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A B S T R A C T

Gaining a deep understanding of plasma microturbulence is of paramount importance
for the development of future nuclear fusion reactors, because it causes a strong out-
ward transport of heat and particles. Gyrokinetics has proven itself as a valid mathe-
matical model to simulate such plasma microturbulence effects. In spite of the advan-
tages of this model, nonlinear radially extended (or global) gyrokinetic simulations are
still extremely computationally expensive, involving a very large number of computa-
tional grid points. Hence, methods that reduce the number of grid points without a
significant loss of accuracy are a prerequisite to be able to run high-fidelity simulations.

At the level of the mathematical model, the gyrokinetic approach achieves a reduc-
tion from six to five coordinates in comparison to the fully kinetic models. This reduc-
tion leads to an important decrease in the total number of computational grid points.
However, the velocity space mixed with the radial direction still requires a very fine
resolution in grid based codes, due to the disparities in the thermal speed, which are
caused by a strong temperature variation along the radial direction. An attempt to ad-
dress this problem by modifying the underlying gyrokinetic set of equations leads to
additional nonlinear terms, which are the most expensive parts to simulate. Further-
more, because of these modifications, well-established and computationally efficient
implementations developed for the original set of equations can no longer be used.

To tackle such issues, in this thesis we introduce an alternative approach of block-
structured grids. This approach reduces the number of grid points significantly, but
without changing the underlying mathematical model. Furthermore, our technique is
minimally invasive and allows the reuse of a large amount of already existing code
using rectilinear grids, modifications being necessary only on the block boundaries.
Moreover, the block-structured grid can be applied to different Eulerian gyrokinetic
simulation codes, as the technique relies on a general approach. We implemented and
tested our block-structured grids in GENE (http://genecode.org), a highly parallel and
heavily used gyrokinetic code, for which it is crucial to keep the good parallel charac-
teristic of the implementation and allow developers to easily port the code written for
the original grid to the block-structured counterpart. The presented scenarios clearly
demonstrate benefits of the block-structured grids: a high speedup, a tremendously
reduced memory footprint and size of diagnostic output data, and the capability to
significantly advance the frontier of feasible simulations.
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Z U S A M M E N FA S S U N G

Die Erarbeitung eines tieferen Verständnisses der Plasma-Mikroturbulenz ist für die
Entwicklung künftiger Kernfusionsreaktoren, da sie einen starken äußeren Transport
von Wärme und Teilchen bewirkt, von zentraler Bedeutung. Die Gyrokinetik hat sich
hierbei als ein adäquates mathematisches Modell erwiesen, um derartige Plasma-Mikro-
turbulenz-Effekte zu simulieren. Trotz der Vorteile dieses Modells sind nichtlineare
radial ausgedehnte (oder globale) gyrokinetische Simulationen extrem rechenintensiv
und beinhalten eine sehr große Anzahl von Gitterpunkten. Methoden, die deren An-
zahl von Gitterpunkten ohne einen signifikanten Verlust an Genauigkeit reduzieren,
sind eine Voraussetzung, um akkurate Simulationen durchführen zu können.

Auf der Ebene des mathematischen Modells erreicht die gyrokinetische Vorgehens-
weise eine Reduktion von sechs auf fünf Koordinaten im Vergleich zu den vollkinetis-
chen Modellen. Dies führt zu einer deutlichen Verringerung der Gesamtzahl der Gitter-
punkte. Aufgrund der zusätzlichen radialen Abhängigkeit von globalen Simulationen,
erfordert der Geschwindigkeitsraum jedoch eine hohe Anzahl von Gitterpunkten. Der
Grund dafür sind die Unterschiede in der thermischen Geschwindigkeit, die durch
einen starken Temperaturunterschied entlang der radialen Richtung verursacht wer-
den. Ein Versuch, diese Temperaturvariation durch Modifizierung des gyrokinetischen
Gleichungssystems zu adressieren, führt zu zusätzlichen nichtlinearen Termen, deren
numerische Behandlung am aufwendigsten ist. Weiterhin können infolge dieser Mod-
ifikationen gut etablierte und rechnerisch effiziente Implementierungen, die für das
ursprüngliche Gleichungssystem entwickelt wurden, nicht mehr verwendet werden.

Um diese Probleme anzugehen, wird in dieser Dissertation eine alternative Vorge-
hensweise in Form von blockstrukturierten Gittern vorgestellt. Diese Methode reduziert
die Anzahl der Gitterpunkte signifikant, jedoch ohne das zugrundeliegende mathe-
matische Modell zu verändern. Darüber hinaus ist unsere Technik minimal invasiv
und ermöglicht die Wiederverwendung einer großen Menge von existierendem Code
mit geradlinigen Gittern. Modifikationen sind nur an den Blockgrenzen notwendig.
Darüber hinaus kann das blockstrukturierte Gitter auf verschiedene Eulersche gy-
rokinetische Simulationscodes angewendet werden, da die Technik auf einem allge-
meinen Ansatz beruht. Wir haben unsere blockstrukturierten Gitter in einem hochpar-
allelen und stark genutzten gyrokinetischen Code, GENE (http://genecode.org), im-
plementiert und getestet. Für diesen wissenschaftlichen Code ist es entscheidend, die
gute Parallelisierbarkeit der Implementierung beizubehalten und es Entwicklern zu er-
möglichen, den Code, der für das ursprüngliche Gitter geschrieben wurde, leicht in die
blockstrukturierte Entsprechung zu portieren. Die dargestellten Szenarien zeigen deut-
lich die Vorteile der blockstrukturierten Gitter: ein hohes Beschleunigungspotenzial,
eine enorme Reduktion des Speicherbedarfs und der Größe der Diagnosedaten sowie
die Fähigkeit, die Grenze der realisierbaren Simulationen signifikant voranzutreiben.
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1
I N T R O D U C T I O N

Computational science has become indispensable to both science and engineering to
help gain insight into the behavior of complex systems and support decision making.
Running numerical simulations is particularly beneficial in cases when experiments
alone would be prohibitively expensive and time-consuming. To this purpose, compu-
tational science builds upon both applied mathematics — for instance, to approximate
systems using computational models — and computer science — for example, to de-
velop efficient simulation algorithms.

An active area of research where running numerical simulations plays a major role
is fusion plasma. Fusion is a practical and essentially inexhaustible source of energy
with acceptable environmental qualities. Constructing nuclear fusion reactors requires
a deep understanding of hot (fusion-relevant) plasma.

The most daring fusion research project so far is ITER1, for which the first experiment
of burning plasma is planned to take place in 2025. The costs for this experiment are,
nonetheless, tremendous. Aside from the initial expenses necessary to construct the
reactor, a single plasma discharge is expected to cost approximately one million U.S.
dollars [1]. Furthermore, the number of the discharges is limited (about 30,000) and
determines the lifetime of the ITER fusion device.

In this context, simulations are mandatory, first of all in order to estimate the physi-
cal, economical, and engineering feasibility, and to determine an optimal design. After
the fusion device is operational, numerical simulations are useful to select appropri-
ate plasma discharge scenarios and predict performance. They also serve to estimate
disruptive limits due to violent instabilities in plasma, which result in a termination
of the plasma discharge with large transient forces on adjacent structures. Moreover,
as the experimental diagnostics can sample only a small portion of the whole relevant
phase space, oftentimes synthetic diagnostics obtained by augmenting the real mea-
surements using computer simulations are necessary to facilitate comprehension and
improve existing physical models.

fusion plasma simulation codes

A vast variety of physical phenomena occurs in magnetically confined plasma, which
exhibits complex characteristics such as high anisotropic properties, complicated ge-
ometric details, nonlinearities, sensitivity to initial conditions, etc. Running a simula-
tion whose model addressed all relevant phenomena would be prohibitively expensive
from a computational perspective. Nevertheless, since many of these phenomena are
separated by wide ranges of spatial and temporal scales, they can be modeled individu-
ally. To this purpose, several sophisticated computational models are being developed
to address particular properties of fusion plasma.

1 International Thermonuclear Experimental Reactor
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2 introduction

To enable a fully predictive model, several big scale projects have been initiated,
such as FSP2 [1, 2] in the U.S., ITM3 [3, 4] in Europe, and BPSI4 [5] in Japan. The long
term goal of such projects is to carry out numerical simulations of a burning magneti-
cally confined plasma over time intervals exceeding several energy-confinement times.
The end result is envisioned as an integrated computational tool comprising several
coupled self-consistent simulation codes of all important physical phenomena taking
place in fusion plasma. Such a tool targets at understanding the underlying physical
processes, designing and engineering future fusion reactors, guiding experiments, etc.
Furthermore, the existing plasma models are supposed to be updated based on ongo-
ing experimental results.

The aforementioned projects plan to couple several scientific software applications,
which can be roughly categorized into two classes:

• Systems codes estimate the economic and engineering feasibility of a future fusion
device. To make evaluations possible, such codes use simplified and often ad
hoc physical models of every part of the reactor systems. These systems codes
have a very broad scope, ranging from the fusion plasma-related physics, to the
materials used, the actual building of fusion reactors, the costs involved, or the
production of electricity. Operation of such software is based on optimizing a set
of parameters leading to minimum (or maximum) so-called Figures of Merits,
such as: the plasma aspect ratio, the plasma major radius, the divertor heat load,
the neutron wall load, the cost of electricity or construction costs. The systems
codes are not intended for scientific discovery, but rather concern the engineering
and economic aspects of a plausible design of a fusion reactor. For more details
on systems codes we refer to [6–9].

• Specialized physics codes simulate a particular physical model. In comparison with
systems codes, there is a huge diversity of physics codes, which can be roughly
classified into the following groups [3]:

– Equilibrium and linear MHD5 stability codes are used to determine the mag-
netic geometry of the confinement device. For example, the equilibrium
magnetic field configuration helps choose a system of coordinates in the
position space (as described in Section 3.2). High resolution and MHD equi-
librium reconstruction code examples can be found in [10–13]; for MHD
stability code examples, we refer to [14–16].

– Nonlinear MHD and disruption codes are used for simulating sawtooth oscilla-
tions, the destabilization of resistive wall modes, neoclassical tearing modes,
as well as evaluating the impact of edge localized modes. The sawtooth
model is usually implemented in various transport codes, e. g., JETTO [17]
and ASTRA [18]. Examples of nonlinear MHD codes are provided in [19–
21].

– Transport and discharge evolution codes solve the one-dimensional (i. e., ra-
dial direction or magnetic flux coordinate) transport equations for different

2 Fusion Simulation Project
3 Integrated Tokamak Modeling
4 Burning Plasma Simulation Initiative
5 Magnetohydrodynamics
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plasma quantities: ion and electron temperatures, particle and impurity den-
sities, current density, plasma momentum, etc. For code examples, see [6, 17,
18, 22, 23].

– Transport processes and microstability codes simulate plasma turbulence, based
either on the five-dimensional (three coordinates in the position space and
two in the velocity space) gyrokinetic model or on the three-dimensional
(three coordinates in the position space) fluid model. Such codes are usually
further classified into three main types: microstability, microturbulence, and
neoclassical transport. Most of these codes consider either the core or the
edge plasma. For more details on the core plasma turbulence codes based
on a gyrokinetic model, we refer to extensive reviews [24, 25] and also to
Section 2.2.

– Heating, current drive, and fast particles codes are dedicated, as their name
suggests, to investigations and predictions of heating, current drive, and
fast particles instabilities. Corresponding code examples are [26–28].

The specialized plasma physics codes are often distinguished not only by what kind
of physics they address, but also by the part of magnetically confined plasma that
they are dedicated to. The major regions distinguished in a fusion device are the core
and edge plasma. The properties of these types of plasma are very different, requiring,
thus, different mathematical models. Coupling the core and edge plasma simulations
is, however, still an open field of research.

A typical Tokamak6 cross-section with a schematic distinction of different geometric
regions (including the edge and core of the magnetically confined plasma) is illustrated
in Figure 1. From this figure, we observe that the topology of the magnetic field lines is
different for the core and edge plasma regions. The core region comprises only closed
magnetic field lines, whereas, in the edge regions, the topology changes from closed
magnetic field lines to magnetic field lines intersecting the material walls separated by
the magnetic separatrix (in diverted discharges).

For core plasma simulations, the typical time scales of different physical processes
are well-separated, as demonstrated in Figure 2. In accordance with this diagram, four
types of specialized plasma core codes exist, each yielding one simulation for the
physical models with specific time scales. The situation is, however, different for edge
plasma. In many scenarios of interest, the major characteristic time scales of different
phenomena overlap, making the physical model extremely complex. For an overview
of computational edge plasma models see [29].

thesis approaches

In this thesis, we address the computational aspects of the gradient driven turbulence
in core plasma. Understanding and reliably predicting the plasma microturbulence is
of utmost importance for the development of future nuclear fusion reactors, because
the microturbulence is the main reason for the strong outward transport of heat and
particles in fusion experiments. Multiple spatial and temporal scales are involved in
corresponding simulations based on a gyrokinetic model (see [24, 30]). As a result, high

6 Transliteration of a corresponding Russian acronym, which stands for toroidal chamber with magnetic
coils.
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Figure 1: Schematic representation of a Tokamak cross-section with major plasma and magnetic
regions, based on [1].

physical-fidelity simulations are not achievable without high performance computing.
Furthermore, optimization and UQ7 applications demand even more computational
load. One of the main reasons is that appropriate gyrokinetic simulations require an
enormous amount of degrees of freedom for a lot of physical scenarios. For example,
the core plasma turbulence simulations in the future large-scale fusion experiment
ITER necessitate a computational grid with about ten billion grid points8 for grid-
based (Eulerian) codes. Moreover, according to recent studies, this kind of simulations
might require even up to a trillion computational grid points, depending on the radial
profiles of temperature and density. In contrast to many other scientific applications,
this number of grid points leads to extremely computationally expensive simulations
already for the fully parallelized gyrokinetic implementation.

In the current work, we consider a problem of multiple scale structures of distri-
bution functions in the velocity space for radially extended gyrokinetic simulations.
More specifically, we consider the temperature spatial variation T(x), which is one of
the main causes of the multiple scales along the radial coordinate x. Another reason is
the disparity in the thermal speed vT =

√
2T/m, due to the huge differences in temper-

7 Uncertainty Quantification
8 The number of computational grid points for each coordinate are n_spec = 2, nx0 = 2048, nky0 = 32, nz0 =

24, nv0 = 96, and nw0 = 32. This mesh does not resolve electron spatial scales. The phase space coordinates
are described in Chapter 3.
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Figure 2: Typical time scales in the core plasma simulations with B = 10 T , R = 2m,
ne = 1× 1014 cm−1, T = 10 keV ; based on [1].

ature T and mass m of the species involved in simulations. This disparity necessitates
different discretization grids for each species and results in complicated numerical
treatments of collisions, see [31–34]. Fortunately, these two problems are decoupled
and can be treated separately.

The straightforward way of resolving the multiple scales of the distribution func-
tion in the velocity space is setting a computational grid with a very high resolution
and a wide range for the velocity coordinates. In the following, we refer to this tradi-
tional method as the regular grid approach. Naturally, it leads to very computationally
expensive simulations.

To considerably reduce the number of computational nodes in the velocity space
grids without a loss of accuracy, we introduce a general concept of adjusting these grids
to the background distribution function. The latter depends on the temperature radial
variation T(x). We detail two types of computational grids based on this adjustment:
grids with transformed velocity coordinates and grids consisting of multiple blocks
of rectangular regular grids (block-structured grids). The former approach leads to
non-trivial modifications of the underlying mathematical model, which is estimated
to cause additional computational overheads (new nonlinear terms, derivatives in the
magnetic moment direction, etc.). The latter method of block-structured grids does not
require modifications of the governing equations. The changes are technical and mostly
related to the geometry of the block-structured grids. For example, the boundaries of
grid-blocks require a special treatment.

Based on the comparison of the aforementioned two methods, we have chosen the
block-structured grids for the already existing and comprehensive Eulerian gyrokinetic
code GENE9 [35–37]. According to numerical tests, the implementation of these grids
in GENE was shown to be accurate with considerably less computational nodes than
the original regular grids. Moreover, due to the relative non-invasiveness of our ap-
proach, we reuse a large amount of original regular-grid-specific code, which allows
elaborating grids and evolving the physical models by different developers simultane-
ously.

9 Gyrokinetic Electromagnetic Numerical Experiment



6 introduction

Several of the ideas and results presented in this thesis have been published in peer-
reviewed articles [38, 39]. The block-structured grids for the gyrokinetic grid-based
simulations have been introduced for the first time in [38], which describes the the-
oretical background for the grids for the whole velocity space (parallel velocity and
magnetic moment). The main results of the global nonlinear gyrokinetic simulations
have, nevertheless, been shown for the block-structured grids considering the parallel
velocity coordinate only. The main numerical operation requiring modification con-
cerned computing the radial derivatives, which appear in many terms of the govern-
ing set of equations. This approach has been extended to the whole velocity space in
a follow-up study [39]. The construction of the extended block-structured grids differs
significantly from the first version (the parallel velocity only), because including the
magnetic moment direction introduces different types of numerical operations, such
as gyro-averaging and quadrature, which have to be adjusted correspondingly.

structure of the thesis

The rest of the thesis is structured as follows. In Chapter 2, we lay out the theoretical
background and introduce the set of Vlasov-Maxwell equations solved in GENE. Fur-
thermore, we briefly describe different numerical approaches for plasma simulations:
Lagrangian, Eulerian, and Semi-Lagrangian methods. At the end of the chapter, we
provide information on the GENE application and discuss its main types of opera-
tions.

The system of the phase space coordinates used in GENE and similar grid-based gy-
rokinetic codes is presented in Chapter 3. In the first part of the chapter, we explain how
field-aligned coordinates are used in the position space and how they are discretized
in GENE. The second part discusses the velocity space coordinates. Here, we explain
the relations between the temperature radial variation, background distribution func-
tion, and the choice of range and resolution for the velocity space discretization grids.
At the end of this chapter, we detail the problem of spatial temperature variation and
present a solution based on transforming the velocity space coordinates.

The approach of block-structured grids, which we implemented and tested in GENE,
is explained in Chapter 4. The blocking concept is first introduced for the parallel ve-
locity coordinate and theoretically compared to the aforementioned method of the
coordinate transformation. Then, our proposed approach is extended to include the
magnetic moment coordinate: we explain how quadrature and gyro-averaging can be
performed for block-structured grids. At the end of the chapter, we estimate the theo-
retical savings in the number of computational nodes achieved by the proposed grids,
compared to the original regular grids.

The technical details and implementation of the block-structured grids are presented
in Chapter 5. When these grids are ported to the already existing Eulerian gyroki-
netic code, the developers have to take care of three types of modifications: prefactors,
grid-block boundaries, and parallelization. We detail the implementations associated
to these changes in corresponding sections.

The numeral results obtained with the proposed grids are discussed in Chapter 6.
Most of the numerical experiments provided in the chapter serve to verify our method.
Here, we use the term verification in a scientific computing context: we check whether
the new numerical scheme functions correctly. To this purpose, we compare the block-
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structured grids with the original reference grids and check whether corresponding
results converge to the same values. The attained reduction in the number of grid
points depends on the simulation scenario provided (especially on the temperature
radial profile). In the test cases at hand, approximately ten times fewer grid points are
required for nonlinear simulations carried out with the block-structured grids. Further-
more, we evaluate the performance gain due to the proposed technique. The speed-up
found to scale almost reciprocal to the number of grid points.

We conclude and summarize the main results of the thesis in Chapter 7. Additional
information on the pre and post processing tools is provided in Appendix A. The
software development aspects applied throughout this work are briefly discussed in
Appendix B.





2
F U N D A M E N TA L S O F G Y R O K I N E T I C P L A S M A M O D E L I N G

In this chapter, we consider fusion plasma in magnetic confinement devices, which is
known to be hot and dilute. We first mention the main properties of fusion plasma.

To begin with, due to the high temperatures (around 150MK in the core plasma), the
major constituent plasma particles (deuterium, tritium, and helium) are fully ionized.
The same holds for the impurities with an atomic number smaller than that of argon.
This means that ionization and neutralization processes can be ignored. Furthermore,
the relativistic effects can also be neglected in most of the cases, since, in spite of the
high temperatures, the rest energy of the electron (500 keV) is still much larger than its
thermal energy (around 13 keV).

Collisions in fusion plasma are rare and play a secondary role (while still being
important in several other processes). The low collisionality hinders a macroscopic
modeling of plasma in the real physical space (three position coordinates). Unlike in
typical fluids, particles have long mean free paths of the same scale as the macroscopic
observation length. As a result, particles carry information about their initial velocity
for considerable distances. Therefore, fusion plasma is usually treated in a phase space
consisting of position and velocity coordinates.

The mathematical models describing the behavior of plasma can be roughly subdi-
vided in three categories:

• Models considering individual particles take into account the motion of all con-
stituent particles, which are represented by point charges and point masses.

The simplest model in this category describes the motion of an individual par-
ticle (mass m, charge q) in an electromagnetic field. In the cases of interest, the
gravitational force is negligible in comparison to the Lorentz force resulting from
the electric field E and magnetic field B. Therefore, the non-relativistic equation
of particle motion is given by

m
dv
dt

= q (E + v×B) . (2.1)

In the case of a uniform magnetic field and no electric field, this equation leads to
charged particles moving on helix trajectories, with magnetic field lines as axes.
On the plane perpendicular to the magnetic field, the motion is circular and
usually referred to as cyclotron motion or gyration. The corresponding angular
frequency of gyration is called Larmor frequency and is given by

Ω =
|q|B

m
. (2.2)

Although the individual particle description does not include the collective be-
havior (interaction through self-generated electromagnetic fields), this elemen-
tary description is already very helpful. For example, it provides explanations on
the different types of drifts occurring due to the natural reasons in the magneti-
cally confining devices such as:

9
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– the presence of an electric field orthogonal to the magnetic field — E× B
drift

– the curved magnetic field lines — curvature drift

– the gradients across magnetic field lines — ∇B drift

– the oscillating electric field — polarization drift

For more details on individual particle motion, we refer to classical textbooks on
plasma physics, such as [40, 41].

The most detailed description involving all individual particle motions and in-
teractions between them is represented by the Klimontovich-Maxwell system of
equations. The Klimontovich equation describes the evolution of a distribution
function in the phase space of all particles. The electromagnetic fields produced
by all discrete charges in the position space are computed by the Maxwell equa-
tions. The distribution function is parameterized by initial positions and veloci-
ties of all constituent particles.

Although the Klimontovich-Maxwell equations describe non-relativistic plasmas
completely, when computer simulations are concerned, they are useless for two
reasons:

– the simulations would become computationally too expensive, due to an
extremely high number of particles necessary to predict relevant physical
processes

– the simulation results would contain too many details related to discreteness
of plasma

The Klimontovich-Maxwell system is, nevertheless, insightful when deriving the
continuum set of equations.

• Continuum kinetic models also contain many details, but less so than the previous
models, so that computer simulations are feasible. They treat plasma as a phase
space continuum. The electromagnetic fields are consistently computed based on
a single averaged particle distribution function. If the collisions between particles
are considered, the equation describing the evolution of the distribution function
is referred to as the Boltzmann equation, or as the Vlasov equation otherwise.

Both the Boltzmann and the Vlasov equations can be significantly simplified in
the presence of a strong magnetic field. This situation occurs in magnetically con-
fined plasma. For example, the fusion plasma turbulence responsible for strong
outward particle and heat transport is characterized by frequencies much lower
than the gyration or Larmor frequency. Therefore, the low frequency turbulence
in plasma is modeled in the five dimensional phase-space, where the information
about the cyclotron motion is neglected and the motion of gyrocenters is taken
into account.

• Fluid-like models are derived from the kinetic description by marginalizing out
the velocity components in the distribution function and, thus, neglecting kinetic
effects, such as wave-particle interactions. The resulting equations correspond to
mass, momentum, and energy conservation and describe the evolution of macro-
scopic quantities, such as density, fluid velocity, temperature, and the electromag-
netic fields. The overall model is similar to an ordinary fluid description.
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The macroscopic models are further subdivided in two types:

– Two component fluid: one component corresponding to electrons, another to
ions. The model is used, for example, to derive an electrostatic response of
plasma.

– One component fluid: by assuming a local charge neutrality, plasma can be
treated as a homogeneous fluid (mass dominated by ions, current carried by
electrons). This model is usually referred to as magnetohydrodynamics and
is widely used to model plasma in strong inhomogeneous magnetic fields.

Since our project addresses gyrokinetic simulations, in the next section we provide a
brief discussion of the underlying mathematical model. We start from the most detailed
model described by the Klimontovich-Maxwell equations, which we use further to de-
rive the Vlasov-Maxwell equations. Then we discuss the assumptions on which the
gyrokinetic theory is based and describe the steps necessary to derive the final equa-
tions solved in GENE (for the simulation results see Chapter 6). Different numerical
approaches to treat gyrokinetic equations and associated scientific codes are presented
in Section 2.2. In Section 2.3, we shortly discuss the main features of the GENE code,
for which our method of block-structured grids is applied. Many theoretical aspects
presented in this chapter are useful for a better understanding of the rest of the thesis.

2.1 towards the gyrokinetic model

In this section, we follow the approach of deriving the Vlasov equation presented
in [41]. The advantage of this approach is that it clearly demonstrates the connec-
tion between the model considering the individual particle motion (the Klimontovich-
Maxwell equations) and the continuum kinetic description (the Vlasov-Maxwell equa-
tions). Because the Klimontovich-Maxwell and Vlasov-Maxwell equations have a sim-
ilar structure, in order to distinguish between the various quantities, those in the
Klimontovich model are marked by a prime sign, e. g., F ′s, E ′, B ′, . . . for the distribution
function and the electromagnetic fields, while those in the Vlasov model are written
without prime, e. g., Fs, E, B, . . . . In this way, we preserve an explicit link between these
two models.

2.1.1 Klimontovich-Maxwell System of Equations

We start with the definition of the probability distribution function f ′s(r, v, t) in the
phase space (r, v) for one particle belonging to species s. The probability to find
the particle in the phase space region ([r, r + dr], [v, v + dv]) is f ′s(r, v, t)d3rd3v. If
we know the trajectory in the phase space (ri(t) = (xi(t),yi(t), zi(t)) and vi(t) =

(vxi(t), vyi(t), vzi(t))) of a given particle i, then the corresponding distribution func-
tion can be expressed in terms of Dirac delta functions:

f ′si(r, v, t) = δ(x− xi(t))δ(y− yi(t))δ(z− zi(t))

× δ(vx − vxi(t))δ(vy − vyi(t))δ(vz − vzi(t)) = δ(r − ri(t))δ(v − vi(t)) . (2.3)
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We use the last expression to find a distribution function F ′s(r, v, t) for allNs particles
of species s in the system. This is the sum of the individual distribution functions:

F ′s(r, v, t) =
Ns∑
i=1

f ′si(r, v, t) =
Ns∑
i=1

δ(r − ri(t))δ(v − vi(t)) . (2.4)

Note that, in the last expression, the distribution function is not normalized to one, but
the number of particles Ns is given by its integral over the entire phase space.

The time derivative of the collective distribution function is expressed by

∂F ′s
∂t

=

Ns∑
i=1

(
∂F ′s
∂ri

dri
dt

+
∂F ′s
∂vi

dvi
dt

)
. (2.5)

In this expression, we apply the following substitutions:

dri
dt

= vi , (2.6)

dvi
dt

=
qs

ms

(
E ′(ri, t) + vi ×B ′(ri, t)

)
= W ′s(ri, vi, t) , (2.7)

where the first substitution corresponds to the velocity definition and the second to the
acceleration caused by the Lorentz force. With these substitutions, the time derivative
of the distribution function takes the form

∂F ′s
∂t

=

Ns∑
i=1

(
∂F ′s
∂ri

vi +
∂F ′s
∂vi

W ′s(ri, vi, t)
)

. (2.8)

This expression can be further simplified by taking into account the following proper-
ties of the Dirac delta function: δ(x− xi)f(xi) = δ(x− xi)f(x) and [∂δ(x− xi)/∂t]f(xi) =
[∂δ(x − xi)/∂t]f(x), where in our particular case f : R3 7→ R3. Then, because F ′s is
expressed as a sum of Dirac delta functions, we obtain

∂F ′s
∂t

=

Ns∑
i=1

(
∂F ′s
∂ri

v +
∂F ′s
∂vi

W ′s(r, v, t)
)

. (2.9)

From the definition of the distribution function (2.4), it follows that

Ns∑
i=1

∂F ′s
∂ri

= −
∂F ′s
∂r

,
Ns∑
i=1

∂F ′s
∂vi

= −
∂F ′s
∂v

. (2.10)

Substituting the latter expressions into (2.9) yields the Klimontovich equation:

∂F ′s
∂t

+ v
∂F ′s
∂r

+
qs

ms

(
E ′(r, t) + v×B ′(r, t)

) ∂F ′s
∂v

= 0 . (2.11)

The fields in (2.11) are computed using the Maxwell equations:

∇× E ′(r, t) = −
∂B ′(r, t)
∂t

,

∇×B ′(r, t) =
1

c2
∂E ′(r, t)
∂t

+ µ0J ′(r, t) ,

∇ ·B ′(r, t) = 0 ,

∇ · E ′(r, t) =
1

ε0
ρ ′(r, t) ,

(2.12)
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where ε0 and µ0 are the permittivity and permeability of free space, and c denotes the
speed of light in vacuum. The Maxwell equations are written for vacuum, because the
charge ρ ′(r, t) and current J ′(r, t) densities are computed by taking into account all the
particles in the plasma:

ρ ′(r, t) =
∑
s

qs

∫
F ′s(r, v, t)d3v , (2.13)

J ′(r, t) =
∑
s

qs

∫
vF ′s(r, v, t)d3v . (2.14)

The structure of the Klimontovich-Maxwell system of equations yields self-consistent
computations of the distribution function and fields: given the distribution functions
for each species F ′s(r, v, t), the charge ρ ′(r, t) and current J ′(r, t) densities are evaluated,
and the results are used in the Maxwell equations to compute the electric E ′(r, t) and
magnetic B ′(r, t) fields, which, in return, are used to find the Lorentz forces and solve
the Klimontovich equation.

