISO metabolism
was reached in this study.

Overall, based on the evaluation results, direct parametric image reconstruction
was implemented by integrating OSEM (8 subsets, 344 subiterations) and Patlak
plot as described in Sec. 4.2.2 for all mice data. Indirect parametric image generation
was achieved using both FBP (ramp filter, cutoff frequency 0.5 cycles / voxel) and
OSEM (8 subsets, 88 and 344 iterations) followed by kinetic fitting using Patlak
model for comparison. In all cases, Patlak model was applied on late time frames
(30 min p. i.) to ensure the equilibrium status has been reached.

4.4.3 PET quantification analysis

The reconstructed PET parametric images from different reconstruction methods
were firstly observed and compared with corresponding tumor cryosections. Fig. 4.9a-
d show the result Slope image of an example slice from mouse # 1 using FBP+Patlak,
OSEM +Patlak (88 iterations), OSEM+Patlak (344 iterations) and POSEM (344
iterations), respectively. Streak artifacts are visible in the parametric image of
FBP+Patlak due to the extreme uptake in the mouse urinary bladder.
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4.4. Results

Noise was observed in both parametric images of OSEM+Patlak. The noise
increased as the number of iterations increased. The Slope image generated from
POSEM is generally smoother than the others. It exhibits less streak artifacts and
image noise, especially in the low signal areas. A necrotic core is clearly visible
in the POSEM Slope images, which is confirmed by the large region seen in the
pimonidazole and H&E staining of a cryosection from the center of the tumor (Panels
d and e).

Figure 4.10: A plot of the correlations between the hypoxic fraction (HF) and
the mean slope parameter of tumor hypoxia volumes delineated using different
percentages of Slopemax on slope parametric images obtained from FBP+Patlak,
OSEM+Patlak (88 & 344 iterations) and POSEM (344 iterations); Real dots show-
ing results acquired from smoothed slope parametric images of OSEM+Patlak with
a Gaussian kernel of standard deviation σ = 0.55

Given the reconstructed parametric images of all mice, the correlation was e-
valuated between HF derived from pimonidazole staining and the average Slope
of the hypoxic volume for each threshold level is shown in Fig. 4.10. In general,
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Table 4.2: Correlations between HF and SUVmax or Patlak Slopemax using FBP,
OSEM (88 and 344 iterations) and POSEM (344 iterations).

Iteration No.
HF and SUVmax HF and Slopemax (Patlak)

r p r p
FBP — 0.50 0.0483 0.57 0.0206

OSEM
88 0.20 0.4660 0.67 0.0045
344 0.18 0.5030 0.54 0.0294

POSEM 344 — — 0.70 0.0023

the average Slope from most investigated methods has a correlation coefficient of
over 0.5 and the correlation became continually stronger as the threshold increased.
The coefficients obtained from OSEM+Patlak at 344 iterations are lower at most
threshold levels compared to the results at 88 iterations. The parametric images
from POSEM provided the highest correlation with HF at most cut-off values. For
thresholds above 50% of Slopemax, the resulting correlation coefficients were higher
than 0.6.

Further more, the correlations was investigated between the maximum value of
PET quantities (SUVmax and Slopemax) and HF as shown in Tab. 4.2 as well as
in Fig. 4.11. HF and SUVmax were significantly correlated when FBP was used.
In contrast, significant correlations were observed for Slopemax for all of the four
investigated parametric image generation methods. The Slopemax of POSEM cor-
related the best with HF. Although significant correlations (Tab. 4.2) between the
Slopemax of OSEM+Patlak and HF were observed, the correlations were sensitive
to the number of iterations. A relatively low correlation was obtained between the
Slopemax of FBP+Patlak and HF.

4.5 Discussion

Direct parametric image reconstruction has been reported to have improved statis-
tical quality [48] and this work aimed to clarify whether or not this improvement
can bring additional value to physiological estimations. The direct parametric im-
age reconstruction algorithm, POSEM, was assessed for the quantitative estima-
tion of tumor hypoxia from dynamic [18F]FMISO PET. Using the hypoxic fraction
(HF) from immunohistochemistry data as a physiological reference, the compari-
son with indirect parametric image generation methods including FBP+Patlak and
OSEM+Patlaks as well as with typical SUVmax on static images confirmed that the
direct parametric imaging reconstruction can improve the physiological quantifica-
tion of tumor hypoxia based on [18F]FMISO PET.
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4.5. Discussion

Figure 4.11: Scatter plots of the correlation between the hypoxic frac-
tion and Slopemax obtained from FBP+Patlak, OSEM+Patlak (88 iterations),
OSEM+Patlak (344 iterations) and POSEM (344 iterations)
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4.5.1 Hypoxic quantities

As introduced in Sec. 4.1, quantifying hypoxia from PET images is challenging due to
the heterogenous tumor microenvironment and the limited PET spatial resolution.
Thus we used this microscopic measure (the hypoxic fraction) of tumor hypoxia as
a physiological reference for the quantification of [18F]FMISO PET images.

