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Abstract

Many verification tasks require reasoning about cardinalities. For example, verifying

the correctness of consensus protocols requires tracking the cardinality of the set of

distributed nodes that have agreed on a common value. Similarly, proving quantitative

bounds on information leakage requires bounding the number of observations an attacker

can make about a secret.

Unfortunately, today’s technology does not support the verification of programs that

require reasoning about cardinalities very well. In this thesis, we present two methods

#Horn and #Π 1 for this task. #Horn introduces cardinalities as properties that one

can verify about a program, while #Π introduces cardinalities into proofs.

We have implemented our techniques and demonstrated their practicality on a set of

benchmarks from various applications including the ones mentioned above.

1Pronounced as “sharpie”.



Zusammenfassung

Für viele Verifikationsaufgaben ist es unerlässlich die Anzahl der Elemente in einer

Menge (das heißt deren Kardinalität) erfassen zu können. So erfordert beispielsweise die

Verifikation vieler Netzwerk Algorithmen die Erfassung der Anzahl an teilnehmenden

Netzwerk Knoten die eine bestimmte Eigenschaft teilen. Man stößt auf ein ähnliches

Problem wenn man die Menge an (sicherheitsrelevanten) Informationen beschränken

möchte die ein Programm über Seitenkanäle preisgibt. In diesem Fall muss eine Veri-

fikationsmethode die Anzahl der Beobachtungen beschränken die ein Angreifer über das

Programm machen kann.

Leider wird diese Art der quantitativer Verifikation von den derzeitig existierenden Meth-

oden nicht unterstützt. Aus diesem Grund entwickelt diese Dissertation zwei Methoden

#Horn und #Π für diese Aufgabe. #Horn führt Kardinalitäten von Mengen als zu

verifizierende Eigenschaft des Programms ein während #Π Kardinalitäten zusätzlich als

Bausteine für den Korrektheitsbeweis nutzt.

Wir haben beide Techniken implementiert und demonstrieren ihre Anwendbarkeit auf

eine Reihe von Problemen welche die oben genannten Anwendungen mit einschließt.



Acknowledgements

First and foremost, I would like to thank my advisor Andrey Rybalchenko for introducing

me to the exciting area of program verification, teaching me the craft of research (and

that simplicity is key), and his constant advice and encouragement.
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Chapter 1

Introduction

Many verification tasks require reasoning about cardinalities of sets.

Consider, for example, the task of providing correctness guarantees for consensus proto-

cols. Such protocols form a backbone of the Internet as they provide data-consistency

when computations are distributed across several locations. Consistency is provided

through a method which supplies a communication primitive that ensures the consistent

broadcast of a single piece of information across the network. This single broadcast

operation is then used as a building block for larger applications. More technically, a

consensus protocol takes as input a set of candidate values proposed by the distributed

nodes and ensures that after executing the protocol all nodes agree on one of the values

that were proposed initially. In such protocols, a node often takes decisions depending

on the cardinality of the set of all nodes that already agree on its current candidate

value. Thus, to prove correctness of the protocol, a verification method needs to track

the cardinality of the above set.

Similarly, bounding the information leakage of a program requires bounding the cardi-

nality of the set of all observations an attacker can make about the secret input values

that the program processes. For example, if a (deterministic) program produces the

same output regardless of which secret input is processed, the program’s output does

not allow to draw any conclusion about which secret was used. If, however, the program

produces a large number of different outputs, this potentially reveals parts of the secret.

Hence, bounding information leakage of programs requires verification technology that

can track the cardinality of the set of all observations.

Unfortunately, tracking cardinalities is not well supported by today’s automated verifi-

cation technology.

1



Chapter 1. Introduction 2

Verifiers usually establish the correctness of a program by constructing a program in-

variant. An invariant is an assertion that holds on all reachable states of the program.

Thus, if an invariant implies that no error states can be reached, one can conclude that

the program is correct. Constructing such invariants by hand is tedious. Hence automa-

tion is desirable and many methods for invariant construction have been proposed (e.g.,

Astree [20], Blast [51], CPAChecker [16], UFO [2]). These methods are however purely

qualitative and hence cannot be applied for reasoning about cardinalities. For example,

these methods can track wether or not there exists a thread at a given program location

or wether all threads are at that location, but they cannot track the number of threads

at that location. Similarly, these methods can track wether or not a program leaks some

information or no information at all, but they cannot quantify how much information

it leaks.

Cardinality aware invariant generation In this thesis, we contribute two invariant

generation methods for verification tasks that involve cardinalities (including the ones

described above). The first method #Horn introduces cardinality constraints as proper-

ties that one would like to prove about the program; the second method #Π introduces

cardinalities as part of the proof. We now describe the two methods in more detail.

• #Horn proves bounds on the cardinality of (some subset of) the reachable states.

This is a refinement of the classic (safety) verification setting: instead of proving

that no (error) states are reachable, one bounds the number of reachable states.

For this task, #Horn constructs program invariants (in the theory of linear integer

arithmetic) that satisfy constraints on the cardinality of the set of points that the

invariant represents. The need to construct such cardinality constrained invariants

naturally arises in the context of bounding resource usage and information leakage.

For an example of a verification task where a resource bound is encoded through a

cardinality constraint, consider a program that manipulates elements in a map that

is indexed by a tuple of integer values, and assume that the number of elements that

are accessed depends on some parameter n, e.g., because a loop is iterated n times.

Then, the task of proving that the program accesses less than n2 map-elements

can be reduced to bounding the number of map-indices that were accessed by the

program. This requires constructing a relational invariant reach(ind , n) which is

an assertion over the tuple of indices ind and parameter n, such that for each value

of n, the set

{ind | reach(ind , n)}

over-approximates the set of indices at which the map is accessed for that choice

of parameter, and which satisfies the following cardinality constraint stating that
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for any choice of parameter, the number of indices that were accessed is bounded

by n2.

∀n : n ≥ 0→ #{ind | reach(ind , n)} ≤ n2

• #Π constructs invariants in the combined theory of linear arithmetic and unin-

terpreted functions where the invariants may refer to the cardinality of sets. Such

invariants are often required in the verification of distributed systems, where unin-

terpreted functions serve to encode the local state of individual nodes or threads.

Consider for example a simple multi-threaded program that accesses some shared

resource, and assume for simplicity that a thread accesses the shared resource only

if its program counter is set to location 2. Furthermore assume that the number of

threads this program is supposed to be executed on cannot be determined a priori,

and we want to prove that for any number of threads executing the program, the

shared resource can only be accessed by one thread at a time.

We can model this situation by representing local variables as functions from thread

identifier to local state. For example, we let pc(t) denote the program counter of

a thread t. Then, we can use universal quantification over thread identifiers to

make assertions over all threads (independently of how many threads all threads

actually are), and existential quantification to make assertions about the actions

that some thread performs without actually naming that thread.

By modelling the program this way, we can use #Π to construct an invariant that

proves that the shared resource is accessed correctly. For example, the invariant

#{t | pc(t) = 2} ≤ 1

states that the number of threads that access the shared resource at any given

time is bounded by one. This implies that only one thread at a time can access

the shared resource and hence proves correctness of the program.

Contributions By presenting #Horn and #Π, this thesis advances the state of the

art in (quantitative) verification in the following ways: conceptually, it promotes cardi-

nalities as first-class citizens in program verification; practically, it demonstrates that

cardinality-aware verification can be performed efficiently, and technically it identifies

the core insights needed to enable the tracking of cardinalities.

We now discuss these three contributions in more detail.

Cardinalities as first-class citizens The two invariant generation methods pre-

sented in this thesis introduce cardinalities (of interpreted sets) as first-class citizens
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into the verification process. In the past, such a direct treatment has often been avoided

as cardinality reasoning is considered to be notoriously difficult. As an alternative to

a direct treatment, cardinality reasoning was approximated, e.g. by instrumenting the

program with auxiliary counters. Such an (over-)approximation of cardinality comes,

however, with a major drawback: if the chosen approximation happens to be too impre-

cise to track the desired property, there is no principled way of refining the approximation

other than manually constructing a new one. In contrast, our methods track cardinality

precisely and ensure effectiveness by harnessing existing verification technology to find

suitable abstractions which approximate the program that needs to be verified rather

than the cardinalities that need to be tracked.

Implementation and Evaluation We demonstrate the practicality of our methods,

by implementing and evaluating both #Horn and #Π.

To evaluate #Horn, we applied our implementation on benchmarks from resource

bound verification. For these benchmarks, our general purpose cardinality solver is

as fast as specialized resource-bounds verifiers. This indicates that tracking cardinali-

ties precisely does not incur a performance penalty. To demonstrate its ability to treat

examples from other application domains, we show that #Horn can be used to au-

tomatically synthesise padding loops which ensure that the information leaked by a

program is below a user-specified threshold. Performing just the amount of padding

needed in order to maintain given bounds on information leakage allows one to balance

the amount of unnecessary work with guarantees on leakage. We are not aware of any

other automated method for this task.

To evaluate #Π, we tested our implementation on a number of benchmarks including

mutual exclusion, consensus and cache-coherence protocols as well as a simple model of

a mark-and-sweep garbage collector. Except for one benchmark, all of these examples

were automatically verified for the first time. Since #Π can also be used for construct-

ing invariants that do not refer to cardinalities, we have evaluated it on a number of

benchmarks from the parametrized systems literature. This evaluation shows that for

these benchmarks, #Π is as fast as and sometimes faster than existing methods.

Underlying Techniques For each method, we identify one main technical insight

that enables our treatment of cardinalities.

For #Horn, the main technical insight is that we can use existing mathematical theory

to (automatically) learn from failed verification attempts.
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#Horn is built on an abstraction/refinement scheme [28]. That is, #Horn iteratively

constructs an invariant by considering abstract versions of the program that we want

to verify and trying to prove these abstract versions correct. If the abstract version of

the program can be proved correct, then, by the fact that the abstraction is built in a

way that ensures that the abstraction will only add new behaviour and never remove

any existing behaviour from the original program, one can conclude that the original

program is correct.

In the case where the abstract program cannot be proved correct, this can be due to one

of two causes. Either, the original program is indeed incorrect, or the failure to prove the

program results from the additional behaviour that was introduced by the abstraction.

In the second case, #Horn recovers information from the failed verification attempt in

order to refine the abstraction. This requires finding an interpolant which is a formula

specifying which additional behaviours to remove from the abstraction in order to avoid

re-discovery of the same spurious error. Technically an interpolant in our setting is a

linear integer arithmetic formula such that: a) the set of states represented by that

formula includes a given subset of reachable program states, and b) the cardinality

of the set satisfies a specified bound. In mathematical terms, the problem of finding

such an interpolant translates into the problem of synthesizing a polytope that satisfies

a constraint on the number of integer points it contains. We exploit this insight by

conceptually reversing the theory of counting integer points in polytopes [11, 22]. That

is, instead of using the theory to count the number of integer points in a given polytope

(its traditional use case), we use it to synthesise a polytope that satisfies a given count.

This insight forms the basis for our interpolation method #Itp, which we present in the

next chapter.

For #Π, the main technical insight is that properties of distributed systems often exhibit

a locality property which ensures that whenever a distributed node updates its state, we

just have to track whether this node moves in or out of a given set, i.e., we only have to

reason about one node at time.

As cardinality reasoning is not supported by standard verification technology, our

method needs to supply a semantics for cardinality reasoning. We provide this semantics

in the form of an axiomatization of cardinality. Our method employs this axiomatization

in order to reduce reasoning about cardinalities to reasoning about the cardinality-free

part of the underlying theory (i.e., linear arithmetic and uninterpreted functions), al-

lowing us to capitalize on the maturity of existing verification methods for this setting.

Our axiomatization is based on the following insight: to reason about sets which just

refer to the local state of threads, it suffices to track how the state change of the node

currently performing an update evolves the cardinality of the set, i.e. whether the given
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node moves into the set, moves out of the set or stays in the set. This gives us a strong

locality property which allows very efficient verification. In our experiments, seven out

of the nine sets that our method synthesises fall into this fragment. In order to deal

with the case where sets may also refer to global state, we extend our axiomatization

with a form of Venn-region decomposition, which case-splits over overlapping sets.

Outline and Sources This thesis consists of the following parts.

• Chapter 2, presents #Horn, our method for constructing cardinality constrained

invariants in the theory of linear arithmetic. The main focus of this chapter lies

on the interpolation method #Itp. This chapter is based on [88].

• Chapter 3, presents #Π, our method for constructing invariants in the combined

theory of linear arithmetic, uninterpreted functions and cardinality constraints.

This chapter is based on [19].

• Chapter 4 concludes.



Chapter 2

Interpolation with cardinality

constraints

2.1 Introduction

Proving quantitative properties of programs often leads to verification conditions that

involve cardinalities of sets and relations over program states. For example, determining

the memory requirements for memoization reduces to bounding the cardinality of the set

of argument values passed to a function, and bounding information leaks of a program

reduces to bounding the cardinality of the set of observations an attacker can make.

A number of recent advances for discharging verification conditions with cardinalities

consider extensions of logical theories with cardinality constraints, such as set algebra

and its generalizations [65, 77, 78], linear arithmetic [33, 91], constraints over strings [69],

as well as general SMT based settings [41]. At their core, these approaches operate by

checking whether a cardinality bound holds for a given formula that describes a set of val-

ues. However, they cannot synthesize formulas that satisfy given cardinality constraints.