To solve the Klimontovich-Maxwell integro-differential equations, the boundary and
initial conditions have to be specified. The boundary conditions are usually determined
by settings such as external magnetic fields. The initial conditions are given by all the
initial positions and velocities of every constituent particle. In total there are

∑
s 6Ns

initial conditions. Consequently, computer simulations on the level of a Klimontovich
description are infeasible, since there are too many particles in the system. However,
simulating the Vlasov-Maxwell equations is possible by smearing out the discreteness
in the Klimontovich distribution F ′s.

2.1.2 Vlasov-Maxwell System of Equations

The Vlasov-Maxwell system of equations is obtained using the formal procedure of
averaging the Klimontovich-Maxwell equations over the ensemble of initial conditions
{ri, vi}. We note here that the averaging procedure is not always rigorously defined.
For example, if a system is not in thermal equilibrium, there is no definition for the
average ensemble. Therefore, the averaging procedure can be considered as smearing
out the discreteness of the Klimontovich distribution function F ′s to obtain a smooth
Vlasov distribution function Fs. This is schematically shown in Figure 3.

We denote the averaged quantities according to the following expressions:

Fs(r, v, t) =
〈
F ′s(r, v, t; {ri, vi})

〉
, Ws(r, v, t) =

〈
W ′s(r, v, t; {ri, vi})

〉
,

Es(r, t) =
〈
E ′s(r, t; {ri, vi})

〉
, Bs(r, t) =

〈
B ′s(r, t; {ri, vi})

〉
,

ρs(r, t) =
〈
ρ ′s(r, t; {ri, vi})

〉
, Js(r, t) =

〈
J ′s(r, t; {ri, vi})

〉
.

(2.15)

The listed averaged terms appear linearly in the Maxwell equations (2.12), and ex-
pressions for the charge (2.13) and current (2.14) computations. Therefore, these equa-
tions do not change structurally for the Vlasov formalism. It is only the original quan-
tities (with primes) that have to be replaced by their averaged counterparts.

The situation differs for the nonlinear term in the Klimontovich equation (2.11), since

Ws
∂Fs

∂v
6=
〈

W ′s
∂F ′s
∂v

〉
. (2.16)
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Figure 3: A schematic representation of one-dimensional Klimontovich F ′(x) and Vlasov F(x)
distribution functions. In the left plot, the Dirac delta functions are represented by
green lines with arrow ends.

The difference of these two unequal terms is usually called a two-body correlation term
(or collisional term), which represents the discreteness of plasma.

The two-body correlation term is negligibly small in many physical scenarios and,
thus, can be neglected. In this case, the Klimontovich equation (2.11) is replaced by the
structurally identical Vlasov equation:

∂Fs

∂t
+ v

∂Fs

∂r
+
qs

ms
(E(r, t) + v×B(r, t))

∂Fs

∂v
= 0 . (2.17)

If the collisional effect has to be considered, the two-body correlation term is approxi-
mated by the so-called collision operator, which appears in the right hand side of (2.17).
The expression is then called the Boltzmann equation. In comparison to the Klimon-
tovich equation, the initial condition of the Vlasov or Boltzmann equation is given by
some initial smooth distribution function, instead of the positions and velocities of all
constituent particles.

The Vlasov-Maxwell equations are already realizable for computer simulations. How-
ever, due to the high dimensionality of the problem, such simulations are possible
only for a limited number of physical scenarios. A credible discretization of the six-
dimensional phase-space for many scenarios yields a prohibitively large number of
degrees of freedom. This is often the case for magnetically confined fusion plasma.
Fortunately, due to a strong external magnetic field in such plasmas, the full Vlasov
model can be reduced to a five-dimensional gyrokinetic model, which we briefly dis-
cuss in the next subsection.

2.1.3 Gyrokinetic System of Equations

The magnetic confinement devices necessitate a very strong magnetic field to isolate
hot fusion plasma from the vessel walls. For example, according to [42], the magnets
in the ITER experimental reactor are designed to generate magnetic fields up to 11.8 T .

A strong magnetic field results in a fast cyclotron motion of charged particles. The
corresponding Larmor frequencies exceed the characteristic frequencies of the rela-
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tively slow microturbulence significantly, which causes a cross-field transport of par-
ticles and heat. The particles gyration can be analytically removed from the Vlasov
equation. The simplest approach to this purpose is to derive the Vlasov equation for
the guiding center coordinates {X, v‖,µ}, where X is the guiding center position (center
of circular gyro-trajectory), v‖ is the guiding center velocity component parallel to the
equilibrium magnetic field, and µ = mv2⊥/2B is the magnetic moment. In the guiding
center approximation, the gyration is averaged out by taking electromagnetic fields at
the guiding center position. The resulting equations are called drift kinetic equations;
their derivation can be found, for example, in [41].

A more sophisticated approach averages out the electromagnetic field over the gyro-
angle, instead of taking the field at the guiding center position. The model based on
this approach is described by gyrokinetic equations and, as it predicts the levels of
turbulent transport accurately, it is used very often to describe the microturbulence in
fusion plasma. For the modern formulation of the gyrokinetic theory, we refer to [30].

The experimentally observed gyrokinetic ordering in εg � 1 in core plasma micro-
turbulence is taken into account in the gyrokinetic approximation:

ω

Ω
∼
ρ

LB
∼
k‖
k⊥

∼
δn

n
∼
B1
B0

∼
vE
vT

∼
f1
F0

∼ O(εg) , (2.18)

whereω is the characteristic frequency of plasma microturbulence,Ω is the Larmor fre-
quency (2.2), ρ is the Larmor radius, LB is a characteristic scale length of the magnetic
field, k‖ and k⊥ are the components of the wave number k parallel and perpendicular
to the equilibrium magnetic field, B0 and B1 are the moduli of the perturbed and equi-
librium magnetic fields, vE is the perturbed E×B drift speed, vT is the thermal speed,
f1 and F0 are the perturbed and equilibrium distribution functions.

The derivation of the gyrokinetic equations solved in GENE are detailed in [43, 44].
The two major mathematical operations of removing the gyration from the Vlasov
equation are the averaging over the gyro-phase angle θ defined by

A(X) ≡ 1

2π

∮
A(X + r(θ))dθ , (2.19)

and the near identity Lie transformations [30, 45].
The five-dimensional gyrokinetic equation (for species s) is expressed by

∂Fs

∂t
+

dX
dt
·∇Fs +

dv‖
dt

∂Fs

∂v‖
+

dµ
dt
∂Fs

∂µ
= 0 . (2.20)

The time derivatives of the guiding center coordinates are given by

dX
dt

= v‖b0 +
B0
B∗
0‖

(vE + v∇B + vc) ,

dv‖
dt

= −
dX/dt
msv‖

·

(
qs∇φ1 +

qs

c

∂A1‖
∂t

b0 + µ∇(B0 +B1‖)

)
,

dµ
dt

= 0 ,

(2.21)

where B0 denotes the modulus of the equilibrium magnetic field vector B0, b0 =

B0/B0 the corresponding unit vector, B∗0‖ = b0 · B∗0 the parallel component of B∗0 =
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B0 +∇× (B0v‖/Ωs), B1‖ is the gyro-averaged modulus of the parallel component of
the perturbed magnetic field B1, φ1 is the gyro-averaged perturbed part of the elec-
trostatic potential, A1‖ is the gyro-averaged modulus of the parallel component of the
perturbed vector potential, and Ωs = qsB0/msc is the gyrofrequency of species s with
mass ms and charge qs.

The time derivative of the guiding center position ( dX/dt) includes three character-
istic drift terms:

• Generalized E×B drift velocity:

vE =
c

B20
B0 ×∇χ1 . (2.22)

• Gradient-B drift velocity:

v∇B0 =
µc

qsB
2
0

B0 ×∇B0 . (2.23)

• Curvature drift velocity:

vc =
v2‖
Ωs

(∇× b0)⊥ =
v2‖
Ωs

(
b0 ×

[
∇B0
B0

+
βp

2

∇p0
p0

])
, (2.24)

where p0 is the thermal plasma pressure, βp = 8πp0/B
2
0 .

We introduce the gyro-averaged modified potential in the E×B drift velocity:

ψ1 = φ1 −
v‖
c
A1‖ ,

χ1s = ψ1 +
µ

qs
B1‖ .

(2.25)

The described gyrokinetic Vlasov equation (2.20) is the starting point of the so-called
full-F codes. Despite the significant simplification leading to a reduced number of di-
mensions in the phase-space, this equation is still very challenging to solve numerically,
mostly because the full-F equation describes physical features at different time scales.
For example, it considers the plasma currents responsible for the evolution of the mag-
netic flux surfaces. This evolution is much slower than the plasma microturbulence
and can be treated with MHD models in many cases.

To remove those time scales irrelevant for the plasma microturbulence and, hence,
make the physical model less demanding in computational resources, the full distri-
bution function F is split into a static background F0 and a fluctuating f1 distribution
function, so that F = F0 + f1. For details on this technique, consult [46, 47]. The gyroki-
netic codes applying the splitting technique are generally referred to as δf codes. The
GENE code also belongs to this class. The discussion of the background distribution
function F0 used in GENE is postponed to Subsection 3.3.1, since it plays an important
role in the construction of the velocity space grids.

The Vlasov equation for the split distribution function is obtained by substituting the
full F by F0 + f1 sum, explicitly computing derivatives of the background part F0, and
keeping only those terms up to the first order of the gyrokinetic ordering εg. These
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steps are detailed in the following works [43, 44]. Here, we provide the resulting δf
Vlasov equation solved in GENE:

∂g1s
∂t

=
c

C

B0
B∗
0‖
∂yχ1s∂

n,T
x F0s︸ ︷︷ ︸

drive term

−
c

C

B0
B∗
0‖

(∂xχ1sΓys − ∂yχ1sΓxs)︸ ︷︷ ︸
E×B nonlinear term

+
c

C

B0
B∗
0‖

µB0 +msv
2
‖

qsB0
(KxΓxs −KyΓys)︸ ︷︷ ︸

curvature term

−
c

C

B0
B∗
0‖

mv2‖
qs

β

2

∂xp

p
Γys︸ ︷︷ ︸

pressure term

−
C

JB0
v‖Γzs︸ ︷︷ ︸

parallel dynamics

+
µ

ms

C

JB0
∂zB0

∂f1s
∂v‖︸ ︷︷ ︸

trapping term

+
c

C

B0
B∗
0‖

µB0 +msv
2
‖

qB0
Kx∂

n,T
x F0s︸ ︷︷ ︸

correction term (constant)

.

(2.26)

The provided equation is split into conventional terms with corresponding name tags.
Furthermore, for the sake of convenience, we used the following notations:

Γs = ∇f1s + qs∇ψ1
F0s
T0s

, (2.27)

Kx =

(
∂yB0 −

gyz

gzz
∂zB0

)
, (2.28)

Ky =

(
∂xB0 −

gxz

gzz
∂zB0

)
, (2.29)

∂n,T
x F0s =

[
∂x lnns + ∂x ln Ts

(
E

T0s
−
3

2

)]
F0s . (2.30)

In (2.26), to avoid having two time derivatives (one for the distribution function f1s
and another for the perturbed magnetic potential A1‖), we introduced the modified
distribution function, which is defined by

g1s = f1s −
qs

msc

∂F0s
∂v‖

A1‖ = f1s +
qsv‖
c

F0s
T0s

A1‖. (2.31)

Expressions (2.26,2.28,2.29) include notations related to the choice of a curvilinear
coordinate system: C is the radially dependant constant length factor, J is the Jacobian,
while gxz,gyz,gzz, . . . are the metric coefficients. For more details on the curvilinear
coordinates, see Section 3.2.

The perturbed electrostatic φ1s and vector A1s potentials are self-consistently com-
puted from the Maxwell equations:

−∇2 ·φ1 = 4π
∑
s

qsn1s , (2.32)

−∇2 ·A1 =
4π

c

∑
s

qsn1su1s , (2.33)

where the Coulomb gauge is used, n1s and u1s are the density and fluid velocity
perturbations.

The density n1s(x) = M00(x) is the zeroth order space moment of the distribution
function, and the fluid velocity u1s(x) = M10(x) is the first order velocity space mo-
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ment. The definition of the ath moment in v‖ and the bth moment in v⊥ is given by

Mab(x) =
∫
δ (X − x + ρ) T∗f1

(
X, v‖,µ

) B∗‖ (X, v‖
)

m
va‖ v

b
⊥ d3Xdv‖ dµdθ , (2.34)

where T∗ is a pull-back operator transforming the gyro-center distribution function
(whose evolution is described by the gyrokinetic Vlasov equation) to the particle distri-
bution function. The exact expression of the pull-back operator applied in GENE can
be found in [43, 44].

In GENE, the computation of the moments is done formally in three stages: first, the
integration over v‖ is performed; then the following gyro-phase averaging

〈f1〉 =
1

2π

∫
δ (X − x + ρ) f1 (X) d3X dθ (2.35)

is done; finally, the quadrature over the magnetic moment coordinate is computed.
This order is justified, because, due to the magnitude of the gyro-radius

|ρ| =
c

q

√
2µm

B
, (2.36)

the gyro-phase averaging (which is the most expensive stage from the three) is inde-
pendent from v‖ and depends only on µ. In the presented order, we first remove the
v‖-dependence by integrating over this coordinate; then we compute the gyro-phase
averaging at each fixed µ from the set of given magnetic moment grid points (for
example, Gauss-Laguerre nodes), and then integrate the gyro-averaged results over µ.

The existing gyrokinetic codes solve either the full-F or δf Vlasov-Maxwell set of
equations. These codes are based on numerical approaches allowing to express the
gyrokinetic theory as a computational model. These approaches are briefly discussed
in the next section.

2.2 different approaches to gyrokinetic plasma simulations

The analytic methods of solving the five-dimensional gyrokinetic Vlasov equation (2.20)
coupled with the three dimensional Maxwell equations (the Poisson equation for elec-
tric potential and the Ampere law — in case magnetic perturbations are considered)
are applicable only for a few simplified cases. Hence, obtaining numerical solutions
for the set of gyrokinetic equations is of paramount importance, the analytic methods
serving usually as a verification tool for numerical codes.

Determining numerical solutions is, nevertheless, feasible only by using high perfor-
mance computing, because typical gyrokinetic turbulence simulations are extremely
demanding in computational resources. High performance computing codes for gy-
rokinetic simulations can be classified by the numerical schemes they are using. The
highest level classification is based on the reference frame and comprises three types of
schemes: Eulerian, Lagrangian, and semi-Lagrangian. These three types of numerical
schemes are applicable not only to the gyrokinetic equations, but also to other types of
mathematical models, for example, to the full kinetic description.

In order to lessen the computational demands of the gyrokinetic simulations, alter-
native gyrofluid methods have been developed. These techniques are similar to com-
putational fluid dynamics: they do not work directly with the distribution function,
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but operate instead on the velocity moments (corresponding to macroscopic quanti-
ties) of the gyrokinetic set of equations. The gyrofluid methods, however, encounter
inevitably a closure problem (as plasma is almost collisionless). A popular solution is
the Landau-fluid closure [48]. For more details on the gyrofluid models see [49–52].
Modeling plasma turbulence based on the fluid description is intricate and, to choose
a proper closure, results from self-consistent gyrokinetic simulations may be used.

In the following subsections we briefly describe the numerical aspects of the three
gyrokinetic numerical approaches (Eulerian, Lagrangian, and semi-Lagrangian) and
provide references to several representative gyrokinetic high performance computing
codes. For a more detailed overview on which physical phenomena are covered by
these codes and associated challenges, we refer to [24, 25].

2.2.1 Eulerian Scheme

The Eulerian or grid-based approach applies a fixed reference frame. In other words,
the differential and integral operators are discretized on a (usually structured) compu-
tational grid fixed in the phase space. Typical combinations of discretization schemes
used to discretize derivatives involve: finite differences, finite volumes, spectral meth-
ods, and finite elements (for field solvers). Moreover, discrete versions of integral-like
operators such as gyro-phase averaging apply different quadrature rules in conjunction
with interpolation schemes (for details see Section 4.3). A schematic representation of
a time iteration in an Eulerian code using a finite difference scheme is shown in Fig-
ure 4. In this scheme, we present the three steps characteristic to all applications in the
Eulerian class:

1. First, a computational grid is constructed in the phase space, for more details see
Chapters 3 and 4.

2. At each time step, the right hand-side of the gyrokinetic Vlasov equation is com-
puted by applying different numerical schemes (in the figure, we demonstrated
a simple finite difference stencil computation).

3. The distribution function is updated by means of an ODE1 solver. For exam-
ple, for explicit time integration schemes, Runge-Kutta methods are often used,
see [53]. Then, the moments of the updated distribution function are computed,
which serve as inputs to the field equations.

4. The field equations are solved and the time iteration is repeated starting from
Step 2.

According to [24], the Eulerian approach is particularly good for a stable and accu-
rate treatment of the E× B nonlinear term (see (2.26)). There are several gyrokinetic
codes following this approach, among which GENE [35, 37], GS2 [54–56], GYRO [57,
58], GKV [59], GKW [60, 61], and GT5D [62]. These codes differ in the particular nu-
merical methods they apply, the physical scenarios they support, and the operation
modes they can work in. A short description and explanation of operation of the rep-
resentative code GENE is provided in Section 2.3.

1 Ordinary Differential Equation
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4: solve fields

1: discretize

2: apply finite 
difference scheme

3: update

Figure 4: Schematic representation of a time step integration in an Eulerian code. A fixed grid
is defined in the phase space: x — position space, v — velocity space. Finite difference
schemes are often used to compute derivatives in the right hand-side of the Vlasov
equation. After the new values of the distribution function are computed, the field
equations are solved, which take the moments of the distribution function as input.
Based on [24].

One of the weaknesses of the grid-based schemes is that they are subject to the CFL2

stability condition [63]. However, this problem can be circumvented by applying im-
plicit or semi-implicit time integration schemes, e. g., see [62]. Another disadvantage
is related to the application of finite difference schemes, which introduce numerical
dissipation. Nonetheless, this numerical dissipation helps achieve steady-state simula-
tions for long time periods. It is, therefore, important to balance keeping numerical
dissipation as small as possible and damping nonphysical oscillations (smoothness of
the solution). For more details on numerical dissipation in GENE, see [64].

To parallelize the Eulerian codes, a domain decomposition approach is usually used,
as discussed in Section 5.3.

2.2.2 Lagrangian Scheme

Another popular approach for numerical plasma simulations is based on solving the
Vlasov equation in a Lagrangian frame. This method is often referred to as PIC3. The

2 Courant-Friedrichs-Lewy
3 Particle-in-Cell
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name stems from the abstract super-particles used to model plasma behavior, which
are assigned with plasma macro-quantities like number density, current density, etc.
As physical systems contain extremely many real particles, representing them directly
in computer simulations is infeasible and, furthermore, not necessary for predicting
certain types of physical behavior. A super-particle (also called a marker) is a compu-
tational entity representing a cluster of real particles; for plasma simulations, it may
correspond to millions of electrons or ions. The PIC technique for plasma physics is
detailed in [65]. The first Lagrangian method to be applied to gyrokinetic simulations
is described in [66].

We schematically represent a time step iteration for the Lagrangian method in Fig-
ure 5. Four characteristic actions are marked in this diagram:

1:load

2:move

3:project

4:solve fields

Figure 5: Schematic representation of the major steps performed in a Lagrangian scheme. At
the beginning of a simulation, the markers are loaded. During time iterations, the
following steps are cyclically repeated: the markers are moved, the field sources are
computed, the field equations are solved. Based on [24].

1. The simulation is initialized by loading markers (sampling initial conditions).
Choosing the distribution of the markers adequately in the phase space (more
markers in regions with larger probability of perturbations) can significantly re-
duce statistical noise throughout simulations. From many aspects, this step is
equivalent to choosing a proper phase space discretization grid in Eulerian codes.

2. Even though the super-particles represent clusters of real particles, in gyrokinetic
simulations, their total number is still very high (∼ 109), in order to achieve an
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acceptable signal/noise ratio. Therefore, moving markers is one of the most ex-
pensive steps during a time step iteration. To advance the particles explicit (using
old field values) or implicit (requiring new field values) time schemes are used.
An explicit scheme mover is usually much cheaper than an implicit one. However,
it requires much smaller time steps to obtain credible simulations.

3. After the new positions of markers are determined, they are used to compute the
source terms for fields (charge and current). To project the super-particles on the
computational grid for fields, we assume that particles are of a given shape. Then,
computations of macro-quantities (distribution function moments) correspond to
weighted sums over shape functions of all markers.

4. At the end of a time iteration, the field equations are solved.

There is a number of gyrokinetic codes that successfully apply the Lagrangian ap-
proach, for example: GTC [67, 68], GT3D [69], ORB5 [70], PG3EQ [71], GTS [72, 73],
XGC1 [74, 75], GEM [47, 76], ELMFIRE [77, 78], etc. An advantage of these codes in
comparison to Eulerian implementations is that they are not subject to the CFL condi-
tion. However, the results obtained with PIC codes can be affected by statistical noise.
The reason is that the charge and current computations are by nature similar to Monte
Carlo integrations. Therefore, these procedures lead to an error proportional to

√
γ/N

(where N — number of markers, γ – variance of the estimator). This error tends to
accumulate in the course of a simulation.

The simplest way to increase the signal/noise ratio in Lagrangian simulations is
to enlarge the number of markers N. However, due to the CPU4 time limitation, this
is not always possible, because the nonlinear gyrokinetic simulations are extremely
computationally expensive. Therefore, several methods have been applied to reduce
the variance of the estimator (γ). One approach solves the gyrokinetic equations for
the fluctuating part of the distribution function δf only. The full distribution is then
given by f = F+ δf, where F is the background distribution function, which is treated
analytically (for example, see [79]). Another technique to reduce γ is introduced in [80].
The main idea is to use as much as possible analytic computations instead of the Monte
Carlo integration in the estimations of the charge and current. Moreover, the statistical
noise can be weakened by an intelligent loading of markers, so that there are more
of them in the regions with strong perturbations. This approach is called importance
sampling, for more details see [81].

The domain decomposition technique is also applicable in the position space for
Lagrangian codes. Moreover, a domain cloning technique described in [82, 83] is often
used. According to this method, each processor of a clone family is associated to the
same part of the positional space (accessing the same field values), but operates on
different markers.

2.2.3 Semi-Lagrangian Scheme

The last type of numerical schemes is called semi-Lagrangian. The first semi-Lagran-
gian methods were developed for simulating atmospheric flows; for a review in this

4 Central Processing Unit
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context we refer to [84]. The pioneering works on the semi-Lagrangian approach for
the magnetized plasma turbulence are described in [85–87].

The goal of the semi-Lagrangian approach is to take the best features from both
schemes introduced previously, by removing the CFL restriction characteristic to the
explicit Eulerian method and circumventing the problem of statistical noise inherent
to the Lagrangian codes. The semi-Lagrangian codes incorporate elements of both Eu-
lerian and Lagrangian approaches. For example, they use fixed grids for the Vlasov
equation (like Eulerian codes do), but integrate this equation along trajectories where
the distribution function is constant (similarly to Lagrangian codes). A schematic rep-
resentation of a step iteration of a standard or backward semi-Lagrangian numerical
scheme is demonstrated in Figure 6. In this simplified diagram we represent four typi-

4: solve fields

1: discretize

2: follow trajectory 
back in time

3: interpolate

Figure 6: Schematic representation of the major steps in the backward semi-Lagrangian method.
This method adopts a fixed phase space grid (like in the Eulerian approach) and inte-
grates backward in time along trajectories where the distribution function is invariant
to find the solution at each time step (similar to the Lagrangian approach). Based
on [24].

cal steps:

1. Similarly to the Eulerian approach, a fixed grid is defined in the five dimensional
space at the beginning of a semi-Lagrangian simulation.

2. In the backward semi-Lagrangian approach, the trajectories along which the dis-
tribution function is invariant start at each grid point and are propagated back-
ward in time for one time step interval by solving advection equations.
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3. Naturally, the characteristics (trajectories) do not end up exactly at grid points.
Consequently, interpolation e. g., cubic spline interpolation, is performed to ob-
tain updated values of the distribution function at fixed grid points.

4. After the distribution function values are updated, the fields are computed in a
manner similar to the Eulerian scheme.

In addition to the backward semi-Lagrangian numerical approach presented here,
other schemes have also been proposed: a forward semi-Lagrangian approach (see [88])
and a conservative semi-Lagrangian approach (see [89]). The difference between the
backward and forward schemes is that, as the name suggests, the latter solves the ad-
vection equations forward in time. The conservative semi-Lagrangian method treats a
conservative form of the Vlasov equation.

The semi-Lagrangian schemes have been proved to be accurate and efficient for low-
dimensional systems. For high-dimensional problems, like the gyrokinetic model, a
direct interpolation in the multidimensional space is, however, extremely expensive.
This problem is addressed by the time-splitting procedure introduced in [90], in which
the five dimensional Vlasov equation is replaced by a set of equations with lower
dimensionality.

The main difficulty of the semi-Lagrangian method is to find an efficient and accu-
rate interpolation scheme. A trade-off between numerical dissipation and validity of
the results is necessary. For example, high order interpolation schemes are less dissipa-
tive, but tend to lead to spurious oscillations.

The development of the gyrokinetic semi-Lagrangian numerical schemes is still an
active field of research. Therefore, there are not so many existing codes. One example
of a mature code applying the described approach is GYSELA [91–93].

2.3 gene — gyrokinetic electromagnetic numerical experiment

Since the proposed method of block-structured grids targets the Eulerian gyrokinetic
code GENE, in this section, we shortly detail the major facets of this code. The project
was first initiated by F. Jenko [35] and has since been continuously enhanced by in-
troducing new physics, improving numerical methods, and optimizing the implemen-
tation for high performance computing. Meanwhile, GENE has become a part of the
“Unified European Application Benchmark Suite” by PRACE, see [94, 95]. Its major
parts are implemented in Fortran programming language, which is adequate for a
massively parallel simulation code run on state-of-the-art supercomputers.

The integro-differential equations in GENE are solved by applying the method of
lines. The essence of this method is to separate the discretization of the time from that
of the phase space. The phase space is discretized in the following manner:

• Finite difference methods are used in combination of spectral methods to com-
pute derivatives on a grid in the phase space.

• Integral-like operators represented by a composite quadrature rule (e. g., Simpson
rule) in the parallel velocity direction and by a Gauss-Laguerre type quadrature
in the magnetic moment direction are used to compute velocity moments for field
equations.
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After the discretization of the phase space is performed, the governing equation can be
formally treated as an ODE. To integrate the time evolution of the distribution function
for GENE, different time stepping algorithms have been examined, as described in [53,
96]. The fourth-order explicit Runge-Kutta method is currently used as a default time
stepping scheme, as it proved well-suited for a wide range of scenarios.

In order to mitigate the computational requirements, the GENE code employs sev-
eral well-established techniques targeting the mathematical model. The most promi-
nent are:

• A δf-splitting technique: the fluctuating part of the distribution function is con-
sidered smaller than the equilibrium part from the gyrokinetic order point of
view. The gyrokinetic equations are solved only for the perturbed part. The oper-
ations involving the background distribution are replaced by analytic computa-
tions when possible.

• Field-aligned coordinate system: the strong anisotropy of the turbulent fluctua-
tions in the directions parallel and perpendicular to the background magnetic
field is exploited in the choice of the computational grid for the position space.
For more detailed explanations on the field-aligned coordinate system in GENE,
consult Section 3.2.

Gyrokinetic turbulence codes can be classified by what type of operation modes they
support: local or global. As the names suggest, the extent of the simulation domain is
different in these types of operation modes. At the beginning, GENE was operating
only in the local mode. Meanwhile, its capability was extended to also support more
challenging global simulations, see [36]. Next, we briefly describe the local and global
operation modes:

• Local: In the local or flux-tube simulations [97], the radial extent of the simulation
domain is relatively small compared to the minor radius of the magnetic confine-
ment device. The gyrokinetic equations are solved in the vicinity of a magnetic
field line. The radial variations of the temperature and density are insignificant
within the computational domain and can be neglected. This allows assigning pe-
riodic boundary conditions to both spacial directions parallel to the background
magnetic field lines and using efficient spectral methods to discretize those direc-
tions.

• Global: To detect effects related to the radial changes of plasma parameters, the
radial temperature and density profiles have to be taken into account. In this
case, the grid radial range may extend up to the full machine size. Furthermore,
the periodic boundary conditions in this direction become inadequate. Thus, in-
stead of using the spectral method for the radial coordinate, e. g., a finite dif-
ference method can be used to allow setting an arbitrary Dirichlet or Neumann
boundary condition. Another significant modification is in the construction of
the field solver, which now requires involving finite element interpolation tech-
niques when computing gyro-phase averaging. The changes are reflected in the
computational grids. A straightforward approach of extending the equidistant
regular grids of the local simulations to the full machine size comes at a high
cost. For example, to capture fairly well the structures of the perturbed distribu-
tion function for all involved temperatures, the velocity space grids necessitate
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wider ranges with finer resolutions (for more details on the velocity space resolu-
tion see [59, 98–100] and Chapters 3 and 4). One way to circumvent the described
issues is to couple multiple local simulations, e. g., as realized in the gyrokinetic
codes TRINITY and TGYRO [101, 102]. However, true global simulations become
unavoidable when the turbulence correlation length approaches the scale lengths
of the background temperature and density profiles.

In the rest of the thesis, we exclusively consider the global operation mode. To ad-
dress the problem of expensive computational grids in the velocity space, we propose
an efficient blocking method, for explanations see Chapter 4.

The GENE code was significantly enhanced throughout multiple PhD research pro-
jects. Hence, comprehensive information on different aspects of this simulation tool
can be found in the following theses [32, 43, 44, 96, 103–107].

2.4 summary

In this chapter, we introduced notions fundamental to the following chapters. We
started by briefly discussing the mathematical models of plasma, which can be subdi-
vided into three categories: models considering individual particles, continuum kinetic
models, and fluid-like models. Since our project is aimed at gyrokinetic simulations,
we focused on the second category (kinetic models). The kernel of the kinetic model
— the Vlasov-Maxwell equations — were derived based on the Klimontovich-Maxwell
equations, which consider all constituent plasma particles. The kinetic description de-
mands too high computational costs. Fortunately, based on the gyrokinetic ordering,
which is valid for the core plasma microturbulence, the equations can be further sim-
plified, resulting in the gyrokinetic model.

