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Abstract

Geospatial data modelling plays an important role in the geospatial domain, not least in the context of
current regional, national and international spatial data infrastructure (SDI) initiatives, where more
and more conceptual models are being developed using formal modelling languages. In particular
the Unified Modeling Language (UML) is to mention here, which in the geospatial domain is not
only popular in research, but also in professional practice and in standardisation. Besides conceptual
modelling, the integration of geospatial data is another important task. Especially within the current
SDI initiatives the necessity exists to integrate geospatial data based on differing conceptual models
into a harmonised data set conforming to one common conceptual model. Provided that the conceptual
models are defined using UML, a model-driven transformation approach for integrating the geospatial
data can be applied which follows the Model Driven Architecture (MDA) framework.

However, when integrating geospatial data based on different conceptual models, difficulties can
arise from the way these models are currently defined within the geospatial domain. Often, the focus
is on an informal and graphical representation of the relevant concepts, to the effect that these models
contain errors which hinder their successful application in the model-driven transformation approach.
Furthermore, the models often adhere to a variety of UML profiles, some of these UML profiles
exhibiting deficits which reduce the quality of the models and, thus, also their machine-interpretability.
This includes, in particular, UML profiles defined as part of the ISO 191xx series of geographic
information standards. For this reason, model-driven transformation of geospatial data is still rarely
applied today, in spite of the well-known advantages this approach brings about in general.

The aim of this thesis is to address exactly the problem of the differing and deficient UML profiles
and to provide solutions for how to cope with the variety of UML profiles existing in the geospatial
domain and with the deficits they exhibit to allow for the creation of high-quality models and the
successful integration of geospatial data using the model-driven transformation approach. Starting
with a coherent introduction to the most fundamental terms and concepts related to geospatial data
modelling and model-driven transformation which also takes into account relevant standards from
the standards organisations ISO, OGC and OMG, the state of the art in modelling and model-driven
transformation in academia as well as in professional practice is discussed and predominant problems
encountered from the way conceptual models are currently defined and used are illustrated.

Afterwards, a selection of UML profiles currently in use in the geospatial domain is examined. It is
discussed, why these UML profiles do not conform to the UML profile definition of the OMG and
proposals for how to define these UML profiles in a correct way are provided. Based on these findings,
solutions are presented for how to cope with the variety of UML profiles. This includes a generic
concept for developing UML profiles in a structured and reusable way, the introduction of a Core
UML profile as a universally applicable building block in modelling and model-driven transformation
of geospatial data as well as the development of a multi-level information integration framework
which allows for transforming between UML models based on differing and deficient UML profiles.
Finally, the feasibility and applicability of the Core UML profile and of the multi-level information
integration framework is demonstrated by applying them to the transformation of geospatial data from
Austria, Germany and Switzerland to the European INSPIRE data specifications.





Zusammenfassung

Die Modellierung von Geodaten spielt im Geoinformationsbereich eine große Rolle, nicht zuletzt
im Kontext der gegenwärtigen Geodateninfrastruktur(GDI)-Initiativen, in denen mehr und mehr
konzeptuelle Modelle unter Verwendung konzeptueller Modellierungssprachen entwickelt werden.
Insbesondere die Unified Modeling Language (UML) ist hier zu nennen, welche im Geoinform-
ationsbereich nicht nur in der Forschung, sondern auch in der professionellen Praxis und in der
Standardisierung populär ist. Darüber hinaus ist auch die Integration von Geodaten von Bedeutung.
Insbesondere im Rahmen der GDI-Initiativen besteht die Notwendigkeit, Geodaten, die auf unter-
schiedlichen konzeptuellen Modellen basieren, in einen harmonisierten, zu einem Modell konformen
Datensatz zu integrieren. Unter der Voraussetzung, dass die konzeptuellen Modelle mit UML model-
liert sind, kann ein auf dem Model Driven Architecture (MDA) Framework basierender Ansatz für die
Geodatenintegration angewandt werden.

Sind jedoch Geodaten zu integrieren, die auf verschiedenen konzeptuellen Modellen basieren,
so können sich aus der Art und Weise, wie diese Modelle derzeit definiert sind, Schwierigkeiten
ergeben. Oftmals liegt der Fokus auf einer informellen und graphischen Darstellung der relevanten
Konzepte, so dass diese Modelle Fehler enthalten, die ihre erfolgreiche Anwendung im modellbasier-
ten Transformationsansatz behindern. Des Weiteren verwenden die Modelle oft UML-Profile, welche
Defizite enthalten können, die die Qualität und die Maschineninterpretierbarkeit der Modelle re-
duzieren. Hierzu zählen insbesondere auch UML-Profile, die im Rahmen der ISO-191xx-Normenserie
definiert wurden. Aus diesem Grund wird die modellbasierte Transformation von Geodaten, trotz der
wohlbekannten Vorteile dieses Ansatzes, bis heute nur selten eingesetzt.

Ziel dieser Arbeit ist es, genau dieses Problem der unterschiedlichen und fehlerhalten UML-Profile
zu adressieren und Lösungen aufzuzeigen, wie sowohl mit der Vielzahl an UML-Profilen als auch mit
den Defiziten, die diese aufweisen, umgegangen werden kann, um die Erstellung von Modellen hoher
Qualität und die erfolgreiche modellbasierte Integration von Geodaten zu gewährleisten. Ausgehend
von einer Einführung in die fundamentalen Begriffe und Konzepte der Geodatenmodellierung und
modellbasierten Transformation, die auch relevante de-jure und de-facto Normen der Standardisierung-
sorganisationen ISO, OGC und OMG berücksichtigt, werden der Stand der Technik in Wissenschaft
und professioneller Praxis diskutiert und vorrangig anzutreffende Probleme bezüglich der derzeitigen
Erstellung und Verwendung von konzeptuellen Modellen aufgezeigt.

Anschließend wird eine Auswahl an derzeit im Geoinformationsbereich verwendeten UML-Profilen
untersucht. Es wird diskutiert, warum diese UML-Profile nicht konform zur UML-Profildefinition
der OMG sind und es werden Vorschläge unterbreitet, wie diese UML-Profile korrekt definiert
werden können. Basierend auf diesen Erkenntnissen werden Lösungen präsentiert, wie mit den UML-
Profilen umgegangen werden kann. Dies beinhaltet ein generisches Konzept für die Entwicklung von
UML-Profilen in strukturierter und wiederverwendbarer Weise, die Einführung eines Kern-UML-
Profils als universell einsetzbarer Grundbaustein in Modellierung und modellbasierter Transformation
von Geodaten sowie die Entwicklung eines mehrstufigen Frameworks zur Informationsintegration,
das die Transformation zwischen UML-Modellen, die auf verschiedenen und fehlerhaften UML-
Profilen basieren, erlaubt. Abschließend wird die Machbarkeit und die Anwendbarkeit des Kern-UML-
Profils und des mehrstufigen Frameworks anhand der Transformation von Geodaten aus Österreich,
Deutschland und der Schweiz in die Europäischen INSPIRE-Datenspezifikationen demonstriert.
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1 Introduction

1.1 Motivation and problem statement

Conceptual modelling allows for specifying in a formal and platform-independent way the content and
the structure of those objects from the real world which are in the context of a certain application to be
represented by geospatial data. One possibility for defining conceptual models is the use of specialised
modelling languages. In the geospatial domain, such languages are being researched in particular in
the field of geographic database modelling since the early 1990s (Lisboa-Filho, Sampaio et al. 2010).
Another possibility provide general-purpose modelling languages which, as the name implies, can
be used for many different kinds of modelling tasks. One such modelling language is the Unified
Modeling Language (UML) (OMG 2011c) which in the geospatial domain is not only popular in
various research areas, but also in professional practice as well as in standardisation. The international
Open Geospatial Consortium (OGC) standard City Geography Markup Language (CityGML) (Gröger
et al. 2012), for instance, specifies an application-independent information model for semantic 3D city
and landscape models using UML. Also in the context of current regional, national and international
spatial data infrastructure (SDI) initiatives such as the Infrastructure for Spatial Information in the
European Community (INSPIRE) (European Parliament and Council 2007), data models are being
developed using UML.

Besides conceptual modelling, the integration of geospatial data from heterogeneous sources is
another important task in the geospatial domain. Especially within the current SDI initiatives the
necessity exists to integrate geospatial data based on differing conceptual models into a harmonized
data set conforming to one common conceptual model. In this case, the geospatial data need to
be transformed such that their structures conform to the desired target model. The integration of
geospatial data involves the definition of transformations either at the data format (schema) level or at
the conceptual schema level, which is also referred to as model-driven transformation of geospatial
data, followed by an execution of these transformation definitions on the geospatial data itself.
Defining transformations at the conceptual schema level brings about several advantages such as
format-independence and reuse of transformation definitions and is, above that, a well-established
approach in the Model Driven Architecture (MDA) framework specified by the Object Management
Group (OMG).

However, when applying MDA to integrate geospatial data based on different conceptual models,
difficulties can arise from the way these models are currently defined within the geospatial domain.
Often, when UML is used for developing conceptual models, the focus is on an informal and graphical
representation of those concepts the geospatial data are to comprise, to the effect that these models
contain errors which are irrelevant when employing them for communication purposes only, but which
become relevant, when using the same models for controlling run-time systems, as applies to the
model-driven transformation of geospatial data. This aspect relates to the notion of model quality;
(Henderson-Sellers 2011) states that ‘[t]he quality of conceptual models, especially those that are
standardized metamodels, is an important factor in ensuring successful use of contemporary design
and development practices in industry worldwide’. He lists several examples of how the quality of
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models can be affected, one of them being the misuse of UML stereotypes. UML stereotypes are a
construct provided by UML to be able to adapt UML models to specific platforms or domains. UML
stereotypes are always defined as part of a specific UML profile.

Such UML profiles are also in use in the geospatial domain to adapt UML models to specific
concepts prevalent in geospatial data modelling. However, some of these UML profiles contain
stereotypes which exhibit various deficits and which, thus, reduce the quality of those UML models to
which these UML profiles are applied. This includes, in particular, UML profiles which are defined
as part of the ISO 191xx series of geographic information standards; these standards take a leading
position in the modelling and exchange of geospatial data and, therefore, cannot be disregarded. Above
that, individual communities within the geospatial domain often are in need of additional concepts
which they define on top of the existing UML profiles, with the result that a variety of UML profiles
exists, each of them not only covering partially diverging concepts, but also exhibiting quality deficits
of its own.

The existence of this variety of UML profiles, together with the quality deficits they exhibit, affects,
in addition, the successful execution of the model-driven transformation of geospatial data; the
discrepancy in visual and machine-interpretable representation of the UML models, mentioned above,
intensifies this effect. For this reason, model-driven transformation of geospatial data is still rarely
applied today, in spite of the well-known advantages this approach brings about in general. While
the latter problem can be solved by exercising more care when defining UML models, the problem
of the differing and deficient UML profiles persists. The aim of this thesis is to address exactly this
remaining problem and to provide solutions for how to cope with the variety of existing UML profiles
and the deficits they exhibit to allow for creating UML models of high quality and for successfully
executing the model-driven transformation of geospatial data.

The results of this thesis are based on a number of research projects, which were carried out at the
Chair of Geoinformatics of the Technische Universität München (TUM) and which the author of this
thesis was involved in.
• From 2006 to 2011, the research project Model-driven approach for accessing distributed spatial

data using Web Services – demonstrated for cross-border GIS applications (mdWFS) was conducted
by TUM in cooperation with the Swiss Federal Institute of Technology Zurich (ETH Zurich) on
behalf of the federal surveying agencies of Germany (BKG) and Switzerland (swisstopo), the author
having participated from 2008 on. The mdWFS project aimed at developing an approach for model-
driven transformation of geospatial data, embedding this approach in a web-based environment
and demonstrating the feasibility of the approach (cf. section 4.3.3, page 67, for more details on
this project). The outcomes of this project have been very promising, however, the transformation
was only possible when all source and target models were based on the same modelling language,
which resulted in a remodelling of all involved UML models in the form of INTERLIS models.

• From 2010 to 2012, the research project Prototypical transformation of spatial data to INSPIRE in
the cross-border Lake Constance region was carried out by TUM in cooperation with the company
AED-SICAD AG on behalf of the state and federal surveying agencies of Baden-Wuerttemberg
(LGL BW), Bavaria (LDBV), Austria (BEV) and Switzerland (swisstopo). The project consisted
of three parts. The first part focused on a comparative survey of how modelling and model-driven
transformation of geospatial data are currently applied in the Lake Constance region in the context
of INSPIRE. The survey resulted in the finding that not all UML profiles in use are compliant
to the UML specification and in suggestions of how to cope with this finding and the existing
variety of UML profiles in the context of model-driven transformation of geospatial data. The
second part consisted in a prototypical transformation of geospatial data to INSPIRE using existing
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commercial transformation tools, whereas the third part implemented a model-driven transformation
of geospatial data taking into account the outcomes from part one (cf. section 7.1, page 139, for
more details on this project). The first and the third part contribute substantially to the contents of
this thesis.

• In 2010/2011, the ETH Zurich, on behalf of swisstopo, developed transformations from several
Swiss data models to the INSPIRE and EuroGeoNames models based on the model-driven trans-
formation approach from the mdWFS project, the author contributing to this project with support
regarding the software tools developed in the mdWFS project.

• In 2014/2015, the research project Transformation of 3D City Models to INSPIRE was conducted
by TUM, on behalf of LDBV, which aimed, on the one hand, at analysing whether the mapping
tables provided by the Working Committee of the Surveying Authorities of the States of the Federal
Republic of Germany (AdV) allow for a complete and correct transformation of the Bavarian
3D city model to INSPIRE and, on the other hand, at demonstrating the practical feasibility of the
transformation.

• Since 2014, the Chair of Geoinformatics participates in the development of the international OGC
standard CityGML version 3.0, the author contributing, in particular, to the further development of
the CityGML UML model.

1.2 Research questions and methodology of research

Based on the above presented problem statement the following research questions can be derived:
1. To which extent do the ISO-based UML profiles currently in use in the geospatial domain conform

to the UML profile definition of the OMG and in which way do they need to be improved when
they exhibit deficits?

2. How must a formally correct and universally applicable UML profile for geospatial data modelling
be designed and which core concepts must it contain?

3. How can the variety of UML profiles existing in the geospatial domain be structured and designed
in a modular way?

4. Is it possible to apply the approach of model-driven transformation of geospatial data in spite of
the variety of UML profiles in use, in particular, when these UML profiles do not conform to the
UML profile definition of the OMG?

To answer these research questions, the following methodological approach is applied, separating
the research work into three parts. The first part is empirically oriented. This part focuses on the
examination of existing, in particular ISO-related UML profiles, identifies aspects which affect the
quality of these UML profiles and provides proposals for how to define these UML profiles in a
formally correct way.

The second part is formally oriented. Based on the findings from part one, this part (1) presents a
generic concept for developing UML profiles in a structured and reusable way, which also accepts
the variety of UML profiles existing in the geospatial domain, (2) introduces a new UML profile,
called Core UML profile, as a universally applicable, fundamental building block for geospatial
data modelling and model-driven transformation of geospatial data and (3) presents a multi-level
information integration framework which allows for transforming between UML models based on
different, possibly incorrect UML profiles.

The third part is again empirically oriented. This part demonstrates the feasibility of the multi-level
information integration framework developed in part two, by transforming geospatial base data from
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Austria, Germany and Switzerland to INSPIRE. This transformation incorporates mappings which are
defined at the metamodel layer between the UML profiles applied by the UML models from Germany
and INSPIRE and the Core UML profile.

The aim of this work is to make the results of this thesis applicable not only to research, but also to
professional practice. Therefore, the focus of this work will be on reusing – where possible – concepts
from those ISO, OGC and OMG standards which are relevant to geospatial data modelling as well as
to model-driven transformation of geospatial data.

1.3 Structure of the thesis

Chapter 2 establishes a coherent terminological basis by introducing the most fundamental terms and
concepts related to geospatial data modelling, taking into account relevant standards from ISO, OGC
and OMG.

Chapter 3 provides the same fundamental introduction, this time, however, related to the model-
driven transformation of geospatial data.

Chapter 4 discusses the state of the art in modelling and model-driven transformation of geospatial
data in academia as well as in professional practice and illustrates predominant problems encountered
by the author from the way conceptual models are currently defined and used in the geospatial domain.

Chapter 5 examines a selection of partially ISO-based UML profiles currently in use in the
geospatial domain. This chapter discusses in detail why the UML profiles and the individual concepts
defined therein do not conform to the UML profile definition of the OMG and provides proposals for
how to define these UML profiles in a correct way.

Chapter 6 presents solutions for how to cope with the findings from the UML profile analysis.
This includes a generic concept for developing UML profiles in a structured and reusable way, the
introduction of a Core UML profile as a universally applicable building block in modelling and
model-driven transformation of geospatial data as well as the development of a multi-level information
integration framework which allows for transforming between UML models based on differing and
deficient UML profiles.

Chapter 7 demonstrates the feasibility and applicability of the Core UML profile and of the general
framework for multi-level information integration by applying it to the transformation of geospatial
data from Austria, Germany and Switzerland to INSPIRE.

Chapter 8 summarises the results achieved within this work, outlines the contributions to scientific
research as well as to professional practice and provides an outlook on future research topics evolving
from the outcomes of this thesis.



2 Fundamentals of geospatial data modelling

In the context of geospatial data modelling, a wide range of terms and concepts is encountered in
scientific literature and daily practice. To a large extent these terms and concepts have their origin in
computer science, in particular in the disciplines of Databases and Software Engineering. In general,
geospatial data modelling conforms to these terms and concepts; however, sometimes individual
terms and concepts were adapted or extended to meet specific requirements inherent to geographic
information (Egenhofer 1993) – resulting in meanings which differ from their meanings in the
disciplines mentioned above. Furthermore, the same terms and concepts sometimes are used based
on a different understanding, leading to imprecise and ambiguous descriptions of geospatial data
modelling.

The aim of this chapter is to establish a common terminological basis by introducing those terms
and concepts which are, on the one hand, fundamental to geospatial data modelling in general, but,
on the other hand, also relevant for the explanations and analyses in the subsequent chapters of this
thesis. Since the domain of geographic information intensely makes use of standards from standards
organisations, such as ISO, OGC, OMG or W3C, the definitions and explanations provided in this
chapter take – whenever appropriate – advantage of exactly those standards relevant to geospatial
data modelling. Geospatial data modelling, as covered in this thesis, solely refers to object-based
modelling, field-based modelling is not considered.

The chapter starts with a general introduction to the terms model and modelling language, followed
by a detailed description of basic terms related to the concepts data model and metamodel. The chapter
concludes with the modelling language Unified Modeling Language (UML), focusing on those UML
concepts which are essential to the further understanding of this thesis.

2.1 What is a model?

Depending on the area of application models are to be used in, different concepts of the term model
apply. An architectural model, for instance, denotes a model which represents the design of a building
to scale, whereas mathematical models describe real-world phenomena in a mathematical way and
are, for example, used for predicting a possible climate change, simulating the behaviour of fluids or
computing the statics of a building. In the context of geospatial data modelling, however, the concept
of model as used in computer science is of particular interest. In computer science, models usually are
linguistic representations in the form of written or spoken text, pictures or drawings. They refer to the
object which is to be represented and, thus, form an abstraction of the modelled object (Hesse and
Mayr 2008). The application of models in computer science is by no means a new development, in
the database domain, for example, models are in use since the mid-1970s.

2.1.1 Characteristics of models

In 1973 the German philosopher Herbert Stachowiak defined in his book General Model Theory three
fundamental characteristics which distinguish every model (Stachowiak 1973):
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1. Mapping characteristic: Models are representations, or mappings, of either a natural or an artificial
original. Originals can be anything: objects which exist in the real world, but also non-material
things such as imaginations, ideas, concepts or symbols. Furthermore, the original can also be a
model itself. Examples for originals within the geospatial domain are individual physical entities
such as buildings, cadastral parcels and rivers, but also entire infrastructures such as district heating
networks, road networks or also the topography of the earth’s surface. The relationship between
the original and the model can be complex and diverse. The relationship is not naturally given,
but is always influenced by the perception of the particular modeller or model user and, thus,
is assigned. Models can also be modified gradually, forming model chains in this way (Hesse
and Mayr 2008). This, for instance, holds for the Model Driven Architecture (MDA) approach
(cf. section 3.1.2, page 29), where software development consists of a number of subsequent
model transformations, in this way generating executable code from platform-independent models.
Depending on the intended purpose of the model, its cultural background and environment, and its
degree of abstraction, each original can be represented by several models; in the same way, each
model can be related to several originals. Thus, original and model are related to each other by
m : n mappings (Hesse and Mayr 2008).

2. Reduction characteristic: A model usually does not capture all attributes of the original it represents,
but only those attributes which appear to be relevant to the modeller or the model user. Thus,
models often are simplifications of the real world which have been defined for a certain area of
application. Information which is not considered essential can either be simplified, grouped or
omitted completely to make the model better comprehensible (Devillers and Jeansoulin 2006) or
to adapt it to a certain area of application. However, attributes cannot only be omitted, a model can
also be complemented by additional attributes which do not exist in the original (Hesse and Mayr
2008).

3. Pragmatic characteristic: This characteristic describes the fact that models are not unambiguously
assigned to their originals per se, they rather replace the original under certain conditions and with
respect to certain questions. Models are created for certain users and for a certain purpose and
they fulfil their task within a specific period of time; thus, they are always bound to a certain task,
culture and environment.

These characteristics also hold for geospatial data models. Although, for instance, the INSPIRE data
specifications and the German AFIS-ALKIS-ATKIS (AAA) reference model describe overlapping
concepts of the real world, they focus on different areas of application – the INSPIRE data spe-
cifications focus on environmental applications, whereas the emphasis of the AAA reference model
is on geotopography and cadastre –, which also means that they exhibit partially non-overlapping
information.

2.1.2 The universe of discourse, conceptual models and conceptual
schemas

A fundamental concept underlying any model is the so-called universe of discourse (UoD). In general,
the UoD comprises all objects being discussed in a certain discourse. The concept of the UoD is
widely used in philosophy, semantics, logics and also in computer science. The concept was described
for the first time in 1847 by the English mathematician and logician Augustus De Morgan in his work
Formal logic: or, The Calculus of Inference, Necessary and Probable by stating that ‘the whole idea
under consideration is the universe’ (De Morgan 1847). The term universe of discourse itself, however,
was introduced in 1854 by the English mathematician, philosopher and logician George Boole in his
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work An Investigation of the Laws of Thought: ‘In every discourse, whether of the mind conversing
with its own thoughts, or of the individual in his intercourse with others, there is an assumed or
expressed limit within which the subjects of its operation are confined. [...] Now, whatever may be the
extent of the field within which all the objects of our discourse are found, that field may properly be
termed the universe of discourse. Furthermore, this universe of discourse is in the strictest sense the
ultimate subject of the discourse.’ (Boole 1854)

In geospatial data modelling, the term UoD is used as well. The standard ISO 19101-1:2014
Geographic information — Reference model — Part 1: Fundamentals defines the UoD as a ‘view
of the real or hypothetical world that includes everything of interest’ (ISO 2014); it comprises all
objects ‘that can be associated with locations on or near the surface of the Earth’ (Roswell 2012).
This view of the world is strongly related to a certain area of application, which means that the UoD
only covers those geospatial objects related to a specific area of application. The UoD is always
an imaginary model and never put down in writing. When the UoD is written down informally, the
standard ISO 19101-1 speaks of a conceptual model, which is a ‘model that defines concepts of a
universe of discourse [emphasis omitted]’ (ISO 2014) , whereas a conceptual schema represents a
‘formal description of a conceptual model [emphasis omitted]’ (ISO 2014) and, thus, a model which is
formally written down. The conceptual model is obtained by abstracting and simplifying the UoD;
this means that information which is not considered essential for a certain area of application is either
simplified, grouped or omitted completely (Devillers and Jeansoulin 2006). Figure 2.1 illustrates this
relationship. The UoD is defined as a conceptual model based on a certain conceptual formalism
which, in turn, provides the basis for one or several conceptual modelling languages (cf. section 2.2,
page 9); these languages can then be used to represent the conceptual model formally as conceptual
schema. The term conceptual formalism can be considered synonymous with the term modelling
paradigm (cf. section 2.2.2, page 10) and denotes a certain concept which forms the basis of one or
several conceptual modelling languages.

The standard ISO 19101-1, furthermore, lists several principles important for conceptual modelling,
amongst others a conceptualisation principle which states ‘that a conceptual schema should contain
only those structural and behavioural aspects that are relevant to the universe of discourse. All aspects
of physical external or internal data representation should be excluded. This requires the production
of a conceptual schema, which is independent with respect to physical implementation technologies
and platforms’ (ISO 2014). According to this principle, conceptual schemas comprise only those
parts of the real world which are important to and exist in the UoD. In addition, conceptual schemas
are not allowed to contain any information regarding their physical implementation; based on this
requirement, conceptual schemas correspond to platform-independent models which are prevalent in
the Model Driven Architecture (MDA) framework (cf. section 3.1.2, page 29).

The term conceptual schema originates from the database domain and was already mentioned
in 1975 in a publication of the Standards Planning and Requirements Committee (SPARC) of the
American National Standards Institute (ANSI) in which a three schema approach for database
management systems (DBMS) is presented. Until then, a DBMS consisted of a two schema structure,
an external schema which represents the data as seen by the data user and an internal schema which
represents the data as stored physically in the database. The paper introduces a third schema, namely
the conceptual schema which ‘represents the enterprise’s view of the structure it is attempting to
model in the data base. This view is that which is informally invoked when there is a dispute between
the user and the programmer over exactly what was meant by program specifications’ (Steel Jr. 1975).
Furthermore, according to this paper ‘the conceptual schema is a real, tangible item, made most
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Figure 2.1: From the real world to the conceptual schema (ISO 2014)

explicit in machine readable form, couched in some well defined and potentially standardizable
language’ (Steel Jr. 1975), which directs us to the topic of modelling languages.

In this thesis the terms conceptual model, formal model or also simply model will be used equiva-
lently to the term conceptual schema. On the one hand, the term conceptual model as defined by the
standard ISO 19101-1 is of limited significance in the context of this thesis; on the other hand, the
term model is the established term used in the computer science domain in general and in the context
of UML and model transformation in particular.

2.1.3 Machine-interpretability of models

In computer science, the term machine-interpretable generally means that a text, such as a computer
program, an XML document or a model, cannot only be read, but also be executed by a computer or by
a software tool. The text has to be structured such precisely using a formal language (cf. section 2.2.1,
page 9) that its contents and semantics can completely be understood, interpreted and processed by the
computer. Neither contradictions nor leeway in decision-making are allowed to exist for the computer.
Machine-interpretability does not simply state whether or to which extent a text is machine-readable.
In contrast to being machine-interpretable, a text which is machine-readable can, in fact, be read by
a computer, but the text does not guarantee that its contents and semantics can, in addition, also be
interpreted by the computer (Kutzner and Eisenhut 2010).

In the context of this thesis, the term machine-interpretable is used to denote a specific characteristic
of models which makes them usable for software development and for controlling run-time systems,
as will be explained in more detail in section 4.1, page 53.
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2.2 Modelling languages – the medium for describing models

Models can be differentiated into physical models (e. g. architectural, three-dimensional models made
of cardboard), linguistic models (e. g. models defined using a modelling language) and mental models
(e. g. models which only exist in thought). As already mentioned above, in computer science, linguistic
models in the form of written or spoken text, pictures or drawings are prevailing (Hesse and Mayr
2008). To be able to define such a linguistic model a suitable modelling language is required.

2.2.1 Characteristics of modelling languages

In general, languages can be categorised into formal and informal languages. Formal languages are
machine-readable and above that machine-interpretable and they exhibit precise rules; programming
languages as well as modelling languages belong to this category. In contrast, natural languages such
as English or German belong to the informal languages. Both, formal and informal languages, can
exist in visual as well as in textual form. Among the formal, visual languages is the modelling language
Unified Modeling Language (UML) (OMG 2011c), whereas programming languages, such as Java or
C++, represent formal, textual languages. Furthermore, also the Extensible Markup Language (XML),
which is used for annotating and structuring text, is a formal, textual language, and, thus, also the
Geography Markup Language (GML) (ISO 2007), since it is based on XML. Examples for informal,
visual languages are pictographic writing systems in use in ancient Egypt and Mesopotamia, whereas
nowadays informal, textual languages such as the English language prevail. Each of these four types
of languages can be employed for defining models. However, with respect to the definitions given
by the standard ISO 19101-1 (cf. section 2.1.2, page 6, and figure 2.1, page 8) informal languages
are suited in particular for defining conceptual models which represent the UoD in an informal way,
whereas formal languages are preferentially to be used in defining conceptual schemas, since they
describe the UoD in a formal way.

Furthermore, every formal and informal language consists of syntax and semantics. In linguistics,
the syntax defines the rules according to which the elements of a natural language (words or symbols)
have to be structured to form sentences in a correct way. Similarly, this also holds for formal languages;
the syntax of a programming language, for instance, defines how the elements of the language have
to be combined to form valid expressions within computer programs. The meaning of sentences,
computer programs or models formed in this process is not important, since syntactical rules can be
checked without requiring an understanding of the content. The syntax of formal languages can be
distinguished further into an abstract syntax and a concrete syntax. The abstract syntax defines how the
individual expressions of the formal language are constructed in general, whereas the concrete syntax
defines textual or graphical notation elements for these expressions which enable the programmer
to write computer programs using those expressions compliant to the abstract syntax. The abstract
syntax of a formal language is often specified in the form of a metamodel (cf. section 2.3.1, page 12);
the UML metamodel, for instance, specifies the abstract syntax of the modelling language UML
(cf. section 2.4, page 18). The meaning of sentences, in contrast, is defined by the semantics of the
corresponding natural language; usually no meaning is assigned to syntactically wrong sentences.
Attention has to be paid to the fact that a word or a sentence can exhibit different meanings. The word
bank, for instance, can denote on the one hand a financial institution where to deposit money and on
the other the shore of a river; the correct meaning usually is deducible from the context. Similarly,
a meaning is assigned to computer programs and models by the semantics of the corresponding
programming language or modelling language, respectively.
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This is to be illustrated using the example of the modelling language UML (Hitz et al. 2005): The
abstract syntax of UML is defined by the UML metamodel (cf. section 2.3.1, page 12). The UML
metamodel determines which syntactical elements exist and in which way they are allowed to be
combined to produce well-formed UML models. The concrete syntax of UML, in turn, specifies
concrete notation elements for the syntactical elements of the UML metamodel which can be used by
the modeller to develop UML models. The semantics, finally, assigns a meaning to the syntactical
elements and their concrete notation elements. The concrete syntax and the semantics of UML are
defined in textual form and illustrated by examples. The abstract syntax of UML specifies, for instance,
the syntactical elements Class and Association and determines that zero, one or several Associations
can be assigned to a Class. The concrete syntax of UML, in turn, defines that a Class is to be
represented graphically by a rectangle and an Association by a line. The meaning of the concrete
symbols, here rectangle and line, however, is defined by the semantics.

2.2.2 Modelling paradigms

Every modelling language exhibits a certain modelling paradigm. The decision of which modelling
language to use for a certain modelling task, thus, not only depends on the area of its application, but
also always on the modelling paradigm underlying a language. The following modelling paradigms are
widely-used in the context of geospatial data modelling; they are presented very briefly by highlighting
their key concepts and key differences (Kutzner and Eisenhut 2010):
• Relational paradigm: This paradigm was introduced by Edgar F. Codd as early as in 1970 and is

still in use today in the context of relational databases (Codd 1970). Core of the relational paradigm
is the relation which stores data. A relation is a table which is described in mathematical form.
Each table is identified by a table name and consists of columns, referred to as attributes, and rows,
the so-called tuples. Each attribute defines an attribute name and the type of values the attribute is
allowed to take. Each tuple consists of a set of attribute values,i. e. of as many attribute values as
the table contains columns. A tuple is also referred to as a data set. A relational database in general
consists of one or more tables, each table being able to store an infinite number of related data sets.

• Entity-relationship paradigm (ER paradigm): Only a few years later, namely in 1976, Peter Chen
presented the entity-relationship model (ER model) (Chen 1976). The core concepts of the ER
model are the entity which is equivalent to a relation in the relational paradigm and the relationship
which models connections between entities. The ER model is primarily used for defining conceptual
schemas which are then implemented as relational databases. The ER paradigm produces static
schemas, the dynamic behaviour of the entities and their relationships cannot not represented.

• Object-oriented paradigm (OO paradigm): In the early 1990s, the OO paradigm had its break-
through, focusing on business concepts and their dynamic interaction. The OO paradigm represents
a fundamental innovation in programming and data modelling. The focus of the OO paradigm is
on the concepts class and object, classes being used to define entities, whereas objects represent
instances of entities. Relationships between classes are referred to as associations. A class cannot
only define attributes, but also methods which allow for modelling the dynamic aspects of software
or data. The attribute values can consist of complex and user-defined data types which is especially
important in the context of geospatial data modelling, e. g. for modelling geometries. Object identity,
inheritance, polymorphism and data encapsulation are further important concepts which were
introduced by the OO paradigm.

• Object-relational paradigm (OR paradigm): This paradigm can mainly be found in the database
domain within so-called object-relational databases (Kemper and Eickler 2013). The OR paradigm
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combines, as the name already indicates, concepts from the ER paradigm with concepts from the
OO paradigm; in particular, it extends the ER paradigm by the OO concepts inheritance, complex
and user-defined data types and object identity.

• XML paradigm: XML (Extensible Markup Language) is a markup language for describing and
structuring information. The core concept of XML is the element; elements contain the information
in the form of element content, sub-elements and attributes and also describe the information
semantically. Since elements can contain further elements as sub-elements, the XML paradigm
yields a hierarchical data structure.

• RDF paradigm: RDF (Resource Description Framework) is a language for making statements about
(web) resources. Each resource is identified by a unique resource identifier (URI). The statements
are modelled using RDF models which are based on graphs. The core concepts of an RDF model
are the subject, which represents the resource, a statement is made about, the predicate, which
represents an attribute of the subject, and the object, which provides the value of the predicate.

2.2.3 Origin and present-day use of the term conceptual schema language

A term often appearing in the context of geospatial data modelling is Conceptual Schema Language
(CSL). This term was introduced for the first time in 1979 by B. Breutmann, E. Falkenberg and
R. Mauer in their paper CSL: A Language for Defining Conceptual Schemas (Breutmann et al. 1979).
In this paper, a data definition language was described which can be used for defining conceptual
schemas. This data definition language was named CSL, which means that the term CSL can to a
certain extent be regarded as a product name for exactly this language only.

However, nowadays the term CSL occurs – in the geospatial domain in general and in the context of
the ISO 191xx series of geographic information standards in particular – uncoupled from its original
meaning. On the one hand, the term CSL is used in a generic way to denote conceptual modelling
languages per se; on the other hand, the standard ISO/TS 19103 uses the term as a synonym for the
UML profile defined within this standard (cf. section 5.1, page 76) (Kutzner and Eisenhut 2010).

In this thesis the term modelling language will be used, as this is the established term used in the
computer science domain as well and to avoid ambiguities with the CSL defined in the standard
ISO/TS 19103.

2.2.4 Domain-specific languages

A domain-specific language (DSL) is a formal language which is developed for a certain area of
application, or domain, to be able to model those concepts which particularly occur in that domain
(Stahl and Völter 2006). Like any other modelling language, also a DSL consists of a metamodel
(i. e. an abstract syntax) defining the required domain-specific concepts, as well as of a concrete syntax
and of semantics. Examples of well-known DSLs are Prolog and Mathematica and also the database
query language SQL.

The opposite of DSLs are general-purpose languages which are universally applicable and do not
focus on a specific domain. Examples are Java as general-purpose programming language and UML
as general-purpose modelling language.

The geospatial domain represents an area of application of its own, thus, the use of DSLs specifically
developed for the modelling of geospatial data is conceivable here as well. In practice, up to now
mostly the modelling language UML is used. Basically, UML is a general-purpose modelling language,
however, the UML specification provides a so-called UML profile mechanism (cf. section 2.4.1,
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page 19) which allows for adapting UML to specific domains – turning UML into a DSL in this way
(Selic 2007; Selic 2012). SysML (Systems Modeling Language) is an example of such a UML profile
which defines a widely-used DSL for the systems engineering domain (OMG 2015).

The geospatial domain, in fact, employs various UML profiles to express concepts inherent to
geographic information within UML models. Some of these UML profiles will be discussed in detail
in chapter 5, page 75. Examples of DSLs specific to the geospatial domain are the Swiss standard
INTERLIS, a textual language, which is used in particular in Switzerland for modelling geospatial
data (KOGIS 2006) (cf. section 5.5.2, page 109), and GeoUML, a textual language as well, which was
used in Italy, amongst others, for the development of a national standard specifying the structure of
geo-topographical databases for public administrations (Negri and Pelagatti 2014).

2.3 Data models and metamodels

A data model denotes a model which describes how data in general – and geospatial data in the
context of the geospatial domain – are to be structured. A data model defines which elements of the
universe of discourse can exist as physical data instances, for example in the form of a data set in a
database, an XML document or Java objects created by a running program. Figure 2.2 illustrates this
relationship. Data models correspond to conceptual schemas as defined in the standard ISO 19101-1
(cf. section 2.1.2, page 6).

Real world

Physical data 

instances
Data model

Universe of 

discourse

represent defines

formally represented in

Figure 2.2: Relationship between the universe of discourse, the data model and the physical
data instances

Two specific types of data models are prevalent in the geospatial domain, application schemas and
implementation schemas; both types will be described in more detail in the following sections. First,
however, the concept of the metamodel will be introduced since it is the metamodel which establishes
the basis for being able to define data models by means of a modelling language at all.

2.3.1 Metamodels and the four-layer metamodel architecture of UML

A data model is built using a modelling language, the modelling language providing those model
elements which can be used to create the data model. For this reason, a definition is required which
specifies precisely which model elements are made available through the modelling language. This
definition is usually developed in the form of a so-called metamodel, a metamodel being a model
which defines those model elements that can be used for defining models (Kleppe et al. 2003).
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The metamodel concept is to be illustrated by means of the four-layer metamodel architecture used
by the UML specification (OMG 2011b)1. The individual layers, which are depicted in figure 2.3,
have the following meaning (Kleppe et al. 2003):
• Layer M0: Layer M0 contains instances which represent real-world objects. In the context of

geospatial data modelling, these instances are geospatial data representations of real-world objects
such as cadastral parcels, buildings or rivers. In figure 2.3 instances of two cadastral parcels and
one building are shown together with their properties.

• Layer M1: At the layer M1 resides the model which describes the structure of the instances at layer
M0. The layers M0 and M1 are related to each other since all elements at layer M1 classify and
categorise the instances at layer M0 and, equally, each element at layer M0 is an instance of an
element at layer M1. Regarding the example in figure 2.3, at this layer the elements CadastralParcel,
with the properties label and areaValue, and Building, with the property owner, are defined of which
the elements at layer M0 are instances. In the geospatial domain, the CityGML model (Gröger et al.
2012), the INSPIRE data specifications (JRC 2015) and the AAA reference model (AdV 2009)
belong to this layer.

• Layer M2: This layer contains the metamodel which defines the concepts that can be used to create
models at layer M1. The layers M1 and M2 are related likewise, the concepts at layer M2 classify
and categorise all instances at layer M1 and each element at layer M1 is an instance of an element at
layer M2. At this layer resides, for instance, the UML metamodel which defines the UML language
and whose elements can be used to define a UML model such as the INSPIRE data specifications at
layer M1. Also UML profiles belong to this layer such as the INSPIRE UML profile (cf. section 5.4,
page 100). In the example in figure 2.3, the UML concepts Class and Property are defined at layer
M2 and then used at layer M1 to model the classes CadastralParcel and Building together with
their specific properties.

• Layer M3: The elements available in the metamodel must themselves be specified by a model
which is called meta-metamodel or metalanguage and which resides at layer M3. Thus, the meta-
metamodel defines all those elements that can be used to create metamodels at layer M2. Likewise,
the concepts at layer M3 classify and categorise all instances at layer M2 and each element at layer
M2 is an instance of an element at layer M3. The Meta Object Facility (MOF) (cf. section 2.4.4,
page 25), for example, is the meta-metamodel used for defining the modelling language UML;
UML, thus, is an instance of MOF. The example in figure 2.3 uses the MOF concept Class to define
the UML concepts Class and Property at layer M2. Another well-known meta-metamodel is Ecore
which is part of the Eclipse Modeling Framework (Steinberg et al. 2009).

Theoretically, layer after layer could be added now, each layer defining the concepts to be used at
the layer beneath. However, the MOF specification defines the uppermost layer to be recursive. This
means that MOF not only provides the elements for defining metamodels at layer M2, but that MOF
also defines itself; thus, all elements defined at layer M3 are, at the same time, instances of themselves.
This recursion is displayed in figure 2.9, page 25.

1Please note that according to the OMG MOF 2 specification (cf. section 2.4.4, page 25) metamodel architectures are not
fixed to four layers, as was the case with MOF 1. The specification rather allows for defining ‘any number of layers greater
than or equal to 2’ (OMG 2014b). The ‘key modeling concepts are Classifier and Instance or Class and Object, and the
ability to navigate from an instance to its metaobject (its classifier). This fundamental concept can be used to handle any
number of layers’ (OMG 2014b). Thus, the use of four layers does not apply by default to all metamodel architectures, but
is specific to UML and also some other OMG specifications, such as the OMG Ontology Definition Metamodel and the
OMG Common Warehouse Metamodel specifications. Relational database architectures, in contrast, make use of three
layers only, namely system table, table and row (OMG 2014b).
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Figure 2.3: The four-layer metamodel architecture of UML (Kleppe et al. 2003, modified)

The four-layer metamodel architecture conforms to a strict metamodelling approach which states
that in multi-level metamodelling frameworks, the instance-of relationship is the only relationship
allowed to exist between models residing at different layers and that it can, in addition, only occur
between models residing at adjacent layers. Furthermore, a model A being an instance of model B
implies that all elements of model A have to be instances of specific elements of model B (Atkinson
and Kühne 2000).

2.3.2 Application schemas and the ISO 19109 General Feature Model

Different areas of application require different geospatial data. An application schema is a data
model, which describes the semantic structure of geospatial data with respect to a certain area of
application the data is to be used in. A corresponding definition is given by the standard ISO 19101-1
which defines an application schema as a ‘conceptual schema [...] for data required by one or more
applications [emphasis omitted]’ (ISO 2014). Thus, application schemas correspond to conceptual
schemas and are created using a formal modelling language (cf. section 2.1.2, page 6). Above that,
they represent platform-independent models (PIM) as defined by the Model Driven Architecture
approach which will be explained in section 3.1.2, page 29. Examples of application schemas in the
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geospatial domain are the German AAA reference model, the European INSPIRE data specifications
and the CityGML model which have been defined using the modelling language UML.

The standard ISO 19118 relies on application schemas to enable data transfer between two systems
and, thus, to ‘achieve interoperability between heterogeneous systems’ (ISO 2011). The application
schema provides for a system-independent semantic and syntactic representation of the data to be
transferred which can be interpreted by both, the source and the target system, as is described in more
detail in section 3.3.1, page 36.

Based on the ISO 19101-1 definition of application schemas, a GML application schema, however,
does not represent an application schema in the sense of a conceptual schema, although the name
says so. GML application schemas are XML Schema documents, which means that GML application
schemas not only define the semantic structure of geospatial data, but in particular also describe
the syntax of the corresponding GML instance documents. Often, GML application schemas first
are defined platform-independently in the form of UML application schemas and then from these
UML application schemas the corresponding GML application schemas are derived according to
the UML-to-GML application schema encoding rules defined in the standard ISO 19136 Annex E
(ISO 2007) (cf. section 5.3, page 86). Figure 2.4 depicts the relationship between UML application
schemas, GML application schemas and GML documents.

To be able to define application schemas consistently, the standard ISO 19109:2005 Geographic
information — Rules for application schema defines rules for how to develop application schemas,
facilitating in this way the generation, processing, visualisation and the transfer of geospatial data
between different users and systems (ISO 2005a). Basis of each application schema is the so-called
General Feature Model (GFM). The GFM is a metamodel which was defined in particular for
representing geospatial objects, called features, their properties and relationships. Figure A.1, page 171,
shows an extract from the GFM representing the concepts defined for features. The GFM uses the
object-oriented paradigm.

The central concept of the GFM is the feature which is defined in ISO 19109 as an ‘abstraction of
real-world phenomena’ (ISO 2005a). Such phenomena can be physical entities of the real world, like
a building or a street, but also perceived entities, such as an event or an observation. Common to all
phenomena in the context of geographic information is that they are ‘implicitly or explicitly associated
with a location relative to the earth’ (ISO 2005a). Features can be characterised in more detail by
means of properties, i. e. attributes, associations to other features, and operations. Attributes can be of
different types such as a spatial, temporal, locational or a thematic type and they can also represent
metadata. Features which are similar and exhibit common characteristics are classified into a feature
type; the concept of the feature type is represented in the GFM by the metaclass GF_FeatureType
(cf. figure A.1, page 171). All feature types which are modelled in an application schema according
to the GFM have to be instantiated from this metaclass. The concrete features of a feature type are
referred to as feature instances. For example, the features Schoenbrunn, Nymphenburg and Versailles,
which represent abstractions of the corresponding real-world castles in Vienna, Munich and Paris, can
be considered as feature instances of a feature type Castle which defines characteristics common to
all castle-like real-world entities.

The GFM provides a new way of looking at data models in geographic information. The conven-
tional view strongly focuses on geometries, i. e. the object to be modelled is regarded as a point,
line or polygon; attributes providing further information on the object are assigned to the geometry
representing the object. With the GFM, however, the object to be modelled is regarded as a feature to
which attributes are assigned; the geometries of the feature are represented as spatial attributes and are
treated in the same way as all the other attributes of the feature. This approach reflects much more the
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language of the users of geospatial data, who generally speak of streets, rivers or buildings, but neither
of points, lines or polygons nor of tables, lists or tuples (SEE Grid 2010). Another advantage is that a
feature can in this way be represented by more than one geometry simultaneously. The feature type
River can, for instance, have an attribute river axis of a line geometry type and, at the same time, an
attribute water area of a polygon geometry type.

The GFM is a metamodel which provides concepts to be used to create application schemas. With
reference to the four-layer metamodel architecture of the modelling language UML (cf. figure 2.3,
page 14), the GFM resides at layer M2 and application schemas at layer M1. According to the standard
ISO 19109 the ‘GFM specifies the requirements for the classification of features, but is not a CSL’
(ISO 2005a). This means, although the GFM is represented as UML class diagram (cf. figure A.1,
page 171), the standard ISO 19109 only defines the semantics of the GFM, but it does not provide a
concrete syntax – in the sense of a syntax of a modelling language – which can be used for modelling
application schemas. The GFM could have been represented using any other modelling language as
well. Thus, application schemas have to be defined using the syntax of an existing modelling language.
The standard ISO 19109 proposes for this purpose the syntax of the modelling language UML, as this
facilitates the integration of schemas from the ISO 191xx series of geographic information standards,
which have been predefined using UML, into application schemas (ISO 2005a). In addition, the
standard provides rules for how to realise the concepts of the GFM in UML to create UML application
schemas.

Figure 2.4 depicts the relationship between the GFM and UML application schemas as well as
their relationship to the UML metamodel. Furthermore, the relationship to GML is shown. The
illustration is embedded into the four-layer metamodel architecture of UML. The figure clearly shows
the difference between a UML model and a UML application schema: syntax and semantics of UML
models are defined by the UML metamodel, whereas the semantics of UML application schemas is
defined by the GFM, but the syntax is taken from the UML metamodel.

2.3.3 Implementation schemas

An implementation schema defines the data model based on the concepts of the platform on which the
geospatial data described by the data model are to be provided. A similar definition is given in the
standard ISO/TS 19103: ‘Implementation models [...] describe the realization of domain and system
service models in an implementation specific way, related to the characteristics of the underlying
platform’ (ISO 2005c). This means that implementation schemas are platform-specific and, thus,
represent platform-specific models (PSM) according to the Model Driven Architecture approach
which will be explained in section 3.1.2, page 29.

Implementation schemas form an intermediate level between platform-independent application
schemas, i. e. conceptual schemas as defined by the standard ISO 19101-1 (cf. section 2.1.2, page 6),
and platform models (PM), i. e. data (transfer) format schemas. Using implementation schemas, the
transition from conceptual schemas to data (transfer) format schemas is conducted in two steps
(cf. section 3.3.1, page 36). This approach is of relevance, when a conceptual schema, e. g. a UML
application schema, contains constructs which cannot be represented by a specific data (transfer)
format schema, e. g. a GML application schema, and, thus, make a direct transformation between the
conceptual schema and the data (transfer) format schema difficult.

In Germany this approach is used for deriving the data transfer format schema NAS (Standards-
based Data Exchange Interface), which represents a GML application schema, from the AAA reference
model, which represents a UML application schema. The AAA reference model has been defined
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Figure 2.4: Relationship between the General Feature Model, the UML metamodel, UML application
schemas and GML (Kutzner and Eisenhut 2010, modified)

using, for instance, the concept of multiple inheritance, which is supported by the object-oriented
paradigm, but not by the XML paradigm. Therefore, the UML application schema (PIM), i. e. the
AAA reference model, first needs to be transformed into a UML implementation schema (PSM)
which conforms to the concepts of the underlying platform NAS; in a second step, the implementation
schema is then transformed into the transfer format schema NAS (PM) (Kutzner and Donaubauer
2012; AdV 2014).

2.3.4 Ontologies

Ontologies currently are an important research area in the geospatial domain. According to (Gruber
1995) an ontology can be defined as ‘explicit specification of a conceptualization’. An ontology
defines vocabulary and concepts for describing and representing a certain area of knowledge. Using
ontologies, the world is to be described in a machine-interpretable way such that a machine can
process this interpretation. Thus, an ontology represents a model for controlling run-time systems
(cf. section 4.1, page 53), which is interpreted by software programs.
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Ontologies are, amongst others, to support the exchange of information about certain domains.
Several papers discuss the differences and similarities between ontologies and data models. (Spyns
et al. 2002), for instance, state that ontologies describe concepts in a generic, application-independent
and reusable way, whereas data models focus on specific applications. (Atkinson, Gutheil et al. 2006)
conclude in their discussion that ontologies can be considered a subset of models and that most models
defined using UML and OCL, in turn, represent ontologies. Similarly, according to (Obrst 2003),
ontologies are based on the concepts class, instance, relationship, property, function and process as
well as constraint and rule. This is equivalent to the concepts provided by UML and OCL (cf. next
section). Thus, UML and OCL provide a means amongst many others, to describe ontologies formally
in the form of UML models. For this reason, many UML models, and in particular UML application
schemas in the geospatial domain, can be considered to be ontologies as well (Kutzner and Eisenhut
2010).

2.4 The Unified Modeling Language

This section covers the modelling language Unified Modeling Language (UML). In the geospatial
domain, UML is in particular used for defining data models, also referred to as UML application
schemas (cf. section 2.3.2, page 14), in the form of UML class diagrams. It is assumed that the reader
is already familiar with the concept of modelling UML class diagrams since, in the following, only
concepts relevant for further understanding of this thesis will be explained. This includes, after a
short excursion into the history of UML, the UML profile mechanism for adapting UML to specific
domains, the notion of the UML keyword and the UML package merge concept.

The modelling language UML (ISO 2012b) is a specification published by the Object Management
Group (OMG), an international standards consortium which was founded in 1989 and today has
several hundred members, mainly companies and organisations from the technology domain. The
OMG aims at developing standards for modelling and object-oriented software development. Besides
UML, other OMG standards relevant in the context of this thesis are the Meta Object Facility (MOF)
and the XML Metadata Interchange (XMI), which will be presented in section 2.4.4, page 25.

The origins of UML date back to the early 1990s when several object-oriented modelling methods
appeared, the most important of them having been OMT (Object-modeling technique) developed by
James Rumbaugh et al., the Booch method developed by Grady Booch, and OOSE (Object-oriented
Software Engineering) developed by Ivar Jacobson. Concepts of these three languages have been
incorporated into the development of UML (Hitz et al. 2005). UML 1.1 was the first formal version
adopted by the OMG in 1997, followed by several minor revisions (up to UML version 1.5). UML
version 1.4.2 has also been formally published by ISO as standard ISO/IEC 19501:2005 Information
technology — Open Distributed Processing — Unified Modeling Language (UML) Version 1.4.2 (ISO
2005b). These early versions of UML are usually referred to as UML 1.x or UML 1.

At the same time, the OMG started to work on a fundamental revision of the UML standard which
was formally published in 2005 as UML 2.0. The latest formal version is UML 2.5 which was adopted
by the OMG in 2015. UML version 2.4.1 has also been formally published by ISO as ISO/IEC 19505-
1:2012 Information technology — Object Management Group Unified Modeling Language (OMG
UML) — Part 1: Infrastructure (ISO 2012a) and ISO/IEC 19505-2:2012 Information technology —
Object Management Group Unified Modeling Language (OMG UML) — Part 2: Superstructure (ISO
2012b). These versions of UML are also commonly referred to as UML 2.x or UML 2. This thesis is
referring to UML version 2.4.1.



2.4 The Unified Modeling Language 19

While the UML 1 specification consisted of one document, with the release of UML 2 the specifica-
tion was separated into two documents, the UML Infrastructure and the UML Superstructure2. The
UML Infrastructure provides a core for defining metalanguages. This metalanguage core is used in the
UML Superstructure to define the UML metamodel, i. e., the abstract syntax of UML which specifies
the model elements to be used for creating UML models. The UML Superstructure also defines the
concrete syntax of UML, i. e. the notation elements available for representing the model elements
within UML diagrams. The metalanguage core of the UML Infrastructure is, moreover, also used for
defining other metamodels, such as MOF, the OMG Ontology Definition Metamodel and the OMG
Common Warehouse Metamodel. This is illustrated in figure 2.9, page 25.

Within the geospatial domain, UML 1.4.2 and 2.1.2 are those versions which are currently most
often referenced by ISO and OGC standards and also by relevant spatial data infrastructure initiatives
such as INSPIRE. It is to be assumed that in future revisions of ISO and OGC standards these versions
will gradually be replaced by UML version 2.4.1 (cf. sections 5.1.3, page 85, and 5.2, page 85).

2.4.1 The UML profile mechanism

By means of so-called UML profiles the UML specification provides a mechanism to adapt the UML
metamodel to specific platforms or domains such as the geospatial domain. In this way, UML can be
turned into a domain-specific language (cf. section 2.2.4, page 11). The UML specification provides,
amongst others, the following definitions:

A profile must provide mechanisms for specializing a reference metamodel (such as a
set of UML packages) in such a way that the specialized semantics do not contradict the
semantics of the reference metamodel. That is, profile constraints may typically define
well-formedness rules that are more constraining (but consistent with) those specified by
the reference metamodel. (ISO 2012b)

The profiles mechanism is not a first-class extension mechanism (i.e., it does not allow
for modifying existing metamodels). Rather, the intention of profiles is to give a straight-
forward mechanism for adapting an existing metamodel with constructs that are specific
to a particular domain, platform, or method. (ISO 2012b)

Thus, the UML profile mechanism only allows UML profiles to extend the UML metamodel in such
a way that the concepts defined by the UML profile are still consistent with the concepts specified
by the UML metamodel. The UML metamodel itself remains unchanged, it is not modified by the
UML profile (ISO 2012b). In this way, a UML model can still be processed by UML tools without
difficulties after a UML profile has been applied to this UML model.

In contrast, the UML Infrastructure also provides the possibility to extend the UML metamodel itself,
which is referred to as a first-class extension mechanism, by introducing, for instance, new associations
or metaclasses to the UML metamodel. This approach, however, can result in a modification of the
UML metamodel in such a way that UML models are not processable by UML tools anymore.

The core concept of a UML profile is the stereotype. By means of stereotypes, UML metamodel
elements can be adapted to specific areas of application in order to describe certain concepts of that
area of application in a more exact way. Stereotypes can contain properties, which are referred to as

2With the release of UML version 2.5 this separation is not being continued; UML version 2.5 is provided as a single
document again.
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tag definitions, and define constraints using, for example, OCL (Object Constraint Language). The
tag definitions of a stereotype are equivalent to the properties of a class. The UML profile definition
gives the following explanation: ‘Just like a class, a stereotype may have properties, which may be
referred to as tag definitions. When a stereotype is applied to a model element, the values of the
properties may be referred to as tagged values’ (ISO 2012b). In geospatial data modelling, however,
the tag definitions themselves are usually referred to as tagged values, such as in (ISO 2007) and (JRC
2014a).

«metaclass»

Class

tag definition
...

«stereotype»

Name

constraint

Figure 2.5:
Definition of a
UML stereotype
(Hitz et al. 2005,
modified)

Figure 2.5 displays how to define a stereotype. The stereotype is represen-
ted using a rectangle. In the upper compartment of the rectangle, the name
of the stereotype is written together with the keyword «stereotype», and in
the compartment below, the tag definitions of the stereotype are provided.
If necessary, the stereotype and the tag definitions can be restricted by
constraints. Furthermore, an extension relationship is drawn between the
stereotype and the UML metaclass to be extended by the stereotype.
The UML metaclass can, in addition, be marked with the stereotype «meta-
class». Moreover, one stereotype can extend several UML metaclasses and
one UML metaclass can be extended by several stereotypes. All stereotypes
which are defined as part of the same UML profile are grouped into a UML
package marked with the keyword «profile» (Hitz et al. 2005).

To make use of the stereotypes when creating a UML model, the UML
profile first has to be applied to that UML package which contains the
UML model to be created. To apply a UML profile, a profile application
relationship marked with the keyword «apply» is drawn from the UML
package to the UML profile. Several UML profiles can be applied to one
UML package at the same time, except when they define constraints that
conflict each other (ISO 2012b). Furthermore, the UML specification states
that when ‘multiple applied profiles have stereotypes with the same name, it may be necessary to
qualify the name of the stereotype (with the profile name)’ (ISO 2012b). Afterwards, the stereotypes
can be assigned to the UML model elements either in graphical form via a pictogram or in textual
form. When using the textual form, the name of the stereotype is provided between guillemets (« »)
before or above the model element to which the stereotype is to be applied. The textual form of
applying stereotypes is prevalent in all UML profiles existing currently in the geospatial domain
(cf. chapter 5, page 75). It is also possible to apply more than one stereotype to a model element; the
stereotype names are then separated by commas. When the applied stereotype contains tag definitions,
values can be provided for these tag definitions by attaching the tagged values to the UML model
element as UML comment (Hitz et al. 2005).

The distinction of the syntax of UML into an abstract and a concrete syntax also holds for the
UML profile mechanism. The definition of stereotypes belongs to the abstract syntax of UML since
stereotypes are defined by extending UML metaclasses, which are part of the UML metamodel;
the UML metamodel, in turn, defines the abstract syntax of the modelling language UML. The
specification that stereotypes are used by assigning their names to UML model elements either in
textual form between guillemets or in graphical form via pictograms is determined by the concrete
syntax of UML (Noyrit et al. 2010).

An example of a UML profile and its application to a UML package is given in figure 2.6. In
this UML profile, called MyProfile, the stereotype «FeatureType» is defined as extension of the
UML metaclass Class. Moreover, the stereotype provides the four tag definitions documentation,
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Figure 2.6: Definition and application of a UML profile

noPropertyType, byValuePropertyType and isCollection. After having defined the UML profile, it is
applied to the UML package MyModel within which a UML class named CadastralParcel is defined.
To express that this UML class represents a feature type, the stereotype «FeatureType» is assigned
to the UML class and a comment is attached to it providing values for the tag definitions of the
stereotype.

The UML specification already provides several standard stereotypes which are defined as part of
two UML profiles, the StandardProfileL2 and the StandardProfileL3 (ISO 2012b). These stereotypes
can be used by any UML model without having to apply the UML profiles beforehand. Regarding the
spelling of stereotype names, the UML specification provides the following information: ‘Normally
a stereotype’s name and the name of its applications start with upper-case letters, to follow the
convention for naming classes. Domain-specific profiles may use different conventions. Matching
between the names of stereotype definitions and applications is case-insensitive, so naming stereotype
applications with lower-case letters where the stereotypes are defined using upper-case letters is valid,
although stylistically obsolete.’ (ISO 2012b) In the context of this thesis, the stereotype names will be
used as defined in the corresponding specifications and standards, except for UML profiles which are
defined as part of this work; for them always upper-case letters will be used to avoid confusion with
UML keywords (cf. section below).

It is possible to integrate existing UML profiles or individual stereotypes into other UML profiles
by importing them using the package and element import mechanisms of UML. The stereotypes can
then be reused and also be extended through generalisation relationships in the importing profile. This
approach, however, can result in complex profiles, in particular, when the imported UML profiles, in
turn, reference other UML profiles or stereotypes, which then have to be imported as well to avoid
semantic inconsistency. Moreover, complex profiles created in this way can make a separate reuse of
the individual UML profiles difficult (ISO 2012b). In contrast, a more practical way of integrating
UML profiles is provided by the UML package merge mechanism (cf. section 2.4.3, page 23). When
using UML package merge, the individual UML profiles can be merged into a new UML profile which
provides all the capabilities of the individual UML profiles in a combined way without the above
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mentioned risks the import mechanism can cause. Furthermore, the individual profiles can still be
used separately without any problems (ISO 2012b).

The explanations given in this section regarding the definition and application of stereotypes and
tag definitions refer exclusively to UML 2. In UML 1, stereotypes are allowed to be defined and
applied without having to be associated to a UML profile and also tag definitions can be added to a
UML model element irrespective of whether a stereotype has been applied to the UML model element
or not. Also, only one stereotype is allowed to be applied to each UML model element.

The UML profile mechanism is not to be confused with the standard ISO 19106 Geographic
Information — Profiles which provides guidelines for how to define profiles of standards from the
ISO 191xx series of geographic information standards (ISO 2004). The profile definition of the
standard ISO 19106 is based on a more general definition provided in the standard ISO/IEC TR
10000-1 Information technology — Framework and taxonomy of International Standardized Profiles
— Part 1: General principles and documentation framework (ISO 1998). Conformance of a profile to
the standard ISO 19106 can be established in the following two ways:

Conformance class 1 is satisfied when a profile is established as a pure subset of the ISO
geographic information standards. (ISO 2004)

Conformance class 2 allows profiles to include extensions within the context permitted in
the ISO geographic information standard and permits the profiling of non-ISO geographic
information standards as parts of profiles. (ISO 2004)

This means that a profile either represents a restriction (Conformance class 1) of an ISO standard
and, thus, only consists of a subset of the constructs provided by the ISO standard; or it represents an
extension (Conformance class 2) and, thus, can also contain constructs which do not yet exist in the
ISO standard, but may be created in conformance with the extensibility guidelines of that specific
ISO standard. Compared with the profile definitions given by the standard ISO 19106, a UML profile
would always correspond to Conformance Class 1.

