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A B S T R A C T

In this dissertation we introduce a parallel, arbitrary-order accurate and
unconditionally stable numerical method for solving the scalar advection-
diffusion equation and the incompressible Navier–Stokes equations using dy-
namic Adaptive Mesh Refinement (AMR). Our work has several unique
characteristics: (1) we combine the method of characteristics with the vol-
ume integral method by using explicit-implicit time integration methods
which result in unconditionally stable schemes; (2) we support arbitrary-
order accurate piecewise Chebyshev octree-based spatial discretization; (3)
our advection-diffusion solver supports unsteady velocity fields; (4) we sup-
port shared- and distributed-memory architectures and vectorization for
modern CPUs; and (5) we allow different parallel octrees for each quantity
of interest and introduce a robust and novel partitioning scheme for hi-
erarchical domain decompositions, which defines an upper-bound for the
communication cost in distributed-memory Lagrangian schemes. In par-
ticular, in our approach, to alleviate the stability constraints proposed by
the CFL condition, we treat the advective term of the PDE of interest with a
second-order accurate, explicit, but unconditionally stable semi-Lagrangian
scheme, which transforms the PDE of interest into a constant-coefficient el-
liptic problem. Then we solve the elliptic problem with a volume integral
formulation at each time-step. The volume integrals can be computed with
arbitrary precision in space with provable a priori error estimate with opti-
mal complexity by deploying a Kernel Independent Fast Multipole Method
(KIFMM). We study the convergence, single-node performance, strong scal-
ing and weak scaling of our scheme for several challenging flows that can-
not be resolved efficiently without using high-order accurate discretizations.
We observe that using high order discretization results in significantly fewer
unknowns and therefore faster time-to-solution. For example, we consider
problems for which switching from low-order approximation to high-order
approximation for a computation with a fixed target accuracy results in
15× fewer unknowns and 40× speedup. By using dynamic AMR, we fur-
ther reduce the number of unknowns for a computation with a fixed target
accuracy and thus gain orders of magnitude speedup compared to uniform
discretization. Moreover, our novel distributed-memory octree partitioning
scheme reduces the communication cost up to a factor of twenty. For our
largest run, we solve a problem with 1.4 billion unknowns on a tree with
maximum depth equal to 10 and using 14th-order elements on 16, 384 x86
cores on the “STAMPEDE” system at the Texas Advanced Computing Cen-
ter (TACC). This is an effective resolution of nearly 100 billion unknowns
with a uniform mesh. By using the technologies developed in this disserta-
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tion both in terms of numerics and High Performance Computing (HPC),
we are able to simulate challenging and compute-intensive realistic scenar-
ios such as transport phenomena in porous medium with highly complex
pore structure.
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1
I N T R O D U C T I O N

Many problems in various scientific disciplines require understanding of
the physics of fluid flows, which are modeled with Partial Differential Equa-
tions (PDEs) describing physical concepts such as conservation laws for
mass, momentum and energy. Two well-known PDEs in this regard are
the advection-diffusion equation and the incompressible Navier–Stokes equa-
tions. The advection-diffusion equation describes the transport of a physi-
cal quantity such as energy or substance in a flowing medium, while the in-
compressible Navier-Stokes equations are a set of coupled nonlinear PDEs
which describe the flow of viscous fluids.

Our goal in this dissertation is to develop parallel numerical algorithms
with unconditional stability and high order accuracy for the advection-
diffusion and the incompressible Navier–Stokes equations with scalable
Adaptive Mesh Refinement (AMR). This requires efficient and careful math-
ematical and algorithmic design and implementation.

1.1 motivation

Solving the advection-diffusion and the incompressible Navier–Stokes prob-
lems helps to understand transport phenomena in complex fluids [56], the
dynamics of viscous flows such as blood flows [49], [75], porous media
flows [63], [81], and multiphysics simulations [3], [16], [24], [51]. Numeri-
cal methods for such phenomena find applications in biomedical engineer-
ing, i. e. , controlling localized drug delivery from artificial vesicles or un-
derstanding oxygen transport in microcirculation to geophysical problems
such as migration of contaminants in sub-surface flow or mantle convec-
tion [18]. Due to the multiple spatio-temporal scales in complex fluids and
transport phenomena, fast solvers with efficient numerical methods and
scalable AMR support are essential. Solving these PDEs presents various
challenges both in terms of numerics and High Performance Computing
(HPC). Below, we present a few of these hurdles:

1. Even the linear advection-diffusion PDE represents a challenge for
AMR algorithms. Depending on the velocity field, initial conditions
and the diffusion coefficient, the solution may develop sharp gradi-
ents that can be hard to resolve on uniform grids with low-order spa-
tial approximations. For many cases, as the dynamics occur over a
wide range of spatial and temporal scales, spatial high resolution is
required in localized regions of the domain to resolve spatio-temporal

1
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features of interest. This demands an adaptive non-uniform grid for
accurate approximation of the solution, i. e. to avoid unphysical nu-
merical dissipation in highly localized regions. Moreover, these re-
gions can dynamically change as the simulation evolves over time.
Consequently we need to adapt the mesh to the new field, which re-
quires re-balancing of the computational and memory load of the new
mesh.

2. If a conditionally stable scheme is deployed, depending on the spatial
approximation order, stability considerations may impose severe con-
straints on the time-step sizes in regions that require high spatial res-
olution to be accurately resolved. More precisely, assuming qth-order
elements and the smallest element size to be hmin, then the time-step
size δt should be O(hminq

−2), where for large q this can result in an
excessive number of time-steps.

3. An efficient solver requires the solution of elliptic problems but al-
though the underlying theory is well understood, scaling elliptic solvers
for high-order discretization on non-uniform grids is not trivial since
one needs appropriate smoothers [89].

In the following sections we provide a brief review of our methodology
and compare our methods with the alternative approaches. Moreover, we
explain how our methodology addresses the above stated challenges.

1.2 the semi-lagrangian/volume-integral method

In this dissertation we develop a parallel and highly optimized advection-
diffusion and incompressible Navier–Stokes solver. We propose an AMR
scheme that uses an explicit-implicit time-stepping scheme. In our approach
we treat the advective term of the PDE of interest with an explicit, but un-
conditionally stable semi-Lagrangian scheme to alleviate the stability con-
straints imposed by the Courant–Friedrichs–Lewy (CFL) condition. By ap-
plying the semi-Lagrangian method we transform the PDE of interest to
a constant-coefficient elliptic problem. Then we implicitly solve the elliptic
problem with a volume integral formulation. That is, the solution of the
elliptic PDE is given as a convolution of the right-hand side with the fun-
damental solution (also called the Green’s function) of the elliptic PDE. For
the advection-diffusion equation, the elliptic problem is a modified Poisson
equation with right-hand side, while for the Navier–Stokes equations this
becomes an unsteady Stokes equation, for which the fundamental solution
is known and a similar formulation can be used.

