
Ingenieurfakultät Bau Geo Umwelt
Methodik der Fernerkundung

Joint Information Augmentation of Road Maps, Aerial
Images and Ground Images

Gellért Máttyus, M.Sc.

Vollständiger Abdruck
der von der Ingenieurfakultät Bau Geo Umwelt

der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.

Vorsitzende:
Univ.-Prof. Dr.-Ing. habil. Xiaoxiang Zhu

Prüfer der Dissertation:
1. Univ.-Prof. Dr.-Ing. habil. Richard H. G. Bamler
2. Ass.Prof. Dipl.-Ing. Dr.techn. Friedrich Fraundorfer

Technische Universität Graz, Österreich
3. Prof. Dr.-Ing. Raquel Urtasun

University of Toronto, Kanada

Die Dissertation wurde am 9. Juni 2016 bei der Technischen Universität München eingere-
icht und durch die Ingenieurfakultät Bau Geo Umwelt am 18. Juli 2016 angenommen.

2

i

Abstract

E xtracting information about roads is important for many applications, such as infras-
tructure monitoring, traffic management, urban planning, vehicle navigation, realistic

driving simulations, and it will be essential in the future for autonomous driving cars. The
most straightforward way to express the road information is through a detailed map. Col-
lecting road information on the spot (the ground) for a larger area is labor and time intensive
as the surveyor has to visit the whole area of interest. Aerial images provide a rich infor-
mation source to survey and map a larger area remotely, but if the images are interpreted
manually, this process typically needs long, tedious work.

Analyzing the aerial images automatically can make the analysis of remote sensing images
much more efficient. In the ideal case a complete map could be created from an aerial image
without any human intervention. However, this is a very difficult task, for many scenes the
aerial view does not provide enough information and even humans can only hardly interpret
the image. The majority of available maps were created by also incorporating local surveys
or other information sources to resolve uncertainties present in the remote sensing images.
This makes the maps a great tool to include ground measurements and prior knowledge into
the analysis of aerial images. The goal of this thesis is to apply the already existing road maps
jointly with aerial and ground images in fully automatic workflows. The information missing in
the map is augmented with information present in the aerial and ground images and vice versa.
Three problems are investigated for the information exchange between aerial imagery and
road maps and one problem where ground images are also included. This is a cummulative
dissertation, the four problems are addressed by four peer-reviewed papers:

Fast multiclass vehicle detection on aerial images: Conventional maps describe the static char-
acteristic of the roads, however, the dynamic traffic conditions on the roads are an important
input for navigation, as well as planning and managing the infrastructure. A single aerial
image with appropriate resolution enables to count the vehicles and extract their location
and orientation. This already allows to estimate the utilization of the roads and parking
spaces. By using multiple image frames, the speed of the vehicles can also be measured
to estimate the traffic flow over the area covered by the aerial imagery. The key problem to
solve is the reliable and quick detection of the vehicles in the images. Toward this goal, a fast
and high-performing vehicle detector is proposed for aerial images. In contrast to previous
methods, this estimates also the direction and the category class of the vehicle. The method
does not need an orthorectified image, it can work on an original image frame without a
prior of the region of interest, e.g. a road mask. The performance of the method is examined
on a new dataset containing several thousand vehicles. The fast speed of this detector makes
it suitable for real-time airborne road traffic extraction.

Large scale aerial image sequence geolocalization with road traffic as invariant feature: Aerial
images are the most practicable if their geolocation is known and a pixel coordinate in the
image can be transformed to a world coordinate. A novel approach is proposed to extract the
geolocation of aerial images by using only a road map and the traffic visible in the images.
In contrast to the three other tasks, here the aerial image is augmented with extra informa-
tion from the map, i.e. the geolocation. The road network pattern over a larger area tends
to be so unique that it can be used to recognize the geolocation. It is not even needed to
extract the complete road network in the images, already a fraction is enough. Instead of
detecting the roads directly, the traffic in the scene is extracted in form of tracks of moving
vehicles. Using these tracks the images can be successfully geolocalized in a search area of
22500 km2 containing 32000 km of streets in the Munich metropolitan area. This method
could replace the expensive and heavy Global Positioning System (GPS) + Inertial Measure-
ment Unit (IMU) systems used for creating geolocalized aerial images. Such systems will

ii

be particularly important for Unmanned Aerial Vehicles (UAVs), where the weight and cost
of the system is more critical. This method localizes the images similar as humans localize
themselves, based only on visual information and a road map.

Enhancing road maps with the street width by parsing aerial images: Currently used road maps
are intended for the navigation of humans. The roads as stored as centerlines with connec-
tions to other roads without providing detailed information about the physical dimensions
of the road. Having access to the width attributes of the roads would be important for infras-
tructure planning, creating realistic simulations over roads and they can improve the auto-
matic scene understanding of autonomous vehicles. To address these demands, a method
is presented to automatically extract the road width while also considering misalignments
between the road network and the aerial image. Instead of formulating the problem as a
pixelwise semantic segmentation, the problem is defined as one of inference in a Markov
Random Field (MRF) reasoning about the road parameters directly. This makes it very fast,
more robust and the topology of the road network is preserved. Experiments are conducted
on three datasets, over Bavaria, Germany, over the city of Karlsruhe, Germany and Google
Earth images over various locations around the world. The proposed method outperforms
the state of the art in both speed and accuracy. The ability of the detailed maps to improve
the scene understanding of ground images is demonstrated on the KITTI autonomous driv-
ing dataset.

Fine-grained road segmentation by parsing ground and aerial images: The estimation of the
road width is extended to extract the fine-grained road layout by estimating the number
and width of lanes plus the presence and width of parking spots and sidewalks. Impor-
tantly, the proposed approach applies existing road maps, aerial images and ground images
jointly. The problem is formulated as one of inference in an MRF reasoning about the road
layout as well as the alignment between the aerial image, the map and the ground image
sequence in a joint energy function. The MRF takes features extracted from the images by
deep learning as data terms and formulates the constraints on the lane sizes and the road
layout as pairwise potentials. This allows robust estimation also in case when the image ev-
idence (e.g. lane markings) is not visible or is missing. The alignment of ground and aerial
images is necessary as even when applying sophisticated GPS-IMU systems, registration er-
rors can still occur. The registration of the ground images to the map can also function as
precise self-localization of the vehicle within the road, an important task for path planning
and safe driving. Experiments are performed on a dataset including annotated aerial and
ground images over the same area.

iii

Zusammenfassung

D ie Erfassung von Straßeninformationen ist wichtig für eine Vielzahl von Anwendun-
gen, wie Infrastrukturüberwachung, Verkehrsmanagement, Stadtplanung, Fahrzeug-

navigation, realistische Fahrtsimulationen und in Zukunft auch für autonomes Fahren. Die
gängigste Methode um Straßeninformationen darzustellen sind detaillierte Straßenkarten.
Die Erfassung von detaillierten Straßeninformationen vor Ort (an der Straße) erfordert viel
Aufwand, da Vermessungstrupps das ganze Gebiet besuchen müssen. Luftbilder sind eine
reiche Informationsquelle um größere Gebiete zu messen und aus der Ferne zu kartieren,
auch wenn für die manuelle Bearbeitung und Interpretation der Bilder trotzdem noch viel
Aufwand benötigt wird. Die automatische Verarbeitung von Luftbildern könnte die Anal-
yse von Luftbildern viel effizienter machen. Im Idealfall würde man sogar eine vollständige
Karte ohne manuelle Arbeitsschritte erstellen können. Aber die vollautomatische Bildverar-
beitung ist eine sehr anspruchsvolle Aufgabe, weil auch die Luftbilder in vielen Szenen nicht
genügend Informationen anbieten, sodass auch Menschen einige Bilder nur schwierig inter-
pretieren und kartieren können. Der Großteil der Straßenkarten, die heute zu Verfügung
stehen, wird durch Bodenmessungen und mit anderen Zusatzinformationen erstellt, welche
auch die Unsicherheiten in den Luftbildern lösen können. Dadurch sind Karten mit den
integrierten Bodenmessungen und zusätzlichem a-priori Wissen sehr geeignet, um die au-
tomatische Analyse von Luftbildern zu stützen. Ziel dieser Dissertation ist die automatis-
che Verknüpfung von existierenden Straßenkarten mit Luftbildern und mit terrestrischen
Aufnahmen. Fehlende Informationen in den Karten werden durch Informationen in den
Bildern ergänzt, fehlende Luftbildinformationen wiederum werden durch Informationen in
den Karten ergänzt. Insgesamt drei Probleme über die Verarbeitung von Straßenkarten und
Luftbildern werden untersucht, wobei bei einem Problem auch zusätzlich terrestrische Auf-
nahmen hinzukommen. Diese Dissertation ist kumulativ geschrieben; die vier nachfolgend
beschriebenen Probleme sind durch vier Peer-Reviewed Veröffentlichungen abgedeckt:

Schnelle Multiklassen-Fahrzeugdetektion in Luftbildern: Die konventionellen Straßenkarten
beschreiben meist nur die statischen Eigenschaften von Straßen, obwohl dynamische
Verkehrsinformationen sehr wichtig für die Fahrzeugnavigation als auch für Infrastruk-
turplanung und -verwaltung sind. Mit Hilfe eines einzelnen Luftbilds ist es möglich, die
Straßen- und Parkplatzbelegung durch Zählung von Fahrzeugen mit ihren Positionen und
Richtungen zu schätzen. Mit einer Bildsequenz kann man sogar die Geschwindigkeit von
Fahrzeugen messen, um daraus die Verkehrslage zu bestimmen. Um diese Grundaufgabe
optimal zu lösen, wird ein Fahrzeugdetektor präsentiert, der eine verbesserte Fahrzeugde-
tektion mit kurzen Rechenzeiten liefert. Die vorgeschlagene Methode bestimmt im Gegen-
satz zu anderen Methoden sowohl die jeweilige Fahrzeugklasse als auch die Orientierung
der Fahrzeuge. Dabei wird nur ein einzelnes georeferenziertes, nicht orthorektifiziertes Luft-
bild ohne Einschränkung des Suchgebiets durch eine Straßenmaske benötigt. Die Leistung
von der Methode ist in einen aktuellen Datensatz mit mehreren tausend Fahrzeugen un-
tersucht worden. Die schnelle Geschwindigkeit dieser Methode erlaubt die Anwendung für
Echtzeit Verkehrserfassung aus Luftbildern.

Großflächige Luftbildsequenz Georeferenzierung durch Verwendung von Straßenkarten als in-
variante Merkmale: Luftbilder sind dann am besten geeignet für Anwendungen, wenn eine
Transformation der Bildkoordinaten zu Weltkoordinaten möglich ist. Ein neuer Ansatz wird
präsentiert, der die Georeferenzierung von Luftbildsequenzen mit Hilfe einer Straßenkarte
und mit Hilfe des in den Bildern sichtbaren Verkehrsstroms bestimmt. Im Gegensatz zu den
drei anderen Problemen wird hier die Straßenkarte verwendet, um fehlende Informatio-
nen bei den Luftbildern zu ergänzen. Die Muster der Straßenkarte erscheinen genügend
eindeutig zu sein, so dass man sie zur Georeferenzierung verwenden kann. Dabei muss

iv

nicht das komplette Straßennetz im Bild extrahiert werden, sondern es genügt ein Teil
davon. Statt direkt die Straßen zu extrahieren, werden sich bewegende Fahrzeuge detek-
tiert und verfolgt. Anhand der Trajektorien dieser Fahrzeuge können die Luftbildsequenzen
in einem großen Suchgebiet, z.B. um die Großstadt München mit 22500 km2 Fläche und
32000 Straßenkilometer, erfolgreich lokalisiert werden. Diese Methode kann die Messun-
gen mit kostenintensiven GPS Inertialsysteme ersetzen, um Luftbilder zu georeferenzieren
oder um mit Hilfe von Bildaufnahmen in der Luft zu navigieren. Das wird insbesondere
bei unbemannten Luftfahrzeugen wichtig, bei denen Gewicht und Preis eine wichtige Rolle
spielt. Diese Methode erlaubt die Positionierung basierend nur auf visueller Information
und Straßenkarten und ähnelt so der Orientierung von Menschen.

Erweiterung von Straßenkarten mit Straßenbreiteninformation durch Luftbildanalyse:
Straßenkarten sind im Prinzip für die Orientierung von Menschen entworfen. Die
Abbildung von Straßen erfolgt als Mittellinie mit Kreuzungen zu anderen Straßen. De-
taillierte Informationen über die physikalischen Größen der Straßen werden meist nicht
angegeben, obwohl diese für verschiedene Anwendungen, wie Infrastrukturplanung, real-
istische Fahrtsimulationen und für die Interpretation in autonom fahrenden Fahrzeugen
wichtig sein könnten. Eine Methode wird präsentiert, welche die Straßenbreite automa-
tisch aus Luftbildern extrahiert und die Registrierungsfehler zwischen Luftbildern und
Straßenkarten berücksichtigt. Statt wie üblich das Problem als semantische Segmentierung
zu betrachten, wird das Problem als Inferenz in einem Markov Random Field (MRF)
beschrieben, das direkt die gewünschten Straßenparameter schätzt. Dies führt zu sehr
schnellen Laufzeiten, robusteren Ergebnisse und zur Bewahrung der Straßentopologie.
Experimente wurden auf drei Datensätzen durchgeführt: Luftbilder über Bayern, Bilder
aus Google Earth über Karlsruhe, und weltweite Bilder aus Google Earth. Diese Methode
liefert bessere Ergebnisse als vergleichbare Referenzmethoden und hat deutlich geringere
Laufzeiten. Anhand des KITTI Datensatzes wird demonstriert, dass die so verbesserten
Straßenkarten die Bildverarbeitung für autonomes Fahren verbessert.

Hochauflösende Straßensegmentierung durch Luftbilder und terrestrischen Aufnahmen: Das Ver-
fahren zur Erfassung der Straßenbreiten wurde zu einer hochauflösenden Straßensegmen-
tierung durch die Extraktion von Anzahl und Breite die Fahrspuren, Gehsteigen und Park-
spuren erweitert. Entscheidend bei diesem Verfahren ist, dass Straßenkarten, Luftbilder
und terrestrische Aufnahmen in einem gemeinsamen Arbeitsschritt verarbeitet werden. Das
Problem ist als Inferenz in einem MRF formuliert, welches die Straßenanordnung sowie
die Registrierung zwischen Luftbildern, terrestrischen Aufnahmen und der Straßenkarte
gemeinsam schätzt. Deep Learning wird angewendet, um semantische Bildmerkmale zu
berechnen, und als Datenterm in dem MRF zu verwenden. Die Zwangsbedingungen der
Breite der Spuren und die Struktur des Straßenlayouts werden durch paarweise Poten-
tiale ausgedrückt. Das ermöglicht eine robuste Schätzung, auch wenn wenig Bildinforma-
tion vorhanden ist, z.B. wenn die Straßenmarkierungen fehlen oder nicht sichtbar sind. Die
Registrierung zwischen die Luftbildern und terrestrischen Aufnahmen ist notwendig, da
auch bei Verwendung von sehr präzisen GPS Inertialsystemen die geforderte Genauigkeit
nicht immer eingehalten werden kann. Diese Registrierung kann man auch als präzise
Lokalisierung betrachten, was für Routenplanung und autonomes Fahren sehr wichtig ist.
Experimente wurden auf einem Datensatz ausgeführt, der annotierte Luftbilder und ter-
restrische Aufnahmen vom selben Gebiet beinhaltet.

v

Contents

Abstract i

Zusammenfassung iii

1 Introduction 1
1.1 Objectives 4

1.1.1 General goal 4
1.1.2 Methodological goals 4

1.2 Reader’s Guide 5

2 Basics and state of the art 8
2.1 Image analysis fundamentals 8

2.1.1 Supervised machine learning 9
2.1.1.1 Support Vector Machines (SVMs) 11
2.1.1.2 Decision Trees 12
2.1.1.3 Boosting 13
2.1.1.4 Neural Networks 14

2.1.2 Deep Learning 14
2.1.2.1 Training the network by Backpropagation 16
2.1.2.2 Convolutional Neural Networks (CNNs) 16

2.1.3 Graphical Models 20
2.1.3.1 Markov Random Fields (MRFs) 20
2.1.3.2 Inference 22
2.1.3.3 Structured Support Vector Machines (SSVMs) 25

2.2 Image geolocalization 28
2.2.1 Map projections 28

2.2.1.1 Geographic Datum 28
2.2.1.2 Projections 29

2.2.2 Aerial image orthorectification 29
2.2.3 Image based localization 30

2.2.3.1 Image to image matching 30
2.2.3.2 Cross-view image matching 31
2.2.3.3 Image to map matching 31

2.3 Detecting objects in images 32
2.4 Semantic image segmentation 33

3 Fast multiclass vehicle detection on aerial images 36
3.1 Related Work 37
3.2 Multi-direction Vehicle Detection 38

3.2.1 Binary sliding window detector 38
3.2.1.1 Fast image features 39
3.2.1.2 AdaBoost classifier in Soft Cascade structure 39
3.2.1.3 Multi-direction detection 40
3.2.1.4 Single classifier method 40
3.2.1.5 Aggregated classifier method 40

3.3 Multiclass Vehicle Classification 40
3.3.1 Orientation estimation 41
3.3.2 Type classification 41

3.4 Experiments 42
3.4.1 Results on Munich images 43

3.4.1.1 Multi-direction vehicle detection 43
3.4.1.2 Multi-class vehicle classification 43
3.4.1.3 Baseline comparison 44

vi

3.4.1.4 Computation time 45
3.4.2 Baseline comparison on UAV images 45

4 Large scale aerial image sequence geolocalization with road traffic as
invariant feature 46

4.1 Related Work 47
4.2 Method 48

4.2.1 Track extraction 49
4.2.2 Matching the tracks to the road network 49

4.2.2.1 Geometric hashing 49
4.2.2.2 Verification of the shortlist 51

4.3 Experiments 52
4.3.1 Quantitative evaluation 53
4.3.2 Comparison to simple chamfer matching 54

5 Enhancing road maps with street width by parsing aerial images 56
5.1 Related Work 58
5.2 Augmenting Road Maps from Aerial Images 59

5.2.1 Energy Formulation 59
5.2.1.1 Road classifier: 61
5.2.1.2 Edge: 61
5.2.1.3 Object detector: 61
5.2.1.4 Homogeneity: 61
5.2.1.5 Context features: 62
5.2.1.6 Smoothness: 62
5.2.1.7 Overlap: 62

5.2.2 Inference 63
5.2.3 Learning 63

5.3 Experimental Evaluation 65
5.3.1 Datasets 65

5.3.1.1 Bavaria: 65
5.3.1.2 Aerial KITTI: 65
5.3.1.3 World: 65

5.3.2 Metrics: 65
5.3.2.1 Comparison to baselines: 66
5.3.2.2 Importance of the features: 66
5.3.2.3 Segmenting the world: 66
5.3.2.4 Domain Adaptation: 66
5.3.2.5 Processing time: 66
5.3.2.6 Ground-level Scene Understanding: 67
5.3.2.7 Failure modes and limitations: 67

6 Fine-grained road segmentation by parsing ground and aerial images 69
6.1 Related Work 69

6.1.1 Aerial image parsing: 69
6.1.2 Aerial parsing with maps: 69
6.1.3 Fine-grained road parsing: 70
6.1.4 Aerial-to-ground reasoning: 70

6.2 Fine-grained Semantic Parsing of Roads 70
6.2.1 Model Formulation 71

6.2.1.1 Aerial semantics: 72
6.2.1.2 Aerial edges: 73
6.2.1.3 Along the road smoothness: 73
6.2.1.4 Parallel roads: 73
6.2.1.5 Road collapse constraints: 73
6.2.1.6 Lane size constraint: 74
6.2.1.7 Centerline prior: 75

vii

6.2.1.8 Ground semantics: 75
6.2.1.9 Ground alignment smoothness: 75

6.2.2 Inference via Block Coordinate Descent (BCD) 75
6.2.3 Training with SSVM 76

6.3 Experimental Evaluation 76
6.3.1 Comparison to the state-of-the-art: 79
6.3.2 Deep semantic features in aerial Images: 79
6.3.3 Alignment between aerial and ground images: 79
6.3.4 Qualitative Results: 79
6.3.5 Ablation studies: 79
6.3.6 Inference time: 79
6.3.7 Limitations: 80

7 Conclusion and Outlook 81
7.1 Summary 81
7.2 Improvements and future work 82

List of Abbreviations 84

List of Figures 85

References 91

Acknowledgments 97

Appendices 98

A Liu K., Mattyus, G., 2015. Fast Multiclass Vehicle Detection on Aerial
Images. IEEE Geoscience and Remote Sensing Letters 12(9): 1938-1942 99

B Mattyus G., Fraundorfer, F., 2016. Aerial image sequence geolocalization
with road traffic as invariant feature. Image and Vision Computing,
Volume 52: 218–229. 105

C Máttyus, G., Wang, S., Fidler S. and Urtasun R., 2015. Enhancing Road
Maps by Parsing Aerial Images Around the World. 2015 IEEE International
Conference on Computer Vision (ICCV), pages 1689–1697. 122

D Máttyus, G., Wang, S., Fidler S. and Urtasun R., 2016. HD Maps:
Fine-grained Road Segmentation by Parsing Ground and Aerial Images,
Conference on Computer Vision and Pattern Recognition (CVPR) 2016. 132

viii

1 Introduction 1

1 Introduction

Maps are used to describe the spatial relations of the objects in the world. Without maps
the modern life is hardly imaginable, they are used for designing and maintaining the in-
frastructure, planning constructions and investments, managing agriculture and the envi-
ronment, etc. Particularly important are road maps helping people to navigate from one
point to another. Mankind has been using maps since the ancient times and as the tech-
nology advanced, maps were enhanced and extended to meet new demands and cover new
areas. This evolution is still ongoing. Especially important was the emergence of commer-
cially available GPS navigation devices enabling the automatic localization of the vehicles.
When connected to a digital road map, these GPS devices can navigate a vehicle on en-
tire continents, but only to the extent of the reliability of the applied map. This poses a
high demand on more accurate, more detailed and more complete road maps. This aspect
will get more important for fully autonomously driving cars, which seem to be realized in
the future. Autonomous vehicles have to understand their environment, interact with other
traffic participants and be able to self-localize precisely under any circumstances. Highly de-
tailed road maps can support these by providing priors about the environment, intentions
of other vehicles or pedestrians, and most importantly, maps can enable path planning and
self-localization similarly as humans were using maps to find their location before the time
of GPS. Navigation and traffic are very important, but not the only applications requiring
fine-grained maps. Detailed maps can be leveraged in virtual and augmented reality for
both for the management and maintenance of the man-made and natural environment or
for entertainment purposes. It seems inevitable to create more detailed and more complete
maps for the demands of current and future technologies.

Existing maps were created by huge manual effort and they represent a type of human
knowledge. The creation of high definition maps can be based on the map information al-
ready present plus additional sensors. Images are a rich information source easily under-
standable by humans, which makes them convenient for mapping and surveying. Aerial
images provide full coverage over a large area, without the need of collecting data on the
spot. This makes them an important source of geospatial information and maps since the
dawn of aviation and photography. Airplanes are the most widespread way to carry cam-
eras, however nowadays UAVs are becoming a more economical alternative. Remote sensing
imagery is particularly important for public administrations (e.g. cadastre), for the mili-
tary and the intelligence. Nowadays aerial images are abundant, almost all major cities have
aerial imagery, often also publicly available (e.g. German cities) or even for free (e.g. the
United States Geological Survey (USGS) in the USA). Manual mapping and surveying using
remote sensing images is a laborious and often tedious work resulting in high costs. Ana-
lyzing the aerial images automatically could make remote sensing much more efficient. In
the ideal case a complete map could be created from an aerial image without any human
intervention. However, this is a very difficult task. There are partially automatic systems
for certain tasks, but a general, fully automatic mapping system is currently not realized
(at least to the knowledge of the author). For many scenes the aerial view does not pro-
vide enough information and even humans can only hardly interpret the scene. Existing
maps and images can be applied jointly to augment new information present in one of the
data but not in the other by incorporating the information of both. The collection of maps
typically employed also ground surveys or other prior knowledge supporting the image in-
terpretation when remote sensing data alone was not informative enough. This information
can be leveraged when existing maps and aerial image are processed jointly.

For managing the traffic, planning an optimal route for the current road utilization and
estimating the time of arrival, live information about the road traffic is required. Various
methods exist to acquire traffic data on the ground. Special sensors can be deployed (e.g.

2

by induction loops, surveillance cameras) or a fleet of mobile positioning devices can be
tracked. Such a fleet can be as large as all the users of a given mobile operating system
platform. Alternatively, aerial images can be used to count, position and track the vehicles
visible in the image. This is more expensive, since flying an aircraft involves higher costs.
However, aerial images can cover a large area rapidly, the area of interest can be set on
demand and such a system is independent from the terrestrial infrastructure. A system
estimating the traffic from aerial images can provide an extensive picture of the state of the
infrastructure and traffic even in case of disasters when electricity outages and interruptions
in the communication occur.

The most dominant feature connecting images and maps is location. When an image is pre-
cisely georeferenced and the coordinate transformation between the image and the map is
known, the image location containing an object in the map can be directly visualized. This
also applies vice versa, the content of an image can be queried (interpreted) using the map,
if it is detailed enough to contain the objects of interest. A good example is Google Maps
enabling to switch between the image and the map view. Aerial images particularly need ge-
ographic information, otherwise the content of the image is far less informative. It would be
ideal to have 100% correctly georeferenced images and accurate maps describing the world
to every detail. However, in general this is not feasible, as the registration between the map
and the image is not perfect neither the map is detailed enough and up-to-date. Both the
map and the geolocation of the image can contain errors, which corrupt the registration be-
tween them. Furthermore, maps describe a certain moment of the physical world to a given
extent. Changes occur, e.g. cars and people move, new roads and buildings are built, and the
maps become outdated only partially describing the reality. The joint inference of inaccu-
rately geolocalized images and imperfect maps can improve registration, extend the amount
and detail of covered objects and update the content to the latest state of the physical world.
Even if the location of an image is entirely missing, matching the features of the map and the
image can recover the location, hence the position of the camera. Maps containing partial
data can already assist the extraction of more categories, e.g. a road map containing only
the road centerlines can support the extraction of the detailed road layout or help build-
ing detection, since most buildings are connected to roads. Performing this joint inference
automatically could allow the frequent upgrade of maps in a cost efficient way.

Maps are created by both authorities, private companies and recently also by volunteers in
the form of the OpenStreetMap (OSM) 1 project. OSM could be described as the ”Wikipedia”
of maps. Volunteers edit the geospatial maps by doing infield local measurements using
handheld GPS devices or by using aerial or satellite images provided by certain companies
(e.g. Bing Maps) or local authorities (e.g. the City of Stuttgart) 2 . OSM maps are freely avail-
able, the coverage is very high and it is growing rapidly. Current road maps were intended
to support the navigation of human drivers. They provide a topological network enabling
routing across the road network. The road is depicted as nodes connected by directed edges
(lines), while an intersection is described by a node with multiple edges. Basic maps de-
fine only the centerline of the road and the turning lanes at intersections. This is enough
for human drivers capable of precisely localizing their vehicle on the road based on visual
information. More information (e.g. the width of the road, number of lanes) would be prob-
ably more disturbing than useful. In contrast, the artificial intelligence of an autonomous
car can be supported by much more information about the road. An accurate, more detailed
map can be highly useful to enable safer driving. A human can also drive better on a known
road which she/he has ”mapped” before and has a prior knowledge about. A detailed map
can be considered such a prior. If the system knows that there is a sidewalk it can increase
the likelihood of a pedestrian stepping down on the road, if a parking lane is present, a car

1 http://www.openstreetmap.org
2 Aerial and satellite images can only be used to edit OSM if the owner of the images allows this.

http://www.openstreetmap.org

1 Introduction 3

might turn out to the road.

Detailed and reliable maps are needed also for the management and planning of the infras-
tructure. Local authorities typically have databases about the road infrastructure. However,
these databases can origin from very different sources, from legacy measurements stored on
paper to modern Light Detection And Ranging (LIDAR) Point Clouds (PCLs) acquired by
survey vehicles. Therefore the completeness, the reliability and the grade of the details of
these information can vary highly. An automatic system verifying the existing data based
on aerial images can support the decision if new surveying is needed or the current data
already fulfills the requirements. In certain cases an update using available imagery and
maps could be enough instead of a new survey.

Modern cars are getting equipped with more and more sensors (e.g. cameras) for Advanced
Driver Assistance Systems (ADAS) and ultimately fully autonomous driving. This makes
the car fleet of the future a huge mobile sensor network driving the roads continuously. To
extract coherent information the sensors of the individual cars have to be registered pre-
cisely. This task involves the alignment of possibly millions of sensors. These sensors can
not be calibrated in a laboratory and their field of view will not cover the same area at the
same time. Standard, image based image registration techniques, assuming overlap between
the images, are hardly applicable. The appearance of a scene can change considerably be-
tween the visit of two vehicles, e.g. day vs. night, sunny weather vs. rainy, summer season
vs. winter. Instead of registering the images to each other, the sensors can be registered to
a common map. Maps contain higher level information: the spatial description of objects.
These features are invariant to appearance changes, they do not depend on the lighting con-
ditions or the applied sensor. Even different sensor modalities (e.g. image vs. radar) can
be matched based on the spatial extent of the object they are capturing. By registering the
sensors of a moving car to a precise map self-localization and sensor (camera) calibration
becomes possible. This enables the reliable localization of the vehicle even if there is no
GPS signal available, and allows to deploy consumer vehicles with lower cost (and lower
precision) sensors. However, this can only work if detailed and up-to-date maps are avail-
able on a large scale. Therefore the augmentation of maps with detailed information and
keeping them up-to-date will become an important aspect of the traffic infrastructure of
the future. Alternatively to applying sophisticated surveying vehicles with calibrated sen-
sors (e.g. GPS+IMU, LIDAR), lower cost sensors (i.e. cameras) can be applied to enhance the
road maps. In this case the precise localization of the images is a more relevant problem. A
possible solution is to apply aerial images jointly with the images acquired by the vehicles
on the ground. The absolute location accuracy of aerial images is typically high, which can
be leveraged to register them with the terrestrial images. However, matching images of dif-
ferent perspective and resolution is very challenging, for which standard image matching
techniques are not suitable. The spatial extent of objects described by maps can provide
the link between the two image types (i.e. air and ground) allowing registration. Inferring
detailed road map information and augmenting the alignment of aerial and ground images
jointly can give a more optimal result than doing these tasks individually.

The transportation systems of the future demand the augmentation of road maps with dy-
namic traffic information, more detailed categories (e.g. precise lane information), and the
registration of images and maps by geolocalizing the images. This can be achieved by ap-
plying images and existing maps jointly.

4

Objective 1: Vehicle detection

Objective 2: Aerial image localization based on road maps

Fig. 1. Illustration of the objectives 1 and 2. The detected vehicles are shown with colored bounding boxes, different
classes with different color. Black shows false-negative (missing) cars. The bottom image shows aerial images localized
over a larger area. The image is transformed into the road map. The red color in the image shows the extracted car tracks
used to match to the map. The red dots in the Google Earth image shows the location of the image.

1.1 Objectives

1.1.1 General goal
This thesis aims to present new scientific methods to automatically augment information of
road maps, aerial imagery and ground images by inferring jointly in these different data sources.

1.1.2 Methodological goals
The general goal is reached by four methodological goals: providing new methods to solve
four specific problems.

Objective 1:

Development of a more reliable, faster vehicle detector for extracting road traffic from aerial images
in near real-time.

Aerial images can provide not only static information about the infrastructure but also dy-
namic properties, e.g. road utilization, traffic flow. To extract these dynamic properties the
key is to detect the vehicles in the image reliably and automatically. This is a challenging

1.2 Reader’s Guide 5

task as the aerial images to be processed are large (e.g. 5000 × 4000 pixel), needing more
computation but the size of the targets is still small (30 × 20 pixel) making it hard to dis-
tinguish objects from background. The German Aerospace Center (DLR) has developed a
system in the project VABENE 3 to extract the road traffic in real-time based on an optical
camera system mounted on an airplane. For the fast and accurate real-time traffic extrac-
tion in such a system it is crucial to improve the method of detecting the vehicles. See an
illustration of the task in Fig. 1.

Objective 2:

Geolocalize aerial images without a GPS and IMU.

Geolocalizing aerial images depends on sophisticated GPS and IMU systems. These systems
are expensive and heavy (several kg), especially the IMU component measuring the orien-
tation and acceleration. A solution avoiding the GPS+IMU could enable lower costs and
smaller weight, which is especially important for small UAVs only able to carry a very lim-
ited payload (a few kg or even less). Aerial images contain rich information which can also
enable to solve this problem. The road network pattern tends to be so unique on a large scale
that it can be used for recognizing the location and thus be used for georeferencing. Fig. 1
shows an illustration of this problem.

Objective 3:

Enhance road maps with street width by parsing aerial images.

Maps simplify the representation of the road to its centerline. This is enough for human
navigation, but the real dimensions of the road remain important for many tasks. Aerial
images cover a huge area of the world. If the road width is extracted automatically from
these images, a large part of the world can be covered with enhanced maps. Fig. 2 shows
this problem.

Objective 4:

Fine-grained road segmentation by parsing ground and aerial images.

The road layout (number of lanes, presence of sidewalk, parking spots) is visible in high
resolution aerial images but small details might only be visible in ground images. Extracting
the road layout by using the aerial and ground perspective jointly can address the problems
present if just one data source is used. Aerial images give a high coverage with good absolute
geometry but they might miss some details, they need clear view over the road and the
perspective makes it hard to detect thin vertical objects (e.g. barriers). Ground images are
not effected by objects covering the sky (e.g. bridges, high building), and they show fine
details not visible from the air (e.g. the curb of the road, a barrier) but getting a full coverage
over a larger area needs exhaustive efforts and the view can be easily covered (e.g. by other
vehicles). See an illustration of the task to solve in Fig. 2.

1.2 Reader’s Guide

This is a cummulative dissertation, the four objectives are addressed by four peer-reviewed
papers:

3 http://www.dlr.de/vabene/

http://www.dlr.de/vabene/

6

Objective 3: Enhance road maps with street width

Objective 4: Fine-grained road segmentation by parsing ground and aerial images

Fig. 2. Illustration of the objectives 3 and 4. The extracted road width is shown by yellow color. The two bottom image
shows the road layout extracted jointly in the aerial and the ground (bottom) image. The coloring is pink: road, yellow:
parking lane, blue: sidewalk. The detected road from the ground is projected into the aerial image and it is shown by red
color.

� Kang Liu and Gellert Mattyus: Fast Multiclass Vehicle Detection on Aerial Images, IEEE
Geoscience and Remote Sensing Letters (Liu and Mattyus, 2015).

� Gellert Mattyus and Friedrich Fraundorfer: Aerial image sequence geolocalization with road
traffic as invariant feature, Image and Vision Computing (Máttyus and Fraundorfer, 2016).

� Gellert Mattyus, Shenlong Wang, Sanja Fidler and Raquel Urtasun: Enhancing Road Maps
by Parsing Aerial Images Around the World, International Conference on Computer Vision
2015 (Mattyus et al., 2015)

� Gellert Mattyus, Shenlong Wang, Sanja Fidler and Raquel Urtasun: HD Maps: Fine-grained
Road Segmentation by Parsing Ground and Aerial Images, Conference on Computer Vision
and Pattern Recognition 2016. (Mattyus et al., 2016).

The papers are included in the appendix A, B, C, D.

The thesis is structured as following:

� Chapter 2 gives a brief introduction of the basics of computer vision and machine learning.

1.2 Reader’s Guide 7

In the second half of this chapter the task of image localization, object detection and
semantic image segmentation is introduced and a short general state of the art is given.
The more task specific related work is in the corresponding chapters.

� Chapters 3-6 addresses the four objectives covered by the four papers.
� Chapters 7 is the conclusion with an outlook on future work.

8

2 Basics and state of the art

This thesis is in the field of analyzing and interpreting aerial and ground images automat-
ically. Therefore the fundamentals of automatic image analysis and interpretation is pre-
sented in this chapter by describing the basics of computer vision and machine learning
related to the subject of this thesis. The second part of this chapter contains the state of the
art and the problem formulation of three related fields: image based geolocalization, object
detection in images and the semantic segmentation of images. This is a general overview,
more task specific related works are at the beginning of each chapter.

2.1 Image analysis fundamentals

Optical images are a very rich information source about our environment and in general the
world. Vision can be probably considered the most important sense for humans. The advent
of digital images brought the demand to analyze these images automatically by a computer
program. This was true for all application fields where digital images were available, e.g.
medical imaging, manufacturing quality control, etc. and analyzing remote sensing images
created by satellites or airborne sensors. As cheap digital cameras became available for the
public and the amount of digital images was increasing rapidly, the automatic interpretation
of the visual information turned also to analyzing everyday images, e.g. detecting human
faces in family photos, understand the scene and and recognize the geolocation in a holiday
photo. These images are taken by various sensors in uncontrolled environments resulting
in a much higher variance for the content of the image, e.g. a car in an image can appear in
multiple sizes, different lighting conditions and different views.

The problem of analyzing the content of an image in general turned out to be extremely
challenging. Even the estimation of the difficulty of this problem was hard as humans excel
in these tasks and the problem seemed to be simple or even trivial. A good illustration for the
underestimation of the visual perception problem is the MIT Summer Vision Project proposal
(Papert, 1966) from 1966 which planned to solve key vision problems like background-
foreground segmentation and object description during one summer. After decades of re-
search the automatic systems are getting only now close to solve these problems reliably
by using huge amount of data and computing resources to train models with millions of
parameters.

The excellent human vision performance easily leads to underestimation of the difficulty
of the problem. On the other hand it can work as an oracle (a method defining an accu-
rate ground truth) for the task enabling the creation of huge datasets by human annota-
tors without any special training. Huge open datasets are crucial for making reproducible,
quantitative observations about the performance of different methods what is a criteria for a
scientific process. Famous datasets like Pascal Visual Object Classes (Everingham et al., 2010)
for segmentation and object detection, KITTI (Geiger et al., 2012) for autonomous driving
and ImageNet (Russakovsky et al., 2015) for image classification play an important role for
advancements in the methods. The huge dataset of ImageNet (1000 classes, 1000 images
samples per class) was particularly important to train huge, deep neural networks with mil-
lions of parameter outperforming other methods in many vision tasks.

Early image analysis approaches tried to find simple mathematical models solving the vision
problem. These approaches resulted mostly in defining heuristics, constructing features ex-
pressing these heuristics and tuning parameters (mostly manually) until good results were
achieved on relatively small datasets. The problem of these methods is that the heuristics

2.1 Image analysis fundamentals 9

are mostly very domain specific and the application to other types of data is not clear or
needs laborious manual intervention.

Learning based methods can deliver much better results on high-level image analysis (e.g.
image classification) and the adaption to new data is well defined and predominantly auto-
matic. The visual appearance depends on many factors (e.g. lighting conditions, view point,
background, etc.) and the state of these factors is usually unknown to the observer. This re-
sults in a very large variability in the appearance and makes the problem ill-posed where a
priori knowledge is needed for the interpretation. Learning based methods can incorporate
the a priori knowledge provided by the training data much better than methods based on
heuristics. However, there are low level vision problems where the learned a priori knowl-
edge plays a less important role and learning based methods are not widely applied. An
example for this is 3D geometry described by the pinhole camera model and the epipolar
geometry (Hartley and Zisserman, 2004). But even in problems which seem to be low level
(e.g. edge detection), the learning based methods (Li et al., 2016; Dollár and Zitnick, 2015)
can outperform the pure algorithmic methods (Canny, 1986) on datasets annotated by hu-
mans.

For a wide range of computer vision problems learning based methods are formulated as
relating the input data to the output data via a function which can be tuned to approximate
the underlying unknown and complicated function (this function can include many factors,
e.g. the physical light properties, the appearance of the objects, the context around the ob-
ject, etc.). This is the approach of machine learning, especially supervised machine learning.
For an input data x with corresponding output data y, a function transforming the input to
the output y = f (x,w) is created by setting the w parameters of the function. The phase
when the trainable parameters w are set is called the training. Later the parameters w are
kept fix and are used to generate an output y = f (x|w) = f (x). This is called the prediction.

The following subsections introduce machine learning and two important subfields, i.e.
deep learning and graphical models.

2.1.1 Supervised machine learning
On Wikipedia machine learning is defined as: ”Field of study that gives computers the abil-
ity to learn without being explicitly programmed”. Machine learning uses many methods
also existing in other disciplines like stochastic signal processing, estimation theory and it
can be considered as a descendant of pattern recognition.

The research included in this thesis applies predominantly supervised learning where there
is a set of input data available with the corresponding output. Analyzing and learning struc-
tures in the data if only the input and no reference output is available is called unsupervised
learning. This is a very important and challenging task as there are huge datasets without
output, but unsupervised learning is not a topic of this work. For a more general overview
about machine learning the reader is referred to (Bishop, 2006).

In general the goal of supervised learning is to create a function:

y = f (x,w) (1)

which transforms the input x to the desired output y by setting the parameters w. y and x
can be either a scalar, a vector, a matrix or a higher dimensional data. In digital computers
the higher dimensional data (e.g. matrix) is stored as vectors, therefore x and y are consid-
ered a vector or a scalar. The w vector represents the trainable parameters of the function
f ().

10

Consider the problem of classifying (i.e. assigning a class for the content of the entire image)
an image of size rows × cols with red, green, blue color channels. In this case the x input
vector is the image pixel intensity tensor rows × cols × 3, while the output is a single scalar
defining a class id.

The first step to create the function f (x,w) is the design of the structure of the function.
This crucial step defines the meaning of the trainable parameters w, how the training can
be solved, what kind of functions can be approximated, what is the computational demand,
etc. The core of machine learning research is how more optimal function structures for
learning can be created.

After the structure of the function f (x,w) is fixed, the trainable parameters w have to be set.
This is done by using data for which both the input and the ground truth output is known.
This is called the training dataset and it is essential for supervised learning. In the ideal case
the training data would be identical to the true distribution of the data, but in practice this
is not achievable. The collection of the data needs considerable effort (e.g. manual annota-
tion of images) and if the real world problem contains continuous variables infinite number
of training samples would be needed. The training set will be only an approximation of the
true data distribution. If it is independent and identically distributed (IID), then the true data
distribution can be approximated by interpolation of the training set, and smoothness is a
good prior. If the training set is not IID over the true data, then certain domains of the dis-
tribution have to be extrapolated, instead of interpolation, which gives a higher uncertainty.

The training set contains N training examples ŷn,xn,n = 1, . . . ,N where ŷn denotes the
ground truth output for the input xn. The prediction of the trained function for the same
input is yn = f (xn,w).

A loss function (also called error or cost function)

L(ŷn,yn) =
{

0 if ŷn = yn

> 0 otherwise
(2)

has to be defined which measures how good the predicted output is. If the prediction and
the ground truth output is equal the loss should be zero, otherwise it should be a positive
number.

By minimizing the loss function w.r.t the function parameters w the function can be trained
(learned).

w∗ = argmin
w

N∑
n=1

L(ŷn, f (xn,w)) (3)

By solving (3) the output of the training data can be well predicted, but the goal of a system
applying machine learning is to predict on previously unseen data. The objective is to create
a function from the training data, which predicts on unseen data correctly. This ability is
referred as generalization and is one of the main question of any machine learning method.
It represents the ability to learn relevant features (kind of insight) in the data. The ideal
training method would need very few training data and could generalize to a very wide
range of inputs.

In contrast, a method which works only on the training data is not useful. Consider the
example of classifying an image. One could use the method of creating a hash based on
the representation of the image (i.e. the pixel values encoded in a structure, e.g. row wise),
calculate a Hamming distance to this hash and classify the image as the class of the nearest
neighbor. This method could provide 100% accuracy on the training data, but it is easy to see
that even the tiniest modification of the data (e.g. changing a few pixel values, translating

2.1 Image analysis fundamentals 11

or scaling the image,) would bring the method to fail. This would mean the generalization
ability of the method is almost zero, it could not be used for real world tasks. This method
would not learn the important features for the image classification problem, but instead use
an irrelevant aspect of the image, its digital representation.

If the dimension of free trainable parameters w is N , then the function can be fitted on N
points (samples) but it might not provide a good estimation outside these N samples. Either
the number of training samples have to be increased or prior knowledge about the data
needs to be incorporated, preventing overfitting on the training set.

The process to include prior knowledge to prevent overfitting is called regularization. It can
take many forms, e.g. data augmentation, but a common way is to add an additional term to
the target function to be minimized (3), a so called regularizer function. Usually this a L1 or
L2 norm suppressing large weights in case of functions with weights, e.g.R(w) = ||w||2. This
is also called weight decay, as it suppresses weights for which there is no evidence in the
data. This would lead to a minimization problem in the form of (4) where λ is a parameter
to set the importance of the regularizer term.

w∗ = argmin
w

N∑
n=1

L(ŷn, f (xn,w)) +λR(w) (4)

The majority of the supervised learning problems can be expressed as (4).

Supervised learning can be divided based on the output function. If the output is a continu-
ous variable y ∈Rd where d is the number of dimensions of the output, it is called regression.
A simple one-dimensional case is fitting a function by the least squares method.

If the output is a discrete variable, the problem is called a classification task. Consider the
problem of recognizing a number in an image containing a single number. The high dimen-
sional input data is transformed to y ∈ [0,1, . . . ,9] giving which class the image belongs to.
Classification problems are particularly important during image analysis, many tasks are
formulated as classification, e.g. the detection of cars in an image is formulated as classify-
ing the possible car positions as car or background, the semantic segmentation if formulated
as classifying each pixel in the image.

In the next paragraphs a few important classifiers applied in the thesis are presented.

2.1.1.1 Support Vector Machines (SVMs)

SVM is a liner classifier constructing a hyperplane w ·x−b = 0 in the input data x separating
two classes (in case of binary classification) (Cortes and Vapnik, 1995). If the data is linearly
separable it maximizes the distance between the hyperplane and the closest data points
of the classes (i.e. the margin). See Fig. 3 for an illustration. This margin functions as a
regularization and achieves good generalization if the training data has similar distribution
as the testing data.

If the data is not linearly separable the misclassification error is considered in the form of
the hinge loss Lh

Lh(ŷ, y) = max(0,1− ŷ · y) (5)
where y is the classifier score and ŷ = ±1 is the ground truth output.

The weights are trained by solving:

w∗ = argmin
w

C
N

N∑
n=1

Lh(ŷn,w · xn + b) +
1
2
||w||2 (6)

12

x2

x1

w
x –

 b
 =

 0
w

x –
 b

 =
 1

w
x –

 b
 =

 -1

w

x2

x1

w
x –

 b
 =

 0

w

(a) (b)

Fig. 3. An illustration of an SVM when the data is linearly separable (a). If the data is not linearly separable a trade-off is
needed between the size of the margin and the mislabeling of the training data (b).

where C is a constant defining the weighting between the margin size and the classification
error. This is a convex problem where the local and global minimum is identical. Finding
the global optimum is guaranteed with any initialization.