The Patlak plot was chosen to characterize the underlying kinetics of [18F]FMISO
tracer in this study. The linear parameter Slope integrates the tracer kinetic pa-
rameters of the irreversible two tissue compartment model, which may reduce phys-
iological interpretation. A stronger correlation may be expected using nonlinear
models [126, 133]. However, it may suffer from numerical instability such as local
minima due to nonlinear regression. Also, less computational time is required for
linear model fitting than nonlinear regression.

To evaluate if direct parametric image reconstruction can bring additional physi-
ological value, we investigated the Slope parameter from Patlak plot for quantifying
hypoxia from PET. By setting the threshold at increasing percentages of Slopemax,
better correlations between HF and the average Slope of the hypoxic volume were
observed. Since r coefficients are higher at higher cut-off values (percentages of
Slopemax), which generates higher signal intensity (larger mean Slope values), our
assumption is supported that the Patlak Slope reflects the severity of hypoxia.

4.5.2 Errors from reconstruction

For indirect method, two main reasons that degrade the image quality. Firstly, indi-
rect parametric generation methods estimate kinetic parameters from reconstructed
data, which may suffer from streak artifacts in analytical methods or high noise as
the iteration number increases for iterative methods. Voxel-wise kinetic modeling
may propagate the errors from reconstruction to the resulting parametric images.
The uptake of [18F]FMISO in a hypoxic region is usually very low due to the larger
diffusion distance of the hypoxia tracer. Therefore, these errors affect the resulting
parametric images more seriously. This can be confirmed in Fig. 4.12, where the
streak artifacts in FBP+Patlak and the noise in OSEM+Patlak reduce the fitting
quality of the pharmacokinetic model, leading to unclear parametric images. Con-
sequently, this limited statistical behavior influences the accuracy of the estimation
of the underlying physiology, where the values of PET quantities (e.g., Slopemax)
are sensitive to the errors of reconstruction. This was confirmed by the lower cor-
relation with HF for the indirect parametric image generation methods than the
direct parametric image reconstruction. Secondly, the fitting quality may be af-
fected by the lower SNR or errors from reconstruction also, which consequently
results in a inaccurate estimations of kinetic parameters. To explore the influence of
noise/errors on the fitting quality, we calculated the R2 maps of FBP+Patlak and
OSEM+Patlak and displayed in Fig. 4.12. Panel a shows R2 based on FBP+Patlak
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4.5. Discussion

Figure 4.12: R2 images generated from (a) FBP+Patlak; (b) OSEM+Patlak with
80 iterations; (c) OSEM+Patlak with 248 iterations; (d) OSEM+Patlak with 392
iterations; (e) plots of the average tumor R2 values of OSEM+Patlak with different
number of iterations compared to FBP+Patlak (Iter. = Iterations)
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images from mouse # 11. Panels b to d are the corresponding R2 images obtained
from OSEM+Patlak using 80, 248 and 392 iterations, respectively. Panel e plots
the mean R2 values in the tumor area. The fitting quality became worse as noise
increased due to the increasing number of iteration used for OSEM reconstruction.

In contrast, DPIR integrates the linear Patlak plot into the optimization func-
tion for estimating model parameters directly from projection data. As the spatial
and temporal measurements are used simultaneously, improved SNR is achieved for
either reconstruction or kinetic modeling, as compared to the separated 2-steps in-
direct methods. Thus improved statistical quality and higher contrast of images
from DPIR has been observed, consisting with the results in [48]. As DPIR is less
affected by the reconstruction errors and the improved SNR may potential improve
the fitting quality and more accurate estimation of Slope, the correlation between
the Slope of POSEM and HF and consequently the estimation of the underlying
hypoxic status was enhanced.

