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Prüfer der Dissertation:

1. Prof. Dr.-Ing. Ulf Schlichtmann

2. Prof. Dr.-Ing. Erich Barke, Leibniz Universität Hannover

Die Dissertation wurde am 17. Mai 2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
12. September 2016 angenommen.





Acknowledgments

I would like to express my gratitude to Professor Dr. Ulf Schlichtmann for supporting
the independent research that is documented in this thesis. His advice helped to
disseminate the obtained results in various conference papers and one journal paper.
Additionally, I would like to thank Professor Dr. Erich Barke for his willingness to survey
this thesis.

Furthermore, I would like to acknowledge the support and opportunities which have
been offered by my colleagues at the Fraunhofer Institute for Integrated Circuits
IIS, Division Engineering of Adaptive Systems EAS in Dresden, Germany. In par-
ticular, I would like to thank Dr. Manfred Dietrich and Roland Jancke for supporting
my work and providing the organizational background. Additionally, I would like to
thank Dr. Joachim Haase and Dr. Christoph Sohrmann for their ideas and the fruitful
discussions on various research topics.

Major results documented in this thesis were obtained in the research projects CoolE-
Design (German Federal Ministry of Education and Research [BMBF], ID 16N10183)
and SUPERTHEME (European Union Seventh Framework Programme, FP7/2007-
2013, grant agreement number 318458). I would like to acknowledge the cooper-
ation with the partners in these projects and beyond, especially Dr. Joachim Müller
and his team, Dr. Hendrik T. Mau, Dr. Sabine Kolodinski, and Ingolf Lorenz (GLOBAL-
FOUNDRIES, Dresden, Germany); Professor Asen Asenov (University of Glasgow
and Gold Standard Simulations, Glasgow, Scotland); as well as Dr. Frédéric Roger
(ams, Premstaetten, Austria).

I would like to acknowledge the typesetting support from Dr. Robert Fischbach and
Dr. Martin Barke. Furthermore, I would like to thank Dr. Joachim Haase, Dr. Uwe Hatnik,
Katja Polotzek, Dr. Torsten Reich, Dr. Peter Schwarz, and Dr. rer. nat. Sascha Trostorff
for proofreading and their recommendations.

Finally, I appreciate the love and support of my family. I would like to express my
gratitude especially to my parents as well as to Tabea and Cedric.



Abstract

Process variations and atomic-level fluctuations cause variations in the performance
parameters of integrated circuits. To accurately predict the circuit behavior before
manufacturing, these effects have to be addressed in the design phase already. For
this purpose, a variety of methods have evolved. However, they appear tailored to
particular problems and often make simplifying, potentially inaccurate assumptions,
such as corners or Gaussian distributions. This thesis presents a multivariate modeling
approach that can be equally applied at multiple levels of abstraction. It treats selected
parameters of arbitrary underlying models as multivariate random variables, which
are described by combinations of generalized lambda distributions and Spearman’s
rank correlation coefficients. Inherently, this approach supports correlated and non-
Gaussian parameters so that it enhances the state of the art. Application scenarios
in device compact modeling, standard cell modeling and corresponding gate level
analyses, and analog behavioral modeling demonstrate the universality and accuracy
of this modeling approach.

Kurzfassung

Durch Variationen im Herstellungsprozess und auf der atomaren Ebene schwanken
die Kenngrößen integrierter Schaltungen. Um aussagekräftige Informationen über das
Schaltungsverhalten vor der Fertigung zu erhalten, müssen diese Variationen bereits
im Entwurfsprozess berücksichtigt werden. Zu diesem Zweck sind verschiedenste
Verfahren verfügbar. Häufig sind sie aber auf einzelne, spezielle Problemstellun-
gen zugeschnitten und treffen vereinfachende Annahmen, z.B. Corners oder nor-
malverteilte Größen. Diese Arbeit stellt einen multivariaten Ansatz zur Modellierung
von Variationen vor, der auf unterschiedlichen Abstraktionsebenen gleichermaßen
angewendet werden kann. Er fasst ausgewählte Parameter eines beliebigen zugrun-
deliegenden Modells als mehrdimensionale Zufallsvariable zusammen. Durch deren
Beschreibungen mit verallgemeinerten Lambda-Verteilungen und Spearman’schen
Rangkorrelationskoeffizienten werden korrelierte sowie nichtnormalverteilte Größen
unterstützt und dadurch der Stand der Technik erweitert. In den Anwendungsbeispie-
len auf unterschiedlichen Abstraktionsebenen, Transistormodelle, Standardzellmodelle
und ihrer Anwendung in Analysen auf der Gatterebene sowie analoge Verhaltensmo-
delle, werden die Allgemeingültigkeit und Genauigkeit des Ansatzes aufgezeigt.
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1 Introduction

1.1 Overview

Modern everyday life is dominated by integrated circuits (ICs). These products of the
semiconductor industry enable cost-effective high-performance computation capabili-
ties and are essential in intelligent extremely low-power applications. Some well-known
application examples are multifunctional consumer devices, high-speed wired and
mobile communication, intelligent driver assistance systems in cars, industrial or home
automation systems, and health technology [ITR11c].

Due to their widespread usage, ICs have an enormous impact on the world-wide econ-
omy. The annual sales of the semiconductor industry are depicted in Fig. 1.1. While a
cyclical time behavior with partially dramatic variations can be observed, the overall
trend is rising. For example, global semiconductor sales reached US$ 300 billion in
2011 [Cha12] and nearly US$ 336 billion in 2014 [Ros15].

One key driver of the success of ICs has been technology scaling. In 1965, Gor-
don Moore analyzed the circuit complexity economically. He found that approximately

0
10
0

20
0

30
0

an
nu

al
sa

le
s

[U
S
$

bi
ll
io
n

]

10
20

50
10
0

20
0

D
R

A
M

ha
lf

pi
tc

h
[n
m

]

1990 1995 2000 2005 2010 2015 2020
year

Fig. 1.1: Semiconductor sales (data from [Cha12, Ros13, Ros15]) and DRAM half pitch
evolutions ([ITR11b], Tab. D)
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1 Introduction

doubling the circuit complexity every year had led to minimum component costs. As a
pure economic consideration, he predicted that this trend would remain approximately
constant for a further 5−10 years [Moo65]. To achieve this goal, the structure sizes,
that is device and interconnect geometries, needed to be reduced. In consequence,
voltages and doping concentrations had to be adapted [DGR+74]. Assuming sub-
sequent technology generations have been separated by a constant scaling factor
κ=
√

2, scaling trends for selected technology characteristics are illustrated in Fig. 1.2.
They demonstrate that both circuit delay and power dissipation could be dramatically
improved by technology scaling.

Until today, these scaling principles have served as a road map for the semiconductor
industry and been known as Moore’s law [ITR11b]. With a scaling factor κ≈

√
2, the

transistor density approximately doubled from one technology generation to the next
[Boh07]. While new technology generations were introduced every 3 years until about
1990, this duration has shortened to about 2 years since then. However, scaling
to reach semiconductor feature sizes in the regime of 100 nm and below posed
various technological challenges. To solve them, enhanced process steps have been
developed and new materials have been introduced. These improvements, some
of which are listed in Tab. 1.1, have come at the cost of an increasingly complex
manufacturing process.

As an example for technology scaling, achieved and expected feature sizes in dynamic
random access memory (DRAM) products over time are depicted in Fig. 1.1. With
structure sizes of 20 nm to 30 nm in mass production today, semiconductors are
approaching physical limits and atomic scales.
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Fig. 1.2: Principles of semiconductor scaling trends [DGR+74] with a scaling factor of κ=
√
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1.2 Motivation

Tab. 1.1: Selected recent major improvements in semiconductor manufacturing

Technological achievement References
Copper wiring reduced interconnect resistivity and limited electro mi-
gration (EM).

[Adv00], [Cat00],
[Hil04]

Strain engineering boosted transistor performance at the 90 nm tech-
nology node.

[TAA+04]

High-k metal gate transistors lowered transistor gate leakage in a
45 nm technology.

[MAA+07]

Fully-depleted tri-gate transistors combine low leakage and high per-
formance at the 22 nm technology node and below.

[AAB+12]

To further increase the performance of ICs, different trends have evolved. On the one
hand, especially in digital circuits for logic operations and signal processing, a further
miniaturization is expected to continue Moore’s law and referred to as More Moore. On
the other hand, More than Moore, the diversification by adding non-digital functionality,
such as high-frequency analog components or micro-mechanical elements, to ICs
offers application specific integrated system solutions [ITR11b].

Irrespective of their concrete application, most recent ICs face similar criteria in
performance, such as high speed and low power consumption; quality, such as
functionality, variability, and reliability; as well as economy, such as low requirements
in die area and considerably low costs [ITR11b], which can only be achieved with
well-organized fabrication and design processes.

1.2 Motivation

In a simplified manner, the organization of semiconductor processing is illustrated
in Fig. 1.3: it may take place in different fabrication plants, so-called fabs; in these
fabs, lots of typically 25 wafers are handled; and on each wafer, multiple ICs are
manufactured side by side [DH12, MI93]. The details of the particular processing
steps, such as implantation, oxidation, or deposition, and their integration are beyond
the scope of this thesis and, for instance, discussed in [Hil04, WT86, Wol90].

Obviously, variations can occur within all these hierarchical levels in the manufacturing
process, that is between fabs, lots, wafers, and ICs. These process variations affect
each individual IC as a whole. They shift certain parameters of all circuit elements,
for instance n-channel field effect transistors (NFETs) and p-channel field effect tran-
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1 Introduction

waferslots ICsfabs

global variations
inter-die variations

die-to-die variations

local variations
intra-die variations

within-die variations

IC

Fig. 1.3: Simplified organization of integrated circuit (IC) manufacturing

sistors (PFETs), equally so that they are referred to as global variations (inter-die,
die-to-die variations) [BC09, DH12]. Examples for global variations are

• lot-to-lot variations due to differences in the temperature and the supply of chemi-
cals in batch processes, such as conventional material deposition, etching, oxida-
tion, and chemical mechanical polishing [Hil04, WT86];

• wafer-to-wafer and across-wafer substrate resistivity variations of up to ±8 % for
p-type and ±20 % for n-type silicon wafers due to uneven doping concentrations
from temperature instabilities and segregation during wafer fabrication [WT86];

• wafer-to-wafer variations from single-wafer processing steps, for instance due to
dose variations in ion implantation or temperature fluctuations in rapid thermal
processing [Hil04, WT86];

• or die-to-die line width and overlay variations due to misalignments of photo
masks, focus variations, and variations in other sub-steps of lithography [Hil04,
LLP06, ONB08].

In addition, process variations can introduce local variability (intra-die, within-die vari-
ability), for instance during lithography, etching, or chemical-mechanical polishing
[ONB08]. Local variability shifts certain parameters of each circuit component individ-
ually and gains importance with shrinking feature sizes. Its most important example is
mismatch, causing identically designed devices within an IC to differ in their properties
and behaviors [PDW89].

Technology scaling has brought semiconductors close to atomic-scale dimensions so
that atomic material structures, energy quantization, and quantum mechanics have
gained importance. Atomic-level fluctuations due to the discreteness of charge and
the granularity of matter have introduced additional local variability that has to be taken

4



1.3 Contributions and Goals of this Thesis

into consideration in the description of semiconductor devices [Ase07, ONB08]. These
effects include

• random dopant fluctuation (RDF): the number (by 5 % to 10 % in small transistors
[BFG+06, ONB08]) and location of channel dopants varies from one transistor to
another [ONB08, KKK+08, KGB+11, Sah10];

• line edge roughness (LER): shapes transferred to the IC during lithography are
not straight but differ from their base lines, affecting both transistors and intercon-
nects [Ase07, KKK+08, ONB08, Sah10, TCR+09];

• interface roughness: interface roughness on a nanometer-length scale may be 1
to 2 atomic layers [BFG+06, Sah10], potentially accounting for a 50 % variation in
gate dielectric thickness in the 65 nm node and below [BFG+06, ONB08, Sah10];

• and random grains: in the polycrystalline structure of the gate dielectric or in metal
gates, grains of random size and orientation can be observed with their boundaries
influencing the electrical behavior of transistors [BFG+06, BRA07, Sah10].

For a long time, global variations dominated IC variability [MI93]. However, local
variability has rapidly been gaining importance at shrinking geometries and emerging
atomic-level fluctuations. In a 65 nm technology, random local variations were even
reported to dominate the overall variability [Hir10]. Increasing relative variations have
worsened the variability issues and made the variability handling in IC design more
complicated [Mir12, Sah10].

From a designer’s perspective, global and local effects contribute to IC performance
variability. Circuits with 30 % maximum frequency variations and up to 10−20X

leakage power variations were reported [Mir12, ONB08], and the impact of variability
on circuit performance is expected to grow further with ongoing technology scaling
[Dec05, Mir12]. To achieve a reasonable quality of future ICs, global and local varia-
tions have to be taken into consideration appropriately already during design to predict
the impact of variability on the circuit behavior.

1.3 Contributions and Goals of this Thesis

Variability has been and will remain a key challenge in IC design [ITR11a, Mir12]. In
this thesis, the term variability denotes time-independent global and local variations
from process variations and atomic-level fluctuations. Further effects, such as time-
dependent parameter evolutions due to degradation, are not considered.
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digital
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memory
design

analog
design

(mixed-signal)
IC / system

digital blocks

logic gates

arrays

bit cells

analog blocks

analog cells

devices

physics

Fig. 1.4: Abstraction levels in IC design to handle variability; digital and memory design from
[ITR11a] and possible future extension for analog circuit design

Many ICs are mixed-signal systems that can consist of digital and analog parts as well
as memories with dedicated design and analysis methods. To handle the complexity
in IC design, abstraction levels for variability have been proposed for digital circuits
and memories [ITR11a]. Their illustration in Fig. 1.4 is supplemented by a possible
extension to analog circuits, which is considered in this thesis. Clearly, variability
arises in the physical layer where many effects are understood. However, variability
information has to be transferred to the device level and further abstracted to logic
gates and digital blocks, to bit cells and memory arrays, or to analog cells and blocks.

The review of existing approaches in this thesis reveals that a variety of solutions for
variability handling are already available. However, they

• appear tailored to particular tasks and are, therefore, not general;

• often only consider particular performance parameters, such as circuit timing;

• and make simplifying assumptions, for instance linear approximations of parame-
ter dependencies or Gaussian distributions.

Therefore, although a lot of research has been carried out already, how to tackle
variability in future IC design has not yet been solved. Furthermore, existing solutions
do not seem to be widely used [Mir12].
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1.4 Organization

This thesis is intended to contribute to an adequate variability handling IC design and
analysis. In particular, it addresses the topic of how to consistently transfer variability
information between different abstraction levels. For this purpose, a fully statistical
modeling approach is established in this thesis. It combines parameter correlations
and generalized lambda distributions (GLDs) to capture

• global and local variations,

• arbitrary statistical correlations,

• and nearly arbitrary distribution shapes.

Thus, the approach is flexible and applicable on multiple abstractions levels, and it of-
fers a solution to correlated non-Gaussian modeling, which was considered impractical,
for instance in [LLP06].

This thesis demonstrates the capabilities and benefits of the developed variability mod-
eling approach at different application scenarios: device compact models, standard
cell models for digital design, and analog behavioral models.

1.4 Organization

This thesis is organized as follows. Chap. 2 provides the theoretical background for this
thesis with an introduction into statistics and variability abstraction. In Chap. 3, the state
of the art in variability handling is reviewed for the device level, digital design, static
random access memory (SRAM) design, and analog design with its limitations being
outlined. Based on research results that were published in [LSJ+11], [LH12], [LJH+13],
[LSJ+14], [LHDK14], [LHE+15], as well as [LSJ+16], a fully statistical multivariate
variability modeling approach for IC design and analysis is established in Chap. 4. In
Chap. 5, multivariate models are determined from characterization data for different
application scenarios: device compact models, standard cell models, and analog
behavioral models. Furthermore, it is demonstrated how these models can be applied
in statistical circuit analyses on different levels of abstraction. Chap. 6 concludes this
thesis by summarizing its content and contributions as well as outlining directions for
future research.
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2 Selected Principles of Statistics

This chapter introduces some basics of statistics. While it focuses on aspects that are
required and applied throughout this thesis, for example, [Dwa70, Eve06, FEHP11,
HE07, HEK09] present more profound and detailed information.

2.1 Univariate Random Variables

2.1.1 Definitions, Descriptions, and Characteristic Values

A univariate random variable (RV) X is a variable that can obtain different values x
according to a probability distribution [Eve06]. The possible values are referred to as
realizations or observations [Eve06, HEK09].

Different functions, for instance the cumulative distribution function (CDF) φ
X
(.), the

quantile function φ−1
X

(.), and the probability density function (PDF) ϕ
X
(.), interchange-

ably describe a RV X whereas one of them is sufficient [Eve06, HEK09]. The CDF

xt 7−→ φ
X
(xt) = Prob [X ≤ xt] = pt, (2.1)

defines the probability that a realization of the RV X is smaller than or equal to a
threshold xt [Dwa70, HEK09]. The inverse of the CDF, the quantile function [HF96]

xt = φ−1
X

(pt) = inf {x : φ
X
(x) ≥ pt} with 0≤pt≤1, (2.2)

assigns the threshold xt to a probability pt. The PDF of a continuous RV [HEK09],

ϕ
X
(xt) =

dφ
X
(x)

dx

∣∣∣∣
xt

⇐⇒ φ
X
(xt) =

xt∫

−∞

ϕ
X
(x)dx. (2.3)
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2.1 Univariate Random Variables

is the first-order derivative of a differentiable CDF. It has to fulfill the conditions
ϕ

X
(x)≥0 ∀ x and

∫∞
−∞ ϕX

(x) dx=1 to be valid [HEK09].

In addition to these functions, the distribution moments and derived quantities are
characteristic values, which define a RV X to a large extent. The most important of
these characteristic values are the mean value µ

X
as the measure of location, the

variance Var [X] or the standard deviation σ
X

as the measures of scale, and the skew
α

X,3
as well as the kurtosis α

X,4
as the measures of shape [Fle78, KD00, VM83]. With

the expected value [HEK09]

E [X] =

∫ ∞

−∞
x ·ϕ

X
(x)dx, (2.4)

these quantities are defined as [Eve06, HE07, KD00]

µ
X

= E [X] , (2.5)

Var [X] = σ2
X

= E
[
(X − µ

X
)2
]

, (2.6)

α
X,3

=
E
[
(X − µ

X
)3
]

σ3
X

, and (2.7)

α
X,4

=
E
[
(X − µ

X
)4
]

σ4
X

. (2.8)

For the measures of shape, two basic properties exist. First, the skew α
X,3

=0 repre-
sents a RV with a symmetric distribution, and a skew α

X,3
6=0 represents a RV with

an asymmetric distribution. Second, large values for the kurtosis indicate RVs with at
least one pronounced distribution tail [Eve06].

2.1.2 Examples of Probability Distributions and Visualization

Important examples for univariate probability distributions are the Gaussian distribution,
also referred to as normal distribution; the uniform distribution; and the lognormal
distribution. Examples of these distributions are depicted in Fig. 2.1.

First, a Gaussian RV XG, denoted XG∼N(µ, σ2), is defined by the PDF [FEHP11,
HEK09, KD00]

ϕ
XG

(x) =
1

σ
√

2π
· exp

(
−1

2

(
x− µ
σ

)2
)

(2.9)
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2 Selected Principles of Statistics

with the parameters µ and σ, which measure the location and the scale of the distribu-
tion. A closed form CDF and a closed-form quantile function do not exist. The most
important special case N(0, 1) is referred to as standard Gaussian distribution. Its CDF
is denoted Φ(.); available in tabular form [HEK09]; and implemented in mathematical
software, for instance in R [R C14]. In this thesis, standard Gaussian RVs will be
denoted G.

Second, a uniform RV XU, denoted XU∼U(a, b), is defined by the PDF and CDF
[Eve06, FEHP11, HEK09, KD00]

ϕ
XU

(x) =





1
b−a : a ≤ x ≤ b

0 : else
⇐⇒ φ

XU
(x) =





0 : x < a

x−a
b−a : a ≤ x ≤ b

1 : x > b

. (2.10)

Its parameters a and b>a define the boundaries of the rectangular PDF, see Fig. 2.1(a).
The most important special case U(0, 1) has the boundaries a=0 and b=1.

Third, a lognormal RV XL, denoted XL∼L(m,σl), is defined by the PDF [FEHP11]

ϕ
XL

(x) =
1

xσl
√

2π
· exp

(
− [log(x/m)]2

2σ2
l

)
, x > 0 (2.11)

with the parameters m,σl>0. In (2.11), log(.) denotes the natural logarithm. If XG is
Gaussian, then XL =exp(XG) is lognormal.

For Gaussian, uniform, and lognormal distributions, Tab. 2.1 summarizes the charac-
teristic values defined in Sec. 2.1.1. The table includes general definitions, special

(a)
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(c)
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−
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Φ−1 (p)

φ
−
1

.
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)

XG∼N(1, 1)

XU∼U(−0.7, 2.7)

XL∼L(0.75, 0.75)

Fig. 2.1: Visualization of example probability distributions; (a) probability density functions
(PDFs), (b) cumulative distribution functions (CDFs), (c) quantile-quantile (Q-Q) plots [Eve06]
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2.1 Univariate Random Variables

Tab. 2.1: Characteristic values of Gaussian, uniform, and lognormal distributions [FEHP11,
HEK09, KD00]; for lognormal distributions: ω=exp(σ2

l )>1 [FEHP11]

Distribution Denotation Mean value Standard Skew Kurtosis
deviation

Gaussian XG∼N(µ, σ2) µ
XG

=µ σ
XG

=σ α
XG,3

=0 α
XG,4

=3

G∼N(0, 1) µ
G

=0 σ
G

=1 α
G,3

=0 α
G,4

=3

XG∼N(1, 1) µ
XG

=1 σ
XG

=1 α
XG,3

=0 α
XG,4

=3

Uniform XU∼U(a, b) µ
XU

= a+b
2 σ

XU
= b−a

2 ·√3
α

XU,3
=0 α

XU,4
=1.8

XU∼U(0, 1) µ
XU

=0.5 σ
XU
≈0.289 α

XU,3
=0 α

XU,4
=1.8

XU∼U(−0.7, 2.7) µ
XU

=1 σ
XU
≈0.981 α

XU,3
=0 α

XU,4
=1.8

Lognormal XL∼L(m,σl) µ
XL

= σ
XL

= α
XL,3

= α
XL,4

=

m exp
(

1
2σ

2
l

)
m
√
ω(ω−1) (ω+2)

√
ω−1 ω4+2ω3+3ω2−3

> 0 > 3
XL∼L(3

4 ,
3
4) µ

XL
=0.994 σ

XL
=0.863 α

XL,3
=3.263 α

XL,4
=26.54

cases, and particular cases chosen to have approximately the same mean values and
comparable standard deviations: N(1, 1), U(−0.7, 2.7), and L(3

4
, 3

4
).

With their skews α
XG,3

=α
XU,3

=0, Gaussian and uniform distributions are symmetric.
In contrast, lognormal distributions are asymmetric. Uniform distributions are bounded
by their parameters b>a so that they do not extend towards extreme values and have
a comparably small kurtosis α

XU,4
=1.8. Compared with Gaussian distributions, lognor-

mal distributions with their positive skews α
XL,3

>0 and their kurtoses α
XL,4

>3=α
XG,4

have pronounced upper tails, that is they extend further towards large values than
Gaussian distributions.

The particular cases N(1, 1), U(−0.7, 2.7), and L(3
4
, 3

4
) are depicted in Fig. 2.1 to

introduce visualization methods for probability distributions: the PDF plot, the CDF plot,
and the quantile-quantile (Q-Q). PDF plots and CDF plots are obvious, but quantile-
quantile (Q-Q) plots require data transformations. They depict quantile functions
φ−1

.
(p) with the abscissa being transformed according to a reference distribution. This

thesis follows the usual convention for Q-Q plots to scale the abscissa by the standard
Gaussian distribution N(0, 1) with its quantile function Φ−1 (p) [Eve06]. Consequently,
Q-Q plots of Gaussian distributions are straight lines while Q-Q plots of non-Gaussian
distributions are not straight lines. In this thesis, the axes of Q-Q plots are set such
that the graphs for Gaussian distributions correspond with the straight line that bisects
the plot axes.
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2 Selected Principles of Statistics

All plots in Fig. 2.1 highlight distribution symmetry and indicate the properties of
distribution tails. However, the distribution tails can be best visualized in Q-Q plots.
For example, the graph of the L(3

4
, 3

4
) distribution lies above the graph of the N(1, 1)

distribution in the first quadrant of the Q-Q plot in Fig. 2.1(c), which demonstrates its
pronounced upper distribution tail. The L(3

4
, 3

4
) distribution extends further towards

larger values than the N(1, 1) distribution although its standard deviation is smaller. In
contrast, the graph of the U(−0.7, 2.7) distribution lies below the line that bisects the
plot axes in the first quadrant, which indicates that it does not have a pronounced upper
distribution tail. This principle can be inverted for lower distribution tails. Since, in the
third quadrant, the graphs of the U(−0.7, 2.7) distribution and the L(3

4
, 3

4
) distribution

lie above the line that bisects the plot axes, they do not have pronounced lower tails.

In summary, mean value and standard deviation, which are similar for the N(1, 1),
U(−0.7, 2.7), and L(3

4
, 3

4
) distributions depicted in Fig. 2.1, are not necessarily sufficient

to describe a univariate RV. Instead, higher-order characteristics, such as the shape
parameters skew and kurtosis, should be considered as well.

2.1.3 Selected Transformations and Calculations

To introduce selected transformations and calculations, let X and Y be univariate
RVs with mean values µ

X
and µ

Y
; variances or standard deviations Var [X]=σ2

X
and

Var [Y ]=σ2
Y
; skews α

X,3
and α

Y,3
; as well as kurtoses α

X,4
and α

Y,4
.

First, linear transformations

X → aX + b (2.12)

with arbitrary real coefficients a and b can be used to scale an arbitrary RV X.
They do not effect the distribution shape, that is skew and kurtosis remain constant:
α

aX+b,3
=α

X,3
and α

aX+b,4
=α

X,4
. However, mean value as well as standard deviation or

variance are transformed according to

µ
aX+b

= a ·µ
X

+ b and (2.13)

σ
aX+b

= a ·σ
X
⇐⇒ Var [aX + b] = a2 ·Var [X] . (2.14)
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2.1 Univariate Random Variables

A particular linear transformation is the standardization of a Gaussian RV
XG∼N(µ, σ2), its conversion into a standard Gaussian RV G∼N(0, 1) [Eve06,
HEK09]:

XG −→ G =
XG − µ

σ
. (2.15)

Second, sums of RVs are often required in variation-aware IC analysis. It is important
to note that the sum of Gaussian RVs is Gaussian as well. To calculate the mean
value, the variance, and the standard deviation of a sum of RVs, the characteristic
values of the summands have to be taken into account [HEK09]:

µ
X+Y

= µ
X

+ µ
Y

(2.16)

Var [X + Y ] = σ2
X+Y

= Var [X] + Var [Y ] + 2 ·Cov[X, Y ]

= σ2
X

+ σ2
Y

+ 2 · ρ(pe)
X,Y
·σ

X
·σ

Y
. (2.17)

In (2.17),

Cov[X, Y ] = E
[(
X − µ

X

) (
Y − µ

Y

)]
and (2.18)

ρ(pe)
X,Y

=
Cov[X, Y ]

σ
X
·σ

Y

with − 1 ≤ ρ(pe)
X,Y
≤ 1 (2.19)

are the covariance and Pearson’s product moment correlation coefficient, respectively,
which measure the inter-dependency of the RVs X and Y [Eve06, HS12, HEK09]. The
values Cov[X, Y ]=ρ(pe)

X,Y
=0 indicate uncorrelated components. In particular, if X and

Y are Gaussian RVs, Pearson’s product moment correlation coefficient measures the
linearity of their dependence [Eve06]: ρ(pe)

X,Y
=±1 mean perfect positive and negative

linear dependencies; ρ(pe)
X,Y

=0 means no linear dependency. In case the RVs X and Y
are Gaussian and their Pearson’s product moment correlation coefficient is ρ(pe)

X,Y
=0,

the RVs X and Y are independent. For the three cases above, the variances or
standard deviations of sums of RVs can be derived from (2.17):

ρ(pe)
X,Y

= −1 : Var [X+Y ] =
(
σ

X
− σ

Y

)2
, σ

X+Y
=
∣∣σ

X
− σ

Y

∣∣ ; (2.20)

ρ(pe)
X,Y

= 0 : Var [X+Y ] = Var [X] + Var [Y ] , σ2
X+Y

= σ2
X

+ σ2
Y

; and (2.21)

ρ(pe)
X,Y

= 1 : Var [X+Y ] =
(
σ

X
+ σ

Y

)2
, σ

X+Y
= σ

X
+ σ

Y
. (2.22)

13



2 Selected Principles of Statistics

These relations are illustrated in Fig. 2.2. If the RVs X and Y have equal variances
and are completely negatively correlated, their sum (X+Y ) is a degenerate RV with
variance 0, that is a constant [Gut13]. Assuming a completely positive correlation
ρ(pe)

X,Y
=1 between the RVs X and Y provides an upper limit for the variance of the

sum (X+Y ), assuming a completely negative correlation ρ(pe)
X,Y

=−1 provides a lower
limit. The variance of the sum of uncorrelated RVs is smaller than in case of positive
correlations, the variations partially cancel out.

Third, in variation-aware digital circuit analysis, statistical maximum and minimum
operations are frequently performed assuming Gaussian operands X∼N(µ

X
, σ2

X
) and

Y ∼N(µ
Y
, σ2

Y
) [VRK+04, VRK+06]. Artificial examples for the maximum operation

for two Gaussian RVs X and Y with different distribution parameters and Pearson’s
product-moment correlation coefficients ρ(pe)

X,Y
are depicted in the Q-Q plots in Fig. 2.3

based on sample data. In general, as in Fig. 2.3(a) and (b), non-Gaussian maximum
distributions have to be expected, but identical (Fig. 2.3(c)) or significantly distant
operands (Fig. 2.3(d)) yield Gaussian maximum distributions. According to [Cla61],
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Fig. 2.2: Standard deviations and variances of sums of RVs, (X+Y ), with Var [Y ]=σ2
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and different product-moment correlation coefficients ρ(pe)
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2.1 Univariate Random Variables

the first four distribution moments of the maximum max [X, Y ] can be calculated. Addi-
tionally, it is claimed that the maximum max [X, Y ] can often be considered Gaussian
without introducing large errors.

2.1.4 Statistical Inference and Selected Statistical Tests

Many analysis methods, for example measurements or simulations, can generate
sample data

∼
X, that is sets of observations x(k). Concluding on the underlying RV X

based on the sample
∼
X is referred to as statistical inference [Eve06].

An example set of sample data
∼
X is given in Tab. 2.2. The observations x(k) are

also referred to as raw or empirical data, and their overall number is called sample
size N [Eve06]. From these observations, the ranks rk

(
x(k)
)
, that is the positions of

the observations in the ordered sample [HEK09], and the order statistics, that is the
ordered observations with x<1>≤x<2>≤ . . .≤x<N> [Eve06, HEK09], can be derived.

Different methods to visualize sample data are depicted in Fig. 2.4: the histogram, the
empirical CDF, and the empirical Q-Q plot [HEK09]. The histogram, which graphically
approximates the PDF, is created by counting the observations in predefined intervals.
The empirical CDF φ̃

X
(.) is derived from the order statistics x<k> [Dwa70, HEK09]:

φ̃
X
(x) =





0 : x < x<1>

1/N : x<1> ≤ x < x<2>

. . .

(N − 1)/N : x<N−1> ≤ x < x<N>

1 : x<N> ≤ x

. (2.23)

Tab. 2.2: Example sample data: observations x(k), ranks rk
(
x(k)

)
, order statistics x<k>;

N=15

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x(k) 0.29 0.57 0.19 0.34 1.85 1.85 0.46 1.17 0.03 0.14 0.15 0.16 0.81 0.30 0.00

rk
(
x(k)

)
7 11 6 9 15 14 10 13 2 3 4 5 12 8 1

x<k> 0.00 0.03 0.14 0.15 0.16 0.19 0.29 0.30 0.34 0.46 0.57 0.81 1.17 1.85 1.85

15



2 Selected Principles of Statistics

In analogy to the theoretical quantile function in (2.2), the empirical quantile function is
defined as

φ̃−1
X

(p) = inf
{
x : φ̃

X
(x) ≥ p

}
with 0≤p≤1, (2.24)

and methods for its practical evaluation are discussed in [HF96], for instance.

In an empirical Q-Q plot, the order statistics x<k> are depicted over the corresponding
expected quantiles from a reference distribution [HEK09], the standard Gaussian
distribution in this thesis.

Sample data
∼
X of the size N allow to compute the sample mean µ̃

X
, the sample stan-

dard deviation σ̃
X
, the empirical skew α̃

X,3
, and the empirical kurtosis α̃

X,4
[HEK09]:

µ̃
X

=
1

N

N∑

k=1

x(k), (2.25)

σ̃2
X

=
1

N − 1

N∑

k=1

(
x(k) − µ̃

X

)2
=

1

N − 1

[
N∑

k=1

(
x(k)
)2 −N · µ̃2

X

]
, (2.26)

α̃
X,3

=

1
N

N∑
k=1

(
x(k) − µ̃

X

)3

√[
1
N

N∑
k=1

(
x(k) − µ̃

X

)2
]3

, and (2.27)

α̃
X,4

=

1
N

N∑
k=1

(
x(k) − µ̃

X

)4

[
1
N

N∑
k=1

(
x(k) − µ̃

X

)2
]2 . (2.28)
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Fig. 2.4: Visualization of sample data from the example in Tab. 2.2 with Gaussian approxi-
mation as a reference and empirical characteristic values; (a) histogram, (b) empirical CDF,
(c) empirical Q-Q plot
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2.1 Univariate Random Variables

For the sample data in Tab. 2.2, these quantities are added to Fig. 2.4.

Since the sample data
∼
X solely represents a subset of the underlying distribution,

(2.25)–(2.28) can only estimate the true distribution characteristics. Furthermore,
(2.25)–(2.28) result in single values, which are therefore referred to as point estimators.
To increase their significance, confidence intervals can be derived. They are also
referred to as interval estimators and contain the true parameter value with a given
probability or confidence level (1−αc) [Eve06, HEK09]. For instance, for a Gaussian
RV X with unknown mean value µ

X
but known standard deviation σ

X
, the confidence

interval for the mean value can be determined from a sample of the size N as
[HEK09]

[
µ̃

X
− σ

X√
N
·Φ−1 (1− αc/2) , µ̃

X
+

σ
X√
N
·Φ−1 (1− αc/2)

]
(2.29)

with the quantile function of the standard Gaussian distribution Φ−1 (.). The width of
this interval,

2 · σX√
N
·Φ−1 (1− αc/2) ∝ 1√

N

is inversely proportional to the square root of the sample size N . That is, in terms
of confidence interval widths, the accuracy of a mean value estimation grows with
the square root of the sample size N [LLP06]. This statement can be qualitatively
generalized: a rising sample size N increases the significance of statistical inference.

Furthermore, sample data
∼
X can be mapped to predefined probability distributions.

One opportunity is to use the method of moments: equating theoretical distribution
moments and derived quantities in (2.5)–(2.8) and their empirical counterparts in
(2.25)–(2.28) to determine the distribution parameters [Eve06, HEK09]. For example,
the sample data

∼
X in Fig. 2.4 can be mapped to a Gaussian distribution X∼N(µ, σ2)

with µ=0.553 and σ =0.609, which is added to the graphs in Fig. 2.4 as a reference.

Statistical tests examine sample data for confirming particular assumptions, the so-
called null hypotheses [Eve06]. An important test parameter is the confidence level
(1−αc) with αc, typically 0.05 or 0.1, being the probability that a null hypothesis is
rejected although it is true [HEK09]. From numerous statistical tests, Kolmogorov-
Smirnov (KS) tests and Shapiro-Wilk (SW) tests, which are widely available in software,
are applied in this thesis
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2 Selected Principles of Statistics

The KS two-sample test compares two samples
∼
X and

∼
Y [Eve06]. The null-hypothesis,

“the samples
∼
X and

∼
Y represent the same underlying distribution” is tested with the

maximum absolute difference between the empirical CDFs φ̃
X
(.) and φ̃

Y
(.) [HEK09]

D = max
{∣∣∣φ̃X

(x)− φ̃
Y

(x)
∣∣∣
}
, (2.30)

while paying attention to the step-wise definition of empirical CDFs in (2.23). If the
value of D exceeds a particular threshold Dt, the null-hypothesis is rejected and,
hence, the samples

∼
X and

∼
Y should be assumed to represent different distributions.

Otherwise, the null-hypothesis is accepted and the samples
∼
X and

∼
Y can be consid-

ered representing the same distribution [HEK09]. The threshold Dt depends on the
confidence level (1−αc) as well as on the sizes of the samples

∼
X and

∼
Y , and it can be

extracted from tables for the particular scenario.

The SW test examines a sample
∼
X of the size N with the null-hypothesis “the sample

∼
X represents a Gaussian distribution”. The test statistic [SW65]

W =

(
N∑
k=1

ak ·x<k>

)2

N∑
k=1

(x(k) − µ̃)
2

=

(
N/2∑
k=1

aN−k+1 · (x<N−k+1> − x<k>)

)2

N∑
k=1

(x(k) − µ̃)
2

(2.31)

is computed with tabulated coefficients ak, which depend on the sample size N . If the
test statistic W exceeds a particular threshold Wt, the null-hypothesis is accepted and
the distribution represented by the sample

∼
X can be considered Gaussian. Otherwise,

the null-hypothesis is rejected and the distribution represented by the sample
∼
X should

be considered non-Gaussian. Similar to the KS test, the threshold Wt depends on the
confidence level (1−αc) and on the sample size N , and it can be extracted from tables
for the particular scenario.1

1Although the SW test was extended to cover other theoretical distributions as well [Eve06], is is solely
applied to test sample data for Gaussianity in this thesis.
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2.2 Multivariate Random Variables

2.2 Multivariate Random Variables

2.2.1 Definitions

When n univariate RVs X1, X2, ..., Xn have to be considered simultaneously, they can
be summarized into a multivariate RV or random vector [HS12]

X = (X1, X2, . . . , Xn) . (2.32)

The univariate RVs X1, X2, ..., Xn are referred to as random components in this context
[HS12]. A multivariate RV can be described by its joint PDF ϕ

X
(x)=ϕ

X
(x1, x2, . . . , xn)

or its joint CDF [Eve06, HE07]

φ
X

(x) = φ
X

(x1, x2, . . . , xn) =

x1∫

x1=−∞

x2∫

x2=−∞

· · ·
xn∫

xn=−∞

ϕ
X

(x) dx1 dx2 · · · dxn (2.33)

while a joint quantile function does not exist.