There are three major numerical approaches (Eulerian, Lagrangian, and semi-Lagran-
gian) of transforming the mathematical model into gyrokinetic simulations. We briefly
introduced all these approaches and explained their main characteristics. Finally, we
described the Eulerian code GENE.

In the next chapter, we introduce the five-dimensional phase space coordinates used
in GENE and other Eulerian codes. We also detail the discretization of the coordinates
in the position and velocity spaces. Furthermore, we explain how the background dis-
tribution function influences the construction of the computational grids in the velocity
space and present the problem of the spatial variations in temperature, which results
in a lot of grid points in the velocity directions.
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D I S C R E T I Z AT I O N O F P H A S E S PA C E C O O R D I N AT E S

The gyrokinetic Vlasov equation describes the evolution of the particle distribution
function in a five dimensional space. Three of the coordinates form a position space
and are denoted by (x,y, z), where x corresponds to the flux surface label, y to the
binormal coordinate or field line label on a given flux surface, and z is the coordinate
parallel to the magnetic field. For local GENE simulations, the flux surface label and
binormal coordinate direction are discretized using a fast spectral method. For global
GENE simulations, however, due to the Dirichlet boundary condition imposed in the
radial direction, a finite difference method is used to discretize the flux surface label.

The remaining two coordinates, the parallel velocity v‖ and the magnetic moment µ,
describe the velocity space. The parallel velocity coordinate is discretized using a finite
difference method. For the magnetic moment direction, however, no finite difference
schemes are necessary in collisionless plasma simulations, see (2.26). In order to couple
the Vlasov and Maxwell equations (and also for diagnostic purposes), only quadrature-
like operations involving µ are required. Due to the exponential decay (3.32) of the
background distribution in the magnetic moment direction, Gauss-Laguerre nodes are
an optimal choice to perform such operations.

Table 1 summarizes the default grids used in GENE.

Table 1: GENE global version coordinates

symbol name space type discretization

x radial direction position-configuration equidistant

y, ky binormal direction position-Fourier equidistant

z parallel direction position-configuration equidistant

v‖ parallel velocity velocity-configuration equidistant

µ magnetic moment velocity-configuration Gauss-Laguerre

This chapter consists of three sections. The first short section presents the normal-
ization of the physical quantities and coordinates, which affect the grid construction,
especially in the velocity space. The normalization is not necessary for understanding
the theoretical background. However, it is useful for working with the pre-processing
tool, which generates the grid. The grid generation tool is described in Appendix A.1.
Section 3.2 deals with the position space coordinates. The basic concept of the field-
aligned coordinates based on the Clebsch formulation are presented and demonstrated
on a simple circular geometry model. Section 3.3 describes the velocity space coordi-
nates and presents the problem of the spatial temperature variation.

27
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3.1 normalization

All coordinates and physical units used in GENE are normalized, in order to obtain
physically meaningful scales, thus, making it simpler to recognize physical phenom-
ena happening in simulations. During the post-processing step, the variables can be
transformed back to physical units to allow comparisons with experimental data, etc.

The geometrical space perpendicular to the magnetic line directions x and y is scaled
by the reference gyrokinetic radius ρref , which is given by

ρref =
mrefcrefc

eBref
. (3.1)

The normalization of phase space coordinates and time is expressed by

x = x̂ρref , y = ŷρref , z = ẑ ,

v‖ = v̂‖v̂Ts |x0 cref , µ = µ̂T̂0s |x0
Tref

Bref
, t = t̂

Lref

cref
.

(3.2)

Here, hats denote normalized quantities and |x0 indicates evaluation at the reference
position x0 in the middle of the simulation box, which usually corresponds to the
middle of the fusion device’s minor radius. The velocity space normalization is species
dependent (marked by an s subscript, e. g., v̂Ts and T̂0s in (3.2)), because of potentially
different temperatures among species. Furthermore, we use the following notations

cref =

√
Tref

mref
, v̂Ts =

√
2T̂0s
m̂s

. (3.3)

The macroscopic reference length Lref is usually chosen to correspond the minor or
major radius of a confinement device. In simulations with two species (electrons — e

subscript and ions — i subscript), the standard choices for the reference temperature,
density, and mass are

Tref = Te , nref = ne , mref = mi . (3.4)

The dimensionless or normalized mass m̂s is defined from the relation ms = mrefm̂s .
The profile quantities such as temperature Ts(x) and density ns(x) radial depen-

dencies are products of three terms. For example, the temperature is determined by

Ts(x) = TrefT̂0sT̂s(x) . (3.5)

Here, the first term defines the main scale, e. g., Tref = Te , while the second and third
terms are dimensionless and correspond to the species temperature dependence at a
reference position x0 and the radial dependence of the profile.

3.2 position space coordinates

The governing gyrokinetic equation (2.26) is given in a Cartesian coordinate system, in
which the z coordinate line is parallel to the magnetic field line B , while the x – y coor-
dinate plane is orthogonal to it. In a complex magnetic field geometry, where magnetic
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field lines are not straight lines, this Cartesian coordinate system is oriented differently
at each point of the position space. Attempting to use a fixed Cartesian coordinate sys-
tem in the gyrokinetic computer simulations would lead to a very high number of grid
points in the position space, because this coordinate system would disregard the phys-
ical properties of the magnetically confined plasma. In a strongly magnetized plasma,
the background magnetic field B causes highly anisotropic particle mobility, which, in
turn, results in elongated turbulence structures in the direction of the magnetic field
lines. Therefore, it is natural to use a curvilinear coordinate system instead of a Carte-
sian one. In this curvilinear coordinate system, one of the coordinate lines (we denote
the corresponding coordinate by z) is aligned with the magnetic field lines, whereas
the coordinate plane of the two other coordinates (we denote them by x and y) is or-
thogonal to the magnetic field B. Therefore, this coordinate system is usually called a
field-aligned coordinate system. The application of the field-aligned coordinate system
to the gyrokinetic Vlasov-Maxwell equations is reflected in the introduction of metric
coefficients and the Jacobian matrix into computations of derivatives and integrals, re-
spectively (for the final form of these equations we refer to [43, 106]). Aligning the
position space coordinates to the background magnetic field helps reduce the number
of necessary grid points in the position space, compared to the fixed Cartesian coor-
dinate system. According to estimates provided in [24, 108], the reduction of the grid
points depends on the safety factor with aspect ratio and amounts to 10 – 100 times
due to the alignment of the coordinate system to the magnetic field lines.

A vast theoretical background and detailed explanations on the field-aligned (or
flux) coordinates are provided in [109], while further details on the position space
coordinates for gyrokinetic simulations are explained in [97, 110].

Next, we outline the procedure of obtaining the field-aligned coordinates for a
toroidal axisymmetric magnetic geometry. Furthermore, we illustrate the procedure
on a circular model often used for theoretical turbulence studies, e. g., see [43], which
is represented schematically in Figure 7. We start with a general approach of the Cleb-
sch system of coordinates, which was introduced for the first time in [111] for magnetic
fusion applications, and is also used in GENE for the position space. The Gauss law
for magnetism ∇ ·B = 0 allows us to write the magnetic field in the Clebsch form

B = ∇x×∇y . (3.6)

Because the divergence of the vector product is always zero, the Gauss law for mag-
netism is satisfied automatically. From the Clebsch form (3.6), it is apparent that B ·
∇x = 0 , which means that the magnetic field lines lie on a x = const surface. The
same conclusion can also be drawn for the y coordinate. Consequently, each magnetic
field line corresponds geometrically to the intersection of two x and y constant sur-
faces. Conventionally, the x coordinate is called a flux surface label, and x = const
corresponds to a surface spanned by a magnetic field with an irrational safety factor
(number of toroidal turns per one poloidal). An example of such a surface for the
circular model is shown in Figure 7, which corresponds to the fixed minor radius r
value — the distance from the flux surface to the magnetic axis. Therefore, for the
circular model, the flux surface coordinate x is usually set to the minor radius r . For
other geometries, the flux surface label increases monotonically with the minor radius.
Therefore, from now on, we refer to the flux surface label x as a radial distance or
radial coordinate. The second coordinate y is called a field line label.
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xcyc

zc

φ

ψ

Figure 7: Magnetic geometry of a circular model. The blue surface represents a flux surface,
the orange curve a magnetic field line with safety factor q = 1.7, and ψ and φ are the
poloidal and toroidal angles.

It is convenient to relate the field-aligned coordinates to the generalized toroidal
coordinate system denoted by (ρ, θ, ζ) . In this coordinate system, ρ has been already
introduced as x— the flux surface label. Coordinates θ and ζ are related to the poloidal
and toroidal angles ψ and φ , see Figure 7. For example, the physical quantities are also
2π-periodic in θ and ζ directions. The preserved periodicity helps set the boundary
conditions in the field-aligned position space coordinates, for details see [44]. Further-
more, the generalized poloidal and toroidal angles are defined in such a way that the
magnetic field lines appear as straight lines in the system of these coordinates.

As it was shown above, the magnetic field line can be expressed as the intersection
of two planes, the flux surface and another plane defined by fixing the binormal coor-
dinate y = const . If we fix the flux surface label, then the equation of the magnetic field
line on the flux surface ρ is given by y (ρ, θ, ζ) = const , which describes the magnetic
field line in the generalized poloidal and toroidal coordinates system. According to the
definition of the generalized toroidal coordinate system, the corresponding magnetic
field line is a straight line. Thus, we conclude that

y = C(ρ) ( q(ρ)θ− ζ) , (3.7)

where C is called the constant length factor and q is the safety factor.
The generalized poloidal and toroidal angles for which the magnetic field lines ap-

pear straight are, however, not unique. For the tokamak magnetic geometry, it is cus-
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tomary to keep ζ as the original toroidal angle φ and transform the poloidal angle
θ = θ(ψ,φ) (for the stellarator magnetic geometry, the original poloidal angle ψ is
usually preserved).

The distance along the magnetic field line is measured by θ . Thus, the relation of
the field-aligned coordinates to the generalized toroidal coordinates is defined by

x = ρ ,

y = C(ρ) ( q(ρ)θ− ζ) ,

z = θ .

(3.8)

Next, we consider the introduced circular geometry model, see Figure 7, and deter-
mine the field-aligned coordinates for this system in terms of the cylindrical-toroidal
coordinates (r,ψ,φ) . which are, in turn, related to the Cartesian coordinates through
the following transform

xc = (R0 + r cosψ) sinφ ,

yc = (R0 + r cosψ) cosφ ,

zc = r sinψ ,

(3.9)

where R0 denotes the major radius or the radius of magnetic axis. According to [43],
the magnetic field in the circular geometry model is given by

B =
Bref

R

(
1

q(r)

r√
1− ε2

êψ + R0êφ

)
, (3.10)

where R = R0+ r cosψ and ε = r/R0 is an inverse aspect ratio. The unit length covariant
base vectors êψ and êφ are expressed in terms of the radius vector Rc = xci+ycj+ zck

êψ =
eψ∣∣eψ∣∣ = ∂R

∂ψ
/

∣∣∣∣∂R
∂ψ

∣∣∣∣ = 1

r

∂R
∂ψ

=
eψ
r

,

êφ =
eφ∣∣eφ∣∣ = ∂R

∂φ
/

∣∣∣∣∂R
∂φ

∣∣∣∣ = 1

R

∂R
∂φ

=
eφ
R

.
(3.11)

The tangent to the magnetic field line is parallel to the vector B and , therefore,

B = cdRc , (3.12)

where c is a proportionality constant. From (3.12) and the contravariant components of
vectors B

(
Br,Bψ,Bφ

)
= Brer +Bψeψ +Bφeφ and dRc (dr, dψ, dφ) , it follows that

Br

dr
=
Bψ

dψ
=
Bφ

dφ
= c . (3.13)

For the magnetic field defined by (3.10), we find the contravariant components

Br = 0 ,

Bψ =
Bref

R

r

q(r)

1√
1− ε2

1∣∣eψ∣∣ = Bref

R

1

q(r)

1√
1− ε2

,

Bφ =
Bref

R
R0

1∣∣eφ∣∣ = Bref
R0
R2

.

(3.14)
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Therefore, the magnetic field line is given by the solution of the ordinary differential
equation

∂ψ

∂φ
=
Bψ

Bφ
=

1

q(r)

1√
1− ε2

R

R0
=
1+ ε cosψ
q(r)
√
1− ε2

. (3.15)

The solution takes the form

φ = q(r)
√
1− ε2

∫
dψ

1+ εψ
= q(r)

(
2 arctan

[√
1− ε

1+ ε
tan
(
ψ

2

)])
− const . (3.16)

The magnetic field line for the circular geometry in the cylindrical-toroidal coordinates
is then given by

q(r)

(
2 arctan

[√
1− ε

1+ ε
tan
(
ψ

2

)])
−φ = const . (3.17)

An example of this curve for const = 0 is shown in Figure 8, which demonstrates that
the field line is not straight in the (ψ,φ) coordinate system. However, the magnetic
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Figure 8: Magnetic field line of the circular model in the coordinate system of the poloidal (ψ)
and toroidal (φ) angles.

field line becomes straight with the following generalized poloidal and toroidal angles

θ = 2 arctan

[√
1− ε

1+ ε
tan
(
ψ

2

)]
,

ζ = φ .

(3.18)
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These results allow us to construct the field-aligned coordinates by applying the trans-
form (3.8).

A field-aligned curvilinear coordinate system can be constructed based on an ana-
lytic model (as it was done for the circular model) or on an arbitrary MHD equilibrium.
For the latter case, GENE implements an interface with codes CHEASE [11, 112] and
EFIT [110, 113, 114].

As aforementioned, the periodicity of physical quantities in the straight field line
angles helps determine the boundary conditions in the binormal and parallel direc-
tions. For example, if we have a physical quantity given in the generalized toroidal
coordinates f(ρ, θ, ζ) , then the following expressions are valid

f(ρ, θ, ζ) = f(ρ, θ, ζ+ 2π) , (3.19)

f(ρ, θ, ζ) = f(ρ, θ+ 2π, ζ) . (3.20)

The first periodicity condition (3.19), together with the definition of the binormal
coordinate (3.7), yields the periodicity condition in y

f(x,y, z) = f(x,y+ 2πC, z) . (3.21)

In practice, however, the binormal turbulence correlation length is smaller than the
whole toroidal turn ζ+ 2π , and the periodicity is assigned to an integer number frac-
tion of the toroidal turn ζ+ 2π/n0 . The modified periodicity condition is then given
by

f(x,y, z) = f
(
x,y+

2πC

n0
, z
)

. (3.22)

This periodic boundary condition allows switching to the Fourier representation of the
binormal coordinate and using fast spectral methods in GENE.

The second periodicity condition (3.20) results in the quasi-periodic condition in the
parallel direction. The exact form of this boundary condition is, for the already Fourier
transformed y coordinate, given by

f(x,ky, z+ Lz) = f(x,ky, z) exp [−2πin0q(x)j] , (3.23)

where ky = jky,min is the toroidal wave number. For the parallel direction coordinate,
we employ a finite difference method on an equidistant grid.

In the radially global GENE version, a finite difference method is also used for the
radial coordinate x, due to the Dirichlet or Neumann boundary conditions. In the
case of the Dirichlet boundary condition, the temperature and density radial profiles
are fixed on the boundaries. Therefore, this hinders the natural process of flattening
the initial temperature and density profiles and, thus, limits the magnitude of the
turbulent fluctuations. As a result, small profile variations near the x boundaries might
yield large gradients and cause numerical instabilities. However, even if the full profile
flattening (like in the radially local simulations) were possible, because of significant
radial variations of the temperature and density, it would lead to a severe violation
of the gyrokinetic ordering. The problem can be alleviated by introducing source- or
sink-like terms, which are added to the right hand side of the Vlasov equation. This
technique is meant to artificially dampen the fluctuations in the vicinity of the radial
boundaries. In GENE, the introduced terms are of Krook type and they are active (not
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zero) only close to the boundaries in the regions called Krook-type buffer zones; the
realization of Krook terms in GENE is explained in [43, 44, 106].

The parallel and, in many cases, the binormal directions require less grid points
than the radial distance mixed with the velocity space subdomain. On the one hand,
the fast spectral method for the y direction and the elongated structures of turbulence
in the z direction help reduce the number of points for these coordinates. On the other
hand, the radial temperature variation requires a lot of grid points in the velocity space.
This problem is addressed in the following section on the velocity space coordinates
and is also going to be a main motivation for the newly developed grids presented in
Chapter 4.

3.3 velocity space coordinates

To decide upon suitable discretization schemes in the velocity space, the following op-
erations involving the velocity space coordinates have to be considered. The velocity
space coordinates v‖ and µ appear only in the Vlasov equation (2.26) and are inte-
grated out in the moment computations for the Maxwell equations (2.32,2.33), which
are solved in the position space. In collisionless plasma, the derivatives in the velocity
space are computed only along the parallel velocity direction and appear in the non-
linear and trapping terms. Both velocity coordinates are involved in the computations
of the moments, which couple the Vlasov to the Maxwell solver. In return, the fields
computed by the Maxwell solver are gyro-averaged and become part of the Vlasov
equation. Due to the last operation, the resulting gyro-averaged fields pick up a mag-
netic moment dependence.

The section is structured as follows. First, we introduce projections of the back-
ground distribution functions, which are important to understand the choice of an
appropriate range and resolution in the velocity space grid. Next, we discuss how a
regular velocity grid is constructed in a rectangular domain. Furthermore, we intro-
duce the challenge of an excess of velocity space grid points caused by the spatial
temperature variation. We finish the section with a discussion on the solution to this
problem (by normalizing the velocity coordinates), as well as of the related computa-
tional costs.

3.3.1 Background Distribution Function

As it is explained in Subsection 2.1.3, the gyrokinetic Vlasov equation in so-called δf-
codes such as GENE is simplified by splitting the distribution function into an equilib-
rium and a fluctuating part F = F0 + f1 . From the gyro-kinetic ordering requirements,
it follows that, if the background distribution function in a certain phase space area
is negligible, then we cannot expect strong fluctuations in that area. Furthermore, the
shape of the perturbed distribution function retains the shape of the background distri-
bution approximately, see Chapter 6. Therefore, we choose the background distribution
function as the criterion for constructing computational grids.
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The background distribution function used in GENE is a local (i.e., radial-dependent)
Maxwellian in the velocity space. It depends on the radial density n(x) and tempera-
ture T(x) profiles, and is given by

F0(x, v‖, v⊥x, v⊥y) =
n(x)

π3/2v3T (x)
exp

−m
(
v2‖ + v

2
⊥x + v

2
⊥y
)

2T(x)

 , (3.24)

where x is the radial distance, v‖ the parallel velocity component, v⊥ the perpendic-
ular velocity components, and vT (x) =

√
2T(x)/m the thermal speed. In the five di-

mensional gyrokinetic codes, we have only two velocity directions. In GENE, we use
a magnetic moment coordinate µ instead of the perpendicular velocity components
v⊥x and v⊥y . The magnetic moment can be expressed in terms of the perpendicular
velocity:

µ =
m
(
v2⊥x + v

2
⊥y
)

2B
. (3.25)

To derive the background distribution function F0(x, v‖,µ) depending on only two
velocity variables instead of three, we substitute the perpendicular velocity compo-
nents according to

µ =
m
(
v2⊥x + v

2
⊥y
)

2B
, v⊥x = ±

√
2B

m
µx ,

µx =
mv2⊥x
2B

, v⊥y = ±
√
2B

m
(µ− µx) .

(3.26)

Because one point (µ,µx) is mapped to four points in the orthogonal velocity space(
±v⊥x,±v⊥y

)
, the distribution function for µ and µx variables is given by

F0(x, v‖,µ,µx) =
n(x)

π3/2v3T (x)
exp

[
−
mv2‖
2T(x)

−
µB

T(x)

]
4∑
i=1

|Ji(µ,µx)| , (3.27)

where Ji(µ,µx) is the determinant of the Jacobian matrix for the i-th quadrant of the
orthogonal velocity plane. The absolute value of the Jacobian matrix determinant is
equal for all four points

(
±v⊥x,±v⊥y

)
. Therefore, we consider only the first quadrant,

where the Jacobian matrix is given by∂v⊥x∂µx

∂v⊥x
∂µ

∂v⊥y
∂µx

∂v⊥y
∂µ

 =

 ±
√

B
2mµx

0

∓
√

B
2m(µ−µx)

±
√

B
2m(µ−µx)

 . (3.28)

The absolute value of the determinant is

|J (µ,µx) | =
B

2m

1√
µx (µ− µx)

. (3.29)

Finally, the distribution function for µx,µ space is given by

F0(x, v‖,µ,µx) =
2Bn(x)

mπ3/2v3T (x)
exp

[
−
mv2‖
2T(x)

−
µB

T(x)

]
1√

µx (µ− µx)
. (3.30)
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To have the distribution function dependent on the magnetic moment only, we inte-
grate F0(x, v‖,µ,µx) over all acceptable values of µx corresponding to the range [0,µ].
Taking into consideration the elementary integral∫µ

0

1√
µx (µ− µx)

dµx = π . (3.31)

we obtain the desired distribution function

F0(x, v‖,µ) =
2Bn(x)

m
√
πv3T (x)

exp

[
−
mv2‖
2T(x)

−
µB

T(x)

]
=

n(x)×
√

m

2πT(x)
exp

[
−
mv2‖
2T(x)

]
× B

T(x)
exp

[
−
µB

T(x)

]
. (3.32)

The background distribution function receives the radial distance x-dependence
from the profiles of the density n(x) and temperature T(x) . In practice, these profiles
can be analytically generated or directly obtained from real experiments. An exam-
ple of n(x) and T(x) for a particular TCV1 discharge, for details see [44], is shown
in Figure 9. Strong temperature and density variations lead to different shapes of the
background distribution functions.

In Figures 10 and 11, we demonstrate the projections of (3.32) on the x – v‖ and x –
µ planes, which are plotted using the introduced TCV profiles. The projections of the
distribution function are given by

F0
(
x, v‖

)
= n(x)

√
m

2πT(x)
exp

[
−
mv2‖
2T(x)

]
, (3.33)

F0(x,µ) = n(x)
B

T(x)
exp

[
−
µB

T(x)

]
. (3.34)

and obtained by marginalizing out (discarding) µ for (3.33) or v‖ for (3.34), which is
done by integrating the full Maxwellian (3.32). Furthermore, to visualize the distribu-
tion functions in Figures 10 and 11, we use normalized quantities, in the same way
it is done in GENE simulations. We assume that the density and temperature are al-
ready provided for the normalized radial coordinate x̂ , and the distribution functions
(3.33) and (3.34). Therefore, we can simply substitute x by x̂ in the formulas of the
background distribution functions. Moreover, according to Section 3.1, we apply the
following substitutions

n(x̂) = n̂0n̂(x̂)nref , T(x̂) = T̂0T̂(x̂)Tref , B = B̂Bref ,

v‖ = v̂‖

√
2T̂0
m̂

,

√
Tref

mref
, µ = µ̂T̂0

Tref

Bref
,

(3.35)

1 Tokamak à Configuration Variable



3.3 velocity space coordinates 37

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n
/n

re
f

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

0.0

0.5

1.0

1.5

2.0

2.5

T
/
T

re
f

Figure 9: Examples of electron density (top) and temperature (bottom) profiles of a TCV dis-
charge. The radial distance is shown in the minor radius units, the density and tem-
perature values are shown in units relative to the reference values nref, Tref taken at
the reference radial distance (xref = 0.5).

in expressions (3.33) and (3.34), where, for the sake of simplicity, we omit the species
index s. To summarize, we obtain the following normalized equilibrium distribution
functions

F̂0
(
x̂, v̂‖

)
= F

(
x̂, v‖

) dv‖
dv̂‖

= n̂(x̂)n̂0

√
1

T̂(x̂)
exp

[
−
v̂2‖
T̂(x̂)

]
, (3.36)

F̂0 (x̂, µ̂) = F (x̂,µ)
dµ
dµ̂

= n̂(x̂)n̂0
B̂

T̂(x̂)
exp

[
−
µ̂B̂

T̂(x̂)

]
. (3.37)

Here, we omit nref to gain dimensionless distribution functions. Furthermore, for the
visualization of the equilibrium distribution function in the x – µ subspace, B̂ ≈ 1 ,
so it can be neglected. Nevertheless, the temperature and density radial dependencies
usually given as input are not scaled and correspond to T̂p(x̂) = T̂(x̂)T̂0 and n̂p(x̂) =
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Figure 10: Surface (top) and contour (bottom) plots of background distribution function

F
(
x, v‖

)
. Blue lines on the contour plot corresponds to a confidence range of three

standard deviations.

n̂(x̂)n̂0 , where the subscript p refers to the input profile values. Therefore, the original
expressions that we use to compute the background distribution functions are given
by

F̂0
(
x̂, v̂‖

)
= n̂p(x̂)

√
T̂p (x̂0)

T̂p(x̂)
exp

[
−v̂2‖

T̂p (x̂0)

T̂p(x̂)

]
, (3.38)

F̂0 (x̂, µ̂) = n̂p(x̂)
T̂p (x̂0)

T̂p(x̂)
exp

[
−µ̂
T̂p (x̂0)

T̂p(x̂)

]
. (3.39)

As shown in Figures 10 and 11 for the previously introduced TCV profiles, the
projections F̂0

(
x̂, v̂‖

)
and F̂0 (x̂, µ̂) have a smooth shape with long wings in the high

temperature regions (low x̂), but take a peak-like shape in the low temperature regions
(high x̂). Because these disparities in the background shape are met frequently, they
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Figure 11: Surface (top) and contour (bottom) plots of background distribution function F (x,µ).
White line on the contour plot correspond to a confidence range of three standard
deviations.

have to be reflected in the choice of range and resolution of the computational grids in
the x – v‖ – µ subspace.

3.3.2 Default Approach: Regular Velocity Space Grid

The default approach to construct the velocity space grid in gyrokinetic codes such as
GENE is to choose the cuboid shape domain in the x – v‖ – µ subspace, and discretize
v‖ and µ according to the numerical operations applied in these directions. To perform
discretizations in GENE, we compute derivatives with a finite difference scheme in
the parallel velocity direction and perform quadrature-like operations in the magnetic
moment direction. Therefore, to discretize the parallel velocity coordinate we use an
equidistant mesh and nodes of a Gauss-type quadrature for the magnetic moment
coordinate. The default choice for the µ mesh is the Gauss-Laguerre quadrature rule,
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because it is optimal for integrating functions of the class exponential-multiplied-by-
polynomial, which represents the expected perturbed distribution function due to the
background (3.34). An example of v‖ – µ grid with (for the sake of visibility) a very
coarse resolution is shown in Figure 12.
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4

v ‖

Figure 12: An example of a grid in v‖ – µ subspace with a very coarse resolution.

For the default domain of the cuboid shape, it is very important to choose a range
and a resolution that are wide and fine enough in the velocity space, so that the results
of the simulations are sufficiently accurate to rely on. Before introducing a standard
procedure of choosing the range and resolution parameters, we first need to present the
case of an optimal shape of the x – v‖ – µ subdomain with a corresponding resolution.

To choose the appropriate range of the parallel velocity (−lv, lv) and the magnetic
moment (0, lw), we rely on the confidence interval approach. Assuming a normal dis-
tribution, the standard initial choice, if more precise ranges are not available from
previous simulations, is three standard deviations, which corresponds to a 99.7% con-
fidence level. Occasionally, however, to capture all velocity space structures, it is neces-
sary to take even wider ranges than that. In such cases, we have to proceed with care,
because too wide ranges may lead to spurious results, due to the insufficient precision
of floating point operations in the areas where the background distribution function
is negligibly small and the fluctuating part is, according to the gyrokinetic ordering,
even smaller. We find the contour of the desired simulation domain in the x – v‖ – µ
subspace by computing the confidence intervals at each radial distance. The resulting
contours are shown in Figures 10 and 11 (bottom). The simulation domain surface in
the x – v‖ – µ space is shown in Figure 13.
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Figure 13: An example of a surface of the x – v‖ – µ subdomain corresponding to a confidence
interval of three standard deviations for a normal distribution.

To compute ranges for the corresponding equilibrium distribution functions (3.38)
and (3.39) we apply the following formulas. The probability p of the confidence interval
(−lv, lv) is given by

p = Φ (lv) −Φ (−lv) = erf
(

lv

σ
√
2

)
, (3.40)

where Φ denotes the cumulative distribution function (CFD), which for a normal dis-
tribution is given by

Φ (lv) =
1

2

(
1+ erf

[
lv√
2σ

])
, (3.41)

where σ is the standard deviation

σ =

√
1

2

T̂p(x̂)

T̂p(x̂0)
(3.42)

and erf denotes the error function

erf(x) =
2√
π

x∫
0

e−t
2

dt . (3.43)

If we have to determine the range of the parallel velocity coordinate from a given
confidence level p , we apply the following formula

lv =
√
2σ erf−1(p) . (3.44)
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Otherwise, if the range is specified by a number of standard deviations n , then we
simply compute

lv = nσ . (3.45)

The confidence probability of the interval (0, lw) for the magnetic moment equilib-
rium distribution (3.39) is computed from

p =

lw∫
0

λ exp [−λµ] dµ = 1− exp [−λ · lw] , (3.46)

where λ is given by

λ =
T̂p(x̂0)

T̂p(x̂)
. (3.47)

If we compute lw from the given probability p , we apply the inverse of (3.46)

lw = −
ln(1− p)

λ
. (3.48)

In case the number of standard deviations n for the normal distribution is given, we
first compute the probability according to (3.40)

p = erf
(
n√
2

)
, (3.49)

and then substitute the result in (3.48), which yields

lw = −
1

λ
ln
(
1− erf

(
n√
2

))
. (3.50)

In practice, we do not use the last expression, but instead replace the error function
by using the following scaled complementary error function erfcx; then erf is replaced
according to

1− erf
(
n√
2

)
= exp

(
−
n2

2

)
erfcx

(
n√
2

)
, (3.51)

which leads to

lw =
1

λ

(
n2

2
− ln

(
erfcx

(
n√
2

)))
. (3.52)

The last expression is more convenient, because now we distinguish between the main
term, which is proportional to n2/2 , and the correction.