As a consequence, the problem of automatically inferring cardinality-constrained induc-

tive invariants remains an open challenge.

In this chapter, we present an approach for synthesizing linear arithmetic formulas that

satisfy given cardinality constraints. Our approach relies on the theory of counting

integer points in polytopes, however, instead of computing the cardinality of a given

polytope (the typical use case of this theory) our approach synthesizes a polytope for

a given cardinality constraint. Our synthesizer internally organizes the search space in

terms of symbolic polytopes. Such polytopes are represented using symbolic vertices and

hyperplanes, together with certain well-formedness constraints. We derive an expression

7
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for the number of points in the polytope in terms of this symbolic representation, which

leads to a set of constraints that at the same time represent the shape and the cardinality

of the polytope. For this, we restrict our attention to the class of unimodular polytopes.

Unimodularity can be concisely described using constraints and provides an effective

means for reducing the search space while being sufficiently expressive. We then resort

to efficient SMT solvers specifically tuned to deal with the resulting kind of non-linear

constraints, e.g., Z3 [34]. We cast our approach in terms of an algorithm #ItpLIA for

cardinality constrained interpolation, that is, #ItpLIA generates formulas that satisfy

cardinality constraints along with implication constraints.

We put cardinality-constrained interpolation to work within an automatic verification

method #Horn for inferring cardinality-basecd inductive program properties, based

on abstraction and its counterexample-guided refinement. Specifically, #Horn is a

solver for recursive Horn clauses with cardinality constraints. We rely on Horn clauses

as basis because they serve as a language for describing verification conditions for a

wide range of programs, including those with procedures and multiple threads [18, 43,

82]. Adding recursion enables representing verification conditions that rely on inductive

reasoning, such as loop invariants or procedure summaries. By offering support for

cardinalities directly in the language in which we express verification conditions, our

solver can effectively leverage the interplay between the qualitative and quantitative

(cardinality) aspects of the constraints to be solved.

We implemented #ItpLIA and #Horn and applied them to analyze a collection of

examples that show

• how a variety of cardinality-based properties (namely, bounds on information leaks,

memory usage, and execution time) and different program classes (namely, while

programs and programs with procedures) can be expressed and analyzed in a

uniform manner.

• that our approach can establish resource bounds on examples from the recent lit-

erature at competitive performance and precision, and that it can handle examples

whose precise analysis is out of scope of existing approaches.

• that our approach can be used for synthesizing a padding-based countermeasure

against timing side channels, for a given bound on tolerable leakage.

In summary, we contribute and put to work a synthesis method for polytopes that satisfy

cardinality constraints, based on symbolic integer point counting algorithms.
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2.2 Example: proving effectiveness of memoization

We consider a procedure mcm for Matrix chain multiplication [30] that recursively com-

putes the cost of multiplying matrices M0, . . . ,Mn with optimal bracketing. mcm(i, j)

returns the number of operations required for multiplying the subsequence Mi, . . . ,Mj ,

and c(k) returns the number of operations required for multiplying matrices Mk

and Mk+1.

int mcm(int i, int j) {

if (i == j) return 0;

int minCost = infty;

for (int k=i; k <= j-1; k++) {

int v = mcm(i, k)+mcm(k+1, j)+c(k);

if (v < minCost) minCost = v;

}

return minCost;

}

int main(n){

mcm(0, n);

}

Even though the number of recursive function calls is exponential in n, mcm can be

turned into an efficient algorithm by applying memoization. The amount of memory

required to store results of recursive calls is bounded by

(n+ 1) · (n+ 2)

2
,

as mcm is only called with ordered pairs of arguments.

Proving such a bound requires reasoning about recursive procedure calls as well as track-

ing dependencies between variables i and j, i.e., estimating the range of each variable in

isolation and combining the estimates is not precise enough.

When using #Horn, we first set up recursive Horn constraints on an assertion

args(i, j, n)

that contains all triples (i, j, n) such that calling main(n) leads to a recursive

call mcm(i, j), following [43]. Then, #Horn solves these constraints using a proce-

dure based on counterexample-guided abstraction refinement. As an intermediate step,

#Horn deals with an interpolation query that requires finding a polytope ϕargs over
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i, j and n such that

n ≥ 2 ∧ (i = 0 ∧ j = n ∨ i = 1 ∧ j = 1)→ ϕargs (1)

n ≥ 0→ #{(i, j) | ϕargs} ≤ (n+1)·(n+2)
2 . (2)

Constraint (1) requires that ϕargs contains triples obtained by symbolically executing

mcm, a typical interpolation query, while (2) ensures that ϕargs satisfies the bound by

referring to the cardinality of ϕargs through an application of cardinality operator #·.

Given (1) and (2), #ItpLIA computes the solution

ϕargs = (0 ≤ i ≤ 1 ∧ i ≤ j ≤ n ∧ n ≥ 2) .

The cardinality of

{(i, j) | ϕargs}

is 2n+ 1, hence ϕargs satisfies the above bound. #Horn uses this solution to refine its

abstraction. In particular, it starts using the predicate

i ≤ j ,

which is crucial for tracking that mcm is only called on ordered pairs.

2.3 Counting integer points in polytopes

In this section, we first revisit the theory of counting integer points in polytopes. We

then discuss the derivation of expressions for the number of integer points in unimodular

polytopes with symbolic vertices and hyperplanes.

Preliminaries A polytope is the convex hull of a finite set of points. Each polytope P

is defined by the set of its vertices, where a point in P is called a vertex if and only if it

cannot be described as the convex combination of two other points in P . In this thesis,

we restrict our attention to polytopes with integer vertices.

Let g1, . . . , gd ∈ Rd be vectors in d-dimensional space. A cone with generators g1, . . . , gd

is the set of all positive linear combinations of its generators. A cone is unimodular if

and only if the absolute value of the determinant of the matrix (g1 . . . gd) is equal to

one. 1

1Section 2.4 provides examples and equivalent defintions of unimodularity. For more details, see
e.g. [11, 12, 33].
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The vertex cone of a polytope P at vertex v is the smallest cone that originates from v

and that includes P ; we denote its generators by gv1, . . . , gvd. Finally, a polytope P is

unimodular if all its vertex cones are unimodular.

Generating functions The integer points contained in a set S ⊆ Rd in can be rep-

resented in terms of a generating function f (S, x) which is a sum of monomials, one per

integer point in S, defined as follows

f (S, x) =
∑

m∈S∩Zd

xm, (2.1)

where for m = (m1, . . . ,md) we define

xm = xm1
1 · . . . · x

md
d .

This generating function is a Laurent series, i.e. its terms may have negative degree.

Note that, for finite S, the value of f (S, x) at x = (1, . . . , 1), corresponds to the number

of integer points in S.

Rational function representation Generating functions are a powerful tool for

counting integer points in polytopes. This is due to two key results: First, Brion’s

theorem [22] allows to decompose the generating function of a polytope into the sum of

the generating functions of its vertex cones. Second, the generating function of unimod-

ular vertex cones can be represented through an equivalent yet short rational function.

This rational function representation relies on a generalization of the equivalence

1

1− x
= (1 + x+ x2 + x3 + . . . ),

which provides a concise representation of the set {0, 1, 2, 3, . . . }. 2

This yields the following rational function representation for a unimodular polytope P

with vertices V:

r(P, x) =
∑
v∈V

xv

(1− xgv1) · · · (1− xgvd)
(2.2)

Here, each summand represents the generating function of the vertex cone at v with

generators gv1, . . . , gvd. Rational function representations for arbitrary polytopes can be

2We provide more details on this derivation in Section 2.4.
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obtained through Barvinok’s algorithm [11] that decomposes arbitrary vertex cones into

unimodular cones.

Generating function evaluation Since x = (1, . . . , 1) is a singularity of r(P, x),

computing the number of points in the polytope by direct evaluation leads to a divi-

sion by zero. This can be avoided by performing a Laurent series expansion of r(P, x)

around x = (1, . . . , 1), however, the expansion requires a reduction of r(P, x) from a

multivariate polynomial over (x1, . . . , xd) to a univariate polynomial over y, see [33].

The reduction is done by finding a vector µ = (µ1, . . . , µd) with

µ · g 6= 0 , (2.3)

for all generators g of the polytope, and by replacing xi with yµi , for each i ∈ 1 . . . d.

Equation (2.3) ensures that no factor in the denominator of Equation (2.2) becomes 0,

and hence avoids introduction of singularities. Let

sub(r(P, x), y) (2.4)

denote the result of the above substitution. Then, the constant term of the Laurent

expansion of sub(r(P, x), y) around y = 1 yields the desired count. Computing Laurent

series expansions is a standard procedure and implemented, e.g., in Wolfram Alpha [92].

Example 1 Consider the unimodular polytope

P = (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x1 + x2 ≤ 2)

of dimension d = 2. P has vertices v1 = (0 0), v2 = (0 2), and v3 = (2 0) and contains

6 integer points, as shown by the circles below.

x1

x2

v2

v3v1
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The generators of the vertex cones are given by

gv11 = (0 1) gv12 = (1 0)

gv21 = (0 − 1) gv22 = (1 − 1)

gv31 = (−1 0) gv32 = (−1 1).

Equation (2.2) yields the following rational generating function r(P, x).

x01x
0
2

(1−x01x12)(1−x11x02)
+

x01x
2
2

(1−x01x
−1
2 )(1−x11x

−1
2 )

+
x21x

0
2

(1−x−1
1 x02)(1−x−1

1 x12)

Applying the substitution with µ = (−1 1) yields the expression sub(r(P, x), y).

1

(1− y)(1− y−1)
+

y2

(1− y−1)(1− y−2)
+

y−2

(1− y)(1− y2)

Computing the series expansion using the Wolfram Alpha command

series sub(r(P, x), y) at y = 1

produces

· · · 5(y − 1)3 + 5(y − 1)2 + 6 .

The constant coefficient 6 yields the expected count. �

Symbolic cardinality expression The rational function representation of the gener-

ating function of a unimodular polytope shown in Equation 2.2 refers to the polytope’s

vertices and to the generators of its vertex cones. However, these generators and vertices

do not have to be instantiated to concrete values in order for the evaluation of the gen-

erating function to be possible [91]. That is, the evaluation of the generating function

can be carried out symbolically yielding a formula that expresses the cardinality of a

polytope as a function of its generators, vertices, and a vector µ.

In our algorithm, we will use

SymConeCard(v,G, µ) (2.5)

to refer to the result of the symbolic evaluation of the generating function for the cone

of a symbolic vertex v with generators G. By summing up SymConeCard(v,G, µ) for
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all vertex cones we obtain a symbolic expression of the number of integer points in a

symbolic polytope.3

Example 2 The cardinality of a two-dimensional polytope with symbolic ver-

tices v1, v2, v3 and generators gvi1 and gvi2, with i ∈ 1..3, is given by

3∑
i=1

SymConeCard(vi, {gvi1, gvi2}, µ),

where

SymConeCard(vi, {gvi1, gvi2}, µ)

= (µ21 + 3µ1(µ2 − 2µv − 1) + µ22 − 3µ2(2µv + 1) + 6µ2v + 6µv + 1)(12µ1µ2)
−1

with µ1 = µ · gvi1, µ2 = µ · gvi2 and µv = µ · vi.
�

Note that in order for SymConeCard(v,G, µ) to yield a valid count, the vertices and

generators must satisfy a number of conditions, e.g., the symbolic cones need to be uni-

modular and the employed vector µ needs to satisfy Equation (2.3). We next present our

interpolation procedure #ItpLIA that creates constraints for ensuring these conditions.

2.4 Additional details on generating functions

In this section, we provide some additional (optional reading) details on generating

functions.

More on unimodularity We give two alternative definitions of unimodularity.

Definition 1 A cone is called unimodular if and only if its generators form a basis of

Zd.

Example 3 The cone given by generators ( 0 1 ) , ( 1 0 ) is unimodular. In contrast, the

cone given by generators ( 1 2 ) and ( 1 0 ) is not unimodular since e.g. ( 1 1 ) cannot be

represented as a positive linear combination of the generators.

Equivalently, a cone is unimodular if and only if the parallelogram spanned by its gen-

erators contains only the origin. This parallelogram is called parallelepiped.

3This step relies on the fact that evaluating the generating function for each vertex cone separately
and summing the results is equivalent to evaluating the sum of generating functions.
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x1

x2

v1 1

1

x1

x2

1

1

v

x1

x2

1

1

v

Figure 2.1: Parallelepipeds for two unimodular cones and one non-unimodular cone.
The last parallelepiped contains integer point ( 1 1 ).

Definition 2 The parallelepiped of a cone K with generators g1, . . . , gd is the set of

points defined by

ΠK = {
∑d

i=1 αigi | 0 ≤ αi < 1} . (2.6)

Then cone K is unimodular if and only if ΠK contains exactly one integer point, namely,

the origin. We provide examples in Figure 2.1.

More on rational generating functions We show that the generating function

of a unimodular polytope can be represented by a short rational generating function.

That is, we show that for a unimodular polytope P with vertices V and with genera-

tors gv1, . . . , gvd, the following equality holds.

∑
m∈P∩Zd

xm =
∑
v∈V

xv

(1− xgv1) · · · (1− xgvd)
.

For this, we first give a formal statement of Brion’s theorem.