In a nutshell our approach consists of two main building blocks: a semi-
Lagrangian advection solver and a volume integral elliptic solver. In the fol-
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lowing sections, we justify our methodological choices by comparing them
with conventional alternative approaches.

1.2.1 The Semi-Lagrangian Method

The semi-Lagrangian method is a well established approach in the numeri-
cal approximation of advection dominated problems [29]. The basic idea is
to discretize the Lagrangian derivative of the solution in time instead of the
Eulerian derivative. The method involves backward time integration of the
characteristics to find the departure points of fluid particles arriving at the
Eulerian grid points. Once the departure points are computed, the values of
the advected fields can be obtained by interpolation. The main strength of
the semi-Lagrangian method is the unconditional stability and its ability to
allow large CFL numbers with no loss in accuracy [28]. Moreover, by using
the semi-Lagrangian method, instead of solving the differential equations,
we solve the characteristics equation which is much simpler.

Applying the semi-Lagrangian method to the advective term and treating
the non-advective terms with a semi-implicit method leads to a powerful
unconditionally stable scheme. As a result of the work of André Robert in
[77] and [78], the semi-Lagrangian semi-implicit methods have become very
popular in Numerical Weather Prediction (NWP) models. A comprehensive
review of semi-Lagrangian method for structured grids and its application
in atmospheric models is provided in [85]. For unstructured grids, a com-
plete references on semi-Lagrangian methods is given in [102]. The semi-
Lagrangian method can be combined with any spatial discretization ap-
proach and is also easy to use in problems with nonuniform grids as we
discuss in Chapter 4. The method has also proven to be a popular tech-
nique in simulation in many other areas of science and engineering [64].
The semi-implicit semi-Lagrangian method algorithms can be applied to
the advection-diffusion or the Navier-Stokes equations as we show in Chap-
ter 6 and Chapter 7.

In the semi-Lagrangian method both the trajectory integration and in-
terpolation influence accuracy. The spatial interpolation scheme is critical
since it is rather expensive and it can introduce too much numerical diffu-
sion and the development of overshoots and undershoots. Hence, the semi-
Lagrangian method depends strongly on the spatial discretization. There
are two parts of the semi-Lagrangian method which require off-grid in-
terpolation: (1) interpolating velocity values in trajectory calculations (2)

interpolating the advecting field values at the departure points. It is much
more important to interpolate the advecting field values accurately since
the errors in this step will be carried through to the rest of the computa-
tion. Higher-order interpolation is therefore used in most semi-Lagrangian
methods. For the one-dimensional linear advection equation, the dispersion
and diffusion errors are analyzed in [37]. For a high-order conforming finite
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element discretization a convergence proof can be found in [28]. It is also
shown that the overall error of semi-Lagrangian methods is not monotonic
with respect to the time-step size and in particular has the form

O(
δxq

δt
+ δtk),

where k refers to the order of backward time integration and q is the polyno-
mial order of the spatial discretization scheme. Similar results has been ob-
tained earlier in [65]. The arbitrary high-order spatial interpolation scheme
used in this work is described in Section 3.3.1. Our basis functions do not
form a conforming basis, they are essentially discontinuous Galerkin func-
tions. However, we do not do any flux correction other than the pointwise
semi-Lagrangian upwinding.

Typically the backward trajectory computation is performed by employ-
ing second-order implicit or explicit schemes (i. e. the mid-point rule). The
fourth-order Runge-Kutta method was employed in [44], [61] but their re-
sults did not show any improvement over the second-order schemes. For
unsteady velocity fields, in addition to spatial interpolation, also temporal
interpolation is required. We discuss our approach and implementation of
the temporal interpolation in Section 4.5.

Clearly the semi-Lagrangian method is a powerful method however it
has its limitations. For example simple semi-Lagrangian algorithms will
be difficult to parallelize. We address the parallelization issue of the semi-
Lagrangian method in Chapter 4 in detail. Mass or energy conservation
are desirable properties that numerical methods that are used in physics
simulations should possess. However, this is not guaranteed without fur-
ther modification of the semi-Lagrangian method. Because the departure
points do not necessarily coincide with the grid points, the semi-Lagrangian
method requires an off-grid interpolation of the advective field values at the
departure points, which can result in numerical dissipation and increased
cost per time step compared with competing schemes. In Chapter 3 we
introduce our arbitrary high-order spatial discretization to address the nu-
merical dissipation issue. The interpolation cost and the single-node opti-
mization techniques used in this thesis are discussed in Chapter 4.

1.2.2 The Volume Integral Method

In the second component of our methodology, which requires solution of
elliptic problems, we focus on the volume integral formulation of the PDEs
instead of the common PDE-based approaches such as finite difference, fi-
nite element or the spectral methods. That is, we obtain the solution of the
elliptic PDE by using the volume integral formulation or in other words
the convolution of the right-hand side of the PDE with the corresponding
fundamental solution. For example solution of a linear constant-coefficient
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PDE L(u)(x) = f(x), where L is the differential operator, is given as a direct
volume integral

u(x) =
∫
Ω
G(x, y)f(y)dy, ∀x ∈ Ω.

Here, G is the fundamental solution of the operator L. In this section we
provide a brief discussion of advantages and disadvantages of the volume
integral formulation and the PDE-based approaches. The discussion in [54]
also gives a comprehensive insight into the topic.

Achieving high order accuracy in the volume integral formulation is
straightforward because it only depends on the accuracy of the approxima-
tion of the right-hand side. In contrast, for PDE-based approaches the high
derivatives of the solution determines the accuracy of the scheme. Com-
pared to PDE-based approaches, where computing the derivatives results
in a loss in precision, in the integral form approach the accuracy does not
tend to degrade as we compute the derivatives. The reason for this is the
fact that in integral form, to compute the gradient of u(x) we can simply
compute the convolution with the gradient of the corresponding kernel,
which is straightforward to calculate and directly leads to the gradient of u

∇u(x) =
∫
Ω
∇G(x, y)f(y)dy.