2.4.2 UML keywords

In UML, the guillemet notation is not only used for stereotypes, but also for UML keywords which
‘are reserved words that are an integral part of the UML notation’ (ISO 2012b). Thus, UML keywords
represent notation elements which are part of the UML syntax. One of the functions of UML keywords
is to distinguish between metamodel elements and between relationships which use the same visual
notation. The UML specification defines, for instance, a rectangle as notation for the metamodel
element Classifier; likewise, all metamodel elements derived from Classifier use the rectangle as
notation as well. These derived metamodel elements are, amongst others, Class, Enumeration, Data-
Type and PrimitiveType, as can be seen in the figures A.2 and A.3, page 172. However, to clarify
which metamodel element exactly is referred to when using the rectangle, a corresponding keyword is
added to the rectangle. The name of the keyword is defined in the notation section of each metamodel
element in the UML specification; for the metamodel elements derived from Classifier, the UML
specification defines, for instance, that an enumeration is marked with the keyword «enumeration», a
data type with the keyword «dataType» and a primitive type with the keyword «primitive». A class, in
contrast, is always modelled without keyword, since it is the most common classifier used in UML
class diagrams (ISO 2012b).
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UML keywords usually start with lower-case letters, whereas stereotype names should preferably
start with upper-case letters. UML metamodel elements which have a keyword and which, in addition,
are extended by a stereotype are to be represented in UML models such that ‘the stereotype name will
be displayed close to the keyword, within separate guillemets (example: «interface» «Clock»)’ (ISO
2012b).

UML keywords ‘have special significance in the context in which they are defined and, therefore,
cannot be used to name user-defined model elements where such naming would result in ambiguous
interpretation of the model’ (ISO 2012b). This means that naming a stereotype equally to a UML
keyword is to be handled with care, as it might not be clear, whether the model element represents a
stereotyped element or a keyworded element, resulting in different element semantics. This difference
is not always taken care of in geospatial data modelling, as will be illustrated in chapter 5, page 75.

2.4.3 The UML package merge concept

Package merge is a concept introduced in UML 2 which allows for combining (i. e. merging) the
contents of two UML packages related to each other by a PackageMerge relationship (ISO 2012b).
Package merge is a directed relationship between a merged package and a receiving package, as is
depicted in figure 2.7, the merged package providing content (merged elements) which is to be merged
with the content (receiving elements) of the receiving package; thus, the merged package extends the
content of the receiving package. A package merge relationship is denoted with the keyword «merge».

merged package

receiving package

«merge»

Figure 2.7: The UML
package merge
concept (Hitz et al.
2005)

A package merge redefines the merged elements by merging them with
the receiving elements according to predefined constraints and transform-
ations. When merging two UML packages, the content of the merged
package is added to the namespace of the receiving package. In contrast, a
package import makes the elements of the imported package only visible
in the namespace of the importing package, but does not automatically
redefine them. A redefinition of the imported elements would have to be
done manually, for instance, by using generalisation relationships in the
importing package (Hitz et al. 2005).

The UML specification recommends using the mechanism when ‘dif-
ferent definitions of a given concept for different purposes, starting from
a common base definition’ (ISO 2012b) are to be provided. It is then
possible to extend this base definition incrementally ‘with each increment
defined in a separate merged package’ (ISO 2012b). Package merge is
especially useful in meta-modelling and was applied extensively in the
definition of the UML metamodel.

The semantics of package merge is defined in the UML specification
by individual constraints and transformations for the UML metatypes Package, Class, DataType,
Property, Association, Operation, Enumeration and Constraint. Whether a merged element and a
receiving element match, and can therefore be merged, depends in general on their name and metatype.
Theoretically, the UML package resulting from a package merge represents a set union of the merged
package and the receiving package. However, the transformations are carried out implicitly only,
which means that the merging solely takes place conceptually, physically the receiving package
remains unchanged and, thus, also the physical model in the model repository remains unchanged
(ISO 2012b).
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This is to be illustrated by the example in figure 2.8 which is based on an example from the UML
Superstructure document. On the left side of the figure, a package merge between the merged packages
P1 and P2 and the receiving package P3 is represented. The right side of the figure shows how the
resulting package P3 looks conceptually after the merge has been carried out. The resulting package
is defined in the UML Superstructure as ‘the package that, conceptually, contains the results of the
merge. In the model, this is, of course, the same package as the receiving package, but this particular
term is used to refer to the package and its contents after the merge has been performed’ (ISO 2012b).
Similarly, the resulting element refers to ‘a model element in the resulting package after the merge
was performed’ (ISO 2012b). Generally, the receiving package only defines new elements or redefines
elements already existing in the merged package. In the example, P3 is the receiving package; it
redefines class A by defining two additional properties for the class. The same class A is also defined
in the merged packages P1 and P2. When merging packages, elements which exist in the merged
package and in the receiving package are merged into resulting elements. Elements which are only
available in the merged package are simply copied to the resulting package. In the example, the
packages P1, P2 and P3 are merged and, thus, the classes P1::A, P2::A and P3::A are merged into
one resulting element, whereas the classes P1::B and P2::C are copied to the resulting package P3, as
are the generalisation relationship between P1::A and P1::B and the association between P2::A and
P2::C.
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Figure 2.8: A UML package merge example (ISO 2012b, modified)

UML package merge shows certain parallels to the inheritance concept of the OO paradigm. Using
inheritance, a UML subclass only defines those features which it does not inherit from the UML
superclass; similarly, using UML package merge, the receiving UML package only defines those
concepts which it does not merge from the merged UML packages. The difference, however, is that
physically the receiving package remains unchanged, whereas instances of the UML subclass will
indeed hold the inherited features.
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2.4.4 Related OMG standards – The Meta Object Facility, the XML Metadata
Interchange and the Object Constraint Language

Three other important OMG standards in the context of UML are the OMG Meta Object Facility
(MOF) Core Specification, Version 2.4.2 (OMG 2014b), the XML Metadata Interchange (XMI)
Specification, Version 2.4.2 (OMG 2014c) and the OMG Object Constraint Language (OCL), Version
2.3.1 (OMG 2012). These standards have also been formally published as ISO standards.

The MOF specification provides the MOF meta-metamodel which can be used for defining MOF-
based metamodels such as the UML metamodel. It is also used for defining the MOF meta-metamodel
itself, the elements of the MOF meta-metamodel being based on the metalanguage core defined in
the UML Infrastructure specification, as is illustrated in figure 2.9. Above that, the MOF specifica-
tion defines a framework for managing metadata (i. e. models) in software tools, data warehouses,
repositories and similar systems.

MOF

InfrastructureLibrary

Core

UML CWM ODM

Profiles

M2: Metamodel

M3: Meta-metamodel

«instanceOf»

«instanceOf»

Figure 2.9: Relationship between MOF, the UML Infrastructure and MOF-based metamo-
dels (Hitz et al. 2005, modified)

The XMI specification defines an XML-based transfer format which provides the basis for ex-
changing MOF-based metadata between heterogeneous systems. The specification defines rules for
mapping MOF-based metamodels to XML Schema documents and MOF-based models to XML
instance documents. In this way, MOF-based models such as UML data models can be encoded in the
form of XMI documents and be exchanged between different UML tools. In practice, however, the
exchange of XMI documents between different UML tools is still possible to a limited extent only,
although making progress due to the work of the OMG Model Interchange Working Group which
focuses on testing and identifying existing heterogeneities (Elaasar and Labiche 2012). Reasons for
the limited exchangeability are that the mapping rules are complex and, thus, lead to an inconsistent
implementation by different UML tools, but also that the mapping rules provide options allowing for
differing implementations. Furthermore, the models can be encoded based on different versions of the
XMI specification. XMI documents can also contain additional information which is not part of the
model itself (cf. listing D.2 in appendix D.3). This usually comprises diagrammatic or tool-specific
information such as the size or the date of creation of the individual model elements in a UML diagram
which is stored in an extension section within the XMI document (Lundell et al. 2006; Elaasar and
Labiche 2012).

The OCL specification provides a formal language for defining expressions on MOF-based
metamodels and models. When defining, for instance, a UML model, often not every kind of informa-
tion can be expressed within the UML model itself to make the UML model precise and unambiguous.
Imagine a UML model which contains a class Building with the attributes id, dateOfConstruction and
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dateOfDemolition. The class is to be provided with expressions that each building must have a unique
identifier and that the date of construction must be before the date of demolition. These expressions
could be added to the UML model in the form of a note written in natural language. However, this
approach can result in ambiguities as the note could be misinterpreted by human readers; furthermore,
these expressions are not machine-interpretable. By using OCL, these expressions can be added to the
UML model in a precise and unambiguous way. OCL expressions are machine-interpretable, i. e. they
can be validated by suitable tools and the UML model can be checked for consistency with the applied
OCL expressions; and, they can also not be misinterpreted by human readers. OCL expressions can
be used to define invariants, an invariant being ‘a boolean expression that states a condition that
must always be met by all instances of the type for which it is defined’ (Warmer and Kleppe 2003).
Above that, OCL expressions can be used to define the initial value of an attribute or association,
to define derivation rules for how to derive the value of a derived attribute or association, to define
body expressions which specify the result of a query operation or to define pre- and postconditions on
methods (Warmer and Kleppe 2003).



3 Fundamentals of model-driven transformation of
geospatial data

Besides defining geospatial data models which describe how geospatial data are to be structured,
in the geospatial domain also often the necessity exists to provide geospatial data based on data
models which differ from the original data structures defined for them. In order to be able to provide
geospatial data based on a different data model, transformations have to be executed on the geospatial
data. In particular model transformation and information integration are of importance here, both
of them being rather young fields of activity which have their origin in computer science. Model
transformation emerged from the discipline of Software Engineering, whereas information integration
is rooted in the discipline of Databases.

Similar to chapter 2, the aim of this chapter is to establish a common terminological basis related to
model-driven transformation of geospatial data in general and also to the explanations and analyses
provided in the subsequent chapters of this thesis. The definitions and explanations make use of
those standards relevant to the transformation of geospatial data. The chapter starts with a general
introduction to the concept of model transformation as used in Software Engineering in general
and in the OMG Model Driven Architecture approach in particular, followed by an introduction to
the concept of information integration. Afterwards, an explanation of how these concepts are used
in the geospatial domain to execute model-driven transformation of geospatial data is provided.
The chapter concludes with a description of transformation languages relevant in the geospatial
domain, in particular focusing on the Atlas Transformation Language (ATL), which is used for model
transformation, and UML Transformations (UMLT), which is used for information integration, both
of them being relevant in the context of this thesis.

3.1 Model-driven transformation in Software Engineering

During the last 20 years several techniques evolved which apply a model-driven approach for develop-
ing systems or software by transforming models (preferably automatically) into other models or into
source code. These techniques are referred to as Model-Driven Engineering (MDE), Model-Driven
Software Development (MDSD) or Model-Driven Development (MDD). By means of these techniques
new models can be created from existing models and, furthermore, also source code, data (transfer)
format schemas or data. All these techniques have the general concept of model transformation in
common, which will be presented in the following. Also the OMG Model Driven Architecture is
based on this concept, but adapts it to the use of MOF-based metamodels and models, as will be
explained afterwards.

3.1.1 General concept of model transformation

Model transformation is the most integral part of all model-driven development techniques. Figure 3.1
depicts the basic concepts of model transformation between one source and one target model. The
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Figure 3.1: Model transformation – basic concepts (Czarnecki and Helsen 2006, modified)

transformation is defined by means of a transformation definition which is written using a transforma-
tion language. (Kleppe et al. 2003) define a transformation definition as ‘a set of transformation rules
that together describe how a model in the source language can be transformed into a model in the target
language’; a transformation rule, in turn, ‘is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the target language’. The transformation
definition always refers to the metamodels of the source and the target model, thus, the source model
has to comply with its source metamodel and the target model with its target metamodel. Source
and target metamodel may be identical, but they may also differ from each other; both, however,
have to conform to the same meta-metamodel. The transformation itself is executed by means of a
transformation tool. The transformation tool reads the source model and applies the transformation
definition on this model, creating in this way the desired target model. Model transformations are
not restricted to exactly one source and one target model, they can also take place between one
source model and multiple target models, e. g. to create several platform-specific models from one
platform-independent model (cf. section 3.1.2), or between multiple source models and one target
model, e. g. to combine several source models into one merged target model (Mens and Gorp 2006).

Model transformations can be classified according to various criteria (Mens and Gorp 2006; Stahl
and Völter 2006). The most important criteria are:
• Model-to-model/model-to-code transformation: A model-to-model transformation transforms a

source model into a target model, whereas a model-to-code transformation transforms a source
model into artefacts such as source code, data (transfer) format schemas or documents.

• Vertical/horizontal transformation: A vertical transformation is executed between models located
at different levels of abstraction (used e. g. in refinement and reverse engineering); a horizontal
transformation, in contrast, is executed between models located at the same level of abstraction
(used e. g. in refactoring, migration and model evolution).

• Endogenous/exogenous transformation: When the source and target model are based on the same
metamodel, one speaks of an endogenous transformation (e. g. refactoring, refinement and model
evolution belong to this category), whereas an exogenous transformation involves a source and a
target model based on different metamodels (this holds e. g. for migration and reverse engineering).
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• Unidirectional/bidirectional transformation: A unidirectional transformation can only be executed
in one direction, i. e. from the source model to the target model; in contrast, a bidirectional
transformation can be performed in two directions, i. e. from the source model to the target model
and vice versa.

• Syntactic/semantic transformation: A syntactic transformation only changes the syntax of the model
(used e. g. in data conversion), whereas a semantic transformation also takes the semantics of the
model into account (used e. g. in migration and reverse engineering).

Another criterion to be considered in model transformation is the technical space of the source and
target model (Mens and Gorp 2006). The technical space represents ‘a working context with a set of
associated concepts, body of knowledge, tools, required skills, and possibilities’ (Bézivin 2006). The
technical space is defined by the meta-metamodel (cf. section 2.3.1, page 12); thus, when the source
and target model belong to different technical spaces, not only their metamodels differ, but also their
meta-metamodels. Examples for technical spaces (and their corresponding meta-metamodels) are
the OMG/MDA technical space (MOF), the EMF technical space (Ecore), the XML technical space
(XML Schema) and the Java technical space (EBNF) (Bézivin 2006).

3.1.2 The OMG Model Driven Architecture

The Model Driven Architecture (MDA) is a framework for system development which follows the
principles of MDE (Bézivin 2005), thus, models form the basis of the system development process. In
the MDA terminology, a system is understood as ‘any arrangement of parts and their interrelationships,
working together as a whole [...] such as an entire enterprise, a process, information structures or I.T.
systems’ (OMG 2014a). With respect to geospatial data modelling, geospatial data represent based on
this definition such information structures and, thus, the system, which is described by a geospatial
data model. MDA was developed by the OMG and comprises a set of standards relevant for the
implementation of MDA. Among these standards are MOF (cf. section 2.4.4, page 25), which provides
the core concepts for defining MOF-based metamodels, UML (cf. section 2.4, page 18), which can
be considered the primary MOF-based metamodel for defining models to be employed in the MDA
process, and XMI (cf. section 2.4.4, page 25) for exchanging UML models in the form of XML-based
documents. Further standards are the transformation languages MOF Query/View/Transformation
(QVT) (OMG 2011a) for defining transformations between models (cf. section 3.4.3) and MOF
Model to Text Transformation Language (M2T) (OMG 2008) for transforming models into textual
representations such as source code or documents.

The MDA approach supports the implementation of separation of concerns, in particular ‘the
separation of the business concerns of a system from the technology-dependent implementation
concerns of components of that system’ (OMG 2014a). When specifying, for instance, a software
system using high-level diagrams, the business processes of that system are often mixed with technical
information. MDA, however, clearly separates these two aspects by making use of three different
models, as is displayed in figure 3.2, which represent the system from the following viewpoints
(Kleppe et al. 2003):
• Platform Independent Model (PIM): This model describes the system to be developed at a high

level of abstraction, i. e. it defines the business logic of the system independent of any particular
technology platform the implemented system might be deployed later on and is, thus, referred to as
being platform-independent. In general, the MDA process is always initiated by defining a PIM of
the system to be developed.
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• Platform Specific Model (PSM): A PSM is a model which describes the system at a lower level of
abstraction than the PIM, as it takes into account the technical aspects of the specific technology
platform on which the system will run later on and, thus, is platform-dependent. A PSM is generated
by transforming a PIM into a PSM based on a predefined transformation definition. Since one
system can be deployed on several different technology platforms, it is also possible to transform one
PIM into several different PSMs, each one targeted at a specific platform. To obtain interoperability
between the individual PSMs, the MDA approach provides for so-called bridges which can be
generated in addition to the PSMs. Often, PIMs as well as PSMs are defined using UML; in this
case, the PIM UML model only defines the platform-independent concepts, whereas the PSM UML
model also contains the platform-specific concepts. One possibility of introducing platform-specific
concepts to a UML model is to define and apply a corresponding UML profile (cf. section 2.4.1,
page 19)1.

• Platform Model (PM): This model represents the source code of the implemented system and is
generated by transforming a PSM based on a predefined transformation definition. Since the source
code can be considered an abstraction of the machine code which is generated from the source code
by a compiler, also the source code is regarded as a model in MDA.

When defining a transformation specification, it has to be taken care, that the semantics of the source
model are preserved in the target model. The transformation of a PIM into a PSM is considered to be
more complex than the transformation of a PSM into a PM, as the former step can, depending on the
platform the PSM is to be targeted at, impose an extensive modification on the structure of the model,
whereas the latter step simply maps a model conforming to a certain platform into the corresponding
platform code (Kleppe et al. 2003).
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Transformation 
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Figure 3.2: The
MDA concept

The MDA-based system development process comprises a sequence of trans-
formation steps and – what characterises the MDA approach in particular –
in each step formal, i. e. machine-interpretable, models are created. Another
specific characteristic of MDA is that the transformation from a PIM to a PSM
can be fully automated by using transformation tools since the PIM represents
a machine-interpretable model. Traditionally, models for specific platforms had
to be created manually from high-level diagrams. Both, machine-interpretable
models and automatic transformation, require that the models are created using
a formal language (cf. section 2.2.1, page 9).

As regards the classification criteria mentioned in the previous section, they
can be applied to MDA as well. Examples of model-to-model transforma-
tions are PIM→ PIM (horizontal transformation) and PIM→ PSM (vertical
transformation), whereas PSM→ PM can be considered as a model-to-code
transformation (vertical transformation). PIM → PIM transformations can,
furthermore, be endogenous or exogenous, depending on whether the source
and target PIMs are based on the same metamodel or not, whereas PIM →
PSM transformations are usually endogenous. The technical space, however,
is identical for all source and target models since the MDA approach requires
the metamodel of each PIM model and of each PSM model to be based on the
meta-metamodel MOF.

1It should be noted, however, that a UML model to which a UML profile is applied does not automatically always represent
a PSM. A UML model with applied UML profile can just as well represent a PIM. It rather depends on the kind of concepts
provided by a specific UML profile, whether they are platform-independent or platform-specific.
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This section is to be concluded with a small example of a possible MDA transformation workflow
within the geospatial domain. As described above, one PIM can be transformed into several PSMs,
each PSM targeted at a different platform. In the context of a specific geospatial application, cadastre
information shall be made usable by means of different platforms; amongst others, the information
shall be transferable using the data transfer formats GML and GeoJSON, be processable via the
programming language Java and be storable in a relational database. The required workflow is shown
in figure 3.3: First, a suitable PIM containing the relevant cadastre information is defined, which
afterwards is transformed into PSMs for the platforms GML, GeoJSON, Java and Relational. Finally,
the generated PSMs are transformed into the corresponding formats and code. To be able to execute
the transformations, individual transformation definitions are required for each platform and for each
transformation step.
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Figure 3.3: Example MDA transformation workflow

Figure 3.4 zooms in on the imaginary model for cadastre information and illustrates how the
workflow affects a fictitious feature type CadastralParcel. In the PIM, the feature type is represented
by a UML class to which the stereotype «FeatureType» (cf. section 5.2, page 85) is applied, as is
shown in figure 3.4(a). Figures 3.4(b) and 3.4(c), in turn, display the corresponding UML classes
for the platforms GML and Java, respectively, which result from the transformation of the PIM into
GML-specific and Java-specific PSMs.

In a GML application schema, a feature type is usually represented by an XML element declaration
whose name is identical to the name of the UML class and by an XML complex type definition with
the same name as well, but which is extended by the suffix Type2. In addition, the XML element
is provided in GML with an XML attribute named id. These XML/GML-specific concepts can be
added to the PSM representation of the UML class CadastralParcel by means of a UML profile
which defines these concepts. The UML Profile for XML Schema (Carlson 2008) is such a UML
profile which provides stereotypes to be used for generating XML Schema documents from UML
models. Based on this UML profile, the UML representation of the UML class CadastralParcel can
be targeted to the GML platform by explicitly denoting the UML class as XML complex type through

2Further UML-to-GML encoding rules for feature types defined in the standard ISO 19136 Annex E (cf. section 5.3,
page 86) are not taken into account in this example.
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Figure 3.4: PIM and PSM representations of an example UML class (Kleppe et al. 2003,
modified and extended)

the stereotype «ComplexType» and by adding the UML attribute id to the UML class, characterising
it as XML attribute through the stereotype «Attribute».

The UML attributes of a PIM UML class are usually declared public. ‘The meaning of a public
attribute in a PIM is that the object has the specified property, and that this property can change value
over time’ (Kleppe et al. 2003). Java, however, supports the object-oriented concept of encapsulation,
which means that within a Java class the Java attributes should be declared private such that they are
only accessible via equivalent Java get and set methods. Thus, the transformation definition for the
Java-specific PSM needs to create for each public UML attribute in the PIM model an identical private
UML attribute as well as public UML get and set operations in the corresponding UML class of the
Java PSM model (Kleppe et al. 2003). Afterwards, the two PSM UML classes depicted in figures
3.4(b) and 3.4(c) can easily be mapped to the corresponding GML application schema or Java code,
respectively.

3.2 Information integration through transformation

Model transformation defines transformations between source and target metamodels and determines
in which way metamodel concepts used in the source model(s) are to be transformed into metamodel
concepts used in the target model. Information integration, in contrast, defines transformations between
source and target models and determines in which way the contents of the source data compliant to
the structure and semantics of the source model(s) are to be transformed into target data compliant to
structure and semantics of the target model.

Data models describe the structure of data; however, since the process of modelling is always
influenced by the perception of a particular modeller (cf. mapping characteristic in section 2.1.1,
page 5), different modellers will usually come up with different models, defining the structure of the
data in differing ways. Furthermore, whether certain information is captured by the data model or not,
usually depends on the application a data model is intended for. Thus, data models covering the same
universe of discourse can be structured in different ways and can contain different information. These
and other differences can result in data models which exhibit various types of heterogeneity. These
heterogeneities, in turn, can lead to problems in information integration and need to be addressed by
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different types of transformation. Both, the different types of heterogeneity and the different types of
transformation resulting therefrom, will be presented in the following.

3.2.1 Types of heterogeneity

In general, in the context of information integration different types of heterogeneity can be distin-
guished. The description provided here follows the classification given by (Leser and Naumann 2007)
which differentiates the following five types of heterogeneity:
• Technical heterogeneity: This type of heterogeneity does not refer to data models and the structure of

data, but to the way of accessing data provided by a system. This includes the method of requesting
data from a system (e. g. by means of a query language when requesting data from a database or by
means of parametrised functions when requesting data from a web service), the query language used
for retrieving the information of interest (e. g. SQL), the transfer format providing the requested
information (e. g. XML) and the communication protocol able to communicate with the system
(e. g. HTTP). In the geospatial domain system heterogeneity can be resolved by applying relevant
ISO and OGC standards which allow for requesting data in the form of standardised data transfer
formats through standardised geospatial web service interfaces.

• Syntactic heterogeneity: This type of heterogeneity addresses technical differences regarding the
representation of identical information such as the character encoding (Unicode or ASCII) or the
kind of delimiter used in CSV files. Syntactic heterogeneity is not considered as problematic in
information integration.

• Data model heterogeneity: Data model heterogeneity occurs when identical information is provided
in the form of different data models. The term data model corresponds here to the term mod-
elling paradigm as introduced in section 2.2.2, page 10. The information of the INSPIRE data
specifications, for instance, is provided in the form of an object-oriented data model (OO paradigm)
when defining the structure of the data conceptually, whereas in database management systems
the information exists in the form of a relational data model (Relational paradigm). Furthermore,
when using GML as data transfer format, the information takes the form of a joint XML/OO data
model, since GML combines the XML paradigm with the OO paradigm. Data model heterogeneity
often comes along with semantic heterogeneity (see below), since the concepts provided by the
different modelling paradigms own specific semantics which are determined by each modelling
paradigm separately. In the OO paradigm, for instance, classes can be related to each other through
inheritance, in the Relational paradigm, however, this concept is not supported. As regards the
general concept of model transformation (cf. section 3.1.1, page 27), data model heterogeneity can
occur in vertical transformation, when the models located at different levels of abstraction are based
on different modelling paradigms, and in horizontal transformations, when the technical spaces of
the source and target models differ, i. e. when their meta-metamodels comply to different modelling
paradigms.

• Structural and schematic heterogeneity: Structural heterogeneity occurs when two models differ
from each other, although they describe the same universe of discourse and are based on the same
modelling paradigm. A simple example for structural heterogeneity is depicted in figure 3.5. The
UML classes Facility and Building both represent buildings and allow for storing the address of a
building. The UML class Facility provides specific attributes for storing the street name, the house
number, the postal code and the city of the building, whereas the UML class Building provides
only one attribute which combines all these pieces of information. Thus, the structure regarding
the address information differs between the two UML classes, the semantics, however, is identical.
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Figure 3.5: Example of structural, schematic and semantic heterogeneity

Schematic heterogeneity is often considered a special case of structural heterogeneity. Schematic
heterogeneity occurs when different metamodel concepts are used for modelling the same kind of
information. However, it is not always possible to separate structural from semantic heterogeneity,
often both types of heterogeneity coincide. As regards the example in figure 3.5, the UML class
Facility defines the two attributes residential and commercial for being able to classify a building as
residential or as commercial building (UML metaclass Property), whereas the UML class Building
makes use of corresponding enumeration literals defined in the enumeration BuildingType (UML
metaclass Enumeration). A third possibility would be to define two separate UML classes, the first
one named ResidentialBuilding and the second one named CommercialBuilding, in order to express
the desired information (UML metaclass Class). The use of these different metamodel concepts
results in schematic differences in the depicted UML classes, but at the same time also in structural
differences.

• Semantic heterogeneity: Semantics deals with the meaning, i. e. interpretation, of the modelled
information (cf. section 2.2.1, page 9). This type of heterogeneity occurs, amongst others, when
the information defined in two models has been given a different name, but has the same meaning
(synonym), or when the information is named identically, but its meaning differs (homonym). An
example for semantic heterogeneity in the form of a synonym is given in figure 3.5. The UML
class on the left side is named Facility, whereas the UML class in the middle is named Building.
Both UML classes, however, have the same meaning and model the same kind of information. An
example for a homonym is the word bank which denotes, on the one hand, a financial institution
and, on the other hand, the shore of a river. A correct interpretation of the modelled information
requires knowledge about the area of application the model was defined for. Geospatial data models
are, thus, often accompanied by a feature catalogue which provides a more detailed description of
the modelled information in order to prevent its misinterpretation by the data model user.

In geographic information science literature, heterogeneities are defined similarly, distinguishing
between system (Sheth 1999; ISO 2014), syntactic, structural/schematic and semantic heterogeneity
(Bishr 1998; Sheth 1999; ISO 2014). However, the terminology can vary; for instance, the definition
for syntactic heterogeneity given in (Bishr 1998) rather refers to data model heterogeneity according
to the above description. Furthermore, an aspect specific to geographic information is mentioned
there, namely that heterogeneity can also occur with respect to the geometric representation of spatial
objects as raster or vector data, which also belongs to data model heterogeneity. In fact, the geometric
representation rather would require an examination of its own since this topic contains many more
aspects than simply a division in raster and vector data. Considering vector representation alone,
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objects can be modelled in different levels of detail; a building, for instance, could be modelled
geometrically as point, as polygon or as solid. For representing solids, in turn, various modelling
paradigms exist, such as Boundary Representation (B-rep), Constructive Solid Geometry (CSG) or
scene graphs (Nagel et al. 2009).

3.2.2 Types of transformation in the context of information integration

The different types of heterogeneity described above require different types of transformation to
achieve information integration. Figure 3.6 depicts the relationship between the different types of
heterogeneity and the different types of transformation resulting therefrom. The following types of
transformation exist:
• Syntactic transformation: This type of transformation changes the syntax of the data; this means

that a conversion between different data (transfer) formats is conducted which can also involve a
conversion between different data models (modelling paradigms). An example is the transformation
of data provided in a database or as Shapefile (ESRI 1998) document (Relational paradigm) into a
GML document (XML/OO paradigm), which e. g. is the case when requesting data from an OGC
Web Feature Service (WFS). By means of syntactic transformation, technical, syntactic and data
model heterogeneity can be solved.

• Semantic transformation: This type of transformation modifies the structure of the data in such a
way that it complies to the semantics of a different data model. Semantic transformation solves
structural/schematic and semantic heterogeneity issues. An example is the transformation between
the classes Facility and Building from figure 3.5. According to the level at which the transformation
is defined, semantic transformation can be further classified into format-driven, format-schema-
driven and model-driven transformation (cf. section 3.3.2, page 39, for their detailed description).

Structural/Schematic heterogeneity

Data model heterogeneity

Semantic heterogeneity

Syntactic heterogeneity

Technical heterogeneity

Syntactic transformation

Semantic transformation

Format-driven transformation

Format-schema-driven transformation

Model-driven transformation

Figure 3.6: Relationship between the different types of heterogeneity and transformation

In geographic information science literature, also a classification into three types of transformation can
be found which extends the above classification by a so-called schematic transformation such as in
(Lehto 2007b). In this case, the semantic transformation solely deals with the semantic heterogeneity
aspects, whereas the schematic transformation focuses on the schematic heterogeneity aspects.

By means of information integration source data compliant to the structure and semantics of the
source model(s) are transformed into target data compliant to the structure and semantics of the target
model. Two types of information integration exist, virtual integration and materialised integration
(Leser and Naumann 2007). Using virtual integration, the transformed data are not stored permanently
in the target system; each time, a user requests transformed data, the transformation has to be executed
anew. Materialised integration, in contrast, means that the transformed data are stored permanently in
the target system (cf. section 3.3.2, page 39, for their use in the geospatial domain).
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Information integration can be divided into two phases, the configuration phase and the execution
phase. The configuration phase is also referred to as schema mapping. Schema mapping deals with
relating elements of the source and target models by means of correspondences; in this phase the
transformation definition is created. Afterwards, the execution phase follows which carries out the
transformation based on the previously defined transformation definition (Lehto 2007b).

In the context of information integration the source models are usually called local schemas, whereas
the target model is referred to as global schema (Lehto 2007a). The global schema shall contain all
concepts of the different local schemas (Leser and Naumann 2007). Another term commonly used is
view. In contrast to the global schema, a view usually contains only those pieces of information from
the data model which are of interest to a user in the context of a certain area of application (Kemper
and Eickler 2013).

Data warehouses represent a system with materialised integration. The process of integrating data
from one or several source systems into a data warehouse is referred to ETL, which is an acronym
for Extract, Transform, Load. The process involves the following steps: (1) Extraction of the data
from the relevant source systems, (2) transformation of the extracted data such that they are compliant
to the schema of the data warehouse and (3) loading and storage of the transformed data in the data
warehouse (Leser and Naumann 2007). In the geospatial domain also the term Spatial ETL exists;
Spatial ETL denotes ETL processes which involve the integration of geospatial data (Safe Software
2015c).

3.3 Model-driven transformation in the geospatial domain

Model-driven transformation of geospatial data as used in the geospatial domain is based on the
concepts of model transformation and information integration presented above in this chapter. The
model-driven transformation of geospatial data occurs in two different forms, as vertical transformation
to execute encodings and as horizontal transformation to perform information integration. Both forms
are presented in the following.

3.3.1 Encoding of geospatial data as defined in the standard ISO 19118

The term encoding as defined in the standard ISO 19118 Geographic information — Encoding (ISO
2011) denotes the process of transforming system-dependent data structures conforming to a specific
application schema into system-independent data structures suitable for transfer and storage. Encoding
is required for enabling the transfer of data between heterogeneous systems. ISO 19118 defines a
concept for how to transfer data between two systems which is displayed in figure B.1, page 175.
The concept assumes that the semantic structures of the data from the source and target systems are
defined by internal schemas and that also the syntactic structures of the data are defined internally
by the source and target systems. To enable data transfer, the data from the source system have to
be transformed in such a way that, on the one hand, their semantics conforms to the semantics of
a specific external schema, called application schema (cf. section 2.3.2, page 14), and that, on the
other hand, their syntax conforms to a certain system-independent data transfer format suitable for
exchanging data between different systems and whose structure is defined by a data transfer format
schema.

The transformation is defined by a so-called encoding rule which is ‘an identifiable collection of
conversion rules that defines the encoding for a particular data structure’ (ISO 2011). Each encoding
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rule consists of schema conversion rules which define a transformation between the application schema
and the data transfer format schema and of instance conversion rules which define a transformation
between instances from the source system and corresponding instances in the data transfer format.
Focusing on the individual transformations, the complete workflow of data transfer is composed of
the following steps as is also depicted in figure 3.7:
1. Transformation TAT of the application schema into a data transfer format schema which defines

the structure of the data transfer format for the data to be transferred.
2. Transformation TIA of the system-dependent source data dsourceI whose semantics is compliant to

the internal schema of the source system into system-dependent source data dsourceA such that their
semantics conforms to the semantics of the application schema. This is a semantic transformation;
the syntax of the data still conforms to the syntax of the source system.

3. Transformation TSDSI of the system-dependent source data dsourceA into system-independent
transfer data dtransferA such that not only the semantics of dsourceA conforms to the semantics
of the application schema, but that also their syntax conforms to the syntax of the chosen system-
independent data transfer format. This is a syntactic transformation; the semantics is not altered.

4. Transfer of the data from the source system to the target system.
5. Transformation TSISD of the system-independent transfer data dtransferA into system-dependent

target data dtargetA such that their syntax conforms to the syntax of the target system. This is
a syntactic transformation; the semantics are not modified, which means that dtargetA remains
compliant to the semantics of the application schema.

6. Transformation TAI of the system-dependent target data dtargetA whose semantics is compliant to
the application schema into system-dependent target data dtargetI such that their semantics con-
forms to the semantics of the internal schema of the target system. This is a semantic transformation;
the syntax remains unchanged.

The schema conversion rules are executed by the transformation TAT , the instance conversion rules by
the transformations TSDSI and TSISD. The transformations TIA and TAI are not part of the encoding
rule, they represent internal processes within the source and target systems, respectively.

Internal schema

Source system Target system

Application schema Internal schema

compliant to

dsourceI dsourceA dtransferA dtargetA dtargetI

TIA TAITSDSI TSISD

Data transfer format schema

compliant to

TAT

compliant to compliant to compliant to compliant to

Data transfer

Figure 3.7: Required transformations during ISO-19118-based data interchange between two systems

The application schema and the system-independent data transfer format enable both systems to
interpret the semantics and the syntax of the data in the same way. According to the standard ISO
19118, applications schemas are to be defined using UML in compliance with the standards ISO/TS
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19103 and ISO 19109. A widely used data transfer format for geographic information is the Geography
Markup Language (GML), an XML-based language for modelling, transferring and storing geospatial
information, which is defined by the standard ISO 19136 together with an encoding rule for mapping
UML application schemas to GML application schemas (cf. section 5.3, page 86). Other commonly
used transfer formats are, for instance, Shapefile, GeoJSON, KML, GeoTIFF or CityGML (Portele
2012a).

As regards the MDA approach described in section 3.1.2, page 29, the transformation TAT , which
comprises the schema conversion rules, corresponds to a direct PIM→ PM transformation; it does
not generate a PSM as intermediate step in the encoding process, as is shown in the left part of figure
3.8. The encoding rule for this transformation is defined between the concepts of the application
schema language and the concepts of the data transfer format schema language. The encoding rule
does not refer to a specific application schema, allowing in this way for defining the encoding rules
application-schema-independent such that they ‘can be used for different application schemas as long
as the schemas are defined in the same conceptual schema language’ (ISO 2011) and as long as the
same data transfer format schema is used. However, to be able to transform directly from a PIM into a
PM, the PIM either already needs to include all platform-specific aspects, which means the PIM is not
entirely platform-independent any more, or the encoding rule needs to cover all aspects – from the
transformation definition between PIM and PSM to the conversion rules between PSM and PM – to
be able to bypass the PSM.

Implementation 

schema

Application schema

Data transfer format schema

Transformation 

definition

PIM

PSM

PM

Encoding rule

Figure 3.8: ISO-19118-based encoding of
application schemas in the context of the
MDA approach

To comply with the PIM → PSM → PM trans-
formation approach defined by the MDA framework,
the transformation TAT can be extended by making
use of an implementation schema (cf. section 2.3.3,
page 16) as intermediate step in the encoding pro-
cess, which is depicted in the right part of figure 3.8.
The implementation schema represents the PSM and,
thus, includes all platform-specific aspects of the data
transfer format schema to be generated. In this way,
first a PIM→ PSM transformation between the ap-
plication schema and the implementation schema is
executed, followed by a PSM→ PM transformation
to generate the data transfer format schema from the
application schema. This approach is applied in Ger-
many for deriving the German data transfer format
schema NAS from the German AAA reference model
(AdV 2009).

When creating schema encoding rules using either
of the above approaches, attention has always to be paid to the semantics defined by the application
schema of the data to be transferred. During the encoding process this semantics is not allowed to be
changed neither in the implementation schema nor in the data transfer format schema, the schemas
are only allowed to be complemented by platform-specific details.

The transformation TSDSI , which comprises the instance conversion rules, corresponds in terms
of MDA to a PM→ PM transformation. Since the source data dsourceA are already compliant to the
semantic concepts of the transfer data dtransferA (cf. figure 3.7), the transformation solely needs
to convert the data instances from a system-dependent syntactical representation into a system-
independent syntactical representation and, thus, represents a syntactic transformation. The same
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holds for the transformation TSISD. ISO 19118 states that for a successful data transfer the source
and target system have to agree on an application schema, an encoding rule and a transfer protocol.
However, as regards the encoding rule to decide upon, the agreement only needs to cover the schema
conversion rules for generating the required data transfer format schema. The instance conversion
rules are specific to the source and target systems the data are stored in. The target system does not
need to be aware of the instance conversion rules required by the source system, as they are of no
value to the target system, and vice versa.

3.3.2 Information integration of geospatial data

The process of data interchange presented above transforms data compliant to the internal schema of
the source system into data compliant to the internal schema of the target system. The process involves
the transformation steps TIA and TAI which represent semantic transformations as they transform the
data between schemas with heterogeneous semantics, i. e. between the internal schemas of the source
and target systems and the application schema, and, thus, have to take into account the semantics of
the internal schemas and of the application schema. However, as regards the definition and execution
of these transformations, ISO 19118 only states that ‘this is done by defining a mapping from the
concepts of the internal schema to the concepts defined in the application schema and by writing
appropriate mapping software to translate the data instances’ (ISO 2011). The standard does not give
advice at which level the mapping should be defined; also, the above concept does not consider data
format schemas for the source data dsourceI and the target data dtargetI .

In general, mappings between source and target data can be defined at three different levels, the
data format level, the data format schema level and the conceptual schema level, resulting in a
semantic transformation which can be classified as format-driven transformation, format-schema-
driven transformation and model-driven transformation (Fichtinger 2011; Kutzner, Schilcher et al.
2012), respectively, as is also shown in figure 3.6:
• At the data formal level the mappings are defined between two specific data formats, i. e. a source

data format and a target data format. The transformation tool reads these mappings and transforms
the source data format directly into the target data format. Thus, the transformation which is
executed based on these mappings can also be referred to as format-driven transformation. This is
exemplified by figure 3.9. The data format DFx which is compliant to the source model Msource is
to be transformed into the data format DFy which is compliant to the target model Mtarget. DFx

and DFy can be derived from Msource and Mtarget by making use of the encoding rules ERx and
ERy, respectively, as introduced in the previous section. The mappings between the concepts of
Msource and Mtarget are defined within a transformation definition which directly refers to DFx

and DFy. A transformation tool reads this transformation definition and transforms DFx directly
into DFy. One disadvantage of this approach is that individual transformation definitions need to
be created for each differing combination of source and target data formats since the mappings
are always defined between two specific formats. Another disadvantage is that a modification
of the source and/or target model involves a re-derivation of all corresponding data formats to
remain compliant to their model and, consequently, a readjustment of each transformation definition
individually to match the modified data formats. Furthermore, in addition to knowledge about the
modelled objects itself, knowledge about the data formats is required when defining the mappings
at the data format level.

• At the data format schema level the mappings are defined between specific data format schemas; the
transformation tool uses these mappings to transform the data formats which are based on these data
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Figure 3.9: Format-driven transformation of geospatial data

format schemas. This transformation is also referred to as format-schema-driven transformation.
Apart from defining the mappings one level above the data format level, this approach features the
same characteristics as the format-driven transformation.

• At the conceptual schema level the mappings are defined between one or several source models
and one target model; the transformation tool reads these mappings and executes a transformation
between the corresponding source data format and target data format. Thus, the transformation
which is executed based on these mappings is referred to as model-driven transformation. Similar
to the general concept of model transformation as described in section 3.1.1, page 27, the mappings
are defined here as well at the conceptual schema level. However, one decisive distinction exists:
The transformation definition used in the general concept of model transformation is defined
between source and target metamodels and determines in which way metamodel concepts used in
the source model are to be transformed into metamodel concepts used in the target model. The
transformation definition used in model-driven transformation of geospatial data, in contrast, is
defined between source and target models and determines in which way the contents of the source
data format compliant to the structure and semantics of the source model(s) are to be transformed
into a target data format compliant to the structure and semantics of the target model. This kind
of transformation is equivalent to the concept of information integration which originates from
the database domain. (Lehto 2007a) also speaks of content transformation. Figure 3.10 displays
the concept. In contrast to the format-driven transformation explained above, the mappings are
now defined within a transformation definition which refers to Msource and Mtarget. Furthermore,
another important aspect is involved in the transformation, i. e. the encoding rules ERx and ERy

for deriving DFx and DFy from Msource and Mtarget of the geospatial data to be transformed. To
be able to transform the geospatial data in a correct way, it is not sufficient for the transformation
tool to know in which way the contents need to be transformed; the transformation tool also
needs to know according to which structure the contents are encoded in the data formats. Thus, a
model-driven transformation of geospatial data can only be transformed in a correct way, when
the corresponding encoding rules are taken into account by the transformation tool during the
transformation. One advantage of this approach is that the transformation definition is defined



3.3 Model-driven transformation in the geospatial domain 41

Source model

Msource

Source metamodel

MMsource

Target model

Mtarget

Target metamodel

MMtarget

reads

compliant to compliant to

Transformation 

language

writesData format

DFx

Data format

DFy

compliant to compliant to

executes
Encoding rule

ERx

Encoding rule

ERy
takes intoaccount

takes into

account

Transformation 

definition

refers to refers to

compliant to

Transformation

tool

Meta-metamodel

compliant to

compliant to compliant to

Figure 3.10: Model-driven transformation of geospatial data (Kutzner and Eisenhut 2010, modi-
fied and extended)

between the source and target models and, thus, only needs to be defined once; yet, an automatic
transformation between various data formats is possible due to the specific encoding rules which
are taken into account by the transformation tool. Furthermore, when the source and/or target model
is modified, only this one transformation definition needs to be adjusted to match the modified
model, in contrast to the format-driven transformation where several transformation definitions
need to be adjusted.

All these three transformation approaches can be applied to transform geospatial data between
data formats compliant to different models. Moreover, the approaches can also be applied to the
transformation steps TIA and TAI , as described in section 3.3.1, page 36, to transform geospatial data
between the internal schemas of the source and target systems and the application schema.

Model-driven transformation of geospatial data can be implemented in two different ways, on-
the-fly and off-line. On-the-fly transformation is equivalent to virtual integration, whereas off-line
transformation corresponds to materialised integration (cf. section 3.2, page 32). The decision regard-
ing which of the two approaches should be used depends on various criteria, such as on the application
itself, on the complexity of the models and on the user requirements (Eisenhut, Illert et al. 2010):
• On-the-fly transformation: This transformation is executed whenever the user requests transformed

data; thus, on-the-fly transformation is suited in particular when the actuality of the transformed
data is of crucial importance. Another advantage of this approach is that the data can be transformed
into any target model directly at request time. However, the performance of the transformation
might be affected when huge amounts of data have to be transformed or when the transformation
by itself is very complex due to substantially differing source and target models (Eisenhut, Illert
et al. 2010). Since the user requests data which conform to the target model, the user always defines
the request according to the semantics of the target model. The transformation tool, however,
requires the request conforming to the semantics of the source model, which is why the request
first has to be translated by the transformation tool into the semantics of the source model, before
the transformation can be carried out. On-the-fly transformation can be executed by the data



42 3 Fundamentals of model-driven transformation of geospatial data

provider, but it can also by provided by means of external, third-party transformation tools such as
transformation network services.

• Off-line transformation: This transformation is executed in advance, i. e. independent from whether
the user requests data. The transformed data are stored in a database (also referred to as staging
database) and the user sends the request directly to the database and also receives the transformed
data from there. No transformation needs to be executed at the time of the user request and,
thus, the request does not need to be translated into the semantics of the source model by the
transformation tool. Off-line transformation is always an internal process on the part of the data
provider. Off-line transformation is considered to be more suitable for complex models involving
complex transformations in order to satisfy obligatory performance requirements since at the time
of the request the transformation has already been executed and, thus, no performance loss will
occur. However, since the transformation is only executed at certain intervals and then stored in a
database, the actuality of the transformed data cannot be guaranteed.

3.4 Transformation languages – the medium for defining
transformations

As explained above, model transformation involves transformations between source and target
metamodels, whereas information integration results in transformations between source and tar-
get models. This means that two different types of transformation definitions have to be created using
suitable transformation languages; on the one hand, a transformation language able to cope with
metamodels is required and, on the other hand, a transformation language able to cope with models.
In the following, two transformation languages will be presented in detail, ATL as a representative
of transformation languages suitable for model transformation and UMLT as an example of trans-
formation languages suitable for information integration. Both languages will be employed later in
this thesis. In addition, four more transformation languages used in various projects in the geospatial
domain (cf. section 4.3.1, page 63) will be introduced shortly, QVT as another representative belonging
to the first category, RIF and EDOAL/gOML as further examples belonging to the second category
and XSLT as a language which is applicable to both categories.

In the same way as modelling languages serve in defining models, transformation languages serve in
defining transformation definitions between models. Transformation languages are formal languages
and, thus, exhibit the same characteristics as modelling languages (cf. section 2.2.1, page 9). In
addition, transformation languages can be classified according to various other characteristics, too,
such as the type of model transformation a transformation language can be applied to (e. g. horizontal
or vertical, uni- or bidirectional, cf. section 3.1.1, page 27). Another important classification criterion
is based on two paradigms used for categorising programming languages, the declarative paradigm
and the imperative paradigm. Transformation languages following the declarative paradigm ‘focus on
what needs to be transformed into what by defining a relation between the source and target models’
(Mens and Gorp 2006), whereas transformation languages based on the imperative paradigm ‘focus
on how the transformation itself needs to be performed by specifying the steps that are required to
derive the target models from the source models’ (Mens and Gorp 2006). Transformation languages
can also realise a hybrid approach which takes into account both paradigms.

The transformation languages presented here will be put in the context of these various classification
criteria to provide some orientation; however, no evaluation based on these criteria will be conducted,
as this would involve a by far more detailed analysis of transformation languages in general which is
beyond the scope of this work.
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3.4.1 ATL – A transformation language for model transformation

A Request for Proposal: MOF 2.0 Query / Views / Transformations RFP (OMG 2002) was issued by
the OMG in 2002 to receive proposals for a transformation language which is based on MOF and which
follows the MDA approach. ATL (Atlas Transformation Language) was one of the proposals submitted.
Although it was not adopted by the OMG as transformation language specification, ATL is widely-used
today. An open-source implementation of ATL is available as plug-in for the integrated development
environment (IDE) Eclipse (The Eclipse Foundation 2015a). The transformation approach used by
ATL is compliant to the concepts presented in sections 3.1.1, page 27, and 3.1.2, page 29, on model
transformation and MDA. This means that the source and target models involved in the transformation
have to be compliant to MOF-based metamodels and that also the ATL metamodel itself is based on
MOF. ATL, thus, corresponds to the OO paradigm. The following description of ATL is based on
(Jouault and Kurtev 2005; The Eclipse Foundation 2015b).

ATL is a hybrid transformation language, i. e. it provides declarative and imperative constructs for
creating transformation definitions. However, transformations should primarily be specified using
declarative constructs, imperative constructs should only be used for definitions which are difficult
to express in a declarative way. ATL transformations are defined in a textual concrete syntax. The
data types and declarative expressions of the ATL language are based on the OCL specification. ATL
makes use of the OCL primitive types and collection types and implements a large number of OCL
data type operations, but also defines additional data types and operations.

ATL provides three different units to compose an ATL transformation: transformation modules,
queries and libraries. The main component of an ATL transformation is the transformation module; it
defines the actual transformation definition between source and target models. Each transformation
module specifies within a header the source and target models which participate in the transformation.
Listing 3.1 provides an example of such a transformation module named AAA2Core. The listing is an
excerpt from an ATL transformation defined for transforming the German AAA reference model to
which the AAA UML profile (cf. section 5.5.1) is applied into a model with equivalent definitions,
but to which the Core UML profile from section 6.3, page 123, is applied.

Listing 3.1: Example ATL transformation module

-- Header
module AAA2Core;
create OUT: UML2 from IN: UML2, COREPROFILE: UML2, STANDARDPROFILE: UML2;

-- Library import
uses "lib::UML2";
uses UML2Copy;

-- Helper
helper context UML2!Element def: hasStereotype(name: String): Boolean =

not self.getAppliedStereotype(name).oclIsUndefined();

-- Matched rule
rule CodeList2Enumeration {

-- Source pattern
from

s: UML2!"uml::Class" in IN (
s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’thecustomprofile::codeList’)

)
-- Target pattern
to

t: UML2!"uml::Enumeration" (
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name <- s.name,
ownedLiteral <- s.ownedAttribute -> collect(e | thisModule.Property2EnumerationLiteral(e))

)
-- Action block
do {

t.applyStereotype(’CodeList’.stereotype());
}

}

-- Lazy rule
lazy rule Property2EnumerationLiteral {

-- Source pattern
from

s: UML2!"uml::Property"
-- Target pattern
to

t: UML2!"uml::EnumerationLiteral" (
name <- s.name + ’=’ + s.defaultValue.value

)
}

The keyword create denotes the target model to be created, the keyword from denotes the source
models to be transformed. The models are specified as attributes followed by their type, i. e. the
metamodel they are instances of. In the example in listing 3.1, the target model OUT is to be created
from the source models IN, STANDARDPROFILE and COREPROFILE. All models are instances of
the UML 2 metamodel. The latter two models represent UML profiles which are applied to the source
and target models, respectively; they have to be provided to the ATL transformation as separate source
models.

Furthermore, each transformation module defines transformation rules; two types of transformation
rules exist in ATL, matched rules and called rules. Matched rules are mainly declarative and are used
to match model elements from the source model, and to create from these matched model elements
the specified model elements in the target model. Called rules, in contrast, can be used to create target
model elements using imperative code; they are only executed when called from an imperative code
block. Imperative blocks can be defined within the action block of matched rules (see below) or within
the body of called rules. Rules can also be marked as abstract and then be extended by other rules.

Matched rules are classified into standard rules, lazy rules and unique lazy rules. Standard rules are
executed automatically when the ATL transformation definition is processed, whereas lazy rules and
unique lazy rules are only executed when called by another matched rule. Above that, unique lazy rules
differ from lazy rules in that they are only executed once and, thus, always deliver the same created tar-
get element, even when called repeatedly. The ATL transformation in listing 3.1 contains two matched
rules, the standard rule CodeList2Enumeration as well as the lazy rule Property2EnumerationLiteral.
The rules transform model elements which are instances of the UML metaclass Class into model
elements which are instances of the UML metaclass Enumeration. The XMI representation of a
corresponding source model element to be matched is displayed in listing 5.1, page 78, the XMI
representation of the target model element generated after applying the ATL transformation is shown
in listing 5.2, page 82.

Every matched rule consists of a source pattern and a target pattern. The source pattern defines
the elements of the source model to be matched. The pattern starts with the declaration of a source
variable whose type is the type of the source model elements to be matched, and is optionally followed
by a guard in the form of a boolean expression which can be used to filter the source model elements.
The source pattern is indicated by the keyword from. In the example in listing 3.1, a source variable s
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of the UML type Class is declared, thus, only source model elements which are instances of the UML
metaclass Class are matched. The keyword in is used to specify that only model elements from the
source model IN are to be considered; furthermore, an additional guard restricts the matching to those
UML class elements the stereotype «codeList» is applied to.

The target pattern defines the target model elements to be generated; it is denoted by the keyword to.
This pattern starts with the declaration of one or more variables which are of the type of the target model
elements, and is followed by one or several bindings which refer to the variables declared beforehand
and which specify how the features of these types are to be initialised. A feature of a type can be an
attribute, a reference or an association end. A binding has always the form featureName <- exp, the
left part defining the feature to be initialised, the right part specifying the expression to be applied for
initialisation. In the example in listing 3.1, a target variable t of the UML type Enumeration is declared;
this means that target model elements which are instances of the UML metaclass Enumeration are
to be generated. The features of the UML metaclass Enumeration to be initialised are the attribute
name and the association ownedLiteral. They are initialised with values from the attribute name and
the association ownedAttribute of the UML metaclass Class, respectively.3 Since the association
ownedLiteral is of the type EnumerationLiteral and the association ownedAttribute is of the type
Property, both of them exhibiting their own features, the lazy rule Property2EnumerationLiteral needs
to be called. This rule specifies that the attribute name of the UML metaclass EnumerationLiteral is to
be initialised with the values from the attribute name and the association defaultValue4, both being
features of the UML metaclass Property, in the form name=value (cf. section 7.3.1, page 144).

A matched rule can optionally contain a third section, the action block, which starts with the
keyword do. Within this section, imperative statements can be defined. These statements are executed
after the target model elements specified in the to section have been initialised. This section can, for
instance, be used to modify previously initialised features or to initialise features which have not been
initialised in the to section. In listing 3.1 the rule CodeList2Enumeration uses the do section to apply
the stereotype «CodeList» to each model element initialised by the rule.

In addition to rules, an ATL transformation can also contain helpers which are methods defined by
the user. In the example in listing 3.1 the helper hasStereotype is specified. It takes a stereotype name
as parameter and checks if the stereotype is applied to the source model elements for which the helper
is called. Furthermore, also attributes can be defined by the user.

The other two kinds of units provided by ATL are queries and libraries. Queries allow for querying
source models; the result of such a query is always of a primitive data type, i. e. a Boolean, Integer,
Real or String type. Libraries can be used to define reusable ATL code, such as rules and helpers,
externally and import them into another ATL unit as required. Also in listing 3.1 a library is imported,
called UML2, which provides additional helpers.

Furthermore, the transformation module UML2Copy (Wagelaar 2010) is imported. This module
provides transformation rules for every metaclass in the UML 2 metamodel by simply copying
the source model elements into corresponding target model elements. By using the UML2Copy
module in addition to the AAA2Core module defined in listing 3.1, a technique referred to as
module superimposition (Wagelaar 2008) is applied. Module superimposition means that several
transformation modules are superimposed on top of each other and are executed as one unified

3 All UML metaclasses inherit the name attribute from the UML metaclass NamedElement. For the definition of the
associations ownedAttribute and ownedLiteral please refer to figures A.2 and A.3 in appendix A, page 171, respectively.

4The association defaultValue does not contain the required value itself. The association is of the type ValueSpecification
which contains the attribute value; this attribute holds the actual value which is why the ATL expression needs to be written
as s.defaultValue.value and not simply as s.defaultValue.
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transformation module. In this way, a base module can be extended by providing additional rules as
part of a superimposing module, which holds for the rules defined in the example in listing 3.1. In
addition, by naming rules in the superimposing module identically to existing rules in the base module,
the existing rules can be overridden; thus, the model elements affected by the superimposed rules in
listing 3.1 are not just copied from the source to the target model but transformed in the defined way.

3.4.2 UMLT – A transformation language for information integration

In the context of the research project mdWFS (cf. section 4.3.3, page 67) the transformation language
UMLT (UML Transformations) has been developed to meet the needs of creating transformation
definitions for performing information integration tasks between source and target models at the
conceptual schema level (Staub 2007; Staub et al. 2008; Staub 2009; Donaubauer, Kutzner et al. 2010;
Fichtinger 2011). UMLT represents a first-class extension (cf. section 2.4.1, page 19) of the UML
specification as it extends the UML 2 metamodel, in particular metaclasses related to UML 2 Activities,
by additional metaclasses, allowing in this way for specifying transformation definitions using UML 2
activity diagrams and, thus, based on a graphical syntax. In addition, a textual syntax in the form of a
Human-Usable Textual Notation (HUTN) was developed for UMLT which is derived from the Swiss
modelling language INTERLIS (KOGIS 2006). The HUTN syntax makes it easier for users to define
UMLT transformation definitions. Furthermore, UMLT diagrams can also be represented in the form
of the transfer format XMI which helps making the transformation definitions machine-interpretable
and allows for providing them to transformation tools to execute the transformations defined between
source and target models. To automate the step between the definition of UMLT diagrams and their
representation in the XMI format, a UMLT editor was developed by TUM (Elfouly and Kutzner 2013)
which allows, on the one hand, for drawing UMLT diagrams tool-based and, on the other hand, for
exporting these UMLT diagrams afterwards automatically as XMI documents. UMLT is a hybrid
transformation language, it combines the imperative paradigm of the UML activity diagram with the
declarative paradigm used for the UMLT extension.

Figure 3.11 displays the metaclasses introduced by UMLT; the white-coloured metaclasses are part
of the UML 2 metamodel, the grey-coloured metaclasses belong to the UMLT metamodel. The most
atomic component of a UMLT transformation definition is the AssignmentDefinition which is used to
assign values to attributes of the target model. Values can for instance be constants, attribute values
from the source model, geometries or values calculated by functions (e. g. concatenated attribute
values using a StringConcatenator function, values selected from a value map using a ValueMapper
function or converted geometry types such as a conversion of the type GM_Surface to the type
GM_Line using a PolygonToLineConverter function) (cf. appendix D.4, page 206, for an overview of
currently implemented UMLT functions).

Assignment definitions are grouped within MappingRules which represent the actual transformation
rules between source and target objects. Mapping rules, in turn, are grouped within Transforma-
tionActions. In figure 3.12 an example transformation action containing a mapping rule and several
assignment definitions is displayed. A transformation action extends the UML 2 metaclass Action,
which is defined in the UML specification as a ‘[...] fundamental unit of executable functionality.
The execution of an action represents some transformation or processing in the modeled system [...]’
(OMG 2011c). Furthermore, it extends the UML 2 metaclass OpaqueAction, which is an ‘action with
implementation-specific semantics’ (OMG 2011c). Thus, each transformation action represents an
executable unit of transformation whose semantics is defined by the individual mappings within each
transformation action. The source objects flowing into a transformation action are specified using
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Figure 3.11: Metamodel of the transformation language UMLT; white = metaclasses of UML 2, grey
= metaclasses of UMLT. (Staub 2007, modified to reflect all metaclasses defined in the
UMLT metamodel and all modifications applied to the UMLT metamodel after its initial
publication)

InputPinUMLTs. An input pin UMLT extends the UML 2 InputPin by the possibility of applying
filters to permit only specific source objects to be processed by the transformation action. These filters
are defined by means of SelectionCriteria.

Transformation actions are further structured by grouping them within StructuredTransformations
which, in turn, are grouped within a TransformationActivity. A transformation activity extends the
UML 2 metaclass Activity, which is ‘the specification of parameterized behavior as the coordinated
sequencing of subordinate units whose individual elements are actions’ (OMG 2011c), whereas a
structured transformation extends the UML 2 metaclass StructuredActivityNode, which ‘represents a
structured portion of the activity that is not shared with any other structured node, except for nesting’
(OMG 2011c). Thus, the transformation activity specifies the complete transformation definition
and consists of structured transformations as self-contained action units which are executed in a
coordinated sequence.

Another concept introduced by UMLT is the VirtualAssociation. A virtual association can be used to
associate input objects virtually for the duration of a transformation process in cases where these input
objects are not associated to each other explicitly, but exhibit an implicit relationship which needs to be
utilised to be able to fully execute the transformation. An example for such implicit relationships are
topological relationships, which often are used in geospatial analyses. A virtual association is always
evaluated at run-time. A virtual association is defined between attributes from the input objects by
specifying a logical expression as value of the attribute whereLogicalExpression. A logical expression
can be applied to non-geometric and geometric attributes. For instance, to determine all administrative
units touching certain administrative boundaries, the objects from a class AdministrativeUnit and the
objects from a class AdministrativeBoundary could be associated using a join criterion touches. This
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DKM2INSPIRE

cp_1.geometry := gst_4.ausdehnung 
cp_1.inspireId.localId := StringConcatenator(StringConcatenator(StringConcatenator(

gstdb_3.Katastralgemeindenummer.elements,
gstdb_3.Grundstueckspunkt.elements),
gstdb_3.Grundstuecksstammnummer.elements),
gstdb_3.Grundstuecksunterteilungsnummer.elements)

cp_1.inspireId.namespace := "AT.0002.01.03"
cp_1.label.elements := gst_4.gnr.elements
cp_1.nationalCadastralReference.elements := StringConcatenator(StringConcatenator(StringConcatenator(

gstdb_3.Katastralgemeindenummer.elements,
gstdb_3.Grundstueckspunkt.elements),
gstdb_3.Grundstuecksstammnummer.elements),
gstdb_3.Grundstuecksunterteilungsnummer.elements)

cp_1.areaValue.area.value := gstdb_3.Flaeche
cp_1.areaValue.area.uom.uomSymbol.elements := "m2"
cp_1.referencePoint.gm_point := gnr_1.position
cp_1.beginLifespanVersion.voidReason := "Unpopulated"

cb_1.geometry := PolygonToLineConverter(gst_4.ausdehnung) 
cb_1.inspireId.localId := gstdb_3.Katastralgemeindenummer.elements
cb_1.inspireId.namespace := "AT.0002.01.02"
cb_1.beginLifespanVersion.voidReason := "Unpopulated"

…

MappingRule

AssignmentDefinition

TransformationAction

Figure 3.12: Example UMLT transformation action containing one mapping rule and several assign-
ment definitions

is displayed in figure 3.13 for corresponding classes from the German AAA reference model (the
attribute kg denotes the administrative units, the attribute gg refers to the administrative boundaries).

The metaclasses TransformationValueMap and MapEntry can be used to define value maps consist-
ing of keys and mapped values for attributes from those source and target objects whose values are
defined by enumerations or code lists. An example is given in figure 3.14. The keys denote values
used in the German AAA reference model for classifying administrative boundaries, whereas the
mapped values represent the values used by the INSPIRE theme Administrative Units for categorising
administrative boundaries. Furthermore, by means of the metaclass AssociationBinding, the UMLT
metamodel also allows for specifying how associated objects and association roles of source objects
are treated during the transformation.