4.5.3 Influence of iteration number

It is difficult to decide on the iteration number for an iterative reconstruction
method. Generally, higher numbers of iterations results in images with a better
resolution and lower bias. However, the variance of reconstructed images becomes
amplified as the iterations continue. A decrease of the correlation between average
Slope and HF using OSEM+Patlak (on average: -19.8%) was observed as the num-
ber of iterations increased from 88 to 344 for most cases in this study. Thus, the
number of iterations for the iterative reconstruction methods including OSEM and
POSEM need to be selected carefully. In this study, the early-stopping strategy [36]
was considered to compromise between bias and noise.

Different convergence speeds were also observed between OSEM and POSEM [63,
149]. Thus, different numbers of iterations were chosen for OSEM+Patlak and
POSEM for fair comparisons and comparable results were generated. The corre-
lation between HF and Slopemax for the OSEM+Patlak at 88 iterations was r =
0.67, p = 0.0045 and the result of POSEM at 344 iterations was r = 0.70, p = 0.0023.

If a high number of iterations is used, smoothing OSEM reconstructed images
before Patlak modeling can help suppress the noise in resulting parametric images
and make the image resolution consistent with other reconstruction methods [48].
As a test, 3D Gaussian kernels (3× 3× 3 voxels) with different standard deviations
(σ = 0.35, 0.55 or 0.75) were investigated. As shown in Fig. 4.10, at a standard
deviation of σ = 0.55, the highest correlation between HF and Slopemax was observed
for the smoothed OSEM+Patlak (344 iterations) (r = 0.67, p = 0.0043), which was
similar to the result from OSEM at 88 iterations (mean difference: 0.88%). On
average, 19.1% improvement in correlation between HF and the average Slope of
hypoxic volume for all threshold levels was achieved. The correlation curve with
respect to different thresholds of the smoothed OSEM-Patlak had a similar shape
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as the other methods.
The tradeoff between bias and noise may also be improved by applying regular-

ization. It is possible to suppress the noise in iterative reconstruction with properly
chosen regularizers based on prior knowledge of the smoothness of the parameter
image [52,150]. For example, using a maximum a posteriori (MAP) method incorpo-
rated with roughness penalty terms can directly encourage image smoothness. Both
direct and indirect methods would benefit from MAP to regularize noise meanwhile
preserving desired image properties (e.g., retain edges) [151]. It is not expected to
change the relative performance for investigated methods [52].

4.5.4 ROI or voxel-wise analysis

The mean Slope values over a large region (e.g., whole vital tumor) of parametric
images obtained from different methods were similar in our study. This is consistent
with previous results [48, 62]. However, the values of individual voxels from the
parametric images vary for each investigated method. As shown in Fig. 4.13, we
compared the intensities of vital tumor voxels obtained from different reconstruc-
tions, and the largest deviation (r = 0.76, p = 2.85e−6) was observed from mouse #
7 between different methods.

On the other hand, voxel-wise analysis may have its advantages for hypoxia
studies. Hypoxic regions, either acute or chronic hypoxia, are associated with a
defined area encompassing individual vessels [152]. In this way, they usually spread
discontinuously across the tumor and are highly heterogeneous. In a previous study,
Shi et al. undertook a modeling study using average TACs from whole vital tumor
regions and no significant correlation (r = 0.30, p = 0.26) was reported between
the Patlak Slope and HF for this region-wise analysis [139]. In this study, the
Slopemax of Patlak plots was found to be more representative of the severity of
hypoxia. It correlated better than the region-wise analysis of the whole vital tumor.
Additionally, it was observed in this study that the correlation decreased as more
TAC-associated tumor voxels were included (Fig. 4.13). Although the Patlak plot
may lose some physiological accuracy, it can capture the intra-tumor heterogeneity
of tumor hypoxia.

Nevertheless, voxel-wise analysis suffers from low signal level and is thus more
sensitive to selected parametric image generation methods. Due to reduced er-
rors from reconstruction, the Slopemax from direct parametric image reconstruction
provided better physiological estimation than from indirect methods, thereby con-
firming our hypothesis.

4.5.5 Delineation of the hypoxic volume

Delineation of the hypoxic volume from PET imaging currently serves as the basis for
biologically-guided radiotherapy [132]. To further compare the accuracy of indirect
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4.5. Discussion

and direct methods for the delineation the hypoxic volume, parametric images using
different thresholds were investigated and verified using immunohistochemistry data.