However, one major drawback of the volume integral formulation is that
the discretization of the integral equations results in dense linear systems.
Therefore numerically computing the integral with a brute-force algorithm
has a computational complexity of O(N2), assuming we look for the solu-
tion at N different points and the function f(x) is given at N points. Ac-
celeration methods such as the Fast Multipole Method (FMM) can reduce
the complexity of the quadrature computation to O(N) by separating the
near- and far-field interactions and approximating the far interactions in a
hierarchical manner with arbitrary precision in space with provable a pri-
ori error estimates. Therefore in our approach fast algorithms are essential
to achieve high performance and parallel scalability. However, the classical
FMM is kernel dependent, in the sense that using different kernels requires
significant effort to modify the implementation and integrate the new ker-
nel into the algorithm. Hence, we use a Kernel Independent Fast Multipole
Method (KIFMM) introduced in [103]. Moreover, adaptivity to compute the
quadrature can be achieved by using an adaptive quadrature rule which
is relatively straightforward to implement by using a hierarchical domain
decomposition.

1.3 contributions

In this dissertation we propose an AMR scheme with implicit-explicit time
stepping. We use an explicit second-order semi-Lagrangian scheme for the
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advective term, which is unconditionally stable, and an implicit volume
integral solver for the elliptic PDE. For the the advection-diffusion and the
incompressible Navier–Stokes equations, the elliptic PDEs are the unsteady
diffusion and the Stokes operators with right-hand side, respectively.

Our contributions in this dissertation can be summarized as follows:

• We use an octree-based scheme with discontinuous qth-order Cheby-
shev discretization at every octree node. Elliptic problems on this dis-
cretization are solved using a volume integral equation formulation.
We use the same spatial discretization for the semi-Lagrangian advec-
tion solver, thus simplifying the coupling of the two components.

• To extend the scheme to parallel octrees with dynamic load-balancing
support, we dynamically partition a Morton-ordered space-filling curve.
We also exploit the locality properties of the Morton IDs to determine
the location of the Lagrangian particles in a dynamic adaptive hierar-
chical domain.

• The velocity values are represented with tree-based data structure at
discrete points in time. To extend the semi-Lagrangian scheme to un-
steady velocity fields, we develop efficient multiple-tree evaluation al-
gorithm for off-grid temporal interpolation/extrapolation of tree val-
ues.

• We allow for different distributed-memory partitioned trees for the
velocity and concentration. Working with the two trees can create sig-
nificant imbalances that can actually exceed memory resources due
to load imbalance. We propose a novel partitioning scheme that ad-
dresses this problem and defines an upper-bound for communication
cost for distributed-memory semi-Lagrangian schemes with minimal
increase in computational cost.

• We use an AMR scheme with dynamic load-balancing. We show that
our AMR scheme results in fewer unknowns by several orders of mag-
nitude and thus faster time-to-solution for a fixed target accuracy.

• We resolve instabilities in the semi-Lagrangian solver by remapping
the points to different grids and we optimize its flops performance.

• We study the convergence of our schemes for steady and unsteady
velocity fields. The strong and weak scaling of our solver is discussed
in various challenging scenarios, where we test our algorithm with
time-steps that are orders of magnitude larger than the CFL stability
limit. Our largest runs were done with 1 billion unknowns reaching
10 levels of refinement with 14th order elements. This is an effective
resolution of nearly 100 billion unknowns with a uniform mesh.
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Our integral equation solver and discretization are based on the open-
source Parallel Volume Fast Multipole Method (pvfmm) library [11], [62].
The semi-Lagrangian advection solver on octrees, novel partitioning algo-
rithm for multiple octrees, support of unsteady velocity field and the HPC
interpolation are all new technologies introduced in this thesis. Our im-
plementation uses Intel intrinsics for vectorization, Open Multi-Processing
(OpenMP) for shared memory parallelism, and the Message Passing Inter-
face (MPI) for internode communication.

1.4 literature overview

There is extensive literature on numerical approximation of the advection-
diffusion and the incompressible Navier–Stokes equations. But for 3D meth-
ods with unconditional stability that use high-order discretization (q > 2),
support dynamic non-uniform grids and scale on a large number of cores,
the existing work is much more limited. For low-order discretization meth-
ods, comprehensive reviews and state-of-the-art can be found in [3], [15],
[24], [67]. Low-order time adaptive semi-Lagrangian solvers are discussed
in [41]. However, none of the codes realize high order. Most codes target
fifth-order accurate schemes at most.

A third-order scheme is discussed in [36], but it uses regular grids, is
only conditionally stable (the diffusion term is treated explicitly in time)
and does not support distributed memory parallelism. A 11th-order accu-
rate code was presented in [26] with excellent scalability, but it does not
support adaptive mesh refinement. Perhaps the work closest to ours is
the one in [17] in which high-order discontinuous Galerkin elements are
discussed. A pure advection (no-diffusion) equation was solved using a
3rd-order discretization. An advection-diffusion problem was solved using
lower-order discretization. A particle method for scalar advection-diffusion
was described in [53]. However, it only supports regular Cartesian grids and
no mesh refinement. Regarding the theoretical work on semi-Lagrangian
methods, the time-step we use is described in [102]. Discontinuous Galerkin
schemes are discussed in [76], and monotonicity preserving schemes are
presented in [99]. Theoretical analysis for conforming finite elements was
introduced in [28].

Using the semi-Lagrangian method for the advective term of the Navier–
Stokes equations was first introduced in [6], [47], [71]. In [1], [44], the combi-
nation of the characteristics method with finite element method with a first-
order time integration is studied. In [12] the method of the characteristics
is combined with the integral equation formulation where the structured-
grid finite elements are used. To solve the Dirichlet problem for the un-
steady Stokes operator, they have used a double-layer boundary integral
formulation. A 2D volume potential approximation with stream function
formulation is studied in [39]. A velocity-vorticity formulation, where a La-
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grangian approach is combined with an explicit diffusion step is discussed
in [72]. In their work the volume integrals are only used to compute the
vorticity.

1.5 outline of the dissertation

This dissertation is organized into two major parts: (1) Methodology and Algo-
rithms, where we discuss the mathematical foundation and numerical and
algorithmic designs of the main building blocks of our methodology and
(2) Applications, where we apply our methodology to three eminent PDEs in
Computational Fluid Dynamics (CFD), namely, the diffusion equation, the
advection-diffusion equation and the incompressible Navier–Stokes equa-
tions.

The content of this dissertation is structured as following:

• Chapter 2 gives an overview of the mathematical foundation of our
methodology. In particular, we discuss the main idea of the semi-
Lagrangian method. The stability and error analysis of the scheme is
covered in this chapter. We also give a short overview of the potential
theory and volume integral formulation of constant-coefficient ellip-
tic PDEs such as the (modified) Laplace and the steady and unsteady
Stokes operators.

• In Chapter 3 we discuss the pvfmm library, which is used in this work
to compute the volume integrals. In this Chapter the machinery of the
pvfmm library, in particular, the piecewise Chebyshev octree-based
spatial discretization, KIFMM and the volume fast multipole method
are discussed.