A proper resolution is obtained by fixing the number of grid points at each radial dis-
tance and assigning the ranges as described previously. The number of necessary grid
points may vary from one scenario to another; therefore, the choice usually depends
on experience.

To demonstrate how the regular grid is constructed, we consider an example in the x
– v‖ subdomain. We assume that we know how many parallel velocity grid points are
sufficient for the local simulations (narrow radial range) with the same temperature
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Figure 14: Construction of the regular grid (bottom) based on radially local grids (top).

profiles as for the target global simulations (almost full machine size radial range).
Knowing the correct parallel velocity ranges at the highest and lowest temperature
regions, we schematically demonstrate these two grids in Figure 14 (top). To span the
rectangular grid over the whole radial coordinate range, we choose the widest range
and the finest resolution of the local grids. As a result, we obtain the grid demonstrated
in Figure 14 (bottom), which satisfies all prerequisites for the range and resolution at all
x . Nonetheless, despite its simplicity, such a regular grid has too many computational
nodes.

In the default approach, the x – µ grid is constructed by choosing the Gauss-Laguerre
quadrature rule adjusted to the exponentially decaying equilibrium distribution func-
tion at the reference point x , usually at the middle of the interval of the radial coordi-
nate. As a consequence, the precision of the quadrature rule decays drastically close to
the lower and upper bounds of the radial range, as shown in Section 4.2. To compen-
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sate this effect, we have to invest again many more µ nodes than one would expect for
the radially local simulations.

There are two main approaches to tackle the issue with the excessive number of
computational nodes in the velocity space. One stems from the modification of the un-
derlying governing equations and is described in Subsection 3.3.3. Another approach,
which we consider the better option and which allows reusing the already existent
code for regular grids, is explained in Chapter 4.

3.3.3 Normalization Approach: Transformed Velocity Space Grids

In the following, we present a method to solve the problem with the excessive number
of grid points required for the velocity space discretization by transforming the velocity
coordinates. First, we derive the transformation equations. Then, we briefly explain
complications of applying this technique to an existing gyrokinetic Eulerian code like
GENE. Although we do not apply this method in practice, it serves us as a good
indication for designing the block-structured grids, which are presented in Chapter 4.

Transformations of Velocity Coordinates

The simplest way of addressing the aforementioned problem is to use the parallel
velocity and magnetic moment coordinates normalized by radially dependent thermal
speed and corresponding thermal magnetic moment

vT (x) =

√
2T(x)

m
and µT (x) =

mv2T (x)

2B
=
T(x)

B
. (3.53)

After the following transform of the velocity coordinates

v ′‖ =
v‖
vT

and µ ′ =
µ

µT
(3.54)

we remove the temperature profiles from the background distribution function. The
equilibrium distribution functions in x – v ′‖ and x – µ ′ are given by

F ′0
(
x, v‖

)
= F0

(
x, v‖

(
v ′‖
)) dv‖

dv ′‖
=
n(x)√
2

exp
(
v ′2‖
)

, (3.55)

F ′0 (x,µ) = F0
(
x,µ

(
µ ′
)) dµ

dµ ′
= n(x) exp

(
µ ′
)

. (3.56)

With the new velocity coordinates, the scales of the distribution function structures
are the same at all radial positions. Therefore, the number of grid points necessary
for the velocity space is approximately the same as for the local simulations. A rough
estimate shows that we have to use (vTmax/vTmin)

3 = (Tmax/Tmin)
3/2 less points with the

new velocity coordinates in comparison to the regular grid introduced in 3.3.2. Here,
by vTmax and vTmin we denote the maximum and minimum values of the thermal speed,
which is a function of the radial coordinate. For example, for a realistic temperature
ratio Tmax/Tmin ∼ 10 , the theoretical reduction of grid points is ≈ 30 .

The normalization transform, which we introduce in (3.54), can be derived by using
the transfinite mapping technique, described in [115] and [116]. This method provides
more control over the mesh structure than the pure normalization. For this reason and
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for the sake of completeness, next, we provide the derivation of the transfinite mapping
for our particular problem.

The transfinite mapping technique allows us to transform the velocity space coor-
dinates, so that the original subdomain shown in Figure 13 is mapped to the new
(logical) computational subdomain having the shape of a rectangular cuboid. With this
method, we can directly work in the three-dimensional domain. However, in our case,
we demonstrate a simpler procedure by first transforming the x and v‖ coordinates
and then repeating the procedure for µ .

The grids of the logical and physical computational domains for our case are shown
in Figure 15. The velocity range in the physical domain corresponds to the scaled stan-
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Figure 15: Grids in logical L(s, t) (top) and physical P(x, v‖) (bottom) domains. The transfinite
interpolation technique provides an efficient way to find mapping T : L 7→ P .

dard deviation c1σ(x), for details see 3.3.2. Our problem is to find a bijective function
T : L 7→ P , which maps the logical space L with coordinates (s, t) to the physical space
P with coordinates (x, v‖). Due to the symmetry, we are looking for the mapping only
in the half of the parallel velocity range [0,−lv].
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Following the procedure described in [115, 116], we define four vector functions
mapping the boundaries (projections of the boundaries) of the physical domain

Pl =

[
0

t

]
, Pr =

[
c1σ(t)

t

]
, (3.57)

Pb =

[
sc1σ(xmin)

xmin

]
, Pt =

[
sc1σ(xmax)

xmax

]
, (3.58)

where subscripts l, r,b, t denote the left, right, bottom, and top boundaries of the do-
main, c1 is a constant determining the width of the parallel velocity domain, σ is the
standard deviation of the distribution from Equation (3.33)

σ(x) =

√
T(x)

m
=
vT (x)√
2

. (3.59)

Next, we also need four projections of the corners of the physical domain

Plb =

[
0

xmin

]
, Plt =

[
0

xmax

]
, (3.60)

Prb =

[
c1σ(xmin)

xmin

]
, Prt =

[
c1σ(xmax)

xmax

]
. (3.61)

One way to find the mapping T is to use bilinear interpolation based on the values
at the boundaries and in the corners; the transfinite bilinear interpolation is then given
by

T(s, t) = (xmax − s)Pl + (s− xmin)Pr + (1− t)Pb + tPt − (xmax − s)(1− t)Plb
− (xmax − s)tPlt − (s− xmin)(1− t)Prb − (s− xmin)tPrt . (3.62)

After substituting the projection functions in (3.62), we determine the mapping

T(s, t) =

[
sc1σ(t)

t

]
=

[
v‖(s, t)

x(s, t)

]
. (3.63)

From this transform, it follows that t corresponds to x and

s =
v‖

c1σ(x)
=

√
2

c1

v‖
vT

. (3.64)

If we choose the constant c1 =
√
2 , we obtain that s = v ′‖ .

The same procedure can be performed for the x – µ domain shown in Figure 16. In
this case, we introduce a transformation of magnetic moment coordinate

u =
λ(x)

c2
µ =

B

c2T(x)
µ =

1

c2

µ

µT
. (3.65)

By setting c2 = 1 , we return to the introduced normalized magnetic moment u = µ ′ .
To summarize, the transfinite bilinear mapping to the desirable physical domain

shown in Figure 13 leads to a coordinate transform equivalent to the normalization
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Figure 16: Physical space x – µ grid achieved by means of transfinite interpolation mapping.

introduced in (3.54). However, the transfinite interpolation technique provides more
control over the resulting grid than mere normalization. For example, we can force
the coordinate lines to go through certain points or even correspond to prescribed
lines inside the domain (for details see [115, 116]). It should be noted that, in the pro-
vided transforms, it is assumed that the projection functions P are continuous. When
this assumption does not hold, which happens frequently, for instance when tempera-
tures given at discrete points (experimental measurements) lead to projection values P
known only at these points, we can apply the discrete transfinite mapping techniques
first introduced in [117, 118]. Moreover, bilinear interpolation, which was used in (3.62),
is not the only choice and other interpolation techniques leading to different mappings
can be applied.

Application to Gyrokinetic Equations

Because the so far used grids are based on a transformation of the physical coordinates
to the logical ones with a rectangular domain, the underlying equations need to be
modified. For the sake of simplicity, we consider the normalization transform (3.54)
and point out the consequences of introducing a corresponding grid.

The introduction of new coordinates v ′‖ and µ ′ causes the transformation of the
distribution functions, changes in derivatives and integrals. The last two modifications
lead to non-trivial changes in the governing gyrokinetic equation, which might require
an extensive revision of the existing implementation.
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The radial derivative becomes a mixture of the radial and velocity coordinates deriva-
tives:

∂

∂x
=

∂

∂x ′
+
∂v ′‖
∂x

∂

∂v ′‖
+
∂µ ′

∂x

∂

∂µ ′
. (3.66)

We compute the radial derivatives of the modified potential χ̄1 (see (2.25)) and “con-
venience” function denoted by Γ (see (2.27)). These derivatives appear in two terms of
the gyrokinetic equation (2.26): the curvature and nonlinear terms.

Due to (3.66), the derivative in the magnetic moment direction has to be computed.
This derivative is not present in the original equation, where only integration in the
µ direction is performed. Therefore, with the new coordinates, the discretization of
the magnetic moment must suit well both the quadrature computations and the high
order2 finite difference schemes used to discretize derivatives. As a consequence, the
default choice of the Gauss-Laguerre nodes, which had led to significant savings, is
not usable anymore; the transformed grid requires now more nodes in the magnetic
moment direction. For example, some convergence tests reveal that for an equidistant
grid instead we would need around 128 – 256 points in order to obtain the same results
as with eight Gauss-Laguerre nodes; this is 16 – 32 as many grid points.

The nonlinear term is the most expensive term in the gyrokinetic equation affected
by the new velocity coordinates. The computations associated with the nonlinear term
might take more than half cf. the total computational time. The default discretization
scheme of the nonlinear term in GENE uses an Arakawa scheme in a mixed Fourier
and real space, see [119, 120]. The details on how this scheme is applied to the nonlinear
term in GENE are provided in [44]. The form of the nonlinear term, which is discretized
in this scheme, is given by

N =
1

3

[(
∂χ̄1
∂y

∂g1
∂x

−
∂χ̄1
∂x

∂g1
∂y

)
+
∂

∂y

(
χ̄1
∂g1
∂x

−
∂χ̄1
∂x
g1

)
+
∂

∂x

(
∂χ̄1
∂y
g1 − χ̄1

∂g1
∂y

)]
. (3.67)

The derivatives in the binormal direction y are computed in the Fourier space, but
they are transformed to the real space before multiplications are performed. After the
Arakawa scheme is applied, another transform is necessary to return to the Fourier
space in the y direction. If we apply directly the expression (3.67) to the nonlinear
term after the normalization (3.54), we have to replace all radial derivatives by (3.66)
and introduce velocity space derivatives. Even if the radial and velocity derivatives
are computed before they are used in the nonlinear term, the third term in (3.67) still
requires computing the derivatives in all three directions. It is hard to estimate the
resulting overhead in the computations of the nonlinear term beforehand, due to the
transform of the velocity space coordinates. However, if this overhead reaches even
only ten percent, a similar slowdown is expected for the whole application just due to
the nonlinear term.

The moments of the distribution function (2.34), which appear in the field equations
and numerous diagnostics, are also affected by the transform of the velocity space coor-
dinates, because they involve integration in the velocity and radial distance directions.

2 by default fourth in GENE
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The new coordinates v ′‖ and µ ′ introduce further complexity into the moment compu-
tations. First, we have to transform the integral (2.34) to the new coordinates by intro-
ducing the Jacobian. Second, the gyro-phase averaging, which along with the original
velocity coordinates corresponds to the path-integral on the projection of the physical
trajectory of a particle on x – y plane, loses its initial physical meaning, because we
do not have fixed physical magnetic moments µ anymore, but rather transformed and
radially dependent counterparts µ ′ . Instead of the gyro-radius defined in (2.36), we
have to use the radially dependent expression:

|ρ(x)| =
c

q

√
2µ ′µT (x)

B
. (3.68)

Therefore, the paths of the gyro-phase averaging integrals are not circular anymore.
This makes the already expensive calculations of the gyro-matrix, described in Sec-
tion 4.3, even more challenging.

One way to circumvent this issue with the modified gyro-phase averaging is to keep
the original magnetic moment in the moment integral (2.34) and perform the gyro-
averaging (2.35) for a fixed selected set of µ. In this case, however, we have to interpo-
late the distribution function, which is defined and solved at µ ′ points, at each time
step. The advantage of this approach is that we can reuse already implemented and
well-established moment computations of the original code.

To conclude, the elegant approach of the velocity coordinates normalization or the
transfinite interpolation technique seem very promising to address the problem of the
spatial temperature variation. However, the grids based on the coordinates transfor-
mation lead to non-trivial modifications of the underlying system of equations. First,
we introduce originally absent derivatives in the magnetic moment direction, which
require significantly more grid points. Second, the most expensive nonlinear term gets
even more complicated, which might cause a further slowdown of computations. Fur-
thermore, the computations of the gyrophase averaging are getting more challenging.
Moreover, the introduction of new velocity coordinates requires a revision and reim-
plementation of the well-established and already tested existing codes for the classical
velocity coordinates. In view of these complications, we propose instead the block-
structured grids (see Chapter 4), which lead to similar savings in the number of grid
points and allow reusing the original code.

3.4 summary

In this chapter, we introduced the coordinates in the position and velocity spaces,
which are used to describe the gyrokinetic equation in GENE. For the position space,
the three coordinates are aligned to the magnetic field lines; a mixture of fast spectral
and finite difference methods was used to discretize these position coordinates. Regard-
ing the velocity space grid, the default grid is of rectangular shape, with an equidistant
mesh in the parallel velocity direction and Gauss-Laguerre nodes in the magnetic mo-
ment direction. These types of discretization were justified by the type of operations
performed in the velocity space. Furthermore, the shape of the background distribu-
tion function, which has a strong influence on the structure of the fluctuating part,
was shown to make Gauss-Laguerre nodes preferable for the µ discretization. We also
demonstrated that the strong temperature variation along the radial distance leads to a
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lot of nodes in the velocity space grid. To alleviate this issue, we normalized the veloc-
ity space coordinates by the thermal speed. However, this approach was shown to lead
to non-trivial modifications of the governing equation, which could potentially signifi-
cant computational overheads due to introduction of the magnetic moment derivatives,
changes in the nonlinear term, and etc.

In the next chapter, we introduce an alternative approach to the thermal speed nor-
malization. This technique results in the same theoretical savings as the normalization
method and does not require discarding the physical velocity coordinates.



4
B L O C K - S T R U C T U R E D G R I D S

In Chapter 3, we described the resolution challenges introduced to grid-based gyroki-
netic simulations when incorporating radial temperature variations. Furthermore, we
provided a solution by normalizing the velocity coordinates or, equivalently, introduc-
ing the transfinite interpolation grid, which leads to the same results. The drawback
of the approach based on transformed coordinates is the extensive modifications intro-
duced in the underlying gyrokinetic equations. We note here, that the problem is not
specific to gyrokinetics.

The goal of the aforementioned method is to perfectly align the coordinate lines
(surfaces) with the desired domain boundary, see, for instance, Figure 13. However, in
gyrokinetic simulations, the exact shape of the velocity space boundary does not play
an important role, as long as the velocity ranges are chosen sufficiently large. There-
fore, in this chapter we introduce block-structured grids, which are focused on how
to subdivide, in an optimal way, the mixed radial distance and velocity space domain
into blocks, and adjust the range and resolution of each block mesh depending on
the local temperature. An example of a block-structured grid outline with six blocks
is shown in Figure 17. This outline was obtained by applying the blocking technique
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Figure 17: An example of a block-structured grid with six blocks in x – v‖ – µ subspace.

to the domain shown previously in Figure 13. Unlike the grids introduced in Subsec-
tion 3.3.3, block-structured grids are not boundary conforming, but approximate the
desired boundary with a step-like function. Relaxing the requirement of aligning coor-
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dinate lines to boundaries allows us to avoid transforming the underlying gyrokinetic
equation.

The proposed block-structured grids are related to overlapping or overset grids [121,
122], since both types of grids use interpolation during data-exchange between blocks.
The latter grids are typically applied to represent complex geometries and discretize
areas with different physical models. In gyrokinetic simulations, however, an accurate
representation of the shape of the simulation domain in the velocity space is not im-
portant. The focus here is on a careful choice of the range and resolution of the velocity
grid, which depend on the temperature at a given radial distance.

Block-structured grids are also frequently used for an adaptive mesh refinement in
the context of plasma simulations. Such grids have been employed for PIC simulations
in [123], and for Vlasov two-dimensional (a position and a velocity coordinate) simu-
lations in [124]. Locally refined block-structured grids are also used for fluid plasma
simulations, see [125, 126]. Then, for edge plasma simulations, block-structured grids
correspond to multiple connected grids in the logical computational domain, where
each block-grid discretizes a simulation subdomain with different physical properties,
see [127].

The rest of the chapter is structured as follows. We first introduce the concept of
block-structured grids for the parallel velocity direction and compare the results with
those of the transformation approach. Then we explain a blocking technique for the
magnetic moment coordinate, which is conceptually different, because, unlike in the
parallel velocity direction, the focus is shifted on computing quadrature-like operations
instead of derivatives. Special attention is dedicated to the gyrophase averaging opera-
tion, because this is where the new technique requires the most extensive modification.
At the end of the chapter, we estimate the theoretical reduction in the number of grid
points in the block-structured grids compared to the equivalent regular grids.

4.1 parallel velocity direction

The proposed block-structured grids can be constructed independently in the x – v‖
and x – µ subspaces. It is easier to demonstrate the concept behind the construction
for the parallel velocity coordinate, because we use an equidistant meshing for this
direction in GENE. After introducing the block-structured grid in the x – v‖ subspace,
the extension to include the magnetic moment direction is straightforward. Therefore,
in this section we discuss constructing the grids in the x – v‖ subspace only.

Constructing a block-structured grid consists of two main steps: first, the domain
contour is approximated by a step-like curve, which gives the positions of the block
boundaries, and then a number of v‖ grid points is chosen in each block. The result of
the first step is demonstrated in Figure 18, which is computed for the TCV temperature
profile, see Figure 9 (bottom).

Approximating the domain contour can be regarded as finding the positions of block
boundaries in the radial direction. When these positions are given, we know the height
(radial extent) of each block and are thus able to choose a minimum width (parallel
velocity extent) of each block, so that the desired domain is inside of the obtained
step-shaped contour. The radial positions of the block boundaries can be determined
in several ways. For example, good boundary locations (exhibiting a reasonably small
temperature variation within one block) can be obtained by minimizing the area dif-
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Figure 18: An approximation of the x – v‖ subdomain contour by a step-like curve. The dashed
line corresponds to the contour and the solid blue line to the blocked approximation.

ference between the desired and blocked domains. This is the default way to obtain
block-structured grids, for more details we refer to the description of the grid genera-
tion tool in Appendix Section A.1.

After the shape and position of the blocks are computed, we have to decide upon the
number of grid points in the parallel velocity direction. There are two natural choices.
The first choice is to fix the resolution in each block, so that grid lines are aligned on
the block boundaries, see Figure 19 (top). We refer to these grids as first type. The
block-structured grids of the first type require a minimum modification of the original
code written for the regular grids. We can obtain these grids by simply disregarding
those areas of the regular grid that are outside the blocked domain. However, the first
type grids do not result in a significant reduction in the number of grid points, for
details see Section 4.4.

The second type block-structured grids are obtained by following the approach of
constructing a x – v‖ grid for radially global simulations based on the resolution that
would be employed in local simulations. According to this approach, we have to use
the same number of grid points in each block. Consequently, we obtain the second
type grid demonstrated in Figure 19 (bottom). This grid leads to a significantly higher
reduction in the discretization points, but it is also more difficult to implement, due
to the misalignment of the coordinate lines at the block boundaries. We address this
misalignment by applying interpolation on the block boundaries, for explanations see
Section 5.2. Formally, the block-structured grids of the first and second type can be
considered as two successive steps towards the normalized grid presented in Subsec-
tion 3.3.3, which also preserve the governing equation.

Next, we provide a qualitative comparison between four types of introduced grids:
regular, normalized, and the block-structured grids of first and second type. All these
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Figure 19: Examples of the first (top) and the second (bottom) types of block-structured grids.
For the sake of visibility, the resolutions of the grids are significantly coarser than in
practice.

four types of grids are schematically presented in Figure 20, where the four top sub-
plots (1, 2, 3, 4) represent the v‖ coordinate lines in the x – v‖ subspace, whereas
the four bottom subplots (5, 6, 7, 8) represent the coordinate lines in the x – v‖/vT
subspace. The grid with normalized velocity space is labeled (1) and (5) in the two
different coordinate systems, the default regular grid (2, 6), the block-structured grid
of the first type (3, 7), and the block-structured grid of the second type (4, 8).

As it was discussed in Subsection 3.3.2, the default regular grid requires a sufficiently
wide range and a fine enough resolution to satisfy both high and low temperature re-
gions. Consequently, it necessitates more grid points than the grid with the normalized
parallel velocity. A comparison of the normalized and regular grids in the x – v‖/vT
subspace ((5) and (6)) reveals both the overestimated number of v‖ nodes in the high
temperature region and overly wide range in the low temperature region. The block-
structured grid of the first type solves the problem of the unnecessary wide range in the
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Figure 20: Examples of v‖ coordinate lines in different coordinate systems: in the top subplots
(1, 2, 3, 4) the horizontal axis is the physical parallel velocity coordinate, while
in the bottom subplots (5, 6, 7, 8) the horizontal axis is the normalized parallel
velocity coordinate. The normalized grid is represented in (1, 5), the default regular
grid in (2, 6), the block-structured grid of the first type in (3, 7), and the block-
structured grid of the second type in (4, 8).

low temperature region by cutting away the insignificant grid points, see plots (3) and
(7). However, by comparing (5) with (7), we observe that the high temperature region
is still overresolved. The next step, which leads to appropriate ranges and resolutions,
see plots (4, 8), is achieved by the block-structured grid of the second type.

Visually, the second type of block-structured grids is the closest match to the grid
with the normalized velocity coordinates. Theoretically, for infinitely many blocks,
these grids should correspond graphically to each other. Practically, however, the num-
ber of blocks necessary for the gyrokinetic simulations in the block-structured grids of
the second type is quite small. To determine an optimal number of the blocks, we look
at how the number of grid points depends on the number of blocks.

For example, Figure 21 illustrates such a dependence for the previously introduced
TCV temperature profile (see Figure 9 (bottom)). In this figure, the corresponding
block-structured grids of the second type are constructed based on a regular reference
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Figure 21: Dependence of the number of grid points on the number of blocks in the block-
structured grid of the second type. The TCV temperature profile was used for the
grid construction; the reference regular grid has nx0 = 512 and nv0 = 92.

grid with nx0 = 512 grid points in the radial direction and nv0 = 92 parallel veloc-
ity grid points. The construction procedure ensures that the parallel velocity range of
the widest block is equal to the range of the reference grid and the parallel velocity
resolution in the narrowest block is equal to the resolution of the reference grid. From
Figure 21, we observe that six blocks is an optimal number; taking more than six blocks
would not lead to a reduction in the number of grid points.

In the following section, we extend the block-structured grids to include the mag-
netic moment direction µ.

4.2 magnetic moment direction

The technique of the first type block-structured grids can be directly applied to the
x – µ subspace. This procedure for the magnetic moment direction is introduced for
reasons similar to those in the parallel velocity direction: the background distribution
outside the step approximated contour is negligibly small; the same holds true for the
fluctuating part, which, according to the gyrokinetic ordering, is even smaller. There-
fore, without loss of accuracy, we can ignore the areas outside the desired contour of
the simulation domain. This is achieved by introducing a block-structured grid of the
first type in the radial distance – magnetic moment plane, as shown in Figure 22. This
grid is constructed based on the TCV temperature profile shown in Figure 9 (bottom).

The step-like contour approximation is obtained in the same way as for the x – v‖
space. Theoretically, we have to construct the step-shaped approximations for both
planes x – v‖ and x – µ; then, the procedure has to be extended to the x – v‖ – µ
volume, as demonstrated in Figure 17. In practice, however, it is sufficient to determine
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Figure 22: An example of the first type of block-structured grids in the x – µ plane. For the sake
of visibility, the resolutions of the grid are significantly coarser than in practice.

the radial extents and positions of the blocks for one plane only, e. g., x – v‖ , and then
use this information to determine the step-like contour on both planes.

Integration and gyrophase averaging are the main operations performed in the mag-
netic moment direction. Therefore, we employ the Gauss quadrature rule to compute
integrals efficiently by using a minimum number of nodes. Due to the exponential
shape of the background distribution function in the x – µ plane, the Gauss-Laguerre
rule is an optimal choice for our case. This rule is expressed by

∞∫
0

e−µp(µ)dµ =

nw0∑
m=1

wmp(µm) , (4.1)

where µm and wm are the nodes and weights of the quadrature rule. In the previous
expression, we denoted by nw0 the number of µ nodes and by p(µ) a polynomial of
maximum degree 2 · nw0− 1 .

In the case of the regular grid and the block-structured grid of the first type, we use
the same set of nodes µm and weights wm to integrate functions at all radial positions.
In the block-structured grid of the first type, the number of µ nodes (nw0) is different in
each block, e. g., in Figure 22, the first block contains eight nodes and the last only four.
The block-structured grids of the first type remove those nodes from the quadrature
rule with a negligible contribution to the sum in (4.1).

In the Gauss-Laguerre rule (4.1), we assume that the integrated function decays ex-
ponentially exp(−λµ) with a factor λ = 1 . However, the background distribution func-
tion (3.39) decays with an exponential factor given by λ(x) = Tref/T(x). Therefore, for a
strong temperature variation in the radial direction, the quadrature rule (4.1) is precise
(optimal) only at the reference radial distance (x0 = 0.5), where the exponential factor
is λ = 1 . At radial positions close to the boundaries, the precision of this quadrature
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rule deteriorates drastically, as shown in Figure 23 by the green dash-dotted line. In this
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Figure 23: Quadrature error ε dependence on radial position x for three types of Gauss-
Laguerre rules (with nw0 = 8): the blue solid line — ideally adjusted quadrature
rule at each radial point, the dash-dotted line — the quadrature rule of the regular
grid, which is optimal at the reference point, the red dotted line — the quadrature
rule is chosen separately for each block in the radial direction (four blocks in total).

figure, we demonstrate the error of the Gauss-Laguerre rules (with nw0 = 8) applied to
the background distribution function with the TCV temperature radial profile.

To reduce the error of the quadrature rule for the regular grid in the vicinity of the
radial boundaries, we have to take more grid points than it is necessary for the case
of radially local simulations or global simulations with a constant temperature pro-
file. Alternatively, we can adjust the rule given by (4.1) at each radial position. This is
achieved by scaling the node positions and weights by the exponential factors µm/λ(x)
and wm/λ(x). In this case, the integration error of the background distribution is nat-
urally at the machine precision level for all x (see the blue solid line in Figure 23).
However, such adjustments displace the positions of the µ grid points, so they do not
appear on the straight µ = const coordinate lines in the x – µ plane. Consequently, we
cannot directly apply a finite difference scheme, and have instead to interpolate the
distribution function in order to compute radial derivatives at each time step. Such an
approach would, however, increase the computational costs tremendously.

Therefore, we introduce the block-structured grids of the second type in the x – µ
plane. The underlying idea is to adjust the Gauss-Laguerre quadrature rule in each
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grid-block. For example, we can make the rule optimal at the middle of the radial
extent of each block. This rule is accurate for the integration of the background distri-
bution function, as shown in Figure 23 by the red dotted line. In this plot, the block-
structured grid of the second type does not achieve machine precision in areas close to
the block boundaries. However, achieving machine accuracy is not strictly necessary,
because, during simulations, we integrate the fluctuating part of the distribution func-
tion, which retains the shape of the background only approximately. Furthermore, a lot
of computations in GENE use approximations such as those given by finite difference
schemes.

An example of a block-structured grid of the second type is shown in Figure 24.
Like in the case of the second type block-structured grids in the x – v‖ subspace (Sec-
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Figure 24: An example of the second type of block-structured grids in the x – µ plane. For the
sake of visibility, the resolutions of the grid are significantly coarser than in practice.

tion 4.1), the computations of the radial derivative do not change inside the grid-blocks
and require modifications only close to the block boundaries, due to misaligned coor-
dinate lines (µ = const). Therefore, like in the x – v‖ subspace, we solve the misalign-
ment issue by interpolating the distribution function before applying a finite difference
scheme; for the implementation details we refer to Section 5.2.

The oscillatory nature of the fluctuating part of the distribution function and the
complex gyrophase averaging operation require a bigger number of µ nodes than is
necessary for a mere integration of an analytic function. Even if the high number of
nodes in the magnetic moment direction helps resolve the perturbed part of the distri-
bution function better, it also results in the last µm being far away from the µ = 0 axis.
For example, in Figure 24, the quadrature rule with just four µ nodes yields the last
grid point outside the prescribed domain denoted by the dash line.

This is an undesirable effect, because the background distribution function in the
areas far from µ = 0 is very close to zero and the fluctuating part, due to the gyroki-
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netic ordering, even smaller. Thus, the precision of any floating point operation will
be insufficient for consistent computations of the distribution function at particularly
large µ values. If the problem is not addressed, one might get spurious results in the
grid points positioned far away from µ = 0 .

One way to tackle this issue is to rescale the given nodes µm and weights wm to
ensure that all nodes fit in the prescribed range and the Gauss-Laguerre quadrature
rule is still valid. The rescaling is the default procedure used for the regular grid, e.g,
the construction of the first type block-structured grid shown in Figure 22 was based
on such a rescaled regular grid, by effectively removing grid points outside the domain
contour. An example of the block-structured grid of the second type with rescaled µ
nodes is shown in Figure 25.
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Figure 25: An example of the second type of block-structured grids in the x – µ plane, with
rescaled µ nodes to fit inside a prescribed domain. For the sake of visibility, the
resolutions of the grid are significantly coarser than in practice.

A side effect of the rescaling operation is the modification of the quadrature rule,
which was adjusted for the background distribution at the given radial point. In spite
of the deviation from the initially adjusted quadrature rule, in practice, the rescaling
technique results in block-structured grids that still require a small number of µ nodes,
for example, see Section 6.1.