Theorem 1 (Brion’s Theorem [22]) The generating function of a polytope is equal

to the sum of the generating functions of its vertex cones. Let V denote the set of vertices

of polytope P , and let cone(P, v) denote the vertex cone of P at vertex v. Then, the

following holds.

f (P, x) =
∑

v∈V f(cone(P, v), x)

This result is perhaps surprising as each of the vertex cones contains an unbounded

number of points. The intuition behind this equality is that the infinite parts of the

vertex cones cancel each other out, leaving behind only the finite set of points in the

polytope.

Using Brion’s theorem, we just have to show that the generating function of each vertex

cone can be efficiently represented. This follows from the next theorem.
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Theorem 2 ([22]) For a unimodular cone K with generators g1, . . . , gd, the following

equality holds.

f (K,x) = xv

(1−xg1 )···(1−xgd )

Proof 1 Since the generators g1, . . . , gd form a basis of Zd (see Definition 1), every

integer point in K can be expressed as a positive linear combination of the generators.

By the natural generalization of the geometric series

∑
(α1,...,αd)∈Zd+

xα1g1+...+αdgd =
∏d
i=1

1
(1−xgi )

the result follows.

2.5 Interpolation with cardinality constraints

In this section, we first define interpolation with cardinality constraints. Then we present

the interpolation procedure #ItpLIA that generates constraints on the cardinality of an

interpolant and solves them using an SMT solver.

Cardinality interpolation

Let k be a variable and let w be a tuple of variables. Let ϕ and ψ be constraints in a

given first-order theory. Then, a cardinality constraint is an expression of the form

#{w | ϕ} = k ∧ ψ (2.7)

where #· denotes the set cardinality operator. We call the free variables of ϕ that do

not occur in w parameters. A cardinality constraint is parametric if it has at least one

parameter and non-parametric otherwise. The expression ψ is used to constrain the

cardinality.

Example 4 Consider the theory of linear integer arithmetic. The cardinality constraint

#{x | 0 ≤ x ≤ 10} = k ∧ k ≤ 20

is non-parametric, whereas the constraint

#{x | 0 ≤ x ≤ n} = k ∧ k ≤ n+ 1
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is parametric in n. Both constraints are valid, since #{x | 0 ≤ x ≤ 10} = 11 and

#{x | 0 ≤ x ≤ n} = n+ 1. �

Assume constraints ϕ− and ϕ+ such that ϕ− implies ϕ+. A cardinality-constrained

interpolant for ϕ−, ϕ+, and cardinality constraint #{w | ϕ} = k ∧ ψ is a constraint ϕ

such that

• 1) ϕ− implies ϕ

• 2) ϕ implies ϕ+, and

• 3) #{w | ϕ} = k ∧ ψ is valid.

For a parametric cardinality constraint, we say that the interpolation problem is para-

metric, and call it non-parametric otherwise.

Example 5 Let ϕ− = (x = 0 ∧ n ≥ 0) and ϕ+ = true. Then

ϕ = (0 ≤ x ≤ n)

is an interpolant that satisfies the cardinality constraint

#{x | ϕ} = k ∧ k ≤ n+ 1 .

For ϕ− = false, ϕ+ = x ≥ 0 and cardinality constraint #{x | ϕ} = k ∧ 1 ≤ k ≤ 10, the

constraint

ϕ = (0 ≤ x ≤ 5)

is a cardinality-constrained interpolant. �

Note that our definition of interpolation differs from the standard, cardinality-free defi-

nition given e.g. in [72] in that we do not require the free variables in ϕ to be common to

both ϕ− and ϕ+. We exclude this requirement because it appears to be overly restrictive

for the setting with cardinalities, as the cardinality constraint imposes a lower/upper

bound in addition to ϕ− and ϕ+. In particular, the common variables condition rules

out both interpolants in Example 5, as the set of common variables is empty in both

cases.

In this thesis, we focus on cardinality constraints with ϕ in linear arithmetic and ψ in

(non-linear) arithmetic, which is an important combination for applications in software

verification.
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function #ItpLIA(w,ϕ−, ϕ+, ψ,Tmpl)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cons := true

SymCard := 0

d := length of w

µ := vector of d fresh variables

HV :=
⋃
{Tmpl(v) | v ∈ V}

for each v ∈ V do

H := Tmpl(v)

G := ∅
for each H ∈ H do

gvH := vector of d fresh variables

G := {gvH} ∪G
Cons := Cons ∧ Vert(v,H,HV) ∧ Genr(v,H, G, µ) ∧ Unim(v,G)

SymCard := SymCard + SymConeCard(v,G, µ)

Cons := Cons ∧ Impl(ϕ−,
∧
HV) ∧ Impl(

∧
HV , ϕ+)

return SMTSolve(Cons ∧ Impl(SymCard = k, ψ(k)))

Figure 2.2: #ItpLIA for cardinality constrained interpolantion for given Tmpl.

Interpolation algorithm

We present an algorithm #ItpLIA for interpolation with cardinality constraints. For

simplicity of exposition, we first consider the non-parametric case and discuss the para-

metric case in Section 2.6.

#ItpLIA finds an interpolant ϕ in a space of polytope candidates that is defined through

a template. This template is given by a function Tmpl that maps a symbolic vertex

v ∈ V to a set of symbolic hyperplanes that are determined to intersect in v, where each

hyperplane H ∈ Tmpl(v) is of the form

cH · w = γH .

The algorithm #ItpLIA is described in Figure 2.2. It collects a constraint Cons over the

symbolic vertices and symbolic hyperplanes of ϕ, which ensures that any solution yields

a unimodular polytope that satisfies conditions 1) – 3) of the definition of cardinality

interpolation. In particular, #ItpLIA ensures that the cardinality of ϕ satisfies ψ by

constructing a symbolic expression SymCard on the cardinality of ϕ in line 13, and

requiring that this expression satisfies the cardinality constraint ψ in line 15. Line 12

produces well-formedness constraints Vert(v,H,HV) and Genr(v,H, G) that ensure

a geometrically well-formed instantiation of the template Tmpl. The final conjunct in

line 12 poses constraints on the generators of the vertex cones in ϕ that ensure their



Chapter 2. Interpolation with cardinality constraints 19

unimodularity, as explained in Section 2.3. Finally, line 14 produces constraints that

ensure the validity of the implications ϕ− → ϕ and ϕ → ϕ+. The resulting constraint

Cons is passed to an SMT solver that either returns a valuation of symbolic vertices

and hyperplanes and hence determines ϕ, or fails.

Constraint generation We will now describe the constraint generation of #ItpLIA

in more detail. For each symbolic vertex v we make sure that it lies on the hyperplanes

determined by Tmpl(v) and in the appropriate half-space with respect to the remaning

hyperplanes. This is achieved by the following constraint.

Vert(v,H,HV) =
∧

H∈H
cH · v = γH ∧

∧
H∈HV\H

cH · v < γH (2.8)

By making the inequalities strict, we ensure that the polytope does not collapse into a

single point, since in this case Brion’s theorem does not hold.

SymConeCard and Unim refer to the generators of vertex cones determined by Tmpl.

Hence we produce a constraint that defines these generators in terms of symbolic hyper-

planes. Let gvH denote the generator of the cone at vertex v that lies in the half-space

described by hyperplane H. Then we constrain the generators of the cone at v as follows.

Genr(v,H, G, µ) =
∧

H∈H(cH · gvH ≤ 0 ∧ µ · gvH 6= 0

∧
∧
H′∈H\{H} cH′ · gvH = 0)

(2.9)

Here we require each generator gvH to lie on the facet formed by the intersection of

all hyperplanes H ′ ∈ H \ {H}, and to point in the appropriate half-space wrt. H.

Additionally the generator is constrained according to Equation 2.3. With the generators

defined, we can ensure the unimodularity of vertex cones of the polytope by

Unim(v,G) = (abs(det(gvH1 , . . . , gvHd)) = 1), (2.10)

where G = {gvH1 , . . . , gvHd}. We then use SymConeCard(v,G, µ) to denote the count-

ing expression of the symbolic cone of vertex v for our generators. We construct the

counting expressions for the entire symbolic polytope ϕ by taking the sum over counting

expressions for its vertex cones.

Finally, we generate constraints Impl for the implication conditions ϕ− → ϕ and ϕ→ ϕ+

by applying Farkas’ lemma [84], which is a standard tool for such tasks [29, 80]. This
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v2 v3

v1

gv2H1

gv2H2 gv3H2

gv3H3

gv1H3 gv1H1

cH3

cH2

cH1

ϕ−

ϕ

H1

H2

H3

Figure 2.3: Illustration of Example 5.

lemma states that every linear consequence of a satisfiable set of linear inequalities can be

obtained as a non-negative linear combination of these inequalities. Formally, if Aw ≤ b
is satisfiable and Aw ≤ b implies cw ≤ γ then there exists λ ≥ 0 such that λA = c

and λb ≤ γ. When dealing with integers, Farkas’ lemma is sound but not complete, see

the discussion on completeness at the end of this section. Our implementation of Impl

handles non-conjunctive implication constraints by a standard method based on DNF

conversion and Farkas’ lemma.

Example 6 Consider

ϕ− = (1 ≤ x ∧ x− y ≤ 1 ∧ x− y ≥ −1 ∧ y ≤ z ∧ z ≤ 10),

ϕ+ = true, w = (x, y), and ψ = (k ≤ 120). The solution ϕ is a polytope formed by three

vertices V = {v1, v2, v3}. It is bounded by the supporting hyperplanes HV = {H1,H2,H3}
with normal vectors cH1 , cH2 and cH3, respectively. In our example, we use Tmpl such

that

v1 7→ {H1, H3},

v2 7→ {H1,H2} and

v3 7→ {H2,H3}

restricting ϕ to a triangular shape. Figure 2.3 shows ϕ−, vertices, hyperplanes and a

solution for ϕ.
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We obtain the following constraints:

Vert(v1, {H1, H3},HV) =


cH1 · v1 = γH1 ∧

cH3 · v1 = γH3 ∧

cH2 · v1 < γH2



Vert(v2, {H1, H2},HV) =


cH1 · v2= γH1 ∧

cH2 · v2= γH2 ∧

cH3 · v2< γH3



Vert(v3, {H2, H3},HV) =


cH2 · v3= γH2 ∧

cH3 · v3= γH3 ∧

cH1 · v3< γH1


We get the following constraints on generators:

Genr(v1, {H1, H3}, {gv1H1 , gv1H3}, µ) =


cH1 · gv1H1 ≤ 0 ∧

cH3 · gv1H1 = 0 ∧

cH3 · gv1H3 ≤ 0 ∧

cH1 · gv1H3 = 0



Genr(v2, {H1, H2}, {gv2H1 , gv2H2}, µ) =


cH1 · gv2H1 ≤ 0 ∧

cH2 · gv2H1 = 0 ∧

cH2 · gv2H2 ≤ 0 ∧

cH1 · gv2H2 = 0



Genr(v3, {H2, H3}, {gv3H2 , gv3H3}, µ) =


cH2 · gv3H2 ≤ 0 ∧

cH3 · gv3H2 = 0 ∧

cH3 · gv3H3 ≤ 0 ∧

cH2 · gv3H3 = 0


and unimodularity restrictions:

abs(det(gv1H1 , gv1H3)) = abs(det(gv2H1 , gv2H2)) = abs(det(gv3H2 , gv3H3)) = 1 .
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The implication constraints in matrix notation are

A︷ ︸︸ ︷
−1 0

1 −1

−1 1

0 1


x
y

 ≤

b︷ ︸︸ ︷
−1

1

1

10

 →

C︷ ︸︸ ︷
c11 c12

c21 c22

c31 c32


x
y

 ≤
γ︷ ︸︸ ︷
γ1

γ2

γ3



where, for each i ∈ {1, 2, 3}, we obtain the following constraints for Hi by an application

of Farkas’ lemma:

∃λi : λi ≥ 0 ∧ λiA = Ci ∧ λib ≤ γ1 .

We pass the constraints to an SMT solver and obtain the solution

ϕ = (1 ≤ x ∧ y ≤ 10 ∧ y ≥ x− 3)

with #{(x, y) | ϕ} = 91. �

Theorem 3 (Soundness) If #ItpLIA(w,ϕ−, ϕ+, ψ,Tmpl) returns a solution ϕ, then

ϕ is a cardinality-constrained interpolant for ϕ− and ϕ+ and cardinality constraint #{w |
ϕ} = k ∧ ψ.

Proof 2 We show that ϕ satisfies conditions 1) to 3). Conditions 1) and 2) follow

from the use of Farkas’ lemma. Since the conditions posed by Vert(v,H,HV) ensure

that each vertex is active (part of the polytope) and that vertices are distinct, Brion’s

theorem is applicable and hence the generating function of ϕ can be expressed as the sum

of the generating functions of its vertex cones. Each of ϕ’s vertex cones is unimodular

by constraints Unim(v,G) and its generating function is hence given by the expression

in Equation 2.2. Summing over the evaluated rational generating functions of the ver-

tex cones is equivalent to evaluating the sum of the rational generating functions by

the fact that Laurent expansion distribute over sums. As a consequence, the expres-

sion SymCard corresponds to the cardinality of ϕ and, by the constraint in Line 15 in

Figure 2.2, satisfies the cardinality constraint ψ. �

Completeness For a given template, our method returns a solution whenever a so-

lution expressed by the template exists, yet subject to the following two sources of

incompleteness. First, solving non-linear integer arithmetic constraints is an undecid-

able problem and hence the call to SMTSolve may (soundly) fail. Second, Farkas’
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lemma is incomplete over the integers. Note that these sources of incompleteness did

not strike on benchmarks from the literature, see Section 2.8.