• Chapter 4 is devoted to the algorithmic details of the semi-Lagrangian
method with a piecewise Chebyshev octree data structure. In this
chapter we discuss shared- and distributed-memory algorithmic de-
tails of the semi-Lagrangian method. Our novel partitioning scheme,
temporal interpolation/extrapolation for unsteady velocity fields and
the AMR approach are all discussed in this chapter.

• In Chapter 5 we describe our volume integral formulation approach
to solve the unsteady diffusion problem. Our goal in this chapter is to
validate our volume integral method as an accurate and fast alterna-
tive to common PDE-based approaches.

• In Chapter 6 we develop a second-order temporal discretization for
the advection-diffusion equation based on the Semi-Lagrangian/Volume-
Integral approach. In this chapter we conduct various numerical ex-
periments to study the convergence and also the single-node perfor-
mance of our advection-diffusion solver.
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• In Chapter 7 we extend the explicit-implicit Semi-Lagrangian/Volume-
Integral method described in Chapter 6 to the incompressible Navier–
Stokes equations. We validate our scheme by using well-know bench-
mark problems such as Taylor-Green vortex flow.

• In Chapter 8 we show parallel performance of our solver, including
isogranular (or weak) scalability along with the strong scalability for
various challenging flows. In this chapter we also compare scalability
results of our novel partitioning scheme with alternative approaches.

• Chapter 9 concludes this dissertation with possible directions for fu-
ture work.





Part I

M E T H O D O L O G Y A N D A L G O R I T H M S

This part is devoted to giving an overview of mathematical foun-
dation and algorithmic design decisions of the methodology used
in this work.

Chapter 2 covers the mathematical aspects of the two main build-
ing blocks of our methodology, the semi-Lagrangian method
and the volume integral method for elliptic PDEs.

In Chapter 3 we disucss the algorithmc details of the pvfmm

library, which solves constant coefficient elliptic PDEs by com-
puting the volume integrals with optimal complexity using ac-
celerated methods such as FMM.

In Chapter 4 we propose parallel semi-Lagrangian algorithms
for solving the scalar advection problem using dynamic Adap-
tive Mesh Refinement (AMR) with piecewise Chebyshev octree-
based spatial discretization.





2
M E T H O D O L O G Y

This chapter gives a brief overview of the mathematical foundation of the
methods used in this thesis. Our methodology consists of two main build-
ing blocks: the semi-Lagrangian method and the volume integral method for
solving elliptic PDEs.

In a nutshell, our approach is as follows: First, by applying the semi-
Lagrangian scheme to the convective term of the PDE of interest, e. g. the
Advection-Diffusion or the Navier-Stokes equation, we transform the equa-
tions into an elliptic problem. Then we implicitly solve the elliptic problem
with a volume integral formulation. The solution of the volume integral
formulation is computed as a convolution of the right-hand side with the
fundmental solution of the elliptic problem.

In this chapter we begin with a brief introduction to the Eulerian and La-
grangian schemes as alternative approaches to the semi-Lagrangian method.
To justify our choice of the semi-Lagrangian method we first highlight the
advantages and disadvantages of each scheme. Then to demonstrate the ba-
sic idea of the semi-Lagrangian method, we apply the method to the pure
advection equation. We discuss convergence and stability properties of the
semi-Lagrangian method. In particular, the main strengths of the scheme,
namely the unconditional stability and its ability to allow large CFL num-
bers with no loss in accuracy are explained.

Our next step is to introduce the mathematical foundations of the elliptic
problems and their volume integral formulation. We give a brief introduc-
tion to the potential theory and its applications in boundary value problems.
As a reference for the next chapters we also give a summary of PDEs used
in this thesis such as the (modified) Laplace and the steady and unstready
Stokes operators. We discuss the volume integral formulations of the PDEs
and derive the corresponding convolution kernels.

In this chapter we focus on the mathematical foundation of our method-
ology and postpone the numerical methods and the algorithmic details that
we employ to solve the volume integrals and the semi-Lagrangian method
to Chapter 3 and Chapter 4, respectively.

2.1 the semi-lagrangian method

There are two common ways to characterize a flow mathematically: Eulerian
and Lagrangian. The Eulerian specification of a fluid flow describes the fluid
properities from the perspective of an observer located in a fixed point in
space as time passes. For example the flow velocity is represented by a

13
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function v(x, t) of position x in a fixed coordinate system and time t. On
the other hand, in the Lagrangian specification of a fluid flow, the evolution
of the flow will be observed from the perspective of a traveling individual
parcel of fluid.

The Lagrangian and Eulerian specification of flow are related by the mate-
rial derivative. Suppose we are given a flow field v and a generic field F(x, t)
in the Eulerian specification. F can be a scalar or a vector. The total rate of
change of F, which is also often called the Lagrangian rate of change, is
given by

DF
Dt

=
∂F
∂t

+ v ·∇F, (1)

where ∇ denotes the gradient with respect to x. The first term of the right-
hand side is the local rate of change of F and the second term describes
the rate of change due to convection. In a moving coordinate system the
total derivatives become a partial time derivative and the convective term
disappears due to change of the coordinates.

In general, due to numerical stability considerations, the CFL number for
explicit methods with Eulerian schemes needs to be bounded by a constant:

CFL = |
vδt

δx
| < 1. (2)

For high spatial resolution (very small mesh size δx), this severely restricts
the time-step size δt for a given advecting wind. The severity of the con-
straint will depend upon the particular numerical scheme. However, in the
Lagrangian schemes, because the advective time limit disappears, the max-
imum time-step size is controlled entirely by non-advective processes like
viscosity and wave propagation. Therefore the Lagrangian schemes will be
both stable and accurate for far larger CFL numbers than usual Eulerian
limit. In the Lagrangian schemes one follows the evolution of the same set
of particles for the entire time horizon. Consequently, in practical applica-
tions, the Lagrangian scheme results in nonuniform distribution of particles
at later times. This leads to an inaccurate approximation of the computing
quantity in domain areas where the particles are clustered. As a result, im-
portant spatial features of flow will not be well captured in the Lagrangian
scheme.