Gebietsgrenze_ValueMap

7101=1stOrder

7102=2ndOrder
7103=3rdOrder

7104=4thOrder
7105=5thOrder

7106=6thOrder
kg_1

KG_GG_1

(kg_1.position.touches(gg_1.position)) 
&& (gg_1.artDerGebietsgrenze==7106)

gg_1

Figure 3.13: Example UMLT
virtual association

Gebietsgrenze_ValueMap

7101=1stOrder

7102=2ndOrder
7103=3rdOrder

7104=4thOrder
7105=5thOrder

7106=6thOrder
kg_1

KG_GG_1

(kg_1.position.touches(gg_1.position)) 
&& (gg_1.artDerGebietsgrenze==7106)

gg_1

Figure 3.14: Example UMLT value map

A complete UMLT transformation requires more elements than those defined above. These other
elements, however, can directly be used from the UML 2 metamodel and are, amongst others, the
metaclass OuputPin for defining the objects flowing out of a transformation action or structured
transformation as well as the metaclasses InitialNode and ActivityFinalNode for defining a control
flow, i. e. the sequence in which the individual transformation actions are processed.
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Figure 3.15 exemplifies the use of the different UMLT language elements by defining a trans-
formation definition from the Austrian DKM data model to the INSPIRE theme Cadastral Parcels.
The figure displays the overall transformation definition specified by a transformation activity which
consists of one structured transformation. Within the structured transformation several virtual asso-
ciations are defined. Three different input pins define the source objects flowing into the structured
transformation, and four different output pins specify the objects resulting from the transformation
process. Inside the structured transformation, three transformation actions exist which define the
individual mappings between the source and target objects denoted by the input and output pins
attached to these transformation actions.

DKM2INSPIRE 

DKM2INSPIRE_TrafoActivity 

DKM2INSPIRE_Trafo 

gst_1 

cp_2 
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END 

TransformationActivity StructuredTransformation 

SelectionCriteria 

TransformationAction 

VirtualAssociations 

Figure 3.15: Example transformation definition created using the transformation language UMLT

The detailed mappings for the transformation action DKM2INSPIRE are in part shown in figure 3.12.
Within this transformation action, amongst others, cadastral parcel and cadastral boundary objects are
created (represented by the output pin names cp_1 and cb_1, respectively), by assigning values from
the attributes of the source objects gst_4, gstdb_3 and gnr_1 to the attributes of the target objects.
The first row, for instance, assigns the value from the attribute ausdehnung (extent) to the attribute
geometry, whereas in the second row values from several source attributes need to be concatenated
first using the UMLT function StringConcatenator, before the complete value can be assigned to the
attribute localId. Values do not always need to be taken from source objects; also constant values can
be assigned to attributes, as is shown in the third row for the attribute namespace.

The number of input pins and the number of output pins do not have to be identical, neither for
structured transformations, nor for individual transformation actions. Some objects can be mapped
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directly from one input pin to one output pin; sometimes, however, objects from several input pins are
required to be able to create objects for one output pin and vice versa. In figure 3.12, for instance,
values from all three source objects are used to create cadastral parcel objects. Furthermore, on the
source side of figure 3.15 only cadastral parcel objects are flowing into the transformation (input pin
gst:GST), whereas on the target side cadastral parcel objects and cadastral boundary objects (output
pins cp:CadastralParcel and cb:CadastralBoundary, respectively) are flowing out of the transformation.
Besides mapping the source cadastral parcel objects to the target cadastral parcel objects, also the
cadastral boundary objects can be created from these source cadastral parcel objects by deriving linear
geometries from their polygon geometries using the UMLT function PolygonToLineConverter within
the transformation action DKM2INSPIRE (cf. figure 3.12).

3.4.3 Other relevant transformation languages in the geospatial domain

Besides the two transformation languages presented above, many other transformation languages
exist. Four of them are introduced briefly in the following since they are of importance in the context
of transforming geospatial data as well.

As will be pointed out in section 4.3, page 63, in the analysis of state-of-the-art transformation
approaches of geospatial data, transformation definitions are today still defined predominantly at the
data format (schema) level and not at the conceptual schema level. This might, on the one hand, be
due to the fact that not all available geospatial data are already defined conceptually by means of a
conceptual schema language. On the other hand, it might also be due to the fact that in the geospatial
domain in particular the XML-based transfer format GML is widely-used and, thus, transformations
are conveniently defined at the level of GML documents or GML application schemas, i. e. at the
data format (schema) level – often by means of the transformation language Extensible Stylesheet
Language Transformations (XSLT). XSLT is a W3C standard for transforming XML documents (Kay
2007). By means of XSLT, transformation definitions can be defined at the data format level and since
XSLT version 2.0 to a certain extent also at the data format schema level, which, however, requires
the use of a schema-aware XSLT processor for executing the transformation definitions in a correct
way (Kay 2007). XSLT is a declarative language. XSLT is targeted at the XML paradigm; therefore,
its usage with data formats conforming to other modelling paradigms is possible, but convenient to a
limited extent only. This also holds for the use of XSLT for transforming GML application schemas
which comply to the OO paradigm. GML is based on XML only in so far as for the definition of
GML application schemas the XML syntax is used. As regards the semantics, however, the GML
specification requires that ‘[t]o ensure proper use of the conceptual modelling framework of the
ISO 19100 series of International Standards, all application schemas are expected to be modelled in
accordance with the General Feature Model as specified in ISO 19109’ (ISO 2007), which, in turn,
corresponds to the OO paradigm (cf. section 2.3.2, page 14) (Kutzner and Eisenhut 2010).

Another W3C standard is the Rule Interchange Format (RIF) (Kifer and Boley 2013). RIF is a
formal declarative language for describing rules in the context of the Semantic Web and for exchanging
them between heterogeneous rule systems in the form of XML documents. RIF consists of three
dialects, RIF-Core which provides a core syntax and semantics, RIF Basic Logic Dialect (RIF-BLD)
for defining logic rules and RIF Production Rule Dialect (RIF-PRD) for defining production rules, the
latter two extending the syntax and semantics of RIF-Core. In particular RIF-PRD is recommended in
the Technical Guidance for implementing INSPIRE transformation services as a suitable language for
defining transformation definitions (Howard et al. 2010) (cf. section 4.3.1, page 63). The RIF format
is XML-based, however, similar to GML, only in so far as it uses the syntax of XML. As regards the
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semantics, it corresponds to the RDF paradigm; therefore, it is not considered suitable for specifying
transformation definitions at the conceptual schema level between UML models which correspond to
the OO paradigm (Kutzner and Eisenhut 2010). The RDF modelling paradigm is a W3C Semantic
Web standard of its own. RDF is commonly expressed using XML syntax. Besides, RIF is closely
related to the Web Ontology Language (OWL), another W3C Semantic Web standard. OWL is a
formal language for defining ontologies and uses, amongst others, RDF/XML syntax for representing
ontologies in the form of a transfer format.

The Ontology Mapping Language (OML) is a declarative language which can be used to define
mappings, called alignments, between entities of different ontologies. OML was originally developed
by the Ontology Management Working Group (OMWG). Since then, it has undergone redesign and
reimplementation as well as a renaming into the Expressive and Declarative Ontology Alignment
Language (EDOAL) (Euzenat 2015). EDOAL can be used independently from specific ontology
languages. According to (Reitz, Schäffler et al. 2010), one reason for having chosen OML in the
HUMBOLDT project (cf. section 4.3.1, page 63) was that it cannot only be used with ontologies, but
also with modelling languages such as UML and with data format schemas, such as GML application
schemas or database schemas. However, also EDOAL expresses alignments between ontologies using
RDF/XML syntax and, thus, corresponds to the RDF paradigm just as RIF does, making it not the
best candidate for specifying transformation definitions at the conceptual schema level between OO
UML models as well. Within the HUMBOLDT project, a profile of OML was developed, called
geographic OML (gOML), to be able to represent transformation requirements specific to geospatial
data. This includes, for example, the use of OGC Common Query Language (CQL) expressions to
allow for defining (spatial) filters on the geospatial data to be transformed. Using OML, the complete
transformation definition is represented by an Alignment; the individual transformation rules of the
alignment are referred to as Cells, each cell defining a transformation rule between two Entities, one
source and one target entity, which can be classes, instances, relations or properties. An alignment,
furthermore, references the schemas being mapped and specifies for each schema the formalism, i. e.
the language used for defining the schema (Reitz, Vries et al. 2009).

In contrast to the transformation languages XSLT, RIF and OML, which serve in conducting
information integration, MOF 2.0 Query/View/Transformation (QVT) (OMG 2011a) represents a
set of formal transformation languages which are applied in defining model transformations. The
QVT specification is published by the OMG and defines three different languages, QVT Core, QVT
Relations and QVT Operational Mappings. The Core and Relations languages are declarative and
allow for defining uni- and bidirectional transformations, whereas the Operational Mappings language
is imperative and only supports unidirectional transformations. The Operational Mappings language, in
addition, extends OCL by imperative expressions. The Relations and Operational Mappings languages
can be used jointly, applying a hybrid approach in this way. The Relations language provides a
textual and a graphical syntax, the Core and the Operational Mappings languages only offer a textual
syntax. QVT is based on MOF and corresponds to the OO paradigm. QVT is used within the MDA
architecture (cf. section 3.1.2, page 29) to define horizontal transformations (e. g. PIM→ PIM) as
well as vertical transformations (e. g. PIM→ PSM). This requires the metamodels of the source and
target models to be based on MOF, which holds, for instance, for the UML metamodel and for UML
profiles compliant to the UML profile definition of the OMG; thus, QVT is suitable for defining
transformations between UML models.





4 Modelling and transformation of geospatial data in
the geospatial domain today

After having presented the theoretical background on geospatial data modelling and model-driven
transformation of geospatial data, this chapter focuses on the current situation of developing geospatial
data models and transforming geospatial data as encountered by the author of this thesis in the
geospatial domain today. The first part of this chapter presents various ways of how geospatial data
models are currently used and the most predominant problems arising therefrom. The second part
provides an overview of the various transformation approaches applied in academia and professional
practice.

4.1 State-of-the-art use of conceptual models in the geospatial
domain

When dealing with models, it can be noticed that models are used for pursuing different goals; however,
depending on their intended use, the models have to meet specific requirements. This section discusses
three different categories conceptual models in geoinformation can be classified into (Kutzner and
Eisenhut 2010; Kutzner and Donaubauer 2012).
• Models for communication purposes: One common use of models is to support communication

between people. Putting ideas discussed between people down into writing, in particular in the form
of visual models, can considerably facilitate the communication process and serve in creating a
common understanding about certain perceptions between people, especially between people from
different backgrounds and professions, such as between software developers and GIS experts or
between two GIS experts from different application domains. When using models for communica-
tions purposes, they only need to be machine-readable – provided they exist in electronic form; they
are not yet required to be machine-interpretable as they are interpreted by humans only. Also those
data models, which are widely-used today for modelling geographic information, can be assigned
to this category. The primary task of these data models is to describe the content and structure of
geospatial data for a specific area of application. An example are the application schemas provided
by the INSPIRE data specifications. These models represent a common consensus on the content
and structure of the data to be provided by the European member states. The models are provided
in visual form as UML class diagrams and are easy to understand by everybody familiar with the
concepts of the UML language.

• Models for software development: As described in section 3.1, page 27, model transformation can
be applied to conceptual models to create from them new conceptual models or programming code.
This approach requires the models to be parsable and processable by a transformation tool; thus,
the models need to be defined in such a way that they are machine-interpretable. However, not
only new models or software can be derived from existing models, but also data (transfer) format
schemas; in this case the model transformation is also referred to as encoding (cf. section 3.3.1,
page 36). In geoinformation, encoding is, for instance, applied to the application schemas of the
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INSPIRE data specifications. The application schemas are defined as UML class diagrams from
which GML-based data transfer format schemas are derived automatically using an encoding tool;
thus, the INSPIRE data specifications can be classified into this category of models. This category
also includes application schemas which cannot directly be transformed into data (transfer) format
schemas, but which require the creation of an implementation schema (cf. section 2.3.3, page 16)
as intermediate step. Regarding the application schemas considered in this thesis, this holds for the
German AAA reference model.

• Models for controlling run-time systems: Models belonging to this category are charged with
controlling the execution of a system. In the context of model transformation all transformation
definitions which are specified using a formal transformation language can be classified into this
category, as these transformation definitions represent models themselves. The transformation tool
is the run-time system which interprets the transformation definition and automatically executes the
transformation in a controlled way based on the transformation rules defined in the transformation
definition. To be able to control the execution of the transformation tool, transformation definitions
have to be fully machine-interpretable. Examples for this kind of models are the transformation
definitions created using the transformation languages ATL (cf. section 3.4.1, page 43) and UMLT
(cf. section 3.4.2, page 46) as part of the mdWFS project (cf. section 4.3.3, page 67) and of the
project the use case of this thesis is based on (cf. section 7.1, page 139), as well as the transformation
languages RIF and OML (cf. section 3.4.3, page 50) used in other transformation projects in the
geospatial domain (cf. section 4.3.1, page 63).

4.2 Problems arising from the state-of-the-art use of conceptual
models in the geospatial domain – a critical review

Several problems arising from the way conceptual models are currently defined and used in the geospa-
tial domain have been identified when trying to apply the approach of model-driven transformation of
geospatial data (cf. section 3.3.2, page 39) to the transformation of geospatial data conforming to the
German AAA model, the Austrian DKM model, the Swiss MOpublic model, the Swiss GG25 model
and the CityGML model into geospatial data conforming to the European INSPIRE data specifications
as well as from the Swiss SwissNames model to the European EGN model1. These transformations
were carried out as part of those research projects the author of this thesis was involved in and which
are listed in section 1.1, page 2.

The problems can be classified into three categories and are presented as follows (in part based
on (Kutzner and Eisenhut 2010; Kutzner and Donaubauer 2012)): Problems related to the modelling
language used (sections 4.2.1.1 – 4.2.1.4), problems related to the encoding rule used (sections 4.2.2.1 –
4.2.2.2) and problems related to the models defined (sections 4.2.3.1 – 4.2.3.2).

4.2.1 Problems related to the modelling language used

4.2.1.1 Semantic modification of the UML specification

Some of the above mentioned UML models exhibit a semantic modification of the UML specification,
which means they are not fully conforming to the UML specification any more and, thus, are not
completely machine-interpretable. Semantic modification of the UML specification applies, for

1Please refer to the list of acronyms for the meaning of the acronyms denoting the data specifications.
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instance, to the stereotypes «CodeList» and «Union» defined in the standard ISO/TS 19103 (ISO
2005c) (cf. section 5.1, page 76). According to the UML profile definition, stereotypes are only
allowed to extend existing UML metaclasses in such a way that the concepts defined by the UML
metamodel remain unchanged (cf. section 2.4.1, page 19). The stereotypes «CodeList» and «Union»,
however, cause a semantic modification of the UML metaclass Class which leads to a first-class
extension of the UML metamodel itself, to the effect that the standard ISO/TS 19103 defines a new
modelling language, which uses the syntax of UML, but exhibits a semantics of its own. The same
problem applies to all UML models which are based on the standard ISO/TS 19103, in particular the
German AAA reference model and the INSPIRE data specifications, as they use these semantically
modified concepts as well. Another semantic modification of the UML specification is introduced by
the INSPIRE data specifications, by defining the stereotype «voidable» for managing those cases, in
which data providers are not able to provide values for certain attributes.

When processing these UML models for purposes beyond communication using standard UML
tools, problems may occur, since UML models based on a modified UML metamodel might not be
interpretable any more in a semantically correct way (cf. section 2.4.1, page 19). This problem is of
utmost importance, which is why chapter 5, page 75, discusses the above mentioned stereotypes in
detail (cf. sections 5.1.1.1, page 77, and 5.1.2.2, page 83, for the stereotypes «CodeList» and «Union»,
respectively, and section 5.4.1.2, page 102, for the stereotype «voidable») and provides solutions for
how to define the stereotypes semantically compliant to the UML profile definition.

Another example for semantic modification of the UML specification is the Application Domain
Extension (ADE) mechanism introduced by the CityGML specification (Gröger et al. 2012). This
mechanism allows, on the one hand, for extending CityGML with new feature types and, on the other
hand, for enriching existing CityGML feature types with additional application-specific properties.
These new properties are modelled as UML subclasses of existing UML classes within a separate UML
package and, thus, within a separate namespace. The new UML subclasses are assigned the stereotype
«ADEElement» and are named identically to the UML superclasses they extend. Furthermore, the
generalisation relationships between the existing UML classes and the new UML subclasses are
assigned the stereotype «ADE» (van den Brink et al. 2012). During the encoding, the properties from
the UML subclasses are injected into exactly those objects which are instances of the corresponding
UML superclasses, applying a so-called super class strategy. This approach brings about one decisive
advantage: the enrichment of existing CityGML feature types with additional properties can be
represented visually at the conceptual schema level in an easily and clearly understandable way, while
at the data format level the UML subclasses are suppressed from being encoded in the CityGML
instance document as additional, independent objects with identifiers of their own and, thus, with
distinct identities. In this way, each object is represented exactly once in the CityGML instance
document, containing at the same time standard CityGML properties belonging to the object-specific
namespace and additional, application-specific properties belonging to ADE-specific namespaces.
Furthermore, standard CityGML objects can be enriched with application-specific properties from
several ADEs at the same time, turning the CityGML model into an information hub in this way,
which allows for coupling applications from different disciplines (Kolbe 2009).

Figure 4.1 shows an example of using the ADE mechanism. The UML class AbstractBuilding with
the stereotype «ADEElement» is such a UML subclass which extends the equally named CityGML
superclass by properties required for noise immission simulations. The corresponding CityGML
instance is shown in listing 4.1. The properties buildingReflection and buildingReflectionCorrection
which have been part of the UML subclass in figure 4.1 are now part of that building object which
is an instance of the UML superclass. The only difference is that these properties belong to the
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+ class: Code [0..1]

+ function: Code [0..*]

...

«featureType»

Building::AbstractBuilding

+ buildingReflection: CharacterString [0..1]

+ buildingReflectionCorrection: Measure [0..1]

...

«ADEElement»

AbstractBuilding
«ADE»

Figure 4.1: Excerpt from the CityGML Noise ADE (Gröger et al. 2012) defining additional
properties as UML subclass of the UML class AbstractBuilding

ADE namespace (namespace prefix noise), in contrast to the existing CityGML properties class
and function, which belong to the namespace of the CityGML Building module (namespace prefix
bldg), as does the building object itself. Listing 4.2, in contrast, demonstrates what the CityGML
instance would look like without the super-class strategy. The single building object from listing 4.1
is now represented in the form of two distinct building objects; building object building1, which is
an instance of the UML superclass within the object-specific namespace and which contains only
the standard CityGML properties, and building object building2, which is an instance of the UML
subclass within the ADE-specific namespace and which contains not only the ADE-specific properties,
but also inherits the standard CityGML properties from the UML superclass. Although only one
real-world building is to be described by the CityGML instance, this real-world building is represented
by two separate building objects. According to the OO paradigm, each object has its own identity;
since the identifiers of the two building objects differ, they denote, in fact, two different real-world
buildings – a circumstance, which can be avoided by using the super-class strategy.

Listing 4.1: CityGML encoding of figure 4.1 applying the ADE super-class strategy (Gröger et al.
2012)

<bldg:Building gml:id="building1">
<bldg:class>1000</bldg:class>
<bldg:function>2130</bldg:function>
...
<noise:buildingReflection>Fassade</noise:buildingReflection>
<noise:buildingReflectionCorrection uom="dB">3.23</noise:buildingReflectionCorrection>
...

</bldg:Building>

Listing 4.2: CityGML encoding of figure 4.1 without applying the ADE super-class strategy

<bldg:Building gml:id="building1">
<bldg:class>1000</bldg:class>
<bldg:function>2130</bldg:function>
...

</bldg:Building>

<noise:Building gml:id="building2">
<bldg:class>1000</bldg:class>
<bldg:function>2130</bldg:function>
...

<noise:buildingReflection>Fassade</noise:buildingReflection>
<noise:buildingReflectionCorrection uom="dB">3.23</noise:buildingReflectionCorrection>
...

</noise:Building>
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However, one important disadvantage of this approach is that, similar to the stereotypes «CodeList»
and «Union» mentioned above, also the stereotype «ADEElement» causes a semantic modification
of the UML metaclass Class, to the effect that the semantics of the stereotype is understandable
visually, but is not machine-interpretable and, thus, e. g. the creation of CityGML XML Schema
documents using existing UML tools is not possible straight-away. Another disadvantage is that ‘it is
not possible to create an instance diagram where an object instance is shown combining properties
from different ADE’s. The only way to show instance data is on the XML level’ (van den Brink
et al. 2012). Furthermore, it should be noted that the stereotypes are not provided as part of a UML
profile as is required by the UML 2 specification (cf. section 2.4.1, page 19); in fact, these stereotypes
actually require the definition of a specific CityGML UML profile (cf. section 5.5.4, page 111).

4.2.1.2 Use of different UML profiles

In general, each community may define a UML profile of its own and apply it to the UML models
defined within this community, to the effect that a transformation process involving UML models from
different communities might possibly face many different UML profiles. This problem also occurs
in the transformation conducted from the German AAA reference model and the Swiss MOpublic
model to the INSPIRE data specifications. Apart from being based on the standard ISO/TS 19103,
the German AAA reference model and the INSPIRE data specifications define specific UML profiles
which include additional stereotypes (cf. sections 5.5.1, page 108, and 5.4, page 100, respectively).
Furthermore, also INTERLIS provides a UML profile of its own (cf. section 5.5.2, page 109).

The definition of new stereotypes does not seem difficult at first glance, which is why the possibility
of adapting UML to the needs of a specific community may appear very convenient. However, the
definition of a new UML profile might be accompanied by consequences one has to be aware of
beforehand. One consequence is the semantic modification of the UML specification described above
in section 4.2.1.1. Each community which defines stereotypes in this way, at the same time also defines
a new modelling language with community-specific semantics which, in turn, poses a problem for
processing the models by means of existing UML tools. Furthermore, community-specific semantics,
be it semantically compliant to the UML specification or not, can result in difficulties regarding
the transformation between UML models in a cross-community environment. For this reason, this
problem will be addressed in detail as part of the following chapters.

4.2.1.3 Use of different UML versions

The standard ISO/TS 19103 is based on UML version 1.4.2 and, thus, each UML model which
is defined compliant to the standard ISO/TS 19103 shall make use of UML version 1.4.2 as well
(ISO 2005c); this holds e. g. for the German AAA reference model (cf. section 5.5.1, page 108). An
exception to this provide the INSPIRE data specifications which are based on the standard ISO/TS
19103 as well, but for which explicitly the use of UML version 2.1 is specified (JRC 2014a). Besides,
since the standard ISO/TS 19103 is currently under revision, UML models which will based on the
revised standard might in future use UML version 2.4.1 (ISO 2013a) (cf. section 5.1.3, page 85).
Furthermore, other UML models might have to be processed which are not based on the standard
ISO/TS 19103; these UML models are defined according to a specific UML version, too.

In particular the use of UML models based on UML 1 together with UML models based on UML 2
can lead to difficulties in their combined processing. One problem which can appear refers to the
different way of defining and using stereotypes in UML 1 and UML 2. In UML 2 all stereotypes have
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to be defined in the context of a UML profile and tag definitions can only exist as properties of a
stereotype. Furthermore, several stereotypes can be applied to a UML model element. UML 1, in con-
trast, allows stereotypes to be defined and applied to UML model elements without having to specify
them formally as part of a UML profile beforehand; however, only one stereotype can be applied to
a UML model element. Also tag definitions can be added to UML model elements irrespective of
whether a stereotype has been applied to the UML model element or not (cf. section 2.4.1, page 19).

Another example for how the combined use of UML versions 1 and 2 can lead to problems, is
provided by the data types Boolean and Integer. UML 1 does not prescribe the use of specific data
types and also does not offer predefined data types. However, the standard ISO/TS 19103, which is
based on UML 1.4.2, defines several fundamental data types relevant for geographic information such
as Date and Time, Integer and Real, Boolean and Length. UML 2, in contrast, provides four predefined
primitive data types (Integer, String, UnlimitedNatural and Boolean) and, thus, leads to the existence
of a second Boolean and Integer data type. When transforming a UML model which has been defined
compliant to the standard ISO/TS 19103 and, thus, is based on UML 1, into a UML model based on
UML 2, compatibility problems might occur. It has to be clarified prior to the transformation process
how the data types Boolean and Integer are handled in UML 2. This is of particular importance for
the data type Boolean since UML 2 defines for this type the values true and false, whereas ISO/TS
19103 states the values with TRUE = 1 and FALSE = 02. Furthermore, when UML models are to be
defined compliant to the standard ISO/TS 19103, but shall explicitly make use of UML 2, it needs to
be decided prior to starting the modelling process which data types from ISO/TS 19103 and UML 2
are to be employed for modelling.

A further problem which can appear is that in UML 2 some UML metaclasses from which to extend
a stereotype have changed. To assign a stereotype to a UML attribute or association, the stereotype
needs to extend the UML metaclasses Attribute and AssociationEnd in UML 1, whereas it needs to
extend the UML metaclass Property in UML 2.

4.2.1.4 Discrepancy between visual and machine-interpretable representation of
UML models

constraints

{DesignationConstraint}

+ designationScheme: DesignationSchemeValue

+ designation: DesignationValue

+ percentageUnderDesignation: Percentage [0..1]

«dataType»

DesignationType

Figure 4.2: Data type DesignationType from
the application schema INSPIRE Protected
Sites Simple (JRC 2014f)

The conceptual UML models applied in the
transformations are defined in such a way that
they merely represent models for communica-
tion purposes (cf. section 4.1, page 53) and, thus,
only provide for machine-readability, but not
for machine-interpretability, resulting in a dis-
crepancy between the visual and the machine-
interpretable representation of the UML models.

The application schema INSPIRE Protected
Sites Simple (JRC 2014f) provides an example
for this problem. The application schema defines
the data type DesignationType which contains the
attribute designation of the type DesignationValue
(cf. figure 4.2). DesignationValue, in turn, is defined as a code list which is associated to several other
code lists by means of a generalisation relationship (cf. figure 4.3). From a visual point of view it is

2Since UML 2 and ISO/TS 19103 specify the values as enumeration literals, also case sensitivity plays a role here.
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«codeList»

DesignationValue

+ ramsar

«codeList»

RamsarDesignationValue

+ specialAreaOfConservation

+ specialProtectionArea

+ siteOfCommunityImportance

+ proposedSiteOfCommunityImportance

+ proposedSpecialProtectionArea

«codeList»

Natura2000DesignationValue

+ agricultureAndSubsistence

+ civil

+ commemorative

+ commercial

+ communications

+ defence

+ domestic

+ education

+ gardensParksAndUrbanSpaces

+ healthAndWelfare

+ industrial

+ maritime

+ monument

+ recreational

+ religiousRitualAndFunerary

+ settlement

+ transport

+ waterSupplyAndDrainage

«codeList»

NationalMonumentsRecordDesignationValue

+ natural

+ cultural

+ mixed

«codeList»

UNESCOWorldHeritageDesignationValue

+ BiosphereReserve

«codeList»

UNESCOManAndBiosphereProgrammeDesignationValue

+ strictNatureReserve

+ wildernessArea

+ nationalPark

+ habitatSpeciesManagementArea

+ naturalMonument

+ managedResourceProtectedArea

+ ProtectedLandscapeOrSeascape

«codeList»

IUCNDesignationValue

Figure 4.3: Code list DesignationValue with specialising code lists from the application schema
INSPIRE Protected Sites Simple (JRC 2014f)

evident that the attribute designation is to be assigned a value from one of the specialising code lists
of DesignationValue. However, from a machine-interpretable point of view it is not possible to assign
a value to the attribute. According to the definition provided by the UML specification for the UML
metamodel concept Generalization, only the specialising class knows which base class it references
and inherits properties from; the base class does not even know that it is part of a generalisation
relationship: ‘A generalization relates a specific classifier to a more general classifier, and is owned
by the specific classifier’ (OMG 2011c). Thus, a generalisation relationship can be interpreted by
a standard UML tool only from the specialising class to the base class (bottom-up), but not from
the base class to the specialising class (top-down). For this reason, only values from the code list
DesignationValue itself can be assigned to the attribute designation – in this case no value at all, as
the code list does not define any values –, but not from one of the specialising code lists.3

Another example is the data type GeographicalName from the application schema INSPIRE
Geographical Names which is displayed in figure 4.4. The data type defines two attributes of the type
CharacterString. Processing the application schema using a UML tool revealed that two different
types of CharacterString were assigned to the attributes. On the one hand, the attribute sourceOfName
was assigned a CharacterString type defined in the standard ISO/TS 19103. This type is a complex
type, i. e. it does not just represent a value, but it consists of the four attributes size, characterSet,
maxLength and elements, the latter one holding the actual value of the attribute sourceOfName. On
the other hand, the attribute language was assigned a primitive type provided by Enterprise Architect,
the modelling tool used for defining the Protected Sites Simple UML diagram, which is referred to as
EAJava_CharacterString in the XMI representation of the UML diagram.

3Moreover, even the standard ISO 19136 Annex E explicitly does not allow for specifying generalisation relationships
between code lists. Since the INSPIRE Generic Conceptual Model (cf. section 5.4, page 100) recommends defining
INSPIRE application schemas compliant to the standard ISO 19136 E.2.1.1.1-E.2.1.1.4. (JRC 2014a), a second reason
holds why the use of a generalisation relationship is inappropriate here.
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+ spelling: SpellingOfName [1..*]

+ language: CharacterString

+ nativeness: NativenessValue

+ nameStatus: NameStatusValue

+ sourceOfName: CharacterString

+ pronunciation: PronunciationOfName

+ grammaticalGender: GrammaticalGenderValue [0..1]

+ grammaticalNumber: GrammaticalNumberValue [0..1]

«dataType»

GeographicalName

«voidable»

Figure 4.4: Data type GeographicalName from
the application schema INSPIRE Geographical
Names (JRC 2014c)

For being able to process these application
schemas in a machine-interpretable way, it is
necessary that the UML diagrams present the
universe of discourse not only visually in a
correct way, but that also the underlying UML
model is technically modelled in a correct way.
The problems presented here can be solved
by exercising more care during the modelling
process, which requires primarily the model-
ler having to bear in mind a correct use of the
UML specification and of the employed UML
modelling tool when defining UML models.
Only then UML models can be used beyond
pure visual representation for semantic trans-
formations at the conceptual schema level.

4.2.2 Problems related to the encoding rule used

4.2.2.1 Documentation of encoding rules

To be able to derive a data transfer format schema from an application schema, an appropriate encoding
rule is required (cf. section 3.3.1, page 36). The encoding rules of the German AAA reference model
and of the INSPIRE data specifications are documented in (AdV 2009) and (JRC 2014b), respectively,
in an informal way using natural language. To be able to execute an encoding automatically, the
encoding rule is not required to be present in a formal way based on a formal language. An encoding
rule rather needs to be described such precisely using natural language that it can be implemented
unambiguously. Otherwise, there is a risk that the encoding rule is interpreted and implemented
in different ways by different persons. Unambiguously defined encoding rules ensure that they are
executed on every system in exactly the same way without exception.

However, encoding rules might not always be documented. In such cases an encoding rule can be
created, nonetheless, by using a reverse engineering approach, i. e. by deducing the encoding rule
from the application schema and the corresponding data transfer format schema, provided both are
known. As this approach might be error-prone and not be realisable automatically, the transformation
rule should in this case rather be defined directly at the data format schema level, which means that
only a format-schema-driven transformation can be applied, but not a model-driven transformation
(cf. section 3.3.2, page 39). However, to be able to execute the transformation correctly at the data
format schema level, the semantics of both, the source and target application schemas, need to be fully
present in the corresponding source and target data transfer format schemas.

As example the EuroGeoNames project (EuroGeographics 2015) is mentioned here. The EuroGeo-
Names project was originally conducted from 2006 to 2009 and aimed at developing a gazetteer web
service for providing geographical names. Within this project a conceptual schema for a transnational
gazetteer, a database schema and a GML application schema were defined; the corresponding encoding
rules, however, were not documented which resulted in some non-understandable encodings4. For
instance, the UML class SI_LocationInstance defined in the conceptual schema was not present in

4In 2012 a new gazetteer service was implemented which is based on simplified schemas (Latvala et al. 2013). The problems
mentioned in this thesis refer to the original schemas.
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the database schema any more, whereas in the GML application schema the abstract UML class
EGN::LocationInstance became instantiable and UML generalisation relationships between the UML
class EGN::LocationInstance and its UML subclasses were represented as associations.

4.2.2.2 Documentation of transformation definitions for the derivation of
implementation schemas

Sometimes, the application schema is not to be encoded directly as data transfer format schema, but
an implementation schema is to be generated first from the application schema using a corresponding
transformation definition (cf. section 3.3.1, page 36). For the documentation of transformation
definitions the same explanations apply as described above in section 4.2.2.1 for encoding rules; this
means, a transformation definition does not need to be defined formally using a formal language, it only
needs to be described such precisely by means of a natural language that the implementation schema
can be derived unambiguously from the application schema. Furthermore, when the transformation
definition is not documented, one should rather work directly with the implementation schema instead
of trying to deduce the transformation definition from the application schema and the corresponding
implementation schema, provided that the implementation schema completely reflects the semantics
of the application schema. Another possibility would be to define the transformation directly at the
data format schema level, in case not only the transformation definition is not documented, but also
the implementation schema is not provided.

4.2.3 Problems related to the models defined

4.2.3.1 Non-existent application schemas

The use case applied in this thesis (cf. section 7.1, page 139) required the transformation of geospatial
base data from the Austrian DKM to the INSPIRE theme Cadastral Parcels. However, at the time
the project was conducted, no public application schema existed for the source data. The source data
were provided as Shapefile and text file documents whose structure and contents were described in
corresponding data transfer interface documents (BEV 2008a; BEV 2008b). To be able to define a
mapping at the conceptual schema level despite of a missing application schema, the source application
schema needed to be remodelled in a reverse engineering process using UML. The remodelling was
based on the data transfer interface documents and, thus, on the concepts of specific platforms, i. e. the
Shapefile and the text file platforms, with the result that the UML application schema created reflects
the concepts of these platforms.

The MDA approach postulates that a conceptual model is always to be defined in such a way that
the concepts used in the model are independent from a specific platform. However, it can be difficult
to identify the application-specific concepts unambiguously, once the platform-specific aspects are
integrated in a data transfer format. Thus, without any knowledge about the area of application, the
probability of being able to remodel application schemas from data transfer formats free of any errors
is limited. Similarly, a database model might, for instance, include platform-specific optimisations
which cannot be undone without any knowledge about the application-specific concepts forming the
basis of the database model.

Furthermore, when remodelling an application schema using UML it needs to be determined which
UML version is to be used and whether the UML model is to be defined taking into account a specific
UML profile. These decisions should preferably be made in such a way that the problems mentioned
in the sections 4.2.1.2, page 57, and 4.2.1.3, page 57, regarding the use of different UML profiles and
UML versions are avoided.
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4.2.3.2 Representation of spatial attributes

The standard ISO 19109 defines that a feature can contain one or several spatial attributes whose
values are geometrical and topological objects from the standard ISO 19107. Two possibilities for
how to represent spatial attributes in a UML application schema are mentioned there:
• On the one hand, the spatial attribute can be represented as UML attribute of a UML class, the

data type of the UML attribute being a spatial type from the standard ISO 19107. Figure 4.5 shows
an example from the application schema INSPIRE Buildings. The UML class Building defines,
amongst others, the UML attribute geometry3DLoD3 of the complex type BuildingGeometry3DLoD.
This type, in turn, defines the UML attribute geometrySolid whose type is the spatial type GM_Solid
from the standard ISO 19107. This form of representation corresponds to the concept of value
semantics available in the OO paradigm which means here that each feature has to be provided with
a geometry object of its own.

• On the other hand, the spatial attribute can be represented in the form of a UML association between
a UML feature class and a geometry type from the standard ISO 19107. Figure 4.6 depicts an
example from the CityGML application schema. The UML class AbstractBuilding defines, amongst
others, the UML association lod3Solid whose type is the spatial type GM_Solid from the standard
ISO 19107. In the OO paradigm, this form of representation corresponds to the concept of reference
semantics, meaning here that several features can reference, i. e. share, the same geometry object.
In this way also topological relationships between different objects can be modelled, as is explicitly
provided for in the CityGML specification (Gröger et al. 2012). The example in figure 4.6, for
instance, defines that adjacent buildings can share the same wall geometry where they touch each
other. Thus, when using reference semantics, it has to be taken into account that changing the
geometry value for one object will simultaneously change the value for all objects referencing this
geometry.

Although both examples define that a building object can geometrically be represented by a solid
geometry, the use of value and reference semantics can result in UML representations whose underly-
ing spatial semantics differs. This can cause problems when transforming between source and target
models which differ with respect to this semantic representation. When transforming a model based
on reference semantics into a model based on value semantics, shared geometries and topological
relationships from the source model cannot be preserved in the target model.

This problem also applies to the transformation of the CityGML application schema to the INSPIRE
theme Buildings. The reason for this becomes clear, when implementing the UML model excerpts
shown in the figures 4.5 and 4.6 as INSPIRE GML and CityGML instance documents which are
displayed in the listings B.1 and B.2, page 176, respectively). In the CityGML document, the shared
geometry is represented by the geometry with the identifier wallSurface4711. Only the building object
building1 contains this geometry, whereas the building object building2 references this geometry.
In the INSPIRE document, however, the shared geometry from the CityGML document had to be
duplicated and to be listed once in the building object building1 (with identifier wallSurface4711)
and a second time in the building object building2 (with identifier wallSurface0815). Each of these
geometries exhibits an identifier of its own and, thus, represents an independent geometry object of
distinct identity. The information that these two buildings actually share the same wall vanished and
can only be reconstructed by performing suitable spatial analyses on these two building objects. Also,
the topological relationship is not present anymore.
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�

+ geometry3DLoD3: BuildingGeometry3DLoD [0..1]

...

«featureType»

Building

�

+ geometrySolid: GM_Solid [0..1]

...

«dataType»

BuildingGeometry3DLoD

Figure 4.5: Spatial attribute geometrySolid repre-
sented as UML attribute in the application schema
INSPIRE Buildings (JRC 2013)

...

«featureType»

AbstractBuilding

«type»

GM_Solid

*

0..1 lod3Solid

Figure 4.6: Spatial attribute lod3Solid repre-
sented as UML association in the CityGML
application schema (Gröger et al. 2012)

4.3 State-of-the-art transformation approaches of geospatial
data in research and industry

Model-driven transformation of geospatial data was identified as a key interoperability issue in
many SDI-related initiatives and projects conducted during the last 15 years. Besides, a number
of commercial and open-source tools have appeared in this period which allow for transforming
geospatial data. The next two sections provide an overview of the most relevant projects and tools
which address this topic, focusing on the following viewpoints:
• Was a conceptual modelling language used for defining the source and target data models?
• Which transformation language was used for specifying the transformation definition?
• Was the transformation definition specified at the conceptual schema level, at the data format

schema level or at the data format level?
• Which transformation tool was used for executing the transformation?
Afterwards, the mdWFS approach is presented which allows for transforming geospatial data fully
compliant to the concept of model-driven information integration at the conceptual schema level. This
approach and the outcomes of the corresponding research project provided the basis for the research
conducted in the following chapters. The state-of-the-art review is concluded by taking a look at other
relevant works from academia tackling the subject of geospatial data modelling and model-driven
transformation.

4.3.1 SDI-related research and development projects

GiMoDig (Geospatial Info-Mobility Service by Real-Time Data-Integration and Generalisation)
was one of the first EU projects dealing explicitly with the topic of transformation of geospatial
data. Aim of the project was the development of a map service which provides harmonised, cross-
border topographic maps to mobile users by employing real-time integration and generalisation of
heterogeneous source data to allow for displaying maps conveniently on small displays (Afflerbach et
al. 2004). Within the project, a common target model was developed in the form of a feature catalogue
using natural language. Transformation definitions were specified in tabular form between the national
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feature catalogues and the common target model as well as in the form of SQL queries which refer to
the national databases (Illert and Afflerbach 2003). Furthermore, a GiMoDig Integration Service was
implemented prototypically. This service is capable of transforming GML documents compliant to
national GML application schemas into GML documents compliant to a GML application schema
based on the common target model. The transformation definitions for this prototype were defined at
the data format level using the transformation language XSLT (cf. section 3.4.3, page 50) and were
executed using the XSLT processor Xalan (Lehto and Sarjakoski 2004).

The EU project ORCHESTRA (Open Architecture and Spatial Data Infrastructure for Risk
Management) aimed at developing a service-oriented architecture for improving the interopera-
bility between different stakeholders involved in risk management in Europe. The geospatial data
retrievable through the ORCHESTRA architecture are compliant to an information model frame-
work developed as part of the ORCHESTRA project. Basis of this framework is an ORCHESTRA
Meta-Model (OMM) which was defined using UML and which is based on the General Feature
Model of the standard ISO 19109 (cf. section 2.3.2, page 14), extending it by additional metaclasses.
The metaclasses and rules of the OMM are used for defining ORCHESTRA Application Schemas
(OAS); ORCHESTRA Feature Sets (OFS), in turn, are instances of the OAS (Usländer 2007). Thus,
ORCHESTRA provides for the possibility of defining target data models at the conceptual schema
level using UML. Two types of transformation services were specified within the project, a Schema
Mapping Service (SMS) and a Translating Feature Access Service (FAS-X). The transformation
definitions can be specified using transformation languages such as XSLT, XQuery or SPARQL.
However, the service specifications do not prescribe a certain language to be used; this rather has to
be determined by the corresponding implementation specifications (Usländer 2007). A prototypical
implementation exists only of the FAS-X, which was realised by means of the software Go Publisher
(cf. section 4.3.2, page 66) (Friis-Christensen et al. 2008).

The EU project ESDIN (European Spatial Data Infrastructure with a Best Practice Network) focused
on developing best practices for implementing the INSPIRE Directive within the EU Member States.
One key aspect was on providing a best practice on transformation approaches most suitable for
transforming geospatial data from the individual EU Member States to INSPIRE-compliant geospatial
data (Lehto 2011). Within the project, a framework for specifying transformation definitions was
developed which proposes a template in the form of a spreadsheet for defining mappings of feature
types, attributes and attribute values between a source model and a target model by providing particular
mapping expressions (Nissen et al. 2011). The target model, i. e. the INSPIRE data specifications, is
defined conceptually using UML; as regards the source models involved in the project, nothing is
documented in the public deliverables, and also the framework does not give instructions at which level
the mappings are to be defined. However, from the examples given, it can be assumed that within the
project the mappings were mainly specified between database schemas on the source side and GML
application schemas on the target side and, thus, at the data format schema level. This is supported
by the descriptions provided in (Lehto 2011), according to which the transformations were mainly
executed between source data stored in databases and target data accessible as INSPIRE-compliant
GML documents. Languages and tools employed for defining and executing the transformations were,
amongst others, SQL scripts, XSLT, FME (cf. section 4.3.2, page 66) and specifically implemented
applications.

Another relevant project, commissioned by the Joint Research Centre (JRC), focused on the
development of a Technical Guidance for implementing INSPIRE transformation network services
(TNS). As the result of a state-of-the-art analysis of modelling languages, transformation languages
and transformation tools conducted at the beginning of the project (Beare, Howard et al. 2010), the
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XML-based languages GML and RIF-PRD (cf. section 3.4.3, page 50) were identified and proposed
in the Technical Guidance as the most suitable modelling and transformation languages, respectively
(Howard et al. 2010). By specifying transformation definitions using RIF, the transformation definitions
are interoperable and can be provided to any TNS implementation, where they simply have to be
translated into the tool-specific transformation language used internally by the transformation tool
of the specific TNS implementation, provided that this can be done unambiguously and that the
semantics are preserved. GML was chosen since it is interoperable with RIF; GML application
schemas can be imported into RIF documents, and object definitions can, in this way, directly be
referenced during the creation of the transformation definitions. Furthermore, GML is – in contrast
to the other two considered languages RDF and OWL (cf. section 3.4.3, page 50) – suitable for
geospatial data modelling. This means that for being able to use RIF, the transformation definitions
need to be defined between source and target GML application schemas and, thus, at the data format
schema level. Geospatial data available in other formats first have to be converted to GML. A
prototypical implementation of the TNS was realised by means of the software tools HUMBOLDT
Alignment Editor (HALE) (cf. section 4.3.2, page 66) and Radius Studio. Spreadsheets describing the
transformation definitions were created based on the INSPIRE UML models and the source and target
GML application schemas. These transformation definitions were then realised using HALE and were
exported as RIF documents (by means of a plug-in specifically developed for HALE). Afterwards, the
RIF documents were imported into Radius Studio and converted into the internal rules language of
Radius Studio, where the geospatial data were then transformed (Beare, Payne et al. 2010).

The EU project HUMBOLDT aimed at developing an open-source software framework for cross-
border data harmonisation in the context of INSPIRE. Harmonisation of heterogeneous geospatial
data from the different EU Member States was one of the main issues in the project, which resulted in
several tools dealing with modelling and transformation of geospatial data. This includes the HUM-
BOLDT GeoModel Editor for defining source and target models, HALE for specifying transformation
definitions as well as executing transformations and the Conceptual Schema Translation (CST) Service
for being able to execute transformations in a web-based environment. Other developments are the
modelling language HUMBOLDT Modelling Language (HML) and the transformation language
geographic OML (gOML). HML was developed as a DSL, the HUMBOLDT project representing
the domain the language focuses on. HML bases itself on conceptual ideas from the ISO 191xx
series of geographic information standards and from the modelling languages INTERLIS 2 and
UML, but it specifies only those model elements which are required for creating conceptual models
within the HUMBOLDT project domain. The HML metamodel was created as an instance of the
meta-metamodel Ecore. gOML was developed as a profile of the Ontology Mapping Language (OML)
and is used internally by HALE to represent and store the created transformation definitions (please
refer to section 3.4.3, page 50, for more information on OML and to section 4.3.2, page 66, for
more details on HALE). The GeoModel Editor is intended to be used for defining source and target
models based on the modelling language HML. In cases where only source data are available, but
no corresponding source model for defining the transformation definition, the editor is to be used for
creating the missing source model in a reverse engineering process. Problems which can occur from
reverse engineering conceptual models, as mentioned in section 4.2.3.1, page 61, are not considered
here. Another intended use of the GeoModel Editor is to import existing models into the editor to
enrich them, if required, with information necessary for being able to create adequate transformation
definitions (Reitz, Vries et al. 2009). The editor also is to allow for exporting created data models, for
instance, in the form of XMI and INTERLIS-specific documents and as GML application schemas.
The models can then be imported into HALE and be used there for creating transformation definitions.
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The CST is intended to allow for transforming geospatial data based on conceptual schemas including
database schemas, UML models, INTERLIS models, XML-based schemas and models defined using
ontology languages such as OWL. The transformation definitions have to be provided to the CST as
OML documents, e. g. by creating them beforehand using HALE (Fitzner et al. 2009). However, the
actual implementation available of the CST only allows for transforming between source and target
geospatial data provided as GML documents (Data Harmonisation Panel 2012), thus, requiring the
transformation definitions to be created at the data format schema level between GML application
schemas.

4.3.2 Transformation tools

Several commercial and open-source software tools for semantically transforming geospatial data
exist. A still up-to-date overview and evaluation of the tools most prevalent in the geospatial domain
can be found in (Beare, Howard et al. 2010). In the following, three selected tools will be discussed
shortly, FME since it plays an important role in the remainder of this thesis and, furthermore, Go
Publisher and HALE, to explain the transformation approaches implemented in the EU projects
ORCHESTRA and HUMBOLDT, respectively (cf. section 4.3.1, page 63). FME and Go Publisher
are proprietary software solutions, whereas HALE is an open-source tool.

The software FME (Feature Manipulation Engine) Desktop from the Canadian company Safe
Software (Safe Software 2015a) is a Spatial ETL tool able to convert, transform and integrate geospatial
as well as non-geospatial data in more than 300 formats. The transformation definitions, referred to as
FME workspaces, are created by means of a graphical user interface (GUI), which is referred to as
FME workbench. FME offers a huge number of spatial and non-spatial transformation functionalities
which are made available within the GUI in the form of more than 400 so-called transformers;
furthermore, additional transformation functionalities can be added by including user-defined Python
and JavaScript scripts. Above that, FME provides APIs for the programming languages Java, C++ and
Python which allow for implementing readers and writers for data formats and modelling languages
not yet supported by FME and also for creating additional transformers. By making use of the
APIs, it is also possible to specify complete transformation definitions beforehand using a platform-
independent transformation language and to process them afterwards using FME, which was done
in the mdWFS project (cf. section 4.3.3, page 67). FME works at the data format level, at the data
format schema level and at the conceptual schema level. At the data format level, geospatial data are
read and written. At the data format schema level, most of the schemas describing the source and
target data are provided to FME and also the corresponding transformation definitions are defined at
this level. In cases where no schema is available for the source data, the schema is deduced from the
source data itself. At the conceptual schema level, conceptual data models can be provided to FME,
such as INTERLIS models in the form of .ili documents (Eisenhut Informatik AG 2006) or UML
models in the form of XMI documents, as demonstrated in the mdWFS project, the corresponding
transformation definitions being then defined at this level. FME is based on the Relational paradigm;
this means that internally FME maps all data models to the Relational paradigm and also represents
them in this way in the GUI. With the software product FME Server it is even possible to transform
geospatial data in a web-based environment. This functionality was employed in the mdWFS project
to realise the transformations in a web-based environment.

The software tool Go Publisher from the British company Snowflake Software focuses on publishing
geospatial data, stored in databases, in the form of XML-based data formats such as GML, KML or
AIXM (Snowflake Software 2014). By means of Go Publisher, transformation definitions are always
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defined between a database schema on the source side and an XML-based schema on the target side
and, thus, at the data format schema level. The transformation definitions are defined within a GUI;
internally, Go Publisher uses a proprietary transformation language (Beare, Howard et al. 2010). The
transformation definitions can be complemented by custom mapping definitions written in SQL, XSLT
or Java, which are executed after the actual transformation has been carried out. It is not possible
to specify complete mapping definitions beforehand using a platform-independent transformation
language and to process them afterwards using Go Publisher. Furthermore, Go Publisher provides
an OGC Web Feature Service (WFS) implementation which can be used for realising a web service
capable of executing transformations. This WFS implementation was, for instance, employed in the
ORCHESTRA project for realising the FAS-X service.

The HUMBOLDT Alignment Editor (HALE) is a software tool which was originally developed as
part of the HUMBOLDT project for specifying transformation definitions and transforming geospatial
data. The transformation definitions are created within a GUI. Internally, HALE uses a transformation
language which is based on OML/EDOAL (Reitz and Templer 2012) (cf. section 3.4.3, page 50).
According to the HALE user guide, HALE differentiates between conceptual schemas, such as UML
models and ontologies, and logical schemas, such as XML Schemas and database schemas (Data
Harmonisation Panel 2015a). The user guide, furthermore, states that ‘[i]n HALE we define the schema
mapping on the conceptual level’ (Data Harmonisation Panel 2015a); however, only ‘experimental
support for UML (in XMI or Enterprise Architect encoding) and OWL’ (Reitz and Templer 2012)
seems to be provided up to now. Based on an examination of the currently downloadable HALE
version 2.9.3 (Data Harmonisation Panel 2015b), the transformation definitions can only be created at
the data format (schema) level between source and target models which are XML Schema documents
including GML/CityGML application schemas, SQLite/SpatiaLite and PostgreSQL/PostGIS database
schemas, Shapefile documents (only source), Excel spreadsheets, CSV documents (only source) or
HALE Schema Definition documents. Transformation definitions can be exported in the form of
XSLT documents, Excel spreadsheets, CSV documents and HALE Alignment documents, whereas
an import of transformation definitions is possible in the form of HALE Alignment documents and
OML/gOML documents based on the RDF-XML syntax. In this way, HALE allows for creating
transformation definitions within HALE, but executing them using external transformation tools and
vice versa.

4.3.3 The mdWFS approach of model-driven transformation of geospatial
data

As can be seen from the explanations provided above on several projects and transformation tools
dealing with the transformation of geospatial data, transformation definitions are still mostly specified
at the data format (schema) level. This fact is underpinned by a workshop about schema transformation
methods and tools conducted by INSPIRE KEN and EuroSDR in 2012 which covered the full range
of today’s prevailing transformation approaches in research and industry in numerous presentations
(EuroGeographics 2012), from which the same conclusion can be drawn.

In some cases, such as in the project GiMoDig (cf. section 4.3.1, page 63), transformation definitions
are indeed first defined at the conceptual schema level, actual implementations, however, require the
transformation definitions to be specified again at the data format (schema) level, not being clear,
whether the latter transformation definitions were created based on the former conceptual definitions.

The Technical Guidance on transformation services for INSPIRE (cf. section 4.3.1, page 63) even
argues that ‘[a]lthough UML can be used to express a range of modelling abstractions (including
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physical models) it cannot be used to express the actual data content. This means that if UML where
used as the schema description language, the service would have to perform an internal translation
of the UML into an appropriate concrete physical model of the datasets (like XSD). Although this
process is tractable, [...] this extra level of conversion places unnecessary processing overheads on the
service and introduces significant extra development complexity with no substantial benefit’ (Howard
et al. 2010). However, this argumentation contains one decisive weakness: The proposals given in the
Technical Guidance regarding the use of GML and RIF restrict the applicability of transformation of
geospatial data to a very specific and narrow use case, i. e. ‘a network service that loads source data
from a Web Feature Service (WFS) [...] or an FTP Site, performs a transformation based on a mapping
definition and outputs the INSPIRE-schema compliant data to a Transactional WFS (WFS-T) [...] or
an FTP Site’ (Howard et al. 2010). The transformation definitions are not platform-independent, they
rather are specific to the platform GML only. When intending to execute a transformation between
other data formats – which might be required within the context of other use cases –, a reuse of the
transformation definitions is not possible, as has already been discussed in section 3.3.2, page 39, in
the context of the format-driven transformation.

A different approach was taken by the project Model-driven approach for accessing distributed
spatial data using Web Services – demonstrated for cross-border GIS applications (mdWFS), which
was conducted by the Technische Universität München (TUM) and the Swiss Federal Institute of
Technology Zurich (ETH Zurich) on behalf of the German Federal Agency for Cartography and
Geodesy (BKG) and the Swiss Federal Office of Topography (swisstopo) from 2006 until the end
of 2011 (Staub 2007; Donaubauer, Staub et al. 2008; Staub et al. 2008; Staub 2009; Donaubauer,
Kutzner et al. 2010; Fichtinger 2011). The approach chosen in the mdWFS project fully complies
to the concept of model-driven transformation of geospatial data as introduced in section 3.3.2,
page 39, and in figure 3.10, page 41, which means that the transformation definitions are defined at
the conceptual schema level between conceptual source and target models created using a formal
modelling language. The models used within the project were defined using the modelling languages
INTERLIS and UML. To be able to specify the transformation definitions between these models, the
transformation language UMLT was developed within the project (cf. section 3.4.2, page 46, for a
detailed description of UMLT). Furthermore, to allow for executing transformations in a web-based
environment, a model-driven Web Feature Service (mdWFS) was defined as an extension of the
OGC WFS specification. A DoTransform operation serves in transforming UML models and UMLT
definitions sent to the service in the form of XMI documents. Afterwards, the transformed data are
accessible via a newly configured WFS instance.

In the course of the research project, two prototypes were developed. Whereas the first implementa-
tion solely aimed at demonstrating the feasibility of the approach, the second implementation took into
account the necessity for data providers to provide data conforming to the INSPIRE data specifications.
In addition, platform-specific requirements arising from the project sponsors’ production environment
were considered and the experience gained from the first prototype was incorporated. The author of
this thesis was involved in the development of the second prototype.

4.3.3.1 First mdWFS prototype

The first mdWFS prototype was developed based on an Oracle Spatial database (Oracle 2015), a WFS
implementation of the deegree project (deegree.org 2015) and INTERLIS-specific tools (INTERLIS -
The GeoLanguage 2015). The transformation language UMLT was implemented using the Eclipse
Modeling Framework (EMF) (Steinberg et al. 2009) and UML 2, an EMF-based implementation of
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the modelling language UML 2 for the Eclipse platform (The Eclipse Foundation 2015e). UML 2 was
extended by the UMLT language constructs presented in section 3.4.2, page 46. The transformation of
the geospatial data was executed by means of SQL statements and Java instructions. The prototype
was tested by transforming the German Digital Landscape Model (ATKIS Base-DLM) as part of
the AAA reference model and the digital municipal boundaries of Switzerland (GG25) to the draft
EuroSpec Feature Catalogue Administrative Boundaries. The transformation definitions between the
models were specified using the UMLT HUTN syntax. However, since the UMLT HUTN syntax is
based on INTERLIS, the German and the EuroSpec models had to be remodelled using INTERLIS
to be able to execute the transformations. An INTERLIS parser was used to create XMI documents
from the INTERLIS models, and a UMLT HUTN parser was specifically developed for automatically
converting the UMLT HUTN documents into XMI documents.

4.3.3.2 Second mdWFS prototype

Since the remodelling of UML models in the form of INTERLIS models involves an unrealistic effort
when applied in a production environment, a solution was needed which is independent from the tight
coupling of the UMLT HUTN syntax and of the UMLT HUTN parser with the modelling language
INTERLIS. The decision was made to develop a graphical UMLT editor, since such an editor solely
requires knowledge of the UMLT concepts and, in addition, allows for specifying the transformation
definitions in a user-friendly way. The graphical UMLT editor was implemented based on EMF and
the Eclipse Graphical Modeling Framework (GMF) (The Eclipse Foundation 2015d), making use of
the UMLT metamodel developments from the first prototype (Elfouly and Kutzner 2013). By means
of this editor, the transformation rules can now be defined visually, and can afterwards be exported
as XMI documents for further use as platform-independent input to any transformation tool able to
interpret XMI.

Furthermore, a solution equally powerful than SQL statements and Java instructions was sought
for the implementation of the transformation functionalities. Since the development of a completely
new transformation module is very complex and time-consuming, the integration of an existing
software solution into the second prototype was regarded as more advantageous. The software
FME (cf. section 4.3.2, page 66) proved to be a suitable platform for providing the transformation
functionalities within the mdWFS. For this reason, FME was extended in such a way that it can handle
the UML models and the UMLT transformation definitions in the form of XMI documents.

To be able to read the UML models, an XMI Reader plug-in was developed for FME which makes
use of the FME Java API, of EMF and in particular of UML 2. By means of this XMI Reader, FME is
able to parse the source and destination models and to convert them into the internal FME structure.
Since FME is based on the Relational paradigm and UML on the OO paradigm, some difficulties
in mapping UML models to the FME structure had to be overcome, especially regarding the OO-
specific constructs association and inheritance, which are not available in the Relational paradigm.
The following rules, for instance, were defined for mapping the concepts feature type, association,
complex type and inheritance to the FME structure: All UML classes representing feature types
(indicated by the stereotype «featureType») are mapped one-to-one to corresponding FME feature
types (represented in the FME workbench by corresponding FME feature type boxes), except abstract
UML feature types, they are not mapped. For abstract UML feature types as well as for inheritance in
general, a subclass strategy is applied, which means, the attributes from the UML superclass are added
to the concrete FME feature types inheriting from the corresponding UML superclass. Associations
between feature types, including reflexive associations, are mapped to additional feature type boxes
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in FME and are given the name A__FeatureType1FeatureType2, FeatureType1 and FeatureType2
being the names of the feature types associated with each other. In addition, attributes describing
the associations in more detail (role names, multiplicities and directionality) are assigned to the
association boxes. Attributes with complex types are resolved by representing them in FME using
point notation, which, however, can result in numerous attributes, a feature type can possess.

Above that, a second plug-in was developed for FME which implements a transformer called
UMLTApplier. This transformer parses the UMLT transformation definitions and maps them onto the
internal transformation functionalities of FME. For each UMLT function, an FME factory pipeline
(Safe Software 2005) is created which contains exactly those FME factories and functions (Safe
Software 2015b) which reflect the functionality of the corresponding UMLT function. These factory
pipelines transform the geospatial data whenever the actual transformation is invoked. The plug-in
makes again use of the FME Java API, of EMF and of UML 2. Please refer to appendix D.4 for an
overview of the UMLT functions implemented within FME up to now. When opened in an FME
workbench, the whole FME workspace required for transforming geospatial data in a model-driven
way simply consists of two XMI Readers, one reading the source model and the other one reading the
target model, and the UMLTApplier transformer.

To be able to transform the geospatial data by means of the mdWFS service interface, a deegree-
based OGC Web Processing Service (WPS) implementation jointly developed by Safe Software
and the German company lat/lon was employed5. This WPS implementation uses FME as process
provider, which means that FME workspaces available via FME Server can simply be executed by
requesting the Execute operation of the WPS interface; thus, allowing for executing the mdWFS FME
workspace in a web-based environment. The operations of the mdWFS interface were emulated by
implementing them in the form of WPS processes, which means, when requesting the WPS Execute
operation, the name of the mdWFS operation to be executed needs to be stated as process parameter.
Furthermore, a simple web client was developed which allows for communicating with the mdWFS
service interface in a user-friendly way.

The second mdWFS prototype was tested by transforming the German Digital Landscape Model
(ATKIS Base-DLM) as part of the AAA reference model and the Swiss Topographic Landscape
Model (TLM) to the harmonised INSPIRE data specifications, focusing on the INSPIRE themes
Protected Sites and Hydrography. Both, the source models as well as the target model, are available as
UML models.

4.3.4 Further academic research works

In addition to the transformation projects and tools presented above, in academia several other research
works exist which deal with modelling and model-driven transformation of geospatial data. In this
section, an overview of relevant works is provided; this section, furthermore, takes into account two
other topics the remainder of this thesis will focus on, the transformation between UML profiles and
the use of UML package merge for creating UML profiles.

(Balley et al. 2006) presents a system which enables users to interactively restructure existing
geospatial data in such a way that the structure fits the users’ needs. The approach requires the
geospatial data to be represented by three different types of schemas, a conceptual schema, a logical
schema and a physical schema. The terminology is strongly influenced by the DBMS technical space;
in fact, these schemas are equivalent to the PIM, PSM and PM models in the MDA technical space.
5This WPS implementation was never publicly released, but lat/lon and Safe Software willingly agreed on providing the
implementation for the purposes of the research project mdWFS.
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The user defines the individual transformation steps based on a view of the conceptual schema which
is displayed ‘in a UML-like form’ (Balley et al. 2006) within a GUI. When the actual transformation
is invoked, the individual transformation steps are applied to all three schemas and the restructured
geospatial data is delivered to the user. This approach differs from all other transformation approaches
presented up to now in the fact that the transformation is based solely on the source schema, whereas
the target schema exists only implicitly, i. e. in the mind of the user. The user needs to know exactly
what the resulting structure has to look like and has to pay attention throughout the definition of the
individual transformation steps that in the end he obtains the desired structure. The user cannot simply
provide a target schema and create the transformation definitions between the source schema provided
by the system and the target schema provided by the user.

The work of (Staub 2009) proves the feasibility of the concept of model-driven information
integration of geospatial data, as presented in section 3.3.2, page 39, based on the project mdWFS
which was presented in the previous section. Furthermore, the work identifies several limitations of
semantic interoperability; these include limited meta-interoperability due to source and target models
complying to different metamodels – a problem which is tackled in the remainder of this thesis –,
non-bijectivity of semantic transformations, the existence of too many different encoding rules, the
use of different semantics for describing the same UoD in different data models as well as source
and target models defining non-overlapping information. The work, furthermore, discusses existing
approaches from the field of ontologies and classifies the model-driven approach into the ontology
spectrum of Obrst (cf. section 2.3.4, page 17).