2.6 Interpolation with parametric cardinalities

We now briefly discuss the parametric interpolation problem by contrasting it with the

non-parametric case. Computing the number of integer points in a polytope in terms of a

parameter uses the techniques described in Section 2.3. The key challenge we face when

extending cardinality-constrained interpolation to the parametric case is a quantifier

alternation. While in the non-parametric case the constraints Cons are quantified as

∃HV ∃V : Cons,

introducing parameters changes the quantifier structure to

∃HV ∀p ∃V : Cons

where p is a tuple of parameters in the cardinality constraint. The alternation stems

from the fact that the parameter valuation detemines the intesection points, that is,

the vertices, for parametric polytopes. This alternation has two implication on the

computation of interpolants: first, for different values of p the number of vertices of a

polytope can vary due to changes in the relative position of the bounding hyperplanes.

As a consequence, templates with fixed number of vertices are only valid for a specific

parameter range, which is called a chamber [91]. We deal with this aspect by considering

a predicate cmb that restricts the parameter range to the appropriate chamber and that

satisfies the implication constraints. We then conjoin cmb to the inferred polytope. 4

Second, solving the cardinality constraint requires quantifier elimination for non-linear

arithmetic. For this task we devise a constraint-based method ensuring positivity of a

polynomial on a given range by referring to its roots.

Example 7 (Parametric counting) Consider polytope

Q = (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x1 + x2 ≤ n),

where the last equation is bounded by a parameter n rather than a constant. In this

polytope, the coordinates of vertices v2 and v3 are linear expressions in the parameter n,

4Note that generators do not depend on the constant terms of thehyperplanes, which is why their
constraints are not affected by variations in the parameters.
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that is, for n ≥ 0 we have v2 = (0 n) and v3 = (n 0). Equation (2.2) yields the following

generating function.

x01x
0
2

(1−x01x12)(1−x11x02)
+

x01x
n
2

(1−x01x
−1
2 )(1−x11x

−1
2 )

+
xn1x

0
2

(1−x−1
1 x02)(1−x−1

1 x12)

Applying the substitution and computing the series expansion yields the constant coef-

ficient (n2 + 3n+ 2)/2 which is an expression of number of integer points in Q in terms

of the parameter n. �

Example 8 (Parametric interpolation) Consider again the interpolation problem

from Section 2.2. We assume the following template where we fix some of the coeffi-

cients for simplicity of presentation (our algorithm deals with the general case):

v1 7→ {H1,H4},

v2 7→ {H1,H2} and

v3 7→ {H2,H3}

with

H1 = −i ≤ 0

H2 = a · j ≤ n+ b

H3 = i ≤ 1

H4 = i− j ≤ 0 .

We show exemplary vertex constraints for the parametric vertex v2 = (vi2 v
j
2).

∀n : ∃vi2, v
j
2 : a · vj2 = n+ b ∧ vi2 = 1 ∧ vi2 > 0 ∧ vi2 < vj2

Note that these vertex constraints are valid only for n such that

2 ≤ (n+ b)/a,

which is when v2 is active in the polytope. To ensure this we add a constraint

∀n : cmb(n)→ 2 ≤ (n+ b)/a.

We add corresponding constraints for the other vertices of the template and further

require that cmb(n) be implied by the lower bound ϕ−.
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Evaluating the generating function (as described in Section 2.3) then yields the following

expression on the cardinality of ϕ in terms of a and b

SymCard(ϕ) = (1/2− 1/(2a2)) · n2 + (−b/a2 + b/a+ 1/a+ 1) · n +

(1 + 2b/a)

(2.11)

The cardinality constraint on ϕ is given by

∃a, b : ∀n : cmb(n)→ SymCard(ϕ) ≤ (n+1)·(n+2)
2 (2.12)

Solving the constraints yields a = 1, b = 0 and cmb(n) = n ≥ 2. �

Example 9 (Quantifier elimination) Consider Equation 2.12 which provides an ex-

ample constraint that we would like to solve. Our technique builds on the following

observation: 2.12 is equivalent to

∃a, b : ∀n : cmb(n)→
0 ≤ ((1− 2 · c2) · n2 + (3− 2 · c1) · n+ (2− 2 · c0))

(2.13)

where c2, c1 and c0 denote the coefficients of n in Equation 2.11. Let p(n) denote the

polynomial in Equation 2.13.

For simplicity of presentation, assume that p(n) is of full degree and therefore has exactly

two roots r1 and r2. Then these roots induce a partitioning of the domain of p(n)

such that p(n) is either positive or negative throughout each partition. To ensure that

Equation 2.13 holds, we then have to ensure that whenever cmb(n) holds, p(n) is positive.

Exploiting the following equality which is a consequence of the factor theorem which

states that each polynomial p(n) with root r contains a factor (n− r)

p(n) = (n− r1) · (n− r2) · k = k · n2 − k · (r1 + r2) · n+ k · r1 · r2

we can now obtain a symbolic representation of the roots by equating the coefficients of

the two polynomials. This yields:

1− 2 · c2 = k ∧ 3− 2 · c1 = k · (−r1− r2) ∧ 2− 2 · c0 = k · r1 · r2.

Note that this step introduces a source of incompleteness as it restricts the solution space

to polynomials with roots that can be expressed in the respective theory, i.e. integers or

reals. Then we ensure that p(n) is positive whenever cmb(n) holds through the following
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constraints

r1 ≤ r2 ∧ ((cmb(n)→ n ≤ r1) ∧ 1− 2 · c2 > 0) ∨

((cmb(n)→ r1 ≤ n ≤ r2) ∧ 1− 2 · c2 < 0) ∨

((cmb(n)→ n ≥ r2) ∧ 1− 2 · c2 > 0).

Here, we ensure positivity on the respective partition by referring to the concavity of p(n)

through its second derivative p′′(n) = 1− 2 · c2.

Note that the above constraints are quantifier free. �

2.7 Verification of programs with cardinality constraints

In this section, we sketch our algorithm #Horn for solving sets of Horn clauses with

cardinality constraints. We choose Horn clauses as a basis for representing our veri-

fication conditions as they provide a uniform way to encode a variety of verification

tasks [14, 15, 17, 43]. The interpolation procedure #ItpLIA presented in Section 2.5 is

a key ingredient for, but not restricted to, #Horn.

Horn clauses with cardinality constraints

A Horn clause is a formula of the form

ϕ0 ∧ q1 ∧ · · · ∧ qk → H (2.14)

where ϕ0 is a linear arithmetic constraint, and q1, . . . , qk are uninterpreted predicates

that we refer to as queries. We call the left-hand side of the implication body and the

right-hand side head of the clause. H can either be a constraint ϕ, a query q, or a

cardinality constraint of the form

#{w | q} ≤ η,

where η is a polynomial. By restricting cardinality constraints over queries to this shape,

we ensure monotonicity, which is key for the soundness of over-approximation. For a

clause ϕ0 ∧ q1 ∧ · · · ∧ qk → q, we say that q depends on queries q1, . . . , qk. We call a

set of clauses recursive if the dependency relation contains a cycle, and non-recursive

otherwise. For the semantics, we consider a solution function Σ that maps each query
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symbol q occurring in a given set of clauses into a constraint. The satisfaction relation

Σ |= cl holds for a clause cl = (ϕ0∧q1∧· · ·∧qk → H) iff the body of cl entails the head,

after replacing each q by Σ(q). The lifting from clauses to sets of clauses is canonical.

Algorithm description

#Horn takes as input a set C of recursive Horn clauses with cardinality constraints

and produces as output either a solution to the clauses or a counterexample. Due the

undecidability caused by recursion, #Horn may not terminate. The solver executes the

following main steps: abstract inference, property checking, and refinement.

Abstract inference We iteratively build a solution for the set of inference clauses

I = {cl ∈ C | cl = (. . .→ q)}

by performing logical inference until a fixpoint is reached. This step uses abstraction

to ensure that the inference terminates, where the abstraction is determined by a set

of predicates Preds. This step is standard [43], as clauses I do not contain cardinality

constraints.

Property checking We check whether the constructed solution satisfies all property

clauses in

P = C \ I .

The novelty in #Horn is the check for satisfaction of cardinality constraints #{w | ϕ} ≤
η where ϕ is a linear arithmetic constraint. Here we rely on a parametric extension of

Barvinok’s algorithm [91], which on input ϕ returns a set of tuples

B(ϕ,w) = {(cmb1, c1), . . . }

such that whenever the constraint cmbi holds, the cardinality of #{w | ϕ} is given by

the expression ci, which may either be a polynomial ci, or ω for the unbounded case.

We hence reduce checking satisfaction of the cardinality constraint #{w | ϕ} ≤ η to

checking the following constraint.

∧
(cmb,c)∈B(ϕ,w) (cmb → c ≤ η)

If the check succeeds, the algorithm returns the solution. Otherwise, the algorithm

proceeds to a refinement phase to analyze the derivation that led to the violation of the

property clause.
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Refinement We construct a counterexample, i.e., a set CEX of recursion-free Horn

clauses with cardinality constraints that represents the derivation that led to the viola-

tion of the property clause. This counterexample may either be genuine or spurious due

to abstraction. To determine which it is, we rely on a solver for non-recursive clauses

with cardinality constraints that either produces a solution for the clauses or reports

that no such solution exists. If no solution exists, the algorithm returns the counterex-

ample that represents a genuine error derivation. Otherwise it uses #ItpLIA to eliminate

the cardinality constraint from the clauses thus producing a set of cardinality-free Horn

clauses. We solve these clauses using existing methods [47] and obtain a set of predicates

that we use to refine the abstraction.

Example 10 (Verification Conditions as Horn Clauses ) We consider a pro-

gram that accesses a matrix stored in a dynamically allocated map m. The program

manipulates the matrix through functions f and g. In the first loop, f is applied on a

band around the diagonal, in the second loop, g is applied on the diagonal elements.

int c1=-1; int c2=-1;

L1: for(i=0; i<n; i++)

for (j=0; j=<i; j++)

if (i-j<3) {

m(i, j) = f(i, j);

c1=i; c2=j;

}

L2: for(i=0; i<n; i++) {

v = m(i, i);

m(i, i) = g(v, i);

c1=i; c2=i;

}

L3:

L1 L2 L3

ρ1, ρ2, ρ3

ρ4

ρ5

ρ6

Our goal is to prove a bound on the memory consumption. To make the reasoning more

explicit, we instrument the program with auxiliary variables c1 and c2 that store the pairs

of indices used to write into the map. Thus, by reasoning about the cardinality of the set

of values (c1, c2) we track the memory consumption of the program.

Let the program variables be given by the vector v = (i, j, c1, c2, n, pc) (we do not track

m, f, g, v for space reasons) and the initial states of the program be described by the

assertion

init(v) = (i = 0 ∧ j = 0 ∧ c1 = −1 ∧ c2 = −1 ∧ pc = L1) .
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In the control flow graph above, we collapse the control locations for the nested loop into

a single program point L1.

Some relevant transition relations are described below (we omit equalities over variables

that stay unchanged, e.g., pc′ = pc).

ρ1(v, v
′) = (i < n ∧ j ≤ i ∧ i− j < 3 ∧ j′ = j + 1 ∧ c′1 = i ∧ c′2 = j)

ρ2(v, v
′) = (i < n ∧ j ≤ i ∧ i− j ≥ 3 ∧ j′ = j + 1)

ρ3(v, v
′) = (i < n ∧ j > i ∧ j′ = 0 ∧ i′ = i+ 1)

We represent the bound verification condition as the following set of recursive Horn

clauses over query symbols Q = {reach, index}, where we let c = (c1, c2) and i ranges

between 1 and 6.

clinit : init(v) → reach(v)

cli : reach(v) ∧ ρi(v, v′) → reach(v′)

clproj : reach(v) ∧ c1 ≥ 0 ∧ c2 ≥ 0 → index (c, n)

clcard : n ≥ 0 → #{c | index (c, n))} ≤ 3n+ 1

Query reach describes the set of reachable states and index describes the set of indices

that were used for writing to the map. The clauses clinit , and cl1, cl2, . . . require the

invariant reach to be inductive, i.e., that is is implied by initial states and preserved

under the transition relation. The clause clproj projects reachable states on variables c1

and c2, and ensures that all reachable values of c1 and c2 (except for the negative initial

values) are included in index . The clause clcard encodes a cardinality constraint stating

that the cardinality of the set of index values is bounded by 3n+ 1. Finally, we note that

the clauses are recursive, as e.g. cl1 depends on itself.

2.8 Experiments

We implemented our method in SICStus Prolog, and use its built-in constraint solver for

the simplification and projection of linear constraints, HSF [43] for solving recursion-

and cardinality-free Horn clauses, and Z3 [34] for non-linear/boolean constraint solving.

We use barvinok [89] for checking whether a solution candidate satisfies a cardinality

constraint. We use a 1.3 Ghz Intel Core i5 computer with 4 GB of RAM.