The distribution of a random component Xi is referred to as marginal distribution and
can be handled as a univariate RV according to the principles in Sec. 2.1. The CDF of
a marginal distribution can be obtained from the integration [Eve06, HE07]

φ
Xi

(x) =

∞∫

x1=−∞

· · ·
x∫

xi=−∞

· · ·
∞∫

xn=−∞

ϕ
X

(x) dx1 dx2 · · · dxn. (2.34)

To characterize a multivariate RVX, the inter-dependencies of its random components
are required in addition to the marginal distributions. For two random components
Xi and Xj, the covariance Cov[Xi, Xj] and Pearson’s product-moment correlation
coefficient ρ(pe)

Xi,Xj
were introduced as measures of inter-dependency in (2.18) and

(2.19) in Sec. 2.1.3. For an n-dimensional multivariate random RV X, (2.18) can be
generalized to yield the covariance matrix [HS12]

Cov[X] = Σ
X

= E
[
(X − µ

X
) (X − µ

X
)T
]

= ΣT
X
, (2.35)

with ΣT
X

being the transposed of the matrix Σ
X

. In (2.35), µ
X

=(µ
X1
, µ

X2
, ..., µ

Xn
)

is the mean vector consisting of the mean values of the random components Xi.
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2 Selected Principles of Statistics

The (n×n) covariance matrix Σ
X

is symmetric and positive semi-definite2. Its main
diagonal elements are the variances of the random components, Σ

X ,ii=Var [Xi]; its
off-diagonal elements are the corresponding covariances, Σ

X ,ij =Cov[Xi, Xj] ∀ i 6=j

[Eve06, HS12, HEK09].

Scaling covariances by the standard deviations of the respective random components
yields Pearson’s product moment correlation coefficients ρ(pe)

Xi,Xj
. Generalizing this fact

leads to the (n×n) Pearson’s product moment correlation matrix [Eve06, HS12]

C
X

= σ−1
X

Σ
X
σ−1

X
. (2.36)

In (2.36), σ
X

is the diagonal matrix of the component standard deviations σ
Xi

,

σ
X

=




σ
X1

0 · · · 0

0 σ
X2
· · · 0

...
... . . . ...

0 0 · · · σ
Xn




such that σ−1
X

=




σ−1
X1

0 · · · 0

0 σ−1
X2
· · · 0

...
... . . . ...

0 0 · · · σ−1
Xn



. (2.37)

Pearson’s product moment correlation matrix C
X

is symmetric and positive semi-
definite. Its main diagonal elements are C

X ,ii=1; its off-diagonal elements are Pear-
son’s product moment correlation coefficients C

X ,ij =C
X ,ji=ρ(pe)

Xi,Xj
[Eve06, HS12].

2.2.2 Multivariate Gaussian Distribution and Visualization

An important multivariate distribution is the multivariate Gaussian distribution
X

G
∼N(µ

XG
,Σ

XG
) with its mean vector µ

XG
and its covariance matrix Σ

XG
. Its

joint PDF is defined as [HS12, HE07]

ϕ
X
G

(x) =
1√

(2π)n ·
∣∣∣ΣXG

∣∣∣
· exp

[
−1

2

(
x− µ

XG

)T

Σ−1
XG

(
x− µ

XG

)]
, (2.38)

whereas Σ−1
XG

and
∣∣∣ΣXG

∣∣∣ are the inverse and the determinant of the covariance ma-
trix Σ

XG
. Special cases include the multivariate Gaussian RV X

Gu
∼N(µ

XGu
,Σ

XGu
)

with uncorrelated Gaussian components XGui∼N(µ
XGui

, σ2
XGui

); the multivariate Gaus-

2Many calculations require the covariance matrix to be positive definite. If required, the algorithm in
[Hig02] can be applied to approximate a covariance matrix Σ

X
by its nearest positive definite matrix.
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Fig. 2.5: Example of a multivariate Gaussian RV XG =(XG1 , XG2)T∼N(µXG
,ΣXG

) with

µXG
=(1, 1) and ΣXG

=

(
1 −0.5
−0.5 1

)
; (a) joint PDF; (b) joint CDF; (c) marginal distribution

of XG1 (PDF); (d) 1σ-, 2σ-, and 3σ-covariance ellipses

sian RV G∼N(0,Σ
G

) with arbitrarily correlated standard Gaussian components
Gi∼N(0, 1); and the multivariate standard Gaussian RV G

std
∼N(0, I), where I is

the identity matrix, with uncorrelated standard Gaussian components Gstdi
∼N(0, 1).

As an example, Fig. 2.5 depicts different visualization methods for a two-dimensional
Gaussian RVX

G
: the joint PDF, the joint CDF, a marginal distribution, and covariance

ellipses.

2.2.3 Selected Transformations and Calculations

In this thesis, linear transformations, concatenations, and summations are applied to
multivariate RVs. To introduce these operations, let X, Y , and Z be multivariate RVs
of the dimensionalities nx, ny, and nz with their mean vectors µ

X
, µ

Y
, and µ

Z
as well

as their covariance matrices Σ
X

, Σ
Y

, and Σ
Z
.

First, the linear transformation

X → AXT + b (2.39)

applies an (m×nx) matrix A and an (m)-vector b. This operation converts the mean
vector and covariance matrix of the RV X by [HS12]

µ
AXT+b

= Aµ
X

+ b and (2.40)

Σ
AXT+b

= A Σ
X

AT. (2.41)
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2 Selected Principles of Statistics

Important linear transformations apply to multivariate Gaussian RVs. The principal
component analysis (PCA), which is described in App. A.1, transforms a RV
X

G
∼N(µ

XG
,Σ

XG
) into a multivariate Gaussian RV X

Gu
∼N(0,Σ

XGu
) with zero

means and uncorrelated components XGu,i. Conversely, a multivariate standard
Gaussian RV G

std
∼N(0, I) can be converted into an arbitrary multivariate Gaussian

RV X
G
∼N(µ

XG
,Σ

XG
) with the transformation [Tho13]

XT
G

= L
XG
GT

std
+ µ

XG
with Σ

XG
= L

XG
LT

XG
. (2.42)

The matrix L
XG

in (2.42) can, for instance, be obtained from a Cholesky decomposition
of a positive definite covariance matrix Σ

XG
[Tho13].

Second, similar to univariate RVs in (2.32), multidimensional RVs X and Y of
the dimensionalities nx and ny can be concatenated to an (nx+ny)-dimensional
RV (X,Y ). Its mean vector is the concatenation of the mean vectors of the
operands, µ

(X,Y )
=(µ

X
,µ

Y
). However, to derive the covariance matrix Σ

(X,Y )
, the

inter-dependency of the RVs X and Y has to be considered. For this purpose, a
generalization of (2.18) or an extension of (2.35) defines the (nx×ny) covariance
matrix between the RVs X and Y [HS12],

Cov[X,Y ] = Σ
X,Y

= E
[
(X − µ

X
) (Y − µ

Y
)T
]

= ΣT
Y,X

. (2.43)

The result Σ
X,Y

=0 identifies the multivariate RVs X and Y to be uncorrelated. The
covariance matrix of the concatenation (X,Y ) reads

Σ
(X,Y )

= Cov[(X,Y )] =

(
Σ

X
Σ

X,Y

Σ
Y,X

Σ
Y

)
=

(
Σ

X
Σ

X,Y

ΣT
X,Y

Σ
Y

)
. (2.44)

Third, multivariate RVs X and Y of the same dimensionality nx=ny can be added.
The summation X+Y combines the mean vectors and covariance matrices of the
operands to [HS12]

µ
X+Y

= µ
X

+ µ
Y

and (2.45)

Σ
X+Y

= Cov[X + Y ] = Σ
X

+ Σ
X,Y

+ Σ
Y,X

+ Σ
Y

= Σ
X

+ Σ
X,Y

+ ΣT
X,Y

+ Σ
Y
. (2.46)

For uncorrelated RVsX and Y , (2.46) simplifies to Σ
X+Y

=Σ
X

+Σ
Y

due to Σ
X,Y

=0.
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Fourth, with three multivariate RVs X, Y , and Z of equal dimension nx=ny=nz, the
RV (X+Z,Y +Z) combines the aforementioned concatenation and summation. The
mean vectors and the covariance matrices of the operands as well as the covariance
matrices between the operands have to be regarded to obtain the mean vector and
covariance matrix

µ
(X+Z,Y+Z)

= (µ
X

+ µ
Z
, µ

Y
+ µ

Z
) and (2.47)

Σ
(X+Z,Y+Z)

= Cov[(X +Z,Y +Z)] =

(
Σ

X+Z
Σ

X+Z,Y+Z

ΣT
X+Z,Y+Z

Σ
Y+Z

)
. (2.48)

In (2.48), the covariance matrices Σ
X+Z

and Σ
Y+Z

can be determined from (2.46), and
the remaining entry reads

Σ
X+Z,Y+Z

= E
[
(X−µ

X
+Z−µ

Z
) (Y −µ

Y
+Z−µ

Z
)T
]

= Σ
X,Y

+ Σ
X,Z

+ Σ
Z,Y

+ Σ
Z
. (2.49)

If the RVs X, Y , and Z are uncorrelated, (2.49) simplifies to Σ
X+Z,Y+Z

=Σ
Z
.

2.2.4 Statistical Inference and Statistical Tests

Samples from an n-dimensional multivariate RV X have to be treated as multivariate
data

∼
X of the sample size N . Consequently, random observations have to be con-

sidered as n-dimensional vectors x(k) [Eve06, HE07]. The properties of the marginal
distributions can be derived according to the principles in Sec. 2.1.4. Furthermore, the
sample data

∼
X allow estimating Pearson’s product moment correlation coefficients for

arbitrary random components Xi and Xj as [Eve06, HE07]

ρ̃(pe)
Xi,Xj

=

N∑
k=1

(
x

(k)
i − µ̃Xi

)(
x

(k)
j − µ̃Xj

)

√
N∑
k=1

(
x

(k)
i − µ̃Xi

)2 N∑
k=1

(
x

(k)
j − µ̃Xj

)2

(2.50)

and, consequently, constructing the empirical product-moment correlation matrix.

Replacing the observations x(k)
i and x(k)

j in (2.50) by their ranks rk
(
x

(k)
i

)
and rk

(
x

(k)
j

)

leads to an estimator for Spearman’s rank correlation coefficient ρ(sp)
Xi Xj

, which is also
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2 Selected Principles of Statistics

referred to as fractile correlation [Fac]. With dij
(k) =rk

(
x

(k)
i

)
−rk

(
x

(k)
j

)
being the

difference in the ranks of the k-th observations of Xi and Xj, it is computed as
[Eve06, HE07]

ρ̃(sp)
Xi,Xj

= 1−
6 ·

N∑
k=1

[
rk
(
x

(k)
i

)
− rk

(
x

(k)
j

)]2

N(N2 − 1)
= 1−

6
N∑
k=1

(
d

(k)
ij

)2

N(N2 − 1)
. (2.51)

Spearman’s rank correlation coefficient lies in the interval −1≤ρ(sp)
Xi,Xj
≤1. It measures

the monotonicity in the dependency of Xi and Xj: ρ(sp)
Xi,Xj

=±1 indicate strictly mono-
tonic increasing and decreasing dependencies, and ρ(sp)

Xi,Xj
=0 indicates uncorrelated

components [HEK09]. The coefficients ρ(sp)
Xi,Xj

can be summarized in the symmetric
(n×n) Spearman’s rank correlation matrix R with Rii=1 and Rij =Rji= ρ̃(sp)

Xi,Xj
.

The combination of Spearman’s rank correlation matrix and the marginal distributions
of all components Xi characterizes an arbitrarily complex multivariate RV X [Fac,
PQH04]. This is an important general approach since analytical expressions for joint
PDFs ϕ

X
(.) or joint CDFs φ

X
(.) only exist for certain distribution types, such as the

multivariate Gaussian distribution, or for low-dimensional RVs [Fac].

As every estimation, (2.51) is subject to statistical inaccuracies due to the limited
information available in the sample data

∼
X. However, a significance test can eliminate

non-significant values: with a confidence level (1−αc) and a sufficiently large3 sample
size N , an estimated Spearman’s rank correlation coefficient ρ̃(sp)

Xi,Xj
is considered

significantly different from 0 if [Haz95, Po11]

∣∣∣ρ̃(sp)
Xi,Xj

∣∣∣ > Φ−1 (1− αc/2)√
N − 1

. (2.52)

The boundary between significant and insignificant estimators for Spearman’s rank
correlation coefficient ρ̃(sp)

Xi,Xj
defined by (2.52) is illustrated in Fig. 2.6 for the confidence

level (1−αc)=0.95.

The visualizations of a two-dimensional RV in Fig. 2.5 are not applicable to data
with higher dimensionality. Instead, empirical multivariate data can be visualized in
scatterplot matrices. As demonstrated in the example in Fig. 2.7, they depict the
pair-wise scatter plots of the random components of a multivariate RV X in a square
grid [Eve06]. In this thesis, the main diagonals of scatterplot matrices are usually filled

3The constraint N>10 from [Po11] does not cause practical limitations for the studies in this thesis.
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Fig. 2.6: Illustration of boundary between significant and insignificant estimators ρ̃(sp)
Xi,Xj

for rank
correlation coefficients depending on sample size N ; confidence level (1−αc)=0.95

X1

X2

X3

X
1

X
2

Fig. 2.7: Scatterplot matrix for multivariate data illustration with example data; off-diagonal
graphs depict scatter plots of random components with plots in a column sharing the abscissas
and plots in a row sharing the ordinates; lower triangular left empty since it is redundant to
the upper triangular; graphs on main diagonal can depict marginal distributions of random
components in the respective columns as additional information

with visualizations of the marginal distributions, such as PDF plots, CDF plots, or Q-Q
plots to provide additional information.

2.3 Generation of Random Samples

Besides the description of RVs and statistical inference, the generation of random
samples is an important topic in the context of this thesis. Introductory remarks and a
method to draw random samples of arbitrary multivariate RVs X are presented in the
following sections.
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2 Selected Principles of Statistics

2.3.1 Introductory Remarks

The computer-based generation of pseudo-random numbers usually applies modulo
operations (mod) [Leh51, Tho13]. With an initial value, the random seed u(0), a sample
point u(k) with k≥1 can be generated from its predecessor u(k−1) by [Tho13]

u(k) =
(a ·u(k−1) + b) mod m

m
, (2.53)

yielding a sample
∼
U from a uniform RV U∼U(0, 1). The parameters a, b, and m have

to be adequately set to achieve a reasonable sample quality [Tho13].

The uniform sample
∼
U can be converted to a sample

∼
X of an arbitrary RV X with its

CDF φ
X
(.) by choosing x(k) such that φ

X
(x(k))=u(k) [Tho13]. This conversion is most

efficient when the quantile function φ−1
X

(.) is analytically available, that is when x(k) can
be directly calculated as x(k) =φ−1

X
(u(k)).

For certain RVs, more appropriate methods for efficient random sampling have been
developed. An important example is the generation of standard Gaussian samples
∼
G from the RV G∼N(0, 1) [Tho13]. These samples can be re-ordered to sample
data

∼
G

std
of a multivariate standard Gaussian RV Gstd =N(0, I). By applying (2.42)

in Sec. 2.2.3, this sample is transformed into a correlated Gaussian sample
∼
X

G

from a multivariate Gaussian RV X
G
∼N(µ

XG
,Σ

XG
) with arbitrary mean vector µ

XG

and covariance matrix Σ
XG

[Tho13]. However, this transformation requires the po-
tentially computationally expensive decomposition of the target covariance matrix
Σ

XG
=L

XG
LT

XG
.

In this thesis, standard Monte Carlo (MC) sampling, the random sample generation
based on the underlying parameter distributions without further processing, is applied.
More advanced sampling techniques are listed and briefly explained in App. A.2.

2.3.2 Generation of Multivariate Random Samples

An approach to characterize an n-dimensional RV X is to combine its marginal
distributions and its Spearman’s rank correlation matrix R

X
. Given such a description,

the following four-step algorithm can be applied to draw random samples
∼
X of the size

N [Fac, PQH04]. Fig. 2.8 depicts the procedure for a two-dimensional example.
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1.a. given:
·quantile functions φ−1

Xi
(.)

·Spearman’s rank correlation
matrix RX

1.b. transformation RX 7→ ΣG by (2.54) →

2. generation of sample
∼
G from RV

G∼N(0,ΣG)
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Fig. 2.8: Generation of multivariate random samples for an n=2-dimensional RV X:

X1∼N(1, 1) and X2∼L(0.75, 0.75), RX =

(
1 0.75

0.75 1

)
, N=1000

1. Conversion of Spearman’s rank correlation matrix R
X

into a matrix Σ
G

by applying
the element by element calculation [Fac, PQH04]

Σ
G ,ij = 2 · sin

(π
6
·R

X ,ij

)
(2.54)

with −1≤Σ
G ,ij≤1 by −1≤R

X ,ij≤1 and Σ
G ,ii=1 by R

X ,ii=1.

For multivariate Gaussian RVs, the transformation (2.54) connects Spearman’s rank
correlation matrix and Pearson’s product moment correlation matrix with negligible
errors [Fac, HP36, PQH04].

2. Generation of random samples
∼
G of the size N from the multivariate Gaussian RV

G∼N(0,Σ
G

) by applying the principles in Sec. 2.3.
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2 Selected Principles of Statistics

Having zero means and the covariance matrix Σ
G

determined from (2.54), the RV
G consists of n correlated standard Gaussian components Gi∼N(0, 1). In this case,
(2.54) connects Spearman’s rank correlation coefficients and Pearson’s product
moment correlation coefficients. In addition, Pearson’s product moment correlation
matrix and the covariance matrix Σ

G
coincide. Hence, the sample

∼
G resembles the

target rank correlation matrix R
X

apart from statistical inaccuracies.

Mind that correlated Gaussian sampling requires a potentially costly decomposition
of the target covariance matrix, Σ

G
=L

G
LT

G
. For this decomposition, the matrix Σ

G

has to be positive semi-definite [PQH04]. If necessary, the algorithm in [Hig02] can
convert the matrix Σ

G
into the nearest positive definite matrix for this purpose.

3. Transformation of the correlated multivariate Gaussian sample
∼
G into a correlated

multivariate uniform sample
∼
U by applying the standard Gaussian CDF Φ (.) to each

realization of each random component,

ui
(k) = Φ

(
gi

(k)
)
∀ i ∈ {1, n}, k ∈ {1, N}, (2.55)

which results in samples
∼
U i of uniform distributions U(0, 1).

Since the standard Gaussian CDF Φ (.) is strictly monotonically increasing, (2.55)
does not alter Spearman’s rank correlation coefficients. Hence, apart from statistical
inaccuracies, the sample

∼
U resembles the target rank correlation matrix R

X
as well.

4. Generation of the target sample
∼
X from the correlated multivariate uniform sample

∼
U by CDF mapping, that is by applying the corresponding quantile function to each
realization of each random component

∼
U i,

xi
(k) = φ−1

Xi
(ui

(k)) ∀ i ∈ {1, n}, k ∈ {1, N}. (2.56)

Clearly, the conversions (2.56) can be performed most efficiently when the quantile
functions φ−1

Xi
(.) are analytically available.

In analogy to Step 3., as the conversion (2.56) is strictly monotonically increasing, it
does not alter Spearman’s rank correlation coefficients. Consequently, the sample
∼
X features the target rank correlation matrix R

X
and its components follow marginal

distributions defined by the quantile functions φ−1
Xi

(.). Therefore, the sample
∼
X of

the size N represents the RV X.
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2.4 Principles of Variability Abstraction

2.4 Principles of Variability Abstraction

The principle of variability abstraction is illustrated in Fig. 2.9: a functional block
transforms an nx-dimensional RV X into an nz-dimensional RV Z via a function h(.).
While the distribution of the RV X can be assumed to be known, properties of the RV
Z have to be determined.

In principle, dedicated analyses, such as simulations, allow the point wise evaluation of
the mapping h(.), but they may cause unreasonable computational costs. An interim
abstraction layer can be introduced and described by an ny-dimensional RV Y to
increase the efficiency. The RV Y can be obtained from a transformation f(.) of the
RV X and mapped to the RV Z via the function g(.).4

The mapping g(.) is known and, depending on the particular application scenario,
may be analytically available. In contrast, the function f(.) is known but usually not
analytically available. Nevertheless, it can be evaluated point wise at reasonable costs,
for example by simulations. In particular, examining random samples

∼
X in a MC

simulation yields sample data
∼
Y of the RV Y .

Under these assumptions, the properties of the RV Z can be derived by two ap-
proaches. First, the mapping f(.) can be approximated by an arbitrary analytical
approach

∼
f (.), which connects the sample data

∼
X and

∼
Y . This model can be used to

approximate the mapping function

Z = h(X) ≈ g
(

(
∼
f (X)

)
(2.57)

to analyze the impact of the RV X on the RV Z if the function g(.) is analytically
available. Otherwise, an appropriate approximation ∼

g(.) of the mapping g(.) has to be
used in (2.57). Second, the sample data

∼
Y can be used to infer on the underlying RV

X

Y
Y=f(X) Z=g(Y)

Z
Z=h(X)

Fig. 2.9: Principle problem of parameter transformations in modeling and abstraction

4Usually, the RVs obtained by f(.) and used in g(.) are different but interlinked. This fact is neglected
here for illustration purposes.
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2 Selected Principles of Statistics

Y , that is to approximate its distribution. Based on this description, sample data
∼
Y

can be generated and transformed via the function g(.) to obtain sample data
∼
Z for

inferring on the RV Z. This approach does not require exact or approximate analytical
expressions for the mappings f(.) and g(.)

These abstraction principles will guide the review of the state of the art in Chap. 3.
Since it appears more universal by not relying on analytical mappings f(.) and g(.),
the development of a multivariate modeling approach in Chap. 4 will apply the sec-
ond approach, the generation of sample data and the subsequent inference on the
corresponding RVs.

2.5 Summary

Selected principles of statistics were introduced in this chapter. Univariate and mul-
tivariate RVs and their description and visualization will be basic modules in the
remainder of this thesis. Furthermore, statistical inference and generation of random
samples provide interfaces to empirical data. They will be of particular importance to
abstract variability information and transfer them between different hierarchical levels
in IC design and analysis.
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3 State of the Art to Handle
Variability in Integrated Circuit
Design and Analysis

Already in 2007, it was reported that guard banding and yield loss needed to be
traded off and statistical methods were required in circuit design to considerably
benefit from new technology nodes [Kah07]. Consequently, a variety of methods and
tools for variability handling on different levels of abstraction have been developed.
In this chapter, they are reviewed based on the abstraction levels, models, and
analysis approaches illustrated in Fig. 3.1. These levels were introduced to handle the
complexity in IC design and analysis with hierarchical approaches since physical level
approaches cannot be used to analyze entire ICs due to their excessive computational
requirements [CFGR06, GR00, RERB13].

After the definition of terms in Sec. 3.1, the general approaches of corner models
and statistical models are introduced in Sec. 3.2. Sec. 3.3 discusses how variability
observed in measurements or device simulations can be transferred to variability-
aware device compact models for circuit simulations. Based on them, standard cell
models for gate level analyses, bit cell models for memories, and behavioral models
for simulations of analog blocks can be constructed. The Secs. 3.4–3.6 introduce how
variability is incorporated in these models and analyses.

For the remainder of this thesis, conclusions are drawn from the state of the art in
Sec. 3.7. They reveal that variability is still an apparent challenge in IC design and
guide the research documented in Chap. 4 and Chap. 5 of this thesis.
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Fig. 3.1: Abstraction levels for variability including required models and analysis approaches to
define terms used throughout this chapter, “-” means no dedicated model or analysis approach;
level of detail increases from top to bottom; adapted and extended from [ITR11a] and Fig. 1.4

3.1 Definition of Terms

In principle, an IC is characterized by nz performance parameters z, which form the
nz-dimensional performance space RZ [SS97]1. For each performance parameter
zj, a lower and an upper specification boundary, LSBj and USBj, define the design
target. Together, the specification boundaries create the tolerance region RT⊂RZ. It
is the part of the performance space RZ where all performance specifications are met

1For example, performance parameters of a transistor may contain its threshold voltage, leakage current,
and maximum drain current; performance parameters of a standard cell include its delay, static power
consumption, and dynamic energies; performance parameters of a digital circuit include its operating
frequency and power consumption.
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Fig. 3.2: Illustration of (a) input parameter space RX and (b) performance space RZ as well
as region of acceptability and tolerance region (non-shaded) for two performance parameters
z1 and z2; line colors and types of boundaries of region of acceptability and tolerance region
correlate

[SS97]. Fig. 3.2(b) depicts a two-dimensional performance space RZ and an assumed
tolerance region RT as an example.

The performance parameters z are impacted by input parameters. Mathematically, this
can be described via a usually very complex mapping h(.), which is schematically illus-
trated in Fig. 3.3(a). The input parameters can be classified into design parameters x

d
,

environmental parameters xe, and process parameters x [AGW94, MBDG13]. While
designers tune the design parameters x

d
to meet the performance specifications, the

operating conditions, such as temperature and supply voltage, define the environ-
mental parameters xe. This thesis assumes design parameters and environmental
parameters parameters to be fixed. Instead, it focuses on the process parameters,
which capture the impact of process variations and atomic-level fluctuations. In conse-
quence, process parameters will be referred to as input parameters x in the remainder
of this thesis. They span the nx-dimensional input parameter space RX [SS97]. To

z

z=h(xd,xe,x)

xe

xd

x

input
parameters

performance
parameters

(a) (b)

y

y=f(xd,xe,x)

xe

xd

x

input
parameters

z=g(y)

z

performance
parameters

Fig. 3.3: (a) Illustration of design parameters x
d
, environmental parameters xe , as well as

process parameters x and their impact on performance parameters z; (b) introduction of
interim hierarchical level
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3 State of the Art to Handle Variability in IC Design and Analysis

capture variability, input parameters are assumed to be described in terms of an
nx-dimensional RV X. Consequently, the mapping h(.) in Fig. 3.3 transforms the
RV X into an nz-dimensional RV Z, which characterizes the performance parameter
variability. This fact can be taken into account by applying the principles introduced in
Chap. 2. To hierarchically cope with complexity issues, one or multiple interim abstrac-
tion levels can be inserted, which was introduced in Sec. 2.4 and which is indicated in
Fig. 3.3(b). An interim level is assumed to be modeled by an ny-dimensional RV Y .

Theoretically, the inverse mapping h−1(.) projects the specification boundaries into
the input parameter space RX, which is illustrated for two input parameters in Fig. 3.2.
In particular, it transforms the tolerance region RT into the region of acceptability
RA⊂RX [SS97], which summarizes all combinations of input parameters x that fulfill
all performance specifications [SS97]. From the projected specification boundaries,
information on parametric yields can be derived as important figures of merit for the
impact of process variations and atomic-level fluctuations in IC design [SS97]. The
partial parametric yield Ψi quantifies the fraction of circuits fulfilling the specification i;
the parametric yield Ψ quantifies the fraction of circuits fulfilling all performance
specifications.

3.2 Corner Models and Statistical Models

This section outlines corner models and statistical models as general approaches to
describe variability. For completeness, it also considers environmental parameters xe .
While environmental parameters xe are subject to changes during circuit operation,
process parameters x are constant after circuit manufacturing when degradation
effects are neglected, as in this thesis. Environmental and process parameters are
also referred to as deterministic and statistical parameters [ZSH+12]. Their distinction
and the derived modeling approaches are illustrated in Fig. 3.4.

Environmental parameters, such as supply voltage and temperature, can be defined
in terms of intervals. A correct functionality is required for all combinations of envi-
ronmental parameters xe within these ranges [ZSH+12]. When their mapping to the
performance parameters, z=he(xe), is assumed monotonic, the extreme performance
parameter combinations are observed for the extreme combinations of environmental
parameters xe, which are obtained from the interval boundaries and referred to as
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Fig. 3.4: Deterministic and statistical parameters with corresponding corner models and
statistical models; statistical parameters are assumed Gaussian with the covariance ellipses
provide as references for worst-case statistical corners and statistical corners

deterministic corners x(corner)
det

. Under the assumption of a monotonic mapping he(.), it
is sufficient to only consider the deterministic corners for circuit verification.

In contrast, to capture variability, process parameters x are described as an nx-
dimensional RV X, that is by a statistical model. An example statistical model is
a multivariate Gaussian distribution X∼N(µ ,Σ) [BCSS08, ONB08, Sah10], which
is illustrated by the covariance ellipses in Fig. 3.4. Such a description can contain
information on global and local variations and achieve a high accuracy.

Commonly, a statistical model is the input to Monte Carlo (MC) analyses, which are
based on random samples

∼
X from the RV X. They can be generated following the

principles in Sec. 2.3 or App. A.2. Potentially expensive simulations evaluate each
sample point x(k) to obtain a sample

∼
Z of the circuit performance parameters. This

sample can be used to infer on the properties of the RV Z describing the performance
variability or to estimate the parametric yield Ψ [Sah10], for example. However, to
achieve a reasonable significance in a MC analysis, a large sample size N may be
required and cause an immense computational effort.
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3 State of the Art to Handle Variability in IC Design and Analysis

Corner models are an approach to reduce this effort by providing a compact set of
parameter combinations for efficient circuit verification. As a simplification, they as-
sume monotonic mappings between process parameters and performance parameters,
z=h(x). In this case, as for deterministic corners, extreme performance parameters
are obtained at the extreme process parameter combinations [ONB08]. However, due
to their statistical nature, extreme process parameter combinations are more difficult
to define than deterministic corners with their predefined intervals for environmental
parameters [ONB08, ZSH+12]. One approach is combining the most extreme allowed
statistical parameters, which can be derived from the process specifications, into
worst-case statistical corners x(corner)

stat,wc
[Sah10]. As indicated in Fig. 3.4, worst-case

statistical corners may be far off the real parameter distribution, making them very
unlikely. In addition, they over-estimate the spread in the process parameters so that
they are very pessimistic.

In contrast, statistical corners are directly derived from the statistical model: each
parameter xi is shifted by k standard deviations σ

Xi
from its mean value µ

Xi
[Sah10],

x
(corner)
i;stat = µ

Xi
± k ·σ

Xi
. (3.1)

Statistical corners x(corner)
stat

are the combinations of these corner values for multiple
input parameters. As indicated in Fig. 3.4, they are closer to the real parameter
distribution so that they better represent a statistical model than worst-case statistical
corners. Under the assumption of monotonic mappings z=h(x), extreme performance
parameter combinations are observed at the statistical corners. The definition in (3.1),
however, implies that statistical corners do no represent parameter limits. Instead,
more extreme values may occur with a small probability of occurrence [ONB08].

While statistical corners can reduce the complexity by simplifications, a variety of
disadvantages was reported.

1. Corners are created by all extreme combinations of input parameters x. For
nx parameters with lower and upper corner values, 2nx corners can be defined.
This leads to 4 corners for nx=2 parameters as in Fig. 3.4 and more than 1000
corners for nx=10 parameters already. To provide a reasonable number of
parameter combinations to be analyzed, the number of corners has to be reduced.
While different corners may result in the extreme values of different performance
parameters, for instance timing and leakage power of digital circuits [BC09], such
a reduction without waiving important scenarios appears challenging [SSK+09].
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2. The simultaneous deflection of parameters into a particular corner ignores real
parameter correlations, which may lead to extremely unlikely statistical corners.
This can be observed in Fig. 3.4, where the upper left and lower right statistical
corners are far off the distribution of the input parameters x1 and x2. The impact
of this effect dramatically grows with the number of input parameters nx.

3. Applied to multiple instances or circuit elements, such as transistors or logic gates,
statistical corners deflect all instances or elements in the same manner. Hence,
they neglect local variability and introduce inaccuracies [LLP06, YTG10].

4. Corner cases do not represent the context-specific extreme circuit performance
[BCSS08, LLP06, SSK+09] if the assumption of monotonic mappings h(.) is
wrong.

All these disadvantages can be observed throughout the hierarchical levels in IC
design when corner models are transferred to higher levels of abstraction.

Corner models and statistical models are universal approaches to model variability.
In IC design and analysis, they are applied to standard models, such as device
compact models or standard cell models, as well as custom models, such as bit cell
performance models and analog behavioral models. For this purpose, a subset or all
coefficients of these are considered statistical parameters and described by a corner
model or a statistical model.

3.3 Device Compact Models

Device compact models abstract the physics of devices by describing their electrical
behaviors. They consist of equations that connect pin voltages and currents depending
on geometry information as well as environmental conditions. Hence, device compact
models can be efficiently evaluated in circuit simulations [Cou12].

According to the naming conventions in Sec. 3.1, physical level parameters are
considered as the vector of input parameters x; model parameters are considered
as a vector y; and the electrical behavior is considered as a vector of performance
parameters z in this section.

A simple example for an NFET or PFET compact model is the equation [MK86]

Id = µ ·Cox ·
W

L
·
[
(Vgs − Vth) ·Vds −

V 2
ds

2

]
. (3.2)
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3 State of the Art to Handle Variability in IC Design and Analysis

It relates the static drain current Id to the applied gate-source and drain-source
voltages, Vgs and Vds. The performance parameters z may be a set of drain currents Id
at different bias conditions. The device length L and width W are instance parameters;
the mobility µ, the gate capacitance per unit area Cox, and the threshold voltage Vth
are the model parameters, which can be summarized in a vector y.

Although they are related to the underlying physics, compact model parameters y
usually cannot be directly determined via a mapping y= f(x). Instead, as indicated in
Fig. 3.5, they are derived from performance parameters during parameter extraction:
the model parameters y are adjusted until the mapping z=g(y) well represents
the measured electrical device behavior. The device-specific model parameters are
summarized in model cards to be accessed and evaluated by circuit simulators.

Since a simple model, such as (3.2), cannot capture all physical effects in modern
semiconductor technologies, more detailed field effect transistor (FET) compact mod-
els with dedicated extraction procedures have been developed [CMC, DH12]. From
the selection of FET compact models in Tab. 3.1, the Berkeley short-channel insulated
gate field effect transistor model (BSIM) can be considered most prevalent.

Process variations and atomic-level fluctuations stem from the physical level where
their sources can be modeled as an nx-dimensional RV X. They manifest themselves
in electrical device performance variability, which can then be considered an nz-

electrical 
performance

z

compact
model

y

device physics
geometry

x

parameter
extraction
y = g-1(z)

computationally very costly device simulations

direct mapping y=f(x)

z = h(x)

usually not possible

circuit simulation 
z = g(y)

Fig. 3.5: Device compact models in context; relations in gray cannot be efficiently evaluated

Tab. 3.1: Overview of selected FET compact models for bulk processes, silicon on insulator
(SOI) technologies, and high-voltage technologies [CMC, DH12]

Technology / Application Models
Bulk BSIM3, BSIM4, BSIM5, BSIM6; PSP; HiSIM; EKV
SOI BSIMSOI; HiSIM SOI
High-Voltage HiSIM HV
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dimensional RV Z. To make these variations available in circuit simulations, variability
information has to be transferred to (selected) compact model parameters, which
can be modeled as an ny-dimensional RV Y . A selection of previously published
approaches for variability-aware FET compact modeling is summarized in Tab. 3.2.
Differences can be obtained in the selections of compact model parameters and in the
specific definitions, such as using Gaussian or non-Gaussian distributions. Hence, a
standard to capture variability in FET compact models has not been developed yet.

Independent of the underlying compact model and the set of parameters that captures
variability, statistical device compact modeling strategies differ in the generation of
sample data

∼
Z of electrical device performance parameters and their transfer to

statistical device compact models described by the RV Y , which is illustrated in Fig. 3.6.
Sample data generation is usually based on measurements of single devices, device
arrays, or small circuits, such as ring oscillators (ROs) [CDM+10, KGB+11, MAW+11,
MLSG10, ONB08, Sah10, YTG10]. In industrial environments, extensive sample data
∼
Z are usually available from process monitoring [PG11, YTG10]. Alternatively, when
feasible physical-level models of devices and variation sources are available, sample
data

∼
Z can be obtained from runtime-intensive statistical device simulations. Variability

information can be transferred to statistical device compact models in terms of a RV
Y by two approaches. First, originating at a single typical compact model, centering
and variation mapping yield a multivariate Gaussian model Y ∼N(µ

Y
,Σ

Y
). Second,

the conventional extraction of an ensemble of compact models yields sample data
∼
Y ,

which can be used to infer on the RV Y .