For the sake of completeness, we describe an alternative, albeit more complex, ap-
proach for the case when the simple rescaling operation deviates too much from the
initial quadrature rule. The technique preserves the optimal quadrature rule for the
given background and keeps the grid nodes within the given magnetic moment range.
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Instead of integrating from zero to infinity, as done in (4.1), we take a finite range
integral

µmax∫
0

e−µp(µ)dµ =

nw0∑
m=1

wmp(µm) , (4.2)

where µmax is sufficiently large; this limit is usually computed by µmax = − ln(1− p),
where p is a given confidence level. In the following, we mark by superscripts λ the
nodes and weights of the quadrature rule with an arbitrary exponential factor λ 6= 1 .
The Gauss-Laguerre rule generalized for λ is then given by

− ln(1−p)/λ∫
0

e−λµp(µ)dµ =

nw0∑
m=1

w
(λ)
m p(µ

(λ)
m ) . (4.3)

There is a certain relation between the generalized quadrature rule and the previously
introduced Gauss-Laguerre rule (4.2) for λ = 1 . Namely, by changing the variable
x = µ/λ in the integral in (4.3), we obtain

− ln(1−p)/λ∫
0

e−λµp(µ)dµ =
1

λ

ln(1−p)∫
0

e−xp(x)dx =
nw0∑
m=1

wm

λ
p
(xi
λ

)
. (4.4)

Hence, we conclude that w(λ)
m = wm/λ and µ(λ)m = µm/λ . Efficient computations of

the generalized Gauss quadrature are provided in [128], see also Chapter 18 in [129].
The same scaling rule is valid for integrals from zero to infinity.

The discretization of the magnetic moment coordinate affects not only the numerical
integration but also the gyrophase averaging. In the following section, we provide
details on how the corresponding numerical operation is realized for block-structured
grids.

4.3 gyrophase averaging

In GENE, two types of gyrophase averaging are employed. The first type is applied on
the electromagnetic field potentials and marked by an overbar. This kind of gyrophase
averaged potentials appear explicitly in the gyrokinetic Vlasov equation (2.26). The cor-
responding mathematical operation is given by taking the integral over the gyrophase
angle θ

φ(X) =
1

2π

2π∫
0

φ(X + ρ(X))dθ , (4.5)

where X = (X, Y,Z) is the gyro-center position and ρ the gyro-radius, whose length is
given by (2.36).

Physically, this corresponds to projecting the particle’s gyro-trajectory on the plane
perpendicular to the magnetic field line and taking the average of the fields on the
projection. A circular example |ρ(X)| = const of this projection is shown in Figure 26.
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Figure 26: An example of a projection of the circular gyro-trajectory on the x – y plane per-
pendicular to the magnetic field. For the sake of simplicity, the (x,y) coordinates
system is orthogonal. Values of the potential φ are known only at the mesh nodes,
an example of such a mesh is marked by dashed lines and circular nodes.

The second type of gyro-averaging is used when computing the moments of the dis-
tribution functions and the gyro-averaged potentials. This type of the gyro-averaging
is defined by

〈f〉 (x) = 1

2π

2π∫
0

∫
δ(X + ρ(X) − x)f(X)d3Xdθ . (4.6)

This operation can be interpreted physically as taking the average over the gyrophase
angle of f(X), where X are the gyro-centers of trajectories passing through x .

As shown in [43, 44], the discretized versions of both types of gyrophase averaging
are related. Therefore, in the following, we consider only the first type of gyrophase
averaging for fields.

Equation (4.5), introduced previously for the gyrophase averaging for fields, has to
be rewritten to take into consideration that, in GENE, the binormal component Y of the
gyro-center position X is discretized in the Fourier space. Therefore, we use φ(X,ky,Z)
values instead of φ(X, Y,Z), where ky is the wave length of the toroidal mode. As a
result, the potential φ in the configuration space (the position space, in this particular
case) is computed by

φ(X + ρ(X)) =
1

2π

∑
ky

φ(X+ ρx(X),ky,Z+ ρz(X))eiky(Y+ρy(X)) , (4.7)
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where, due to the field-aligned position space coordinate system, ρz = 0 . Consequently,
the gyrophase averaging takes the following form

φ(X) =
1

2π

∑
ky

2π∫
0

φ(X+ ρx(X),ky,Z))eiky(Y+ρy(X))dθ . (4.8)

To be able to carry out the integration in (4.8), a continuous representation of φ is
necessary. However, the function φ is known only at the computational grid points
(Xi,ky). The grid in Figure 26 serves as a discretization example in the X – Y plane,
where both coordinates are discretized in the configuration space (Xi, Yj).

In the global GENE simulations, only X is discretized in the configuration space,
while Y is discretized in the Fourier space. Therefore, on the one hand, we have a
continuous representation of the potential φ in the Y direction given by the trigono-
metric interpolation (4.7). On the other hand, we know this function only at discrete
X grid points and have to interpolate. Hence, we approximate the potential by using
finite-element-like base functions with local support in the X direction. As a result, φ
is expressed by a linear combination of the base functions

φ(X,ky,Z) =
∑
i

φ(Xi,ky,Z)Λi(X) = Λ ·φ . (4.9)

After substituting (4.9) into (4.8), we obtain the gyro-averaged function at the gyro-
center position Xk = (Xk, Y,Z)

φ(Xk) =
1

2π

∑
i,ky

2π∫
0

φ(Xi,ky,Z)Λi(Xk + ρx(Xk))eiky(Y+ρy(Xk))dθ

=
∑
i,ky

eikyYGk,iφi =
∑
ky

eikyYG ·φ . (4.10)

The matrix G is called the gyro-averaging matrix and is expressed by

Gki(ky, z,µ) =
1

2π

2π∫
0

Λi(Xk + ρx(Xk))eikyρy(Xk)dθ . (4.11)

The gyro-radius projections on x and y axis in the field-aligned curvilinear coordi-
nate system are given by

ρx(Xk) = ρ(Xk)
√
gxx(Xk) cos θ ,

ρy(Xk) =
ρ(Xk)√
gxx(Xk)

(gxy(Xk) cos θ−
√
γ1 sin θ) .

(4.12)

In this expression, we use metric coefficients taken from a metric tensor, which is
defined by

g =

 gxx gxy gxz

gyx gyy gyz

gzx gzy gzz

 .

gij = ∇ui ·∇uj ,

(4.13)
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where by (u(1),u(2),u(3)) = (x,y, z) we denote the curvilinear field aligned coordi-
nates.

Then, γ1 is given by

γ1 = g
xxgyy − gxygyx . (4.14)

In GENE (see [43]), the choice of the base functions relies on an expansion with
polynomials of odd degree p

φ(x) =

nx0∑
n=1

(p−1)/2∑
m=0

∂mφ(x)

∂xm

∣∣∣∣
x=xn

Pm,n(x) , (4.15)

where nx0 is the number of grid points in the radial direction. The local support poly-
nomials are defined by

∂uPm,n

∂xu

∣∣∣∣
x=xj

= δjnδum , j = n,n+ 1 , u = 0, . . . ,
p− 1

2
. (4.16)

According to (4.15), the derivatives of φ are necessary in order to perform inter-
polation. These derivatives can be computed only numerically by applying a finite
difference scheme. The stencils for derivative computations correspond to those used
to discretize the governing equations. As a result, the polynomial expansion is given
by

φ(x) =

(p−1)/2∑
m=0

PmDmφ , (4.17)

where Pm = (Pm,1, . . . ,Pm,nx0) is a vector of polynomials, Dm is them-order derivative
band matrix (rows correspond to stencil), and φ = (φ1, . . . ,φnx0)

ᵀ is a vector with
discretized function values.

Comparing expressions (4.9) and (4.17), we observe that the base functions are given
by

Λ =

(p−1)/2∑
m=0

PmDm . (4.18)

A substitution of this base function into (4.11) yields the gyro-averaging matrix, with
rows of the form

Gk∗(ky, z,µ) =
1

2π

(p−1)/2∑
m=0

2π∫
0

Pm(Xk + ρx(Xk))eikyρy(Xk)dθ

Dm . (4.19)

To simplify the notation, we introduce a θ-integral-matrix Qm , with elements given
by

Qmkn =
1

2π

2π∫
0

Pm,n(Xk + ρx(Xk))eikyρy(Xk)dθ . (4.20)
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With this notation, the gyro-averaging matrix is expressed by

G(ky, z,µ) =
(p−1)/2∑
m=0

QmDm . (4.21)

The gyro-averaging matrix G is a band matrix, because it is a sum of products of the
band-structured matrices Q and D .

In GENE, the gyro-averaging matrix corresponding to the gyrophase averaging de-
fined by (4.6) is by default approximated by G† , e. g., see [44].

During the gyrokinetic simulations in GENE, we have to compute the gyrophase
averages for the given set of magnetic moment nodes. In Figure 27 (left), we show a set
of gyro-trajectories for a given discretization of the magnetic moment µ in the default
regular grid. In the case of block-structured grids, see Figure 27 (right), due to different
µ nodes at different radial positions, the corresponding gyro-trajectories are not closed.
As a result, we cannot compute the gyrophase averaging (4.5) in the same way as for
the regular grid. Nevertheless, this type of gyro-averaging is carried out only for the
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Figure 27: Examples of available gyro-trajectories at gyro-center position (x,y) = (5, 0) for a
regular grid (left plot) and a two-block grid (right plot) with the block boundary at
x = 5 .

electromagnetic fields, which are given in the position space and do not depend on
µ . Therefore, one can compute gyro-averaged fields at any magnetic moment coordi-
nate, irrespective of the magnetic moment nodes chosen for the discretization of the
distribution function.

This issue can, however, not be avoided for the gyrophase averaging (4.6), which is
applied on the distribution function. Fortunately, this type of gyrophase averaging is
used when computing moments (2.34), which also involves the integration over the



66 block-structured grids

magnetic moment. Therefore, we do not need the standalone gyrophase averaging of
the distribution functions and can combine this operation with the µ-quadrature.

For regular grids, the combined operation can be expressed in a schematic way∫
〈f〉 (x)dµ =

nw0∑
m=1

wmG†(µm)f(µm) , (4.22)

where f = (f1, . . . , fnx0)
ᵀ . This expression is valid as long as all elements of the vector

f(µm) are computed at the same magnetic moment µm .
For block-structured grids, however, fixing the indexm does not lead to the same µm

at all radial positions; thus, (4.22) does not hold anymore. For the sake of simplicity, we
illustrate how we obtain a correct mathematical expression of the combined operation
for the block-structured grids for a two-block grid. In this case, the vector f is given by

fm =
(
f
(1)
1 · · · f(1)k f

(2)
k+1 · · · f

(2)
nx0

)ᵀ
, (4.23)

where the superscript index refers to the corresponding block.
The two parts of vector f(1,2)

m are computed for two different values of the magnetic
moment µ(1,2)

m . Therefore, we can compute the combined operation by subdividing the
columns of the gyrophase matrix G† into two submatrices G†(1,2), which are computed
for the corresponding µ(1,2)

m .
Then for the two-block grid, the operation (4.22) is given by∫

〈f〉 (x)dµ =

nw0∑
m=1

(
w

(1)
m · G†(1)∗,1...k(µ

(1)
m ) w

(2)
m · G†(2)∗,k+1...nx0(µ

(2)
m )

)
·(

f
(1)
1 · · · f(1)k f

(2)
k+1 · · · f

(2)
nx0

)ᵀ
. (4.24)

In the latter expression, we denote by G
†(b)
∗,l...k(µ

(b)) the submatrix corresponding to the
columns of G† with indices from l to k . This submatrix is computed for the set µ(b) ,
which belongs to the b-block.

To summarize, in the case of the block-structured grids, we do not compute a stand-
alone gyrophase averaging of the distribution function, but a combined operation of
the averaging and the integration over the magnetic moment. To achieve this, for each
grid-block, we compute the columns of the gyrophase averaging matrix G† with a
corresponding set of µ nodes and then apply (4.22). In the case of two blocks, this
expression is explicitly given by (4.24).

For block-structured grids, the matrix G for the gyrophase averaging of the fields is
subdivided into rows corresponding to different blocks. For example, the expression
of the gyrophase averaging of the fields for the two-block grid is given by

φ(X,µm) =

(
G
(1)
1...k,∗(µ

(1)
m )

G
(2)
k+1...nx0,∗(µ

(2)
m )

)
·φ , (4.25)

where G
(b)
l...k,∗(µ

(b)) is a submatrix corresponding to the rows of G with indices from l

to k and computed with the set µ(b) of the b-block.
Considering the relation G

(b)
l...k,∗(µ

(b)) = G
ᵀ(b)
∗,l...k(µ

(b)), we do not have to compute
the G and G† matrices separately for the block-structured grids. As in the case of the
regular grid, G† is the complex conjugate transpose of G .



4.4 comparison of block-structured grids with regular grids 67

4.4 qualitative comparison of block-structured grids with their reg-
ular counterparts

In GENE and many other grid-based gyrokinetic simulations, the execution time of
one time step is roughly proportional to the number of grid points in the velocity
space. Therefore, the reduction in the number of computational nodes gives approxi-
mately an estimate of the speedup. Other enhancements associated with the reduced
number of the grid points are an improved parallel efficiency (less ghost grid points)
and oftentimes a larger time step size (less time iterations are necessary).

In Table 2, we provide estimates of the number of grid points for three types of grids:
regular, “BS 1” — block-structured of the first type, and “BS 2” — block-structured of
the second type.

Table 2: Number of computational nodes in three types of grids constructed for the TCV tem-
perature radial profile. The block-structured grid of the first type is denoted by "BS 1"
and of the second type by "BS 2".

space type
grid type

regular
BS 1

6 blocks

BS 2

6 blocks

radial direction nx0 512 223, 33, 38, 56, 87, 75 223, 33, 38, 56, 87, 75

binormal direction nky0 1 1 1

parallel direction nz0 16 16 16

parallel velocity nv0 92 92, 76, 60, 48, 40, 34 34

magnetic moment nw0 64 64, 58, 48, 38, 33, 28 7

x – v‖ subgrid 47104 34022 (72%) 17408 (37%)

x – µ subgrid 32768 25109 (77%) 3584 (10%)

x – v‖ – µ subgrid 3014656 1856312 (62%) 121856 (4%)

full grid 48234496 29700992 (62%) 1949696 (4%)

For the sake of consistency, we use the TCV electron temperature profile shown in
Figure 9 to construct the block-structured grids with six blocks (this number of blocks
is optimal according to Figure 21). To estimate which number of computational nodes
in the resulting block-structured grids yields results with the same accuracy as the
provided regular grid, we assumed that the regular grid is chosen according to the
procedure described in Subsection 3.3.2, i.e., the regular grid has the widest range and
the finest resolution required in the velocity directions.

The provided example of the block-structured grid of the first type is obtained by
cutting away the areas of the regular grid, which are outside the step-like approxi-
mation of the desired domain contour, see Figure 18. The resulting step-structure is
reflected in the number of radial grid points nx0 in each block, which is shown in the
first row of Table 2 for the columns of the block-structured grids. We used the same
step-like approximation for both of the block-structured grids.

From the table, we observe that, in this particular example, the remainder of the grid
points after the procedure of removing some parts of the simulation domain is 72% in
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the x – v‖ subspace, 77% in the x – µ subspace; the resulting full block-structured grid
is 62% (1.6 times less) of the regular counterpart in terms of computational nodes. At a
first glance, the reduction in the number of grid points in the x – µ subspace seems too
small, considering that we reduce the simulation area in this subspace approximately
by half, as shown in Figure 22. The reason lies in the fact that most of the nodes from
the Gauss-Laguerre quadrature are located close to the axis µ = 0 . Therefore, removing
a big area with high µ values does not bring a significant reduction in the number of
grid points.

The block-structured grid of the second type yields significantly less grid points than
of the first type. In the example provided in Table 2, only 4% (25 times less) grid points
of the original regular grid are kept. The theoretical estimates are computed by assum-
ing that the velocity space in the regular grid is resolved with the finest resolution,
which is necessary for the lowest temperature regions (high x values). Therefore, to
find the number grid points in the velocity space for the block-structured grid of the
second type, we apply the following formula

nv0BS2 = nv0
lvmin

lvmax
, (4.26)

nw0BS2 = nw0
lwmin

lwmax
, (4.27)

where lvmin and lwmin are the minimum v‖ and µ ranges of the grid-block correspond-
ing to the area with the lowest temperature, lvmax and lwmax the velocity space ranges
of the regular grid or the grid-block corresponding to the area with the highest temper-
ature. By applying the presented formulas, we ensure that the velocity space resolution
in the grid-block containing areas of the lowest temperature is preserved (the same as
in the regular grid) and the resolutions of all other blocks are coarsened.

The introduced formulas for nv0BS2 and nw0BS2 can be written in terms of temper-
ature ratios by taking into account that lv is proportional to the standard deviation
σ and lw is inversely proportional to the rate parameter λ of the corresponding pro-
jections of the background distribution function, for details see Subsection 3.3.2. Then,
from (3.42,3.47) follows

nv0BS2 = nv0
σmin

σmax
= nv0

√
Tmin

Tmax
, (4.28)

nw0BS2 = nw0
λmax

λmin
= nw0

Tmin

Tmax
, (4.29)

where σmin and λmin are the standard deviation and the rate parameter used to choose
the range and the resolution of the velocity grids in the grid-block corresponding
to the area with the lowest temperature, whereas σmax and λmax correspond to the
highest temperature. The total reduction in the number of grid points is given by
(Tmax/Tmin)

3/2. In the example of T(x) shown in Figure 9, the ratio of the highest and
lowest temperature is approximately ten and, thus, the achievable theoretical reduction
in the number of grid points is about 32.

In practice, the difference in the number of computational nodes in the regular grid
and block-structured grid of the second type is not as high as the theoretical estimate.
For example, the nonlinear tests (see Section 6.2) with the TCV electron temperature
and density profiles demonstrate that the reduction in the number of grid points is
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around ten instead of the estimated 25. The main reason is that the fluctuating part of
the distribution function does not retain the shape of the background exactly and is not
equally strong at all radial distances. For example, if the fluctuating part is not excited
at the radial distances with low temperature, then the regular grid can be coarsened
without a loss of accuracy. However, this does not hold for the block-structured grid
of the second type, because the resolution of the velocity grid is more or less already
adjusted to the radial temperature profiles to match the velocity space scales of the
possibly excited fluctuating distribution function.

4.5 summary

In this chapter, we presented block-structured grids of two types, which addressed the
problem of strong radial temperature variation and presented an alternative approach
to the thermal speed normalization. A significant advantage of the introduced grids
in comparison to the normalized grid is that they are minimally invasive and do not
cause modifications in the gyrokinetic set of equations.

The first type of block-structured grids approximates the shape of the desired do-
main by a step-like contour and keeps the resolution of the velocity space the same in
each block. This type of grids requires minimum modifications to the implementation
of the original regular grids. However, these grids do not usually yield a significant
reduction in the number of grid points. In the demonstrated example, the reduction
in the number of computational nodes for the first type of block-structured grids was
estimated to 38% fewer as for the original grid.

Compared to the first type, the second type of block-structured grids yields a much
higher reduction in the number of grid points. This is achieved by reducing the area of
the simulation domain and adjusting the resolution of the grid in each block. The most
consistent choice for the resolution is obtained by fixing the number of velocity grid
points in each block. This approach leads to block-structured grids that closely match
the normalized grids (see Figure 20) regarding the simulation domain contour and the
grid resolution.

When constructing these block-structured grids, the focus differs depending on the
subspace: x – v‖ or x – µ . In the magnetic moment direction, only quadrature-like
operations, such as a gyrophase averaging, are performed and the main goal is an
optimal choice of the quadrature rule in each block. In the parallel velocity direction,
a finite difference scheme is employed to compute derivatives and the main focus is
to set a correct mesh size in each block matching the scale-lengths of the fluctuating
function.

The block-structured grids of the second type are more challenging to realize than
the first type, because of the misalignment of the grid nodes close to the boundaries of
the grid-blocks. However, they are also more promising, due to the higher reduction
in the number of the computational nodes. In the provided example, the theoretical
estimate of the reduction in the number of grid points in the second type of block-
structured grids was around 96% fewer grid points compared to the regular grid.

In the next chapter, we detail the implementation of the block structured grids and
explain aspects such as the treatment of block boundaries and parallelization.





5
I M P L E M E N TAT I O N A S P E C T S

GENE is a highly parallel code with a large and growing user and developer base from
different institutions, for more information see [37]. In this context, it is especially im-
portant to elaborate a seamless integration of the block-structured grids into the exist-
ing GENE code. The idea of the block-structured grids, as it is presented in Chapter 4,
stems from using the blocks of regular grids with different ranges and resolutions
in the velocity space. In this way, the grid is adjusted to the possible velocity-scales,
which depend on the radial temperature profiles of the fluctuating part of the distri-
bution function. This means that all the code written originally for the regular grids
can be reused for computations inside the grid-blocks. Otherwise, block-structured
grids necessitate only minor modifications, which can be roughly classified into three
categories: prefactors, boundaries of the grid-blocks, and parallelization.

The simplest type of modifications is given by prefactors, which correspond to dif-
ferent coefficients in the set of gyrokinetic equations. These coefficients are computed
during the initialization phase of the simulation and depend on the nodes and weights
of the Gaussian quadrature rule (µm and wm) in the magnetic moment direction and
on the parallel velocity mesh spacing dv‖ . In the block-structured grids of the first
type, the quadrature rule and the mesh spacing are the same at all radial positions as
in the original regular grids. Therefore, this type of block-structured grids does not
require modifications of prefactors. In the block-structured grids of the second type,
however, these quantities (µm, wm , and dv‖) differ in each grid-block. Therefore, the
prefactors have to be adjusted correspondingly.

Adjusting the prefactors is a straightforward procedure: if a prefactor is an array
with one of the dimensions associated with the radial distance, then only computations
have to be changed, to involve additional radial dependencies. When no dimension is
associated with the radial distance, e. g., the prefactor is a scalar, the prefactor has
to be extended by introducing another dimension enumerating grid-blocks. Then, the
original computations with different µm, wm , and dv‖ have to be carried out for
each block separately. After the block-structured grid is initialized, we have to ensure
that all prefactors with an additionally introduced grid-block dependence are applied
correctly, i. e., during computations in a particular block, consistent prefactor values
are used.

In this chapter, we offer insight into implementation aspects of the block-structured
grids only. Details on more complex modifications of prefactors, i. e., computing ma-
trices for gyrophase averaging in the case of block-structured grids, are provided in
Section 5.1. The other two modification categories (boundaries of the grid-blocks and
parallelization) require more attention than the prefactors and are discussed in Sec-
tion 5.2 and Section 5.3, respectively. To obtain a full picture of the manner in which
GENE is implemented, please refer to [32, 43, 44, 96, 103–106], as well as the code
manual [130].
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5.1 implementation of gyrophase averaging

In Section 4.3, we introduced the gyro-averaging matrices G and G† for the block-
structured grids. Formally, the changes in the computations of the gyro-matrices be-
long to the category of modifications in prefactors. In this section, we discuss the de-
tails on how to set these matrices correctly for the particular case of a block-structured
grid of the second type with three blocks.

The gyro-averaging matrix G , which is applied on the electromagnetic field poten-
tials, is subdivided in a row-wise manner (according to (4.25)). Each resulting group
of rows is computed with a different µ(b)m set associated to a b-indexed grid-block. For
the block-structured grid instance with three blocks, the gyro-averaging matrix G has
the following structure

φ̄(X,µm) =
(
φ̄(X,µ(1)m ) φ̄(X,µ(2)m ) φ̄(X,µ(3)m )

)ᵀ
= G(µm)φ(x)

=



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


·



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


=



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


. (5.1)

In this equation, we used colored frames to enclose matrix and vector elements be-
longing to the same grid-block (computed with the same set of the magnetic moment
nodes).

The illustrated gyrophase averaging matrix is just a simplified representation of the
matrices used in practice. In real life simulations, gyro-averaging matrices have sig-
nificantly more elements and their bandwidth is often much narrower relative to the
matrix size. This makes them difficult to visualize. The same holds for all similar ex-
pressions in the following discussion.

The gyro-averaging matrix G† is subdivided in a column-wise manner, according to
Expression (4.24). This matrix is multiplied by vectors of the distribution function or
already gyro-averaged fields. The schematic representation of the respective matrix-
vector product for the same three grid-block example is given by

〈f〉 (x) = G†f(X) =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


·



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


=



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


. (5.2)
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As it was mentioned in Section 4.3 (Expression (4.21)) and also shown in Expres-
sions (5.1) and (5.2), the gyro-averaging matrices have a band structure. Only non-zero
elements inside the diagonal band are saved in the data structures developed specially
for GENE. For more details on the implementation of the band matrices, see to the
developer’s manual [131].

In the default implementation of the second type block-structured grid, we first com-
pute the matrices G and G†, which are saved in the same band matrix data structures as
the gyro-averaging matrices for the regular grids. Then, we reuse the implementation
of the original regular grids to carry out computations involving the gyro-averaging
matrices. While this approach is minimally invasive, it does not reduce the size (band-
width) of the resulting gyro-averaging matrices and, thus, does not lead to additional
memory savings. Consequently, there are also no additional savings in the number of
floating point operations in the matrix-vector product. The savings come only from
the fact that we need less µ grid nodes for the block-structured grids of the second
type and, therefore, we have to compute less matrix-vector products for the gyrophase
averaging operation.

The bandwidth of the gyro-averaging matrices is determined by the gyro-radius to
grid-space ratio and is, thus, strongly influenced by the maximum magnetic moment
value in the set of the Gauss-Laguerre quadrature nodes µmax . This leads to relatively
larger µm values and, consequently, larger gyro-radii. In the block-structured grids of
the second type, the maximum magnetic moment µ(b)max might differ considerably in
the smallest and biggest grid-blocks. The following examples demonstrate the struc-
tures of the resulting gyro-averaging matrices for the three grid-blocks

G =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗
∗
∗
∗


, G† =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗
∗
∗


.

(5.3)

From these matrix schemes, we observe that the initial gyrophase averaging matrices
are segmented into parts with different bandwidths, where each part corresponds to
a separate grid-block. Considering both the size nx0× nx0 of the square matrices and
that nky0× nz0× nw0× n_spec gyro-averaging matrices1 are allocated during GENE
simulations, significant memory savings can be obtained by keeping only non-zero
matrix elements of the gyro-averaging matrices for the block-structured grids of the
second type. For this purpose, however, we have to replace the original band matrix
format, because the amount of memory allocated in this data structure is determined
by the maximum bandwidth in a whole gyro-averaging matrix.

1 n_spec is the number of species, all other notations are explained in Table 2
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Therefore, in addition to the aforementioned default approach, we implemented an
alternative data structure to store the gyro-averaging matrices for the block-structured
grids of the second type. In this data structure, every matrix part with a different
bandwidth is saved in a separate array according to a widely used (e. g., in LAPACK)
band storage format: the band diagonals of the original matrix are saved in array rows,
so that the elements in one column of the array correspond to the elements in the same
column of the matrix, for details see [132]. This format is supported by many numerical
linear algebra libraries, which allow us to perform efficiently matrix-vector products
for each submatrix of the gyro-averaging matrices.

With the band storage format, the matrix-vector product demonstrated in (5.1) is
replaced by three corresponding products for each submatrix. The resulting subvectors
are merged together to form the whole vector of the gyro-averaged field potential. The
matrix-vector product provided in (5.2) becomes more complicated and is performed
as in the following example

〈f〉 (x) = G†f(X)

=



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗

∗
∗
∗


·



∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗


=



∗
∗
∗
∗
∗
∗
∗


+



∗
∗
∗
∗
∗
∗


+


∗
∗
∗
∗


.

(5.4)

where each submatrix is multiplied by a corresponding subvector and the partial re-
sults with preserved global indices (of the whole original vector) are summed up to
form the final gyro-averaged vector.

The aforementioned implementations of the gyrophase averaging are provided for
the case when the gyro-averaging matrix (4.6) for the distribution function and already
gyro-averaged fields is approximated by G† . In some cases (e. g., when the Neumann
boundary conditions are used in radial direction), however, this gyro-phase matrix is
taken to be equal to G for the original regular grids in GENE. For the block-structured
grids of the second type, this leads to a different matrix in the gyrophase averaging, as
introduced in (4.6). The corresponding gyro-averaging matrix has the same structure
as G† in expression (5.3), but with all elements taken from G . In other words, we have
to subdivide the gyro-averaging matrix G and compute elements with different µ(b)m
sets not only row-wisely, but also column-wisely.

At a first glance, we have to save two types of matrices and allocate twice as much
memory. In fact, we actually manage to save the row-wise and column-wise versions
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of each submatrix efficiently in a single array, and preserve the standard band storage
format. The idea is illustrated by the following expression

13

23 24

31 32 33 34 35

42 43 44 45 46

53 54 55 56 57

64 65

75

stored in

13 24 35 46 57

23 34 45 56

33 44 55

32 43 54 65

31 42 53 64 75



 .

(5.5)

For the sake of visibility, the number of elements in this example is very small and the
bandwidth of the submatrix is relatively wide.

With the introduced combined storage we can access required submatrices (row-
wise or column-wise) and, thus, still use the standard band matrix-vector product
routines. For example, to access the row-wise submatrix (orange frame), we take the
whole storage array and specify the dimension of the row-wise submatrix (three rows,
seven columns, one superdiagonal, and one subdiagonal). To access the column-wise
submatrix (green frame) we first take the corresponding subarray of the storage array
(green frame) by specifying the memory address of the first subarray element denoted
by 13. All other elements (in the case of column-wise storage) are stored sequentially.
Then, we provide the dimensions of the column-wise submatrix (seven rows, three
columns, one superdiagonal, and one subdiagonal).

5.2 treatment of block boundaries

We start this section with a discussion about the boundary treatment for the block-
structured grids of the first type, because they require less modifications than the block-
structured grids of the second type do. This type of grids is very similar to the original
regular grid. The procedure is thus trivial and does not go beyond how to correctly set
the Dirichlet boundary condition for the distribution function to zero on the domain
step-like contour. An example of a fragment of a block-structured grid of the fist type
in the x – v‖ subspace is provided in Figure 28. Here, the zero Dirichlet boundary
condition is shown by black dashed lines.