By applying the kernel trick SVM can be extended to non-linear classification (Boser et al.,
1992). The multiclass case can be handled by forming it as multiple binary classification
problems (Duan and Keerthi, 2005).

2.1.1.2 Decision Trees

A decision tree predicts the output by making decisions (e.g. binary decisions) along a tree.
The leaves of the tree gives the output which can either be a discrete or a continuous vari-
able. The first case is a classification tree, the latter is a regression tree. Fig. 4 illustrates a
fictional example for a decision tree predicting if a user of a website will click on an adver-
tisement or not.

This gives an intuitive reasoning about a decision which can be easily understood by hu-
mans. The training chooses automatically from a pool of features. During testing only the
features selected are calculated, not the entire pool. This enables the use of a huge feature
pool for training without resulting in long feature computation time for prediction. In con-
trast, an SVM needs all the features used during training to make a prediction.

The optimal training of a decision tree (constructing the tree) is NP-complete (Hancock
et al., 1996; Hyafil and Rivest, 1976). Therefore the training algorithms use heuristics, e.g.
top-down greedy algorithms.

Decision trees tend to overfit, resulting in lower generalization capability (Bramer, 2007).
This can be handled by using less decision nodes as the training set would imply, this is
called pruning. Another way is to train an ensemble of decision trees on random subsets of
the training data or the features and aggregate the predictions of these trees. This is called
decision or random forests (Breiman, 2001).

2.1 Image analysis fundamentals 13

Age?

Time of the
day?

Close friend
clicked on the

Ad?

No

No

No Yes

<35 ≥ 35

<18h ≥ 18h

No Yes

Fig. 4. An illustration of a binary classification tree predicting if the user of a website will click on an advertisement or not.
The leaves (squares) are the class label output, the nodes (circles) are the binary decisions over an input feature.

2.1.1.3 Boosting

Boosting combines multiple weak (basic) classifiers fm(x) to form a strong classifier FM(x)
performing much better than the individual classifiers (7). Weak classifiers are classifiers
which only need to be slightly better than a decision by chance. The strong classifier is
calculated from the weighted sum of these weak classifiers. A popular version is AdaBoost
(Freund and Schapire, 1996). It is a sequential algorithm adding a new weak classifier fm(x)
at each iteration. The new weak classifier is trained by putting more importance on samples
misclassified by the previous classifiers. The final strong classifier is calculated as:

FM(x) = sign

 M∑
m=1

αm · fm(x)

 (7)

As shown by (Friedman et al., 1998) this can be interpreted as a sequential minimization of
an exponential loss function (8) with respect to the last weight αm and the parameters of the
last classifier fm(x).

Lexp =
N∑
n=1

exp(−ŷn ·F∗M(xn)) (8)

where

F∗M(x) =
1
2

M∑
m=1

αm · fm(x) (9)

is the linear combination of the weak classifiers fm(x) and ŷn = ±1 is the ground truth output
for xn.

The exponential loss function gives high values if −ŷn · F∗M(xn) is positive which can lead to
overfitting on samples producing these (e.g. mislabeled data). This makes AdaBoost sensi-

14

tive to mislabeled data and can suffer from overfitting. The reader can find a more detailed
description of boosting in the book (Bishop, 2006).

In computer vision decision trees were intensively applied as weak classifiers of boosting
for object detection, e.g. face (Viola and Jones, 2001, 2004) or pedestrian detection (Dollár
et al., 2014). Their main advantage is that they inherently select the relevant features, thus
reducing the number of features to be calculated at prediction.

2.1.1.4 Neural Networks

Artificial Neural Networks were inspired by biology to train a complex function by a hi-
erarchy of non-linear functions. The hierarchy is defined by layers where each layer takes
the input from the previous layer(s), weights the input by trainable weights and applies a
non-linear transformation. The layers defining the input and output are called input and
output layer respectively, while the layers not directly observable (used as internal calcula-
tion stages) are called hidden layers.

Particularly successful are neural networks with many layers (hidden) being able to repre-
sent very complex non-linear functions. The sub-field of machine learning applying these
many layer (deep) neural networks is referred to as Deep Learning. The basics of Deep Learn-
ing (neural networks) are introduced in the next subsection. For more information the reader
is referred to the book (Ian et al., 2016).

2.1.2 Deep Learning
Deep Learning is one of the most successful areas of machine learning currently. Deep learn-
ing is the state of the art in image classification (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014; Szegedy et al., 2014; He et al., 2015), semantic segmentation (Chen et al.,
2015; Schwing and Urtasun, 2015; Zheng et al., 2015), object detection (Ren et al., 2015a;
Cai et al., 2015), action recognition (Gkioxari et al., 2015; Veeriah et al., 2015; Sun et al.,
2015), image geolocalization (Workman et al., 2015; Weyand et al., 2016) and many other
computer vision tasks and also other areas like speech recognition (Dahl, 2015; Hannun
et al., 2014; Amodei et al., 2015) or game playing (Mnih et al., 2015) even against humans
in the ancient board game GO (Silver et al., 2016).

A deep network with many hidden layers can give a very abstract and effective internal fea-
ture representation. Such a network can approximate highly non-linear functions efficiently
and can transform non-linearly separable data distributions to a feature space where they
are separable by simpler classifiers.

(Barron, 1993) has shown that already a network with one hidden layer and a proper non-
linear function (e.g. sigmoid) can approximate a general smooth function to an arbitrary
accuracy (i.e. integrated square error), but without a limit on the needed hidden units. This
implies that a single hidden layer network with enough internal variables (hidden units)
would be enough for any task. The problem is that this kind of approximation can become
very inefficient in the number of internal units needed, while an approximation using larger
depth can be much more efficient (needing less variables) and can create feature represen-
tations easier to interpret.

(Håstad, 1989) proved that for logical circuits there are functions being computable with
polynomial number of circuit elements with depth k but requiring exponential number of
elements when the depth is restricted to k − 1. There is no such proof for general functions
and those used in computer vision, but many experimental results indicate that deeper net-
works achieve better results, e.g. in image classification (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; Szegedy et al., 2014; He et al., 2015).

2.1 Image analysis fundamentals 15

The philosophy of Deep Learning is to train the prediction function y = f (x,w) from end to
end, from the raw input data to the final output. Hand-crafted features as used in ”shallow
learning” should be avoided as they prevent the automatic adoption to new data, e.g. hand
crafted Histogram of Oriented Gradients (HOG) features (Dalal and Triggs, 2005) would
need to be manually tuned for depth images. The features learned by the network become
more and more high-level (abstract) in the deeper layers. Fig. 9 shows the visualization of
the features in the different layers of a deep network.

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.2

0.4

0.6

0.8

1

g
(x

)

Sigmoid

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

g
(x

)

Tanh

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-2

-1

0

1

2

3

4

5

g
(x

)

ReLu

(a) (b) (c)

Fig. 5. Common non-linear functions for neural networks. Sigmoid, hyperbolic tangent and rectified linear unit.

A neural network can be expressed as a composition of non-linear functions

ht+1 = g(at) = g(wt ·ht + bt) (10)

where g(x) is the non-linear function, at = wt · ht + bt is the signal value before the non-
linearity and wt, bt are the trainable weights and biases for the layer t. See the Fig. 6 for the
illustration of a network predicting y = f (x,w,b). Common non-linear functions are shown
in Fig. 5.

� The sigmoid:

gsigm(x) =
1

1 + e−x
(11)

� The hyperbolic tangent:

gtanh(x) =
ex − e−x

ex + e−x
(12)

� The rectified linear:
grelu(x) =max(0,x) (13)

In deep networks it is common to use the Rectified Linear Unit (ReLu) as non-linearity. As
they switch hidden units to zero they make the network sparse, while on the active units
the function remains linear. This is advantageous for training the network with backpropa-
gation since the gradients do not vanish or explode on these paths 4 and the computational
implementation is also more efficient. ReLu functions are non-differentiable at zero and
their gradient in the negative range is zero, but this does not cause a serious problem in
the practice. This non-linear activation function is also biologically more plausible (Glorot
et al., 2011).

4 When composing many non-linear functions the gradient can become very low or high. This is referred as vanishing or
exploding gradient problem during the training of neural networks.

16

w1, b1 w2, b2

Fig. 6. Illustration of the forward pass (prediction) of a neural network with one hidden layer.

2.1.2.1 Training the network by Backpropagation

As (4) a neural network is trained by minimizing the loss w.r.t. the weight w and bias pa-
rameters b.

w∗,b∗ = argmin
w

N∑
n=1

L(ŷn, f (xn,w,b)) +λR(w,b) (14)

where λ is a constant. In contrast to SVMs (6) this problem is non-convex, the global min-
imum is not guaranteed to be found. But good solutions can be obtained using gradient
descent methods. The gradients of the Loss function L w.r.t. the parameters w,b can be
calculated by backpropagating the gradients of the error signal (the loss function) to the
trainable parameters. Since a neural network is a composition of multiple functions the
chain rule (15) from calculus can be applied.

f (g(x))′ = f ′(g(x)) · g ′(x) (15)

Fig. 7 shows an illustration for backpropagating the gradient of the loss function to the
training parameters in a network with one hidden layer.

The gradient is calculated in mini-batches. The problem can be optimized by stochastic
gradient descent with momentum. There are many possible local minima as many of the
parameters are symmetric. But in practice these minima tend to be very similar in quality
so a local minimum has probably a value close to the global (LeCun et al., 2015).

Large and deep neural networks have many parameters, e.g. the 19 layer VGG (Simonyan
and Zisserman, 2014) has 144 million trainable weights. This makes these networks sus-
ceptible to overfitting. To prevent the overfitting regularization is used in many forms. A
network typically applies weight decay in the form of R(w) = ||w||2. An additional regular-
ization technique is Dropout. Dropout (Srivastava et al., 2014) prevents the co-adaptation of
the weights to patterns only present in the training set by randomly deactivating units with
their connections.

The augmentation of the training data can also be considered a regularization. The data is
transformed by random transformations to which the task is invariant, e.g. rotate the image
for road detection in aerial images.

Creating a certain network architecture can also prevent overfitting, a good examples widely
used in computer vision are CNNs.

2.1.2.2 Convolutional Neural Networks (CNNs)

Sharing parameters in the network can efficiently reduce the number of parameters and the
computation time if the nature of the data supports this.

In images certain features (e.g. edges) are spatially limited and the higher level features are
agnostic to their exact spatial position. Consider the classification of a human face which
is invariant to the exact position of the eye and the edges defining it. These features can

2.1 Image analysis fundamentals 17

w
1
, b

1
w

2
, b

2

Lo
ss

Fig. 7. Illustration of the backward pass of a neural network with one hidden layer. The backpropagation of the Loss
function gradient is shown in orange, the gradients used for the parameter update are shown in red and the forward pass
is in black. The regularization term R(w,b) is not shown. View this figure rotated.

18

occur at multiple positions so the same weight parameters can be applied around the whole
image. This invariance and weight sharing can be expressed by the convolution operation
and a layer aggregating information in a spatial range.

CNNs use convolutional and max-pooling layers to implement the weight sharing and the
invariance to translations. A convolutional layer consists of S filters of spatial size (2·D+1)×
(2 ·D + 1), spectral size C 5 with trainable weights km,n,c where m,n ∈ [−D, . . . ,D] define the
spatial neighborhood of the kernel while c ∈ [1, . . . ,C] defines the spectral one. The weighting
at+1 = wt ·h + b used in previous (fully connected) networks is replaced by

at+1
i,j,s =

D∑
m=−D

D∑
n=−D

C∑
c=1

(
hti−m,j−n,c · k

t,s
m,n,c

)
+ bti,j,s (16)

where at+1
i,j,s is the value of the hidden unit at spatial location i, j, at spectral channel s and in

the layer t + 1. The layer of c spectral channels is transformed to s channels, e.g. in the VGG
network (Simonyan and Zisserman, 2014) the input has 3 channels (i.e. RGB) while the first
convolutional layer defines 64 channels.

A pooling layer aggregates information in the spatial range [−P , . . . , P]. The most common
is to use max pooling layers which propagate the maximal value further to the later layers
(17).

pti,j = max
m∈[i−P ,i+P],n∈[j−P ,j+P]

htm,n (17)

Fig. 8 illustrates a convolutional network with 2 layers of trainable parameters in one spatial
and one spectral dimension. Fig. 9 shows features of a CNN in different layers.

Convolution 1
Convolution 2

Max Pooling 1 Max Pooling 2Non-linearity Non-linearity

Fig. 8. Illustration of a CNN where the first convolution layer has a kernel size of 5 and the second 3. The max pooling
layers have a receptive field of 2. The convolution is padded with zeros. The edges in one convolution layer with the same
dash type have the same weights. As we move forward in the network the spatial resolution decreases due to the max
pooling.

Applying convolutional and max pooling layers can be interpreted as transforming the in-
put to a higher spectral dimensional space where the data becomes easier separable while
the spatial resolution is decreased.

Many networks also use a spatial feature normalization layer. For these and further details
(e.g. Recurrent Neural Networks and Autoencoders) the reader is referred to the book (Ian
et al., 2016).

5 The spectral size is the number of elements per pixel position, e.g. 3 for a RGB image.

2.1 Image analysis fundamentals 19

Fig. 9. From (Zeiler and Fergus, 2014). Visualizing different layers of a deep convolutional neural network. The left images
show reconstructed patterns which cause high activations in a feature map. The right images show the corresponding
image patches. The reconstructed patterns are projected down to pixel space using the deconvolutional network approach
of (Zeiler and Fergus, 2014). The first layers extract simpler features (e.g. edges, corners, etc.), while the later layers describe
complex shapes with greater variance.

20

2.1.3 Graphical Models
The methods presented so far consider only a single output variable or variables being inde-
pendent. For many problems this is not the case, the output has a structure. For example in
pixelwise semantic segmentation the labels of the neighboring pixels are correlated as they
might belong to the same object.

A naive implementation would be to handle each output configuration as an own state in
a single output variable. This would mean that y has ydc possible output states, where yc is
the number of states of a single output variable and d is the number of the output variables.
This formulation can become easily intractable as the number of output states increases
exponentially by the number of output variables.

A much more efficient approach is to consider a function which also depends on the output
variables and expresses the relation between the outputs. Then the problem can be formu-
lated by minimizing an energy function (alternatively one could also maximize a function)
in the form of (18).

y = f (x) = argmin
y
E(y,x) (18)

The family of problems with structured output variables is also referred to as Structured
Prediction. A special case of Structured Prediction is a Graphical Model which expresses the
dependency of the variables in form of a graph. The nodes represent the variables and the
edges define the conditional dependence between the variables.

A model described by a directed acyclic graph is called a Bayesian Network. For more details
about Bayesian Networks the reader is referred to (Bishop, 2006).

If the graph has undirected edges it is named a Markov Random Field (MRF). MRFs (and
Graphical Models in general) are very popular in computer vision since the conditional
dependencies in the content of images can be modeled efficiently by undirected graphs. A
good overview of graphical models and structured prediction in computer vision can be
found in (Nowozin and Lampert, 2011).

2.1.3.1 Markov Random Fields (MRFs)

A MRF is a set of random variables where the conditional dependency of the variables is
described by an undirected graph. The random variables have the Markov property: the
conditional probability distribution of the variables only depend on the neighbors (nodes
connected by an edge), not the neighbors of the neighbors. In other words, the Markov
blanket of the node is the adjacent nodes. If the MRF is defined by the graph G with nodes
(variables) y = [y1, y2, . . . , yT], then the joint probability distribution can be calculated as:

p(y) =
1
Z

∏
C∈C(G)

ΨC(yC) (19)

where C(G) denote the cliques 6 in the graph G and ΨC(yC) are the potential functions, also
called factors. Z is a normalizing constant, called partition function, ensuring that a proper
probability distribution is obtained. It is calculated as

Z =
∑
y∈Υ

∏
C∈C(G)

ΨC(yC), (20)

6 A clique in a graph is a subset of the nodes where all nodes are connected (the subgraph is a complete graph).

2.1 Image analysis fundamentals 21

the sum over all possible output configurations Υ = γ1 × γ2 · · · × γT , where γi is the set of
possible states of the variable yi .

The potentials (factors) ΨC(yC) can be arbitrary non-negative functions defining the inter-
action of the variables yi ∈ yC without having a specific probabilistic interpretation.

Since the potentials can be chosen arbitrary, the graph G alone cannot define the joint prob-
ability distribution exactly, multiple factorizations are possible. An exact factorization can
be described by a factor graph. The factor graph depicts the variables as circles, the factors
as squares and if the variable and the factor are connected by an edge, then the potential is
a function of that variable. Fig. 10 (a) shows an MRF given by a graph. It could be factorized
to pairwise potentials or to a single third order potential.

y2

y3y1

y2

y3y1

y2

y3y1

(a) (b) (c)

Fig. 10. A MRF with 3 variables defined by a graph (a) and two possible factorizations (b-c). The first (b) defines pairwise
potentials Ψ (yi , yj), i , j. The second (c) defines one third order potential Ψ (y1, y2, y3).

In many problems certain variables can be observed directly, without any uncertainty, e.g.
the pixel values of an image. These variables do not have to be considered as random vari-
ables and they can be conditioned on. The MRFs containing conditioned variables are also
called Conditional Random Fields (CRFs). These variables are often referred to as input
variables and are denoted by x. A potential Ψ (yi ,xi) of a conditioned variable can be simply
written as potential not a function of xi :

Ψ (yi ,xi) = Ψ (yi |xi) = Ψun(yi) (21)

In computer vision the conditioned variables are often expressed as unary potentials, func-
tions of a single variable (21). A typical unary potential in computer vision is an output of a
classifier. Consider the problem of road detection in aerial images using a MRF. The unary
potentials express the evidence in the image in form of a classifier providing a probability
for a pixel being road/non-road. The pairwise (or higher order) potentials typically reflect
on the spatial structure, e.g. the road has to be smooth. Fig. 11 illustrates a CRF.

x1

y2y1

x2 x1

y2y1

x2

y2y1

(a) (b) (c)

Fig. 11. The random variables y1, y2 are conditioned on x1,x2 in a CRF (a). The potentials Ψ (y1,x1) and Ψ (y2,x2) in (b) can
be simplified to unaries Ψ (y1),Ψ (y2) (c).

22

If the potential functions are restricted to be exponential

Ψi(y) = exp(−φi(y)) and φi(y) = −log(Ψi(y)), (22)

then the probability for a given output state Y ∈ Υ can be formulated as

p(y = Y) =
1
Z

exp

−∑
i∈Ξ

φi(y)

 (23)

where Z is:

Z =
∑
y∈Υ

exp

−∑
i∈Ξ

φi(y)

 (24)

and Ξ denotes the set of all potentials (factors) in our model. This reformulation allows to
handle the problem of finding the maximum probability as finding the minimum in the
energy domain:

argmax
y

(p(y)) = argmax
y

 1
Z

exp

−∑
i∈Ξ

φi(y)


 = (25)

argmin
y

(E(y)) = argmin
y

∑
i∈Ξ

φi(y)

 (26)

2.1.3.2 Inference

When a problem is modeled as a MRF two important questions are mostly raised:

� Probabilistic inference: What is the marginal probability distribution of the individual vari-
ables (27) and factors and what is the value of the partition function Z?

µi(yi) = p(yi = Yi |x) ∀i ∈ [1 . . .T],∀Yi ∈ γi (27)

This reasons about the individual variables, but it cannot provide the global output with
the highest probability.

� Maximum a prosteriori (MAP) inference: Which variable configuration has the highest
probability?

(28) This is the mode of the joint probability distribution (19). Since the exact probabil-
ity is not relevant just its location, the partition function does not have to be computed.
The MAP inference is analogous to energy minimization, thus it can also be applied with-
out defining a probability distribution over the variables, just an energy function.

y∗ = argmin
y

∑
C∈C(G)

φC(yC) (28)

Both inference problems are in general NP hard problems (Kolmogorov and Zabin, 2004).
But for certain graph structures and potential functions there are exact and efficient infer-
ence algorithms.

Exact and efficient inference if the graph structure is restricted:

� Inference in a chain: In a chain the inference problems can be solved exactly and efficiently
using dynamic programming. Since this is used extensively in my work, a detailed de-
scription is given in section 2.1.3.2.1.

2.1 Image analysis fundamentals 23

� Inference in a tree: If the graph has no loops, exact inference is possible via the Sum Product
algorithm (Waltz, 1982; MacKay, 2002). This is a dynamic programming algorithm also
called belief propagation. First a root node is chosen in the factor graph and messages are
sent to this from all other nodes. Then the messages are sent backward from the root.
When all the messages arrived the partition function and the marginal distributions can
be computed. The variant to calculate MAP inference is the max-sum algorithm.

� Junction tree algorithm: Even if the graph contains loops the junction tree algorithm can
convert it to a tree by triangulating the graph and merging the variables of cliques (Bishop,
2006). However, the complexity is exponential in the size of the largest number of vari-
ables in a clique. This can make the algorithm inefficient.

Exact and fast inference if the potentials are restricted:

� Graph Cut: If the nodes of the MRF are binary variables, the network has only pairwise
and/or unary potentials and the pairwise potential is submodular, then the energy mini-
mization (MAP inference) can be solved via graph cuts (Kolmogorov and Zabin, 2004).

Approximate inference techniques can be applied for general graphs and potentials but the
global optimum is not guaranteed to be found and the efficiency depends on the specific
problem. There are many techniques for performing approximate solutions, here only a
few are listed. (Nowozin and Lampert, 2011) provide a more comprehensive description
of inference methods. The OpenGM 7 library provides implementation for many inference
algorithms.

� Loopy belief propagation: The Sum Product (or max-sum) algorithm gives exact result for
trees, but it can also be applied for graphs with loops. In contrast to trees the messages
can circle around in the graph many times. Therefore a schedule is defined to control the
flow of the messages. For certain graphs this algorithm converges, for others not. (Frey
and MacKay, 1997; Bishop, 2006)

� Mean-field: The original probability distribution p(y) is approximated by a distribution
q(y) for which the inference is tractable. q(y) is searched by minimizing the Kullback-
Leibler divergence between the approximate and the original probability distribution. If
q(y) is close to p(y), then the marginals are also approximated with a small error. (Jordan
et al., 1999; Nowozin and Lampert, 2011)

� BCD: In certain graphs we can choose blocks of variables for which we can solve the
inference exactly and fast (e.g. a chain or a tree). BCD works by iteratively selecting a
block of variables, solving the inference for this, update these variables if the energy can
be decreased and repeat this until convergence. A more detailed description is provided
in the paragraph 2.1.3.2.2. This finds a local minimum. The algorithm conditions on the
rest of the variables, thus the higher order potentials fold to lower, e.g. a pairwise to a
unary.

2.1.3.2.1 MAP Inference in a chain

If the graph is a chain, exact and efficient inference is possible using dynamic programming.
This description considers an MRF with T variables where each variable has S states. The
energy function (29) of the MRF is factorized to unary φun(y(t)) and pairwise potentials
φpw(y(t), y(t+1)) where t = 1,2, . . . ,T is the index of the variable. For this explanation the lower
index yi , i = 1,2, . . . ,S denotes a specific value of a variable. If there is no lower index the
symbol defines a vector of all the states.

E(y) =
T∑
t=1

φun(y(t)) +
T−1∑
t=1

φpw(y(t), y(t+1)) (29)

7 http://hciweb2.iwr.uni-heidelberg.de/opengm/

24

The naive implementation to find the minimum energy would need ST steps by searching
over all possible output configurations.

By applying dynamic programming Algorithm 1 can solve the MAP inference problem y∗ =
argminy(E(y)) in O(T S2) complexity. The key is starting from one end of the chain, so a

minimum energy δ(t)
i can be defined for a given state i depending only on the minimum

values of the previous variable, the pairwise potential and the current unary value (30). At
the end of the chain δ(T) contains the contribution of all variables to the energy. A simple
minimum search can give the minimum for the last variable and the state sequence resulting
in this variable can be followed back to the start of the chain. This is equivalent to finding
the shortest path in a graph where each state of a variable is a node (trellis diagram). Fig. 12
illustrates such a graph.

y(1) y(2) y(3) y(4)

y1

y2

y3

y4

y(5)

Fig. 12. Trellis diagram illustration of the MAP inference in a chain with 5 variables each having 4 states. The
y∗ = argminy (E(y)) state sequence is the shortest path if the distance is the sum of the unary potentials visited and the
pairwise potentials (edges) connecting the variables. The shortest path (i.e. lowest energy) is shown in red.

δ
(t)
i = φun(y(t)

i) + min
j∈[1,S]

(
δ

(t−1)
j +φpw(y(t−1)

j |y(t)
i)

)
(30)

Algorithm 1 MAP Inference in a chain by dynamic programming

Initialize δ1 = φun(y(1))
for t = 2 to T do

for i = 1 to S do
δ

(t)
i = φun(y(t)

i) + minj∈[1,S]

(
δ

(t−1)
j +φpw(y(t−1)

j |y(t)
i)

)
end for

end for
y∗,(T) = argmini(δ

(T)
i)

for t = T − 1 to 1 do
y∗,(t) = argmini

(
δ

(t)
i +φpw(y(t)

i |y
∗,(t+1))

)
end for
return y∗

The minimum search in (30) has O(S) complexity and since this has to be computed for
each state in each variable the complexity of the whole algorithm is O(T S2). When applied

2.1 Image analysis fundamentals 25

for finding the MAP state sequence in a Hidden Markov Model (HMM) this algorithm is
referred to as the Viterbi algorithm (Viterbi, 1967).

2.1.3.2.2 BCD Inference

Block coordinate descent (BCD) inference is applied in this thesis to solve the inference in
graphs containing many loops, thus imposing an NP-hard problem. BCD is a version of the
coordinate descent optimization algorithm, but instead of searching the local minimum along
one coordinate, the search is done over a block of variables. In a graphical model this means
that for an iteration certain variables are kept fix and so they do not have to be considered
random variables. This can convert a graph structure defining a NP-hard inference problem
to a graph where the MAP inference for a given iteration can be solved better. Favorable is
to simplify the graph to a tree or chain because in this case the MAP inference problem can
be solved exactly in polynomial time. The variables are only updated if the resulting new
solution has lower total energy than before.

An illustration for solving a problem defined by a grid is shown in Fig. 13. The energy
for this graph is defined by Equation (31). During a horizontal update the Equation (32) is
minimized. The pairwise potentials fold to unaries as shown on Fig. 13 (b-c). Algorithm 2
shows the pseudocode for the inference algorithm.

E(y) =
N∑
i=1

N∑
j=1

φun(yji) +
N∑
j=1

N−1∑
i=1

φpw(yji , y
j
i+1) +

N∑
i=1

N−1∑
j=1

φpw(yji , y
j+1
i) (31)

One step:

Eb(yi) =
N∑
j=1

φun(yji) +
N−1∑
j=1

φpw(yji , y
j+1
i) +

N∑
j=1

φpw(yji |y
j
i−1) +

N∑
j=1

φpw(yji |y
j
i+1), (32)

where yi denotes one row of variables.

y1
2y1

1 y1
3

y2
1 y2

2 y2
3

y3
1 y3

2 y3
3

y1
2y1

1 y1
3

y2
1 y2

2 y2
3

y3
1 y3

2 y3
3

y1
2y1

1 y1
3

y2
1 y2

2 y2
3

y3
1 y3

2 y3
3

(a) (b) (c)

Fig. 13. The graph is shown in (a). An iteration for updating a row of variables is shown in (b), while (c) depicts an inference
iteration in a column. The gray circles show variables which are kept fix. The dashed lines show the pairwise potentials
folded to unaries.

2.1.3.3 Structured Support Vector Machines (SSVMs)

Similarly to classifiers and deep learning, graphical models can also have trainable parame-
ters. In my work SSVMs are applied to train the parameters of the applied graphical models.

26

Algorithm 2 Block Coordinate Descent (BCD)
1: Initialize (y) by minimizing Equation (31) for the blocks of variables independently.
2: repeat
3: for all blocks of variables yb do
4: Minimize Equation (31) w.r.t yb holding the rest fixed, e.g. as in Equation (32). yb∗ =

minyb E
b(yb)

5: Calculate the total energy (31) with the values yb∗.
6: if energy can be reduced then
7: Update y by yb∗
8: end if
9: end for

10: until no energy reduction or max number of iterations is reached

In the probability domain the potentials have to be non-negative Ψ (y) ≥ 0, but Ψ (y) =
exp(−φ(y)) allows the potential to be an arbitrary function in the energy domain. This gives
the freedom to introduce linear weights w = [w1,w2, . . . ,wF], F = |Ξ| for each feature defining
the impact of the potentials. Using these weights the energy function becomes:

E(y,x,w) =
∑
i∈Ξ

wiφi(y|x) =
∑

wtφ(y|x) (33)

By adjusting the weights the MAP inference output (34) can be influenced.

y∗ = argmin
y
E(y,x,w) = argmin

y

∑wtφ(y|x)

 = f (x,w) (34)

Ideally the w weights should be set in a way that ”good” result are obtained from the MAP
inference. If there are N training samples xn, ŷn the ”goodness” of the output can be mea-
sured by the loss function (as defined in Equation (2)).

L(ŷn,y) = L(ŷn, f (xn,w)) (35)

where f (xn,w) is a structured prediction function:

f (xn,w) = argmin
y

(E(y,xn,w)) (36)

The standard learning equation of (4) could be applied but since L(ŷn, f (xn,w) is piecewise
linear, gradient based techniques can not handle this (Nowozin and Lampert, 2011). (Zhang,
2004) showed that the minimization of the convex upper bound can also provide good results.

SSVMs train the w weights of a structured problem by minimizing `(xn, ŷn,w), which is the
the convex upper bound of the loss L(ŷn,y).

`(xn, ŷn,w) = −min
y

(E(y,xn,w)−L(ŷn,y)−E(ŷn,xn,w)) (37)

Note that this definition is different from the one in (Nowozin and Lampert, 2011) and
(Tsochantaridis et al., 2005) because here the output is defined as a result of an energy
minimization, not score maximization. The proof why this formulation is also an upper

2.1 Image analysis fundamentals 27

bound and convex w.r.t. to w is provided later. The training can be defined as:

w∗ = argmin
w

1
2
||w||2 +

C
N

N∑
n=1

`(xn, ŷn,w) (38)

where C is a constant defining the importance of the loss compared to the regularization.

The upper bound in (37) generalizes the Hinge loss to multiple outputs and the problem
formulation of (38) can be interpreted as a maximum margin training procedure. The name
Structured Support Vector Machine implies this (Tsochantaridis et al., 2005).

To proof that `(xn, ŷn,w) is an upper bound for the loss function the following has to be
proved:

L(ŷn,y) ≤ L(ŷn,y)−E(f (xn,w),xn,w) +E(ŷn,xn,w) ≤ (39)
≤ −min

y
(E(y,xn,w)−L(ŷn,y)−E(ŷn,xn,w)) = `(xn, ŷn,w) (40)

(39) is true if E(ŷn,xn,w) ≥ E(f (xn,w),xn,w) which is always the case since f (xn,w) is the
minimum location by definition.

For any two functions p(x),q(x) it is true that p(x)− q(x) ≥minx(p(x)− q(x)), since the mini-
mization includes p(x)− q(x). By applying this:

E(f (xn,w),xn,w)−L(ŷn,y) ≥min
y

(E(f (xn,w),xn,w)−L(ŷn,y)) (41)

L(ŷn,y)−E(f (xn,w),xn,w) ≤ −min
y

(E(f (xn,w),xn,w)−L(ŷn,y)) (42)

E(ŷn,xn,w) is a constant w.r.t. y, thus

L(ŷn,y)−E(f (xn,w),xn,w) +E(ŷn,xn,w) ≤ −min
y

(E(y,xn,w)−L(ŷn,y)−E(ŷn,xn,w)) (43)

which proves `(xn, ŷn,w) to be an upper bound.

To proof that `(xn, ŷn,w) is convex, it can be rewritten by applying that for any function p(x)
min(p(x)) = −max(−p(x)):

`(xn, ŷn,w) = max
y

(−E(y,xn,w) +L(ŷn,y) +E(ŷn,xn,w)) (44)

This is a maximum over many affine functions (which are convex) over w, thus `(xn, ŷn,w)
is also convex over w.

(38) is a convex quadratic problem w.r.t. w. An efficient method to solve this is the cutting
plane algorithm of (Tsochantaridis et al., 2005) using slack variables. During the training
the miny (E(y,xn,w)−L(ŷn,y)) minimization problem has to be solved. This is also called
the loss augmented inference. If the loss is expressed as a similar potential as the other po-
tentials in the MRF the same inference algorithm can be applied. If there is no access to the
ground truth of the variables directly, they can be approximated by doing inference using
the ground truth labeling as features. This output is called the Oracle.

28

2.2 Image geolocalization

The geolocation of an image can relate the visual input with other type of information, which
makes it very informative. The location of the image provides also the location of the camera
which can be employed as self-localization. Everyday, personal images (e.g. a photograph of
our family smiling) can be interpreted without any geolocation, however the location can be
a useful plus. This is hardly the case for aerial images containing macro scale information
(e.g. the position and extent of buildings, vegetation, roads etc.). This makes it particularly
important to have geographic information for aerial images. Aerial images can be best used
in Geographic Information Systems (GISs) where they are overlaid with maps in the same
projection.

2.2.1 Map projections
Maps and orthorectified aerial images are projections of the surface of the Earth. A projec-
tion needs the definition of the shape of the Earth and the definition of the projection from
this shape to a visualizable format, e.g. a paper or a screen.

Throughout the course of history many map projections were created and still today there
are different systems in use. The reason for not using a single standard system worldwide is
the complex shape of the Earth (it is not a mathematical sphere). The mathematical descrip-
tion of this shape can be either simple (defined by few parameters), adjusted for a given
region or adjusted for the whole globe, but these three objectives cannot be fulfilled simul-
taneously.

On local scale we define 3D points in the Euclidean coordinate system by the x,y,z coor-
dinates, but on large geographical scales this is not practical. The objects of our interest
mainly exist on the surface of our planet or very close to it. This would make the Euclidean
coordinate representation very sparse and hard to interpret, visualize or calculate. Before
the invention of digital computers this was a serious issue and it is still relevant today. The
geographic coordinate system gives a more practical description for a point on a geographical
scale. It defines a 3D point as a point on the Earth’s surface expressed by two angles the
latitude and longitude and an elevation above this point.

2.2.1.1 Geographic Datum

The mathematical definition of the coordinate system of the surface of the Earth is called
Geographic Datum.

The true surface of our planet is very complex and it is changing by time, just consider
volcano eruptions, landslides or floods. The simplest model, known from high school, is
the sphere, however it is not accurate. Isaac Newton proved that the surface of a rotating
fluid mass is a spheroid, also called ellipsoid, due to the gravity and the centrifugal force. An
ellipsoid can be described by two parameters the minor axis and the flattening 1/f which
makes it a practical formulation, therefore it is widely used.

The Earth is not fluid, therefore its true shape is more complex than an ellipsoid. The Geoid
defines the surface of the Earth as a contour surface of the gravity potential energy (gravity
+ centrifugal force) where the normal of the surface is opposite to the gravity vector. This is
identical to the sea level without the effect of tides and winds. This surface definition needs
numerous reference measurements over the whole planet. Calculating with coordinates re-
spect to the Geoid needs access to the reference measurements and is only applicable where
this is feasible.

2.2 Image geolocalization 29

Earlier the datum were defined to be precise on a local scale, e.g. a country. With the emer-
gence of Global Navigation Satellite Systems (GNSSs) (e.g. the GPS, Galileo, Glonass, Bei-
Dou) it became important to define a Datum which targets the whole planet. The most
widespread Datum today is the World Geodetic System 1984 (WGS84) also used by GPS.
This positions the center of the ellipsoid to the mass center of the Earth as the satellites
orbit around this point. The WGS84 defines the earth as an ellipsoid with a major (equa-
torial) radius a = 6378137m at the equator and flattening f = 1/298.257223563. Position
measuring devices (i.e. GPS, GPS+IMU) provide mostly the WGS84 geographic coordinates.

2.2.1.2 Projections

To visualize the surface of the Earth we project it to a developable surface 8 which can be
visualized later as a plane (i.e. a paper or a screen) without distortions. Every projection
preserves some features (e.g. area, direction, distance) but distort others on the scale of the
whole globe.

The most widely used projection system for aerial images is the Universal Transverse Mer-
cator (UTM), a collection of projections. The Earth is projected to cylinders transverse to
the equator distributed in 6 degrees zones around the world. This projection is close to a
metric Euclidean space within a given zone. It can be used with the camera models used in
computer vision and photogrammetry.

For more information about map projections the reader is referred to Snyder and Voxland
(1989).

2.2.2 Aerial image orthorectification
To create accurate, orthorectified aerial images which can be overlaid with maps special sys-
tems are employed designed for this purpose. They consist of a calibrated camera and a GPS
fused with an IMU. This combines the short-term precise position and orientation measure-
ments of the IMU with the GPS position measurement which does not have drift and keeps
its accuracy on the long-term. This provides both the internal and the external camera pa-
rameters, thus a pixel location in the image can be assigned to a line in the absolute world
frame.

For recovering the full 3D world position of a pixel it is projected on a Digital Surface Model
(DSM). The DSM can either be already given (e.g. the one provided by the Shuttle Radar To-
pography Mission (SRTM)) or it can be calculated from the image sequence by dense stereo
matching. For accurate results the camera parameters and the 3D points are optimized by
bundle adjustment (Hartley and Zisserman, 2004). The absolute spatial accuracy is often
enhanced by using Ground Control Points (GCPs). These are reference points with accurate
world position which can be matched to points in the image. If there are no GPS+IMU mea-
surements assigned to the images, the orthorectification is still possible by recovering the
camera parameters from the images and defining the world coordinates by GCPs. However
this needs longer manual work. For more information about the orthorectification of aerial
images the reader is referred to (Kraus et al., 2007).

As the camera is relatively distant from the ground (> 100m) the absolute position of a
point is very sensitive to the orientation of the camera. E.g. if the camera is 1000m above
ground an angle error of 0.5◦ can cause 8.7m error in the horizontal position. To measure the
orientation with high accuracy and without drift sophisticated, expensive and heavy IMU

8 A surface which can be flattened without distortions

30

units 9 are needed. This limits the applicability, particularly for UAVs which are intended
to be a low cost alternative to manned aerial vehicles.

2.2.3 Image based localization
Additionally to using extra devices to measure the location of images, the information in the
image can be exploited for localization too. A typical application is to optimize the camera
parameters and feature points by bundle adjustment during 3D reconstruction. This is nec-
essary in most of the cases because even with very precise IMUs their might be a few pixel
misalignment caused by noise in the synchronization. In certain cases it is also possible to
localize an image over a given search area exclusively on the visual information and a pre-
existing knowledge (e.g. a collection of geotagged images, a map over an area). There are
scenes which are inherently ambiguous (e.g. the trees of a forest, a hotel room, etc.), while
other scenes contain landmarks being unique over the whole world (e.g. the Eiffel tower in
Paris). Image based localization does not work in general, but it can still provide a good
solution in many cases. The main idea of image based localization methods is to match the
image with unknown location to data with known location. Based on the reference data,
the methods can be categorized as image to image matching, cross-view image matching and
image to map matching. The first covers the case when images with similar view point and
resolution are matched. In the second case images of different perspective (e.g. ground to
aerial) are matched, while the last category contains the employment of higher level info
(e.g. a road map) as reference data instead of images.

2.2.3.1 Image to image matching

Image matching is applied very often when multiple images are processed, e.g. in 3D re-
construction or visual odometry. The standard pipeline is to extract feature points in the
images, match these points and find a transformation which explains the correspondence
between the points (Hartley and Zisserman, 2004). Since all the feature points in two im-
ages are matched, this step can have high computation demand. When applying this match-
ing to a very high number of reference images (what is typical in localization tasks) it can
take impractically long time. To address this problem global image descriptors can be ap-
plied instead of feature point descriptors e.g. (Hays and Efros, 2008; Weyand et al., 2016) or
approximated feature point matching can be performed (Wu et al., 2008).

(Hays and Efros, 2008) is the first attempt for geolocalizing images worldwide. They create
a database of geotagged images and match the query image to this database by calculating
the nearest-neighbor in a feature space of various image cues (e.g. color, lines, texton his-
tograms). This approach can achieve a localization 30 times better than by chance. A recent
approach to the same problem is (Weyand et al., 2016). They consider the problem as classi-
fication instead of image matching and apply deep learning to efficiently integrate multiple
visible cues. The classes are defined as geographical cells and the labeling for an image is the
cell to which it belongs. In their experiments the automatic method could outperform even
well-traveled humans in the world-wide image localization task. Fig. 14 shows an example
of this methods.

(Wu et al., 2008) localize satellite images by matching them to geolocalized satellite images.
Efficient matching is performed by approximate nearest neighbor search of Scale-Invariant
Feature Transform (SIFT) features (Lowe, 2004) called visual words based image search. The
SIFT feature vector is quantized to a single index (i.e. a visual word) by hierarchical k-means
clustering. This reduces the nearest neighbor search to a look up and voting in the visual

9 The IMU-m+SMU of IGI weights 2.8 kg and costs 80k Euro. http://www.igi.eu/aerocontrol.html

http://www.igi.eu/aerocontrol.html

2.2 Image geolocalization 31

Fig. 14. From (Weyand et al., 2016). Worldwide image based localization. At the top the query images are shown. The
bottom map shows the ground truth position (yellow), the human location guess (green) and in blue the automatic guess
of (Weyand et al., 2016).

word indices and can enable much faster query in large image databases. As a final step the
possible locations are verified by a 2D similarity transformation (scale, rotation, location).

2.2.3.2 Cross-view image matching

The previous methods targeted to match an image to an image of the same perspective
(ground to ground, aerial to aerial). It is a more difficult task to match images acquired from
different perspectives, but this approach can have benefits. This is typically the matching
of a ground image to aerial images. The main advantage is that aerial images have a full
coverage over a large area, while acquiring the same coverage with ground images would be
much more laborious, if possible. Due to the different perspectives and resolutions, classical
feature point based matching is not possible here. Instead, higher level abstract features are
constructed from images with known correspondence. The high learning capability of deep
learning can deliver state of the art also in this case.

(Lin et al., 2015) train a deep convolutional neural network to match ground images to
oblique aerial views. The network takes two images as input and transforms them to lower
dimensional feature vectors. The network is trained so that the Euclidean distance of these
two vectors should be close if the two images are over the same location, and large if not.
This allows to apply nearest neighbor search in the feature space of the deep network as
localization. (Workman et al., 2015) use a similar approach but instead of using oblique
view images they use aerial ortho images. They fine-tune existing deep networks for the
task of cross-view image matching. They have created a huge dataset of ground and aerial
images over the whole United States of America.

2.2.3.3 Image to map matching

In the case of image to map matching the features extracted from the images have to be
matched to features in the map. This is advantageous since the maps applied are already
available and storing them is typically easier than storing a huge database of images. An-
other advantage is that the map features are robust to visual appearance changes and do not
depend on the sensor applied for image acquisition.

(Brubaker et al., 2013) localize a car from the visual odometry of the cameras mounted on
the roof of the car and a road map over the region. The map is represented as a graph and
the path of the vehicle in the graph is described by a probabilistic model. The position and
heading of the car is predicted by a filtering algorithm exploiting the structure of the graph
using a Mixtures of Gaussian model. This method can localize the car up to 3 m after driving
a few seconds in an area containing more than 2000 km of roads. Fig. 15 shows results from
the paper.

(Wang et al., 2015b) use the floor plan of a mall and a monocular image taken on the corridor
of the mall for self-localization. The problem is posed as one of inference in a MRF jointly

32

Fig. 15. From (Brubaker et al., 2013). Examples for localizing a car by visual odometry and a map. ”The left most column
shows the full map region for each sequence, followed by zoomed in sections of the map showing the posterior distribution
over time. The black line is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines are
every 500m. ”

reasoning about the shop names, shop facade segmentation and the position and orientation
of the camera. Since this method only utilizes map information (i.e. shop floor plan) it is
robust to appearance variations, e.g. shop design, illumination.

In (Kozempel and Reulke, 2009) aerial images are orthorectified (projected on the Earth’s
surface) without an IMU. The orientation is initialized by an accurate GPS measurement
and optimized by matching the detected streets in the image to the road network.

A more detailed description about the state of the art related to localizing aerial images can
be found in chapter 4.1.

2.3 Detecting objects in images

In computer vision the term object detection is used for the task of marking individual in-
stances of a specific object in an image, e.g. drawing a square around faces in an image.
Due to implementation reasons, the objects are in the most cases marked by axis aligned
rectangles (bounding boxes). The localization and counting of the vehicles (as described in
chapter 3) needed for estimating the traffic in aerial images is also an object detection task.
This section describes the basics of general object detection.

The most successful approach is to formulate the detection problem as one of image classi-
fication. Bounding boxes are proposed and each bounding box is classified as either object
(of a specific class) or background. The number of possible bounding boxes is very high as
both the position (top-left corner), the aspect ratio and the scale can change. For a fast and
reliable object detector there are two main challenges. The first is to generate promising
candidate bounding boxes without missing any. The second is to create a rapid and high
performing classifier.

The first system to detect human faces reliably in real-time is the work of (Viola and Jones,
2001, 2004). They restrict the bounding boxes to squares and propose bounding boxes in

2.4 Semantic image segmentation 33

a grid search manner densely sampling for both scale and position. This is referred to as
sliding window and it is still applied by the state of the art methods. This dense search results
in a very high number of bounding box candidates, therefore the success of this method is
based on a very fast and robust binary image classifier. The binary image classifier uses Haar-
like features which can be calculated very fast by integral images. The boosting algorithm
used for classification selects the relevant features, so the rest does not have to be calculated
at test time. The classification is organized in a cascade which can reject background already
by only evaluating a few features. Since background usually dominates the images, this can
result in a huge speedup.

The first cascade structure was rigid and therefore not optimal. (Bourdev and Brandt, 2005)
proposed to use the weak classifiers of the boosting algorithm as stages. This enables more
fine grained rejection stages and allows to reuse the already calculated weak classifiers.

Before the conquest of deep learning, hand-crafted features were used to capture the rele-
vant information in the image while being invariant to the irrelevant. The most widely used
hand-crafted feature for object detection is the Histogram of Oriented Gradients (HOG)
(Dalal and Triggs, 2005). Applied together with a SVM classifier it was the state of the art
for a long time in object detection. It was particularly successful by applying it in a De-
formable Part Models (DPMs) (Felzenszwalb et al., 2010). (Dollár et al., 2014) extended the
concept of Haar features to features over general channels, e.g. approximations of the HOG
features. These can be calculated very fast, also on different scales by feature pyramids.

In the last years the automatic internal features learned by deep neural networks outper-
formed hand-crafted features also in the detection task, not just the classification. Since
deep neural networks are very computation demanding, a fast detector needs good object
bounding box candidates. (Girshick et al., 2014) address this problem by using a region pro-
posal method, while (Ren et al., 2015b) apply a small neural network sharing its features
with the more complex classifier network. The idea of using a cascade for efficient compu-
tation can also be extended to the new deep learning frameworks. (Cai et al., 2015) create a
complexity aware cascade which uses simple features in the early stages and complex deep
learning based classifiers in the later ones.