Due to the problem of the chaotic distribution of particles in the La-
grangian schemes, this scheme has not become very popular in CFD simula-
tions. To avoid the problem of clustered particles in the Lagrangian schemes,
Wiin-Nielsen introduced the semi-Lagrangian method in the sixties [101].
The semi-Lagrangian method belongs to the general class of upwinding
methods which exploits the advantages of both the Lagrangian and the
Eulerian schemes by reseting the Lagrangian particles to the Eulerian grid
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points at each time-step. By so doing, there is no mesh deformation as
in the Lagrangian methods while the scheme is still able to use similarly
large time-steps with no loss in accuracy. A schematic comparison of the
Lagrangian and the semi-Lagrangian methods is depicted in Figure 1. As
it is shown, in the semi-Lagrangian method, at each time-step, a new set
of particles will be traced back to the initial departure points, while in the
Lagrangian scheme the particles will be tracked for the entire time horizon.

t
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t2

t3
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t5

(a) Lagrangian Scheme

t

xt0

t1

t2

t3

t4

t5

(b) Semi-Lagrangian Scheme

Figure 1: A schematic comparison of the Lagrangian and the Semi-Lagrangian methods:
(a) In the Lagrangian schemes one set of partciles will be initialized and tracked
for the entire time horizon. (b) In the semi-Lagrangian schemes, at each time-step,
a new set of particles will be traced back to their departure points.

2.1.1 One Dimensional Scalar Advection Equation

To demonstrate the basic idea of the semi-Lagrangian method we consider
the one dimensional scalar advection equation

Dc(x, t)
Dt

=
∂c(x, t)
∂t

+
dx

dt

∂c(x, t)
∂x

= 0, (3)

where

dx

dt
= v (x, t) ,

and v (x, t) is a given function. Equation (3) states that c is constant along a
trajectory (characteristics) in space-time domain. In other words, the initial
solution of c provides the exact solution for all time if the spatial arguments
are replaced with the characteristics coordinates at the corresponding time.
This provides the main idea of the semi-Lagrangian method: We imagine a
particle that at time tk+1 resides at the Eulerian grid point xE. We refer to
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the position of the same particle at time tk as its departure point, which in
our notation is denoted by Xk. If the advection is the only process occurring,
then the advected field at time tk+1 can be obtained from the the advected
field values at time tk at the departure points

c(xE, tk+1) = c(Xk, tk). (4)

The locations of the departure points can be obtained by solving the charac-
teristics backward in time by using the given velocity field. The departure
points normally do not coincide with the Eulerian grid points therefore
obtaining the values of the advected field at the departure points requires
spatial interpolation.

In a nutshell, the semi-Lagrangian scheme is made up of two main com-
ponents: (1) backward in time integration of the characteristic equation to
find the departure points of the particles arriving at the Eulerian grid points
at time tk+1, and (2) interpolation of the advected field values at time tk at
the departure points.

Figure 2: Space-time mesh for trajectory computation for one dimensional semi-
Lagrangian scheme. The solid curve is the actual trajectory. The dashed line
represents the trajectory computed by using two steps explicit midpoint rule.
Since the velocity values are available only at discrete points on space-time mesh,
the computation of departure points requires temporal (in case of unsteady veloc-
ity fields) and spatial interpolation. Here, ∆t represents the simulation time-step
size while δt is the time-step size for computing the characteristics.

Computing the trajectory requires the evaluation of velocity values at
off-grid points on the space-time grid. However, in many practical applica-
tions, the velocity values are only available at discrete points of the space-
time grid. Therefore depending on the integration method used to solve
the characteristics, multiple temporal and spatial interpolation or extrapo-
lation of velocity values are required. A schematic trajectory computation
is given in Figure 2. In this figure we solve the characteristics backward
in time by applying two steps explicit midpoint rule while using the Eule-
rian grid points as the initial condition. In Figure 2 the solid curve is the
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actual trajectory and the dashed line is the computed trajectory. The points
in space-time grid where the velocity values need to be evaluated are indi-
cated by dashed crosses.

2.1.2 Convergence and Stability Analysis

Both the time integration of the characteristics and the interpolation of the
advecting field values at the departure points influence the accuracy of the
semi-Lagrangian method. In this section a summary of the accuracy and
stability analysis of the semi-Lagrangian method for the pure advection
equation is given. The work of J.S. Sawyer in [79] is the first study which
showed that the semi-Lagrangian method can be used with longer time-
step sizes without stability issues. J.R.Bates and A.McDonald proved the
unconditional stability of the scheme for linear and quadratic interpolation
on Cartesian grids in [5]. For the variable coefficient advection case with a
finite element formulation, a general stability and convergence analysis is
given in [28]. They have shown that the overall error of the semi-Lagrangian
method is not monotonic with respect to the time-step size δt.

Theorem 2.1.1. Assuming the error in the spatial interpolation is O(δxp+1) and
the time discretization in the trajectory approximation method is O(δtk), (k is the
order of time integration method and p is the spatial interpolation order), then for a
temporal resolution δt = T/N in a time interval [0, T ], it can be shown that under
some regularity assumptions the upper bound of the L∞ error grows proportionally
to the number of time-steps used:

max
n=1,N

max
i

|c(xi, tn) − cni | 6 C[O(δt
k +Nδxp+1)]. (5)

The rather strange consequence of this error bound is that increasing
temporal resolution without increasing the spatial resolution might actually
lead to an error increase by a factor that depends on the spatial resolution.

2.2 the volume integral method

The second component in our methodology is the volume integral elliptic
solver. In this section we first give a brief introduction to the classification of
PDEs to motivate our research into the elliptic PDEs and their volume inte-
gral formulations. We begin with the Laplace equation as the simplest non-
trivial elliptic PDE. Then we derive a volume integral direct solution to the
Poisson’s equation by using the fundamental solution of the Laplace equa-
tion. We extend this approach to the modified Poisson’s equation, which
we employ in Chapter 5 and Chapter 6 to solve the advection-diffusion
equation. In the next step the non-dimensional steady and unsteady Stokes
operators and their fundamental solutions are given. In Chapter 7, we use
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these equations to develop an explicit-implicit semi-Lagrangian method for
the incompressible Navier–Stokes equations.

2.2.1 Potential Theory

In mathematics PDEs are classified as elliptic, parabolic and hyperbolic. To ex-
plain the classification of PDEs, for the sake of simplicity we only consider
the following linear PDE of second order in two variables:

auxx + 2buxy + cuyy + dux + euy + fu = g. (6)

Here, the partial derivative of u with respect to dimension i is denoted by
ui. By replacing the ux by α, uy by β, uxx by α2, uyy by β2 and uxy by αβ,
we define the polynomial

P(α,β) = aα2 + 2bαβ+ cβ2 + dα+ eβ+ j. (7)

The algebraic properties of the polynomial P(α,β) determine the mathe-
matical nature of the solution of the Equation (6). Based on the value of the
discriminat b2 − ac we classify the PDE as hyperbolic, parabolic, or elliptic.
Equation (6) is considered as hyperbolic if the discriminant is positive. The
wave equation ∂2u/∂2t = ∆u is an eminent example of hyperbolic PDEs. If
the discriminant is zero, the PDE is classified as parabolic. For the case that
the discriminant is negative we categorize the PDE as elliptic. The diffusion
equation ∂u/∂t = ∆u and the Laplace equation ∆u = 0 are well-known
examples of parabolic and elliptic PDEs, respectively.