Tab. 3.2: Approaches for statistical transistor compact modeling

Reference Compact Varied Parameters Distributions
Model

[REO+06] BSIM3v3 vth0, u0, xl, xw, nsub, tox, cgdo, cgso, cgbo, rsh, cj Gaussian
[ONB08], SPICE vth, u0, theta, eta Gaussian
pp. 163 Level 3
[Sah10] BSIM4 tox, xl, xw, vth0, u0, nsub, nch, rsh presumably

Gaussian
[YTG10] EKV tox, nsub, u0, dl, dw Gaussian
[CDM+10] BSIM4 vth0, u0, nfactor, voff, minv, rdsw, dsub Gaussian

PSP nsub0, cfl, alp1l1, u0, cs0, ct0, rsw1 Gaussian
[KDC+10] PSP nsub0, cfl, alpl, u0, cs0, ct0, rsw1 non-Gaussian
Sec. 5.1 BSIM4 vth0, rdsw, nfactor, voff, u0, dsub, vsat non-Gaussian
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Fig. 3.6: Overview on statistical device compact modeling strategies
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Fig. 3.7: Procedure for statistical device model extraction based on backward propagation of
variance (BPV); (1) typical set of model parameters extracted from typical electrical perfor-
mance; (2) adaption of model parameters to meet mean measurement results (3) mapping of
statistics from electrical performance to model parameters applying BPV

The approach of centering and variation mapping is less computationally expensive.
Therefore, it can be efficiently re-used when manufacturing processes change, and
it is usually applied in industry [MLSG10, SM09]. From the sample

∼
Z of electrical

performance parameters, the mean vector µ̃Z and the covariance matrix Σ̃Z can be
estimated applying the principles in Sec. 2.1 and 2.2. Note that the empirical standard
deviations of the components Zj, σ̃Zj

, are parts of the empirical covariance matrix
Σ̃Z. If necessary, the mean vector of the RV Y , µ

Y
, is tuned until it emulates the

mean electrical performance µ̃Z. This multi-criteria optimization, which originates at
the typical model, can be solved by a least squares approach [SM09], for instance.
Variation mapping is based on the assumption of a linear mapping function

z = µ
Z

+ S (y − µ
Y

) , (3.3)

which is justified for small variations [DM03]. The (nz×ny) sensitivity matrix S in (3.3)
with Sji=∂zj/∂yi can be obtained from circuit simulations. According to (2.41) in
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Sec. 2.2.3, (3.3) relates the covariance matrix of the RV Y , Σ
Y

, and the empirical
covariance matrix of electrical performance Σ̃Z by the equation

Σ̃Z = S ·Σ
Y
·ST. (3.4)

Transferring covariance information from performance parameters to model parameters
by solving (3.4) for the covariance matrix Σ

Y
is referred to as backward propagation

of variance (BPV). With the mean vector µ
Y

and the covariance matrix Σ
Y

, the RV
Y is then assumed multivariate Gaussian Y ∼N(µ

Y
,Σ

Y
). In [PG11], (3.4) is directly

solved to explicitly consider correlations between electrical performance parameters
and between model parameters.

Practical applications often use simplifications, however. In [DM03], the components
of the RV Y , Yi, are assumed uncorrelated Gaussians and electrical performance
parameter correlations are neglected, so that (3.4) simplifies to the equation system

∑
i

S2
1i σ

2
Yi

= σ̃2
Zj

· · ·∑
i

S2
1ny

σ2
Yi

= σ̃2
Znz








S2
11 S2

12 · · · S2
1ny

...
... · · · ...

S2
nz1 S2

ny2 · · · S2
nzny


 ·




σ2
Y1

· · ·
σ2

Yny


 =



σ̃2

Z1

· · ·
σ̃2

Znz


 , (3.5)

which has to be evaluated for the model parameter standard deviations σ
Yi

. In
[MLSG10, SLM+10], electrical performance parameter correlations are taken into
account by evaluating

∀j 6= k : Σ̃Z,jk = Σ̃Z,kj =
∑

i

Sji ·Ski ·σ2
Yi

(3.6)

in addition to (3.5) to determine the standard deviations σ
Yi

of the model parameters,
which are still assumed uncorrelated Gaussians. Model parameters with known
standard deviations σ

Yi
, for example the oxide thickness with a dedicated measurement

procedure, may be considered constant in (3.5) and (3.6) [MLSG10, SM09, SLM+10].
Furthermore, a quadratic mapping [MLSG10, SM09],

∀j : zj = µ
Zj

+
∑

i

Sj,i · (yi − µYi
) +

∑

i,k

S∗j,ik · (yi − µYi
) · (yk − µYk

) (3.7)

with S∗j,ik =
1

2
· ∂2zj
∂yi ∂yk

,
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results in a quadratic backward propagation of variance (QBPV), which may overcome
the accuracy limitations of the linear mapping (3.3). After adapting (3.5) and (3.6) to
additionally capture the skews of the electrical performance parameter distributions,
the mapping (3.7) supports non-Gaussian electrical performance parameters but still
assumes uncorrelated Gaussian model parameters Yi.

To correctly describe variability, global and local variations have to be captured [SM09].
While global variations do not depend on device geometries, the geometry dependence
of local variations has to be taken into account [DM03]. Nevertheless, both variation
types can be extracted with the discussed BPV approaches based on suitable sample
data

∼
Z [MLSG10].

The second approach to extract statistical device compact models is based on an
ensemble of model cards. From single-device electrical performance parameters,
a separate model card is extracted for each device. With significant computational
effort, sample data

∼
Y of the compact model parameters that capture variability is

generated to infer on the underlying RV Y [CDM+10, KDC+10, MAW+11]. Neglecting
global variations but introducing random local variations from atomic-level fluctuations
in terms of a RV X at the physical level, N=200 microscopically different 35nm

square NFETs were analyzed by device simulations in [CDM+10]. Their electrical
behaviors were mapped to N=200 model cards. For BSIM4 and PSP compact
models, the authors found that, while keeping most model parameters constant,
capturing variability by 7 model parameters provided a good compromise between
model complexity and accuracy. From the ny=7-dimensional sample data

∼
Y of the

size N=200, they observed correlated and non-Gaussian random components Yi and
concluded that a novel modeling approach for variability was required. A potential
solution was proposed in [KDC+10]: each random component Yi was described by a
third-order polynomial of a standard Gaussian RV Gi∼N(0, 1) [Fle78],

Yi = ci,0 + ci,1 ·Gi + ci,2 ·G2
i + ci,3 ·G3

i , (3.8)

with the coefficients ci,0, ci,1, ci,2, and ci,3. These coefficients were determined by
matching the theoretical and the empirical mean value, variance, skew, and kurtosis
per model parameter Yi. While the theoretical characteristics can be obtained from
(3.8) using (2.5)–(2.8) in Sec. 2.1.1, their empirical counterparts can be derived from
the sample

∼
Y using (2.25)–(2.28) in Sec. 2.1.4. Furthermore, Pearson’s correlation

coefficients ρ̃(pe)
Yi,Yj

between the model parameters Yi and Yj were estimated from the
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sample data
∼
Y by applying (2.50) and transformed to the required correlations between

the standard Gaussian components Gi and Gj by solving [KDC+10]

ρ̃(pe)
Yi,Yj

= ci,0 ·
(
cj,0 + cj,2 + ci,1 cj,1 ρ

(pe)
Gi,Gj

+ 3ci,3 cj,1 ρ
(pe)
Gi,Gj

+ 3ci,1 cj,3 ρ
(pe)
Gi,Gj

+ 9ci,3 cj,3 ρ
(pe)
Gi,Gj

+ 6ci,3 cj,3 ρ
(pe)
Gi,Gj

3
+ ci,2 cj,0 + cj,2 + 2cj,2 ρ

(pe)
Gi,Gj

2
)

(3.9)

for Pearson’s correlation coefficients ρ(pe)
Gi,Gj

for all combinations of i 6=j. In combination,
(3.8) and (3.9) yield statistical device models with non-Gaussian and correlated com-
ponents Yi as transformations of correlated standard Gaussian components Gi. This
approach is utilized in industrial software for device compact modeling [Gol].

3.4 Digital Design and Standard Cell Models

Transistor-level implementations of complete digital circuits are usually infeasible in
terms of complexity. However, transistor-level implementations of basic logic function-
ality, such as inverters or NAND and NOR gates, appear appropriate. These logic
gates, which serve as an interim abstraction layer, are referred to as standard cells
and stored in technology-specific standard cell libraries [BC09].

Digital design is usually based on a functional circuit description in a hardware descrip-
tion language (HDL), such as Verilog R© HDL [Ver06] or Very High Speed Integrated
Circuit Hardware Description Language (VHDL) [VHD09b]. A highly automated chain
of transformation steps instantiates available standard cells to translate this descrip-
tion into a circuit layout: synthesis maps the circuit functionality onto standard cells;
placement defines their locations on the die area; and routing realizes the physical
interconnects [Bha02, BC09]. Since these steps handle logic gates, the corresponding
abstraction layer is referred to as gate level.

The performance parameters of digital circuits include circuit timing and power con-
sumption, and they are summarized in a vector of performance parameters z in this
section. To consider them during design, the automated transformation steps are
based on and followed by dedicated analysis approaches at the gate level. For this
purpose, information on standard cell properties, such as propagation delay, dynamic
energy, or leakage power, have to be available in a standard cell library. These quanti-
ties, which are treated as vector y in this section, are obtained from circuit simulations
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Fig. 3.8: Standard cells as an abstraction layer in digital design

of standard cells during characterization [BC09]. Since transistor-level parameters
can be tuned to adapt standard cell performance quantities, they may be treated as
input parameters x in this section. Overall, Fig. 3.8 illustrates the different abstraction
layers in digital design.

Timing can be considered the most important performance parameter of a digital block.
Within and after each of the automated transformation steps in the design flow, it is
verified by the static timing analysis (STA), an efficient gate level analysis method that
can be considered as a part of the mapping z=g(y) in Fig. 3.8. While the details
of STA are documented elsewhere, for instance in [BC09, Sap04], the AND3 gate in
Fig. 3.9(a) serves as an example to introduce its basic principles.

The STA neglects the logic functionality by abstracting standard cells and consequently
the whole digital block by a timing graph as in Fig. 3.9(b). This graph contains standard
cell and, potentially, interconnect delays2 on its edges [Sap04]. Then, signal arrival
times are computed. In Fig. 3.9, the arrival times at the AND3 input pins i1, i2, and
i3, ATi1, ATi2, and ATi3, are assumed to be known from user-defined constraints or

(a)

ATi1

ATi2

ATi3

i1

i2

i3

o ATo

ti1-o

ti2-o

ti3-o
(b)

o

i3

ATi1

ATi2

ATi3

ATo

ti1-o

ti3-o

ti2-oi2

i1

Fig. 3.9: Principles of static timing analysis (STA); (a) AND3 gate; (b) timing graph

2Detailed modeling approaches for standard cell and interconnect delays are beyond the scope of this
thesis but, for instance, discussed in [BC09, DH12, Kno12, Sap04].
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previous STA steps. The signal arrival times at the AND3 output pin o with respect to
a specific switching event at a specific input pin [BC09],

AT(i1)
o = ATi1 + ti1−o, AT(i2)

o = ATi2 + ti2−o, and AT(i3)
o = ATi3 + ti3−o, (3.10)

are computed from signal arrival times and the corresponding standard cell propagation
delays from the standard cell library, ti1−o, ti2−o, and ti3−o. While the path-based
STA propagates the arrival times at the AND3 output pin o separately through the
subsequent stages of the timing graph, the block-based STA only propagates their
maximum or minimum,

ATo = max
{

AT(i1)
o ,AT(i2)

o ,AT(i3)
o

}
or ATo = min

{
AT(i1)

o ,AT(i2)
o ,AT(i3)

o

}
, (3.11)

through the subsequent stages depending on performing setup or hold checks and
treating clock or data signals [DH12, ONB08]. Due to its increased efficiency, block-
based STA is the industry standard. Summation as well as maximum or minimum
operations are the basic calculations in STA.

Besides timing, circuit leakage power is an important performance characteristic of
a digital block. For each standard cell, state-dependent leakage power values are
determined in the circuit simulations during characterization [FF02, XLL04]. At the gate
level, the leakage power of a digital block is calculated as the sum of the leakage power
values of all standard cell instances [FF02, XLL04]. The dependency on logic states
can be considered by including the results of logic simulations. They can be used as
weighting factors in leakage power summations [FF02] or to identify minimum and
maximum leakage power states based on optimization techniques [CVB04, XLL04].

The performance parameters z of digital blocks vary due to process variations and
atomic-level fluctuations. To take these effects into account, variability information
needs to be abstracted from transistor level parameters x to standard cell performance
parameters y for gate level analyses, such as STA or leakage computations.

For this purpose, corner-based approaches are most straightforward. Standard cells
are characterized for the corner cases of transistor level parameters x, either worst-
case statistical corners or, usually, statistical corners. This is assumed to result
in extreme standard cell performance parameters y(corner). However, corner-based
gate level analysis approaches suffer from the disadvantages discussed in Sec. 3.2:
pessimism in propagation delays [BCSS08, Sap04]; difficulties in defining a reasonable
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set of corners without waiving important scenarios [ONB08, SSK+09]; and neglecting
local variations that tend to partially cancel out along timing paths. Consequently,
corner-based STA results are pessimistic by over-estimating the spread in circuit timing
[BCSS08, DH12, ONB08, Sap04, SSK+09]. A simulation study of a full adder with
independent threshold voltage variations reported up to >25 % errors for variations of
σ/µ=10 % and up to >40 % errors for variations of σ/µ=15 % for corner-based STA
[MAW+11]. Counteracting this pessimism by large design margins increases the die
area, power consumption, and design time [VCBS11]. Accordingly, by more accurate
approaches, timing margins may be relaxed and die areas, power consumptions, as
well as design times may be reduced [BCSS08].

Fig. 3.10 arranges advanced approaches to consider variability in STA. As an extension
to corner-based STA, on-chip variations (OCV) techniques take into account local
variability. The actual OCV approach multiplies all standard cell propagation delays
ti−o with a constant derating factor to determine a percentage path delay variation
[BC09, SSK+09]. To improve OCV, advanced on-chip variations (AOCV) defines
derating factors based on logic path lengths and physical distances. Thus, it reduces
the analysis pessimism by capturing that local variability tends to average out along
timing paths [SSK+09, Wal09]. AOCV is the industry standard for technology nodes
down to approximately 20 nm but still considered pessimistic and costly [Tec12]. For
the 16 nm or the 14 nm technology node, the parametric on-chip variations (POCV)
approach gains importance [Spe12]. It adds cell and net-specific delay variations
assuming Gaussian distributions [MLMC09, Tec12].

Based on statistical standard cell propagation delay models in terms of a multi-
dimensional RV Y

d
, the statistical static timing analysis (SSTA) offers an im-

STA

global
variations

local
variations

global
 and local
variations

corner-based

OCV,
AOCV,
POCV

SSTA

MCSSTAconventional
SSTA

Fig. 3.10: Survey of approaches to consider variability during static timing analysis (STA)
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proved accuracy. In its conventional form, it applies a canonical delay model
[VRK+04, VRK+06],

Y ∗d;j = ti−o,j +

ng∑

i=1

sg;ji ·Xg,i + sl;j ·Xl;j =⇒ Yd;j = ti−o,j + sg;jXg + sl;j Xl;j, (3.12)

to each component of the RV Y
d
. In (3.12), ti−o,j is the nominal propagation delay

of instance j. The ng-dimensional RV Xg represents the statistical transistor level
model describing global transistor level variations with the corresponding instance-
specific sensitivity vector sg;j. The instance-specific univariate RV Xl;j describes the
local transistor level variations with the corresponding sensitivity sl;j. In [VRK+04,
VRK+06], all global transistor level variation parameters Xg,i and the instance-specific
RV Xl;j∼N(0, 1) are assumed uncorrelated standard Gaussian RVs. Accordingly,
as introduced in Sec. 2.1.3, each propagation delay Yd;j in (3.12) is a Gaussian
RVs with its mean value ti−o,j. The propagation delays of different standard cell
instances are correlated due equal global transistor level parameters Xg being applied
to all instances. Signal arrival times determined in (3.10) and (3.11) are mapped
to the canonical form in (3.12), that is to Gaussian RVs, accepting the potential
errors for statistical maximum and minimum operations [VRK+04, VRK+06]. Different
developments improve the usability of the conventional SSTA by reducing its run times.
Reversible statistical maximum and minimum operations enable an incremental SSTA
[SVV+12] and intelligent operand ordering and processing in [KSP+13] achieves run
time improvements of about 60 % in statistical maximum and minimum operations.
To further enhance the SSTA, the sensitivities sg;j and sl;j can be treated as linear
functions of environmental parameters, such as the supply voltage Vdd, to capture
deterministic variations derived from deterministic corners [ZSH+12]. To incorporate
local across-chip variations, the die area can be partitioned into grids and (3.12) can
be extended to [LCXS13]

Yj = ti−o,j + sg;jXg + ssp;jXsp + sl;j Xl;j. (3.13)

The nsp-dimensional RV Xsp is a statistical transistor level model representing local
variations that apply to all instances in a specific grid cell with instance-specific sensi-
tivity vectors ssp;j to account for spatial local correlations. Furthermore, a hierarchical
timing model extraction adapts the SSTA to large digital designs [LCXS13].

Nevertheless, the disadvantages of the conventional SSTA are often criticized.
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1. When variability gains importance, the canonical delay model (3.12), which is
justified for relatively small variations only, becomes inaccurate [BCSS08, DH12,
DMD+07].

2. The Gaussian approximations of the results of statistical maximum and minimum
operations introduce inaccuracies by ignoring the skewness [BCSS08, VCBS11].

Non-linear and non-Gaussian SSTA approaches may solve these issues. For instance,
the quadratic model in [CXH07],

Y ∗d;j = ti−o,j +

ng∑

i=1

(
sg;j,i ·Xg,i + sg2;j,i ·X2

g,i

)
+ sl;j ·Xl;j + sl2;j ·X2

l;j (3.14)

with quadratic sensitivities sg2;j,i and sl2;j, assumes the RV Xl;j to be Gaussian but
allows arbitrary distributions for the global components Xg,i. In [CGX+12], the last
term in (3.14) is skipped. Applying (3.14) to sum, maximum, and minimum operations
increases the SSTA accuracy at the costs of efficiency.

Instead of propagating canonical or higher-order delay models, such as (3.12)–(3.14),
Monte Carlo-based statistical static timing analysis (MCSSTA) methods [BCSS08,
VCBS11] are based on sample data. Sampling from the RVs Xg and Xl;j, which
model transistor level parameters, and from the RVs Y

d;j
, which model standard cell

propagation delays, can be distinguished. The first approach is demonstrated in
[VCBS11], where the canonical delay model (3.12) is assumed. The transistor level
parameters in the RVs Xg and Xl;j are assumed Gaussian. Random samples

∼
Xg and

∼
X l,j are applied to generate samples of the propagation delays

∼
Y d;j to be sequentially

processed by the standard STA in (3.10) and (3.11). The combination of stratified
sampling, quasi-MC, and latin hypercube sampling significantly improves the sampling
efficiency. Furthermore, pruning unimportant stages and intelligently re-using sample
points enable an incremental analysis [VCBS11]. The second approach, directly
sampling from standard cell propagation delays, is referred to as probabilistic timing
analysis [BCSS08]. Sample data

∼
Y d;j can be obtained from standard cell libraries,

which contain multiple instances per cell to capture variability [DMD+07, MAW+11,
PMM+07]. Sets of digital blocks are obtained by randomly assigning standard cell
realizations from the library to instances in the circuit under investigation. They can be
analyzed with standard tools and approaches, such as standard STA. For example, the
simulation study in [MAW+11] demonstrates MCSSTA with 500 random instances of 4

standard cells and achieves a high accuracy with respect to circuit level MC reference
simulations. Furthermore, the probabilistic library is shown to suit efficient and accurate
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statistical gate level power analyses. However, finding a feasible compromise between
library size and accuracy of probabilistic MCSSTA appears challenging.

While timing variability appears to be mainly considered in digital design, dynamic and
static power consumption including their variations are important circuit performance
characteristics as well. In [DEH10], VHDL [VHD09b] simulations are run and the
conventional SSTA approach with the canonical delay model in (3.12) is adapted to
dynamic power to perform a statistical gate level dynamic power analysis. More effort
has been spent on statistical gate level leakage analyses, which treat standard cell
leakage power distributions as a multivariate RV Y

leak
. It is common to analytically

model the leakage power variation of instance j in the form [SSA+05]

Yleakj = exp

(
aj,0 +

ng∑

i=1

ag;j,i ·Xg,i + al;j ·Xl;j

)
, (3.15)

with exp (aj,0) being the nominal leakage power,Xg being an ng-dimensional RV model-
ing global transistor level variation parameters with the corresponding instance-specific
sensitivity vector ag;j, and Xl;j being an instance-specific univariate RV modeling local
variations with the corresponding sensitivity al;j. Assuming the underlying transistor
level parameters Xg and Xl;j to be Gaussian, different variation sources are taken
into account: for example transistor length and oxide thickness variations in [CS05]
or transistor length and threshold voltage variations in [SSA+05]. These approaches
result in log-normal standard cell leakage power distributions so that the circuit leakage
power distribution can be calculated as the sum of log-normal distributions. In [CS05],
the logic states of each standard cell instance are assumed equally probable, but
the state dependency of leakage power can be considered as in nominal leakage
power analyses, for example in [CVB04, FF02, XLL04]. A quadratic dependency of
standard cell leakage power on transistor length variations extends (3.15) to increase
its accuracy [AMG12]. Assuming equally probable logic states as well as Gaussian
transistor length and threshold voltage variations, the circuit leakage power distribution
is estimated from a sampling-based analysis.

However, proper circuit design needs to simultaneously take into account multiple
circuit performance parameters, such as timing, dynamic power, and leakage power,
including their variations. For this purpose, the methods behind MCSSTA with sampled
standard cell performance parameters allow statistical gate level analyses of circuit
timing and power consumption using standard tools [DMD+07, MAW+11, PMM+07].
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As an alternative, [BVG08, SSA+05] combine SSTA and statistical leakage power
analyses to simultaneously examine digital block timing and leakage power. The
underlying process parameters in the analytical standard cell performance models
are assumed to be Gaussian. While [SSA+05] combines the approaches in (3.12)
and (3.15), [BVG08] applies second-order polynomials for standard cell timing and
the logarithm of standard cell leakage power. In [CGO+07], behavioral standard cell
models describe the distributions of standard cell delays, leakage power values, and
potentially other performance parameters depending on design, environmental, and
process parameters. Based on these models, dedicated simulations allow to examine
circuit timing and power consumption.

During circuit optimization, the different performance characteristics and their variability
have to be traded off. For instance, in [BV08], standard cell sizes are optimized to
minimize the mean value and the variance of the circuit leakage power distribution
while an acceptable circuit timing is verified with a simplified delay model. The
approaches in [MDO05, MDOZ07, HKK13] originate from a high performance and
high leakage power circuit implementation. Standard cells are subsequently re-sized
or replaced by lower leakage cells to reduce the circuit leakage power as long as the
timing constraints are met. In principle, [MDO05, MDOZ07] apply the standard cell
performance models in (3.12) and (3.15) and utilize power-delay sensitivities to drive
the optimization. In contrast, the cell contributions to timing yield are the optimization
criteria in [HKK13].

3.5 Memory Design and Bit Cell Models

This section on memory design focuses on static random access memories (SRAMs),
which are dedicated structures for on-chip data storage. As illustrated in Fig. 3.11(a),
they consist of control logic and bit cells, which are connected to an array structure.
The transistor-level schematic in Fig. 3.11(b) depicts an SRAM bit cell from six FETs,
which form two cross-coupled inverters and two access transistors [ARA13, ONB08].

From a complexity perspective, it is infeasible to analyze the SRAM array performance
parameters z based on circuit simulations and transistor-level parameters x. Instead,
according to the SRAM structure, bit cells are introduced as an interim abstraction layer.
Their performance parameters y can be efficiently obtained from circuit simulations.
Bit cells with the worst performance parameters y are assumed to dominate the SRAM
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Fig. 3.11: Static random access memory (SRAM); (a) array structure with one bit cell at each
crossing of rows and columns (simplified from [ARA13]); (b) bit cell schematic [ARA13]
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Fig. 3.12: Hierarchical levels in SRAM design

array performance parameters z. Fig. 3.12 illustrates the interactions between the
hierarchical levels.

Obviously, SRAMs are affected by variability from process variations and atomic-level
fluctuations. Potential failure mechanisms are documented in [ARA13], for example.
Different aspects make SRAMs especially susceptible to variability and require a
special treatment.

• SRAM bit cells are designed with the minimum allowed feature sizes to achieve
a high integration density [ARA13]. These geometries and the cross-coupled
architecture make SRAM bit cells extremely sensitive to variations, especially to
local fluctuations that cannot be captured by corner-based analysis approaches
[ARA13, ONB08, SR10].

• An SRAM array consists of up to several million bit cell instances. This large
number makes statistically rare bit cells important. Their extreme performance
parameters y dominate the SRAM array performance parameters z with their
specifications [ARA13, SR10].
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Tab. 3.3: Examples for required bit cell failure rates FRbit = 1−Ψbit to achieve pre-defined
array yields Ψarray at selected array sizes n according to (3.16)

n Ψarray

0.90 0.95 0.99

100 1.05e-03 5.13e-04 1.00e-04

1000 1.05e-04 5.13e-05 1.01e-05

10000 1.05e-05 5.13e-06 1.01e-06

While SRAMs are typically analyzed based on circuit simulations for bit cells, yield or
failure rate requirements, Ψ or FR =1−Ψ are defined for arrays. Without redundancy,
for an n-bit array, bit cell and array yields and failure rates can be converted by
[SR09, SR10]

FRarray = 1− (1−FRbit)
n ⇔ FRbit = 1− (1−FRarray)1/n ⇔ Ψarray = Ψbit

n, (3.16)

which assumes bit cells to be uncorrelated. The example conversions in Tab. 3.3
indicate that very low bit cell failure rates FRbit or, accordingly, very high bit cell yields
Ψbit have to be verified in circuit simulation-based analyses. This already holds for
moderate array yield requirements and relatively small array sizes as in Tab. 3.3.
In reality, redundancy is introduced in SRAM arrays to account for potential bit cell
failures and to relax the bit cell yield requirements. In this case, (3.16) cannot be used
to relate bit cell and array yields but, for instance, the Poisson yield model provides an
alternative [SR09, SR10].

To estimate the required very high bit cell yield values Ψbit, standard MC circuit
simulations based on statistical device compact models with their parameters X
require an enormous sample size N and hence a tremendous computational ef-
fort [ONB08, SR09, SR10]. The following sections introduce more efficient ap-
proaches: worst-case point (WCP)-based high yield estimation, High-Sigma Monte
Carlo (HSMC), and statistical blockade (SB).

3.5.1 Worst Case Point Analysis

Also referred to as most probable points [SR10] or most probable failure points
[ARA13], worst-case points (WCPs) are an approach for circuit analysis and opti-
mization [AGW94]. A particular application is estimating high yield values, which
makes them appropriate for SRAM bit cell analyses.
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3.5 Memory Design and Bit Cell Models

For bit cells, the WCP x(WCP)
j

is the set of transistor level parameters x that fulfills two
properties: (a) the corresponding bit cell performance parameter yj exactly hits its
specification boundary and (b) of all combinations of input parameters fulfilling (a), the
set x(WCP)

j
is the most probable. If the input parameters are modeled as a multivariate

Gaussian RV X with independent components Xi, the WCP x(WCP)
j

is closest to the
nominal or mean point µ

X
of all points fulfilling (a) [AGW94]. Recall that a multivariate

Gaussian RV can be transformed into a multivariate Gaussian RV with uncorrelated
components by principal component analysis (PCA), see App. A.1. The vector from
the nominal point to the WCP is denoted worst-case vector (WCV), and its length is
referred to as worst-case distance (WCD) βwc

j [AGW94].

Determining a WCP x(WCP)
j

is a non-linear optimization problem, which was proposed
to be solved based on sequential quadratic programming [AGW94] to reduce the
computational effort compared with MC simulations. With this point, the corresponding
specification boundary of the bit cell performance parameter yj can be approximately
projected from the bit cell performance space RY into the transistor level parameter
space RX. As illustrated in Fig. 3.13(a), the projected specification boundary is the
hyperplane perpendicular to the WCV through the WCP x(WCP)

j
[AGW94]. When this

procedure is repeated for all specification boundaries, the region of acceptability can
be approximated. As indicated in Fig. 3.13(b), the true region of acceptability may be
overestimated or underestimated by this approach.

With properly scaled Gaussian transistor-level parameters with zero means and unit
variances, Xi∼N(0, 1), the partial parametric bit cell yield Ψbit,j for the specification j

(a) x1

x
2

nominal point
covariance ellipses
WCP
WCV
true projections of
spec. boundaries
true fail regions
approx. projections
of spec. boundaries

0

(b) x1

x
2

Fig. 3.13: Interpretation of WCPs; (a) first specification only; (b) all specifications; variation
parameters Xi are assumed independent Gaussian; illustrations based on Fig. 3.2 in Sec. 3.1
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Tab. 3.4: Example conversions between failure rate FRbit,j =1−Ψbit,j and worst-case distance
(WCD) βwc

j applying (3.17), κ=1

FRbit,j 0.5 0.1587 2.275e-02 1.350-03 3.167e-05 2.867e-07 9.866e-10

βwc
j 0 1 2 3 4 5 6

can be estimated from the corresponding WCD βwc
j by applying the standard Gaussian

CDF Φ (.) [AGW94],

Ψbit,j ≈ Φ
(
κj · βwc

j

)
with κj =





1 nominal point fulfills spec. j

−1 nominal point misses spec. j
. (3.17)

Tab. 3.4 lists examples for the transformation (3.17). As results of simulation studies,
WCDs of, for instance, βwc

j =5 or βwc
j =6 can be better distinguished than bit cell failure

rates of FRbit,j =2.867e-07 or FRbit,j =9.866e-10. In addition, compared with MCs
simulations, the much higher computational efficiency [AGW94] makes WCP-based
SRAM bit cell analyses promising.

The approximate region of acceptability, such as in Fig. 3.13(b), allows efficient MC-
based bit cell yield estimations [AGW94]. Transistor-level parameter samples

∼
X are

generated and classified as pass or fail without any simulation. The overall bit cell yield
Ψbit is simply the percentage of passing samples. Although the region of acceptability
is approximated, this yield estimate can be considered fairly accurate [AGW94].

Due to their efficiency, WCP-based methods are applied in commercial tools. They
offer efficient analyses and optimizations of, for instance, SRAM bit cells or analog cells
based on multivariate Gaussian transistor-level parameters [AGW94, Liu14, Mun].

3.5.2 High-Sigma Monte Carlo and Statistical Blockade

Instead of approximating the region of acceptability, High-Sigma Monte Carlo (HSMC)
[MBDG13] and statistical blockade (SB) [SWCR08, SR09, SR10] are methods that
focus on the tails of bit cell performance parameter distributions to take extreme events
into account. To introduce them, a particular performance parameter y is assumed to
be modeled as a RV Y with its CDF φ

Y
(.). HSMC and SB are based on an initial Na-

sample MC circuit simulation, which evaluates a sample of transistor level parameters
∼
X

(a)
to obtain a corresponding sample of bit cell performance parameters

∼
Y

(a)
.
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HSMC generates an ordering model from the initial samples
∼
X

(a)
and

∼
Y

(a)
. With this

model, an additional and potentially very large sample of transistor-level parameters
∼
X

(b∗)
of size Nb can be evaluated to estimate the corresponding bit cell performance

parameter sample
∼
Y

(b∗)
without further circuit simulations [MBDG13]. The ranks of the

bit cell performance parameter sample
∼
Y

(b∗)
are used to re-order the transistor-level

parameter sample
∼
X

(b∗)
. This results in a transistor-level parameter sample

∼
X

(b)
which,

according to the model, yields an ordered3 bit cell performance parameter sample
∼
Y

(b)
. The sample points in

∼
X

(b)
are simulated in sequence, and these simulation

results can be used to improve the ordering model. The analysis stops when sufficient
information on the tail of the bit cell performance parameter distribution has been
gained. For example, this is achieved if all Nfail sample points failing the specification
have been simulated. The partial parametric yield for performance parameter y and
the considered specification can then be derived as [MBDG13]

Ψ = 1− Nfail

Nb

. (3.18)

Apparently, such an analysis can be applied to multiple bit cell performance parameters
and specifications sequentially.

As an alternative, SB focuses on modeling the upper tail of a bit cell performance
parameter distribution4. It is based on the conditional probability [Uo11], which defines
the probability that the performance parameter y is smaller than a given value y1>yt

by the equation [SR09, SR10]

Prob [Y < y1] = φ
Y

(y1) = [1− φ
Y

(yt)] ·φ[yt]
(y1 − yt) + φ

Y
(yt). (3.19)

In (3.19), yt is an arbitrary threshold and φ
[yt]

(y1 − yt) is the probability of yt≤Y < y1

under the condition y1>yt. From the initial samples
∼
X

(a)
and

∼
Y

(a)
, SB estimates

the bit cell performance parameter CDF φ̃
Y

(y), derives the thresholds yt and yc<yt,
and generates a classification or blockade filter using data mining techniques
[SR07, SWCR08, SR09, SR10]. An initial sample of the size Na=1000 as well as
the thresholds yc and yt such that φ̃

Y
(yc)=0.97 and φ̃

Y
(yt)=0.99 were proposed in

3Using the ranks in ascending order has to be used to examine a lower distribution tails; using the ranks
in descending order has to be used to examine an upper distribution tail.

4However, it can also be applied to lower tails, which can be converted to upper tails by a multiplication
with -1 [SR07].
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[SR09, SR10]. The classification filter evaluates a potentially very large sample of

transistor-level parameters
∼
X

(b∗)
by predicting the corresponding bit cell performance

parameter sample
∼
Y

(b∗)
without additional simulations. It flags sample points as impor-

tant when the filter predicts the performance parameters y to exceed the threshold yc,
which is applied instead of yt to account for potential model inaccuracies. The important

points form the input parameter sample
∼
X

(b)
of size Nextr, which is evaluated in further

circuit simulations to obtain the sample
∼
Y

(b)
of extreme bit cell performance parameter

values from comparably few simulations [SR07, SR09, SR10]. The sample
∼
Y

(b)
is

mapped to the generalized Pareto distribution with its CDF [SR07, SR09, SR10]

φ
[yt]

(y1) = φ(z) =





1−
(

1− ζ · z
β

)1/ζ

ζ 6= 0

1− exp
(
− z
β

)
ζ = 0

with z = y1 − t ≥ 0. (3.20)

The distribution parameters ζ and β can be tuned such that (3.20) well describes the

sample
∼
Y

(b)
. With these steps, the unknown quantities on the right-hand side of (3.19)

can be determined. When an upper specification boundary is used as the threshold y1

in (3.19), SB allows to estimate high partial parametric bit cell yields Ψbit. Compared
with MC circuit simulations, SB can achieve 10X − 100X speed ups [SR07, SR09].
The approach can be applied to multiple performance parameters and specifications
sequentially with separate classification filters. Furthermore, its recursive application
can yield about 104 X speed ups compared with standard MC circuit simulations when
estimating extremely high bit cell yield values Ψbit [SWCR08, SR10].

3.6 Analog Design and Behavioral Models

Although many signal processing tasks are performed by digital circuits, analog blocks
will remain important parts of mixed-signal systems. Examples include amplifiers,
filters, and converters for signal processing or stable oscillators and voltage as well
as current sources as internal references [GR00]. In principle, analog circuit design
comprises three basic steps, which are closely linked and accompanied by verification
[GR00, RERB13], usually in terms of circuit simulations.

1. The basic structure of the circuit schematic is defined during topology selection.
Devices and potential sub-cells are chosen, arranged, and connected. Topology

56



3.6 Analog Design and Behavioral Models

selection is usually based on the designer’s experience but can be assisted by
design tools [GR00, MBDG13, RDL+09].

2. The design parameters, mainly the device geometries, are tuned during circuit
sizing [GR00, MBDG13, RERB13]. An initial phase and optimization phases
can be distinguished to meet the analog block performance specifications over
operating corners and to improve the parametric yield Ψ in the presence of
variability. Optimization algorithms based on performance models [AGW94, GR00,
MBDG13] and commercial tools [Cad14, Mun] allow automatic circuit sizing.

3. During layout generation, the sized devices are placed and routed to prepare
mask generation and circuit manufacturing. While layouts of analog blocks have
mainly been created manually, template-based [CFGR06, GR00], generator-
based [RERB13], or constraint-based [SEGS11] automatic approaches have been
evolved. Layout parasitics, mainly resistances and capacitances of interconnects,
can be extracted and fed back to circuit sizing [CFGR06, RDL+09].

The complexity of state-of-the-art analog blocks is a challenge for analog circuit design.
The transistor-level implementation of an analog block is difficult, and its verification
by circuit simulations may be computationally very expensive. In common practice,
both aspects can be tackled by the introduction of hierarchy: analog blocks are divided
into analog cells, and analog cells may be further sub-divided [CFGR06, GR00, GP06,
RERB13]. As an example, a particular analog block is a particle and radiation detector
front-end. It can be implemented by instantiating several analog cells: a filter stage
and operational amplifiers [GR00]. The operational amplifiers can be sub-divided
into a differential input stage, an output stage, and potential interim amplification
stages [CFGR06, Jun06, SEGS11, TS02]. Analog cells can be designed and verified
stand-alone, before they are connected to form an analog block.

The hierarchical analysis of analog blocks benefits from higher-level models [GR00,
GP06, Niz12]. Selected approaches to represent analog cells are briefly introduced
in Tab. 3.5. From this selection of models with different purposes as well as levels
of complexity and accuracy, performance models usually describe quantities that
characterize an analog cell. In contrast, macro models as well as analog behavioral
models can be used in efficient circuit simulations; functional models can be used
in system-level simulations. The following discussions focus on analog behavioral
models for two reasons. First, functional models better suit the abstraction of analog
blocks, a hierarchical level, which is beyond the scope of this thesis. Second, macro
models can be used as parts of behavioral models if properly implemented [JS06].
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Tab. 3.5: Representations and models of analog cells [DGS03, Dur98, GR00, GP06, Vog12]

Representation Explanation and Purpose
Transistor level
circuits

For circuit implementation, active (transistors, diodes) and passive (resis-
tors, capacitors, etc.) devices and their interconnections are defined in
terms of schematics and layouts. Circuit simulators allow verification.

Macro models Macro models, also referred to as equivalent circuits, are simplified circuit
descriptions of analog cells. They are based on primitive devices and
controlled voltage or current sources, which are available in a particular
circuit simulator syntax. Macro models mimic the behavior of an analog
cell for efficient verification using circuit simulators.

(Analog) Behav-
ioral models

Behavioral models are implemented in an analog HDL, such as VHDL-
AMS [VHD09a] or Verilog-AMS with its sub-set Verilog-A [Acc14]. They
abstract analog cells or blocks by describing the relations between pin
voltages and currents. They can replace the corresponding transistor
level circuits to speed up circuit simulations.

Functional
models

Functional models describe the outputs of analog cells or blocks based
on their inputs in a signal-flow like manner. They can be used in sys-
tem level analyses, for example to derive cell specifications from block
specifications.

Performance
models

Performance models approximate the performance parameters of analog
cells y, such as bandwidth or gain, as functions of input parameters
x. Hence, they describe particular quantities that characterize a circuit
implementation. When the input parameters are design parameters x

d
,

such as transistor lengths and widths, performance models can be used
for circuit sizing. To evaluate performance models in circuit simulations
or system level simulations, they have to be transformed to behavioral
models or functional models, however.