The simplest way to develop block-structured grids of the first type is to reuse the
data structures (arrays) from the original regular grid code and ignore the parts of
the arrays corresponding to the areas outside the blocked contour. An example of the
block-shaped domain is demonstrated in Figure 17. The ignored parts of the array
are set to zero and are never updated. This way, we ensure the correct Dirichlet zero
boundary condition. The ranges of all update-loops inside the simulation code have
to be restrained so that only the values at the nodes inside the blocked domain are
updated. The presented approach leads to a fast realization of the block-structured
grids, but it results in a higher rate of cache misses, due to a non-continuous memory
access in the update-loops.
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Figure 28: A fragment of a block-structured grid of the first type in the x – v‖ subspace, with
Dirichlet boundary condition set to zero on the contour marked by dashed lines.

The impact of the non-continuous memory access on the run-time of the linear sim-
ulation is demonstrated in Figure 29. From this figure, we observe that, despite a total
reduction of 62% (green long-dashed line) in the number of grid points for the seven-
block grid in the x – v‖ – µ subspace, the resulting execution time of one time-step
iteration is lowered only to 83% (orange short-dashed line).

In the experiments with the regular grids, the execution time of one time-step itera-
tion corresponds almost ideally to the reduction in the number of computational nodes
in a coarsened grid. Thus, we conclude that the gap between the runtime and the total
reduction in the number of computational nodes in the block-structured grid of the
first type is due to the cache misses (non-continuous memory access). To circumvent
this problem of non-continuous memory access, special data structures have to be de-
veloped for the block-structured grids. Because the block-structured grids of the first
type are just a transitional stage to the block-structured grids of the second type, we
only implement this type of data structures for the block-structured grids of the second
type. For more details on the resulting speedup versus grid point reduction, see end
of Section 6.1 and Section 6.2.

The treatment of the block boundaries in the second type of block-structured grids
requires not only setting to zero the Dirichlet boundary condition for the computa-
tional nodes at the step-like-shaped boundary, but also changing the finite difference
scheme close to the block boundary to address the problem of misaligned coordinate
lines. One way to solve the latter problem is by interpolating the distribution function
at locations aligned with the adjacent block points, so that derivatives can be easily
computed on the boundaries of the neighboring block grid.
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Figure 29: Illustration of how the non-continuous memory access affects the execution time, for
one simulation time-step in the case of a block-structured grid of the first type with
different number of blocks. The green solid line corresponds to the run-time of the
reference regular grid and the orange short-dashed line to the block-structured grid
of the first type in the full velocity space. The other lines correspond to the reduction
in the number of computational nodes in different subspaces: magenta dash-dotted
line — reduction in the x – v‖ subspace, violet dotted line — reduction in the x – µ
subspace, and green long-dashed line — reduction for the whole space.

An example of the modified scheme for the case of a block-structured grid in the x –
v‖ subspace is provided in Figure 30. This is a schematic representation of nodes used
in the default GENE fourth order finite difference scheme for the first order derivative
computations at the inner and boundary nodes of a grid-block.

The stencil of the default finite difference scheme for the first order derivative com-
putations in GENE is provided in Table 3, where the “inner” row corresponds to the
inner domain nodes and the “boundary 1 or 2” rows to the first and second boundary
nodes where the interpolation approach is applied. In this table, the stencil values for
the boundary nodes which are multiplied with the interpolated values are marked by
gray. Applying the default central difference directly on the interpolated values of the
distribution function on the x – v‖ plane, leads to errors of order O(∆vm‖ /∆x), where
∆x and ∆v‖ are the mesh sizes in the radial and parallel velocity directions, and m is
the order of the applied polynomial interpolation — the inaccuracy of the interpolation
is O(vm‖ ). For the block-structured grid in the full velocity space, an additional term
O(∆µm/∆x)2 has to be added to the error of the numerical computations of the deriva-
tive at the nodes close to the boundary. The inaccuracy of the finite difference scheme
used at the boundary nodes can be considered as an m− 1 order error. For example,
the linear interpolation is of second order; this means that the error is O(∆v2‖/∆x),

2 ∆µ is the representative mesh size at the point of interpolation
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derivative computation node

nodes directly used in stencil computations

pseudo-nodes with interpolated values

nodes used for interpolation

boundary between blocks

Figure 30: Default first order derivative finite difference stencil nodes in GENE for grid-block
inner nodes (left) and block boundary nodes (right), for a block-structured grid of
the second type in the x – v‖ subspace.

which corresponds to a first order approximation of the radial derivative computed on
a boundary of a grid-block. The results provided in Chapter 6 were obtained by using
the fourth order m = 4 polynomial interpolation scheme for both directions v‖ and
µ. In Table 4, we provide the interpolation coefficients for the equidistant mesh in the
x – v‖ plane. For the x – µ subspace, we use a Lagrangian interpolation technique to
obtain the interpolation coefficients.

We tested different order interpolation schemes for the scenarios involving block-
structured grids of the second type and observed that the accuracy of the simulation
results is essentially not influenced by the order of the interpolation at the block bound-
aries. Therefore, in the test cases at hand, the error term O(∆vm‖ /∆x) due to the inter-
polation on the block boundaries was insignificant.

While not necessary, the O(∆vm‖ /∆x) inaccuracies could be eliminated, for instance,
by modifying the main stencil and increasing the number of points used to compute
the derivative for the boundary points. For the sake of completeness, we tested two
alternative schemes (see Table 3) for each of the two nodes close to the block boundary.
The first scheme uses two interpolated values outside the block and has an error of
order O(∆x4) +O(∆vm‖ ), while the second scheme needs three interpolated values and
is of order O(∆x4) +O(∆x∆vm‖ ). In both cases, we used the fourth order m = 4 poly-
nomial interpolation scheme provided in Table 4. Unfortunately, both modified finite
difference schemes lead to numerical instabilities during the gyrokinetic simulations.

Another potential solution to eliminate these inaccuracies stems from computational
fluid dynamics and is described in [133]. However, this method requires running sim-
ulations on the additionally introduced ghost grids and causes severe modifications
to the original implementation of the regular grids. For this reason, we did not test it
with the grid-based gyrokinetic simulations. It is, nevertheless, a possibly interesting
direction to be explored in the future.
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Table 3: Fourth order finite difference schemes for the first order derivatives.

node type
derivative fx(xi)∆x ≈

∑
akf(xk)

accuracy
ai−3 ai−2 ai−1 ai ai+1 ai+2 ai+3 ai+4

inner 1
12 − 8

12
8
12 − 1

12 O(∆x4)

boundary 1
1
12 − 8

12
8
12 − 1

12 O(∆x4) +O
(
∆vm‖
∆x

)
boundary 2

1
12 − 8

12
8
12 − 1

12

alternative schemes for block boundaries

first alternative scheme

boundary 1
5
48 −3748

5
24

11
24

1
48 − 1

48 O(∆x4) +O(∆v4‖)
boundary 2 − 7

48
13
16 −178

35
24 − 1

16
1
16

second alternative scheme

boundary 1
1
8 −3136

25
72

7
18 − 1

72
1
36 − 1

72 O(∆x4) +O(∆x∆v4‖)
boundary 2 − 5

24
13
12 −6124

5
3

1
24 − 1

12
1
24

Table 4: Fourth order polynomial interpolation coefficients for nodes outside the block.

function value f(vi +∆v1) or f(vi+1 −∆v2)∆v‖ ≈
∑
bkf(vk)

α = ∆v1/∆v‖ and β = ∆v2/∆v‖

bi−1 bi bi+1 bi+2

−16αβ(1+β) β
(
1+ αβ

2

)
α
(
1+ αβ

2

)
−16αβ(1+α)

When the block-structured grid is applied to the full velocity space, the misalign-
ment is no longer on the line (as has been shown in Figure 30), but on the v‖ – µ
plane. An example of two misaligned grids in the v‖ – µ plane from neighboring grid-
blocks is illustrated in Figure 31. Like in the case of the misalignment on a line, we
address this problem by interpolating values at the missing locations and using the
interpolated values in our finite difference scheme. We apply local polynomial interpo-
lation on a plane — the polynomials are defined only in vicinity of the corresponding
interpolation point.

In Figure 31, we provide a schematic example of the interpolation procedure: to
interpolate at the node surrounded by a circle on the grid with dashed coordinate
lines, a fourth order interpolation scheme requires spanning a polynomial through
those points enclosed by squares. If this interpolation node is outside the grid with
dashed coordinate lines, then we distinguish between two cases

• when the location of the node is greater than µmax, we set the interpolation value
to zero
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Figure 31: An example of two misaligned grids in the v‖ – µ subspace, which are taken from
adjacent grid-blocks. The two grids are marked by either solid or dashed coordinate
lines. To interpolate a value at the node surrounded by a circle, a polynomial is
spanned through the points enclosed by squares. The resolution of the grid is much
finer in real life simulations, making the nodes used for interpolation more localized.

• when the location of the node is less than µmin, we extrapolate the interpolation
value at the node

The difference between the minimum magnetic moments µmin of adjacent grid-blocks
is very small. Therefore, the extrapolation procedure required in the latter case yields
precise results.

The finite difference derivative computations are performed at each time step, along
with the interpolation on the block boundaries. Thus, we have to ensure that it is
performed as efficiently as possible. For this purpose, we introduce ghost grids in the
x – v‖ – µ subspace to keep the interpolated values. The ghost grid is a prolongation
of a grid-block to a neighboring block. The extent of the ghost grid in the x direction
corresponds to the order of the finite difference scheme used for computing radial
derivatives, e. g., a fourth order scheme requires an extent of two grid points. Examples
of block-structured grids with and without ghost grids are shown in Figure 32 for the
x – v‖ subspace and in Figure 33 for the x – µ subspace.

The values at the nodes of the ghost grid are interpolated as soon as the values at
the grid-block overlapping with the ghost grid are updated. No other computations
are performed on the nodes of the ghost grid. The number of nodes necessary for the
ghost grids is usually about three percent of the total number of grid points. Therefore,
the memory consumption is negligibly small in comparison to the total reduction in
the number of grid points due to the block-structured grids of the second type. To
handle the block-structured grid with the ghost grids, we use a specifically developed



5.3 parallelization aspects 81

−4 −3 −2 −1 0 1 2 3 4

v‖

0.0

0.2

0.4

0.6

0.8

1.0

x

−4 −3 −2 −1 0 1 2 3 4

v‖

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 32: An example of two block-grids in the x – v‖ subspace without (top) and with (bot-
tom) ghost grids.

data structure. The discussion on this data structure can be found in the Section 5.3
dealing with parallelization.

5.3 parallelization aspects

A vast number of the exchange routines originally developed for the regular grids
for distributed memory parallelization can be reused for the block-structured grids. A
simple example of the domain decomposition in the x – v‖ subspace for a regular grid
is schematically shown in Figure 34. The x – v‖ subspace is subdivided into process
subdomains with approximately the same number of grid points. This is achieved by
dividing the radial direction and parallel velocity ranges (lx and lv) by a specified
number of processes in these directions. The same decomposition procedure is applied
to all other dimensions.
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Figure 33: An example of two block-grids in the x – µ subspace without (top) and with (bottom)
ghost grids.

In the case of the block-structured grids of the first type, the subdivision of the radial
range (lx) is no longer uniform. These grids require different locations for the process
grid boundaries in the radial direction in order to balance the number of grid points
and, thus, of computational workload in each process subdomain. An example of the
domain decomposition for the block-structured grids of the first type in the x – v‖
subspace is shown in Figure 35.

In this example, only the number of grid points in the x – v‖ process subplanes is bal-
anced. For block-structured grids in the full velocity space, the number of grid points
in the x – v‖ – µ subvolumes has to be balanced. The boundaries of the process grid in
the radial direction can be found by solving a simple geometrical problem: we fix the
boundaries of the process grid in the v‖ (and µ) directions and write equations for the
radial boundary (unknowns), with the condition that all areas (volumes) of the process
subdomains are equal. The radial boundaries of the process grid shown in Figure 35
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Figure 34: An example of the domain decomposition for a regular grid. Black lines denote
the process grid (3 × 3) in the x – v‖ subspace, the blue lines correspond to the
computational grid.

were determined in this manner. Here, we have nx0 = 30 computational nodes (signifi-
cantly less than in real life simulations). As a result, we obtain 36 computational nodes
in the radially first and second process subdomains and 34 computational nodes in the
radially third subdomain. The more radial grid nodes we have in the block-structured
grid of the first type, the better the load balancing is.

The readjustment of the process boundary locations in the radial direction is not
necessary for the block-structured grids of the second type, because this type of grids
has, like the regular grids, the same number of computational nodes in each block.
A simple example of the domain decomposition in the x – v‖ subspace for the block-
structured grids of the second type is demonstrated in Figure 36. In a similar way we
can obtain the domain decomposition for the x – µ subspace.

The parallelization schemes in the v‖ and µ directions, developed originally for the
regular grids, remain the same for the block-structured counterparts. Only the com-
munication routines in the radial direction, which are necessary to compute radial
derivatives, have to be modified. Examples of the radial exchange for a regular (x – v‖
subdomain), a block-structured grid of the first type (x – v‖ subdomain), and a block-
structured grid of the second type (x – v‖ and x – µ subdomains) are schematically
demonstrated in Figure 37.

The implementation of the radial exchange routine in the regular grid is standard:
we first send data to the top neighbor and receive from the bottom neighbor, and
then send to the bottom and receive from the top. This type of communication is
marked by vertical arrows (vertical exchange) in Figure 37. The block-structured grids
inherit the vertical exchange from the regular grids. However, there is an additional
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Figure 35: A simplified example of the domain decomposition for the block-structured grid
of the first type in the x – v‖ subspace. The process grid (3× 3) is shown by the
black lines, the computational grid by the blue lines. The positions of the x process
grid boundaries are chosen to balance the number of grid points in each process
subdomain.

communication introduced in the block-structured grids, which we denote by slanted
arrows (side exchange) in Figure 37. The side exchange becomes necessary due to the
step shape of the velocity space boundaries in the process grid. While this type of
communication typically requires considerably less data to be sent than the vertical
exchange, it is more difficult to implement.

There are several ways of arranging the radial exchange in the block-structured
grids. For instance, we can efficiently combine the side exchanges with the standard
exchanges in the velocity space directions. The vertical exchange is then performed in
the same way as in the original regular grid implementation.

The only exception occurs when the radial boundary of the grid-block coincides
with the radial boundary of the process grid. In this case, we have to take care that
the interpolated values from the ghost grids are sent during the vertical exchange. The
advantage of the aforementioned approach is that the radial exchange in the block-
structured grids is, formally, the same as in the regular ones. Furthermore, the side and
velocity exchanges can be potentially organized so that the total number of messages
being sent is the same as in the regular grids. This approach, however, does not keep
the radial exchange decoupled from the communications in the velocity space, nor
does it hide the introduced complexity of the radial derivative computations (they can
be computed only after the exchange in the velocity space direction is done).

Therefore, we developed a special data structure, which handles the vertical and
side exchange in the radial direction and hides the complexity from users. With this
approach, we start the computations of the radial derivative and initialize the side ex-



5.3 parallelization aspects 85

−4 −3 −2 −1 0 1 2 3 4

v‖

0.0

0.2

0.4

0.6

0.8

1.0
x

Figure 36: An example of the domain decomposition in the x – v‖ subspace for the block-
structured grids of the second type. The process grid (3× 3) is shown by the black
lines, the computational grid by the blue ones. In this case, the locations of the radial
boundaries of the process grid correspond to the locations of the regular grid.

changes after the vertical exchanges are done. After the side exchanges are completed,
the derivatives close to the steps of the process grid are computed.

The values sent during the side exchanges are those from the ghost grids. The pro-
cesses participating in the communication are not necessarily direct neighbors (top,
bottom, right, or left). To provide insight into the communication happening during
the side exchange, we show in Figure 38 two overlapping velocity space grids from ad-
jacent grid-blocks, with the radial direction orthogonal to the plane of the plot. When
radial derivatives are computed on the x boundary of the smaller grid (marked by
dashed lines), the values from the ghost grids on the bigger grid (marked by solid
lines) have to be used. The nodes of the ghost grids might be distributed among differ-
ent processes. For instance, the processes denoted by 1.1, 1.2, 2.1, and 2.2 in Figure 38

keep the parts of the ghost grid (prolonged from the smaller grid-block) that overlap
with their local domains. Therefore, if we want to compute the radial derivative at the
location marked with a circle, we have to communicate with process 1.1. Similarly, we
communicate with process 1.2 for the location marked by a cross, with process 2.1 for
the location marked by a square, and with process 2.2 for the location marked by dia-
mond. The values on the nodes of the ghost grid are interpolated as soon as the values
on the real computational grids are updated, so that they are available for the radial
derivative computations.

At locations close to the boundary of the process grids, a corresponding process
might not have all real grid nodes to perform the interpolation of a given order. In such
cases, the process computes the interpolation sum only partly, by using the values from
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Figure 37: Schematic examples of the radial exchanges in different types of grids: a regular grid
(top left), a block-structured grid of the first type (top right), and a block-structured
grid of the second type in the x – v‖ subspace (bottom left) and in the x – µ subspace
(bottom right). The blue lines denote the outline of the computational grids, the black
lines correspond to the process grids. The arrows symbolize the radial exchange.

the available grid nodes. Then, the process computing the radial derivative collects all
the partial sums, to sum up and obtain the correct interpolated value. For example, for
the computations close to the intersection of the process grid lines, the communication
might be necessary with all four processes (1.1, 1.2, 2.1, 2.2).

Both the complex derivative computations and the arising communication are hid-
den from users in two types of specially developed data structures. The arrangement
of the blocks of the computational grids, as well as the process grid on top of it, is re-
flected in the design of the first data structure type. The facade of the data structure is
the “Portion” class, representing grid-related data saved on one process. This is shown
schematically using the orange dashed lines in Figure 39. In this figure, we illustrate a
fragment of a block-structured grid of the second type in the x – v‖ subspace, where
grid-blocks are represented by rectangles. In the case of a block-structured grid in the
x – v‖ – µ subspace, the grid-blocks are rectangular cuboids, which hinders illustrating
the grid arrangement.
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Figure 38: Examples of grid outlines and boundaries of process grids of two velocity space
grids from adjacent blocks. The grid outline of the smaller grid is plotted with blue
dashed lines and the boundaries of the process grid with black dashed lines. The
grid outline and the boundaries of the process grid of the larger grid are plotted
with solid lines.

In the provided example, the “Portion” object encompasses three grid-blocks, which
are saved in separate data structures — represented by the “Slab” class. A “Slab” object
keeps data associated to one block-grid with extended boundaries, which are neces-
sary for saving values received from neighboring processes (for computations of the
radial derivatives by a finite difference method). We symbolize this one grid-block re-
lated data by the blue rectangles in Figure 39. Furthermore, the “Slab” data structures
involve also the ghost grids, which are represented by grid lines inside the blue rectan-
gles in Figure 39. It is the responsibility of the “Slab” objects to interpolate the data on
the ghost grids and make the side-exchanges possible.

All data exchanges in the radial direction are arranged by “Portion” objects, which
save all information necessary for communication, for example, the order and ranks of
the processes communicating with the current process. An example of radial exchanges
occurring with one “Portion” object is illustrated in Figure 39 by arrows.

As aforementioned, there are several ways to organize the radial exchange. The de-
fault way is to perform first the classic vertical exchange (vertical arrows) and then,
gradually, every side exchange (slanted arrows) for each “Slab” object.

5.4 summary

In this chapter, we explained implementations of three types of modifications (prefac-
tors, block-grid boundaries, and parallelization) induced by introducing block-structu-
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Figure 39: A schematic representation of computational grid data saved and managed by spe-
cially developed data structures for the block-structured grids of the second type.
The orange dashed lines enclose the part of the grid belonging to one process — the
corresponding grid data is managed by a "Portion" class object, which coordinates
the radial exchange. The blue rectangles illustrate grid-blocks, while the green lines
inside these rectangles represent ghost grids. "Slab" class objects save the data of the
grid-blocks with associated ghost grids and perform interpolation routines.

red grids to GENE. It is important to note that these modifications can also be used for
other grid-based gyrokinetic codes.

Except for the gyrophase averaging, the changes necessary in the prefactors are
straightforward. For the changes in the gyrophase averaging matrices (and respective
matrix-vector products), two methods were presented. The default and least invasive
method is to reuse the already existing band matrix storage method implemented for
the original code with regular grids. This approach requires rewriting only the initial-
ization of the gyrophase averaging matrices. All other routines involved in the aver-
aging remain unchanged. The sizes of the arrays allocated for these matrices are also
approximately the same as for regular grid simulations used with the same physical
scenario. The number of gyrophase averaging matrices is proportional to the number
of grid nodes in the magnetic moment direction and, thus, it is much smaller for the
block-structured grids of the second type than for the regular grids.

To capitalize further on the block-structured grids, we also implemented an alter-
native storage method for the gyrophase averaging matrices. The introduced data
structures take into consideration the fact that the bandwidth of each submatrix corre-
sponding to a grid-block depends on the µ for which the matrix is computed. There-
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fore, submatrices for small grid-blocks have narrower bandwidths than those for big
grid-blocks. We store the non-zero elements of the gyrophase-averaging submatrix in
a separate array and have, thus, reduced memory requirements. However, this alter-
native storage causes changes in the original well-established implementation of the
matrix-vector products.

The treatment of the block-boundaries in the block-structured grids of the first
type is trivial: the zero amplitude Dirichlet boundary condition is set on the step-
shaped contour of the block-structured grid. The original data structures storing grid-
associated data can be reused for this type of grids by restraining the ranges of all
update-loops. However, this approach increases the rate of cache misses and leads to
smaller speedups than expected. This issue can be addressed by enabling a continuous
memory access with new data structures. This was realized for the block-structured
grids of the second type.

To this purpose, specially developed data structures address not only storage, but
also the treatment of boundaries of grid-blocks and parallelization. At a higher level,
the data structure stores a portion of grid-related data assigned to one process. On
this level, we manage the radial exchanges of two types: vertical exchanges (inherited
from the original regular grids) and side exchanges (arising due to step-like boundaries
of the process grid). Grid-block data with associated ghost grids is stored in a lower
level data structure. This data structure is responsible for interpolation operations at
the nodes of the ghost grid, as soon as the values on the real computational grid are
updated.

In the following chapter, we provide results of the linear and nonlinear gyrokinetic
simulations obtained with the block-structured grids and the implementation outlined
above.





6
N U M E R I C A L R E S U LT S

Gyrokinetic simulations δf-codes like GENE usually support two main operation modes:
linear — including linear terms only — and nonlinear — including nonlinear terms as
well. Linear studies are computationally significantly cheaper relative to nonlinear sim-
ulations, but are insufficient to investigate turbulence. They offer, nevertheless, a suit-
able way to explore the underlying microinstabilities. It is relatively easy to compare
linear runs stemming from different grids, as the microinstabilities are characterized
mainly by two parameters: a linear growth rate and a real frequency.

Nonlinear gyrokinetic simulations are an in-depth way to study plasma turbulence,
but they are computationally very expensive (e. g., grids for this type of simulations
require much more computational nodes than for linear runs). Furthermore, it is also
challenging to verify nonlinear results obtained with different computational grids,
because these results are of chaotic nature and, therefore, sensitive to the choice of
initial conditions. To obtain a meaningful comparison we investigate time averaged
results characteristic to a quasi-stationary state. Moreover, there are many observables
characterizing nonlinear runs, which can be compared.

To test our block-structured grids on both types of gyrokinetic simulations, interest-
ing test cases require radial profiles with a considerable temperature variation along
the radial direction. Therefore, corresponding simulations necessitate a lot of grid
points in the x – v‖ – µ subspace. This leads to computationally expensive test scenar-
ios. To solve these issues and make these test cases feasible, we simplify the physical
scenarios. To this purpose, for example, we simulate only collisionless and electro-
static plasmas. Furthermore, we choose a circular magnetic geometry with concentric
flux surfaces, as described in Section 3.2. This analytic magnetic geometry demands
less discretization nodes in the positional space than realistic geometries based on arbi-
trary magnetohydrodynamics equilibria. The safety factor profile in all our simulations
is given by

q(r/a) = 2.2(r/a)2 + 0.868 , (6.1)

where a is the minor radius. The aspect ratio at the last flux surface is set to a/R = 0.35
(R is the major radius) and ρ∗ = ρref/a = 1/80 (ρref is the reference gyro-radius). The
rest of the physical input depends on a particular test and is provided in the following
sections.

This chapter has two sections, each discussing results obtained from linear and non-
linear simulations, respectively. First, as the linear simulations are a prime verification
tool for the block-structured grids, we present results of linear runs in Section 6.1.
Then, we present results for nonlinear simulations in Section 6.2. This kind of gyroki-
netic simulations is the ultimate target of the proposed grids, in view of their enormous
computational demands.

91
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6.1 linear simulations

As mentioned before, linear microinstabilities are characterized by a linear growth rate
(γ) and a real frequency (ω). These observables for the dominant microinstability are
obtained either by finding the largest eigenvalue (the real part is γ, the imaginary part
is ω) of the linearized right hand side of the gyrokinetic equation or by simulating the
initial value problem. These two approaches for investigating the linear microinstabili-
ties are, for instance, compared and discussed in more details in [54].

The gyrokinetic equations solved by the nonlinear initial solver comprise the govern-
ing equations of the linear problem and several additional nonlinear terms. Therefore,
by developing and verifying the block-structured grids with the linear gyrokinetic sim-
ulations, we already partially address the target nonlinear case. For this reason, we
consider in this section the initial value problem instead of the eigenvalue problem.

The eigenvalue solver can also benefit from the block-structured grids, due to the
reduced size of the matrix of the linear operator for which the eigenvalues are found.
For more details on the implementation and performance of the eigenvalue solver in
GENE, we refer to [134].

In the case of linear simulations, we not only compare γ and ω obtained from
the block-structured grids and the regular counterpart, but also provide speedups
achieved due to the introduced grids. In this way, we check the correctness and evalu-
ate the quality of the implementation of the code relevant for block-structured grids.

This section consists of two parts. For the sake of simplicity and clarity, in Subsec-
tion 6.1.1, we compare regular grids to block-structured grids that differ in the x – v‖
subspace only. Then, in Subsection 6.1.2, the comparison with the regular grids is per-
formed with respect to block-structured grids in the x – v‖ – µ subspace, including all
velocity directions.

6.1.1 Linear Tests for Grids in x – v‖ Subspace

We start by providing the simplest way to compare block-structured grids with their
regular counterparts. We assume that the reference regular grid has a sufficiently wide
range and a resolution fine enough at all radial positions in the computational grids of
the velocity space. Based on this assumption, we construct the block-structured grids
of the first and second types with five blocks (including more blocks do not lead to
a significant reduction in the number of computational nodes, for the discussion on
the number of blocks see Section 4.1). Then, we simulate a linear initial value problem
with the same physical scenario on all the three grids (regular, first and second type
block-structured grids).

Examples of results of such linear simulations with the TCV electron profiles (shown
in Figure 9) are demonstrated in Table 5. The number of the v‖ computational nodes
(nv0) differs in each one of the three grids. The number of grid points in all other
directions is kept the same for all types of grids and is given by (nx0,nky0,nz0,nw0) =

(128, 1, 16, 64). The toroidal mode wave number is fixed to ky = 0.1773 . The accuracy
of the block-structured grids is characterized by the deviation of the growth rate (γ)
and frequency (ω) of the dominant fluctuation mode from the results obtained with
the regular grid. Other rows of the table (steps, ∆t, time, and speedup) outline the
performance the grids achieved in the provided example.



6.1 linear simulations 93

Table 5: Results of linear simulations with the TCV electron temperature profile and three dif-
ferent types of grids. Each grid type (regular, block-structured of first (“BS 1”) and
second type (“BS 2”)) is shown in a different column. The rows of the table are as
follows: nv0 is the number of v‖ grid points (and, in the “BS 1” column, the number
of grid points in each grid-block), γ is the growth rate, ω is the frequency, steps is
the number of steps, ∆t is the time step cost, time is the total simulation time, and
speedup is the speedup relative to the regular grid.

grid type

regular BS 1 with 5 blocks BS 2 with 5 blocks

nv0 96 96, 78, 50, 40, 36 36

γ 0.371 0.371 0.357

ω -0.056 -0.056 -0.050

steps 35359 35359 7779

∆t / s 0.808 0.521 0.390

time / s 28577 18415 3035

speedup - 1.6 9.4

In the tests performed for linear simulations, the results stemming from the simula-
tions with the reference regular grid (“regular” column) and the block-structured grid
of the first type (“BS 1” column) are identical. The precision of the computed growth
rate and frequency is at least three digits after the decimal point. The obtained results
confirm our assumption that the contribution of the simulation domain located outside
the step-like counter approximation of the desirable domain is negligible. This obser-
vation holds for all other test performed for linear simulations as well. The speedup
achieved by the corresponding block-structured grid is 1.6 in total computational time.

The block-structured grid of the second type attains a much higher total speed of
9.4, but with some small penalty in accuracy. According to column “BS 2” in Table 5,
the relative error value of the grow rate is around 3.8% only. A deviation of this size
can be explained by the fact that, in this particular scenario, the fluctuating part of
the distribution function is not excited at all radial distances. This can be observed in
Figure 40

1. Therefore, the precision of the results is dependent mostly on the resolution
and range of the parts of the computational grid where the perturbed distribution
function is localized. The chosen number of parallel velocity grid points (nv0 = 64) was
just sufficient to resolve this fluctuation in the vicinity of x = 0.5 in the regular grid.
However, this number of grid points in the v‖ direction would have to be increased in
case of excited fluctuations in the lower temperature regions (higher x values).

Constructing the block-structured grid of the second type is based on the assump-
tion that the regular reference grid is well resolved at all radial positions. This, however,
does not hold for the current example. Consequently, the resolution of the grid-block,

1 In this and similar following plots, we use (unless otherwise specified) adapted color-maps, to combine
the benefits of both linear and logarithmic color-maps, without suffering from their individual drawbacks.
Similarly to linear color-maps, the adapted color-maps visualize accurately the fluctuation near v‖ = 0

and, like logarithmic color-maps, show well the shape of the fluctuating part (without smearing the details
close to v‖ = 0).
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Figure 40: The absolute value of the fluctuating distribution function in the x – v‖ subspace,
stemming from the linear simulation with the regular grid. The distribution function
is taken at the middle of the z interval (outboard midplane position) and at the
smallest magnetic moment µmin, where the fluctuating part is the most prominent.
The TCV density and temperature radial profiles for electrons were used in the
corresponding simulation.

where the fluctuating part of the distribution function is located, is too coarse. There-
fore, the gained result is not as precise as in the case of the block-structured grids of
the first type, which preserves the resolution of the regular grid.