Benchmarks from the literature We use #Horn to analyze a set of examples

taken from the recent literature on resource bound computation (in particular: time
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Program Bound Time

Dis1 [46] max (n− x0, 0) + max (m− y0, 0) 0.19s

Dis2 [46] n− x0 +m− z0 0.17s

SimpleSingle [46] n 0.11s

SequentialSingle [46] n 0.11s

NestedSingle [46] n+ 1 0.15s

SimpleSingle2 [46] max (n,m) 0.13s

SimpleMultiple [46] n+m 0.16s

NestedMultiple [46] max (n− x0, 0) + max (m− y0, 0) 0.08s

SimpleMultipleDep [46] n · (m+ 1) 0.15s

NestedMultipleDep [46] n · (m+ 1) 0.09s

IsortList [55] n2 ·m 0.19s

LCS [55] n · x 0.15s

Example 1 [95] n 0.15s

Sum [60] 2n+ 6 0.15s

Flatten [60] 8l + 8 0.13s

Table 2.1: Examples of resource bound verification [46, 55, 60, 95], with non-linear
and disjunctive bounds on running time (the upper part of the tabe) and heap space
usage (the lower part of the table), as well as imperative and functional programs.
#Horn execution times are slightly faster than the literature. All bounds are precise.

and heap space), with results given in Table 2.1. We find that #Horn is able to prove

all bounds in the literature while being slightly faster on average.

The time consumption of loops is bounded by synthesising a polytope containing all

tuples of loop counter valuations. For example, for two loops with counters i and j

bounded by parameters n and m, we synthesize a polytope of the form:

a ≤ i ≤ n+ b ∧ c ≤ j ≤ m+ d,

where a, b, c, d are inferred by our method. For heap consumption, we use the cost model

of [60]. We encode max using disjunctions.

Dealing with relational dependencies We use #Horn to analyze programs mcm

for matrix chain multiplication of Section 2.2 and band matrix from Example 10, with

results in Table 2.2. These examples require the tracking of relational dependencies

between variables. The example mcm is particularly challenging as it requires reasoning

about recursive function calls. We are not aware of any other method that can handle

programs with both features. We use a template specifying that the sought polytope

consists of three and four symbolic vertices, respectively. Choosing a template that

is not expressive enough might only allow to prove coarser bounds, however, one can

automate the problem of finding an appropriate template by iterating over templates

with an increasing number of symbolic vertices.
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Program Bound Time

mcm (n+1)·(n+2)
2

0.6s

band matrix 3n+ 1 0.8s

Table 2.2: Examples tracking relational dependencies
between variables.

Synthesis of countermeasures By relying on recursive Horn clauses as input lan-

guage, #Horn is readily applicable to a number of verification questions that go beyond

reachability. We illustrate this using the example of procedure index(a, e), which re-

turns the first position of an element e in an array a.

int index(a, e) {

int r=-1; t=0;

for(i=0; r<0 && i<n; i++){

if (a[i]==e) r=i;

t++;

}

/* Padding */

for(j=?; j<n, j++) t++;

return r;

}

/* assert: bound cardinality of

set of final values of t. */

Note that the execution time of index (modeled by the variable t) reveals the position

of e. We apply #Horn for synthesizing a padding countermeasure against this timing

side channel. Namely, we seek to instantiate the initialization of the variable j such that

it provides enough padding for a given bound on leakage. This is achieved by bounding

the cardinality of the set of possible final values of t. We add an additional clause

that constrains the cardinality of values for t upon termination, as the logarithm of this

number corresponds to the amount of leaked information in bits, see e.g. [85]. Table 2.3

provides the timings and synthesized initialization of j for different bounds on leakage.

Leakage bound, bits Initialization Time

log(1) j = i 1s

log(n
2

) j = i+ n
2

0.7s

log(n
3

) j = 2·i+n
3

0.7s

Table 2.3: Synthesis of countermeasures.

2.9 Related work

Counting integer points in polytopes The theory of counting integer points in

polytopes has found wide-spread applications in program analysis. All applications we
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are aware of (including [8, 41, 71, 91]) compute cardinalities for given polytopes, whereas

our interpolation method computes polytopes for given cardinality constraints.

Verdoolaege et al. [91] also derive symbolic expressions for the number of integer points

in parametric polytopes. In their approach, the parameter governs only the offset of the

bounding hyperplanes (and hence the position of the vertices of the polytope) but not

their tilt (and hence not the generators of the vertex cones). The advantage of fixing

the vertex cones is that Barvinok’s decomposition can be applied to handle arbitrary

polytope shapes. In contrast, our interpolation procedure #ItpLIA (see Section 2.5)

leaves the vertices and the generators of the vertex cones symbolic, up to constraints

that ensure their unimodularity. The benefit of this approach is the additional degree

of freedom for the synthesis procedure. #Horn leverages both approaches: the one

from [91] for checking cardinality constraints, and #ItpLIA for refining the abstraction.

Recently, [41] presented a logic and decision procedure for satisfiability in the presence

of cardinality constraints for the case of linear arithmetic. In contrast, we focus on

synthesizing formulas that satisfy cardinality constraints, rather than checking their

satisfiability.

Resource bounds In [68] a static analysis estimates the worst case execution time of

non-parametric loops using the box domain. To ensure precision, the widening operator

intersects the current abstraction with polytopes derived from conditional statements. In

contrast, our approach generates abstraction consisting of parametric unimodular poly-

topes (which include boxes as a special case). In [46], the authors compute parametric

resource and time bounds by instrumenting the program with (multiple-) counters, us-

ing static analysis to compute a bound for the counters, and combining the results to

yield a bound for the entire program. In contrast, we fit polytopes over each iteration

domain of the program, thus avoiding the need to infer counter placement and enabling

higher precision by tracking dependencies between variables. In [90] a pattern-matching

based method extracts polytopes representing the iteration domain of for-loops from

C source. In contrast our method operates on unstructured programs represented as

Horn clauses. In [60] and [55], a type system for the amortized analysis for higher-order,

polymorphic programs is developed. Their focus lies on recursive data-types while we

mostly deal with recursion/loops over the integers. In [24], this line of work is extended

to the verification of C programs. In [3] and [75] closed-form bounds on resource usage

are established by solving recurrence relations.
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Quantitative verification Existing verification methods for other theories rely on

cardinality extensions of SAT [42], or Boolean algebra of (uninterpreted) sets [65], mul-

tisets [77], and fractional collections [78]. These approaches focus on either computing

the model size or checking satisfiability of a formula containing cardinality constraints.

Cardinalities of uninterpreted sets are also used in [44] for establishing termination and

memory usage bounds based on fixed abstractions. Finally, CEGAR approaches for

weighted transition systems have been studied in [25] and [27]. These approaches con-

siders abstractions for mean-payoff objectives such as limit-average or discounted sum.

2.10 Conclusion

We applied the theory of counting integer points in polytopes to devise an algorithm for

a cardinality-constrained extension of Craig interpolation. This algorithm proceeds by

posing constraints on a symbolic polytope that specify both its shape and cardinality and

then solves the constraints via an SMT solver. We embedded our interpolation procedure

into a solver for recursive Horn clauses with cardinality constraints and experimentally

demonstrated its potential.
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Cardinality constraints for

parametrized systems

3.1 Introduction

At the core of the majority of software systems we find concurrent and distributed

components whose correct interplay is responsible for the proper functioning of the entire

multitude of systems built on top. For example, (variations of) consensus protocols are

powering cloud/data centers [23, 58], while on a single computer concurrent garbage

collectors manage memory in modern runtime environments [73]. Verification of such

core components is pursued by on-going industrial and academic efforts [48, 67, 76].

In many application domains concurrent/distributed systems can be formally modeled

by so-called parameterized systems consisting of multiple copies of (almost) identical

processes. Since properties of interest often need to hold for arbitrary number of par-

ticipants, referring to the number of processes in a particular situation becomes an

indispensable building block for proof construction. The following lemma from a classic

textbook on multiprocessor programming [53] concisely illustrates this aspect while rea-

soning about a mutual exclusion protocol, which we discuss in more detail in Section 3.2:

For j between 0 and n− 1, there are at most n− j threads at level (greater

or equal to) j.

The lemma refers to the cardinality of the set of threads whose local state satisfies a

certain condition, which could be formally written as

#{t | level(t) ≥ j} ≤ n− j

34



Chapter 3. Cardinality constraints for parametrized systems 35

where “#” represents the set cardinality operator. Cardinality is also ubiquitous in the

realm of distributed protocols, as protocol descriptions routinely refer to the number of

clients, replicas, faulty participants, or messages received from the leader [7].

Reasoning with cardinality for verifying parameterized systems is an under-researched

topic, which started two decades ago within the deductive approach [70]. It required

manual program annotation with invariants and offered their (semi-) automatic validity

checking. Recently the topic was revisited: a programmer can now express invariants

referring to cardinalities and quantifiers in a program logic [36] and check their validity

using a corresponding semi-decision procedure. An emergent complementary line of

research investigates how counting arguments can be integrated into a proof system

that aims at automatic invariant discovery [39]. While these efforts are very promising,

there is still a host of research challenges. Existing approaches either focus on sufficient

expressiveness or automatic inference, but unfortunately not both at the same time.

Perhaps the most important and intricate challenge is to keep track of the cardinality

of sets defined by assertions in the logical theory of arrays combined with scalar data

types, which is the lingua franca of parameterized systems verification [70].

In this chapter, we present a first step towards providing automatic inference for ex-

pressive cardinality-based verification of parameterized systems. We contribute #Π,

an invariant synthesis method and its efficient implementation that can synthesize in-

variants tracking relations between 1) scalars, 2) cardinalities of sets represented using

arrays, and 3) universally quantified array assertions. This previously unachieved com-

bination facilitates fully automatic proofs of parameterized systems that were out of

reach for automatic tools until now, as presented by examples in Section 3.7.

There are two key enablers for the effectiveness of our approach. First, we observe

that update statements in parameterized systems make only point-wise updates to the

system state, i.e., just one thread moves at a time. We present an axiomatization of

cardinality that is tailored to such updates. It allows #Π to reason about relations be-

tween cardinalities of sets defined by assertions over arrays by reducing reasoning about

cardinalities to reasoning about quantified array assertions. In order to provide formal

guarantees on the precision of our axiomatization, we show that our axiomatization of

point-wise updates is relatively complete with respect to difference bound constraints.

As the second enabler, we establish our synthesis procedure following the classic “con-

straint generation followed by solving” pipeline. It targets emerging Horn constraint

solving technology as engine [43, 54, 56, 61, 64, 86, 87]. The key benefit we reap from

relying on Horn solvers is the automation out-of-the-box for scalars. Besides that, we

take advantage of existing algorithmic and engineering efforts and advances in solver

development, which greatly contributes to the efficiency of #Π.
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We implemented #Π and applied it on a collection of parameterized systems, including

mutual exclusion, consensus, and garbage collection. The evaluation shows that #Π pur-

sues a viable approach. It efficiently synthesized expressive cardinality-based invariants

for intricate protocols. Several of them were verified automatically for the first time. For

example, the filter lock protocol [53] requires infinitely many auxiliary counters tracking

cardinality, which is handled by #Π via a cardinality constraint under universal quan-

tification that keeps counters in an array. We also demonstrate that the ability of #Π

to deal with cardinality does not incur any overhead when cardinality reasoning is not

required, as #Π in general outperforms state-of-the-art tools on parameterized systems

whose proofs are cardinality free.

In summary, we contribute an automatic method for synthesizing cardinality-based uni-

versally quantified invariants of parallel and distributed systems together with its im-

plementation and experimental evaluation.

3.2 Motivating examples

In this section, we discuss three examples that highlight different challenges in verifying

parametrized protocols: combination of cardinalities and universal quantification, rea-

soning with array of counters, and reasoning with synchronous composition of processes.

Ticket lock Figure 3.1 contains code for the classic ticket lock mutual exclusion pro-

tocol. This protocol makes use of a global ticket counter t and a global service counter s.

Whenever a thread wants to enter the critical section it draws a ticket by assigning t to

a local variable m. It then increments t and spins until the service counter has reached

the value of its previously drawn ticket stored in m. Upon leaving the critical section,

the thread increments s in order to allow the next thread to enter. For this example,

we want to prove mutual exclusion, i.e. we want to show that the number of threads

at location 3 is bounded by 1. For this, #Π synthesizes the following invariant which

states that the number of threads that are either ready to enter the critical section or

already inside the critical section is bounded by 1.

#{t | m(t) ≤ s ∧ pc(t) = 2}+ #{t | pc(t) = 3} ≤ 1

Additionally, it discovers the following invariant stating that tickets are unique.

∀t, t′ : m(t) = m(t′)→ t = t′
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ticket lock

global int t = 0;

global int s = 0;

local m = −1;

void lock() {
1: atomic {m = t; t = t+ 1;}
2: while (m > s){}
3: }
4: void unlock() {
5: if (m ≤ s) {s = s+ 1;}
6: }

end

Figure 3.1: Ticket lock.

Despite its apparent simplicity, this example requires both quantification and cardinal-

ities which highlights the fact that an automated method for verifying parametrized

protocols needs to be able deal with both.

Filter lock This example expands on the protocol discussed in the introduction. Fig-

ure 3.2 shows a code fragment that implements the filter lock, a well-known mutual

exclusion protocol [53]. We model this protocol using a cardinality constraint, in line 5.