In general, direct methods have better correlations with HF than indirect methods.
The results from POSEM (344 iterations) showed that a threshold value larger than
50% of Slopemax generated hypoxic volumes whose mean Slope correlated better
(r > 0.6) with the underlying HF. Considering the improved quantification by di-
rect parametric image reconstruction and the high correlation obtained, a strategy
for delineation of the hypoxic volume at 50% of Slopemax of the parametric im-
age from POSEM is recommended for further investigation in biologically-guided
radiotherapy. The delineation of the hypoxic volume is a therapy related concept
where voxels with higher hypoxic fractions were outlined. A proper hypoxic vol-
ume delineation needs to consider the relevant therapy effect, such as tumor control
probability under radiotherapy. Nevertheless, this method has proposed a strategy
to delineate the hypoxic volume with high correlation to the underlying severity of
hypoxia.

Furthermore, we compared the hypoxic volume using the proposed strategy from
PET images with the hypoxic volume derived from immunohistochemistry [153]. A
significant correlation (r = 0.76, p = 0.0006) was observed. This supports our
suggestion of delineating tumor hypoxia based on parametric images.

The convergence speed of POSEM can be potentially improved by using nested
algorithms [53], but it is not expected to influence the quantitative performance of
the direct method. This study is also limited by the comparison of the methods
within a 2D reconstruction framework. The results demonstrate that the physiolog-
ical interpretation benefits from the improvement of SNR. The incorporation of a
3D system matrix in the reconstruction could further improve the SNR of each in-
vestigated method [154,155]. But it is not expected to change the relative behaviors
towards quantitation of the investigated methods.

To sum up, this chapter evaluates the direct parametric image reconstruction
method for estimating tumor hypoxia from dynamic [18F]FMISO PET, using the
ex vivo hypoxic fraction (HF) as a physiological reference. The results of direct
POSEM are compared with indirect parametric image generation methods, includ-
ing FBP+Patlak and OSEM+Patlak. This assessment has demonstrated that direct
parametric image reconstruction provides better image quality and better physio-
logical estimation. Thus, POSEM is recommended for the analysis of tumor hypox-
ia, and a strategy of delineation of the hypoxic volume by thresholding at half of
Slopemax is proposed for further investigation. In the future, advanced registration
strategies between macroscopic (e.g., PET) and microscopic (e.g., tissue staining)
will be tested for further quantitative evaluation of the parametric image generation
methods.
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5

Conclusion

This thesis proposes mathematical algorithms to improve dynamic PET image re-
construction so as to achieve better physiological quantification for clinical diagnosis.
In particular, these algorithms utilize temporal coherence and tracer pharmacoki-
netics to reduce reconstruction artifacts and enhance image quality. The value of
the physiological quantification resulting from these improvements in reconstruction
was also assessed.

Though FBP is still favored for PET imaging due to its robust performance for
physiological quantification, the practical applications of this analytical method may
be hampered by intrinsic streak artifacts arising from reconstruction. To overcome
this obstacle, this thesis proposes a framework which utilizes the temporal coher-
ence of dynamic PET measurements for data decomposition in the projection space.
This decomposition enables separated sinograms to be processed respectively, and
this consequently reduces severe streak artifacts before final image generation. This
framework was evaluated using both realistic simulations and physical phantom mea-
surements. Corrected images demonstrate a clear reduction in streak artifacts for
all experiments. Furthermore, quantification results confirm that the new method
produces dynamic PET images and kinetic parametric images with higher quanti-
tative accuracy. The proposed algorithm may be limited to tomographic imaging
of dynamic protocols. However, with the development of dynamic measurements
such as dynamic contrast-enhanced (DCE) CT imaging, the new method may be
extended to other tomographic applications.

PET imaging of multiple tracers in separated scans has exhibited its advantages
in enhancing the sensitivity and specificity of tumor diagnosis in clinical studies.
A simultaneous measure of overlapping tracers may further improve the diagnosis
value, but only if individual components can be reliably recovered from the phys-
ically non-differentiable PET acquisitions. This thesis proposes an algorithm to
improve tracer separation by investigating pharmacokinetics within the reconstruc-
tion procedure. Particularly, the algorithm integrates a multi-tracer kinetic model
into iterative optimization to achieve mutual regularization and improvements in
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5. Conclusion

the reconstruction of spatial and temporal components. In addition, considering the
high dimensional parameter space, the multi-tracer model has been reformulated to
reduce fitting dimensionality. The proposed algorithm was systematically analyzed
using numerical simulations. Evaluation results of recovered single tracer images
and parametric images indicate that the new method can improve the accuracy and
the stability of tracer separation with less quantitative error. Validation results
of preclinical PET data show that the separated tracer components are closer to
physiological expectations. For practical applications, this method requires further
validation with clinical data and still faces challenges from blood input functions,
mutual tracer reactions, organism motions, and other practical issues. Though it
still has a long way to go, we believe the proposed method can promote the devel-
opment of the multi-tracer towards real medical application.