Fig. 3.14 illustrates the introduction of analog behavioral models to abstract a transistor
level circuit. The behavioral model coefficients y are determined from circuit simu-
lations that evaluate sets of transistor level parameters x. Instantiating a behavioral
model in a further simulation to obtain the analog block performance parameters z
is much less computationally expensive than directly examining transistor level pa-
rameters x for the whole analog block. For single analog cells, evaluating analog
behavioral models can be expected to yield 10X to 50X speed-ups compared with
circuit simulations [Vog12].

To implement analog behavioral models in an analog HDL, numerical, symbolical, and
analytical approaches can be applied and combined with macro models [JS06]. Some
approaches and tools offer an automatic model derivation. In [MG05], for example,
the transient behaviors of analog cells are mapped to compact non-linear differen-
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analog block
performance

z

analog cell
behav. model

y

transistor level
circuit
x circuit simulations very costly

circuit
simulations

z = h(x)

y = f(x)

instantiation
in simulations

z = g(y)

Fig. 3.14: Abstraction in analog design

tial equations applying a modification of genetic programming. Furthermore, [Fra]
takes circuit structures into account to describe analog cells by systems of non-linear
symbolic differential-algebraic equations. Subsequent model order reductions ensure
reasonable model complexities. However, in general, the generation of analog be-
havioral models is a complex procedure, which consists of specification, definition,
implementation, validation, and documentation [JS06]. Since analog behavioral mod-
eling appears difficult and hard to automate, it seems to be rarely used in industrial
designs [GR00, LBC+11b, Vog12].

Nevertheless, a variety of behavioral models is available for basic analog cells. For ex-
ample, without considering a power supply pin and close to functional models, [Dur98]
demonstrates analog behavioral models of various analog cells, for instance analog
arithmetic, differentiators and integrators, or sample-and-hold circuits. Commercial
design environments, such as [Cada], offer behavioral models of numerous basic
analog cells without power supply pins. Based on an equivalent circuit, a behavioral
model template of an operational amplifier is set up in [Sab16]. The automatic model
calibration captures the dependency on operating conditions, for instance supply
voltage and bias current. Their impact is included in a Verilog-A implementation by a
table-based approach. Behavioral passband models of a low noise amplifier as well
as a modulator and a demodulator are presented in [Che12]. These models take into
account noise as a non-ideal effect. In contrast, [Vog12] demonstrates behavioral
models of a programmable-gain amplifier and of an operational amplifier including
their power supplies.

However, these model examples focus on the nominal behavior of analog cells. Ex-
tensions are required to capture variability from process variations and atomic-level
fluctuations. Selected examples from literature are introduced in the following. Al-
though not considering process variations, the behavioral model of a single photon
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avalanche diode in [GMP11] demonstrates how the inherent statistical nature of the
physics in this semiconductor structure can be described in Verilog-A syntax with
Gaussian and exponential distributions. In [AKWW09, Ali09], a behavioral model
of a voltage-controlled oscillator is discussed. It combines table models for design
space exploration and Gaussian variations of the tabulated coefficients. Variability
leads to an ensemble of cell behaviors, which can be enclosed by behavioral models
with interval-valued parameters. These parameters can be found by support vector
machine-based optimizations [KOB14]. Furthermore, linear [KC96, LBC+11a, SH10]
or second-order [HHPP15, KLLH09] sensitivity information, which is similar to the
SSTA for digital circuits in Sec. 3.4, can be applied to include variability information into
behavioral models. That is, the coefficients y of behavioral models are approximated
as linear or second-order functions of process parameters x, which may be arbitrarily
distributed, for sampling-based model evaluations. Response surface approximations
are more general and may improve the accuracy of this mapping [Mun]. Nevertheless,
variability-aware analog behavioral models do not appear to be widely applied.

3.7 Conclusions

Variability has been and will remain an issue in IC design and analysis. Hence, multiple
approaches address these effects and their impacts. The review in this chapter reveals
that besides the still widely used corner-based approaches to tackle global variations,
different methods to additionally capture local variations exists. In the state of the art,
however, several issues can be detected.

1. In the different domains of variability modeling, different approaches are ap-
plied, which appear tailored to particular problems. Examples are the backward
propagation of variance (BPV) to extract statistical device compact models, the
statistical static timing analysis (SSTA) to verify the timing of digital circuits, and
the high-yield estimation methods to analyze memories. Thus, none of these
approaches can be applied universally.

2. Many approaches make simplifying assumptions, for instance linear approxima-
tions and Gaussian distributions. When non-Gaussian parameters are consid-
ered, the approaches are application-specific: non-linear power models (NPMs)
in device compact modeling, quadratic mapping functions and non-Gaussian pa-
rameters in statistical static timing analysis (SSTA) or analog behavioral models,
or generalized Pareto distributions in statistical blockade (SB).
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3. For statistical device compact models, a standard on which model parameters
capture variability has not been established yet. Instead, different authors pro-
pose different sets of parameters based on the underlying compact models and
technologies. Due to potential confidentiality issues, it can be expected that not
all variability-aware compact modeling approaches will be made public.

4. The missing standards for variability-aware device compact models and the poten-
tial confidentiality concerns may hinder a wide-spread application of analytical ap-
proximations of model coefficients y on transistor level parameters x, for instance
to describe the variations in standard cell performance parameters or analog
behavioral model coefficients. Furthermore, whether linear functions, higher-order
polynomials, or response surface models in general, analytical approximations
have to be treated carefully to prevent the introduction of inaccuracies.

In addition, some techniques that consider variability do not appear to be widely applied.
In particular, this holds for variability-aware analog behavioral models. Furthermore,
in digital design, corner-based static timing analysis (STA) combined with on-chip
variations (OCV) approaches appears to be performed more frequently than statistical
static timing analysis (SSTA). In the design community, there does not seem to be a
common agreement on an optimum timing analysis method [TAU13].

Special attention should be paid to non-Gaussian distributions, which were considered
difficult to model at a reasonable complexity, for instance in [LLP06]. Gaussian
variations in characteristics of the manufacturing process, that is at the physical level,
have to be expected to cause significantly non-Gaussian transistor level parameter
distributions [LKBF09]. Their abstraction in the design flow will yield further non-
Gaussian parameter distributions.

Consequently and conforming with [Mir12], advanced methods and tools for variability
handling in IC design and analysis are required to supplement existing approaches. As
a potential solution, a multivariate probabilistic modeling approach is developed in the
subsequent chapter of this thesis. This approach addresses the issues listed above to
consistently transfer variability information between different levels of abstraction in IC
design and analysis.
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Circuit Analysis

A variety of methods is available to address variability in different domains of IC design
and analysis. According to their review in Chap. 3, missing universality, simplifying as-
sumptions, and potential confidentiality concerns are their disadvantages. To improve
the variability considerations in IC design, a novel modeling approach is introduced in
this thesis. It is intended for solving the issues of the state of the art, which were listed
in Sec. 3.7.

For this purpose, a statistical model is developed. In agreement with the conventions in
[BCSS08], the denotation probabilistic model is used throughout this thesis. Variability
is modeled by multivariate RVs, which take into account global and local variations
and offer the following advantages over the state of the art.

1. Variability from process variations and atomic-level fluctuations is modeled by
a unique approach, which can be applied in different domains and at different
levels of abstraction. The approach can be applied to extend an arbitrary under-
lying model: standard models, such as device compact models or standard cell
performance models, as well as custom models, such as bit cell performance
models or analog behavioral models. In particular, selected or all parameters of
the underlying model are treated as multivariate RVs. The scenarios in Tab. 4.1
outline selected application cases.

2. The approach is not based on analytical approximations that relate selected
parameters on different levels of abstraction. Therefore, it avoids confidentiality
concerns by not requiring explicit dependencies on transistor level parameters
and potential inaccuracies by not assuming particular analytical mappings.

3. When the probabilistic model is adequately defined, it can simultaneously capture
non-Gaussian and correlated parameters to achieve a high accuracy. The eval-
uation of such a model allows the joint analysis of multiple circuit performance
parameters, for example digital circuit timing and power consumption, including
their inter-dependencies.
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Tab. 4.1: Selected scenarios for probabilistic modeling

Design Level of abstraction Application examples
Domain
All Transistor level Extensions of nominal compact models of active or passive

devices
Digital Gate level Extensions of arbitrary nominal standard cell models
Memory SRAM bit cell level SRAM bit cell models based on bit cell performance models
Analog Analog cell level Extensions of nominal behavioral models of analog cells

The essentials for probabilistic modeling are introduced in Fig. 4.1. The goal is to
define a probabilistic model at an interim abstraction layer, which was considered
a multivariate RV Y in Sec. 2.4 and Chap. 3. A proper statistical model, which is
indicated by the RVX, is assumed to be available at a lower level of abstraction. During
characterization, random samples

∼
X

char
of this RV are generated and evaluated in

MC simulations to obtain sample data
∼
Y

char
. This complies with pointwise evaluations

of the mapping f(.). According to its definition, the model is calibrated based on
the characterization data

∼
Y

char
. To analyze the impact of variability at a higher level

of abstraction, which is indicated by the RV Z in Fig. 4.1, random samples
∼
Y are

generated from the probabilistic model, and the pointwise evaluation of the mapping
g(.) in dedicated analyses yields sample data

∼
Z to infer on the RV Z. If required, this

sequence can be repeated for an arbitrary number of abstraction levels.

From the aforementioned essentials, three tasks can be derived to properly establish
a probabilistic model: model definition, characterization and model calibration, as well
as generation of random sample. They will be addressed in Secs. 4.1–4.3.

X

characterization:
pointwise evaluation
(by MC simulations)

too expensive

Z = h(X)

Ychar = f(Xchar)
~ ~

calibrated
probabilistic

model

definition of
probabilistic

model

Z

application:
pointwise evaluation

Z = g(Y)~~

~ ~

Fig. 4.1: Essentials for probabilistic modeling
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4.1 Model Definition

4.1.1 Preliminaries

In Chap. 2, the combination of the marginal distributions of all random components
Yi and Spearman’s rank correlation matrix R

Y
was outlined as a general and flexible

approach to describe a multivariate RV Y . Consequently, this description method is
used as a basis to define probabilistic models in this thesis.

As a specific constraint in IC design, a finite set of circuit elements is available as
basic building blocks at each level of abstraction. A circuit is realized by multiply
instantiating these elements to meet the desired functionality. For example, at the
transistor level, an inverter can be created by connecting one NFET instance and
one PFET instance. Tab. 4.2 summarizes further scenarios, most of which will be
considered in the application scenarios in Chap. 5.

For the sake of clarity, the following discussions are limited to two circuit elements A
and B. Nevertheless, the modeling method scales to an arbitrary number of elements.
The variability of element A is assumed to be captured by nA random components,
which can be described as an nA-dimensional RV Y

A
. Analogously, the variability

of element B is assumed to be captured by nB random components, which can be
described as an nB-dimensional RV Y

B
.

At an arbitrary level of abstraction, a particular circuit consists of mA instances of
element A and mB instances of element B, A[1], ..., A[mA] and B[1], ..., B[mB]. The
distribution of the RV Y

A
is assumed to apply to all instances of element A, which are

then modeled by the RVs Y [1]
A
, ...,Y [mA]

A
. Analogously, the distribution of the RV Y

B
is

Tab. 4.2: Examples for circuits with their circuit elements and instances on selected levels of
abstraction; Narray is the size of an SRAM array in bit

Level Circuit example Elements and Instances Reference
Transistor level SRAM bit cell 4 NFET instances, 2 PFET instances Fig. 3.11(b)
Gate level AND4 circuit 2 NAND2 instances, 1 NOR2 instance Fig. 5.11(a)

NAND4 circuit 2 NAND2 instances, 1 NOR2 instance,
1 inverter instance

Fig. 5.11(b)

oscillators k inverter instances, k NAND2 instances,
or k NOR2 instances

Fig. 5.13

Bit cell level SRAM array Narray bit cell instances and control logic Sec. 3.5
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assumed to apply to all instances of element B, which are then modeled by the RVs
Y [1]

B
, ...,Y [mB]

B
.

With these assumptions, the probabilistic model has to contain the descriptions of the
RVs Y

A
and Y

B
including statistical inter-dependencies between arbitrary instances

of the elements A and B.

4.1.2 Modeling Marginal Distributions

One task in probabilistic modeling is the description of the marginal distributions, that
is of all components YAi

and YBj
of the RVs Y

A
and Y

B
above. For simplicity, they are

represented by a univariate RV Y in this section. A variety of probability distributions is
available to describe its distribution. Examples are the Gaussian distribution N(µ, σ2),
the uniform distribution U(a, b), and the lognormal distribution L(m,σl), which were
introduced in Sec. 2.1.2. While the lognormal distribution offers at least some flexibility
in terms of distribution shape, which is characterized by the skew α

Y,3
and the kurtosis

α
Y,4

, Gaussian and uniform distributions have a fixed shape. The assumption of
Gaussian distributions in the methods in Chap. 3 is often criticized since the fixed
shape does not necessarily represent the underlying data with a high accuracy.

To increase the flexibility, a more general approach is required to model marginal
distributions. The following core items can be identified as having to be addressed.

1. The probability distribution has to support a wide range of distribution shapes,
that is it has to be flexible in terms of skew α

Y,3
and kurtosis α

Y,4
.

2. A reasonable number of distribution coefficients is required to compactly store the
probability distribution.

3. Preferably, an analytical quantile function φ−1
Y

(.) should be available to support
the efficient implementation of the sampling algorithm introduced in Sec. 2.3.2.

4.1.2.1 Choice of a Probability Distribution

As introduced in Sec. 2.1.1, the skew α
Y,3

and the kurtosis α
Y,4

measure the shape
of the distribution of a univariate RV Y . A valid probability distribution satisfies the
relation [KD00]

α
Y,4

> 1 + α2
Y,3
, (4.1)
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Fig. 4.2: Examples of distribution shapes in terms of skew α
Y,3

and kurtosis α
Y,4

; adapted
from [KD00] with data of selected probability distributions from [FEHP11]; PDFs and CDF of
selected distributions are shown in Fig. 4.3 in Sec. 4.1.2.2; impossible region derived from (4.1)
shaded in dark gray; approximate range covered by Generalized Lambda Distribution (GLD)
derived from (4.3) shaded in light gray; (a) linear scale; (b) logarithmic scale – note that
symmetric distributions with α

Y,3
=0 cannot be displayed in logarithmic scale

which is illustrated in Fig. 4.2. The skews and kurtoses of selected probability dis-
tributions are added to the graphs. While points indicate fixed-shape distributions,
lines indicate distributions with some flexibility in their shapes. However, the illustrated
distributions cover only a small range of possible distribution shapes. In contrast,
this thesis aims at an approach that supports various distribution shapes by allowing
flexible combinations of skews and kurtoses.

Piecewise linear CDFs φ
Y

(.), PDFs ϕ
Y

(.), or quantile functions φ−1
Y

(.), which are based
on pointwise definitions, are candidates to model marginal distributions. However,
storing potentially large numbers of data points for a sufficient accuracy appears
inefficient and hard to implement, for example in process design kits (PDKs).

A variety of approaches to analytically describe probability distributions with arbitrary
shapes was compiled in [Tad80]:

• the Fleishman transformation based on [Fle78],

• the Johnson system based on [Joh49],

• the Tadikamalla-Johnson system published in [TJ82],

• the Generalized Lambda Distribution (GLD) based on [RS74] and later discussed
in [KD00],

• the Schmeiser-Deutsch system based on [SD77],

• and the Burr system of distributions based on [Bur42].

• Furthermore, the Pearson system of distributions [Pol79] is mentioned.
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While more detailed information on these distributions and families of distributions can
be found in App. B.1, they are rated below.

The Pearson system of distributions, the Johnson system, the Tadikamalla-Johnson
system, and the Schmeiser-Deutsch system cover the entire plane of possible
combinations of skews α

Y,3
and kurtoses α

Y,4
. Nonetheless, like the general-

ized Pareto distribution, which was introduced with statistical blockade (SB) in
(3.20), these distributions apply distinctions of cases in their analytical definitions
[Joh49, Pol79, SD77, Tad80, TJ82]. This makes them difficult to implement into circuit
analysis tools, for instance into circuit simulators, so that they are not considered
suitable for simulation studies in this thesis. The other distributions and systems men-
tioned above cover a wide and nearly equivalent range of possible distribution shapes.
The Burr system of distributions is dismissed for using several different functional
forms [Bur42, Tad80].

The Fleishman transformation, which is applied to statistical device compact modeling
[KDC+10], was introduced in (3.8) in Sec. 3.3. It describes a univariate RV Y by a third-
order polynomial of a standard Gaussian RV G∼N(0, 1) with four coefficients [Fle78].
It was criticized for neither supporting all possible distribution shapes nor having a
closed-form PDF ϕ

Y
(.), CDF φ

Y
(.), or quantile function φ−1

Y
(.) [Tad80]. The last fact

hinders its efficient application in the sampling approach in Sec. 2.3.2. However, as
introduced in (3.9) in Sec. 3.3, a dedicated approach can capture the correlations in
multiple univariate RVs, which are modeled by the Fleishman transformation [HS99,
KDC+10, VM83].

The GLD is defined by a quantile function φ−1
Y

(.) with four coefficients [RS74, Tad80]
so that it can be efficiently applied in the sampling algorithm in Sec. 2.3.2. It does
not introduce any disadvantages compared with the Fleishman transformation by
supporting nearly the same range of distribution shapes and by having the same
number of coefficients. Indeed, the GLD addresses all identified core items to model
marginal distributions. Hence, it will be used in this thesis and further investigated in
the following section.

4.1.2.2 The Generalized Lambda Distribution

The Generalized Lambda Distribution (GLD) is a probability distribution that is ca-
pable of approximating a variety of distribution shapes. For a univariate RV Y , the
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Generalized Lambda Distribution in parametrization after Ramberg and Schmeiser
[RS74] (GLD-RS)1 is defined by its quantile function [RS74, Tad80, KD00]

y = φ−1
Y

(u) = λ1 +
uλ3 − (1− u)λ4

λ2

with 0 ≤ u ≤ 1. (4.2)

With four distribution coefficients for location (λ1), scale (λ2), and shape (λ3 and λ4),
the GLD-RS compactly characterizes the RV Y .

According to numerical experiments, a valid GLD-RS (4.2) yields skews α
Y,3

and
kurtoses α

Y,4
that underlie the constraint [KD00]

α
Y,4
≥ 1.8 ·α2

Y,3
+ 1.8. (4.3)

The resulting wide range of GLD-RS shapes is illustrated in Fig. 4.2 in Sec. 4.1.2.1.
Even though many theoretical distributions are included, there are potential combi-
nations of skews α

Y,3
and kurtoses α

Y,4
that cannot be realized. An example is the

chi-squared distribution with 1 degree of freedom with the skew α
Y,3

=
√

8 and the
kurtosis α

Y,4
=15 [FEHP11].

While the location coefficient λ1 may be an arbitrary real number, restrictions apply to
the coefficients for scale and shape: (4.2) yields a valid distribution if [RS74, KD00]

• λ3≤−1 and λ4≥1;

• λ3≥1 and λ4≤−1;

• λ3≥0 and λ4≥0;

• λ3≤0 and λ4≤0;

• −1<λ3<0 and λ4>1 and
(1− λ3)1−λ3 · (λ4 − 1)λ4−1

(λ4 − λ3)λ4−λ3
<−λ3

λ4

; or

• −1<λ3<0 and λ4>1 and
(1− λ4)1−λ4 · (λ3 − 1)λ3−1

(λ3 − λ4)λ3−λ4
<−λ4

λ3

.

Additionally, the shape coefficient λ2 has to have the same sign as the numera-
tor in the second summand in (4.2). Consequently, the regions for valid GLD-RSs
defined by (4.2) are separated in the plane of the shape coefficients λ3 and λ4.

These restrictions on the coefficients λ3 and λ4 for valid GLD-RSs were criticized and
led to the development of an alternative parametrization, the Generalized Lambda

1The denotation was introduced in [KM99] after J.S. Ramberg and B.W. Schmeiser, the authors of
[RS74].
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Distribution in parametrization after Freimer, Kollia, Mudholkar, and Lin [FKML88]
(GLD-FKML)2. It is defined by the quantile function

y = φ−1
Y

(u) = λ1 +

uλ3 − 1

λ3

− (1− u)λ4 − 1

λ4

λ2

with λ2 > 0 and 0 ≤ u ≤ 1 (4.4)

and supports a similar range of distribution shapes as the GLD-RS [FKML88, KM99]. If
the gap between the GLD range and all possible distribution shapes causes problems
in variability modeling for IC design and analysis, an alternative approach to model
marginal distributions might have to be found.

The GLD-FKML yields valid probability distributions for arbitrary real location and
shape coefficients λ1, λ3, and λ4 [FKML88, KM99]. Since it overcomes the disadvan-
tages of the GLD-RS, it will be used for the further considerations and denoted by
GLD(λ1, λ2, λ3, λ4) in this thesis.

The support of the GLD-FKML can be derived from its definition in (4.4) by ymin =φ−1
Y

(0)

and ymax =φ−1
Y

(1) [FKML88]:

ymin =




λ1 − 1

λ2λ3
: λ3 > 0

−∞ : λ3 ≤ 0
and ymax =




λ1 + 1

λ2λ4
: λ4 > 0

∞ : λ4 ≤ 0
(4.5)

The GLD-FKML approximations of selected probability distributions in the PDF
and CDF plots in Fig. 4.3 demonstrate the flexibility and accuracy that can be
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Fig. 4.3: GLD-FKML (defined by (4.4)) approximations of selected distributions (gray plots in
background) with data from [FKML88, KM99]; (a) PDF; (b) CDF; χ2

3: chi-squared distribution
with 3 degrees of freedom; Lg(0, 1): standard logistic distribution

2The denotation was introduced in [KM99] after M. Freimer, G. Kollia, G.S. Mudholkar, and T. Lin, the
authors of [FKML88]

69



4 A Probabilistic Model for Integrated Circuit Analysis

achieved. One example in Fig. 4.3 is the standard Gaussian distribution N(0, 1)

with its GLD-FKML approximation GLD(0, 1.45, 0.135, 0.135) [FKML88]3. By (4.5), this
approximation is valid for −5.1≤y≤5.1. While this restriction will be negligible in most
scenarios, it may be a disadvantage in special applications, which may require an
alternative approach to model marginal distributions.

Nevertheless, marginal distributions will be modeled by GLD-FKMLs in this thesis
because of their flexibility in terms of distribution shapes, their compactness, and their
analytically available quantile functions.

4.1.3 Modeling Correlations

While the previous section introduced an approach to model marginal distributions,
this section focuses on correlations. They are expressed in terms of Spearman’s rank
correlation coefficients, which were introduced in Sec. 2.2.4.

Recall that for the sake of simplicity, this discussion is limited to two circuit elements
A and B, for which variability is modeled by nA- and nB-dimensional distributions.
As introduced in Sec. 4.1.1, these elements are multiply instantiated in a circuit. An
example with 3 instances of element A and 2 instances of element B is illustrated in
Fig. 4.4. The variability of this particular circuit can be expressed by the RV

Y =
(
Y [1]

A
, Y [2]

A
, Y [3]

A
, Y [1]

B
, Y [2]

B

)
, (4.6)

intra-instance correlations

inter-instance correlations

inter-element correlations

A
[1]

A
[2]

A
[3]

B
[1]

B
[2]

Fig. 4.4: Distinction of correlations in probabilistic modeling for circuit elements A and B;
representing 3 inverter instances and 2 NAND2 instances at gate level for illustration purposes

3In [KM99], GLD(0, 1.45, 0.15, 0.15) was reported. However λ3 =λ4 = 0.135 from [FKML88] yields a
slightly better approximation
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which concatenates the multivariate RVs that describe the variability of each instance.
The RVs Y [1]

A
, Y [2]

A
, and Y [3]

A
model the variability of the instances of element A, and

they follow the same distribution. Analogously, this applies to the RVs Y [1]
B

and Y [2]
B

.

According to the discussion on the concatenation of multivariate RVs in Sec. 2.2.3,
correlations within the RVs that model the variability of each instance as well as their
inter-dependencies are required to describe a RV, such as the one defined by (4.6)4.
Based on this fact and as illustrated in Fig. 4.4, correlations are divided into three
categories in this thesis: intra-instance correlations, inter-instance correlations, and
inter-element correlations.

Intra-instance correlations model the inter-dependencies within a particular instance.
Mathematically, they are represented by the (nA×nA) Spearman’s rank correlation
matrix R

A
and the (nB×nB) Spearman’s rank correlation matrix R

B
. Spearman’s

rank correlation matrix R
A

applies to all instances of element A; Spearman’s rank
correlation matrix R

B
applies to all instances of element B. Note that the matrices R

A

and R
B

are symmetric.

Inter-instance correlations model the inter-dependencies between different instances
of the same element. In IC design and analysis, they occur since all instances
are equally effected by global variations but individually effected by local variations.
Mathematically, inter-instance correlations are represented by the symmetric (nA×nA)

matrix of Spearman’s rank correlation coefficients R
A,A

, which is assumed to equally
apply to all combinations of instances of element A, and the symmetric (nB×nB)

matrix of Spearman’s rank correlation coefficients R
B,B

, which is assumed to equally
apply to all combinations of instances of element B.

Inter-element correlations model the inter-dependencies between instances of different
elements. In IC design, they occur since global variation contributions equally effect all
instances of all elements. Mathematically, inter-element correlations are represented
by the (nA×nB) matrix of Spearman’s rank correlation coefficients R

A,B
, which is

assumed to equally apply to all combinations of instances of the elements A and B.

As an example, the inverter and NAND2 instances in Fig. 4.4 are considered. Intra-
instance correlations capture the fact that a faster inverter tends to have a higher
leakage power. Inter-instance correlations capture the fact that if one inverter instance
is fast, another inverter instance in this circuit tends to be fast as well due to global

4While Sec. 2.2.3 focused on covariance matrices, the principles can directly be transferred to Spear-
man’s rank correlation matrices because (2.54) in Sec. 2.3.2 allows their conversion into each other.
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variations. Inter-element correlations capture the fact that if an inverter instance is fast,
a NAND2 instance tends to be fast as well due to global variations.

With intra-instance, inter-instance, and inter-element correlations, the Spearman’s
rank correlation matrix for the RV Y in (4.6) can be expressed as

R
Y

=




R
A

R
A,A

R
A,A

R
A,B

R
A,B

R
A,A

R
A

R
A,A

R
A,B

R
A,B

R
A,A

R
A,A

R
A

R
A,B

R
A,B

RT
A,B

RT
A,B

RT
A,B

R
B

R
B,B

RT
A,B

RT
A,B

RT
A,B

R
B,B

R
B



. (4.7)

This approach neglects spatial local correlations, which might occur in IC design. In
the future, they could be considered by definitions of intra-instance, inter-instance,
and inter-element correlations, which are based on the physical locations of the
corresponding instances.

In summary, to capture global and local variations and the resulting inter-dependencies,
probabilistic models have to contain intra-instance, inter-instance, and inter-element
correlations in terms of matrices of Spearman’s rank correlation coefficients.

4.1.4 Summary

The proposed probabilistic models are based on instantiations of a finite set of circuit
elements in IC design. The variability of each element is modeled by a multivariate dis-
tribution, which is applied to all instances of this element. To describe this distribution,
the marginal distributions of all random components are modeled by the GLD-FKMLs,
and Spearman’s rank correlation matrices capture the intra-instance correlations. To
capture the fact that global variations equally effect all instances, inter-instance cor-
relations and inter-element correlations represent the inter-dependencies between
different instances. By neglecting spatial local correlations, inter-instance correlations
can be equally applied to all combinations of instances of a particular element and
inter-element correlations can be equally applied to all combinations of instances of
two different elements. The variability of a particular circuit can then be described by a
multivariate RV that concatenates the RVs that model the variability of each instance.
In contrast to the discussion above, this approach is not limited to two circuit elements.
It scales naturally to an arbitrary number of elements and instances.
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4.2 Characterization and Model Calibration

Characterization denotes the process of the generation of sample data
∼
Y

char
of a RV

Y
char

to derive probabilistic models. Model calibration means to quantify the models,
which will be split into the approximation of marginal distributions and the determination
of Spearman’s rank correlation coefficients and matrices in this section.

As for the model definition in Sec. 4.1, the discussion on characterization and model
calibration is based on two circuit elements A and B for simplicity. The approach
can be extended to further elements, however. For illustration purposes, App. B.3
demonstrates an example for the model calibration based on sample data.

4.2.1 Characterization

According to Fig. 4.1, characterization is based on simulations. They evaluate sample
data

∼
X

char
of a RV X

char
, which describes variability at a lower level of abstraction,

to obtain sample data
∼
Y

char
of a RV Y

char
at a higher level of abstraction. Examples

are device simulations to determine device compact models [CDM+10] or circuit
simulations to determine standard cell performance parameters, such as delay times
and power consumptions [DMD+07, PMM+07].

The definition of probabilistic models in Sec. 4.1 requires the characterization to provide
data for each marginal distribution as well as information on intra-instance, inter-
instance, and inter-element correlations to approximate statistical inter-dependencies.
The RV

Y
char

=
(
Y [1]

A
, Y [2]

A
, Y [1]

B
, Y [2]

B

)
(4.8)

with its Spearman’s rank correlation matrix

R
Ychar

=




R
A

R
A,A

R
A,B

R
A,B

R
A,A

R
A

R
A,B

R
A,B

RT
A,B

RT
A,B

R
B

R
B,B

RT
A,B

RT
A,B

R
B,B

R
B




(4.9)
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fulfills these requirements with the least possible complexity. In contrast, the RV(
Y [1]

A
, Y [1]

B

)
is less complex, but it does not contain intra-instance correlations, which

are expressed by the matrices R
A,A

and R
B,B

in (4.9). This result can easily be
generalized to more than two elements: the characterization has to generate sample
data for two instances per circuit element under consideration.

The data generation during characterization requires appropriate inputs in terms of
sample data

∼
X

char
: equal global but independent local variation parameters have to

be applied to all instances, which are taken into account. Then, the characterization

results in sample data
∼
Y

char
=

(
∼
Y

[1]

A
,

∼
Y

[2]

A
,

∼
Y

[1]

B
,

∼
Y

[2]

B

)
that represents the RV Y

char
in

(4.8).

4.2.2 GLD-FKML Approximation of Marginal Distributions

The first step of model calibration is to approximate the marginal distributions. For
this purpose, each component of the characterization sample data

∼
Y

char
, has to be

mapped to a GLD-FKML. For simplicity, the sample
∼
Y of a univariate RV Y is assumed

to represent an arbitrary random component of the characterization data
∼
Y

char
.

As for all computations in this thesis, the open-source statistics software R [R C14] is
used. Its dedicated package gld [KDK14] handles the GLD-RS and the GLD-FKML,
and it provides the function starship for mapping sample data

∼
Y to corresponding

GLD coefficients. As discussed in Sec. 4.1, this thesis focuses on the GLD-FKML.
Originally, the starship method has been applied to a RV Y , which could be transformed
into a Gaussian RV XG∼N(µ, σ2) by a mapping fY−XG

(.) and vice versa, such as
the Johnson system of distributions, which is briefly introduced in App. B.1 [Owe88].
Therein, the mapping fY−XG

(.) converts sample data
∼
Y to sample data

∼
XG, which

is tested for Gaussianity by Shapiro-Wilk (SW) tests. An optimization tunes the
coefficients of the mapping until the sample data

∼
XG is closest to Gaussian with

respect to the SW tests. The resulting coefficients then describe the RV Y [Owe88].

Instead of transforming a Gaussian RV G, the GLD-FKML expresses the RV
Y ∼GLD(λ1, λ2, λ3, λ4) as a transformation of a uniform RV U∼U(0, 1). Therefore,
the starship method needs to be adapted for an application to GLD-FKMLs. Numeri-
cally, (4.4) is inverted to convert a sample

∼
Y of the RV Y into a sample

∼
U . The starship

approach implemented in [KDK14] optimizes the GLD coefficients λ1, λ2, λ3, and λ4
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until this numerical inversion yields sample data
∼
U , which are closest to uniform. The

uniformity of the sample data
∼
U is tested by Anderson-Darling tests [AD52].

The R function FitGLD has been implemented for this thesis to improve the perfor-
mance when approximating large samples

∼
Y by GLD-FKMLs. The respective source

code is appended in App. B.2. If the sample size N is sufficiently small, N≤100, the
starship method from [KDK14] is used. Otherwise, the starship method from [KDK14]
determines the GLD-FKML coefficients for the empirical quantiles φ̃−1

Y
(0.01), φ̃−1

Y
(0.02),

. . . , φ̃−1
Y

(0.99), which are estimated from the sample data
∼
Y . These coefficients are

then used as the starting point for an optimization, which adapts the coefficients of
the GLD-FKML quantile function φ−1

Y
(.) to minimize its deviations from the empirical

quantile function φ̃−1
Y

(.). Although this thesis focuses on applications of the GLD-FKML,
the implemented function FitGLD supports both GLD-RS and GLD-FKML.

These principles can be sequentially applied to map all random components of multi-
variate sample data to GLD-FKMLs, that is to approximate all marginal distributions.
The assumption that all instances of a particular circuit element can be described by
the same distribution implicates redundancy in the characterization sample data

∼
Y

char
,

which contains empirical data of two instances per element. To make best use of the
available information, the R function FitGLD is sequentially applied to interim univari-
ate sample data: the component by component union of the i-th components of the

sample data
∼
Y

[1]

A
and

∼
Y

[2]

A
for i∈{1, 2, ..., nA} as well as the component by component

union of the j-th components of the sample data
∼
Y

[1]

B
and

∼
Y

[2]

B
for j∈{1, 2, ..., nB}.

4.2.3 Determination of Correlations

The second step of model calibration is to capture the correlations. From the character-
ization sample data

∼
Y

char
, Spearman’s rank correlation coefficients can be estimated

by (2.51) in Sec. 2.2.4 and summarized in matrix form:

R̃Ychar
=




R̃A[1] R̃A[1],A[2] R̃A[1],B[1] R̃A[1],B[2]

R̃A[2],A[1] R̃A[2] R̃A[2],B[1] R̃A[2],B[2]

R̃B[1],A[1] R̃B[1],A[2] R̃B[1] R̃B[1],B[2]

R̃B[2],A[1] R̃B[2],A[2] R̃B[2],B[1] R̃B[2]



. (4.10)
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This form can only be obtained under the assumption that all instances of a particular
element can be described by the same distribution.

To evaluate all information in the sample data
∼
Y

char
, intra-instance, inter-instance, and

inter-element correlations are derived from all available instances:

R
A

=
1

2

(
R̃A[1] + R̃A[2]

)
and

R
B

=
1

2

(
R̃B[1] + R̃B[2]

)
; (4.11)

R
A,A

=
1

2

(
R̃A[1],A[2] + R̃A[2],A[1]

)
and

R
B,B

=
1

2

(
R̃B[1],B[2] + R̃B[2],B[1]

)
; as well as (4.12)

R
A,B

=
1

4

(
R̃A[1],B[1] + R̃A[1],B[2] + R̃A[2],B[1] + R̃A[2],B[2]

)
. (4.13)

Estimating Spearman’s rank correlation matrix R̃Ychar
of the RV Y

char
and applying

(4.11)–(4.13) can easily be implemented in the statistics software R . The calculations
are followed by significance tests, which were introduced in Sec. 2.2.4, to waive
insignificant correlations.

4.3 Generation of Random Samples

According to their definition in Sec. 4.1, probabilistic models consist of multivariate
RVs that describe the variability of all instances of element A and multivariate RVs that
describe the variability of all instances of element B. They combine Spearman’s rank
correlation matrices for intra-instance correlations and GLD-FKML approximations
of the marginal distributions of all random components. In addition, inter-instance
and inter-element rank correlation matrices capture the inter-dependencies between
instances of the same element and between instances of different elements.

To utilize these information in a circuit analysis step, the generation of random samples
from probabilistic models is an apparent approach. In this section, two sampling
approaches are presented and compared to each other with respect to accuracy
and performance. As in the previous sections, the discussion is limited to two circuit
elements A and B for simplicity. Nevertheless, the principles scale to an arbitrary
number of elements.
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4.3.1 Conventional Approach

The conventional approach for random sampling directly applies the four-step algo-
rithm in Sec. 2.3.2: the conversion of Spearman’s rank correlation matrix R

Y
into a

covariance matrix Σ
G

, the generation of correlated Gaussian samples
∼
G, the transfor-

mation into uniform components
∼
U , and the transformation into the target sample

∼
Y .

By the standard Gaussian CDF and the quantile functions of the marginal distributions,
the transformations into uniform samples

∼
U and into the target samples

∼
Y in the steps

3 and 4 of this algorithm are uncomplicated.

To analyze a particular circuit, a circuit-specific RV Y , which models the variability
of the circuit under consideration, has to be defined with its rank correlation matrix
R

Y
and the GLD-FKML descriptions of the marginal distributions. In general, a circuit

consists of mA instances of element A and mB instances of element B, so that this
RV reads

Y =




mA instances of element A︷ ︸︸ ︷
Y [1]

A
, Y [2]

A
, . . . , Y [mA]

A
,

mB instances of element B︷ ︸︸ ︷
Y [1]

B
, Y [2]

B
, . . . , Y [mB]

B


 . (4.14)

The corresponding GLD-FKML coefficients from the probabilistic models describe
the marginal distributions of all components. From the matrices for intra-instance,
inter-instance, and inter-element correlations, the circuit-specific Spearman’s rank
correlation matrix

R
Y

=




mA instances of element A︷ ︸︸ ︷ mB instances of element B︷ ︸︸ ︷
R

A
R

A,A
· · · R

A,A
R

A,B
R

A,B
· · · R

A,B

R
A,A

R
A
· · · R

A,A
R

A,B
R

A,B
· · · R

A,B

...
... . . . ...

...
... . . . ...

R
A,A

R
A,A

· · · R
A

R
A,B

R
A,B

· · · R
A,B

RT
A,B

RT
A,B

· · · RT
A,B

R
B

R
B,B

· · · R
B,B

RT
A,B

RT
A,B

· · · RT
A,B

R
B,B

R
B
· · · R

B,B

...
... . . . ...