The protocol is based on the following idea:

global int n;

global int [] lv ;

assume (n ≥ 2);

void lock() {
1: local int me = ThreadID.get();

2: local int i = 0;

3: while (i < n− 1) {
4: atomic {
5: if (#{t | lv(t) > i} = 0 || #{t | lv(t) = i} ≥ 2) {
6: i++; lv(me) = i;

7: }
8: }
9: }

10: }

Figure 3.2: Filter lock.
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• There are n− 1 “waiting rooms” called levels.

• Threads try to increase their level in order to acquire the lock, which corresponds

to reaching level n− 1.

• For each level, at least one thread trying to enter the level succeeds. This is

guaranteed by the condition #{t | lv(t) > i} = 0 in the if-statement in line 5

that allows a thread to enter the next level if there are no threads at higher levels.

• If there are threads on higher levels, exactly one thread that enters a given level

gets blocked, i.e. continues waiting at that level. This is enforced though the

condition #{t | lv(t) = i} ≥ 2 in line 5, which allows a thread to raise its level

only if there is at least one other thread at its current level.

• Since n threads participate in the protocol, at most one thread at a time can reach

level n− 1, which ensures mutual exclusion.

#Π automatically synthesizes the following quantified invariant which formalizes this

argument.

∀l : 0 ≤ l ≤ n− 1→ #{t | lv(t) ≥ l} ≤ n− l

This invariant states that the number of threads that have reached a given level l is

bounded by n − l. This implies that there is at most one thread at level n − 1, from

which the mutual exclusion property follows.

In this example, cardinalities and quantifiers do not appear in isolation, but the car-

dinality constraint shows up under a quantifier. This means that rather than keeping

track of a fixed number of cardinalities, the method needs to track an unbounded num-

ber of cardinalities. This highlights the fact that cardinalities and quantifiers cannot

be treated in isolation but require a close integration such as the one provided in our

method.

One-third rule Figure 3.3 shows code for the one-third rule [26, 36], which implements

a simple consensus protocol. The protocol is executed by a number of processes, where

each process starts the protocol with an initial value vo and the goal of the protocol

is for the processes to agree on one of the initial values as a common output. We

specify the algorithm in the heard-of model [26] which captures benign failures, (i.e.,

transmission- but not Byzantine failures). This is a synchronous, round-based model

where each processes gets assigned a set of processes from which it received messages in

a given round. For round r, we denote this set by HO(r).
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protocol oneThird

1: instantiation x := v0 with v0 ≥ 0 ; res := −1;

2: round r:

3: send x to all processes

4: if #HO(r) > 2n/3 then

5: x = the smallest most often received value

6: if more than 2n/3 values rec. equal x then

7: res = x;

end

end

Figure 3.3: One-third rule consensus protocol.

A process starts a round by sending its local candidate value x to all other processes. If

it received messages from more than two-thirds of the total number of processes n, the

process updates its local candidate value x with the smallest, most often received value.

Finally, if more than two-thirds of all processes sent the previously selected value x as

their candidate, the process decides on x by assigning it to res.

#Π automatically verifies the following properties of this protocol:

• Agreement: whenever two processes have reached a decision, the values they have

decided on must be equal.

• (Weak) validity: if all processes propose the same initial value, they must decide

on that value.

• Irrevocability: if a process has decided on a value it does not revoke its decision

later.

To prove the above properties, our method synthesizes the following invariant.

∀p : res(p) ≥ 0→ #{t | x(t) = x(p)} > 2n
3

∧ x(p) = res(p)

This invariant states that if a process has decided on a value res, then that value must

be equal to its local candidate and more than two-thirds of the processes must have

proposed the same value.

This example highlights the need to address different models of communication such

as synchronous and asynchronous communication. In our method, we achieve this by

relying on logic as a means to encode models rather then a priori committing to a

particular one.
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3.3 Illustration

In this section we illustrate the main ideas behind our method through a simple example.

Consider the following program in which an unbounded number of threads increment a

global variable a which is initialized to 0.

global int a;

1: a++;

2:

The property we want to prove about this program is that whenever there is a thread

at location 2, variable a must be larger that zero.

For this, we represent the program by the following logical assertions representing initial

states, transition relation, and a safety property. We model the program counter pc

as an array, where each position in the array corresponds to the program counter of a

single thread. Assertion next uses t′ to denote the identifier of an arbitrary thread that

increments a.

init(a, pc) def
= (∀t : pc(t) = 1) ∧ a = 0

next(a, pc, a′, pc′) def
= ∃t′ :


pc(t′) = 1 ∧

pc′ = pc[t′ ← 2] ∧

a′ = a+ 1



safe(a, pc) def
= (∃t : pc(t) > 1)→ a > 0

The verification conditions are given by the following Horn constraints which ensure that

inv is a safe inductive invariant. We assume that each clause is implicitly universally

quantified.

∃inv :

(a) init(a, pc) → linv(a, pc)

(b) inv(a, pc) ∧ next(a, pc, a′, pc′)→ linv(a′, pc′)

(c) inv(a, pc) → lsafe(a, pc)

The following invariant is a solution to the above constraints. It states that a is greater

than or equal to the number of threads at position 2.

inv(a, pc) def
= #{t | pc(t) ≥ 2} ≤ a
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Finding such invariants automatically is our goal. However, for simplicity, we first show

how such an invariant can be checked, if already given. We then show how our synthesis

procedure discovers this invariant.

Invariant checking Checking validity of the above invariant (if already given) re-

quires the ability to reason about cardinalities of sets defined over uninterpreted func-

tions. In #Π, we achieve this in a two-step process: in a first step, we replace applications

of the cardinality operator by fresh variables, and in a second step instantiate cardinality

axioms in order to regain lost information. We now describe this process for the above

example.

For clause (a), we replace #{t | pc(t) ≥ 2} by the fresh variable k, and instantiate an

axiom stating that if pc(t) ≥ 2 does not hold for any thread t, then the cardinality of

the set defined by this predicate must by zero. Substituting and instantiating yields the

following formula.

(∀t : pc(t) = 1)

∧ ((∀t : pc(t) ≤ 1)→ k = 0)

∧ a = 0

→ k ≤ a

This formula contains universal quantification, however, since it falls into the array

property fragment [21], the quantifiers can be eliminated. In order to prove validity for

clause (b), we crucially need the ability to track how function updates affect cardinalities.

We achieve this by instantiating an axiom that relies on the following observation. An

update pc′ = pc[t← v] changes the function value of pc only at position t. This means

that to track the overall effect of this update, it is enough to consider the changes at

position t. In our example, updating the program counter from 1 to 2 moves a new

thread into the set and hence the axiom strengthens the second clause with the formula

k′ = k+ 1, where k′ is the fresh variable introduced for the cardinality after the update.

For clause (c), we instantiate an axiom stating that, if there is at least one element in

the set, the cardinality of the set is greater than zero.

Instantiation and quantifier elimination yield a quantifier and cardinality free formula

whose validity can be efficiently checked by off-the-shelf SMT solvers.

Invariant synthesis To synthesise the above invariant, we restrict the search space

to invariants of the following shape.

(#{t | s(pc(t), a)} = k) ∧ inv0(pc, a, k)
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init(lv , i, n) def
= (∀t : lv(t) = 0 ∧ i(t) = 0) ∧#{t | lv(t) = 0} = n ∧ n ≥ 2

next(lv , i, n, lv ′, i′) def
= ∃t′ :

 i(t′) < n− 1 ∧
(#{t | lv(t) > i(t′)} = 0 ∨ #{t | lv(t) = i(t′)} ≥ 2) ∧

i′ = i[t′ ← (i(t′) + 1)] ∧ lv ′ = lv [t′ ← i′(t′)]


safe(lv , i, n) def

= #{t | lv(t) = n− 1} ≤ 1

Figure 3.4: The filter-lock protocol as constraints.

This restriction requires the invariant to be composed of a set defined by an unknown

predicate s(pc(t), a) whose cardinality is bound to a variable k and a cardinality-free

part inv0(pc, a, k) which relates k to other program variables. As in the checking case,

our method removes all occurrence of the cardinality operator from the clauses and

instantiates cardinality axioms. For clause (a) this yields

(∀t : pc(t) = 1) ∧

∧ ((∀t : ¬s(pc(t), a))→ k = 0) ∧ . . .

→ inv0(pc, a, k)

where the dots represent additional omitted instances of cardinality axioms. Eliminating

quantifiers yields

pc(t) = 1

∧ (¬s(pc(t), a)→ k = 0) ∧ . . .

→ inv0(pc, a, k) .

The resulting clauses are cardinality- and quantifier-free which allows us to apply existing

Horn clause solvers. Passing the clauses to a solver returns the solution

s(pc(t), a) def
= (pc(t) ≥ 2)

inv0(pc, a, k) def
= (k ≤ a) .

3.4 Preliminaries

In this section, we define our notion of parametrized systems. We first discuss the asyn-

chronous case. Let l be a tuple of local variables, g be a tuple of global variables, and

L denote a function that maps each thread identifier t to a tuple of its local variables l.

Then, a parametric system is given by three constraints: init(g, L), nextt(g, l, g′, l′), and



Chapter 3. Cardinality constraints for parametrized systems 43

safe(g, L). Constraints init(g, L) and safe(g, L) define initial states and a safety prop-

erty. These constraints can have arbitrary quantifier structure, however, cardinalities

are restricted to occur in the quantifier-free part. Constraint nextt(g, l, g′, l′) defines a

local transition relation that describes how a single thread evolves the system. For this,

it relates globals and locals to their primed versions, which represent the program state

after the transition. We assume nextt(g, l, g′, l′) to be quantifier-free.

Let L[t ← l] denote the result of updating L at position t with l. Then, we define the

global transition relation next as follows.

next(g, L, g′, L′) def
= ∃t :

nextt(g, L(t), g′, l′) ∧

L′ = L[t← l′])

 (3.1)

This transition relation picks an arbitrary thread t, lets it evolve locals and globals, and

finally updates the function L. The transition relation preserves locality in the sense

that a thread can only update its own locals. We exploit this property in Section 3.5

where it enables tracking the influence of array updates on cardinalities.

For the synchronous case, where threads move in lock-step, the setting remains the same,

however the quantifier in Equation 3.1 turns into a universal quantification.

The definitions above allow us to apply the standard proof rule for safety to describe

a safe inductive invariant inv(g, L) for the parameterized system. Since an instance of

this proof rule is already shown in Section 3.3, here we only revisit that the invariant

needs to 1) hold on initial states, 2) be inductive under the transition relation next and

3) imply the safety condition.

Example 11 Figure 3.4 shows initial states, transition relation and a safety property

for the filter-lock protocol. Since each thread has a local variable i we represent i as

an array that is indexed by a thread-id. We omit branches for the while and if

statements that do not change the program state, and do not track the program counter

for simplicity. Assertion init uses a cardinality constraint to encode the assumption that

n threads participate in the protocol, and assertion next uses t′ to denote the identifier

of an arbitrary thread that tries to advance to a higher level. �

3.5 Cardinality axioms

Consider the combined theory of linear arithmetic and arrays i.e., the theory of arith-

metic extended with the interpreted functions ·(·) for array reads and ·[· ← ·] for array

updates (see e.g. [21] for more details). Let ϕ be a quantifier-free formula in that theory
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Def (k) = #{t | ϕ}

∆ Def (l) = #{t | ϕ′}

((∀t : ϕ→ ϕ′)→ k ≤ l) ∧ ∆

(a) Rule Card≤.

Def (k) = #{t | ϕ}

∆ Def (l) = #{t | ϕ′}

(

(
∀t : ϕ→ ϕ′∧

(∃t : ¬ϕ ∧ ϕ′)

)
→ k < l) ∧ ∆

(b) Rule Card<.

Def (k) = #{t | ϕ(t)}

Def (l) = #{t | ϕ′(t)}

∆ is conjunctive

g = f [j ← ] occurs in ∆

∆ ϕ′ = ϕ[g/f ](
(l = k + δ+ − δ−) ∧ 1(ϕ′, δ+) ∧

1(ϕ, δ−)

)
∧∆

(c) Rule Card-Upd.

Figure 3.5: Rewriting rules for instantiating cardinality axioms.

such that ϕ does not contain the update function. Then, for variables t and k we call

an expression

#{t | ϕ} = k

a cardinality constraint. In this paper, we consider the combined theory of linear arith-

metic, arrays and cardinality constraints, where we allow a restricted form of universal

quantification over cardinality free formulas, such that a complete instantiation for the

universal quantifiers can be efficiently computed (e.g. the array property fragment [21]).
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Example 12 The formulas

(∀t : f(t) = 1) ∧

#{t | f(t) ≥ 2} = k ∧ k ≥ 1

and

#{t | f(t) = 2} = k ∧

#{t | g(t) = 2} = l ∧ f(j) = 1 ∧

g = f [j ← 2] ∧ l ≤ k

are formulas in the combined theory of arithmetic, arrays and cardinality constraints.

�

3.5.1 Elimination procedure

We now describe our instantiation procedure ElimCard which soundly eliminates

cardinality constraints through a reduction to arithmetic and array reasoning. For a

formula ∆, our procedure first replaces all cardinality constraints by fresh variables,

where the procedure maintains a bookkeeping function Def (·) that maps fresh variables

to cardinalities. We assume that this function has a designated entry

Def (0) = #{t | false}

which represents the empty set. The procedure then instantiates a number of axioms that

recover information about the previously eliminated cardinalities. Finally, ElimCard

eliminates universal quantifiers, thus yielding a quantifier-, and cardinality-free formula

whose validity can be checked by an SMT-solver.