The development of direct parametric image reconstruction (DPIR) has drawn
more and more attention to dynamic PET reconstruction. As the algorithm achieves
spatial-temporal optimization simultaneously, the signal-to-noise ratio of PET mea-
surements used for reconstruction is enhanced compared to the frame-by-frame re-
construction, resulting in improved kinetic parameter estimation. To evaluate if
these improvements can benefit the physiological estimation of actual diagnosis,
this thesis compares parametric images of preclinical PET data generated with or
without DPIR. Specifically, the corresponding immunochemistry tumor staining was
used as a biological reference for quantitative evaluation. Physiologically related
PET quantities were acquired from parametric images. Evaluation results indi-
cate that physiological quantities acquired from DPIR reconstruction exhibit higher
correlation with the reference, confirming a more accurate physiological estimation
achieved due to improvements in reconstruction. In the future, further validations
of different tracers and model applied to a variety of patient data would be required
for the development of DPIR towards clinical practice.
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“Iterative kinetic parameter estimation within fully 4d PET image reconstruc-
tion,” IEEE Nucl. Sci. Symp. Conf., pp. 1752–1756, 2006.

[50] C. Tsoumpas, F. E. Turkheimer, and K. Thielemans, “A survey of approaches
for direct parametric image reconstruction in emission tomography,” Med.
Phys., vol. 35, pp. 3963–71, 2008.

[51] A. Rahmim, Y. Zhou, J. Tang, L. Lu, V. Sossi, and D. F. Wong, “Direct 4D
parametric imaging for linearized models of reversibly binding PET tracers
using generalized AB-EM reconstruction,” Phys. Med. Biol., vol. 57, pp. 733–
55, 2012.

[52] G. Wang, L. Fu, and J. Qi, “Maximum a posteriori reconstruction of the
Patlak parametric image from sinograms in dynamic PET,” Phys. Med. Biol.,
vol. 53, pp. 593–604, 2008.

[53] G. Wang and J. Qi, “Acceleration of the direct reconstruction of linear para-
metric images using nested algorithms,” Phys. Med. Biol., vol. 55, pp. 1505–17,
2010.

[54] J. Tang, H. Kuwabara, D. F. Wong, and A. Rahmim, “Direct 4D reconstruc-
tion of parametric images incorporating anato-functional joint entropy,” Phys.
Med. Biol., vol. 55, pp. 4261–72, 2010.

[55] M. E. Kamasak, C. A. Bouman, E. D. Morris, and K. Sauer, “Direct recon-
struction of kinetic parameter images from dynamic PET data,” IEEE Trans.
Med. Imag., vol. 24, pp. 636–50, 2005.

105



Bibliography

[56] J. Yan, B. Planeta-Wilson, and R. E. Carson, “Direct 4-D PET list mode
parametric reconstruction with a novel EM algorithm,” IEEE Trans. Med.
Imag., vol. 31, pp. 2213–2223, 2012.

[57] J. Matthews, G. Angelis, F. Kotasidis, P. Markiewicz, and A. Reader, “Direct
reconstruction of parametric images using any spatiotemporal 4D image based
model and maximum likelihood expectation maximisation,” in IEEE Trans.
Nucl. Sci. Symp. Conf., 2010, pp. 2435 – 2441.

[58] G. Wang and J. Qi, “Generalized algorithms for direct reconstruction of para-
metric images from dynamic PET data,” IEEE Trans. Med. Imag., vol. 28,
pp. 1717–26, 2009.

[59] G. Wang and J. Qi, “An optimization transfer algorithm for nonlinear para-
metric image reconstruction from dynamic PET data.” IEEE Trans. Med.
Imag., vol. 31, pp. 1977–88, 2012.

[60] G. Wang and J. Qi, “Direct estimation of kinetic parametric images for dy-
namic PET,” Theranostics, vol. 3, pp. 802–15, 2013.