The most comprehensive comparison of the block-structured grids with the regular
counterparts is given by the convergence tests shown in Figure 41. In these tests, we
verify whether, for increasing numbers of v‖ grid points (nv0), the growth rate and
frequency computed with the block-structured grids of the second type approach the
values obtained with the reference regular grid. Furthermore, from the convergence
plots, we judge upon the quality of the grid by looking at how fast (minimum nv0) the
reference values of γ and ω are attained. All plots shown in Figure 41 are scaled by the
converged values of γ and ω (with an accuracy of three digits after the decimal point).
These values were obtained from the linear simulations with the reference grid, so that
the plots can be easily associated with the relative error. The reference regular grid
which leads to these converged results requires nv0 = 96 grid points in the parallel
velocity direction. The converged frequency ω in our linear numerical experiments is
quite close to zero. As a consequence, the relative error of ω in this case might look
worse than it is.

The convergence plots in Figure 41 reveal that the block-structured grid of the second
type is, on the whole, more accurate than its regular counterpart, as the relative error
of the block-structured grid is smaller for the same fixed nv0. The growth rate and
frequency converge at nv0 ≈ 70 for the block-structured grid. This does not agree with
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Figure 41: Convergence plots of the growth rate (γ— circle markers) and frequency (ω – square
markers) of the dominant fluctuation mode obtained by linear simulations with the
TCV profiles for electrons. The green solid lines correspond to simulations using
block-structured grids and the orange dotted lines correspond to simulations using
regular grids.

our initial assumption for the number of the v‖ grid points sufficient for the block-
structured grid of the second type: nv0 = 36, as presented in Table 5. The reason
for this is that the dominant mode has a localized pattern in the x – v‖ subspace
for the discussed linear run, as it was shown in Figure 40. The localization of the
fluctuating part of the distribution function does not comply with our assumption that
the structure of the fluctuation is similar to the one of the background distribution
function.

Despite of the localization of the distribution function, block-structured grids of the
second type are still very useful even for the presented type of linear simulations. We
can determine the localization pattern of the dominant mode only after performing lin-
ear gyrokinetic simulations. A block-structured grid of the second type with a relatively
small number of v‖ grid points can be used to perform computationally inexpensive
linear runs to determine the shape of the fluctuation in the x – v‖ subspace. Then, to
improve the results obtained with the block-structured grid, which could already be
very precise, the linear runs can be repeated with a carefully adjusted regular grid.
The localization pattern of the fluctuation helps us decide upon the grid ranges in the
radial and parallel velocity directions, as well as upon the number of the v‖ grid points
in the tuned regular grid.

For the linear simulations leading to a radially localized fluctuating part of the dis-
tribution function, the block-structured grids of the second type do not reveal all their
beneficial properties. This happens primarily because the simulation results are sensi-
tive mostly to the range and resolution of the grid corresponding to the localization
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area, which can be located, i. e., in one grid-block only. Therefore, in the following nu-
merical experiments, we use the linear simulations resulting in a broader radial pattern
of the dominant mode in the radial direction.

6.1.2 Linear Tests for Grids in x – v‖ – µ Subspace

Next, we present numerical results and verify the block-structured grids in the full
velocity space. The easiest way to influence the resulting structure of the fluctuation in
the x – v‖ – µ subspace is by specifying the radial temperature and density profiles. We
observe that the radial function shown in Figure 42, chosen for the radial temperature
and density dependencies in the linear runs, leads to a non-localized perturbed part
of the distribution function. For the sake of having a simpler control over the resulting
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Figure 42: An example of radial temperature dependence leading to a broad structure of the
distribution function in the radial direction for linear simulations with electrons and
protons. The same radial function is used for the radial density profile.

shape of the distribution function, we set the radial density and temperature profiles
to be the same. Furthermore, we run linear simulations with two species: electrons and
protons, as the two species simulations with our radial profiles appear to be more stable
numerically than simulations with one species only. Moreover, the multiple species
simulations are going to be more relevant in the future. The temperature and density
profiles of electrons and protons are chosen to be identical. This enables us to apply
the same block-structured grid for the distribution function of each species involved in
the simulations.

The described settings for the initial value problem yield a wide structure of the
fluctuating part of the distribution function, as demonstrated in Figure 43 for electrons
and in Figure 44 for protons. In these figures, the absolute values of the distribution
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Figure 43: Projection of the absolute value of the perturbed distribution function of the elec-
trons on the x – v‖ (top plot) and x – µ (bottom plot) planes. The parallel coordinate
z is fixed at the middle of its range (outboard midplane location). The projection on
the x — v‖ plane is taken at µmin, and the projection on the x – µ plane at v‖ = 0 .

function are normalized by their respective maximum values. All the projections are
taken at the middle of the parallel direction (z) interval (outboard midplane position),
where the fluctuations are typically most pronounced (ballooning). The x – v‖ projec-
tions are taken at the smallest magnetic moment µmin, which is determined by the
Gauss-Laguerre quadrature rule, and the x – µ projections are taken at v‖ = 0 . At
the described locations, the perturbed distribution function is usually most prominent,
which makes it easier to be visualized.

We used the specially adjusted color map for the plots on the x – v‖ plane and
the logarithmic color map for the plots on the x – µ plane, to make the shape of the
distribution function clearly visible. As a result of the logarithmic color map, the step-
like contour on the x – µ plane also becomes manifest.

In a further test involving numerical experiments with the presented radial temper-
ature and density profiles, we compare results of second type block-structured grids
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Figure 44: Projection of the absolute value of the perturbed distribution function of the protons
on the x – v‖ (top plot) and x – µ (bottom plot) planes. The parallel coordinate z is
fixed at the middle of its range (outboard midplane location). The projection on the
x — v‖ plane is taken at µmin and the projection on the x – µ plane at v‖ = 0.

(with five blocks) with reference results obtained with regular grids. In this test, we
again look at the convergence of γ and ω with respect to the number of grid points
in the parallel velocity direction (nv0) and in the magnetic moment direction (nw0).
For all other coordinates, we fix the number of grid points to relatively high values
(nx0,nz0) = (256, 16), in order to minimize numerical errors stemming from the dis-
cretization. Furthermore, in all linear runs, the toroidal mode wave number is set to
ky = 0.1773 .

To minimize the number of linear simulations the convergence plots are obtained
in two stages. First, we check how fast the results of the investigated grids converge,
relative to nv0. For this purpose, we keep the grid in the x – µ subspace regular and fix
the number of grid points in the magnetic moment direction to a relatively high value
nw0 = 96 .
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In the first stage, the simulations yield the convergence plots for nv0 demonstrated in
Figure 45. The growth rate and frequency converged to the same value for both regular
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Figure 45: Convergence plots of the growth rate (γ— circle markers) and frequency (ω – square
markers), for nv0 number of grid points in the parallel velocity direction. The results
are obtained by linear simulations with two species: electrons and protons. The green
solid lines correspond to simulations using block-structured grids in the x – v‖ sub-
space only, whereas the orange dotted lines correspond to simulations using regular
grids. The top plot shows the convergence curves for small nv0 and the bottom plot
shows for large nv0.

and block-structured grids, and are given by γconv = 4.810 and ωconv = 1.376 , with a
precision of three digits after the decimal point. All results presented in Figure 45 are
scaled by these converged values. From the obtained results, it becomes apparent that
the block-structured grids of the second type converge already at nv0 = 158 , whereas
the regular grids necessitate nv0 = 266 grid points to achieve the same accuracy. This
shows that, with the help of the second type block-structured grid in the x – v‖ sub-
space, we can remove already around 41% of the grid points without a loss of accuracy.

In the second stage, in accordance to the results from the first convergence test, we
fix the number of grid points to (nx0,nz0,nv0) = (256, 16, 158) for the block-structured
grids and to (nx0,nz0,nv0) = (256, 16, 268) for the regular grids. Next, we run linear
simulations to reveal the convergence curves of the growth rate and frequency depend-
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ing on the number of computational nodes (nw0) in the magnetic moment direction.
We note that, for the second stage linear runs, we use the block-structured grid in the
full velocity space.

The convergence plots for the second numerical experiment are shown in Figure 46.
In this experiment, the converged growth rate (γ = 4.809) and frequency (ω = 1.375)
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Figure 46: Convergence plots of the growth rate (γ— circle markers) and frequency (ω – square
markers), for nw0 grid points in the magnetic moment direction. The results are
obtained by linear simulations with two species: electrons and protons. The green
solid lines correspond to simulations using block-structured grids in the full velocity
space with nv0 = 158, while the orange dotted lines correspond to simulations using
regular grids with nv0 = 268.

obtained with the block-structured grids of the second type differ slightly from the the
reference γref and ωref: ∆γ = 0.02% and ∆ω = 0.07% . Considering the differences in
the results occurring in the linear simulations with the regular grid when starting the
initial value solver with different initial perturbed distribution functions, the current
differences are of a similar order and thus negligible. A potential cause for the devia-
tions in the case of block-structured grids in the full velocity space is the removal of
a large area of the x – µ subspace from the computational domain (i.e, see Figure 43

(bottom) and Figure 44 (bottom)). Furthermore, the block-structured grids in the x – µ
subspace require more significant modifications in the numerical implementation than
the grids in the x – v‖ subspace.

From Figure 46, we observe that both the block-structured grid of the second type
and the regular grid converge very fast: at a number of grid points nw0 around 8 – 10 for
the block-structured grid, and nw0 around 12 – 14 for the reference grid. Nevertheless,
the important effect revealed by the convergence plots is that the block-structured
grids are much more accurate at a coarse resolution than their regular counterparts.
Furthermore, in this numerical experiment, the regular grids are also helped by the
fact that they have more parallel velocity grid points than the block-structured grids
do.
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For the sake of a fair comparison between block-structured and regular grids, we
also provide the convergence plots obtained for these two grids with same number
of v‖ grid points fixed to nv0 = 24 , see Figure 47. In this figure, we observe that
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Figure 47: Convergence plots of the growth rate (γ— circle markers) and frequency (ω – square
markers) for nw0 grid points in the magnetic moment direction. The results are ob-
tained by linear simulations with two species: electrons and protons. The green solid
lines correspond to simulations using block-structured grids in the full velocity space
and the orange dotted lines correspond to simulations using regular grids. Both
types of grids have coarse resolution in the v‖ direction with nv0 = 24 .

the accuracy gap between the block-structured and regular grids becomes even more
evident. The ability of the block-structured grids to preserve the accurate results with
even coarse resolutions in the velocity space is useful for methods that combine results
stemming from linear simulations on coarse grids to get a final accurate estimate. For
details on such methods applied in GENE, we refer to [107, 135–137].

Finally, we compare the performance of the linear simulations with the block-struc-
tured grids of the second type to the performance of their regular counterparts. For
a fair comparison, we examine the block-structured grid with (nv0,nw0) = (158, 10)
computational nodes in the velocity space and the regular grid with (nv0,nw0) =

(268, 14). According to the convergence plots in Figure 45 and Figure 46, these two
grids attain converged results with the same precision. To obtain the performance
estimates comparable to real life situations, we apply the same compiler optimization
for these measurements like for GENE production runs. In the linear runs of the initial
value solver with the block-structured and regular grids, we use 32 CPUs.

With these settings, the block-structured grid of the second type converged in 19 429 s
and the regular grid in 39 346 s. The achieved speedup is 2.03 and thus somewhat
smaller than the reduction in the number of the grid points, which is 2.36. The differ-
ence between these two numbers is explained by the computation and communication
overhead on the boundaries of the grid-blocks. As explained in Chapter 5, additional
interpolations are performed due to the misalignment of the radial coordinate lines in
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each grid-block. Moreover, additional side-exchanges are carried out due to the step-
like process grid boundaries in the case of the block-structured grids of the second
type. Nevertheless, the overheads observed in the linear runs become less apparent in
the nonlinear simulations, as will be shown in the following section.

6.2 nonlinear simulations

In this section, we provide results from nonlinear gyrokinetic simulations. In this case,
the block-structured grids of the first type yield precise results, just like in the case
of linear simulations (see Section 6.1). However, this type of block-structured grids
do not lead to a high reduction in the number of the grid points in the velocity space.
Therefore, in this section, we compare the regular grids with the block-structured grids
of the second type only, as they are more promising.

As described in Subsection 6.1.1, it is possible that linear gyrokinetic simulations
result in a dominant mode localized in the radial direction. This is usually not a case for
nonlinear gyrokinetic runs, where several toroidal modes are excited simultaneously.
For example, the perturbed part of the distribution function obtained from the linear
runs with the TCV radial temperature and density profiles is localized, as shown in
Figure 40. However, nonlinear runs with the same settings lead to a broad shape of the
distribution function, as shown in Figure 48. Consequently, to demonstrate the benefits
of the block-structured grids for nonlinear simulations, it is not necessary to tune the
temperature and density profiles, like in the case of linear simulations. In the following
numerical experiments, all results are obtained with the TCV temperature and density
profiles, see Figure 9.

There are several reasons why it is more difficult to compare results from nonlinear
gyrokinetic simulations than from linear simulations:

• The analysis of a nonlinear run requires numerous observables, for example, heat,
particle, momentum fluxes, etc. These observables are obtained by postprocess-
ing, which involves integration in the five dimensional phase space. As a result,
a lot of details are lost and do not influence the observables at hand.

• The fluctuating part of the distribution function is sensitive to initial conditions.
Consequently, a small modification in the computational grid leads to very dif-
ferent values of the distribution function after the initial value solver performs
several time steps. Therefore, only quasi-stationary features are of interest, which
are obtained by time averaging the perturbed part of the distribution function on
a sufficiently long time interval that excludes the initialization phase of the non-
linear simulation.

• There are no clear criteria when to stop a nonlinear run. The simplest but not
mathematically strict way to decide when to terminate nonlinear runs checks
whether the time averaged simulation results are no longer changing over in-
creasing time intervals.

To address the described challenges, in this section, we provide the heat fluxes ob-
tained from different computational grids and compare the time averaged fluctuating
parts of the distribution function.
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Figure 48: Time-averaged fluctuating part of the distribution function (in absolute value) on
the x – v‖ (top plot) and x – µ (bottom plot) planes for nonlinear simulations with
TCV radial profiles for electrons. The parallel coordinate z is fixed at the middle of
its range (outboard midplane location). The projection on the x — v‖ plane is taken
at µmin and the projection on the x – µ plane at v‖ = 0.

The nonlinear gyro-kinetic simulations are much more computationally expensive
than the linear simulations. Consequently, obtaining convergence plots like in the linear
case is almost infeasible. Therefore, we verify the proposed block-structured grids in a
different manner. Specifically, we compare the results obtained using block-structured
grid with those obtained using three regular grids:

• The first regular grid has fine resolutions in all five dimensions and yields accu-
rate results according to the experience gained before the comparison runs. In the
following, we refer to this grid as a reference regular grid. By comparing results
obtained using the block-structured with results from reference grids, we check
whether our proposed grids achieve the goal of removing computational nodes
from the velocity space grid without loss of accuracy.
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• The second regular grid — the first alternative grid — has the same coordinate
ranges as the reference grid, but a coarse resolution in the velocity space. The
number of grid points in the velocity directions is the same as for the block-
structured grid. The simulation results obtained using this regular grid help us
check whether a simple coarsening of the velocity space grid could lead to results
of the same accuracy as the reference grid.

• The third regular grid — the second alternative grid — has the same ranges
of the velocity directions as the smallest grid-block of the block-structured grid.
Furthermore, the resolution of this grid is the same as for the reference regular
grid (or the number of grid points is the same as in the block-structured grid).
The results obtained with the second alternative grid show us whether a simple
reducing of the velocity space ranges of the reference grid could potentially attain
the accuracy of the reference grids.

To summarize, by performing comparisons between the block-structured grid and
the aforementioned regular grids, we check whether the former grid is as accurate as
the reference counterpart with the largest number of computational nodes. We also
check whether alternative regular grids with the same number of grid points as the
block-structured grid can achieve this goal.

The block-structured grids of the second type were initially implemented for the x –
v‖ subspace. After a successful verification, this type of grids was extended to include
the magnetic moment direction. In this section, therefore, we first present results for
the proposed grids in the x – v‖ subspace (Subsection 6.2.1), and then for the grids in
the x – v‖ – µ subspace (Subsection 6.2.2).

6.2.1 Nonlinear Tests for Grids in x – v‖ Subspace

In the tests performed on the block-structured grids in the x – v‖ subspace, the ref-
erence grid has the following numbers of computational nodes (nx0, nky0, nz0, nv0,
nw0) = (512, 16, 16, 40, 64). This holds also for the block-structured and two alterna-
tive regular grids, except that these grids have nv0 = 18 computational nodes in the
parallel velocity direction.

Four examples of these grids on the x – v‖ plane are schematically illustrated in
Figure 49. In this figure, the reference regular grid is represented by the plot with label
(RR), the block-structured grid of the second type with five blocks (as in the case of
linear tests) by the plot with label (BS), the first alternative regular grid by the plot
with label (1A), and the second alternative grid by the plot with label (2A). For the sake
of visibility, the resolutions of the grids were coarsened by a factor of four in the x
direction and by a factor of two in the v‖ direction (compared to the actual grids used
in the nonlinear simulations).

The easiest way to compare the time-averaged perturbed parts of the distribution
function stemming from different grids is the plot over line method. The line position
is chosen in so as to traverse the areas with the strongest fluctuation and span over
all radial positions. This location is scenario dependent. For the simulations with the
TCV electrons temperature and density profiles, the fluctuating part of the distribution
function is strongest at v‖ = 0 and µmin in the velocity space, at the outboard midpoint
position (at the middle of parallel direction z interval) in the position space with the
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Figure 49: Examples of four types of grids: the reference regular grid marked by (RR), the block-
structured grid marked by (BS), the first alternative grid marked by (1A), and the
second alternative grid marked by (2A). Actual grids used in nonlinear simulations
have a finer resolution.

toroidal wave number ky = 0. An example of the time-averaged fluctuation (for nonlin-
ear runs with the TCV radial profiles) in the x – v‖ subspace at the outboard midpoint
position with fixed µmin and ky = 0 is shown in Figure 48 (top). In our comparisons,
therefore, we take the time-averaged absolute values of this fluctuation at the vertical
line in the middle of the plot (v‖ = 0), which covers the whole range of x .

Corresponding plots over line for the four previously described grids are shown in
Figure 50. These plots were produced by using the time-averaged distribution function
in the 18 R/cs time interval2, which is three time longer than the initialization phase
(6 R/cs). The time-averages were computed with around 30 – 40 samples at different
time steps.

2 R is major radius, cs is ion sound speed.
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Figure 50: Plots over line of the absolute value of the distribution function for four different
grids. The toroidal mode wave number is fixed to ky = 0. The green solid line corre-
sponds to the reference regular grid, the orange dashed line to the block-structured
grid, the violet dotted line to the first alternative regular grid, and the magenta
dash-dotted line to the second alternative regular grid.

In Figure 50, the plot over line of the regular reference grid (RR) (with a fine reso-
lution in the v‖ direction) is represented by the green solid line, the plot over line of
the block-structured grid (BS) by the orange dashed line, the plot over line of the first
alternative regular grid (1A) (with a coarse resolution in the v‖ direction) by the violet
dotted line, and the second alternative regular grid (2R) (with a short range in the v‖
direction) by the magenta dash-dotted line. From these plots, we observe that the plots
over line of the (RR) and (BS) grids match at all radial positions. The (1A), however,
does not resolve the fluctuating part of the distribution function at high x (the last two
peaks), while the plot over line of the (2A) grid deviates strongly from the reference
curve at all radial positions except at high x . This numerical experiment shows that
our block-structured grid is capable to resolve well the distribution function at all ra-
dial positions with less grids points than the reference grid, whereas the alternative
regular grids with the same number of computational nodes as the block-structured
grid fail to provide reliable results.

In the next scenario, we compare the fluctuating part of the distribution function for
a dominant turbulent component ky 6= 0 driving the turbulent transport. To obtain a
spectrum with a dominant toroidal mode, we suppress the electron scale instability
in the described nonlinear runs by adding hyper-diffusion in the x and y directions.
Furthermore, we save computational time by continuing the already performed nonlin-
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ear runs with added hyper-diffusion, by starting the new simulations from generated
checkpoints.

The reference regular grid for the nonlinear runs with added hyper-diffusion re-
quires (nx0,nk0,nz0,nv0,nw0) = (512, 16, 16, 82, 64), while all other three grids have
nv0 = 34 grids points in the parallel velocity direction. The dominant mode in the
corresponding simulations has the wave number ky = 0.3546 .

For the nonlinear simulations with hyper-diffusion, we compare not only the plots
over lines, but also the heat fluxes. All results are obtained by time-averaging on the
time interval 20 R/cs, with 40 – 50 samples at different time steps.

The heat fluxes, obtained with four different grids ((RR), (BS), (1A), and (2A)), are
summarized in Table 6. The results from the table show that only the block-structured

Table 6: Heat fluxes stemming from four different grids ((RR), (BS), (1A), and (2A)) averaged
over a time interval of 20 R/cs at the whole radial range excluding buffer zones and
provided in gyro-Bohm units.

grid type

reference regular block-structured 1st alternative 2nd alternative

(RR) (BS) (1A) (2A)

Qgb 1.63 1.62 1.53 3.70

grid yields a heat flux value comparable to the one obtained with the reference regular
grid.

The plots over line obtained from simulations with hyper-diffusion in the x and y
directions are shown in Figure 51 for all four grids. The time averaging interval is taken
the same as for the heat fluxes (20 R/cs). The location of the line along which we plot
the absolute value of the perturbed part of the distribution function is the same as for
the nonlinear runs without hyper-diffusion (see Figure 50). The only difference is that
we now consider the dominant toroidal mode, with ky = 0.3546 . In this numerical
experiment, the block-structured grid yields again the closest matching plot over line
(orange dashed line) to the reference regular grid plot (green solid line).

In the provided examples involving nonlinear simulations, the reduction in the num-
ber of computational nodes due to the block-structured grid of the second type is
around 2.2. Theoretically, this leads to the same speedup. In practice, however, the
speedup depends on the computer architecture and the chosen parallelization scheme.
In our numerical experiments with 32 – 64 CPUs, the observed speedups vary in the
range 1.9 – 3.0. This is already a valuable performance improvement, considering the
enormous computational costs of the nonlinear gyrokinetic simulations.

Even higher performance improvements are achieved with the block-structured grids
of the second type in the full velocity space. The corresponding numerical experiments
are presented in the following subsection.

6.2.2 Nonlinear Tests for Grids in x – v‖ – µ Subspace

In the numerical tests run for the block-structured grids in the full velocity space, we
again consider four different types of grids: a reference regular grid, a block-structured
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Figure 51: Plots over line of the absolute value of the distribution function for four different
grids. The results are obtained from nonlinear runs with hyper-diffusion in the x and
y directions. The plots are shown for the dominant toroidal mode with ky = 0.3546 .
The green solid line corresponds to the reference regular grid, the orange dashed
line to the block-structured grid, the violet dotted line to the first alternative regular
grid, and the magenta dash-dotted line to the second alternative regular grid.

grid of the second type with five blocks (as for the x – v‖ subspace), the first alternative
regular grid with a coarse resolution, and the second alternative regular grid with
short ranges in the velocity directions. The outlines of all these four grids, labeled by
(RR, BS, 1A, 2A), are shown in Figure 52.

On this occasion, we run numerical simulations with hyper-diffusion in the x and
y directions from the beginning, so that we obtain spectra with a dominant toroidal
mode above the grid scale. The reference regular grid has the following number of
computational nodes (nx0,nk0,nz0,nv0,nw0) = (512, 16, 16, 82, 64). The other three
grids have less grid points in the velocity space (nv0,nw0) = (34, 16) and the same
number of the grid points as the reference grid in the position space.

The reference regular grid is essentially the same like in Subsection 6.2.1. The other
three grids, however, are different in the velocity space. Therefore, this time, we do
not reuse the checkpoints, but rather restart the initial value solver with the same
initial perturbed part of the distribution function for all four grids. The dominant
toroidal mode in the quasi-stationary state reached after an initialization phase has the
wave number ky = 0.5319 , which is different from the one obtained in the previous
numerical experiment. This means that the current nonlinear runs yield a different
quasi-stationary state than the previous nonlinear simulations did. Attaining different
quasi-stationary states for one physical scenario is, nevertheless, normal for nonlinear
gyrokinetic simulations.
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Figure 52: The outlines of four types of grids in the x – v‖ – µ subspace: (top left) the reference
regular grid (RR) and the first alternative regular grid (1A) with a coarse resolution
in the velocity space; (top right) block-structured grid (BS); (bottom plot) the second
alternative regular grid (2A) with short ranges in the velocity space.

We compute the heat fluxes and the plots over line averaged out on the time interval
35 R/cs, with a minimum of 45 samples at different time steps. The obtained heat
fluxes are provided in Table 7. From this table, we observe that the block-structured
grid of the second type (BS) yields the heat flux closest to the regular reference grid (RR).
The second closest result belongs to the first alternative regular grid (1A). The second
alternative regular grid (2A) results in a significantly different heat flux compared to
the reference one.

The plots over line for all four grids are shown in Figure 53 and Figure 54. In these
figures, the results are demonstrated for the toroidal mode with the most prominent
fluctuating part of the distribution function (ky = 0) and for the dominant toroidal
mode causing turbulent transport (ky = 0.5319), respectively.

From the obtained heat fluxes and plots over line, we observe the following:

• The block-structured grid of the second type (BS) achieves the closest heat flux
to the reference one. It yields also the closest match of the fluctuating part of the
distribution function to the reference regular grid (RR).
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Table 7: Heat fluxes (given in gyro-Bohm units) stemming from four different grids ((RR), (BS),
(1A), and (2A)), averaged over a time interval of 35 R/cs at the whole radial range
excluding buffer zones.

grid type

reference regular block-structured 1st alternative 2nd alternative

(RR) (BS) (1A) (2A)

Qgb 1.92 1.83 1.64 0.78

• The first alternative regular grid (1A) attains a quite accurate heat flux. However,
this grid does not resolve the distribution function in the low temperature region
corresponding to x ∈ (0.55, 0.75), as shown in Figure 53 and Figure 54.

• The second alternative regular grid (2A) yields an unacceptably small heat flux.
However, the plot over line obtained with this grid is surprisingly close to the ref-
erence regular grid (RR). This demonstrates that, in the obtained quasi-stationary
state, the fluctuating part of the distribution function at the location of the line is
not influenced by the shortened ranges in the velocity directions. However, this
is a rather specific case and cannot be generalized. For example, in the nonlinear
run, whose plot over line is shown in Figure 50, the absolute values of the distri-
bution functions stemming from the (2A) grid do not match the values stemming
from the (RR) grid.

Consequently, we conclude that, in the numerical nonlinear test for the grid in the x –
v‖ – µ subspace, only the block-structured grid (BS) achieves results comparable with
those obtained from the reference regular grid.

It can be thus observed that the block-structured grid of the second type in the full
velocity space reduces the number of computational nodes without a loss of accuracy.
Moreover, it also leads to much faster nonlinear simulations compared to its reference
regular counterpart.

To estimate the performance improvements, we measure how much time it takes to
execute one time iteration in the previously discussed nonlinear simulation with the
block-structured and reference regular grids. The corresponding times are obtained by
performing 100 time iterations and taking the average times. In this numerical test, we
use compiler optimization flags, like for production runs with GENE. The nonlinear
runs are performed with 128 CPUs for both types of grids. The block-structured grid
(BS) requires 6.2 s and the reference regular grid (RR) 64.8 s for one time step. The
corresponding speedup is 10.5, which is even larger than the reduction in the number
of grid nodes (82 · 64)/(34 · 16) ≈ 9.4. The superlinear speedup can be explained by
a cache effect, which outweighs the overheads in the block-structured grid caused by
the side-exchanges during the communication and the additional interpolations for the
radial derivative computations. For details on the implementation see Chapter 5.

In some nonlinear simulation scenarios, we observe that wide ranges in the velocity
directions might cause numerical instabilities in low temperature regions. The block-
structured grid can easily fix this issue by restricting the velocity ranges. This is another
useful property of the proposed grids.
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Figure 53: Plots over line of the absolute value of the distribution function for the toroidal mode
with wave number ky = 0. The reference regular grid (RR) is represented by the green
solid line, the block-structured grid (BS) is represented by the orange dashed line,
the first alternative regular grid (1A) is represented by the violet dotted line, and the
second alternative regular grid (2A) is represented by the magenta dash-dotted line.

6.3 summary

In this chapter, we presented results and estimated performance improvements ob-
tained by introducing the block-structured grids for linear and nonlinear radially global
gyrokinetic simulations. The whole concept of the block-structured grids was devel-
oped initially for the x – v‖ subspace and only then for the x – v‖ – mu subspace.
Therefore, in each section, we first tested the proposed grids considering first just the
parallel velocity coordinate and only then including the full velocity space.

The linear gyrokinetic tests presented in Section 6.1 serve as our main benchmark
for two reasons. First of all, the linear runs are computationally much cheaper than
the nonlinear ones. Secondly, it is quite easy to compare the results stemming from dif-
ferent grids, as the corresponding microturbulence is characterized primarily by two
parameters: the linear growth rate (γ) and real frequency (ω). To verify the results
stemming from the block-structured grids, we ran convergence tests for γ and ω to
check how fast these parameters reach a three-digit precision after decimal point when
the number of computational nodes in the velocity directions is increased. In all con-
vergence tests, the block-structured grids achieved the prescribed precision with less
grid points than the regular counterpart. This resulted in a speedup of 2.03 of the pro-
posed grids in the full velocity space. Furthermore, the convergence plots revealed an
additional useful feature of the block-structured grids: they still provide reliable results
even for extremely coarse velocity space grids, when the regular grids do not function
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Figure 54: Plots over line of the absolute value of the distribution function for the toroidal
mode with wave number ky = 0.5319. The results are shown for four grids: (RR) —
the green solid line, (BS) — the orange dashed line, (1A) — the violet dotted line, (2A)
—- the magenta dash-dotted line.

anymore. This property is useful for methods combining results obtained with coarse
grids to compute a final accurate result.