In this thesis most problems of interest are described by elliptic PDEs.
Assuming L be a differential operator, based on the classical mathematical
theories the solution to a linear constant-coefficient elliptic PDE

Lu(x) = f(x), (8)

is given as a direct computation of the following volume integral over the
domain Ω:

u(x) =
∫
Ω
G(x, y)f(y)dy. (9)

Here, G is the Green’s function, also known as the fundamental solution or
the integral kernel of the operator L in free space. The fundamental solution
is obtained by solving

LG(x, x0) = δ(x − x0), (10)

where δ(x) is the Dirac delta function, x0 is the source point and x is the obser-
vation point. Based on the topology of the domain, Green’s functions are in
general classified into three categories: (1) The free-space Green’s function
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obtained by solving the Equation (10) for an infinite unbounded domain (2)
The Green’s function for a domain that is bounded by a solid surface and
(3) the Green’s function for a domain that is completely confined by solid
surfaces. In the following sections we give a summary of the elliptic PDEs
studied in this dissertation and their corresponding Green’s functions.

2.2.2 The Laplace Equation

The Laplace equation

∆u(x) = 0, x ∈ Rn, (11)

and its inhomogeneous version, Poisson’s equation

−∆u(x) = f(x), (12)

are the simplest non trivial elliptic PDEs. In general, any other elliptic PDE
can be considered as a generalization of these equations. Due to the fun-
damental role that the Laplace operator plays in the theory of PDEs, its
solutions have a dedicated name and are called harmonic functions.

The Laplace equation occurs frequently in applied sciences. The diffusion
process that has reached its equilibrium is an example of physics which
leads to an elliptic problem. In Chapter 5 we describe our approach to
solve the diffusion equation by applying the volume integral method. To
develop the volume integral formulation for the Laplace equation we first
require its fundamental solution. This is the function G satisfying

∆G(x) = δ(0), x ∈ Rn,

where δ is the Dirac’s delta function. Fourier analysis is one way to find the
fundamental solution. However, here we use a more elementary way which
exploits the symmetric nature of the Laplace equation. A comprehensive
study of the Laplace operator and proofs for all theorems discussed in this
and the following sections are given in [30].

Since the Laplace operator commutes with rotations, we assume its solu-
tions should be radial. That is, if u on Rn is harmonic then u(x) = ν(‖x‖) =
ν(r), where ‖.‖ is the Euclidean norm ‖x‖ =

√∑n
i=1 x

2
i .

Proposition. If u(x) = ν(r) where x ∈ Rn and r = ‖x‖ then,

∆u =
n− 1

r
ν ′(r) + ν ′′(r).

Proof. For r > 0, the first and second partial derivatives of r with respect to
dimension xi are

∂

∂xi
r =

xi
r

,
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and
∂2

∂x2i
r =

1

r
−
x2i
r3

.

Applying the chain rule and using the partial derivatives of r yields the
following equations for the second derivate of the function u with respect
to xi

∂

∂xi
u = ν ′(r)

xi
r

,

∂2

∂x2i
u = ν ′(r)

(
1

r
−
x2i
r3

)
+ ν ′′(r)

x2i
r2

,

where ν ′(r) = ∂v/∂r and ν ′′(r) = ∂2v/∂2r. Then the Laplacian of u as a
function of the derivatives of ν(r) can be written as:

∆u =

n∑
i=1

∂2u

∂2xi
=
n− 1

r
ν ′(r) + ν ′′(r).

Corollary. If u(x) = ν(r) is a radial function on Rn then u satisfies the Laplace
equation on Rn/{0} if and only if:

ν(r) =

c1 ln r+ c2 if n = 2

c1
(2−n)rn−2 + c2 if n > 3,

where c1 and c2 are constants.

Proof. In order to ν be a radial solution of the Laplace equation, it should
satisfies

n− 1

r
ν ′(r) + ν ′′(r) = 0.

Therefore what remains to be done is to solve this equation for ν(r):

ν ′′ =
1−n

r
ν ′

⇒ ν ′′

ν ′
=
1−n

r

⇒ lnν ′ = (1−n) ln r+C

⇒ ν ′(r) =
C

rn−1
,

which implies

ν(r) =

c1 ln r+ c2 if n = 2

c1
(2−n)rn−2 + c2 if n > 3.
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This is a solution of Laplace’s equation in Rn/{0} for any constants c1 and
c2. Note that the solution at r = 0 is undefined. However, we can choose
constants c1 and c2 such that −∆u = δ(0). We define the function G(x) as
follows:

G(x) =

− 1
2π ln ‖x‖ if n = 2

1
n(n−2)α(n)

1
‖x‖n−2 if n > 3,

(13)

where α(n) is the volume of the unit ball in Rn. Notice that the function
G(x) satisfies the Laplace’s equation on Rn/{0}.

Theorem 2.2.1 (Fundamental Solution of the Laplace Equation). The func-
tion G(x) defined in Equation (13) satisfies −∆G(x) = δ(0). That is, for all g

−

∫
Rn
G(x)∆g(x)dx = g(0),

and therefore G is the fundamental solution of the Laplace equation.

To motivate a solution of the Poisson’s equation based on the fundamen-
tal solution of the Laplace Equation, we define

v(x) =

∫
Rn
G(x− y)f(y)dy,

then we compute the Laplacian of v(x)

−∆xv = −

∫
Rn
∆xG(x− y)f(y)dy

= −

∫
Rn
δxf(y)dy = f(x).

This implies that v(x) satisfies the Poisson’s equation. Next, we represent
the solution of the PDE by means of potentials.

Theorem 2.2.2 (Integral Representation Formula). Assume that u ∈ C2(Ω)

where Ω is a bounded domain. Let G be the fundamental solution of the Laplace
operator in Rn. Then the following representation formula for u(x) is valid for
every x ∈ Ω:

u(x) =
∫
Ω
G(x − y)∆yu(y)dy︸ ︷︷ ︸

volume(Newton) potential

−

∫
∂Ω
G(x − σ)∇N̂(σ)u(σ)dσ︸ ︷︷ ︸

single layer potential

−

∫
∂Ω

∇N̂(σ)G(x − σ)u(σ)dσ︸ ︷︷ ︸
double layer potential

.