An alternative to the sliding window is the Effective Subwindow Search of (Lampert et al.,
2009). This can find the candidates in a very efficient way by using a branch and bound
algorithm over the range of possible bounding boxes.

Fig. 16 shows the output of a state of the art object detector.

2.4 Semantic image segmentation

Object detection marks the individual objects by a predefined shape (e.g. bounding box).
However, many objects are much more complex and the reduction to a rigid shape can lead
to abandoning important information. In many image analysis tasks it is necessary to extract
information for each pixel. Classifying each pixel of an image is called semantic segmentation.
Augmenting road maps with width and lane layout from images (objective of this thesis) can
be considered a semantic segmentation task, since pixelwise accurate object information is
extracted.

There are two important aspects of semantic segmentation. First, dense (pixelwise) predic-
tion is needed in an efficient way. Second, the output variables are correlated (e.g. the pixels
belong to the same object) and an effective method should incorporate this.

The most common way to express the conditional dependency of the output variables is to
apply MRFs (CRFs). The shapes of the objects can be arbitrary, e.g. containing thin struc-

34

Fig. 16. From (Ren et al., 2015a). Object detection outputs of the method. The bounding boxes of different object classes
are shown in different colors, with the class name and a confidence score.

tures. The grid structured pairwise potentials of simple MRFs tend to oversmooth and re-
move these. Thin structures can be preserved by Fully Connected CRFs defining pairwise po-
tentials between each variable (pixel)(Krähenbühl and Koltun, 2011). Unfortunately, a Fully
Connected CRF of N pixels (variables) has N (N − 1)/2 pairwise dependencies and standard
inference algorithms would take impractically long. (Krähenbühl and Koltun, 2011) address
this problem by formulating the mean-field inference in the Fully Connected CRF as convo-
lutions in the feature space. This can be solved efficiently, magnitudes faster than standard
methods. This highly efficient inference enables the application of Fully Connected CRFs
for the semantic segmentation of images.

The best image classifiers are deep Convolutional Neural Networks (CNNs), e.g. (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014), containing fully connected layers at the end
of the network. These networks predict a single output variable for an input with prede-
fined size, since a fully connected layer needs predefined input and output dimensions.
Applying the classifier networks in a sliding window manner for each pixel would need
too many computations, since the overlapping regions would be processed multiple times.
Fortunately, these networks can be transformed to fully convolutional neural networks (CNNs
containing only convolutional layers) without retraining the learned weights. The key is that
a fully connected layer with Ni input and No output variables is identical to a convolutional
layer with 1 × 1 kernel of Ni input and No output channels, but the convolutional layer is
a digital filter computing an output vector for arbitrary input sizes. A fully convolutional
neural network functions as a filter and overlapped regions are calculated only once. If the
network contains layers performing downsampling, e.g. a max pooling layer with striding,
then the output is also downsampled. As instance, the fully convolutional version of the
VGG network (Simonyan and Zisserman, 2014) yields a class probability map with the size
1/32 of the input image because each of the 7 max pooling layers perform a downsampling
by 2 due to the striding.

(Chen et al., 2015) apply the fully convolutional version of the VGG to produce a coarse pixel
class probablity map, these values are then interpolated to the original resolution and feed
into a fully connected CRF (Krähenbühl and Koltun, 2011) to infer the pixelwise labeling.
To keep both high output resolution (small downsampling) and large receptive field size,

2.4 Semantic image segmentation 35

dilated convolutions are applied in the last layers. The trainable parameters of the neural
network and the CRF are trained separately. Fig. 17 shows outputs of this method.

(Schwing and Urtasun, 2015) and (Zheng et al., 2015) apply the same CNN and CRF as
(Chen et al., 2015), but they formulate the iterations of the inference in the CRF as a Recur-
rent Neural Network and propagate the gradients back through this. This allows to learn
the deep and the structured trainable parameters jointly. (Yu and Koltun, 2015) propose to
remove pooling layers and zero padding and apply a context network to enlarge the recep-
tive field of the deep network. This modifications increase the performance significantly,
suggesting that segmentation networks should preserve more translation variant features
than classification networks and larger receptive field is beneficial.

Fig. 17. From (Chen et al., 2015). In each column the left image is the input, the middle image shows the labels produced
by the fully convolutional neural network and the right image shows the output of the fully connected CRF. Different
colors represent different classes. Note that the coarse output of the deep network if refined by the CRF.

36

3 Fast multiclass vehicle detection on aerial im-
ages

This chapter includes the paper Kang Liu and Gellert Mattyus: Fast multiclass vehicle detec-
tion on aerial images (Liu and Mattyus, 2015) 10 . The original version of the paper can be
found in the appendix A.

The road maps typically contain only the static properties of the road. However, the uti-
lization and traffic flow estimation is very important for infrastructure planning, live nav-
igation and the management of the traffic. Various methods are applied for extracting the
road/parking utilization and the traffic flow. The number of the cars passing at a road sec-
tion can be measured by manual counting, induction loops, surveillance cameras or other
sensors/systems deployed at the road. The traffic flow can also be measured by tracking a
fleet of vehicles (e.g. installing GPS and transmitters on taxis) and gathering this informa-
tion. The locations of smartphones can also be used to estimate their motion and infer the
traffic on the roads from this.

Aerial images can be an alternative to extract dynamic road information from the ground.
Collecting traffic and parking data from an airborne platform gives fast coverage over a
larger area and eliminates the need for on the spot measurements. Getting the same coverage
by terrestrial sensors would need the deployment of more sensors, more manual work, thus
higher costs.

A good example for an airborne road traffic measuring system is the one in the project Vabene
Leitloff et al. (2014) of the German Aerospace Center (DLR). In this real-time system aerial
images are captured over roads and the vehicles are detected and tracked across multiple
consecutive frames. This gives a fast and comprehensive information of the traffic situation
by providing the number of vehicles and their position and speed. Fig. 18 provides the
overview of our vehicle detection work flow and illustration of the output. The detection
is a challenging problem due to the small size of the vehicles (a car might be only 30 × 12
pixels) and the complex background of man-made objects which appear visually similar to
the cars. Providing both the position and the orientation of the detected objects supports the
tracking by giving constraints on the motion of the vehicles. This is particularly important
in dense traffic scenes where the object assignment is more challenging. The utilization of
roads and parking lots depends also on the type of the vehicle (e.g. a truck impacts the
traffic flow different as a personal car). A system having access to this richer information
can manage the infrastructure better. In a real-time system as in Leitloff et al. (2014) the
processing time (and computing power) is limited. Therefore the processing method should
be as fast as possible.

Our vehicle detection method provides both robust performance, fast speed and vehicle ori-
entation and type information fully automatically based only on the input image. We detect
the bounding box of the vehicles by a very fast binary sliding window detector using Inte-
gral Channel Features and an AdaBoost classifier in Soft Cascade structure. The bounding
boxes are further classified to different orientations and vehicle type based on HOG features
Dalal and Triggs (2005). We test and evaluate our method on a challenging dataset over the
city Munich, Germany and another dataset collected by a UAV. These datasets contain orig-
inal, non-orthorectified frame images which makes the problem more challenging since the
exact Ground Sampling Distance (GSD) is unknown (we have only an approximate prior).

The main contributions of the presented method are: (i) The presented method uses features
which can be calculated rapidly in a Soft Cascade structure. This makes the detection very

10This paper received the IEEE Geoscience and Remote Sensing Society 2016 Letters Prize Paper Award.

3.1 Related Work 37

Feature
Pyramid

Input
Image

Positive (Vehicle)

Negative (Background)

Calculating

Channels and

Integral Images

Binary Sliding
Window Detection

Multi-direction Vehicle Detection

Rectified
Vehicles

Detected
Vehicles

Vehicles with
Orientation and

Type Information

Type
Classification

Orientation

Estimation

Multiclass Vehicle Classification

Fig. 18. Proposed vehicle detection framework. The input image is first evaluated by the multi-direction vehicle detector. A
sliding window goes along x- and y-axes. Features are extracted from the detection window and sent to trained binary clas-
sifier. The binary classifier classify whether current detection window contains a positive object or not. Detected vehicles
are then processed for estimating their orientations and categories.

fast, it takes only a few seconds on a 21 MPixel image on a laptop single threaded. (ii)
Our method also works on a single original frame image without any georeferencing, exact
GSD, street database or 3D image information. (iii) Beside the location we also estimate the
orientation and type of the vehicles.

3.1 Related Work

The problem of car detection in remote sensing images (aerial or satellite) were addressed
by both the computer vision and the remote sensing community.

An important work in the computer vision community is (Kluckner et al., 2007). They apply
an online version of the boosting algorithm on Haar-like features, local binary patterns and
orientation histograms. They train the detector for cars in one direction and during testing
they rotate the image in 15 degrees step. This detector is trained for a known object size
35×70 pixels and tested on images with the same scale. For minimizing the needed manual
labeling effort false-positive samples are extracted by examining the height information
of the images. The assumption is that true cars in a city are located mainly on the same
height level (i.e. the street level). Our work differs by applying a soft-cascade and integrated
channel features for faster speed, performing multiscale detection and predicting both the
orientation and the type of the vehicle.

(Liu et al., 2014) define rotation invariant HOG descriptors by Fourier analysis in polar and
spherical coordinates. The rotation invariant HOG descriptors are then used as features in a
sliding window with a linear SVM or a random forest classifier. The cars in remote sensing

38

images are rotation invariant, thus using rotation invariant features is well suited for the
car detection problem. However the computation of these features can be computationally
expensive 11 and by using simpler but more features similar results can be achieved on a
comparable or even faster speed.

(Leitloff et al., 2010) detect the vehicles on satellite images which have a resolution of 60 cm
per pixel which makes this task very challenging. They perform three steps. First they limit
the Region of Interest (ROI) based on GIS data concentrating only on street areas. Second,
Haar-like features are used in an AdaBoost classifier for generating detection hypotheses. As
last, the candidates are grouped into vehicle queues and outliers are removed. This approach
leverages priors given by the roads, which is necessary due to the low resolution. In aerial
images the higher resolution enables the detection of vehicles around the whole images,
and as our work shows, this can be achieved in reasonable computation time even on high
resolution images.

(Tuermer et al., 2013) utilize the road map and stereo matching to limit the search area
to roads and exclude buildings. HOG features with an AdaBoost classifier are applied to
detect the cars on the selected region. This method is limited to georeferenced image pairs
and areas covered by the road database.

(Leitloff et al., 2014) use a two stage approach for the detection of cars: first an AdaBoost
classifier with Haar-like features and then an SVM on various geometric and radiometric
features. They use the road database as a prior to detect only along the roads in a certain di-
rection. The method achieves good results running fast on a Central Processing Unit (CPU),
however it is limited to orthorectified images and areas covered by the road database.

(Moranduzzo and Melgani, 2014a,b) process very high resolution (2 cm GSD) UAV images
for car detection. In (Moranduzzo and Melgani, 2014a) a feature point detector and SVM
classification of SIFT descriptors is applied. To eliminate multiple counting of the same
car the nearby detections are merged. These is an alternatives to sliding-window based ap-
proaches, however the results indicate that they perform poorer. The method in (Moran-
duzzo and Melgani, 2014b) uses HOG features with a SVM classifier in a sliding-window
manner and later an orientation estimation. It is performing better than (Moranduzzo and
Melgani, 2014a), but as our results, show it can be outperformed by our method.

In (Chen et al., 2014) the cars are detected by a deep neural network running on the Graph-
ics Processing Unit (GPU) in a sliding window approach on a known constant scale. Neural
networks deliver good results in vision tasks, also shown by this paper. However, the high
computation demand, typically needing a GPU, puts limits on the applicability. Our method
can deliver good results by running only on a single CPU thread.

3.2 Multi-direction Vehicle Detection

We handle the vehicle detection problem in two stages. The first stage is a very fast binary
sliding window object detector which delivers axis aligned bounding boxes of the vehicles
without type or orientation information. The second stage is a multiclass classifier applied
on the bounding boxes estimating the orientation and the type of the vehicles. The process-
ing steps are shown in Fig. 18.

3.2.1 Binary sliding window detector
For fast detection both the feature calculation and the classification has to be efficient.
11The implementation of the authors takes 18 seconds on a 792× 636 image

3.2 Multi-direction Vehicle Detection 39

3.2.1.1 Fast image features

Viola and Jones Viola and Jones (2001) introduced the integral image concept with Haar-like
features for fast and robust face detection. By using the integral image IΣ the pixel intensity
I sum of the Haar-like features is calculated by a few operations independent of the area of
the feature. The value IΣ(x,y) at (x,y) location in an integral image is the sum of the pixels
above and to the left of (x,y):

IΣ(x,y) =
i≤x∑
i=0

j≤y∑
j=0

I(i, j) (45)

The integral fI within an axis aligned rectangle defined by its upper left corner x0, y0, width
w and height h is calculated as fI = IΣ(x0 +w,y0 +h) + IΣ(x0, y0)− IΣ(x0 +w,y0)− IΣ(x0, y0 +h).

This idea is generalized by the Integral Channel Features (ICFs) in the work of Dollar et
al. (Dollár et al., 2009). Instead of working on pixel intensity values as in (Viola and Jones,
2001), an ICF can be constructed on top of an arbitrary feature channel (i.e. the transfor-
mation of the original image). Features are defined as linear combinations of sums over
local rectangular regions in the channels. By using the concept of integral images, an in-
tegral channel can be pre-computed for each feature channel so that the computation of
the sum over the rectangle is very fast. The most commonly used channels are the color
intensities, the gradient magnitude and the gradient histogram. The gradient histogram is
a weighted histogram where the bin is determined by the gradient orientation. It is given
by QΘ(x,y) = G(x,y)1[Θ(x,y) = θ], where G(x,y) is the gradient magnitude and Θ(x,y) is the
quantized gradient orientation at x,y image location. The gradient histogram can approxi-
mate the powerful and widely used HOG features (Dalal and Triggs, 2005). If the rectangles
are defined as squares, the sum can be aggregated to a single pixel in a downsampled image.
In this case the integral is calculated even faster as a single pixel look up. This method is
also called Aggregated Channel Features (ACFs) (Dollár et al., 2014). For rapid speed we
apply this method with fast feature pyramid calculation as described in (Dollár et al., 2014).

3.2.1.2 AdaBoost classifier in Soft Cascade structure

The number of ICFs is very large (larger as the number of pixels in the image window) since
it is the linear combination of local rectangular regions in the image window. We select only
relevant features by the Discrete AdaBoost algorithm (Friedman et al., 1998) for N weak
classifiers ht(x). ht(x) is a simple classifier, e.g. a threshold or a shallow decision tree of a
few features from the input feature vector x. AdaBoost is an iterative algorithm, in each step
it reweights the samples in the training set according to the classification result from the
previous weak classifier. The final strong classifier H is composed of the weighted αt weak
classifiers ht(x).

H = sgn
N∑
t=1

αtht(x) (46)

At numerous sliding window positions (e.g. homogeneous regions) not all the weak clas-
sifiers have to be evaluated to classify the image as non-vehicle. To leverage this property
for speed improvement we form a Soft Cascade (Bourdev and Brandt, 2005) from the weak
classifiers. During the training a threshold rt is set for all the weighted weak classifiers
ct = αtht(x). If the cumulative sum Ht(x) =

∑
i=1,...,t ci(x) of the first t output functions is

Ht(x) ≥ rt, then input sample is passed to the subsequent evaluation process; otherwise it is
classified as negative and rejected immediately.

40

3.2.1.3 Multi-direction detection

The orientation of the vehicles in aerial images can be arbitrary. This increases the intra-
class variation of the appearance in the axis aligned sliding windows. A straightforward but
computationally expensive solution, used in (Kluckner et al., 2007), is to train the detector
for one specific direction and rotate the input image and do detection for each rotation. This
would need the computation of the integral images separately for each direction and would
result in slow processing speed. To overcome this we propose two methods: One is to train a
single classifier which is able to detect differently oriented vehicles; The other is to aggregate
several simple classifiers, where each is only sensitive to specific directions.

3.2.1.4 Single classifier method

A single binary classifier is trained with samples covering all the directions. The training
process has to deal with the high intra-class variety and find the common part of all the
positive samples. When the detector is applied on the input image, vehicles in any directions
can be classified as positive samples.

3.2.1.5 Aggregated classifier method

Alternatively the intra-class variety is reduced by splitting the training to different orien-
tations. Multiple binary classifiers are trained, each for specific vehicle orientations. These
classifiers are employed in sequence during the detection phase, and the results from each
classifier are aggregated using non-maximal suppression. The integral image does not need
to be calculated multiple times, only the classification. Fig. 19 illustrates how the training
samples are grouped for training the aggregated classifier.

The performances of these two methods are examined in Section 3.4.

(a) Samples are split into two groups with rotation step of 90◦ in each
group.

(b) Samples are split into four groups with rotation step of 180◦ in each group.

Fig. 19. The training samples for the aggregated classifier method are split into multiple groups.

3.3 Multiclass Vehicle Classification

The detector provides the axis aligned bounding boxes of the vehicles. In this next step we
refine the extracted information by classifying the orientation and the type of the vehicle.
We propose a two-step approach containing an orientation estimator and a type classifier.

3.3 Multiclass Vehicle Classification 41

A sample is sent to the orientation estimator first, then rotated to horizontal direction ac-
cording to the orientation estimation, and finally processed by the type classifier to identify
which type category this vehicle belongs to.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall Rate

P
re

c
is

io
n
 R

a
te

All features

Without Color

Without Gradient Histogram

Without Gradient Magnitude

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall Rate

P
re

c
is

io
n
 R

a
te

Single detector, 45 deg rot step

Single detector, 22.5 deg rot step

2 detectors, 90 deg rot step

4 detectors, 90 deg rot step

4 detectors, 180 deg rot step

8 detectors, 180 deg rot step

(a) feature contribution (b) classifier configurations

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall Rate

P
re

c
is

io
n
 R

a
te

DLR3K Scale0.6

DLR3K Scale0.8

DLR3K Scale1.0

DLR3K Scale1.2

DLR3K Scale1.4

DLR3K Scale1.6

DLR3K Scale1.8

DLR3K Scale2.0

−180 −90 0 90 180
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

5.24%

84.59%

5.40%

Prediction Error (degree)

P
re

d
ic

ti
o

n
 N

u
m

b
e

r

(c) different scales (d) orientation estimation

Fig. 20. (a) Evaluation of the Integral Channel Features. Gradient histogram channels play the most important role while
gradient magnitude channel has least affects on the final result. (b) Detection result of aggregated detectors. (c) Perfor-
mance after rescaling the image with different factors. (d) Orientation estimation error histogram using artificial neural
network with 16 output classes.

3.3.1 Orientation estimation
We consider the orientation estimation as a multi-class classification problem. The direc-
tions are clustered, each cluster is considered as a class. The ICFs can be calculated fast, but
they have a very high number, thus they are not suitable for multiclass classifiers working
on a fixed length feature vectors. Therefore we apply the powerful Histogram of Oriented
Gradients (HOG) features (Dalal and Triggs, 2005) which has a fixed feature vector length.
We use a neural network with one hidden layer as a multi-class classifier (Lecun et al., 1998).

3.3.2 Type classification
The type classifier needs to classify the input image into corresponding categories. We have
defined two type classes: car and truck but the presented method could be extended to more
classes. The object bounding box is rotated to horizontal direction based on the orientation

42

(a) Main Road. (b) Buildings along main road.

(c) Residential area. (d) Failure cases.

(e) Detection on dataset in Moranduzzo and Melgani
(2014a), Moranduzzo and Melgani (2014b)

(f) Detection on dataset in Moranduzzo and Melgani
(2014a), Moranduzzo and Melgani (2014b)

Fig. 21. Detection results from the DLR test images. Green and cyan bounding boxes are the correct detected samples,
representing cars and trucks, respectively. Black bounding boxes are the missed ones and red are the false positives. The
results show that our method works well in most scenarios (a)(b)(c), however the complicated rooftops or outdoor swim-
ming pools may lead to false positive detections (d). We also evaluated our method on the dataset presented in Moranduzzo
and Melgani (2014a), Moranduzzo and Melgani (2014b), the detection results are shown in (e)(f).

estimation. Unrelated context is cropped out and HOG features are again extracted and
classified by the type classifier.

3.4 Experiments

We test the multi-direction detection and multiclass classification parts in our detection
method, respectively, and give quantitative results for the different processing stages. The
binary detector is trained with 2048 weak classifiers in each test. We use depth-two decision
trees as weak classifiers.

3.4 Experiments 43

3.4.1 Results on Munich images
The quantitative evaluation is performed on 20 aerial images captured by the DLR 3K cam-
era system (Leitloff et al., 2014) over the area of Munich, Germany. We use the original nadir
images with the resolution of 5616× 3744 pixels. They are taken at a height of 1000 meters
above the ground, the approximate ground sampling distance is 13 cm. The first 10 im-
ages are used for training and the other 10 for testing. Positive training samples come from
3418 cars and 54 trucks annotated in the training images, while the negatives are randomly
picked from the background, i.e. areas without vehicles. To overcome the low number of
truck samples we randomly transformed them additionally 30 times. Fig. 21 shows detec-
tion results on the test images. We set the detection window to 48×48 pixels. For the ground
truth the vehicles in the images are annotated manually as oriented bounding boxes.

3.4.1.1 Multi-direction vehicle detection

Integral Channel Features contain rich information and can be computed rapidly. They are
selected as the features for training and detection. Experiments are performed to evaluate
the importance of each feature channel type and the performance of different classifier con-
figurations.

3.4.1.1.1 Feature channel

We use three types of feature channels: Luv color, gradient magnitude and gradient his-
togram. We have evaluated the contribution of each feature channel, the Precision-Recall
(PR) curves are plotted on Fig. 20 (a). These curves indicate that gradient histogram chan-
nels play the most important role in representing the vehicles while the gradient magnitude
channel affects the final result the least. For the later tests we use all the feature channels.

3.4.1.1.2 Multi-direction detection methods

We proposed two methods, single and aggregative classifiers, to detect vehicles in different
directions (Section 3.2.1.3). The performances are depicted in Fig. 20(b). The PR curve shows
that the optimal solution is the ’Classifier aggregation method’ with each classifier trained
using samples in opposite directions (8 detectors with sample rotation step of 180◦). This
means 8 detectors and thus longer computation time. 2.7 s is needed for a single detector
while the detection with 8 classifiers takes 4.1 s. This is sublinear since the integral images
doesn’t have to be calculated again. We use the 8-classifier configuration for the later tests.

3.4.1.1.3 Detection on images with different scales

To show the ability of our method to detect the cars on images with different scales we
resized the image for the test but not the training. These results are shown on the Fig. 20(c).
The detector performs best on the same scale as it was trained, if the resolution is increased
the performance remains comparable. But if we decrease the resolution we lose information
which leads to a lower performance.

3.4.1.2 Multi-class vehicle classification

After the axis-aligned bounding box detection we classify the orientation and type of the
vehicles. We convert all the bounding boxes to 48×48 pixel gray images and calculate HOG
features for this image. We get the best performance with 4×4 cell size, 1×1 block size, 1×1
block stride HOG feature configuration and use this for the later tests.

44

Method
Ground

Truth
True

Positive
False

Positve
Recall
Rate

Precision
Rate

Munich dataset

Viola-Jones 5892 3237 1467 54.9% 68.8%

Ours 5892 4085 619 69.3% 86.8%

UAV dataset

Moranduzzo and Melgani (2014a) 119 88 143 73.95% 38.1%

Moranduzzo and Melgani (2014b) 119 87 111 73.1% 43.4%

Ours 119 94 6 79.0% 94.0%

Table 1. Performance comparison between different methods. The UAV dataset is from Moranduzzo and Melgani (2014a,b)

3.4.1.2.1 Orientation estimation

Orientation classification is performed according to Section 3.3.1 with 16 classes (22.5◦ ro-
tation difference between adjacent sample groups, respectively). The orientation estimation
error histogram is depicted in Fig. 20(d). The most common error is when the samples are
classified in the opposite direction. This is because the front part of a vehicle might be sim-
ilar to the rear part from the top view in aerial images.

3.4.1.2.2 Type classification

The detected bounding box is rotated to the horizontal direction according to the orientation
estimation. We trim the input image by cropping the upper and lower parts, from 48×48 to
48× 28. In our dataset the number of trucks is much less than the number of cars. We gen-
erate new ones from the existing samples using random transformation. The performances
with different cropping configurations are compared in table 2 and the supplementary ma-
terial. The optimal type classification can reach 98.2% in accuracy with a one-hidden-layer
neural network.

Cropped Size 48× 48 48× 28

Confusion
Matrix

A/P a Car Truck A/P Car Truck

Car 2843 60 Car 2838 65

Truckb 123 685 Truck 0 808

Accuracy 95.1% 98.2%

Table 2. Confusion matrices of type classification using different cropping configurations. a : Actual class / Predicted class.
b : The number of truck type is increased by random transformation of the existing samples.

3.4.1.3 Baseline comparison

As baseline we use the OpenCV 12 implementation of the Viola-Jones detector (Viola and
Jones, 2001). We have trained it on one vehicle direction while at detection we rotate the
image similar as in (Kluckner et al., 2007) and apply the detector for each rotated image.
Table 1 contains the numerical comparison of this method on the Munich dataset.

12http://opencv.org/

http://opencv.org/

3.4 Experiments 45

3.4.1.4 Computation time

Since the processing time is also important for the detector we compare our method with
other methods where the computation time is provided in the paper. Table 3 contains the
computation times. Our experiments are performed on a laptop with Intel® Core™ i5 pro-
cessor and 8 GB memory and our program is running single threaded written in Matlab and
C++. The comparisons show that the speed our method is considerably faster. This makes
our method more suitable for real-time systems where the computation time is a serious
issue. The method of (Chen et al., 2014) achieves comparable detection performance but on
a different dataset, therefore we show only the processing time of the method.

Method
Image

Resolu-
tion

Detection
Time Per
Image [s]

Detection
Time Per

MPixel [s]

Proposed 5616× 3744 4.4 0.2

Viola-Jones 5616× 3744 1160 55.2

Moranduzzo and Melgani (2014b) 5184× 3456 14400 803.8

Chen et al. (2014) * 1368× 972 8 6.0

Table 3. Comparison of computation times. *Running on the GPU.

3.4.2 Baseline comparison on UAV images
We also evaluated our method on the dataset presented in (Moranduzzo and Melgani,
2014a), (Moranduzzo and Melgani, 2014b) and compared to the results provided without
screening. The results can be found in the Table 1. The precision rate of our method out-
performs the other methods significantly. Due to the higher resolution we set the detection
window to 96× 96 pixels for this dataset and have only car vehicle type (no truck).

46

4 Large scale aerial image sequence geolocaliza-
tion with road traffic as invariant feature

This chapter describes the paper Gellert Mattyus and Friedrich Fraundofer: Aerial image
sequence geolocalization with road traffic as invariant feature. The paper is currently under
revision after a minor revision at the Image and Vision Computing journal. The submitted
paper can be found in the Appendix B.

Fig. 22. Illustration. We search the geolocation of aerial image sequences. The red dots on the map show the ground truth
positions. The photos can be located by matching the road traffic (in red) in the image to the road network (in black). The
matching tracks are marked with yellow circles in the images. The search area can be as large the shown map. The accuracy
of the location is around 25 m.

Our goal is the augmentation of aerial photo sequences with the geolocation information
on a large scale by utilizing only the image information and the road network. We pro-
pose to match the information acquired from the current aerial image sequence to an object
database invariant to the lighting and weather conditions, the road network map. Since the
maintenance of an accurate, up-to-date road map is needed for many other applications (e.g.
navigation, administration, etc.), it is more easily accessible than a large image database and
requires significantly less storage 13 .

We detect the road traffic in the image scene by tracking cars over the frames. By assuming
the cars drive on the roads the vehicle trajectories can be interpreted as subsets of the roads,
and be matched to the road map.

We propose a method for the fast retrieval of a shortlist containing the possible correct loca-
tion. This retrieval is based on Geometric Hashing. We call it Polyline Based Geometric Hash-
ing (PLBGHashing), and it can search rapidly over a larger search area. The more complex
verification matching needs to be done only on the retrieved shortlist. The car tracks can be
considered as a road detector with low completeness but high correctness. We combine this
with a simple pixel color based road detector (with high completeness but low correctness)
for the verification.

We analyze the proposed PLBGHashing on synthetic data generated from the road network
of two large cities. This confirms that the pattern of the road network is discriminative on
a larger scale. We can search an area of 22500 km2 containing 32000 km of streets within
minutes on a single CPU. An evaluation is done on 20 image sequences captured over urban,
suburban, rural with motorway, and industrial scenes by a consumer-grade camera mounted
on an airplane, the Figure 22 shows the location of the scenes. In this test the PLBGHashing

13The OpenStreetMap is an open, crowd-sourced map with good coverage and fast updates.

4.1 Related Work 47

provided the shortlist, while the verification ranked the correct geolocation as the best match
in most of the cases.

Our main contributions are: (1) We use car tracks to detect parts of the road network. This
does not need a known GSD 14 as standard road detectors. (2) We utilize road networks as
appearance invariant features to localize an aerial image sequence over a large area. This
also avoids the need for an image database over the search area. (3) We present a geometric
hashing method to match partial line segments to line structures. This does not need a
complete road detector which detects relations between roads as a graph, e.g. intersections.

4.1 Related Work

The standard for creating georeferenced aerial images is applying an accurate GPS and IMU
and/or measuring Ground Control Points (GCPs) manually as described in section 2.2.2. Ge-
olocalization is also possible by using the image information combined with already georef-
erenced images or maps, this is described in section 2.2.3. An important work is (Brubaker
et al., 2013) showing that a long track on the road network is characteristic enough to obtain
the geolocation of the car by only using visual odometry and a road map over the area. Our
method shares the idea of exploiting the pattern of the roads in the form of car tracks, but
instead of a single long vehicle trajectory acquired from the ground we use many short ones
extracted from the air.

The idea of improving the location information of the image is also applied for aerial and
satellite images. Matching the image to a precisely geolocalized image is applied by (Müller
et al., 2012). They improve the absolute geometric accuracy of satellite images by automat-
ically extracting Ground Control Points from existing orthorectified reference images. In
(Wu et al., 2008) satellite images are localized with feature-based indexing, but not on a real
large scale (maximal 16 km×12 km). In (Lin and Medioni, 2007) UAV images are matched to
georeferenced ortho images (map). But the search area is limited by manually labeling sev-
eral correspondences between the first frame of the UAV sequences and their corresponding
satellite images.

The registration of aerial images to road maps is investigated in various works. However,
these methods does not address large scale problems and/or rely on features defined by
road intersections which are not necessarily present in the scene or extractable from the
image.

In (Kozempel and Reulke, 2009) aerial images are orthorectified (projected on the Earth’s
surface) without an IMU. The orientation is initialized by an accurate GPS measurement and
optimized by matching the detected streets in the image to the road network. In comparison
to this method, our approach does not require an accurate position information, but only
a search area, which might be as large as an entire metropolitan area. This formulates a
considerably different problem, where the solution space is far greater and the problem
is not guaranteed to be convex. The presence of many possible local minima requires the
search over many possible solutions in an efficient way.

In (Wang et al., 2007), road networks are represented as graphs, with road intersections as
graph vertices. It is assumed that the intersections are detected correctly and the georegis-
tration problem can be solved as a graph matching problem. In comparison to this work, in
our approach the road intersections does not need to be detected in the image. We assume
that there is no appropriate intersection detector or there might be no intersections in the
image (just non intersecting roads).

14Ground Sample Distance, the distance between pixel centers measured on the ground.

48

In (Wilson and Hancock, 1993) the graph structure of the road network (junctions and roads
between them) in aerial image is extracted using a relaxational line-finder. Then the graph
junctions are matched to junctions in the map using probabilistic relaxation. This method
assumes that road junctions are present and they can be detected. In contrast, our method
works without junctions, it needs only segments of the road network and we consider a
much larger search area.

(Li et al., 1992) extract and match line segments instead of junctions. They define rotation
and translation invariant features between the segments and use these pairwise features
to calculate the cost of an assignment between aerial image and map. This combinatorial
optimization problem is solved via continuous relaxation labeling. Solving this optimization
problem is nontrivial, especially for a large number of variables. To limit the number of
possible matches, the orientation of the image is used to consider only matches with similar
direction. However, this orientation information is not accessible in the general case which
we address.

Matching line segments between images is investigated in (Gros et al., 1998). They use lo-
cal, geometric invariant features to match images related by similarity or affine transforma-
tions. For similarity transformations they compute geometric invariants from pairs of line
segments having an endpoint in common. The invariants are the angle between the two seg-
ments and the ratio of the length of the segments. These invariants are matched between the
images, similarity transformations are computed from the matches and they are aggregated
in a Hough-transform manner, i.e. clusters are searched in the parameter space. In con-
trast to this method, in our problem the segment length ratio invariant cannot be applied.
A track segment can lay anywhere within the map segment. Additionally, our tracks are
mostly straight (or with a small curvature), the angle between the consecutive line segments
is usually around zero and thus the angle invariant is not discriminative enough.

4.2 Method

We extract the road traffic from the images and match the car tracks to the road network.
Detecting the roads directly would be more straightforward, but this may pose problems
due to the high intraclass variety of roads. The methods described in (Wegner et al., 2013),
(Mnih and Hinton, 2012) show good results, but they work on images with a constant GSD
and the effect of an unknown GSD is not investigated. In our case there is no information
about the GSD. Using only the car tracks also highlights that already a fraction of the road
network is enough for the geolocalization.

The intraclass variety in visual appearance of cars is much smaller than that of roads. Thus
existing robust object detection methods (e.g. Viola-Jones object detection framework (Viola
and Jones, 2004)) can be applied with satisfying results (e.g. a detector based on boosting
is presented in (Kluckner et al., 2007)). The features of the car detector are pixel intensity
differences, which can be robust against different weather and lighting conditions. The mo-
tion information is also a strong cue, enabling object detection in cases where a non-moving
object could not be distinguished from the background. We utilize the motion information
by using the tracks of only the moving cars to reduce the possible false positive car detec-
tions. The length of the tracked cars in the image also gives information about the GSD. The
proposed geolocalization method could also work with a suitable road detector (e.g. based
on deep learning), or by labeling the roads manually and limiting the GSD search space.

4.2 Method 49

4.2.1 Track extraction
The track extraction works on a mosaic image compiled from the single images. We use the
tool VisualSFM (Wu, 2013) to calculate the camera parameters and 3D point coordinates in
the scene. The earth surface is assumed a plane, and a homography is calculated between
the images from the camera parameters and the equation of the plane.

We detect the cars independently on the image frames. We apply the Viola-Jones object de-
tection framework (Viola and Jones, 2004) with the Gentle AdaBoost (Friedman et al., 1998).
The detector is rotation variant, thus we rotate the image in steps to cover all directions and
group the independent detections together (it would be more time efficient to use a multi-
view detector).

The detections are transformed to the mosaic image. During the tracking we model the mo-
tion of the cars with a simple linear model and use Kalman-filtering. In each frame the
tracked objects are assigned to detections matching the predicted object positions. We dis-
card the short tracks to avoid false positives. This is a simple method, delivering satisfying
results.

4.2.2 Matching the tracks to the road network
We formulate the aerial image geolocalization as a model recognition and pose estimation
task of the road network pattern. The search area is tiled to overlapping square areas (in
object recognition terms a tile is a model). An image scene query returns a model and a
transformation between the image and the model. Since the absolute world position of the
tile (model) is known, the transformation from the image coordinates to the geocoordinates
can be recovered. The recognition has to handle geometric transformations for the pose
estimation, a high number of models (> 10000) for larger search areas, and partially occlu-
sions since the extracted tracks are just a subset of the road network. The geometric hashing
method is suitable for handling these challenges.

4.2.2.1 Geometric hashing

Geometric hashing is an efficient, low polynomial complexity technique for matching ge-
ometric features against a databases of such features. Matching is possible even when the
recognizable database objects have undergone transformations or when only partial infor-
mation is present. For a more detailed explanation the reader is referred to (Wolfson and
Rigoutsos, 1997).

4.2.2.1.1 Map and track representation

The roads in the map are represented as 2D polylines. A polyline contains vertices (points),
and the road consist of the line segments between consecutive vertices. The tracks are also
polylines, whereas the vertices are the positions in the registered image during different
frames. Although the representation of the tracks and roads is identical, there is no strict
correspondence between the vertex positions in the road network and the tracks. A track
segment can lie anywhere within the road segment.

4.2.2.1.2 Polyline Based Geometric Hashing

The PLBGHashing method compiles the polylines to the hash table. Since we assume the
earth’s surface to be a plane and the tracks projected on this plane, the perspective transfor-
mation between the tracks and the roads can be reduced to a scaling, rotation and transla-
tion. As a basis we use a segment in a form of one point and a direction instead of two or

50

(a) (b)

Fig. 23. (a): The blue and green polylines are different roads. The x-y is the original coordinate system of the road database.
The line segment p1-p2 defines the basis (u,v) with the center point and the direction. The grid points intersected by line
segments are the indices for the hash table. (b): The p points are the road vertices (from the database), the t points are the
track vertices extracted in the mosaic image (with different color for different cars). The red arrows are the road bases in
the hash table. The basis B0 from the track end points t1-t3 is shifted along the track. At B+2 position the track basis lies
in the the same grid row, as the road basis.

more points. The relation of a p point’s original coordinate (x,y) and the coordinate (u,v) in
the basis defined by a line segment S with end points ps1 ,ps2 is described by the equation:

p−ps1 = upsx + vpsy (47)

where psx =
ps1−ps2
‖ps1−ps2‖

and psy is psx rotated by 90◦. On this basis the 2D hash table is invariant

to rotation and translation but not to the scaling. To find the correct GSD we query with
multiple scales. By leveraging the low variation of the car lengths (4 − 6m), the number of
different scales are kept low. We calculate the maximum in the histogram of the car lengths
(the bounding rectangle delivered by the detector) in the tracks. Utilizing this length we
needed only 3 scales to search in our experiments to get good geolocalization.

Each hash bin stores a set of entries. An entry contains a model number and a basis. It is
important to store a set with unique elements, otherwise some bins could be biased by areas
containing roads densely.

4.2.2.1.3 Database construction (off-line)

The search area is tiled to squares with a fixed side length ds and overlap. The nodes are
interpolated to make the line segments shorter as a defined maximal value dmax. Then the
hash table is generated by the following steps:

For each polyline (road) Pj in each tile Mi do:

(1) For each line segment Sk in the polyline Pj :
(a) Create an entry Ek with the model number i and the basis of Sk.
(b) Solve the (Eq. 47) with Sk to calculate (um,vm) of all the vertex points in Mi .
(c) Quantize the points (um,vm) to a grid (uqm,v

q
m).

(d) Calculate the coordinates (uql ,v
q
l) of the rasterized line in the grid between the

neighboring (uqm−1,v
q
m−1), (uqm,v

q
m) vertices. The (uql ,v

q
l) line points are indices for

4.2 Method 51

the 2D hash table. For each line point (uql ,v
q
l) add the entry Ek to the set at the

(uql ,v
q
l) hash bin.

The Figure 23a illustrates the hash index generation. The complexity of the number of bases
is O(n), where n is the number of node points after interpolation in the tile. The complexity
of hash table entries per basis is O(l/dg) where l is the sum of road length and dg is the grid
size for geometric hashing. Since dg is fixed in an implementation the complexity of hash
entries is O(nl).

4.2.2.1.4 Shortlist retrieval (on-line)

To find the correct geolocation of a scene, a basis (1-point and direction) in the tracks has
to be aligned to a similar basis in the correct model with the correct scale. The direction of
a road segment can be properly recovered from the end points of a track. We choose long
straight tracks, because they define the direction more accurately if the vertex positions are
noisy. The correct scale is searched with multiple queries. The list of scales is derived from
the car length. Since the line segment length is limited by dmax, a street vertex exists in the
range [−dmax/2,dmax/2] along a track vertex, the Figure 23b illustrates this. It is enough to
search this range in shifts by the grid size dg , because then the hash indices are the same
at creation and query. We resize the scene with all the search scales. For each resized scene
we choose track segments Ti (the line segment between the end points). For each Ti in both
directions we do:

(1) Shift Ti between [−dmax/2,dmax/2] in dg steps.
(2) Each shift gives a line segment Sk. For each Sk:

(a) Solve the (Eq. 47) with Sk to calculate (um,vm) of the vertex points of all the tracks
in the scene.

(b) For each polyline (track) Pi in the scene:
(i) Calculate the rasterized points (uqm,v

q
m) of the vertices

(ii) Calculate the coordinates (uql ,v
q
l) of the discrete (rasterized) line segment in

the grid between the (uqm−1,v
q
m−1), (uqm,v

q
m) points.

(iii) Each point (uql ,v
q
l) of the line segment is an index for the hash table. For every

entry at the hash bin (uql ,v
q
l) cast a vote for a recognition (model, basis and

scale).

After the query with multiple straight tracks, the votes are aggregated. One recognition gets
only one vote from a bin, otherwise a basis might be biased due to many tracks over the same
index. A shortlist of matches is created by sorting the recognitions based on the number of
received votes. The transformation from image to a world coordinate can be recovered from
the basis in the image and in the model, the scale and the world position of the model (tile).

4.2.2.2 Verification of the shortlist

The retrieved shortlist also contains false recognitions. We re-sort the shortlist by a stricter
criteria, the verification match score S. The quality of the match is measured by the mean
distance dmt of the tracks Rt to the roads in the model, like the Chamfer Matching (Barrow
et al., 1977). The distance image Id is calculated to the roads (Borgefors, 1986), and the Id
pixels along the tracks are extracted. Since the tracks may contain outliers, we calculate a
trimmed mean, where the 10% of the tracks with the highest distances are discarded. The
dmt does not penalize roads not covered by tracks. To compensate for this, we extract a
second road detector with high completeness but low correctness. We assume that the color
of the roads is similar all over the scene. The CIELUV color values of the image pixels are
grouped to 16 clusters by k-means. Clusters are added to the road class until 85% of the

52

(Wrong localization) (Correct localization)

Fig. 24. The distance images used for calculating the verification score at Suburban 1 image sequence. On top the tracks
are shown with green (inlier) and red (outlier) in the distance image to the road network. In the bottom the road network
(green) is shown in the distance image to classified road pixels in the image.

tracks lie over pixels belonging to the road class. A second dmp mean distance is calculated
as the distance of the roads in the model to the roads detected by the pixel based detector
(Rp). The Figure 24 shows the distance images, a brighter pixel is a larger distance.

We assign likelihood values Lt (Rt match), and Lp (Rp match) to the two mean distances
dmt and dmp . The likelihood function f (x) of dmi for a correct match are modeled by the
following function, a normal distribution function N (µ,σ) if x ≥ µ, uniform with the max
of the normal distribution if 0 ≤ x < µ and 0, otherwise. The normal distribution parameters
are set experimentally, for Rt; µt = 6m, σt = 15m, for Rp; µp = 7.5m, σp = 15m. We set µt
smaller than µp because for dmt outliers are considered. The likelihood for a mean distance
value is Ld = f (dm). The final score S that the image sequence I matches the roads R is the
joint likelihood S = LtLp = f (dt)f (dp), dt and dp are handled as independent. At a correct
match both likelihoods Lt and Lp have a high value, thus the final score is also high. For a
false match at least one of the likelihoods has to decrease, thus the final score also decreases.

4.3 Experiments

We have tested the method on real aerial photos over Germany. 20 image sequences were
acquired by a 21 MPixel Canon Digital Single-Lens Reflex (DSLR) camera with a fixed focal
length mounted in nadir direction on an airplane. The internal camera parameters were
known. A GPS device registered the position of each image for the ground truth. Each image
sequence contains 17−20 consecutive images taken with approximately 1 Hz frequency. The
altitude over ground was between 1000 and 1500 m, which gives a GSD of 13−19 cm/pixel.
The image sequences contain roads with car traffic. We grouped the scenes as urban (U),
suburban (S), industrial (I) and motorway (M). This classification is not strict; we arbitrarily
used it for this paper. The scenes were relatively flat, thus the earth surface could be modeled
by a plane. Studying mountainous areas is planned for future work. The scenes Suburban 1
and 4, 5 and 2, 6 and 3 and Urban 3 and 4 are approximately over the same area but with two
month difference. The original images were rectified with a 2 parameter radial distortion
model. All the processing was done on these rectified images. The tiles of the road database
were 2000 m ×2000 m with 50% overlap. The grid size dg for the geometric hashing was 15
m. The 5 longest straight tracks in the scene were used for the shortlist retrieval. The size
of the scenes was around 2000 m × 500 m.

4.3 Experiments 53

4.3.1 Quantitative evaluation
The PLBGHashing delivers a shortlist of locations, while the verification gives a ranking of
these locations. To decide if a geolocation was correct, the geolocalization was compared to
the GPS values. If the GPS positions were correct, the mosaic image was inspected visu-
ally by overlaying it in Google Earth. We extracted a TOPN value, which indicates if there
is a correct location in the first N list elements. The number of possible locations and ori-
entations is very high even for a small search area. For a scene of 1000 m × 1000 m in
a search area of 2 km × 2 km with 15 m translation steps, 5◦ angle steps, and 3 scales
(1000

15)2 × 360
5 × 3 = 960000. A search area of 22500 km2 consists of 22201 overlapped tiles,

thus the total number of possibilities is in the 1010 scale.

(Shortlist from PLBGHashing) (After verification)

Fig. 25. Completeness over top N.

In Figure 25 the aggregated number of correct localizations is plotted for different N values
and search areas. There is a separate plot for the shortlist retrieval and the verification. The
increase of Top1 by the verification was significant. We increased the search areas around
the GPS position of the camera in steps 4, 9, 25, 49, 100, 225, 400, 625, 1225, 2500, 5625,
10000, 15625, 22500 km2. The Figure 26 shows for each scene the maximal size of the search
area in which it was correctly located in the topN after the verification.

19 scenes out of 20 could be located correctly as top1. The scenes Industrial 1, 2 contain
tracks acquired in large parking lots (the tracking algorithm might extract wrong tracks on
dense parked cars) outside the road network. If the number of outliers becomes greater than
what the verification accepts, then the verification ranks the locations wrong. Thus even if
the correct location was in the shortlist it cannot be found. Therefore bad localization. The
location of I1 was wrong already at the smallest search area, while the I2 could be localized
only on 4 km2. I2 contains more tracks over streets as I1, which has tracks only about one
motorway and industrial area. The other scenes show that if we have enough tracks on the
roads, then the localization only weakly depends on the search area. On the Figure 27 we
show the geolocalizations by projecting the mosaic images into the street network and as
an overlay in Google Earth (the visualization as an image overlay is geometrically not fully
accurate).

Some areas might be inherently ambiguous (e.g. chessboard like streets). An indicator for
this ambiguity is if there are many candidates with the same number of votes in the shortlist
and in the list after validation.