...
... . . . ...

RT
A,B

RT
A,B

· · · RT
A,B

R
B,B

R
B,B

· · · R
B












mA instances

of element A

mB instances

of element B

(4.15)

has to be constructed as an important input to the sampling algorithm in Sec. 2.3.2.
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In step 1 of the sampling algorithm in Sec. 2.3.2, the element by element transformation
(2.54) is applied to determine the covariance matrix

Σ
G

=




mA instances of element A︷ ︸︸ ︷ mB instances of element B︷ ︸︸ ︷
Σ

A
Σ

A,A
· · · Σ

A,A
Σ

A,B
Σ

A,B
· · · Σ

A,B

Σ
A,A

Σ
A
· · · Σ

A,A
Σ

A,B
Σ

A,B
· · · Σ

A,B

...
... . . . ...

...
... . . . ...

Σ
A,A

Σ
A,A

· · · Σ
A

Σ
A,B

Σ
A,B

· · · Σ
A,B

ΣT
A,B

ΣT
A,B

· · · ΣT
A,B

Σ
B

Σ
B,B

· · · Σ
B,B

ΣT
A,B

ΣT
A,B

· · · ΣT
A,B

Σ
B,B

Σ
B
· · · Σ

B,B

...
... . . . ...

...
... . . . ...

ΣT
A,B

ΣT
A,B

· · · ΣT
A,B

Σ
B,B

Σ
B,B

· · · Σ
B












mA instances

of element A

mB instances

of element B

(4.16)

from Spearman’s rank correlation matrix R
Y

. Alternatively, the covariance matrix
Σ

G
can directly be constructed from the previously transformed intra-instance, inter-

instance, and inter-element rank correlation matrices Σ
A

, Σ
B

, Σ
A,A

, Σ
B,B

and Σ
A,B

.

In Step 2 of the sampling algorithm in Sec. 2.3.2, random samples have to be gen-
erated from a multivariate Gaussian RV G∼N(0,Σ

G
). As introduced in Sec. 2.3.1,

this requires a decomposition of the covariance matrix Σ
G

=L
G
LT

G
, for instance its

Cholesky decomposition.

Three related disadvantages make this sampling approach impractical. First, the RV
Y is specific for a particular circuit under consideration. That is, it has to be redefined
after each change in the design of this circuit. Second, the dimensionality of the RV
Y rapidly grows with the number of instances per element and with the number of
components in the RVs Y [k]

A
, k= 1, ..., nA and Y [l]

B
, l= 1, ..., nB. Third, especially for

complex circuits with many instances, the decomposition of the covariance matrix Σ
G

causes significant computational costs.

4.3.2 Improved Approach

To overcome the disadvantages of the conventional sampling approach in Sec. 4.3.1,
an alternative method is proposed in this section.
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Assuming that a circuit contains m instances of element A and m instances of element
B, the RV Y ∗ that models the variability of this particular circuit can be specified as

Y ∗ =




1st instance
per element
︷ ︸︸ ︷
Y [1]

A
, Y [1]

B
,

2nd instance
per element
︷ ︸︸ ︷
Y [2]

A
, Y [2]

B
, . . . ,

mth instance
per element
︷ ︸︸ ︷
Y [m]

A
, Y [m]

B



. (4.17)

Thus, random samples
∼
G
∗

of the multivariate Gaussian RV

G∗ =




1st instance
per element
︷ ︸︸ ︷
G[1]

A
, G[1]

B
,

2nd instance
per element
︷ ︸︸ ︷
G[2]

A
, G[2]

B
, . . . ,

mth instance
per element
︷ ︸︸ ︷
G[m]

A
, G[m]

B



∼ N(0,Σ

G∗ ) (4.18)

have to be generated in Step 2 of the algorithm in Sec. 2.3.2. Its covariance matrix

Σ
G∗ =




1st instance
per element

︷ ︸︸ ︷
2nd instance
per element

︷ ︸︸ ︷
mth instance
per element

︷ ︸︸ ︷
Σ

A
Σ

A,B
Σ

A,A
Σ

A,B
· · · Σ

A,A
Σ

A,B

ΣT
A,B

Σ
B

ΣT
A,B

Σ
B,B

· · · ΣT
A,B

Σ
B,B

Σ
A,A

Σ
A,B

Σ
A

Σ
A,B

· · · Σ
A,A

Σ
A,B

ΣT
A,B

Σ
B,B

ΣT
A,B

Σ
B

· · · ΣT
A,B

Σ
B,B

...
...

...
... . . . ...

...
Σ

A,A
Σ

B,B
Σ

A,A
Σ

B,B
· · · Σ

A
Σ

A,B

ΣT
A,B

Σ
B,B

ΣT
A,B

Σ
B,B

· · · ΣT
A,B

Σ
B




(4.19)

=




Σ
i

Σ
ii

· · · Σ
ii

Σ
ii

Σ
i

· · · Σ
ii

...
... . . . ...

Σ
ii

Σ
ii

· · · Σ
i




(4.20)
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has a block structure with

Σ
i

=

(
Σ

A
Σ

A,B

ΣT
A,B

Σ
B

)
and Σ

ii
=

(
Σ

A,A
Σ

A,B

ΣT
A,B

Σ
B,B

)
. (4.21)

This structure allows a decomposition into independent “global” and “local” parts:

Σ
G∗ =

m times︷ ︸︸ ︷


Σ
glob

Σ
glob

· · · Σ
glob

Σ
glob

Σ
glob

· · · Σ
glob

...
... . . . ...

Σ
glob

Σ
glob

· · · Σ
glob




︸ ︷︷ ︸
“global part”

+

m times︷ ︸︸ ︷


Σ
loc

0 · · · 0

0 Σ
loc
· · · 0

...
... . . . ...

0 0 · · · Σ
loc




︸ ︷︷ ︸
“local part”

(4.22)

with

Σ
glob

= Σ
ii

=

(
Σ

A,A
Σ

A,B

ΣT
A,B

Σ
B,B

)
and (4.23)

Σ
loc

= Σ
i
−Σ

ii
=

(
Σ

A
−Σ

A,A
0

0 Σ
B
−Σ

B,B

)
. (4.24)

This decomposition implies that the global RV

G
glob

=
(
G[glob]

A
, G[glob]

B

)
∼ N(0,Σ

glob
), (4.25)

which contains entries for each circuit element, equally applies to all instances. Fur-
thermore, the local RV

G
loc

=




1st instance
per element

︷ ︸︸ ︷
G[loc:1]

A
, G[loc:1]

B
,

2nd instance
per element

︷ ︸︸ ︷
G[loc:2]

A
, G[loc:2]

B
, . . . ,

mth instance
per element

︷ ︸︸ ︷
G[loc:m]

A
, G[loc:m]

B



∼ N(0,Σ

loc
) (4.26)

resolves into instance-specific independent RVs: the nA-dimensional RV
G[loc:k]

A
∼N(0,Σ

A
−Σ

A,A
) describes the local variability contribution of the k-th instance

of element A and the nB-dimensional RV G[loc:l]
B
∼N(0,Σ

B
−Σ

B,B
) describes the local

variability contribution of the l-th instance of element B.
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In summary, the improved sampling approach divides the complex correlated Gaussian
sampling in the conventional approach in Sec. 4.3.1 into smaller and less expensive
sub-tasks:

• the generation of a sample
∼
G

glob
from the RV G

glob
∼N(0,Σ

glob
), which requires

the covariance matrix Σ
glob

to be decomposed only once;

• the generation of a sample
∼
G

[loc:k]

A
from the RV G[loc:k]

A
∼N(0,Σ

A
−Σ

A,A
) for each

instance k of element A, which requires the covariance matrix (Σ
A
−Σ

A,A
) to be

decomposed once;

• and the generation of a sample
∼
G

[loc:l]

B
from the RV G[loc:l]

B
∼N(0,Σ

B
−Σ

B,B
) for

each instance l of element B, which requires the covariance matrix (Σ
B
−Σ

B,B
)

to be decomposed once.

The required sample
∼
G

∗
can then be obtained from

∼
G

∗
=




1st instance of element A︷ ︸︸ ︷
∼
G

[glob]

A
+

∼
G

[loc:1]

A
,

1st instance of element B︷ ︸︸ ︷
∼
G

[glob]

B
+

∼
G

[loc:1]

B
,

2nd instance of element A︷ ︸︸ ︷
∼
G

[glob]

A
+

∼
G

[loc:2]

A
,

2nd instance of element B︷ ︸︸ ︷
∼
G

[glob]

B
+

∼
G

[loc:2]

B
, (4.27)

. . . ,

mth instance of element A︷ ︸︸ ︷
∼
G

[glob]

A
+

∼
G

[loc:m]

A
,

mth instance of element B︷ ︸︸ ︷
∼
G

[glob]

B
+

∼
G

[loc:m]

B


 .

This approach is not limited to exactly m instances per circuit element. Instead, it
extends naturally to arbitrary numbers of circuit elements with arbitrary and potentially
different numbers of instances. The fact that it leads to correct intra-instance, inter-
instance, and inter-element correlations is proved in App. B.4.

As in the conventional approach in Sec. 4.3.2, the Steps 3 and 4 of the basic sampling
algorithm in Sec. 2.3.2, the transformation into uniform samples

∼
U and into the target

samples
∼
Y , are straightforward.
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4.3.3 Performance Comparison

To compare the accuracy and the performance of the conventional approach and the
improved approach for correlated Gaussian sampling, two hypothetic circuit elements
are considered: an element A with nA=3 components and an element B with nB =2

components. The intra-instance, inter-instance, and inter-element rank correlation
matrices are arbitrarily chosen,

R
A

=




1 −0.35 −0.39

−0.35 1 −0.42

−0.39 −0.42 1


 , R

A,A
=




0.63 −0.11 −0.39

−0.11 0.66 −0.27

−0.39 −0.27 0.73


 ,

R
B

=

(
1 0.6

0.6 1

)
, R

B,B
=

(
0.89 0.56

0.56 0.78

)
, and R

A,B
=




0.42 0.27

−0.4 −0.17

−0.15 −0.25


 ,

such that the resulting covariance matrices

Σ
glob

=




0.65 −0.12 −0.41 0.44 0.28

−0.12 0.68 −0.28 −0.42 −0.18

−0.41 −0.28 0.75 −0.16 −0.26

0.44 −0.42 −0.16 0.9 0.58

0.28 −0.18 −0.26 0.58 0.79




,

(Σ
A
−Σ

A,A
) =




0.35 −0.24 0

−0.24 0.32 −0.16

0 −0.16 0.25


 , and (Σ

B
−Σ

B,B
) =

(
0.1 0.04

0.04 0.21

)

are positive definite. Gaussian RVs G
i

with corresponding theoreti-
cal covariance matrices Σ

Gi
are constructed for different numbers of in-

stances of elements A and B, mA∈{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} and
mB∈{0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. For different sample sizes, N1 =100 and
N2 =1000, corresponding random samples

∼
G

i
and

∼
G

∗

i
are generated by applying

the conventional approach and the improved sampling approach, respectively. The
maximum absolute deviations in the observed covariance matrices, max{|Σ̃Gi

−Σ
Gi
|}

and max{|Σ̃G∗
i
−Σ

Gi
|}, as well as the required run times for correlated Gaussian

sampling Ts are recorded in this study, which is conducted on a standard server
computer.
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Fig. 4.5: Maximum errors in sample covariance matrices Σ̃ with respect to theoretical covari-
ance matrices Σ for conventional and improved sampling approaches

With respect to the maximum absolute deviations in the observed covariance matrices
in Fig. 4.5, the conventional approach and the improved approach perform similarly
in terms of accuracy. As expected, the deviations between theoretical and empirical
covariance matrices decrease when the sample size grows from N1 =100 to N2 =1000.
Consequently, the improved algorithm can be considered equivalent to the conventional
approach in terms of the sample quality5.

However, the comparisons of the required run times Ts in Fig. 4.6 reveal significant
differences between the sampling approaches. The computational effort for the
conventional approach only marginally depends on the sample size N . Instead, it is
essentially influenced by the numbers of circuit elements and instances, that is by
the particular circuit under consideration, for which the specific RV Y with its rank
correlation matrix R

Y
or the corresponding covariance matrix Σ

G
has to be constructed

from the probabilistic model. In this analysis, for mA=1000 instances of element A
and mB =0 instances of element B, that is without inter-element correlations, the run
times for correlated Gaussian sampling applying the conventional approach are 237 s

for N1 =100 samples and 247 s for N2 =1000 samples. For mA=mB =1000 instances
of both elements A and B, the run times are 809 s for N1 =100 samples and 892 s for
N2 =1000 samples, for example.

Contrarily, the computational effort for the improved approach depends on both the
sample size N and the circuit under consideration with its number of circuit elements

5The maximum absolute deviations of up to 0.8 appear large when considering −1≤Σ
G ,ij≤1. They

result from the fact that, in this study, the matrix Σ
G

grows up to a dimensionality of (5000×5000) for
mA =mB =1000 instances of each element A and B so that it may contain too many inter-dependencies
to be accurately captured in samples of the size N1 =100 or N2 =1000.
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Fig. 4.6: Performance comparison of conventional and improved sampling approaches for two
circuit elements A and B with different numbers of instances mA and mB as well as different
sample sizes N1 =100 and N2 =1000

and instances. While amount of data to process is proportional to the sample size N ,
the number of circuit elements defines the dimensionality of the global covariance ma-
trix G

glob
in (4.23), and the number of instances per circuit element defines the amount

of required instance-specific local samples
∼
G

[loc:k]

A
and

∼
G

[loc:l]

B
. In the performance

analysis, for mA=1000 instances of element A and mB =0 instances of element B,
the run times for Gaussian sampling by the improved approach are 0.27 s for N1 =100

samples and 0.98 s for N2 =1000 samples, complying with 870X and 250X speed-ups
over the conventional approach. For mA=mB =1000 instances of each element A and
B, the required run times of 0.46 s for N1 =100 samples and 1.6 s for N2 =1000 samples
correspond to 1170X and 560X speed-ups.

In summary, the conventional approach and the improved approach are equivalent
in terms of sample quality. However, in contrast to the conventional approach, the
improved approach keeps the run times for correlated Gaussian sampling reasonable
with Ts<2 s in this study. Compared with the conventional approach, the improved
approach accelerates the sample generation by up to more than three orders of
magnitude. Consequently, the improved approach allows a wide-spread application of
sampling-based evaluations of the probabilistic GLD-FKML models.
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4.4 Generalization to Arbitrary Numbers of Elements

The discussions in the previous sections of this chapter were limited to two circuit
elements A and B. In this section, the generalization to an arbitrary number of
elements is explained by introducing an additional circuit element C.

According to the definition of probabilistic models in Sec. 4.1, the variability of this ele-
ment can be described by an nC-dimensional distribution with GLD-FKML approxima-
tions of marginal distributions and intra-instance correlations in terms of the (nC×nC)

Spearman’s rank correlation matrix R
C

. In addition, the probabilistic model needs
to be extended to capture intra-instance correlations of element C in the (nC×nC)

matrix of Spearman’s rank correlation coefficients R
C,C

and to capture inter-element
correlations between the elements A and C as well as B and C in the (nA×nC) matrix
R

A,C
and the (nB×nC) matrix R

B,C
. Note that the matrices for quantifying correlations

can be transformed into the matrices Σ
C

, Σ
C,C

, Σ
A,C

, and Σ
B,C

by the element by
element calculation (2.54).

To calibrate this extended model, the characterization data has to contain information
on two instances for each element A, B, and C. That is, the required characterization
sample reads

∼
Y

char
=

(
∼
Y

[1]

A
,

∼
Y

[2]

A
,

∼
Y

[1]

B
,

∼
Y

[2]

B
,

∼
Y

[1]

C
,

∼
Y

[2]

C

)

in this case. Based on this sample data, the model can be calibrated by applying the
principles in Sec. 4.2.2 and Sec. 4.2.3 to all elements.

The generation of random samples from the probabilistic model is then straightforward.
The conventional approach applies mC instances of element C according to the circuit
under investigation. In the improved approach, the global RV G

glob
in (4.25) needs to

be extended to

G
glob

=
(
G[glob]

A
, G[glob]

B
, G[glob]

C

)
∼ N(0,Σ

glob
) with Σ

glob
=




Σ
A,A

Σ
A,B

Σ
A,C

ΣT
A,B

Σ
B,B

Σ
B,C

ΣT
A,C

ΣT
B,C

Σ
C,C


 .

In addition, instance-specific independent RVs G[loc:k]
C

∼N(0,Σ
C
−Σ

C,C
) have to be

introduced to model the local variations of each instance k of element C.
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The repetition of the aforementioned procedure extends the probabilistic modeling
approach to arbitrary numbers of elements.

4.5 Summary and Conclusions

In this section, Chap. 4 is summarized and some conclusions are drawn. To illustrate
the statements, an example for model calibration and random sample generation is
presented in App. B.3.

1. At an arbitrary level of abstraction, probabilistic models can capture the variability of
the available circuit elements by describing selected components of the underlying
models by multivariate distributions.

2. The applied combination of Spearman’s rank correlation matrices and GLD-FKML
approximations of marginal distributions allows a high flexibility for capturing arbi-
trary correlations and almost arbitrary distribution shapes.

3. Considering the fact that ICs consist of instances of a finite number of circuit
elements, the variability of each instance is modeled as a multivariate RV. All
instances of a particular circuit element are assumed to follow the same multivariate
distribution.

4. The correlations within an instance are described by intra-instance correlation matri-
ces. Inter-instance and inter-element correlations describe the inter-dependencies
between different instances of a particular circuit element and between instances of
different circuit elements. They are equally applied to all combinations of instances,
which neglects spatial local correlations but captures global and local variability.

5. To calibrate a fully statistical probabilistic model, sample data
∼
Y

char
from a RV

Y
char

=
(
Y [1]

A
, Y [2]

A
, Y [1]

B
, Y [2]

B
, Y [1]

C
, Y [2]

C
, . . .

)
,

which contains two instances per circuit element needs to be gained from char-
acterization. To correctly extract all correlation components, identical global but
independent local variation parameters

∼
X

char
have to be applied to all instances

during characterization.

6. To optimally use the available information in the characterization data
∼
Y

char
, the

correlation matrices are extracted by applying (4.11)–(4.13). Marginal distributions
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are approximated from unions of sample data of corresponding components of
both instances per element.

7. To generate random samples from a probabilistic model, the RV Y that describes
the variability of a particular circuit under consideration has to be constructed from
the model. Then, the sampling algorithm in Sec. 2.3.2 can be applied.

8. Random sampling by the conventional approach in Sec. 4.3.1 requires the con-
struction of the circuit-specific Spearman’s rank correlation matrix R

Y
from the

intra-instance, inter-instance, and inter-element matrices as well as its conversion
to the covariance matrix Σ

G
by (2.54). The interim step of random Gaussian sam-

pling from the RVG∼N(0,Σ
G

) requires a decomposition of this covariance matrix,
Σ

G
=L

G
LT

G
, which may be computationally very expensive. These disadvantages

impede an efficient application of the conventional sampling approach.

9. The improved sampling approach in Sec. 4.3.2 divides the complex conventional
sampling method into smaller sub-tasks. It requires the construction and decom-
position of (a) a global covariance matrix Σ

glob
, which contains the inter-instance

and inter-element correlations of one instance of all available circuit elements, as
well as of (b) instance-specific local covariance matrices, which are identical for all
instances of a particular circuit element. This approach allows an implementation
of probabilistic models into standard tools, such as circuit simulators. Furthermore,
without introducing errors with respect to the conventional approach, it keeps the
computational effort for the generation of correlated Gaussian samples reasonable.
Both aspects support the application of probabilistic models in sampling-based
circuit analyses.
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5 Application Scenarios

In this chapter, the modeling approach proposed in Chap. 4 is applied to multiple
application scenarios. They are chosen to cover a broad range of the abstraction
levels discussed in Chap. 3, which is demonstrated in Fig. 5.1. In particular, device
compact models, standard cell performance models and adapted gate level analyses,
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qQdevice simulationsQq
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qQcircuit simulationsQq
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Fig. 5.1: Allocation of application scenarios in abstraction levels from Fig. 3.1 in Sec. 3
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as well as behavioral models of analog cells demonstrate the applicability and the
universality of the modeling approach, which is based on GLD-FKML approximations
of marginal distributions and Spearman’s rank correlation matrices. To evaluate the
benefits of considering non-Gaussian and correlated random components, Gaussian
models are taken into account for comparisons.

5.1 Probabilistic Device Compact Modeling and

Monte Carlo Circuit Simulation

5.1.1 Origin and Characterization

A particular task in modeling IC variability is the transfer of variability information into
variation-aware device compact models. For this purpose, Sec. 3.3 has discussed
the backward propagation of variance (BPV), which maps observed fluctuations in
electrical device performance parameters to variations in selected compact model
parameters, and statistical device simulations, from which ensembles of model cards
can be generated to infer on the underlying distributions.

The scenario in this section is based on statistical device simulations. They were
performed at the University of Glasgow with the Glasgow atomistic 3D drift-diffusion
device simulator to analyze 35nm square NFET and PFET devices in a poly-silicon
gate technology. Neglecting global variations but introducing random local variations,
Nchar=200 microscopically different NFET and PFET instances were simulated, and
their individual behaviors were mapped to BSIM4 device compact models. While
most compact model parameters were kept constant, n=7 parameters were varied to
capture the variability [LSJ+11, LSJ+16]:

• the long-channel threshold voltage at zero body bias vth0,

• the zero-bias source and drain resistance rdsw,

• the subthreshold swing factor nfactor,

• the offset voltage in subthreshold regime voff,

• the low-field carrier mobility u0,

• the coefficient for drain-induced barrier lowering dsub, and

• the saturation velocity vsat [M+09, M+11].
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These parameters can be considered ny=7-dimensional RVs Y
N

and Y
P
, which

represent the variability of the NFET and the PFET. Their suitable descriptions allow
an evaluation of variability in MC circuit simulations [LSJ+11, LSJ+16]. The device
simulation study, which corresponds to the characterization in the context of this
thesis, generated Nchar =200-sample characterization data

∼
Y

char
=
( ∼
Y

N,char
,

∼
Y

P,char

)
to

calibrate the probabilistic device models.

5.1.2 Model Calibration

Approximating marginal distributions is one task to calibrate variation-aware device
compact models. To check whether the probabilistic GLD-FKML modeling approach is
justified, the components of the characterization data

∼
Y

N,char
and

∼
Y

P,char
are checked

for Gaussian distributions. For this purpose, Shapiro-Wilk (SW) tests, which were
introduced in Sec. 2.1.4, are performed with (1−αc)=0.95 confidence level. The test
results are summarized in Tab. 5.1, and they reveal that only some components are
Gaussian: the long-channel threshold voltage at zero body bias vth0, the zero-bias
source and drain resistance rdsw, and the offset voltage in subthreshold regime voff for
the NFET as well as the long-channel threshold voltage at zero body bias vth0 and the
saturation velocity vsat for the PFET. The remaining components are significantly non-
Gaussian, which is further underlined by the Q-Q plots in App. C.1.1 and a selection
of them in Fig. 5.2. These interim results justify a modeling approach that supports
non-Gaussian distributions, such as the probabilistic GLD-FKML model proposed in
this thesis.

Tab. 5.1: Statistical tests for device parameter distributions from characterization data; SW
tests with results +: Gaussian and –: non-Gaussian; KS tests comparing characterization data
and GLD-FKML approximations of marginal distributions with results o: accurate approximation
and x: inaccurate approximation; confidence level (1−αc)= 0.05; cf. TABLE I in [LSJ+16]

Parameter NFET PFET
SW test KS test SW test KS test

vth0 + o + o
rdsw + o - o
nfactor - o - o
voff + o - o
u0 - o - o
dsub - o - o
vsat - o + o
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Fig. 5.2: Q-Q plots of (a) NFET u0 and (b) PFET rdsw; compare Fig. 2 in [LSJ+16]

The components of the characterization data are mapped to GLD-FKMLs with the
R function FitGLD in App. B.2. This is in contrast to [LSJ+11], which applies the
GLD-RS defined in (4.2). The GLD-FKML approximations are added to the Q-Q plots
in Fig. 5.2 and App. C.1.1, and they appear to represent the characterization data
well. To verify the accuracy, the characterization data are compared with Ns=1000 ran-
dom samples from the GLD-FKML approximations by Kolmogorov-Smirnov (KS) tests
with a (1−αc)=0.95 confidence level. As discussed in Sec. 2.1.4, these tests reveal
whether the characterization data and the samples from the GLD-FKML approxima-
tions represent the same distributions, that is whether the GLD-FKML approximations
accurately describe the characterization data. According to their results, which are
additionally listed in Tab. 5.1, the KS tests confirm the accuracy of the GLD-FKML
approximations, which holds for the NFET and the PFET as well as for Gaussian and
non-Gaussian components.

In addition to the marginal distributions, probabilistic models need to capture the
correlations in the characterization data. Since global variations were neglected in the
device simulation study, inter-instance and inter-element correlations do not exist, that
is R

N,N
=Σ

N,N
=0, R

P,P
=Σ

P,P
=0, and R

N,P
=Σ

N,P
=0. Accordingly, in this scenario,

the intra-instance correlations for the NFET and the PFET have to be taken into
account solely. Applying (2.51) in Sec. 2.2.4 to the characterization data

∼
Y

char
, the

Spearman’s rank correlation matrices R
N

and R
P

are estimated. Due to the sample
size Nchar =200, Spearman’s rank correlation coefficients

∣∣ρ̃(sp)
∣∣≤0.139 are considered

insignificant according to (2.52). It is straightforward to convert Spearman’s rank
correlation matrices into covariance matrices for the improved sampling approach
introduced in Sec. 4.3.2.
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Fig. 5.3: Partial scatterplot matrices for selected parameters of (a) NFET and (b) PFET
probabilistic models; compare Fig. 5 in [LSJ+16]

With the GLD-FKML approximations of the marginal distributions and the correlation
matrices, the probabilistic NFET and PFET models are completely calibrated. The
scatterplot matrices for selected components in Fig. 5.3 and for all model components
in App. C.1.2 contrast the characterization data with Ns=1000 samples from the
probabilistic GLD-FKML models. Their good agreement for marginal distributions and
clusters of points attests the high modeling accuracy.

5.1.3 Model Implementation Outline

To efficiently evaluate probabilistic device compact models in sampling-based MC
circuit simulations, they have to be implemented into the respective simulators with
Synopsys HSPICE R© [Syn15] being chosen for demonstration purposes in this section.
While the complete implementation of the models calibrated in Sec. 5.1.2 is omitted, a
simplified NFET model serves as an illustration example. It is assumed that the BSIM4
parameters vth0 and u0 capture the device variability. They can be modeled as a ny=2-
dimensional RV Y

N
with their GLD-FKML approximations of the marginal distributions,

YN,vth0∼GLD(λv1, λv2, λv3, λv4) and YN,u0∼GLD(λu1, λu2, λu3, λu4), as well as the intra-
instance Spearman’s rank correlation matrix

R
N

=

(
1 0.7859

0.7859 1

)
,
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5.1 Probabilistic Device Modeling and Monte Carlo Circuit Simulation

which is arbitrarily chosen such that the element by element transformation (2.54) in
Sec. 2.3.2 yields a valid covariance matrix Σ

N
. Furthermore, as in Sec. 5.1.2, there

are no inter-instance correlations, that is R
N,N

=Σ
N,N

=0, or inter-element correlations
to potential further circuit elements. Under these assumptions, the principles for the
improved sampling approach in Sec. 4.3.2 lead to

the (2×2) global covariance matrix Σ
glob

= 0 and

the local covariance matrix for the NFET (Σ
N
−Σ

N,N
) =

(
1 0.8

0.8 1

)
.

Since a circuit simulator generates uncorrelated random numbers, for correlated
Gaussian sampling with the target covariance matrix (Σ

N
−Σ

N,N
), this matrix has to

be decomposed, for instance by the Cholesky decomposition [Tho13],

(Σ
N
−Σ

N,N
) = L

N
LT

N
=⇒ L

N
=

(
1 0

0.8 0.6

)
.

With the matrix L
N

, the required correlated Gaussian sampling can be realized. In
addition, the Steps 3 and 4 of the sampling algorithm in Sec. 2.3.2 require implemen-
tations of the standard Gaussian CDF Φ (.) and the GLD-FKML quantile function (4.4).
While the GLD-FKML quantile function can directly be implemented into HSPICE, the
standard Gaussian CDF Φ (.) has to be approximated. Based on the formula [AA08]

Φ (x) ≈ 1

2
+

1

2

√
1− exp

(
−
√
π

8
x2

)
for x > 0, (5.1)

the relation

Φ (x) ≈ 1

2
+

1

2
sgn (x)

√
1− exp

(
−
√
π

8
x2

)
, (5.2)

with the sign operator sgn(.), is implemented.

In combination, these information can be converted into HSPICE syntax. An example
implementation of the probabilistic NFET model is proposed in Fig. 5.4. The analytically
available GLD-FKML quantile function (4.4) supports an efficient model evaluation.
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******** definitions of functions

**** standard Gaussian CDF - based on [AA08]

.param sqrt_pi_by_8 = ’0.6266571’ $ sqrt(pi/8)

.param pnorm(z) = ’1/2 + 1/2 * sgn(z) * sqrt(1-exp(-sqrt_pi_by_8*z*z))’

**** quantile function of GLD-FKML

.param qgl(u,L1,L2,L3,L4)=’L1 + 1/L2 * ((pwr(u,L3)-1)/L3-(pwr(1-u,L4)-1)/L4)’

**** force local parameter scooping

.option parhier=LOCAL

******** NFET subckt model

.subckt NFET d g s b L=<L> W=<W>

**** declaration of GLD-FKLM parameters

.param lambda_v1=... lambda_v2=... lambda_v3=... lambda_v4=...

.param lambda_u1=... lambda_u2=... lambda_u3=... lambda_u4=...

**** correlated Gaussian sampling

** independent standard Gaussian sampling

.param c1_=agauss(0,1,1) c2_=agauss(0,1,1)

.param c1=c1_ c2=c2_

** transformation to correlated Gaussians

.param z_vth0=’1*c1’ z_u0=’0.8*c1+0.6*c2’

**** map to correlated uniforms - step 3 of algorithm in Sec. 4.1

.param u_vth0=’pnorm(z_vth0)’ u_u0=’pnorm(z_u0)’

**** map to marginal distributions - step 4 of algorithm in Sec. 4.1

.param vth0= ’qgl(u_vth0,lambda_v1,lambda_v2,lambda_v3,lambda_v4)’

.param u0 = ’qgl(u_u0, lambda_u1,lambda_u2,lambda_u3,lambda_u4)’

**** device instantiation

m1 d g s b nfet0 L=’L’ L=’W’

**** model card

.model nfet0 nmos vth0=’vth0’ u0=’u0’

+ $ remaining model card parameters

.ends

Fig. 5.4: Example for HSPICE implementation of probabilistic NFET model; slightly improved
efficiency in ’pnorm(z)’ compared to [LSJ+16]

5.1.4 Model Evaluation in Monte Carlo Circuit Simulations

Device compact models with their statistical extensions are the basis for Monte
Carlo (MC) circuit simulations. To enable these simulations with a high efficiency,
the probabilistic models derived in Sec. 5.1.2 have to be implemented into circuit
simulators, for example following the outline in Sec. 5.1.3.
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5.1 Probabilistic Device Modeling and Monte Carlo Circuit Simulation

To evaluate the accuracy of the probabilistic GLD-FKML models, the following simula-
tion scenarios are considered. The corresponding simulation netlists are available in
App. C.1.3.

1. Single devices – For a constant drain-to-source voltage |Vds|=1V , the static
performance parameters of an NFET and a PFET are determined. In particular,
the off-current Ioff and the on-current Ion are measured at gate-to-source voltages
of Vgs=0 and Vgs=Vdd.

2. Standard cell – An NFET and a PFET are connected to form an inverter. At
the supply voltage Vdd=1V , the inverter performance parameters are analyzed
without a load at the output pin: the state-dependent leakage power consumptions
for the input pin at logic 0 and at logic 1 as well as the rise and fall delays for a
linear input voltage waveform switching from 0 to 1 and vice versa within t=1 ps.

3. Small-scale digital circuit
A NAND2 instance and two inverter instances are connected to a three-stage ring
oscillator (RO). The oscillation can be enabled and disabled by a control signal
which is connected to the NAND2 input pin b. The leakage power in idle mode as
well as the oscillation frequency are the observed performance parameters.

In addition to the probabilistic GLD-FKML models, uncorrelated Gaussian models, that
is NFET and PFET models with uncorrelated Gaussian components, and correlated
Gaussian models, that is NFET and PFET models with correlated Gaussian compo-
nents, are derived from the characterization data for comparison purposes. For each
simulation scenario, the figures of merit are obtained from Ns=5000-sample MC circuit
simulations applying the different models. Reference data is generated by Nref =200-
sample circuit simulations, which apply random permutations of the characterization
data

∼
Y

N,char
and

∼
Y

P,char
.

The Q-Q plots in Fig. 5.5 and Fig. 5.6 as well as in App. C.1.4 visualize the obtained
distributions of the figures of merit. Furthermore, KS tests with (1−αc)=0.95 confi-
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Fig. 5.5: Q-Q plots of static NFET performance parameters; (a) off-current; (b) on-current
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Fig. 5.6: Q-Q plots of inverter propagation delay distributions; (a) fall delay; (b) rise delay

Tab. 5.2: Statistical tests to evaluate MC circuit simulation results: KS test comparing the
Nref =200-sample reference data with results of Ns=5000-sample MC circuit simulations with
results o: sample data from same distribution and x: sample data from different distributions;
test results for MC circuit simulations with uncorrelated Gaussian models, correlated Gaussian
models, and probabilistic GLD-FKML models; confidence level (1−αc)=0.95

Testcase Performance uncorrelated correlated probabilistic
parameter Gaussian Gaussian GLD-FKML

models models models
NFET Ioff o o o

Ion o o o
PFET Ioff o o o

Ion x o o
Inverter fall delay o o o

rise delay x o o
leakage (a=0) o o o
leakage (a=1) o o o

RO leakage power o o o
frequency x o o

dence levels compare them with the reference data. When the null-hypothesis, “the
samples represent the same distribution”, is accepted, the models can be considered
accurate. However, due to the small sample size of the characterization data and,
consequently, the reference data for the MC circuit simulations, Nchar =Nref =200, the
KS tests are not very distinguishing. Nevertheless, their results in Tab. 5.2 can reveal
major model inaccuracies.

For a considerable fraction of the simulation scenarios, uncorrelated Gaussian models
introduce inaccuracies: the distributions of the PFET on-current, the inverter rise delay,
and the RO frequency significantly differ from the reference data, which is further
illustrated by the corresponding Q-Q plots in Fig. 5.6 and App. C.1.4. These figures of
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merit are closely related since the PFET drain current mainly determines the inverter
rise delay, which is an important contributor to the RO period and hence the RO
frequency. In addition, slight but insignificant deviations between the distributions of
the NFET on-current and the inverter fall delay can be observed when comparing the
results of simulations with uncorrelated Gaussian models and the reference data in
the Q-Q plots in Fig. 5.5 and Fig. 5.6.

In contrast, correlated Gaussian models and probabilistic GLD-FKML models perform
equally well in the simulation scenarios: the determined distributions of the figures of
merit do not significantly differ from the reference data. This is confirmed by the KS
test results in Tab. 5.2 and by the Q-Q plots in Fig. 5.5, Fig. 5.6, and App. C.1.4.

5.1.5 Results of the Compact Modeling Scenario

A variety of conclusions can be drawn from the probabilistic device compact modeling
scenario [LSJ+11, LSJ+16].

First, a considerable number of random components may be non-Gaussian so that
more general approximation methods are necessary and justified. The GLD-FKML in
(4.4) is an appropriate solution since it accurately represents marginal distributions of
various shapes, which can be obtained from the characterization data.

Second, most components of probabilistic models are correlated. The correlations
have to be captured to achieve a reasonable accuracy in analyses based on probabilis-
tic models, which is demonstrated by the errors introduced by uncorrelated Gaussian
models in the simulation scenarios.

Third, probabilistic GLD-FKML models are able to represent the characterization data
in terms of correlated and potentially non-Gaussian components.

Fourth, the required modeling accuracy may depend on the simulation scenarios for
model applications. Although they are inaccurate, uncorrelated Gaussian models can
lead to feasible simulation results in particular scenarios, for example when determining
the NFET and PFET off-current distributions. In general, however, they have to be
treated with caution. Furthermore, the fact that correlated Gaussian models and
probabilistic GLD-FKML models perform equally well in the simulation scenarios leads
to the conclusion that, at least to a certain extent, some non-Gaussian components
may be represented by Gaussian distributions.
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5.2 Probabilistic Standard Cell Performance Modeling

& Statistical Gate Level Digital Circuit Analysis

To efficiently evaluate variability information in digital circuit design and analysis, they
need to be transferred from the transistor level to higher levels of abstraction, in partic-
ular to the gate level. This section demonstrates how probabilistic GLD-FKML models
can be applied for this purpose. Based on [LJH+13, LSJ+14, LSJ+16], statistical
standard cell characterization is outlined, probabilistic models are derived for selected
standard cells in a preliminary 28 nm technology, and the principles of statistical gate
level analyses based on probabilistic standard cell models are introduced.

5.2.1 Statistical Standard Cell Characterization

To be accessed by dedicated digital circuit design and analysis tools, the standard
cell performance parameters are stored in libraries that contain particular models, for
example non-linear delay models or current source models [BC09, KJS12]. During
characterization, the standard cell performance parameters, that is the standard
cell responses to different input signals and output loads, are obtained from circuit
simulations.

In the conventional standard cell characterization flow, which is schematically depicted
in Fig. 5.7(a), standard cell models are generated considering different combinations
of environmental conditions and process parameters. Applying deterministic and

(a)

design characterization cell model

(b)

design
statistical

characterization
probabilistic
cell model

Fig. 5.7: Flow for standard cell modeling; (a) conventional method; (b) extension to generate
probabilistic standard cell models
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worst-case statistical corners or statistical corners, it is assumed to obtain the extreme
standard cell behaviors, so-called corner models. To enable probabilistic modeling,
according to the discussions in Sec. 4.2, the characterization methodology needs
to be modified: MC circuit simulations replace corner simulations to mimic process
variations and atomic-level fluctuations and two instances per standard cell under
consideration with identical global but independent local variation parameters have
to be analyzed. This statistical standard cell characterization, which is illustrated in
Fig. 5.7(b), evaluates statistical device models and generates sample characterization
data

∼
Y

char
for calibrating probabilistic models. The method creates a significant

computational effort, which is required to derive the complete probabilistic GLD-FKML
models, nevertheless.