(Fichtinger 2011) developed feature-based classifications of transformation approaches and of the
types of semantic heterogeneity which can occur between source and target models and, furthermore,
derived from these heterogeneities functions required for the creation of suitable transformation
definitions. The work, in addition, discussed the problem of non-overlapping information by analysing
whether the information provided by the source schemas used in the work is sufficient for covering the
INSPIRE theme Hydrology completely. Above that, the work pointed out differences, possibilities and
limitations of semantic transformation at the conceptual schema level and at the data format schema
level. The classifications and analyses were conducted based on the research projects HUMBOLDT
(cf. section 4.3.1, page 63) and mdWFS (cf. section 4.3.3, page 67).

The work of (Schulze Althoff 2011) evaluates the applicability of the MDA approach in the
geospatial domain. The work analyses whether existing geospatial modelling languages as well as
new modelling languages, in particular DSLs for the geospatial domain, can be (re-)defined based on
a common meta-metamodel. Furthermore, it is analysed whether standard transformation tools can
be employed for executing horizontal transformations between data models defined using different
metamodels, and also whether vertical transformations can be executed on these data models. The
analyses were based on Ecore as the common meta-metamodel and were verified practically by
redefining the modelling languages INTERLIS 2 and MADS (Modeling of Application Data with
Spatio-temporal Features) as Ecore-based metamodels. Furthermore, the HUMBOLDT Modelling
Language (HML), a DSL, was developed (cf. section 4.3.1, page 63), and a horizontal transformation
was conducted between HML and UML as well as a vertical transformation between HML and GML
Schema. It is argued that the advantage in using DSLs lies in the fact that they ‘can be efficiently
adjusted to the intended user communities, [...] can be clean from superfluous elements and avoid
complex constructs [..., and] guide to clean, compact and precise models’ (Schulze Althoff 2011).
Thus, DSLs allow for generating specialised tools such as editors for defining data models which only
provide those elements defined within the DSL. This was verified by generating the HUMBOLDT
GeoModel editor automatically from the HML metamodel. Furthermore, it is argued that by basing all
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modelling languages on the same meta-metamodel, data models can first be defined using DSLs and
can then be transformed into data models based on metamodels for which tools for further processing
exist. The work does not take into account UML profiles, however, since UML profiles turn UML into
a DSL (cf. section 2.2.4, page 11), the work exhibits some similarities with the approach proposed in
this thesis.

As part of a work dealing with information discovery in SDIs and the model-driven generation of
feature catalogues, (Einspanier 2005) developed a DSL which represents the GFM as a well-defined,
formal MOF-based metamodel with a precise and mathematically defined semantics. Furthermore,
the work formally defines rules for mapping UML application schemas, i. e. models defined using
the UML metamodel, into GFM application schemas, i. e. models defined using the MOF-based
GFM metamodel. The development of this DSL was seen as necessary since the definition of the
GFM, as provided by the standard ISO 19109, does not conform to strict metamodelling and, thus,
poses problems which prevent the GFM from being deployable in model-driven development. In
terms of the four-layer metamodel architecture of UML, the GFM represents a metamodel at the
layer M2, however, it was not defined using a meta-metamodel at the layer M3, but by means of
the UML metamodel which itself is located at the layer M2. Furthermore, constraints related to the
abstract syntax of the GFM are only defined informally, also the semantics is informal and incomplete.
The GFM does not define a concrete syntax, thus, the concepts of the GFM have to be mapped to
a modelling language providing a concrete syntax, which is why the standard ISO 19109 provides
mapping rules for mapping the GFM to UML, however, these rules are only defined informally
(cf. section 2.3.2, page 14, as well). The work does not deal with UML profiles, however, it is stated
that ‘[f]or better enabling language integration and reuse of models [...], a clear and unambiguous
profile would be required. This could e.g. be achieved by providing more specific stereotypes that
properly identify the corresponding GFM constructs’ (Einspanier 2005). In this way, UML would be
able to represent the semantics of the GFM more precisely and in more detail.

With GeoProfile, a distinct formally defined UML profile for specifying geographic databases at the
conceptual schema level exists (Lisboa-Filho, Sampaio et al. 2010). The concepts of the GeoProfile
are based on several conceptual models published in scientific literature for designing geographical
databases, in particular OMT-G (Object Modeling Technique for Geographic Applications), MADS,
GeoOOA (Object-oriented Analysis for Geographic Information Systems), UML-GeoFrame and the
Perceptory’s model. GeoProfile does not make use of stereotypes defined in the standards ISO/TS
19103 and ISO 19136 (cf. sections 5.1, page 76, and 5.3, page 86, respectively), it rather represents
a DSL of its own. In (Lisboa-Filho, Nalon et al. 2013) the GeoProfile was applied in designing a
database based on the MDA approach, by defining a Computation Independent Model (CIM) model
using GeoProfile. The CIM model was then transformed into a PIM model which takes into account
concepts of some standards from the ISO 191xx series such as the geometries from the standard ISO
19107. The concepts of the standards ISO/TS 19103 and ISO 19109, however, are not considered.
Afterwards, the PIM model was transformed into a PSM model targeted at an object-relational
platform. Both transformations were conducted using ATL.

Up to now, no scientific publications exist in the field of geographic information science which
explicitly take into account UML profiles in the context of model transformation or information
integration of geospatial data. In computer science literature, in contrast, a few contributions dealing
with the transformation between UML profiles can be found.

Based on the fact that different aspects of a complex embedded software system often are described
by means of different models, each of them created using a different DSL (or UML profile), difficulties
can arise when these models shall be used jointly. The approach presented in (Noyrit et al. 2010) tries



4.3 State-of-the-art transformation approaches of geospatial data in research and industry 73

to overcome this obstacle by proposing the definition of a new UML profile which includes exactly
those elements from the original UML profiles required for the intended combined use and which
can be complemented by additionally required elements not present in the original UML profiles.
Starting with a domain model (cf. section 6.3, page 123) which defines all those concepts required in
the new UML profile, an interactive process follows in which the original UML profiles are aligned
with the new UML profile by means of aligning the concepts, the abstract syntax and the concrete
syntax. The approach is demonstrated by combining the two standard UML profiles MARTE (a UML
profile for designing embedded systems) and SysML (a UML profile for Systems Engineering) in
this way. Furthermore, the approach also allows for transforming models defined using the new UML
profile into models conforming to the original profiles.

Within the same domain, a work from (Riccobene and Scandurra 2012) deals with a vertical
transformation between the SysML UML profile, which is located at the PIM level, and the SystemC
UML profile (a UML profile for the programming language SystemC), which is located at the PSM
level, by directly defining mappings between the two UML profiles. These mappings are then used for
transforming PIM models, to which the SysML UML profile is applied, into PSM models, to which
the SystemC UML profile is applied.

The work of (Eessaar 2008) presents an approach for creating new UML profiles from already
existing UML profiles, motivating the approach with the argument of saving time in this way, compared
to having to create a UML profile from the beginning. The profile created by means of this approach,
however, represents just a first draft which then needs to be refined and complemented manually; this
is, for instance, necessary when the target UML profile requires concepts which do not exist in the
source UML profile. In a first step, mappings are defined between elements from the source metamodel
and elements from the target metamodel, the metamodels representing domain models which are
modelled using UML. Afterwards, the target UML profile is created by transforming the source UML
profile based on the metamodels and the mappings defined. The approach is tested by transforming a
UML profile representing the object-relational model underlying the SQL:2003 standard into a UML
profile representing the object-relational model proposed by The Third Manifesto.

Scientific publications addressing the generation of UML profiles by using UML package merge
(cf. section 2.4.3, page 23) do not seem to exist up to now.





5 Critical examination and proposed improvement of
UML profiles commonly used in the geospatial
domain

One of the limitations of semantic interoperability identified by (Staub 2009) (cf. section 4.3.4,
page 70) is the limited meta-interoperability due to source and target models complying to different
metamodels. Similarly, section 4.2.1.2, page 57, states that UML profiles which involve a semantic
modification of the UML specification rather represent a new modelling language and, thus, can
cause problems when transforming UML models to which these UML profiles have been applied.
Above that, also community-specific UML profiles can hinder transformation in a cross-community
environment when they exhibit semantics not present in other communities. Therefore, this chapter
takes a closer look at currently existing UML profiles, in particular the UML profiles defined by the
standards ISO/TS 19103, ISO 19109 and ISO 19136. Many SDI initiatives require the specification of
UML data models compliant to these ISO standards and, thus, to the UML profiles defined therein.
Moreover, these SDI initiatives often extend the ISO UML profiles by additional concepts specific to
the individual SDI. For this reason, also the UML profiles of the INSPIRE initiative, of the German
AAA reference model, of the European Location Framework (ELF) and of the Swiss modelling
language INTERLIS will be considered in this examination. In addition, also the UML profile defined
by the CityGML community will be examined.

The examination of ISO/TS 19103 UML profile, the ISO 19136 UML profile and the INSPIRE
UML profile is split into two parts. The first part discusses the stereotypes as they are currently defined
in the UML profile. The discussion takes into account that the stereotypes are defined against the
background of UML 1 where it is allowed to use stereotypes and tag definitions without a formally
defined UML profile, but at the same time also points out the problems which occur when they are
defined in the context of UML 2. Given the fact that the revisions of the standards ISO/TS 19103
and ISO 19109 will be based on UML 2 and that also INSPIRE already uses UML 2, the second
part proposes a formally defined UML profile compliant to the UML 2 profile definition of the
OMG which eliminates the shortcomings exposed in the first part, illustrating in this way, how the
stereotypes can be defined compatible with UML 2 without loosing the semantics the stereotypes
exhibit. Each UML profile discussed and proposed is accompanied by a UML profile diagram. UML
profile diagrams provide a good overview of the available stereotypes and tag definitions, support
the modeller in defining UML application schemas, and should, therefore, always be provided. The
other UML profiles are discussed more condensed, since they reuse many concepts from the ISO/TS
19103 UML profile, the ISO 19136 UML profile and the INSPIRE UML profile and, thus, exhibit
some similarities.

Within the following discussion, the spelling of the stereotypes is adopted as is defined in the
corresponding ISO standards or SDI initiatives. For the proposed formal UML profiles, however,
upper case spelling is consistently used as is suggested in the UML specification (cf. section 2.4.1,
page 19).



76 5 Critical examination and proposed improvement of UML profiles in the geospatial domain

5.1 The UML profile of the standard ISO/TS 19103

An essential standard in the ISO 191xx series of geographic information standards is the standard
ISO/TS 19103:2005 Geographic information — Conceptual schema language (ISO 2005c). The
standard defines UML together with OCL and a set of basic data types as the modelling language
to be used for modelling geographic information and specifies rules and guidelines for how to use
UML appropriately. The rules and guidelines are based on UML version 1.4.2, which is defined in the
standard ISO/IEC 19501.

The standard ISO/TS 19103 specifies the general use of UML elements, such as classes, attributes,
operations, relationships and associations, and also provides information regarding naming conven-
tions, cardinalities and role names, the optionality of attributes and role names, and the use of UML
packages. Above that, the standard defines a set of elementary data types, such as Date and Time,
Numerics (e. g. Integer, Real), Text (e. g. CharacterString), Truth (e. g. Boolean) and Units of Measure
(e. g. Length, Scale), since UML version 1.4.2 does neither define nor prescribe any specific data
types. UML 2, in contrast, introduces four primitive data types (Integer, String, UnlimitedNatural and
Boolean).

Of importance for the discussion in this chapter is that the standard ISO/TS 19103 defines three
UML stereotypes: «CodeList», «Union» and «Leaf». The textual definitions of the stereotypes are
listed in table 5.1. Formal definitions of the stereotypes as part of a UML profile are not provided by
the standard ISO/TS 19103. Rather, the standard refers to the complete set of rules and guidelines on
the use of UML for modelling geographic information as a UML profile – which goes far beyond
the scope of what the UML profile definition of the OMG defines as a UML profile. In addition, the
standard lists and uses several stereotypes which are predefined in UML 1.4.2. These stereotypes are:
«Interface», «Type», «Control», «Entity», «Boundary», «Enumeration», «Exception», «MetaClass»
and «DataType»1.

Stereotypes are regarded by the standard ISO/TC 19103 not only as a means to adapt UML to the
domain of geographic information but also ‘as flags to language compilers to determine how to create
implementation models from the abstract [model]’ (ISO 2005c). Related to the encoding of geospatial
data (cf. section 3.3.1, page 36), this means that the stereotypes tell the transformation tool in which
way model elements from application schemas are to be represented in implementation schemas or
data transfer format schemas.

The following sections will discuss some of the stereotypes in more detail, point out the deficits of
the UML profile defined by the standard ISO/TC 19103 and finally propose a formal definition of the
stereotypes as part of a UML 2 profile compliant with the UML profile definition of the OMG.

5.1.1 Discussion of the ISO/TS 19103 stereotypes

First, the ISO/TS 19103 definitions of the stereotypes «CodeList» and «Union», quoted in table 5.1,
will be analysed in more detail. The definitions are provided in a textual and informal way which
leads to an ambiguous understanding regarding which UML metaclasses the stereotypes extend.
Furthermore, the discussion will show that the semantics of the stereotypes is not consistent with

1The stereotypes «Control» and «Boundary» are actually defined in UML 1.4.2 as part of a UML example profile for
Software Development Processes, whereas the stereotype «Exception» cannot be found at all in the UML 1.4.2 specification.
Also, these three stereotypes are not included in UML 2 any more, whereas the other stereotypes from this list are still
provided. Furthermore, it is important to note that «Interface», «Enumeration» and «DataType» are actually UML keywords
and not stereotypes (cf. section 2.4.2, page 22).
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Table 5.1: Stereotypes defined by the standard ISO/TS 19103

Stereotype Definition

«CodeList» Defines ‘a flexible enumeration that uses string values through a binding of the
Dictionary type key and return values as string types; e.g. Dictionary (String, String).
If the elements of a list are completely known, an enumeration shall be used; if only
the likely values of the elements are known, a code list shall be used’ (ISO 2005c).
This means that by using a code list, the value set can be extended arbitrarily by the
user, whereas a UML enumeration defines a fixed value set within the UML model.
Furthermore, the values of a code list are defined as key-value pairs, whereas an
enumeration contains only values, which are referred to as enumeration literals (ISO
2012b).

«Union» Defines a type which consists ‘of one and only one of several alternatives (listed as
member attributes)’ (ISO 2005c). Thus, a type marked as union is allowed to have at
run-time exactly one of the defined attributes as value only.

«Leaf» Denotes a UML package which does not contain any other UML packages, but
solely definitions in the form of UML class diagrams (ISO 2005c).

the semantics of the UML metaclasses they extend, which means, the stereotype definitions modify
the UML metamodel in such a way that a new modelling language is created. Afterwards, it will
be discussed why «Enumeration» and «DataType» are incorrectly referred to as stereotypes by the
standard ISO/TC 19103. The discussion of the stereotype «Leaf» will take place in section 5.1.2,
page 81, since its definition is non-ambiguous and its semantics is consistent with the semantics of the
UML metaclass it extends.

5.1.1.1 The stereotype «CodeList»

Defining a stereotype formally within a UML profile makes apparent at first view, which UML
metaclass the stereotype is an extension of. However, the textual definition given for the stereotype
«CodeList» in table 5.1 does not indicate which UML metaclass this stereotype extends. For this
reason, we take a closer look at the following descriptions in the standard ISO/TS 19103:
1. A code list is a ‘flexible enumeration’ whose key-value pairs are to be modelled ‘as attributes with

a stereotyped «CodeList» with an attribute name for each value and the code(key) represented as
an initial value. In the case when only attribute names are shown, the codes and their descriptions
are equivalent [emphases added]’ (ISO 2005c).

2. An enumeration ‘is a user-definable data type whose instances form a list of named literal val-
ues’; furthermore, enumerations ‘are modelled as classes that are stereotyped as «Enumeration»
[emphasis added]’ (ISO 2005c).

From the first description alone it is difficult to conclude which UML metamodel element to use for
modelling code lists. However, taking into account the second description, one can conclude that
code lists are to be modelled as UML classes, since according to (1) code lists are enumerations and
according to (2) enumerations are modelled as classes; therefore, code lists are to be modelled as
classes as well. Furthermore, the first description speaks of attributes and initial values, both appear in
UML classes. According to this argumentation the stereotype «CodeList» extends the UML metaclass
Class.
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Applying a stereotype to a UML model element does not change the semantics of the UML model
element. This means, a UML class to which the stereotype «CodeList» has been applied, still behaves
like a UML class. This UML class still contains attributes with types, even if the types are now,
since the UML class is used as a code list, not provided. This fact is illustrated by using an example
from the INSPIRE data specification Administrative Units. In this data specification the code list
AdministrativeHierarchyLevel, depicted on the left side of figure 5.1, is defined. In accordance with

+ 1stOrder

+ 2ndOrder

+ 3rdOrder

+ 4thOrder

+ 5thOrder

+ 6thOrder

«codeList»

AdministrativeHierarchyLevel

+ country: CountryCode

+ geometry: GM_MultiSurface

+ inspireId: Identifier

+ name: GeographicalName [1..*]

+ nationalCode: CharacterString

+ nationalLevel: AdministrativeHierarchyLevel

+ beginLifespanVersion: DateTime

+ endLifespanVersion: DateTime [0..1]

+ nationalLevelName: LocalisedCharacterString [1..*]

+ residenceOfAuthority: ResidenceOfAuthority [1..*]

«featureType»

AdministrativeUnit

«voidable, lifeCycleInfo»

«voidable»

Figure 5.1: Code list AdministrativeHierarchyLevel and feature type AdministrativeUnit
from the INSPIRE data specification Administrative Units (JRC 2014d)

the above argumentation the code list is represented as a UML class. Therefore, in the semantics of the
UML specification the values 1stOrder, 2ndOrder, ..., 6thOrder represent attributes of this UML class.
This can also clearly be seen from the XMI representation of the code list in listing 5.1, where the type
uml:Property indicates this fact. Furthermore, the UML specification states that attributes for which
no multiplicity is defined are by default of multiplicity 1. This also holds for the attributes 1stOrder,
2ndOrder, etc. In addition, since no types and no initial values are provided for the attributes, they
‘may represent values of any type’ (ISO 2012b) according to the UML specification. A UML tool is
not able to recognise that the values of the attributes shall be identical to their attribute names. Thus,
at the data format level, an instance of AdministrativeHierarchyLevel would mandatorily possess the
attributes 1stOrder, 2ndOrder, ... 6thOrder and the value of each attribute could be an arbitrary value
of any type.

Listing 5.1: XMI representation of the code list AdministrativeHierarchyLevel

<packagedElement xmi:type="uml:Class" name="AdministrativeHierarchyLevel">
<ownedAttribute xmi:type="uml:Property" name="1stOrder"/>
<ownedAttribute xmi:type="uml:Property" name="2ndOrder"/>
<ownedAttribute xmi:type="uml:Property" name="3rdOrder"/>
<ownedAttribute xmi:type="uml:Property" name="4thOrder"/>
<ownedAttribute xmi:type="uml:Property" name="5thOrder"/>
<ownedAttribute xmi:type="uml:Property" name="6thOrder"/>

</packagedElement>

The representation of code lists as UML classes also affects their use as attribute types. Consider the
feature type AdministrativeUnit on the right side of figure 5.1. It contains the attribute nationalLevel
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which is of the type AdministrativeHierarchyLevel. The idea behind code lists is that at the data
format level one of the code list keys will be assigned to the attribute nationalLevel as attribute value.
However, due to the representation of the code list as a UML class, the attribute value of nationalLevel
is not a code list value, but an instance of the class AdministrativeHierarchyLevel itself in the form of
a complex type.

When using the profile mechanism as defined by the UML specification, it is not possible to change
the semantics of the UML metamodel (cf. section 2.4.1, page 19). However, forcing a UML class to
behave compliant to the semantics of the stereotype «CodeList» as defined by the standard ISO/TC
19103, results in such a semantic modification of the UML metamodel and the stereotype does not
simply represent any more an extension of the UML metaclass Class.

5.1.1.2 The stereotype «Union»

According to the standard ISO/TC 19103, the stereotype «Union» denotes a type which can define
several attributes, but which at the data format level is allowed to exhibit one and only one of the
attributes defined. From a UML specification point of view, however, an instance of a type cannot just
exhibit one attribute, when it was defined differently for the type itself. This fact is illustrated by using
an example from the AAA reference model. Figure 5.2 shows on the left side the union AA_UUID
which has two attributes, UUID and UUIDundZeit. Both attributes are modelled with multiplicity 1.
Thus, at the data format level both attributes have to appear and have to be assigned values to.

+ UUID: CharacterString

+ UUIDundZeit: CharacterString

«union»

AA_UUID

+ identifikator: AA_UUID

+ lebenszeitintervall: AA_Lebenszeitintervall

+ modellart: Set<AA_Modellart>

+ anlass: Sequence<AA_Anlassart> [0..1]

+ zeigtAufExternes: Set<AA_Fachdatenverbindung> [0..1]

«featureType»

AA_Objekt

Figure 5.2: Union AA_UUID and feature type AA_Objekt from the AAA reference model
(AdV 2009)

This representation also affects the use of unions as attribute types. Consider the feature type
AA_Objekt on the right side of figure 5.2. It contains the attribute identifikator which is of the type
AA_UUID. The idea behind unions is that at the data format level the attribute identifikator would
receive its value either from the attribute UUID or from the attribute UUIDundZeit. However, due to
the representation of the attributes with multiplicity 1, both attributes have to appear in an instance of
the union and have to be assigned values to.

Furthermore, the textual definition of the stereotype «Union» in the standard ISO/TC 19103 does
not expose immediately which UML metaclass the stereotype is an extension of – it simply refers to a
union as ‘a type’ (ISO 2005c). The following three possibilities should be taken into consideration:
1. Since the standard speaks of ‘a type’, one obvious possibility would be that the stereotype «Union»

extends the stereotype «Type» from the UML StandardProfileL2. The stereotype «Type» is defined
there as a ‘class that specifies a domain of objects together with the operations applicable to the
objects, without defining the physical implementation of those objects. However, it may have
attributes and associations’ (ISO 2012b). This definition does not fit quite well the intended use
of a union, since the semantics of a union indeed comprises the physical implementation of its
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instances. In contrast, a UML type defines objects exclusively at an abstract level and usually
requires an ImplementationClass which defines the concrete implementation of the type and which
is related to the type through a Realization dependency (Hitz et al. 2005).

2. The stereotype «Union» could also be an extension of the UML metaclass DataType. A data type
is defined in the UML specification as ‘a type whose instances are identified only by their value. A
data type may contain attributes to support the modelling of structured data types’ (ISO 2012b).
This means that instances of a UML data type do not exhibit an identity, in contrast to instances of
a UML class. Therefore, instances of a data type are also referred to as values, whereas instances
of a class are referred to as objects (Hitz et al. 2005). This definition of a data type reflects much
more the semantics of a union, since a union primarily provides a value at the data format level
and does not require to exhibit an identity. Thus, DataType represents an eligible UML metaclass
of which the stereotype «Union» could be defined as an extension.

3. A third option would be to define the stereotype «Union» as an extension of the UML metaclass
Class. This approach is used in current implementations of the UML profiles UML Profile for
GML Applications Schemas and UML Profile for INSPIRE Data Specifications for use with the
software Enterprise Architect (cf. appendix C.1, page 179). The disadvantage of this approach is
that instances of a union always have an identity which, however, does not seem likely with respect
to the semantics of the stereotype «Union» provided above.

5.1.1.3 The stereotypes «Enumeration» and «DataType»

As mentioned above, the standard ISO/TC 19103 makes use of the stereotype «Enumeration» and
defines an enumeration as a ‘user-definable data type whose instances form a list of named literal
values’. This definition corresponds to the definition given by UML 1.4.2 for UML enumerations.
Furthermore, the standard ISO/TC 19103 states that enumerations ‘are modelled as classes that
are stereotyped as «Enumeration»’ (ISO 2005c), which implies that the stereotype «Enumeration»
is defined as an extension of the UML metaclass Class. This statement, however, contradicts the
modelling of UML enumerations as specified by UML 1.4.2. The UML 1.4.2 specification provides
within the UML metamodel a distinct metaclass Enumeration which is a subclass of the metaclass
DataType (this also holds for UML 2, cf. figure A.3, page 173). Therefore, «Enumeration» does not
represent a stereotype, but a keyword (cf. section 2.4.2, page 22). No information is given in the
standard ISO/TC 19103, why in UML models for geographic information enumerations are to be
modelled differently, i. e. based on the metaclass Class instead of the metaclass Enumeration.

The same applies to the stereotype «DataType» which, in fact, is a keyword as well, since the
UML 1.4.2 specification provides a distinct metaclass DataType which is derived from the metaclass
Classifier (cf. section 2.4.2, page 22) (this also holds for UML 2, cf. figure A.3, page 173).

5.1.1.4 Conclusion

The UML profile mechanism only allows for extending the UML metamodel – but not for modifying
its semantics – by defining stereotypes which constrain the UML metamodel elements within the
limits of the semantics specified by the UML metamodel (cf. section 2.4.1, page 19). However, the
above discussion shows that imposing the semantics of the stereotype «CodeList» on the metaclass
Class results in such a semantic modification. The stereotype does not any more constrain the UML
metaclass Class, but rather extends the UML language by defining a new modelling element. Thus,
the stereotype «CodeList» can only syntactically be regarded as a UML class, since it is applied to the
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UML class symbol; semantically, however, it represents an independent UML metamodel element
and rather corresponds to a UML keyword (cf. section 2.4.2, page 22).

The same applies to the stereotype «Union», irrespective of which metamodel element the stereotype
extends. It always represents an independent UML metamodel element which exhibits its own
semantics and uses the UML class symbol only syntactically.

Taken as a whole, the UML profile defined by the standard ISO/TC 19103 cannot be regarded as a
real UML profile in terms of being compliant with the UML profile definition of the OMG, it rather
represents a new modelling language which exhibits the syntax of UML, but not its semantics. This
also includes the rules and guidelines as well as the elementary data types defined by the standard
ISO/TS 19103 which, according to the UML specification, are not part of a UML profile.

5.1.2 Proposed formal definition of an ISO/TS 19103 UML profile

Based on the above discussion, a formal UML profile is proposed in this section which defines the
stereotypes «CodeList», «Union» and «Leaf» from the standard ISO/TC 19103 compliant with the
UML 2 profile definition of the OMG, i. e. without causing a semantic modification of the UML
metamodel. Figure 5.3 shows the formal UML profile. Each stereotype will be presented in more
detail below.

«profile» ISO/TS19103

«Metaclass»

Package

«Metaclass»

Enumeration

«Metaclass»

DataType

«stereotype»

Leaf

«stereotype»

CodeList

«stereotype»

Union

inv: self.base_Package.nestedPackage->size()=0

inv: self.base_DataType.ownedAttribute->size()>=2

inv: self.base_DataType.ownedAttribute->forAll(c | c.lower=0 and c.upper=1)

inv: self.base_DataType.ownedRule->notEmpty()

Figure 5.3: Proposed formal definition of an ISO/TS 19103 UML profile

As regards «Enumeration» and «DataType», section 5.1.1.3, page 80, explained why they, in fact,
are UML keywords and not stereotypes. No reason is given in the standard ISO/TC 19103 why
enumerations and data types should be modelled based on the UML metaclass Class. This approach
would rather impose another semantic modification on the UML metamodel. Therefore, it is advised
to use the corresponding UML metaclasses Enumeration and DataType when creating UML models.
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5.1.2.1 Formal definition of the stereotype «CodeList»

Instances of an enumeration ‘form a list of named literal values’ (ISO 2005c). Since a code list denotes
a ‘flexible enumeration’ (ISO 2005c), instances of a code list can equally be considered to represent a
list of literal values. It is, therefore, proposed to define the stereotype «CodeList» as an extension of
the UML metaclass Enumeration, as is depicted in figure 5.3. The key-value pairs of the code list can
be represented as literal values by concatenating each pair of attribute name (value) and initial value
(key) in the form of value=key, or when only the attribute name is given in the code list, by adopting
this attribute name as literal value.

This approach is illustrated by using the code list AdministrativeHierarchyLevel from section
5.1.1.1, page 77, again. Figure 5.4 shows the new code list. It is now modelled as an enumeration
to which the stereotype «CodeList» has been applied; thus, the code list exhibits now, on the one
hand, the keyword «enumeration» and, on the other hand, the stereotype «CodeList». Furthermore,
from the XMI representation of the new code list in listing 5.2 it can clearly be seen that the values
1stOrder, 2ndOrder, ..., 6thOrder are now represented as a list of literal values, indicated by the type
uml:EnumerationLiteral, and not as attributes any more.

1stOrder

2ndOrder

3rdOrder

4thOrder

5thOrder

6thOrder

«enumeration» «CodeList»

AdministrativeHierarchyLevel

Figure 5.4: Code list AdministrativeHierarchyLevel from the
INSPIRE data specification Administrative Units (JRC 2014d)
based on the proposed formal definition of the stereotype
«CodeList»

Listing 5.2: XMI representation of the code list AdministrativeHierarchyLevel based on the proposed
formal definition of the stereotype «CodeList»

<packagedElement xmi:type="uml:Enumeration" xmi:id="ic3EeGfa4oH" name="AdministrativeHierarchyLevel">
<ownedLiteral xmi:type="uml:EnumerationLiteral" name="1stOrder"/>
<ownedLiteral xmi:type="uml:EnumerationLiteral" name="2ndOrder"/>
<ownedLiteral xmi:type="uml:EnumerationLiteral" name="3rdOrder"/>
<ownedLiteral xmi:type="uml:EnumerationLiteral" name="4thOrder"/>
<ownedLiteral xmi:type="uml:EnumerationLiteral" name="5thOrder"/>
<ownedLiteral xmi:type="uml:EnumerationLiteral" name="6thOrder"/>

</packagedElement>
...
<thecustomprofile:CodeList base_Enumeration="ic3EeGfa4oH"/>

The standard ISO/TC 19103 states that enumerations should only be used when the value set is
fixed. Otherwise, code lists should be used, since the value set of code lists can be extended during
system runtime. This raises the question what exactly the term ‘extended’ means. Does it mean that
further values can be added to the predefined values in an instance of the code list? Or could it also
mean that an arbitrary value different from the values predefined in the code list can simply be used as
attribute value? Also the term ‘during system runtime’ is not fully clear. What exactly does a code list
look like at run-time? Is it represented by an UML object diagram, by a data transfer format or by
byte code, which at run-time is translated into machine language by a virtual machine?
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Furthermore, can this behaviour really be achieved by modelling a code list using the metamodel
element Class? From a UML (and generally object-oriented) point of view, extending a class by new
properties means that a subclass needs to be created to which these new properties are then added2.
From a programming language point of view it depends on the programming language, whether
classes can be extended by further attributes during run-time, since only dynamic programming
languages provide this kind of functionality. From a data transfer format point of view it depends on
the encoding rules used; they define by which data structure a code list has to be represented within
the data transfer format to remain extensible.

These questions should be clarified first, before a decision is made how to represent a code list in
UML. However, for the purpose of using UML for modelling geographic information and generating
data transfer formats from these UML models, as is one of the major applications of the standard
ISO/TS 19103 currently (e. g. in the context of the standards ISO 19118 and ISO 19136 Annex E in
general and the current SDI initiative INSPIRE in particular), code lists can be represented without
any problems using the proposed approach. It is then a matter of the encoding rule to choose a suitable
extensible data structure the code list is represented in within the data transfer format. Furthermore,
also the proposed form of representing the key-value pairs as value=key does not pose a problem to
software tools to distinguish the key from the value, as they are separated from each other by the
equals sign.

5.1.2.2 Formal definition of the stereotype «Union»

The discussion of the stereotype «Union» in section 5.1.1.2, page 79, showed that the current definition
of the stereotype causes a semantic modification of the UML metamodel. Furthermore, it was argued
that no reason exists for a union to possess an identity. It is therefore proposed to define the stereotype
«Union» as an extension of the UML metaclass DataType, as is shown in figure 5.3.

To fully preserve the semantics of the concept Union, the OCL constraint in listing 5.3 is defined.
The first invariant of the OCL constraint states that data types to which the stereotype «Union» is
applied must own at least two properties. The second invariant defines that for each property the lower
bound of the multiplicity must be 0 and the upper bound must be 1. The third invariant defines that
the data types must exhibit an OCL constraint themselves. This OCL constraint should then specify
by means of the Boolean operator XOR that instances of this union are allowed to exhibit a value for
only one of the properties defined. This third invariant is indeed not very precise; however, at the meta
level the concrete instances are not yet known and, thus, also not the properties and the number of
properties they define.

Listing 5.3: OCL constraint of the proposed formally defined stereotype «Union»

context Union
inv: self.base_DataType.ownedAttribute->size()>=2
inv: self.base_DataType.ownedAttribute->forAll(c | c.lower=0 and c.upper=1)
inv: self.base_DataType.ownedRule->notEmpty()

This is illustrated by using the union AA_UUID from section 5.1.1.2, page 79, again. Figure 5.5
shows the new union. It is now modelled as a data type to which the stereotype «Union» has been
applied; thus, the union exhibits now, on the one hand, the keyword «datatype» and, on the other hand,
2Extension by subclassing is not the only way to add new properties to a class. A class can also be extended by superclassing,
i.e. by adding the properties to a superclass from where they are inherited by the class to extend.
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the stereotype «Union». Furthermore, the properties have been assigned the multiplicity [0..1]. Above
that, an OCL constraint specifies by means of the Boolean operator XOR that in an instance of the
union either the property UUID or the property UUIDundZeit is allowed to have a value.

However, specifying the OCL constraint in this way only results in true, when the union defines
an even number of properties. Figure 5.6 shows a union which defines three properties and, thus,
requires specifying an OCL constraint in the form of punkt->notEmpty() xor linie->notEmpty() xor
flaeche->notEmpty(). According to Boolean algebra, this OCL constraint would not only result in true,
when exactly one of the properties has a value, but also when all three properties exhibit values. By
extending the OCL constraint as demonstrated in figure 5.6, the latter case can explicitly be avoided
from becoming true. This means, whenever a union contains an odd number of attributes, the OCL
constraint needs to be defined in this extended form.

+ UUID: CharacterString [0..1]

+ UUIDundZeit: CharacterString [0..1]

«datatype» «Union»

AA_UUID context AA_UUID inv: 

UUID->notEmpty() xor UUIDundZeit->notEmpty()

Figure 5.5: Union AA_UUID from the AAA reference model (AdV 2009) based on the
proposed formal definition of the stereotype «Union». The OCL constraint
shows the use of the XOR operator when the union defines an even number of
properties.

+ punkt: GM_PointRef [0..1]

+ linie: GM_CompositeCurve [0..1]

+ flaeche: AA_Flaechengeometrie [0..1]

«datatype» «Union»

AG_Geometrie

context AG_Geometrie inv: 

(punkt->notEmpty() xor linie->notEmpty() xor flaeche->notEmpty()) and

(not (punkt->notEmpty() and linie->notEmpty() and flaeche->notEmpty()))

Figure 5.6: Union AG_Geometrie from the AAA reference model (AdV 2009) based on
the proposed formal definition of the stereotype «Union». The OCL constraint
shows the use of the XOR operator when the union defines an odd number of
properties.

5.1.2.3 Formal definition of the stereotype «Leaf»

The stereotype «Leaf» is applied to UML packages which do not contain any other UML packages.
The definition provided by the standard ISO/TS 19103 is non-ambiguous. The stereotype «Leaf»
constrains the UML metaclass Package in such a way that its semantics remains consistent with the
semantics of the UML metaclass Package. However, this restriction should be defined formally as
well, which is achieved by specifying the OCL constraint in listing 5.4:
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Listing 5.4: OCL constraint of the proposed formally defined stereotype «Leaf»

context Leaf inv:
self.base_Package.nestedPackage->size()=0

5.1.3 Current revision of the standard ISO/TS 19103

The standard ISO/TS 19103 is currently under revision. A new Draft International Standard (ISO/DIS
19103) was circulated among the ISO member bodies from October 2013 to early January 2014 (ISO
2013a). According to this DIS, the revised standard will be based on UML version 2.4.1 and on OCL
version 2.3.1, which are defined by the standards ISO/IEC 19505-2 and ISO/IEC 19507, respectively.

In the DIS a formal UML profile is provided which models all stereotypes defined in the DIS as
extensions of appropriate UML metamodel elements (cf. figure C.3, page 184). In this UML profile
the stereotypes «CodeList» and «Union» extend the metaclasses CodeList and Union, respectively,
which are themselves modelled as subclasses of the metaclass DataType. However, the metaclasses
CodeList and Union do not exist within the UML metamodel as defined by the standard ISO/IEC
19505-2, which is why this representation rather defines another modification of the existing UML
metamodel, instead of a UML profile compliant with the UML profile definition of the OMG.

Furthermore, the DIS does not explain why the stereotypes «Enumeration» and «Interface» are
defined, even though corresponding metamodel elements already exist in the UML metamodel. The
same applies to the stereotype «Type» which is already predefined by the UML metamodel as part
of the StandardProfileL2. Defining stereotypes would be justified if specific tag definitions shall be
added to UML models, but the formal UML profile does not define any tag definitions for the above
mentioned stereotypes.

The DIS defines rules for mapping UML models based on the standard ISO/TS 19103 and on
UML 1 to UML models based on the revision and on UML 2. By defining the stereotypes «CodeList»
and «Union» as proposed in the sections 5.1.2.1, page 82, and 5.1.2.2, page 83, respectively, mapping
rules could be defined likewise for mapping UML models based on the standard ISO/TS 19103 to
UML models based on the proposed formal UML profile defined above.

5.2 The UML profile of the standard ISO 19109

Another important basis for UML profiles in geographic information is the standard ISO 19109 which
was already introduced in section 2.3.2, page 14, and which defines rules for the development of
application schemas which are based on the General Feature Model (GFM). The fundamental concepts
defined in the GFM are application schema and feature type. However, the standard does not define
any stereotypes for these concepts; instead, the corresponding stereotypes are defined in the standard
ISO 19136 (cf. section 5.3, page 86).

The standard ISO 19109 is currently under revision. A new Draft International Standard (ISO/DIS
19109) was circulated among the ISO member bodies from October 2013 to March 2014 (ISO 2013b).
The DIS defines a UML profile which is to be used as modelling language for modelling application
schemas. Similar to the UML profile defined by the standard ISO/TS 19103 (cf. section 5.1.1, page 76)
also this UML profile goes far beyond the scope of what the UML profile definition of the OMG
defines as a UML profile. The UML profile in ISO/DIS 19109 contains not only stereotypes, but
also data types from ISO/DIS 19103, some further requirements on UML associations as well as
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recommendations on attributes, operations and roles (ISO 2013b). According to this DIS, the revised
standard will be based on UML version 2.4.1.

The DIS defines in particular the stereotypes «ApplicationSchema», «FeatureType» and «estimated»
which complement the stereotypes «Leaf», «Datatype», «Enumeration», «CodeList» and «Union»
from ISO/DIS 19103; all these stereotypes are part of the modelling language for modelling application
schemas. The stereotypes are provided in tabular form only together with further definitions within
the text. Based on this information, a formal UML profile diagram was created for this thesis (cf.
figure C.4, page 184). It can be noted that the stereotypes «FeatureType», «Datatype», «Enumeration»,
«CodeList» and «Union» are now defined as extensions of the metaclass Classifier which means that
any of these stereotypes can be applied to any Classifier. The stereotype «FeatureType», for instance,
could now be applied to the metaclasses Class, Enumeration, DataType and even PrimitiveType since
all these metaclasses are subclasses of the metaclass Classifier – presumably, this is not the intended
way of applying the stereotypes. Furthermore, the stereotype «estimated» extends the metaclasses
Attribute and AssociationRole. They, however, do not exist anymore in UML 2. The correct metaclass
for stereotypes which are to be applied to attributes and associations is now the metaclass Property.

5.3 The UML profile of the standard ISO 19136

Within the ISO 191xx series of geographic information standards another UML profile is defined by
the standard ISO 19136:2007 Geoinformation — Geography Markup Language (GML) (ISO 2007).
The standard ISO 19136 defines on the one hand GML, an XML-based language for modelling,
transferring and storing geospatial information; on the other hand, Annex E of this standard specifies
an encoding rule for mapping UML application schemas to GML application schemas.

The encoding rule requires that UML application schemas are modelled compliant with the stand-
ards ISO/TS 19103 and ISO 19109, which implies that the stereotypes from these standards have to
be applied to each UML application schema for which GML application schemas are to be generated.
These stereotypes are complemented in the encoding rule by additional stereotypes and by tag defin-
itions to enable an automatic mapping of UML application schemas to GML application schemas.
Thus, the specifications given in Annex E of the standard ISO 19136 form a UML profile of its own
which will be referred to in the following as ISO 19136 UML profile.

The encoding rule is provided in textual and tabular form. Based on this information, table 5.2
was created which intends to give an overview of the stereotypes required by the encoding rule, the
UML metaclasses they extend and from which standard they originate. Furthermore, a formal UML
profile diagram was created for this thesis based on the information provided in ISO 19136 Annex E
(cf. figure C.5, page 185).

The following sections will discuss the stereotypes in more detail, point out the deficits of the UML
profile defined by the standard ISO 19136 and finally propose a formal definition of the stereotypes as
part of a UML profile compliant with the UML profile definition of the OMG.

5.3.1 Discussion of the ISO 19136 stereotypes

The discussion includes for each stereotype a table which lists the tag definitions, their types and
multiplicities as well as their intended use. These tables are provided, as the stereotypes can only
be analysed in their entirety when also the tag definitions defined for them are taken into account in
the analysis. Furthermore, the tables are to make more explicit the types, multiplicities and intended
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Table 5.2: Stereotypes of the ISO 19136 UML profile

Stereotype UML metaclass Origin of stereotype

«Application Schema» Package ISO 19136 Annex E
any or no stereotype Package ISO 19136 Annex E
«Leaf» Package ISO/TS 19103
«Import» Dependency UML 1
«FeatureType» Class ISO 19136 Annex E
no stereotype Class ISO 19136 Annex E
«Type» Class UML 1
«Enumeration» Class UML 1
«CodeList» Class ISO/TS 19103
«Union» Class ISO/TS 19103 / ISO 19107
«DataType» Class UML 1
«Association» AssociationEnd UML 1
no stereotype Attribute, AssociationEnd ISO 19136 Annex E

use of the tag definitions. Currently, the standard does not provide such precise definitions for them,
which is why the information in the tables is sometimes rather deduced from the descriptions given in
the document.

5.3.1.1 The stereotypes «Application Schema» and «Leaf» and UML packages with
any or no stereotype

As mentioned in section 5.2, page 85, the concept of the application schema has already been
introduced in the standard ISO 19109, however, the corresponding stereotype «Application Schema»
which represents this concept is defined in the standard ISO 19136 Annex E. The following definition
is given there:

The UML Application Schema shall be represented by a package with the stereotype
<<Application Schema>>. This package shall contain (i.e. own directly or indirectly) all
UML model elements to be mapped to object types in the GML application schema. The
package may include other packages without the stereotype <<Application Schema>> to
group the different UML model elements within the application schema. (ISO 2007)

According to this definition one has to differentiate between two types of UML packages: UML
packages which represent application schemas and to which, thus, the stereotype «Application Schema»
is applied, and UML packages which are contained in the former packages and to which any stereotype
except the stereotype «Application Schema» can be assigned, including the stereotype «Leaf» from
the standard ISO/TS 19103, or are without stereotype at all.

Table 5.3 lists the tag definitions which are defined in the standard ISO 19136 Annex E for
the stereotype «Application Schema» and table 5.4 lists the tag definitions for UML packages
contained within UML application schemas. Furthermore, the stereotype «Leaf» which was defined
in the standard ISO 19103 without tag definitions, is according to the standard ISO 19136 Annex E
complemented by the tag definitions from table 5.4 (cf. figure C.5, page 185).
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The stereotypes «Application Schema» and «Leaf» as well as the related tag definitions can be
defined formally as part of a UML profile compliant with the UML profile definition of the OMG.
However, the tag definitions for UML packages contained within UML application schemas can only
be used as is when creating UML 1 compliant UML application schemas, since they contradict the
UML 2 profile definition of the OMG, according to which tag definitions can only be applied to a
UML model element in connection with a stereotype (cf. section 2.4.1, page 19). Thus, in the context
of UML 2, a suitable stereotype needs to be defined together with the tag definitions as part of the ISO
19136 UML profile. This stereotype can then be applied to UML packages without stereotype, but
also to UML packages which already possess an arbitrary stereotype except «Application Schema».
In the ISO 19136 UML profile diagram in figure C.5, page 185, the extension was modelled without
stereotype name to reflect the current situation and also, because the standard ISO 19136 Annex E
currently conforms to the standard ISO/TS 19103 which, in turn, is based on UML 1.4.2.

Table 5.3: ISO 19136 UML profile: Tag definitions of the stereotype «Application Schema»

Tag definition Meaning Type Multiplicity Use

documentation Description of the application schema String 0..1 Conceptual level,
GML encoding

xsdDocument Name of the XML schema document to
be generated

String 1 GML encoding

targetNamespace URI of the XML target namespace String 1 GML encoding
xmlns Prefix of the XML target namespace String 1 GML encoding
version Version number of the application

schema (if no value is specified, ‘un-
known’ is to be used)

String 1 Conceptual level,
GML encoding

gmlProfileSchema URL of a possible GML profile String 0..1 GML encoding

Table 5.4: ISO 19136 UML profile: Tag definitions of UML packages contained within UML applica-
tion schemas

Tagged value Meaning Type Multiplicity Use

documentation Description of the package String 0..1 Conceptual level,
GML encoding

xsdDocument Name of the XML schema document to be
generated

String 0..1 GML encoding

5.3.1.2 The stereotype «Import»

The standard ISO 19136 Annex E defines the use of the stereotype «Import» as follows:

Dependencies between packages shall be modelled explicitly. Permission elements with
stereotype <<import>> or unspecified dependency elements between packages shall
be used to express the dependency of elements in a package from elements in another
package. (ISO 2007)

This means, whenever in a UML model shall be expressed that UML elements in one UML package
are dependent from UML elements in another UML package, either a general UML dependency
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relationship which is not further specified by a stereotype or an import relationship, which is specified
by the stereotype «import», is to be used between these UML packages.

This definition is only appropriate with respect to UML 1. In UML 1 a UML metamodel element
Dependency exists, which predefines several kinds of dependency and corresponding keywords. One
of these predefined keywords is «import». Since the standard ISO 19136 Annex E conforms to the
standard ISO/TS 19103, and ISO/TS 19103, in turn, is based on UML 1.4.2, and since above definition
refers to «import» as a stereotype, the extension was modelled accordingly in the ISO 19136 UML
profile diagram in figure C.5, page 185. Actually, «import» is not a stereotype, but a keyword. Since
no tag definitions are defined in the standard ISO 19136 Annex E for «import», no necessity exists to
define an additional stereotype providing tag definitions for this keyword. For the same reason, no
problems in deriving GML application schemas should occur when using «import» as keyword in the
modelling of UML application schemas.

In UML 2, import relationships between packages are defined by the UML metamodel element
PackageImport and the keywords «import» for public package imports and «access» for private
package imports (ISO 2012b). A UML metamodel element Dependency exists as well, but it does not
express import relationships between packages anymore.

5.3.1.3 The stereotype «FeatureType» and UML classes without stereotype
representing object types

As mentioned in section 5.2, page 85, the concept of the feature type has already been introduced in
the standard ISO 19109. The corresponding stereotype «FeatureType», however, which represents
this concept is defined in the standard ISO 19136 Annex E. Furthermore, a distinct object type is
introduced in ISO 19136 Annex E. The following definitions are given:

Feature types shall be modelled as UML classes with stereotype <<FeatureType>> [...].
(ISO 2007)

Object types shall be modelled as UML classes with no stereotype. Object types are types
where the instances shall have an identity, but which are not feature types [...]. (ISO 2007)

The tag definitions defined in the standard ISO 19136 Annex E for the stereotype «FeatureType» and
for UML classes representing object types are listed in table 5.5. Based on the above definitions,
the stereotype «FeatureType» and object types extend the UML metaclass Class. The stereotype
«FeatureType» as well as the related tag definitions can be defined formally as part of a UML profile
compliant with the UML profile definition of the OMG. For object types, however, the same conclusion
can be drawn as for UML packages contained within UML application schemas (cf. section 5.3.1.1,
page 87). The tag definitions for object types can only be used as is, when creating UML 1 compliant
UML application schemas. In the context of UML 2, a stereotype has to be defined together with the
required tag definitions, otherwise the tag definitions cannot be applied to UML model elements.

5.3.1.4 The stereotype «Type»

The standard ISO 19136 Annex E gives the following definition for using the stereotype «Type»:

UML classes with stereotype <<Type>> may have zero or more operations (these are not
mapped to the GML application schema), attributes or associations. (ISO 2007)
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Table 5.5: ISO 19136 UML profile: Tag definitions of the stereotype «FeatureType» and of UML
classes representing object types

Name Meaning Type Multiplicity Use

documentation Description of the feature type /
object type

String 0..1 Conceptual level,
GML encoding

noPropertyType An XML complex type is to be
generated carrying the name of the
feature type / object type with the
suffix PropertyType

Boolean 1 GML encoding

byValuePropertyType An XML complex type is to be
generated carrying the name of the
feature type / object type with the
suffix PropertyByValueType

Boolean 1 GML encoding

isCollection The feature type / object type is to
be encoded as object collection

Boolean 1 GML encoding

Table 5.6 lists the tag definitions defined in the standard ISO 19136 Annex E for the stereotype «Type».
The semantics of this stereotype is equivalent to the semantics of the stereotype «Type» predefined
in the UML 1 specification and in the UML 2 specification as part of the UML StandardProfileL2,
thus, ISO 19136 Annex E actually only extends the predefined stereotype by tag definitions. This fact
will be elaborated further in section 5.3.2.3, page 98. For the moment, the stereotype is displayed in
the ISO 19136 UML profile diagram in figure C.5, page 185, as understood by ISO 19136 Annex E,
i. e. as extension of the UML metaclass Class.

Table 5.6: ISO 19136 UML profile: Tag definitions of the stereotype «Type»

Name Meaning Type Multiplicity Use

documentation Description of the type String 0..1 Conceptual level,
GML encoding

noPropertyType An XML complex type is to be
generated carrying the name of the
type with the suffix PropertyType

Boolean 1 GML encoding

byValuePropertyType An XML complex type is to be
generated carrying the name of the
type with the suffix PropertyBy-
ValueType

Boolean 1 GML encoding

isCollection The type is to be encoded as object
collection

Boolean 1 GML encoding

xmlSchemaType The XML schema type of a corres-
ponding canonical XML schema
encoding

String 0..1 GML encoding
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5.3.1.5 The stereotypes «Enumeration» and «DataType»

The stereotypes «Enumeration» and «DataType» have already been discussed in detail in the context
of the ISO/TS 19103 UML profile (cf. section 5.1.1.3, page 80). The standard ISO 19136 Annex E
defines the modelling of the stereotypes «Enumeration» and «DataType» as follows:

Enumerations shall be modelled as UML classes with stereotype <<Enumeration>>. (ISO
2007)

All other data types [i. e. data types which are not feature types, object types, types,
enumerations, code lists or union types] shall be modelled as UML classes with stereotype
<<DataType>>. (ISO 2007)

The tag definitions which are defined in the standard ISO 19136 Annex E for the stereotypes «Enu-
meration» and «DataType» are listed in tables 5.7 and 5.8, respectively. As explained in section 2.4.2,
page 22, and also in the context of the ISO/TS 19103 UML profile, «Enumeration» and «DataType»
are not stereotypes, but keywords denoting the UML metamodel elements Enumeration and DataType,
respectively. Thus, they have to be treated differently regarding their formal definition in combination
with tag definitions as part of a UML profile compliant with the UML 2 profile definition of the OMG.
This fact will be elaborated further in section 5.3.2.2, page 97. For the moment, the stereotypes are
displayed in the ISO 19136 UML profile diagram in figure C.5, page 185, as understood by ISO 19136
Annex E, i. e. as extensions of the UML metaclass Class.

Table 5.7: ISO 19136 UML profile: Tag definitions of the stereotype «Enumeration»

Name Meaning Type Multiplicity Use

documentation Description of the enumeration String 0..1 Conceptual level,
GML encoding

Table 5.8: ISO 19136 UML profile: Tag definitions of the stereotypes «DataType» and «Union»

Name Meaning Type Multiplicity Use

documentation Description of the data type / union String 0..1 Conceptual level,
GML encoding

noPropertyType An XML complex type is to be gene-
rated carrying the name of the data type
/ union with the suffix PropertyType

Boolean 1 GML encoding

5.3.1.6 The stereotypes «CodeList» and «Union»

The stereotypes «CodeList» and «Union» as well as the semantic modification they impose on the
UML metamodel have already been discussed in detail in the context of the ISO/TS 19103 UML
profile (cf. sections 5.1.1.1, page 77, and 5.1.1.2, page 79, respectively). Regarding the modelling of
the stereotypes «CodeList» and «Union», the standard ISO 19136 Annex E specifically defines that:

Code lists shall be modelled as UML classes with stereotype <<CodeList>>. (ISO 2007)
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Union types shall be modelled as UML classes with stereotype <<Union>> [...]. (ISO
2007)

Table 5.9 lists the tag definitions which are defined in the standard ISO 19136 Annex E for the
stereotype «CodeList». The tag definitions defined for the stereotype «Union» are identical to those
defined for the stereotype «DataType» in table 5.8, therefore, they are not listed again. According to
the above definitions, the stereotypes «CodeList» and «Union» are to be defined as extensions of the
metaclass Class. In the context of the proposed formal ISO/TS 19103 UML profile, approaches have
already been introduced for how to define these stereotypes without causing a semantic modification of
the UML metamodel (cf. section 5.1.2.1, page 82, and 5.1.2.2, page 83, respectively). These approaches
will be elaborated further in section 5.3.2.3, page 98, taking into account the tag definitions required
for the stereotypes «CodeList» and «Union» in the context of the ISO 19136 UML profile. For the
moment, the stereotypes are displayed in the ISO 19136 UML profile diagram in figure C.5, page 185,
as understood by ISO 19136 Annex E, i. e. as extensions of the UML metaclass Class.

Table 5.9: ISO 19136 UML profile: Tag definitions of the stereotype «CodeList»

Name Meaning Type Multiplicity Use

documentation Description of the code list String 0..1 Conceptual level,
GML encoding

asDictionary The code list is to be encoded as dictio-
nary

Boolean 1 GML encoding

5.3.1.7 UML attributes and UML association ends

The standard ISO 19136 Annex E defines the modelling of UML association ends as follows:

Every UML association shall be an association with exactly two association ends. Both
association ends shall connect to a feature, object or data type and shall have no stereotype
or the stereotype «association». (ISO 2007)

No stereotype is defined in the standard for UML attributes. Table 5.10 lists the tag definitions which
are defined in the standard ISO 19136 Annex E for UML attributes and UML association ends. The
stereotype «Association» as well as the related tag definitions can be defined formally as part of a
UML profile compliant with the UML profile definition of the OMG. However, for UML attributes
and UML association ends without stereotype the same conclusion can be drawn as for UML packages
contained within UML application schemas in section 5.3.1.1, page 87, and object types in section
5.3.1.3, page 89. According to the UML profile definition of the OMG, tag definitions can only
be applied to a UML model element in connection with a stereotype (cf. section 2.4.1, page 19).
Thus, first a stereotype has to be defined together with the required tag definitions, otherwise the tag
definitions cannot be used.

The standard ISO 19136 Annex E, however, does not give a precise answer on the question of
which UML metaclasses the stereotype for UML attributes and UML association ends is to be defined
as an extension. For UML attributes, a UML metamodel element Attribute exists in UML 1 of which
the stereotype can be extended. In UML 2, however, the concept was replaced by the UML metamodel
element Property. Regarding UML association ends, the standard ISO 19136 Annex E alternately



5.3 The UML profile of the standard ISO 19136 93

Table 5.10: ISO 19136 UML profile: Tag definitions of UML attributes and UML association ends

Name Meaning Type Multiplicity Use

documentation Description of the attribute or asso-
ciation end

String 0..1 Conceptual level,
GML encoding

sequenceNumber Ordering of attributes and associ-
ation roles in the XML schema

Integer 1 Conceptual level,
GML encoding

inlineOrByReference Encoding of the property value
type

String 0..1 GML encoding

isMetadata Attribute or association end is
metadata property

Boolean 1 GML encoding

speaks of association end and association role. In the UML Profile for GML Applications Schemas
(cf. appendix C.1, page 179) the UML metaclass AssociationRole is used for defining an appropriate
stereotype. However, this metaclass exists only in UML 1 and was defined there as part of the
Collaborations package. Collaborations describe which elements of a system have to communicate
with each other to achieve a certain task:

In the metamodel, an AssociationRole specifies a restricted view of an Association used
in a Collaboration. An AssociationRole is a composition of a set of AssociationEndRoles
corresponding to the AssociationEnds of its base Association. (ISO 2005b)

In UML 2 the concept is no longer available:

The contents of a collaboration is specified as its internal structure relying on roles and
connectors; the concepts of ClassifierRole, AssociationRole, and AssociationEndRole
have been superseded. (ISO 2012b)

Furthermore, in UML 1 the metamodel element AssociationEnd exists:

In the metamodel, an AssociationEnd is part of an Association and specifies the connec-
tion of an Association to a Classifier. (ISO 2005b)

In UML 2, however, the metaclass is no longer available, an association end is now represented by the
metamodel element Property:

When a property is owned by a classifier other than an association via ownedAttribute,
then it represents an attribute of the class or data type. When related to an association
via memberEnd or one of its specializations, it represents an end of the association. (ISO
2012b)

AssociationEnd was a metaclass in prior UML, now demoted to a member of Association.
(ISO 2012b)

Based on these definitions, AssociationRole does not seem to be the correct UML metaclass of which
to extend a stereotype for UML association ends. Since the standard ISO 19136 Annex E conforms to
ISO/TS 19103, and ISO/TS 19103, in turn, is based on UML 1.4.2, the UML metamodel element
AssociationEnd was chosen in the ISO 19136 UML profile diagram in figure C.5, page 185, as the
most appropriate UML metaclass.
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5.3.1.8 Conclusion

When comparing the UML profiles defined by the standards ISO/TS 19103 and ISO 19136 Annex E,
it can be noticed that the UML profile defined by ISO 19136 Annex E represents an extended version
of the UML profile defined by ISO/TS 19103 as it complements the ISO/TS 19103 UML profile
by additional stereotypes and provides tag definitions for most of the stereotypes. Furthermore,
when reading the explanations of each tag definition, it becomes apparent that the tag definitions
defined in ISO 19136 Annex E are mainly required for providing additional information enabling an
automatic mapping of the individual UML model elements in UML application schemas to XML
schema elements in GML application schemas, but not for enhancing UML application schemas at
the conceptual level.

The indication no stereotype in table 5.2, page 87, refers to extensions regarding the UML meta-
classes Package, Class, Attribute and AssociationEnd (UML 1) / Property (UML 2) for which the
standard ISO 19136 Annex E defines tag definitions, but no stereotypes. These tag definitions have to
be applied to UML application schemas for being able to derive correct GML application schemas
automatically. They can be used as is, when creating UML 1 compliant UML application schemas,
however, they contradict the UML 2 profile definition of the OMG, according to which tag definitions
must occur in combination with a named stereotype. Similarly, this also holds true for the indication
any stereotype in table 5.2. Therefore, to be able to apply the specified tag definitions from ISO 19136
Annex E in UML 2 compliant application schemas, first a stereotype has to be defined together with
the required tag definitions, otherwise they cannot be made use of.

«Enumeration» and «DataType» are defined in the UML metamodel as keywords for the corres-
ponding UML metamodel concepts Enumeration and DataType. The standard ISO 19136 Annex E
does not consider this fact, but rather treats them as stereotypes extending the UML metamodel
concept Class and, in addition, specifies tag definitions for them. A solution needs to be found which
takes into account the tag definitions and which at the same time preserves the semantics of the
UML metamodel concepts. Similarly, «Import» represents a keyword in the UML metamodel and a
stereotype in ISO 19136 Annex E. However, since no tag definitions are specified for this keyword, its
use does not pose a problem.

Regarding the stereotypes «CodeList» and «Union», the same conclusion applies as was already
given in the context of the ISO/TS 19103 UML profile (cf. section 5.1.1.4, page 80), i. e. their
semantics causes a semantic modification of the UML metamodel.

The stereotypes «Leaf» and «Type» actually represent extended versions of already existing
stereotypes, nevertheless they can be defined formally as part of a UML profile compliant with the
UML profile definition of the OMG. Also the stereotypes «Application Schema», «FeatureType» and
«Association» can be defined formally according to the UML profile definition of the OMG and do not
cause any problems in use.

5.3.2 Proposed formal definition of an ISO 19136 UML profile

In section 2.4.3, page 23, the UML package merge concept was introduced which enables the contents
of two UML packages to be combined into one UML package. Since UML profiles are UML packages
themselves, package merge can be regarded as a convenient concept for creating UML profiles targeted
at different communities within a certain domain. In this way, in a first step base definitions relevant
to all communities within a domain can be defined which afterwards can be extended by specific
concepts required only within a specific community.
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For the geospatial domain, the ISO/TS 19103 UML profile proposed in section 5.1.2, page 81,
can represent such a base definition, since the stereotypes it provides are relevant to all communities
modelling geographic information. The ISO 19136 UML profile makes use of this UML profile as well,
but it extends the existing stereotypes by tag definitions and also defines additional stereotypes required
for being able to automatically derive GML application schemas from UML application schemas.
Thus, in terms of the UML package merge concept, the ISO/TS 19103 UML profile represents the
merged package and the ISO 19136 UML profile represents the receiving package as is displayed in
figure 5.7. In addition, also the UML StandardProfileL2 defined in the UML 2 Superstructure has to
be included into the merge, since it contains the stereotype «Type» for which the standard ISO 19136
Annex E defines specific tag definitions.

«merge»
«profile»

ISO/TS19103

«profile»

ISO19136

«profile»

StandardProfileL2
«merge»

Figure 5.7: Merging of the ISO/TS 19103
UML profile and of the UML StandardPro-
fileL2 into the proposed formal ISO 19136
UML profile

The formal ISO 19136 UML profile proposed in this section takes into account the UML package
merge concept. Figure 5.8 displays the proposed formal ISO 19136 UML profile. Stereotypes which
have already been defined in the proposed formal ISO/TS 19103 UML profile in section 5.1.2, page 81,
are not defined anew, but only complement the base definitions of the standard ISO/TS 19103 by
additional concepts defined in the standard ISO 19136 Annex E. To be compliant with the UML 2
profile definition of the OMG, specific stereotypes are defined for all metaclass extensions indicated in
the above discussion by no stereotype (cf. table 5.2, page 87) as well as for the keywords to allow for
using the required tag definitions in modelling UML 2 compliant application schemas. All stereotypes
defined formally in the proposed formal ISO 19136 UML profile are discussed in more detail in the
following sections.

Section 5.3.1.2, page 88, pointed out that «import» is not a stereotype, but a keyword. Since no tag
definitions are defined in the standard ISO 19136 Annex E, no necessity exists to define a specific
stereotype providing tag definitions for this keyword; therefore, «import» has not been included in the
proposed formal ISO 19136 UML profile. Also, the stereotype «Association» has not been included
in the formal ISO 19136 UML profile. On the one hand, the standard ISO 19136 Annex E does not
mandatorily prescribe its use in modelling UML application schemas (cf. section 5.3.1.7, page 92).
On the other hand, a stereotype has to be defined anyway for UML attributes to make use of the tag
definitions defined in ISO 19136 Annex E. Since UML attributes as well as UML association ends
are represented in UML 2 by the metamodel element Property, and since both require them same tag
definitions, too, the stereotype defined for UML attributes can be used for UML association ends as
well.
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c.extension->forAll(p | not p.ownedEnd.type.name='ApplicationSchema'))

Figure 5.8: Proposed formal ISO 19136 UML profile

5.3.2.1 Formal definition of the stereotypes «ApplicationSchema» and
«FeatureType»

As discussed in the sections 5.3.1.1, page 87, and 5.3.1.3, page 89, the stereotypes «Application
Schema» and «FeatureType» as well as their related tag definitions can be defined formally according
to the UML 2 profile definition of the OMG; thus, no modifications to the existing definitions are
required.