We defined the grid size for the geometric hashing as 15 m. This makes the method robust
to small displacements in the tracks and it can handle multi-lane roads. If we assume 3 m

54

Fig. 26. The largest search area for each image sequence where the correct verified geolocation was in the TOPN in km2

wide lanes, then 5 lanes are quantized to the same grid (i.e. the localization is invariant to
this displacement). Roads with more than 5 lanes are sparse as large roads (e.g. motorways)
in OSM are stored as two separate roads for each direction.

Our method is agnostic to splits or merges of the tracks as the assignment between line
segments and tracks is not relevant. A track consisting of 10 line segments has the same
effect as if it is split to 10 individual tracks.

The search area 150 km × 150 km around the Urban scenes contain nearly 32000 km of
roads, compiling to 2262M entries in the hash which requires 30500 MB memory. For the
Urban 1 scenes containing many tracks the retrieval took 9 minutes on the largest search
area, for a scene with less tracks the retrieval is faster, for the Suburban 1 it took 2 min-
utes. The average accuracy of the geolocalization is around 25 m, this also depends on the
accuracy of the road data (A more accurate location could be acquired by optimizing the
resulting location, but this was not our goal in this paper). Our implementation was written
in C++, multi-threaded. The experiments run on an Intel Xeon E5-1650v2 processor with 6
cores. The verification took around 36 ms per shortlist element. Since the geometric hashing
is very suitable for parallel implementation, the retrieval time on large search areas can be
significantly reduced by utilizing more cores or machines.

4.3.2 Comparison to simple chamfer matching
We consider chamfer matching (Barrow et al., 1977) with brute force search as a baseline.
Without the PLBGHashing for shortlist generation, by only a brute force search and ver-
ification of each position the number of required verifications would be very high. Since
the processing time of the verification is relatively long (36 ms per location), it would take
960000×0.036s = 9.6 hours on 2 km × 2 km search area 1010×0.036s = 3.6×108s = 11 years
for the largest search area (on a single thread). This is too long for practical usage.

4.3 Experiments 55

(a) Urban 1. (b) Suburban 1.

(c) Motorway 2. (d) Motorway 2 as an overlay in Google Earth.

(e) Industrial 3. (90◦ rotated) (f) Industrial 1 false location.

Fig. 27. Geolocalization results. The mosaic images are projected into the street network. The roads are in black, the tracks
are highlighted with red lines, the locations of votes from the PLBGHashing are marked with yellow circles. (When an image
scene is only partially overlapped with a model during the shortlist retrieval, there are no vote circles at every matching
track-road locations (e.g. on Urban 1.)) On (d) the geolocalized mosaic image with the tracks is overlaid in Google Earth.
All these scenes were correctly located on a 22500 km2 search area except (f). The (f) shows the scene Industrial 1 located
false on a 4 km2 search area. The causes for this are; the scene contains 2 roads which makes it inherently ambiguous,
multiple tracks are extracted on a parking lot, outside of the road network. Since there are more tracks in the parking lot
than on the road, the verification matching handles the correct tracks as outliers. The color based road detection also does
not work properly, since a parking lot has similar color as the road. The error is approximately 100m.

56

5 Enhancing road maps with street width by pars-
ing aerial images

This chapter describes the paper Gellert Mattyus, Shenlong Wang, Sanja Fidler and Raquel
Urtasun: Enhancing Road Maps by Parsing Aerial Images Around the World, International
Conference on Computer Vision 2015 (Mattyus et al., 2015). The original paper can be found
in the Appendix C.

The current basic road maps represent the topology of the road by their centerlines (ad-
ditionally maybe the number of lanes and turning lanes at intersections) and they do not
describe the physical dimensions of the road, e.g. the width. Most self-driving cars (e.g.,
Google car, participants of the Defense Advanced Research Projects Agency (DARPA) urban
challenge) rely on detailed maps of the environment to facilitate navigation and perception.
Maps can support localization (Liu et al., 2015; Brubaker et al., 2013), layout estimation
(Liu et al., 2015) and holistic scene understanding (Wang et al., 2015a). The detailed maps
are typically obtained via costly manual intervention and/or by driving surveying vehicles
along the roads (e.g. the Google street view car). This needs huge effort to cover all the roads
limiting the large scale applicability of current approaches.

We propose to exploit aerial images in order to augment maps with road geometry (i.e.
road width). This is not an easy task as despite decades of research, large-scale automatic
road segmentation from aerial images remains an open problem. Most approaches either do
not deliver a topologically correct road network and/or rely on classifiers that have to be
re-trained for each location in order to properly capture appearance variations. As a conse-
quence they require tedious manual annotation for each region of the globe to be segmented,
current approaches focus on a small set of locations.

We extract pixelwise information from the images, a task typically formulated as semantic
segmentation (i.e. assigning a class label for each pixel, see also section 2.4). In contrast,
we propose to use existing maps (we apply the freely available OpenStreetMap (OSM)) to
formulate the problem as one of inference in a Markov Random Field (MRF) which is di-
rectly parameterized in terms of the centerline of each OSM road segment as well as its
width. This parameterization enables very efficient inference and returns the same topology
as OSM. In particular, we can segment the OSM roads of the whole world in only 1 day
when using a small cluster of 10 computers. Furthermore, this approach can be trained us-
ing only 1.5 km2 of aerial imagery over Germany and is able to generalize to the entire world
and produce state-of-the-art results without any further manual interaction. As the method
reasons about the location of the centerline, it can handle and correct OSM mistakes as well
as geo-localization/projection errors. This is not an easy task as illustrated in Fig. 28 due to
shadows, occlusions and misalignments. The energy encodes the appearance of roads, edge
information, car detection, contextual features, relations between nearby roads as well as
smoothness between the line segments. All energy terms can be computed very efficiently
via local, non-axis aligned integral images. Learning can also be done very efficiently using
Structured Support Vector Machines (SSVMs) (Tsochantaridis et al., 2005) taking 1 minute
on a desktop computer.

The coverage of OSM is very high in most areas, and thus by employing the proposed pa-
rameterization no roads are missed in the applied datasets. The lower road categories have
to be excluded as they include forest tracks and pedestrian areas, which are not sufficiently
visible in the aerial images. In other regions of the globe the coverage is not as dense and our
approach might miss some roads. We refer the reader to the OSM project 15 for a more de-

15http://wiki.openstreetmap.org/wiki/Stats

http://wiki.openstreetmap.org/wiki/Stats

5.1 Related Work 57

tailed explanation of the coverage and its growth, and 16 for a comparison with other maps.
Detecting new roads that are missing in OSM is our plan for future work.

The effectiveness of this approach is demonstrated by extracting road information from
aerial images from different camera sensors taken around the whole world (e.g., Toronto,
Sydney, New York, Manila, Nairobi). Importantly, only 1.5 km2 imagery over Germany cap-
tured by one camera sensor is employed for training, illustrating the ability of our approach
to generalize (domain adaptation). The aerial image datasets we are aware of are not labeled
with the geometric information we want to extract. They either consider the road as a single
centerline or label the other surfaces instead, e.g., the International Society for Photogram-
metry and Remote Sensing (ISPRS) 17 dataset contains the ”impervious surfaces” class but
no roads. Therefore we collect two new datasets namely Bavaria and aerial KITTI, which we
manually annotate and show that our approach significantly outperforms all competitors.
We then demonstrate the usefulness of our road priors for the task of semantic segmenta-
tion on KITTI ground images, and show that we can provide better cartographic priors than
(Wang et al., 2015a).

(a) shadow (b) occlusion

(c) vehicles (d) misaligned centerline

Fig. 28. Road segmentation is challenging due to shadows, occluding trees and vehicles which make the appearance het-
erogeneous as well as OSM/projection misalignment errors.

58

Fig. 29. Illustration of the road centerline with the width parameterized by the center offset h and symmetrical width y.
The direction and length of the rectangle Ωi is defined by the pi ,pi−1 points given by the street database. The context is
depicted as Σ.

5.1 Related Work

Road segmentation in aerial images has drawn a lot attention for decades in the computer
vision and remote sensing communities. However, it still remains an open-problem due to
the difficulties in handling appearance variations and producing topologically correct seg-
mentations. Early approaches search for objects that fulfill a pre-defined criteria. (Barzohar
and Cooper, 1996) defines a geometric-stochastic model and estimates the roads by tiling
the input image. (Stoica et al., 2004) use a Point Process to simulate and detect a network
of connected line segments. We refer the reader to (Mayer et al., 2006) for a detailed litera-
ture review and comparison. These approaches, however, share a common drawback: they
require manual parameter tuning. Learning based methods have been proposed to be more
robust to appearance variations. Mnih and Hinton (Mnih and Hinton, 2010) proposed a two
stage approach, where first a neural net is used to label patches independently. Road topol-
ogy is then corrected using a post-processing step. This was extended in (Mnih and Hin-
ton, 2012) to deal with noisy training labels by employing a robust loss function. However,
this method suffers from block effects due to the patch-based prediction. (Wegner et al.,
2013) model the road classification as a CRF, where the high-order cliques are sampled
over straight segments or junctions to maintain a road-like network structure. In (Montoya-
Zegarra et al., 2014) height-field contextual information captured from dense stereo match-
ing is used to improve segmentation. This approach is computationally very expensive and
results were shown in a single location. (Chai et al., 2013) sample graph junction-points us-
ing image consistency and shape priors, resulting in long computation times (4 min/image).
(Turetken et al., 2013) formulate the delineation of linear loopy structures as an Integer
program. However, only simple suburban scenes were tackled. Detecting roads without any
prior map information is relevant for places without any maps available. Such places are
nowadays scarce around the world, but the augmentation of existing maps is important
around the whole globe. Leveraging the map priors effectively and efficiently to enhance
the maps is not a trivial task.

16http://tools.geofabrik.de/mc
17http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

http://tools.geofabrik.de/mc
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

5.2 Augmenting Road Maps from Aerial Images 59

Method

Bavaria Aerial KITTI

IoU F1
∆h[m] ∆y[m]

IoU F1
∆h[m] ∆y[m]

GT Oracle GT Oracle GT Oracle GT Oracle

Road Unary * 49.7 48.3 66.4 65.1 – – 32.8 31.2 49.4 47.6 – –

OSMxSeg 61.6 60.6 76.2 75.5 – – 50.3 48.8 67.0 65.6 – –

FSeg ** 63.0 65.3 77.3 79.0 2.11 1.15 55.4 58.6 71.3 73.9 2.32 1.25

OSMFixed 64.7 66.9 78.6 80.2 1.75 1.45 51.0 53.8 67.6 70.0 2.38 1.21

Ours 73.5 77.2 84.8 87.2 1.30 0.97 71.8 77.5 83.6 87.4 0.91 0.79

Oracle 86.5 100 92.7 100 0 0 84.2 100 91.4 100 0 0

Table 4. Performance of our method vs baselines. The IoU and F1 values are in %, while ∆h,∆y are the mean absolute error
of the offset and width measured in meters. * the road unary of (Winn et al., 2005) is applied. ** is the method of (Yuan
and Cheriyadat, 2013).

Map information has been used also in computer vision and robotics communities. Aerial
image and land cover attribute maps are exploited in (Lin et al., 2013) for single image
geo-localization. Kalogerakis et al.(Kalogerakis et al., 2009) built a human travel prior from
maps to geolocalize time-stamped photographs. Brubaker et al.(Brubaker et al., 2013) use
road networks for self-localization. In (Matzen and Snavely, 2013) various maps of New York
city were used to detect and localize cars from ground images. (Liu et al., 2015) use floor
plans to localize and reconstruct in 3D single images in apartments. (Wang et al., 2015a)
use OSM to generate a geographic prior for outdoor holistic scene understanding improv-
ing performance in 3D object detection, pose estimation, semantic segmentation and depth
reconstruction.

The most similar works to ours (improving the road layout) are (Seo et al., 2012a) and (Yuan
and Cheriyadat, 2013). (Seo et al., 2012a) formulate the road segmentation in aerial im-
ages as a weakly supervised classification problem, in which superpixels that overlap with
road vector data are adopted as positive samples. Then all the superpixels are classified
as road/non-road by applying a Markov Random Field with the Potts model. This method
does not consider the potential inaccuracies of the road vector data which can lead to apply-
ing mislabeled data as the weekly labeled reference. A MRF with the Potts model can not
incorporate the road topology , hence the solution does not preserve topology.

(Yuan and Cheriyadat, 2013) consider road segmentation as a width estimation problem. By
analyzing the spatial distribution of superpixel boundaries along the direction of the road,
the road width is retrieved for each line segment independently as the width corresponding
to the maximum in the edge distribution. Our model can be reduced to this, if only the edge
feature (50) is applied. However, a single feature without any a priori knowledge (e.g. the
smoothness term in our model) is not robust to shadows and occlusions.

5.2 Augmenting Road Maps from Aerial Images

In this section we show how to augment world maps by parsing aerial images. In particular,
we frame the problem as the one of inference in a Markov Random Field where the noisy
cartographic map is employed to directly parameterize the problem. This parameterization
is very robust and enables efficient inference.

5.2.1 Energy Formulation
In OSM, each road centerline is defined as a polyline chain (i.e., piece-wise linear curve) but
no information about the road width is typically available. Unfortunately OSM roads are

60

Method

Bavaria Aerial KITTI

IoU F1
∆h[m] ∆y[m]

IoU F1
∆h[m] ∆y[m]

GT Oracle GT Oracle GT Oracle GT Oracle

Road+E+Car 72.2 75.7 83.8 86.2 1.57 1.10 70.7 76.3 82.8 86.5 1.05 0.84

Road+E+Car+‖ 72.8 76.4 84.2 86.7 1.39 1.03 71.8 77.6 83.6 87.4 0.91 0.79

E+Ho+Co+Car 64.8 68.4 78.6 81.2 1.58 1.26 63.6 67.2 77.8 80.3 1.61 1.36

E+Ho+Co+Car+‖ 69.7 72.6 82.1 84.2 1.52 1.09 63.5 67.4 77.7 80.5 1.49 1.26

All 73.0 76.2 84.4 86.5 1.51 1.08 71.2 76.8 83.2 86.9 1.05 0.84

All+‖ 73.5 77.2 84.8 87.2 1.30 0.97 71.8 77.5 83.6 87.4 0.91 0.79

Domain shift (train on one dataset, test on the other)

Road+E+Car 70.0 74.3 82.4 85.2 1.45 1.06 66.0 71.0 79.5 83.0 1.33 0.89

Road+E+Car+‖ 70.7 75.2 82.8 85.8 1.30 0.99 66.8 72.0 80.1 83.7 1.18 0.83

E+Ho+Co+Car 69.1 71.5 81.7 83.4 1.73 1.11 59.3 63.5 74.4 77.6 1.63 1.17

E+Ho+Co+Car+‖ 70.4 73.4 82.7 84.6 1.43 0.98 62.0 65.7 76.5 79.3 1.57 1.36

All 70.8 75.1 82.8 85.8 1.37 1.02 67.7 72.8 80.7 84.3 1.20 0.84

All+‖ 71.7 76.1 83.5 86.4 1.27 0.93 67.7 73.2 80.7 84.6 1.08 0.79

Table 5. Performance on Bavaria and Aerial KITTI with various features configurations. The IoU and F1 values are in %,
while ∆h,∆y are the mean absolute error of the offset and width measured in meters. The ‖ symbol denotes the overlap
potential between parallel roads. The other abbreviations are E: edge feature, Ho: homogeneity feature, Co: context feature.

not very accurate as they are either edited by volunteers without explicit quality control,
or computed automatically from GPS trajectories. Furthermore, geo-localization and pro-
jection errors make the vertices of the polyline poorly aligned with the center of the road
in aerial images. We refer the reader to Fig. 28 for an illustration of the difficulties of the
problem. Thus we re-reason about their true location. Given a geo-localized aerial image,
we model each road with a set of random variables representing for each vertex of the poly-
line an offset in the normal direction as well as the width of the road segment. We refer the
reader to Fig. 29 for an illustration of our parameterization.

More formally, let hj = {hj1, · · · ,h
j
lj
} be a set of random variables encoding the offsets of each

vertex of the polyline that defines the j-th road, where lj is the number of vertices for

that road and h
j
i ∈ [−30,30] pixels. Our images have a resolution of 13 cm/pixel. Denote

yj = {yj1, · · · , y
j
lj
} the width of each segment that compose the j-th road, with yj ∈ [24,50]

pixels. Note that the hypothesis spaces for h and y are defined based on our empirical es-
timate of maximal road width and OSM projection error. Further, let h = {h1, · · · ,hL} and
y = {y1, · · · ,yL} be the set of offsets and widths for all roads respectively. Denote x the input
aerial image. We define the energy of our road segmentation as a sum of potentials encoding
the image evidence, the presence of car detections, smoothness between widths and offsets
of consecutive road segments and overlap constraints between nearby parallel roads

E(h,y) =
L∑
j=1

lj∑
i=1

wT
roadφroad(hji , y

j
i ,x) +

L∑
j=1

lj∑
i=1

wT
apφap(hji , y

j
i ,x) +

L∑
j=1

lj∑
i=1

wT
carφcar(h

j
i , y

j
i ,x)

+
L∑
j=1

lj−1∑
i=1

wT
smφsm(hji , y

j
i ,h

j
i+1, y

j
i+1) +

∑
i,j,k,m∈P

φol(h
j
i , y

j
i ,h

m
k , y

m
k) (48)

Note that the overlap energy does not have a weight as it is a hard constraint. We use three
types of appearance features: distance to edges, homogeneity of the region as well as its
context, i.e., φap = [φedge,φhom,φcontext]. We now describe our potentials in more details.

5.2 Augmenting Road Maps from Aerial Images 61

5.2.1.1 Road classifier:

We employ a road classifier to compute for each pixel the likelihood of being road/non-road.
The potential for each segment φroad(hji , y

j
i) is simply the sum of the likelihoods of all pixels

in the non-axis aligned rectangle Ω
j
i defined by hji , y

j
i (see Fig. 29 for an example).

φroad(hji , y
j
i) =

∑
p∈Ωj

i (h
j
i ,y

j
i)

ϕ(p) (49)

with ϕ(p) the classifier score at pixel p. Note that this can be very efficiently computed
using non-axis aligned integral images. Since we know the orientation of each segment,
only a single integral image is necessary per segment. The integral image is also local to the
segment, as the hypothesis space covers regions near the original OSM vertices.

5.2.1.2 Edge:

We expect the boundaries of road segments to match image appearance boundaries. Towards
this goal, we compute edges using the line detector of (Dollár and Zitnick, 2013), and define
the potential as the distance d from each rectangle boundary pixel to the closest image edge

φedge(h
j
i , y

j
i) =

∑
p∈∂Ωj

i (h
j
i ,y

j
i)

min
e∈E

d(p,e) (50)

with ∂Ω the boundary of the rectangle Ω, p a pixel and E the set of all lines returned by the
line detector. We adopt the distance transform of (Felzenszwalb and Huttenlocher, 2012) to
accelerate the computation.

5.2.1.3 Object detector:

We train a car detector using the detector of (Liu and Mattyus, 2015) described in section
3. Note that this task is extremely challenging as on average a car has only 30 × 12 pixels.
We form a 2D feature for each car by computing [s · sin(∆α), s · cos(∆α)], with ∆α the angle
between the segment and the car and s the confidence of the detector. The car potential φcar
is simply the sum of the features of all the detected cars that are inside the rectangle. Given
the car features, the potentials can be computed efficiently using accumulators in a local
region around each segment.

5.2.1.4 Homogeneity:

An important property of roads is that they are typically free of obstacles (otherwise we
could not drive on them) and therefore we expect their appearance to be homogeneous.
This is violated if there are vehicles, shadows or if our aerial view of the road is obstructed
by trees, bridges or tunnels. In those cases we expect the other potentials to correct the
mistakes. We capture homogeneity by first transforming the image into Luv space and com-
puting for each channel the standard deviation of the appearance inside the rectangle. This
potential can be efficiently computed using two non-axis aligned integral images per chan-
nel: one computing the sum of intensities and the other the sum of square intensities. Note
that this calculation was used in (Viola and Jones, 2004) to normalize the Haar-like features
in a sub-window.

62

(Toronto: Pearson Airport) (NYC: Times square)

(Manila, Philippines) (Kyoto: Kinkakuji)

Fig. 30. Segmentation results on several cities over the world using the edge, homogeneity, context, car and overlap features.
Note that the MRF was trained only on 1.5 km2 imagery from the Aerial KITTI dataset.

5.2.1.5 Context features:

This feature encodes the fact that the road looks different than the area around it. Similar to
(Viola and Jones, 2004), we compute the difference between the means of pixel intensities in
the context and road rectangles, Σji and Ω

j
i respectively (see Fig. 29). The potential is com-

puted by aggregating the difference across all Luv channels. Again, we use integral images
for efficiency.

5.2.1.6 Smoothness:

The widths and offsets along the same road tend to be similar in nearby segments. Our
smoothness potentials for both h and y are defined between consecutive segments along the
same road as a weighted sum of `0 and `2 norms.

5.2.1.7 Overlap:

This is a hard constraint encoding the fact that two parallel roads cannot overlap. We enforce
this for all roads that have similar orientation (within 20 degrees) and are close enough that
they could overlap.

5.2 Augmenting Road Maps from Aerial Images 63

5.2.2 Inference

Inference in our model can be done by computing the minimum energy configuration

{h∗,y∗} = argmin
h,y

E(h,y) (51)

with E(h,y) the total energy defined in Eq. (48). Note that due to the overlap constraint,
the graphical models might contain loops. As a consequence exact inference is not possible.
When there is no overlap, the graphical model can be reduced to a set of chains by merging
the variables gji = (hji , y

j
i). This is illustrated on Fig. 31. In a chain dynamic programming

solves the inference exactly in polynomial time as described in paragraph 2.1.3.2.1.

h1
1

y1
1

h2
1

h3
1

y2
1 y3

1

g1
1=(h1

1,y1
1) g2

1=(h2
1,y2

1) g3
1=(h3

1,y3
1)

(a) (b)

Fig. 31. The factor graph of the proposed graphical model in case of a single road. The unary potentials are pairwise

defining loops in the graph (a). By merging the variables g
j
i = (h

j
i , y

j
i) the graph can be reduced to a chain (b).

Inspired by the stereo work of (Chen and Koltun, 2014), we employ Block Coordinate De-
scent (BCD) to perform approximated inference. Towards this goal, we define each block in
the BCD to form a chain since we can then solve each step to optimality. We then alternate
between going over all horizontal and vertical chains to propagate the information. Note
that since we solve each sub-step to optimality this procedure is guaranteed to converge. We
refer the reader to Fig. 32 for an illustration, where to simplify the figure we have collapsed
the width and offset variables in a single variable gji = (hji , y

j
i). It is important to note that

each of the BCD steps (i.e., optimization over a subset of variables) involve conditioning, and
thus the pairwise potentials between a variable in the chain and a connected variable not in
the chain are folded as unaries. Prior to BCD, we initialize all variables by performing in-
ference along each road chain and ignoring the connections between nearby parallel roads.
We refer the reader to Algorithm 3 for more details about the block coordinate descent.

5.2.3 Learning

We learn the parameters of the MRF using Structured Support Vector Machine
(SSVM)(Tsochantaridis et al., 2005) described in paragraph 2.1.3.3. The learning function

64

(a)

(b) (c)

Fig. 32. Illustration of our BCD inference. Note that g
j
i = (h

j
i , y

j
i). (a) Graphical model consisting of 3 roads that have

overlapping constraints (i.e., vertical edges). We alternate between performing inference (b) over each road one at a time
(red, green, blue), and (c) along chains on the vertical direction encoding the horizontal constraints, also one at a time
(orange, yellow, pink, green, purple). Note that these operations involve conditioning, and thus the pairwise potentials
between a variable in the chain and a connected variable not in the chain are folded as unaries.

Algorithm 3 Block coordinate descent inference (BCD)
1: Initialize (h,y) by minimizing Eq. (48) ignoring the overlap potentials
2: repeat
3: for all roads Rj do
4: Minimize Eq. (48) w.r.t hj ,yj holding the rest fixed.
5: end for
6: for all overlap chains Oi do
7: Minimize Eq. (48) over the variables in the overlap chain
8: end for
9: until no energy reduction or max number iterations

is expressed with slack variables:

w∗ = min
w∈RD

1
2
||w||2 +

C
N

N∑
n=1

ξn

s.t. E(h,y)−E(ĥn, ŷn) ≥L(ĥn, ŷn,h,y)− ξn,∀(h,y) ∈ H×Y \ (ĥn, ŷn),∀n

(52)

with H × Y the space of all possible labelings for (h,y). ĥn, ŷn are the training samples
and L(ĥn, ŷn,h,y) is the loss function. Note that our definition is opposite from the one in
(Tsochantaridis et al., 2005), as we have defined the features in terms of an energy minimiza-
tion and not a score maximization. We employ the parallel cutting plane implementation of
(Schwing et al., 2013) to learn the parameters. We use the intersection-over-union between

5.3 Experimental Evaluation 65

the configuration and the ground-truth labels as our task loss. This can be computed as a
pairwise term of hji , y

j
i , and thus loss augmented inference can be done efficiently.

5.3 Experimental Evaluation

We perform our experiments on three different datasets: Bavaria, Aerial KITTI and World
which were captured with different sensors. Note that we have access to RGB images without
any elevation information. We conduct road pixel-wise annotations in all Bavaria and Aerial
KITTI images. Note that the parameters not learned by SSVM were set via four-fold cross-
validation.

5.3.1 Datasets
5.3.1.1 Bavaria:

This dataset is a collection of ortho-rectified aerial images captured by a DSLR camera
mounted on a plane flying around the Bavaria region in Germany 18 . It covers urban, sub-
urban and rural areas with motorways. The resolution is 13 cm/pixel on the ground. The
total area is 4.95 km2 containing 103 km of road.

5.3.1.2 Aerial KITTI:

This dataset consists of aerial images downloaded from Google Earth Pro over the city of
Karlsruhe, Germany, covering the same area as the KITTI tracking benchmark (Geiger et al.,
2013). The total area is 5.96 km2 with 84 km of road. We resampled the images to be 13
cm/pixel resolution to be consistent with the Bavaria dataset.

5.3.1.3 World:

This dataset consists of aerial images downloaded from Google Earth Pro of landmarks all
over the world, including metropolitan areas in Toronto, New York, Sydney, Mexico City,
Manaus, etc., as well as rural areas in St. Moritz and Kyoto. For this dataset there is no
annotation.

5.3.2 Metrics:
We use four metrics to measure performance: intersection over union, F1 score, and mean of
the absolute error of h and y. We consider two different ground truth labels when evaluating
the performance: our human labeled road annotations as well as the maximum achievable
score with respect to our model hypothesis, refer to as Oracle. The later can be computed
by performing our MRF inference, by replacing our unary potentials with ground truth
segmentations. For all quantitative experiments we perform four-fold cross-validation.

To compute our road classifier, we first convert the image to opponent Gaussian color space
and extract a dense filter response map, with a filterbank composed of 17 edge-like filters
(Winn et al., 2005). We oversegment the image using SLIC (Achanta et al., 2012) and cal-
culate the mean and std of the filter responses in each superpixel. We then train a random
forest classifier (Dollár and Zitnick, 2013) with this 34D input feature. Note that this road
classifier was used in (Wegner et al., 2013) as unary potential.

18We will release these images and the ground truth upon publication.

66

Process step
Time (s) per km

Road+Edge+Car Road+Edge+Car+‖ All All+‖

Accumulator 0.07 0.069 0.126 0.122

Inference 0.031 0.092 0.032 0.095

Table 6. Running time for feature accumulator calculation and inference under various configurations. In sec per km of
road.

5.3.2.1 Comparison to baselines:

We compare our approach to four baselines: The first one is the road classifier unary poten-
tial of (Wegner et al., 2013), denoted Road Unary. The second baseline, denoted as OSMxSeg,
is computed by segmenting the image into superpixels using (Felzenszwalb and Hutten-
locher, 2004) and labeling each super pixel as road if it is crossed by a road segment in
OSM. We also reproduce the state-of-the-art method of (Yuan and Cheriyadat, 2013), de-
noted as FSeg, which also uses the OSM road data. To illustrate the effectiveness of our
cartographic prior, the last baseline, denoted OSMFixed, projects OSM into the image and
utilizes an empirical estimate of the road width. As shown in Table 4 our approach signifi-
cantly outperforms all baselines in both Bavaria and aerial KITTI datasets. (see qualitative
results in Fig. 34). Fig. 36 shows a comparison to (Yuan and Cheriyadat, 2013).

5.3.2.2 Importance of the features:

Table 5 depicts inference results for different combinations of features. Note that every fea-
ture contributes, and good performance can be achieved without using a road classifier. As
a consequence, we do not need new training data for each different location in the world as
the other features are very robust to appearance changes.

5.3.2.3 Segmenting the world:

Fig. 30 shows qualitative results from the World dataset with our model trained only on
AKITTI. Our model works very well under many complex scenarios even with significant
appearance changes, illustrating the generalization capabilities of our approach. Note that
no re-training is necessary as we do not use the road classifier in our potentials.

5.3.2.4 Domain Adaptation:

We next show our method’s domain adaptation ability. Towards this goal, we trained one
model on Aerial KITTI and evaluate its performance on Bavaria, and vise versa. As shown
in Table 5 our algorithm outperforms all baselines despite the fact that it is trained with
different imagery. Furthermore, performance drops less than 5% Intersection over Union
(IoU) when compared when we train on the same dataset we test on.

5.3.2.5 Processing time:

We implemented our method in C++ without multi-threading and test it on a laptop with an
Intel Core i7-4600M processor. As shown in Table 6, our approach takes less than 0.13 s for
computing all feature accumulators per km of road and less than 0.1 s per km for inference.
The feature computation (road classifier, edge, car detector) relies on external code which
takes around 0.1s per km of road. According to this performance, we estimate our algorithm
could approximately segment all the OSM roads in the world in 1 day using a small cluster
of 10 machines. We use the parallel cutting-plane SSVM of (Schwing et al., 2013) to learn
the parameters of the model. This takes only 1 minute on a desktop computer.

5.3 Experimental Evaluation 67

(a) (b) (c)

Fig. 33. Failure modes: (a) Missing turn lane intersection. (b) The extracted road is too narrow. (c) Road covered by trees.

(Bavaria: Motorway) (Bavaria: Urban)

(AKITTI 1) (AKITTI 2)

Fig. 34. Results on Bavaria and Aerial KITTI.

5.3.2.6 Ground-level Scene Understanding:

In this experiment we show that our enhanced maps can be used to improve semantic seg-
mentation of ground images from KITTI. Towards this goal, we replace the road prior used
in (Wang et al., 2015a) by the estimations of our method. This improves the geographic
unary prior for the road class by 15%, see the Table 7. Qualitative results are shown in Fig.
35.

5.3.2.7 Failure modes and limitations:

Fig. 33 depicts failure modes. (a) At intersections the OSM might not include the turn lanes
and our model cannot recover from this. (b) In some cases our features/weights are not good
for the scene. This is more likely to happen in the strong generalization case. (c) The road can

68

Sky Building Road Sidewalk Vegetation Car

(Wang et al., 2015a) 32.41 59.25 63.01 36.41 7.36 35.65

Ours 32.41 59.10 78.71 41.96 7.36 35.65

Table 7. Our method improves the geographic priors of (Wang et al., 2015a). All values are IoU in %.

Fig. 35. (Top) Our road extracted from aerial images (green) projected into Kitti ground images. (2nd row): Geographical
unary of (Wang et al., 2015a). (3rd row): Geographical unary with our road estimate. (Bottom) Ground truth. Road (pink),
sidewalk (blue), building (red), car (purple).

Image (Yuan and Cheriyadat, 2013) Ours Ground truth

Fig. 36. Comparison to (Yuan and Cheriyadat, 2013): Our approach works significantly better than the baseline.

be (partly) covered, and we only extract the visible part of the road. Additional challenges
are posed by historical city centers were the roads might not be visible as well as developing
countries, where only satellite images with much lower resolution than aerial images might
be available.

6 Fine-grained road segmentation by parsing ground and aerial images 69

6 Fine-grained road segmentation by parsing
ground and aerial images

This chapter describes the paper Gellert Mattyus, Shenlong Wang, Sanja Fidler and Raquel
Urtasun: HD Maps: Fine-grained Road Segmentation by Parsing Ground and Aerial Images,
Conference on Computer Vision and Pattern Recognition (CVPR) 2016, (Mattyus et al.,
2016). The submitted camera ready paper can be found in the Appendix D.

In this paper an approach is presented to enhance existing maps with fine grained segmen-
tation categories such as parking spots and sidewalk, as well as the number and location
of road lanes. This method is able to efficiently estimate these fine grained categories by
doing joint inference over both, monocular aerial imagery, as well as ground images taken
from a stereo camera pair mounted on top of a car. Important to this is reasoning about the
alignment between the two types of imagery, as even when the measurements are taken with
sophisticated GPS+IMU systems, this alignment is not sufficiently accurate. We demonstrate
the effectiveness of our approach on a new dataset which enhances KITTI Geiger et al. (2013)
with aerial images taken with a camera mounted on an airplane and flying around the city of
Karlsruhe, Germany. The method for the alignment between aerial and ground images can
be also applied later for precise self-localization of the vehicle using the extracted detailed
map.

6.1 Related Work

For several decades, researchers from various communities (e.g., vision, remote sensing)
have been working on automatic extraction of semantic information from aerial images. In
the following, we summarize the approaches most relevant to our work.

6.1.1 Aerial image parsing:
Early approaches employed probabilistic models that aimed to produce topologically con-
nected roads. Barzohar and Cooper (1996) defined a probabilistic model that tiled the im-
age into patches, performed road inference inside each patch via dynamic programming,
and then “stitched” together high-confidence patches to ensure road connectivity. Recent
work exploits learned classifiers to perform semantic segmentation. (Mnih and Hinton,
2010, 2012) trained a neural net to classify pixels in local patches as road. They employ
a post-processing step to ensure a consistent road topology across the patches, which is,
however, prone to block-effects. (Wegner et al., 2013) segments the road by defining an MRF
on superpixels. High-order cliques are sampled over straight segments or junctions to en-
courage a road-like network structure. Due to complexity of high order terms a sampling
scheme is used to concentrate on more important cliques. (Chai et al., 2013) samples graph
junction-points using image consistency and shape priors. A full review of this large field
is out of scope of this paper, and we refer the reader to (Mayer et al., 2006) for a detailed
review.

6.1.2 Aerial parsing with maps:
While proven useful in many computer vision and robotics applications (Kalogerakis et al.,
2009; Matzen and Snavely, 2013; Brubaker et al., 2013; Wang et al., 2015a), few works em-
ploy map information for parsing aerial images. Seo et al. (2012a) uses a screenshot of

70

the vector map as a weak source of ground-truth for training a road classifier. (Yuan and
Cheriyadat, 2013) exploit road center-lines from OSM maps as a ground-truth road location
and performs road segmentation by estimating the width of the road. This is done by finding
boundaries of superpixels along the direction of the road, and ignoring dependencies across
different line (road) segments. However, the alignment between OSM and aerial images is
far from perfect. To solve this problem, (Mattyus et al., 2015) proposed a MRF which reasons
about re-positioning the road centerline and estimating the width of the road. Smoothness is
incorporated between consecutive line segments by encouraging their widths to be similar.
In our work we go beyond this approach by introducing a formulation that reasons about
more fine-grained road semantics such as lanes, sidewalks and parking spots, and exploits
simultaneously aerial images as well as ground imagery to infer this information.

6.1.3 Fine-grained road parsing:
Very few works exist that extract detailed segmentation. (Porway et al., 2009) propose a hier-
archical probabilistic grammar to parse smaller-scale aerial regions into roads, buildings, ve-
hicles and parking lots. Classifiers are first employed to generate object/building/vegetation
proposals while the grammar imposes semantic and geometric constraints in order to derive
the final parse. Learning and inference are both hard in grammars, and computationally ex-
pensive sampling techniques typically need to be employed. In our work, we are aiming at
a detailed parsing of the roads into sub-categories. Unlike (Porway et al., 2009), we exploit
OSM information in order to derive an efficient formulation.

The work most related to ours is (Seo et al., 2012b) which exploits the map as a screenshot
of the road vector map to perform road and lane estimation. The authors take a pipeline
approach, where, in the first step, road lane hypotheses are generated based on the output
of the road classifier and detected lane markings. In the second step, the authors provide
heuristics to “track” the lane hypotheses and connect them into a single lane labeling.

6.1.4 Aerial-to-ground reasoning:
Recent work aims to exploit both aerial and the ground-view, mainly for the problem of
geo-localization. In (Lin et al., 2015), a deep neural network is used to match ground images
with aerial images in oblique views. The matches come from facade to facade matching
and therefore cannot be extended to orthographic aerial images. In (Shan et al., 2014), 3D
reconstructions from the ground images are matched to oblique views of aerial images. (Lin
et al., 2013) learn cross-view matching between ground images, aerial orthographic photos
and land cover attributes. This extends the image geolocalization to areas not covered by
ground images. Forster et al. (Forster et al., 2013) match the computed 3D maps of UAVs
and ground robots for localization and map augmentation. This method relies on matching
3D information and therefore needs multiview images both from above and on ground. In
our work, we exploit the maps as well as ground and aerial imagery to perform fine-grained
road parsing. We are not aware of prior work that tackles this problem.

6.2 Fine-grained Semantic Parsing of Roads

We now describe our model that infers fine-grained semantic categories of roads from aerial
and ground images. In particular, we are interested in estimating sidewalks, parking, road
lanes as well as background (e.g., vegetation, buildings). Towards this goal we exploit freely
available cartographic maps (we use OSM), that provide us with the topology of the road
network in the area of interest. Our approach takes as input an aerial image xA, a road

6.2 Fine-grained Semantic Parsing of Roads 71

Fig. 37. Illustration of our model: (a) Parameterization of our approach. Our random variables are the absolute location of
the different region boundaries (e.g., sidewalk) as well as the alignment between air and ground. (b) Our formulation allows
a random variable to take the same state as the previous node, collapsing a region to have 0 width. (c). For each ground-view
image, a random variable models the alignment noise. (d). Projection of our parameterization on the ground-view.

map xM and a set of ground stereo images xG, which are taken by a calibrated stereo pair
mounted on top of a car. The map xM is composed of a set of roads, where each road is
defined as a piece-wise linear curve representing its centerline.

6.2.1 Model Formulation
We formulate the problem as the one of inference in a Markov Random Field (MRF), which
exploits deep features encoding appearance in both aerial and ground images, edge infor-
mation, smoothness in the direction of the road as well as restrictions between parallel roads
to avoid double counting the evidence. Our model encodes each street segment in the aerial
image with 15 random variables encoding all possible combinations of background (B), side-
walk (S), road lanes (L) and parking (P). In particular,

y = (y1, · · · , y15) = (B1,S1,B2,S2, P1,L,P2,S3,B3,S4,B4)

with B1,B4 the rightmost (leftmost) border of the background. We model roads with up to
6 lanes, i.e., L = (L1,L2,L3,L4,L5,L6). We allow all variables (but L6) to take the state of the
previous random variable in the sequence (i.e., yi = yi−1), encoding the fact that some of
these regions might be absent, e.g., there is no parking or sidewalk. This is not the case for
L6 forcing the fact that at least one lane should be present. We define the states of each
random variable to be [−15,15]m from the projection of the OSM centerline in the aerial
image (Fig. 37). This discretization represents pixel increments. Note that while there are
15 random variables, y defines 16 different regions as B1 and B4 are not limited on the
left (right). Each region width is simply defined by wi = yi − yi−1, while the width of B1 is
defined as w1 = −15m+ y1, and the width of B4 as w16 = 15m− y16, since −15m and 15m are
the beginning and end of the state space. Note that the combination (B,S,B,S) is necessary
(both on the left and right), as there are many bike lines in Germany (where our imagery is
captured), and it is not possible to distinguish them from the sidewalk. Fig. 37 illustrates
the model.

Each of our ground images comes with a rough alignment with the aerial image as we have
access to a GPS+IMU and the cameras are registered w.r.t these sensors. This alignment is,
however, noisy with 1.67m error on average. Thus, our model reasons about the alignment
when scoring the ground images. Towards this goal, we define t = (t1, · · · , tn) to be a set of
random variables (one per ground image) representing the displacement in the direction
perpendicular to the OSM road segment. We define the state space of each misalignment to
be ti ∈ (−4m,4m). This is discretized to represent pixel increments.

72

GPS+IMU Our alignment

Fig. 38. Effect of reasoning about alignment: (left) alignment given by GPS+IMU, (right) alignment inferred by our
model. (top) Ground road classifier projected into the aerial image (shown in red). (bottom) Our semantic classes pro-
jected on the ground image. Our joint reasoning significantly improves alignment.

We define the energy of the MRF as to encode the information contained in the ground and
aerial images as well as smoothness terms and constraints on the possible solutions:

E(y,t,xA,xM ,xG) = Eair(y,xA) +Eground(y,t,xG) +Esmooth(y,t,xM) +Econst(y) (53)

We now define the potentials we employ in more detail.

6.2.1.1 Aerial semantics:

We take advantage of deep learning in order to estimate semantic information from aerial
images. In particular, we create pixel-wise estimates of 5 semantic categories: road, sidewalk,
background, building and parking. We exploit the CNN for segmentation (Simonyan and Zis-
serman, 2014; Schwing and Urtasun, 2015) trained on ILSVRC-2014, which we fine-tune
for a 5-label classification task: road, parking spot, sidewalk, building and background. To
train the network we created training examples by extracting patches centered on the pro-
jection of the OSM road segments. If the road segment is too long (i.e., long straight road)
we create an example every 20m. We further perform data augmentation by applying small
rotations, shifts and flips to the training examples. The output of the soft-max is a down-
sampled segmentation. To create our features, we upsample the softmax output using linear
interpolation as in (Chen et al., 2015). To save computation, we only apply the network in
the region of interest (regions of the image that are close to OSM roads). The aerial semantic
potential then encodes the fact that our final segmentation should agree with the semantics
estimated by the deep net. Towards this goal, we define 5 features for each of our 16 regions,
one per label of the deep net. Each feature simply aggregates the output of the softmax in
that region. Recall that each region is defined by two consecutive random variables, e.g. the
first sidewalk is defined by y1, y2, that is B1,S1. We refer the reader to Fig. 37 for an illustra-
tion. While this potential seems pairwise in nature, we can further decompose it into unary
potentials via accumulators A perpendicular to the road direction. These are simply gener-

6.2 Fine-grained Semantic Parsing of Roads 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
c
a
ll

Precision-Recall Curves

road

road*

sidewalk

parking

Fig. 39. Precision-Recall curves for our deep classifier and the road classifier of (Mattyus et al., 2015) marked with * and
in dashed.

alizations of integral images from axis aligned accumulators to accumulators over arbitrary
directions. We thus define

φcl(y
j
i , y

j
i−1) =

∑
p∈Ωj

i (y
j
i ,y

j
i+1)

ϕ(p) =A(yji+1)−A(yji) (54)

with yji the i-th variable of the j-th road segment, and ϕ(p) the softmax output interpolated
at pixel p. To compute this features, we only need 5 accumulators per road segment, one for
each semantic class that the deep net predicts.

6.2.1.2 Aerial edges:

This potential encodes the fact that the location of the boundaries between regions should
be close to image edges. We thus apply the edge detector of (Dollár and Zitnick, 2013) to
detect edges in our aerial images. We then define the potential to be the sum of the edges on
the boundary between consecutive regions. To make it more robust we thicken the boundary
to be of size 3 pixels.

6.2.1.3 Along the road smoothness:

We encode smoothness along the road by encouraging consecutive road segments to be sim-
ilar. In particular, we use the `1 distance between consecutive road estimations in the direc-
tion of the road, i.e.

φsm(yji , y
j+1
i) = |yji − y

j+1
i |

6.2.1.4 Parallel roads:

The regions of close by parallel roads can overlap. To avoid double counting the evidence,
we incorporate an additional constraint that forces S1 of the second road to be bigger or
equal to B4 of the first road or vice versa. We refer the reader to Fig. 37 for an illustration.

6.2.1.5 Road collapse constraints:

We force each variable yi to have a state higher or equal than the previous variable, so that
the order is preserved. Note that equal means that a road can collapse (i.e., does not exist)

φcoll(yi , yi+1) =
{
∞ if yi+1 < yi
0 otherwise

74

(a) Dense urban area. (b) Splitting road plus a bike lane along the street.

Fig. 40. Visualization of our semantic road parsing results using only aerial images. The road lanes are shown with shades
of pink, the sidewalk with blue and the parking spots with yellow.

Aerial Ground

Fig. 41. Left: The ground road detection with red projected into the aerial image after alignment and road layout esti-
mation. Right: The semantic lanes projected back into the aligned ground image. These scenes are all challenging with
parallel roads, parking spots and intersections. The bottom image is especially difficult since it is an urban pedestrian
area. Note that the aerial and ground images were taken with several years difference in different seasons. Pink is road,
blue is sidewalk and yellow marks parking spots.

The only exception is L6, which we force to have non-zero width as otherwise we could have
a road segment without road. Thus

φex(L5,L6) =
{
∞ if L6 ≤ L5

0 otherwise

6.2.1.6 Lane size constraint:

This constraint forces each region, if present, (i.e., if it is not taking state 0) to have a minimal
and maximal size. In particular, we use (1m-3m) for sidewalk, (1.8m-4.5m) for parking and
(2.3m-4.6m) for each road lane. Note that width 0 is allowed so that regions can disappear if
they are not present in the road segment (e.g., we only have two lanes, there is no sidewalk
on the highway). The intervals for the lanes are estimated based on the standards of German
roads, while the sidewalk and parking intervals are computed based on empirical estimates.

6.2 Fine-grained Semantic Parsing of Roads 75

(a) Along Road (b) Perpendicular to Road (c) Along ground image sequence

Fig. 42. BCD: The graph shows a simplified network with two parallel roads (each with 3 random variables) and one
ground image per segment connected to the right road. BCD alternates between three types of updates. (a) Along the road
updates: we optimize over each chain with the same color (while holding all other variables fix). The pairwise terms fold to
unaries (see dashed black lines). (b) Perpendicular to the road updates: we do inference for the nodes with the same color
(holding the rest fix). (c) Along the ground alignments: We minimize only the t variables which are depicted in green. The
y variables are fixed and are depicted in black.

6.2.1.7 Centerline prior:

As our images are well registered with OSM, we include a prior that the centerline of our
model should be close to the centerline of OSM. In particular,

φcen(L3) =
{
||L3 − l||2 if − 7.5 ≤ L3 ≤ 7.5
∞ otherwise

with l the location of the centerline.

6.2.1.8 Ground semantics:

We take advantage of deep learning in order to estimate semantic information from ground
images. We exploit the VGG (Simonyan and Zisserman, 2014) implementation of (Schwing
and Urtasun, 2015) trained on PASCAL VOC, which we fine-tuned to predict the same 5
classes as the aerial semantics (road, parking, sidewalk, building and background). We estimate
the ground plane from the stereo image and project pixels belonging to this plane to the
aerial image via a homography. We then define our ground semantic potential to encourage
the segmentation to agree with the aligned ground image segmentation projected to the
aerial image. Towards this goal, we define 5 features for each of our road regions, each
counting the amount of softmax output for the given class:

φground(tk , y
j
i , y

j
i−1) = G(tk , y

j
i+1)−G(tk , y

j
i)

Note that via the integral accumulator the 3-way potential decomposes into pairwise terms
G(t,y). In this case we only need 5 integral accumulators per ground image.