Figure 3.5 shows rewriting rules for instantiating cardinality axioms. Each rule specifies

a rewriting of a formula ∆ which strengthens the formula through a cardinality axiom.

The right-hand side of the rule contains a number of preconditions that need to be

satisfied in order for the rule to be applicable. Our axiomatization consists of three

rules. We now describe the rules in more detail.

• Rule Card≤ instantiates a rule tracking non-strict inequalities between cardinal-

ities.

• Rule Card< instantiates a rule tracking strict inequalities between cardinalities.

• Rule Card-Upd models how cardinalities evolve through array updates. This rule

makes use of the locality of parametric systems mentioned in Section 3.4, which
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ensures that each transition only updates one array entry at a time. This allows

to characterize the effect of an array update on cardinality in the following way.

When updating an array at position t, the cardinality of a set referring to t is

decremented if the t was part of the set before the update, and incremented if t is

part of the set after the update. This is formalized through an indicator relation 1.

For a set comprehension predicate s(t, v), we define 1 as follows.

1(ϕ, k) def
= (ϕ ∧ k = 1) ∨ (¬ϕ ∧ k = 0) (3.2)

The rule Card-Upd can only be applied for formulas consisting of conjunctions, more-

over defining formulas ϕ and ϕ′ must be equivalent, except for the use of array f and g

respectively. Finally, arrays in ϕ and ϕ′ may only be indexed by the variable bound in the

set-comprehension. These conditions ensure that the only difference in the cardinality

of both sets stems from the function update.

Example 12 (continued) Consider again the formula

(∀t : f(t) = 1) ∧

#{t | f(t) ≥ 2} = k ∧ k ≥ 1 .

Let

Def (k) = #{t | f(t) ≥ 2},

then, instantiating the axiom Card≤ for a comparison with the empty set yields the

following formula

(∀t : f(t) = 1) ∧

((∀t : f(t) ≥ 2→ false)→ k ≤ 0) ∧ k ≥ 1

which we simplify (for readability) into

(∀t : f(t) = 1) ∧

(∃t : f(t) ≥ 2 ∨ k ≤ 0) ∧ k ≥ 1 .

Instantiating the quantifiers produces the following equivalent formula that can be easily

checked by an SMT solver.

f(t) = 1 ∧

(f(t) ≥ 2 ∨ k ≤ 0) ∧ k ≥ 1 .
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For the formula

#{t | f(t) = 2} = k ∧ #{t | g(t) = 2} = l

∧ f(j) = 1 ∧ g = f [j ← 2] ∧ l ≤ k

instantiating axiom Card-Upd yields

l = k + δ+ − δ− ∧

1(g(j) = 2, δ+) ∧ 1(f(j) = 2, δ−) ∧

f(j) = 1 ∧ g = f [j ← 2] ∧ l ≤ k

which simplifies to

l = k + 1 ∧ f(j) = 1 ∧ g = f [j ← 2] ∧ l ≤ k

�

Soundness Our axioms are sound, which in turn underpins the soundness of #Π.

Theorem 4 (Soundness) Axioms Card≤, Card<, and Card-Upd are sound, i.e.

the assertion under the line in Figure 3.5(a,b,c) is a logical consequence of ∆.

Proof 3 We prove soundness for the axiom Card≤. Consider a constraint

#{t | ϕ(t)} ≤ #{t | ϕ′(t)} .

This relationship holds if and only in there exists an injective homomorphism h that

maps each element in the left-hand set into an element of the right-hand set, i.e.

∃h :

∀t, t′ : (h(t) = h(t′)→ t = t′) ∧

∀t : ϕ(t)→ ϕ′(h(t))


It is easy to see that this condition is implied by Card≤. �

Derived Properties of Card≤ and Card< The following useful properties follow

from Axioms Card≤ and Card<.

• Card≥0: cardinalities are always non-negative. That is for k ∈ dom(Def ) we have

k ≥ 0.
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• Card∅: if there is no element in a set, the cardinality of that set is zero. For

Def (k) = #{t | ϕ} the following holds.

(∀t : ¬ϕ)→ k = 0

• Card>0: if there is at least one element in a set, the cardinality of that set is

greater than zero. That is for Def (k) = #{t | ϕ} the following holds.

(∃t : ϕ)→ k > 0

Relative completeness of Card-Upd We now prove that the update axiom pre-

serves difference bound constraints. A difference bound constraint, is a conjunction of

inequalities of the form k ≤ l+ c, where c is a numeric constant. The following theorem

states that instantiating the axiom Card-Upd preserves difference bound constraints

over cardinalities.

Theorem 5 (Relative completeness Card-Upd ) Let ∆ be an arbitrary formula in

the combined theory of cardinality constraints, arrays and arithmetic. We let Ψ denote

a formula containing the cardinality of two sets related through an update statement.

Ψ def
= (#{t | ϕ} = k) ∧ (#{t | ϕ′} = l) ∧

g = f [j ← ] ∧ ∆

where ϕ′ = ϕ[g/f ]. Let θ denote the same formula after the instantiation of the update

axiom.

θ def
= (l = k + δ+ − δ−) ∧

1(ϕ′, δ+) ∧ 1(ϕ, δ−) ∧ ∆

Then, if Ψ is satisfiable, the following holds for all difference bound constraints ρ(k, l).

Ψ→ ρ(k, l) if and only if θ → ρ(k, l)

For the proof of Theorem 5, we make use of the following proposition stating that equality

constraints are maximal in the following sense: whenever an arbitrary formula implies

an equality constraint, this equality constraint implies all difference bound constraints

that are consequences of the formula.
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Proposition 1 For all Ψ such that Ψ is satisfiable formula in any theory that includes

arithmetic, and for all difference constraints ρ(k, l) and constants c, if

Ψ→ l = k + c and Ψ→ ρ(k, l)

hold then

l = k + c→ ρ(k, l) .

Proof 4 (Theorem 5) The “right-to-left” direction follows from the fact that

Ψ→ θ

holds. For the “left-to-right” direction assume that

Ψ→ ρ(k, l)

and θ hold, then we need to show ρ(k, l). By case splitting over truth valuations for ϕ,

and ϕ′, we get

θ → l = k + c,

for some c. Then, from Ψ→ θ, we can deduce that

Ψ→ l = k + c,

and by Proposition 1, we get that

l = k + c→ ρ(k, l)

from which ρ(k, l) follows. �

Remark 1 If for all cardinalities #{t | ϕ}, we restrict occurrences of t in ϕ to array

reads, all axiom instantiations fall into the array-property fragment, and we can therefore

efficiently compute a complete instantiation for universal quantifiers. We note that this

is the case for all our examples.

3.5.2 Venn decomposition

While for a number of our examples, the above axioms are sufficient (those in the upper

table in Figure 3.8), for some examples (those in the lower table in Figure 3.8– in these

examples comparison between cardinalities go beyond order constraints), we require
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a form of Venn decomposition. For this, we assume that all cardinality constraints

are of the form #{t | ϕ} = k, where ϕ is conjunctive (this applies to all inferred

sets in our examples). Let P denote the set of predicates (conjuncts) occurring in set

comprehensions. Then, we decompose the universal set into regions corresponding to

truth valuations of these predicates. For this purpose, we associate with each set Q ∈ 2P

a region region(Q), which we define as follows.

region(Q) def
= {t |

∧
p∈Q

p ∧
∧

p∈(P\Q)

¬p} (3.3)

Then, for each predicate p ∈ P , we add the following equation.

#{t | p} =
∑
{ #region(Q) | Q ∈ 2P and p ∈ Q }

Finally, we add a decomposition of the universal set Ω def
= {t | true} through the follow-

ing equation.

#Ω =
∑
{ #region(Q) | Q ∈ 2P }

Example 13 Consider the following constraint, which illustrates an argument in the

verification of the one-third protocol presented in Section 3.2. This constraint is unsat-

isfiable, however the axioms of Section 3.5.1 are not strong enough to derive a contra-

diction.

#{t | f(t) = 1} ≥ 2n
3 ∧#{t | g(t) = 1} ≥ 2n

3 ∧

#Ω = n ∧#{t | f(t) = 1 ∧ g(t) = 1} = 0

The set of predicates is given by P def
= {f(t) = 1, g(t) = 1} def

= {a, b}. The Venn-

decomposition produces the following equations.

#{t | a} = #{t | a ∧ ¬b}+ #{t | a ∧ b}

#{t | b} = #{t | ¬a ∧ b}+ #{t | a ∧ b}

#Ω = #{t | a ∧ ¬b}+ #{t | ¬a ∧ b} +

#{t | a ∧ b}+ #{t | ¬a ∧ ¬b}

From these equations, and the facts that #{t | a ∧ b} = 0, and #Ω = n we can derive

the following equality.

n = #{t | a}+ #{t | b}+ #{t | ¬a ∧ ¬b}

Then from #{t | a} ≥ 2n
3 ∧#{t | b} ≥ 2n

3 the contradiction follows. �
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3.6 The method #Π

We first give an overview of our method #Π which computes invariants for parametric

systems by computing a solution (invariant) to a set of Horn clauses in the combined

theory of arithmetic, arrays and cardinalities. Our method relies on the following main

steps.

• Defining the search space. In this step, we restrict the search space for the invariant.

For this, we provide a shape template which specifies the number of sets whose

cardinality the invariant may refer to, as well as the number of quantifiers used in

the invariant (Section 3.6.1).

• Quantifier elimination. We then eliminate universal quantifiers that occur in the

invariant. For this, we rely on existing methods [17, 57].

• Cardinality elimination. In this step, we eliminate cardinalities from the clauses.

For this, we replace all occurrences of cardinalities by fresh variables and recover

relations between the freshly introduced variables by instantiating axioms as de-

scribed in Section 3.5.

• Solving. Finally, we employ an existing solver on the resulting clauses which yields

the desired invariant.

3.6.1 Defining the search space

In order to define a search space for invariants, we require the user to provide a shape

template that fixes the number of cardinality expressions and universal quantifiers that

are allowed to occur in the invariant. For an invariant inv with n quantifiers and m

cardinality expressions, the template defines an assertion Shape(inv) of the following

form, where inv0 is an unknown quantifier-free assertion that relates cardinalities with

program data, and s1, . . . , sm are unknown assertions defining the respective sets.

∀q1, . . . , qn : #{t | s1} = k1 ∧ · · · ∧#{t | sm} = km ∧ inv0

Example 14 In the filter-lock example, we search for an invariant with one quantifier

and one cardinality expression defining an expression Shape(inv) of the following form.

Shape(inv) def
= ∀q : #{t | s} ∧ inv0

�
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algorithm #Π

input C, Q, Shape – clauses, queries, and shape template

output Σ – solution function

local

function ElimCard – cardinality elimination (see Section 3.5)

functions InstQ – quantifier instantiation

function solve – Horn clause solver (see Section 3.6.2)

begin

1: foreach p ∈ dom(Shape) and c ∈ C do

2: c = c[Shape(p)/p]

3: c = InstQ(Shape(p), c)

4: end

5: C = ElimCard(C,Def )

end

return solve(C,Q)

end

Figure 3.6: Algorithm #Π.

3.6.2 Solving

After performing quantifier instantiation for the universal quantifiers that occur in the

shape template, #Π eliminates cardinalities from the clauses. The main difficulty in

solving the resulting clauses stems from the fact that the unknown predicates that define

set-comprehensions may occur negatively due to axiom instantiations. This aspect leads

to non Horn constraints, which are out of scope for existing methods.

In order to deal with negative occurrences of unknown predicates, we provide templates

for these predicates which specify their Boolean structure. For a predicate s over vari-

ables x1, . . . , xd a template consists of a formula

Tmp(s) def
=
∨n
i=1

∧m
j=1(?

i,j
1 x1+?i,j2 x2 + · · ·+?i,jd xd ≤?i,j) (3.4)

where

?i,j1 , . . . , ?
i,j
d

are unknown parameters that are discovered by the solver. Fixing a template for an

unknown predicate allows us to compute its negation which allows us to remove nega-

tive occurrences from the clauses. Note that template discovery can be automated by

iteratively increasing the number of conjuncts/disjuncts.
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To solve Horn clauses that contain unknown assertions under templates, we make use

of an existing method (see [14, 15]). We will now briefly revisit this method. The

method maintains a function Inst, which assigns a formula (instance) satisfying the

constraints specified in Tmp to each p ∈ dom(Tmp). The instances are set to true,

initially. The method starts by substituting each query by its instance and then invokes

a standard Horn clause solver (e.g., [43, 54, 61]) on the resulting clauses. If the clauses

are unsatisfiable and a counterexample is produced, the method picks a query (unknown

assertion) under template, and invokes an SMT solver on the counterexample in order

to find a new instance which avoids triggering the counterexample. If no such instance

can be found for any query, the clauses are unsatisfiable, and the solver returns the

counterexample. If a new instance was found for a query p, the constraints from the

counterexample are added to Tmp(p) in order to ensure that the same counterexample

is not encountered in the future, and the process is repeated.