However, the name of the stereotype «Application Schema» is changed to «ApplicationSchema» in
the proposed formal ISO 19136 UML profile, since all other stereotype names composed of two words
are written without space between the words as well. Furthermore, several other UML profiles, such
as the INSPIRE UML profile (cf. section 5.4, page 100) or the AAA UML profile (cf. section 5.5.1,
page 108), define a stereotype with the name «ApplicationSchema». According to the explanations in
section 2.4.1, page 19, «Application Schema» and «ApplicationSchema» are two different concrete
syntax elements, each of them representing a different abstract syntax element. Therefore, keeping
the stereotype name as is, i. e. with a space between the two words, but defining the same stereotype
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in other UML profiles without space, would result in two different stereotypes – this does not seem
intended.

In addition, the OCL constraint in listing 5.5 is added to the stereotype «ApplicationSchema»,
restraining UML application schema packages from containing other UML packages with the ste-
reotype «ApplicationSchema». This is equivalent to the textual constraint ‘Not nested in another
applicationSchema package’ (ISO 2013b) used in the UML profile of ISO/DIS 19109 (cf. figure C.4,
page 184).

Listing 5.5: OCL constraint of the proposed formally defined stereotype «ApplicationSchema»

context ApplicationSchema inv:
self.base_Package.nestedPackage->closure(nestedPackage)->forAll(c | c.extension->forAll(p | not

p.ownedEnd.type.name=’ApplicationSchema’))

5.3.2.2 Formal definition of stereotypes for the keywords «enumeration» and
«dataType»

As explained in section 2.4.2, page 22, and also in the context of the ISO/TS 19103 UML profile in
section 5.1, page 76, «Enumeration» and «DataType» are not stereotypes, but keywords denoting the
UML metamodel elements Enumeration and DataType, respectively. Thus, they have to be treated
differently regarding their formal definition in combination with tag definitions as part of a UML
profile compliant with the UML profile definition of the OMG. Appropriate stereotypes need to be
defined which extend the metaclasses Enumeration and DataType, respectively. The question arises,
which stereotype names to choose, since naming a stereotype identically to an existing UML keyword
can lead to confusion and, therefore, is discouraged from by the UML specification (ISO 2012b).

+ designationScheme: DesignationSchemeValue

+ designation: DesignationValue

+ percentageUnderDesignation: Percentage [0..1]

«dataType» «DataType»

DesignationType

Figure 5.9: Data type DesignationType from
the application schema INSPIRE Protected
Sites Simple (JRC 2014f) with formally
proposed stereotype «DataType» applied

However, the UML specification also recom-
mends to start keyword names with a small letter
and stereotype names with a capital letter which
makes the difference visible at first view, provided
this rule is followed strictly. Based on this argu-
ment, the decision was made to name the stereo-
types in the proposed formal ISO 19136 UML pro-
file identically to the already existing keywords and
to strictly adhere to the upper and lower case rule.
This means, a stereotype «Enumeration» is defined
which extends the UML metaclass Enumeration
and a stereotype «DataType» which extends the
UML metaclass DataType. Both stereotypes are, in addition, provided with the required tag definitions.
When creating now a UML application schema based on the proposed formal ISO 19136 UML
profile, UML model elements which represent on the one hand a data type (expressed by the keyword
«dataType») and to which on the other hand the tag definitions relevant for data types are applied
(expressed by the stereotype «DataType») will appear in the UML application schema as illustrated in
figure 5.9, i. e. keyword and stereotype names are displayed next to each other above the name of the
UML model element.
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5.3.2.3 Formal definition of the stereotypes «CodeList», «Union», «Leaf» and «Type»

The stereotypes «CodeList», «Union» and «Leaf» are already defined in the proposed formal ISO/TS
19103 UML profile in section 5.1.2, page 81, whereas the stereotype «Type» is predefined in the
UML 2 specification as part of the UML StandardProfileL2. The definitions in the standard ISO 19136
Annex E extend these stereotypes by several tag definitions. Using the UML package merge concept,
only these additional tag definitions have to be defined in the proposed formal ISO 19136 UML profile.
The extension relationships between the stereotypes and the corresponding UML metaclasses do not
have to be defined anew.

Figure 5.10 shows the UML package which results conceptually from merging the merged packages
ISO/TS19103 and StandardProfileL2 with the receiving package ISO19136 from figure 5.7, page 95.
In this process, the elements ISO/TS19103::CodeList, ISO/TS19103::Union, ISO/TS19103::Leaf and
StandardProfileL2::Type from the merged packages ISO/TS19103 and StandardProfileL2 are merged
with the elements ISO19136::CodeList, ISO19136::Union, ISO19136::Leaf and ISO19136::Type
from the receiving package ISO19136 into equally named resulting elements which are marked in
red in the UML diagram. All other elements from the proposed formal ISO 19136 UML profile are
simply copied into the resulting package. The stereotypes from the UML StandardProfileL2 are, apart
from the stereotype «Type», not displayed in the UML diagram. Theoretically they are also copied
into the resulting package, but are omitted to keep the UML diagram focused on the relevant aspects.

5.3.2.4 Formal definition of stereotypes for no stereotype indications

The standard ISO 19136 Annex E defines tag definitions to be applied to UML packages contained
within UML application schemas (cf. section 5.3.1.1, page 87), UML classes representing object types
(cf. section 5.3.1.3, page 89) as well as UML attributes and UML association ends (cf. section 5.3.1.7,
page 92). However, no stereotypes are defined in ISO 19136 Annex E for these tag definitions. Since
in the context of UML 2 tag definitions can only be applied to UML model elements in connection
with a stereotype, the following stereotypes are introduced in the proposed formal ISO 19136 UML
profile:
• The stereotype «Package» as extension of the UML metaclass Package to mark UML packages

contained within UML application schemas,
• the stereotype «ObjectType» as extension of the UML metaclass Class to mark UML classes

representing object types and
• the stereotype «Property» as extension of the UML metaclass Property to mark UML attributes and

UML association ends.
The stereotype «Package» can be applied to UML packages without stereotype but also to UML
packages which already have an arbitrary stereotype.
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Figure 5.10: Proposed formal ISO 19136 UML profile, represented as UML package resulting
conceptually from merging the merged packages ISO/TS19103 and StandardProfileL2
with the receiving package ISO19136
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5.4 The INSPIRE UML profile

The European SDI initiative INSPIRE (European Parliament and Council 2007) provides its own
UML profile which is based on the standard ISO 19136 Annex E. The INSPIRE UML profile is
discussed here, as it is of importance to each EU Member State advised to provide its data according
to the INSPIRE data specifications. Furthermore, INSPIRE recommends to use the ‘INSPIRE Data
Specifications as a basis for national or community extensions’ (JRC 2014a), and it is also expected
that the INSPIRE Generic Conceptual Model will influence ‘modelling activities for spatial data
at the national level, because it adds value to the national spatial data infrastructure and simplifies
transformation to the INSPIRE Data Specifications’ (JRC 2014a). Above that, also the use case in this
thesis will also make use of the INSPIRE data specifications (cf. section 7.1, page 139).

The INSPIRE Generic Conceptual Model (GCM) is specified in the INSPIRE document D2.5:
Generic Conceptual Model, Version 3.4 (JRC 2014a). The GCM is a framework based on which the
INSPIRE data specifications for each individual INSPIRE theme are to be defined. The framework, in
turn, is based on the ISO 191xx series of geographic information standards. The GCM requires that
every INSPIRE data specification provides at least one INSPIRE application schema defined using
UML. The INSPIRE application schemas have to conform to the standards ISO 19109 and ISO/TS
19103, i. e. they have to be defined compliant to the General Feature Model of the standard ISO 19109
and they have to use the elementary data types of the standard ISO/TS 19103. However, the GCM
also requires that the INSPIRE application schemas are defined using UML version 2.1.2, instead of
UML version 1.4.2 (ISO/IEC 19501) on which the standards ISO 19109 and ISO/TS 19103 are based.
Furthermore, the use of UML has to conform to the standard ISO 19136 Annex E.

The INSPIRE document D2.7: Guidelines for the encoding of spatial data, Version 3.3 (JRC 2014b)
specifies the default encoding rule for the INSPIRE application schemas. This default encoding
rule corresponds to the encoding rule defined in the standard ISO 19136 Annex E and, in addition,
comprises extensions to the ISO 19136 Annex E encoding rule defined in the GML version 3.3
specification (Portele 2012b) as well as additional rules defined in the document D2.7 itself. However,
it is not obligatory for INSPIRE application schemas to make use of this encoding rule as the
mandatory encoding rule. Depending on the use case of each specific INSPIRE application schema,
also a different encoding rule could be specified as the mandatory encoding rule.

The INSPIRE UML profile to be used for modelling the INSPIRE application schemas is provided in
the document D2.5 in tabular form, containing all relevant stereotypes and tag definitions. Table 5.11 is
based on this overview, it lists all stereotypes which are part of the INSPIRE UML profile. Furthermore,
a UML profile diagram was created for this thesis based on the information provided in the documents
D2.5 and D2.7 which is displayed in figure C.6, page 188.

Although based on the standard ISO 19136 Annex E, the stereotype «Association» defined in ISO
19136 Annex E is not part of the INSPIRE UML profile provided in the document D2.5 and, thus,
also not included in this table. Furthermore, it can be noticed, that some of the stereotypes refer to
the UML 1 metaclasses Dependency, Attribute and AssociationRole, although the GCM requires the
use of UML 2. Also, the stereotype names start with lower-case letter, in contrast to the stereotype
names in the standards ISO/TS 19103 and ISO 19136 Annex E. Above that, the GCM recommends
to complement packages and classifiers by the tag definition xsdEncodingRule to be able to indicate
the encoding rule to be applied in the encoding of an INSPIRE application schema. Since the tag
definition is just a recommendation and not a requirement, it is defined in the UML profile diagram
with multiplicity [0..1].

In the following, the stereotypes defined new in the INSPIRE UML profile will be discussed in
more detail. The stereotypes which were already defined in the standard ISO 19136 Annex E are
basically only complemented by additional tag definitions in the INSPIRE UML profile; also, the
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Table 5.11: Stereotypes of the INSPIRE UML profile

Stereotype UML metaclass Origin of stereotype

«applicationSchema» Package ISO 19136 Annex E
any or no stereotype Package ISO 19136 Annex E
«leaf» Package ISO/TS 19103
«import» Dependency UML 1
«featureType» Class ISO 19136 Annex E
«placeholder» Class INSPIRE D2.5
no stereotype Class ISO 19136 Annex E
«type» Class UML 1
«enumeration» Class UML 1
«codeList» Class ISO/TS 19103
«union» Class ISO/TS 19103 / ISO 19107
«dataType» Class UML 1
no stereotype Attribute, AssociationRole ISO 19136 Annex E
no stereotype Attribute with value type «codeList» INSPIRE D2.5
«voidable» Attribute, AssociationRole INSPIRE D2.5
«lifeCycleInfo» Attribute, AssociationRole INSPIRE D2.5
«version» AssociationRole INSPIRE D2.5

conclusions drawn in section 5.3.1.8, page 94, are still valid for these stereotypes. Therefore, they
will not be discussed again. For completeness, however, the extensions defined in the INSPIRE UML
profile for these stereotypes are listed in appendix C.3, page 186. After this discussion, a formal UML
profile compliant with the UML profile definition of the OMG will be proposed.

5.4.1 Discussion of the INSPIRE-specific stereotypes

The INSPIRE UML profile defines several new stereotypes to be applied in modelling INSPIRE
application schemas which will be presented in this section.

5.4.1.1 The stereotype «placeholder»

The INSPIRE document D2.5 defines the use of the stereotype «placeholder» as follows:

All spatial object types specified in INSPIRE application schemas shall carry the ste-
reotype <<featureType>>. In cases where a spatial object type acts as a placeholder
for a spatial object type that will be specified as part of a future spatial data theme the
stereotype <<placeholder>> shall be used. (JRC 2014a)

Table 5.12 lists the tag definitions defined in the INSPIRE document D2.5 for the stereotype «place-
holder». Based on the above definition, the stereotype «placeholder» represents feature types which
are to be defined in a future data specification. Thus, just as the stereotype «featureType», also the
stereotype «placeholder» extends the UML metaclass Class. The stereotype «placeholder» as well as
its related tag definitions can be defined formally as part of a UML profile compliant with the UML
profile definition of the OMG.
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Table 5.12: INSPIRE UML profile: Tag definitions of the stereotype «placeholder»

Name Meaning Type Multiplicity Use

noPropertyType An XML complex type is to be
generated carrying the name of the
placeholder with the suffix Proper-
tyType

Boolean 1 GML encoding

byValuePropertyType An XML complex type is to be
generated carrying the name of
the placeholder with the suffix
PropertyByValueType

Boolean 1 GML encoding

isCollection The placeholder is to be encoded
as GML feature collection

Boolean 1 GML encoding

inspireConcept URI reference to the feature
concept

String 1 Conceptual level,
GML encoding

xsdEncodingRule The encoding rule to be applied String 0..1 GML encoding

5.4.1.2 The stereotype «voidable»

For the stereotype «voidable» the following definition is given in the INSPIRE document D2.5:

If a characteristic of a spatial object may not be present in the spatial data set independent
of its presence or applicability in the real world, the property shall receive the stereotype
«voidable». If and only if a property receives the stereotype «voidable», the value of void
may be used as a value of the property which shall imply that the characteristic is not
present in the spatial data set, but may be present or applicable in the real world. It shall
be possible to qualify a value of void in the data with a reason using the VoidReasonValue
type [...]. (JRC 2014a)

The stereotype «voidable» defines rules for UML properties which exist in the real world, but whose
value might not be present in the data set. In this case, the UML property will be assigned the value
Unknown, when the property value is not known to the data provider, Unpopulated, when the value
is not part of the data set provided by the data provider, or Withheld, when the value may be known
to the data provider, but is confidential (JRC 2014a). All three values are defined in the code list
VoidReasonValue, depicted on the left side of figure 5.11.

In section 5.3.1.7, page 92, it was discussed that stereotypes which are applied to UML attributes
and UML association ends extend in UML 1 the UML metaclasses Attribute and AssociationEnd,
whereas in UML 2 they extend the UML metaclass Property. Although INSPIRE requires the use of
UML 2.1.2, the majority of the INSPIRE UML profile as defined in the document D2.5 represents an
extension of the ISO 19136 UML profile which is based on UML 1.4.2. Therefore, in the INSPIRE
UML profile diagram in figure C.6, page 188, the stereotype «voidable» is, for the moment, defined as
an extension of the UML metaclasses Attribute and AssociationEnd. No tag definitions are defined for
the stereotype. It should be noted here, that in the current implementation of the INSPIRE UML profile
for use with the software Enterprise Architect (cf. appendix C.1, page 179) the stereotype «voidable»
extends the UML metaclasses Attribute and AssociationRole. The UML metaclass AssociationRole,
however, does not seem suitable here, as was discussed in section 5.3.1.7, page 92.

The stereotype «voidable» can be defined formally according to the UML profile definition of the
OMG. However, the stereotype causes a semantic modification of the UML specification when applied
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Figure 5.11: Stereotype «voidable» according to the INSPIRE UML profile
(JRC 2014e) and its use with the feature type BasicProperty-
Unit from the INSPIRE data specification Cadastral Parcels (JRC
2014d)

to a UML property, because the value range of the affected UML properties now not only consists
of the actual type, but also of the values of the code list VoidReasonValue. Consider for example
the property beginLifespanVersion of the feature type BasicPropertyUnit depicted on the right side
of figure 5.11. The property is of the type DateTime and of the multiplicity 1 which means that the
property exhibits exactly one value of the type DateTime in an instance. However, due to the fact
that the stereotype «voidable» has been applied to the property, its value range not only comprises
DateTime information any more, but also the values of the code list VoidReasonValue which contradict
the type DateTime. The same holds true for all UML properties to which the stereotype «voidable»
has been applied.

Although being technically justifiable, the semantics of the stereotype is not compliant with the
UML specification and can affect the machine-interpretability of the INSPIRE application schemas
(Kutzner and Donaubauer 2012). Furthermore, problems can occur during the transformation between
different UML application schemas.

5.4.1.3 The stereotypes «lifeCycleInfo» and «version»

The last two stereotypes defined in the INSPIRE document D2.5 are «lifeCycleInfo» and «version».
The document provides the following definitions for them:

A property that is considered to be part of the life-cycle information of a spatial object
shall receive the stereotype «lifeCycleInfo». (JRC 2014a)

An association role that ends at a spatial object type shall imply that the value of the
property is the spatial object unless the role has the stereotype «version» which shall
imply that the value of the property is a specific version of the target spatial object. (JRC
2014a)

According to this definition, the stereotype «lifeCycleInfo» can be applied to UML attributes and UML
association ends, whereas the stereotype «version» is only applied to UML association ends. Thus, as
argued in the context of the stereotype «voidable», the stereotype «lifeCycleInfo» is defined as an
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extension of the UML metaclasses Attribute and AssociationEnd, whereas the stereotype «version»
only extends the UML metaclass AssociationEnd in the INSPIRE UML profile diagram in figure C.6,
page 188. No tag definitions are defined for neither of the stereotypes.

Both stereotypes play a role in particular at the conceptual level, i. e. at the level of the INSPIRE
application schemas, by labelling properties which provide life-cycle information and association ends
which are connected to versioned feature types. The stereotypes are ignored by the default encoding
rule and do not have any impact on the derivation of GML application schemas.

5.4.1.4 UML attributes of the value type «codeList»

The INSPIRE UML profile defines the tag definition obligation for UML attributes which are of
the value type «codeList»3; however, without defining a stereotype and, thus, not compliant to the
UML 2 profile definition of the OMG, as was already discussed in the context of the ISO 19136 UML
profile (cf. sections 5.3.1.1, page 87, 5.3.1.3, page 89 and 5.3.1.7, page 92). The current situation is
reflected in the INSPIRE UML profile diagram in figure C.6, page 188, by modelling the extension
there without stereotype name as well.

5.4.1.5 Conclusion

The INSPIRE UML profile defined in the INSPIRE documents D2.5 and D2.7 reuses for the main part
the UML profile which is defined by the standard ISO 19136 Annex E and which is extended by the
GML version 3.3 specification. It complements the existing stereotypes by additional tag definitions
required for encoding INSPIRE application schemas according to the default encoding rule proposed
in the INSPIRE document D2.7. Therefore, regarding these existing stereotypes the conclusion drawn
for the ISO 19136 UML profile (cf. section 5.3.1.8, page 94) also apply here. Furthermore, the issue
of tag definitions for which no stereotype was defined applies here as well.

The INSPIRE UML profile defines four new stereotypes, each can be defined formally according to
the UML profile definition of the OMG. The stereotypes «lifeCycleInfo» and «version» are relevant
only for adding information to the INSPIRE application schemas at the conceptual level, whereas the
stereotypes «placeholder» and «voidable» also influence the derivation of GML application schemas.
However, the stereotype «voidable» causes a semantic modification of the UML specification when
used in defining INSPIRE application schemas which affects their machine-interpretability and
can cause problems during schema transformation. A solution needs to be found which prevents
the semantic modification, but which at the same time preserves the semantics of the stereotype
«voidable».

5.4.2 Proposed formal definition of an INSPIRE UML profile

In section 5.3.2, page 94, it was argued that package merge can be regarded as a convenient concept
for creating UML profiles targeted at different communities within a certain domain – INSPIRE can
in this context be regarded as a specific community within the geospatial domain. The INSPIRE

3Actually, the INSPIRE document D2.5 is not fully clear regarding the necessity of the tag definition obligation. On the one
hand, the document lists the tag definition in the INSPIRE UML profile overview, but, on the other hand, it mentions in a
note that the tag definition is no longer required due to the introduction of the tag definition extensibility as part of the
stereotype «codeList». For this reason, the tag definition will only be considered in the discussion of the INSPIRE UML
profile as defined currently, but will not be further considered in the formal INSPIRE UML profile proposed hereafter in
section 5.4.2, page 104.
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UML profile makes use of the ISO 19136 UML profile and of extensions to the ISO 19136 UML
profile which are defined in a GML 3.3 UML profile. In addition, it extends the existing stereotypes
by further tag definitions and defines additional stereotypes required specifically for being able to
automatically derive GML application schemas from INSPIRE application schemas according to the
default encoding rule proposed in the INSPIRE document D2.7.

Thus, in terms of the UML package merge concept, first the GML 3.3 UML profile (receiving
package) needs to be merged with the ISO 19136 UML profile (merged package); afterwards the
GML 3.3 UML profile (merged package) can be merged with the INSPIRE UML profile (receiving
package) as is displayed in figure 5.12, resulting in a UML profile package which provides all
necessary concepts required for being able to fully apply the INSPIRE default encoding rule.

«merge»
«profile»

ISO/TS19103

«profile»

ISO19136

«profile»

StandardProfileL2
«merge»

«profile»

GML3.3

«profile»

INSPIRE

«merge» «merge»

Figure 5.12: Merging of the ISO 19136 UML profile and the GML 3.3 extensions into the proposed
formal INSPIRE UML profile

The formal INSPIRE UML profile proposed in this section takes into account the UML package
merge concept. Figure C.7, page 189, displays the proposed formal INSPIRE UML profile. As
suggested by the UML profile definition of the OMG, all stereotype names are started with upper-case
letters in the proposed formal INSPIRE UML profile. Stereotypes which have already been defined in
one of the merged packages are not defined anew, but only complement the existing definitions by the
additional concepts defined in the INSPIRE documents D2.5 and D2.7.

Section 5.3.1.2, page 88, pointed out that «import» is not a stereotype, but a keyword. Since no
tag definitions are defined in the INSPIRE documents D2.5 and D2.7, no necessity exists to define
a specific stereotype providing tag definitions for this keyword; therefore, «import» has not been
included in the proposed formal INSPIRE UML profile.

The INSPIRE document D2.7 specifies that when no value is provided for the tag definition xsdEn-
codingRule, the value iso19136_2007_INSPIRE_Extensions is the default. This is indicated in the pro-
posed formal INSPIRE UML profile by setting the enumeration literal iso19136_2007_INSPIRE_Ex-
tensions from the enumeration EncodingRule as initial value of every stereotype which contains the
tag definition xsdEncodingRule. Alternatively, an OCL constraint would have to be defined for every
stereotype which specifies this condition. Listing 5.6 shows such an OCL constraint exemplarily for
the stereotype «FeatureType».

Listing 5.6: OCL constraint stating the initial value of the tag definition xsdEncodingRule of the
proposed formally defined stereotype «FeatureType»

context FeatureType::xsdEncodingRule : EncodingRule
init: EncodingRule::iso19136_2007_INSPIRE_Extensions
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The GCM requires that the values of the tag definitions noPropertyType and byValuePropertyType
are always set to false. This affects the stereotypes «FeatureType», «Placeholder», «Type» and
«ObjectType». Thus, in the proposed formal INSPIRE UML profile a suitable OCL constraint is
defined for each stereotype which states this requirement, provided that the INSPIRE encoding rule
(enumeration literal iso19136_2007_INSPIRE_Extensions) is chosen as encoding rule to apply on
an INSPIRE application schema. Listing 5.7 shows the OCL constraint which was defined for the
stereotype «FeatureType». In the same way, the tag definition noPropertyType of the stereotypes
«DataType» and «Union» is set to false.

Listing 5.7: OCL constraint stating the tagged values of the tag definitions noPropertyType and
byValuePropertyType of the proposed formally defined stereotype «FeatureType»

context FeatureType inv:
self.xsdEncodingRule = EncodingRule::iso19136_2007_INSPIRE_Extensions implies
self.noPropertyType = Boolean::false and self.byValuePropertyType = Boolean::false

The INSPIRE document D2.7 requires the tag definition asDictionary of the stereotype «codeList»
to be set to true. Furthermore, when the tag definition extensibility has the value any, then the value of
the tag definition vocabulary must be empty or the tag definition must be missing according to the
GCM; in all other cases a value must be provided. This is expressed in the proposed formal INSPIRE
UML profile by the OCL constraint displayed in listing 5.8.

Listing 5.8: OCL constraint stating the tagged values of the tag definitions asDictionary, extensibility
and vocabulary of the proposed formally defined stereotype «codeList»

context CodeList
inv: self.asDictionary = Boolean::true
inv: if self.extensibility = Extensibility::any

then self.vocabulary.size() = 0 or self.vocabulary.oclIsUndefined()
else self.vocabulary.size() > 0
endif

Furthermore, the INSPIRE document D2.7 recommends to assign the value byReference to the
tag definition inlineOrByReference when the feature association end is navigable. This affects the
stereotype «Property» for which the OCL constraint in listing 5.9 is defined. The OCL constraint
makes use of the operation isNavigable() which is predefined in the UML specification.

Listing 5.9: OCL constraint stating the tagged value of the tag definition inlineOrByReference of the
proposed formally defined stereotype «Property»

context Property inv:
self.base_Property.isNavigable() implies inlineOrByReference = InlineOrByReference::byReference

As discussed in section 5.4.1.2, page 102, the stereotype «voidable» can be defined formally
according to the UML profile definition of the OMG. However, the stereotype causes a semantic
modification of the UML specification when applied to a UML property. To resolve the semantic
modification, it is proposed here to introduce alternative types in the form of UML data types, one
alternative type for every actual type. These alternative types consist of two UML properties, one
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property yielding the actual type and one property yielding the VoidReasonValue type. The actual type
of each property with the stereotype «voidable» is then replaced by the alternative type. Furthermore,
these alternative types are provided with the stereotype «Union» as defined in section 5.1.2.2, page 83.
In this way, the «voidable» properties can at instance level be assigned either of the two properties
of the intermediate type, allowing to preserve the semantics of the stereotype «voidable» and to be
compliant with the UML specification at the same time.

This is illustrated by using the example from figure 5.11, page 103, again. The value of the property
beginLifespanVersion is either a DateTime value or a value from the code list VoidReasonValue.
Therefore, the alternative type VoidableDateTime is introduced in figure 5.13. It contains two UML
properties, the property datetime which yields the actual type DateTime and the property voidReason
which yields the VoidReasonValue type. Furthermore, the actual type of the property beginLifespan-
Version is replaced by the alternative type VoidableDateTime. By applying the stereotype «Union»
as defined in section 5.1.2.2, page 83, to the alternative type VoidableDateTime and defining an
appropriate OCL constraint, the property beginLifespanVersion can at instance level either be assigned
the property datetime of the type DateTime or the property voidReason of the type VoidReasonValue.
This approach means, that the semantics of «voidable» properties is not expressed completely any
more within the feature type class that contains the «voidable» properties. To obtain a formally correct
UML diagram, also the new «voidable» data types have to be included.

Unknown

Unpopulated

Withheld

«enumeration» «CodeList»

VoidReasonValue

+ inspireId: Identifier

+ nationalCadastralReference: CharacterString

+ areaValue: VoidableArea [0..1]

+ validFrom: VoidableDateTime

+ validTo: VoidableDateTime [0..1]

+ beginLifespanVersion: VoidableDateTime

+ endLifespanVersion: VoidableDateTime [0..1]

«FeatureType»

BasicPropertyUnit

«lifeCycleInfo»

+ datetime: DateTime [0..1]

+ voidReason: VoidReasonValue [0..1]

«dataType» «Union»

VoidableDateTime

context VoidableDateTime inv: 

datetime->notEmpty() xor voidReason->notEmpty()

Figure 5.13: Code list VoidReasonValue and feature type BasicPropertyUnit from the
INSPIRE data specification Cadastral Parcels (JRC 2014d) as well as
the intermediate type VoidableDateTime based on the proposed formal
definition of the stereotype «voidable»

5.5 Further relevant UML profiles used in SDIs today

Besides the UML profiles presented above in detail, several other UML profiles are in use in the
geospatial domain which partially extend the above UML profiles by certain aspects only. This section
shortly presents four further relevant UML profiles, the AAA UML profile, the INTERLIS UML
profile, the ELF UML profile and the CityGML UML profile, highlighting and discussing their most
important aspects.
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5.5.1 The AAA UML profile

The German AAA reference model defines the geographic reference data to be provided by the federal
mapping agencies of Germany. AAA is an acronym for AFIS-ALKIS-ATKIS; AFIS stands for the
Official Geodetic Control Stations Information System of Germany, ALKIS for the Official Real
Estate Cadastre Information System and ATKIS for the Official Topographic Cartographic Information
System. These three information systems are associated in the AAA reference model. The AAA
reference model is described in the document Documentation on the Modelling of Geoinformation of
Official Surveying and Mapping (GeoInfoDoc) (AdV 2014). In December 2014, version 7.0.1 of the
GeoInfoDoc was published, but not yet officially adopted as the new reference version of the AAA
reference model; nevertheless, the descriptions provided in this thesis already base on GeoInfoDoc
version 7.0.1 (in fact, the explanations given in GeoInfoDoc version 6.0.1 do not differ very much
from the statements below).

The conceptual data model of the AAA reference model is specified by the AAA application schema.
The AAA application schema consists of the AAA basic schema which provides basic concepts
relevant for all other schemas, the AAA technical schema which defines the actual feature types, the
AAA versioning schema and the NAS (Standards-based Data Exchange Interface) operations for data
exchange and output. NAS is the transfer format for exchanging the geospatial data; its encoding is
based on the standard ISO 19136 Annex E. The AAA application schema, furthermore, is based on
the standards ISO/TS 19103 and ISO 19109, which means, it uses the ISO/TS 19103 stereotypes and
elementary data types and it is also compliant to the ISO 19109 GFM. The AAA application schema
conforming to GeoInfoDoc version 6.0.1 was defined using UML 1.4.2 (AdV 2009). The new version
of the AAA application schema reportedly uses UML 2.4.1, however, GeoInfoDoc 7.0.1 itself still
states UML 1.4.2 as the version to be used (AdV 2014).

The AAA basic schema extends the metaclass GF_FeatureType of the GFM by the metaclass
AA_ObjektOhneRaumbezug (object without spatial reference). This new metaclass is required for
being able to define feature types which are not allowed to have a spatial reference. Furthermore, the
GeoInfoDoc defines that each AAA feature type with a spatial reference is only allowed to exhibit
one geometry at most. Feature types containing more than one geometry require that an individual
feature type is created for each geometry the feature type contains. This represents a restriction of the
GFM, according to which each feature type is allowed to contain several geometries (cf. section 2.3.2,
page 14).

The GeoInfoDoc states that, in addition to the stereotypes from the standard ISO/TS 19103, the
stereotype «FeatureType» and all tag definitions from the standard ISO 19136 are used in the AAA
application schema as well. Furthermore, the stereotypes «Request» and «Response» are specified for
identifying messages exchanged by NAS operations; however, it is not stated which UML metaclass
they extend. Above that, the tag definitions xsdEncodingRule and reverseRoleNAS are defined, but
also for them it is not stated, to which stereotypes they belong; only two hints are given. From the
statement that ‘[f]or all classes the UML Tagged Value "xsdEncodingRule" is set: "iso19136_2007"
[...]’ (AdV 2009), one may conclude that the tag definition xsdEncodingRule is to be added to all
stereotypes which extend the UML metaclass Class. Likewise, from the statement ‘[n]on-navigable
association roles are set to [...], and the UML Tagged Value "reverseRoleNAS" is set to "true"’ (AdV
2009), it may be concluded that the tag definition reverseRoleNAS is only required for stereotypes
extending the UML metaclass Property. In addition, the Enterprise Architect project containing
the AAA application schema (AdV 2015) makes use of the stereotypes «applicationSchema» and
«schema». Furthermore, several other tag definitions appear there, such as AAA:Kennung (identifier) or
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AAA:Modellart (model type); they are relevant for the so-called AAA Tool which allows for encoding
as well as generating feature catalogues and profiles of the AAA application schema. These tag
definitions are mentioned in the documentation of the AAA Tool, but are not really specified there
(Portele et al. 2014).

The encoding of the AAA application schema in the transfer format NAS takes place in two steps,
with an implementation schema specific to the platform GML (ISO 19136 Annex E) created as
intermediate step (cf. section 2.3.3, page 16). This procedure is necessary, since the AAA application
schema contains UML constructs which are not supported by the GML platform. The transformation
into the implementation schema includes, amongst others, that multiple inheritance is resolved, non-
navigable association roles are made navigable, certain classes and attributes are eliminated and that
some attributes receive a new type (AdV 2014).

Above explanations on the stereotypes and tag definitions used by the AAA application schema
show that the German AAA reference model, in effect, defines a UML profile of its own which
contains concepts specific to the AAA domain. This UML profile will be referred to as AAA UML
profile in the following. However, the definitions available of the stereotypes and tag definitions are
not very detailed and far-scattered and, thus, do not give a clear picture of how the AAA UML profile
exactly looks. A more concise definition of the AAA UML profile and a UML profile diagram would,
therefore, highly be desired. Furthermore, since the AAA UML profile is based on the ISO 19103
UML profile, which, as discussed in section 5.1.1, page 76, contains several deficits, they are passed
on to the AAA UML profile as well.

5.5.2 The INTERLIS UML profile

INTERLIS was published in Switzerland in 1991 as a mechanism for exchanging data between land
information systems. INTERLIS is a conceptual modelling language and a data transfer format for
modelling and exchanging geospatial data. INTERLIS is a Swiss standard and exists in two versions,
INTERLIS 1 (Swiss standard SN 612030) and INTERLIS 2 (Swiss standard SN 612031) (KOGIS
2006). The explanations in this thesis refer to INTERLIS 2.

In contrast to UML, which is a general-purpose modelling language, INTERLIS represents a DSL
(cf. section 2.2.4, page 11). Furthermore, UML is a graphical language, whereas INTERLIS was
specified as a textual language. Being a DSL, INTERLIS not only defines general concepts for creating
data models, such as Model, Topic, Class and Attribute, but also provides a certain number of primitive
data types, such as TextType, NumericType and DateTimeType, as well as geometry types, such as
CoordinateType, PolylineType and SurfaceType. UML, in contrast, only defines the four primitive data
types Integer, String, UnlimitedNatural and Boolean (cf. section 4.2.1.3, page 57). For this reason,
models created using INTERLIS do not require the data types and geometry types defined in the
standards ISO/TS 19103 and ISO 19107. Moreover, INTERLIS generally is not based on the ISO
191xx series of geographic information standards.

INTERLIS models can be encoded in the form of INTERLIS-specific transfer formats and also
in the form of GML application schemas. When encoding INTERLIS models, no implementation
schema needs to be created as intermediate step (cf. section 2.3.3, page 16); this is due to the fact
that INTERLIS models are very precise (Kutzner and Eisenhut 2010), i. e. they do not contain any
concepts which cannot be represented in the INTERLIS and GML platforms.

INTERLIS defines its own metamodel which is not based on MOF and does not represent an
extension of the UML metamodel. The INTERLIS metamodel is defined using the INTERLIS
language itself (KOGIS 2008). Besides, in the context of the software UML/INTERLIS editor
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(KOGIS 2015) an extension of the UML 1.4.2 metamodel was defined, which allows, on the one hand,
for creating INTERLIS models graphically using a UML visualisation and, on the other hand, for
exporting them as textual INTERLIS models. This UML metamodel extension is not standardised,
thus, only the textual INTERLIS models represent normative models, not their visualisations in the
form of UML (Kutzner and Eisenhut 2010).

For this reason, also no standardised UML profile exists for INTERLIS. However, some of the
concepts provided by INTERLIS can be transferred to corresponding stereotypes; in this way, a
specific INTERLIS UML profile can be constructed for the INTERLIS language. The stereotypes of
this INTERLIS UML profile were presented in (Kutzner and Eisenhut 2010). Table 5.13 lists those
stereotypes together with the UML metaclasses they extend. In addition, according to (Kutzner and
Eisenhut 2010), tag definitions are required to be able to define the characteristics of the INTERLIS-
specific concepts more precisely; however, no tag definitions are provided there, which is why they
are also not considered in the context of this thesis.

According to (Kutzner and Eisenhut 2010), the INTERLIS UML profile does not fully conform
to the UML profile definition of the OMG since it contains concepts such as «GraphicDef» which
modify the semantics of the UML specification. Therefore, the INTERLIS UML profile behaves
equivalent to the ISO/TS 19103 UML profile which does not conform to the UML profile definition
of the OMG due to the stereotypes «CodeList» and «Union».

Table 5.13: Stereotypes of the INTERLIS UML profile (Kutzner and Eisenhut 2010, modified)

Stereotype UML metaclass Meaning

«ModelDef» Package Definition of an application schema (may contain
geospatial object types, but may also contain type
definitions only (KOGIS 2006))

«TopicDef» Package Definition of a data basket containing ‘a specific
part of reality’ (KOGIS 2006)

«MetaDataBasketDef» Package Definition of graphic symbols and of coordinate
reference systems

«UnitDef» Class Definition of units of measure
«FunctionDef» Class Definition of functions for use in constraints,

ViewDef or GraphicDef
«ViewDef» Class Definition of a view
«GraphicDef» Class Graphic description
«DrawingRule» Property Part of GraphicDef
«LineFormTypeDef» Class Definition of new forms of curve segments
«RunTimeParameterDef» Class Definition of data from the run-time system, e. g.

of the current date for use in constraints

5.5.3 The ELF UML profile

The European Location Framework (ELF) project focuses on delivering harmonised geospatial data
beyond the scope of INSPIRE from the European national mapping and cadastral agencies to the
public and private sectors in Europe. Sectors considered within the ELF project by means of sample
applications are Health Statistics, Emergency Mapping, Real Estate and Insurance (ELF Project 2015).



5.5 Further relevant UML profiles used in SDIs today 111

For this purpose, ELF defines application schemas which extend the INSPIRE application schemas
by additional required information. The ELF application schemas are created using UML and are to
follow the guidelines provided in the INSPIRE GCM document (cf. section 5.4, page 100).

In addition, ELF defines its own ELF UML profile which is specified in the document ELF WP2 –
Modelling guidelines (Borrebæk 2014). According to this document, the ELF UML profile ‘adds
some additional tagged values to the INSPIRE UML profile’ (Borrebæk 2014), which implies that the
ELF UML profile is of the same extent as the INSPIRE UML profile. However, the ‘full ELF UML
profile’ (Borrebæk 2014) listed in the document consists only of the stereotypes «applicationSchema»,
«featureType», «dataType», «codeList» and «association.end», whereas a screenshot in the same
document showing the ELF UML profile imported in Enterprise Architect gives the impression that
the ELF UML profile is of equal extent as the INSPIRE UML profile. Thus, also here, a more concise
definition as well as a UML profile diagram would be very beneficial. The additional tag definitions
are suppress for indicating that a specific feature type is to be suppressed from being encoded in the
GML application schema and profiles for categorising classes, attributes and association roles into
specific ELF level of detail profiles.

Similar to the INSPIRE UML profile and the AAA UML profile, also the ELF UML profile defines
concepts which are specific to the ELF community only. Furthermore, since the ELF UML profile
represents an extension of the INSPIRE UML profile, it contains all those deficits discussed in the
context of the INSPIRE UML profile in section 5.4, page 100, as well.

5.5.4 The CityGML UML profile

The international standard OGC City Geography Markup Language (CityGML) (Gröger et al. 2012)
specifies an application-independent information model for representing, storing and exchanging
semantic 3D city and landscape models. The standard defines, on the one hand, a data model which is
specified using UML and, on the other hand, an exchange format which in the CityGML version 2.0
is based on GML 3.1.1. The new CityGML version 3.0, which is currently under development, will be
based on GML 3.2.1 (ISO 19136) and, thus, will make use of the encoding rule defined in the standard
ISO 19136 Annex E for deriving GML application schemas from a conceptual UML application
schema (Kutzner and Kolbe 2016; Löwner et al. 2014).

A successful application of the ISO 19136 Annex E encoding rule will require the CityGML UML
model version 3.0 to be defined based on the ISO 19136 UML profile presented in section 5.3, page 86.
In addition, the CityGML standard defines two new stereotypes, «ADEElement» and «ADE» (cf.
section 4.2.1.1, page 54, for a description of the semantics of these stereotypes, where they were
already discussed in the context of the semantic modification they cause). Thus, also CityGML
specifies a UML profile of its own, namely the CityGML UML profile, which extends the ISO 19136
UML profile by concepts specific to the CityGML community only. This means, furthermore, that the
CityGML UML profile not only inherits the deficits from the ISO 19136 UML profile discussed in
section 5.3.1, page 86, but – by reversing the meaning of the UML generalisation concept – add its
own semantic modification of the UML specification to the CityGML UML profile.





6 A universal approach to the application of UML
profiles in modelling and information integration
of geospatial data

The previous chapter identified problems which can lead to limitations in meta-interoperability
between models to which differing UML profiles are applied. This chapter will present solutions
which help to solve these problems. Beginning with a general discussion of the findings from the
analysed UML profiles, a generic concept for developing UML profiles in a structured and reusable
way will be presented afterwards, which also accepts the variety of UML profiles existing in the
geospatial domain. Next, a new UML profile, called Core UML profile, will be introduced as a
universally applicable, fundamental building block for geospatial data modelling and model-driven
transformation of geospatial data. Finally, a multi-level information integration framework will be
presented which allows for transforming between UML models based on different UML profiles.

6.1 On the use and abuse of UML profiles

The previous chapter showed that a wide variety of UML profiles is currently in use in the geospatial
domain – more than covered in this thesis (an example of a further UML profile not discussed
here is the NEN3610 UML profile which was defined for the Dutch base model for geoinformation
(NEN3610) (Geonovum 2011)). However, the possibility of being able to define any imaginable UML
profile does not only bring about advantages as regards their use, but can also result in disadvantages
and deficits due to an abuse of the UML profile mechanism.

The discussion revealed several advantages of using UML profiles in the geospatial domain. One
important advantage is that concepts which specifically exist in the geospatial domain, but which
are not represented in the standard UML language, such as the feature type or the code list concept,
can be represented in a UML model by means of corresponding stereotypes and can, furthermore, be
complemented by additional information using tag definitions or be restricted using constraints. Thus,
one can say that a UML profile makes the UML model to which it is applied, on the one hand, more
descriptive to the user of the UML model, but, on the other hand, also more precise in the sense of
more machine-interpretable as regards the derivation of data transfer formats or the transformation
between UML models. Furthermore, the UML profile mechanism allows individual communities
within the geospatial domain, such as the INSPIRE community or the CityGML community, to
make use of these general geospatial domain concepts and, if required, to define additional concepts
which are specific to their community only. These additional concepts are represented in the form of
stereotypes as well.

These advantages, however, are faced by several disadvantages. The previous chapter identified
several problems which can lead to limitations in meta-interoperability between models to which
different UML profiles are applied. One important issue are stereotypes which modify the semantics
of the UML metamodel such that the UML models do not conform to the UML specification any
more and, as a result, are not fully machine-interpretable any more. This problem can be accounted
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for by the way UML metaclasses are selected to be extended by stereotypes. (Selic 2007) states that
UML metaclasses are often chosen because they simply match syntactically, with the result that the
stereotypes can be misinterpreted by UML tools, a fact, which is also expressed in (Pardillo 2010)
by the hypothesis that ‘instead of selecting extension metaclasses by their semantic closeness, many
profiles extend metaclasses due to a notational closeness to the target language’ (Pardillo 2010).
The discussion showed that this perception also applies to some of the stereotypes defined in the
UML profiles prevalent in the geospatial domain, such as the stereotypes «CodeList» and «voidable»
(cf. sections 5.1.1.1, page 77, and 5.4.1.2, page 102, respectively). Above that, differences regarding
the UML metaclass to extend when UML versions 1 and 2 are involved can pose a problem, too. For
instance, a UML attribute is represented in UML 1 by the UML metaclass AssociationEnd, whereas
in UML 2 it is represented by the UML metaclass Property (cf. section 5.3.2.1, page 96).

Another deficit noticed during the analysis was that the various specification documents do not
define the stereotypes formally as part of a UML profile and also do not provide a UML profile diagram.
The documents rather specify the stereotypes together with possible tag definitions, constraints and
UML metaclasses they extend in tabular form or even in the running text using natural language. This
informal way of specifying UML profiles can lead to imprecise definitions and result in an ambiguous
interpretation when trying to remodel UML profiles formally using a UML tool. An example is the
tag definition obligation for which the INSPIRE document D2.5 version 3.4 contains contradictory
information whether the tag definition is still part of the INSPIRE UML profile or not (cf. section
5.4.1.4, page 104). This problem corresponds to the risks identified regarding the documentation of
encoding rules and transformation definitions, respectively (cf. section 4.2.2, page 60). However, the
definition of formal UML profiles does not only require sufficient knowledge of the UML profile
mechanism, but also of the UML metamodel itself. Otherwise, erroneous formal UML diagrams are
the result as the example of the ISO/DIS 19103 UML profile diagram contained in the ISO/DIS 19103
revision document illustrates (cf. section 5.1.3, page 85).

The analysis also showed that, even if a specific UML profile makes use of the general geospatial
domain concepts which are already defined as stereotypes within another UML profile, this specific
UML profile needs to define the stereotypes anew to be able to use them in the development of
UML models. These continual redefinitions together with a lack of knowledge regarding the UML
profile mechanism can result in stereotypes which do not reflect the original stereotypes, but rather
represent new stereotypes with a different abstract and concrete syntax, an example is the stereotype
«Application Schema»/«ApplicationSchema» (cf. section 5.3.2.1, page 96), or even with a new
semantics in case the stereotype is defined once with tag definitions and/or constraints and once
without; this applies, for instance, to the stereotypes from the ISO/TS 19103 UML profile which
are complemented by tag definitions in the ISO 19136 UML profile. Furthermore, when several
UML profiles are to be applied to the same UML model, stereotypes which are defined in more than
one of the applied UML profiles will also appear more than once in the selection list of stereotypes
applicable to the corresponding UML model element since, according to the UML profile definition,
they represent two distinct stereotypes, each of them defined within a different UML package and,
thus, also within a different namespace.

Two approaches for how to cope with these advantages and disadvantages of using UML profiles
in the geospatial domain are thinkable, (1) agreeing upon one common UML profile to be used by
all communities within the geospatial domain, or (2) accepting the existence of a diversity of UML
profiles and trying to find solutions for how to overcome the existing deficits. Both approaches will be
discussed in more detail in the following.



6.1 On the use and abuse of UML profiles 115

6.1.1 Adoption of one common UML profile

One approach to solve the above mentioned issues is that all communities within the geospatial
domain agree upon adopting one common UML profile which has to be used by each community.
This common UML profile can be regarded as an all-embracing UML profile, i. e. a UML profile
which combines all concepts from each individual community UML profile in the sense of a union set.

An advantage of this approach is that transformations would no longer need to take place in a
cross-community environment since all communities use the same UML profile and, thus, belong to
the same community and exhibit the same semantics. Furthermore, agreeing on one common UML
profile would also require to agree on one common UML version to be used by all communities for
the development of UML models. To avoid the currently existing semantic modifications of the UML
metamodel in the common UML profile, attention would need to be paid from the beginning to the
fact that the UML profile is created conforming to the UML profile definition of the OMG. This would
require each concept from each community UML profile to be examined regarding its compliance to
the UML specification and, in case a semantic modification occurs, to be redefined accordingly before
it can be added to the common UML profile.

However, one should be aware of the fact that this common UML profile can possibly result in a
very large UML profile, in particular, when the individual community UML profiles contain many
differing concepts which all need to be included in the common UML profile. One drawback thereby
is that this all-embracing UML profile might, in the worst-case, consist of a huge number of concepts,
each of them required by one specific community only, compared to only a fraction of concepts
equally relevant to all communities. A consequence could be that this common UML profile, although
agreed upon, will not gain enough acceptance by each community within the geospatial domain,
due to all those concepts included in the UML profile which are not of interest to the individual
community. A community could then start to develop a profile in the sense of defining a subset of
those concepts from the common UML profile which are relevant to that community, on the one hand,
to provide advise to the members of the community which concepts to use and, on the other hand,
to enable interoperability between UML models within the community – at the same time limiting
interoperability outside the community, in particular, when several communities start to define their
own subsets – which inverts the original idea of the common UML profile again.

Another risk is that some of the concepts could be understood differently by different communities,
in particular when the semantics of the concepts are not defined precisely enough. This could lead to
the development of UML models which explicitly assign the same stereotypes and, thus, the same
syntax, but implicitly convey a different semantics, likewise reducing the interoperability between
different communities. A further aspect to consider is the evolution of UML models or, in general, of
the topics dealt within a community, which could eventually require the introduction of a new concept
to a community UML profile. Once the common UML profile is in use, the new concept would need
to be introduced to this common UML profile, which, in turn, would require each community to adapt
its UML models to the updated common UML profile, even if the new concept is not relevant to any
other community except the one which introduced the concept.

6.1.2 Acceptance of a variety of UML profiles

The second approach, in contrast, focuses on accepting the variety of UML profiles existing within
the geospatial domain. This approach sets out from the assumption that the presence of the different
UML profiles indicates that UML profiles geared at specific communities or areas of application are
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simply required since not all concepts existing within a certain community can be squeezed into one
certain UML profile. Thus, one can also say, the current variety of UML profiles proves their necessity.
Furthermore, the variety of UML profiles in use could also be a sign of an absence of certain concepts
within the modelling language UML, indicating an insufficient semantic expressiveness due to the
semantic modification of the UML specification caused by some of the evaluated UML profiles. An
example is the CityGML ADE concept together with the corresponding stereotypes provided as part
of the CityGML UML profile (cf. sections 4.2.1.1, page 54, and 5.5.4, page 111). The superclass
strategy used by the ADE concept to enrich existing CityGML feature types with additional properties
can only be represented in UML models by means of semantically modifying the UML metamodel.

One possibility, in particular to solve the problem of semantic modification of the UML metamodel,
is the use of flexibly specifiable modelling languages such as DSLs which allow for defining
community-specific metamodels. These metamodels can be designed such that they are able to express
exactly the semantics required for defining geospatial data models within a specific community,
preventing the need for an inappropriate extension of the UML metamodel. To enable transformations
between models defined using different DSLs, they need to be based on the same meta-metamodel.
However, this alone will not solve all limitations regarding meta-interoperability. Given that one
community includes concepts in its DSL which are not included in the DSL of another community,
a complete transformation can still not be guaranteed as the concepts of the first DSL might not
adequately be transformable to the concepts of the second DSL. Furthermore, the development of a
specific DSL also requires the development of specific tools, such as editors or transformation/enco-
ding tools, to be able to make use of the DSL at all. Examples are the DSLs INTERLIS (cf. section
5.5.2, page 109) and HML (cf. section 4.3.4, page 70) for which specific tools such as editors needed
to be developed.

Since a migration from UML and UML profiles to community-specific DSLs would involve
immense time and effort, in particular in SDI initiatives which have advanced far already, a solution
will be proposed in the remainder of this chapter, which explicitly supports a continued use of the
various community-specific UML profiles in modelling as well as in information integration of
geospatial data. This solution does not only help avoid the existence of different UML versions, but
also helps reduce the amount of semantic modifications occurring in UML profiles and the negative
effect they have on transformations. Furthermore, the use of UML instead of specific DSLs facilitates
the use and information integration of geospatial data with external domains. One part of this solution
focuses on designing the UML profiles in a more structured way. This structured definition is based
on a set of core concepts which allows for reusing already defined concepts and for distinguishing
between concepts relevant at the conceptual level and concepts relevant for the encoding only. The
second, more comprehensive part of this solution deals with the development of a framework which
allows for conducting cross-community transformations based on these core concepts and against the
background of the existing variety of UML profiles.

6.2 Generic concept for the development of UML profiles

This section introduces a generic concept for developing UML profiles in a structured and reusable
way which exhibits several advantages, compared to the way UML profiles are currently defined. The
generic concept is deduced from a classification of those UML profiles which were analysed in the
previous chapter. This classification will also be presented in the following.
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6.2.1 Classification of UML profiles

The examination of the UML profiles in the previous chapter revealed several differences regarding the
scope of the concepts defined by these UML profiles. While some concepts focus on the representation
of general conceptual aspects in UML models, others serve in adding community-specific aspects to
UML models and still others focus on the provision of encoding aspects. Based on these findings, the
UML profiles can be classified into the following categories:
• Base UML profiles: The ISO/TS 19103 UML profile provides the base concepts CodeList, Union

and Leaf which are reused by all other UML profiles. These base concepts are primarily relevant at
the conceptual level for modelling geographic information using UML. Similarly, also the standard
ISO 19109 provides two base concepts, ApplicationSchema and FeatureType, which are reused
by all other UML profiles. These base concepts are relevant at the conceptual level for modelling
geographic information in the form of UML application schemas compliant to the General Feature
Model. However, these two base concepts are currently only defined in natural language, but not yet
in the form of stereotypes as part of a formal UML profile. This will most likely be corrected in the
revision of the standard ISO 19109 (cf. section 5.2, page 85). This classification and also the generic
concept presented later in this section assume that such an ISO 19109 UML profile, which formally
defines the concepts ApplicationSchema and FeatureType as stereotypes «ApplicationSchema» and
«FeatureType», already exists. Since both, the ISO/TS 19103 UML profile and the ISO 19109 UML
profile, provide base concepts to which all other UML profiles refer, one can also say that these two
UML profiles represent base UML profiles which form the fundament relevant for the entire area
of geographic information modelling using UML. When comparing these two UML profiles with
the modelling levels of MDA, it can be noticed that the base concepts add semantics to the UML
models solely at the platform-independent level, thus, both UML profiles can be located at the PIM
level of MDA.

• Encoding UML profiles: The ISO 19136 UML profile reuses the concepts from the base UML
profiles and extends them by concepts which are mainly required for enabling an automatic
derivation of GML application schemas from UML application schemas. These extensions do not
add semantics to UML application schemas needed at the conceptual level, they only add encoding-
specific information to UML application schemas. For this reason, one can also say that the ISO
19136 UML profile represents an encoding UML profile which turns a platform-independent UML
application schema into a platform-specific UML application schema located at the PSM level of
MDA. In the same way as the ISO 19136 UML profile defines an encoding rule for deriving GML
application schemas, further encoding UML profiles can be defined which provide encoding rules
for other formats commonly used in geographic information, such as KML, Shape or GeoJSON.

• Community UML profiles: The INSPIRE UML profile, in turn, reuses the concepts from the base
UML profiles as well as from the ISO 19136 UML profile and extends them by INSPIRE-specific
concepts. Since these extensions are solely required in the context of INSPIRE, one can also say
that the INSPIRE UML profile represents a community UML profile which adds community-
specific information to the UML application schema. However, a distinction has to be made
between extensions aimed at the conceptual or platform-independent level (such as the stereotypes
«lifeCycleInfo» and «version») and extensions intended for the encoding or platform-specific level
(such as the tagged value iso19136_2007_INSPIRE_Extensions). To establish a proper basis for
the generic concept presented below, a further classification of community UML profiles into
community conceptual UML profiles and community encoding UML profiles is determined here.
The community conceptual UML profiles are only allowed to contain those concepts which are
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relevant at the conceptual level and, thus, are located at the PIM level, whereas the community
encoding UML profiles solely contain encoding concepts and, thus, are placed at the PSM level.
Other community UML profiles analysed in the previous chapter are the AAA UML profile which
also needs to be split into a community conceptual and a community encoding UML profile, the
CityGML UML profile which only adds conceptual concepts to the UML profiles it extends and,
thus, is located at the PIM level as well as the ELF UML profile which, in contrast, only adds
encoding concepts to the UML profiles it extends and, therefore, is placed at the PSM level. In the
same way, further community UML profiles can be defined which provide extensions valid only to
specific communities.

The classification shows that different UML profiles fulfil different tasks by adding base information,
encoding-specific information or community-specific information to UML models. These findings
are underpinned by a classification of stereotypes depending on their role and their expressiveness
they play in software development provided in (Staron and Kuzniarz 2005). According to this
classification each stereotype belongs to one of three roles, namely code generation (the stereotype
provides information which is required by code generators), metamodel specialisation (the stereotype
introduces concepts which are relevant to a certain domain or platform) or model simplification (the
stereotype serves in labelling model elements to distinguish them from other model elements). In
addition, each stereotype is further distinguished by its expressiveness into a decorative (the stereotype
changes the concrete syntax of the extended metaclass), a descriptive (the stereotype specialises the
abstract syntax of the extended metaclass) or a restrictive stereotype (the stereotype specialises the
semantics of the extended metaclass).

Table 6.1 provides an overview of the classification introduced above. First of all, the UML profiles
are classified into the MDA levels PIM and PSM. All UML profiles which add conceptual semantics to
UML models are placed at the PIM level, where they are, in turn, subclassified into base UML profiles
and community conceptual UML profiles. In the same way, all UML profiles which add encoding-
specific information to UML models are placed at the PSM level and, in turn, are subclassified into
general encoding UML profiles and community encoding UML profiles. All UML profiles examined
in the previous chapter can be allocated to one of these categories without problems, as is shown in
the table. In addition, three other UML profiles commonly used in the geospatial domain are included
in this table, the ISO/TS 19139 UML profile, which provides an encoding rule for metadata according
to the standard ISO 19115, the GML 3.3. UML profile, which extends the ISO 19136 UML profile
by additional concepts, as well as the ISO 19118 UML profile, which provides an encoding rule
for deriving XML Schema documents from UML models. These three UML profiles belong to the
category of general encoding UML profiles.

6.2.2 Modular construction of UML profiles based on the UML package
merge concept

One of the problems mentioned in section 6.1, page 113, is that even if a specific UML profile is based
on another, already existing UML profile, this specific UML profile needs to define the stereotypes
from the existing UML profile anew to be able to use them in the development of UML models.
To overcome this problem, a generic concept will be presented in the following which allows for
constructing UML profiles in such a modular way that a redefinition of already existing stereotypes
will no longer be required and that also the drawbacks going along with the redefinition will no longer
occur. The concept makes use of UML package merge (cf. section 2.4.3, page 23) which allows for
combining the contents of two UML packages into one UML package. Since UML profiles are UML
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Table 6.1: Classification of UML profiles

MDA level Category UML profile

PIM Base UML profiles ISO/TS 19103 UML profile
ISO 19109 UML profile

Community conceptual UML profiles INSPIRE UML profile
AAA UML profile
INTERLIS UML profile
CityGML UML profile

PSM General encoding UML profiles ISO 19136 UML profile
ISO 19139 UML profile
GML 3.3 UML profile
ISO 19118 UML profile

Community encoding UML profiles INSPIRE UML profile
AAA UML profile
ELF UML profile

packages themselves, package merge can be applied to UML profiles without any problems. Also, the
proposed formal UML profiles for ISO 19136 and INSPIRE (cf. sections 5.3.2, page 94, and 5.4.2,
page 104, respectively) already applied package merge and proved that it is a convenient concept for
creating UML profiles in a modular way.

Figure 6.1 displays the generic concept. The concept is based on the finding that all UML profiles
in use in the geospatial domain can be classified into one of the four different categories introduced
in table 6.1. At the top level, the base UML profiles are located, i. e. the ISO/TS 19103 UML profile,
which contains the concepts «CodeList», «Union» and «Leaf», as well as the ISO 19109 UML profile,
which specifies the concepts «ApplicationSchema» and «FeatureType». Currently, when the concepts
of both UML profiles are to be used for developing UML application schemas, they are defined anew
within one single UML profile which is then applied to the UML model. When using package merge,
in contrast, this redefinition is not required any more. The stereotypes from the ISO/TS 19103 UML
profile are merged with the stereotypes from the ISO 19109 UML profile, which means, the latter
UML profile is simply extended by the stereotypes from the former UML profile, the ISO 19109
UML profile resulting from this merge containing all five stereotypes1. Now, only this resulting UML
profile needs to be applied to the UML application schema. In this way, the concepts from both
UML profiles can be used in the development of UML application schemas, but without having to
define the stereotypes anew. Since the standard ISO 19109 bases itself on the standard ISO/TS 19103
and the concepts defined therein, it was decided that the ISO/TS 19103 UML profile represents the
merged package, whereas the ISO 19109 UML profile represents the receiving package. This allows
for applying the ISO/TS 19103 UML profile also to UML models which only need to conform to the
standard ISO/TS 19103, but which do not necessarily have to represent ISO 19109 compliant UML
application schemas.

1Please note that the merge is carried out implicitly only, i. e. the ISO 19109 UML profile is not modified in reality as was
explained in the introduction to the UML package merge concept (cf. section 2.4.3, page 23).
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Figure 6.1: Generic concept for the modular construction of UML profiles using UML package merge

One layer below, the community conceptual UML profiles are located, i. e. those UML profiles
which define community-specific concepts relevant at the conceptual level. Due to the use of UML
package merge, the community conceptual UML profiles now only need to define those stereotypes
which complement the ISO 19109 UML profile by additional information. To make use of a specific
community UML profile when creating a UML application schema, the community UML profile
is merged with the ISO 19109 UML profile and the UML profile resulting from the merge is then
applied to the UML application schema. Regarding the German AAA community (cf. section 5.5.1,
page 108), for instance, this means that a AAA conceptual UML profile needs to be created which
merely specifies the AAA-specific stereotypes, the base stereotypes are included through merging the
ISO 19109 UML profile with the AAA conceptual UML profile.

It is also thinkable, that a community exists which does not require the definition of community-
specific concepts, but simply would like to make use of the base concepts alone. In this case, the
community can apply the ISO 19109 UML profile directly to its UML application schemas. Another
possibility, however, is that the community defines an empty community conceptual UML profile,
i. e. a UML package without content, merges the ISO 19109 UML profile with this empty UML
profile and applies the UML profile resulting from this merge – which, in fact, only exhibits the
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stereotypes from the ISO 19109 UML profile – to its UML application schemas. This second option
has the advantage that, although the community currently does not require community-specific
concepts, the community can at least express that a community conceptual UML profile exists for the
community. This is of advantage, in particular, when geospatial data are to be transformed between
different communities (section 6.4, page 129). Furthermore, should it become necessary in the future
to introduce community-specific concepts, the corresponding community conceptual UML profile
already exists.

For creating conceptual UML application schemas at the PIM level, these community conceptual
UML profiles are sufficient. However, when in a later step a data format schema is to be derived
from a UML application schema, the encoding UML profiles located at the PSM level come into
play. As defined in table 6.1, two categories exist, the general encoding UML profiles which add
encoding-specific information aimed at specific data formats to a UML application schema, and
community encoding UML profiles which extend the general encoding concepts by community-
specific encoding requirements. To be able to derive now a specific data format schema from a UML
application schema, the community conceptual UML profile needs to be merged with the relevant
general encoding UML profile into a community encoding UML profile, converting the platform-
independent UML application schema into a platform-specific UML application schema in this way2.
This platform-specific UML application schema corresponds to the concept of the implementation
schema (cf. section 2.3.3, page 16). Using the example of the AAA community again, this means that a
general ISO 19136 UML profile is required which contains the general encoding-specific information
for the GML format and a AAA GML encoding UML profile which specifies the AAA-specific
encoding requirements for the GML format. The AAA encoding UML profile can then be merged
with the AAA conceptual UML profile and the ISO 19136 UML profile, the UML profile resulting
from this merge combining the content of these three UML profiles.