6.2.1.9 Ground alignment smoothness:

This potential encodes the fact that two consecutive alignments should be similar.

φgsm(tk , tk+1) = |tk − tk+1|

This assumes that GPS+IMU have smooth errors and no outliers.

6.2.2 Inference via Block Coordinate Descent (BCD)
Inference in our model can be performed by minimizing the energy function:

y∗,t∗ = argmin
y,t

E(y,t,xA,xM ,xG)

76

Algorithm 4 Block coordinate descent inference (BCD).
1: Set all alignments t = 0, and initialize y by minimizing Eq. (53) ignoring the along road

smoothness.
2: repeat
3: for for all yj do
4: Minimize Eq. (53) along the road w.r.t yj , holding the rest fixed.
5: end for
6: for all yi at one segment of the road do
7: Minimize Eq. (53) w.r.t yi , holding the rest fixed.
8: end for
9: for all t variables do

10: Minimize Eq. (53) w.r.t t, holding y fixed.
11: end for
12: until no energy reduction or max number iterations

with E(y,t,xA,xM ,xG) defined as in Eq. (53). Unfortunately, inference in our model is NP-
hard, as our graphical model contains many loops. We thus take advantage of block coor-
dinate descent to perform efficient inference. We refer the reader to Alg. 4 and Fig. 42 for
inference steps.

Our Block Coordinate Descent algorithm alternates by doing inference in the direction along
the road, doing inference in the direction perpendicular to the road and aligning the ground
and aerial images. Note that when a road is not connected to a parallel road, the second step
results in a graphical model with 15 variables, while when there are k parallel roads, this
involves doing inference over a graphical model with 15k variables. Note also that in order
to minimize the same objective, each of these iterations is performing conditional inference,
and the pairwise potentials involving variables that are not optimized collapse to unaries.

6.2.3 Training with SSVM
We employ Structured Support Vector Machines (Tsochantaridis et al., 2005) to learn the
weights of the aerial unaries and the smoothness in our model. In particular, we use the
parallel cutting plane implementation of (Schwing et al., 2013). We employ a combination of
two loss functions. The first is a truncated L2 loss: `data = min(||yji −ŷ

j
i ||

2,100m2), encouraging

our prediction yji to be close to the ground truth ŷji . We compute ŷji by performing inference
in our model with features computed from the ground truth annotation (segmentation). The
second loss term encourages smoothness of the prediction along the road, `sm = |yji − y

j+1
i |.

Note that the geometrical constraints in our model are either 0 or∞ and are not trained.

6.3 Experimental Evaluation

We collected a new dataset which we call Air-Ground-KITTI, which is composed of both
ground images from the KITTI tracking benchmark (Geiger et al., 2013) and newly acquired
orthorectified aerial images over the same area. We neglected the KITTI sequences where
the car is mostly static, resulting in 20 KITTI sequences for a total of 7603 ground stereo
images. We annotated every 30th ground image with 4 semantic classes (parking, sidewalk,
road, building). The aerial images were acquired by a DSLR camera mounted on an airplane
and projected on the earth surface with 9 cm/pixel GSD. We split the data into 10 training
and 10 test aerial image/KITTI sequences, with special care to avoid overlaps in the aerial
images.

6.3 Experimental Evaluation 77

M
od

el
A

ve
ra

ge
R

oa
d

Si
de

w
al

k
Pa

rk
in

g

Io
U

F1
Io

U
F1

P
r.

R
.

EN
Io

U
F1

P
r.

R
.

Io
U

F1
P

r.
R

.

(M
at

ty
u

s
et

al
.,

20
15

)
-

-
62

.1
76

.4
68

.0
87

.0
-

-
-

-
-

-
-

-
-

(M
at

ty
u

s
et

al
.,

20
15

)D
ee

p
U

na
ry

*
-

-
64

.4
78

.4
66

.7
94

.7
-

-
-

-
-

-
-

-
-

L
an

e
43

.6
59

.6
61

.9
76

.5
82

.8
71

.0
0.

73
0

31
.8

48
.3

67
.2

37
.7

37
.0

54
.1

58
.5

50
.3

L
an

eP
ar

al
le

l
44

.8
60

.3
66

.5
79

.9
85

.0
75

.4
0.

54
3

31
.6

48
.0

69
.8

36
.6

36
.1

53
.1

70
.8

42
.4

L
an

eR
oa

d
45

.4
61

.6
61

.9
76

.4
82

.7
71

.0
0.

70
7

38
.3

55
.4

62
.4

49
.7

36
.1

53
.1

52
.2

54
.1

L
an

eR
oa

d
Pa

ra
ll

el
48

.6
64

.3
68

.0
80

.9
83

.5
78

.5
0.

55
5

39
.5

56
.6

63
.5

51
.1

38
.4

55
.5

63
.8

49
.1

L
an

eR
oa

d
Pa

ra
ll

el
**

41
.9

58
.5

54
.9

70
.9

86
.9

59
.9

0.
55

9
34

.9
51

.7
68

.7
41

.5
35

.8
52

.7
69

.9
42

.3

Fu
ll

**
42

.0
58

.6
55

.3
71

.2
86

.8
60

.4
0.

55
6

34
.9

51
.7

68
.7

41
.5

35
.8

52
.7

69
.9

42
.3

Ta
bl

e
8:

Pe
rf

or
m

an
ce

fo
r

th
e

se
m

an
ti

c
cl

as
se

s
(i

.e
.r

oa
d,

pa
rk

in
g

sp
ot

,s
id

ew
al

k)
w

it
h

va
ri

ou
s

m
od

el
s

an
d

th
e

tw
o

ba
se

li
ne

s.
T

he
va

lu
es

ar
e

in
%

,e
xc

ep
t

EN
w

hi
ch

is
th

e
av

er
ag

e
ro

ad
la

ne
nu

m
be

r
l 1

er
ro

r
w

it
h

re
sp

ec
t

to
th

e
or

ac
le

.*
M

ar
ks

th
e

m
et

ho
d

of
M

at
ty

u
s

et
al

.
(2

01
5)

w
it

h
ou

r
d

ee
p

ro
ad

cl
as

si
fi

er
.T

he
la

st
tw

o
ro

w
s

m
ar

ke
d

w
it

h
**

ev
al

u
at

e
on

ly
ov

er
ar

ea
s

w
he

re
gr

ou
nd

im
ag

es
ar

e
al

so
av

ai
la

bl
e.

78

(a) (b)

(c) (d)

Fig. 43. It is hard to estimate the number of lanes if there are no lane markings. (a) Our method, (b) Oracle (i.e., our method
with ground truth potentials). (c) Dense, urban pedestrian streets are difficult to estimate. (d) Our model is not intended
for intersections, as it does not reason about turn lanes.

We manually annotated the aerial images with 4 categories (parking, sidewalk, road, building)
as closed polygons and the lane markings as polylines. This took 70h of annotation, at a
mean of 21h/km2, the area is 3.23 km2.

To perform fine-grained segmentation using both aerial and ground images, we estimate
a homography that transforms the ground plane in KITTI to the UTM coordinate system
based on the KITTI’s GPS+IMU measurements and the camera calibration. We assign each
ground image to the closest parallel road segment. Our model then refines this estimate in
the direction perpendicular to each road segment. We process every 5th ground image in
the sequence.

As metrics for the fine-grained segmentation we calculate the pixelwise Intersection over
Union (IoU), Precision, Recall and F1 metrics for three classes (i.e. road, parking, sidewalk).
Note that we only measure the areas laying in the area of interest (i.e. ±15m around the
road map centerline). We consider two parallel roads overlapping over the same area as a
serious error. To reflect this, we handle these areas as if they were background. The metrics
in Table 8 are calculated according to this.

For the roads, we additionally compute whether we have estimated the correct number of
lanes. This is measured as the average `1 error in terms of number of lanes (EN). Note that
if there are no lane markings, estimating the number of lanes is very difficult. Fig. 43 (a-b)
shows this difficulty.

In our experiments, we compare our approach to the state-of-the-art method of (Mattyus
et al., 2015), which uses OSMs to estimate road width. We also tested different model con-
figurations for our approach. We refer to Lane as a model that employs Aerial semantics,
Aerial Edges, Road collapse constraints, Lane size constraint and Centerline prior energy terms.
Inference is done independently for each road segment via dynamic programming along
the yj = y

j
1, · · · , y

j
15 chains. We refer by LaneParallel to a model where we additionally in-

clude the constraint between nearby parallel road. We refer by LaneRoad as a model that

6.3 Experimental Evaluation 79

GPS+IMU [m] Ours [m]

Alignment error 1.67 0.57

Table 9. Ground to air image misalignment based on the camera calibrations (GPS+IMU) and after our alignment measured
in meters. Using ±4 meter interval.

contains all the potentials in Lane plus smoothness along the road. We apply BCD inference
by alternating between the chains perpendicular to the road (the lanes) and along the roads
(segments). We refer by LaneRoadParallel a model that contains all potentials but the ground.
Finally, Ground contains all potentials. We evaluate this case only where ground images are
available.

6.3.1 Comparison to the state-of-the-art:
As shown in Table 8, our method outperforms (Mattyus et al., 2015) in almost all metrics,
even when we apply our deep features instead of their road classifier in their method. Fur-
thermore, we retrieve more semantic categories such as sidewalk, individual road lanes and
parking. The constraint between parallel roads is important to achieve good results on roads.
Without it, our model cannot outperform (Mattyus et al., 2015), which has this constraint.

6.3.2 Deep semantic features in aerial Images:
We show the performance of our Deep Network in Fig. 39. Note that it is much better than
the road classifier of (Mattyus et al., 2015).

6.3.3 Alignment between aerial and ground images:
As shown in Table 9 and Fig. 38 reasoning about the alignment between ground and aerial
images while doing fine-grained segmentation improves the alignment significantly.

6.3.4 Qualitative Results:
We visualize our results when using only aerial images in Fig. 40, and when using joint aerial
and ground reasoning in Fig. 41. Our approach is able to estimate well the lanes, sidewalk
and parking as well as the alignment between the ground and the aerial images.

6.3.5 Ablation studies:
As shown in Table 8, the metrics for different versions of our model are fairly similar, how-
ever qualitatively, as we add more potentials, the results get better. This is illustrated in
Fig. 43 (c), where the OnlyLane model moves the middle road to a parallel road resulting in
a noncontinuous structure. In contrast, the LaneRoadParallel model prevents overlaps and
favors smoothness, see the Fig. 43 (d). Including the ground images only slightly improves
performance. We believe this could be overcome by using stronger features in the ground
images, i.e., leveraging the full 3D point cloud, not just the ground plane. Note that since
our approach gives us very precise alignments between the ground and the aerial images it
could be used to enhance OSM with object locations, e.g. traffic signs.

6.3.6 Inference time:
Inference in our full model takes 6 seconds per km of road, with a single thread on a laptop
computer. Note that BCD can easily be parallelized.

80

6.3.7 Limitations:
Our model is designed for individual roads and it does not reason about turning lanes con-
necting different roads at intersections (see Fig. 43 (d)). Dealing with such scenarios is part
of our future work. Semantic segmentation from aerial images reasons mainly about the
visible parts of the street. Therefore covered areas (e.g. by building, bridges, trees) can be a
problem. However, when ground images are available, our approach can handle this prob-
lem. Our aerial images were acquired in early spring, and thus trees occluding the roads is
not a big problem.

7 Conclusion and Outlook 81

7 Conclusion and Outlook

7.1 Summary

This thesis presents four novel approaches to augment information of road maps, aerial and
ground images: Vehicles are detected in aerial images. The geolocation of aerial images is
estimated using a road map. Aerial images are parsed to enhance the road maps by estimat-
ing the road width and correcting misalignments. Aerial and ground images are processed
jointly with existing maps to extract the fine-grained road layout and to improve the align-
ment between the different image types.

The proposed vehicle detection method applies Integral Channel Features in a Soft Cas-
cade structure for a binary detector distinguishing vehicles and background. These allows
to employ various expressive features resulting in good detection performance while the
computation remains still fast, i.e. 69% recall with 86% precision is achieved on the DLR
3K Munich dataset of 21 Megapixel images and the computation takes only 4.4 seconds on
a single CPU core. In contrast to other fast methods, this approach does not need a prior
about the streets in the images and hence it can work on original frame images without
any orthorectification and geolocation. This is a practical property, since it allows the de-
tection of the vehicles outside of the known roads or, as shown by this thesis, the tracks of
the detected vehicles can be leveraged to geolocalize aerial images. Aggregating classifiers
to handle different orientations of the vehicles delivers better performance and since the
computed features can be reused the computation increase is sublinear by the number of
extra classifiers, i.e. 2.7 s is needed for a single classifier and 4.4 s for 8 classifiers. The de-
tected vehicles can be further classified by their type. A small neural network processing
HOG features can distinguish between cars and trucks with 98% accuracy in the DLR 3K
Munich dataset containing several thousand vehicles. A similar neural network can estimate
the orientation of the vehicles with 84% correctness on the same data. The proposed detec-
tor delivering both robust performance with limited computational demand is suitable for
being applied in real-time airborne road traffic extraction system.

Moving cars can be reliably detected and tracked in aerial image sequences, because vehicle
detectors (e.g. the detector presented in this thesis) can deliver decent performance and the
motion information is a strong a cue enabling the rejection of false positives. By assuming
that cars drive on roads, the car trajectories can be considered an incomplete representation
of the road network and features can be calculated, e.g. the distances between roads. The
presented results suggest that these road features tend to be so unique that they can be ap-
plied to recognize a certain spot in the road network (defined by the road map) and thus
function as geolocalization. The proposed Polyline Based Geometric Hashing (PLBGHash-
ing) method is selective for the distances between different roads, while being invariant to
rotation and translation, it is able to handle the ambiguity of the assignment between car
trajectories and the line segments of roads, it can handle missing line segments during query
and it allows fast search also over a larger area. In the conducted experiments, the geomet-
ric hashing based search could rank the correct location in the top 100 13 times out of 20
over a search area of 22500 km2 with 32000 km road length. The shortlist provided by the
PLBGHashing can be verified by robust chamfer matching between the road map and the
extracted vehicle trajectories. As a result the correct location is ranked as the top 1 15 times
out of 20 on the search area of 22500 km2. On a smaller, 49 km2, search area the location is
found 18 times correctly.

Enhancing the maps with the road width information by parsing aerial images needs pixel
level analysis of the images and the possible misalignments between the map and the aerial

82

images have to be handled as well. Considering the problem as semantic segmentation
would need to reason about many variables and the priors typical for roads (e.g. smoothness
along the road, straight lines) could be expressed only by higher order potentials leading to
complex inference problems. The presented approach employs the map data to formulate
the problem as one of inference in a MRF reasoning directly about the width of the road
and the alignment between the imagery and the map. This approach preserves the topol-
ogy of the road inherently, the data terms of the MRF can be calculated efficiently via non
axis-aligned integral images and the smoothness of the roads can be expressed as a pair-
wise term, as well as the constraint that two parallel roads should not overlap. The graph
of one road in this formulation is a chain enabling efficient and exact inference via dynamic
programming. In case of parallel roads, fast BCD approximate inference is performed. The
method can achieve 72% IoU in a challenging dataset, while the inference only takes 0.1
second per km of road. Importantly, the parameters of the MRF are trained efficiently by
SSVMs and the learned model can generalize well to the whole world.

The fine-grained road layout is extracted in form of the number and width of road lanes,
as well as the presence and size of sidewalks and parking spots by analyzing aerial and
ground images and leveraging existing road maps defining the road centerline. The prob-
lem is formulated as one of inference in an MRF reasoning about the road layout as well
as the alignment between the aerial image, the map and the ground image sequence in a
joint energy function. The road layout is defined by the distances of the boundaries be-
tween lanes. This defines a chain perpendicular to the road for each segment of the road.
The semantic information of the images is extracted by a deep neural network providing
pixelwise predictions for 5 classes: road, sidewalk, parking spot, building and background.
These pixelwise predictions are summed inside the lanes. The lane boundaries are expected
to be aligned with edges in the image, therefore an edge detector is applied and formulated
as unary term. The prior knowledge about the width of the lanes and the constraints of the
road layout are expressed as pairwise terms enabling robust estimation also in case of miss-
ing visual evidence (missing lane markings). The smoothness of the lanes along the road is
expressed also by pairwise terms. The inference problem is solved by BCD along chains per-
pendicular and parallel to the roads as well as in the ground image sequence. The approach
is evaluated on a dataset augmenting KITTI (Geiger et al., 2012) by annotated aerial images:
the IoU metric is 68% for the road lanes and 39%, 38% for the challenging sidewalk and
parking spot categories respectively. When ground images are applied jointly with aerial
images the MRF reasons also about the alignment between the two perspectives. The image
evidence in the two imagery for the road layout is aligned by a translation perpendicular
to the road. Instead of registering the images directly, they are both aligned to a joint road
layout. This method is robust to visual appearance differences reducing the misalignment
between the two imagery to 0.6 meters, significantly lower than the 1.7 m provided by so-
phisticated GPS+IMU systems. This allows the application of the detailed road layout later
for precise, lane-wise visual self-localization within the road.

7.2 Improvements and future work

The individual methods could be enhanced by various improvements, for instance:

� The performance of the vehicle detector could be further improved by using a deep neural
network after the binary detector like R-CNN in (Girshick et al., 2014). Since this has
to be applied only to a fraction of the image, the speed of the detector would be still
fast. Alternatively, a complexity aware cascade could be created as in (Cai et al., 2015)
which could achieve higher performance with similar or even faster speed than simpler
detectors.

7.2 Improvements and future work 83

� The presented method to geolocalize aerial images could be extended to address more
general scenarios. A road detector could be applied to enable localization also in the case
of missing traffic. The matching could be extended to additional object categories which
are covered by maps as well, e.g. building, rivers, forests, etc. The 3D structure extracted
from the images could be also applied as a future, especially in areas with considerable
relief.

� The fine-grained road layout parsing could be extended with more detailed categories,
e.g. building footprints, driving direction on the road, etc., extend the method to reason
about the turning lanes at intersections and add additional objects visible only in the
ground images, e.g. traffic signs, traffic lights.

For the creation and maintenance of detailed, up-to-date maps multiple image sensors are
available from satellite images, through aerial and UAV images to imagery acquired by ve-
hicles or smart phones. These sensors have different spatial resolution, spatial coverage,
acquisition frequency (revisit time), different perspective and geometric accuracy, but they
can be applied jointly for improving the maps. A crucial question is the precise registration
of these different sensors. As presented by this thesis, detailed maps are not only the goal of
analyzing diverse images, but they can also serve as the feature enabling the registration of
the different sensor data.

In the current standard approaches the main image processing steps are handled indepen-
dently, e.g. stereo matching, orthorectification, semantic analysis. However, these tasks are
correlated, for instance building segmentation and stereo matching in aerial images. A sys-
tem solving these problems jointly, in a holistic approach, would probably deliver better
results than systems tackling the different problems independently. Creating an efficient
holistic system solving the relevant image analysis tasks by using different sensor inputs
and maps jointly will be an important goal and challenge (probably for a longer time) in
both the remote sensing and the computer vision community.

84

List of Abbreviations

ACF Aggregated Channel Feature
ADAS Advanced Driver Assistance Systems
BCD Block Coordinate Descent
CNN Convolutional Neural Network
CPU Central Processing Unit
CRF Conditional Random Field
DARPA Defense Advanced Research Projects Agency
DPM Deformable Part Model
DSLR Digital Single-Lens Reflex
DSM Digital Surface Model
GCP Ground Control Point
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphics Processing Unit
GSD Ground Sampling Distance
HMM Hidden Markov Model
HOG Histogram of Oriented Gradients
ICF Integral Channel Feature
IID independent and identically distributed
IMU Inertial Measurement Unit
IoU Intersection over Union
ISPRS International Society for Photogrammetry and Remote Sensing
LIDAR Light Detection And Ranging
MAP Maximum a prosteriori
MRF Markov Random Field
OSM OpenStreetMap
PCL Point Cloud
PLBGHashing Polyline Based Geometric Hashing
PR Precision-Recall
ReLu Rectified Linear Unit
ROI Region of Interest
SIFT Scale-Invariant Feature Transform
SRTM Shuttle Radar Topography Mission
SSVM Structured Support Vector Machine
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
USGS United States Geological Survey
UTM Universal Transverse Mercator
WGS84 World Geodetic System 1984

LIST OF FIGURES 85

List of Figures

1 Illustration of the objectives 1 and 2. The detected vehicles are shown
with colored bounding boxes, different classes with different color. Black
shows false-negative (missing) cars. The bottom image shows aerial images
localized over a larger area. The image is transformed into the road map.
The red color in the image shows the extracted car tracks used to match to
the map. The red dots in the Google Earth image shows the location of the
image. 4

2 Illustration of the objectives 3 and 4. The extracted road width is shown by
yellow color. The two bottom image shows the road layout extracted jointly
in the aerial and the ground (bottom) image. The coloring is pink: road,
yellow: parking lane, blue: sidewalk. The detected road from the ground is
projected into the aerial image and it is shown by red color. 6

3 An illustration of an SVM when the data is linearly separable (a). If the data
is not linearly separable a trade-off is needed between the size of the margin
and the mislabeling of the training data (b). 12

4 An illustration of a binary classification tree predicting if the user of a
website will click on an advertisement or not. The leaves (squares) are the
class label output, the nodes (circles) are the binary decisions over an input
feature. 13

5 Common non-linear functions for neural networks. Sigmoid, hyperbolic
tangent and rectified linear unit. 15

6 Illustration of the forward pass (prediction) of a neural network with one
hidden layer. 16

7 Illustration of the backward pass of a neural network with one hidden layer.
The backpropagation of the Loss function gradient is shown in orange, the
gradients used for the parameter update are shown in red and the forward
pass is in black. The regularization term R(w,b) is not shown. View this
figure rotated. 17

8 Illustration of a CNN where the first convolution layer has a kernel size
of 5 and the second 3. The max pooling layers have a receptive field of 2.
The convolution is padded with zeros. The edges in one convolution layer
with the same dash type have the same weights. As we move forward in the
network the spatial resolution decreases due to the max pooling. 18

9 From (Zeiler and Fergus, 2014). Visualizing different layers of a deep
convolutional neural network. The left images show reconstructed patterns
which cause high activations in a feature map. The right images show the
corresponding image patches. The reconstructed patterns are projected down
to pixel space using the deconvolutional network approach of (Zeiler and
Fergus, 2014). The first layers extract simpler features (e.g. edges, corners,
etc.), while the later layers describe complex shapes with greater variance. 19

10 A MRF with 3 variables defined by a graph (a) and two possible factorizations
(b-c). The first (b) defines pairwise potentials Ψ (yi , yj), i , j. The second (c)
defines one third order potential Ψ (y1, y2, y3). 21

11 The random variables y1, y2 are conditioned on x1,x2 in a CRF (a). The
potentials Ψ (y1,x1) and Ψ (y2,x2) in (b) can be simplified to unaries
Ψ (y1),Ψ (y2) (c). 21

86 LIST OF FIGURES

12 Trellis diagram illustration of the MAP inference in a chain with 5 variables
each having 4 states. The y∗ = argminy(E(y)) state sequence is the shortest
path if the distance is the sum of the unary potentials visited and the
pairwise potentials (edges) connecting the variables. The shortest path (i.e.
lowest energy) is shown in red. 24

13 The graph is shown in (a). An iteration for updating a row of variables is
shown in (b), while (c) depicts an inference iteration in a column. The gray
circles show variables which are kept fix. The dashed lines show the pairwise
potentials folded to unaries. 25

14 From (Weyand et al., 2016). Worldwide image based localization. At the
top the query images are shown. The bottom map shows the ground truth
position (yellow), the human location guess (green) and in blue the automatic
guess of (Weyand et al., 2016). 31

15 From (Brubaker et al., 2013). Examples for localizing a car by visual
odometry and a map. ”The left most column shows the full map region
for each sequence, followed by zoomed in sections of the map showing the
posterior distribution over time. The black line is the GPS trajectory and
the concentric circles indicate the current GPS position. Grid lines are every
500m. ” 32

16 From (Ren et al., 2015a). Object detection outputs of the method. The
bounding boxes of different object classes are shown in different colors, with
the class name and a confidence score. 34

17 From (Chen et al., 2015). In each column the left image is the input, the
middle image shows the labels produced by the fully convolutional neural
network and the right image shows the output of the fully connected CRF.
Different colors represent different classes. Note that the coarse output of the
deep network if refined by the CRF. 35

18 Proposed vehicle detection framework. The input image is first evaluated
by the multi-direction vehicle detector. A sliding window goes along x-
and y-axes. Features are extracted from the detection window and sent
to trained binary classifier. The binary classifier classify whether current
detection window contains a positive object or not. Detected vehicles are
then processed for estimating their orientations and categories. 37

19 The training samples for the aggregated classifier method are split into
multiple groups. 40

20 (a) Evaluation of the Integral Channel Features. Gradient histogram channels
play the most important role while gradient magnitude channel has least
affects on the final result. (b) Detection result of aggregated detectors. (c)
Performance after rescaling the image with different factors. (d) Orientation
estimation error histogram using artificial neural network with 16 output
classes. 41

21 Detection results from the DLR test images. Green and cyan bounding boxes
are the correct detected samples, representing cars and trucks, respectively.
Black bounding boxes are the missed ones and red are the false positives.
The results show that our method works well in most scenarios (a)(b)(c),
however the complicated rooftops or outdoor swimming pools may lead to
false positive detections (d). We also evaluated our method on the dataset
presented in Moranduzzo and Melgani (2014a), Moranduzzo and Melgani
(2014b), the detection results are shown in (e)(f). 42

LIST OF FIGURES 87

22 Illustration. We search the geolocation of aerial image sequences. The red
dots on the map show the ground truth positions. The photos can be located
by matching the road traffic (in red) in the image to the road network (in
black). The matching tracks are marked with yellow circles in the images.
The search area can be as large the shown map. The accuracy of the location
is around 25 m. 46

23 (a): The blue and green polylines are different roads. The x-y is the original
coordinate system of the road database. The line segment p1-p2 defines
the basis (u,v) with the center point and the direction. The grid points
intersected by line segments are the indices for the hash table. (b): The p
points are the road vertices (from the database), the t points are the track
vertices extracted in the mosaic image (with different color for different cars).
The red arrows are the road bases in the hash table. The basis B0 from the
track end points t1-t3 is shifted along the track. At B+2 position the track
basis lies in the the same grid row, as the road basis. 50

24 The distance images used for calculating the verification score at Suburban
1 image sequence. On top the tracks are shown with green (inlier) and red
(outlier) in the distance image to the road network. In the bottom the road
network (green) is shown in the distance image to classified road pixels in
the image. 52

25 Completeness over top N. 53

26 The largest search area for each image sequence where the correct verified
geolocation was in the TOPN in km2 54

27 Geolocalization results. The mosaic images are projected into the street
network. The roads are in black, the tracks are highlighted with red lines,
the locations of votes from the PLBGHashing are marked with yellow circles.
(When an image scene is only partially overlapped with a model during the
shortlist retrieval, there are no vote circles at every matching track-road
locations (e.g. on Urban 1.)) On (d) the geolocalized mosaic image with the
tracks is overlaid in Google Earth. All these scenes were correctly located
on a 22500 km2 search area except (f). The (f) shows the scene Industrial
1 located false on a 4 km2 search area. The causes for this are; the scene
contains 2 roads which makes it inherently ambiguous, multiple tracks are
extracted on a parking lot, outside of the road network. Since there are more
tracks in the parking lot than on the road, the verification matching handles
the correct tracks as outliers. The color based road detection also does not
work properly, since a parking lot has similar color as the road. The error is
approximately 100m. 55

28 Road segmentation is challenging due to shadows, occluding trees
and vehicles which make the appearance heterogeneous as well as
OSM/projection misalignment errors. 57

29 Illustration of the road centerline with the width parameterized by the center
offset h and symmetrical width y. The direction and length of the rectangle
Ωi is defined by the pi ,pi−1 points given by the street database. The context
is depicted as Σ. 58

30 Segmentation results on several cities over the world using the edge,
homogeneity, context, car and overlap features. Note that the MRF was
trained only on 1.5 km2 imagery from the Aerial KITTI dataset. 62

88 LIST OF FIGURES

31 The factor graph of the proposed graphical model in case of a single road.
The unary potentials are pairwise defining loops in the graph (a). By merging
the variables gji = (hji , y

j
i) the graph can be reduced to a chain (b). 63

32 Illustration of our BCD inference. Note that gji = (hji , y
j
i). (a) Graphical model

consisting of 3 roads that have overlapping constraints (i.e., vertical edges).
We alternate between performing inference (b) over each road one at a time
(red, green, blue), and (c) along chains on the vertical direction encoding
the horizontal constraints, also one at a time (orange, yellow, pink, green,
purple). Note that these operations involve conditioning, and thus the
pairwise potentials between a variable in the chain and a connected variable
not in the chain are folded as unaries. 64

33 Failure modes: (a) Missing turn lane intersection. (b) The extracted road is
too narrow. (c) Road covered by trees. 67

34 Results on Bavaria and Aerial KITTI. 67

35 (Top) Our road extracted from aerial images (green) projected into Kitti
ground images. (2nd row): Geographical unary of (Wang et al., 2015a). (3rd
row): Geographical unary with our road estimate. (Bottom) Ground truth.
Road (pink), sidewalk (blue), building (red), car (purple). 68

36 Comparison to (Yuan and Cheriyadat, 2013): Our approach works
significantly better than the baseline. 68

37 Illustration of our model: (a) Parameterization of our approach. Our
random variables are the absolute location of the different region boundaries
(e.g., sidewalk) as well as the alignment between air and ground. (b) Our
formulation allows a random variable to take the same state as the previous
node, collapsing a region to have 0 width. (c). For each ground-view image,
a random variable models the alignment noise. (d). Projection of our
parameterization on the ground-view. 71

38 Effect of reasoning about alignment: (left) alignment given by GPS+IMU,
(right) alignment inferred by our model. (top) Ground road classifier
projected into the aerial image (shown in red). (bottom) Our semantic
classes projected on the ground image. Our joint reasoning significantly
improves alignment. 72

39 Precision-Recall curves for our deep classifier and the road classifier of
(Mattyus et al., 2015) marked with * and in dashed. 73

40 Visualization of our semantic road parsing results using only aerial images.
The road lanes are shown with shades of pink, the sidewalk with blue and
the parking spots with yellow. 74

41 Left: The ground road detection with red projected into the aerial image after
alignment and road layout estimation. Right: The semantic lanes projected
back into the aligned ground image. These scenes are all challenging
with parallel roads, parking spots and intersections. The bottom image is
especially difficult since it is an urban pedestrian area. Note that the aerial
and ground images were taken with several years difference in different
seasons. Pink is road, blue is sidewalk and yellow marks parking spots. 74

LIST OF FIGURES 89

42 BCD: The graph shows a simplified network with two parallel roads (each
with 3 random variables) and one ground image per segment connected to
the right road. BCD alternates between three types of updates. (a) Along
the road updates: we optimize over each chain with the same color (while
holding all other variables fix). The pairwise terms fold to unaries (see
dashed black lines). (b) Perpendicular to the road updates: we do inference
for the nodes with the same color (holding the rest fix). (c) Along the ground
alignments: We minimize only the t variables which are depicted in green.
The y variables are fixed and are depicted in black. 75

43 It is hard to estimate the number of lanes if there are no lane markings. (a)
Our method, (b) Oracle (i.e., our method with ground truth potentials). (c)
Dense, urban pedestrian streets are difficult to estimate. (d) Our model is not
intended for intersections, as it does not reason about turn lanes. 78

90 LIST OF TABLES

List of Tables

1 Performance comparison between different methods. The UAV dataset is
from Moranduzzo and Melgani (2014a,b) 44

2 Confusion matrices of type classification using different cropping
configurations. a : Actual class / Predicted class. b : The number of truck
type is increased by random transformation of the existing samples. 44

3 Comparison of computation times. *Running on the GPU. 45

4 Performance of our method vs baselines. The IoU and F1 values are in %,
while ∆h,∆y are the mean absolute error of the offset and width measured in
meters. * the road unary of (Winn et al., 2005) is applied. ** is the method of
(Yuan and Cheriyadat, 2013). 59

5 Performance on Bavaria and Aerial KITTI with various features
configurations. The IoU and F1 values are in %, while ∆h,∆y are the mean
absolute error of the offset and width measured in meters. The ‖ symbol
denotes the overlap potential between parallel roads. The other abbreviations
are E: edge feature, Ho: homogeneity feature, Co: context feature. 60

6 Running time for feature accumulator calculation and inference under
various configurations. In sec per km of road. 66

7 Our method improves the geographic priors of (Wang et al., 2015a). All
values are IoU in %. 68

8 Performance for the semantic classes (i.e. road, parking spot, sidewalk) with
various models and the two baselines. The values are in %, except EN which
is the average road lane number l1 error with respect to the oracle. * Marks
the method of Mattyus et al. (2015) with our deep road classifier. The last
two rows marked with ** evaluate only over areas where ground images are
also available. 77

9 Ground to air image misalignment based on the camera calibrations
(GPS+IMU) and after our alignment measured in meters. Using ±4 meter
interval. 79

REFERENCES 91

References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S., 2012. Slic superpixels compared

to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI) .

Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B. C., Chen, J., Chrzanowski,
M., Coates, A., Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner, C., Han, T., Hannun, A. Y., Jun, B.,
LeGresley, P., Lin, L., Narang, S., Ng, A. Y., Ozair, S., Prenger, R., Raiman, J., Satheesh, S., Seetapun,
D., Sengupta, S., Wang, Y., Wang, Z., Wang, C., Xiao, B., Yogatama, D., Zhan, J., Zhu, Z., 2015. Deep
speech 2: End-to-end speech recognition in english and mandarin. CoRR abs/1512.02595.

Barron, A. R., 1993. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information Theory 39 (3): 930–945.

Barrow, H. G., Tenenbaum, J. M., Bolles, R. C., Wolf, H. C., 1977. Parametric correspondence and
chamfer matching: two new techniques for image matching. In: Proceedings of the 5th interna-
tional joint conference on Artificial intelligence - Volume 2, IJCAI’77, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 659–663.

Barzohar, M., Cooper, D., 1996. Automatic finding of main roads in aerial images by using geometric-
stochastic models and estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) .

Bishop, C. M., 2006. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Borgefors, G., 1986. Distance transformations in digital images. Comput. Vision Graph. Image Pro-
cess. 34 (3): 344–371.

Boser, B. E., Guyon, I. M., Vapnik, V. N., 1992. A training algorithm for optimal margin classifiers. In:
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, ACM,
New York, NY, USA, 144–152.

Bourdev, L., Brandt, J., 2005. Robust object detection via soft cascade. In: Conference on Computer
Vision and Pattern Recognition (CVPR), 2005., Vol. 2, IEEE, 236–243.

Bramer, M., 2007. Principles of Data Mining (Undergraduate Topics in Computer Science). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.

Breiman, L., 2001. Random forests. Machine learning 45 (1): 5–32.
Brubaker, M. A., Geiger, A., Urtasun, R., 2013. Lost! leveraging the crowd for probabilistic visual self-

localization. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2013, 3057–
3064.

Cai, Z., Saberian, M., Vasconcelos, N., 2015. Learning complexity-aware cascades for deep pedestrian
detection. In: International Conference on Computer Vision (ICCV) 2015.

Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) 8 (6): 679–698.

Chai, D., Forstner, W., Lafarge, F., 2013. Recovering line-networks in images by junction-point pro-
cesses. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A. L., 2015. Semantic image segmenta-
tion with deep convolutional nets and fully connected crfs. In: International Conference on Learn-
ing Representations (ICLR) 2015.

Chen, Q., Koltun, V., 2014. Fast mrf optimization with application to depth reconstruction. In: Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2014.

Chen, X., Xiang, S., Liu, C., Pan, C., 2014. Vehicle detection in satellite images by hybrid deep con-
volutional neural networks. Geoscience and Remote Sensing Letters, IEEE 11 (10): 1797–1801.

Cortes, C., Vapnik, V., 1995. Support-vector networks. Machine Learning 20 (3): 273–297.
Dahl, G. E., 2015. Deep learning approaches to problems in speech recognition, computational chem-

istry, and natural language text processing. Ph.D. thesis, University of Toronto.
Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: Conference on

Computer Vision and Pattern Recognition (CVPR), 2005, Vol. 1, IEEE, 886–893.

92 REFERENCES

Dollár, P., Appel, R., Belongie, S., Perona, P., 2014. Fast feature pyramids for object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) .

Dollár, P., Tu, Z., Perona, P., Belongie, S., 2009. Integral channel features. In: British Machine Vision
Conference (BMVC), 2009., Vol. 2, 5.

Dollár, P., Zitnick, C. L., 2013. Structured forests for fast edge detection. In: International Conference
on Computer Vision (ICCV), 2013.

Dollár, P., Zitnick, C. L., 2015. Fast edge detection using structured forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI) .

Duan, K.-B., Keerthi, S. S., 2005. Multiple Classifier Systems: 6th International Workshop, MCS 2005,
Seaside, CA, USA, June 13-15, 2005. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
Ch. Which Is the Best Multiclass SVM Method? An Empirical Study, 278–285.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., Zisserman, A., 2010. The pascal visual
object classes (voc) challenge. International Journal of Computer Vision (IJCV) 88 (2): 303–338.

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., Ramanan, D., 2010. Object detection with dis-
criminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine In-
telligence (TPAMI) 32 (9): 1627–1645.

Felzenszwalb, P. F., Huttenlocher, D. P., 2004. Efficient graph-based image segmentation. Interna-
tional Journal of Computer Vision (IJCV) .

Felzenszwalb, P. F., Huttenlocher, D. P., 2012. Distance transforms of sampled functions. Theory of
Computing 8 (19): 415–428.

Forster, C., Pizzoli, M., Scaramuzza, D., 2013. Air-ground localization and map augmentation using
monocular dense reconstruction. In: IROS.

Freund, Y., Schapire, R. E., 1996. Experiments with a new boosting algorithm.
Frey, B. J., MacKay, D. J. C., 1997. A revolution: Belief propagation in graphs with cycles. In: Confer-

ence on Neural Information Processing Systems (NIPS), 1997, MIT Press, 479–485.
Friedman, J., Hastie, T., Tibshirani, R., 1998. Additive logistic regression: a statistical view of boost-

ing. Annals of Statistics 28: 2000.
Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets robotics: The kitti dataset. IJRR .
Geiger, A., Lenz, P., Urtasun, R., 2012. Are we ready for autonomous driving? the kitti vision bench-

mark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2012.
Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object

detection and semantic segmentation. In: Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

Gkioxari, G., Girshick, R., Malik, J., 2015. Contextual action recognition with r*cnn. In: International
Conference on Computer Vision (ICCV), 2015.

Glorot, X., Bordes, A., Bengio, Y., 2011. Deep sparse rectifier neural networks. In: Gordon, G. J.,
Dunson, D. B. (Hrsg.), Proceedings of the Fourteenth International Conference on Artificial Intel-
ligence and Statistics (AISTATS-11), Vol. 15, Journal of Machine Learning Research - Workshop
and Conference Proceedings, 315–323.

Gros, P., Bournez, O., Boyer, E., 1998. Using local planar geometric invariants to match and model
images of line segments. Computer Vision and Image Understanding 69 (2): 135 – 155.

Hancock, T., Jiang, T., Li, M., Tromp, J., 1996. Lower bounds on learning decision lists and trees.
Information and Computation 126 (2): 114 – 122.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B. C., Diamos, G., Elsen, E., Prenger, R., Satheesh, S.,
Sengupta, S., Coates, A., Ng, A. Y., 2014. Deep speech: Scaling up end-to-end speech recognition.
CoRR abs/1412.5567.

Hartley, R. I., Zisserman, A., 2004. Multiple View Geometry in Computer Vision, 2nd Edition. Cam-
bridge University Press, ISBN: 0521540518.

Hays, J., Efros, A. A., 2008. Im2gps: estimating geographic information from a single image. In:
Conference on Computer Vision and Pattern Recognition (CVPR), 2008., 1–8.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR
abs/1512.03385.

REFERENCES 93

Håstad, J., 1989. Almost optimal lower bounds for small depth circuits. In: RANDOMNESS AND
COMPUTATION, JAI Press, 6–20.

Hyafil, L., Rivest, R. L., 1976. Constructing optimal binary decision trees is np-complete. Information
Processing Letters 5 (1): 15 – 17.

Ian, G., Yoshua, B., Aaron, C., 2016. Deep learning, book in preparation for MIT Press.
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., Saul, L. K., 1999. An introduction to variational meth-

ods for graphical models. Machine Learning 37 (2): 183–233.
Kalogerakis, E., Vesselova, O., Hays, J., Efros, A. A., Hertzmann, A., 2009. Image sequence geolocation

with human travel priors. In: International Conference on Computer Vision (ICCV), 2009.
Kluckner, S., Pacher, G., Grabner, H., Bischof, H., Bauer, J., 2007. A 3d teacher for car detection in

aerial images. In: International Conference on Computer Vision (ICCV), 2007, 1–8.
Kolmogorov, V., Zabin, R., 2004. What energy functions can be minimized via graph cuts? IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 26 (2): 147–159.
Kozempel, K., Reulke, R., 2009. Camera orientation based on matching road networks. In: Image and

Vision Computing New Zealand, 2009. IVCNZ ’09. 24th International Conference, 237–242.
Krähenbühl, P., Koltun, V., 2011. Efficient inference in fully connected crfs with gaussian edge po-

tentials. In: Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., Weinberger, K. Q. (Hrsg.),
Conference on Neural Information Processing Systems (NIPS), 2011. Curran Associates, Inc., 109–
117.

Kraus, K., Harley, I., Kyle, S., 2007. Photogrammetry: Geometry from Images and Laser Scans. No.
Bd. 1 in De Gruyter textbook. Bod Third Party Titles.

Krizhevsky, A., Sutskever, I., Hinton, G. E., 2012. Imagenet classification with deep convolutional
neural networks. In: Pereira, F., Burges, C. J. C., Bottou, L., Weinberger, K. Q. (Hrsg.), Conference
on Neural Information Processing Systems (NIPS), 2012. Curran Associates, Inc., 1097–1105.

Lampert, C. H., Blaschko, M. B., Hofmann, T., 2009. Efficient subwindow search: A branch and bound
framework for object localization. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 31 (12): 2129–2142.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521: 436–444.
Lecun, Y., Bottou, L., Orr, G. B., Müller, K. R., 1998. Efficient BackProp. In: Orr, G., Müller, K. (Hrsg.),

Neural Networks—Tricks of the Trade. Vol. 1524 of Lecture Notes in Computer Science. Springer
Verlag, 5–50.

Leitloff, J., Hinz, S., Stilla, U., 2010. Vehicle detection in very high resolution satellite images of city
areas. IEEE Transactions on Geoscience and Remote Sensing 48 (7): 2795–2806.

Leitloff, J., Rosenbaum, D., Kurz, F., Meynberg, O., Reinartz, P., 2014. An operational system for
estimating road traffic information from aerial images. Remote Sensing 6 (11): 11315–11341.

Li, S., Kittler, J., Petrou, M., 1992. Matching and recognition of road networks from aerial images. In:
Sandini, G. (Hrsg.), European Conference on Computer Vision (ECCV), 1992. Vol. 588 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 857–861.

Li, Y., Paluri, M., Rehg, J. M., Dollár, P., 2016. Unsupervised learning of edges. Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. .

Lin, T.-Y., Belongie, S., Hays, J., 2013. Cross-view image geolocalization. In: Conference on Computer
Vision and Pattern Recognition (CVPR), 2013., 891–898.

Lin, T.-Y., Cui, Y., Belongie, S., Hays, J., 2015. Learning deep representations for ground-to-aerial
geolocalization. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Lin, Y., Medioni, G., 2007. Map-enhanced uav image sequence registration and synchronization of
multiple image sequences. In: Conference on Computer Vision and Pattern Recognition (CVPR),
2007., 1–7.

Liu, C., Schwing, A., Urtasun, R., Filder, S., 2015. Rent3d: Floor-plan priors for monocular layout
estimation. Conference on Computer Vision and Pattern Recognition (CVPR), 2015. .

Liu, K., Mattyus, G., 2015. Fast multiclass vehicle detection on aerial images. IEEE Geoscience and
Remote Sensing Letters .

Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O., 2014. Rotation-

94 REFERENCES

invariant hog descriptors using fourier analysis in polar and spherical coordinates. International
Journal of Computer Vision (IJCV) 106 (3): 342–364.

Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision (IJCV) 60 (2): 91–110.

MacKay, D. J. C., 2002. Information Theory, Inference & Learning Algorithms. Cambridge University
Press, New York, NY, USA.

Mattyus, G., Wang, S., Fidler, S., Urtasun, R., 2015. Enhancing road maps by parsing aerial images
around the world. In: International Conference on Computer Vision (ICCV), 2015.

Mattyus, G., Wang, S., Fidler, S., Urtasun, R., 2016. Hd maps: Fine-grained road segmentation by
parsing ground and aerial images. In: Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Matzen, K., Snavely, N., 2013. Nyc3dcars: A dataset of 3d vehicles in geographic context. In: Interna-
tional Conference on Computer Vision (ICCV), 2013.

Mayer, H., Hinz, S., Bacher, U., Baltsavias, E., 2006. A test of automatic road extraction approaches.
In: In International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 209–214.

Mnih, V., Hinton, G. E., 2010. Learning to detect roads in high-resolution aerial images. In: European
Conference on Computer Vision (ECCV), 2010.

Mnih, V., Hinton, G. E., 2012. Learning to label aerial images from noisy data. In: International
Conference on Machine Learning (ICML), 2012., 567–574.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Ried-
miller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King,
H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D., 2015. Human-level control through deep
reinforcement learning. Nature 518 (7540): 529–533.

Montoya-Zegarra, J. A., Wegner, J. D., Ladicky, L., Schindler, K., 2014. Mind the gap: Modeling local
and global context in (road) networks. In: German Conference on Pattern Recognition, 2014.

Moranduzzo, T., Melgani, F., 2014a. Automatic car counting method for unmanned aerial vehicle
images. Geoscience and Remote Sensing, IEEE Transactions on 52 (3): 1635–1647.

Moranduzzo, T., Melgani, F., 2014b. Detecting cars in uav images with a catalog-based approach.
Geoscience and Remote Sensing, IEEE Transactions on 52 (10): 6356–6367.

Máttyus, G., Fraundorfer, F., 2016. Aerial image sequence geolocalization with road traffic as invari-
ant feature. Image and Vision Computing 52: 218 – 229.

Müller, R., Krauß, T., Schneider, M., Reinartz, P., 2012. Automated Georeferencing of Optical Satel-
lite Data with Integrated Sensor Model Improvement. Photogrammetric Engineering and Remote
Sensing 71 (1): 61–74.