(14)

where ∇N̂(σ) denotes the outward normal derivate taken with respect to the domain
boundary ∂Ω.
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Theorem 2.2.2 states that the function u can be represented in Ω as the
sum of the three integrals. The three integrals in this theorem are referred to
as the volume potential, the single-layer potential and the double-layer potential.
These potentials have an important rule in representation of functions and
solutions of the principal boundary value problems in potential theory.

Now, let f be a function of compact support in Rn which means f ≡ 0
outside of a ball BR of sufficiently large radius R. Suppose the function u is
the solution of the whole-space Poisson’s equation. We assume that u has
the property that the integrals over ∂Ω of ∇N̂(σ)Gu and G∇N̂(σ)u tend to 0
as R → ∞. Now by applying the represenation formula (Theorem 2.2.2) and
letting R→∞, we obtain for any x ∈ Rn

u(x) =
∫

Rn
G(x− y)∆u(y)dy =

∫
Rn
G(x− y)f(y)dy.

Theorem 2.2.3 (Solution of the Possion’s Equation). Assume f has compact
support and f ∈ C2(Rn). Let

u(x) ≡
∫

Rn
G(x− y)f(y)dy,

where G is the fundamental solution of the Laplace equation. Then u is the solution
of the Poisson’s equation −∆u = f and u ∈ C2(Rn).

2.2.3 The Modified Laplace Equation

The modified Laplace equation and its inhomogeneous version, the modi-
fied Poisson equation arise in many areas of science and engineering. The
equation of the modified Poisson’s equation reads

αu(x) −∆u(x) = f(x), (15)

where α is a constant and f is an arbitrary function of position. When α is
zero, the equation transforms to the Poisson’s equation. One way to solve
the modified Poisson equation is using the the method of Green’s function
as we used for the Poisson’s equation. Here, without proof, we state the
fundamental solution of the modified Laplace equation

G (x, y) =
e−λr

4πr
, (16)

where λ =
√
α, x is the location of the evaluation point, y is the location

of the singularity, r = x − y and r = ‖r‖. Then, similar to the Poisson’s
problem, the solution to the modified Poission’s equation is given by the
following direct volume integral:

u(x) =
∫
Ω

e−λr

4πr
f(y)dy.
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In Chapter 5 and Chapter 6, we use the direct volume integral solution of
the Poission’s and modified Poission’s PDEs to solve the advection-diffusion
equation.

2.2.4 The Stationary Stokes Equation

The equations that govern the motion of an incompressible Newtonian fluid
are the continuity equation for the velocity field

∇ ·u = 0, (17)

and Newton’s second law for a small parcel of fluid, which is described by
the incompressible Navier-Stokes equations

∂u

∂t
+u ·∇u− µ∆u+∇p = b. (18)

Here, µ is the viscosity of the fluid, p the pressure and b is a body force,
which for simplicity we assume to be constant.

Fluid flows where the viscous forces dominate the advective inertial
forces are called Stokes flow which are also known as creeping flow. The
equations governing this kind of flow are called the Stokes equations which
in fact are a linearization of the Navier-Stokes equations and are obtained
by leaving out the time dependence and the advective terms:

−µ∆u+∇p = 0, and ∇ ·u = 0. (19)

In this section we focus on the mathematical properties of the Stokes equa-
tions and postpone the study of the physical properties of the Stokes and
the incompressible Navier–Stokes equations to Chapter 7. The common
methods to solve the linear PDEs can be applied to the Stokes equations.
However, in this thesis we solve the Equation (19) by computing the direct
volume integral formulation, which requires the fundamental solution of
the PDE. The fundamental solution of the Stokes flow is obtained by solv-
ing the continuity equation ∇·u and the singularity forced Stokes equation

−µ∆u+∇p = δ(x − x0), (20)

where x0 is an arbitrary point. The solution to Equation (20) in three dimen-
sions is given by:

G (x, y) =
1

8πµ

(
1

r
I+

r⊗ r
r3

)
, (21)

where I is the identity operator and ⊗ denotes the tensor product. This
kernel is known as Stokeslet. The derivation of the Stokeslet and a complete
discussion of this material is given in [73].
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2.2.5 The Unsteady Stokes Equation

When the inertial convective term u ·∇u in the incompressible Navier–
Stokes equations is small compared to other terms and thus can be ne-
glected, the equations governing the flow are described by the unsteady
Stokes equations, which in non-dimensional form are given by:

αu− µ∆u+∇p = 0, and ∇ ·u = 0. (22)

By solving the singularity forced unsteady Stokes equation αu − µ∆u +

∇p = δ(x − x0), we obtain the unsteady Stokeslet

G (x, y) =
1

8πµ

(
A(R)

r
I+

B(R)

r3
(r⊗ r)

)
. (23)

We define λ =
√
α
µ and R = λr. Then A(R) and B(R) are defined as

A(R) = 2e−R
(
1+

1

R
+
1

R2

)
−
2

R2
, (24)

B(R) = −2e−R
(
1+

3

R
+
3

R2

)
+
6

R2
. (25)

In Chapter 7 we employ the unsteady Stokeslet to solve the Navier-Stokes
equations.

2.3 summary

In this chapter we began with a brief introduction to the semi-Lagrangian
method, highlighting the main strength of the scheme, namely the uncon-
ditional stablity and and its ability to allow large CFL numbers compared
to the Eulerian schemes. We discussed that combing the semi-Lagrangian
method with semi-implicit methods is an elegant mean of designing uncon-
ditionally stable schemes that have proven to be quite valuable in practice.
More precisely, in our approach we treat the advective term with the Semi-
Lagrangian method and transform the advection-diffusion or the incom-
pressible Navier-Stokes equations to an elliptic problem, which we implic-
itly solve with a volume integral formulation. We recalled the mathemtical
foundation of the elliptic problems and the potential theory. In particular,
we studied the (modified) Laplace and the steady and unsteady Stokes oper-
ators and their volume integral formulations. By using hierarchical domain
decomposition and fast algorithms such as the Kernel Independent Fast
Multipole Method, the volume integral formulation is an attractive alterna-
tive to common PDE-based approaches. In the next chapter, we discuss our
numerical and algorithmic approach for the volume integral elliptic solver.
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We explain our approach to hierarchical domain decomposition and how
we achieve arbitrary-order accuracy in space. We also briefly explain the
KIFMM algorithm.





3
T H E V O L U M E I N T E G R A L E L L I P T I C S O LV E R

Many problems require to compute potentials for discrete or continuous
source distributions. Applications vary from Millennium simulations of
galaxy formation in astrophysics [43], [60], [84], [100] to acoustic scattering
[82], [95] or fluid flows [33], [59].