[61] A. J. Reader, F. C. Sureau, and C. Comtat, “Joint estimation of dynamic PET
images and temporal basis functions using fully 4D ML-EM,” Phys. Med. Biol.,
vol. 5455, 2006.

[62] J. Yan, B. Planeta-Wilson, J.-D. Gallezot, and R. E. Carson, “Initial evalu-
ation of direct 4D parametric reconstruction with human PET data,” IEEE
Nucl. Sci. Symp. Conf., vol. 2009, pp. 2503–2506, 2009.

[63] G. I. Angelis, K. Thielemans, A. C. Tziortzi, F. E. Turkheimer, and C. T-
soumpas, “Convergence optimization of parametric MLEM reconstruction for
estimation of Patlak plot parameters,” Comput. Med. Imag. Grap., vol. 35,
pp. 407–16, 2011.

[64] E. Herranz, J. L. Herraiz, E. Vicente, S. Espana, M. Desco, J. J. Vaquero, and
J. M. Udias, “Quantification limits of iterative PET reconstruction algorithms
and improved estimation of kinetic constants,” ISBI, pp. SA–PS1a.4, 2011.

[65] X. Cheng, J. Liu, J. Vogel, Z. Liu, N. Navab, S. I. Ziegler, and K. Shi, “Time-
activity curve based sinogram decomposition for streak artifacts reduction
in dynamic PET reconstruction,” in Computational Methods for Molecular
Imaging (CMMI) Workshop - MICCAI 2014, 2014, in press.

[66] P. J. Keall, L. B. Chock, R. Jeraj, J. V. Siebers, and R. Mohan, “Image
reconstruction and the effect on dose calculation for hip prostheses,” Med.
Dosim., vol. 28, pp. 113–7, 2003.

106



Bibliography

[67] W. Kalender, R. Hebel, and J. Ebersberger, “Reduction of CT artifacts caused
by metallic implants,” Radiology, vol. 164, pp. 576 – 7, 1987.

[68] P. P. Bruyant, J. Sau, and J.-J. Mallet, “Streak artifact reduction in filtered
backprojection using a level line-based interpolation method,” J. Nucl. Med.,
vol. 41, pp. 1913 – 9, 2000.

[69] G. Wang, D. Snyder, J. O’Sullivan, and M. Vannier, “Iterative deblurring for
CT metal artifact reduction,” IEEE Trans. Med. Imag., vol. 15, pp. 657 –664,
1996.

[70] J. August and T. Kanade, “Fast streaking artifact reduction in CT using
constrained optimization in metal masks,” in MICCAI, 2004, vol. 3217, pp.
1044–1045.

[71] L. K. Leong, R. L. Kruger, and M. K. O’Connor, “A comparison of the uni-
formity requirements for SPECT image reconstruction using FBP and OSEM
techniques,” J. Nucl. Med. Technol., vol. 29, pp. 79–83, 2001.

[72] P. Razifar, M. Sandstrom, H. Schnieder, B. Langstrom, E. Maripuu, E. Bengts-
son, and M. Bergstrom, “Noise correlation in PET, CT, SPECT and PET/CT
data evaluated using autocorrelation function: a phantom study on data, re-
constructed using FBP and OSEM,” BMC Med. Imaging, vol. 5, p. 5, 2005.

[73] F. H. van Velden, R. W. Kloet, B. N. van Berckel, S. P. Wolfensberger, A. A.
Lammertsma, and R. Boellaard, “Comparison of 3D-OP-OSEM and 3D-FBP
reconstruction algorithms for High-Resolution Research Tomograph studies:
effects of randoms estimation methods,” Phys. Med. Biol., vol. 53, pp. 3217–
30, 2008.

[74] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” pp. 281–97, 1967.

[75] E. Krestyannikov, J. Tohka, and U. Ruotsalainen, “Segmentation of dynamic
emission tomography data in projection space,” in CVAMIA, 2006, vol. 4241,
pp. 108–119.

[76] C. R. Vogel, Computational methods for inverse problems. Society for Indus-
trial and Applied Mathematics, 2002.

[77] C. Chung, B. Driscoll, A. Gorjizadeh, W. Foltz, S. Lee, C. Menard, and
C. Coolens, “Early detection of tumor response using 4d dce-ct and dce-mri
in patients treated with radiosurgery for brain metastases,” Pract. Radiat.
Oncol., vol. 3, pp. S17–8, 2013.