The main target of the block-structured grids is given by nonlinear gyrokinetic sim-
ulations, which were discussed in Section 6.2. Results stemming from nonlinear runs
are more challenging to verify, because of reasons such as:

• extremely high computational costs

• a vast number of possible observables

• sensitivity to initial conditions

• only quasi-stationary (time-averaged) results can be compared

• no clear termination criteria

Taking this into consideration, the convergence-like tests become both overly ex-
pensive computationally and also less revealing than those used for the linear runs.
Therefore, we developed another method to estimate the quality of our proposed grids.
Specifically, we compared a block-structured grid with three regular counterparts:

• a reference grid with a large number of grid points in both velocity directions

• two alternative regular grids with the same number of grid points in the velocity
space as the block-structured grid
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– the first alternative grid had the same ranges, but coarse resolutions in the
velocity directions compared to the reference grid; it was used to check
whether a simple coarsening of the velocity space can achieve results of
the same accuracy as the block-structured grids

– the second alternative grid had the same resolutions, but shorter ranges
in the velocity directions than the reference grid had; it served to examine
whether taking shorter velocity ranges can reduce the number of computa-
tional nodes without a loss in accuracy, as block-structured grids were able
to do

For all these four types of grids, we compared time averaged heat fluxes and abso-
lute values of the distribution function on a prescribed line. The comparison results
revealed that only the block-structured grid yielded results comparable by accuracy to
the results obtained with the reference regular grid. Furthermore, the block-structured
grid attained a speedup of 10.5 in comparison to the reference regular grid, which
entails a significant reduction in the computational costs.





7
C O N C L U S I O N

The current work addressed a critical and challenging problem considering the spa-
tial temperature variation in radially global gyrokinetic simulations. This problem is
known to necessitate a huge number of computational nodes for the grids in the ve-
locity space mixed with the radial distance. Thus, many important physical scenarios
are overly expensive computationally, making methods that reduce the number of grid
points prerequisite.

Solutions proposed in this work relied on introducing block-structured grids and
applying these in the context of the gyrokinetic simulations. Such grids consisting of
multiple connected blocks are used in a vast number of scientific applications to accu-
rately resolve geometry, i. e., the boundaries of the simulation domain. However, the
exact shape of the domain boundaries in the velocity space does not play an important
role in gyrokinetic simulations. Instead, in this context, the proposed grids focus on
choosing adequate resolutions and ranges for the parallel velocity direction, as well as
sets of magnetic moment nodes optimal for quadrature-like operations in each grid-
block along the radial direction.

The contribution of this work can be roughly classified into three categories:

• Concepts: We introduced block-structured grids and compared this approach with
the alternative method of transformed velocity coordinates. We opted for block-
structured grids, because they allow to adjust the velocity discretization without
changing the physical meaning of the velocity coordinates. Consequently, in this
manner, we could preserve the mathematical model (the governing equations
did not change) and easily port the well-established code, which had been orig-
inally written for regular grids. Moreover, preserving the governing equations
allowed reusing already highly optimized existing routines, without hindering
future physical extensions.

• Implementation aspects: We applied block-structured grids to implement an initial
value solver for linear and nonlinear gyrokinetic simulations. Most of implemen-
tation specific to block-structured grids is concentrated in specially developed
data structures. These data-structures store computational and ghost grids re-
lated data, and are also responsible for interpolations and data exchanges be-
tween processes.

• Numerical experiments: We verified block-structured extensively in the context of
both linear and nonlinear radially global gyrokinetic simulations:

– For the linear tests, we compared the convergence plots depending on the
number of grid points in the velocity directions, for both the growth rate
and the real frequency of the dominant mode. These tests revealed that
the block-structured grids converge faster and attain reliable results even
for very coarse velocity resolutions, when the regular grids are rendered
useless.
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– For the nonlinear tests, which generally are excessively computationally ex-
pensive for the convergence-like verification, we elaborated a special test. In
this test, a block-structured grid is compared with a reference regular grid
and two other alternative grids with the same number of computational
nodes as the block-structured one. We could observe that only the block-
structured grid achieved the same accuracy results as the reference regular
counterpart, which typically necessitates much more grid points. Moreover,
as the nonlinear runs with the alternative regular grids showed, the same
accuracy results cannot be gained by a simple coarsening or a shortening of
velocity ranges.

The theoretical investigations and numerical experiments showed that the block-
structured grids possess several beneficial properties for the Eulerian gyrokinetic sim-
ulations, such as:

• Allowing a significant reduction in the number of computational nodes, without
a loss of accuracy in the gyrokinetic simulations. Not only does this lead to a
much smaller memory footprint, but it also reduces the storage necessary for the
diagnostics data and checkpoints. The latter benefit is especially valuable for the
nonlinear simulations, where the output has to be saved for many time steps to
be able to analyze reliably quasi-stationary properties of the plasma turbulence.

• Achieving speedup values roughly proportional to the reduction in the number
of computational nodes. Since the number of floating point operations in the
gyrokinetic code is proportional to the number of computational nodes, reducing
the number of grid points leads to the same theoretical speedup. This aspect was
confirmed by numerical tests: For example, in the linear runs, the reduction in
the number of grid points was 2.36, whereas the speedup was 2.03, which is a bit
smaller due to the overheads in the treatment of the grid-block boundaries and
the side-exchanges in the radial direction. In nonlinear simulations, however, the
created overheads were outweighed by a cache effect, resulting in a superlinear
speedup of 10.5 for a reduction in the number of grid points of 9.4.

• Yielding reliable results with very few computational nodes in the velocity direc-
tions, even when regular grids no longer perform.

• Preserving the original mathematical model, which allows an easy porting of
code for block-structured grids into existing and well-established gyrokinetic
codes.

• Simplifying code extensions for new physical phenomena by decoupling the code
specific to block-structured grids in specially developed data structures.

• Allowing applications to other grid-based gyrokinetic codes, due to the generality
of the proposed approach.

These benefits of block-structured grids open new possibilities for the GENE soft-
ware package. To capitalize further on the developed method, the application area of
this technique can be extended to include collisions between different species, which
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can be simulated on different block-structured grids. A challenging numerical treat-
ment of collisions between species with disparate thermal speeds is a recurring prob-
lem in plasma simulations (see [31, 33, 34] for different plasma simulation codes or
[32] for GENE). The proposed grids can be applied to solve an orthogonal problem of
strong spatial temperature variations in these demanding gyrokinetic simulations with
collisions.

The main focus of this study was to introduce and apply block-structured grids to
the Eulerian gyrokinetic code GENE, in order to make simulations with strong tem-
perature variations feasible. Given that our method is minimally invasive, the good
performance properties of the GENE implementation for regular grids were inherited
by the block-structured grids. This was confirmed by the achieved speedups. Nev-
ertheless, further performance enhancements are possible, for example, by exploring
different implementations of the data structures for block-structured grids. A poten-
tial candidate could store only ghost grids and meta-data necessary for interpolation
and parallelization in these data-structures. Such an approach would decrease the data
movement in the current implementation and would thus make memory usage more
efficient.

Finally, while the block-structured grids are already fully functional in the gyroki-
netic code GENE, it is still necessary to make the new implementation available to a
wide community of researchers using this software package. To this purpose, several
steps need to be performed: smoothen the user interface for the grid construction and
other related simulation settings, add support for the proposed grids in key diagnos-
tics, include the grid description in the user manual, and make the proposed grids
available in the release version of GENE.





A
P R E A N D P O S T P R O C E S S I N G T O O L S

The description of a block-structured grid is provided to GENE via a set of parameters.
These are specified in an input file called parameters, which is read by GENE before
each simulation. In this file, the values for each option are grouped and specified in
namelists according to the Fortran standard, for details on Namelist I/O see [138].
An example of a namelist group with block-structured grid related settings is listed
below:

&bsgrid

is_grid_adptv = .T.

is_nv0_fixed = .T.

is_numofvpoints_const = .T.

is_numofwpoints_const = .T.

is_gpg = .F.

gavg = ’ std ’
wx_style = ’contour ’
bbfdscheme = ’ ic4th ’
opt_mthd = ’ integral ’
nblks = 5

vp_std = 3.0

blk_mks_r = 0.125, 0.454, 0.507, 0.567, 0.667, 0.875

lv_mks = 3.315, 2.665, 2.046, 1.598, 1.349, 0.973

lw_mks = 14.445, 9.337, 5.504, 3.356, 2.392, 0.211

/

The currently available options of the bsgrid namelist include1:

• is_grid_adptv [bool]: use block-structured grids or not

• is_nv0_fixed [bool]: keep the provided nv0 value or adjust it

• is_numofvpoints_const [bool]: if true, use the block-structured grids of the sec-
ond type in the x – v‖ subspace; otherwise, use the block structured grids of the
first type

• is_numofwpoints_const [bool]: if true, use the block-structured grids of the sec-
ond type in the x – µ subspace is used; otherwise use the block-structured grids
of the first type

• is_gpg [bool]: if true, set the matrix for gyrophase averaging of the distribution
function equal to the gyro-matrix for fields

• gavg [str]: determines how to store the gyro-matrices for block-structured grids;
currently, there are two options:

1. ’std’ — the matrices are saved in the same arrays as for regular grids

1 The provided options may change in the future to accommodate the various needs of the users.
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2. ’bnd’ — the matrices are saved by using an alternative format, where each
matrix corresponding to a grid-block is saved in a separate band matrix
storage, see Section 5.1

• wx_style [str]: defines how to compute the µ nodes for Gauss Laguerre nodes;
currently, three styles are supported:

1. ’lambda’ — the Gauss Laguerre rule is adjusted for each grid-block, taking
the exponential factor optimal for the middle of the radial grid-block range

2. ’contour’ — the Gauss Laguerre rule is first computed like in the ’lambda’

case; then, all nodes and weights are rescaled, so that all µ grid points fit
inside the desired contour of the simulation domain

3. ’gaulag’ — like for ’contour’, except that the Gauss Laguerre nodes and
weights are rescaled using a Gauss Laguerre rule with a fixed number of
nodes provided to the grid generator, see Appendix Section A.1

• bbfdscheme [str]: the finite difference scheme used on grid-block boundaries;
currently, the following schemes are available:

1. ’ic4th’ — the default choice, uses a central difference scheme specified for
the inner nodes, in combination with a fourth order polynomial interpola-
tion, see Table 3 and Table 4

2. ’iclin’ — as for ’ic4th’, only with a linear interpolation

3. ’v4th’ — the first alternative scheme, presented in Table 3, in combination
with a fourth order polynomial interpolation

4. ’xv4th’ — the second alternative scheme, presented in Table 3, in combina-
tion with a fourth order polynomial interpolation

• opt_mthd [str]: determines how to compute grid-blocks ranges and positions;
currently, there are two ways:

1. ’integral’ — the step-shape approximation of a contour is obtained by
minimizing the probability difference of the background distribution func-
tion inside the step-shape approximation and desired simulation domain,
for more details see Appendix Section A.1

2. ’sum’ — as for ’integral’, except that the difference of probabilities (alter-
natively standard deviation or velocity values) at discrete radial locations is
minimized

• nblks [int]: the number of blocks in the block-structured grid

• vp_std [real]: the number of standard deviations of the background distribu-
tion function in the x – v‖ subspace used to compute the ranges in the parallel
velocity direction; the ranges for the magnetic moment direction are computed
by using vp_std, as described in Subsection 3.3.2; previously, two deprecated
options prob_vx (confidence level in the parallel velocity direction) and prob_wx

(confidence level in the magnetic moment direction) were used instead of vp_std;
these options were inconvenient for setting the velocity ranges consistently
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• blk_mks_r [real *]: the radial locations of boundaries for all grid-blocks; the first
and last values correspond to the radial range of the simulation domain

• lv_mks [real *]: the parallel velocity ranges of all grid-blocks; the last value is
not used and corresponds to the parallel velocity range of the last grid-block in
the limit of infinitely many grid-blocks

• lw_mks [real *]: the magnetic moment ranges of all grid-blocks; the last value is
not used and corresponds to the magnetic moment range of the last grid-block
in the limit of infinitely many grid-blocks

These listed options are used not only as an input to GENE, but also for pre and pro-
cessing tools. Furthermore, some of the options explained, namely, wx_style, opt_mthd,
and vp_std, are used exclusively by the pre processing tool. These options are kept in
the namelist to describe thoroughly how the grid was generated and to be able to
reconstruct it.

The rest of this appendix is structured as follows: In Section A.1, a grid generator
is described, providing the most important options defining the shape of the grid-
blocks: blk_mks_r, lv_mks, and lw_mks. In spite of extensive capabilities of already
existing diagnostic tools for GENE, we had to implement a separate post processing
tool, which is aware of the structure of the proposed grids. The usage and features of
the post processing tool are explained in Section A.2.

a.1 pre processing tool

The pre processing tool or grid generator for the block-structured grids is represented
by a command line tool written in the high-level programming language Python. In-
terpreted programming languages like Python allow a rapid and efficient prototyping
of different conceptual grids before applying these grids in real simulations in GENE
application, the latter being written in Fortran. Another benefit is keeping a high per-
formance code like GENE free of additional implementations like pre or post process-
ing tools, which are subject to very frequent changes. This also reduces the chances of
introducing programming errors in the high priority code. Moreover, by using Python,
we have access to scientific data visualization and plotting libraries, such as Matplotlib
(see [139]) for 2D data and Mayavi (see [140]) for 3D data. These two libraries were used
to produce most of the plots in the current work.

The purpose of the pre processing tool for block-structured grids is twofold: con-
structing the grids and theoretically estimating the grid’s properties. The main code
resides in the bsgrids.py script, which can be called from the command line. To
have help messages printed on screen, we execute the python bsgrids.py --help com-
mand, which results in the following output

usage: bsgrid.py [-h] [--debug] {cons,anlz} ...

construct or analyze different types of block-structured grids

optional arguments:

-h, --help show this help message and exit

--debug turn on logging debug mode



122 pre and post processing tools

available types of operations:

choose an option

{cons,anlz} list of tools

As this output suggests, there are two main sub-commands available: cons and anlz,
which correspond to the construction and analysis of the grid, respectively. Further-
more, there two optional arguments of general purpose: --help and --debug, where
the -help argument causes the tool to output the previous message and exit, while the
--debug argument turns on the debugging mode for an embedded logging of our tools.
The logging option is very useful during development, since they provide thorough
information on the generation process and help identify errors. All logs are saved in
the bsgrid.log file.

The main function of the aforementioned script is the construction of the block-
structured grid and is available through the cons sub-command. Like in the previous
command line example, we can use the --help argument to see all the functionality
available. Executing python bsgrids.py cons --help produces the following output:

usage: bsgrid.py cons [-h] [--plt] [--pdf PDF] [--tfi] [--nm] [--ginfo]

[--nblks NBLKS] [--vpstd VPSTD] [--nglpoints NGLPOINTS]

pfile

construct block-structured grid based on parameters file

positional arguments:

pfile parameters file name

optional arguments:

-h, --help show this help message and exit

--plt matplotlib plots on screen

--pdf PDF base name of publication quality plots in pdf format

--tfi show tfi plots

--nm do not show mesh

--ginfo provide grid info

--nblks NBLKS number of blocks in grid

--vpstd VPSTD range of vp in terms of std deviations

--nglpoints NGLPOINTS

number of Gauss-Laguerre points for mu range

As the help message explains, the block-structured grid is generated based on a para-

meters file. The minimum command to construct the grid is python bsgrids.py cons

parameters. After triggering this command, the parameters file is parsed to extract
the options described in the introduction of Appendix A. Then, the desired contour
of the simulation domain is approximated by a step-shaped contour and the result
(blk_mks_r, lv_mks, and lw_mks) is written back to the parameters file.

The grid constructor has a number of optional arguments, which are subject to fre-
quent changes. Two arguments --nblks and --vpstd are duplicating the correspond-
ing options nblks and vp_std from the bsgrid namelist. These arguments are often
tuned during the adjustment process of block-structured grids. Therefore, they are
introduced for convenience to avoid modifying the parameters file each time.
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Two other important arguments are --plt and --pdf. The first argument --plt turns
on the visual feedback for the grid construction. Examples of triggered outputs are
shown in Figure 18, Figure 19, etc. The second argument --pdf allows to save the
visualization of resulting grids in a publication-quality portable document format. The
rest of the arguments are part of the current experimental configurations and are self-
explanatory.

Next, we briefly explain two options of the grid construction specified by opt_mthd:
’integral’ and ’sum’. The ideas of these two methods are graphically represented in
Figure 55.
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Figure 55: Illustrations of two methods for finding a step-shaped approximation of the simula-
tion domain: ’integral’ (top) and ’sum’ (bottom). In the ’integral’ method, the
probability in the green area (difference between step-shaped and precise contours)
is minimized. In the ’sum’ method, the sum of differences in confidence levels (or
other measures) between the step-shaped and precise contours is minimized; the
differences are computed for the locations marked by orange dots and connected by
lines.
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The ’integral’ method minimizes the probability of the background distribution
function in the area enclosed between the step-shaped approximation and the exact
contours of the desired simulation domain. In Figure 55 (top), the corresponding area
is marked in green. The name of the method stems from the fact that we have to com-
pute integrals to evaluate the aforementioned probability. This minimization procedure
might take some time (around one minute), especially when the exact location of the
desired domain contour is known only at discrete points (experimental radial profiles)
and we have to interpolate to get a smooth representation. This issue is insignificant
when a grid is constructed just once, but becomes quite tedious when many different
configurations have to be tried before choosing the most appropriate one.

To improve the performance of the grid generation, we implement a faster version,
which is triggered by choosing the ’sum’ option. In this case, instead of evaluating in-
tegrals, we compute the sum of the confidence level (or of other quantities like parallel
velocity values) differences between the step-shaped and exact contours at fixed radial
distances. This sum is minimized to obtain the optimal step-like shape. The set of fixed
radial distances is given by experimental density and temperature profiles.

For analytic profiles, the ’integral’ method is already fast and can be used by de-
fault. Otherwise, we take 32 equidistant points (by default) on the radial range for
the ’sum’ method. The ’sum’ method is schematically represented in Figure 55 (bot-
tom), where the set of the points at which the differences are computed are marked by
orange dots and connected by lines.

The help message of the second sub-command anlz in the bsgrid.py script is similar
to the help message of the cons and is given by

usage: bsgrid.py anlz [-h] [--plt] [--pdf PDF] [--tfi] [--nm] [--ginfo]

[--nv0] [--profiles]

pfile

analyze already constructed block-structured grid

positional arguments:

pfile parameters file name

optional arguments:

-h, --help show this help message and exit

--plt matplotlib plots on screen

--pdf PDF base name of publication quality plots in pdf format

--tfi show tfi plots

--nm do not show mesh

--ginfo provide grid info

--nv0 print the number of nv0 points in final grid

--profiles output density and temperature profiles with their gradients

The purpose of this sub-command is to provide information on already generated
block-structured grids, which are described in the parameters files. The script is capa-
ble of visualizing radial profiles, block-structured grids in different subspaces, comput-
ing the final number of the grid points, etc.

The analysis and visualization of the perturbed part of the distribution function
obtained with the block-structured grid is realized in a separate post processing tool,
which is presented in the following section.
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a.2 post processing tool

GENE comes with several post processing tools such as gplot and vm_diag.sav. The
first tool provides a gnuplot based visualization (see [141]) of spatially averaged nor-
malized fluctuating quantities, which are detailed in [130]. The second tool comprises a
collection of visualization routines for GENE generated data, such as fields, moments,
velocity space, or nrg file data. This tool is written in IDL2 (see [142]), which is able to
run under the free IDL Virtual Machine without a license. For details on how to use
these tools, we refer to the GENE Manual [130].

All aforementioned tools analyze outputs files, which are generated by different
diagnostic routines implemented in GENE. The GENE diagnostic routines are imple-
mented primarily for the regular grids. Therefore, to be able to use the IDL post pro-
cessing tool, we adjusted some diagnostic routines to the block-structured grids. The
complete revision of all diagnostics for the block-structured grids is part of future
work.

During the development and verification phases of the newly introduced grids, we
need to compare or analyze not only (completely or partly averaged-out) quantities in
the phase space, but also the raw data, such as the fluctuating part of the distribution
function. For this purpose, we implemented a post processing tool, which is aware of
the block-structured grids. This tool is capable of parsing and analyzing checkpoint

and g1.dat3 files.
The post processing routines for block-structured grids can be executed with the

python script parse_bincp.py. A help command python parse_bincp.py --help prints
the following message:

usage: parse_bincp.py [-h] [--debug] {shot,anim,avg,L2,gqtest,rsc} ...

parse and visualize raw-binary gene g1 data files

optional arguments:

-h, --help show this help message and exit

--debug turn on logging debug mode

available analysis types:

choose how to post-process your binary checkpoint

{shot,anim,avg,L2,gqtest,rsc}

list of tools

This message provides six available sub-commands:

• shot: parses a checkpoint file and produces contour plots of the absolute value
of the fluctuating distribution function in different subspaces; this sub-command
can also generate vtk output files for further visualization; for the vtk file format
description, we refer to [143, 144]

• anim: parses g1.dat files to produce plots showing the time evolution of the
fluctuating part of the distribution function in different subspaces; also supports
vtk output

2 Interactive Data Language
3 These files contain ensembles of checkpoints at different time steps.
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• avg: parses g1.dat files to produce plots showing the time-averaged absolute
values of the fluctuating part of the distribution function in different subspaces;
also supports vtk output (this sub-command was used in combination with the
Paraview data analysis and visualization application (see [145, 146]) to produce
plots over line in Chapter 6)

• L2: an experimental sub-command to compute the Euclidean distance between
the perturbed parts of the distribution functions obtained with two different grids

• gqtest: an experimental sub-command, which was applied primarily to proto-
type Gauss quadrature rules in the magnetic moment direction by using data
from real simulations

• rsc: in case of a crash or when it is necessary to restart a simulation from a
certain time moment, this sub-command is capable of retrieving a checkpoint

from a g1.dat file.

The optional arguments of all presented sub-commands are similar and can be listed
by choosing --help and a corresponding sub-command. For example, the command
python parse_bincp.py avg --help prints the following self-explanatory help mes-
sage:

usage: parse_bincp.py avg [-h] [--norm]

[--fixIJKLMN FIXIJKLMN FIXIJKLMN FIXIJKLMN FIXIJKLMN

FIXIJKLMN FIXIJKLMN]

[--subd SUBD] [--spec SPEC] [--allKy] [--vtu VTU]

[--plt] [--pdf PDF] [--cmap CMAP]

[--times TIMES TIMES] [--heat]

pfile g1files [g1files ...]

parse g1.dat to produce a vtk file with the time averaged distribution

function on the corresponding regular grid

positional arguments:

pfile parameters file name

g1files file names with g1 data

optional arguments:

-h, --help show this help message and exit

--norm normalize g1 data to maximum 1

--fixIJKLMN FIXIJKLMN FIXIJKLMN FIXIJKLMN FIXIJKLMN FIXIJKLMN FIXIJKLMN

specifies fixed indices for x, ky, z, vp, w, n; the

list contains two negative indices representing which

cross-section should be post-processed; (x,y) <- sorted

from smaller to bigger negative indices;

example: -1 0 nz0/2 -2 0 0 -> (x,y) fixed = (vp, x)

--subd SUBD specifies which subdomain to parse: vx, wx, ...

--spec SPEC specifies index of species

--allKy make analysis for all ky values

--vtu VTU name base of vtk output files

--plt matplotlib plots on screen

--pdf PDF name of publication quality plots in pdf format

--cmap CMAP matplotlib color map for output plots
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--times TIMES TIMES time interval to compute the average g1

--heat visualize g1*vp**2 instead of the average absolute

value of g1

Python provides a lot of useful packages to efficiently parse and analyze the data.
However, to be able to use external applications, we introduced the --vtk option for
the corresponding output. The vtk files can be analyzed by different applications. An
example of visualizing the absolute value of the fluctuating part of the distribution
function with Paraview is shown in Figure 56. Paraview also comprises several filters

Figure 56: An example of a Paraview visualization of the fluctuating part of the distribution
function in the x – v‖ – µ subspace. The radial direction x corresponds to the Z axis
in the figure, the parallel velocity v‖ corresponds to the Y axis, and the magnetic
moment µ corresponds to the X axis.

for data analysis and visualization, which can be applied to our output files.
Our post processing tool was used for simple data analysis and visualization. Typ-

ical testing scenarios involved examining averaged quantities characteristic of quasi-
stationary states. Nevertheless, by computing averages of checkpoint samples stored
in g1.dat files, potentially interesting information may be lost. Furthermore, average
values are not always representative of the sample behavior. For instance, for cases
with more than one quasi-stationary state, the average does not adequately represent
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any of the states. In such cases, other methods might be more appropriate to char-
acterize the complex behavior, such as modelling samples with mixture models and
summarizing each mixture component by its average. Such techniques have been ap-
plied successfully for ensemble data4, to provide a proper characterization of poten-
tially multimodal distributions (see, for instance, [147, 148]). Going beyond standard
average analysis is subject of future work.

4 An ensemble is a collection of data sets, where each data set (ensemble member) has been obtained by
running the same simulation, but with slightly different input parameters.



B
S O F T WA R E D E V E L O P M E N T A S P E C T S

GENE comes with an extensive suite of coarse-grained (or integration) testing, de-
signed for a large portion of its implementation. This test suite comprises a set of
different physical scenarios with already validated simulation results. The correspond-
ing results were obtained by using regular grids. Therefore, the tests serve primarily
to check whether an optimization of the original code has not introduced any errors.

The block-structured grids of the first type are also developed by using the coarse-
grained tests. The main idea of these tests relies on comparing the results obtained with
the block-structured grids against those obtained with the regular counterparts. This
comparison is straightforward, because each block-structured grid of the first type is
constructed by removing computational nodes from a certain region of the correspond-
ing regular grid. Consequently, a regular reference grid is inherently available.

During integration tests, simulations are performed simultaneously with both block-
structured and regular grids. Grid-based data from these two simulations, such as
the fluctuating part of the distribution function or the right hand side of the govern-
ing equation, is analyzed after selected operations, comparing grid point against grid
point. The selected operations include, for instance, the whole one time step iteration or
that after specific terms of the governing equations are computed. It should be noted
that, after each time step iteration, we have to nullify the portion of the grid-based
data in the regular grid that is outside the step-shaped contour of the block-structured
grid. This is necessary in order to ensure that both grids lead to the identical compu-
tations. If the comparison detects non-identical results, the simulation terminates with
a printed message indicating the place where the test failed. This eases the process
of identifying and correcting introduced errors. Furthermore, this approach does not
require a complete implementation of the block-structured grid of the first type.

Unfortunately, this method based on integration tests does not work straightfor-
wardly for the block-structured grids of the second type. This happens because there
is no regular grid with grid points having the same locations as the block-structured
grid of the second type (unless the grid has only one block). Consequently, the grid-
based data comparison at each computational node is no longer possible. In this case,
we verify numerical results by applying convergence tests for linear runs (presented
in Section 6.1), and comparison of observables and plot over lines for nonlinear runs
(presented in Section 6.2). This kind of verification is done only if the implementation
of the block-structured grids of the second type is fully functional.

To mitigate the number of errors in the first fully functional implementation of the
block-structured grids of the second type, we follow the principles of test driven de-
velopment (for general details see [149], while, for an application pertaining to CSE1

software development, we refer the reader to [150, 151]).
Porting the block-structured grids to GENE introduces some modifications of the

original code and also requires additional implementations, such as special data struc-
tures for grid-based data. As the original code is not covered by unit tests, we apply

1 Computational Science and Engineering
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techniques described in [152] to introduce changes. One important requirement for
testing the proposed grids is the support of distributed memory parallelization. This
introduces an additional requirement of supporting parallel routines on a unit testing
platform. At the moment of choice, there was only one freely available unit testing
library targeting parallel Fortran implementations — pFUnit, for details and usage
see [153, 154].

The test driven development implies short development cycles, roughly represented
by the following course of action:

1. Write a unit test for a new (not implemented yet) feature.

2. Run the test and validate that the test harness is working correctly (old tests pass,
new introduced fail).

3. Implement the feature.

4. Run the test.

5. Refactor the code.

During the main steps of such development cycles (adding tests and implementing
new functionality), we frequently have to introduce new dependencies between vari-
ous Fortran modules. As the current default build tool is Make, these dependencies
require hand modifications of the files.mk file, which is part of Make build scripts
and maintains relations between GENE source files.

To avoid frequent modifications of the Make build scripts during the short develop-
ment cycles, we use SCons software construction tool (for details, see [155–157]), which
automatically analyzes the source files for dependencies. Furthermore, the configura-
tion scripts of this construction tool are Python scripts, which grants access to a general
purpose programming language. This could be beneficial for allowing the construction
tool to interact with the GENE launcher, which is written in Python, see [44].

When the implementation is ready for a fully functional gyrokinetic simulation, we
update the Make build scripts, which support various high performance computing
hardware.

The integration and unit tests are built as separate applications. This is reflected in a
directory tree relevant for the building with SCons, which is shown in Figure 57. In this
diagram, SConstruct is a top-level configuration. The integration and unit source files
are located in itests and utests directories, separately from the GENE source files in
src. These directories contain SConscript files, which are responsible for configuring
the build of the corresponding source files. Python configuration scripts for different
compilers and hardware reside in the scons_machines directory.

To conclude, the application of the construction tool and test platform presented
in this appendix considerably reduces the time necessary for implementing block-
structured grids. Furthermore, the test driven development approach help us achieve
a simple design of our code, because even data produced on the lowest level has to be
in a format suitable for testing (comparison with the expected values).
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GENE

SConstruct

scons_machines

gconfig.py

compilers

configuration python scripts for different compilers

folders with configurations for different hardware

configuration python script for certain hardware

src

SConscript

main GENE source files

portion_slab

source files of data structures for block-structured grids

itests

SConscript

source files of integration tests

utests

SConscript

source files of unit tests

Figure 57: The part of the GENE directory tree relevant for the software construction with
SCons. The directory names are written in bold and the file names are written in
italic.
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