The general encoding UML profiles exist only once per data format. This is illustrated in fi-
gure 6.1 which contains example UML profiles for encoding UML application schemas in the formats
GeoJSON, GML (equivalent to the ISO 19136 UML profile) and Shape. In this way, the general
encoding UML profiles can be reused by every community which wishes to provide its geospatial
data in one or several of these data formats. In the figure, the GML encoding UML profile is, for
instance, used by community A as well as by community B. Community encoding UML profiles, in
contrast, exist as many as data formats are to be derived from the UML application schemas within a
specific community as they contain community-specific encoding aspects. In the figure, community A
intends to provide its geospatial data, for instance, in the formats GeoGSON and GML; therefore,
community A needs to define one community encoding UML profile for GeoJSON and another one
for GML. Community B, although providing its geospatial data in the GML format as well, needs
to specify its own community GML encoding UML profile as it may contain requirements which
differ from those of community A. Furthermore, just as community conceptual UML profiles can be
empty, also community encoding UML profiles can be without content, which is the case when a
community does not have any community-specific encoding requirements. In this case, the community
encoding UML profile resulting from the merge contains simply the content from the community
conceptual UML profile and from the general encoding UML profile. Another example in the figure

2It can be assumed that the transformation of a PIM model into a PSM model will require more than only the application of
platform-specific stereotypes and tag definitions. An example is the elimination of multiple inheritance when a PIM model
is transformed into a PSM model targeted at the platform GML, which is applied to the AAA reference model in Germany
(cf. section 2.3.3). These transformation steps will, however, not be considered in the context of this generic concept for
the modular construction of UML profiles.
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is demonstrated by community D. This community did not define a community conceptual UML
profile, but merges directly the ISO 19109 UML profile and the general encoding UML profile with
the community encoding UML profile.

6.2.3 Advantages of a modular UML profile construction

One advantage of this generic concept for the definition of UML profiles is the clear separation
between conceptual information and encoding information. In the first stage of the modelling process,
UML models can be defined fully platform-independent by solely applying a community conceptual
UML profile. In the second stage of the modelling process, a platform-specific UML model can
then be created by merging the community conceptual UML profile with a specific general encoding
UML profile and a specific community encoding UML profile. The concept is fully compatible with
the general MDA approach presented in section 3.1.2, page 29, and also with the example MDA
transformation workflow displayed in figure 3.3, page 31, where a PIM model describing cadastral
information is transformed into PSM models for the platforms GML, GeoJSON, Java and Relational,
from which afterwards the corresponding formats and programming code are derived. To the PIM
model, a community conceptual UML profile is applied, whereas to each of the PSM models a
different community encoding UML profile is applied.

The clear separation between conceptual and encoding information also facilitates the process of
information integration of geospatial data. A PIM model which includes both kinds of information
may hinder the creation of transformation definitions, as it might be difficult to differentiate between
conceptual information relevant for the transformation and which, thus, has to be considered in the
creation of the transformation definitions, and encoding information which can be ignored since it is
only important for deriving a data format schema from the source or destination UML model.

Furthermore, a possible evolution of UML profiles can benefit from a separation between community-
specific conceptual/encoding information and general conceptual/encoding information as well. Evo-
lution of a UML profile can occur, when new definitions are to be added to a community conceptual
UML profile or when the community encoding is to be changed and, thus, the community encoding
UML profile needs to be adapted. An example is the tag definition extensibility of the stereotype
«codeList» which was introduced to the INSPIRE UML profile only in INSPIRE document D2.5, ver-
sion 3.4 (cf. section 5.4.1.4, page 104). Other possibilities are that a new definition it to be integrated
in the base UML profiles, that the general encoding rule for a specific format is to be changed or
that a new version of a specific data format is published. In all these cases it is of advantage when
only that particular UML profile needs to be modified which is primarily affected by the change.
Imagine two different UML profiles which are created without using UML package merge. UML
profile X contains definitions from community A and applies a GML encoding. UML profile Y
contains the same definitions from community A, but applies a GeoJSON encoding. A change to
certain community-specific definitions would now require a modification of the UML profiles X
and Y to reflect the change. In contrast, when the generic concept introduced in this section is applied,
only the conceptual UML profile of community A needs to be adapted and, depending on the UML
tool used, the merge with the encoding UML profiles might need to be redone to propagate the change
to the receiving packages.

When a new version of a specific data format is published, also the creation of a new general
encoding UML profile is conceivable, instead of modifying the existing general encoding UML
profile. The GML 3.2.1 encoding UML profile could, for instance, be complemented by an additional
GML 3.3 encoding UML profile. In this case one community encoding UML profile would then
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merge the GML 3.2.1 encoding UML profile and a second community encoding UML profile would
merge the GML 3.3 encoding UML profile. In this way, the encoding information of both versions
of the data format can be preserved, which is of advantage when geospatial data encoded in both
versions are to be provided by that community.

Above that, depending on the encoding tool used, there may be the case that encoding information
needs to be integrated in the encoding UML profile, without which the encoding tool is not able
to execute the encoding correctly. This encoding information may only be relevant to one specific
encoding tool, but not to another encoding tool, which, in turn, may require completely different
encoding information. Here, particular tool-specific UML profiles are conceivable which only contain
that part of information necessary to the particular encoding tool.

6.3 A universally applicable Core UML profile for geospatial
data modelling

The previous section introduced a modular concept for the definition and use of UML profiles which
accepts the variety of UML profiles existing in the geospatial domain. It, furthermore, became apparent
that the ISO/TS 19103 UML profile and the ISO 19109 UML profile are always used jointly when
UML application schemas compliant to the GFM are to be developed. For this reason, it actually
would make sense to represent the concepts of these two UML profiles as one independent UML
profile, which then constitutes a universally applicable, fundamental building block for geospatial
data modelling and model-driven transformation of geospatial data. Since one can also say that these
concepts are at the core of the geospatial domain, this UML profile will in the following be referred to
as Core UML profile.

Such a Core UML profile offers several advantages. First of all, the Core UML profile is applicable
to the definition of UML application schemas for communities which do not require community
conceptual UML profiles. The Core UML profile can in this case be used as alternative to the ISO
19109 UML profile resulting from the proposed merge approach. Furthermore, individuals and, in
particular, external domains which intend to model geospatial data, but do not have the resources to
get familiar with the various concepts existing, or are not sure which concepts to use, can simply apply
this Core UML profile and are, in this way, automatically provided with the most fundamental and
relevant concepts. Not only can they feel confident that UML application schemas developed based on
this Core UML profile will be understood by the geospatial domain, but also that the geospatial data
which conform to these UML application schemas will be compatible with any other geospatial data
conforming to UML application schemas developed based on the Core UML profile. Above that, there
might be applications which require formal UML application schemas, but only encounter geospatial
data or data specifications which are not yet formally defined. In this case, the Core UML profile
can be applied in reverse-engineering corresponding UML application schemas from the available
geospatial data or data specifications (cf. section 7.2.1, page 140, for an example). This method of
using the Core UML profile can in a certain way be characterised as ad-hoc modelling of UML
application schemas. Furthermore, the Core UML profile can be made use of when transforming
between UML application schemas which are based on different UML profiles. Since the Core UML
profile represents the least common denominator of the various UML profiles existing in the geospatial
domain, it will guarantee a minimum of compatibility between them, and, thus, facilitate semantic
transformations on the basis of a common base representation, as will be presented in section 6.4.
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To reduce the limitations in meta-interoperability between models to which differing UML profiles
are applied, two requirements need to be fulfilled by the Core UML profile. First, the Core UML
profile needs to be defined as a formal UML profile conforming to the UML profile definition; second,
the UML version based on which the UML profile will be developed needs to be fixed. The Core UML
profile can be defined using package merge as described in the generic concept for the development of
UML profiles (cf. section 6.4, page 129). However, this generic concept makes use of the profiles as
they are currently defined. Since the Core UML profile might in principle contain further concepts
which are fundamental at the conceptual level, it is advisable to start the development of the Core
UML profile afresh.

Two methods of defining UML profiles are prevalent. The first method is to create the UML
profile directly as described in section 2.4.1, page 19, whereas the second method consists of two
steps; first, a domain model is defined which contains all those concepts required within a domain,
afterwards, these concepts are mapped to appropriate concepts of the UML metamodel (Lagarde et al.
2008). In (Fuentes-Fernández and Vallecillo-Moreno 2004) useful guidelines are provided for how to
define UML profiles using the second method. Similarly, (Selic 2007) describes how to define UML
profiles systematically using the second method, avoiding in this way deficits, such as a low quality or
technical errors, which often exist in UML profiles and which can prevent a UML profile from being
properly processable with standard UML tools. Since the domain model represents a metamodel,
(Selic 2007) suggests to define the domain model using MOF. After having defined the domain model,
the UML profile is created by selecting for each concept in the domain model the most appropriate
concept within the UML metamodel. During this process, it has to be taken care that the semantics of
the chosen UML metaclass is as close as possible to the semantics of the domain concept and, also,
that the attributes, associations and constraints of the chosen UML metaclass are not in conflict with
the domain concept.

In the previous chapter, the first method was chosen for proposing formal UML profiles since the
aim was not to create completely new UML profiles for the geospatial domain, but to analyse and
enhance the existing UML profiles. Similarly, the intention of the Core UML profile to be developed
in this section is not to define completely new and different concepts, but to define concepts which are
derived from the UML profiles analysed in the previous chapter. Nevertheless, the second method will
be applied in defining the Core UML profile, on the one hand, to demonstrate this two-step approach
and, on the other hand, to allow for starting the development from the beginning, as was recommended
above.

6.3.1 A domain model of relevant core concepts for the geospatial domain

In (Kutzner and Eisenhut 2010) it is suggested that the Core UML profile is only allowed to exhibit
concepts which are common to all UML profiles and UML versions used in the geospatial domain and
which means that the Core UML profile basically represents an intersection of all concepts specified
within the existing UML profiles. This is seen as important since a comprehensive UML profile, which
also contains concepts not shared by all UML profiles, could hinder a widespread use of geospatial
data beyond the geospatial domain.

Possible disadvantages of such a comprehensive UML profile can, in part, be derived from the
above presented advantages the Core UML profile yields. One disadvantage is that, depending on
the number of concepts it contains, a thorough familiarisation with the comprehensive UML profile
will be necessary by external domains prior to be able to make use of this UML profile. This, in turn,
might require the preparation of a specification document which defines the syntax and semantics
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of each individual concept of the UML profile in detail (similar to the UML profile specifications
of the OMG which exist for several UML profiles and can comprise up to several hundred pages).
Furthermore, a comprehensive UML profile can hinder the integration of geospatial data into external
domains since, on the one hand, the concepts from the geospatial domain and from external domains
may deviate such substantially that difficulties in matching them will arise and since, on the other
hand, the creation of transformation definitions can result in a complex task, even if the concepts are
reflected in external domains in one way or another. In addition, the disadvantages stated regarding
the adoption of a common all-embracing UML profile (cf. section 6.1.1, page 115) apply here as well.

For these reasons, the domain model presented in the following will define a very manageable set
of concepts only and, thus, will be very slender. Figure 6.2 displays the developed domain model.
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Figure 6.2: Domain model of concepts to be specified in the Core UML profile. The domain model
only defines concepts which are specific to the geospatial domain, general concepts which
already exist in the UML metamodel (e. g. data type and enumeration) are not included.

Based on the finding that the ISO/TS 19103 UML profile and the ISO 19109 UML profile are
relevant to the entire geospatial domain, the concepts from these UML profiles should be represented
in the domain model in any case. This comprises the concepts code list, union and leaf from the
ISO/TS 19103 UML profile, which are defined in the domain model by the classes CodeList, Union
and Leaf, as well as the concepts application schema and feature type from the ISO 19109 UML
profile, which are reflected in the domain model by the classes ApplicationSchema and FeatureType.
Based on the semantics provided for these concepts in the standards ISO/TS 19103 and ISO 19109,
the domain model specifies, furthermore, that application schemas and leafs can be composed of
feature types, code lists and unions, and that application schemas, in turn, can also aggregate leafs.
Theoretically, two more concepts are of importance in geospatial data modelling – data type and
enumeration. However, it was decided not to include these concepts in the domain model, as they do
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not represent concepts which are specific to the geospatial domain, but general concepts which are
already provided by the UML metamodel itself.

Each concept is, in addition, provided with the attribute name to indicate that each instance of these
concepts is to be named. To decide whether further relevant attributes exist, the ISO 19136 UML
profile analysed in section 5.3, page 86, is used as a basis. As part of the analysis, tables were created
for each stereotype of the ISO 19136 UML profile which list the tag definitions each stereotype defines
and, amongst others, indicate whether a tag definition is seen as relevant for the conceptual level or
for the GML encoding. The tables show that the majority of tag definitions are encoding-specific and,
thus, are not of interest for the domain model. Three tag definitions, however, were identified as being
useful at the conceptual level: documentation, which every of the above concepts contains and which
allows for adding documentation to the concepts, version, to declare the version of the application
schema and isMetadata, to indicate that a specific attribute or association a feature contains represents
metadata. These tag definitions are, since they appear relevant across all communities, added to the
corresponding classes in the domain model as well.

In addition, also the tag definition isCollection from the stereotype «FeatureType» is added here.
The original semantics of this tag definition specifies that by setting its value to true, ‘the attribute
group gml:AggregationAttributeGroup is added to the complex type of the feature type’ (ISO
2007); the tag definition does not indicate whether a feature is to be encoded in the form of a GML
feature collection. In general, every feature collection represents a feature itself. In UML modelling, a
feature collection which aggregates other features is modelled identical to a feature which aggregates
other features. Furthermore, the concept of the feature collection does not exist in the standard ISO
19109; it rather originates from The OpenGIS Abstract Specification, Topic 10: Feature Collections,
Version 4, but is also seen controversially there as regards its necessity: ‘perhaps Feature Collections
are not needed at all’ (Kottman 1999). The decision to categorise the tag definition isCollection not
only as relevant for GML encoding, but also for conceptual modelling is based on the observation
that features usually represent concrete, tangible objects of the real world, whereas feature collections
rather denote imaginary concepts for grouping these concrete real-world objects. This difference is
seen as relevant to be representable at the conceptual level. Examples for such feature collections
are the constructs CityModel, WaterNetwork or RoadMap, but also WFS feature collections and the
concept TopicDef from the INTERLIS UML profile (cf. section 5.5.2, page 109).

Above that, it needs to be determined, whether further concepts exist that should be included in
the domain model. Since a feature type usually contains properties in the form of attributes and
associations, an additional class Property is modelled which describes this characteristic. This class
is provided with the attribute isMetadata from above as well as with the standard attributes name
and documentation. Furthermore, each property usually has a certain type. This is indicated in the
domain model by the class PropertyType which is modelled as an abstract superclass of the classes
FeatureType, Union and CodeList, the concrete type of a property, thus, being either a feature type, a
union or a code list (and theoretically also a data type or an enumeration). Similarly, a code list usually
contains a list of values which have the form of key-value pairs. This characteristic is expressed by
adding the class CodeListValue and the corresponding attributes key and value to the domain model.

The concepts represented in the domain model define several constraints which, however, do not
require the addition of OCL constraints as they can be expressed implicitly in the domain model. The
constraint that application schemas are not allowed to contain other application schemas can simply
be expressed by the fact that no reflexive association is defined for the class ApplicationSchema.
The same applies to leafs. Furthermore, a union needs to contain at least to properties to allow for
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exhibiting at run-time one and only one of the properties defined. This is expressed by setting the
lower bound of the multiplicity belonging to the association hasProperty to the value two.

The domain model exhibits to a certain extent similarities with the GFM defined in the standard ISO
19109. Also the GFM specifies concepts relevant to the geospatial domain in the form of a domain
model (cf. figure A.1, page 171, which shows an extract of the GFM). However, this domain model
merely focuses on the concept FeatureType by defining the different kinds of properties a feature
can contain (operations, attributes and associations), the different types of attributes which exist
(e. g. temporal attributes, spatial attributes and metadata attributes) and also that a feature can inherit
from other features and that a feature can specify constraints. The domain model of the GFM does not
take into account the concepts ApplicationSchema, CodeList, Union and Leaf which are defined by
the domain model in this thesis. A reason for this discrepancy is that the GFM rather intends to define
‘the concepts required to classify a view of the real world’ (ISO 2005a) in a general way, and not to
specify the concepts against the background of being able to apply them in the form of appropriate
stereotypes to a UML application schema. The standard ISO 19109 defines, in fact, rules for mapping
the concepts from the GFM to UML, but, since the rules do not make use of stereotypes, they also
do not allow for identifying the concepts as such within a UML application schema straight away.
The revision document ISO/DIS 19109:2013 started to introduce a small UML profile (cf. section 5.2,
page 85), however, apart from the stereotypes «ApplicationSchema» (which actually is not represented
as a concept per se in the domain model of the GFM) and «FeatureType», the UML profile does not
reflect any of the concepts from the GFM, but only defines the stereotypes from the UML profile of
the revision document ISO/DIS 19103:2013 anew.

6.3.2 Mapping of the domain model to the Core UML profile

After having defined the domain model, the next step is to create the Core UML profile by selecting
for each concept in the domain model the most appropriate concept within the UML metamodel. In the
context of the UML profile examination conducted in the previous chapter, the deficits of individual
stereotypes were discussed and solutions were proposed for how to define these stereotypes compliant
to the UML specification. These proposals can now be applied when defining stereotypes for the
concepts from the domain model.

Figure 6.3 displays the UML profile diagram of the developed Core UML profile. The XMI structure
of the Core UML profile is provided in listing C.2, page 190. The individual concepts from the domain
model are realised in the Core UML profile in the following way:
• The concept ApplicationSchema is realised by a stereotype «ApplicationSchema» as an extension

of the UML metaclass Package (cf. section 5.3.2.1, page 96). Since application schemas are
not allowed to contain other application schemas, the stereotype receives, in addition, the OCL
constraint from listing 5.5, page 97.

• The concept Leaf is represented by a stereotype «Leaf» which extends the UML metaclass Package
(cf. section 5.1.2.3, page 84). Since leafs are not allowed to contain any other packages, the
stereotype is complemented by the OCL constraint from listing 5.4, page 85.

• The concept FeatureType is realised by a stereotype «FeatureType» as an extension of the UML
metaclass Class (cf. section 5.3.2.1, page 96).

• The concept CodeList is represented by a stereotype «CodeList» which extends the UML metaclass
Enumeration (cf. section 5.1.2.1, page 82). The domain model, furthermore, contains the concept
CodeListValue which defines the kind of values a code list can have. This concept is not mapped to a
stereotype in the Core UML profile since the UML metaclass Enumeration provides the association
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Figure 6.3: The Core UML profile

ownedLiteral for representing enumeration values, which can be used just as well for representing
code list values as was proposed in section 5.1.2.1, page 82.

• The concept Union is realised by a stereotype «Union» which extends the UML metaclass DataType
(cf. section 5.1.2.2, page 83). The definition that a union needs to contain at least two properties is
represented by the OCL constraint from listing 5.3, page 83.

Above that, also the attributes defined in the domain model need to be realised by corresponding tag
definitions. However, as can be seen in figure 6.3, not all attributes are expressed in the UML profile.
The following decisions were taken:
• All UML metaclasses which are extended in the Core UML profile inherit from the UML metaclass

Element the association ownedComment. This association allows for adding information to UML
model elements using natural text. Since the semantics of this association corresponds to the
semantics of the attribute documentation from the domain model, this association can be used just
as well for adding documentation to UML application schemas, no specific tag definition needs
to be defined for the individual stereotypes. Similarly, the UML metaclasses inherit the attribute
name from the UML metaclass NamedElement. The semantics of this attribute corresponds to the
semantics of the attribute name from the domain model; thus, no specific tag definition needs to be
defined here as well.

• As regards the concepts ApplicationSchema and FeatureType, therefore, only the attributes version
and isCollection remain to be specified as corresponding tag definitions, respectively.
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• The attribute isMetadata is defined as part of the concept Property. To be able to add a corresponding
tag definition to the Core UML profile, first a suitable stereotype needs to be specified. The UML
metamodel provides the UML metaclass Property whose semantics is equivalent to the semantics
of the domain model concept Property. Thus, it was decided to represent the domain model concept
Property by a stereotype «Property» which extends the UML metaclass Property and to complement
this stereotype with the tag definition isMetadata.

The associations specified in the domain model do not need to be defined explicitly in the Core UML
profile since they are already reflected implicitly by the associations of those UML metaclasses the
stereotypes extend.

Based on the UML profile examination conducted in the previous chapter and the general discussion
of the findings therefrom in the beginning of this chapter, no other concepts are seen as fundamental
to be included in the Core UML profile, to the effect that the concepts selected above represent
the only core concepts required for modelling geospatial data in an adequate way. However, this
Core UML profile should not be seen as a fixed, unchangeable construct for the ages. The current
extent of the Core UML profile emerges from the variety of UML profiles existing in the spatial
domain and the need to establish a certain order among these UML profiles which rests upon a
common core. It is definitely conceivable that a certain concept, which in the beginning is part of
one conceptual community UML profile only, may gradually also be included by other communities
into their conceptual community UML profiles, in this way evolving in the course of the time into a
concept which – due to its relevance or usefulness – is fundamental to the whole geospatial domain
and, thus, into a new candidate core concept to be included in the Core UML profile.

An analogy can be drawn here to the CityGML ADE concept (cf. section 4.2.1.1, page 54, and
(Gröger et al. 2012)). The CityGML ADE concept allows for enriching the CityGML model with
additional information specific to a certain application, without that this information needs to be
part of the CityGML specification itself. However, once this information proves to be relevant not
only to a specific application, but to the modelling of 3D city and landscape models in general, the
information from this ADE may become a new candidate thematic module to be included in the
CityGML specification. Examples are the CityGML Tunnel ADE and the CityGML Bridge ADE
(Häfele 2013) which became new thematic modules in CityGML version 2.0 and the CityGML
UtilityNetwork ADE which is to become a new thematic module in CityGML version 3.0 (Löwner
et al. 2014).

6.4 A framework for multi-level information integration of
geospatial data based on UML profiles

The previous sections introduced concepts for the definition and use of UML profiles in geospatial
data modelling which accept the variety of UML profiles existing in the geospatial domain. This
section will present a framework for accepting the variety of UML profiles also within the process
of information integration of geospatial data. The framework is able to solve the problems which
can lead to limitations in meta-interoperability between models to which differing UML profiles are
applied. This includes stereotypes which modify the semantics of the UML metamodel such that the
UML models do not conform to the UML specification any more and as a result also are not fully
machine-interpretable any more, but also differences regarding the UML metaclass to extend when
UML versions 1 and 2 are involved.
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The framework is based on the idea that a UML profile exists which serves as an intermediate step
in a multi-level information integration process. This UML profile corresponds to the Core UML
profile developed above. The idea was introduced in (Kutzner and Eisenhut 2010) and included the
following short description of how the multi-level information integration could be executed: By
using a 1:1 transformation tool, a source model to which UML profile x is applied is converted into a
source model to which the Core UML profile is applied. This source model can then be transformed
into a target model to which also the Core UML profile is applied. By using the 1:1 transformation
tool again, this target model is then converted into the final target model to which the intended UML
profile y is applied. The term multi-level refers to the fact that the transformation is not simply carried
out directly between the source and target models, but that further preparatory transformations are
performed on these models on account of the various UML profiles involved.

In the following, this idea will be elaborated in more detail. A framework for multi-level information
integration will be introduced which operates at three layers:
• Metamodel layer: At this layer transformation definitions between UML models based on com-

munity conceptual UML profiles and UML models based on the Core UML profile are defined and
executed. This layer corresponds to the layer M2 in the four-layer metamodel architecture of UML
(cf. section 2.3.1, page 12).

• Model layer: At this layer transformation definitions between the source and target UML models
are defined. These transformation definitions specify the actual transformation of the geospatial
data. This layer is equivalent to the layer M1.

• Instance layer: This layer corresponds to the layer M0. Here the geospatial data are transformed
based on the transformation definitions created at the model layer.

Since the advantages the Core UML profile brings about make it relevant enough to stand on its
own and to employ it in applications beyond this framework for multi-level information integration,
a suitable Core UML profile which can be used by this framework was already developed in the
previous section.

6.4.1 The star-converter approach for incorporating community UML profiles
in the framework

The UML profile evaluation in the previous chapter revealed that some extensions between stereotypes
and UML metaclasses were mainly defined due to a syntactic compliance between the stereotypes
and the UML metaclasses they extend, to the effect that the semantics of these stereotypes cannot
be represented adequately and that also the semantics of the UML metamodel itself is modified,
which, in turn, hinders the use of standard UML tools for defining and executing transformations
between UML models which make use of these stereotypes. This problem would not exist when
the stereotypes extend UML metaclasses in a semantically correct way. To solve this problem, the
first part of the multi-level transformation framework will define transformations at the metamodel
layer which transform semantically wrong UML models into UML models such that the semantic
correctness of the stereotypes applied to these UML models as well as of the UML metamodel itself
will be restored.

Central component of this transformation process is the Core UML profile; it provides semantically
correct stereotypes and does not cause a semantic modification of the UML metamodel. Therefore, all
source and target UML models which take part in the information integration task are first transformed
into UML models to which the Core UML profile is applied. In this way, these UML models then
represent their stereotypes syntactically as well as semantically in a correct way. The transformation
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definitions only take into account those concepts from the source and target UML profiles which are
conceptually relevant; in case the community makes use of the modular concept from section 6.2.2,
page 118, this applies to all stereotypes which are part of the base UML profiles and of the conceptual
community UML profiles. The transformation comprises the following steps, as is also depicted in
figure 6.4:
1. Transformation definitions TmetaSC and TmetaT C are created between the source UML profile

Psource and the Core UML profile Pcore as well as between the target UML profile Ptarget and
Pcore, respectively. The transformation definitions are created using an appropriate editor which
possibly assists the user in this task.

2. A transformation tool executes TmetaSC , transforming in this way the source model MsourceS ,
which conforms to Psource, into the source model MsourceC , which now conforms to Pcore. Simi-
larly, by executing TmetaT C , the target model MtargetT , which conforms to Ptarget, is transformed
into the target model MtargetC , which now conforms to Pcore.
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Figure 6.4: Steps conducted at the metamodel layer of the multi-level information integration frame-
work

This transformation represents a means to overcome schematic heterogeneity, which occurs here,
because the initial UML profiles and the Core UML profile use different metamodel concepts for
modelling the same kind of information. This kind of transformation is a horizontal transformation
which is defined at the metamodel layer between the source and target UML profiles and the Core
UML profile and which is executed at the model layer on the corresponding source and target UML
models. The transformation conforms to the general approach of model transformation, as is described
in section 3.1.1, page 27.

The advantage of creating transformation definitions at the metamodel layer is that these trans-
formations only need to be defined once for every pair of community UML profile and Core UML
profile. Afterwards, each UML model to which one of these community UML profiles is applied can
be transformed into a UML model to which now the Core UML profile is applied. This approach
of transforming between different community UML profiles and the Core UML profile will in the
following be referred to as star converter approach; it is depicted in figure 6.5(a). In general, using
the star-converter approach means that for n community UML profiles n mappings need to be created,
each mapping specifying bidirectionally how the concepts from one community UML profile are
mappable to the concepts from the Core UML profile. In contrast, without the existence of the Core
UML profile, the mappings would need to be created directly between the individual community
UML profiles, which for n community UML profiles results in n(n− 1)/2 mappings to be defined;
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Figure 6.5: Model transformation between UML models to which different community UML profiles
are applied, using (a) the star-converter approach or (b) direct mappings between the
individual UML profiles

this is illustrated in figure 6.5(b). However, due to the known deficits these UML profiles exhibit, the
mappings will not turn out satisfactory.

The star-converter approach bears resemblance to two other concepts. On the one hand, it is similar
to the concept of model-driven transformation of geospatial data described in section 3.3.2, page 39.
As part of this concept, the transformations to be executed on the geospatial data are defined one level
above between the corresponding UML models. In this way, the transformations need to be defined
only once and can then be applied to any data formats conforming to these UML models. On the
other hand, it is also similar to the concept of using a common data transfer format for the exchanging
geospatial data between different systems, instead of converting directly between the different system
formats. This concept reduces for n data formats the number of format conversions to be created in
each direction from n(n− 1) to 2n (Worboys and Duckham 2004). This concept is also applied by
transformation tools such as the software FME which internally makes use of an FME-specific data
format (cf. section 4.3.2, page 66).

6.4.2 Editor-based specification of transformation definitions at the model
level

Besides the transformation definitions created at the metamodel level between different UML profiles,
the general concept for multi-level information integration also requires transformation definitions to
be created at the model level between specific source and target UML models. These transformation
definitions specify the actual transformation of the geospatial data and conform to the concept of
model-driven transformation as presented in section 3.3.2, page 39. Due to the star-converter approach,
these transformation definitions are now created between source and target UML models to which the
Core UML profile is applied. This guarantees that no semantic modification of the UML specification
occurs any more in any of the source and target UML models. Furthermore, any standard UML tool
will now be able to correctly interpret the UML models and the transformation definitions created
between these UML models.

When creating normal transformations, i. e. direct transformations between source and target UML
models which do not involve an intermediate step via the Core UML profile, the user bases the
transformation definitions on the source and target UML models as they are. However, when a multi-
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level information integration task is to be executed, also the Core UML profile has to be taken into
account when creating the transformation definitions. Three different alternatives are feasible for how
to create the transformation definitions when the Core UML profile needs to be considered as well. All
alternatives make use of an editor supporting the user in creating the transformation definitions, for
instance, by reading the source and target models and displaying them in the GUI of the editor. In this
way, the user can simply select the individual model elements taking part in a specific transformation
rule, without having to specify them manually.

By means of alternative A1, the user creates the transformation definitions compliant to the Core
UML profile and also the editor outputs the transformation definitions compliant to the Core UML
profile. Alternative A1 comprises the following steps, as is also depicted in figure 6.6:
1.–2. These are the two steps at the metamodel layer which were already introduced in section 6.4.1,

page 130, for transforming the source and target UML models into UML models based on the
Core UML profile.

3. At the model layer, the user defines the individual transformation rules between MsourceC and
MtargetC using an editor. To assist the user in this task, the editor needs to read and display
MsourceC and MtargetC beforehand.

4. The editor outputs the transformation definition TmodelCC in a format which can later be
processed by the chosen transformation tool. TmodelCC refers to MsourceC and MtargetC .
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Figure 6.6: Steps conducted at the model layer of the multi-level information integration framework
using alternative A1

Using alternative A2, the user creates the transformation definitions compliant to the Core UML
profile, whereas the editor outputs the transformation definitions twice, once compliant to the Core
UML profile and once compliant to the source and target UML profiles. Alternative A2 comprises the
following steps, as is also depicted in figure 6.7:
1.–2. These are the two steps at the metamodel layer which were already introduced in section 6.4.1,

page 130, for transforming the source and target UML models into UML models based on the
Core UML profile.

3.–4. These two steps are identical to the steps 3 and 4 of alternative A1.
5. The editor knows, in addition, MsourceS and MtargetT and can, thus, check and adapt the

transformation rules defined by the user such that they refer to these models.
6. The editor outputs the transformation definition TmodelST , which refers to MsourceS and

MtargetT .
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Figure 6.7: Steps conducted at the model layer of the multi-level information integration framework
using alternative A2

By means of alternative A3, the user creates the transformation definitions compliant to the
source and target UML profiles, whereas the editor outputs the transformation definitions twice,
once compliant to the Core UML profile and once compliant to the source and target UML profiles.
Alternative A3 comprises the following steps, as is also depicted in figure 6.8:
1.–2. These are the two steps at the metamodel layer which were already introduced in section 6.4.1,

page 130, for transforming the source and target UML models into UML models based on the
Core UML profile.

3. At the model layer, the user defines the individual transformation rules between MsourceS and
MtargetT using an editor. To assist the user in this task, the editor needs to read and display
MsourceS and MtargetT beforehand.

4. The editor knows, in addition, MsourceC and MtargetC and can, thus, check on the basis of
these models, and with reference to Pcore, the correctness of the transformation rules defined
by the user.

5. This step is identical to step 4 of alternative A1.
6. This step is identical to step 6 of alternative A2.
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Figure 6.8: Steps conducted at the model layer of the multi-level information integration framework
using alternative A3
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6.4.2.1 Comparison of the alternatives

The above presented alternatives offer different advantages and disadvantages which depend on
whether the user creates the transformation definitions based on the Core UML profile or based on
the source and target UML profiles, and on whether the editor exports the transformation definitions
solely based on the Core UML profile or, in addition, also based on the source and target UML profiles.
A comparison of the alternatives is presented in table 6.2. According to this comparison, alternative
A1 is the exact opposite of alternative A3 as regards their advantages and disadvantages which is due
to the fact that alternative A1 operates solely within the framework of the Core UML profile, whereas
alternative A3 also depends on the source and target UML profiles.

Above that, the alternatives can also be compared based on general criteria, the most important
ones being usability and extensibility, but also the implementation effort will be addressed shortly
in the following. The usability depends on whether the user can define the transformation between
models which are compliant to the source and target UML profiles (i. e. MsourceS and MtargetT ) or
between models which are compliant to the Core UML profile (i. e. MsourceC and MtargetC). When
the models are based on the Core UML profile, the user must be able to read and interpret the source
and target models even when they differ from the original source and target models; this circumstance
can reduce the level of usability for users which are less experienced with these altered UML models,
in particular when the modifications are considerable. This criterion is also reflected in table 6.2 by
the advantage/disadvantage pairs one and four.

The extensibility indicates how much effort is required for adapting the alternatives to changing
UML profiles. Changes at the metamodel layer can occur, when a new concept is introduced either to
a community UML profile or to the Core UML profile; in the former case, only the mapping between
the modified community UML profile and the Core UML profile needs to be updated, in the latter
case the mappings between all community UML profiles and the modified Core UML profile need to
be adapted. These modifications affect also the editor at the model layer; when the transformation
is solely created within the framework of the Core UML profile, the editor only needs to be able to
interpret the modified Core UML profile, otherwise the editor also needs to be able to interpret the
modified community UML profiles and the adapted transformation definitions at the metamodel layer
(i. e. TmetaSC and TmetaT C). This criterion is reflected in table 6.2 by the advantage/disadvantage
pairs two and three.

The implementation effort depends on whether the editor only needs to be able to interpret models
compliant to the Core UML profile and, thus, only needs to generate transformation definitions
(i. e. TmodelCC) which refer to these models, or whether the editor also must be able to deduce from
TmodelCC further transformation definitions (i. e. TmodelST ) which refer to the original source and
target models. In this case, the editor needs to know, in addition, about the original source and target
models and about the transformation definitions available at the metamodel layer (i. e. TmetaSC and
TmetaT C). The editor can then generate TmodelST by adapting the left and right sides of the individual
transformation rules. The implementation effort is, above that, also coupled with the extensibility
criterion. The more the editor at the model layer needs to be adapted to be able to interpret changes at
the metamodel layer, the higher the implementation effort is.

From a user’s point of view, the best alternative is A3; it has the highest usability due to its possibility
of creating the transformation based on MsourceS and MtargetT . Alternative A2 exhibits the same
complexity regarding extensibility and implementation effort as A3, but its usability is reduced since
the transformation needs to be defined based on MsourceC and MtargetC . Therefore, this alternative is
rather not an option to take into account. In contrast, alternative A1 exhibits the lowest complexity
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regarding extensibility and implementation effort since the editor only needs to be able to interpret
MsourceC and MtargetC and, in addition, only needs to be able to generate TmodelCC . This, however,
has at the same time the effect that the usability of alternative A1 is reduced.

Table 6.2: Comparison of the individual alternatives of the multi-level information integration frame-
work for specifying transformation definitions at the model level

Advantages (+) and disadvantages (−), listed pairwise
Alternative
A1 A2 A3

1. + The user can define the transformation based on MsourceS and
MtargetT .

− − +

− The user must define the transformation based on MsourceC

and MtargetC . This may lead to difficulties, when MsourceC and
MtargetC differ substantially from MsourceS and MtargetT . In that
case, the user may need to establish a relationship to the original
models to be able to define the transformation correctly.

2. + The star converter approach can effectively be utilised since the user
defines TmodelCC decoupled from MsourceS and MtargetT and, thus,
decoupled from Psource and Ptarget.

+ +/−* −

− The star converter approach cannot effectively be utilised, since the
definition of TmodelCC by the user does not take place decoupled
from MsourceS and MtargetT .

3. + The editor only needs to be able to interpret Pcore. + − −
− The editor needs to be able to interpret Pcore as well as Psource and

Ptarget; therefore, the editor also needs to know about TmetaSC and
TmetaT C .

4. + The generation of TmodelST in addition to TmodelCC facilitates the
usage of the transformation definitions for communication purposes
since TmodelST refers to the original source and target models the
user is familiar with.

− + +

− The usage of TmodelCC for communication purposes may be
hindered, when MsourceC and MtargetC differ substantially from
MsourceS and MtargetT . The user may need to establish a relation-
ship to the original models to be able to interpret TmodelCC correctly.

*For generating TmodelST , the decoupling from MsourceS and MtargetT can no longer be preserved, which limits the

effective use of the star converter approach.

6.4.3 Transformation of the geospatial data

The last part in the multi-level information integration framework is the actual transformation of the
geospatial data. The transformation is executed based on the transformation definition TmodelCC ; thus,
irrespective of which alternative was used for creating the transformation definition, the steps required
for transforming the geospatial data are always the same.
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According to the general concept of model-driven transformation of geospatial data (cf. figure 3.10,
page 41), the transformation tool needs to take into account the encoding rules of the geospatial data to
be transformed, in order to know according to which structure the contents have been encoded in the
data formats. However, since TmodelCC is based on Pcore, the transformation tool can neither simply
make use of the encoding rules ERXsourceS and ERY targetT nor of the data formats DFXsourceS

and DFY sourceT as they refer to Psource and Ptarget. Instead, encoding rules and data formats are
required which refer to Pcore. For this reason, the transformation at the instance layer comprises the
following steps, as is also depicted in figure 6.9. Depending on the alternative chosen, the numbering
of the steps starts either at five (alternatives A1 and A2) or at six (alternative A3):

5. Before the transformation can be executed, transformation definitions TinstanceSC need to be
defined between the encoding rule ERXsourceS , which refers to Psource, and the encoding rule
ERXsourceC , which refers to Pcore. In the same way, transformation definitions TinstanceT C are
defined between the encoding rule ERY targetT , which refers to Ptarget, and the encoding rule
ERY targetC , which refers to Pcore. These transformation definitions do not need to be created
manually, they rather can be derived automatically from the transformation definitions TmetaSC

and TmetaT C , respectively.
6. Based on TinstanceSC , the source data in the data format DFXsourceS are converted to source

data in the data format DFXsourceC ; now the data structures conform to Pcore.
7. A transformation tool executes the transformation definition TmodelCC on the geospatial data

to be transformed. The transformation tool reads the source data DFXsourceC and transforms
these data into the target data DFY targetC . In doing so, the transformation tool also takes into
account ERXsourceC and ERY targetC .

8. After the transformation has been executed, the transformed data DFY targetC are in a last step
converted into the data format DFY targetT based on TinstanceT C .
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Figure 6.9: Steps conducted at the instance layer of the multi-level information integration framework





7 Proof of concept

This chapter demonstrates the feasibility of the general framework for multi-level information integra-
tion introduced in the previous chapter. The concept was implemented based on a cross-border project
launched by the state and federal surveying agencies of the countries surrounding the Lake Constance.
This project serves as use case for demonstrating and evaluating the applicability of the proposed
framework. In the following, first the use case and relevant aspects regarding the data specifications
involved in the transformation will be presented. Afterwards, the implemented workflow will be
illustrated, followed by detailed explanations of the individual transformation definitions specified at
the metamodel layer and at the model layer as well as of the most important aspects regarding their
execution.

7.1 Use case

From 2010 to 2012 the project Prototypical transformation of spatial data to INSPIRE in the cross-
border Lake Constance region was conducted by the Chair of Geoinformatics at the Technische
Universität München. The project was launched by the state and federal surveying agencies of the
countries surrounding the Lake Constance, namely Austria, Germany – represented by the two German
federal states Baden-Wuerttemberg and Bavaria – and Switzerland. The project aimed at transforming
the geospatial base data of topography and real estate cadastre provided by these surveying agencies
to the INSPIRE Annex I themes (Schönherr et al. 2011; Kutzner, Donaubauer et al. 2014). Table 7.1
lists the data specifications1 based on which the surveying agencies provided geospatial data for the
project.

Table 7.1: Data specifications used in the project and transformations defined in the prototypical
implementation of the multi-level information integration framework

Country Topography Cadastre Transformations defined in the
multi-level information integration task

Austria DLM DKM DKM→ INSPIRE CP
Baden-Wuerttemberg ATKIS Base DLM ALKIS ATKIS/ALKIS→ INSPIRE CP/AU
Bavaria ATKIS Base DLM DFK DFK→ INSPIRE CP/AU
Switzerland TLM MOpublic MOpublic→ INSPIRE CP/AU

The first part of the project focused on applying a format-schema-driven transformation on these
geospatial data using existing commercial transformation tools and on offering the transformed
geospatial data afterwards via suitable view and download services. This part was carried out by the
company AED-SICAD AG, a project partner of the Chair of Geoinformatics within the project. The
software FUSION Data Service (FDS) was used for this transformation; FDS is based on the software

1Please refer to the list of acronyms for the meaning of the acronyms denoting the data specifications.
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FME (cf. section 4.3.2, page 66), extending FME by a so-called Semantic Mapper module which was
developed by AED-SICAD AG (Lill et al. 2011; Kutzner, Schilcher et al. 2012). Within this part,
the geospatial data were transformed into all themes of INSPIRE Annex I. The second part of the
project, in contrast, focused on a model-driven transformation of the geospatial data by applying the
multi-level information integration framework presented in the previous chapter. Since this part rather
aimed at demonstrating the feasibility of the introduced framework, the transformations were only
realised for the INSPIRE themes Cadastral Parcels (CP) and Administrative Units (AU). The specific
transformations considered are stated as well in table 7.1.

As regards the data specifications involved in the second part of the project, they exhibit only
in part formal data models specified using a modelling language; some data specifications are
defined by means of feature catalogues or other specification documents using natural language only.
Table 7.2 provides an overview, whether a publicly available formal data model exists for the data
specification and, if this is the case, which modelling language was used for defining the data model.
The table, furthermore, provides information whether a UML profile is applied to the data model and
in which data formats the geospatial data were provided by the surveying agencies. Besides the data
specifications representing the source side of the transformation, this overview also includes the target
side, i. e. the INSPIRE data specifications.

Table 7.2: Formal data models and data formats of the data specifications used in the prototypical
implementation of the multi-level information integration framework

Data specification Formal Modelling UML profile Data format
data model language

DKM no – – Shape, ASCII
ATKIS Base DLM/ yes, the UML 1.4.2 AAA UML profile NAS
ALKIS AAA model
DFK no – – Shape
MOpublic yes INTERLIS INTERLIS UML profile INTERLIS 2
INSPIRE CP/AU yes UML 2.1 INSPIRE UML profile INSPIRE GML

7.2 System architecture of the prototypically implemented
framework

This section describes the workflow which was composed for transforming the geospatial data to
INSPIRE based on the multi-level information integration framework introduced in the previous
chapter. Furthermore, the software tools used for realising the individual steps of the workflow are
shortly summarised.

7.2.1 Workflow of the multi-level information integration framework

Since the aim of the second part of the project was to demonstrate the feasibility of the multi-level
information integration approach, alternative A1 (cf. section 6.4.2, page 132) was chosen for defining
and implementing the multi-level information integration concept, as it has the lowest implementation
effort. Furthermore, it seemed reasonable that the user defines the transformation rules based on the
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Core UML profile; on the one hand, the Core UML profile is slim and, therefore, easy to understand,
on the other hand, the concepts of the Core UML profile represent an intersection of those concepts
relevant across all (evaluated) communities, which, thus, are available in all (evaluated) UML profiles,
leading to the conclusion that the user is familiar with them anyway.

Another objective of the second part of the project was to reuse – and, if required, to extend –
the developments from the mdWFS project (cf. section 4.3.3, page 67), in particular the transforma-
tion language UMLT, including the UMLT editor, as well as the FME extensions XMI Reader and
UMLTApplier transformer for executing the UMLT transformations. Thus, the transformation defini-
tions at the model layer were created using UMLT. The transformation definitions at the metamodel
layer were specified using ATL (cf. section 7.3.4, page 151, for an explanation why ATL was chosen).
Based on these conditions, the complete workflow for transforming the source geospatial data to the
INSPIRE themes CP and AU was composed as depicted in figure 7.1.
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Figure 7.1: Workflow of the multi-level information integration framework prototypically implemen-
ted based on alternative A1

The workflow comprises the following steps:
1. At the metamodel layer, transformation definitions TDmetaSC and TDmetaT C are specified

between the source UML profiles Psource and the Core UML profile Pcore as well as between the
target UML profile Ptarget, namely the INSPIRE UML profile, and Pcore using the transformation
language ATL. TDmetaSC and TDmetaT C are created by means of the ATL editor, which is part
of the ATL plug-in for Eclipse. The ATL editor offers content assist for EMF-based metamodels
by specifying at the beginning of the ATL transformation definition the metamodel to be loaded by
the ATL editor. In this way, UML2, the EMF-based implementation of the UML metamodel for
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the Eclipse platform, can be loaded by the ATL editor as well as the UML profiles used in this
prototypical implementation.

2. TDmetaSC and TDmetaT C are executed using the ATL transformation engine, which is part of
the ATL plug-in for Eclipse, too. The source and target UML models MsourceS and MtargetT are
provided to the engine as XMI documents. The engine reads these models, transforms them into
models MsourceC and MtargetC to which Pcore is applied and writes the transformed models as
XMI documents. To be able to consider the UML profiles during the transformation process, the
engine also needs to read the involved UML profiles (not shown in the diagram).

3. At the model layer, transformation definitions TDmodelCC are specified between MsourceC and
MtargetC using the transformation language UMLT. The general concept developed in sec-
tion 6.4.2, page 132, assumes that this task makes use of an editor which assists the user in
creating TDmodelCC . The UMLT editor from the mdWFS project is employed for this purpose.

4. After having created TDmodelCC , the user exports these definitions from the UMLT editor as XMI
documents.

The next three steps in the workflow are implemented by means of FME. The detailed set-up of the
FME workspaces created for executing the steps will be explained in section 7.5.2, page 156.
5. Before the geospatial data can be transformed, their data structures have to be converted to data

structures conforming to MsourceC . This conversion is theoretically based on transformation defin-
itions located at the level of the encoding rules by automatically deriving them from TDmetaSC

and TDmetaT C (cf. section 6.4.3, page 136). However, since the encoding rules for the source
models used in the project do not exist in machine-interpretable form, a workaround needed to
be devised. Within this prototypical implementation, step five was solved manually by creating
so-called encoding workspaces using FME which read the geospatial data DFXsourceS provided
in the data formats listed in table 7.2, convert them and write them to the FME-specific data format
FFS (FME Feature Store), i. e. DFXsourceC .

6. This step actually transforms the geospatial data. The transformations are executed by means
of a so-called transformation workspace which is created using FME, too. The workspace reads
DFXsourceC , executes TDmodelCC , i. e. the UMLT definitions which were exported in step four as
XMI documents, and writes the transformed geospatial data DFY targetC again in the FFS format
such that the data conform to the INSPIRE data model MtargetC . This step represents an automatic
execution of transformation definitions defined at the conceptual model layer on geospatial data
located at the instance layer.

7. The last step in this workflow was realised again as workaround in the form of an FME encod-
ing workspace since also for the INSPIRE model the encoding rules do not exist in machine-
interpretable form. The workspace reads DFY targetC , converts the data and writes them to the
final INSPIRE GML format DFY targetT .

The above described workflow can be used in exactly this way for transforming the data specifications
ATKIS Base DLM, ALKIS and MOpublic to the INSPIRE data specifications since formal data
models exist for them which allow for defining the transformation definitions at the model layer
using UMLT. As table 7.2 states, also the data specifications DKM and DFK are to be transformed
to INSPIRE. However, no formal data models are available for these data specifications. To be
able to apply the multi-level information integration approach to the corresponding geospatial data
nevertheless, suitable data models were specifically defined for them using UML 2.1. The contents and
structures of these data models were derived from the available feature catalogues and specification
documents as well as from the geospatial data itself. The definition of these data models made aware
of the general problems which can occur when developing data models based on the underlying data
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formats and related specification documents (cf. section 4.2.3.1, page 61). Furthermore, it was decided
that directly the Core UML profile is to be applied to these data models since, on the one hand, the
data specifications did not exhibit any concepts beyond those provided by the Core UML profile;
on the other hand, applying the Core UML profile to them guarantees a semantic correctness of the
stereotypes defined therein.

7.2.2 Technologies employed for implementing the framework

This section summarises the software tools employed for implementing the workflow. Since most of
the implementation was conducted in 2012 already, this summary reflects the software versions which
were up-to-date at that time.

The XMI Reader, the UMLTApplier and the UMLT editor are developments which were reused
from the mdWFS project. For being able to use them within this workflow they needed to be extended
regarding certain aspects which was done using Eclipse Indigo SR2 (Eclipse version 3.7.2) in the
form of the Eclipse Modeling Tools package. This package already contains several required plug-ins,
in particular Eclipse EMF version 2.7.0 (The Eclipse Foundation 2015c; Steinberg et al. 2009) and
Eclipse GMF (The Eclipse Foundation 2015d) version 1.5.0 based on which the UMLT editor was
developed, and Eclipse UML2 version 3.2.1 (The Eclipse Foundation 2015e) for processing the UML
models, UML profiles and UMLT definitions in the form of XMI documents within the XMI Reader
and the UMLTApplier.

The transformation definitions at the metamodel layer were specified and executed using the Eclipse
ATL plug-in version 3.2.1 (The Eclipse Foundation 2015a). As will be described in section 7.3.4,
page 151, in the beginning also QVT was considered as suitable language for specifying the trans-
formation definitions. Several tests were conducted using the Eclipse-based software tool mediniQVT
version 1.6.0 (KPIT medini Technologies 2012) as well as the Eclipse QVTo plug-in version 3.1.0
(The Eclipse Foundation 2015f).

The AAA UML model (version 6.0.1) and the INSPIRE UML model (revision 937) were available
as Enterprise Architect projects from the corresponding web sites (AdV 2015) and (JRC 2015).
Enterprise Architect is the UML tool predominantly used in the geospatial domain. Thus, also the
UML models for the data specifications DKM and DFK were developed using Enterprise Architect
version 10 (Sparx Systems 2015). The UML models were exported from Enterprise Architect as
XMI 2.1 documents. To be able to process these XMI documents with Eclipse UML2, the software
MagicDraw version 17.0.1 (No Magic 2015) was used in a pre-processing step as will be explained
in section 7.5.1, page 155. The AAA and the INSPIRE UML profiles as well as the Core UML
profile were (re-)modelled using MagicDraw and exported as Eclipse XMI documents. Table 7.2
states that the MOpublic model is actually modelled using the modelling language INTERLIS. To
be able to include this model in the framework nevertheless, a UML-based MOpublic model and
also the INTERLIS UML profile were provided to the project directly as Eclipse XMI documents by
swisstopo.

The encoding and transformation workspaces in the steps five, six and seven were defined and
executed using FME Desktop 2012 SP2 (Safe Software 2015a).
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7.3 Specification of transformations definitions at the
metamodel level

This section describes in more detail step one of the workflow, i. e. the specification of transformation
definitions at the metamodel layer defining the transformation of those UML models to which
community-specific UML profiles are applied into UML models to which the Core UML profile
is applied. The transformation definitions need to specify, on the one hand, mappings of the UML
metaclasses and, on the other hand, mappings of the stereotypes between the community-specific
UML profiles and the Core UML profile. The stereotype mappings also need to include mappings
between the corresponding tag definitions; these mappings only need to consider tag definitions from
the community-specific UML profiles which are identified as being relevant at the conceptual level,
encoding-specific tag definitions are not of relevance here.

In the following, mappings are defined for the INSPIRE UML profile, the AAA UML profile and
the INTERLIS UML profile. These three UML profiles are listed in table 7.2, page 140, as the UML
profiles applied to the data specifications used in the project. Above that, these UML profiles were
also classified as community conceptual UML profiles (cf. table 6.1, page 206), which means that they
are applied to conceptual UML models at the PIM level and, therefore, are well-suited for being used
in the star-converter approach. The mappings provided here can be used as guidelines and examples
for other UML profiles to which the multi-level information integration concept is to be applied as
well.

The mappings are provided in the form of simple mapping tables. The left side of the table specifies
the target of the mapping, i. e. the Core UML profile, the right side specifies the source, i. e. one of
the above mentioned UML profiles. Each side of the table contains two columns, one for the UML
metaclass and one for the corresponding stereotype to be mapped. Theoretically, also a column for
the tag definitions to be mapped should be part of the left and right side of the table. However, for
purposes of clarity regarding the page layout, and also because the mapping only affects very few tag
definitions, this column is not included here; instead, the mapping is defined textually.

Some of the mappings between UML metaclasses require more detailed specifications which take
into account individual features of these UML metaclasses as well. In UML, features represent char-
acteristics of a classifier (ISO 2012b), the features considered here being attributes and associations.
Additional mapping tables are provided for these specifications, the left side of the table stating the
target UML metaclass, the right side stating the source UML metaclass. Each side of these tables
contains three columns, one for the UML metaclass, one for the feature and one for the type of the
feature2.

As mentioned in the workflow description, the mappings are to be implemented using the trans-
formation language ATL. Therefore, this section will also point out the reasons having led to the
decision to implement the mappings using ATL and will exemplary provide the ATL code for the
INSPIRE UML profile to Core UML profile mapping.

7.3.1 Mapping of the INSPIRE UML profile to the Core UML profile

The mapping between the INSPIRE UML profile and the Core UML profile is based on the current
INSPIRE UML profile, as discussed in section 5.4.1, page 101, and displayed in figure C.6, page 188.
2Some of the UML metaclasses and features discussed here are represented in the UML metamodel diagrams in appendix A.2.
If required, please refer to these diagrams for a better understanding of the mapping tables. The feature name, however, is
not visible there, the UML metaclasses inherit this feature from the UML metaclass NamedElement.
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Table 7.3: Metamodel mapping of UML metaclasses and stereotypes between the INSPIRE UML
profile and the Core UML profile

Core UML profile INSPIRE UML profile
Stereotype UML metaclass Stereotype UML metaclass

«ApplicationSchema» Package «applicationSchema» Package
– Package any or no stereotype Package
«Leaf» Package «leaf» Package
«FeatureType» Class «featureType» Class
«FeatureType» Class «placeholder» Class
– Class no stereotype Class
«Type»* Class «type» Class
«Union» DataType «union» Class
«CodeList» Enumeration «codeList» Class
– Enumeration «enumeration» Class
– DataType «dataType» Class
– PackageImport «import» Dependency
Mapped to intermediate classes «voidable» Attribute, AssociationEnd
– Property «lifeCycleInfo» Attribute, AssociationEnd
– Property «version» AssociationEnd
«Property» Property no stereotype Attribute, AssociationEnd
*The stereotype «Type» is not part of the Core UML profile, it actually belongs to the UML StandardProfileL2

Table 7.3 shows in which way the UML metaclasses and stereotypes from the INSPIRE UML profile
are mapped to suitable UML metaclasses and stereotypes from the Core UML profile.

It can be noticed that the mapping is most straightforward for the INSPIRE stereotypes «appli-
cationSchema», «leaf» and «featureType». These stereotypes as well as the UML metaclasses they
extend can simply be mapped to identical stereotypes and UML metaclasses in the Core UML profile
without any further effort.

Similarly, the stereotype «codeList» can be mapped to an identical stereotype in the Core UML
profile, however, the UML metaclasses differ in this mapping. The INSPIRE UML profile uses the
UML metaclass Class for this stereotype, whereas the Core UML profile uses the UML metaclass
Enumeration. Since the UML metaclasses Class and Enumeration exhibit differing features, a more
detailed mapping is required between them which is shown in table 7.4. This table specifies a mapping
between the attribute name belonging to the UML metaclass Class and an identical attribute name
belonging to the UML metaclass Enumeration. This name attribute holds the name of the code
list. The UML metaclass Class, furthermore, contains the association ownedAttribute of the type
Property which holds the key-value pairs of the code list. This association is mapped to the association
ownedLiteral of the type EnumerationLiteral which allows for specifying the key-value pairs as
enumeration literals. This is stated in the second mapping. The name attribute of the UML metaclass
Property holds the code list value and the defaultValue association holds the code list key. Value and
key are concatenated in the form of value=key as proposed in section 5.1.2.1, page 82, and are mapped
to the name attribute of the UML metaclass EnumerationLiteral, each name attribute representing a
specific literal value.
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Table 7.4: Metamodel mapping between the UML metaclasses Class and Enumeration required for
the stereotypes «codeList» and «enumeration» from the INSPIRE UML profile

Core UML profile INSPIRE UML profile
UML Feature Type UML Feature Type
metaclass metaclass

Enumeration name String Class name String
ownedLiteral EnumerationLiteral ownedAttribute Property

EnumerationLiteral name String Property name String
=
defaultValue.value String

A more detailed mapping also needs to be defined for the stereotype «union» which extends the
UML metaclass Class in the INSPIRE UML profile, but the UML metaclass DataType in the Core
UML profile. This mapping is shown in table 7.5. It specifies that the attribute name belonging to the
UML metaclass Class is mapped to an identical attribute name belonging to the UML metaclass Data-
Type. This name attribute holds the name of the union. Furthermore, the association ownedAttribute
belonging to the UML metaclass Class holds the attributes of the union; this association is mapped to
an equally named association belonging to the metaclass DataType. Both associations are of the type
Property, thus, this mapping does not need to be specified any further.

Table 7.5: Metamodel mapping between the UML metaclasses Class and DataType required for the
stereotypes «union» and «dataType» from the INSPIRE UML profile

Core UML profile INSPIRE UML profile
UML metaclass Feature Type UML metaclass Feature Type

DataType name String Class name String
ownedAttribute Property ownedAttribute Property

The stereotypes «enumeration» and «dataType», both extending the UML metaclass Class in the
INSPIRE UML profile, are represented as keywords in the Core UML profile. Therefore, the UML
metaclass Class is mapped once to the UML metaclass Enumeration and once to the UML metaclass
DataType, using the mappings from the tables 7.4 and 7.5 again. The stereotypes themselves are not
mapped.

The stereotype «import», which extends the UML metaclass Dependency in the INSPIRE UML
profile, is represented as keyword in the Core UML profile, too. This UML metaclass is mapped to
the UML metaclass PackageImport in the Core UML profile as shown in table 7.6. This mapping
represents, in particular, a rule for transforming between UML 1 and UML 2. In UML 1, the UML
metaclass Dependency serves in defining package imports, whereas UML 2 introduces the UML
metaclass PackageImport for this task (cf. section 5.3.1.2, page 88). Since the INSPIRE UML model
is defined directly using UML 2, this mapping should not be required when the modeller uses the
correct UML metaclass from the beginning. In practice, however, the currently available revision 4618
of the INSPIRE UML model still exhibits cases, where the UML metaclass Dependency is used for
defining package imports (JRC 2015).

Similarly, the table defines a mapping between the UML metaclasses Attribute and AssociationEnd
for all those attributes and associations without stereotype to the UML metaclass Property which
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Table 7.6: Metamodel mapping between the UML metaclasses Dependency and PackageImport
required for the stereotype «import» from the INSPIRE UML profile

Core UML profile INSPIRE UML profile
UML Feature Type UML Feature Type
metaclass metaclass

PackageImport importingNamespace Namespace Dependency client.namespace Namespace
importedPackage Package supplier NamedElement

is extended by the stereotype «Property». The stereotype «Property» was introduced in the Core
UML profile to be able to add the tag definition isMetadata to attributes and associations. As regards
the UML metaclasses, also this mapping represents a rule for transforming between UML 1 and
UML 2; the UML metaclasses Attribute and AssociationEnd only exist in UML 1, in UML 2 they
were replaced by the UML metaclass Property. Since the INSPIRE UML model is defined directly
using UML 2, the attributes and associations are already modelled correctly using the UML metaclass
Property, which is extended through the mapping by the stereotype «Property».

The stereotype «type» from the INSPIRE UML profile is actually already predefined in the UML 2
specification as part of the UML StandardProfileL2. Since their semantics are identical and since also
their UML metaclasses conform, the stereotype «type» from the INSPIRE UML profile is simply
mapped to the stereotype «type» from the UML StandardProfileL2.

The stereotype «placeholder» is an INSPIRE-specific concept which does not exist in the Core UML
profile. Since a placeholder represents a feature type to be defined in the future (cf. section 5.4.1.1,
page 101), it was decided to map this concept to the stereotype «FeatureType» in the Core UML
profile.

The stereotype «voidable» is an INSPIRE-specific concept as well. It cannot be mapped to the
Core UML profile as no corresponding concept exists there. However, section 5.4.1.2, page 102,
pointed out that this concept causes a semantic modification of the UML specification. Therefore,
even if the stereotype itself is not mappable, a conversion of the UML model has to be conducted to
eliminate the still existing semantic modification. Two possibilities are feasible for the conversion.
The first possibility is to not map the stereotype «voidable», but to keep the properties to which the
stereotype was applied as they are otherwise, and, in addition, to map the code list VoidReasonValue
(cf. figure 5.11, page 103) as defined in table 7.4. The second possibility is to not map the stereotype
«voidable» as well, but to apply at the same time the proposal from section 5.4.2, page 104. In this
way, the voidable concept can implicitly be preserved in the Core UML profile. The mapping in table
7.3 specifies the second option.

Above that, also the stereotypes «lifeCycleInfo» and «version» are INSPIRE-specific concepts.
For them, and also for the any or no stereotype concepts, only a mapping to the corresponding UML
metaclasses is defined, since no corresponding concepts exist in the Core UML profile (except for the
stereotype «Property», as explained above).

As regards the tag definitions, the stereotype «ApplicationSchema» from the INSPIRE UML profile
contains the mappable tag definition version, which is mapped to the equally named tag definition in the
Core UML profile. Furthermore, attributes and associations without stereotype have in the INSPIRE
UML model the tag definition isMetadata which is mapped to the equally named tag definition
from the stereotype «Property». Most stereotypes also contain the tag definition documentation; it
is mapped in accordance with section 6.3.2, page 127, to the association ownedComment, which
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every UML metaclass contains. The stereotype «FeatureType» contains the tag definition isCollection,
whose semantics in the INSPIRE UML profile differs, however, from the semantics in the Core UML
profile, thus, the values cannot be mapped. All other tag definitions are not relevant at the conceptual
level.

7.3.2 Mapping of the AAA UML profile to the Core UML profile

In the same way, mappings can be defined between the AAA UML profile and the Core UML profile.
Table 7.7 lists these mappings. As mentioned in section 5.5.1, page 108, the AAA documents do not
give a very clear picture of the structure and the extent of the AAA UML profile; for this reason, the
stereotypes and tag definitions which seem to be part of the AAA UML profile were only textually
summarised in that section. The mappings defined here are based on this summary and reflect the
stereotypes of the AAA UML profile as understood from the AAA documents.