5.2.2 Probabilistic Modeling of Selected Standard Cells

The probabilistic modeling of standard cells is demonstrated at five standard cells in a
preliminary 28 nm technology, an AND2 gate (AN2), a buffer (BUF), an inverter (INV),
a NAND2 gate (ND2), and a NOR2 gate (NR2), with selected static and dynamic
performance parameters [LSJ+14, LSJ+16].

1. Static performance parameters – For all static input signal combinations, the
state-dependent leakage power is obtained. Consequently, the buffer and the
inverter are analyzed at the input pin signals a=0 and a=1; the AND2 gate, the
NAND2 gate, and the NOR2 gate are analyzed at the input pin signal combinations
a=b= 0, a=0 and b=1, a=1 and b=0, as well as a=b= 1.

2. Dynamic performance parameters – In this study, delays and dynamic energies
are the considered dynamic standard cell performance parameters. Simultane-
ously switching input signals are not considered. Exponential voltage sources
switch the input pins under analysis from logic 0 to logic 1 and vice versa with two
time constants, τ=2.5 ps and τ=5 ps , and two different output loads, CL=5 fF
and CL=10 fF , are combined to 4 fall delays and 4 rise delays as well as 4 fall
energies and 4 rise energies for each input pin of the standard cells. For the
AND2, the NAND2, and the NOR2 gate, the second input pin is kept constant at
the logic level that allows the switching event to propagate through the standard
cell.

In summary, this study includes 144 performance parameters. For the buffer and the
inverter, 2 leakage power values, 8 delays, and 8 dynamic energies are taken into
account. For the AND2 gate, the NAND2 gate, and the NOR2 gate, 4 leakage power
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values, 16 delays, and 16 dynamic energies are considered. The statistical standard
cell characterization generates sample data
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The sample size is arbitrarily set to Nchar =1000 to allow a sufficient significance of the
modeling results [LSJ+14, LSJ+16].

As a first evaluation step, SW tests with (1−αc)=0.95 confidence level test the charac-
terization data

∼
Y

char
for Gaussian distributions. The test results are listed in App. C.2

and summarized in the bar plots in Fig. 5.8. They reveal that only 28 dynamic energy
distributions, that is 44 % of the dynamic energy distributions, can be considered
Gaussian. They are all fall energy distributions of the inverter, the NAND2 gate, and
the NOR2 gate; all NAND2 rise energy distributions related to the input pin a; the
AND2 fall energy distributions related to input pin b at τ=5 ps ; and the AND2 rise
energy distributions related to input pin a at τ=2.5 ps . Contrastingly, the remaining
standard cell performance parameter distributions are significantly non-Gaussian:
the leakage power distributions, as expected and already taken into account in the
state of the art; all delay distributions; and the remaining 56 % of the dynamic energy
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Fig. 5.8: Statistical test results for standard cell performance parameter distributions; bar plots
of numbers of overall components, numbers of valid Gaussian approximations according to
SW tests, and numbers of valid GLD-FKML approximations according to KS tests grouped
by leakage power, delay, and dynamic energy; confidence level (1−αc)=0.95; interpretation
example: there are 64 distributions of dynamic energies in the sample

∼
Y

char
, 28 of them can

be considered Gaussian, and all of them can accurately be approximated by GLD-FKMLs;
compare Fig. 3 in [LSJ+14] and see Fig. 8 in [LSJ+16]
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5.2 Probabilistic Standard Cell Modeling & Statistical Gate Level Analysis

distributions. This confirms the criticism of the state of the art and justifies a more
advanced modeling approach, such as the GLD-FKML in (4.4).

All standard cell performance parameter distributions are approximated by GLD-
FKMLs by applying the R function FitGLD in App. B.2. From the selected modeling
results that are illustrated in the Q-Q plots in Fig. 5.9, a good agreement between
the characterization data and the GLD-FKML approximations can be observed for
non-Gaussian distributions, such as in Fig. 5.9(a)–(d), and for Gaussian distributions,
such as dynamic energy distribution in Fig. 5.9(e) [LJH+13, LSJ+14, LSJ+16].

KS tests with (1−αc)=0.95 confidence level investigate the GLD-FKML approxima-
tions by comparing Ns=105 samples from the approximations with the characterization
data. The corresponding test results are added to the tables in App. C.2 and the
bar plots in Fig. 5.8. They confirm that the GLD-FKML approximations accurately
represent all delay and dynamic energy distributions as well as 75 % of the leakage
power distributions. However, four leakage power distributions, that is 25 % , cannot
be accurately approximated: the buffer leakage power distribution for the input a=1,
the NAND2 leakage power distributions for the inputs a=0 and b=1 as well as a=1

and b=0, and the NOR2 leakage power distribution for the inputs a=b=0. Represen-
tative for these distributions, Fig. 5.9(c) depicts the buffer leakage power distribution
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Fig. 5.9: Selected standard cell performance parameter distributions and their approximations;
compare Fig. 9 in [LSJ+16]
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for the input a=1. Since slight deviations between the characterization data and the
GLD-FKML approximation can only be observed in the lower distribution tails, that is for
low leakage power values, they can be considered less critical. In conclusion, while the
assumption of Gaussian distributions is often wrong, the GLD-FKML is an approach
that adequately models the characterization data without prior data transformations.

The second important task in probabilistic modeling is to preserve correlations. Apply-
ing (4.11)–(4.13) in Sec. 4.2, the intra-instance Spearman’s rank correlation matrices
R

AN2
, R

BUF
, R

INV
, R

ND2
, and R

NR2
; the inter-instance correlation matrices R

AN2,AN2
,

R
BUF,BUF

, R
INV,INV

, R
ND2,ND2

, and R
NR2,NR2

; as well as the inter-element correlation
matrices, such as R

AN2,BUF
or R

AN2,INV
, can be determined. Subsequently, to support

the improved sampling approach in Sec. 4.3.2, these matrices are converted into the
corresponding covariance matrices.

For a selected set of performance parameters, test sample data from the probabilistic
standard cell models of the size Ns=1000 are contrasted with the characterization
data in the scatterplot matrix in Fig. 5.10. The good agreement of the clusters of
points indicates the high accuracy in the correlations captured by the probabilistic
GLD-FKML standard cell performance models: intra-instance correlations, such as
within the inverter instance INV[1] or within the buffer instance BUF[1]; inter-instance
correlations, such as between the inverter instances INV[1] and INV[2]; as well as
inter-element correlations, such as between the inverter instances INV[1] or INV[2]

and the buffer instance BUF[1]. Quantitatively, the maximum absolute differences
between the rank correlation coefficients derived from the characterization data and
the test sample data are in the range of 0.05 to 0.07 and hence very small. They can be
reduced below 0.02 by increasing the test sample size Ns by an order of magnitude.

In summary, the probabilistic GLD-FKML models describe the standard cell per-
formance variability with a high accuracy. This includes marginal distributions,
supporting non-Gaussian and Gaussian components without prior data transfor-
mations, as well as intra-instance, inter-instance, and inter-element correlations
[LJH+13, LSJ+14, LSJ+16].
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Fig. 5.10: Scatterplot matrix of selected standard cell performance parameter distributions;
arbitrary units; [k] identifies instance k of the respective logic gate; INV: inverter; BUF: buffer;
see Fig. 4 in [LSJ+14]

5.2.3 Outline of Statistical Gate Level Analyses

To evaluate probabilistic standard cell performance models in statistical gate level anal-
yses, the underlying analysis approaches have to be adapted. The basic procedures
are illustrated at the circuits in Fig. 5.11: an AND4 circuit, which is composed of two
NAND2 instances ND2[1] and ND2[2] as well as a NOR2 instance NR2[1], and a NAND4
circuit, which is composed of an AND4 circuit and an inverter instance INV[1].

As an example, the circuit leakage power consumption is investigated. As introduced
in Sec. 3.4, in a gate level analysis, it is computed as the sum of the state-dependent
leakage power consumptions of all standard cell instances. In particular, for the static
circuit input signals A=D=1 and B=C=0 with their resulting internal logic states
being added to Fig. 5.11, the circuit leakage power consumptions are [LSJ+16]
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Fig. 5.11: Gate level schematics of (a) an AND4 circuit and (b) a NAND4 circuit; [k] identifies
instance k of the corresponding cell; compare Fig. 5 in [LSJ+14] and Fig. 11 in [LSJ+16]

P
(A=D=1,B=C=0)

leak; AND4 = P
(a=1,b=0)

leak; ND2[1]
+ P

(a=0,b=1)

leak; ND2[2]
+ P

(a=1,b=1)

leak; NR2[1]
and (5.4)

P
(A=D=1,B=C=0)

leak; NAND4 = P
(a=1,b=0)

leak; ND2[1]
+ P

(a=0,b=1)

leak; ND2[2]
+ P

(a=1,b=1)

leak; NR2[1]
+ P

(a=0)

leak; INV[1] . (5.5)

In (5.4) and (5.5), P
(a=1,b=0)

leak; ND2[1]
is the leakage power of the NAND2 instance ND2[1]

at its inputs a=1 and b=0, and the remaining quantities are defined analogously.
When accounting for variability by applying the probabilistic standard cell performance
models derived in Sec. 5.2.2, the variability of the AND4 circuit and the NAND4 circuit
can be described by the RVs

YAND4 =
(
Y [1]

ND2
, Y [2]

ND2
, Y [1]

NR2

)
and (5.6)

YNAND4 =
(
Y [1]

ND2
, Y [2]

ND2
, Y [1]

NR2
, Y [1]

INV

)
. (5.7)

From these RVs, random samples
∼
Y

AND4
and

∼
Y

NAND4
of the size Ngate can be gener-

ated to enable sampling-based statistical gate level analyses. For the small example
circuits, the conventional sampling approach in Sec. 4.3.1 can be used. It is based on
the Spearman’s rank correlation matrices [LSJ+14, LSJ+16]

R
YAND4

=




R
ND2

R
ND2

R
NR2

R
ND2,ND2

R
ND2

R
ND2

RT
ND2,NR2

RT
ND2,NR2

R
NR2


 and (5.8)

R
YNAND4

=




R
ND2

R
ND2

R
NR2

R
ND2,INV

R
ND2,ND2

R
ND2

R
ND2

R
ND2,INV

RT
ND2,NR2

RT
ND2,NR2

R
NR2

R
NR2,INV

RT
ND2,INV

RT
ND2,INV

RT
NR2,INV

R
INV



. (5.9)
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However, in general, the improved sampling approach in Sec. 4.3.2 is preferred to
achieve a reasonable computational effort.

Since the samples
∼
Y

AND4
and

∼
Y

NAND4
contain more information than required for the

leakage power analysis applying (5.4) or (5.5), the corresponding components have
to be extracted: the leakage power of the NAND2 instance ND2[1] at the input signal
combination a=1 and b=0, the leakage power of the NAND2 instance ND2[2] at the
input signal combination a=0 and b=1, the leakage power of the NOR2 instance
NR2[1] at the input signal combination a=1 and b=1, and the leakage power of the
inverter instance INV[1] at the input signal a=0 for the NAND4 circuit. With them, (5.4)
and (5.5) can be applied to all sample points, embodying sampling-based statistical
gate level leakage power analyses. The sample size Ngate can be chosen relatively
large since the gate level calculations are computationally inexpensive.

Fig. 5.12 compares Ngate =1000-sample statistical gate level leakage power analysis
results and Nref =1000-sample MC reference circuit simulations for the AND4 and
NAND4 scenarios outlined in Fig. 5.11. Their good agreements demonstrate that
probabilistic standard cell performance models can be successfully applied in statistical
gate level analyses, in principle. This holds for the conventional approach and the
improved approach for correlated Gaussian sampling, which do not reveal significant
differences in their analysis results.

Being close to the reference data, the important advantage of the illustrated statistical
gate level analysis is its efficiency. While the Nref =1000-sample reference simula-
tions for the NAND4 circuit leakage power analysis take slightly more than 30 s , the
Ngate =1000-sample gate level analyses finish in approximately 1.7 s applying the
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Fig. 5.12: AND4 and NAND4 leakage power distributions for the input signal combination
A=D=1 and B=C=0 determined by statistical gate level analyses (improved approach
for correlated Gaussian sampling) and MC reference circuit simulations; Ngate =Nref =1000;
compare Fig. 6 in [LSJ+14] and Fig. 12 in [LSJ+16]
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conventional approach and in approximately 0.4 s applying the improved approach
for correlated Gaussian sampling, corresponding to speed-ups of 18X and 75X on
a standard notebook computer. When the sample size for the gate level analysis
is increased to Ngate =104, the analysis run times grow to 2.8 s for the conventional
sampling approach and 2 s for the improved sampling approach, corresponding to
speed-ups of 11X and 15X . The differences in the run times applying the conven-
tional and the improved approach for correlated Gaussian sampling are reduced with
a growing gate level sample size Ngate. The reasons are the low complexity of the test
circuits and the computational effort for mapping uniform components to the target
marginal distributions via the GLD-FKML in (4.4) in step 4 of the sampling algorithm in
Sec. 2.3.2, which is not negligible in this scenario.

If desired, other performance parameters can be extracted from the samples
∼
Y

AND4

and
∼
Y

NAND4
in (5.6) and (5.7). For example, summing the corresponding standard

cell delays and dynamic energies results in the circuit propagation delay and dynamic
energy consumption for a particular input signal switching event. In combination, these
computations allow a joint gate level analysis of digital circuit performance variability
including marginal distributions and correlations [LJH+13, LSJ+14, LSJ+16].

To reduce the complexity, the circuit-specific RVs Y
AND4

and Y
NAND4

can be con-
structed from the standard cell performance parameters that are required for a particu-
lar analysis only. This approach can significantly improve the analysis efficiency but
neglects potential correlations of circuit performance parameters.

5.2.4 Results of the Standard Cell Modeling Scenario

After extending the conventional standard cell characterization to the statistical stan-
dard cell characterization, the probabilistic GLD-FKML modeling approach can be
applied to standard cell performance models. The investigation of five standard cells
in a preliminary 28 nm technology reveals that most standard cell performance pa-
rameters are significantly non-Gaussian [LSJ+14, LSJ+16] so that the assumption of
Gaussian distributions is wrong. However, GLD-FKML approximations usually well
represent the characterization data without requiring non-linear transformations. A
proper selection of the units of measurements, for instance ps for delay times, fJ for
dynamic energies, and nW for leakage power values, is numerically beneficial when
the R function FitGLD fits marginal distributions to GLD-FKMLs. In addition, probabilis-
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tic GLD-FKML standard cell models accurately capture intra-instance, inter-instance,
and inter-element correlations from the characterization data.

To apply probabilistic GLD-FKML standard cell models in statistical gate level analyses
of digital circuits, the underlying analysis approaches have to be extended to generate
and evaluate sample data from the models. While solutions to particular scenarios can
be implemented, some challenges remain to be solved on the way to an application
of probabilistic GLD-FKML models in standard digital circuit design and analysis
tools. First, the circuit environment defines the input waveforms and output loads
for a particular standard cell instance. Usually, table-based models, such as the
non-linear delay model or current-source models [BC09, KJS12], capture the standard
cell behaviors for multiple combinations of these variables, which makes statistical
standard cell characterization computationally expensive. Second, how the table-
based standard cell performance models can be extended to capture GLD-FKML
approximations of marginal distributions as well as intra-instance, inter-instance, and
inter-element correlations, remains a subject for future research. Third, standard
digital circuit design and analysis tools do not necessarily enable an implementation of
the approach in Sec. 2.3.2 to generate sample data for statistical gate level analyses.
Consequently, standard tools cannot apply probabilistic GLD-FKML standard cell
performance models up to now.

However, in a particular circuit under investigation, the input signals and output loads
for each standard cell instance are known from their driving cells and fanout cones.
Therefore, circuit-specific probabilistic models can be derived, for instance from the
sequential circuit simulation of stages in a timing path [SKS08a, SKS08b], and applied
in circuit analyses. In terms of efficiency, such an approach benefits from regular
circuit structures in which many standard cell instances share their circuit environment,
that is driving cells and output loads. Digital ROs, which will be detailed in Sec. 5.3,
are examples for this scenario.

5.3 Statistical Digital Ring Oscillator Analysis

In this section, the variability information provided by probabilistic standard cell models
are evaluated in efficient gate level analyses of digital ring oscillators (ROs), which
are particular digital circuits with regular structures. They consist of k stages, an odd
number of inverting plus an arbitrary number of non-inverting stages, in principle. In
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practice, however, ROs are usually composed of k instances of a particular inverting
standard cell. Fig. 5.13 depicts two examples: an inverter-based digital RO and a
NAND2-based digital RO. As the previous section, this study is based on a preliminary
28 nm technology [LSJ+16].

5.3.1 Analysis Approach

The RO performance parameters are its oscillation frequency f , its on-power Pon,
that is its power consumption when oscillating, and its off-power Poff , that is its power
consumption in idle mode if appropriate. As indicated by the schematic signal wave-
forms in Fig. 5.14, per oscillation, each instance is switched from logic 0 to logic 1 and
vice versa. Consequently, the oscillation period TRO, the reciprocal of the oscillation
frequency f , can be calculated as the sum of the rise and fall delays, tr;[i] and tf;[i], of
all oscillator stages [LSJ+16],

TRO =
1

f
=

k∑

i=1

(
tr;[i] + tf;[i]

)
. (5.10)

If necessary, wiring delays can be added to (5.10).

For these switching events, the dynamic rise and fall energies, Wr;[i] and Wf;[i], are
required at each stage i. In addition, between the switching events, each standard

INV[1] INV[2] INV[k]

(a) (b)
en

ND2[1] ND2[2] ND2[k]

Fig. 5.13: Gate level schematics; (a) inverter-based RO; (b) NAND2-based RO
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Fig. 5.14: Schematic input and output signal waveforms at stage i of a RO
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cell instance has two “steady states” in which leakage power P (st1)

leak;[i]
and P

(st2)

leak;[i]
is

consumed. Neglecting signal transition times, it can be assumed that both “steady
states” last for half of the oscillation period TRO. In summary, the total energy required
per oscillation Won and the on-power Pon can be calculated from [LSJ+16]

Won =
k∑

i=1

(
Wr;[i] +Wf;[i]

)
+
TRO

2

(
k∑

i=1

(
P

(st1)

leak;[i]
+ P

(st2)

leak;[i]

))
and (5.11)

Pon =
Won

TRO

= Won · f. (5.12)

Most digital ROs, such as the NAND2-based RO in Fig. 5.13(b), can be enabled
and disabled via a control signal. When disabled, all stages are forced into static
states so that each instance consumes state-dependent leakage power P (state)

leak;[i]
. The

RO off-power Poff can then be calculated as the sum of the stage leakage power
consumptions [LSJ+16]:

Poff =
k∑

i=1

P
(state)

leak;[i]
. (5.13)

In summary, (5.10)–(5.13) provide a general basis for gate-level digital RO perfor-
mance evaluations. However, some details directly depend on the structure and the
configuration of the RO under consideration. First, the switching events depend on
the connected standard cell pins. Second, the particular connection of the stages and
potential additional loads determine input signal waveforms and output loads at each
instance. Third, the logic states for leakage power consumptions of each instance are
specific for a certain RO implementation.

5.3.2 Characterization and Model Calibration

As already introduced, a specialty of most digital ROs is their regular structure: many
stages have the same circuit environments in terms of driving cells and output loads.
Examples are the inverter-based RO and the NAND2-based RO in Fig. 5.13. Further
test scenarios in this section are ROs composed of NOR2 instances.

In these application cases, each stage can be considered an instance of a single
standard cell model containing delays and dynamic energies for this particular circuit
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environment as well as static leakage power values. The standard cell model can
directly be derived from a MC circuit simulation of a RO. During statistical character-
ization of the standard cell instances in the ROs in Fig. 5.13, k=9 stage oscillators
provide the best trade-offs between characterization effort and model accuracy: the
characterization data is determined from 2 stages, and the remaining 7 stages slow
down the oscillation to achieve full signal swings, which are mandatory for a reasonable
model accuracy. These simulations generate the characterization data

∼
Y

char,INV
=

(
∼
Y

[1]

INV
,

∼
Y

[2]

INV

)
,

∼
Y

char,ND2
=

(
∼
Y

[1]

ND2
,

∼
Y

[2]

ND2

)
, and

∼
Y

char,NR2
=

(
∼
Y

[1]

NR2
,

∼
Y

[2]

NR2

)
(5.14)

with the sample sizes Nchar∈ {200, 500, 1000} as inputs to calibrate the RO-internal
inverter, NAND2, and NOR2 models. For the inverter instances, state-dependent
leakage power consumption is not taken into account.

SW tests with (1−αc)=0.95 confidence level are performed to test the characterization
data for Gaussian distributions. For the Nchar =200-sample characterization data, the
test results are summarized in Tab. 5.3. They reveal that the distributions of the
dynamic energies, the NAND2 delays, as well as the NOR2 delays can be considered
Gaussian while the inverter delays as well as all leakage power distributions cannot.
For the larger characterization sample sizes Nchar =500 and Nchar =1000, smaller

Tab. 5.3: Results of statistical tests for Nchar =200-sample characterization data; SW tests
of components of characterization data with results +: Gaussian and –: non-Gaussian; KS
tests comparing characterization data and GLD-FKML approximations of marginal distributions
with results o: accurate approximation and x: inaccurate approximation; confidence level
(1−αc)= 0.05; compare TABLE II in [LSJ+16]

Performance Inverter NAND2 NOR2
parameter SW test KS test SW test KS test SW test KS test
tr – o + o + o
tf – o + o + o
Wr + o + o + o
Wf + o + o + o
P

(a=0,b=0)
leak – o – o
P

(a=0,b=1)
leak – o – o
P

(a=1,b=0)
leak – x – o
P

(a=1,b=1)
leak – o – o
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deviations become significant. The test results in App. C.3.1 reveal that the NAND2
delays, the NOR2 rise delay, and the NAND2 rise energy tend to be slightly non-
Gaussian as well.

Practically independent of their shapes and without prior data transformations, the
marginal distributions can be approximated by GLD-FKMLs for the different charac-
terization sample sizes. The model accuracy is evaluated by KS tests that compare
the characterization data with Ns=Nchar samples from the GLD-FKML approximations
at a (1−αc)=0.95 confidence level. The test results in Tab. 5.3 and App. C.3.1 attest
the high modeling accuracy for delay, dynamic energy, and leakage power distribu-
tions. The only exception is the NAND2 leakage power at the inputs a=1 and b=0,
P

(a=1,b=0)
leak .

The Q-Q plots of the NAND2 performance parameter distributions on the diagonal
of the scatterplot matrix in Fig. 5.15 illustrate the accuracy of the GLD-FKML ap-
proximations of the Gaussian and the non-Gaussian components. This statement
also holds for the NAND2 leakage power distribution at the inputs a=1 and b=0 for
which the GLD-FKML approximation is reported inaccurate by the KS test. In con-
trast, while describing the delay and the dynamic energy distributions without large
deviations, Gaussian approximations of the standard cell leakage power distributions
over-estimate the lower tails and under-estimate the upper tails.

In addition to the marginal distributions, intra-instance and inter-instance correlations
are extracted from the characterization data. Being representative for all models
derived in this section, the scatterplot matrix of the NAND2 performance parameters
in Fig. 5.15 indicates that the probabilistic GLD-FKML model well captures the cor-
relations in the characterization data. These results also apply to the performance
parameters of the RO-internal inverters and NOR2 gates with the corresponding
scatterplot matrices being illustrated in App. C.3.2.

5.3.3 Application Examples with Accuracy and
Performance Evaluations

Instances of the inverter (INV), the NAND2 gate (ND2), or the NOR2 gate (NR2) can
be connected to digital ROs of different lengths according to Fig. 5.13. Similar to
the NAND2-based ROs, the NOR2-based ROs can be enabled and disabled via a
control signal connected to the input pin b of the first stage, and the input pins b of the
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Fig. 5.15: RO-internal probabilistic NAND2 model; Nchar =500; Gaussian approximations and
GLD-FKML approximations of marginal distributions; scatter plots from Ns=500 samples from
NAND2 model; correlations in Gaussian model not shown

remaining stages are tied to logic 0. In this study, the numbers of stages are varied
from k=3 to k=69.

While reference data are obtained from very costly Nref =200-sample MC circuit sim-
ulations, a statistical gate level RO analysis can drastically reduce this effort. After
generating sample data of standard cell performance parameters from the probabilistic
standard cell models, (5.10)–(5.13) can be evaluated per sample to obtain sample
data of the RO performance parameters: the frequency f , the on-power Pon, and the
off-power Poff . While the off-power of any inverter-based RO is neglected in this study,
(5.13) needs to be adapted to the NAND2-based ROs and the NOR2-based ROs to
consider the corresponding static states in idle mode [LSJ+16]: the calculation

Poff = P
(a=1,b=0)

leak;ND2[1]
+

k/2∑

i=1

P
(a=1,b=1)

leak;ND2[2i]
+

k/2∑

i=1

P
(a=0,b=1)

leak;ND2[2i+1] (5.15)
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has to be applied to the NAND2-based ROs; the calculation

Poff = P
(a=0,b=1)

leak;NR2[1]
+

k/2∑

i=1

P
(a=0,b=0)

leak;NR2[2i]
+

k/2∑

i=1

P
(a=1,b=0)

leak;NR2[2i+1] (5.16)

has to be applied to the NOR2-based ROs. Due to the efficient generation of random
samples from the probabilistic models, a large sample size Ngate can be used in the
gate level analyses to ensure a reasonable accuracy. It is arbitrarily set to Ngate =104.

The gate level analyses are performed with probabilistic GLD-FKML and correlated
Gaussian standard cell performance models for comparison purposes. Selected
but representative RO analysis results are summarized in the scatterplot matrices
in Fig. 5.16. For the probabilistic GLD-FKML models and the reference MC circuit
simulation results, the Q-Q plots demonstrate a good agreement in the marginal
distributions, and the scatter plots demonstrate a good agreement in the correlations

Nref=200-sample reference circuit simulations
Ngate=104-sample gate level analysis with GLD-FKML models
Ngate=104-sample gate level analysis with Gaussian models

(a)

frequency

on-power

fre
qu

en
cy

(b)

frequency

on-power

off-power
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qu

en
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on
-p

ow
er

Fig. 5.16: Example scatterplot matrices of performance parameters of (a) the k=55-stage
inverter-based RO and (b) the k=57-stage NAND2-based RO; Q-Q plots of marginal distri-
butions on main diagonal; characterization sample size (a) Nchar=200 and (b) Nchar=1000;
compare Figs. 15 and 16 in [LSJ+16]
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of the RO performance parameters. Hence, statistical gate level digital RO analyses
based on probabilistic GLD-FKML models yield accurate results. However, correlated
Gaussian models appear to be feasible to determine the RO frequency and on-power
distributions as well, but they do not suit off-power computations.

To evaluate the analysis accuracy, KS tests with a (1−αc)=0.95 confidence level
compare the gate level analysis results with the reference MC circuit simulation results.
The test results are visualized in App. C.3.3 and summarized in Tab. 5.4. As indicated
in Fig. 5.16, correlated Gaussian models and probabilistic GLD-FKML models per-
form similarly in RO frequency and on-power computations even if the stage delay or
dynamic energy distributions are slightly non-Gaussian. However, accurately repre-
senting a slightly larger ratio of the reference distributions, the probabilistic GLD-FKML
models appear more accurate. Nevertheless, the inaccuracies in Gaussian models for
standard cell leakage power distributions transfer to significant errors in statistical gate
level leakage power analyses. As in Fig. 5.16(b), the upper tails of the RO off-power
distributions are under-estimated and the lower tails are over-estimated, corresponding
to too optimistic analysis results with even unphysical negative values being obtained.
In contrast, the RO off-power computations applying probabilistic GLD-FKML models
appear to be feasible in the majority of the scenarios. The demonstrated universality of
probabilistic GLD-FKML models, which can be equally applied to multiple performance
parameters without requiring non-linear data transformations, is their major benefit
with respect to Gaussian modeling approaches.

Tab. 5.4: Summary of (1−αc)=0.95-confidence level KS tests for RO performance parameter
distributions; comparison of Nref =200-sample circuit simulation results and Ngate =104-sample
statistical gate level analysis results based on correlated Gaussian models and probabilistic
GLD-FKML models; ratio of accepted null-hypotheses indicating ratio of accurate gate level
analyses in %

Nchar RO performance Gaussian models GLD-FKML models
parameter INV NAND2 NOR2 INV NAND2 NOR2

200 f 62 88 76 74 88 82
Pon 15 88 59 24 88 59
Poff – 9 12 – 41 62

500 f 91 85 74 94 88 82
Pon 68 88 79 76 88 76
Poff – 0 3 – 35 53

1000 f 91 74 71 94 79 82
Pon 47 76 59 71 79 74
Poff – 0 0 – 47 50
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Due to the errors of Gaussian models in leakage power analyses, the accuracy of the
gate level RO analyses is further evaluated for the probabilistic GLD-FKML models
only. The percentage errors of mean values µ and standard deviations σ,

errµ = 100 % ·
(
µ̃

gate

µ̃
ref

− 1

)
and errσ = 100 % ·

(
σ̃

gate

σ̃
ref

− 1

)
, (5.17)

relate the results of the Ngate =104-sample gate level analyses with their mean values
µ̃

gate
and standard deviations σ̃

gate
to the Nref =200-sample reference circuit simulation

results mean values µ̃
ref

and standard deviations σ̃
ref

.

To take into account that the reference sample size Nref =200 is not very large, confi-
dence intervals are constructed for the standard deviations σ̃

ref
. Assuming a Gaussian

distribution, the true value of the standard deviation σ
ref

lies in the interval [Bur74]

[
σ̃

ref
·
√

Nref − 1

χ2
1−αc/2;Nref−1

, σ̃
ref
·
√

Nref − 1

χ2
αc/2;Nref−1

]
(5.18)

with (1−αc) being the confidence level and χ2
a;b being the a-quantile of the chi square

distribution with b degrees of freedom. With (1−αc)=0.95 and Nref =200, (5.18) trans-
lates to acceptable errors of

errσ ∈ [−8.9 % , 10.9 % ] . (5.19)

Being tailored to Gaussian distributions, the confidence interval in (5.18) may be
inaccurate for non-Gaussian distributions, such as the RO off-power Poff .

For different numbers of RO stages 3≤k≤69, the evolutions of the statistical gate level
RO analyses with respect to the reference circuit simulations are depicted in Fig. 5.17
and Fig. 5.18. From the graphs, multiple conclusions can be drawn [LSJ+16].

(I) The statistical gate level analysis approach with the probabilistic GLD-FKML models
from Sec. 5.3.2 introduces considerable errors for k=3-stage ROs. These ROs are
too fast to allow full signal swings, which is a particular case simply not covered by the
probabilistic standard cell models derived from k=9-stage ROs.

(II) The modeling and analysis approaches are not affected by systematic errors for
k>3 stages. This is indicated by the errors in mean values and standard deviations,
errµ and errσ , which scatter around 0.
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Fig. 5.17: Mean value errors errµ of statistical gate level RO analyses depending on number
of stages k according to (5.17); top: inverter-based RO with (a) frequency f and (b) on-power
Pon center: NAND2-based RO with (c) frequency f , (d) on-power Pon, and (e) off-power
Poff ; bottom: NOR2-based RO with (f) frequency f , (g) on-power Pon, and (h) off-power Poff ;
compare Fig. 17 in [LSJ+16]

(III) For ROs with k>3 stages, statistical gate level analyses based on probabilistic
GLD-FKML models well represent the dynamic RO performance parameter distri-
butions, that is the oscillation frequency f and the on-power Pon, with respect to
the reference data. The errors in the mean values are within |errµ |<2 % and often
even better. Furthermore, the majority of the standard deviations σ

gate
is inside the

confidence interval derived from the reference data by (5.18). Increasing the char-
acterization sample size Nchar from Nchar =200 to Nchar =500 can slightly improve the
analysis errors, but a further increase to Nchar =1000 only causes additional computa-
tional effort without effecting the analysis accuracy, which is additionally underlined by
the ratios in Tab. 5.4.
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Fig. 5.18: Standard deviation errors errσ of statistical gate level RO analyses depending on
number of stages k according to (5.17); confidence intervals from (5.19) shaded; top: inverter-
based RO with (a) frequency f and (b) on-power Pon center: NAND2-based RO with (c) fre-
quency f , (d) on-power Pon, and (e) off-power Poff ; bottom: NOR2-based RO with (f) frequency
f , (g) on-power Pon, and (h) off-power Poff ; compare Fig. 17 in [LSJ+16]

(IV) The errors of gate level off-power analyses are larger than the errors for the
dynamic RO performance parameters: the errors in the mean values are within
[−15 % , 5 % ], the errors in the standard deviations may even be larger. However,
mean values and standard deviations alone are not convincing for the off-power
distributions due to their significantly non-Gaussian shapes, which cause the standard
deviation confidence intervals in (5.18) to be inaccurate. Optical inspections of the off-
power distributions reveal that the gate level analysis well approximates the reference
data from MC circuit simulations. For example, for the off-power distribution for the
k=57-stage NAND2-based RO at Nchar =103, the mean error is errµ =−5.5 % and
the standard deviation error is errµ =11 % although the Q-Q plots of the off-power
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distributions from the reference circuit simulations and the gate level analysis with
probabilistic GLD-FKML models in Fig. 5.16(b) coincide. Rare extremely large stage
leakage power values, which are covered in the probabilistic models and potentially
replicated in the gate level analysis, are the reasons for these large errors. A rising
characterization sample size Nchar can increase the number of these large stage
leakage power values and, therefore, does not necessarily improve the gate level
analysis accuracy.

The reference MC circuit simulations are very time consuming. With the sample
size Nref =200, for example, the simulations of the 19-stage ROs take approximately
31min for the inverter-based RO, 36min for the NAND2-based RO, and 40min for
the NOR2-based RO on a 4-core machine with 32GB RAM. These simulation times
increase to nearly 8 h , 9.5 h , and 10 h for the 69-stage ROs.

The run times of the proposed RO analysis approach with probabilistic models are
dominated by the standard cell characterization, Nchar-sample circuit simulations
of k=9-stage ROs, which take approximately 4min 35 s for the inverter-based RO,
7min 25 s for the NAND2-based RO, and 8min for the NOR2-based RO atNchar =200

samples. Obviously, the major parameter to adapt the computational costs is the
characterization sample size Nchar. According to the accuracy evaluations above, the
sample size Nchar =200 appears sufficient. Rising this number to Nchar =500 may be
beneficial from an accuracy perspective, but further rising this number to Nchar =1000

only increases the computational effort.

While correlated Gaussian models can be extracted virtually instantly from the charac-
terization data, the GLD-FKML approximation of a single stage performance parameter
takes less than 15 s , practically independent of the characterization sample size Nchar.
Finally, with the sample size Ngate =104, the statistical gate level RO analyses finish
in less than 30 s for the inverter-based ROs and in less than 1min for the other
oscillators. The run times of the statistical gate level analyses applying correlated
Gaussian models and probabilistic GLD-FKML models do not significantly differ.

In summary, the statistical gate level RO analyses combining characterizations, model
calibrations, and gate level computations achieve significant speed-ups with respect to
the reference MC circuit simulations. Separated for the different ROs, their evolutions
over the number of stages k are illustrated in Fig. 5.19. With the characterization
sample size Nchar =200 and probabilistic GLD-FKML models, the gate level analyses
are more efficient than the Nref =200-sample reference simulations at k≥11 stages for
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Fig. 5.19: Speed ups of statistical gate level RO analyses compared with MC SPICE reference
simulations (Nref =200); compare Fig. 18 in [LSJ+16]

the inverter-based ROs and the NAND2-based ROs and at k≥13 stages for the NOR2-
based ROs. For the k=69-stage ROs, the analysis run times can be reduced to 6min

for the inverter-based RO, 9min 45 s for the NAND2-based RO, and 10min 20 s

for the NOR2-based RO, corresponding to maximum speed-ups of 79X , 59X , and
58X . The trends in the graphs in Fig. 5.19 additionally indicate that the speed-ups
further rise with a growing number of stages k and that applying correlated Gaussian
models does not lead to a significant performance gain compared with probabilistic
GLD-FKML models when the characterization sample size is Nchar≥200.

5.3.4 Results of Ring Oscillator Scenarios

Due to their regular structures with certain standard cells being multiply instantiated,
digital ROs are scenarios that allow an efficient application of probabilistic standard
cell performance models in statistical gate level analyses.

In contrast to the previous application examples, many standard cell performance
parameters of RO-internal instances extracted from MC circuit simulations of 9-stage
ROs can be considered Gaussian, at least at the smaller characterization sample size
Nchar =200: dynamic energies as well as NAND2 and NOR2 delay times. Increasing
the characterization sample size, however, reveals that many of these parameters
tend to be slightly non-Gaussian as well. In addition, as expected, the leakage power
distributions are non-Gaussian. Independent of marginal distributions being Gaussian
or non-Gaussian, the obtained standard cell performance variations can be accurately
described by probabilistic GLD-FKML models. Besides marginal distributions, these
models also capture intra-instance and inter-instance correlations.

119



5 Application Scenarios

The statistical gate level digital RO analyses defined by (5.10)–(5.13) can be per-
formed with correlated Gaussian models and probabilistic GLD-FKML models. While
Gaussian models are slightly more efficient, they lead to wrong results in RO off-power
distributions, but perform as accurate as GLD-FKML models when examining RO
frequency and on-power distributions. Especially for the inverter-based ROs with
non-Gaussian stage delays, it can be concluded that it is acceptable to approximate
slightly non-Gaussian distributions by Gaussian distributions. To what extent such an
approximation is acceptable remains as a topic for future research.

With the probabilistic GLD-FKML standard cell models, the statistical gate level analy-
ses achieved up to 79X speed-ups compared with MC circuit simulations. A further
gain in efficiency can be expected for ROs with k>69 stages, exceeding the maximum
number in this study. The analysis accuracy is sufficient for the relatively small charac-
terization sample size Nchar =200 already. A higher effort in characterization does not
necessarily increase the accuracy of the gate level analyses.