3.6.3 Algorithm #Π

Figure 3.6 shows method #Π. Its input is a set of clauses C, a set of existentially

quantified predicates Q that we refer to as queries, and a shape template function Shape.

#Π returns a solution function Σ that maps each query to a constraint such that all

clauses in C are valid if one substitutes each query by its solution.

Function InstQ(ψ, c) takes as input a quantified formula ψ, and a clause c. It produces

as output an instantiated clause using existing instantiation methods [17, 57].

Function ElimCard(C,Def ) takes as input a set of clauses and definition function Def

and produces a set of cardinality-free clauses using the procedure described in Sec-

tion 3.5.

The algorithm starts by plugging in shape templates for queries, and instantiating the

universal quantifiers in the templates in lines 1-4 using function InstQ. It then invokes

function ElimCard and passes the resulting clauses to a Horn solver, which returns a

solution function.

3.7 Evaluation

In this section we evaluate our method which we have implemented in a prototype #Π.

We use a 1.3 Ghz Intel Core i5 computer with 4 GB of RAM for our experiments.
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Cardinality-based reasoning

Table 3.8 summarises our results for reasoning with cardinalities. We use templates

that specify the required number of quantifiers and set comprehension predicates, where

the number of required conjuncts for the set comprehension predicates varies from 1

to 3. The upper table shows result on examples taken from [39]. We are not able

to compare timings as, to the best of our knowledge, the technique has not yet been

implemented. The examples consist of a simple running example intro, a simplified

version of a bluetooth device driver bluetooth, and a tree traversal routine tree traverse.

The bluetooth driver consists of a single stopping thread and an arbitrary number of

worker threads. The property we prove is that whenever a worker thread is still active,

the stopping process has not yet been completed. For the tree traversal example, we

found that a simple invariant containing one universal quantifier is enough to prove the

intended property. The example cache consists of a simple model of a cache-coherence

protocol taken from [94], for which we prove mutual exclusion. This is enforced by a

cardinality constraint requiring that the critical section contains at most one thread.

The lower part of Table 3.8 contains the case studies from Section 3.2. We note that the

ticket example from [1] is a simplification of our example as their formulation contains

universally quantified guards in the transitions system which allows a direct encoding

of the fact that a ticket is minimal among all threads. Farzan et al. analyze the

same example in [39], however, it is not possible to express mutual exclusion directly in

their formalism which requires proving a stronger property from which mutual exclusion

follows via a manual argument.

Figure 3.7 contains code for the benchmark garbage collection, which consists of a simple

model of a tri-colour mark-and-sweep garbage collector. This garbage collector partitions

memory locations (nodes) into three disjoint sets: black nodes that are reachable and

hence in use, white nodes that are candidates for deletion, and grey nodes that are

known to be reachable but whose descendants have not yet been marked. The algorithm

proceeds by picking a node in the grey set, marking all its successors as grey, and

finally moving the node into the black set. If the grey set is empty, all white nodes are

unreachable and can be deleted. We model this algorithms through an arbitrary number

of mutator-threads (function ArrWrite) that non-deterministically move nodes from the

white into the grey set, and a single marker-thread (function ArrMark) that first sweeps

the address space to non-deterministically move nodes from the white into the grey set

(which models exploring successors), and in a second pass moves all nodes from the grey

into the black set. Access to the nodes is regulated through a simple lock.

An important invariant of this algorithm is that nodes can only be set to a darker

colour, i.e., once a node has been shown to be reachable, it cannot be re-considered
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global Lock L;

void ArrWrite(int addr) {
1: acquire(L);

2: if (ArrC(addr) == WHITE)

3: ArrC(addr) = GRAY;

4: release(L);

}
void ArrMark() {

1: addr = lo;

2: while (addr ¡ hi) {
3: acquire(L);

4: if ( * && ArrC(addr) == WHITE)

5: ArrC(addr) := GRAY;

6: release(L);

7: addr = addr+1;

8: }
9: addr := lo;

10: while (addr ¡ hi) {
11: acquire(L);

12: if (ArrC(addr) == GRAY)

13: ArrC(addr) = BLACK;

14: release(L);

15: addr = addr+1;

}
}

Figure 3.7: Code for the benchmark garbage collection.

for elimination. We model this monotonicity property through an auxiliary variable.

Proving monotonicity depends on the fact that mutual exclusion between mutators and

the sweeper thread is maintained. Hence, this example highlights that our method can

efficiently deal with the interplay of qualitative properties and cardinalities.
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Cardinality-free reasoning

The ability to synthesize quantified invariants allows us to handle examples of

cardinality-free reasoning from the literature. We compare #Π to the methods from [1]

and [83]. Table 3.9 summarises the results. Benchmarks in [1] consist of a number

of mutual-exclusion protocols that require invariants with two universal quantifiers. In

our experiments, we provide templates that specify the number of required quantifiers

(only). We find that #Π’s performance is on par with [1] when using a solver over the

reals and slightly faster when solving over integers. Examples from [83] consist of two

variants of memory barrier implementations, a work stealing algorithm for processing

arrays, the dining philosophers protocol, and a model of robot swarm on a fixed-sized

grid. Columns I, P, and O, show timings from [83] for interval, polytope and octagon

domains, respectively. Sanchez et al. provide timings for several abstraction schemes,

however, we show only timings from the interference abstraction scheme as these are

most favorable. We observe that #Π is out-performed by the interval abstraction, how-

ever, its performance is on par with the polytope domain, and scales better that the

octagon domain. The reduced performance with respect to the interval domain can

be seen as the penalty of generality since our method can find invariants consisting of

arbitrary, (disjunctive) linear arithmetic formulas.
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3.8 Related work

We broadly divide the related work into logics that support cardinality reasoning, ver-

ification methods for parameterized systems that rely on cardinality arguments, and

methods that rely on universally quantified invariants. The main contribution of #Π

in comparison with the following methods is the ability to reason about and synthesize

assertions that combine cardinality with universal array assertions.

Quantitative Logics The logic of Boolean algebra and Presburger arithmetic

(BAPA) is studied in [65], generalized to multi-sets and fractional collections in [77, 78]

and direct and inverse function/relation images in [93]. This logic is however not suitable

for our purposes, as sets are uninterpreted. Hence the logic cannot be used for reasoning

about sets which are explicitly defined through predicates over the program state, such

as {t | pc(t) ≥ 2}. The examples we considered require this ability when constructing

invariants.

Dragŏi et al. propose a logic that contains cardinality constraints over uninterpreted

functions as well as limited quantifier alternation in [36]. This logic is geared towards

the verification of consensus protocols such as Paxos [66] in the heard-of model [26]

which allows for benign (communication) faults. While the logic is similar in spirit

to our approach, [36] focuses on satisfiability checking in an expressive logic with the

primary intent of checking inductive correctness arguments, whereas our focus lies on

synthesizing such arguments automatically in a more restricted fragment.

An abstract interpretation based approach can track memory partition sizes [44] to

infer memory usage properties. It relies on size tracking domain operations and can

reason about data structures. An extension of such operations with the ability to track

quantified array properties could lead to a viable alternative to our direct axiomatization.

Quantitative verification of parametric systems A classic example of the use

of quantitative abstractions for parametric system is [79], where a number of bounded

auxiliary counters for predefined sets of states are used to prove liveness of parametric

protocols. The CIRC extension [50] of Blast [51, 52] shows how auxiliary counters

can be inferred under predicate abstraction. [13] shows how counter updates can be

inserted in a context-dependant way during model checking thus reducing the burden

of tracking large numbers of cardinalities. Our method avoids the need to track large

numbers of a priori defined cardinalities by automatically synthesizing descriptions of

the required sets. These methods however do not support cardinalities with quantified

array assertions.
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Recently, Farzan et. al [39] proposed a method to infer auxiliary counters which they

formalized in the framework of counting automata, and which they employed in the con-

text of verifying parametric systems. This method is based on an encoding of conditions

on a suitable counting automaton as an SMT problem over arithmetic and uninterpreted

functions. In contrast, our method directly refers to cardinalities of (defined) sets, and

thus avoids reasoning about auxiliary variables. Moreover, [39] is limited to the syn-

thesis of scalar counters, whereas our method permits cardinalities that appear under a

universal quantifier, which corresponds to synthesizing arrays of counters in their set-

ting. Our experiments show that this ability is required for some of the more challenging

benchmarks (i.e. the filter and the ticket example from Section 3.2).

Qualitative verification of parametric systems We now discuss methods for

cardinality-free reasoning about parametric systems and limit ourselves to methods over

infinite domains. The invisible invariants method relies on small instantiation to gener-

ate candidates for universally quantified array invariants and proposes fragments where

checking this candidates can be done effectively [9, 37] even in the presence of complex

communication topologies [10]. Our approach computes quantifier instantiation as a

part of the inference process. In [62] the authors introduce inter-thread predicates that

can express dependencies between the local variables of one thread and all local vari-

ables of another thread together with a mechanism to ensure monotonicity of boolean

programs that arise from computing an abstraction with such predicates. This allows

them to express properties such as: “variable m of this thread is smaller than the vari-

able m of all other threads” which enables verifying the ticket lock. In contrast, our

method avoids tracking such dependencies by referring to the cardinality of the set of

threads at a given location. [83] proposes the notion of reflective abstractions. In this

framework, a proof is constructed by instantiating the transition system with a finite

number of threads and modeling the effect of the remaining threads through a mirror

thread. The method then uses abstract interpretation to infer an invariant for the in-

stantiated system. [1] introduces a formalism that allows to express global conditions

which relate local variables of different threads, and uses backward reachability to verify

safety properties. Data flow graphs are used in [38] to separate reasoning about data and

control and thus infer invariants that holds for arbitrary many threads. Our approach

relies on transition relations, however, it would be interesting to see how the data flow

graph perspective may be applied in our setting.

Universal quantification #Π directly benefits from the ability to synthesize quan-

tified invariants to support cardinality reasoning. Dealing with universal quantifica-

tion over arrays is a thriving research area that relies on abstract interpretation [74],
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SMT [4, 5, 6], CLP [31, 32, 59], quantifier elimination and recurrence solving [35, 49],

and first-order logic [63]. Our axiomatization of cardinality could potentially be used to

put such methods to work on the discovery of cardinality based proofs.

Horn constraint solvers can be extended to support universal quantification by a form

of local instantiation [17, 57]. Our approach can be seen as a direct extension with

cardinality reasoning.

3.9 Conclusion

Parameterized systems model core protocols of software infrastructures. Their verifi-

cation often resorts to cardinality-based arguments as a concise and effective reasoning

tool. Unfortunately, the problem of automatic inference of cardinality-based invariants

was under-studied and viable tool support is scarce. This chapter presented #Π, a

method and implementation for the automatic inference of invariants that track car-

dinalities of assertions in the combined theory of scalars and arrays under universally

quantified constraints. The axiomatization of cardinality we devised for #Π yielded an

effective tool that is capable of verifying intricate parameterized systems using cardinal-

ity arguments, going beyond was possible with state-of-the-art methods. At the same

time #Π is competitive or even outperforms existing verifiers for parameterized systems

that do not require cardinality arguments.

As of today, our approach has the following main limitations, which we consider callenges

for future work.

• We do not consider heap allocated data structures. (Universal quantification in #Π

could provide some information, following [45], but this is currently not explored.)

• We do not investigate the effectiveness of #Π for modular reasoning in the presence

of procedures. (Targeting the case when procedures coincide with transactions [81]

appears to be a promising direction to consider.)



Chapter 4

Conclusion

This thesis introduced two methods for constructing invariants for programs that require

reasoning about cardinalities.

Chapter 2 described #Horn, an invariant generation method that allows to prove

bounds on the number of (subsets of) reachable states which has applications in re-

source bound analysis and quantitative information flow. Chapter 3 described #Π, an

invariant generation method that allows to prove safety properties of parametrized sys-

tems, which has applications in multi-processor programming and distributed systems.

Our evaluation shows that both methods are practical and applicable to a wide range

of verification tasks.
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[36] C. Drăgoi, T. A. Henzinger, H. Veith, J. Widder, and D. Zufferey. A logic-based

framework for verifying consensus algorithms. In VMCAI, 2014.

[37] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with invisible ranking.

STTT, 8(3), 2006.

[38] A. Farzan and Z. Kincaid. Verification of parameterized concurrent programs by

modular reasoning about data and control. In POPL, 2012.

[39] A. Farzan, Z. Kincaid, and A. Podelski. Proofs that count. In POPL, 2014.

[40] A. Farzan, Z. Kincaid, and A. Podelski. Proof spaces for unbounded parallelism.

In POPL, 2015.

[41] M. Fredrikson and S. Jha. Satisfiability modulo counting: A new approach for

analyzing privacy properties. In LICS. IEEE, 2014.

[42] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting. In Handbook of

Satisfiability. 2009.

[43] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing

software verifiers from proof rules. In PLDI, 2012.

[44] S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking

partition sizes. In POPL. ACM, 2009.



Bibliography 66

[45] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters to quantified

logical domains. In POPL, 2008.

[46] S. Gulwani, K. K. Mehra, and T. Chilimbi. Speed: Precise and efficient static

estimation of program computational complexity. In POPL, 2009.

[47] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement

for verifying multi-threaded programs. In POPL, 2011.

[48] C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran. Automated and modular

refinement reasoning for concurrent programs. In CAV, 2015.
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