107



Bibliography

[78] C. A. Cuenod and D. Balvay, “Perfusion and vascular permeability: basic con-
cepts and measurement in DCE-CT and DCE-MRI,” Diagn. Interv. Imaging.,
vol. 94, pp. 1187–204, 2013.

[79] H. Wang, J. Zhang, J. Tian, B. Qu, T. Li, Y. Chen, J. Liu, and S. Wang,
“Using dual-tracer PET to predict the biologic behavior of human colorectal
cancer,” J. Nucl. Med., vol. 50, pp. 1857–64, 2009.

[80] J.-W. Park, J. H. Kim, S. K. Kim, K. W. Kang, K. W. Park, J.-I. Choi, W. J.
Lee, C.-M. Kim, and B. H. Nam, “A prospective evaluation of 18F-FDG and
11C-acetate PET/CT for detection of primary and metastatic hepatocellular
carcinoma.” J. Nucl. Med., vol. 49, pp. 1912–21, 2008.

[81] N. Tomura, Y. Ito, H. Matsuoka, T. Saginoya, S. I. Numazawa, Y. Mizuno,
and K. Watanabe, “PET findings of intramedullary tumors of the spinal cord
using [18F] FDG and [11C] methionine,” American Journal of Neuroradiology,
2012.

[82] M. Shiiba, K. Ishihara, G. Kimura, T. Kuwako, H. Yoshihara, H. Sato, Y. Kon-
do, S. Tsuchiya, and S. Kumita, “Evaluation of primary prostate cancer us-
ing 11C-methionine-PET/CT and 18F-FDG-PET/CT,” Annals of Nuclear
Medicine, vol. 26, pp. 138–45, 2012.

[83] J. Tian, X. Yang, L. Yu, P. Chen, J. Xin, L. Ma, H. Feng, Y. Tan, Z. Zhao,
and W. Wu, “A multicenter clinical trial on the diagnostic value of dual-
tracer PET/CT in pulmonary lesions using 3’-deoxy-3’-18F-fluorothymidine
and 18F-FDG,” J. Nucl. Med., vol. 49, pp. 186–94, 2008.

[84] X. Cheng, N. Navab, S. Ziegler, and K. Shi, “Direct parametric image re-
construction of rapid multi-tracer PET,” in Medical Image Computing and
Computer-Assisted Intervention MICCAI 2013. Springer Berlin Heidelberg,
2013, vol. 8151, pp. 155–162.

[85] X. Cheng, Z. Li, Z. Liu, N. Navab, S.-C. Huang, U. Keller, S. I. Ziegler, and
K. Shi, “Direct parametric image reconstruction in reduced parameter space
for rapid multi-tracer PET imaging,” IEEE Trans. Med. Imag., under revision,
2014.

[86] R. A. Koeppe, D. M. Raffel, S. E. Snyder, E. P. Ficaro, M. R. Kilbourn, and
D. E. Kuhl, “Dual-[11C]tracer single-acquisition positron emission tomography
studies.” J. Cerebral Blood Flow Metabol., vol. 21, pp. 1480–92, 2001.

[87] D. Kadrmas and T. Rust, “Feasibility of rapid multitracer PET tumor imag-
ing,” IEEE Trans. Nucl. Sci., vol. 52, pp. 1341 – 1347, 2005.

108



Bibliography

[88] D. J. Kadrmas, T. C. Rust, and J. M. Hoffman, “Single-scan dual-tracer
FLT+FDG PET tumor characterization,” Phys. Med. Biol., vol. 58, pp. 429–
49, 2013.

[89] S. C. Huang, R. E. Carson, E. J. Hoffman, D. E. Kuhl, and M. E. Phelp-
s, “An investigation of a double-tracer technique for positron computerized
tomography,” J. Nucl. Med., vol. 23, pp. 816–22, 1982.

[90] T. C. Rust and D. J. Kadrmas, “Rapid dual-tracer PTSM+ATSM PET imag-
ing of tumour blood flow and hypoxia: a simulation study.” Phys. Med. Biol.,
vol. 51, pp. 61–75, 2006.

[91] A. D. Joshi, R. A. Koeppe, J. A. Fessler, and M. R. Kilbourn, “Signal sepa-
ration and parameter estimation in noninvasive dual-tracer PET scans using
reference-region approaches,” J. Cerebral Blood Flow Metabol., vol. 29, pp.
1346 – 1357, 2006.

[92] G. E. Fakhri, I. A. Sitek, and B. Guérin, “Simultaneous dual tracer PET using
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