Nowozin, S., Lampert, C. H., 2011. Structured learning and prediction in computer vision. Founda-
tions and Trends in Computer Graphics and Vision 6 (3–4): 185–365.

Papert, S., 1966. The summer vision project. https://dspace.mit.edu/handle/1721.1/6125.
Porway, J., Wang, Q., Zhu, S., 2009. A hierarchical and contextual model for aerial image parsing.

International Journal of Computer Vision (IJCV) 88 (2): 254–283.
Ren, S., He, K., Girshick, R. B., Sun, J., 2015a. Faster R-CNN: towards real-time object detection with

region proposal networks. CoRR abs/1506.01497.
Ren, S., He, K., Girshick, R. B., Sun, J., 2015b. Faster R-CNN: towards real-time object detection

with region proposal networks. In: Conference on Neural Information Processing Systems (NIPS),
2015., 91–99.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., Fei-Fei, L., 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115 (3): 211–252.

Schwing, A. G., Fidler, S., Pollefeys, M., Urtasun, R., 2013. Box In the Box: Joint 3D Layout and Object
Reasoning from Single Images. In: International Conference on Computer Vision (ICCV), 2013.

Schwing, A. G., Urtasun, R., 2015. Fully connected deep structured networks. CoRR abs/1503.02351.
Seo, Y.-W., Urmson, C., Wettergreen, D., 2012a. Exploiting publicly available cartographic resources

REFERENCES 95

for aerial image analysis. In: SIGSPATIAL.
Seo, Y.-W., Urmson, C., Wettergreen, D., 2012b. Ortho-image analysis for producing lane-level high-

way maps. Tech. Rep. CMU-RI-TR-12-26, CMU.
Shan, Q., Wu, C., Curless, B., Furukawa, Y., Hernandez, C., Seitz, S., 2014. Accurate geo-registration

by ground-to-aerial image matching. In: 3DV.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-
ner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D., 2016.
Mastering the game of go with deep neural networks and tree search. Nature 529 (7587): 484–489.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recogni-
tion. CoRR abs/1409.1556.

Snyder, J., Voxland, P., 1989. An Album of Map Projections. No. no. 1453 in An Album of Map
Projections. U.S. Government Printing Office.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research 15: 1929–
1958.

Stoica, R., Descombes, X., Zerubia, J., 2004. A gibbs point process for road extraction from remotely
sensed images. International Journal of Computer Vision (IJCV) .

Sun, L., Jia, K., Yeung, D.-Y., Shi, B. E., 2015. Human action recognition using factorized spatio-
temporal convolutional networks. In: International Conference on Computer Vision (ICCV), 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabi-
novich, A., 2014. Going deeper with convolutions. CoRR abs/1409.4842.

Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., 2005. Large margin methods for structured
and interdependent output variables. Journal of Machine Learning Research (JMLR) 6: 1453–1484.

Tuermer, S., Kurz, F., Reinartz, P., Stilla, U., 2013. Airborne vehicle detection in dense urban areas
using hog features and disparity maps. Selected Topics in Applied Earth Observations and Remote
Sensing, IEEE Journal of 6 (6): 2327–2337.

Turetken, E., Benmansour, F., Andres, B., Pfister, H., Fua, P., 2013. Reconstructing loopy curvilinear
structures using integer programming. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2013.

Veeriah, V., Zhuang, N., Qi, G.-J., 2015. Differential recurrent neural networks for action recognition.
In: International Conference on Computer Vision (ICCV), 2015.

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. In:
Conference on Computer Vision and Pattern Recognition (CVPR), 2001., Vol. 1, I–511–I–518 vol.1.

Viola, P., Jones, M. J., 2004. Robust real-time face detection. International Journal of Computer Vision
(IJCV) 57 (2): 137–154.

Viterbi, A., 1967. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory 13 (2): 260–269.

Waltz, D. L. (Hrsg.), 1982. Proceedings of the National Conference on Artificial Intelligence. Pitts-
burgh, PA, August 18-20, 1982. AAAI Press.

Wang, C., Stefanidis, A., Agouris, P., 2007. Relaxation matching for georegistration of aerial and
satellite imagery. In: IEEE International Conference on Image Processing (ICIP), 2007., Vol. 5,
449–452.

Wang, S., Fidler, S., Urtasun, R., 2015a. Holistic 3d scene understanding from a single geo-tagged
image. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Wang, S., Fidler, S., Urtasun, R., 2015b. Lost shopping! monocular localization in large indoor spaces.
In: International Conference on Computer Vision (ICCV), 2015., 2695–2703.

Wegner, J. D., Montoya-Zegarra, J. A., Schindler, K., 2013. A higher-order crf model for road network
extraction. In: Conference on Computer Vision and Pattern Recognition (CVPR), 2013., 1698–
1705.

Weyand, T., Kostrikov, I., Philbin, J., 2016. Planet - photo geolocation with convolutional neural
networks. CoRR abs/1602.05314.

96 REFERENCES

Wilson, R., Hancock, E., 1993. Relaxation matching of road networks in aerial images using topolog-
ical constraints. Sensor Fusion 2059: 444–455.

Winn, J., Criminisi, A., Minka, T., 2005. Object categorization by learned universal visual dictionary.
In: International Conference on Computer Vision (ICCV), 2005.

Wolfson, H., Rigoutsos, I., 1997. Geometric hashing: an overview. Computational Science Engineer-
ing, IEEE 4 (4): 10–21.

Workman, S., Souvenir, R., Jacobs, N., 2015. Wide-area image geolocalization with aerial reference
imagery. In: International Conference on Computer Vision (ICCV), 2015.

Wu, C., 2013. Towards linear-time incremental structure from motion. In: 3DTV-Conference, 2013
International Conference on, 127–134.

Wu, C., Fraundorfer, F., Frahm, J.-M., Snoeyink, J., Pollefeys, M., 2008. Image localization in satel-
lite imagery with feature-based indexing. In: Commission III, ISPRS Congress 2008 Beijing, Vol.
XXXVII, 197–202.

Yu, F., Koltun, V., 2015. Multi-scale context aggregation by dilated convolutions. CoRR
abs/1511.07122.

Yuan, J., Cheriyadat, A., 2013. Road segmentation in aerial images by exploiting road vector data. In:
COM.geo.

Zeiler, M. D., Fergus, R., 2014. Visualizing and understanding convolutional networks. In: European
Conference on Computer Vision (ECCV), 2014., 818–833.

Zhang, T., 2004. Statistical behavior and consistency of classification methods based on convex risk
minimization. The Annals of Statistics 32: 56–134.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P. H. S.,
2015. Conditional random fields as recurrent neural networks. In: International Conference on
Computer Vision (ICCV), 2015.

ACKNOWLEDGMENTS 97

Acknowledgments

The writing and completion of this thesis would not have been possible without the support
and help of many generous people.

I feel fortunate that I could spend the years working on my PhD at the German Aerospace
Center (DLR), a dream institute of many children and adults, embodying the vision of
mankind reaching the stars. I would like to truly thank Prof. Peter Reinartz,- the head of
the Photogrammetry and Image Analysis (PBA) Department-, who gave me this opportunity
and supported me to work on my PhD; Prof. Richard Bamler,- my professor at the Technical
University of Munich and the head of the Remote Sensing Technology Institute (IMF)-, who
supported me writing and submitting this thesis. I would like to express my gratitude to
Prof. Friedrich Fraundorfer for his supervision and excellent help in various forms. I have
really enjoyed our discussions and our collaboration.

I would thank my team leader, Rupert Müller, the team of the project Vabene: Dr. Franz
Kurz, Dr. Dominik Rosenbaum, Oliver Meynberg, Dr. Stefan Auer, Dr. Janja Avbelj, Vronika
Gsteiger, Dr. Shiyong Cui, Dr. Elenora Vig and all others colleagues and students with whom
I worked together during my 5 years at DLR. I am grateful to my colleague Dr. Eleonora Vig
for proof reading my thesis and Dr. Franz Kurz for helping me translate the abstract to
German.

I feel particularly lucky that I had the opportunity to visit the Machine Learning Group
at the Computer Science Department of the University of Toronto (UofT) multiple times.
I would like to especially thank Prof. Raquel Urtasun,- the head of the Machine Learning
Group at UofT -, who accepted me as a visiting student and invited me back several times
to deepen our cooperation. I find our collaboration with Prof. Raquel Urtasun, Prof. Sanja
Fidler (UofT) and Shenlong Wang (also UofT) extremely inspiring, raising the level of my
research enormously. I am very grateful for all their help. I truly enjoyed our discussions,
and writing our papers. I offer thanks to all other members of the Machine Learning Group
at UofT who received me very friendly and made me feel home in Toronto.

I would like to thank Kang Liu for all his efforts enabling the writing of our paper.

I hope to stay in contact with all of you in the future.

The years of reading papers, researching, writing papers, getting rejected or accepted con-
tains both successful, encouraging, motivating moments and depressing, futureless periods
with fails and disappointments. It would not have been possible to overcome these diffi-
cult times without the support of my parents Dr. Piroska Róna and Dr. István Máttyus and
my sisters Kinga Máttyus and Zita Máttyus. I feel truly grateful for their help and warm-
hearted care allowing me to concentrate on my studies and work. I thank Kinga extra for
proof reading parts of my thesis.

Last but not at least, I would like to thank the many friends for causing a lot of happy
moments, particularly my flatmates who were bearing me before deadlines. :)

98 REFERENCES

99

Appendices

A Liu K., Mattyus, G., 2015. Fast Multiclass Ve-
hicle Detection on Aerial Images. IEEE Geo-
science and Remote Sensing Letters 12(9):
1938-1942

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7122912

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7122912

1938 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 9, SEPTEMBER 2015

Fast Multiclass Vehicle Detection on Aerial Images
Kang Liu and Gellert Mattyus

Abstract—Detecting vehicles in aerial images provides impor-
tant information for traffic management and urban planning.
Detecting the cars in the images is challenging due to the relatively
small size of the target objects and the complex background
in man-made areas. It is particularly challenging if the goal is
near-real-time detection, i.e., within few seconds, on large im-
ages without any additional information, e.g., road database and
accurate target size. We present a method that can detect the
vehicles on a 21-MPixel original frame image without accurate
scale information within seconds on a laptop single threaded. In
addition to the bounding box of the vehicles, we extract also
orientation and type (car/truck) information. First, we apply a fast
binary detector using integral channel features in a soft-cascade
structure. In the next step, we apply a multiclass classifier on the
output of the binary detector, which gives the orientation and type
of the vehicles. We evaluate our method on a challenging data set
of original aerial images over Munich and a data set captured
from an unmanned aerial vehicle (UAV).

Index Terms—Classification, near real-time, vehicle detection.

I. INTRODUCTION

THE detection of vehicles in aerial images is important for
various applications, e.g., traffic management, parking lot

utilization, urban planning, etc. Collecting traffic and parking
data from an airborne platform gives fast coverage over a larger
area. Getting the same coverage by terrestrial sensors would
need the deployment of more sensors and more manual work
and, thus, higher costs.

A good example for an airborne road traffic measuring
system is the one in the project Vabene1 [1] of the German
Aerospace Center (DLR). In this real-time system, aerial im-
ages are captured over roads, and the vehicles are detected
and tracked across multiple consecutive frames. This gives
fast and comprehensive information of the traffic situation by
providing the number of vehicles and their position and speed.
Fig. 1 provides the overview of our work flow and illustration
of the output. The detection is a challenging problem due to the
small size of the vehicles (a car might be only 30 × 12 pixels)
and the complex background of man-made objects, which
appear visually similar to the cars. Providing both the position
and the orientation of the detected objects supports the tracking
by giving constraints on the motion of the vehicles. This is
particularly important in dense traffic scenes where the object
assignment is more challenging. The utilization of roads and

Manuscript received December 24, 2014; revised March 19, 2015 and
May 21, 2015; accepted May 23, 2015. Date of publication June 12, 2015; date
of current version August 7, 2015. This work was supported by the German
Aerospace Center (DLR) Project Vabene++.

The authors are with the Remote Sensing Technology Institute, German
Aerospace Center, 82234 Wessling, Germany.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2015.2439517

1http://www.dlr.de/vabene/

parking lots depends also on the type of the vehicle (e.g., a
truck impacts the traffic flow different as a personal car). A
system having access to this richer information can manage
the infrastructure better. In a real-time system, as in [1], the
processing time (and computing power) is limited. Therefore,
the processing method should be as fast as possible.

Our vehicle detection method provides both robust perfor-
mance and fast speed and vehicle orientation and type informa-
tion fully automatically based only on the input image.

We detect the bounding box of the vehicles by a very fast
binary sliding-window detector using integral channel features
(ICFs) and an AdaBoost classifier in a soft-cascade structure.
The bounding boxes are further classified to different orienta-
tions and vehicle type based on histogram of oriented gradients
(HOG) features [2].

We test and evaluate our method on a challenging data
set over the city of Munich, Germany, and another data set
collected by a UAV. These data sets contain original and
nonorthorectified frame images, which makes the problem
more challenging since the exact GSD2 is unknown (we have
only an approximate prior). To make our results better com-
parable to other methods, we release the Munich images with
the ground truth3 (see Table I). To show the robustness of the
method, we also present qualitative results on images down-
loaded from Google Earth around the world in the supplemen-
tary material.

Our main contributions are presented as follows: 1) The
presented method uses features that can be calculated rapidly in
a soft-cascade structure. This makes the detection very fast, i.e.,
it takes only a few seconds on a 21-MPixel image on a laptop
single threaded. 2) Our method also works on a single original
frame image without any georeferencing, exact GSD, street
database, or 3-D image information. 3) In addition to the loca-
tion, we also estimate the orientation and type of the vehicles.

II. RELATED WORK

The vehicle detection in aerial images has a large literature;
here, we mention only a few important recent papers.

Moranduzzo and Melagni [3], [4] process very high-
resolution (2-cm GSD) UAV images for car detection. In [3],
a feature point detector and support vector machine (SVM)
classification of scale-invariant feature transform descriptors
is applied, while the method in [4] uses a catalog of HOG
descriptors and later an orientation estimation.

In [5], the cars are detected by a deep neural network running
on the graphics processor unit in a sliding-window approach on
a known constant scale. In [6], the vehicles are detected with
online boosting on Haar-like features, local binary patterns, and

2Ground Sampling Distance.
3http://www.dlr.de/eoc/desktopdefault.aspx/tabid-5431/9230_read-42467/

1545-598X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIU AND MATTYUS: FAST MULTICLASS VEHICLE DETECTION ON AERIAL IMAGES 1939

Fig. 1. Proposed vehicle detection framework. The input image is first evaluated by the multidirection vehicle detector. A sliding window goes along the
x- and y-axes. Features are extracted from the detection window and sent to a trained binary classifier. The binary classifier identifies whether the current
detection window contains a positive object or not. Detected vehicles are then processed for estimating their orientations and categories.

TABLE I
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS

orientation histograms. They train the detector for cars in one
direction, and during testing, they rotate the image in a 15◦

step. This detector is trained for a known object size of 35 ×
70 pixels and tested on images with the same scale.

Leitloff et al. [1] use a two-stage approach for the detection
of cars: first an AdaBoost classifier with Haar-like features and
then an SVM on various geometric and radiometric features.
They use the road database as a prior to detect only along the
roads in a certain direction. The method achieves good results,
running fast on a CPU; however, it is limited to orthorectified
images and areas covered by the road database.

Tuermer et al. [7] utilize the road map and stereo matching to
limit the search area to roads and exclude buildings. The HOG
features with an AdaBoost classifier are applied to detect the
cars on the selected region. This method is limited to georefer-
enced image pairs and areas covered by the road database.

III. MULTIDIRECTION VEHICLE DETECTION

We handle the vehicle detection problem in two stages. The
first stage is a very fast binary sliding-window object detector,
which delivers axis-aligned bounding boxes of the vehicles
without type or orientation information. The second stage is a

multiclass classifier applied on the bounding boxes, estimating
the orientation and the type of the vehicles. The processing
steps are shown in Fig. 1.

A. Binary Sliding-Window Detector

For fast detection, both the feature calculation and the classi-
fication have to be efficient.

1) Fast Image Features: Viola and Jones [8] introduced the
integral image concept with Haar-like features for fast and
robust face detection. By using the integral image IΣ, the pixel
intensity I sum of the Haar-like features is calculated by a few
operations independent of the area of the feature. The value
IΣ(x, y) at the (x, y) location in an integral image is the sum of
the pixels above and to the left of (x, y) as follows:

IΣ(x, y) =

i≤x∑

i=0

j≤y∑

j=0

I(i, j). (1)

The integral fI within an axis-aligned rectangle defined by
its upper left corner x0, y0, width w, and height h is cal-
culated as fI = IΣ(x0 + w, y0 + h) + IΣ(x0, y0) − IΣ(x0 +
w, y0) − IΣ(x0, y0 + h).

This idea is generalized by the ICFs in the work of
Dollar et al. [9]. Instead of working on pixel intensity values,
as in [8], an ICF can be constructed on top of an arbitrary
feature channel (i.e., the transformation of the original image).
Features are defined as linear combinations of sums over local
rectangular regions in the channels. By using the concept of
integral images, an integral channel can be precomputed for
each feature channel, so that the computation of the sum over
the rectangle is very fast. The most commonly used channels
are the color intensities, the gradient magnitude, and the gradi-
ent histogram. The gradient histogram is a weighted histogram
where the bin is determined by the gradient orientation. It is
given by QΘ(x, y) = G(x, y)1[Θ(x, y) = θ], where G(x, y) is
the gradient magnitude, and Θ(x, y) is the quantized gradient

1940 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 9, SEPTEMBER 2015

orientation at the x, y image location. The gradient histogram
can approximate the powerful and widely used HOG features
[2]. If the rectangles are defined as squares, the sum can be
aggregated to a single pixel in a downsampled image. In this
case, the integral is calculated even faster as a single pixel
lookup. This method is also called aggregated channel features
[10]. For rapid speed, we apply this method with fast feature
pyramid calculation, as described in [10].

2) AdaBoost Classifier in Soft-Cascade Structure: The num-
ber of ICFs is very large (larger than the number of pixels
in the image window) since it is the linear combination of
local rectangular regions in the image window. We select only
relevant features by the Discrete AdaBoost algorithm [11] for
N weak classifiers ht(x). ht(x) is a simple classifier, e.g., a
threshold or a shallow decision tree of a few features from the
input feature vector x. AdaBoost is an iterative algorithm; in
each step, it reweights the samples in the training set, according
to the classification result from the previous weak classifier. The
final strong classifier H is composed of the weighted αt weak
classifiers ht(x). That is

H = sgn

N∑

t=1

αtht(x). (2)

At numerous sliding-window positions (e.g., homogeneous
regions), not all the weak classifiers have to be evaluated to
classify the image as nonvehicle. To leverage this property for
speed improvement, we form a soft cascade [12] from the weak
classifiers. During the training, a threshold rt is set for all
the weighted weak classifiers ct = αtht(x). If the cumulative
sum Ht(x) =

∑
i=1,...,t ci(x) of the first t output functions is

Ht(x) ≥ rt, then the input sample is passed to the subsequent
evaluation process; otherwise, it is classified as negative and
rejected immediately.

B. Multidirection Detection

The orientation of the vehicles in aerial images can be arbi-
trary. This increases the intraclass variation of the appearance
in the axis-aligned sliding windows. A straightforward but
computationally expensive solution, which was used in [6], is to
train the detector for one specific direction and rotate the input
image and do detection for each rotation. This would need the
computation of the integral images separately for each direction
and would result in slow processing speed. To overcome this,
we propose two methods: one is to train a single classifier,
which is able to detect differently oriented vehicles; the other
is to aggregate several simple classifiers, where each is only
sensitive to specific directions.

1) Single Classifier Method: A single binary classifier is
trained with samples covering all the directions. The training
process has to deal with the high intraclass variety and find the
common part of all the positive samples. When the detector is
applied on the input image, vehicles in any directions can be
classified as positive samples.

2) Aggregated Classifier Method: Alternatively, the intra-
class variety is reduced by splitting the training to different
orientations. Multiple binary classifiers are trained, each for
specific vehicle orientations. These classifiers are employed in
sequence during the detection phase, and the results from each
classifier are aggregated using nonmaximal suppression. The

TABLE II
COMPARISON OF COMPUTATION TIMES

integral image does not need to be calculated multiple times,
only the classification.

The performances of these two methods are examined in
Section V.

IV. MULTICLASS VEHICLE CLASSIFICATION

The detector provides the axis-aligned bounding boxes of the
vehicles. In this next step, we refine the extracted information
by classifying the orientation and the type of the vehicle. We
propose a two-step approach containing an orientation estima-
tor and a type classifier. A sample is sent to the orientation esti-
mator first, then rotated to the horizontal direction according to
the orientation estimation, and finally processed by the type clas-
sifier to identify which type category this vehicle belongs to.

A. Orientation Estimation

We consider the orientation estimation as a multiclass
classification problem. The directions are clustered, and each
cluster is considered as a class. The ICF features can be
calculated fast, but they have a very high number; thus, they are
not suitable for multiclass classifiers working on fixed-length
feature vectors. Therefore, we apply the powerful HOG feature
[2], which has a fixed feature vector length. We use a neural
network with one hidden layer as a multiclass classifier [13].

B. Type Classification

The type classifier needs to classify the input image into
corresponding categories. We have defined two type classes,
i.e., car and truck, but the presented method could be extended
to more classes. The object bounding box is rotated to the
horizontal direction based on the orientation estimation.
Unrelated context is cropped out, and HOG features are again
extracted and classified by the type classifier.

V. EXPERIMENTAL RESULTS

We test the multidirection detection and multiclass classifica-
tion parts in our detection method, respectively, and give quan-
titative results for the different processing stages. The binary
detector is trained with 2048 weak classifiers in each test. We
use depth-two decision trees as weak classifiers.

A. Results on Munich Images

The quantitative evaluation is performed on 20 aerial images
captured by the DLR 3K camera system [1] over the area of
Munich, Germany. We use the original nadir images with the

LIU AND MATTYUS: FAST MULTICLASS VEHICLE DETECTION ON AERIAL IMAGES 1941

Fig. 2. (a) Evaluation of the ICFs. Gradient histogram channels play the most important role, while the gradient magnitude channel has the least effect on the
final result. (b) Detection result of aggregated detectors. (c) Performance after rescaling the image with different factors. (d) Orientation estimation error histogram
using an artificial neural network with 16 output classes.

resolution of 5616 × 3744 pixels (see Table II). They are taken
at a height of 1000 m above the ground; the approximate GSD
is 13 cm. The first ten images are used for training and the other
ten for testing. Positive training samples come from 3418 cars
and 54 trucks annotated in the training images, while the nega-
tives are randomly picked from the background, i.e., areas with-
out vehicles. To overcome the low number of truck samples, we
randomly transformed them additionally 30 times. Fig. 3 shows
detection results on the test images. We set the detection
window to 48 × 48 pixels. For the ground truth, the vehicles in
the images are annotated manually as oriented bounding boxes.

1) Multidirection Vehicle Detection: ICFs contain rich infor-
mation and can be computed rapidly. They are selected as the
features for training and detection. Experiments are performed
to evaluate the importance of each feature channel type and the
performance of different classifier configurations.

a) Feature channel: We use three types of feature chan-
nels: Luv color, gradient magnitude, and gradient histogram.
We have evaluated the contribution of each feature channel;
the precision–recall (PR) curves are plotted in Fig. 2(a). These
curves indicate that gradient histogram channels play the most
important role in representing the vehicles, while the gradient
magnitude channel affects the final result the least. For the later
tests, we use all the feature channels.

b) Multidirection detection methods: We proposed two
methods, i.e., single and aggregative classifiers, to detect
vehicles in different directions (see Section III-B). The
performances are depicted in Fig. 2(b). The PR curve shows
that the optimal solution is the “Classifier aggregation method,”
with each classifier trained using samples in opposite directions
(eight detectors with a sample rotation step of 180◦). This
means eight detectors and, thus, longer computation time. A
single detector needs 2.7 s, while the detection with 8 classifiers
takes 4.1 s. This is sublinear since the integral images do not
have to be calculated again. We use the eight-classifier configu-
ration for the later tests.

c) Detection on images with different scales: To show the
ability of our method to detect the cars on images with different
scales, we resized the image for the test but not the training.
These results are shown in Fig. 2(c). The detector performs
best on the same scale as it was trained; if the resolution is
increased, the performance remains comparable. However, if
we decrease the resolution, we lose information, which leads
to a lower performance.

2) Multiclass Vehicle Classification: After the axis-aligned
bounding box detection, we classify the orientation and type of

TABLE III
CONFUSION MATRICES OF TYPE CLASSIFICATION USING

DIFFERENT CROPPING CONFIGURATIONS

the vehicles. We convert all the bounding boxes to 48 × 48 pixel
gray images and calculate HOG features for this image. We get
the best performance with 4 × 4 cell size, 1 × 1 block size, and
1 × 1 block stride HOG feature configuration and use this for
the later tests. The comparison of different HOG configurations
can be found in the supplementary material.

a) Orientation estimation: Orientation classification is
performed, according to Section IV-A, with 16 classes (22.5◦ ro-
tation difference between adjacent sample groups, respectively).
The orientation estimation error histogram is depicted in
Fig. 2(d). In the supplementary material, we provide results
with different number of classes and an additional random
forest classifier [14]. The most common error is when the
samples are classified in the opposite direction. This is because
the front part of a vehicle might be similar to the rear part from
the top view in aerial images.

b) Type classification: The detected bounding box is ro-
tated to the horizontal direction according to the orientation
estimation. We trim the input image by cropping the upper
and lower parts, from 48 × 48 to 48 × 28. In our data set, the
number of trucks is much less than the number of cars. We
generate new ones from the existing samples using random
transformation. The performances with different cropping
configurations are compared in Table III and the supplementary
material. The optimal type classification can reach 98.2% in
accuracy with a one-hidden-layer neural network.

3) Baseline Comparison: As baseline, we use the OpenCV4

implementation of the Viola–Jones detector [8]. We have
trained it on one vehicle direction, while at detection, we rotate
the image similar as in [6] and apply the detector for each
rotated image. Table I contains the numerical comparison of
this method on the Munich data set.

4http://opencv.org/

1942 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 9, SEPTEMBER 2015

Fig. 3. Detection results from the DLR test images. Green and cyan bounding boxes are the correct detected samples, representing cars and trucks, respectively.
Black bounding boxes are the missed ones, and red bounding boxes are the false positives. The results show that our method works well in most scenarios (a)–(c);
however, the complicated rooftops or outdoor swimming pools may lead to false positive detections (d). We also evaluated our method on the data set presented
in [3] and [4]; the detection results are shown in (e) and (f).

4) Computation Time: Since the processing time is also
important for the detector, we compare our method with other
methods, where the computation time is provided in this paper.
Table II contains the computation times. Our experiments are
performed on a laptop with Intel Core i5 processor and 8-GB
memory, and our program is running single threaded written
in MATLAB and C++. The comparisons show that the speed
of our method is considerably faster. This makes our method
more suitable for real-time systems, where the computation
time is a serious issue. The method in [5] achieves comparable
detection performance but on a different data set; therefore, we
show only the processing time of the method.

B. Baseline Comparison on UAV Images

We also evaluated our method on the data set presented in
[3] and [4] (see Fig. 3) and compared to the results provided
without screening. The results can be found in Table I. The
precision rate of our method outperforms the other methods,
significantly. Due to the higher resolution, we set the detection
window to 96 × 96 pixels for this data set, and we have only
car vehicle type (no truck).

C. Qualitative Results From Around the World

To show the robustness of our detector, we also run our
detector on images downloaded from Google Earth. These can
be found in the supplementary material.

VI. CONCLUSION

We have presented a method that can detect vehicles with
orientation and type information on aerial images in a few
seconds on large images. The application of ICFs in a soft-
cascade structure results in both good detection performance
and fast speed. The detector works on original images where no
georeference and resolution information is available. As future
work, the performance could be further improved by using a
deep neural network after the binary detector, such as Regions
with Convolutional Neural Network Features (R-CNN) in [15].
Since this has to be applied only to a fraction of the image, the
speed of the detector would be still fast.

ACKNOWLEDGMENT

The authors would like to thank T. Moranduzzo and
F. Melgani, who generously provided their image data set with
the ground truth.

REFERENCES

[1] J. Leitloff, D. Rosenbaum, F. Kurz, O. Meynberg, and P. Reinartz, “An
operational system for estimating road traffic information from aerial
images,” Remote Sens., vol. 6, no. 11, pp. 11 315–11 341, 2014.

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE CVPR, 2005, vol. 1, pp. 886–893.

[3] T. Moranduzzo and F. Melgani, “Automatic car counting method for
unmanned aerial vehicle images,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 3, pp. 1635–1647, Mar. 2014.

[4] T. Moranduzzo and F. Melgani, “Detecting cars in UAV images with
a catalog-based approach,” IEEE Trans. Geosci. Remote Sens., vol. 52,
no. 10, pp. 6356–6367, Oct. 2014.

[5] X. Chen, S. Xiang, C. Liu, and C. Pan, “Vehicle detection in satellite
images by hybrid deep convolutional neural networks,” IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 10, pp. 1797–1801, Oct. 2014.

[6] S. Kluckner, G. Pacher, H. Grabner, H. Bischof, and J. Bauer, “A 3D
teacher for car detection in aerial images,” in Proc. IEEE 11th ICCV ,
2007, pp. 1–8.

[7] S. Tuermer, F. Kurz, P. Reinartz, and U. Stilla, “Airborne vehicle detection
in dense urban areas using HoG features and disparity maps,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6, pp. 2327–2337,
Dec. 2013.

[8] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proc. IEEE CVPR, 2001, vol. 1, pp. I-511–I-518.

[9] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,”
in Proc. BMVC, 2009, pp. 91.1–91.11.

[10] P. Dollar, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for
object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 8,
pp. 1532–1545, Aug. 2014.

[11] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
A statistical view of boosting,” Ann. Statist., vol. 28, no. 2, pp. 337–407,
2000.

[12] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in
Proc. IEEE CVPR, 2005, vol. 2, pp. 236–243.

[13] Y. Lecun, L. Bottou, G. B. Orr, and K. R. Müller, “Efficient BackProp,” in
Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science,
G. Orr and K. Müller, Eds. Berlin, Germany: Springer-Verlag, 1998,
vol. 1524, pp. 9–50.

[14] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[15] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
CVPR, 2014, pp. 580–587.

B Mattyus G., Fraundorfer, F., 2016. Aerial image sequence geolocalization with road traffic as invariant feature. Image
and Vision Computing, Volume 52: 218–229. 105

B Mattyus G., Fraundorfer, F., 2016. Aerial image
sequence geolocalization with road traffic as in-
variant feature. Image and Vision Computing,
Volume 52: 218–229.

http://www.sciencedirect.com/science/article/pii/S0262885616301056

This is the preprint version of the paper.

http://www.sciencedirect.com/science/article/pii/S0262885616301056

Aerial image sequence geolocalization with road traffic as invariant feature

Gellért Máttyus
German Aerospace Center, Germany, Remote Sensing Technology Institute

gellert.mattyus@dlr.de

Friedrich Fraundorfer
German Aerospace Center, Germany, Remote Sensing Technology Institute

Graz University of Technology, Austria, Institute for Computer Graphics and Vision

fraundorfer@icg.tugraz.at

Abstract

The geolocalization of aerial images is important for extracting geospatial information (e.g. the position of buildings,
streets, cars, etc.) and for creating maps. The standard is to use an expensive aerial imaging system equipped with an
accurate GPS and IMU and/or do laborious Ground Control Point measurements. In this paper we present a novel method
to recognize the geolocation of aerial images automatically without any GPS or IMU. We extract road segments in the image
sequence by detecting and tracking cars. We search in a database created from a road network map for the best matches
between the road database and the extracted road segments. Geometric hashing is used to retrieve a shortlist of matches. The
matches in the shortlist are ranked by a verification process. The highest scoring match gives the location and orientation of
the images. We show in the experiments that our method can correctly geolocalize the aerial images in various scenes: e.g.
urban, suburban, rural with motorway. Beside the current images only the road map is needed over the search area. We can
search an area of 22500 km2 containing 32000 km of streets within minutes on a single cpu.

1. Introduction
It is required for numerous applications that images and videos are tagged with their location on the earth’s surface

(geolocation). The geolocalization of aerial images is particularly essential for extracting geospatial informations (e.g. the
position of buildings, streets, cars, etc.) and for creating maps. The aerial imaging systems typically include an accurate
(and expensive) GPS and IMU. By avoiding these instruments a simple consumer camera could also be used to create
georeferenced aerial images. People would be able to use their own camera during leisure and touristic activities (e.g. hang
gliding, air balloon flight, sightseeing flight, glider flight, etc.) to create georeferenced and orthorectified images. A crowd-
sourced database of orthorectified aerial images (similar as OpenStreetMap for maps) could be used for mapping applications.

Although nowadays even consumer grade cameras can provide geotagging, it might be needed to find the geolocation of
the camera, image and the objects in the scene based only on the visual information. (See the IARPA Finder program 1).
Even with a GPS position tag the orientation of image is usually still unknown. Aerial image camera systems equipped with
a very precise GPS and IMU also might lack the geolocation in case of an outage. The automatic geolocalization of these
images can reduce expenses by avoiding a new flight or laborous manual work. It is also getting common to acquire images
from a unmanned aerial vehiclec (UAV). These can only carry light payloads, limiting the accuracy of the onboard GPS and
IMU. Retrieving a more accurate image position and orientation during post processing could be needed.

UAVs also need a backup localization system in case of an outage of the GPS (GNSS). A GPS outage can happen either
due to a problem in the device or because of external jamming of the GPS signal. The jamming of the GPS signal is a realistic
threat, not only in military environments. The problem of GPS jamming is addressed in research, e.g. in [11].

Our goal is the geolocalization of aerial photo sequences on a large scale by utilizing only the image information and the
road network. We propose to match the information acquired from the current aerial image sequence to an object database

1http://www.iarpa.gov/Programs/ia/Finder/finder.html

1

Figure 1. Illustration. We search the geolocation of aerial image sequences. The red dots on the map show the ground truth positions. The
photos can be located by matching the road traffic (in red) in the image to the road network (in black). The matching tracks are marked
with yellow circles in the images. The search area can be as large the shown map. The accuracy of the location is around 25 m.

invariant to the lighting and weather conditions, the road network map. Since the maintenance of an accurate, up-to-date
road map is needed for many other applications (e.g. navigation, administration, etc.), it is more easily accessible than a large
image database and requires significantly less storage 2.

We detect the road traffic in the image scene by tracking cars over the frames. By assuming the cars drive on the roads the
vehicle trajectories can be interpreted as subsets of the roads, and be matched to the road map.

We propose a method for the fast retrieval of a shortlist containing the possible correct location. This retrieval is based on
Geometric Hashing. We call it Polyline Based Geometric Hashing (PLBGHashing), and it can search rapidly over a larger
search area. The more complex verification matching needs to be done only on the retrieved shortlist. The car tracks can be
considered as a road detector with low completeness but high correctness. We combine this with a simple pixel color based
road detector (with high completeness but low correctness) for the verification.

We analyzed the proposed PLBGHashing on synthetic data generated from the road network of two large cities. This
confirmed that the pattern of the road network is discriminative on a larger scale. An evaluation was done on 20 image
sequences captured over urban, suburban, rural with motorway, and industrial scenes by a consumer-grade camera mounted
on an airplane, the Figure 1 shows the location of the scenes. In this test the PLBGHashing provided the shortlist, while the
verification ranked the correct geolocation as the best match in most of the cases.

Our main contributions are: (1)We use car tracks to detect parts of the road network. This does not need a known ground
sampling distance (GSD3) as standard road detectors. (2) We utilize road networks as appearance invariant features to localize
an aerial image sequence over a large area. This also avoids the need for an image database over the search area. (3) We
present a geometric hashing method to match partial line segments to line structures. This does not need a complete road
detector which detects relations between roads as a graph, e.g. intersections.

2. Related work
The standard for creating georeferenced aerial images is using an accurate GPS and IMU and/or measuring Ground

Control Points manually [15]. Other approaches utilize the idea to localize an image from only the image information also on
a large scale. The queried image can be matched to a huge pool of landmark photos [32], while the 3D building information
might also be utilized [3]. Li et al. [17] determine the absolute (world) camera pose using 3D point clouds. Mueller et al.
[21] improve the absolute geometric accuracy of satellite images by automatically extracting Ground Control Points from
existing orthorectified reference images. In Wu et al. [30] satellite images are localized with feature-based indexing, but not
on a real large scale (maximal 16 km×12 km). In Lin and Medioni [19] UAV images are matched to georeferenced ortho
images (map). But the search area is limited by manually labeling several correspondences between the first frame of the

2The OpenStreetMap is an open, crowd-sourced map with good coverage and fast updates.
3Ground Sample Distance, the distance between pixel centers measured on the ground.

2

UAV sequences and their corresponding satellite images.
All these methods require an already existing image database, and capturing and maintaining this is laborious. Using

crowd-sourced image databases (e.g. Flickr, Google Picasa) this difficulty can be overcome. However, the landmark images
are unevenly distributed and biased to touristic highlights. The work Lin et al. [18] addresses this problem by matching ter-
restrial image to remote sensing data, which also provide coverage over locations where no crowd-sourced data are available.

A new direction is the usage of non-image databases. Baatz et al. [4] employ the terrain map to geolocalize images from
the mountain silhouette in the Alps.

Brubaker et al. [8] utilize the road network and visual odometry to locate a driving vehicle without any other information.
They show that a long track on the road network is characteristic enough to obtain the geolocation of the car. Our method
shares the idea of exploiting the pattern of the roads in the form of car tracks, but instead of a single long vehicle trajectory
we use many short ones.

In Konzempel and Reulke [14] aerial images are orthorectified (projected on the Earth’s surface) without an IMU. The
orientation is initialized by an accurate GPS measurement and optimized by matching the detected streets in the image to
the road network. In comparison to this method, our approach does not require an accurate position information, but only a
search area, which might be as large as an entire metropolitan area.

In [25], road networks are represented as graphs, with road intersections as graph vertices. It is assumed that the inter-
sections are detected correctly and the georegistration problem can be solved as a graph matching problem. In comparison
to this work, in our approach the road intersections does not need to be detected in the image. We assume that there is no
appropriate intersection detector or there might be no intersections in the image (just non intersecting roads).

In Wilson and Hancock [27] the graph structure of the road network (junctions and roads between them) in aerial image
is extracted using a relaxational line-finder. Then the graph junctions are matched to junctions in the map using probabilistic
relaxation. This method assumes that road junctions are present and they can be detected. In contrast, our method works
without junctions, it needs only segments of the road network and we consider a much larger search area.

Li et al. [16] extract and match line segments instead of junctions. They define rotation and translation invariant features
between the segments and use these pairwise features to calculate the cost of an assignment between aerial image and map.
This combinatorial optimization problem is solved via continuous relaxation labeling. Solving this optimization problem
is non trivial, specially for a large number of variables. In [16], the orientation of the image is used to limit the possible
matches. In our problem we do not have access to this orientation information. We provide a more detailed analysis on this
method in section 4.2.3.

Gros et al. [10] use local, geometric invariant features to match images related by similarity or affine tranformations. For
similarity transformations they compute geometric invariants from pairs of line segments having an endpoint in common. The
invariants are the angle between the two segments and the ratio of the length of the segments. These invariants are matched
between the images, similarity transformations are computed from the matches and they are aggregated in a Hough-transform
manner, i.e. clusters are searched in the parameter space. In contrast to this method, in our problem the segment length ratio
invariant can not be applied. A track segment can lay anywhere within the map segment. Additionally, our tracks are mostly
straight (or with a small curvature), the angle between the consecutive line segments is usually around zero and thus the angle
invariant is not discriminative enough.

The COCOA system [1] addressed the tracking of moving objects in aerial videos. Xiao et al. [31] track cars in wide field
of view aerial videos, however they need already georefenced images to leverage traffic flow priors from road maps.

3. Image sequence to road database matching
We extract the road traffic from the images and match the car tracks to the road network. Detecting the roads directly would

be more straightforward, but this may pose problems due to the high intraclass variety of roads. The methods described in
[26], [20] show good results, but they work on images with a constant GSD and the effect of an unknown GSD is not
investigated. In our case there is no information about the GSD. Using only the car tracks also highlights that already a
fraction of the road network is enough for the geolocalization.

The intraclass variety in visual appearance of cars is much smaller than that of roads. Thus existing robust object detection
methods (e.g. Viola-Jones object detection framework [24]) can be applied with satisfying results (e.g. a detector based on
boosting is presented in [12]). The features of the car detector are pixel intensity differences, which can be robust against
different weather and lighting conditions. The motion information is also a strong cue, enabling object detection in cases
where a non-moving object could not be distinguished from the background. We utilize the motion information by using the
tracks of only the moving cars to reduce the possible false positive car detections. The length of the tracked cars in the image

3

also gives information about the GSD. The proposed geolocalization method could also work with a suitable road detector
(e.g. based on deep learning), or by labeling the roads manually and limiting the GSD search space.

3.1. Track extraction

The track extraction works on a mosaic image compiled from the single images. We use the tool VisualSFM [29] to calcu-
late the camera parameters and 3D point coordinates in the scene. The earth surface is assumed a plane, and a homography
is calculated between the images from the camera parameters and the equation of the plane.

We detect the cars independently on the image frames. We apply the Viola-Jones object detection framework [24] with
the Gentle AdaBoost [9]. The detector is rotation variant, thus we rotate the image in steps to cover all directions and group
the independent detections together (it would be more time efficient to use a multi-view detector).

The detections are transformed to the mosaic image. During the tracking we model the motion of the cars with a simple
linear model and use Kalman-filtering. In each frame the tracked objects are assigned to detections matching the predicted
object positions. We discard the short tracks to avoid false positives. This is a simple method, delivering satisfying results.

3.2. Matching the tracks to the road network

We formulate the aerial image geolocalization as a model recognition and pose estimation task of the road network pattern.
The search area is tiled to overlapping square areas (in object recognition terms a tile is a model). An image scene query
returns a model and a transformation between the image and the model. Since the absolute world position of the tile (model)
is known, the transformation from the image coordinates to the geocoordinates can be recovered. The recognition has to
handle geometric transformations for the pose estimation, a high number of models (> 10000) for larger search areas, and
partially occlusions since the extracted tracks are just a subset of the road network. The geometric hashing method is suitable
for handling these challenges.

3.2.1 Geometric hashing

Geometric hashing is an efficient, low polynomial complexity technique for matching geometric features against a databases
of such features. Matching is possible even when the recognizable database objects have undergone transformations or when
only partial information is present. We describe briefly the geometric hashing defined for 2D feature points. For a more
detailed explanation the reader is referred to [28]. In the preprocessing step of geometric hashing a hash table is generated:

1. Calculate the feature points of the model.

2. For each ordered point pair (basis) calculate the remaining points in the coordinate frame defined by the basis.

3. For each remaining point coordinate in the basis frame quantize the coordinates to a grid. Use the grid coordinate as
hash index and insert (into the hash table) an entry containing the identifier of the model and the basis used to generate
the hash index.

The matching is done with the following steps:

1. Calculate the feature points in the image to be matched.

2. For an arbitrary selected ordered point pair (basis) calculate the remaining points in the coordinate frame defined by
the basis.

3. For each remaining point coordinate in the basis frame quantize the coordinates to a grid. Use the grid coordinate as
hash index and cast a vote for all the models and the bases present at the hash index.

4. The models and bases with the most votes are match candidates. Select a candidate, recover the transformation between
the query image and the reference model (based on the basis correspondence) and verify the transformation. If the
verification fails, repeat this step (Step 4) with the next candidate.

Nakai et al. [22] were able to retrieve document images from a database of several thousand images in a fraction of a
second. In Stein and Medioni [23] a curvature based geometric hashing is presented. In our case the most important feature
is not the shape of the individual roads but the distances between the different roads, therefore we employ a geometric
hashing similar as in [28].

4

Map and track representation The roads in the map are represented as 2D polylines. A polyline contains vertices (points),
and the road consist of the line segments between consecutive vertices. The tracks are also polylines, whereas the vertices are
the positions in the registered image during different frames. Although the representation of the tracks and roads is identical,
there is no strict correspondence between the vertex positions in the road network and the tracks. A track segment can lie
anywhere within the road segment.

(a)

(b)
Figure 2. (a): The blue and green polylines are different roads. The x-y is the original coordinate system of the road database. The line
segment p1-p2 defines the basis (u,v) with the center point and the direction. The grid points intersected by line segments are the indices
for the hash table. (b): The p points are the road vertices (from the database), the t points are the track vertices extracted in the mosaic
image (with different color for different cars). The red arrows are the road bases in the hash table. The basis B0 from the track end points
t1-t3 is shifted along the track. At B+2 position the track basis lies in the the same grid row, as the road basis.

Polyline Based Geometric Hashing The PLBGHashing method compiles the polylines to the hash table. Since we assume
the earth’s surface to be a plane and the tracks projected on this plane, the perspective transformation between the tracks and
the roads can be reduced to a scaling, rotation and translation. As a basis we use a segment in a form of one point and a
direction instead of two or more points. The relation of a p point’s original coordinate (x, y) and the coordinate (u, v) in the
basis defined by a line segment S with end points ps1 ,ps2 is described by the equation:

p− ps1 = ups
x + vps

y (1)

where ps
x =

ps1
−ps2

‖ps1
−ps2

‖ and ps
y is ps

x rotated by 90◦. On this basis the 2D hash table is invariant to rotation and translation
but not to the scaling. To find the correct GSD we query with multiple scales. By leveraging the low variation of the car
lengths (4− 6m), the number of different scales are kept low. We calculate the maximum in the histogram of the car lengths
(the bounding rectangle delivered by the detector) in the tracks. Utilizing this length we needed only 3 scales to search in our
experiments to get good geolocalization.

Each hash bin stores a set of entries. An entry contains a model number and a basis. It is important to store a set with
unique elements, otherwise some bins could be biased by areas containing roads densely.

Database construction (off-line) The search area is tiled to squares with a fixed side length ds and overlap. The nodes
are interpolated to make the line segments shorter as a defined maximal value dmax. Then the hash table is generated by the
following steps:

For each polyline (road) Pj in each tile Mi do:

1. For each line segment Sk in the polyline Pj :

5

(a) Create an entry Ek with the model number i and the basis of Sk.

(b) Solve the (Eq. 1) with Sk to calculate (um, vm) of all the vertex points in Mi.

(c) Quantize the points (um, vm) to a grid (uqm, v
q
m).

(d) Calculate the coordinates (uql , v
q
l) of the rasterized line in the grid between the neighboring (uqm−1, v

q
m−1), (u

q
m, v

q
m)

vertices. The (uql , v
q
l) line points are indices for the 2D hash table. For each line point (uql , v

q
l) add the entry Ek

to the set at the (uql , v
q
l) hash bin.

The Figure 2a illustrates the hash index generation. The complexity of the number of bases is O(n), where n is the number
of node points after interpolation in the tile. The complexity of hash table entries per basis is O(l/dg) where l is the sum
of road length and dg is the grid size for geometric hashing. Since dg is fixed in an implementation the complexity of hash
entries is O(nl).