5.4 Probabilistic Analog Behavioral Models

In this section, the probabilistic GLD-FKML modeling approach is transferred to behav-
ioral models of analog cells [LHE+15]. Hence, the range of application scenarios is
extended beyond device compact modeling and standard cell performance modeling.
The derived models are implemented in Verilog-A [Acc14] syntax to be evaluated
in Cadence R© Spectre R© Circuit Simulator [Cadb] for demonstration purposes. After
a brief discussion of the principles in Sec. 5.4.1, further details are presented at a
voltage divider example in Sec. 5.4.2, and the model accuracy and efficiency are
evaluated at a bandgap voltage reference circuit in Sec. 5.4.3.

5.4.1 Principles

As introduced in Sec. 3.6, an analog behavioral model connects the pin voltages and
currents of an analog cell by equations. Characterizing such a model corresponds
to determining the model coefficients. For this purpose, the circuit schematic of
the analog cell is instantiated in a testbench that sweeps the variables in the model
equations and observes the circuit responses. The determined quantities allow to fit
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the model coefficients. In principle, this procedure can be performed for the nominal
behavior and for corner cases to obtain different sets of fixed model coefficients.

To introduce variability information into probabilistic analog behavioral models, the
characterization needs to perform MC circuit simulations to generate characterization
sample data

∼
Y

char
. As discussed in Sec. 4.2 and demonstrated for digital standard

cells in Sec. 5.2.1 and Sec. 5.3.2, two instances per analog cell under consideration
have to be characterized to derive the complete probabilistic model including marginal
distributions as well as intra-instance, inter-instance, and inter-element correlations.

Similar to the device compact models in Sec. 5.1.3, probabilistic analog behavioral
models can be implemented to be accessed by circuit simulators, for instance. This
requires an approximation of the standard Gaussian CDF, such as (5.2) based on
[AA08], and the GLD-FKML quantile function (4.4) to be available. An approach to
implement and access probabilistic analog behavioral models is outlined at the voltage
divider example in Sec. 5.4.2.

5.4.2 Voltage Divider Example

Behavioral Model and Assumed Variability

To illustrate probabilistic analog behavioral modeling and to extend the discussion in
[LHE+15], Fig. 5.20 depicts a the schematic of a simple voltage divider circuit with a
corresponding testbench. Applying Kirchhoff’s laws, for example, the equations

V2 =
1

1 + R1

R2

·V1 −
1

1
R1

+ 1
R2

· I2 = Yvd1 ·V1 + Yvd2 · I2 and (5.20)

I1 =
1

R1 +R2

·V1 +
1

1 + R1

R2

· I2 = Yvd3 ·V1 + Yvd1 · I2 with (5.21)

Yvd1 =
1

1 + R1

R2

, Yvd2 = − 1
1
R1

+ 1
R2

, and Yvd3 =
1

R1 +R2

(5.22)

can be derived as the behavioral model that relates the output voltage V2 and the
current consumption I1 to the supply voltage V1 and the output current I2 with the
coefficients Yvd1, Yvd2, and Yvd3.

A potential implementation of (5.20)–(5.22) as an analog behavioral voltage divider
model in Verilog-A syntax is demonstrated in Fig. 5.21.
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Fig. 5.20: Voltage divider; (a) circuit schematic; (b) simulation testbench for characterization

‘include "constants.vams"

‘include "disciplines.vams"

module voltage_divider_va (VDD, VSS, OUT);

// pins

inout VDD, VSS, OUT;

electrical VDD, VSS, OUT;

// declarations

real Yvd1, Yvd2, Yvd3;

// catch resistance values from Spectre

(* cds_inherited_parameter *) parameter real R1=0;

(* cds_inherited_parameter *) parameter real R2=0;

// analog behavior

analog begin

@(initial_step) begin

// assignment of model parameters

Yvd1 = 1 / (1+R1/R2);

Yvd2 = -1 / (1/R1+1/R2);

Yvd3 = 1 / (R1+R2);

end // initial step

V(OUT,VSS)<+Yvd1*V(VDD,VSS)+Yvd2*I(VSS,OUT);

I(VDD,VSS)<+Yvd3*V(VDD,VSS)+Yvd1*I(VSS,OUT);

end

endmodule

Fig. 5.21: Implementation example of voltage
divider model in Verilog-A syntax

parameters R1=1k R2=2k

statistics {

// R1 = R1_nom + dR1_glob + dR1_loc

// with R1_nom=1k, dR1_glob~N(0,80^2),

// and dR1_loc~N(0,60^2);

// R2 = R2_nom + dR2_glob + dR2_loc

// with R2_nom=2k, dR2_glob~N(0,160^2),

// and dR2_loc~N(0,120^2);

// dR1_glob and dR2_glob global

// (equal for all instances) and

// correlated with product-moment

// correlation coefficient 0.4;

// dR1_loc and dR2_loc local

// (instance-specific)

process {

vary R1 dist=gauss std=80 percent=no

vary R2 dist=gauss std=160 percent=no

}

correlate param=[R1 R2] cc=0.4

mismatch {

vary R1 dist=gauss std=60 percent=no

vary R2 dist=gauss std=120 percent=no

}

}

Fig. 5.22: Assumed statistics section
for resistor variability

The model characterization can be performed by circuit simulations with the testbench
in Fig. 5.20(b). While the supply voltage V1 and the output current I2 are swept,
the output voltage V2 and the current consumption I1 are observed to fit the model
coefficients Yvd1 , Yvd2 , and Yvd3 in (5.20) and (5.21). As a more efficient alternative for
this particular voltage divider scenario, (5.22) can be directly evaluated.

Global and local variability are assumed to cause variations in the resistances R1

and R2. For illustration purposes and according to the Spectre statistics section in
Fig. 5.22, they are modeled as

R1 =
(
µ

R1
+Rglob,1 +Rloc,1

)
Ω and R2 =

(
µ

R2
+Rglob,2 +Rloc,2

)
Ω (5.23)
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with µ
R1

=1000 and µ
R2

=2000; correlated Gaussian RVs Rglob,1∼N(0, 802) and
Rglob,2∼N(0, 1602) with ρ(pe)

Rglob,1,Rglob,2
= 0.4 applying to all instances of the resistors R1

and R2; as well as instance-specific independent Gaussian RVs Rloc,1∼N(0, 602) and
Rloc,2∼N(0, 1202).

Probabilistic Model Characterization and Calibration

To introduce variability information into the behavioral voltage divider model (5.20)–
(5.22), the model coefficients Yvd1 , Yvd2 , and Yvd3 have to be treated as the components
of an ny=3-dimensional RV Y

vd
. To derive a probabilistic GLD-FKML description of

this RV, sample data
∼
Y

char
=

(
∼
Y

[1]

vd
,

∼
Y

[2]

vd

)
has to be generated during characterization

from two voltage divider instances. For example, this can be efficiently done by drawing
random samples of the resistances R1 and R2 and evaluating (5.22) for two instances.
In this section, the characterization sample size is arbitrarily set to Nchar =1000.

The characterization data maps to the GLD-FKML approximations of the marginal distri-
butions Yvd1∼GLD(0.669, 58.5, 0.0447, 0.113), Yvd2∼GLD(−666, 0.0261, 0.139, 0.151),
and Yvd3∼GLD(3.31 · 10−4, 5.08 · 104, 0.255, 0.0678) as well as the intra-instance Spear-
man’s rank correlation matrix R

vd
and the inter-instance Spearman’s rank correlation

matrix R
vd,vd

R
vd

=




1 0.206 −0.262

0.206 1 0.868

−0.262 0.868 1


 and (5.24)

R
vd,vd

=




0.541 0.112 −0.155

0.112 0.703 0.638

−0.155 0.638 0.711


 . (5.25)

Since the voltage divider is taken into account as a single element, inter-element
correlations do not exist.

The scatterplot matrix in Fig. 5.23 illustrates the modeling results in terms of marginal
distributions as well as intra-element and inter-element correlations. While a Gaussian
approximation of the coefficient Yvd3 is not feasible, the probabilistic GLD-FKML model
accurately represents the characterization data.
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Fig. 5.23: Probabilistic voltage divider model; left part: Q-Q plots for marginal distributions
and scatter plots for intra-instance correlations; right part: scatter plots for inter-instance
correlations between voltage divider instances 1 and 2; scatter plots from Ns=1000 samples
from probabilistic GLD-FKML models and Nchar =1000-sample characterization data

Model Implementation and Application

To apply the probabilistic voltage divider model in Spectre simulations, the behavioral
voltage divider model in Fig. 5.21 has to be extended, and the corresponding statistics
section has to be implemented.

From the Spearman’s rank correlation sub-matrices in (5.24) and (5.25), the global
and the local covariance matrices for the improved sampling algorithm can be derived
applying the principles in Sec. 4.3.2:

Σ
glob

=




0.559 0.117 −0.162

0.117 0.72 0.655

−0.162 0.655 0.728


 and (5.26)

(
Σ

vd
−Σ

vd,vd

)
=




0.441 0.099 −0.111

0.099 0.281 0.223

−0.111 0.223 0.273


 . (5.27)
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To implement the probabilistic behavioral voltage divider model in Verilog-A syntax to
be used in Spectre, the global covariance matrix Σ

glob
needs to be converted into the

global correlation matrix C
glob

by applying (2.36) in Sec. 2.2.1,

C
glob

=




1 0.184 −0.253

0.184 1 0.904

−0.253 0.904 1


 , (5.28)

and the local covariance matrix
(
Σ

vd
−Σ

vd,vd

)
needs to be decomposed, for instance

by applying the Cholesky decomposition

(
Σ

vd
−Σ

vd,vd

)
= L

vd
LT

vd
=⇒ L

vd
=




0.664 0 0

0.148 0.509 0

−0.167 0.487 0.086


 . (5.29)

App. C.4.1 demonstrates a potential solution to the model implementation tasks.

The Spectre testbench in Fig. 5.25 presents the access of the probabilistic behavioral
voltage divider model and the statistics section. From N=500-sample MC simula-

simulator lang=spectre

//// load statistics and model

include "./statistics.scs"

ahdl_include "./voltage_divider.va"

//// voltage divider instances

i_va_1 (v1_vdd 0 v1_out) voltage_divider_va

i_va_2 (v2_vdd 0 v2_out) voltage_divider_va

//// supply voltage and output corrent

parameters V1=5 I2=1m

Vdd_v1 (v1_vdd 0) vsource dc=V1

Iout_v1 (v1_out 0) isource dc=I2

Vdd_v2 (v2_vdd 0) vsource dc=V1

Iout_v2 (v2_out 0) isource dc=I2

//// simulator commands

mc1 montecarlo numruns=500 seed=2 variations=all sampling=standard \

donominal=no scalarfile="./mcdata" \

{

dc1 dc

}

//// output statement - export output voltages and supply currents

print Vdd,Iout,v(v1_out),-i(Vdd_v1),v(v2_out),-i(Vdd_v2),name=dc1 addto="sim.out"

Fig. 5.24: Spectre testbench for probabilistic voltage divider model evaluation; two instances
at supply voltage V1 =5V and output current I2 =1mA
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Fig. 5.25: Results of N=500-sample MC voltage divider simulations; comparison of distri-
butions of output voltage V2 and supply current I1 for two instances of original circuit and
probabilistic Verilog-A model at supply voltages V1 =5V and output currents I2 =1mA ; Q-Q
plots of marginal distributions; scatter plots for intra-instance correlations and inter-instance
correlations (first and second row in third and fourth column)

tions, it determines the responses of two voltage divider instances to supply voltages
V1 =5V and output currents I2 =1mA . Fig. 5.25 depicts their output voltages V2 and
supply currents I1 and compares them with the results from MC circuit simulations of
two instances of the original circuit in Fig. 5.20(a) with variations from Fig. 5.22. The
good agreement of marginal distributions as well as intra-instance and inter-instance
correlations demonstrates the applicability of the probabilistic behavioral voltage di-
vider model and validates its correctness. However, for this scenario, a behavioral
model does not improve the simulation efficiency: the N=500-sample MC simulations
finish in about 6 s on a standard workstation for both circuit representations.

5.4.3 Bandgap Voltage Reference Circuit

While the voltage divider example in Sec. 5.4.2 illustrates the principles of probabilistic
analog behavioral modeling, a bandgap voltage reference circuit in an industrial
0.35µm technology [aA16] is used as a more realistic test vehicle to rate the model
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5.4 Probabilistic Analog Behavioral Models

accuracy and efficiency. The circuit and a corresponding testbench are depicted in
Fig. 5.26.

Analog Behavioral Model and Characterization

Using the notations in Fig. 5.26, an approach for an analog behavioral modeling
expresses the output voltage Vref and the current consumption Idd as functions of the
supply voltage Vdd, the output current Iref , and the temperature T . The equations
[LHE+15]

(
Vref−Vref,0

Vref,0

)
= Ybg1

+ Ybg2

(
Vdd−Vdd,0

Vdd,0

)
+ Ybg3

(
T−T0

T0

)
+ Ybg4

(
T−T0

T0

)2

+ Ybg5

(
Iref−Iref,0

Iref,0

)
+ Ybg6

(
Vdd−Vdd,0

Vdd,0

)(
T−T0

T0

)
and (5.30)

(
Idd−Idd,0

Idd,0

)
= Ybg7

+ Ybg8

(
Vdd−Vdd,0

Vdd,0

)
+ Ybg9

(
T−T0

T0

)
+ Ybg10

(
T−T0

T0

)2

(5.31)

with their coefficients Ybg1
, . . . , Ybg10

provide a reasonable trade-off between model
complexity and accuracy for supply voltages 3.0V ≤Vdd≤3.6V , temperatures
−40 ◦C ≤T ≤160 ◦C , and output currents 1 nA ≤Iref≤1µA . In (5.30) and (5.31),
Vref,0 and Idd,0 are the reference output voltage and the reference current consumption
obtained at the reference supply voltage Vdd,0 =3.3V , the reference temperature

VDD

VSS

OUT

Vdd Iref

Idd

Vref

Fig. 5.26: Schematic of bandgap voltage reference circuit (black) with corresponding voltage
and current sources for simulations (bold gray)
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T0 =27 ◦C , and the reference output current Iref,0 =100 nA . The behavioral model
defined by (5.30) and (5.31) can be implemented into Verilog-A in analogy to the
voltage divider model in Sec. 5.4.2.

The characterization needs to apply the voltage and current sources depicted in
Fig. 5.26 to the bandgap schematic in circuit simulations. Observing the output
voltage Vref and the current consumption Idd while sweeping the supply voltage Vdd,
the temperature T , and the output current Iref generates sets of variates to determine
the model coefficients Ybg1

, . . . , Ybg10
in (5.30) and (5.31).

Probabilistic Model Calibration

Based on (5.30) and (5.31), a probabilistic analog behavioral bandgap model can
be established by treating the model coefficients as an ny=10-dimensional RV Y

bg

with its components Ybg1
, . . . , Ybg10

. Without considering variability, a circuit simulation
determines the reference output voltage Vref,0 and the reference current consumption
Idd,0 at the reference supply voltage Vdd,0, temperature T0, and output current Iref,0.
These quantities are kept constant in the probabilistic model.

In a second step, the characterization procedure described above is repeatedly per-
formed for two instances of the bandgap voltage reference based on MC circuit simu-
lations that apply the technology-specific variability information from the PDK1. Conse-

quently, it generates characterization sample data of the form
∼
Y

char
=

(
∼
Y

[1]

bg
,

∼
Y

[2]

bg

)
as

the input for model calibration. As for the voltage divider in Sec. 5.4.2, the characteri-
zation sample size is set to Nchar =1000.

According to SW tests with a (1−αc)=0.95 confidence level, only the coefficients Ybg1
,

Ybg2
, and Ybg4

can be considered Gaussian while the others cannot. The Q-Q plots of
selected coefficients on the main diagonal of the scatterplot matrix in Fig. 5.27 and the
Q-Q plots of all coefficients in App. C.4.2 demonstrate that while the component Ybg2

is slightly non-Gaussian, the remaining non-Gaussian components have significantly
less pronounced tails than their Gaussian approximations. Therefore, their Gaussian
approximations over-estimate the distribution tails. Contrastingly, the GLD-FKML
approximations accurately represent the characterization data. This is confirmed by
KS tests: by comparing the characterization data with Ns=105 samples from their

1This approach extends the characterization in [LHE+15], which is based on a single instance of the
bandgap voltage reference circuit and neglects inter-instance correlations.
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5.4 Probabilistic Analog Behavioral Models

Tab. 5.5: Statistical test results for analog behavioral bandgap model coefficient distributions;
SW tests with results +: Gaussian and –: non-Gaussian; KS tests comparing characteriza-
tion data and GLD-FKML approximations of marginal distributions with results o: accurate
approximation and x: inaccurate approximation; confidence level (1−αc)=0.95

Coefficient SW test KS test
Ybg1

+ o
Ybg2

+ o
Ybg3

– o
Ybg4

+ o
Ybg5

– o

Coefficient SW test KS test
Ybg6

– o
Ybg7

– o
Ybg8

– o
Ybg9

– o
Ybg10

– o

Y
[1]
bg4

Y
[1]
bg7

Y
[1]
bg8

Y
[2]
bg4
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Gaussian model

Fig. 5.27: Selected coefficients of probabilistic analog behavioral bandgap model; Q-Q plots
of marginal distributions; scatter plots visualizing intra-instance and inter-instance correlations
for characterization data and probabilistic GLD-FKML model

GLD-FKML approximations, these tests do not reveal significant differences at a
(1−αc)=0.95 confidence level.

In addition, as depicted in the scatter plots in Fig. 5.27, which compare Ns=1000

samples from the model with the Nchar =1000-sample characterization data
∼
Y

char
, the

probabilistic GLD-FKML model captures the intra-instance correlations and the inter-
instance correlations in the characterization data. For the sake of completeness, the
scatter plots in App. C.4.2 illustrate all intra-instance correlations that are captured in
the behavioral model.
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Probabilistic Model Implementation and Application

To apply the probabilistic GLD-FKML model in simulations, the analog behavioral
bandgap model has to be extended in a similar manner as the voltage divider model in
Sec. 5.4.2. As a reference, a multivariate Gaussian analog behavioral bandgap model
is additionally derived from the characterization data

∼
Y

char
and implemented.

For model validation, the variation behavior of the bandgap voltage reference circuit
is analyzed in N=1000-sample MC simulations for multiple combinations of supply
voltages Vdd, temperatures T , and output currents Iref : their boundaries as well as
40 random combinations. While evaluating two instances of the original circuit as
well as of the Verilog-A implementations of the multivariate Gaussian model and the
probabilistic GLD-FKML model, the simulations observe the reference voltages Vref

and the current consumptions Idd.

To evaluate the model accuracy, KS tests compare the obtained empirical distributions
with a (1−αc)=0.95 confidence level. Their results are summarized in Tab. 5.6, and
they reveal that multivariate Gaussian models and probabilistic GLD-FKML models
perform similarly with respect to the bandgap output voltage Vref . For both models,
significant deviations from the simulations of the original circuit can be observed in 3

of the 48 test scenarios, corresponding to 6.25 % . Representative for these results, the
scatterplot matrix in Fig. 5.28 depicts the simulation results for one of these scenarios:
supply voltage Vdd =3.6V , temperature T =−40 ◦C , and output current Iref =1µA .
Although KS tests report significant deviations, both behavioral model implementations
are very close to the reference simulation results for the bandgap output voltage Vref .
Hence, they can be considered misclassified due to the KS test properties. The reason
for the high accuracy of the multivariate Gaussian models is that 50 % of the related
model coefficients, Ybg1

, Ybg2
, and Ybg4

are Gaussian, and these coefficients dominate
the bandgap output voltage Vref in (5.30).

According to the KS test results, multivariate Gaussian models introduce significant
deviations from the reference simulations, that is significant inaccuracies, in the
variability of the current consumption Idd of the bandgap voltage reference circuit.
The over-estimation of the distribution tails of all model coefficients Ybg7

, . . . , Ybg10
in

(5.31) by Gaussian approximations maps to an over-estimation of the distribution tails
of the bandgap current consumption Idd by generating too extreme values, which
is illustrated by the marginal distributions in Fig. 5.28. In contrast, the probabilistic
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5.4 Probabilistic Analog Behavioral Models

Tab. 5.6: KS tests that compare bandgap circuit performance parameter distributions from
MC circuit simulations of original circuit (with statistical device models from the PDK) with MC
evaluations of probabilistic analog behavioral bandgap models in Verilog-A syntax (correlated
Gaussian models and probabilistic GLD-FKML models); test results are o: behavioral model
accurately represents original circuit and x: significant differences between behavioral model
and original circuit; (1−αc)=0.05

Vdd T Iref KS test results
[V ] [◦C] [nA] Gaussian GLD-FKML

models models
Vref Idd Vref Idd

3 −40 1 o x o o
3 −40 1000 o x x o
3 160 1 o x o o
3 160 1000 o x o o

3.6 −40 1 o x o o
3.6 −40 1000 x x x o
3.6 160 1 x x x o
3.6 160 1000 o x o o
3.16 124 20.1 o x o o
3.22 89 137 o x o o
3.34 117 15.8 o x o o
3.54 71 9.46 o x o o
3.12 66 187 o x o o
3.54 118 4.06 o x o o
3.57 −35 136 o x o o
3.4 55 2.32 o x o o
3.38 106 5.45 o x o o
3.04 99 2.69 o x o o
3.12 56 5.23 o x o o
3.11 132 1.5 o x o o
3.41 48 84.5 o x o o
3.23 9 425 o x o o
3.46 −26 217 o x o o
3.3 −20 247 o x o o

Vdd T Iref KS test results
[V ] [◦C] [nA] Gaussian GLD-FKML

models models
Vref Idd Vref Idd

3.43 23 23.2 o x o o
3.6 64 17 o x o o
3.23 92 271 o x o o
3.47 41 65.3 o x o o
3.56 143 92.1 o x o o
3.13 19 11.5 o x o o
3.39 52 6.47 o x o o
3.08 26 951 x x o o
3.16 90 79.5 o x o o
3.23 12 4.36 o x o o
3.01 56 2.44 o x o o
3.23 113 27.2 o x o o
3.52 −23 592 o x o o
3.2 135 62.6 o x o o
3.29 28 848 o x o o
3.36 128 157 o x o o
3.3 29 11.8 o x o o
3.11 27 19.7 o x o o
3.5 55 2.78 o x o o
3.4 138 1.09 o x o o
3.48 133 140 o x o o
3.06 38 2.04 o x o o
3.43 115 21.8 o x o o
3.25 152 83.2 o x o o

GLD-FKML models well represent the original circuit behavior, which holds for the
marginal distributions of the bandgap performance parameters, that is output voltage
Vref and current consumption Idd, their intra-instance correlations, as well as their
inter-instance correlations.

Accurately representing the original circuit behavior, the major benefit of the proba-
bilistic GLD-FKML behavioral analog model of the bandgap voltage reference circuit
is its efficiency in simulations. The N=1000-sample MC reference simulations of
two instances take approximately 47min 15 s for the 48 scenarios listed in Tab. 5.6,
corresponding to 30ms for evaluating one sample point per bandgap instance at a
particular combination of supply voltage Vdd, temperature T , and output current Iref . In
contrast, evaluating N=1000 samples of two instances of the probabilistic GLD-FKML
model in Verilog-A syntax takes 6min 52 s for these 48 scenarios, corresponding to
4.3ms per sample point and instance at a particular combination of supply voltage
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Fig. 5.28: Comparison of the bandgap performance parameter distributions, output voltage
Vref and current consumption Idd of two instances [1] and [2] for the original circuit as well
as the Verilog-A implementations of the probabilistic GLD-FKML model and the multivariate
Gaussian model; sample size N=1000; supply voltage Vdd =3.6V , temperature T =−40 ◦C ,
output current Iref =1 µA ; Q-Q plots of marginal distributions and scatter plots visualizing
intra-instance as well as inter-instance correlations

Vdd, temperature T , and output current Iref . Overall, without losing accuracy, the
probabilistic GLD-FKML model in Verilog-A syntax achieves an approximate 6.9X

speed-up compared with the original circuit. At the cost of accuracy, multivariate
Gaussian models can further increase the simulation performance slightly.

5.4.4 Results of Analog Behavioral Modeling Scenarios

Variability information from a PDK can be transferred into behavioral models of analog
cells by considering selected behavioral model coefficients as multi-dimensional RVs
and applying the probabilistic GLD-FKML modeling approach. For example, the
variation-aware analog behavioral models can be implemented in Verilog-A modules
that access random samples generated by a circuit simulator, such as Spectre.
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The bandgap voltage reference scenario demonstrates that the majority of the be-
havioral model coefficients of an analog cell are non-Gaussian when variability is
taken into account. However, the GLD-FKML approach well represents the empirical
data obtained from characterization, including Gaussian and non-Gaussian marginal
distributions. Furthermore, probabilistic GLD-FKML analog behavioral bandgap model
captures intra-instance and inter-instance correlations. Its implementation allows an
efficient evaluation in MC simulation studies: a 6.9X speed-up can be achieved with
respect to simulating the original circuit without a loss in accuracy.

5.5 Conclusions from Application Scenarios

The main conclusions that can be drawn from the application scenarios in Secs. 5.1–
5.4 are summarized in Tab. 5.7. Overall, these scenarios reveal the following results.

1. The generation of empirical data for calibrating probabilistic GLD-FKML models
can be computationally expensive. However, this effort is required to derive fully
statistical models.

2. While uncorrelated Gaussian models are not feasible and correlated Gaussian
models often introduce inaccuracies, probabilistic GLD-FKML models accurately
capture the empirical characterization data, both in terms of marginal distributions
and correlations.

3. Probabilistic GLD-FKML models can be applied to modeling tasks in different
design styles and at different levels of abstraction models. They can be applied
efficiently and properly with some standard tools, for instance circuit simulators,
or with adapted analysis methods.

However, some aspects remain to be addressed in future research. They include the
fact that Gaussian models appear appropriate for slightly non-Gaussian but infeasible
for considerably non-Gaussian data. The acceptable deviation from Gaussian data
for Gaussian modeling approaches might have to be quantified. Furthermore, some
GLD-FKML approximations of standard cell leakage power distributions are inaccurate.
When these inaccuracies become critical, an alternative approach to model marginal
distributions may be required. Nevertheless, the successful applications of probabilistic
GLD-FKML models in different scenarios demonstrate their wide-spread usability,
which has been a main goal for the research documented in this thesis.
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Tab. 5.7: Major conclusions from application scenarios for probabilistic modeling

Section Scenario Main conclusions
Secs. 5.1–5.4 All – Most empirical characterization data non-Gaussian

– Correlated Gaussian models mostly inaccurate
– Probabilistic GLD-FKML models accurate in terms of

marginal distributions and correlations
– Probabilistic GLD-FKML models suit abstraction of

variability information for different design styles and at
multiple levels of abstraction

Sec. 5.1 Device compact – Correlations have to be taken into account
models – Gaussian approximations of slightly non-Gaussian data

feasible
– GLD-FKML approximations equally fit Gaussian and

non-Gaussian parameters
– Probabilistic GLD-FKML models can be implemented

in PDKs
Sec. 5.2 Standard cell – Assumption of Gaussian delay distributions in SSTA

models inaccurate
– GLD-FKML approximations equally fit delay, dynamic

energy, and leakage power distributions
– Standard tools need adaptations to employ probabilistic

GLD-FKML models in statistical gate level analyses of
digital circuits

Sec. 5.3 Gate level RO – Probabilistic GLD-FKML models can be applied in gate
analyses level analyses of digital circuits with regular structures

– Correlated Gaussian models infeasible for leakage
power, i.e. for considerably non-Gaussian parameters

– Gate level RO analyses based on probabilistic
GLD-FKML models accurate and efficient

Sec. 5.4 Analog behavioral – Probabilistic GLD-FKML models can be implemented
models for variation-aware behavioral model evaluations,

for example as a combination of Spectre and Verilog-A
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6 Summary and Conclusions

Variability has always been a challenge to the semiconductor industry. Global variation
effects from manufacturing process imperfections, which affect all devices in a circuit in
the same manner, used to dominate integrated circuit (IC) variability. They have been
taken into account in circuit design and analysis by corner-based approaches that
assume worst-case parameter combinations to predict the worst-case circuit behavior.
Local variations from process variability, which affect devices individually and lead to
mismatch, have always been present as well. However, their impact has grown with
shrinking feature sizes. Furthermore, since manufacturing process improvements and
new materials have enabled technology nodes with feature sizes of 100 nm and below,
atomic-level fluctuations have rapidly gained importance and increased the impact of
local variations. Overall, the devices in an IC vary in a correlated manner.

To meet the performance targets of ICs at reasonable costs and times to market, it
is important to take variability into account already during design. For this purpose,
a variety of approaches are available, and they cover different levels of abstraction,
such as the transfer of measured device variability into device compact models, Monte
Carlo (MC) circuit simulations, statistical static timing analysis (SSTA), or high-yield
estimation methods for memory design. However, as reviewed in Chap. 3, these
approaches are tailored to particular problems and often make simplifying assumptions,
such as Gaussian distributions or linear approximations, which have been criticized for
introducing inaccuracies.

The goal of this thesis was to consistently and efficiently transfer variability information
between different levels of abstraction. For this purpose, a probabilistic modeling
approach for IC analysis was introduced in Chap. 4. It captures global and local
variations, statistical correlations, and marginal distributions of nearly arbitrary shapes.
Arbitrary underlying models are extended by treating selected model parameters as
multivariate random variables (RVs). This approach is universal in terms of being
applicable to arbitrary standard or custom models on arbitrary levels of abstraction.
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6 Summary and Conclusions

To describe the RVs, marginal distributions and correlations are handled separately. On
the one hand, instead of assuming Gaussian distributions, marginal distributions are
mapped to generalized lambda distributions in FKML parametrization (GLD-FKMLs).
With its four distribution parameters, the GLD-FKML supports a wide range of distri-
bution shapes so that it can be well adapted to most empirical data. On the other
hand, correlations are captured by Spearman’s rank correlation matrices. Neglecting
spatial local correlations and based on the fact that, in IC design, instances of a limited
number of circuit elements are connected, correlations are sub-divided into intra-
instance correlations to model inter-dependencies of parameters within a particular
instance; inter-instance correlations to model inter-dependencies of parameters be-
tween instances of a particular circuit element; and inter-element correlations to model
inter-dependencies of parameters between instances of distinct circuit elements.

Probabilistic GLD-FKML models can be calibrated from sample data. To derive fully
statistical models, sample data for two instances per circuit element under considera-
tion have to be generated during characterization. The calibrated models are intended
to be evaluated in sampling-based circuit analyses, which requires the generation of
random samples for arbitrary numbers of circuit elements and instances. Based on
the conversion of Spearman’s rank correlation matrices into covariance matrices, an
efficient sampling approach is derived for this purpose.

In application scenarios with practical orientations, the applicability of the probabilistic
GLD-FKML modeling approach is demonstrated in Chap. 5. In device compact model-
ing, standard cell modeling, as well as variation-aware analog behavioral modeling, a
significant number of parameters are non-Gaussian so that a more advanced modeling
approach is required and justified. The GLD-FKML approximations accurately repre-
sent the majority of the characterization data, including Gaussian and non-Gaussian
parameters. In addition, the calibrated probabilistic GLD-FKML models capture the
correlations in the characterization data well.

The evaluations of probabilistic GLD-FKML models and Gaussian models as refer-
ences in MC circuit simulations, statistical gate level analyses, and sampling-based
behavioral model evaluations reveal the major results of this thesis.
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• Statistical correlations have to be captured in a variability model to achieve
reasonable accuracy.

• Correlated Gaussian models may perform well even if the underlying characteri-
zation data is non-Gaussian to a certain degree, but they fail when the deviations
from Gaussian distributions are too large.

• Properly calibrated probabilistic GLD-FKML models allow accurate circuit ex-
aminations, both in terms of marginal distributions and correlations of circuit
performance parameters.

Although probabilistic GLD-FKML models perform well, future improvements might
become necessary. Potential directions for future research include methods to

• additionally consider spatial local correlations;

• capture correlations across different levels of abstraction and design styles;

• quantify deviations from Gaussian distributions, which are acceptable for the
continued use of Gaussian models; and

• replace the GLD-FKML by an alternative distribution if required.

Some standard tools can evaluate probabilistic GLD-FKML models already. For ex-
ample, the application scenarios demonstrate model implementations into different
circuit simulators to use their capabilities for the generation of random samples. How-
ever, standard tools for digital circuit design and analysis cannot handle probabilistic
GLD-FKML standard cell models yet so that industrial tools and environments for
digital design need to be adapted. Nevertheless, the gate level RO analysis scenar-
ios demonstrate the potentials of variation-aware digital circuit analyses based on
probabilistic GLD-FKML standard cell models.

The further evolution of variability in semiconductors is hard to predict. Scaling was
often expected to increase variability [Ase07, WACA13]. In contrast to this, a reduction
of atomic-level fluctuations by approximately 20 % and at least constant process vari-
ations were reported for a transition from a 65 nm to a 45 nm technology [KKK+08].
Furthermore, fully depleted SOI or FinFET technologies are expected to decrease
variability [WACA13]. Nevertheless, especially due to cost issues [Lap15], many future
ICs will still use bulk processes at feature sizes ≥28 nm , which are considered sus-
ceptible to variability. Especially for these technology nodes, probabilistic GLD-FKML
models to abstract variability at arbitrary levels of abstraction can support the design
of performance-compliant ICs with reasonable times to market.
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A Selected Principles of Statistics

A.1 Principal Component Analysis

Based on [HS12, Jol86], this section outlines the basic calculations for principal
component analysis (PCA) to supplement Sec. 2.2.3.

It is assumed that X
G
∼N(µ

XG
,Σ

XG
) is a multivariate Gaussian RV with the mean

vector µ
XG

and the positive definite covariance matrix Σ
XG

.

An eigenvalue decomposition of the covariance matrix [HS12, Jol86]

Σ
XG

= ΓΛΓT, (A.1)

with ΓT being the transposed of the matrix Γ, yields the diagonal matrix Λ and the
orthogonal matrix Γ. The diagonal matrix Λ contains the eigenvalues of the covariance
matrix Σ

XG
in descending order. The k-th column of the orthogonal matrix Γ is the

eigenvector of the covariance matrix Σ
XG

that corresponds to the k-th eigenvalue.

With the linear transformation [HS12]

X
G
7−→ X

Gu
= ΓT

(
X

G
− µ

XG

)
, (A.2)

a multivariate RV X
Gu
∼N(0,Λ) with zero means and uncorrelated components XGu,i

is obtained.

A.2 Sample Data Generation & Evaluation

While in this thesis, standard Monte Carlo (MC) sampling is applied, this appendix
briefly introduces a selection of random sample generation techniques with their basics
for data evaluation.
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A.2 Sample Data Generation & Evaluation

Standard Monte Carlo (MC) sampling [HLT83, LLP06]: Sets of input parameters x(k)

are randomly drawn according to the original input parameter distribution known from
the multi-dimensional RV X. This method optimally mimics overall process variability
and provides the most general view on performance parameter distributions.

Stratified sampling [HLT83, Liu08, VCBS11]: Stratified sampling divides the input
parameter space RX into disjoint sub-regions, so called strata. In each stratum,
random samples x(k) are generated and evaluated. Stratified sampling can be used
for creating more evenly distributed sample points x(k) in the input parameter space
RX. However, it is only efficient for a small number of input parameters.

Latin hypercube sampling [LLP06, VCBS11]: To generate N samples from an
arbitrary univariate RV X, latin hypercube sampling divides the distribution into N

intervals of equal probability of occurrence 1/N . To extend latin hypercube sampling
to multivariate input data X, this procedure is repeated for each random component
Xi of the RV X. A subsequent random combination of the samples from the random
components yields the multivariate sample

∼
X of size N .

Quasi-Monte Carlo (MC [LLP06, VCBS11]: Instead of using random numbers, the
sample points x(k) are selected from a deterministic sequence. Such a procedure
ensures a more uniform sample point distribution in the input parameter space RX. A
rising number of input parameters drastically reduces the quasi-MC quality.

Importance sampling [HLT83, LLP06, Liu08]: Instead of the original input parame-
ter distribution ϕ

X
(x), a distorted distribution ϕ∗

X
(x) is used to select random sam-

ples. To compensate for the distortion, sample points have to be weighted by
w(x)=ϕ

X
(x) / ϕ∗

X
(x). The distribution ϕ∗

X
(x) can be tuned to emphasize important

regions, e.g. distribution tails or regions of extreme performance y, but may be hard to
find, especially in case of high-dimensional input parameter spaces RX.

Guided sample point selection [Eli94, MBDG13, SR07, SR09, SR10]: From an
initial sample of input parameters x(k) and corresponding performance parameters y(k),
models are derived. They allow an efficient classification of further sample points x(l).
Only important sample points x(l∗) are simulated to obtain sample data of important
performance parameter values y(l∗), for instance extreme or close-to-specification
performance values. The methods differ in the types of models and their applications.
Sec. 3.5.2 discusses two application cases in more detail: High-Sigma Monte Carlo
(HSMC) [MBDG13] and statistical blockade (SB) [SR07, SR09, SR10].
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B.1 Probability Distributions with Various Shapes

This appendix defines probability distributions that cover a wide range of distribution
shapes to supplement Sec. 4.1.2.1. The Generalized Lambda Distribution (GLD) is
not mentioned here since it is discussed in Sec. 4.1.2.2 in detail. The equations below
describe a univariate RV Y .

Fleishman Transformation [Fle78, Tad80]
The RV Y is modeled as a polynomial of a standard Gaussian RV Z∼N(0, 1), Usually,
a third-order polynomial is applied:

Y = a+ bZ + cZ2 + dZ3.

A closed-form PDF ϕ
Y

(.), CDF φ
Y

(.), or quantile function φ−1
Y

(.) does not exist.