Table 7.7: Metamodel mapping of UML metaclasses and stereotypes between the AAA UML profile
and the Core UML profile

Core UML profile AAA UML profile
Stereotype UML metaclass Stereotype UML metaclass

«ApplicationSchema» Package «applicationSchema» Package
– Package «schema» Package
– Package any or no stereotype Package
«Leaf» Package «leaf» Package
«FeatureType» Class «featureType» Class
– Class no stereotype Class
«Type»* Class «type» Class
«Union» DataType «union» Class
«CodeList» Enumeration «codeList» Class
– Enumeration «enumeration» Class
– DataType «dataType» Class
– PackageImport «import» Dependency
«Property» Property no stereotype Attribute, AssociationEnd
– – «Request» not specified
– – «Response» not specified
*The stereotype «Type» is not part of the Core UML profile, it actually belongs to the UML StandardProfileL2

The mappings for the stereotypes «applicationSchema», «leaf», «featureType», «type», «union»,
«codeList», «enumeration», «dataType» and «import», for the any or no stereotype concepts and
for the UML metaclasses are equivalent to the mappings defined for the INSPIRE UML profile the
previous section and, thus, are not explained here again. For the stereotype «schema», which is used
in the AAA Enterprise Architect project, no meaning is provided in the AAA documents; therefore,
the only definable mapping is between its UML metaclass Package and an identical UML metaclass
in the Core UML profile. As regards the stereotypes «Request» and «Response», neither do the AAA
documents specify suitable UML metaclasses, nor it is possible to deduce the UML metaclasses
from the AAA Enterprise Architect project since the stereotypes are not used there. Above that, their
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meaning does not unambiguously allow for concluding whether they should rather be part of the AAA
conceptual UML profile or of an AAA encoding UML profile. For these reasons, the two stereotypes
are listed in the table, but are not included in the mapping.

According to the GeoInfoDoc document, the AAA application schema uses all tag definitions from
the standard ISO 19136 Annex E. This means that the AAA UML profile contains, amongst others, the
tag definitions version, isCollection and isMetadata, which are at the same time also part of the Core
UML profile. This requires pairwise mappings to be added to the stereotypes the tag definitions are part
of, namely a mapping of version to the stereotype «ApplicationSchema», a mapping of isCollection
to the stereotype «FeatureType» and a mapping of isMetadata to the stereotype «Property». The
tag definition documentation, which is also part of the AAA UML profile, is mapped to the UML
metaclass association ownedComment as was explained in section 6.3.2, page 127. In addition, the
stereotypes of the AAA UML profile specify several AAA-specific tag definitions. However, they
rather seem suitable to a AAA community encoding UML profile and are, thus, not considered here
any further.

The mapping of the AAA UML profile to the Core UML profile is altogether quite similar to the
mapping of the INSPIRE UML profile to the Core UML profile since many concepts are identical.
Therefore, also other UML profiles to which the star-converter approach is applied and whose concepts
overlap comparably, will result in more or less analogous mappings.

7.3.3 Mapping of the INTERLIS UML profile to the Core UML profile

In contrast to the previous two mappings, the following mapping between the INTERLIS UML profile
and the Core UML profile demonstrates that the star-converter approach also withstands UML profiles
which are not defined in the context of the ISO 191xx series of geographic information standards.

INTERLIS can be regarded as a self-contained approach which exists besides the ISO-related
approaches. The concepts defined by the INTERLIS UML profile look at first glance quite different
from the concepts defined by the standards ISO/TS 19103 and ISO 19109, not least due to a different
naming. Upon closer examination, however, many correspondences become apparent which makes a
mapping between the concepts of the INTERLIS UML profile and the concepts of the Core UML
profile fully feasible. Table 7.8 displays the defined mappings3.

The INTERLIS UML profile provides the stereotype «ModelDef» which is used to denote applica-
tion schemas. Since application schemas are represented in UML-based INTERLIS models as UML
packages as well, the stereotype can smoothly be mapped to the stereotype «ApplicationSchema» in
the Core UML profile.

The stereotype «TopicDef» serves in grouping the aspects modelled in an INTERLIS application
schema thematically into individual data baskets. The INTERLIS UML profile defines the stereotype
as extension of the UML metaclass Package which requires the data baskets to be represented
as individual UML packages within an INTERLIS application schema. In the terminology of the
ISO-related approaches, however, these data baskets rather correspond to feature collections. This

3It has to be noted here that the INTERLIS UML profile was specifically provided by swisstopo for being able to compare
the INTERLIS concepts with concepts of already existing UML profiles in the geospatial domain (cf. section 5.5.2, page
109, and (Kutzner and Eisenhut 2010)). Furthermore, the INTERLIS UML profile is required for being able to include
INTERLIS models in the multi-level information integration framework, which, in turn, requires the models themselves
to be modelled using UML and not INTERLIS. The INTERLIS UML profile is normally not in use in geospatial data
modelling in Switzerland since INTERLIS models are defined using the modelling language INTERLIS and, thus, do not
require an INTERLIS UML profile applied to them. Also, the UML-based MOpublic model to which the INSPIRE UML
profile is applied was specifically provided by swisstopo for use in this project.
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Table 7.8: Metamodel mapping of UML metaclasses and stereotypes between the INTERLIS UML
profile and the Core UML profile

Core UML profile INTERLIS UML profile
Stereotype UML metaclass Stereotype UML metaclass

«ApplicationSchema» Package «ModelDef» Package
«Leaf» Package – –

«FeatureType» Class
with tag definition isCollection=true «TopicDef» Package
with tag definition isCollection=false – Class

«Union» DataType – –
«CodeList» Enumeration – –
– Enumeration – Enumeration
– DataType – DataType
– DataType «LineFormTypeDef» DataType
– DataType «UnitDef» DataType
– PackageImport – PackageImport
– Package «MetaDataBasketDef» Package
– Class «FunctionDef» Class
– Class «ViewDef» Class
– Class «GraphicDef» Class
«Property» Property – Property
«Property» Property «DrawingRule» Property
– Class «RunTimeParameterDef» Class
– PrimitiveType – PrimitiveType

correspondence is derived from the fact that the Swiss standard eCH-0118 GML encoding rules for
INTERLIS specifies an encoding which transforms INTERLIS topics into GML feature collections
(Eisenhut, Germann et al. 2011). This transformation is adopted here by mapping the stereotype
«TopicDef» to the stereotype «FeatureType» and, to specify that a concrete UML class to which
the stereotype «FeatureType» is applied represents a feature collection, by setting its tag definition
isCollection to true. In addition, the UML metaclass Package needs to be mapped to the UML
metaclass Class. This, in turn, requires specifying how those elements which were up to now nested
within «TopicDef» UML packages are now represented in the UML model and related to the new
«FeatureType» UML class. As «TopicDef» UML packages are mainly used to group UML classes, a
suitable solution consists in defining UML associations between the new «FeatureType» UML class
and the previously nested UML classes, establishing a relationship in this way similar to the GML
feature collection concept.

Also INTERLIS models define feature types in the form of UML classes which, however, are not
marked accordingly by means of a suitable stereotype. Only UML classes which represent concepts
differing thereof can be provided with corresponding stereotypes. For this reason, all UML classes
to which no stereotype is applied are mapped to the stereotype «FeatureType», the tag definition
isCollection being set to false this time.
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As regards the concepts enumeration, data type and package import, the mappings provided here
assume that these concepts are modelled correctly in INTERLIS application schemas; therefore, on
both sides of the table only the corresponding UML metaclasses are listed. A data type, for instance,
is used in UML-based INTERLIS models for representing a concept called structure which differs
from a class in not exhibiting an identity (KOGIS 2006). Also the concept property is mapped in this
way, with the difference that it is extended by the stereotype «Property» in the Core UML model. The
stereotype «DrawingRule» is mapped to the stereotype «Property» as well, since both extend the same
UML metaclass.

The stereotype «LineFormTypeDef» can be used to define line structures. According to the IN-
TERLIS reference manual, these line structures always have to extend the INTERLIS structure
LineSegment (KOGIS 2006). Since structures are modelled as data types in UML-based INTERLIS
models and since the stereotype «LineFormTypeDef» extends the UML metaclass DataType, a map-
ping to the identical UML metaclass in the Core UML profile is specified for this stereotype; the
stereotype itself can, however, not be mapped. Furthermore, also units of measure are mapped in the
same way. Units of measure are defined in the INTERLIS UML model using the stereotype «UnitDef»
which also extends the UML metaclass DataType.

Section 5.5.2, page 109, mentions that INTERLIS defines several primitive data types which are
modelled in UML-based INTERLIS models using the UML metaclass PrimitiveType. Two possibilities
for mapping these primitive data types to the Core UML profile exist. One possibility is to map them
to the stereotype «Type» from the UML StandardProfileL2 and the corresponding UML metaclass
Class since also the basic data types defined in the standard ISO/TS 19103 use this representation. The
second possibility is to maintain the modelling by mapping the primitive data types to the identical
UML metaclass PrimitiveType in the Core UML profile. The second option is chosen here. One
reason is that the semantics of the concepts type and primitive type are not equivalent. Another reason
is provided by the XML-based encoding rule defined in the standard ISO 19118 Annex C. This
encoding rules makes use of a stereotype «BasicType», which extends the UML metaclass Class, for
denoting basic data types and, in particular, also for denoting the basic data types from the standard
ISO/TS 19103 (ISO 2011). The encoding rule transforms UML classes marked with the stereotype
«BasicType» to XML simple types. The same does the INTERLIS encoding rule mentioned above by
transforming the UML primitive types into XML simple types. Since it is not identifiable from the
standard ISO 19118, which advantage the use of a UML class has over the use of a UML primitive
type, as both concepts are encoded in the same way, the mapping to the UML metaclass PrimitiveType
is chosen here for the INTERLIS primitive types.

The stereotypes «Leaf», «Union» and «CodeList» from the Core UML profile do not have corres-
ponding concepts in the INTERLIS UML profile. Likewise the stereotypes «MetaDataBasketDef»,
«FunctionDef», «ViewDef», «GraphicDef» and «RunTimeParameterDef» from the INTERLIS UML
profile do not have corresponding concepts in the Core UML profile, which is why only the UML
metaclasses extended by these stereotypes are mapped to the Core UML profile.

7.3.4 Implementation of the defined mappings using ATL

The mappings defined above need to be implemented now using a suitable transformation language.
Many approaches for transformation languages exist; however, up to now only few standards. In
an often-cited survey on transformation languages conducted by (Czarnecki and Helsen 2006),
32 different transformation languages were analysed and grouped according to specific characteristics.
To be able to identify the most suited transformation language for executing model transformations
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within the context of the above mentioned research project, these 32 transformation languages were
evaluated based on the following criteria:
• Does an editor exist which can assist the user in specifying the mappings in the transformation

language? If no editor exists, the mappings would have to be defined manually, which can result in
a complex task.

• Does a transformation tool exist which can interpret and execute the mappings specified in the
transformation language? Transformation languages for which no implementation exists are not
considered further as they would require too much development effort in developing usable tools.

• Can the editor and the transformation tool interpret UML models and UML profiles in the form of
XMI documents? This aspect is of importance, since the models used in the project are specified
using UML and, thus, an editor and transformation tool are required which can interpret these
models.

• Are the software implementations based on Eclipse and are they freely available or proprietary?
Eclipse-based open source software would be of advantage since Eclipse has already proven in the
mdWFS project to be a powerful tool for processing UML models.

• How up-to-date are the software implementations of the editor and the transformation tool?
• Is sufficient documentation and support available for the software implementations and the trans-

formation language itself?
• Is the transformation language user-friendly, the users being employees of the state and federal

surveying agencies?
The evaluation revealed that some of these 32 transformation languages are only covered theoretically
in scientific publications without applicable implementations being available for them, whereas other
transformation languages exhibit implementations which, however, are rather out-of-date as they have
not been developed further in recent years; others are based on Triple Graph Grammars (TGG) and,
therefore, are rather scientific-oriented and not suitable for the target audience of the project, and still
other transformation languages focus on DSLs or embedded systems. In all, the evaluation resulted in
three transformation languages appearing most suited for use in the project: QVT Relations, QVT
Operational Mappings (cf. section 3.4.3, page 50), and ATL (cf. section 3.4.1, page 43). For all three
languages either plug-ins for Eclipse or Eclipse-based implementations exist which are open source,
which provide sufficient documentation and support via forums and which were up-to-date at the
point in time when the project was conducted.

Since QVT is a specification of the OMG, first the Eclipse-based software mediniQVT (KPIT medini
Technologies 2012) and the Eclipse plug-in QVTo (The Eclipse Foundation 2015f) which implement
QVT Relations and QVT Operational Mappings, respectively, were employed for specifying the
mappings. Both tools were successfully able to transform UML models, however, they provided only
a very limited support for transforming UML models to which UML profiles are applied. For this
reason, ATL was given a try as third possible language. The Eclipse plug-in available for ATL turned
out to be a capable implementation which, in addition, is also able to process UML profiles without
any problems. The ATL web site (The Eclipse Foundation 2015a) provides a good documentation and
good support through a forum. It lists more than 100 transformation scenarios, amongst others, also
for the transformation of MOF-based metamodels and UML profiles. In particular the MDE Case
Studies of the Software Languages Lab of the Vrije Universiteit Brussel (Wagelaar 2010) proved to
be a very helpful source. All these aspects finally led to the decision, to implement the mappings
between the UML profiles using ATL.

Appendix D.1.1, page 193, exemplifies the mappings implemented between the INSPIRE UML
profile and the Core UML profile using ATL. The ATL code for mapping the AAA UML profile to the
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Core UML profile is equivalent except for the section related to the stereotype «voidable» which is
not required in the AAA mapping. For the purposes of demonstrating first and foremost the feasibility
of the approach, the tag definitions which were defined as part of the Core UML profile were not
considered in these implementations. The ATL transformation definitions were executed successfully
by the ATL transformation tool and resulted in a AAA UML model and in a INSPIRE UML model to
which the Core UML profile is applied and which do not exhibit a semantic modification of the UML
specification any more. Section 7.5.1, page 155, will describe the most important issues regarding the
execution of the ATL code.

The mappings between the INTERLIS UML profile and the Core UML profile were not imple-
mented, but it can be expected that they are implementable and executable just as well. The DKM
UML model and the DFK UML model do not require transformation definitions to be specified at the
metamodel level since to them the Core UML profile is already applied. As mentioned in section 7.2.1,
page 140, no UML models existed for these two data specifications in the beginning; therefore, UML
models were specifically created which directly are based on the Core UML profile.

7.4 Specification of transformation definitions at the model
level using UMLT

This section deals with step three of the workflow, i. e. the specification of transformation definitions
at the model layer defining the transformation of the geospatial data based on the source UML models
into geospatial data based on the INSPIRE UML model. As a result from the steps one and two in the
multi-level transformation workflow (cf. figure 7.1, page 141), the AAA UML model and the INSPIRE
UML model are now based on the Core UML profile. This circumstance has to be considered when
creating the transformation definitions. Since the project is to reuse developments from the mdWFS
project, the transformation language UMLT was employed for defining the transformations.

The complete transformation definition created between the AAA UML model and the INSPIRE
UML model (themes CP and AU) is illustrated in figure 7.2. To make the transformation definition
universally usable independent of the features actually provided by the input data, all source objects
which can theoretically flow into the transformation should be specified as input pins. By doing so,
the advantage of the model-driven approach, i. e. that each transformation definition has to be defined
only once between specific source and target models, can be employed in the most effective way.
However, since the project first and foremost focused on demonstrating the feasibility of the approach,
input pins were only defined for those source objects which exist in the geospatial data provided
by the surveying agencies. In the same way, output pins were specified only for those target objects
which can be created from applying the transformation on the source objects.

As regards the transformation from the AAA UML model to the INSPIRE UML model, four differ-
ent input pins define the source objects flowing into the structured transformation (AX_Flurstueck
(cadastral parcel), AX_KommunalesGebiet (municipal unit), AX_Gebietsgrenze (administrative boun-
dary) and AX_BesondereFlurstuecksgrenze) (specific cadastral boundary), whereas five different
output pins specify the objects resulting from the transformation process (CadastralParcel, Cadas-
tralBoundary and CadastralZoning from the INSPIRE theme CP as well as AdministrativeUnit and
AdministrativeBoundary from the INSPIRE theme AU). Inside the structured transformation, two
transformation actions exist which define the individual mappings between the source and target
objects. The control flow defines that the transformation tool first executes the transformation action
FSGeometryConverter and afterwards the transformation action AAA2INSPIRE. Furthermore, two
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Figure 7.2: UMLT transformation definition between the AAA application schema and the INSPIRE
themes Cadastral Parcels and Administrative Units

virtual associations and six value maps are defined within the structured transformation. The detailed
definitions of the transformation actions, the transformation value maps and the virtual associations
are listed in appendix D.1.2, page 198.

Although the source and target models are now based on the Core UML profile, it was not difficult
to create the transformation definition, as was already assumed in section 7.2.1, page 140. The
most striking difference results from the use of the new voidable types which are created when
mapping the stereotype «voidable» from the INSPIRE UML profile to the Core UML profile. The
transformation action AAA2INSPIRE specifies, for instance, an assignment definition which assigns
the value Unpopulated to the attribute residenceOfAuthority from the feature type AdministrativeUnit.
This assignment is represented in the transformation action by the following line:

au_1.residenceOfAuthority.voidReason := "Unpopulated"

The attribute residenceOfAuthority is of the complex type ResidenceOfAuthority; thus, without
using the Core UML profile, the semantics of UML do not allow for assigning the string value
Unpopulated to this attribute. However, when mapping the INSPIRE UML profile to the Core UML
profile, a specific data type VoidableResidenceOfAuthority is created which contains two attributes,
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residenceOfAuthority of the type ResidenceOfAuthority and voidReason of the type VoidReasonValue.
Since VoidReasonValue represents an enumeration and since the value Unpopulated is defined as
an enumeration literal within this enumeration, Unpopulated can now be assigned as value to the
attribute voidReason without any problems (cf. figure 5.13, page 107, which depicts an equivalent
example for the type DateType in more detail).

In the same way, transformation definitions were created between the DKM UML model and the
INSPIRE UML model (cf. figure 3.15, page 49) as well as between the DFK UML model and the
INSPIRE UML model (cf. figure D.7, page 203).

7.5 Execution of the transformations

This section describes, on the one hand, step two of the workflow, i. e. the execution of the transforma-
tion definitions specified using ATL, and, on the other hand, the steps five to seven of the workflow,
i. e. the actual transformation of the geospatial data based on the transformation definitions specified
using UMLT.

7.5.1 Execution of the ATL-based transformation definitions

Before being able to execute the ATL transformation definitions using the ATL transformation engine,
the source and target UML models, the corresponding source and target UML profiles and the Core
UML profile have to be provided to the engine in the form of separate XMI documents (referred to as
XMI model documents and XMI profile documents in the following). As mentioned in section 2.4.4,
page 25, the main difficulty in using XMI documents is that each UML tool creates its own XMI
dialect, limiting the interoperability of UML models between different UML tools. This problem
existed also here. XMI documents generated using EA version 10 were not processable straight away
using Eclipse. Therefore, a workaround needed to be devised to obtain the XMI documents based on
the Eclipse XMI dialect which consisted in the following three parts:
1. Retrieving the UML models as XMI model documents: One possibility to obtain XMI model

documents exported from EA version 10 based on the Eclipse XMI dialect is to adjust them
manually, which, however, can be a time-consuming and complex task depending on the size
of the UML model. Another possibility chosen here was to use the UML tool Magic Draw as
auxiliary tool. Magic Draw allows, on the one hand, for importing XMI model documents in
different dialects, amongst others, as Enterprise Architect XMI 2.1 documents, and, on the other
hand, also for exporting XMI model documents in different dialects, amongst others, as Eclipse
UML2 (v3.x) XMI documents. This opportunity was made use of here by importing the INSPIRE
and AAA XMI model documents exported beforehand from EA into Magic Draw, exporting them
from Magic Draw as Eclipse XMI model documents and importing them finally in Eclipse. These
exports and imports worked without any problems, Magic Draw and Eclipse were able to correctly
import the XMI model documents without requiring any further manual modifications4.

2. Retrieving the UML profiles as XMI profile documents: The INSPIRE and AdV web sites provide
the INSPIRE and AAA UML profiles as XML documents. These XML documents, however,

4It is to mention here that after having exported the AAA and INSPIRE UML models from EA as XMI model documents,
not the complete UML models were used in the further transformation process. The XMI model documents were manually
shortened to only those parts which were required in the context of the INSPIRE themes CP and AU. This also reduced the
amount of work necessary for manually applying the stereotypes to the Eclipse XMI model documents in part three of this
workaround.
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have an EA-specific structure (cf. appendix C.1, page 179) which differs so much from the XMI
structure that they cannot be used here. Another possibility to obtain a UML profile as XMI profile
document is to export the whole UML model from EA as XMI model document. The UML profile
is then represented in the exported XMI model document as part of an additional profile section
(cf. listing D.2, page 204) which theoretically simply needs to be stored as XMI profile document
of its own (including some further manual adjustments) as Eclipse requires the UML model and
the UML profiles as separate XMI documents. However, the export did not work correctly for the
INSPIRE and AAA UML profiles since all tag definitions were wrongly represented as stereotypes
themselves and not as properties belonging to stereotypes. For this reason, it was chosen to remodel
the UML profiles using the UML tool Magic Draw and to export them as Eclipse XMI profile
documents. In the same way, also the Core UML profile was modelled using Magic Draw and
exported as Eclipse XMI profile document.

3. Applying the UML profiles to the UML models in Eclipse: EA XMI model documents are structured
differently from Eclipse XMI model documents regarding the application of UML profiles to a
UML model as well as the application of stereotypes to UML model elements. To represent the
applied UML profiles and stereotypes also in the Eclipse XMI model documents, final adjustments
to the structure of the Eclipse XMI model document had to be made manually (cf. appendix D.3,
page 204 for a short illustration of this problem).

Afterwards, the ATL transformation engine was successfully able to read the Eclipse XMI documents
representing the INSPIRE and AAA UML models as well as the INSPIRE and AAA UML profiles
and the Core UML profile and to execute the ATL transformations on them. The results of these
transformations are INSPIRE and AAA UML models to which now the Core UML profile is applied.

7.5.2 Execution of the UMLT-based transformation definitions

The transformation of the geospatial data from the source models to the INSPIRE target model is
executed based on the transformation definitions specified in the transformation language UMLT
using the software FME. As a result from step four of the workflow these transformation definitions
exist in the form of XMI documents.

Since the transformation definitions were created between MsourceC and MtargetC , i. e. between
those source models and the INSPIRE target model to which the Core UML profile is applied, the
data structures of the source data have to be converted to data structures conforming to MsourceC .
This is done in step five of the workflow. Due to the fact that the encoding rules for the source models
used in the project do not exist in machine-interpretable form, the conversion was solved manually by
creating so-called encoding workspaces using FME. The detailed set-up of these encoding workspaces
is schematically represented in figure 7.3. For each data format to be transformed to INSPIRE a
separate encoding workspace needed to be created. The workspaces read the geospatial data, which
are provided in the data formats listed in table 7.2, page 140, by means of suitable FME Readers and
write them using the FME FFS Writer to the FME-specific data format FFS (FME Feature Store). To
be able to write the geospatial data in the FFS format such that the data conform to MsourceC , the
FFS Writer needs to know the feature type definitions of MsourceC . These feature type definitions are
imported and provided to the FFS Writer by means of the XMI Reader from the mdWFS project. The
transformations from the various source data formats to the FFS format are not simply one-to-one
conversions, but require also taking into account the encoding rules from the source data formats and
the XMI Reader encoding. All these issues are considered by the various FME transformers used in
the workspace.
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Figure 7.3: Schematic diagram of the encoding workspaces developed in step five of the multi-level
information integration workflow for preprocessing the source data such that they conform
to the Core UML profile

Next, the actual transformation of the geospatial data from the source models to the target model
is conducted, which corresponds to step six of the workflow. The transformations are executed by
means of a so-called transformation workspace which is created using FME, too. This transformation
workspace needs to be created only once as its definition is so generic that geospatial data conforming
to arbitrary data models can be transformed using this workspace. The detailed set-up of the transfor-
mation workspace is schematically represented in figure 7.4. The workspace reads the FFS-encoded
geospatial data generated in the previous step, executes the UMLT transformation definitions using
the UMLTApplier from the mdWFS project and writes the transformed geospatial data again in the
FFS format such that the data conform now to MtargetC .

6 UMLT

TmodelCC

UMLTApplierFFS Reader
XMI Reader + 

FFS Writer

FFS

DFPcoreZ

FFS

DFPcoreZ

reads

reads writes

INSPIRE model 

MtargetCuses

FME

Figure 7.4: Schematic diagram of the transformation workspace developed in step six of the multi-
level information integration workflow for transforming the source data to the INSPIRE
model

Since the geospatial data conform after their transformation to the data structures of MtargetC , they
finally need to be converted to the data structures conforming to MtargetT , i. e. the INSPIRE target
model to which the INSPIRE UML profile is applied. This is done in step seven of the workflow. Due
to the fact that also for the INSPIRE model the encoding rules do not exist in machine-interpretable
form, another FME encoding workspace was created. In this step, however, only one encoding
workspace is required whose detailed set-up is schematically represented in figure 7.5. The workspace
reads the FFS-encoded data generated in the previous step and writes the data to the final INSPIRE
GML format. The FME transformers used in the workspace have to take into account the INSPIRE
encoding rule and the XMI Reader encoding.

Instead of making use of the FFS format in the steps five to seven, another possibility would have
been to stick to the original source and target formats. This would, for instance, mean that in step
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Figure 7.5: Schematic diagram of the encoding workspace developed in step seven of the multi-
level information integration workflow for postprocessing the target data such that they
conform to the INSPIRE UML profile

five the NAS format would be transformed to the NAS format again, now conforming to the Core
UML profile. In step six the NAS format would then be transformed to the INSPIRE GML format
conforming to the Core UML profile; and in step seven this format would then be transformed to the
final INSPIRE GML format.

The steps five to seven were executed for the data specifications ATKIS/ALKIS, DFK and DKM. By
means of the whole workflow implemented for the multi-level information integration, the geospatial
data was transformed successfully from the source data models to the INSPIRE themes CP and AU,
demonstrating the feasibility of the approach in this way. Furthermore, all INSPIRE GML data sets
generated were successfully validated against the INSPIRE GML application schemas.

Figure 7.6 displays the test region around the Lake Constance for which the geospatial data was
transformed to INSPIRE. The tables 7.9, 7.10 and 7.11 summarise for each data specification the
number of source features flowing into the transformation and the number of target features resulting
from the transformation.

Table 7.12 lists the run-times for each data specification. The execution times are shown separately
for the encoding workspaces required for preprocessing the source data (step five of the workflow),
the actual transformation workspaces (step six of the workflow) and the encoding workspaces required
for postprocessing the target data (step seven of the workflow). The transformation was executed
using a notebook with Windows 7, SP 1, 64 bit, Intel Core i7-2640M CPU 2.8GHz and 8GB RAM.
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Figure 7.6: The test region around the Lake Constance for which the geospatial data was transformed
to INSPIRE

Table 7.9: Overview of the features transformed between the data specification ATKIS/ALKIS and
the INSPIRE themes Cadastral Parcels and Administrative Units

ATKIS/ALKIS: Features read INSPIRE: Features written
Feature name* Number of features Feature name Number of features

AX_BesondereFlur- 3263 CadastralParcel 17056
stuecksgrenze
AX_Flurstueck 17056 CadastralBoundary 68220
AX_Gebietsgrenze 396 CadastralZoning 0
AX_KommunalesGebiet 12 BasicPropertyUnit 0

AdministrativeUnit 12
AdministrativeBoundary 396

*AX_BesondereFlurstuecksgrenze (specific cadastral boundary), AX_Flurstueck (cadastral parcel), AX_Gebietsgrenze
(administrative boundary), AX_KommunalesGebiet (municipal unit)
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Table 7.10: Overview of the features transformed between the data specification DFK and the IN-
SPIRE themes Cadastral Parcels and Administrative Units

DFK: Features read INSPIRE: Features written
Feature name*/** Number of features Feature name Number of features

flurstuecke 27623 CadastralParcel 27623
gemarkungen 15 CadastralBoundary 27623
gemeinden 7 CadastralZoning 15
texte 43861 BasicPropertyUnit 0

AdministrativeUnit 7
AdministrativeBoundary 7

*flurstuecke (cadastral parcel), gemarkungen (local subdistrict), gemeinden (municipality), texte (text)
**The feature names differ from the input pin names in the UMLT transformation definition in figure D.7, page 203.

Since no formal data model was available for the data specification DFK, a data model was specifically defined, trying

not to reflect the structure of the source data format one-to-one, but being as platform-independent as possible. Thus,

the names and also the quantity of feature types differ. Referring to figure 7.1, page 141, the feature names correspond

to DFXsourceS , whereas the input pin names correspond to DFXsourceC .

Table 7.11: Overview of the features transformed between the data specification DKM and the
INSPIRE theme Cadastral Parcels

DKM: Features read INSPIRE: Features written
Feature name* Number of features Feature name Number of features

GNR 30162 CadastralParcel 30162
GST 30162 CadastralBoundary 30162
GST_GrundstuecksDB 40460 CadastralZoning 8

BasicPropertyUnit 30162
*GNR (cadastral parcel number), GST (cadastral parcel), GST_GrundstuecksDB (non-geometric cadastral parcel

information)

Table 7.12: Execution times of the transformations

Data specification Encoding workspace Transformation workspace Encoding workspace
source data target data

ATKIS/ALKIS 00:10:41 68:00:00* 00:40:00*

DFK 00:00:25 00:13:49 00:02:58
DKM 00:00:41 00:10:56 00:03:23
*These execution times are estimations based on a small subset of the geospatial data transformed. The implementation

made use of an sqLite database whose performance was not high enough to process the complete source data at once.

The source data needed to be subdivided into small data packages prior to the transformation.
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This chapter summarises the results achieved within this work, outlines the contributions to scientific
research as well as to professional practice and provides an outlook on future research topics evolving
from the outcomes of this thesis.

The thesis started with an in-depth introduction of the most fundamental terms and concepts
related to geospatial data modelling (chapter 2) and to model-driven transformation of geospatial
data (chapter 3). The aim of these two chapters was to establish a coherent terminological basis
which is relevant in the geospatial domain in general, but also in the context of this thesis. Whenever
suitable, a relationship to relevant standards from the standards organisations ISO, OGC and OMG
was established, to emphasise the relevance of the introduced terms and concepts. In particular the
ISO 191xx series of geographic information standards plays a major role in geospatial data modelling,
which, in turn, relates to several standards from the OGC and the OMG.

Afterwards, the state of the art in geospatial data modelling and model-driven transformation of
geospatial data in academia as well as in professional practice was discussed (chapter 4). The first
part of this discussion was based on the experience of the author gained from the research projects
listed in section 1.1, page 2. This part illustrated, in particular, problems prevalent from the way
conceptual models, encoding rules and transformations are currently defined and used in the geospatial
domain. The second part of this discussion presented mainly an overview of the various transformation
approaches applied in SDI-related projects, commercial and open-source tools as well as in academia
and set them in the context of the terms and concepts from the previous two chapters. In addition, this
part also introduced the mdWFS project in more detail which constituted the starting point for the
research conducted in this thesis.

Next, UML profiles currently in use in the geospatial domain were examined (chapter 5). This
examination focused, in particular, on ISO-based UML profiles due to the major role they play in
geospatial data modelling. For each UML profile, the stereotypes were discussed as they are currently
defined in the UML profile and problems and deficits some of these stereotypes bring about were
identified, which, on the one hand, can result in UML profiles not conforming to the UML profile
definition of the OMG any more and which, on the other hand, reduce the quality of the UML models
to which these UML profiles are applied. Therefore, for each UML profile, a formally defined UML
profile was proposed in addition, which eliminates the deficits exposed, illustrating in this way, how
the stereotypes can be defined compliant to the UML profile definition of the OMG without loosing
the semantics the stereotypes exhibit.

Based on this UML profile examination, solutions for how to cope with UML profiles in geospatial
data modelling and in model-driven transformation of geospatial data were presented (chapter 6). This
included a general discussion of the findings from the UML profile analysis and the consideration
of whether agreeing on one common UML profile or accepting the variety of existing UML profiles
would be more advantageous. With the latter option in mind, the examined UML profiles were
categorised and, based on this categorisation, a generic concept for developing UML profiles in a
structured and reusable way using the UML package merge mechanism was presented which can also
be applied to the already existing UML profiles to improve their fitness for use. In addition, a Core
UML profile was introduced as a universally applicable, fundamental building block in modelling
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and model-driven transformation of geospatial data. The Core UML profile was developed starting
with a domain model which specified those concepts considered as fundamental to geospatial data
modelling and for which then the semantically most appropriate concepts within the UML metamodel
were selected. Furthermore, a multi-level information integration framework was developed which
enables the transformation between UML models based on differing and deficient UML profiles. This
framework incorporates the Core UML profile as part of a star-converter approach which allows for
mapping any source and target UML profile involved in the transformation to the Core UML profile
such that the actual model-driven transformation of geospatial data works solely within the framework
of the Core UML profile.

Finally, the feasibility and the applicability of the Core UML profile and of the general framework
for multi-level information integration was successfully demonstrated by applying it to the transfor-
mation of geospatial data from Austria, Germany and Switzerland to the INSPIRE data specifications
(chapter 7). This included the definition of transformations at the metamodel layer between the source
and target UML profiles and the Core UML profile using the transformation language ATL, the
definition of transformations at the model layer between the source and target UML models using the
transformation language UMLT as well as the actual transformation of geospatial data from the above
mentioned countries based on the software FME.

8.1 Discussion of the results

After this general overview which summarised the individual contributions achieved in each chapter
of this thesis, the results of this work will now be discussed based on the research questions stated in
section 1.2, page 3.

1. To which extent do the ISO-based UML profiles currently in use in the geospatial domain conform
to the UML profile definition of the OMG and in which way do they need to be improved when
they exhibit deficits?

The examination of selected ISO-based UML profiles in use in the geospatial domain revealed
that they exhibit several deficits which reduce the quality of those UML models to which they are
applied. In the following, the individual deficits which occurred are listed together with solutions
for how to improve them.
• Semantic correctness: For some stereotypes, UML metaclasses were chosen because they

fit syntactically; however, it was not taken into account whether these UML metaclasses fit
semantically as well, to the effect that these stereotypes cause a semantic modification of the
UML metamodel, the UML models to which these stereotypes are applied not being interpretable
any more in a semantically correct way using standard UML tools. To cope with this deficit, the
two-step approach described in (Lagarde et al. 2008; Fuentes-Fernández and Vallecillo-Moreno
2004; Selic 2007) and demonstrated in section 6.3, page 123, can be of help and can lead to
improved results. This two-step approach develops first a domain model of those concepts
which are to be provided by the UML profile and maps these domain concepts afterwards to
semantically suitable UML metaclasses. In this way, the risk of focusing too much on syntactical
aspects from the very start of the UML profile design process can be reduced. This approach
is also applied in some of the related works from academia (cf. section 4.3.4, page 70) and
in individual UML profiles developed by the OMG. This approach should in particularly be
made use of when new UML profiles are to be developed or when existing UML profiles are
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to be revised; this applies also to the current revision of the standards ISO/TS 19103 and ISO
19109, which in their current state rather introduce new deficits to the UML profiles defined
therein (cf. sections 5.1.3, page 85, and 5.2, page 85). As regards other existing UML profiles,
the communities which define these UML profiles should work towards finding solutions for
their stereotypes in question, e. g. by revising their UML profiles using the two-step approach
as well. In cases, where no satisfying solution can or is intended to be found, it needs to be
considered whether the advantage of this stereotype outweighs the quality loss this stereotype
imposes on the UML model or whether the stereotype maybe should not be used at all.

• UML 1 vs. UML 2: All evaluated UML profiles were defined against the background of UML 1,
although most UML models to which they are applied are modelled using UML 2. UML 1
allowed for adding tag definitions to UML model elements without the need of defining them as
constituent of a corresponding stereotype beforehand. Similarly, also stereotypes were allowed
to be applied to UML model elements without the existence of a corresponding UML profile.
UML 2 does not allow for these practices any more. Thus, tag definitions and stereotypes which
conform to UML 1, but which are applied to UML models conforming to UML 2, turn these
UML models into UML models which do not conform to UML 2 any more. A further problem
observed was that in UML 2, some UML metaclasses from which to extend a stereotype have
changed. For instance, to assign a stereotype to an attribute or an association in UML 1, the
stereotype needed to extend the UML metaclasses Attribute and AssociationEnd, whereas in
UML 2 the stereotype needs to extend now the UML metaclass Property. These problems
can be solved by defining all UML profiles explicitly anew based on UML 2 and by strictly
following the UML profile definition of the OMG in the UML profile design process. This is, in
fact, generally advisable since, as the revision documents ISO/DIS 19103 and ISO/DIS 19109
indicate, a shift from UML 1 to UML 2 will take place in the ISO 191xx series of geographic
information standards in the near future, to the effect that all communities which base their UML
models on these standards will have to switch to UML 2 sooner or later as well. Also, UML
models which are defined using UML 1 and which are to be transformed to UML 2, need to
take into account these differences in their transformation definition.

• Formal definition of UML profiles: All evaluated UML profiles are only defined in tabular
and/or textual form, the definitions sometimes being distributed in various parts of the particular
specification document, which makes it difficult to get a clear picture of the concepts actually
provided by the UML profile. This deficit can be solved by defining the UML profile formally
according to the UML profile definition of the OMG and by providing in the specification
document at least a UML profile diagram which allows for implementing the UML profile
unambiguously by any person which needs to make use of the UML profile. Actually, it is
not necessarily required that the UML profile is defined in a formal way. The UML profile
rather needs to be described such precisely using natural language that it can be implemented
unambiguously. Otherwise, there is the risk that the UML profile is interpreted and implemented
in different ways by different persons. Unambiguously defined UML profiles, in contrast, ensure
that they are used, without exception, in every UML tool in exactly the same way and based on
the same semantics.

• UML keywords: The evaluated UML profiles do not differentiate between UML stereotypes
and UML keywords. Although UML keywords are visually equivalent to UML stereotypes,
they represent notation elements which are part of the UML syntax. UML keywords serve
in distinguishing between metamodel elements which use the same visual notation, they do
not adapt the UML metamodel to specific platforms or domains. Within the evaluated UML
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profiles, however, UML keywords were used equivalent to UML stereotypes; even wrong UML
metaclasses were denoted for them in some cases. This deficit can be solved by simply making
use of those UML model elements, when defining UML models, to which the corresponding
UML keywords belong and by removing these UML keywords from the UML profile. For some
of these UML keywords, tag definitions were specified in the UML profile. In this case, the
corresponding UML metaclass needs to be extended by a stereotype and the tag definitions need
to be defined as properties of this stereotype. Furthermore, the evaluated UML profiles also
make use of stereotypes which are already predefined by the UML specification as part of the
UML profile StandardProfileL2. When tag definitions need to be added to such a predefined
stereotype, this stereotype should be specialised by an equally named stereotype which contains
the desired tag definitions. This is possible without any problems since the stereotypes from the
StandardProfileL2 belong to a different UML package and, thus, to a different namespace than
the stereotypes of the UML profile to be defined.

2. How must a formally correct and universally applicable UML profile for geospatial data modelling
be designed and which core concepts must it contain?

The answer to the first part of this question can actually be derived from the answer to the previous
question.
• A formally correct and universally applicable UML profile must conform to the UML 2 profile

definition of the OMG, which means, it must not cause any semantic modification of the UML
metamodel, all required tag definitions must be defined as properties of corresponding UML
stereotypes and the stereotypes must extend UML metaclasses from the UML 2 metamodel.
Furthermore, the UML profile design process preferably makes use of the two-step domain
model approach.

To be universally applicable and, in particular, also to promote a widespread use of geospatial
data models and geospatial data itself beyond the geospatial domain, the UML profile needs to
be as slender as possible, as the discussion in section 6.3.1, page 124, showed, which leads to the
following answer for the second part of the question.
• Within this thesis, a Core UML profile was developed which contains those concepts considered

as essential for geospatial data modelling. Since the ISO 191xx series of geographic information
standards plays a major role in geospatial data modelling, these concepts were first of all derived
from the ISO/TS 19103 UML profile and the ISO 19109 UML profile based on the finding that
the concepts defined therein are relevant to the entire geospatial domain and, thus, should be
represented in the Core UML profile in any case. These concepts are, for the most part, common
to all evaluated UML profiles, which means, the Core UML profile basically represents an
intersection of all concepts specified within the existing UML profiles. The Core UML profile
was, in addition, complemented by further concepts considered as essential.

• Furthermore, this Core UML profile specifies only concepts which are relevant at the conceptual
level, i. e. concepts which are required for creating platform-independent models. To keep the
model clean from any superfluous content, platform-specific aspects are, in accordance with the
MDA approach, not considered as beneficial at this stage of the modelling process, but should
only be added to the UML model during a PIM→PSM transformation.

• The usability of the Core UML profile was demonstrated twofold. On the one hand, it served
as an intermediate step in a multi-level information integration framework, assisting there in
mapping differing and deficient community UML profiles to a common and semantically correct
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core based on which it was possible to perform the model-driven transformation of geospatial
data without problems. On the other hand, this Core UML profile proved to be very useful in
reverse engineering conceptual models for data specifications which are not yet defined formally,
the Core UML profile guaranteeing that the most fundamental and relevant concepts of the
geospatial domain are automatically at hand for this task.

3. How can the variety of UML profiles existing in the geospatial domain be structured and designed
in a modular way?

The UML profile analysis showed that, even if a specific UML profile makes use of concepts which
are already defined as stereotypes within another UML profile, this specific UML profile needs
to define the stereotypes anew to be able to use them in the development of UML models, to the
effect that new deficits may arise from these continual redefinitions. Furthermore, the analysis
revealed that the scope of the concepts differs. While some concepts focus on the representation of
general conceptual aspects in UML models, others serve in adding community-specific aspects to
UML models and still others focus on the provision of encoding aspects. Based on these findings,
this research question can be answered as follows.
• A classification was introduced which allows for structuring the various UML profiles according

to base UML profiles and community conceptual UML profiles, which only contain conceptually-
specific aspects, as well as according to general encoding UML profiles and community encoding
UML profiles, which only contain encoding-specific aspects. This classification is based on the
fact that all evaluated UML profiles build on the same base UML profiles and on the same general
encoding UML profiles, i. e., they reuse the concepts defined therein and extend them merely
by additional concepts required within a certain community. This classification requires those
UML profiles which currently define conceptual as well as encoding-specific aspects within
the same UML profile to be split up into two separate UML profiles, which, however, does not
present a problem to the UML profiles evaluated in this thesis. The classification, furthermore,
was designed such that general encoding UML profiles are completely community-independent
and, thus, can be reused by any community encoding UML profile wishing to transform its
platform-independent UML model to a specific platform.

• The classification was formally specified by making use of UML package merge which allows
for combining the contents of individual UML profiles in a modular way. Within this modular
specification, the base UML profiles represent the merged packages whose contents are integrated
into the community UML profiles, which represent the receiving packages. This modular concept
can be applied to all UML profiles already existing in the geospatial domain and, in particular,
also to UML profiles which are still to be created, evading in this way from the beginning the
necessity of having to define every stereotype anew. Furthermore, this concept also withstands
the evolution of existing UML profiles.

4. Is it possible to apply the approach of model-driven transformation of geospatial data in spite of
the variety of UML profiles in use, in particular, when these UML profiles do not conform to the
UML profile definition of the OMG?

This question is based on the idea introduced in (Kutzner and Eisenhut 2010) that limitations in
meta-interoperability between models to which differing and deficient UML profiles are applied
can be solved by applying a multi-level information integration process which makes use of a
common UML profile as an intermediate step. It leads to the following answer.
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• Model-driven transformation of geospatial data can be conducted when reducing the various
UML profiles to a common denominator, i. e. to those concepts defined by the common UML
profile which, in addition, conforms to the UML profile definition of the OMG. For this reason,
a framework was developed which works within the limits of such a common UML profile.
The common UML profile used in the framework is the Core UML profile as it represents
exactly those concepts which are at the core of the geospatial domain. The framework follows
the MDA approach, i. e. it operates at three layers, the metamodel layer, the model layer and the
instance layer. At the metamodel layer, the differing UML profiles are mapped to the Core UML
profile such that all source and target UML models are now based on the Core UML profile
and, thus, exhibit the same common denominator and the same model quality, eliminating the
limitations in meta-interoperability in this way. Furthermore, also the source geospatial data and
the source and target encoding rules need to be converted such that they conform to the Core
UML profile. Afterwards, the general concept for model-driven transformation of geospatial
data can be applied in the usual way.

• The feasibility and the applicability of the framework was successfully demonstrated. First, it
was possible to create transformation definitions between several community UML profiles and
the Core UML profile and to execute these transformations using the transformation language
ATL. Second, it was possible to create transformation definitions between source and target
UML models to which the Core UML profile is applied using UMLT. And third, it was possible
to automatically transform the source geospatial data based on these UMLT transformations
using the software FME.

• Due to the slenderness of the Core UML profile, only those concepts from the community UML
profiles can be mapped to the Core UML profile which are either core concepts themselves or
which can be mapped to one of the core concepts due to a related semantics. This means, concepts
from a source UML profile which cannot be mapped to the Core UML profile can also not be
propagated further to a target UML profile. This, however, is not seen as disadvantageous as it
can be assumed that such concepts exist in one specific UML profile only. For concepts existing
in several UML profiles it should rather be considered whether they might be fundamental to
the whole geospatial domain and, thus, should become part of the Core UML profile.

8.2 Contributions of the results to scientific research and
professional practice

The results of this thesis can contribute to scientific research and to professional practice in many
ways. First of all, the framework brings about the following general advantages:
• Since the framework requires object-oriented UML models for the source and target data, the user

can also create the UMLT transformation definitions based on an object-oriented view, which sim-
plifies this definition process. For instance, no transformations need to be defined for relationships
(joins, foreign keys, relationship tables), which, in contrast, would be required when defining the
transformations based on a Relational view.

• The clear graphical representation of the UMLT transformation definitions allows for a very good
traceability of the individual transformation rules and is, thus, ideally suited for communication
purposes between domain experts, comparable to UML class diagrams as regards data models. A
limitation to the usability when creating the transformation definitions based on UML models to
which the Core UML profile is applied was hardly to identify. In particular the ISO-based AAA and
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INSPIRE models change only to a very small extent from a user’s point of view. Models which are
not ISO-based might experience a stronger transformation; the mappings defined for INTERLIS in
section 7.3.3, page 149, however, showed a very good coverage of concepts from which can be
implied that the modification is also here manageable.

• Further well-known advantages of the general model-driven transformation approach are trans-
ferable to the multi-level information integration framework as well. These are, for instance,
format-independence since the UMLT transformation definitions are valid independent of a spe-
cific data format (provided that the format can be derived from the UML model using encoding
rules) and reusability since the UMLT transformation definitions are valid independent of a certain
transformation tool.

Nevertheless, certain prerequisites need to be fulfilled to be able to apply the multi-level information
integration framework. These prerequisites are listed in table 8.1.

Table 8.1: Prerequisites required to be able to apply the multi-level information integration framework

Prerequisites Degree of fulfilment

• The geospatial data need to be described by
machine-interpretable conceptual UML mod-
els.

Partially fulfilled. UML models still mainly
represent models for communication purposes.
Manual adjustments may be required.

• UML models to which semantically wrong
stereotypes are applied need to be transformed
into semantically correct UML models.

Fulfilled. The transformations can be executed
using ATL.

• Data specifications which are not yet defined
conceptually need to be reverse-engineered
and need to apply a suitable UML profile.

Fulfilled. The reverse-engineering process can,
in addition, directly make use of the Core
UML profile.

• The encoding rules need to be machine-
interpretable.

Not fulfilled. Currently only ambiguously, in
natural language defined encoding rules exist.

• The community UML profiles need to be
defined formally and to be available either as
UML profile diagram or as XMI document.

Not fulfilled. Currently only EA-specific doc-
uments exist.

• The user needs to have knowledge about
– ATL Fulfillable. But only required when the map-

ping between the community UML profile and
the Core UML profile does not yet exist.

– UMLT Fulfillable.
– the source and target UML models Fulfillable, in case the UML models are pub-

licly accessible.

• Specific software tools are required
– FME as well as the FME extensions Fulfilled.

XMI Reader and UMLTApplier
– UMLT editor Fulfilled.
– Eclipse incl. EMF, ATL and UMLT plugins Fulfilled.
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Furthermore, the discussion about UML profiles can contribute to scientific research and to profes-
sional practice in the following way:
• Contributions of chapter 2 and 3: The introduced terms and concepts are encountered regularly

in research and daily practice, however, often are not used in a coherent way. Also, some of these
terms originate from the computer science domain, but are used differently in the geospatial domain.
In these cases, a relationship to their original meaning was established to put them in the correct
context again. These chapters are to serve as fundament to any interested person intending to get
familiar with geospatial data modelling and model-driven transformation of geospatial data.

• Contributions of chapter 4: This chapter illustrates predominant problems from the way conceptual
models are currently defined and used in the geospatial domain, which were encountered by the
author. The aim thereby is to make modellers aware of similar pitfalls and to point out how important
an adequate knowledge of the UML specification is.

• Contributions of chapter 5 and 6:
– The proposed formal ISO UML profiles as well as the development of the Core UML profile using

the two-step domain model approach are to demonstrate how UML profiles should preferably be
developed.

– The discussion in these chapters is to make aware of the fact that the definition of formal UML
profiles does not only require sufficient knowledge of the UML profile mechanism, but also of
the UML metamodel itself. Otherwise, erroneous UML profiles are the result.

– In addition, it is to be pointed out that, although current UML tools such as Enterprise Architect
allow for adding tag definitions to UML models without specifying a stereotype for them, this
approach is discouraged from, in particular, when at the same time the requirement states that
the UML models have to be defined compliant to UML 2.

– The use of UML profiles can be facilitated by providing a formal UML profile diagram and by
providing a working XMI document (validity of the XMI document is difficult to achieve) which
can be imported by UML tools (or at least by those tools prevalent in the geospatial domain,
since interoperability for XMI documents is still limited).

– When new UML profiles need to be defined, or when existing UML profiles need to be extended
by new stereotypes and/or tag definitions, it has to be taken care that these new concepts are
defined such that no semantic modification of the UML metamodel occurs and that the stereotypes
extend those UML metaclasses belonging to the correct UML version.

– Last, the discussion is to point out that the existence of a plurality of UML profiles can result in
a multitude of complexities and it needs to be considered whether this is in fact wanted.

8.3 Future research topics

From the discussions and outcomes of this thesis the following possible topics for future research can
be derived:
• The UML profile examination and the solutions provided in this thesis are based on a selection of

UML profiles. In practice, more UML profiles exist such as the Dutch NEN3610 UML profile. It
needs to be analysed whether the solutions (in particular the generic concept for developing UML
profiles and the multi-level information integration framework) also withstand other UML profiles.
This is of particular interest regarding non-ISO-based UML profiles.

• The generic concept for developing UML profiles makes use of the UML package merge concept. It
needs to be tested whether current UML tools are able to implement the generic concept as intended
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or whether specific tools would need to be developed. Furthermore, it needs to be tested how the
UML package merge usability is when UML profiles resulting from a merge are applied to UML
models, in particular when PIM models are to be transformed to PSM models which then require
the application of encoding-specific aspects from the encoding UML profiles.

• Section 6.3.1, page 124, states that the domain model exhibits similarities with the GFM from the
standard ISO 19109. It would be useful to analyse these similarities in more detail. Furthermore,
since the GFM represents a domain model itself, it would make sense to map the concepts from
the GFM to a UML profile of its own and to compare this GFM UML profile with the Core UML
profile. A similar statement as regards the GFM was already formulated in (Einspanier 2005): ‘For
better enabling language integration and reuse of models, as in the case of the defined GFM view
on UML models, a clear and unambiguous profile would be required. This could e.g. be achieved
by providing more specific stereotypes that properly identify the corresponding GFM constructs.’

• Section 3.2.1, page 33, describes different types of heterogeneity which can exist in information
integration. This categorisation refers to information in general, aspects inherent to geographic
information are not considered, except that heterogeneity can occur with respect to the geometric
representation of spatial objects as raster or vector data. Here an examination of its own would
be required which takes into account also aspects such as different levels of detail and different
modelling paradigms for representing geometries.

• This thesis strongly focuses on the OMG/MDA technical space. It should be investigated, in which
way the transition, called projection (Bézivin 2006), to other technical spaces, in particular to the
RDF and XML technical spaces, can be conducted, for instance, against the background of the
model-driven transformation since also other technical spaces allow for transforming data. Similarly,
(Kutzner and Eisenhut 2010) state that the use of XSLT for transforming GML application schemas
is convenient to a limited extent only since XSLT is targeted at the XML paradigm, whereas GML
complies to the OO paradigm, the same applies to RIF as it corresponds to the RDF paradigm. This
topic also relates to the expressive power of a language. Not all transformation definitions might be
expressible to the same extent using different transformation languages and also data models may
vary in their ability of representing the same universe of discourse. Also, the encoding of geospatial
data as defined in the standard ISO 19118 (cf. section 3.3.1, page 36) might be influenced by the
expressive power of the source system, the target system and the data transfer format. A more
detailed examination is required to which extent modelling and transformation languages which are
based on different paradigms, belong to different technical spaces and exhibit a different expressive
power can be used jointly.

• Owing to the non-existence of formally defined and automatically executable encoding rules, the
encoding was solved manually in the prototypical implementation of the multi-level information
integration framework by defining FME encoding workspaces. It should be analysed, whether
suitable formal languages for the definition and automatic execution of the encoding rules exist;
if this is not the case, a suitable language needs to be created. Furthermore, to promote the MDA
approach in the geospatial domain and to establish a wide-spread use of automatic encoding,
encoding rules for those data formats most common in the geospatial domain need to be defined
using the chosen language and made publicly available.

• The multi-level information integration framework makes use of the transformation language
UMLT. This language was already developed in 2006, when model transformation was still in its
early stages and not many other, already applicable transformation languages existed. Therefore,
it would be necessary to conduct a thorough investigation of existing transformation languages
taking into account UMLT as well. Furthermore, the database and data warehouse domains should
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be included in this examination as well since these domains deal with the integration of data based
on heterogeneous data models already since the 1970s (Kutzner and Eisenhut 2010).

• The UMLT transformation definitions are currently defined using the UMLT editor and are then
mapped onto the internal transformation functionalities of FME. It should be investigated, whether
the FME workbench could directly be used to model and execute the UMLT transformation
definitions. This will probably require extending FME by conceptual schema awareness beyond the
current possibility of FME readers and writers to take into account data models.



A Metamodels

A.1 The General Feature Model

Figure A.1 shows an extract from the General Feature Model specified in the standard ISO 19109
which represents the concepts defined for features.

+ typeName: LocalName [0..1]

+ definition: CharacterString

+ isAbstract: Boolean = false

«Metaclass»

GF_FeatureType

+ name: CharacterString [0..1]

+ description: CharacterString

+ uniqueInstance: Boolean

GF_InheritanceRelation

+ memberName: LocalName [0..1]

+ definition: CharacterString

«Metaclass»

GF_PropertyType

+ definition: CharacterString

«DataType»

GF_Constraint

+ valueType: TypeName

+ domainOfValues: CharacterString

+ cardinality: Multiplicity

«Metaclass»

GF_AttributeType

+ signature: CharacterString

«Metaclass»

GF_Operation

+ cardinality: Multiplicity

«Metaclass»

GF_AssociationRole

«Metaclass»

GF_AssociationType

+roleName1..*

Role

+carrierOfCharacteristics

1

0..*

1 +subtype 0..*

0..*

+includes

1..*

+linkBetween

Specialization

+constrainedBy

0..*

+constrainedBy0..*
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GF_AssociationType

+supertype 1

0..*

Generalization

Figure A.1: Extract from the General Feature Model (ISO 2005a)
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A.2 UML 2 Superstructure – Classes package

The Classes package of the UML Superstructure defines the metamodel elements required for mo-
delling UML class diagrams. The package reuses packages defined in the UML Infrastructure,
in particular the Kernel package which provides ‘the core modeling concepts of the UML, inclu-
ding classes, associations, and packages’ (ISO 2012b) and extends them ‘with additional features,
associations, or superclasses’ (ISO 2012b).

In the following, two diagrams of the Kernel package are depicted, the Classes diagram in figure A.2
and the DataTypes diagram in figure A.3. The diagrams are included, because they clearly show that
the UML metamodel elements Class and DataType are direct subclasses of the UML metamodel
element Classifier and that the UML metamodel elements PrimitiveType and Enumeration, in turn,
are subclasses of DataType.
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Figure 7.12 - Classes diagram of the Kernel package 
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Figure A.2: Classes diagram of the Kernel package (ISO 2012b)
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Figure 7.13 - DataTypes diagram of the Kernel package
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Figure A.3: DataTypes diagram of the Kernel package (ISO 2012b)





B Encoding of geospatial data

B.1 Concept of data interchange between two systems
according to the standard ISO 19118

Figure B.1 displays the concept of data interchange between two systems which is specified in the
standard ISO 19118 (cf. section 3.3.1, page 36).

EN ISO 19118:2011 (E) 

 11
 

6 Fundamental concepts and assumptions 

6.1 Concepts 

The purpose of the set of International Standards known as the “ISO 19100 series” is to enable interoperability 
between heterogeneous geographic information systems. To achieve interoperability between heterogeneous 
systems, it is necessary to determine two fundamental issues. The first issue is to define the semantics of the 
content and the logical structures of geographic data. This shall be done in an application schema. The 
second issue is to define a system- and platform-independent data structure that can represent data 
corresponding to the application schema. 

The fundamental concepts of data interchange, i.e. the procedure based on the application schema for 
encoding, delivery, receipt and interpretation of geographic data, are described in 6.2 to 6.6. An overview of 
the data interchange process is described in 6.2; 6.3 introduces application schemas that allow interpretation 
of geographic data; 6.4 describes the importance of the encoding rule for producing system-independent data 
structures; 6.5 describes a software component, called the encoding service, for executing the encoding rule; 
and 6.6 describes the procedure for delivery and receipt, called the transfer service. 

6.2 Data interchange 

An overview of a data interchange is shown in Figure 1. System A wants to send a dataset to system B. To 
ensure a successful interchange, it is necessary that A and B decide on three things: i.e. a common 
application schema I, which encoding rule R to apply, and what kind of transfer protocol to use. The 
application schema is the basis of a successful data transfer and defines the possible content and structure of 
the transferred data, whereas the encoding rule defines the conversion rules for how to code the data into a 
system-independent data structure. 
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Figure 1 — Overview of data interchange between two systems 
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Figure B.1: ISO 19118 concept of data interchange between two systems (ISO 2011)
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B.2 GML encoding of spatial attributes

The following listings illustrate the different GML encodings of spatial attributes modelled according
to either value semantics or reference semantics (cf. section 4.2.3.2, page 62):
• Listing B.1 represents two building objects as INSPIRE GML instances which correspond to the

UML model in figure 4.5, page 63. The spatial attribute geometrySolid is defined in the UML model
using value semantics.

• Listing B.2 displays the same two building objects as CityGML instances which correspond to the
UML model in figure 4.6, page 63. Here, the spatial attribute lod3Solid is defined using reference
semantics.

Listing B.1: INSPIRE GML encoding of the spatial attribute geometrySolid modelled using value
semantics

<bu-core3d:Building gml:id="building1">
<bu-core3d:geometry3DLoD3>

<bu-core3d:BuildingGeometry3DLoD3>
<bu-core3d:geometrySolid>

<gml:Solid gml:id="solid1">
<gml:exterior>

<gml:Shell>
<gml:surfaceMember>

<gml:CompositeSurface gml:id="compsurface1">
<gml:surfaceMember>

<gml:Polygon gml:id="wallSurface4711">
<gml:exterior>

<gml:LinearRing>
<gml:posList>...</gml:posList>

</gml:LinearRing>
</gml:exterior>

</gml:Polygon>
</gml:surfaceMember>
...

</gml:CompositeSurface>
</gml:surfaceMember>

</gml:Shell>
</gml:exterior>

</gml:Solid>
</bu-core3d:geometrySolid>

</bu-core3d:BuildingGeometry3DLoD3>
</bu-core3d:geometry3DLoD3>

</bu-core3d:Building>

<bu-core3d:Building gml:id="building2">
<bu-core3d:geometry3DLoD3>

<bu-core3d:BuildingGeometry3DLoD3>
<bu-core3d:geometrySolid>

<gml:Solid gml:id="solid2">
<gml:exterior>

<gml:Shell>
<gml:surfaceMember>

<gml:CompositeSurface gml:id="compsurface2">
<gml:surfaceMember>

<gml:Polygon gml:id="wallSurface0815">
<gml:exterior>

<gml:LinearRing>
<gml:posList>...</gml:posList>

</gml:LinearRing>
</gml:exterior>

</gml:Polygon>
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</gml:surfaceMember>
...

</gml:CompositeSurface>
</gml:surfaceMember>

</gml:Shell>
</gml:exterior>

</gml:Solid>
</bu-core3d:geometrySolid>

</bu-core3d:BuildingGeometry3DLoD3>
</bu-core3d:geometry3DLoD3>

</bu-core3d:Building>

Listing B.2: CityGML encoding of the spatial attribute lod3Solid modelled using reference semantics
(Gröger et al. 2012, modified)

<bldg:Building gml:id="building1">
<bldg:lod3Solid>

<gml:Solid gml:id="solid1">
<gml:exterior>

<gml:CompositeSurface gml:id="compsurface1">
<gml:surfaceMember>

<gml:Polygon gml:id="wallSurface4711">
<gml:exterior>

<gml:LinearRing>
<gml:posList>...</gml:posList>

</gml:LinearRing>
</gml:exterior>

</gml:Polygon>
</gml:surfaceMember>
...

</gml:CompositeSurface>
</gml:exterior>

</gml:Solid>
</bldg:lod3Solid>

</bldg:Building>

<bldg:Building gml:id="building2">
<bldg:lod3Solid>

<gml:Solid gml:id="solid2">
<gml:exterior>

<gml:CompositeSurface gml:id="compsurface2">
<gml:surfaceMember>

<gml:OrientableSurface orientation="-">
<gml:baseSurface xlink:href="#wallSurface4711"/>

</gml:OrientableSurface>
</gml:surfaceMember>
...

</gml:CompositeSurface>
</gml:exterior>

</gml:Solid>
</bldg:lod3Solid>

</bldg:Building>
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C.1 Publicly available UML profiles for Enterprise Architect

A UML profile, called UML Profile for GML Applications Schemas, is publicly available from the
Solid Earth and Environment Grid community web site (SEE Grid 2009). The UML profile is based
on the encoding rule specified in the standard ISO 19136 Annex E (cf. section 5.3, page 86). It can
be used within Enterprise Architect (EA) for modelling UML application schemas which are to
be encoded as GML application schemas. The UML profile is provided as XML document in an
EA-specific format; listing C.1 shows the UML profile.

Based on the XML document, a formal UML profile diagram was created for this thesis to gain a
better overview of the stereotypes and tag definitions the UML profile contains. The UML profile
diagram is displayed in figure C.1. The tag definitions in the XML document do not define any types
and multiplicities, thus, suitable types and multiplicities were added to the UML profile diagram
based on the descriptions given for each tag definition. The types Integer, String and Boolean are
primitive types which are predefined in the UML 2 Infrastructure and which can be used in defining
MOF-based metamodels (ISO 2012a). Several tag definitions in the XML document specify sets of
predefined values from which to choose when the corresponding stereotypes are applied to model
elements. These values were defined in the UML profile diagram as enumerations based on the values
provided in the XML document. Some tag definitions also provide default values which were adopted
in accordance with the XML document, except for the stereotypes «class» and «bundle». For them,
the XML document provides a default value for the tag definition xsdEncodingRule which differs
from all other stereotypes and, thus, was corrected to be consistent with the other stereotypes.