Shortlist retrieval (on-line) To find the correct geolocation of a scene, a basis (1-point and direction) in the tracks has to
be aligned to a similar basis in the correct model with the correct scale. The direction of a road segment can be properly
recovered from the end points of a track. We choose long straight tracks, because they define the direction more accurately
if the vertex positions are noisy. The correct scale is searched with multiple queries. The list of scales is derived from the
car length. Since the line segment length is limited by dmax, a street vertex exists in the range [−dmax/2, dmax/2] along a
track vertex, the Figure 2b illustrates this. It is enough to search this range in shifts by the grid size dg , because then the hash
indices are the same at creation and query. We resize the scene with all the search scales. For each resized scene we choose
track segments Ti (the line segment between the end points). For each Ti in both directions we do:

1. Shift Ti between [−dmax/2, dmax/2] in dg steps.

2. Each shift gives a line segment Sk. For each Sk:

(a) Solve the (Eq. 1) with Sk to calculate (um, vm) of the vertex points of all the tracks in the scene.

(b) For each polyline (track) Pi in the scene:

i. Calculate the rasterized points (uqm, v
q
m) of the vertices

ii. Calculate the coordinates (uql , v
q
l) of the discrete (rasterized) line segment in the grid between the (uqm−1, v

q
m−1), (u

q
m, v

q
m)

points.
iii. Each point (uql , v

q
l) of the line segment is an index for the hash table. For every entry at the hash bin (uql , v

q
l)

cast a vote for a recognition (model, basis and scale).

After the query with multiple straight tracks, the votes are aggregated. One recognition gets only one vote from a bin,
otherwise a basis might be biased due to many tracks over the same index. A shortlist of matches is created by sorting the
recognitions based on the number of received votes. The transformation from image to a world coordinate can be recovered
from the basis in the image and in the model, the scale and the world position of the model (tile).

3.3. Verification of the shortlist

The retrieved shortlist also contains false recognitions. We re-sort the shortlist by a stricter criteria, the verification match
score S. The quality of the match is measured by the mean distance dmt

of the tracks Rt to the roads in the model, like the
Chamfer Matching [5]. The distance image Id is calculated to the roads [7], and the Id pixels along the tracks are extracted.
Since the tracks may contain outliers, we calculate a trimmed mean, where the 10% of the tracks with the highest distances
are discarded. The dmt does not penalize roads not covered by tracks. To compensate for this, we extract a second road
detector with high completeness but low correctness. We assume that the color of the roads is similar all over the scene. The
CIELUV color values of the image pixels are grouped to 16 clusters by k-means. Clusters are added to the road class until
85% of the tracks lie over pixels belonging to the road class. A second dmp

mean distance is calculated as the distance of the
roads in the model to the roads detected by the pixel based detector (Rp). The Figure 3 shows the distance images, a brighter
pixel is a larger distance.

We assign likelihood values Lt (Rt match), and Lp (Rp match) to the two mean distances dmt and dmp . The likelihood
function f(x) of dmi

for a correct match are modeled by the following function, a normal distribution function N (µ, σ) if
x ≥ µ, uniform with the max of the normal distribution if 0 ≤ x < µ and 0, otherwise. The normal distribution parameters
are set experimentally, for Rt; µt = 6m, σt = 15m, for Rp; µp = 7.5m, σp = 15m. We set µt smaller than µp because

6

Wrong localization Correct localization
Figure 3. The distance images used for calculating the verification score at Suburban 1 image sequence. On top the tracks are shown with
green (inlier) and red (outliers) in the distance image to the road network. In the bottom the road network (green) is shown in the distance
image to classified road pixels in the image.

for dmt
outliers are considered. The likelihood for a mean distance value is Ld = f(dm). The final score S that the image

sequence I matches the roads R is the joint likelihood S = LtLp = f(dt)f(dp), dt and dp are handled as independent. At a
correct match both likelihoods Lt and Lp have a high value, thus the final score is also high. For a false match at least one of
the likelihoods has to decrease, thus the final score also decreases.

4. Experimental results
4.1. Synthetic data

The purpose of this test was to investigate whether the road map tiles (scenes) and the subsets of the roads in these tiles
are unique or ambiguous over a city. We analyzed if the proposed polyline based geometric hashing method can distinguish
the road network fractions over a city area, thus enabling geolocation recognition. Since the tracks are considered as subsets
of the street network, we can generate synthetic tracks with known ground truth from the street map data.

4.1.1 Test steps

• Database creation: We generate the hash entries for the search area As with a specific grid size as described in 3.2.1.
Except the road nodes are not interpolated to limit the segment length to dmax since they are virtually identical to the
vertices of the tracks.

• Synthetic track generation: In the search area As an axis aligned square (scene) Ar is extracted with side length ds.
In this Ar area either all streets are used or they are sampled. When sampling roads and line segments are randomly
chosen with a ratio parameter defining how many roads rr and segments rs are kept. The remaining vertex points are
randomly shifted in the line segment. The tracks are transformed by one random 2D rigid transformation Tr to a new
area At. Since we shift the vertex positions only in the line segments (no noise is added, but the quantization of the
geometric hashing can be considered as noise), a perfect location recognition is possible. The question is the ambiguity
of the recognition.

• Geolocation recognition: A recognition as in 3.2.1 defines a 2D rigid transformation Tb. If the Tb transforms the
corners of At back to their original location Ar the recognition is correct. The geolocation recognition is considered
true only if it is correct, it has the highest number of votes, and no wrong recognition has the same number of votes –
thus it is unambiguous.

7

4.1.2 Test configurations and results

We selected two search areas, one in New York City, US with an area of 10.1 × 11.1 km2 containing 1495 km of streets.
The second in Munich, Germany, with an area of 14.1× 10.6 km2 and 1560.4 km road length. See the map of the areas4 on
figure 4.

Figure 4. The search areas in New York City (left) and Munich from OpenStreetMap for the synthetic test.

New York Munich
Figure 5. Correctness over grid size with different scene sizes and complete/sampled road network.

Grid Size [m] 10 15 20 25 50 75 100
New York 502.1 323.6 234.4 181.7 79.9 47.4 30.5
Munich 622.0 401.8 292.5 228.4 105.1 64.8 44.2

Table 1. Number of hash entries [106] in the database over the grid size.

The tiles of the road database are 2500 m× 2500 m with 50% overlap. We tested multiple grid sizes; see the table 1
for the values. 100 center points were generated randomly. Around each point scenes were generated with side lengths
ds = 500, 1000, 1500 m. We analyzed the complete scene scenario and the more realistic case by sampling the roads with
rate rr = 0.5, the line segments with rs = 0.3 and shifting the node along the line segment with maximal 50 m.

4source: http://www.openstreetmap.org

8

correct, grid size = 15m wrong, grid size = 50m
Figure 6. Example where the large dg grid size leads to false geolocalization. The green rectangle is the ground truth, the orange is the
recognized geolocation. The road network is in black, the synthetic tracks are in red. The grid in the image is 100 m. The tracks exceed
the scene to preserve the basis points.

We computed the correctness = T/(T + F) where T is the number of true and F is the number of false geolocalizations.
On figure 5 the correctness was plotted over the grid size for the two cities with different sampling and different scene sizes
ds × ds.

Since the grid size of the geometric hashing both defines the number of bins and the rasterization of the line segments, it
has an impact on the number of hash entries in the database. The number of hash entries over different grid sizes are in table
1. More hash entries imply higher memory demand and longer database retrieval and creation time.

The correctness values derived from our test indicate, as shown in figure 5, that the road network of a larger area is unique,
though it might be ambiguous on local scale. The problematic areas occur where the whole street network is very regular
like a chessboard or the scene contains a few straight roads. The unambiguity originates not simply from the perpendicular
Manhattan World road network, typical in New York, but also from the identical distances between the streets. On a larger
area it is more likely that a unique road will appear, which makes the whole road network also unique. The Figure 6 shows
an example where the coarser grid size leads to wrong localization.

By increasing the scene size (i.e. flying longer over roads) a correct geolocalization becomes possible based only on the
road map. With a grid size of 15 m and scene size 1000 m × 1000 m we get a correctness > 0.9 for all the scenarios and
cities we have tested.

4.2. Real data – Aerial image sequences

We have tested the method on real aerial photos over Germany. 20 image sequences were acquired by a 21 MPixel Canon
DSLR camera with a fixed focal length mounted in nadir direction on an airplane. The internal camera parameters were
known. A GPS device registered the position of each image for the ground truth. Each image sequence contains 17 − 20
consecutive images taken with approximately 1 Hz frequency. The altitude over ground was between 1000 and 1500 m,
which gives a GSD of 13− 19 cm/pixel. The image sequences contain roads with car traffic. We grouped the scenes as urban
(U), suburban (S), industrial (I) and motorway (M). This classification is not strict; we arbitrarily used it for this paper. The
scenes were relatively flat, thus the earth surface could be modeled by a plane. Studying mountainous areas is planned for
future work. The scenes Suburban 1 and 4, 5 and 2, 6 and 3 and Urban 3 and 4 are approximately over the same area but
with two month difference. The original images were rectified with a 2 parameter radial distortion model. All the processing
was done on these rectified images. The tiles of the road database were 2000 m ×2000 m with 50% overlap. The grid size
dg for the geometric hashing was 15 m. The 5 longest straight tracks in the scene were used for the shortlist retrieval. The
size of the scenes was around 2000 m × 500 m.

9

4.2.1 Quantitative evaluation

The PLBGHashing delivers a shortlist of locations, while the verification gives a ranking of these locations. To decide if a
geolocation was correct, the geolocalization was compared to the GPS values. If the GPS positions were correct, the mosaic
image was inspected visually by overlaying it in Google Earth. We extracted a TOPN value, which indicates if there is a
correct location in the first N list elements. The number of possible locations and orientations is very high even for a small
search area. For a scene of 1000 m × 1000 m in a search area of 2 km × 2 km with 15 m translation steps, 5◦ angle steps,
and 3 scales (100015)2 × 360

5 × 3 = 960000. A search area of 22500 km2 consists of 22201 overlapped tiles, thus the total
number of possibilities is in the 1010 scale.

Shortlist from PLBGHashing After verification
Figure 7. Completeness over top N.

In Figure 7 the aggregated number of correct localizations is plotted for different N values and search areas. There is
a separate plot for the shortlist retrieval and the verification. The increase of Top1 by the verification was significant. We
increased the search areas around the GPS position of the camera in steps 4, 9, 25, 49, 100, 225, 400, 625, 1225, 2500, 5625,
10000, 15625, 22500 km2. The Figure 8 shows for each scene the maximal size of the search area in which it was correctly
located in the topN after the verification.

19 scenes out of 20 could be located correctly as top1. The scenes Industrial 1, 2 contain tracks acquired in large parking
lots (the tracking algorithm might extract wrong tracks on dense parked cars) outside the road network. If the number of
outliers becomes greater than what the verification accepts, then the verification ranks the locations wrong. Thus even if the
correct location was in the shortlist it can not be found. Therefore bad localization. The location of I1 was wrong already at
the smallest search area, while the I2 could be localized only on 4 km2. I2 contains more tracks over streets as I1, which has
tracks only about one motorway and and industrial area, see the Figure 11. The other scenes show that if we have enough
tracks on the roads, then the localization only weakly depends on the search area. On the Figure 10 and 11 we show the
geolocalizations by projecting the mosaic images into the street network and as an overlay in Google Earth (the visualization
as an image overlay is geometrically not fully accurate).

Some areas might be inherently ambiguous (e.g. chessboard like streets). An indicator for this ambiguity is if there are
many candidates with the same number of votes in the shortlist and in the list after validation.

We defined the grid size for the geometric hashing as 15 m. This makes the method robust to small displacements in the
tracks and it can handle multi-lane roads. If we assume 3 m wide lanes, then 5 lanes are quantized to the same grid (i.e. the
localization is invariant to this displacement). Roads with more then 5 lanes are sparse as large roads (e.g. motorways) in
OSM are stored as two separate roads for each direction.

Our method is agnostic to splits or merges of the tracks as the assignment between line segments and tracks is not relevant.
A track consisting of 10 line segments has the same effect as if it is split to 10 individual tracks.

The search area 150 km × 150 km around the Urban scenes contain nearly 32000 km of roads, compiling to 2262M
entries in the hash which requires 30500 MB memory. For the Urban 1 scenes containing many tracks the retrieval took 9
minutes on the largest search area, for a scene with less tracks the retrieval is faster, for the Suburban 1 it took 2 minutes. The

10

Figure 8. The largest search area for each image sequence where the correct verified geolocation was in the TOPN in km2

average accuracy of the geolocalization is around 25 m, this also depends on the accuracy of the road data (A more accurate
location could be acquired by optimizing the resulting location, but this was not our goal in this paper). Our implementation
was written in C++, multi threaded. The experiments run on an Intel Xeon E5-1650v2 processor with 6 cores. The verification
took around 36 ms per shortlist element. Since the geometric hashing is very suitable for parallel implementation, the retrieval
time on large search areas can be significantly reduced by utilizing more cores or machines.

4.2.2 Comparison to simple chamfer matching

We consider chamfer matching [5] with brute force search as a baseline. Without the PLBGHashing for shortlist generation,
by only a brute force search and verification of each position the number of required verifications would be very high. Since
the processing time of the verification is relatively long (36 ms per location), it would take 960000× 0.036s = 9.6 hours on
2 km × 2 km search area 1010 × 0.036s = 3.6× 108s = 11 years for the largest search area (on a single thread). This is too
long for practical usage.

4.2.3 Comparison to graph matching

To compare our method to graph matching, we reimplemented the method in [16]. We formulated this bipartite graph
matching problem with many-to-one matches as one of inference in a Markov random field (MRF). The variables (nodes) are
the segments in the tracks, while the states are the segments in the map plus a state defining no match. We define pairwise
potentials between all variables. The pairwise potential consists of the sum of differences between 3 binary features (i.e. the
relative orientation between lines, the minimum distance between the line endpoints and the distance between the segment
center points). The energy function of this MRF is similar as the (2) energy function of [16]. The number of variables is
T , the number of pairwise connections is T (T − 1)/2 where T is the number of track segments. Each variable has M + 1
states (where M is the number of map segments), thus the pairwise potential is a matrix of M + 1 ×M + 1 values. The
MAP inference in this MRF gives the matching between the tracks and the maps. The inference in this MRF is an NP-hard
problem as it contains many loops and the pairwise potential can not be guaranteed to be regular. Therefore we have to
perform approximate inference. We refer the reader to paper of Kolmogorov and Zabin [13] for the conditions of an MRF
inference problem being NP-hard. We applied the AStar inference algorithm [6] of the OpenGM software [2].

We have one difference to the method in [16]. [16] has an approximation for the initial direction of the image and therefore
they define possible matches between line segments only to those within a given orientation difference. This can reduce the
number of states per variable significantly. For our problem this is not the case, since we have no information about the
orientation of our images. We have to match all track segments to all possible map segments.

We used synthetic tracks (the segments of the map randomly transformed) on a limited search area (max 700 × 700 m2)
to validate if our implementation can provide correct localizations. As long as both the number of map segments (labels) and
the track segments (variables) were kept low (< 200) the approximate MAP inference provided a decent segment assignment
and thus correct localization. But if we moved to larger search areas (e.g. 1000 × 1000 m2) or real tracks which consist of
more then 200 segments and has outliers, the inference could not find a solution in a reasonable time (30 minutes) and the
memory need for the algorithm became also too high for practical use. We show an example for this on Figure 9.

The increase of T and M leads to a difficult inference problem and the memory consumption becomes also a problem,
since the number of values stored for pairwise features is (M +1)2T (T − 1)/2. If T = 200 and M = 1000 we already need

11

(a) (b)

Figure 9. Graph matching based localization [16] on the Suburban 1 sequence using 700 × 700m2 search area. The (a) shows the
case with synthetic tracks (random sampling of the road network). Here we have 110 variables each with 174 states (the number of map
segments). The inference gave an assignment between the segments which define a correct localization. The map segments are shown in
black, the sampled road segments transformed in blue and the located segments in red. On (b) we use real tracks defining 353 variables.
The inference could not find a matching defining a correct geolocalization in reasonable time (30 minutes). The localized tracks after 30
minutes inference running time are shown in red.

to store ≈ 2× 1010 values.
Graph matching as in [16] provides an energy formulation giving a matching invariant to rotation and translation. However

the minimization of this energy function is intractable for large scale problems with many variables and states. This prevents
the practical application for large scale geolocalization.

5. Conclusion and outlook
In this paper we have addressed the problem of finding the geolocation of an aerial image sequence over a larger area.

Our method utilizes only the visual information and the road map which is easily accessible. We have demonstrated the
effectiveness of our method in tests with synthetic data derived from the road network and real photos captured over various
scenes (urban, suburban, industrial, motorway). In practice much longer image sequences could be used covering more roads,
thus making the localization easier. The limitation is the presence of road traffic at the area and the flat ground assumption.
In our future work we plan to address these limitations, e.g. by applying a road detector the method could localize scenes
without traffic and also single images, a 3D model of the scene generated by dense stereo could extend the method to areas
with relief.

12

(a) Urban 1. (b) Urban 2.

(c) Urban 3. (d) Suburban 1.

(c) Suburban 5 (90◦ rotated). Suburban 5 an an overlay in Google Earth

Figure 10. Geolocalization results. The mosaic images are projected into the street network. The roads are in black, the tracks are
highlighted with red lines, the locations of votes from the PLBGHashing are marked with yellow circles. (When an image scene is only
partially overlapped with a model during the shortlist retrieval, there are no vote circles at every matching track-road locations (e.g. on
Urban 1-3)) On (f) the geolocalized mosaic image with the tracks is overlaid in Google Earth. All these scenes were correctly located on
a 22500 km2 search area.

13

(a) Industrial 1 false location. (b) Industrial 3. (90◦ rotated)

(c) Motorway 2. (d) Motorway 2 as an overlay in Google Earth.

(e) Motorway 3. (f) Motorway 5 (90◦ rotated).
Figure 11. Geolocalization results. The mosaic images are projected into the street network. The roads are in black, the tracks are
highlighted with red lines, the locations of votes from the PLBGHashing are marked with yellow circles. On (d) the geolocalized mosaic
image with the tracks is overlaid in Google Earth. The (a) shows the scene Industrial 1 located false on a 4 km2 search area. The causes for
this are; the scene contains 2 roads which makes it inherently ambiguous, multiple tracks are extracted on a parking lot, outside of the road
network. Since there are more tracks in the parking lot than on the road, the verification matching handles the correct tracks as outliers.
The color based road detection also does not work properly, since a parking lot has similar color as the road. The error is approximately
100m.

14

6. Acknowledgement
This work was funded by the Vabene++5 project of the German Aerospace Center (DLR).

References
[1] Saad Ali and Mubarak Shah. Cocoa - tracking in aerial imagery. In Proc. Int. Conf. on Computer Vision, 2005. 3

[2] B. Andres, Beier T., and J. H. Kappes. OpenGM: A C++ library for discrete graphical models. ArXiv e-prints, 2012. 11

[3] Georges Baatz, Kevin Köser, David Chen, Radek Grzeszczuk, and Marc Pollefeys. Leveraging 3d city models for rotation invariant
place-of-interest recognition. Int. J. Comput. Vision, 96(3):315–334, February 2012. 2

[4] Georges Baatz, Olivier Saurer, Kevin Köser, and Marc Pollefeys. Large scale visual geo-localization of images in mountainous
terrain. In Computer Vision ECCV 2012, Lecture Notes in Computer Science, pages 517–530. Springer, 2012. 3

[5] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric correspondence and chamfer matching: two new techniques
for image matching. In Proceedings of the 5th international joint conference on Artificial intelligence - Volume 2, IJCAI’77, pages
659–663, San Francisco, CA, USA, 1977. Morgan Kaufmann Publishers Inc. 6, 11

[6] Martin Bergtholdt, Jörg Kappes, Stefan Schmidt, and Christoph Schnörr. A study of parts-based object class detection using complete
graphs. International Journal of Computer Vision, 87(1):93–117, 2009. 11

[7] Gunilla Borgefors. Distance transformations in digital images. Comput. Vision Graph. Image Process., 34(3):344–371, June 1986. 6

[8] Marcus A. Brubaker, Andreas Geiger, and Raquel Urtasun. Lost! leveraging the crowd for probabilistic visual self-localization. In
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 3057–3064, 2013. 3

[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of
Statistics, 28:2000, 1998. 4

[10] Patrick Gros, Olivier Bournez, and Edmond Boyer. Using local planar geometric invariants to match and model images of line
segments. Computer Vision and Image Understanding, 69(2):135 – 155, 1998. 3

[11] Achim Hornbostel, Manuel Cuntz, Andriy Konovaltsev, Gtz C. Kappen, Christian Httich, Carlos A. Mendes da Costa, and Michael
Meurer. Detection and suppression of ppd-jammers and spoofers with a gnss multi-antenna receiver: Experimental analysis. In
European GNSS Conference, 2013. 1

[12] S. Kluckner, G. Pacher, H. Grabner, H. Bischof, and J. Bauer. A 3d teacher for car detection in aerial images. In Computer Vision,
2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8, 2007. 3

[13] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(2):147–159, Feb 2004. 11

[14] K. Kozempel and R. Reulke. Camera orientation based on matching road networks. In Image and Vision Computing New Zealand,
2009. IVCNZ ’09. 24th International Conference, pages 237–242, 2009. 3

[15] K. Kraus, I. Harley, and S. Kyle. Photogrammetry: Geometry from Images and Laser Scans. Number Bd. 1 in De Gruyter textbook.
Bod Third Party Titles, 2007. 2

[16] StanZ. Li, Josef Kittler, and Maria Petrou. Matching and recognition of road networks from aerial images. In G. Sandini, editor,
Computer Vision ECCV’92, volume 588 of Lecture Notes in Computer Science, pages 857–861. Springer Berlin Heidelberg, 1992.
3, 11, 12

[17] Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal Fua. Worldwide pose estimation using 3d point clouds. In Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, editors, Computer Vision ECCV 2012, volume
7572 of Lecture Notes in Computer Science, pages 15–29. Springer Berlin Heidelberg, 2012. 2

[18] Tsung-Yi Lin, Serge Belongie, and James Hays. Cross-view image geolocalization. In Computer Vision and Pattern Recognition
(CVPR), 2013 IEEE Conference on, pages 891–898, 2013. 3

[19] Yuping Lin and G. Medioni. Map-enhanced uav image sequence registration and synchronization of multiple image sequences. In
Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–7, 2007. 2

[20] Volodymyr Mnih and Geoffrey E Hinton. Learning to label aerial images from noisy data. In Proceedings of the 29th International
Conference on Machine Learning (ICML-12), pages 567–574, 2012. 3

[21] Rupert Müller, Thomas Krauß, Mathias Schneider, and Peter Reinartz. Automated Georeferencing of Optical Satellite Data with
Integrated Sensor Model Improvement. Photogrammetric Engineering and Remote Sensing, 71(1):61–74, 1 2012. 2

5http://www.dlr.de/vabene/

15

[22] Tomohiro Nakai, Koichi Kise, and Masakazu Iwamura. Use of affine invariants in locally likely arrangement hashing for camera-
based document image retrieval. In In Lecture Notes in Computer Science (7th International Workshop DAS2006), pages 541–552.
Springer, 2006. 4

[23] F. Stein and G. Medioni. Efficient two dimensional object recognition. In Pattern Recognition, 1990. Proceedings., 10th International
Conference on, volume i, pages 13–17 vol.1, 1990. 4

[24] Paul Viola and Michael J. Jones. Robust real-time face detection. Int. J. Comput. Vision, 57(2):137–154, May 2004. 3, 4

[25] Caixia Wang, A Stefanidis, and P. Agouris. Relaxation matching for georegistration of aerial and satellite imagery. In Image
Processing, 2007. ICIP 2007. IEEE International Conference on, volume 5, pages V – 449–V – 452, Sept 2007. 3

[26] Jan D. Wegner, Javier A. Montoya-Zegarra, and Konrad Schindler. A higher-order crf model for road network extraction. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 1698–1705, 2013. 3

[27] R Wilson and E R Hancock. Relaxation matching of road networks in aerial images using topological constraints. Sensor Fusion,
2059:444–455, 1993. 3

[28] H.J. Wolfson and I. Rigoutsos. Geometric hashing: an overview. Computational Science Engineering, IEEE, 4(4):10–21, 1997. 4

[29] Changchang Wu. Towards linear-time incremental structure from motion. In 3DTV-Conference, 2013 International Conference on,
pages 127–134, 2013. 4

[30] Changchang Wu, Friedrich Fraundorfer, Jan-Michael Frahm, Jack Snoeyink, and Marc Pollefeys. Image localization in satellite
imagery with feature-based indexing. In Commission III, ISPRS Congress 2008 Beijing, volume XXXVII, pages 197–202, 2008. 2

[31] Jiangjian Xiao, Hui Cheng, H. Sawhney, and Feng Han. Vehicle detection and tracking in wide field-of-view aerial video. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 679–684, June 2010. 3

[32] Yan-Tao Zheng, Ming Zhao, Yang Song, H. Adam, U. Buddemeier, A. Bissacco, F. Brucher, T.-S. Chua, and H. Neven. Tour the
world: Building a web-scale landmark recognition engine. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1085–1092, 2009. 2

16

122

C Máttyus, G., Wang, S., Fidler S. and Urtasun R.,
2015. Enhancing Road Maps by Parsing Aerial
Images Around the World. 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV),
pages 1689–1697.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7410554

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7410554

Enhancing Road Maps by Parsing Aerial Images Around the World

Gellért Máttyus
Remote Sensing Technology Institute

German Aerospace Center
gellert.mattyus@dlr.de

Shenlong Wang, Sanja Fidler and Raquel Urtasun
Department of Computer Science

University of Toronto
{slwang, fidler, urtasun}@cs.toronto.edu

Abstract

In recent years, contextual models that exploit maps have
been shown to be very effective for many recognition and lo-
calization tasks. In this paper we propose to exploit aerial
images in order to enhance freely available world maps.
Towards this goal, we make use of OpenStreetMap and for-
mulate the problem as the one of inference in a Markov
random field parameterized in terms of the location of the
road-segment centerlines as well as their width. This pa-
rameterization enables very efficient inference and returns
only topologically correct roads. In particular, we can seg-
ment all OSM roads in the whole world in a single day using
a small cluster of 10 computers. Importantly, our approach
generalizes very well; it can be trained using only 1.5 km2

aerial imagery and produce very accurate results in any lo-
cation across the globe. We demonstrate the effectiveness
of our approach outperforming the state-of-the-art in two
new benchmarks that we collect. We then show how our
enhanced maps are beneficial for semantic segmentation of
ground images.

1. Introduction

Over the past decades many contextual models have been
developed to improve object recognition [41, 20, 24, 18, 19,
14, 15, 6, 10, 31, 39, 11, 16, 3, 13]. Particularly success-
ful are approaches that use maps to improve localization
[22], layout estimation [22] and holistic scene understand-
ing [36]. Most self-driving cars (e.g., Google car, partici-
pants of the DARPA urban challenge) rely on detailed maps
of the environment to facilitate navigation and perception.
These maps are typically obtained via costly manual inter-
vention, limiting the applicability of current approaches.

An alternative are online resources such as the Open-
StreetMap (OSM) project 1, which contains a cartographic
map of the road topology with good coverage over almost
the full world, with around 33,968,739 km of road data.

1www.openstreetmap.org

This is advantageous as it is freely available on the web and
the quality and quantity of the annotations are growing over
time, as more users contribute to the project. However, the
map information is noisy and partially missing as for exam-
ple most roads do not contain information about their width.

In this paper we proposed to exploit aerial images in or-
der to enhance open-source maps (e.g., with road geome-
try). This is not an easy task as despite decades of research,
large-scale automatic road segmentation from aerial images
remains an open problem. Most approaches either do not
deliver a topologically correct road network and/or rely on
classifiers that have to be re-trained for each location in or-
der to properly capture appearance variations. As a con-
sequence they require tedious manual annotation for each
region of the globe to be segmented. This annotation task
takes around 8 hours per km2, therefore, current approaches
focus on a small set of locations.

In contrast, instead of framing the problem as seman-
tic segmentation, we propose to use OpenStreetMap (OSM)
to formulate the problem as inference in a Markov random
field (MRF) which is directly parameterized in terms of the
centerline of each OSM road segment as well as its width.
This parameterization enables very efficient inference and
returns the same topology as OSM. In particular, we can
segment the OSM roads of the whole world in only 1 day
when using a small cluster of 10 computers. Furthermore,
our approach can be trained using only 1.5 km2 of aerial
imagery over Germany and is able to generalize to the en-
tire world and produce state-of-the-art results without any
further manual interaction. As we reason about the location
of the centerline, we can handle and correct OSM mistakes
as well as geo-localization/projection errors. This is not an
easy task as illustrated in Fig. 1 due to shadows, occlu-
sions and misalignments. Our energy encodes the appear-
ance of roads, edge information, car detection, contextual
features, relations between nearby roads as well as smooth-
ness between the line segments. All our energy terms can
be computed very efficiently via local, non-axis aligned in-
tegral images. Learning can also be done very efficiently
using structured SVMs [33] taking 1 minute on a desktop

2015 IEEE International Conference on Computer Vision

1550-5499/15 $31.00 © 2015 IEEE

DOI 10.1109/ICCV.2015.197

1689

(a) shadow (b) occlusion

(c) vehicles (d) misaligned centerline
Figure 1. Road segmentation is challenging due to shadows, oc-
cluding trees and vehicles which make the appearance heteroge-
neous as well as OSM/projection misalignment errors.

computer.
The coverage of OSM is very high in most areas, and

thus by employing our parameterization we did not miss
roads in our datasets. We had to exclude lower road cat-
egories as they include forest tracks and pedestrian areas,
which are not sufficiently visible in the aerial images. In
other regions of the globe the coverage is not as dense and
our approach might miss some roads. We refer the reader
to the OSM project2 for a more detailed explanation of the
coverage and its growth, and 3 for a comparison with other
maps. Detecting new roads that are missing in OSM is our
plan for future work.

We demonstrate the effectiveness of our approach by ex-
tracting road information from aerial images from different
camera sensors taken around the whole world (e.g., Toronto,
Sydney, New York, Manila, Nairobi). Importantly, we only
employ 1.5 km2 imagery over Germany captured by one
camera sensor for training, illustrating the ability of our ap-
proach to generalize (domain adaptation). The aerial image
datasets we are aware of are not labeled with the geomet-
ric information we want to extract. They either consider
the road as a single centerline or label the other surfaces in-
stead, e.g., the ISPRS 4 contains the ”impervious surfaces”
class but no roads. Therefore we collect two new datasets
namely Bavaria and aerial KITTI, which we manually an-
notate and show that our approach significantly outperforms
all competitors. We then demonstrate the usefulness of our
road priors for the task of semantic segmentation on KITTI
ground images, and show that we can provide better carto-
graphic priors than [36]. We will release code and datasets
to reproduce all results on the paper.

2http://wiki.openstreetmap.org/wiki/Stats
3http://tools.geofabrik.de/mc
4http://www2.isprs.org/commissions/comm3/wg4/

semantic-labeling.html

Figure 2. Illustration of the road centerline with the width param-
eterized by the center offset h and symmetrical width y. The di-
rection and length of the rectangle Ωi is defined by the pi, pi−1

points given by the street database. The context is depicted as Σ.

2. Related Work

Road segmentation in aerial images has draw a lot atten-
tion for decades in the computer vision and remote sensing
communities. However, it still remains an open-problem
due to the difficulties in handling appearance variations and
producing topologically correct segmentations. Early ap-
proaches search for objects that fulfill a pre-defined crite-
ria. [2] defines a geometric-stochastic model and estimates
the roads by tiling the input image. [32] use a Point Pro-
cess to simulate and detect a network of connected line
segments. We refer the reader to [25] for a detailed liter-
ature review and comparison. These approaches, however,
share a common drawback: they require manual parame-
ter tuning. Learning based methods have been proposed to
be more robust to appearance variations. Mnih and Hinton
[26] proposed a two stage approach, where first a neural net
is used to label patches independently. Road topology is
then corrected using a post-processing step. This was ex-
tended in [27] to deal with noisy training labels by employ-
ing a robust loss function. However, this method suffers
from block effects due to the patch-based prediction. [37]
model the road classification as a CRF, where the high-order
cliques are sampled over straight segments or junctions to
maintain a road-like network structure. In [28] height-field
contextual information captured from dense stereo match-
ing is used to improve segmentation. This approach is com-
putationally very expensive and results were shown in a sin-
gle location. [4] sample graph junction-points using image
consistency and shape priors, resulting in long computation
times (4 min/image). [34] formulate the delineation of lin-
ear loopy structures as an Integer program. However, only
simple suburban scenes were tackled.

Map information has been used in both computer vision
and robotics communities. Aerial image and land cover
attribute maps are exploited in [21] for single image geo-
localization. Kalogerakis et al. [17] built a human travel
prior from maps to geolocalize time-stamped photographs.
Brubaker et al. [3] use road networks for self-localization.

1690

Figure 3. Output of the car detector. This task is challenging due
to the small resolution of the target objects. The left image was
captured from Google Earth while the right is part of the Bavaria
dataset which was used for training the detector.

In [24] various maps of New York city were used to detect
and localize cars from ground images. [22] use floor plans
to localize and reconstruct in 3D single images in apart-
ments. [36] use OSM to generate a geographic prior for out-
door holistic scene understanding improving performance
in 3D object detection, pose estimation, semantic segmen-
tation and depth reconstruction.

In [30] the road segmentation in aerial images is for-
mulated as a weakly supervised classification problem, in
which superpixels that overlap with road vector data are
adopted as positive samples. However, inaccuracies of the
road vector data are not taken into account and the solution
does not preserve topology. [40] consider road segmenta-
tion as a width estimation problem. By analyzing the spa-
tial distribution of superpixel boundaries along the direction
of the road, the road width is retrieved for each line seg-
ment independently. However, their approach is not robust
to shadows and occlusion.

3. Enhancing Road Maps from Aerial Images
In this section we show how to enhance world maps by

parsing aerial images. In particular, we frame the problem
as the one of inference in a Markov random field where the
noisy cartographic map is employed to directly parameter-
ize the problem. This parameterization is very robust and
enables efficient inference.

3.1. Energy Formulation

In OSM, each road centerline is defined as a polyline
chain (i.e., piece-wise linear curve) but no information
about the road width is typically available. Unfortunately
OSM roads are not very accurate as they are either edited
by volunteers without explicit quality control, or computed
automatically from GPS trajectories. Furthermore, geo-
localization and projection errors make the vertices of the
polyline poorly aligned with the center of the road in aerial
images. We refer the reader to Fig. 1 for an illustration
of the difficulties of the problem. Thus we re-reason about
their true location. Given a geo-localized aerial image, we
model each road with a set of random variables representing
for each vertex of the polyline an offset in the normal direc-

tion as well as the width of the road segment. We refer the
reader to Fig. 2 for an illustration of our parameterization.

More formally, let hj = {hj
1, · · · , hj

lj
} be a set of ran-

dom variables encoding the offsets of each vertex of the
polyline that defines the j-th road, where lj is the number
of vertices for that road and hj

i ∈ [−30, 30] pixels. Our
images have a resolution of 13 cm/pixel. Denote yj =
{yj

1, · · · , yj
lj
} the width of each segment that compose the

j-th road, with yj ∈ [24, 50] pixels. Note that the hypoth-
esis spaces for h and y are defined based on our empirical
estimate of maximal road width and OSM projection error.
Further, let h = {h1, · · · ,hL} and y = {y1, · · · ,yL} be
the set of offsets and widths for all roads respectively. De-
note x the input aerial image. We define the energy of our
road segmentation as a sum of potentials encoding the im-
age evidence, the presence of car detections, smoothness
between widths and offsets of consecutive road segments
and overlap constraints between nearby parallel roads

E(h,y) =
L∑

j=1

lj∑

i=1

wT
roadφroad(h

j
i , y

j
i ,x)

+
L∑

j=1

lj∑

i=1

wT
apφap(h

j
i , y

j
i ,x) +

L∑

j=1

lj∑

i=1

wT
carφcar(h

j
i , y

j
i ,x)

+
L∑

j=1

lj−1∑

i=1

wT
smφsm(hj

i , y
j
i , h

j
i+1, y

j
i+1)

+
∑

i,j,k,m∈P

φol(h
j
i , y

j
i , h

m
k , ym

k) (1)

Note that the overlap energy does not have a weight as it
is a hard constraint. We use three types of appearance fea-
tures: distance to edges, homogeneity of the region as well
as its context, i.e., φapp = [φedge, φhom, φcontext]. We now
describe our potentials in more details.

Road classifier: We employ a road classifier to compute
for each pixel the likelihood of being road/non-road. The
potential for each segment φroad(h

j
i , y

j
i) is simply the sum

of the likelihoods of all pixels in the non-axis aligned rect-
angle Ωj

i defined by hj
i , y

j
i (see Fig. 2 for an example).

φroad(h
j
i , y

j
i) =

∑

p∈Ωj
i (h

j
i ,yj

i)

ϕ(p) (2)

with ϕ(p) the classifier score at pixel p. Note that this can
be very efficiently computed using non-axis aligned integral
images. Since we know the orientation of each segment,
only a single integral image is necessary per segment. The
integral image is also local to the segment, as the hypothesis
space covers regions near the original OSM vertices.

1691

Method
Bavaria Aerial KITTI

IoU F1
Δh[m] Δy[m]

IoU F1
Δh[m] Δy[m]GT Oracle GT Oracle GT Oracle GT Oracle

Road Unary [38] 49.7 48.3 66.4 65.1 – – 32.8 31.2 49.4 47.6 – –
OSMxSeg 61.6 60.6 76.2 75.5 – – 50.3 48.8 67.0 65.6 – –
FSeg [40] 63.0 65.3 77.3 79.0 2.11 1.15 55.4 58.6 71.3 73.9 2.32 1.25
OSMFixed 64.7 66.9 78.6 80.2 1.75 1.45 51.0 53.8 67.6 70.0 2.38 1.21

Ours 73.5 77.2 84.8 87.2 1.30 0.97 71.8 77.5 83.6 87.4 0.91 0.79
Oracle 86.5 100 92.7 100 0 0 84.2 100 91.4 100 0 0

Table 1. Performance of our method vs baselines. The IoU and F1 values are in %, while Δh,Δy are the mean absolute error of the offset
and width measured in meters.

Method
Bavaria Aerial KITTI

IoU F1
Δh[m] Δy[m]

IoU F1
Δh[m] Δy[m]GT Oracle GT Oracle GT Oracle GT Oracle

Road+Edge+Car 72.2 75.7 83.8 86.2 1.57 1.10 70.7 76.3 82.8 86.5 1.05 0.84
Road+Edge+Car+‖ 72.8 76.4 84.2 86.7 1.39 1.03 71.8 77.6 83.6 87.4 0.91 0.79

Edge+Hom+Context+Car 64.8 68.4 78.6 81.2 1.58 1.26 63.6 67.2 77.8 80.3 1.61 1.36
Edge+Hom+Context+Car+‖ 69.7 72.6 82.1 84.2 1.52 1.09 63.5 67.4 77.7 80.5 1.49 1.26

All 73.0 76.2 84.4 86.5 1.51 1.08 71.2 76.8 83.2 86.9 1.05 0.84
All+‖ 73.5 77.2 84.8 87.2 1.30 0.97 71.8 77.5 83.6 87.4 0.91 0.79

Domain shift (train on one dataset, test on the other)
Road+Edge+Car 70.0 74.3 82.4 85.2 1.45 1.06 66.0 71.0 79.5 83.0 1.33 0.89

Road+Edge+Car+‖ 70.7 75.2 82.8 85.8 1.30 0.99 66.8 72.0 80.1 83.7 1.18 0.83
Edge+Hom+Context+Car 69.1 71.5 81.7 83.4 1.73 1.11 59.3 63.5 74.4 77.6 1.63 1.17

Edge+Hom+Context+Car+‖ 70.4 73.4 82.7 84.6 1.43 0.98 62.0 65.7 76.5 79.3 1.57 1.36
All 70.8 75.1 82.8 85.8 1.37 1.02 67.7 72.8 80.7 84.3 1.20 0.84

All+‖ 71.7 76.1 83.5 86.4 1.27 0.93 67.7 73.2 80.7 84.6 1.08 0.79

Table 2. Performance on Bavaria and Aerial KITTI with various features configurations. The IoU and F1 values are in %, while Δh,Δy
are the mean absolute error of the offset and width measured in meters. The ‖ symbol denotes the overlap potential between parallel roads.

Edge: We expect the boundaries of road segments to
match image appearance boundaries. Towards this goal, we
compute edges using the line detector of [7], and define the
potential as the distance d from each rectangle boundary
pixel to the closest image edge

φedge(h
j
i , y

j
i) =

∑

p∈∂Ωj
i (h

j
i ,yj

i)

min
e∈E

d(p, e) (3)

with ∂Ω the boundary of the rectangle Ω, p a pixel and E
the set of all lines returned by the line detector. We adopt
the distance transform of [8] to accelerate the computation.

Object detector: We train a car detector using the de-
tector of [23]. Note that this task is extremely challeng-
ing as on average a car has only 30 × 12 pixels (see Fig.
3). We form a 2D feature for each car by computing
[s · sin(Δα), s · cos(Δα)], with Δα the angle between the
segment and the car and s the confidence of the detector.
The car potential φcar is simply the sum of the features of
all the detected cars that are inside the rectangle. Given the
car features, the potentials can be computed efficiently us-
ing accumulators in a local region around each segment.

Homogeneity: An important property of roads is that they
are typically free of obstacles (otherwise we could not drive
on them) and therefore we expect their appearance to be
homogeneous. This is violated if there are vehicles, shad-
ows or if our aerial view of the road is obstructed by trees,
bridges or tunnels. In those cases we expect the other po-
tentials to correct the mistakes. We capture homogeneity
by first transforming the image into Luv space and comput-
ing for each channel the standard deviation of the appear-
ance inside the rectangle. This potential can be efficiently
computed using two non-axis aligned integral images per
channel: one computing the sum of intensities and the other
the sum of square intensities. Note that this calculation was
used in [35] to normalize the Haar-like features in a sub-
window.

Context features: This feature encodes the fact that the
road looks different than the area around it. Similar to [35],
we compute the difference between the means of pixel in-
tensities in the context and road rectangles, Σj

i and Ωj
i re-

spectively (see Fig. 2). The potential is computed by ag-
gregating the difference across all Luv channels. Again, we
use integral images for efficiency.

1692

(Toronto: Pearson Airport) (NYC: Times square) (Nairobi, Kenya)*

(Manila, Philippines) (Mexico City) (Kyoto: Kinkakuji)

(Sydney: At Harbour bridge) (St. Moritz, Switzerland) (Manaus, Brazil)*
Figure 4. Segmentation results on several cities over the world using the edge, homogeneity, context, car and overlap features. Note that
the MRF was trained only on 1.5 km2 imagery from the Aerial KITTI dataset. * Indicates satellite image.

Smoothness: The widths and offsets along the same road
tend to be similar in nearby segments. Our smoothness po-
tentials for both h and y are defined between consecutive
segments along the same road as a weighted sum of �0 and
�2 norms.

Overlap: This is a hard constraint encoding the fact that
two parallel roads can not overlap. We enforce this for all
roads that have similar orientation (within 20 degrees) and
are close enough that they could overlap.

3.2. Inference

Inference in our model can be done by computing the
minimum energy configuration

{h∗,y∗} = argminh,yE(h,y) (4)

with E(h,y) the total energy defined in Eq. (1). Note that
due to the overlap constraint, the graphical models might
contain loops. As a consequence exact inference is not pos-
sible. When there is no overlap, the graphical model is com-
posed of set of chains and dynamic programing yields the

exact solution. Inspired by the stereo work of [5], we em-
ploy block coordinate descent (BCD) to perform approxi-
mated inference. Towards this goal, we define each block
in BCD to form a chain since we can then solve each step
to optimality. We then alternate between going over all
horizontal and vertical chains to propagate the information.
Note that since we solve each sub-step to optimality this
procedure is guaranteed to converge. We refer the reader
to Fig. 5 for an illustration, where to simplify the figure
we have collapsed the width and offset variables in a single
variable gj

i = (hj
i , y

j
i). It is important to note that each of

the BCD steps (i.e., optimization over a subset of variables)
involve conditioning, and thus the pairwise potentials be-
tween a variable in the chain and a connected variable not
in the chain are folded as unaries. Prior to BCD, we initial-
ize all variables by performing inference along each road
chain and ignoring the connections between nearby parallel
roads. We refer the reader to Algorithm 1 for more details
about the block coordinate descent.

1693

(a) (b) (c)
Figure 5. Illustration of our BCD inference. Note that gji = (hj

i , y
j
i). (a) Graphical model consisting of 3 roads that have overlapping

constraints (i.e., vertical edges). We alternate between performing inference (b) over each road one at a time (red, green, blue), and (c)
along chains on the vertical direction encoding the horizontal constraints, also one at a time (orange, yellow, pink, green, purple). Note that
these operations involve conditioning, and thus the pairwise potentials between a variable in the chain and a connected variable not in the
chain are folded as unaries.

Algorithm 1 Block coordinate descent inference (BCD)
1: Initialize (h,y) by minimizing Eq. (1) ignoring the

overlap potentials
2: repeat
3: for all roads Rj do
4: Minimize Eq. (1) w.r.t hj ,yj holding the rest

fixed.
5: end for
6: for all overlap chains Oi do
7: Minimize Eq. (1) over the variables in the overlap

chain
8: end for
9: until no energy reduction or max number iterations

3.3. Learning

We learn the parameters of the MRF using a structural
SVM (S-SVM)[33] by minimizing

min
w∈RD

1

2
||w||2 +

C

N

N∑

n=1

ξn

s.t. δ(h,y) ≥Δ(h,y)− ξn, ∀(h,y) ∈ H × Y \ (yn, hn), ∀n
(5)

with δ(h,y) = E(h,y)−E(hn,yn) andH×Y the space
of all possible labelings for (h,y). Note that our defini-
tion is opposite from the one in [33], as we have defined
the features in terms of an energy minimization and not a
score maximization. We employ the parallel cutting plane
implementation of [29] to learn the parameters. We use the
intersection-over-union between the configuration and the
ground-truth labels as our task loss. This can be computed
as a pairwise term, and thus loss augmented inference can
be done efficiently.

4. Experimental Evaluation
We perform our experiments on three different datasets:

Bavaria, Aerial KITTI and World which were captured with
different sensors. Note that we have access to RGB images
without any elevation information. We conduct road pixel-
wise annotations in all Bavaria and Aerial KITTI images.

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Precision−Recall Curves

precision
re

ca
ll

Bavaria
AKITTI

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74
IoU vs GT by SSVM C values

C value

Io
U

Bavaria
AKITTI

Figure 6. (Left) Precision-recall curve of the road classifier;
(Right) Segmentation performance as a function of the structural
SVM C parameter.