Johnson System [Joh49, Tad80]
The Johnson system contains three transformations of a standard Gaussian RV
Z∼N(0, 1),

Y (1) = ξ + λ · exp

(
Z − γ
δ

)
⇒ Y (1) > ξ

Y (2) = ξ +
λ

1 + exp
(
−(Z−γ)

δ

) ⇒ ξ < Y (2) < ξ + λ

Y (3) = ξ + λ · sinh

(
Z − γ
δ

)
⇒ Y (3) > ξ

with the four parameters ξ, λ, γ, and δ.
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B.1 Probability Distributions with Various Shapes

Tadikamalla–Johnson system [TJ82, Tad80]
The Tadikamalla–Johnson system uses the transformations of the Johnson system,
but it assumes the RV Z to follow a standard logistic distribution defined by the CDF

φ
Z
(z) = (1 + exp (−z))−1 .

Schmeiser–Deutsch System [SD77, Tad80]
The Schmeiser–Deutsch system is defined by the quantile function of the RV Y ,

φ−1
Y

(u) =




λ1 + λ2

(
−(λ4 − u)λ3

)
: u ≤ λ4

λ1 + λ2 (u− λ4)λ3 : u > λ4

,

with 0≤u≤1 and the four parameters λ1, λ2, λ3, and λ4.

Burr System [Bur42, Bur73, Tad80]
The Burr system of distributions consists of two CDFs with the parameters c, k>0:

φ
Y

(y) =





1− [1 + yc]−k : y ≥ 0

0 : y < 0
and

φ
Y

(y) =





[1 + y−c]−k : y ≥ 0

0 : y < 0
.

They cover a broad range of distribution shapes and can be adapted to arbitrary mean
values and standard deviations by linear transformations.

Pearson System [Pol79, Tad80]
The Pearson system of distributions is defined by PDFs ϕ

Y
(y) that satisfy the differen-

tial equation

1

ϕ
Y

(y)

dϕ

dy
= − a+ y

c0 + c1 · y + c2 · y2
.

Depending on the parameters a, c0, c1, and c2, twelve different types can be defined
[Pol79] and treated by distinctions of cases.
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B.2 R Function FitGLD to Map Sample Data to GLD

## R function to fit data to GLD

## implemented because to improve performance of starship() from package ’gld’

## requires package ’gld’ anyway to find starting point for GLD parameters

require(’gld’);

## function call: L <- FitGLD(x,param);

## input arguments: x: vector of sample data

## param: identifier for GLD parametrization,

## "FKML" (default) or "RS"

## returns: L: vector of GLD parameters

##

FitGLD <- function( data, param="FKML" ) {

## determine sample size and empirical CDF

sample_size <- length(x);

x <- sort(x); ecdf <- seq(from=1, to=sample_size, by=1) / (sample_size+1);

## definition of optimization function: minimize squared error between

## empirical and theoretical quantiles

if( param=="RS" ) {

opt_fun <- function(L,x,ecdf) {

sum((L[1]+(ecdf^L[3]-(1-ecdf)^L[4])/L[2]-x)^2);

}

} else {

opt_fun <- function(L,x,ecdf) {

sum((L[1]+((ecdf^L[3]-1)/L[3]-((1-ecdf)^L[4]-1)/L[4])/L[2]-x)^2);

}

}

## use starship() to determine starting point from small sample

if( sample_size > 100 ) {

x1 <- approx(ecdf,x,seq(0.01,0.99,0.01))$y;

Lstart <- starship(data=x1, param=param)$lambda;

} else {

Lstart <- starship(data=x, param=param)$lambda;

}

## make sure L[3]!=0 and L[4]!=0
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if( Lstart[3]==0 ) { Lstart[3]=1e-1; }

if( Lstart[4]==0 ) { Lstart[4]=1e-1; }

## run the optimization

L <- optim(par=Lstart, fn=opt_fun, x=x, ecdf=ecdf);

## return

return(L$par);

}

B.3 Illustration Example for Model Calibration

This example illustrates the calibration of a probabilistic model from sample data
∼
Y

char
and the generation of random samples referring to the principles in Sec. 4.2 and

Sec. 4.3. It is assumed that two circuit elements are available: element A with two com-
ponents a1 and a2 as well as element B with one component b. The characterization re-
sulted in a sample

∼
Y

char
of the size Nchar =100 of the RV Y

char
=
(
Y [1]

A
,Y [2]

A
,Y [1]

B
,Y [2]

B

)
,

which contains two instances per circuit element. The first 15 sample points are listed
in Tab. B.1.

Tab. B.1: Sample data for probabilistic modeling; sample size Nchar =100

Obser- A B

vation Ỹ
[1]
A Ỹ

[2]
A Ỹ

[1]
B Ỹ

[2]
B

k a1 a2 a1 a2 b b
1 1.14 0.12 1.12 0.00 0.73 0.76
2 1.41 -0.09 1.42 -0.26 0.71 0.67
3 1.18 -0.49 1.07 -0.07 0.99 1.18
4 1.25 -0.12 1.21 -0.05 0.69 1.09
5 0.94 0.22 1.04 -0.14 0.52 0.55
6 0.77 -0.18 0.70 0.22 1.02 0.97
7 0.92 0.02 1.02 -0.26 0.63 0.91
8 0.90 0.14 0.95 0.01 1.00 1.30
9 1.09 -0.15 1.01 0.09 0.76 0.84

10 1.29 0.01 1.25 0.22 0.95 0.50
11 1.24 -0.11 1.23 -0.08 0.90 0.59
12 0.95 0.08 1.07 -0.13 0.31 1.04
13 1.06 -0.16 1.05 0.12 0.72 0.55
14 1.16 0.01 1.13 0.05 0.88 1.26
15 1.20 -0.15 1.22 -0.10 0.91 0.70
. . . . . . . . . . . . . . . . . . . . .
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B A Probabilistic Model for Integrated Circuit Analysis

Correlations

The rank correlation matrix R
Ychar

can be estimated from the sample
∼
Y

char
applying

(2.51) in Sec. 2.2.4 to all its components, which is performed by the R function cor .
The significance test in (2.52) sets rank correlation coefficients |ρ̃(sp)

ij
|≤0.197 to 0 due

to the sample size Nchar =100. The following correlation submatrices can be derived
applying (4.11)–(4.13) in Sec. 4.2.

R
A

=

(
1 0

0 1

)
R

A,A
=

(
0.882 0

0 0

)
R

A,B
=

(
0

0

)

R
B

=
(

1
)

R
B,B

=
(

0.256
)

For the characterization data in Tab. B.1, the components a1 and a2 of element A are
uncorrelated. However, there is a relatively strong inter-instance correlation between
the components a1 of different instances of element A. Furthermore, a weak inter-
instance correlation can be observed for element B, but an inter-element correlation
between the elements A and B cannot be found.

Marginal Distributions

The GLD-FKML parameters are determined by the R function FitGLD in App. B.2:

YA,a1 ∼ GLD(1.11, 8.2, 0.0136, 0.135),

YA,a2 ∼ GLD(−0.0352, 7.66, 0.101, 0.025), and

YB,b ∼ GLD(0.82, 5.78, 0.227, 0.108).

Modeling Summary

After model calibration, analytical descriptions of the RVs Y [k]
A

and Y [l]
B

modeling the
variability in arbitrary instances k and l of the circuit elements A and B are available
in terms of their intra-instance rank correlation matrices R

A
and R

B
as well as the

GLD-FKML approximations of their marginal distributions. Furthermore, different
instances of element A follow the same probability distribution, and different instances
of element B follow the same probability distribution. The correlations between
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instances of element A are described by the inter-instance correlation matrix R
A,A

;
the correlations between instances of element B are described by the inter-instance
correlation matrix R

B,B
; and the correlations between an instance of A and an instance

of element B are described by the inter-element correlation matrix R
A,B

.

Covariance Matrices for Random Sampling

The covariance matrix for improved random sampling can be derived from the rank-
correlation matrices by (2.54) in Sec. 2.3.2 and the principles discussed in Sec. 4.3.2.
The (3×3) global covariance matrix

Σ
glob

=




0.891 0 0

0 0 0

0 0 0.267




captures the element A in the first and the second columns and rows as well as the
element B in the third column and row.

For the local covariance matrices,

Σ
A
−Σ

A,A
=

(
0.109 0

0 1

)
and Σ

B
−Σ

B,B
=
(

0.733
)

can be obtained. In this particular example, all the required matrices are positive
semi-definite and hence valid covariance matrices that do not have to be adapted
further.

Validation

To validate the model, generated random samples
∼
Y of the RV

Y =
(
Y [1]

A
, Y [2]

A
, Y [1]

B
, Y [2]

B

)
are compared with the empirical characterization

data
∼
Y

char
in Tab. B.1.
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B A Probabilistic Model for Integrated Circuit Analysis

In the conventional approach in Sec. 4.3.1, the rank correlation matrix is constructed
from the submatrices as

R
Y

=




R
A

R
A,A

R
A,B

R
A,B

R
A,A

R
A,A

R
A,B

R
A,B

RT
A,B

RT
A,B

R
B

R
B,B

RT
A,B

RT
A,B

R
B,B

R
B



.

This rank correlation matrix is fed into the sampling algorithm in Sec. 2.3.2, and a
sample

∼
Y of the size Ns=200 is generated from the RV Y . In Fig. B.1, this sample

∼
Y

is compared with the characterization data
∼
Y

char
in Tab. B.1.

Y
[1]
A,a1

Y
[1]
A,a2

Y
[2]
A,a1

Y
[2]
A,a2

Y
[1]
B,b

Y
[2]
B,b

Y
[1
]

A
,a
1

Y
[1
]

A
,a
2

Y
[2
]

A
,a
1

Y
[2
]

A
,a
2

Y
[1
]

B
,b

characterization data

sampled from model

Fig. B.1: Visualization of GLD-FKML model example with conventional sampling approach;
scatterplot matrix comparing empirical characterization data

∼
Y

char
with Ns=200 random

samples
∼
Y from probabilistic model
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The improved approach applies the covariance matrices from the previous section to
more efficiently generate a random sample

∼
Y
∗

of the size Ns=200 from the RV Y . It
is compared with the characterization data

∼
Y

char
in Fig. B.2.

The data in Fig. B.1 and Fig. B.2 are in good agreement so that significant deviations
cannot be observed between the samples

∼
Y and

∼
Y
∗

and the characterization data
∼
Y

char
. Consequently, the model well represents the characterization data and the

model calibration can be considered successful.

Y
[1]
A,a1

Y
[1]
A,a2

Y
[2]
A,a1

Y
[2]
A,a2

Y
[1]
B,b

Y
[2]
B,b

Y
[1
]

A
,a
1

Y
[1
]

A
,a
2

Y
[2
]

A
,a
1

Y
[2
]

A
,a
2

Y
[1
]

B
,b

characterization data

sampled from model

Fig. B.2: Visualization of GLD-FKML model example with improved sampling approach;
scatterplot matrix comparing empirical characterization data

∼
Y

char
with Ns=200 random

samples
∼
Y
∗

from probabilistic model
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B.4 Correctness of Improved Sampling Approach

This appendix proves the validity of the improved sampling algorithm derived in
Sec. 4.3.2.

Let

• G[k1]
E

=G[glob]
E

+G[loc:k1]
E

and G[k2]
E

=G[glob]
A

+G[loc:k2]
E

be nE-dimensional Gaussian
RVs with zero means and G[l]

F
=G[glob]

F
+G[loc:l]

F
be an nF -dimensional Gaussian RV

with zero means;

• G[loc:k1]
E

,G[loc:k2]
E

∼N(0,Σ
E
−Σ

E,E
) be independent nE-dimensional Gaussian RVs

with Cov
[
G[loc:k1]

E
,G[loc:k2]

E

]
=0 and G[loc:l]

F
∼N(0,Σ

F
−Σ

F,F
) be an nF -dimensional

Gaussian RV;

• Cov
[
G[glob]

E

]
=Σ

E,E
, Cov

[
G[glob]

F

]
=Σ

F,F
, and Cov

[
G[glob]

E
,G[glob]

F

]
=Σ

E,F
such that

G
glob

=
(
G[glob]

E
,G[glob]

F

)T

∼N(0,Σ
glob

) with Σ
glob

=

(
Σ

E,E
Σ

E,F(
Σ

E,F

)T
Σ

F,F

)
; and

• G[loc:k1]
E

, G[loc:k2]
E

, G[loc:l]
F

, as well as G
glob

be independent RVs.

Theorem

Under the aforementioned assumptions, the following statements are true.

• Cov
[
G[k1]

E

]
=Σ

E
, Cov

[
G[k2]

E

]
=Σ

E
, and Cov

[
G[l]

F

]
=Σ

F
describe the intra-instance

covariances

• Cov
[
G[k1]

E
, G[k2]

E

]
=Σ

E,E
; and

• Cov
[
G[loc:k1]

E
, G[l]

F

]
=Σ

E,F
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B.4 Correctness of Improved Sampling Approach

Proof

Applying (2.46) and (2.49) in Sec. 2.2.3, the required calculations can be performed:

Cov
[
G[k1]

E

]
= Cov

[
G[glob]

E

]
+ Cov

[
G[loc:k1]

E

]
= Σ

E,E
+ Σ

E
−Σ

E,E
= Σ

E

Cov
[
G[k2]

E

]
= Cov

[
G[glob]

E

]
+ Cov

[
G[loc:k2]

E

]
= Σ

E,E
+ Σ

E
−Σ

E,E
= Σ

E

Cov
[
G[l]

F

]
= Cov

[
G[glob]

F

]
+ Cov

[
G[loc:l]

F

]
= Σ

F,F
+ Σ

F
−Σ

F,F
= Σ

F

Cov
[
G[k1]

E
, G[k2]

E

]
= Cov

[
G[glob]

E

]
= Σ

E,E

Cov
[
G[k1]

E
, G[l]

F

]
= Cov

[
G[glob]

E
,G[glob]

F

]
= Σ

E,F

These calculations prove the theorem above and, therefore, verify that the improved
sampling approach in Sec. 4.3.2 is valid.
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C Application Scenarios

C.1 Statistical Device Compact Modeling Results

This appendix completes data evaluation, probabilistic device model calibration, as
well as model application in Sec. 5.1.

C.1.1 Q-Q Plots of Marginal Distributions

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,v

th
0
(p

)

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,r

d
sw

(p
)

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,n

fa
c
to

r
(p

)

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,v

o
ff
(p

)

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,u

0
(p

)

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,d

su
b
(p

)

−2 0 2
Φ−1 (p)

µ̃
−

2σ̃
µ̃

µ̃
+

2σ̃

φ̃
−
1

N
,v

sa
t
(p

)

characterization
data

GLD-FKML
approximation

Gaussian
approximation

Fig. C.1: Marginal distributions of the NFET parameters
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Fig. C.2: Marginal distributions of the PFET parameters

C.1.2 Scatterplot Matrices
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Fig. C.3: Scatterplot matrix for NFET model
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Fig. C.4: Scatterplot matrix for PFET model
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C.1.3 HSPICE Netlists for Simulation Scenarios

NFET & PFET

*** NFET current measurements

*** NFET (L=35nm, W=70nm)

*** load device models

.include "models.inc"

*** instantiate nfet

* variation parameters sampled

* inside device subcircuit

xn d g s b NFET L=35n W=70n

*** voltage sources

.param vdd=1

.param vgate=0

vd d 0 dc=vdd

vs s 0 dc=0

vb b 0 dc=0

vg g 0 dc=vgate

*** analysis statement

.dc vgate 0 vdd ’vdd/100’

+ sweep monte=5e3

.option ingold=2

.option measform=1

*** measurements

.measure dc ioff_

+ find i(vd) at=0 print=0

.measure dc ioff param=’-ioff_’

.measure dc ion_

+ find i(vd) at=vdd print=0

.measure dc ion param=’-ion_’

.end

*** PFET current measurements

*** PFET (L=35nm, W=140nm)

*** load device models

.include "models.inc"

*** instantiate pfet

* variation parameters sampled

* inside device subcircuit

xn d g s b PFET L=35n W=140n

*** voltage sources

.param vdd=1

.param vgate=0

vd d 0 dc=0

vs s 0 dc=’-vdd’

vb b 0 dc=0

vg g 0 dc=vgate

*** analysis statement

.dc vgate ’-vdd’ 0 ’vdd/100’

+ sweep monte=5e3

.option ingold=2

.option measform=1

*** measurements

.measure dc ioff_

+ find i(vd) at=0 print=0

.measure dc ioff param=’-ioff_’

.measure dc ion_

+ find i(vd) at=’-vdd’ print=0

.measure dc ion param=’-ion_’

.end
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Inverter

*** Inverter circuit to test statistical models

***

*** load device models

.include "models.inc"

*** inverter as a subcircuit

.subckt inverter a z vdd vss

* note: variation parameters sampled inside device subcircuits

xmn z a vss vss NFET L=35n W=70n

xmp z a vdd vdd PFET L=35n W=140n

.ends

*** instantiate inverter

x1 a z vdd vss inverter

*** voltage sources

.param vdd=1

vvdd vdd 0 dc=’vdd’

vvss vss 0 dc=0

* voltage at pin a rises linearly from 0 to 1

va a 0 pwl 0 0 10p 0 11p ’vdd’ 100p ’vdd’

*** analysis statement

.tran .1p 100p sweep monte=5e3

.option autostop

*** measure fall delay

.meas tran fall_delay

+ trig v(a) val=’vdd/2’ rise=1

+ targ v(z) val=’vdd/2’ fall=1

.end
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Ring Oscillator Netlist

*** Ring oscillator circuit to test statistical models

***

*** load device models

.include "models.inc"

*** inverter subcircuit with variations sampled inside device subcircuits

.subckt inverter a z vdd vss

xmn z a vss vss NFET L=35n W=70n

xmp z a vdd vdd PFET L=35n W=140n

.ends

*** NAND2 subcircuit with variations sampled inside device subcircuits

.subckt nand2 a b z vdd vss

xmn1 ni a vss vss NFET L=35n W=70n

xmn2 z b ni vss NFET L=35n W=70n

xmp1 z a vdd vdd PFET L=35n W=140n

xmp2 z b vdd vdd PFET L=35n W=140n

.ends

*** options

.option autostop runlvl=6 ingold=2 list=1 measform=1

*** instantiate cells

x1 n1 en n2 vdd vss nand2

x2 n2 n3 vdd vss inverter

x3 n3 n1 vdd vss inverter

*** voltage sources

.param vdd=1

vvdd vdd 0 dc=’vdd’

vvss vss 0 dc=0

ven en 0 dc=0 pwl 0 0 10p 0 11p ’vdd’

*** measure leakage + period / frequency

.meas tran leakage avg par(’-v(vdd)*i(vvdd)’) from=2p to=8p

.meas tran period

+ trig v(n1) val=’vdd/2’ rise=2

+ targ v(n1) val=’vdd/2’ rise=3 print=0

.meas tran freq param=’1/period’

*** analysis statement

.tran .1p 1000p sweep monte=5e3

.end
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C Application Scenarios

C.1.4 Monte Carlo Circuit Simulation Results

The following figures depict the simulated distributions of the figures of merit per
simulation scenario from Sec. 5.1.4.
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Fig. C.5: Q-Q plots of static NFET performance parameters; (a) off-current; (b) on-current
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Fig. C.6: Q-Q plots of static PFET performance parameters; (a) off-current; (b) on-current
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Fig. C.7: Q-Q plots of state-dependent inverter leakage power distributions; (a) input a=0;
(b) input a=1
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C.1 Statistical Device Compact Modeling Results
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Fig. C.8: Q-Q plots of inverter propagation delay distributions; (a) fall delay; (b) rise delay
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Fig. C.9: Q-Q plots of RO performance parameter distributions; (a) frequency; (b) leakage;
compare Fig. 7 in [LSJ+16]

157



C Application Scenarios

C.2 Statistical Test Results for Standard Cell Models

Tab. C.1: AND2 gate, Nchar =1000, (1−αc)=0.95

Parameter Boundary SW test for KS test for GLD-FKML
conditions Gaussianity approximations

p-value Result p-value Result
fall delay a–z 2.5ps; 5fF 0 – 0.976 o
fall delay a–z 2.5ps; 10fF 0 – 0.972 o
fall delay a–z 5ps; 5fF 0 – 0.973 o
fall delay a–z 5ps; 10fF 0 – 0.98 o
fall delay b–z 2.5ps; 5fF 0 – 0.973 o
fall delay b–z 2.5ps; 10fF 0 – 0.999 o
fall delay b–z 5ps; 5fF 0 – 0.996 o
fall delay b–z 5ps; 10fF 0 – 0.995 o
fall energy a–z 2.5ps; 5fF 0 – 0.868 o
fall energy a–z 2.5ps; 10fF 0 – 0.785 o
fall energy a–z 5ps; 5fF 0 – 0.716 o
fall energy a–z 5ps; 10fF 0.008 – 0.821 o
fall energy b–z 2.5ps; 5fF 0.029 – 0.852 o
fall energy b–z 2.5ps; 10fF 0.031 – 0.73 o
fall energy b–z 5ps; 5fF 0.204 + 0.844 o
fall energy b–z 5ps; 10fF 0.322 + 0.845 o
leakage power a=0; b=0 0 – 0.144 o
leakage power a=0; b=1 0 – 0.645 o
leakage power a=1; b=0 0 – 0.158 o
leakage power a=1; b=1 0 – 0.385 o
rise delay a–z 2.5ps; 5fF 0 – 0.76 o
rise delay a–z 2.5ps; 10fF 0 – 0.48 o
rise delay a–z 5ps; 5fF 0 – 0.746 o
rise delay a–z 5ps; 10fF 0 – 0.62 o
rise delay b–z 2.5ps; 5fF 0 – 0.719 o
rise delay b–z 2.5ps; 10fF 0 – 0.554 o
rise delay b–z 5ps; 5fF 0 – 0.799 o
rise delay b–z 5ps; 10fF 0 – 0.686 o
rise energy a–z 2.5ps; 5fF 0.007 – 0.93 o
rise energy a–z 2.5ps; 10fF 0.008 – 0.93 o
rise energy a–z 5ps; 5fF 0 – 0.424 o
rise energy a–z 5ps; 10fF 0 – 0.371 o
rise energy b–z 2.5ps; 5fF 0.167 + 0.977 o
rise energy b–z 2.5ps; 10fF 0.166 + 0.986 o
rise energy b–z 5ps; 5fF 0 – 0.998 o
rise energy b–z 5ps; 10fF 0 – 0.999 o

SW tests with results +: Gaussian and –: non-Gaussian
KS tests with results o: accurate GLD-FKML approximation and x: inaccurate GLD-FKML approximation
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C.2 Statistical Test Results for Standard Cell Models

Tab. C.2: Buffer, Nchar =1000, (1−αc)=0.95

Parameter Boundary SW test for KS test for GLD-FKML
conditions Gaussianity approximations

p-value Result p-value Result
fall delay a–z 2.5ps; 5fF 0 – 0.649 o
fall delay a–z 2.5ps; 10fF 0 – 0.825 o
fall delay a–z 5ps; 5fF 0 – 0.718 o
fall delay a–z 5ps; 10fF 0 – 0.812 o
fall energy a–z 2.5ps; 5fF 0 – 0.857 o
fall energy a–z 2.5ps; 10fF 0 – 0.836 o
fall energy a–z 5ps; 5fF 0 – 0.72 o
fall energy a–z 5ps; 10fF 0.009 – 0.801 o
leakage power a=0 0 – 0.796 o
leakage power a=1 0 – 0 x
rise delay a–z 2.5ps; 5fF 0 – 0.872 o
rise delay a–z 2.5ps; 10fF 0 – 0.492 o
rise delay a–z 5ps; 5fF 0 – 0.908 o
rise delay a–z 5ps; 10fF 0 – 0.803 o
rise energy a–z 2.5ps; 5fF 0 – 0.412 o
rise energy a–z 2.5ps; 10fF 0 – 0.492 o
rise energy a–z 5ps; 5fF 0 – 0.814 o
rise energy a–z 5ps; 10fF 0 – 0.665 o

SW tests with results +: Gaussian and –: non-Gaussian
KS tests with results o: accurate GLD-FKML approximation and x: inaccurate GLD-FKML approximation

Tab. C.3: Inverter, Nchar =1000, (1−αc)=0.95

Parameter Boundary SW test for KS test for GLD-FKML
conditions Gaussianity approximations

p-value Result p-value Result
fall delay a–z 2.5ps; 5fF 0 – 0.981 o
fall delay a–z 2.5ps; 10fF 0 – 0.999 o
fall delay a–z 5ps; 5fF 0 – 0.96 o
fall delay a–z 5ps; 10fF 0 – 0.989 o
fall energy a–z 2.5ps; 5fF 0.328 + 0.969 o
fall energy a–z 2.5ps; 10fF 0.257 + 0.697 o
fall energy a–z 5ps; 5fF 0.474 + 0.967 o
fall energy a–z 5ps; 10fF 0.37 + 0.995 o
leakage power a=0 0 – 0.126 o
leakage power a=1 0 – 0.095 o
rise delay a–z 2.5ps; 5fF 0.007 – 0.997 o
rise delay a–z 2.5ps; 10fF 0.004 – 0.995 o
rise delay a–z 5ps; 5fF 0.031 – 0.992 o
rise delay a–z 5ps; 10fF 0.008 – 0.994 o
rise energy a–z 2.5ps; 5fF 0 – 0.908 o
rise energy a–z 2.5ps; 10fF 0 – 0.901 o
rise energy a–z 5ps; 5fF 0 – 0.957 o
rise energy a–z 5ps; 10fF 0 – 0.977 o

SW tests with results +: Gaussian and –: non-Gaussian
KS tests with results o: accurate GLD-FKML approximation and x: inaccurate GLD-FKML approximation
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C Application Scenarios

Tab. C.4: NAND2 gate, Nchar =1000, (1−αc)=0.95

Parameter Boundary SW test for KS test for GLD-FKML
conditions Gaussianity approximations

p-value Result p-value Result
fall delay a–z 2.5ps; 5fF 0 – 0.546 o
fall delay a–z 2.5ps; 10fF 0 – 0.352 o
fall delay a–z 5ps; 5fF 0 – 0.658 o
fall delay a–z 5ps; 10fF 0 – 0.521 o
fall delay b–z 2.5ps; 5fF 0 – 0.408 o
fall delay b–z 2.5ps; 10fF 0 – 0.537 o
fall delay b–z 5ps; 5fF 0 – 0.584 o
fall delay b–z 5ps; 10fF 0 – 0.473 o
fall energy a–z 2.5ps; 5fF 0.459 + 0.532 o
fall energy a–z 2.5ps; 10fF 0.817 + 0.976 o
fall energy a–z 5ps; 5fF 0.066 + 0.824 o
fall energy a–z 5ps; 10fF 0.24 + 0.265 o
fall energy b–z 2.5ps; 5fF 0.885 + 0.992 o
fall energy b–z 2.5ps; 10fF 0.435 + 0.968 o
fall energy b–z 5ps; 5fF 0.902 + 0.993 o
fall energy b–z 5ps; 10fF 0.955 + 0.985 o
leakage power a=0; b=0 0 – 0.784 o
leakage power a=0; b=1 0 – 0.008 x
leakage power a=1; b=0 0 – 0.007 x
leakage power a=1; b=1 0 – 0.586 o
rise delay a–z 2.5ps; 5fF 0 – 0.997 o
rise delay a–z 2.5ps; 10fF 0 – 0.999 o
rise delay a–z 5ps; 5fF 0 – 0.993 o
rise delay a–z 5ps; 10fF 0 – 0.995 o
rise delay b–z 2.5ps; 5fF 0 – 0.929 o
rise delay b–z 2.5ps; 10fF 0 – 0.937 o
rise delay b–z 5ps; 5fF 0 – 0.995 o
rise delay b–z 5ps; 10fF 0 – 0.96 o
rise energy a–z 2.5ps; 5fF 0.145 + 0.999 o
rise energy a–z 2.5ps; 10fF 0.113 + 0.999 o
rise energy a–z 5ps; 5fF 0.396 + 1 o
rise energy a–z 5ps; 10fF 0.168 + 1 o
rise energy b–z 2.5ps; 5fF 0.01 – 0.99 o
rise energy b–z 2.5ps; 10fF 0.007 – 0.985 o
rise energy b–z 5ps; 5fF 0.033 – 0.992 o
rise energy b–z 5ps; 10fF 0.012 – 0.988 o

SW tests with results +: Gaussian and –: non-Gaussian
KS tests with results o: accurate GLD-FKML approximation and x: inaccurate GLD-FKML approximation
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C.2 Statistical Test Results for Standard Cell Models

Tab. C.5: NOR2 gate, Nchar =1000, (1−αc)=0.95

Parameter Boundary SW test for KS test for GLD-FKML
conditions Gaussianity approximations

p-value Result p-value Result
fall delay a–z 2.5ps; 5fF 0 – 0.819 o
fall delay a–z 2.5ps; 10fF 0 – 0.857 o
fall delay a–z 5ps; 5fF 0 – 0.69 o
fall delay a–z 5ps; 10fF 0 – 0.832 o
fall delay b–z 2.5ps; 5fF 0 – 0.924 o
fall delay b–z 2.5ps; 10fF 0 – 0.912 o
fall delay b–z 5ps; 5fF 0 – 0.792 o
fall delay b–z 5ps; 10fF 0 – 0.787 o
fall energy a–z 2.5ps; 5fF 0.395 + 0.988 o
fall energy a–z 2.5ps; 10fF 0.416 + 0.959 o
fall energy a–z 5ps; 5fF 0.699 + 0.831 o
fall energy a–z 5ps; 10fF 0.592 + 0.97 o
fall energy b–z 2.5ps; 5fF 0.138 + 0.871 o
fall energy b–z 2.5ps; 10fF 0.269 + 0.963 o
fall energy b–z 5ps; 5fF 0.134 + 0.971 o
fall energy b–z 5ps; 10fF 0.09 + 0.971 o
leakage power a=0; b=0 0 – 0.005 x
leakage power a=0; b=1 0 – 0.154 o
leakage power a=1; b=0 0 – 0.197 o
leakage power a=1; b=1 0 – 0.94 o
rise delay a–z 2.5ps; 5fF 0 – 0.903 o
rise delay a–z 2.5ps; 10fF 0 – 0.872 o
rise delay a–z 5ps; 5fF 0 – 0.868 o
rise delay a–z 5ps; 10fF 0 – 0.876 o
rise delay b–z 2.5ps; 5fF 0 – 0.876 o
rise delay b–z 2.5ps; 10fF 0 – 0.943 o
rise delay b–z 5ps; 5fF 0 – 0.689 o
rise delay b–z 5ps; 10fF 0 – 0.882 o
rise energy a–z 2.5ps; 5fF 0.002 – 0.872 o
rise energy a–z 2.5ps; 10fF 0.002 – 0.92 o
rise energy a–z 5ps; 5fF 0.003 – 0.903 o
rise energy a–z 5ps; 10fF 0.002 – 0.915 o
rise energy b–z 2.5ps; 5fF 0.003 – 0.801 o
rise energy b–z 2.5ps; 10fF 0.003 – 0.83 o
rise energy b–z 5ps; 5fF 0.005 – 0.73 o
rise energy b–z 5ps; 10fF 0.003 – 0.75 o

SW tests with results +: Gaussian and –: non-Gaussian
KS tests with results o: accurate GLD-FKML approximation and x: inaccurate GLD-FKML approximation
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C Application Scenarios

C.3 Statistical Ring Oscillator Analysis

C.3.1 Statistical Test Results for Standard Cell Performance
Parameters

The RO-internal standard cell characterization in Sec. 5.3.2 is performed for different
sample sizes Nchar. The following tables list the statistical test results for RO-internal
standard cell performance parameter distributions at (1−αc)=0.95 confidence level
for Nchar =500 and Nchar =1000: SW tests of components of characterization data
with results +: Gaussian and –: non-Gaussian; KS tests comparing characterization
data and GLD-FKML approximations of marginal distributions with results o: accurate
approximation and x: inaccurate approximation; compare TABLE II in [LSJ+16]

Tab. C.6: Results of statistical tests for Nchar =500-sample characterization data

Performance Inverter NAND2 NOR2
parameter SW test KS test SW test KS test SW test KS test
tr – o + o + o
tf – o + o + o
Wr + o – o + o
Wf + o + o + o
P

(a=0,b=0)
leak – o – o
P

(a=0,b=1)
leak – o – o
P

(a=1,b=0)
leak – x – o
P

(a=1,b=1)
leak – o – o

Tab. C.7: Results of statistical tests for Nchar =1000-sample characterization data

Performance Inverter NAND2 NOR2
parameter SW test KS test SW test KS test SW test KS test
tr – o – o – o
tf – o – o + o
Wr + o – o + o
Wf + o + o + o
P

(a=0,b=0)
leak – o – o
P

(a=0,b=1)
leak – o – o
P

(a=1,b=0)
leak – o – o
P

(a=1,b=1)
leak – o – o
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C.3 Statistical Ring Oscillator Analysis

C.3.2 Scatterplot Matrices for RO-Internal Probabilistic Models
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Fig. C.10: RO-internal probabilistic inverter model calibrated in Sec. 5.3.2; Nchar =500; Gaus-
sian approximations and GLD-FKML approximations of marginal distributions; scatter plots
from Ns=500 samples from inverter model; correlations in Gaussian model not shown
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Fig. C.11: RO-internal probabilistic NOR2 model calibrated in Sec. 5.3.2; Nchar =500; Gaussian
approximations and GLD-FKML approximations of marginal distributions; scatter plots from
Ns=500 samples from NOR2 model; correlations in Gaussian model not shown
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C Application Scenarios

C.3.3 Statistical Test Results for RO Performance Parameters

Fig. C.12 illustrates the results of statistical tests conducted to evaluate the probabilistic
model accuracy in statistical gate level RO analyses in Sec. 5.3.3.
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Fig. C.12: Results of KS tests for RO performance parameter distributions; comparison
of Nref =200-sample reference MC circuit simulation results and gate level analyses at
(1−αc)=0.95 confidence level; null-hypothesis “reference data and gate level analysis rep-
resent same underlying distribution” accepted (green) or rejected (grey); (a) inverter-based
ROs with correlated Gaussian models; (b) inverter-based ROs with probabilistic GLD-FKML
models; (c) NAND2-based ROs with correlated Gaussian models; (d) NAND2-based ROs
with probabilistic GLD-FKML models; (e) NOR2-based ROs with correlated Gaussian models;
(f) NOR2-based ROs with probabilistic GLD-FKML models
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C.4 Probabilistic Analog Behavioral Models

C.4 Probabilistic Analog Behavioral Models

C.4.1 Analog Behavioral Voltage Divider Model

Statistics Section

simulator lang=spectre

//// nominal values

parameters vd_z1_g=0 vd_z1_l=0

parameters vd_z2_g=0 vd_z2_l=0

parameters vd_z3_g=0 vd_z3_l=0

//// statistics section

statistics {

// global variations

process {

vary vd_z1_g dist=gauss std=0.748 percent=no

vary vd_z2_g dist=gauss std=0.849 percent=no

vary vd_z3_g dist=gauss std=0.853 percent=no

}

correlate param=[vd_z1_g vd_z2_g] cc=0.184

correlate param=[vd_z1_g vd_z3_g] cc=-0.253

correlate param=[vd_z2_g vd_z3_g] cc=0.904

// local votage divider variations

mismatch {

vary vd_z1_l dist=gauss std=1 percent=no

vary vd_z2_l dist=gauss std=1 percent=no

vary vd_z3_l dist=gauss std=1 percent=no

}

}
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C Application Scenarios

Verilog-A Module

‘include "constants.vams"

‘include "disciplines.vams"

////// probabilistic Voltage divider Verilog-A module

module voltage_divider_va (VDD, VSS, OUT);

//// pins

inout VDD, VSS, OUT;

electrical VDD, VSS, OUT;

//// declarations

real z1_l, z2_l, z3_l, Yvd1, Yvd2, Yvd3;

//// catch global variation parameters from Spectre

(* cds_inherited_parameter *) parameter real vd_z1_g = 0;

(* cds_inherited_parameter *) parameter real vd_z2_g = 0;

(* cds_inherited_parameter *) parameter real vd_z3_g = 0;

//// catch local variation parameters from Spectre

(* cds_inherited_parameter *) parameter real vd_z1_l = 0;

(* cds_inherited_parameter *) parameter real vd_z2_l = 0;

(* cds_inherited_parameter *) parameter real vd_z3_l = 0;

//// internal functions

// pnorm to approximate standard Gaussian CDF [AA08]

analog function real pnorm;

input z;

real z;

if (z>=0)

pnorm = 0.5 + 0.5*sqrt(1.0-exp(-sqrt(0.3926991)*z*z));

else

pnorm = 0.5 - 0.5*sqrt(1.0-exp(-sqrt(0.3926991)*z*z));

endfunction

// qgl to implement GLd-FKML quantile function

analog function real qgl;

input u,l1,l2,l3,l4;

real u,l1,l2,l3,l4;

qgl = l1 + ( (pow(u,l3)-1)/l3 - (pow(1-u,l4)-1)/l4 ) / l2;

endfunction
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C.4 Probabilistic Analog Behavioral Models

//// analog voltage divider behavior

analog begin

@(initial_step) begin

// assignment of model parameters at initial step

if (vd_z1_g == 0) begin

// use nominal values in non-MC run

Y1 = 6.67e-01;

Y2 = -6.67e+02;

Y3 = 3.33e-04;

end else begin

// MC simulation: conversion of local params to correlated Gaussians

z1_l = +0.664*vd_z1_l;

z2_l = +0.148*vd_z1_l +0.509*vd_z2_l;

z3_l = -0.167*vd_z1_l +0.487*vd_z2_l +0.086*vd_z3_l;

// assignment of model parameters - GLD approximations

Yvd1=qgl(pnorm(vd_z1_g+z1_l),6.69e-01, 5.85e+01, 4.47e-02, 1.13e-01);

Yvd2=qgl(pnorm(vd_z2_g+z2_l),-6.66e+02, 2.61e-02, 1.39e-01, 1.51e-01);

Yvd3=qgl(pnorm(vd_z3_g+z3_l),3.31e-04, 5.08e+04, 2.55e-01, 6.78e-02);

end

end // initial step

// analog circuit behavior - output voltage and supply current

V(OUT,VSS) <+ Yvd1*V(VDD,VSS) + Yvd2*I(VSS,OUT);

I(VDD,VSS) <+ Yvd3*V(VDD,VSS) + Yvd1*I(VSS,OUT);

end

endmodule
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C Application Scenarios

C.4.2 Analog Behavioral Model of Bandgap Voltage Reference
Circuit
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