Another UML profile, the UML Profile for INSPIRE data specifications, is publicly available from
the INSPIRE web site (JRC 2012). This UML profile is based on the INSPIRE UML profile specified
in the INSPIRE documents D2.5 and D2.7 (cf. section 5.4.1, page 101) and can be used within EA for
modelling INSPIRE application schemas. Figure C.2 shows the formal UML profile diagram which
was created for this UML profile based on the available XML document. The modelling decisions
described above were applied here in exactly the same way.

Listing C.1: XML document of the UML Profile for GML Applications Schemas for Enterprise
Architect (SEE Grid 2009). The XML attributes description and notes were omitted to
confine the size of the listing.

<?xml version="1.0" encoding="UTF-8"?>
<UMLProfile>

<!-- modified by Simon Cox from profile created by Clemens Portele - last edit: 2009-05-152 -->
<Documentation id="GML" name="UML Profile for GML Applications Schemas" version="2.0"/>
<Content>

<Stereotypes>

<Stereotype name="Application Schema">
<AppliesTo>

<Apply type="package"/>
</AppliesTo>
<TaggedValues>

<Tag name="targetNamespace" default="FIXME"/>
<Tag name="xmlns" default="FIXME"/>
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<Tag name="version" default="FIXME"/>
<Tag name="xsdDocument" default="FIXME"/>
<Tag name="gmlProfileSchema"/>
<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |

iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>
</TaggedValues>

</Stereotype>

<!-- this stereotype may be added for packages without stereotype during the conversion to an implementation model, if
needed
<Stereotype name="bundle">

<AppliesTo>
<Apply type="package"/>

</AppliesTo>
<TaggedValues>

<Tag name="xsdDocument"/>
<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |

iso19136_2007_INSPIRE_Extensions" default="iso19136_2007_INSPIRE_Extensions" />
</TaggedValues>

</Stereotype> -->

<Stereotype name="Leaf">
<AppliesTo>

<Apply type="package"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdDocument"/>
<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |

iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>
</TaggedValues>

</Stereotype>

<Stereotype name="FeatureType">
<AppliesTo>

<Apply type="class"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>

<Tag name="noPropertyType" values="false" default="false"/>
<Tag name="byValuePropertyType" values="false" default="false"/>
<Tag name="isCollection" values="true | false" default="false"/>

</TaggedValues>
</Stereotype>

<Stereotype name="Type">
<AppliesTo>

<Apply type="class"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>

<Tag name="noPropertyType" values="false" default="false"/>
<Tag name="byValuePropertyType" values="false" default="false"/>
<Tag name="isCollection" values="true | false" default="false"/>
<Tag name="xmlSchemaType"/>

</TaggedValues>
</Stereotype>

<!-- this stereotype may be added for classes with no stereotype during the conversion to an implementation model
<Stereotype name="class">

<AppliesTo>
<Apply type="class"/>

</AppliesTo>
<TaggedValues>
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<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007_INSPIRE_Extensions" />

<Tag name="noPropertyType" values="false" default="false" />
<Tag name="byValuePropertyType" values="false" default="false" />
<Tag name="isCollection" values="true | false" default="false" />

</TaggedValues>
</Stereotype> -->

<Stereotype name="DataType">
<AppliesTo>

<Apply type="class"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>

<Tag name="noPropertyType" values="false" default="false"/>
<Tag name="isCollection" values="true | false" default="false"/>

</TaggedValues>
</Stereotype>

<Stereotype name="Union">
<AppliesTo>

<Apply type="class"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>

<Tag name="noPropertyType" values="false" default="false"/>
</TaggedValues>

</Stereotype>

<Stereotype name="Enumeration">
<AppliesTo>

<Apply type="class"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>

</TaggedValues>
</Stereotype>

<Stereotype name="CodeList">
<AppliesTo>

<Apply type="class"/>
</AppliesTo>
<TaggedValues>

<Tag name="xsdEncodingRule" values="iso19136_2007 | iso19139_2007 |
iso19136_2007_INSPIRE_Extensions" default="iso19136_2007"/>

<Tag name="asDictionary" values="true" default="true"/>
<Tag name="codeSpace" type="string" values="" default=""/>
<Tag name="dictionaryIdentifier" type="string" values="" default=""/>
<Tag name="memberIdentifierStem" type="string" values="" default=""/>

</TaggedValues>
</Stereotype>

<Stereotype name="Import">
<AppliesTo>

<Apply type="dependency"/>
</AppliesTo>

</Stereotype>

<!-- this stereotype may be added for properties with no stereotype during the conversion to an implementation model -->
<Stereotype name="property">

<AppliesTo>
<Apply type="attribute"/>
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<Apply type="associationRole"/>
</AppliesTo>
<TaggedValues>

<Tag name="sequenceNumber"/>
<Tag name="inlineOrByReference" values="inline | byReference | inlineOrByReference"

default="inlineOrByReference"/>
<Tag name="isMetadata" values="true | false" default="false"/>

</TaggedValues>
</Stereotype>

</Stereotypes>
</Content>

</UMLProfile>

«profile» UML Profile for GML Application Schemas

«Metaclass»

Package

+ xsdDocument: String

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Bundle

+ xsdDocument: String = "FIXME"

+ targetNamespace: String = "FIXME"

+ xmlns: String = "FIXME"

+ version: String = "FIXME"

+ gmlProfileSchema: String [0..1]

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Application Schema

«Metaclass»

Class

+ xsdDocument: String

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Leaf

+ noPropertyType: PropertyType = false

+ byValuePropertyType: PropertyType = false

+ isCollection: Boolean = false

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

FeatureType

+ noPropertyType: PropertyType = false

+ byValuePropertyType: PropertyType = false

+ isCollection: Boolean = false

+ xmlSchemaType: String

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Type

+ asDictionary: Dictionary = true

+ codeSpace: String

+ dictionaryIdentifier: String

+ memberIdentifierStem: String

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

CodeList

+ noPropertyType: PropertyType = false

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Union

+ noPropertyType: PropertyType = false

+ isCollection: Boolean = false

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

DataType

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Enumeration

+ sequenceNumber: Integer

+ inlineOrByReference: InlineOrByReference = inlineOrByReference

+ isMetadata: Boolean = false

«stereotype»

Property

+ noPropertyType: PropertyType = false

+ byValuePropertyType: PropertyType = false

+ isCollection: Boolean = false

+ xsdEncodingRule: EncodingRule = iso19136_2007

«stereotype»

Class

inline

byReference

inlineOrByReference

«enumeration»

InlineOrByReference

iso19136_2007

iso19139_2007

iso19136_2007_INSPIRE_Extensions

«enumeration»

EncodingRule

false

«enumeration»

PropertyType

«Metaclass»

AssociationRole

«stereotype»

Import

«Metaclass»

Attribute

«Metaclass»

Dependency

true

«enumeration»

Dictionary

Figure C.1: Formal UML profile diagram created based on the EA-specific UML Profile for GML
Application Schemas
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Figure C.2: Formal UML profile diagram created based on the EA-specific UML Profile for INSPIRE
data specifications
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C.2 UML profile diagrams of ISO standards and ISO draft
international standards

Figure C.3 displays the formal UML profile diagram which is provided in the document ISO/DIS
19103 (cf. section 5.1.3, page 85).

In contrast, also the document ISO/DIS 19109 defines a UML profile, but only in tabular form
together with further definitions within the running text. Therefore, a formal UML profile diagram was
created for this thesis based on the information provided in (ISO 2013b) (cf. section 5.2, page 85). The
diagram is shown in figure C.4. The tag definitions in the DIS do not define types and multiplicities,
thus, suitable types and multiplicities were added to the formal UML profile based on the descriptions
given for each tag definition. The type String is a primitive type predefined in UML 2.

Similarly, also the ISO 19136 UML profile is only defined in tabular and textual form by the
standard ISO 19136 Annex E (cf. section 5.3, page 86). Figure C.5 displays the formal UML profile
diagram which was created based on the information provided in this standard.

«metaclass»

UML metamodel::

Interface

«metaclass»

UML metamodel::

Classifier

«stereotype»

Interface

«stereotype»

Type

«metaclass»

UML metamodel::

DataType

«stereotype»

Leaf

«stereotype»

Union

«metaclass»

UML metamodel::

Package

«extends»

«metaclass»

Union

«extends»

«metaclass»

CodeList

+ codeList: String [0..1]

«stereotype»

CodeList

«extends»

«metaclass»

UML metamodel::

Enumeration

«stereotype»

Enumeration

«extends»

«extends» «extends»

Figure C.3: Formal UML profile diagram provided in ISO/DIS 19103 (ISO 2013a)

«profile» ISO/DIS19109

«Metaclass»

Package

+ version: String

+ description: String [0..1]

+ catalogue-entry: String [0..1]

+ language: String [0..1]

+ designation: String [0..*]

«stereotype»
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«Metaclass»
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«stereotype»

Union

«stereotype»

CodeList

«stereotype»

Leaf

+ description: String [0..*]

+ designation: String [0..*]

+ definition: String [0..*]

«stereotype»

FeatureType

«stereotype»

Datatype

«stereotype»

Enumeration

«stereotype»

estimated

«Metaclass»

AssociationEnd

«Metaclass»

AttributeNot nested in another 

applicationSchema package

Use in attributes or strong 

aggregation (composition)

Figure C.4: Formal UML profile diagram created based on the descriptions in ISO/DIS 19109



C.2 UML profile diagrams of ISO standards and ISO draft international standards 185
«
p
ro

fi
le

»
IS

O
 1

9
1
3
6

«
M

e
ta

c
la

s
s
»

P
a
c

k
a
g

e +
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 x

s
d
D

o
c
u
m

e
n
t:
 S

tr
in

g
 [
0
..
1
]

«
s
te

re
o
ty

p
e
»

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 x

s
d
D

o
c
u
m

e
n
t:
 S

tr
in

g

+
 t
a
rg

e
tN

a
m

e
s
p
a
c
e
: 
S

tr
in

g

+
 x

m
ln

s
: 
S

tr
in

g

+
 v

e
rs

io
n
: 
S

tr
in

g
 =

 "
u
n
k
n
o
w

n
"

+
 g

m
lP

ro
fi
le

S
c
h
e
m

a
: 
S

tr
in

g
 [
0
..
1
]

«
s
te

re
o

ty
p
e

»

A
p

p
li

c
a

ti
o

n
 S

c
h

e
m

a

«
M

e
ta

c
la

s
s
»

C
la

s
s

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 x

s
d
D

o
c
u
m

e
n
t:
 S

tr
in

g
 [
0
..
1
]

«
s
te

re
o
ty

p
e

»

L
e

a
f

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 n

o
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

+
 b

y
V

a
lu

e
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

+
 i
s
C

o
lle

c
ti
o
n
: 
B

o
o
le

a
n

«
s
te

re
o

ty
p
e

»

F
e

a
tu

re
T

y
p

e

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 n

o
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

+
 b

y
V

a
lu

e
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

+
 i
s
C

o
lle

c
ti
o
n
: 
B

o
o
le

a
n

+
 x

m
lS

c
h
e
m

a
T

y
p
e
: 
S

tr
in

g
 [
0
..
1
]

«
s
te

re
o

ty
p
e

»

T
y

p
e

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 a

s
D

ic
ti
o
n
a
ry

: 
B

o
o
le

a
n

«
s
te

re
o
ty

p
e

»

C
o

d
e
L

is
t

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 n

o
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

«
s
te

re
o

ty
p

e
»

U
n

io
n+

 d
o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 n

o
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

«
s
te

re
o
ty

p
e
»

D
a
ta

T
y

p
e

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

«
s
te

re
o

ty
p

e
»

E
n

u
m

e
ra

ti
o

n+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 s

e
q
u
e
n
c
e
N

u
m

b
e
r:

 I
n
te

g
e
r

+
 i
n
lin

e
O

rB
y
R

e
fe

re
n
c
e
: 
In

lin
e
O

rB
y
R

e
fe

re
n
c
e
 [
0
..
1
] 
=

 i
n
lin

e
O

rB
y
R

e
fe

re
n
c
e

+
 i
s
M

e
ta

d
a
ta

: 
B

o
o
le

a
n

«
s
te

re
o

ty
p

e
»

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 s

e
q
u
e
n
c
e
N

u
m

b
e
r:

 I
n
te

g
e
r

+
 i
n
lin

e
O

rB
y
R

e
fe

re
n
c
e
: 
In

lin
e
O

rB
y
R

e
fe

re
n
c
e
 [
0
..
1
] 
=

 i
n
lin

e
O

rB
y
R

e
fe

re
n
c
e

+
 i
s
M

e
ta

d
a
ta

: 
B

o
o
le

a
n

«
s
te

re
o

ty
p

e
»

A
s

s
o

c
ia

ti
o

n

+
 d

o
c
u
m

e
n
ta

ti
o
n
: 
S

tr
in

g
 [
0
..
1
]

+
 n

o
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

+
 b

y
V

a
lu

e
P

ro
p
e
rt

y
T

y
p
e
: 
B

o
o
le

a
n

+
 i
s
C

o
lle

c
ti
o
n
: 
B

o
o
le

a
n

«
s
te

re
o

ty
p
e

»

in
lin

e

b
y
R

e
fe

re
n
c
e

in
lin

e
O

rB
y
R

e
fe

re
n
c
e

«
e

n
u
m

e
ra

ti
o

n
»

In
li
n

e
O

rB
y
R

e
fe

re
n

c
e

«
M

e
ta

c
la

s
s
»

A
s

s
o

c
ia

ti
o

n
E

n
d

«
M

e
ta

c
la

s
s
»

A
tt

ri
b

u
te

«
s
te

re
o
ty

p
e
»

im
p

o
rt

«
M

e
ta

c
la

s
s
»

D
e
p

e
n

d
e

n
c

y

Figure C.5: Formal UML profile diagram created based on the descriptions in ISO 19136 Annex E
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C.3 INSPIRE UML profile

As mentioned in section 5.4, page 100, the INSPIRE UML profile is based on the standard ISO
19136 Annex E and, thus, reuses the stereotypes from there, complementing them by additional tag
definitions. In the following, these new tag definitions defined for each of the stereotypes will be
provided, together with information regarding their meaning, types, multiplicities and intended use,
which is deduced from the descriptions given in the INSPIRE documents D2.5 and D2.7.

The stereotypes «applicationSchema», «leaf», «union», «enumeration» and «dataType», UML
packages with any or no stereotype as well as UML classes representing object types specify the
new tag definition xsdEncodingRule which is listed in table C.1. Furthermore, each of the stereotypes
«featureType», «type» and «codeList» is provided with several new tag definitions which are listed
in the tables C.2, C.3 and C.4, respectively. Above that, the following issues were noticed in the
documents D2.5 and D2.7:
• As regards the tag definition gmlMixin, the INSPIRE documents contain contradictory information.

On the one hand, the document D2.7 states that ‘[m]ixin classes shall have either the stereotype
<<featureType>> or no stereotype and the tagged value “gmlMixin” with a value “true”’ (JRC
2014b), on the other hand, the document D2.5 lists this tag definition also for the stereotype «type».

• All stereotypes which are reused from the ISO 19136 UML profile theoretically must also contain
the tag definition documentation since this tag definition was defined there already. However, the
INSPIRE UML profile does not make use of this tag definition and no information is provided,
whether this tag definition was omitted on purpose.

• The INSPIRE document D2.5 lists the tag definition isCollection for the stereotype «dataType»
which, however, does not make sense. The tag definition was originally defined in ISO 19136
Annex E, but not for data types; also, no corresponding conversion rule is defined in the INSPIRE
document D2.7. In addition, the description provided for this tag definition gives the appearance
that it is listed mistakenly.

Similarly to the other UML profiles, also the INSPIRE UML profile is only specified in tabular
form together with further definitions in the running text of the INSPIRE documents D2.5 and D2.7
(cf. section 5.4.1, page 101). Therefore, the formal UML profile diagram displayed in figure C.6 was
created for this thesis based on the information provided in these documents.

In addition, figure C.7 shows the UML profile diagram of the formal INSPIRE UML profile which
is proposed in section 5.4.2, page 104. This UML profile makes use of UML package merge.

Table C.1: INSPIRE UML profile: Additional tag definition of the stereotypes «applicationSchema»,
«leaf», «union», «enumeration» and «dataType», of UML packages with any or no stereo-
type and of UML classes representing object types

Name Meaning Type Multiplicity Use

xsdEncodingRule The encoding rule to be applied String 0..1 GML encoding
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Table C.2: INSPIRE UML profile: Additional tag definitions of the stereotype «featureType»

Name Meaning Type Multiplicity Use

inspireConcept URI reference to the feature concept String 1 Conceptual level,
GML encoding

gmlMixin The feature type is a mixin class Boolean 1 GML encoding
xsdEncodingRule The encoding rule to be applied String 0..1 GML encoding

Table C.3: INSPIRE UML profile: Additional tag definitions of the stereotype «type»

Name Meaning Type Multiplicity Use

gmlMixin The type is a mixin class Boolean 1 GML encoding
xsdEncodingRule The encoding rule to be applied String 0..1 GML encoding

Table C.4: INSPIRE UML profile: Additional tag definitions of the stereotype «codeList»

Name Meaning Type Multiplicity Use

extensibility the code list is extensible by a third party String 1 Conceptual level,
GML encoding

vocabulary URI of the code list registry String 0..1 Conceptual level,
GML encoding

xsdEncodingRule The encoding rule to be applied String 0..1 GML encoding
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Figure C.6: Formal UML profile diagram created based on the descriptions in the INSPIRE docu-
ments D2.5 and D2.7
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«stereotype»
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context DataType inv:

self.xsdEncodingRule = EncodingRule::iso19136_2007_INSPIRE_Extensions  

implies self.noPropertyType = Boolean::false

context FeatureType inv:

self.xsdEncodingRule = EncodingRule::iso19136_2007_INSPIRE_Extensions  

implies self.noPropertyType = Boolean::false 

and self.byValuePropertyType = Boolean::false

context ObjectType inv:

self.xsdEncodingRule = EncodingRule::iso19136_2007_INSPIRE_Extensions  

implies self.noPropertyType = Boolean::false 

and self.byValuePropertyType = Boolean::false

context Union inv:

self.xsdEncodingRule = EncodingRule::iso19136_2007_INSPIRE_Extensions  

implies self.noPropertyType = Boolean::false

context CodeList

inv: self.asDictionary = Boolean::true

inv: if self.extensibility = Extensibility::any 

then self.vocabulary.size() = 0 or self.vocabulary.oclIsUndefined() 

else self.vocabulary.size() > 0 

endif

context Type inv:

self.xsdEncodingRule = EncodingRule::iso19136_2007_INSPIRE_Extensions  

implies self.noPropertyType = Boolean::false 

and self.byValuePropertyType = Boolean::false

context Placeholder inv:
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context Property inv:

self.base_Property.isNavigable() implies 

inlineOrByReference = InlineOrByReference::byReference

Figure C.7: Proposed formal INSPIRE UML profile
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C.4 Core UML profile

Listing C.2 shows the XMI structure of the Core UML profile which was developed in section 6.3,
page 123. The Core UML profile was implemented using Eclipse UML2 version 3.2.1. The XMI
document contains Ecore-specific information which is required by Eclipse to be able to process
the UML profile. This information is not shown here since it can automatically be added again
within Eclipse. The XMI code shown in the listing can also be imported by Magic Draw without any
problems.

Listing C.2: Eclipse XMI document of the Core UML profile

<?xml version="1.0" encoding="UTF-8"?>
<uml:Profile xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmlns:uml="http://www.eclipse.org/uml2/3.0.0/UML"
xmi:id="id1" name="CoreUMLProfile" metamodelReference="id1">

<eAnnotations xmi:id="_XEoTsMhGEeG82fPhPvPIyg" source="http://www.eclipse.org/uml2/2.0.0/UML">
<!-- ... Ecore-specific content ... -->

</eAnnotations>
<packageImport xmi:id="id1">

<importedPackage xmi:type="uml:Model" href="pathmap://UML_METAMODELS/UML.metamodel.uml#_0"/>
</packageImport>
<packageImport xmi:id="id2">

<importedPackage xmi:type="uml:Model" href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#_0"/>
</packageImport>
<packagedElement xmi:type="uml:Stereotype" xmi:id="s1" name="ApplicationSchema">

<ownedRule xmi:id="a1" name="NoNestedApplicationSchemas" constrainedElement="s1">
<specification xmi:type="uml:OpaqueExpression" xmi:id="sp1">

<language>OCL2.0</language>
<body>inv: self.base_Package.nestedPackage->closure(nestedPackage)->forAll(c | c.extension->forAll(p | not

p.ownedEnd.type.name=’ApplicationSchema’))</body>
</specification>

</ownedRule>
<ownedAttribute xmi:id="a2" name="base_Package" association="ex1">

<type xmi:type="uml:Class" href="pathmap://UML_METAMODELS/UML.metamodel.uml#Package"/>
</ownedAttribute>
<ownedAttribute xmi:id="a3" name="version">

<type xmi:type="uml:PrimitiveType" href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#String"/>
</ownedAttribute>

</packagedElement>
<packagedElement xmi:type="uml:Stereotype" xmi:id="s2" name="Leaf">

<ownedRule xmi:id="a4" name="NoSubpackages" constrainedElement="s2">
<specification xmi:type="uml:OpaqueExpression" xmi:id="sp2">

<language>OCL2.0</language>
<body>inv: self.base_Package.nestedPackage->size()=0</body>

</specification>
</ownedRule>
<ownedAttribute xmi:id="a5" name="base_Package" association="ex2">

<type xmi:type="uml:Class" href="pathmap://UML_METAMODELS/UML.metamodel.uml#Package"/>
</ownedAttribute>

</packagedElement>
<packagedElement xmi:type="uml:Stereotype" xmi:id="s3" name="FeatureType">

<ownedAttribute xmi:id="a6" name="base_Class" association="ex3">
<type xmi:type="uml:Class" href="pathmap://UML_METAMODELS/UML.metamodel.uml#Class"/>

</ownedAttribute>
<ownedAttribute xmi:id="a7" name="isCollection">

<type xmi:type="uml:PrimitiveType" href="pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml#Boolean"/>
</ownedAttribute>

</packagedElement>
<packagedElement xmi:type="uml:Stereotype" xmi:id="s4" name="Union">

<ownedRule xmi:id="a8" name="NumberOfAttributes" constrainedElement="s4">
<specification xmi:type="uml:OpaqueExpression" xmi:id="sp3">
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<language>OCL2.0</language>
<body>

inv: self.base_DataType.ownedAttribute->size()>=2&#xD;inv: self.base_DataType.ownedAttribute->forAll(c |
c.lower=0 and c.upper=1)&#xD;inv: self.base_DataType.ownedRule->notEmpty()

</body>
</specification>

</ownedRule>
<ownedAttribute xmi:id="a9" name="base_DataType" association="ex4">

<type xmi:type="uml:Class" href="pathmap://UML_METAMODELS/UML.metamodel.uml#DataType"/>
</ownedAttribute>

</packagedElement>
<packagedElement xmi:type="uml:Stereotype" xmi:id="s5" name="CodeList">

<ownedAttribute xmi:id="a10" name="base_Enumeration" association="ex5">
<type xmi:type="uml:Class" href="pathmap://UML_METAMODELS/UML.metamodel.uml#Enumeration"/>

</ownedAttribute>
</packagedElement>
<packagedElement xmi:type="uml:Stereotype" xmi:id="s6" name="Property">

<ownedAttribute xmi:id="a11" name="base_Property" association="ex6">
<type xmi:type="uml:Class" href="pathmap://UML_METAMODELS/UML.metamodel.uml#Property"/>

</ownedAttribute>
</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="ex1" name="A_Package_ApplicationSchema" memberEnd="ee1

a2">
<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="ee1" name="extension_ApplicationSchema" type="s1"

aggregation="composite" association="ex1"/>
</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="ex2" name="A_Package_Leaf" memberEnd="ee2 a5">

<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="ee2" name="extension_Leaf" type="s2" aggregation="composite"
association="ex2"/>

</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="ex3" name="A_Class_FeatureType" memberEnd="ee3 a6">

<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="ee3" name="extension_FeatureType" type="s3"
aggregation="composite" association="ex3"/>

</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="ex4" name="A_DataType_Union" memberEnd="ee4 a9">

<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="ee4" name="extension_Union" type="s4" aggregation="composite"
association="ex4"/>

</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="ex5" name="A_Enumeration_CodeList" memberEnd="ee5 a10">

<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="ee5" name="extension_CodeList" type="s5"
aggregation="composite" association="ex5"/>

</packagedElement>
<packagedElement xmi:type="uml:Extension" xmi:id="ex6" name="A_Property_Property" memberEnd="ee6 a11">

<ownedEnd xmi:type="uml:ExtensionEnd" xmi:id="ee6" name="extension_Property" type="s6"
aggregation="composite" association="ex6"/>

</packagedElement>
</uml:Profile>





D Implementation of the multi-level information
integration framework

This appendix contains further documentation on the implementation of the multi-level information
integration framework which is described in chapter 7, page 139. The additional documentation
includes the ATL code which maps the INSPIRE UML profile to the Core UML profile, the contents
of the UMLT diagram which defines the transformation between the AAA UML model and the
INSPIRE UML model, the UMLT diagram which defines the transformation between the DFK UML
model and the INSPIRE UML model as well as differences regarding the XMI structure generated by
the UML tools Enterprise Architect and Eclipse UML2.

D.1 Transformation between the AAA application schema and
the INSPIRE themes Cadastral Parcels and Administrative
Units

D.1.1 ATL transformation definition between the INSPIRE UML profile and
the Core UML profile

Listing D.1 contains the ATL code of the transformation module INSPIRE2Core for mapping the
INSPIRE UML profile to the Core UML profile which was implemented based on the mappings
defined in table 7.3, page 145. The code makes use of superimposition (cf. section 3.4.1, page 43)
by superimposing the transformation module INSPIRE2Core on top of the transformation module
Copy2UML from (Wagelaar 2010). The Copy2UML module provides transformation rules for every
metaclass in the UML 2 metamodel by simply copying the source model elements into corresponding
target model elements. These transformation rules are extended by the additional rules defined in the
INSPIRE2Core module.

Listing D.1: The implemented ATL code for mapping the INSPIRE UML profile to the Core UML
profile

-- @nsURI UML2=http://www.eclipse.org/uml2/3.0.0/UML

module INSPIRE2Core;
create OUT: UML2 from IN: UML2, COREPROFILE: UML2, STANDARDPROFILE: UML2;

uses "lib::UML2";
uses UML2Copy;

helper def: coreUmlProfile: UML2!"uml::Profile" =
’CoreUMLProfile’.profile().debug(’coreUmlProfile’);

helper def: standardUmlProfile: UML2!"uml::Profile" =
’Standard’.profile().debug(’standardUmlProfile’);

helper context UML2!Element def: hasStereotype(name: String): Boolean =



194 D Transformation between AAA and INSPIRE

not self.getAppliedStereotype(name).oclIsUndefined();

helper def: getVoidReasonValueClass: UML2!"uml::Class" =
thisModule.getClass(UML2!"uml::Class".allInstancesFrom(’IN’), ’VoidReasonValue’);

helper def: getClass(s: Sequence(UML2!"uml::Class"), className: String): UML2!"uml::Class" =
s -> any(e | e.name = className);

helper def: existsClass(s: Sequence(UML2!"uml::Class"), className: String): UML2!"uml::Class" =
s -> exists(e | e.name = className);

rule Model {
from

s: UML2!"uml::Model" in IN
using {

voidablePackage: UML2!"uml::Package" = ’’;
}
to

t: UML2!"uml::Model" (
__xmiID__ <- s.__xmiID__,
name <- s.name.debug(’Model’),
visibility <- s.visibility,
ownedComment <- s.ownedComment,
clientDependency <- s.clientDependency,
elementImport <- s.elementImport,
packageImport <- s.packageImport,
ownedRule <- s.ownedRule,
packageMerge <- s.packageMerge,
packagedElement <- s.packagedElement

)
do {

t.applyProfile(thisModule.coreUmlProfile);
t.applyProfile(thisModule.standardUmlProfile);
voidablePackage <- thisModule.createVoidablePackage(t);
t.packagedElement <- s.packagedElement -> append(voidablePackage);

}
}

rule createVoidablePackage(model: UML2!"uml::Model") {
to

t: UML2!"uml::Package" (
name <- ’VoidableClasses’

)
do {

t;
}

}

rule Package {
from

s: UML2!"uml::Package" in IN (
s.oclIsTypeOf(UML2!"uml::Package")

)
to

t: UML2!"uml::Package" (
__xmiID__ <- s.__xmiID__,
name <- s.name,
visibility <- s.visibility,
ownedComment <- s.ownedComment,
clientDependency <- s.clientDependency,
elementImport <- s.elementImport,
packageImport <- s.packageImport,
ownedRule <- s.ownedRule
packageMerge <- s.packageMerge,
packagedElement <- s.packagedElement
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)
}

rule Class {
from

s: UML2!"uml::Class" in IN (
s.oclIsTypeOf(UML2!"uml::Class") and not s.hasStereotype(’UMLProfileforINSPIREdataspecifications::codeList’)

and not s.hasStereotype(’UMLProfileforINSPIREdataspecifications::dataType’)
)

to
t: UML2!"uml::Class" (

__xmiID__ <- s.__xmiID__,
name <- s.name,
visibility <- s.visibility,
isLeaf <- s.isLeaf,
isAbstract <- s.isAbstract,
ownedComment <- s.ownedComment,
clientDependency <- s.clientDependency,
elementImport <- s.elementImport,
packageImport <- s.packageImport,
ownedRule <- s.ownedRule,
generalization <- s.generalization,
substitution <- s.substitution,
ownedAttribute <- s.ownedAttribute,
ownedBehavior <- s.ownedBehavior,
interfaceRealization <- s.interfaceRealization,
nestedClassifier <- s.nestedClassifier,
ownedOperation <- s.ownedOperation

)
}

-- Mapping from stereotype «applicationSchema»/UML metaclass Package to stereotype «ApplicationSchema»/UML
metaclass Package

rule ApplicationSchema extends Package {
from

s: UML2!"uml::Package" in IN (
s.oclIsTypeOf(UML2!"uml::Package") and

s.hasStereotype(’UMLProfileforINSPIREdataspecifications::applicationSchema’)
)

to
t: UML2!"uml::Package" (

)
do {

t.applyStereotype(’ApplicationSchema’.stereotype());
}

}

-- Mapping from stereotype «leaf»/UML metaclass Package to stereotype «Leaf»/UML metaclass Package
rule Leaf extends Package {

from
s: UML2!"uml::Package" in IN (

s.oclIsTypeOf(UML2!"uml::Package") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::leaf’)
)

to
t: UML2!"uml::Package" (

)
do {

t.applyStereotype(’Leaf’.stereotype());
}

}

-- Mapping from stereotype «featureType»/UML metaclass Class to stereotype «FeatureType»/UML metaclass Class
rule FeatureType extends Class {

from
s: UML2!"uml::Class" in IN (
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s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::featureType’)
)

to
t: UML2!"uml::Class" (

ownedAttribute <- s.ownedAttribute -> collect(e | thisModule.VoidableAttributes(e))
)

do {
t.applyStereotype(’FeatureType’.stereotype());

}
}

-- Mapping from stereotype «voidable»/UML metaclass Property to specific voidable classes
unique lazy rule VoidableAttributes {

from
s: UML2!"uml::Property" in IN

using {
classInstances: Sequence(UML2!"uml::Class") = UML2!"uml::Class".allInstancesFrom(’OUT’);

}
to

t: UML2!"uml::Property" (
__xmiID__ <- s.__xmiID__,
name <- s.name,
type <- if s.hasStereotype(’UMLProfileforINSPIREdataspecifications::voidable’)

then
if thisModule.existsClass(classInstances, ’Voidable’ + s.type.name)

then thisModule.getClass(classInstances, ’Voidable’ + s.type.name)
else thisModule.CreateVoidableClass(s.type)

endif
else s.type

endif,
lowerValue <- s.lowerValue,
upperValue <- s.upperValue,
association <- s.association

)
}
lazy rule CreateVoidableClass {

from
s: UML2!"uml::Type" in IN

to
voidableClass: UML2!"uml::Class" (

name <- ’Voidable’ + s.name,
ownedAttribute <- Sequence{firstAttribute,secondAttribute}

),
firstAttribute: UML2!"uml::Property" (

name <- s.name.toLower(),
type <- s

),
secondAttribute: UML2!"uml::Property" (

name <- ’voidReason’,
type <- thisModule.getVoidReasonValueClass

)
}

-- Mapping from stereotype «placeholder»/UML metaclass Class to stereotype «FeatureType»/UML metaclass Class
rule Placeholder extends Class {

from
s: UML2!"uml::Class" in IN (

s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::placeholder’)
)

to
t: UML2!"uml::Class" (

)
do {

t.applyStereotype(’FeatureType’.stereotype());
}
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}

-- Mapping from stereotype «type»/UML metaclass Class to stereotype «type»/UML metaclass Class
rule Type extends Class {

from
s: UML2!"uml::Class" in IN (

s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::type’)
)

to
t: UML2!"uml::Class" (

)
do {

t.applyStereotype(’Type’.stereotype());
}

}

-- Mapping from stereotype «union»/UML metaclass Class to stereotype «Union»/UML metaclass DataType
rule Union extends Class {

from
s: UML2!"uml::Class" in IN (

s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::union’)
)

using {
constraintValue: String = ’’;

}
to

t: UML2!"uml::DataType" (
ownedAttribute <- s.ownedAttribute -> collect(e | thisModule.SetMultiplicity(e)),
ownedRule <- getRule

),
getRule: UML2!"uml::Constraint" (

name <- s.name + ’_Constraint’,
constrainedElement <- t,
specification <- getSpec

),
getSpec: UML2!"uml::OpaqueExpression" (

language <- ’OCL2.0’
)

do {
for(p in s.ownedAttribute){

constraintValue <- constraintValue.concat(’self.’ + p.name + ’ xor ’);
}
constraintValue <- constraintValue.substring(1, constraintValue.size() - 5);
t.ownedRule -> first().specification.body <- constraintValue;
t.applyStereotype(’Union’.stereotype());

}
}
lazy rule SetMultiplicity {

from
s: UML2!"uml::Property" in IN

to
t: UML2!"uml::Property" (

__xmiID__ <- s.__xmiID__,
name <- s.name,
type <- s.type,
lowerValue <- getLower,
upperValue <- getUpper

),
getLower: UML2!"uml::LiteralInteger" (

value <- 0
),
getUpper: UML2!"uml::LiteralInteger" (

value <- 1
)

}



198 D Transformation between AAA and INSPIRE

-- Mapping from stereotype «codeList»/UML metaclass Class to stereotype «CodeList»/UML metaclass Enumeration
rule CodeList {

from
s: UML2!"uml::Class" in IN (

s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::codeList’)
)

to
t: UML2!"uml::Enumeration" (

__xmiID__ <- s.__xmiID__,
name <- s.name,
visibility <- s.visibility,
ownedLiteral <- s.ownedAttribute -> collect(e | thisModule.Property2EnumerationLiteral(e))

)
do {

t.applyStereotype(’CodeList’.stereotype());
}

}
lazy rule Property2EnumerationLiteral {

from
s: UML2!"uml::Property"

to
t: UML2!"uml::EnumerationLiteral" (

__xmiID__ <- s.__xmiID__,
name <- s.name + ’=’ + s.defaultValue.value,
visibility <- s.visibility

)
}

-- Mapping from stereotype «dataType»/UML metaclass Class to UML metaclass DataType
rule DataType {

from
s: UML2!"uml::Class" in IN (

s.oclIsTypeOf(UML2!"uml::Class") and s.hasStereotype(’UMLProfileforINSPIREdataspecifications::dataType’)
)

to
t: UML2!"uml::DataType" (

__xmiID__ <- s.__xmiID__,
name <- s.name,
visibility <- s.visibility,
isLeaf <- s.isLeaf,
isAbstract <- s.isAbstract,
ownedComment <- s.ownedComment,
ownedRule <- s.ownedRule,
generalization <- s.generalization,
ownedAttribute <- s.ownedAttribute -> collect(e | thisModule.VoidableAttributes(e)),
ownedOperation <- s.ownedOperation

)
}

D.1.2 UMLT transformation definition between AAA and INSPIRE

The UMLT diagram in figure 7.2, page 154, shows a general overview of the UMLT transformation
definition created between the AAA application schema and the INSPIRE themes Cadastral Parcels
and Administrative Units. The diagram contains several TransformationValueMaps and VirtualAssoci-
ations as well as the TransformationActions FSGeometryConverter and AAA2INSPIRE. For purposes
of clarity regarding the page layout, they are only represented by correspondingly named rectangles
in the diagram. The detailed contents of these rectangles are listed in the following.
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Figure D.1: TransformationValueMaps from the UMLT transformation definition between AAA and
INSPIRE
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fs_6.gemeindezugehoerigkeit.gemeindeteil.elements==kg_1.gemeindekennzeichen.gemeindeteil.elements 
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fs_7.gemeindezugehoerigkeit.regierungsbezirk.elements==kg_1.gemeindekennzeichen.regierungsbezirk.elements &&

fs_7.gemeindezugehoerigkeit.kreis.elements==kg_1.gemeindekennzeichen.kreis.elements &&
fs_7.gemeindezugehoerigkeit.gemeinde.elements==kg_1.gemeindekennzeichen.gemeinde.elements &&

fs_7.gemeindezugehoerigkeit.gemeindeteil.elements==kg_1.gemeindekennzeichen.gemeindeteil.elements 

fs_7 kg_1

Figure D.2: VirtualAssociations from the UMLT transformation definition between AAA and IN-
SPIRE
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fs_6.gemeindezugehoerigkeit.regierungsbezirk.elements==kg_1.gemeindekennzeichen.regierungsbezirk.elements &&

fs_6.gemeindezugehoerigkeit.kreis.elements==kg_1.gemeindekennzeichen.kreis.elements &&
fs_6.gemeindezugehoerigkeit.gemeinde.elements==kg_1.gemeindekennzeichen.gemeinde.elements &&

fs_6.gemeindezugehoerigkeit.gemeindeteil.elements==kg_1.gemeindekennzeichen.gemeindeteil.elements 
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FS_KG_2

fs_7.gemeindezugehoerigkeit.land.elements==kg_1.gemeindekennzeichen.land.elements &&
fs_7.gemeindezugehoerigkeit.regierungsbezirk.elements==kg_1.gemeindekennzeichen.regierungsbezirk.elements &&

fs_7.gemeindezugehoerigkeit.kreis.elements==kg_1.gemeindekennzeichen.kreis.elements &&
fs_7.gemeindezugehoerigkeit.gemeinde.elements==kg_1.gemeindekennzeichen.gemeinde.elements &&

fs_7.gemeindezugehoerigkeit.gemeindeteil.elements==kg_1.gemeindekennzeichen.gemeindeteil.elements 
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FSGeometryConverter

fs_2.position := PolygonToNonRedundantLineConverter(fs_1.position)

Figure D.3: TransformationAction FSGeometryConverter from the UMLT transformation definition
between AAA and INSPIRE
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AAA2INSPIRE

cp_1.geometry := fs_6.position
cp_1.inspireId.localId := fs_6.identifikator.UUID.elements
cp_1.inspireId.namespace := "http://www.adv-online.de/namespaces/adv/gid6.0"
cp_1.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

fs_6.lebenszeitintervall.beginnt.year.elements,
fs_6.lebenszeitintervall.beginnt.month.elements),
fs_6.lebenszeitintervall.beginnt.day.elements)

cp_1.label.elements := StringConcatenator(StringConcatenator(
fs_6.flurstuecksnummer.zaehler.elements,"/"),
fs_6.flurstuecksnummer.nenner.elements)

cp_1.nationalCadastralReference.elements := fs_6.flurstueckskennzeichen.elements
cp_1.areaValue.area.value := fs_6.amtlicheFlaeche.value
cp_1.areaValue.area.uom.uomSymbol.elements := fs_6.amtlicheFlaeche.uom.uomSymbol.elements
cp_1.referencePoint := fs_6.objektkoordinaten
cp_1.beginLifespanVersion.datetime.century.elements := fs_6.lebenszeitintervall.beginnt.century.elements
cp_1.beginLifespanVersion.datetime.year.elements := fs_6.lebenszeitintervall.beginnt.year.elements
cp_1.beginLifespanVersion.datetime.month.elements := fs_6.lebenszeitintervall.beginnt.month.elements
cp_1.beginLifespanVersion.datetime.day.elements := fs_6.lebenszeitintervall.beginnt.day.elements
cp_1.beginLifespanVersion.datetime.precision := fs_6.lebenszeitintervall.beginnt.precision
cp_1.beginLifespanVersion.datetime.hour.elements := fs_6.lebenszeitintervall.beginnt.hour.elements
cp_1.beginLifespanVersion.datetime.minute.elements := fs_6.lebenszeitintervall.beginnt.minute.elements
cp_1.beginLifespanVersion.datetime.second.elements := fs_6.lebenszeitintervall.beginnt.second.elements
cp_1.beginLifespanVersion.datetime.timeZone.elements := fs_6.lebenszeitintervall.beginnt.timeZone.elements

cb_1.geometry := fs_5.position
cb_1.inspireId.localId := UUIDGenerator()
cb_1.inspireId.namespace := "http://www.adv-online.de/namespaces/adv/gid6.0"  
cb_1.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

fs_6.lebenszeitintervall.beginnt.year.elements,
fs_6.lebenszeitintervall.beginnt.month.elements),
fs_6.lebenszeitintervall.beginnt.day.elements)

cb_1.beginLifespanVersion.datetime.century.elements := fs_6.lebenszeitintervall.beginnt.century.elements
cb_1.beginLifespanVersion.datetime.year.elements := fs_6.lebenszeitintervall.beginnt.year.elements
cb_1.beginLifespanVersion.datetime.month.elements := fs_6.lebenszeitintervall.beginnt.month.elements
cb_1.beginLifespanVersion.datetime.day.elements := fs_6.lebenszeitintervall.beginnt.day.elements
cb_1.beginLifespanVersion.datetime.precision := fs_6.lebenszeitintervall.beginnt.precision
cb_1.beginLifespanVersion.datetime.hour.elements := fs_6.lebenszeitintervall.beginnt.hour.elements
cb_1.beginLifespanVersion.datetime.minute.elements := fs_6.lebenszeitintervall.beginnt.minute.elements
cb_1.beginLifespanVersion.datetime.second.elements := fs_6.lebenszeitintervall.beginnt.second.elements
cb_1.beginLifespanVersion.datetime.timeZone.elements := fs_6.lebenszeitintervall.beginnt.timeZone.elements
cb_1.estimatedAccuracy.length.value := ??? 
cb_1.estimatedAccuracy.length.uom.uomSymbol.elements := "m"

cp_2.geometry := fs_7.position
cp_2.inspireId.localId := fs_7.identifikator.UUID.elements
cp_2.inspireId.namespace := "http://www.adv-online.de/namespaces/adv/gid6.0"
cp_2.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

fs_7.lebenszeitintervall.beginnt.year.elements,
fs_7.lebenszeitintervall.beginnt.month.elements),
fs_7.lebenszeitintervall.beginnt.day.elements)

cp_2.label.elements := fs_7.flurstuecksnummer.zaehler.elements
cp_2.nationalCadastralReference.elements := fs_7.flurstueckskennzeichen.elements
cp_2.areaValue.area.value := fs_7.amtlicheFlaeche.value
cp_2.areaValue.area.uom.uomSymbol.elements := fs_7.amtlicheFlaeche.uom.uomSymbol.elements
cp_2.referencePoint := fs_7.objektkoordinaten
…

Figure D.4: TransformationAction AAA2INSPIRE from the UMLT transformation definition between
AAA and INSPIRE – Part 1
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AAA2INSPIRE

…
cp_2.beginLifespanVersion.datetime.century.elements := fs_7.lebenszeitintervall.beginnt.century.elements
cp_2.beginLifespanVersion.datetime.year.elements := fs_7.lebenszeitintervall.beginnt.year.elements
cp_2.beginLifespanVersion.datetime.month.elements := fs_7.lebenszeitintervall.beginnt.month.elements
cp_2.beginLifespanVersion.datetime.day.elements := fs_7.lebenszeitintervall.beginnt.day.elements
cp_2.beginLifespanVersion.datetime.precision := fs_7.lebenszeitintervall.beginnt.precision
cp_2.beginLifespanVersion.datetime.hour.elements := fs_7.lebenszeitintervall.beginnt.hour.elements
cp_2.beginLifespanVersion.datetime.minute.elements := fs_7.lebenszeitintervall.beginnt.minute.elements
cp_2.beginLifespanVersion.datetime.second.elements := fs_7.lebenszeitintervall.beginnt.second.elements
cp_2.beginLifespanVersion.datetime.timeZone.elements := fs_7.lebenszeitintervall.beginnt.timeZone.elements

cb_2.geometry := fs_5.position
cb_2.inspireId.localId := UUIDGenerator()
cb_2.inspireId.namespace := "http://www.adv-online.de/namespaces/adv/gid6.0"  
cb_2.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

fs_7.lebenszeitintervall.beginnt.year.elements,
fs_7.lebenszeitintervall.beginnt.month.elements),
fs_7.lebenszeitintervall.beginnt.day.elements)

cb_2.beginLifespanVersion.datetime.century.elements := fs_7.lebenszeitintervall.beginnt.century.elements
cb_2.beginLifespanVersion.datetime.year.elements := fs_7.lebenszeitintervall.beginnt.year.elements
cb_2.beginLifespanVersion.datetime.month.elements := fs_7.lebenszeitintervall.beginnt.month.elements
cb_2.beginLifespanVersion.datetime.day.elements := fs_7.lebenszeitintervall.beginnt.day.elements
cb_2.beginLifespanVersion.datetime.precision := fs_7.lebenszeitintervall.beginnt.precision
cb_2.beginLifespanVersion.datetime.hour.elements := fs_7.lebenszeitintervall.beginnt.hour.elements
cb_2.beginLifespanVersion.datetime.minute.elements := fs_7.lebenszeitintervall.beginnt.minute.elements
cb_2.beginLifespanVersion.datetime.second.elements := fs_7.lebenszeitintervall.beginnt.second.elements
cb_2.beginLifespanVersion.datetime.timeZone.elements := fs_7.lebenszeitintervall.beginnt.timeZone.elements
cb_2.estimatedAccuracy.length.value := ??? 
cb_2.estimatedAccuracy.length.uom.uomSymbol.elements := "m"

au_1.geometry := kg_1.position
au_1.nationalCode := kg_1.schluesselGesamt.elements
au_1.inspireId.localId := kg_1.identifikator.UUID.elements
au_1.inspireId.namespace := "http://www.adv-online.de/namespaces/adv/gid6.0"
au_1.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

kg_1.lebenszeitintervall.beginnt.year.elements,
kg_1.lebenszeitintervall.beginnt.month.elements),
kg_1.lebenszeitintervall.beginnt.day.elements)

au_1.nationalLevel := "6thOrder"
au_1.country := "DE“
au_1.residenceOfAuthority.voidReason := "Unpopulated"
au_1.beginLifespanVersion.datetime.century.elements := kg_1.lebenszeitintervall.beginnt.century.elements
au_1.beginLifespanVersion.datetime.year.elements := kg_1.lebenszeitintervall.beginnt.year.elements
au_1.beginLifespanVersion.datetime.month.elements := kg_1.lebenszeitintervall.beginnt.month.elements
au_1.beginLifespanVersion.datetime.day.elements := kg_1.lebenszeitintervall.beginnt.day.elements
au_1.beginLifespanVersion.datetime.precision := kg_1.lebenszeitintervall.beginnt.precision
au_1.beginLifespanVersion.datetime.hour.elements := kg_1.lebenszeitintervall.beginnt.hour.elements
au_1.beginLifespanVersion.datetime.minute.elements := kg_1.lebenszeitintervall.beginnt.minute.elements
au_1.beginLifespanVersion.datetime.second.elements := kg_1.lebenszeitintervall.beginnt.second.elements
au_1.beginLifespanVersion.datetime.timeZone.elements := kg_1.lebenszeitintervall.beginnt.timeZone.elements
au_1.NUTS.voidReason := "Unpopulated"

ab_1.geometry := gg_1.position
ab_1.inspireId.localId := gg_1.identifikator.UUID.elements
ab_1.inspireId.namespace := http://www.adv-online.de/namespaces/adv/gid6.0
…

Figure D.5: TransformationAction AAA2INSPIRE from the UMLT transformation definition between
AAA and INSPIRE – Part 2
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AAA2INSPIRE

…
ab_1.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

gg_1.lebenszeitintervall.beginnt.year.elements,
gg_1.lebenszeitintervall.beginnt.month.elements),
gg_1.lebenszeitintervall.beginnt.day.elements)

ab_1.country := "DE"
ab_1.nationalLevel := ValueMapper(gg_1.artDerGebietsgrenze,

"Gebietsgrenze_ValueMap")
ab_1.legalStatus.legalstatusvalue := "agreed"
ab_1.technicalStatus.technicalstatusvalue := "edgeMatched"
ab_1.beginLifespanVersion.datetime.century.elements := gg_1.lebenszeitintervall.beginnt.century.elements
ab_1.beginLifespanVersion.datetime.year.elements := gg_1.lebenszeitintervall.beginnt.year.elements
ab_1.beginLifespanVersion.datetime.month.elements := gg_1.lebenszeitintervall.beginnt.month.elements
ab_1.beginLifespanVersion.datetime.day.elements := gg_1.lebenszeitintervall.beginnt.day.elements
ab_1.beginLifespanVersion.datetime.precision := gg_1.lebenszeitintervall.beginnt.precision
ab_1.beginLifespanVersion.datetime.hour.elements := gg_1.lebenszeitintervall.beginnt.hour.elements
ab_1.beginLifespanVersion.datetime.minute.elements := gg_1.lebenszeitintervall.beginnt.minute.elements
ab_1.beginLifespanVersion.datetime.second.elements := gg_1.lebenszeitintervall.beginnt.second.elements
ab_1.beginLifespanVersion.datetime.timeZone.elements := gg_1.lebenszeitintervall.beginnt.timeZone.elements

ab_2.geometry := bfsg_1.position
ab_2.inspireId.localId := bfsg_1.identifikator.UUID.elements
ab_2.inspireId.namespace := "http://www.adv-online.de/namespaces/adv/gid6.0"
ab_2.inspireId.versionId.characterstring.elements := StringConcatenator(StringConcatenator(

bfsg_1.lebenszeitintervall.beginnt.year.elements,
bfsg_1.lebenszeitintervall.beginnt.month.elements),
bfsg_1.lebenszeitintervall.beginnt.day.elements)

ab_2.country := "DE"
ab_2.nationalLevel := ValueMapper(bfsg_1.artDerFlurstuecksgrenze,

"BesondereFlurstuecksgrenze_ValueMap")
ab_2.legalStatus.legalstatusvalue := "agreed" 
ab_2.technicalStatus.technicalstatusvalue := "edgeMatched" 
ab_2.beginLifespanVersion.datetime.century.elements := bfsg_1.lebenszeitintervall.beginnt.century.elements
ab_2.beginLifespanVersion.datetime.year.elements := bfsg_1.lebenszeitintervall.beginnt.year.elements
ab_2.beginLifespanVersion.datetime.month.elements := bfsg_1.lebenszeitintervall.beginnt.month.elements
ab_2.beginLifespanVersion.datetime.day.elements := bfsg_1.lebenszeitintervall.beginnt.day.elements
ab_2.beginLifespanVersion.datetime.precision := bfsg_1.lebenszeitintervall.beginnt.precision
ab_2.beginLifespanVersion.datetime.hour.elements := bfsg_1.lebenszeitintervall.beginnt.hour.elements
ab_2.beginLifespanVersion.datetime.minute.elements := bfsg_1.lebenszeitintervall.beginnt.minute.elements
ab_2.beginLifespanVersion.datetime.second.elements := bfsg_1.lebenszeitintervall.beginnt.second.elements
ab_2.beginLifespanVersion.datetime.timeZone.elements := bfsg_1.lebenszeitintervall.beginnt.timeZone.elements

Figure D.6: TransformationAction AAA2INSPIRE from the UMLT transformation definition between
AAA and INSPIRE – Part 3
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D.2 Transformation between the DFK application schema and
the INSPIRE themes Cadastral Parcels and Administrative
Units

Figure D.7 shows the general overview of the UMLT transformation definition created between the
DFK application schema and the INSPIRE themes Cadastral Parcels and Administrative Units.

DFK2INSPIRE 

DFK2INSPIRE_TrafoActivity 

DFK2INSPIRE_Trafo 

fs:Flurstueck cp:CadastralParcel 

cb:CadastralBoundary 

cz:CadastralZoning 

fs_1 

DFK2INSPIRE 

cp_1 

cb_1 

au:AdministrativeUnit au_1 

ab:AdministrativeBoundary ab_1 

vg: 
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cz_1 

vg_1 
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NationalLevel_ValueMap 

Land=2ndOrder 

Bezirk=3rdOrder 

Landkreis=4thOrder 

Gemeinde=5thOrder 

NationalLevelName_ValueMap 

Land=Bundesland 

Bezirk=Regierungsbezirk 

Landkreis=Landkreis 

Gemeinde=Gemeinde 

vg_2 

vg_1.art==Gemeinde 

vg_2.art==Gemarkung 

END 

Figure D.7: UMLT transformation definition between the DFK application schema and the INSPIRE
themes Cadastral Parcels and Administrative Units
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D.3 Differences between Enterprise Architect and Eclipse
regarding the XMI structure of UML models extended by
UML profiles

The following two listings illustrate the differences regarding the XMI representation of UML models
to which UML profiles are applied. Listing D.2 shows the XMI structure created by the UML
tool Enterprise Architect (EA) version 10, listing D.3 the XMI structure created by Eclipse UML2
version 3.2.1. The listings are based on XMI version 2.1. The listings only contain those XML
elements and XML attributes relevant for illustrating the differences, all other items were omitted for
clarity of presentation.

One difference is that EA includes the UML profiles within the <xmi:Extension> part of the XMI
model document, whereas Eclipse UML2 stores the UML profiles as separate XMI profile documents
and applies them to the Eclipse XMI model document by means of the <profileApplication>
section within the <uml:Model> part. In EA, the application of UML profiles takes place in an
EA-specific way. Furthermore, the EA XMI model document applies the stereotypes within the
<uml:Model> part, whereas the Eclipse XMI model document applies the stereotypes following the
<uml:Model> part. Above that, the Eclipse XMI profile document contains further Ecore-specific
information which is not shown here.

Listing D.2: XMI 2.1 structure generated by Enterprise Architect version 10 representing the UML
model InspireModel to which the UML profile InspireProfile is applied and the UML
class CadastralParcel to which the stereotype «FeatureType» is assigned

<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.1" xmlns:InspireProfile="http://www.sparxsystems.com/profiles/InspireProfile/1.0" ...>

<!-- The actual UML model -->
<uml:Model xmi:id="m1" xmi:type="uml:Model" name="InspireModel">

<!-- UML class CadastralParcel -->
<packagedElement xmi:type="uml:Class" xmi:id="c1" name="CadastralParcel">

...
</packagedElement>
...
<!-- Here the stereotype «FeatureType» is applied to the UML class CadastralParcel -->
<InspireProfile:FeatureType xmi:id="s1" base_Class="c1" xsdEncodingRule="ISO19136_2007" .../>

</uml:Model>
<!-- The extension part containing additional information which is not part of the UML model itself -->
<xmi:Extension extender="Enterprise Architect" extenderID="6.5">

...
<!-- Here the UML profiles are listed -->
<profiles>

<uml:Profile xmi:version="2.1" xmi:id="p1" name="InspireProfile" metamodelReference="mm1" ...>
...

</uml:Profile>
...

</profiles>
...

</xmi:Extension>
</xmi:XMI>
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Listing D.3: XMI 2.1 structure generated by Eclipse UML2 version 3.2.1 representing the UML
model InspireModel to which the UML profile InspireProfile is applied and the UML
class CadastralParcel to which the stereotype «FeatureType» is assigned

<!-- Eclipse XMI model document -->
<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmi:version="2.1" xmlns:InspireProfile="http://InspireProfile/v1/0" ...>

<uml:Model xmi:id="m1" xmi:type="uml:Model" name="InspireModel">
<!-- UML class CadastralParcel -->
<packagedElement xmi:type="uml:Class" xmi:id="c1" name="CadastralParcel">

...
</packagedElement>
...
<!-- Here the UML profile is applied to the UML model -->
<profileApplication>

<eAnnotations>
<references xmi:type="ecore:EPackage" href="InspireProfile.profile.uml#p1"/>

</eAnnotations>
<appliedProfile href="InspireProfile.profile.uml#p1"/>

</profileApplication>
</uml:Model>
<!-- Here the stereotype «FeatureType» is applied to the UML class CadastralParcel -->
<InspireProfile:FeatureType xmi:id="s1" base_Class="c1" xsdEncodingRule="ISO19136_2007" .../>
<!-- The extension part -->
<xmi:Extension>...</xmi:Extension>

</xmi:XMI>

<!-- Eclipse XMI profile document -->
<?xml version="1.0" encoding="UTF-8"?>
<uml:Profile xmi:version="2.1" xmi:id="p1" name="InspireProfile" metamodelReference="mm1" ...>

...
</uml:Profile>
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D.4 Implemented UMLT functions

The following table lists all UMLT functions currently implemented within the FME transformer
UMLTApplier, which was developed as plug-in for FME as part of the research project mdWFS
(cf. section 4.3.3, page 67).

Table D.1: UMLT functions implemented within the FME transformer UMLTApplier

UMLT function Signature

Accumulator Accumulator(attributeToAnalyze: String, attributeToGroupBy: String,
typeOfStatistics: String): float

AreaCalculator AreaCalculator(geometry: Polygon): int
Dissolver Dissolver(geometry: Polygon[], groupBy: String): Polygon[]
PointInPolygonExtractor PointInPolygonExtractor(geometry: Polygon): Point
PolygonToLineConverter PolygonToLineConverter(geometry: Polygon): Line
PolygonToNonRedundant-
LineConverter

PolygonToNonRedundantLineConverter(geometry: Polygon): Line

StringConcatenator StringConcatenator(sourceAttribute1: String, sourceAttribute2:
String): String

SubStringer SubStringer(sourceAttribute: String, startIndex: int, endIndex: int):
String

UUIDGenerator UUIDGenerator(): String
ValueMapper ValueMapper(sourceAttribute: String, valueMapName: String):

String
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AAA AFIS-ALKIS-ATKIS
ADE CityGML Application Domain Extension
AdV Working Committee of the Surveying Authorities of the States of the

Federal Republic of Germany
(Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der
Bundesrepublik Deutschland)

AFIS Amtliches Festpunktinformationssystem
(German Official Geodetic Control Stations Information System)

AIXM Aeronautical Information Exchange Model
ALKIS Amtliches Liegenschaftskatasterinformationssystem

(German Official Real Estate Cadastre Information System)
API Application Programming Interface
ATKIS Amtliches Topographisch-Kartographisches Informationssystem

(German Official Topographic Cartographic Information System)
AU INSPIRE theme Administrative Units

B-rep Boundary Representation
BEV Bundesamt für Eich- und Vermessungswesen

(Austrian Federal Office of Metrology and Surveying)
BKG Bundesamt für Kartographie und Geodäsie

(German Federal Agency for Cartography and Geodesy)

CIM Computation Independent Model
CityGML City Geography Markup Language
CP INSPIRE theme Cadastral Parcels
CQL Common Query Language
CSG Constructive Solid Geometry
CSL Conceptual Schema Language
CST HUMBOLDT Conceptual Schema Translation Service
CSV Comma-separated values

DKM Digitale Kadastralmappe (Austrian Digital Cadastral Map)
DLM Digital Landscape Model
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EA Enterprise Architect
EC European Commission
EDOAL Expressive and Declarative Ontology Alignment Language
EGN EuroGeoNames
EMF Eclipse Modeling Framework
ESDIN European Spatial Data Infrastructure with a Best Practice Network
ETH Zurich Eidgenössische Technische Hochschule Zürich

(Swiss Federal Institute of Technology Zurich)
EU European Union
EuroSDR European Spatial Data Research

FAS-X Translating Feature Access Service
FDS FUSION Data Service
FFS FME Feature Store
FME Feature Manipulation Engine
FTP File Transfer Protocol

GCM INSPIRE Generic Conceptual Model
GeoInfoDok Dokumentation zur Modellierung der Geoinformationen des amtlichen

Vermessungswesens
(Documentation on the Modelling of Geoinformation of Official Surveying
and Mapping in Germany)

GFM General Feature Model
GG25 Gemeindegrenzen 25 (Municipality boundaries of Switzerland)
GI Geographic Information
GiMoDig Geospatial Info-Mobility Service by Real-Time Data-Integration

and Generalisation
GMF Eclipse Graphical Modeling Framework
GML Geography Markup Language
gOML geographic OML
GUI Graphical User Interface

HALE HUMBOLDT Alignment Editor
HML HUMBOLDT Modelling Language
HUTN Human-Usable Textual Notation

IDE Integrated Development Environment
IEC International Electrotechnical Commission
INSPIRE Infrastructure for Spatial Information in Europe
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INSPIRE KEN INSPIRE Knowledge Exchange Network
ISO International Organisation for Standardisation
ISO/DIS ISO Draft International Standard
ISO/TS ISO Technical Specification

JRC Joint Research Centre

KML Keyhole Markup Language

LDBV Landesamt für Digitalisierung, Breitband und Vermessung
(Bavarian Agency for Digitisation, High-Speed Internet and Surveying)

LGL BW Landesamt für Geoinformation und Landentwicklung Baden-Württemberg
(State Agency for Spatial Information and Rural Development
Baden-Wuerttemberg)

LOD Level of Detail

MADS Modeling of Application Data with Spatio-temporal Features
MDA Model-driven Architecture
MDD Model-driven Development
MDE Model-driven Engineering
MDSD Model-driven Software Development
mdWFS Model-driven Web Feature Service
MOF Meta Object Facility

NAS Normbasierte Austauschschnittstelle
(Standards-based Data Exchange Interface defined in the GeoInfoDok)

NMCA National Mapping and Cadastral Agency

OAS ORCHESTRA Application Schema
OCL Object Constraint Language
OFS ORCHESTRA Feature Set
OGC Open Geospatial Consortium
OMG Object Management Group
OML Ontology Mapping Language
OMM ORCHESTRA Meta-Model
OMT-G Object Modeling Technique for Geographic Applications
OO Object-oriented
OOA Object-oriented Analysis
ORCHESTRA Open Architecture and Spatial Data Infrastructure for Risk Management
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OWL Web Ontology Language

PIM Platform Independent Model
PSM Platform Specific Model

QVT Query/View/Transformation

RDF Resource Description Framework
RIF Rule Interchange Format

SDI Spatial Data Infrastructure
SMS Schema Mapping Service
SQL Structured Query Language

TC211 ISO Technical Committee 211
TGG Triple Graph Grammar
TLM Topographisches Landschaftsmodell
TNS INSPIRE Transformation Network Service
TR Technical Report
TUM Technische Universität München

UML Unified Modeling Language
UMLT UML Transformations
UoM Universe of Discourse
URI Unique Resource Identifier

W3C World Wide Web Consortium
WFS OGC Web Feature Service
WPS OGC Web Processing Service

XMI XML Metadata Interchange
XML Extensible Markup Language
XSD XML Schema Definition
XSL Extensible Stylesheet Language
XSLT XSL Transformations
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