Note that the parameters not learned by S-SVM were set
via four-fold cross-validation.

Bavaria: This dataset is a collection of ortho-rectified
aerial images captured by a DSLR camera mounted on a
plane flying around the Bavaria region in Germany 5. It cov-
ers urban, suburban and rural areas with motorways. The
resolution is 13 cm/pixel on the ground. The total area is
4.95 km2 containing 103 km of road.

Aerial KITTI: This dataset consists of aerial images
downloaded from Google Earth Pro over the city of Karl-
sruhe, Germany, covering the same area as the KITTI track-
ing benchmark [12]. The total area is 5.96 km2 with 84
km of road. We resampled the images to be 13 cm/pixel
resolution to be consistent with the Bavaria dataset.

World: This dataset consists of aerial images downloaded
from Google Earth Pro of landmarks all over the world,
including metropolitan areas in Toronto, New York, Syd-
ney, Mexico City, Manaus, etc., as well as rural areas in St.
Moritz and Kyoto. For this dataset there is no annotation.

We use four metrics to measure performance: intersec-
tion over union, F1 score, and mean of the absolute error
of h and y. We consider two different ground truth labels
when evaluating the performance: our human labeled road
annotations as well as the maximum achievable score with
respect to our model hypothesis, refer to as Oracle. The

5We will release these images and the ground truth upon publication.

1694

Features
Time (s) per km

Accumulator Inference
Road+Edge+Car 0.07 0.031

Road+Edge+Car+‖ 0.069 0.092
All 0.126 0.032

All+‖ 0.122 0.095
Table 3. Running time for feature accumulator calculation and in-
ference under various configurations. In sec per km of road.

later can be computed by performing our MRF inference, by
replacing our unary potentials with ground truth segmenta-
tions. For all quantitative experiments we perform four-fold
cross-validation.

To compute our road classifier, we first convert the image
to opponent Gaussian color space and extract a dense filter
response map, with a filterbank composed of 17 edge-like
filters [38]. We oversegment the image using SLIC [1] and
calculate the mean and std of the filter responses in each
superpixel. We then train a random forest classifier [7] with
this 34D input feature. Note that this road classifier was
used in [37] as unary potential. Fig. 6 shows the Precision-
Recall curve of the road classifier on Bavaria and Aerial
KITTI.

Comparison to baselines: We compare our approach to
four baselines: The first one is the road classifier unary po-
tential of [37], denoted Road Unary. The second baseline,
denoted as OSMxSeg, is computed by segmenting the im-
age into superpixels using [9] and labeling each super pixel
as road if it is crossed by a road segment in OSM. We also
reproduce the state-of-the-art method of [40], denoted as
FSeg, which also uses the OSM road data. To illustrate the
effectiveness of our cartographic prior, the last baseline, de-
noted OSMFixed, projects OSM into the image and utilizes
an empirical estimate of the road width. As shown in Ta-
ble 1 our approach significantly outperforms all baselines
in both Bavaria and aerial KITTI datasets. (see qualitative
results in Fig. 8). Fig. 10 shows a comparison to [40].

Importance of the features: Table 2 depicts inference re-
sults for different combinations of features. Note that every
feature contributes, and good performance can be achieved
without using a road classifier. As a consequence, we do
not need new training data for each different location in the
world as the other features are very robust to appearance
changes.

Segmenting the world: Fig. 4 shows qualitative results
from the World dataset with our model trained only on
AKITTI. Our model works very well under many complex
scenarios even with significant appearance changes, illus-
trating the generalization capabilities of our approach. Note
that no re-training is necessary as we do not use the road
classifier in our potentials.

(a) (b) (c)

Figure 7. Failure modes: (a) Missing turn lane intersection. (b)
The extracted road is too narrow. (c) Road covered by trees.

Sky Build Road Sidewalk Vege Car
[36] 32.41 59.25 63.01 36.41 7.36 35.65
Ours 32.41 59.10 78.71 41.96 7.36 35.65

Table 4. Our method improves the geographic priors of [36]. All
values are IoU in %.

Domain Adaptation: We next show our method’s do-
main adaptation ability. Towards this goal, we trained one
model on Aerial KITTI and evaluate its performance on
Bavaria, and vise versa. As shown in Table 2 our algo-
rithm outperforms all baselines despite the fact that it is
trained with different imagery. Furthermore, performance
drops less than 5% IoU when compared when we train on
the same dataset we test on.

Processing time: We implemented our method in C++
without multi-threading and test it on a laptop with an In-
tel Core i7-4600M processor. As shown in Table 3, our
approach takes less than 0.13 s for computing all feature ac-
cumulators per km of road and less than 0.1 s per km for in-
ference. The feature computation (road classifier, edge, car
detector) relies on external code which takes around 0.1s per
km of road. According to this performance, we estimate our
algorithm could approximately segment all the OSM roads
in the world in 1 day using a small cluster of 10 machines.
We use the parallel cutting-plane structured SVM of [29] to
learn the parameters of the model. This takes only 1 minute
on a desktop computer.
Ground-level Scene Understanding: In this experiment
we show that our enhanced maps can be used to improve
semantic segmentation of ground images from KITTI. To-
wards this goal, we replace the road prior used in [36] by the
estimations of our method. This improves the geographic
unary prior for the road class by 15%, see the Table 4. Qual-
itative results are shown in Fig. 9.

Failure modes and limitations: Fig. 7 depicts failure
modes. (a) At intersections the OSM might not include the
turn lanes and our model can not recover from this. (b) In
some cases our features/weights are not good for the scene.
This is more likely to happen in the strong generalization
case. (c) The road can be (partly) covered, and we only ex-
tract the visible part of the road. Additional challenges are

1695

(Bavaria: Motorway) (Bavaria: Urban 1) (Bavaria: Urban 2)

(AKITTI 1) (AKITTI 2) (AKITTI 3)
Figure 8. Results on Bavaria and Aerial KITTI.

Figure 9. (Top) Our road extracted from aerial images (green) projected into Kitti ground images. (2nd row): Geographical unary of [36].
(3rd row): Geographical unary with our road estimate. (Bottom) Ground truth. Road (pink), sidewalk (blue), building (red), car (purple).

Image [40] Ours Ground truth
Figure 10. Comparison to [40]: Our approach works significantly better than the baseline.

posed by historical city centers were the roads might not be
visible as well as developing countries, where only satel-
lite images with much lower resolution than aerial images
might be available.

5. Conclusion

We have presented an approach to enhance world maps
by parsing aerial images. By parameterizing the problem

in terms of OSM road segment centerlines and widths, we
were able to extract road properties very efficiently. In par-
ticular, we can process the whole world in a single day
using a small cluster. Importantly, our approach can be
trained with as little as 1.5 km2 aerial imagery from a single
area and it is able to generalize to the full world. We have
demonstrated the effectiveness of our approach in three dif-
ferent datasets captured by different sensors in different re-
gions of the world.

1696

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. PAMI, 2012. 7

[2] M. Barzohar and D. Cooper. Automatic finding of main
roads in aerial images by using geometric-stochastic models
and estimation. PAMI, 1996. 2

[3] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging
the crowd for probabilistic visual self-localization. In CVPR,
2013. 1, 2

[4] D. Chai, W. Forstner, and F. Lafarge. Recovering line-
networks in images by junction-point processes. In CVPR,
2013. 2

[5] Q. Chen and V. Koltun. Fast mrf optimization with applica-
tion to depth reconstruction. In CVPR, 2014. 5

[6] S. K. Divvala, D. Hoiem, J. H. Hays, A. A. Efros, and
M. Hebert. An empirical study of context in object detec-
tion. In CVPR, 2009. 1

[7] P. Dollár and C. L. Zitnick. Structured forests for fast edge
detection. In ICCV, 2013. 4, 7

[8] P. Felzenszwalb and D. Huttenlocher. Distance transforms
of sampled functions. Technical report, Cornell University,
2004. 4

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-
based image segmentation. IJCV, 2004. 7

[10] S. Fidler, S. Dickinson, and R. Urtasun. 3d object detec-
tion and viewpoint estimation with a deformable 3d cuboid
model. In NIPS, 2012. 1

[11] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun. 3d
traffic scene understanding from movable platforms. PAMI,
2014. 1

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. IJRR, 2013. 6

[13] J. Hays and A. A. Efros. Im2gps: estimating geographic
information from a single image. In CVPR, 2008. 1

[14] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial
layout of cluttered rooms. In ICCV, 2009. 1

[15] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context
from a single image. In ICCV, 2005. 1

[16] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in
perspective. IJCV, 2008. 1

[17] E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros, and
A. Hertzmann. Image sequence geolocation with human
travel priors. In ICCV, 2009. 2

[18] L. Ladickỳ, C. Russell, P. Kohli, and P. H. Torr. Graph
cut based inference with co-occurrence statistics. In ECCV.
2010. 1

[19] L. Ladickỳ, J. Shi, and M. Pollefeys. Pulling things out of
perspective. In CVPR, 2014. 1

[20] L. Ladickỳ, P. Sturgess, K. Alahari, C. Russell, and P. H.
Torr. What, where and how many? combining object detec-
tors and crfs. In ECCV. 2010. 1

[21] T.-Y. Lin, S. Belongie, and J. Hays. Cross-view image ge-
olocalization. In CVPR, 2013. 2

[22] C. Liu, A. Schwing, R. Urtasun, and S. Filder. Rent3d:
Floor-plan priors for monocular layout estimation. CVPR,
2015. 1, 3

[23] K. Liu and G. Mattyus. Fast multiclass vehicle detection on
aerial images. GRSL, 2015. 4

[24] K. Matzen and N. Snavely. Nyc3dcars: A dataset of 3d ve-
hicles in geographic context. In ICCV, 2013. 1, 3

[25] H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias. A test of
automatic road extraction approaches. In ISPRS, 2006. 2

[26] V. Mnih and G. E. Hinton. Learning to detect roads in high-
resolution aerial images. In ECCV, 2010. 2

[27] V. Mnih and G. E. Hinton. Learning to label aerial images
from noisy data. In ICML, 2012. 2

[28] J. A. Montoya-Zegarra, J. D. Wegner, L. Ladicky, and
K. Schindler. Mind the gap: Modeling local and global con-
text in (road) networks. In GCPR, 2014. 2

[29] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box
In the Box: Joint 3D Layout and Object Reasoning from Sin-
gle Images. In ICCV, 2013. 6, 7

[30] Y.-W. Seo, C. Urmson, and D. Wettergreen. Exploiting pub-
licly available cartographic resources for aerial image analy-
sis. In SIGSPATIAL, 2012. 3

[31] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV. 2012. 1

[32] R. Stoica, X. Descombes, and J. Zerubia. A gibbs point pro-
cess for road extraction from remotely sensed images. IJCV,
2004. 2

[33] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent out-
put variables. JMLR, 2005. 1, 6

[34] E. Turetken, F. Benmansour, B. Andres, H. Pfister, and
P. Fua. Reconstructing loopy curvilinear structures using in-
teger programming. In CVPR, 2013. 2

[35] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 2004. 4

[36] S. Wang, S. Fidler, and R. Urtasun. Holistic 3d scene under-
standing from a single geo-tagged image. In CVPR, 2015. 1,
2, 3, 7, 8

[37] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler.
A higher-order crf model for road network extraction. In
CVPR, 2013. 2, 7

[38] J. Winn, A. Criminisi, and T. Minka. Object categorization
by learned universal visual dictionary. In ICCV, 2005. 4, 7

[39] J. Yao, S. Fidler, and R. Urtasun. Describing the scene as
a whole: Joint object detection, scene classification and se-
mantic segmentation. In CVPR, 2012. 1

[40] J. Yuan and A. Cheriyadat. Road segmentation in aerial im-
ages by exploiting road vector data. In COM.geo, 2013. 3,
4, 7, 8

[41] M. Z. Zia, M. Stark, K. Schindler, and R. Vision. Are cars
just 3d boxes?–jointly estimating the 3d shape of multiple
objects. In CVPR, 2014. 1

1697

132

D Máttyus, G., Wang, S., Fidler S. and Urtasun
R., 2016. HD Maps: Fine-grained Road Segmen-
tation by Parsing Ground and Aerial Images,
Conference on Computer Vision and Pattern
Recognition (CVPR) 2016.

This is the submitted camera ready version of the paper.

HD Maps: Fine-grained Road Segmentation by Parsing Ground and Aerial
Images

Gellért Máttyus
Remote Sensing Technology Institute

German Aerospace Center
gellert.mattyus@dlr.de

Shenlong Wang, Sanja Fidler, Raquel Urtasun
Department of Computer Science

University of Toronto
{slwang, fidler, urtasun}@cs.toronto.edu

Abstract

In this paper we present an approach to enhance exist-
ing maps with fine grained segmentation categories such as
parking spots and sidewalk, as well as the number and lo-
cation of road lanes. Towards this goal, we propose an ef-
ficient approach that is able to estimate these fine grained
categories by doing joint inference over both, monocular
aerial imagery, as well as ground images taken from a
stereo camera pair mounted on top of a car. Important to
this is reasoning about the alignment between the two types
of imagery, as even when the measurements are taken with
sophisticated GPS+IMU systems, this alignment is not suf-
ficiently accurate. We demonstrate the effectiveness of our
approach on a new dataset which enhances KITTI [8] with
aerial images taken with a camera mounted on an airplane
and flying around the city of Karlsruhe, Germany.

1. Introduction
We are in an exciting time for computer vision, and more

broadly AI, as the development of fully autonomous sys-
tems such as self-driving cars seems possible in the near
future. These systems have to robustly estimate the scene
in 3D, its semantics as well as be able to self-localize at all
times. Key to the success of these tasks is the use of maps
containing detailed information such as road location, num-
ber of lanes, speed limit, traffic signs, parking spots, traffic
rules at intersections, etc.

Current maps, however, have been created with the use
of semi-automatic systems that employ many man-hours of
laborious and tedious labeling. An alternative to this costly
labeling is to employ existing maps and correct/enhance
them based on ground imagery or LIDAR point clouds, cap-
tured, for example, by a Velodyne/cameras mounted on top
of a car. Systems like TESLA auto-pilot [1] are currently
using their deployed fleet of cars, which are equipped with
cameras, to perform such corrections. However, it is dif-
ficult to create full coverage of the world as we will need

access to imagery/LIDAR from millions of cars in order to
reliably enhance maps at a world-scale.

Alternatively, aerial images provide us with full coverage
of a significant portion of the world, but at a much lower
resolution than ground images. This makes semantic seg-
mentation from aerial images a very difficult task. In this
paper, we propose to use both aerial and ground images to
jointly infer fine grained segmentation of roads. Towards
this goal, we take advantage of the OpenStreetMap (OSM)
project, which provides us with freely available maps of the
road topology in the form of piece-wise linear road seg-
ments. We formulate the problem as energy minimization,
inferring the number and location of the lanes for each road
segment, parking spots, sidewalks and background, as well
as the alignment between the ground and aerial images. We
employ deep learning to estimate semantics from both aerial
and ground images, and define a set of potentials exploiting
these semantic cues, as well as road constraints, relation-
ships between parallel roads, and the smoothness of both
the estimations along the road as well as the alignment be-
tween consecutive ground frames.

We demonstrate the effectiveness of our approach in a
new dataset which covers a wide area of the city of Karl-
sruhe in Germany, both from the ground and from the air.
We provide pixel-level annotations for the aerial images in
terms of fine-grained road categories. We call our dataset
Air-Ground-KITTI. We show that our approach is able to
estimate these categories reliably, while significantly reduc-
ing the alignment error between the ground and aerial im-
ages when compared to a sophisticated GPS+IMU system.

2. Related work

For several decades, researchers from various communi-
ties (e.g., vision, remote sensing) have been working on au-
tomatic extraction of semantic information from aerial im-
ages. In the following, we summarize the approaches most
relevant to our work.

1

Figure 1. Illustration of our model: (a) Parameterization of our approach. Our random variables are the absolute location of the different
region boundaries (e.g., sidewalk) as well as the alignment between air and ground. (b) Our formulation allows a random variable to take
the same state as the previous node, collapsing a region to have 0 width. (c). For each ground-view image, a random variable models the
alignment noise. (d). Projection of our parameterization on the ground-view.

Aerial image parsing: Early approaches employed prob-
abilistic models that aimed to produce topologically con-
nected roads. [2] defined a probabilistic model that tiled the
image into patches, performed road inference inside each
patch via dynamic programming, and then “stitched” to-
gether high-confidence patches to ensure road connectiv-
ity. Recent work exploits learned classifiers to perform se-
mantic segmentation. [15, 16] trained a neural net to clas-
sify pixels in local patches as road. They employ a post-
processing step to ensure a consistent road topology across
the patches, which is, however, prone to block-effects. [26]
segments the road by defining an MRF on superpixels.
High-order cliques are sampled over straight segments or
junctions to encourage a road-like network structure. Due to
complexity of high order terms a sampling scheme is used
to concentrate on more important cliques. [4] samples graph
junction-points using image consistency and shape priors.
A full review of this large field is out of scope of this paper,
and we refer the reader to [14] for a detailed review.

Aerial parsing with maps: While proven useful in many
computer vision and robotics applications [9, 13, 3, 25],
few works employ map information for parsing aerial im-
ages. [20] uses a screenshot of the vector map as a weak
source of ground-truth for training a road classifier. [27]
exploit road center-lines from OSM maps as a ground-truth
road location and performs road segmentation by estimat-
ing the width of the road. This is done by finding bound-
aries of superpixels along the direction of the road, and ig-
noring dependencies across different line (road) segments.
However, the alignment between OSM and aerial images
is far from perfect. To solve this problem, [12] proposed a
MRF which reasons about re-positioning the road centerline
and estimating the width of the road. Smoothness is incor-
porated between consecutive line segments by encouraging
their widths to be similar. In our work we go beyond this
approach by introducing a formulation that reasons about

more fine-grained road semantics such as lanes, sidewalks
and parking spots, and exploits simultaneously aerial im-
ages as well as ground imagery to infer this information.

Fine-grained road parsing: Very few works exist that
extract detailed segmentation. [17] propose a hierarchical
probabilistic grammar to parse smaller-scale aerial regions
into roads, buildings, vehicles and parking lots. Classifiers
are first employed to generate object/building/vegetation
proposals while the grammar imposes semantic and geo-
metric constraints in order to derive the final parse. Learn-
ing and inference are both hard in grammars, and computa-
tionally expensive sampling techniques typically need to be
employed. In our work, we are aiming at a detailed pars-
ing of the roads into sub-categories. Unlike [17], we exploit
OSM information in order to derive an efficient formulation.

The work most related to ours is [21] which exploits the
map as a screenshot of the road vector map to perform road
and lane estimation. The authors take a pipeline approach,
where, in the first step, road lane hypotheses are generated
based on the output of the road classifier and detected lane
markings. In the second step, the authors provide heuris-
tics to “track” the lane hypotheses and connect them into a
single lane labeling.

Aerial-to-ground reasoning: Recent work aims to ex-
ploit both aerial and the ground-view, mainly for the prob-
lem of geo-localization. In [11], a deep neural network is
used to match ground images with aerial images in oblique
views. The matches come from facade to facade matching
and therefore can not be extended to orthographic aerial im-
ages. In [22], 3D reconstructions from the ground images
are matched to oblique views of aerial images. [10] learn
cross-view matching between ground images, aerial ortho-
graphic photos and land cover attributes. This extends the
image geolocalization to areas not covered by ground im-
ages. Forster et al. [7] match the computed 3D maps of

(a) Along Road (b) Perpendicular to Road (c) Along ground image sequence

Figure 2. BCD: The graph shows a simplified network with two parallel roads (each with 3 random variables) and one ground image
per segment connected to the right road. BCD alternates between three types of updates. (a) Along the road updates: we optimize over
each chain with the same color (while holding all other variables fix). The pairwise terms fold to unaries (see dashed black lines). (b)
Perpendicular to the road updates: we do inference for the nodes with the same color (holding the rest fix). (c) Along the ground alignments:
We minimize only the t variables which are depicted in green. The y variables are fixed and are depicted in black.

MAVs and ground robots for localization and map augmen-
tation. This method relies on matching 3D information and
therefore needs multiview images both from above and on
ground. In our work, we exploit the maps as well as ground
and aerial imagery to perform fine-grained road parsing. We
are not aware of prior work that tackles this problem.

3. Fine-grained Semantic Parsing of Roads
We now describe our model that infers fine-grained se-

mantic categories of roads from aerial and ground images.
In particular, we are interested in estimating sidewalks,
parking, road lanes as well as background (e.g., vegetation,
buildings). Towards this goal we exploit freely available
cartographic maps (we use OSM), that provide us with the
topology of the road network in the area of interest. Our
approach takes as input an aerial image xA, a road map xM

and a set of ground stereo images xG, which are taken by a
calibrated stereo pair mounted on top of a car. The map xM

is composed of a set of roads, where each road is defined as
a piece-wise linear curve representing its centerline.

3.1. Model Formulation

We formulate the problem as the one of inference in a
Markov random field (MRF), which exploits deep features
encoding appearance in both aerial and ground images,
edge information, smoothness in the direction of the road as
well as restrictions between parallel roads to avoid double
counting the evidence. Our model encodes each street seg-
ment in the aerial image with 15 random variables encoding
all possible combinations of background (B), sidewalk (S),
road lanes (L) and parking (P). In particular,

y = (y1, · · · , y15)

= (B1, S1, B2, S2, P1, L, P2, S3, B3, S4, B4)

with B1, B4 the rightmost (leftmost) border of the back-
ground. We model roads with up to 6 lanes, i.e., L =
(L1, L2, L3, L4, L5, L6). We allow all variables (but L6)
to take the state of the previous random variable in the se-
quence (i.e., yi = yi−1), encoding the fact that some of

these regions might be absent, e.g., there is no parking or
sidewalk. This is not the case for L6 forcing the fact that
at least one lane should be present. We define the states of
each random variable to be [−15, 15]m from the projection
of the OSM centerline in the aerial image (Fig. 1). This
discretization represents pixel increments. Note that while
there are 15 random variables, y defines 16 different re-
gions as B1 and B4 are not limited on the left (right). Each
region width is simply defined by wi = yi − yi−1, while
the width of B1 is defined as w1 = −15m + y1, and the
width of B4 as w16 = 15m − y16, since −15m and 15m
are the beginning and end of the state space. Note that the
combination (B,S,B, S) is necessary (both on the left and
right), as there are many bike lines in Germany (where our
imagery is captured), and it is not possible to distinguish
them from the sidewalk. Fig. 1 illustrates the model.

Each of our ground images comes with a rough align-
ment with the aerial image as we have access to a
GPS+IMU and the cameras are registered w.r.t these sen-
sors. This alignment is, however, noisy with 1.67m error
on average. Thus, our model reasons about the alignment
when scoring the ground images. Towards this goal, we de-
fine t = (t1, · · · , tn) to be a set of random variables (one
per ground image) representing the displacement in the di-
rection perpendicular to the OSM road segment. We define
the state space of each misalignment to be ti ∈ (−4m, 4m).
This is discretized to represent pixel increments.

We define the energy of the MRF as to encode the infor-
mation contained in the ground and aerial images as well as
smoothness terms and constraints on the possible solutions:

E(y, t,xA,xM ,xG) = Eair(y,xA) + Eground(y, t,xG)

+ Esmooth(y, t,xM) + Econst(y)
(1)

We now define the potentials we employ in more detail.

Aerial semantics: We take advantage of deep learning in
order to estimate semantic information from aerial images.
In particular, we create pixel-wise estimates of 5 semantic
categories: road, sidewalk, background, building and park-
ing. We exploit the CNN for segmentation [23, 19] trained

GPS+IMU Our alignment
Figure 3. Effect of reasoning about alignment: (left) alignment
given by GPS+IMU, (right) alignment inferred by our model.
(top) Ground road classifier projected into the aerial image (shown
in red). (bottom) Our semantic classes projected on the ground
image. Our joint reasoning significantly improves alignment.

on ILSVRC-2014, which we fine-tune for a 5-label clas-
sification task: road, parking spot, sidewalk, building and
background. To train the network we created training exam-
ples by extracting patches centered on the projection of the
OSM road segments. If the road segment is too long (i.e.,
long straight road) we create an example every 20m. We
further perform data augmentation by applying small rota-
tions, shifts and flips to the training examples. The output of
the soft-max is a downsampled segmentation. To create our
features, we upsample the softmax output using linear inter-
polation as in [5]. To save computation, we only apply the
network in the region of interest (regions of the image that
are close to OSM roads). The aerial semantic potential then
encodes the fact that our final segmentation should agree
with the semantics estimated by the deep net. Towards this
goal, we define 5 features for each of our 16 regions, one
per label of the deep net. Each feature simply aggregates
the output of the softmax in that region. Recall that each
region is defined by two consecutive random variables, e.g.
the first sidewalk is defined by y1, y2, that is B1, S1. We
refer the reader to Fig. 1 for an illustration. While this po-
tential seems pairwise in nature, we can further decompose
it into unary potentials via accumulatorsA perpendicular to
the road direction. These are simply generalizations of inte-
gral images from axis aligned accumulators to accumulators
over arbitrary directions. We thus define

φcl(y
j
i , y

j
i−1) =

∑

p∈Ωj
i (yj

i ,y
j
i+1)

ϕ(p) = A(yji+1)−A(yji)

with yji the i-th variable of the j-th road segment, and ϕ(p)
the softmax output interpolated at pixel p. To compute this
features, we only need 5 accumulators per road segment,
one for each semantic class that the deep net predicts.

Aerial edges: This potential encodes the fact that the lo-
cation of the boundaries between regions should be close

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
c
a
ll

Precision-Recall Curves

road

road*

sidewalk

parking

Figure 4. Precision-Recall curves for our deep classifier and the
road classifier of [12] marked with * and in dashed.

to image edges. We thus apply the edge detector of [6] to
detect edges in our aerial images. We then define the po-
tential to be the sum of the edges on the boundary between
consecutive regions. To make it more robust we thicken the
boundary to be of size 3 pixels.

Along the road smoothness: We encode smoothness
along the road by encouraging consecutive road segments
to be similar. In particular, we use the `1 distance between
consecutive road estimations in the direction of the road, i.e.

φsm(y
j
i , y

j+1
i) = |yji − yj+1

i |

Parallel roads: The regions of close by parallel roads can
overlap. To avoid double counting the evidence, we incor-
porate an additional constraint that forces S1 of the second
road to be bigger or equal to B4 of the first road or vice
versa. We refer the reader to Fig. 1 for an illustration.

Road collapse constraints: We force each variable yi to
have a state higher or equal than the previous variable, so
that the order is preserved. Note that equal means that a
road can collapse (i.e., does not exist)

φcoll(yi, yi+1) =

{
∞ if yi+1 < yi

0 otherwise

The only exception is L6, which we force to have non-zero
width as otherwise we could have a road segment without
road. Thus

φex(L5, L6) =

{
∞ if L6 ≤ L5

0 otherwise

Lane size constraint: This constraint forces each region,
if present, (i.e., if it is not taking state 0) to have a minimal
and maximal size. In particular, we use (1m-3m) for side-
walk, (1.8m-4.5m) for parking and (2.3m-4.6m) for each
road lane. Note that width 0 is allowed so that regions can
disappear if they are not present in the road segment (e.g.,

(a) Intersection with tram line. (b) Small town.

(c) A road with three lanes. (d) Two roads with tram stop in between.

(e) Dense urban area. (f) Splitting road plus a bike lane along the street.
Figure 5. Visualization of our semantic road parsing results using only aerial images. The road lanes are shown with shades of pink, the
sidewalk with blue and the parking spots with yellow.

we only have two lanes, there is no sidewalk on the high-
way). The intervals for the lanes are estimated based on the
standards of German roads, while the sidewalk and parking
intervals are computed based on empirical estimates.

Centerline prior: As our images are well registered with
OSM, we include a prior that the centerline of our model
should be close to the centerline of OSM. In particular,

φcen(L3) =

{
||L3 − l||2 if − 7.5 ≤ L3 ≤ 7.5

∞ otherwise

with l the location of the centerline.

Ground semantics: We take advantage of deep learning
in order to estimate semantic information from ground im-

ages. We exploit the VGG [23] implementation of [19]
trained on PASCAL VOC, which we fine-tuned to predict
the same 5 classes as the aerial semantics (road, park-
ing, sidewalk, building and background). We estimate the
ground plane from the stereo image and project pixels be-
longing to this plane to the aerial image via a homography.
We then define our ground semantic potential to encourage
the segmentation to agree with the aligned ground image
segmentation projected to the aerial image. Towards this
goal, we define 5 features for each of our road regions, each
counting the amount of softmax output for the given class:

φground(tk, y
j
i , y

j
i−1) = G(tk, yji+1)− G(tk, yji)

Note that via the integral accumulator the 3-way potential
decomposes into pairwise terms G(t, y). In this case we

Aerial Ground
Figure 6. Left: The ground road detection with red projected into the aerial image after alignment and road layout estimation. Right:
The semantic lanes projected back into the aligned ground image. These scenes are all challenging with parallel roads, parking spots and
intersections. The bottom image is especially difficult since it is an urban pedestrian area. Note that the aerial and ground images were
taken with several years difference in different seasons. Pink is road, blue is sidewalk and yellow marks parking spots.

only need 5 integral accumulators per ground image.

Ground alignment smoothness: This potential encodes
the fact that two consecutive alignments should be similar.

φgsm(tk, tk+1) = |tk − tk+1|

This assumes that GPS+IMU have smooth errors and no
outliers.

3.2. Inference via Block Coordinate Descent (BCD)

Inference in our model can be performed by minimizing
the energy function:

y∗, t∗ = argmin
y,t

E(y, t,xA,xM ,xG)

with E(y, t,xA,xM ,xG) defined as in Eq. (1). Unfortu-
nately, inference in our model is NP-hard, as our graphi-
cal model contains many loops. We thus take advantage of
block coordinate descent to perform efficient inference. We
refer the reader to Alg. 1 and Fig. 2 for inference steps.

Our block coordinate descent algorithm (BCD) alter-
nates by doing inference in the direction along the road,

doing inference in the direction perpendicular to the road
and aligning the ground and aerial images. Note that when
a road is not connected to a parallel road, the second step
results in a graphical model with 15 variables, while when
there are k parallel roads, this involves doing inference over
a graphical model with 15k variables. Note also that in or-
der to minimize the same objective, each of these iterations
is performing conditional inference, and the pairwise po-
tentials involving variables that are not optimized collapse
to unaries.

3.3. Training with S-SVM

We employ structured SVM (S-SVM) [24] to learn the
weights of the aerial unaries and the smoothness in our
model. In particular, we use the parallel cutting plane im-
plementation of [18]. We employ a combination of two
loss functions. The first is a truncated L2 loss: `data =
min(||yji − ŷji ||2, 100m2), encouraging our prediction yji to
be close to the ground truth ŷji . We compute ŷji by perform-
ing inference in our model with features computed from the
ground truth annotation (segmentation). The second loss
term encourages smoothness of the prediction along the

Algorithm 1 Block coordinate descent inference (BCD).
1: Set all alignments t = 0, and initialize y by minimizing

Eq. (1) ignoring the along road smoothness.
2: repeat
3: for for all yj do
4: Minimize Eq. (1) along the road w.r.t yj , holding

the rest fixed.
5: end for
6: for all yi at one segment of the road do
7: Minimize Eq. (1) w.r.t yi, holding the rest fixed.
8: end for
9: for all t variables do

10: Minimize Eq. (1) w.r.t t, holding y fixed.
11: end for
12: until no energy reduction or max number iterations

road, `sm = |yji − yj+1
i |. Note that the geometrical con-

straints in our model are either 0 or∞ and are not trained.

4. Experiments
We collected a new dataset which we call Air-Ground-

KITTI, which is composed of both ground images from
the KITTI tracking benchmark [8] and newly acquired or-
thorectified aerial images over the same area. We neglected
the KITTI sequences where the car is mostly static, result-
ing in 20 KITTI sequences for a total of 7603 ground stereo
images. We annotated every 30th ground image with 4
semantic classes (parking, sidewalk, road, building). The
aerial images were acquired by a DSLR camera mounted
on an airplane and projected on the earth surface with 9
cm/pixel Ground Sampling Distance (GSD). We split the
data into 10 training and 10 test aerial image/KITTI se-
quences, with special care to avoid overlaps in the aerial im-
ages. We manually annotated the aerial images with 4 cat-
egories (parking, sidewalk, road, building) as closed poly-
gons and the lane markings as polylines. This took 70h of
annotation, at a mean of 21h/km2, the area is 3.23 km2.

To perform fine-grained segmentation using both aerial
and ground images, we estimate a homography that trans-
forms the ground plane in KITTI to the UTM coordinate
system based on the KITTI’s GPS+IMU measurements and
the camera calibration. We assign each ground image to
the closest parallel road segment. Our model then refines
this estimate in the direction perpendicular to each road seg-
ment. We process every 5th ground image in the sequence.

As metrics for the fine-grained segmentation we calcu-
late the pixelwise Intersection over Union (IoU), Precision,
Recall and F1 metrics for three classes (i.e. road, parking,
sidewalk). Note that we only measure the areas laying in
the area of interest (i.e. ±15m around the road map center-
line). We consider two parallel roads overlapping over the
same area as a serious error. To reflect this, we handle these

(a) (b)

(c) (d)

(e) (f)
Figure 7. It is hard to estimate the number of lanes if there are
no lane markings. (a) Our method, (b) Oracle (i.e., our method
with ground truth potentials). (c) The OnlyLane model without the
parallel constraint allows the road to ”jump” to the nearby parallel
road. (d) The parallel constraints of LaneRoadParallel prevents
this from happing. (e) Dense, urban pedestrian streets are difficult
to estimate. (f) Our model is not intended for intersections, as it
does not reason about turn lanes.

areas as if they were background. The metrics in Table 1
are calculated according to this.

For the roads, we additionally compute whether we have
estimated the correct number of lanes. This is measured as
the average `1 error in terms of number of lanes (EN). Note
that if there are no lane markings, estimating the number of
lanes is very difficult. Fig. 7 (a-b) shows this difficulty.

In our experiments, we compare our approach to the
state-of-the-art method of [12], which uses OSMs to es-
timate road width. We also tested different model con-
figurations for our approach. We refer to Lane as a
model that employs Aerial semantics, Aerial Edges, Road
collapse constraints, Lane size constraint and Centerline
prior energy terms. Inference is done independently for
each road segment via dynamic programming along the
yj = yj1, · · · , yj15 chains. We refer by LaneParallel to a
model where we additionally include the constraint between
nearby parallel road. We refer by LaneRoad as a model that
contains all the potentials in Lane plus smoothness along the
road. We apply BCD inference by alternating between the
chains perpendicular to the road (the lanes) and along the
roads (segments). We refer by LaneRoadParallel a model
that contains all potentials but the ground. Finally, Ground
contains all potentials. We evaluate this case only where
ground images are available.

Model
Average Road Sidewalk Parking

IoU F1 IoU F1 Pr. R. EN IoU F1 Pr. R. IoU F1 Pr. R.
Mattyus et al. [12] - - 62.1 76.4 68.0 87.0 - - - - - - - - -

[12] Deep Un* - - 64.4 78.4 66.7 94.7 - - - - - - - - -
Lane 43.6 59.6 61.9 76.5 82.8 71.0 0.730 31.8 48.3 67.2 37.7 37.0 54.1 58.5 50.3

LaneParallel 44.8 60.3 66.5 79.9 85.0 75.4 0.543 31.6 48.0 69.8 36.6 36.1 53.1 70.8 42.4
LaneRoad 45.4 61.6 61.9 76.4 82.7 71.0 0.707 38.3 55.4 62.4 49.7 36.1 53.1 52.2 54.1

LaneRoadParallel 48.6 64.3 68.0 80.9 83.5 78.5 0.555 39.5 56.6 63.5 51.1 38.4 55.5 63.8 49.1
LaneRoadParallel** 41.9 58.5 54.9 70.9 86.9 59.9 0.559 34.9 51.7 68.7 41.5 35.8 52.7 69.9 42.3

Full** 42.0 58.6 55.3 71.2 86.8 60.4 0.556 34.9 51.7 68.7 41.5 35.8 52.7 69.9 42.3

Table 1. Performance for the semantic classes (i.e. road, parking spot, sidewalk) with various models and the two baselines. The values are
in %, except EN which is the average road lane number l1 error with respect to the oracle. * Marks the method of [12] with our deep road
classifier. The last two rows marked with ** evaluate only over areas where ground images are also available.

GPS+IMU [m] Ours [m]
Alignment error 1.67 0.57

Table 2. Ground to air image misalignment based on the camera
calibrations (GPS+IMU) and after our alignment measured in me-
ters. Using ±4 meter interval.

Comparison to the state-of-the-art: As shown in Ta-
ble 1, our method outperforms [12] in almost all metrics,
even when we apply our deep features instead of their road
classifier in their method. Furthermore, we retrieve more
semantic categories such as sidewalk, individual road lanes
and parking. The constraint between parallel roads is im-
portant to achieve good results on roads. Without it, our
model cannot outperform [12], which has this constraint.

Deep semantic features in aerial Images: We show the
performance of our Deep Network in Fig. 4. Note that it is
much better than the road classifier of [12].

Alignment between aerial and ground images: As
shown in Table 2 and Fig. 3 reasoning about the alignment
between ground and aerial images while doing fine-grained
segmentation improves the alignment significantly.

Qualitative Results: We visualize our results when using
only aerial images in Fig. 5, and when using joint aerial
and ground reasoning in Fig. 6. Our approach is able to
estimate well the lanes, sidewalk and parking as well as the
alignment between the ground and the aerial images.

Ablation studies: As shown in Table 1, the metrics for
different versions of our model are fairly similar, however
qualitatively, as we add more potentials, the results get bet-
ter. This is illustrated in Fig. 7 (c), where the OnlyLane
model moves the middle road to a parallel road resulting in
a noncontinuous structure. In contrast, the LaneRoadParal-
lel model prevents overlaps and favors smoothness, see the
Fig. 7 (d). Including the ground images only slightly im-
proves performance. We believe this could be overcome by
using stronger features in the ground images, i.e., leverag-
ing the full 3D point cloud, not just the ground plane. Note

that since our approach gives us very precise alignments be-
tween the ground and the aerial images it could be used to
enhance OSM with object locations, e.g. traffic signs.

Inference time: Inference in our full model takes 6 sec-
onds per km of road, with a single thread on a laptop com-
puter. Note that BCD can easily be parallelized.

Limitations: Our model is designed for individual roads
and it does not reason about turning lanes connecting dif-
ferent roads at intersections (see Fig. 7 (f)). Dealing with
such scenarios is part of our future work. Semantic seg-
mentation from aerial images reasons mainly about the vis-
ible parts of the street. Therefore covered areas (e.g. by
building, bridges, trees) can be a problem. However, when
ground images are available, our approach can handle this
problem. Our aerial images were acquired in early spring,
and thus trees occluding the roads is not a big problem.

5. Conclusion
We proposed an approach to enhance existing freely

available maps with fine grained segmentation categories
such as parking spots and sidewalk, as well as the number
and location of road lanes. Towards this goal, we proposed
an efficient method that produces very accurate estimates
by performing joint inference over both, monocular aerial
imagery captured by a plane and ground images taken from
a stereo pair mounted on top of a car. We have demon-
strated the effectiveness of our approach on a new dataset
which enhances KITTI with aerial images taken with a cam-
era mounted on an airplane and flying around the city of
Karlsruhe. In the future, we plan to reason about other fine
grained categories such as traffic signs in order to further
enhance the maps. As our method reasons about the accu-
rate alignment between the map and the ground images, we
envision its use for precise, lane-wise self localization of the
vehicle on the road.

Acknowledgments
We would like to thank Viktoria Zekoll, Stefan Turzer and

Márk Bagdy for making the laborious annotation work.

References
[1] http://fortune.com/2015/10/16/how-tesla-autopilot-learns/. 1
[2] M. Barzohar and D. Cooper. Automatic finding of main

roads in aerial images by using geometric-stochastic models
and estimation. PAMI, 1996. 2

[3] M. A. Brubaker, A. Geiger, and R. Urtasun. Lost! leveraging
the crowd for probabilistic visual self-localization. In CVPR,
2013. 2

[4] D. Chai, W. Forstner, and F. Lafarge. Recovering line-
networks in images by junction-point processes. In CVPR,
2013. 2

[5] L.-C. Chen, A. G. Schwing, A. L. Yuille, and R. Urtasun.
Learning deep structured models. ICLR, 2015. 4

[6] P. Dollár and C. L. Zitnick. Structured forests for fast edge
detection. In ICCV, 2013. 4

[7] C. Forster, M. Pizzoli, and D. Scaramuzza. Air-ground lo-
calization and map augmentation using monocular dense re-
construction. In IROS, 2013. 2

[8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. IJRR, 2013. 1, 7

[9] E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros, and
A. Hertzmann. Image sequence geolocation with human
travel priors. In ICCV, 2009. 2

[10] T.-Y. Lin, S. Belongie, and J. Hays. Cross-view image ge-
olocalization. In CVPR, 2013. 2

[11] T.-Y. Lin, Y. Cui, S. Belongie, and J. Hays. Learning
deep representations for ground-to-aerial geolocalization. In
CVPR, 2015. 2

[12] G. Mattyus, S. Wang, S. Fidler, and R. Urtasun. Enhancing
road maps by parsing aerial images around the world. In
ICCV, 2015. 2, 4, 7, 8

[13] K. Matzen and N. Snavely. Nyc3dcars: A dataset of 3d ve-
hicles in geographic context. In ICCV, 2013. 2

[14] H. Mayer, S. Hinz, U. Bacher, and E. Baltsavias. A test of
automatic road extraction approaches. In ISPRS, 2006. 2

[15] V. Mnih and G. E. Hinton. Learning to detect roads in high-
resolution aerial images. In ECCV, 2010. 2

[16] V. Mnih and G. E. Hinton. Learning to label aerial images
from noisy data. In ICML, 2012. 2

[17] J. Porway and Q. W. ands Song Chun Zhu. A hierarchi-
cal and contextual model for aerial image parsing. IJCV,
88(2):254–283, 2009. 2

[18] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box
In the Box: Joint 3D Layout and Object Reasoning from Sin-
gle Images. In ICCV, 2013. 6

[19] A. G. Schwing and R. Urtasun. Fully connected deep struc-
tured networks. arXiv preprint arXiv:1503.02351, 2015. 3,
5

[20] Y.-W. Seo, C. Urmson, and D. Wettergreen. Exploiting pub-
licly available cartographic resources for aerial image analy-
sis. In SIGSPATIAL, 2012. 2

[21] Y.-W. Seo, C. Urmson, and D. Wettergreen. Ortho-image
analysis for producing lane-level highway maps. Technical
Report CMU-RI-TR-12-26, CMU, 9 2012. 2

[22] Q. Shan, C. Wu, B. Curless, Y. Furukawa, C. Hernandez,
and S. Seitz. Accurate geo-registration by ground-to-aerial
image matching. In 3DV, 2014. 2

[23] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 3, 5

[24] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent out-
put variables. JMLR, 2005. 6

[25] S. Wang, S. Fidler, and R. Urtasun. Holistic 3d scene un-
derstanding from a single geo-tagged image. CVPR, 2015.
2

[26] J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler.
A higher-order crf model for road network extraction. In
CVPR, 2013. 2

[27] J. Yuan and A. Cheriyadat. Road segmentation in aerial im-
ages by exploiting road vector data. In COM.geo, 2013. 2

	Abstract
	Zusammenfassung
	Introduction
	Objectives
	General goal
	Methodological goals

	Reader's Guide

	Basics and state of the art
	Image analysis fundamentals
	Supervised machine learning
	SVMs
	Decision Trees
	Boosting
	Neural Networks

	Deep Learning
	Training the network by Backpropagation
	CNNs

	Graphical Models
	Markov Random Fields (MRFs)
	Inference
	SSVMs

	Image geolocalization
	Map projections
	Geographic Datum
	Projections

	Aerial image orthorectification
	Image based localization
	Image to image matching
	Cross-view image matching
	Image to map matching

	Detecting objects in images
	Semantic image segmentation

	Fast multiclass vehicle detection on aerial images
	Related Work
	Multi-direction Vehicle Detection
	Binary sliding window detector
	Fast image features
	AdaBoost classifier in Soft Cascade structure
	Multi-direction detection
	Single classifier method
	Aggregated classifier method

	Multiclass Vehicle Classification
	Orientation estimation
	Type classification

	Experiments
	Results on Munich images
	Multi-direction vehicle detection
	Multi-class vehicle classification
	Baseline comparison
	Computation time

	Baseline comparison on UAV images

	Large scale aerial image sequence geolocalization with road traffic as invariant feature
	Related Work
	Method
	Track extraction
	Matching the tracks to the road network
	Geometric hashing
	Verification of the shortlist

	Experiments
	Quantitative evaluation
	Comparison to simple chamfer matching

	Enhancing road maps with street width by parsing aerial images
	Related Work
	Augmenting Road Maps from Aerial Images
	Energy Formulation
	Road classifier:
	Edge:
	Object detector:
	Homogeneity:
	Context features:
	Smoothness:
	Overlap:

	Inference
	Learning

	Experimental Evaluation
	Datasets
	Bavaria:
	Aerial KITTI:
	World:

	Metrics:
	Comparison to baselines:
	Importance of the features:
	Segmenting the world:
	Domain Adaptation:
	Processing time:
	Ground-level Scene Understanding:
	Failure modes and limitations:

	Fine-grained road segmentation by parsing ground and aerial images
	Related Work
	Aerial image parsing:
	Aerial parsing with maps:
	Fine-grained road parsing:
	Aerial-to-ground reasoning:

	Fine-grained Semantic Parsing of Roads
	Model Formulation
	Aerial semantics:
	Aerial edges:
	Along the road smoothness:
	Parallel roads:
	Road collapse constraints:
	Lane size constraint:
	Centerline prior:
	Ground semantics:
	Ground alignment smoothness:

	Inference via Block Coordinate Descent (BCD)
	Training with SSVM

	Experimental Evaluation
	Comparison to the state-of-the-art:
	Deep semantic features in aerial Images:
	Alignment between aerial and ground images:
	Qualitative Results:
	Ablation studies:
	Inference time:
	Limitations:

	Conclusion and Outlook
	Summary
	Improvements and future work

	List of Abbreviations
	List of Figures
	References
	Acknowledgments
	Appendices
	Liu K., Mattyus, G., 2015. Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geoscience and Remote Sensing Letters 12(9): 1938-1942
	Mattyus G., Fraundorfer, F., 2016. Aerial image sequence geolocalization with road traffic as invariant feature. Image and Vision Computing, Volume 52: 218–229.
	Máttyus, G., Wang, S., Fidler S. and Urtasun R., 2015. Enhancing Road Maps by Parsing Aerial Images Around the World. 2015 IEEE International Conference on Computer Vision (ICCV), pages 1689–1697.
	Máttyus, G., Wang, S., Fidler S. and Urtasun R., 2016. HD Maps: Fine-grained Road Segmentation by Parsing Ground and Aerial Images, Conference on Computer Vision and Pattern Recognition (CVPR) 2016.