Computing the potential for a discrete source distribution requires sum-
mation over points. For the case of a continous source distribution, summa-
tion transforms to integration over the source density. The computational
complexity of both cases is O(N2). However, by using fast algorithms such
as FMM the computational complexity can be reduced to O(N).

As we discussed in Chapter 2 our approach in this thesis involves solving
constant-coefficient elliptic PDEs by computing volume potentials with con-
tinuous source distributions. To solve the elliptic PDEs we use the pvfmm

library [11], [62], which is a highly optimized, high-order and adaptive vol-
ume integral elliptic solver, which exploits the FMM technology to compute
the volume integrals. In this chapter we recall the main components of the
pvfmm library and its underlying numerical and algroithmic designs.

The volume FMM for two dimensions was first introduced in [27]. The
work in [54] extended the method to three dimensions. The numerical ap-
proach used in pvfmm is based on the method introduced in [54]. The
pvfmm library includes new algorithmic as well as HPC optimizations like
shared memory parallelism using OpenMP and distributed memory paral-
lelism using MPI. Its algorithms are cache optimized and support vector-
ized kernel functions. In addition, accelerators like Intel Xeon Phi coproces-
sors and Graphical Processing Units (GPUs) are supported.

For the spatial discretization the pvfmm library uses a piecewise Cheby-
shev octree data structure for both source distribution and the computed
potentials. We use the same spatial discretization in Chapter 4 for our Semi-
Lagrangian advection solver. We explain the piecewise Chebyshev octree
data structures in Section 3.3.1 in detail.

By using the KIFMM the pvfmm library is capable of computing the vol-
ume integrals for various kernels of constant coefficient elliptic PDEs like
(modified)Laplace, (un)steady Stokes and Helmholtz for free-space and pe-
riodic boundary conditions. Depending on the kernel, additional boundary
conditions such as Dirichlet or Neumann are also possible to implement. In
[63], it is shown that by using iterative linear solvers, the pvfmm library can
also be used to solve variable coefficient elliptic PDEs.

In this chapter we first provide an introduction to the particle N-Body
problems and briefly describe the main ideas behind FMM. Understanding

27
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basics of FMM is useful for understanding KIFMM, which we briefly ex-
plain in the next step. Finally we explain how the pvfmm library adapts the
KIFMM to evaluate the potential due to a continuous source distribution.

The brief introduction given in this chapter provides the context for our
volume integral approach. However, here we focus only on the key compo-
nents of the pvfmm library related to the subject of this thesis and avoid
numerical, algorithmic and performance optimization details. For a more
comprehensive explanation of the pvfmm library, we refer the interested
reader to the relevant publications [11], [62].

3.1 fast multipole method

Assume we have N source and target points. We would like to compute the
potential ui due to source points yj at each target point located at xi. This
problem is called N-body problem and can arise in many physical phenom-
ena. The total potential ui at each target point can be computed by the sum
over the potential contributed by each source point

ui =

N∑
j=1

G(xi,yj)fj, ∀i = 1, · · · ,N. (26)

Here yj and fj are the coordinates and the source density of the source
points. We refer to G as the kernel function which specifies the physics of
the problem.

The direct computation of the sum has complexity of O(N2). In order to
solve large scale N-body problems, it is essential to develop more efficient
algorithms. A number of algorithms have been proposed to address this
issue. However, the FMM has been the most successful one. The FMM com-
putes the approximation of this sum with O(N) complexity with a guaran-
teed user-specified accuracy. The FMM was first introduced by Greengard
and Rokhlin [38], [40] and was developed to speed up the calculation of
N-body problem for the long-ranged potentials. The FMM is considered to
be one of the top ten algorithms of the 20th century [22].

In FMM, the near and far interactions are separated. That is, the summa-
tion in Equation (26) will be split into two parts

ui =
∑
yj∈N

G(xi,yj)fj +
∑
yj∈F

G(xi,yj)fj. (27)

Here, N and F denote domains areas considered as near and far, respec-
tively. The near interactions are computed exactly by direct summation.
However, the contribution from far interactions can be approximated. In or-
der to indicate which computational domain areas are considered as near or
far, the FMM algorithm exploits advantages of hierarchical domain decom-
positions such as quadtrees in two dimensions or octrees in three dimen-
sions.
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·x

Figure 3: Far (blue) and near
(green) field interaction
areas. The image is from
[11]

In Figure 3 we illustrate a quadtree data
structure. In this figure the tree nodes for
far and near field interactions for a particu-
lar target point x are indicated with blue and
green color, respectively. The tree nodes fur-
ther away from the target point (tree nodes
indicated by blue color) are also called well-
separated tree nodes. The potential due to
well-separated tree nodes for a given target
node are evaluated hierarchically. That is, the
far interactions are broken into parts that are
evaluated at different tree levels.

In the following we discuss how to approx-
imate the potentials due to source points in one tree node and efficiently
translate the approximated values among different tree levels. To efficiently
represent the potentials, two types of series will be associated with each
tree node:

• Multipole Expansions approximate the potentials due to source points
within a particular tree node at target points in well-separated areas.

• Local Expansions approximate the potentials due to source points
located in well-separated areas at the points inside a particluar tree
node.

+

+
+

(a) Multipole expansion: approximating the
potentials due to source points within a
tree node at far areas.

+

+ +

(b) Local expansion: approximating the poten-
tials due to source points located in well-
separated areas at the points inside a tree
node.

Figure 4: Schematic illustration of multipole and local expansion.

In Figure 4 we schematically illustrate the multipole and local expansions.
In this figure the source points are indicated by black crosses. The areas
where the potentials needs to be approximated are highlighted with gray
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color. Figure 4a illustrates the multipole expansion, where the potential
due to the source points located inside a tree node will be approximated
at the target points located in well-separated areas. The local expansion is
depicted in Figure 4b, where the potential due the source points located in
far areas are approximated inside the tree node.

In order to develop a fast algorithm with O(N) complexity we require to
accumulate expansions from several tree nodes and combine them so that
they may be evaluated at the target points only once. More precisely, we re-
quire first a means of combining the multipole expansions from child nodes
into multipole expansion of the parent node. This will be used to compute
the coarse-scale multipole expansions from the fine-scales expansions. Sec-
ond we need to convert several multipole expansions into a single local
expansion in the target node. This is a translation between source nodes
and target nodes at the same tree level. Finally we require a translation of
the local expansion of the target node to the local expansion within each
of the target node’s children at the next tree level. Therefore the following
translation operators are defined:

• Source-to-Multiple (S2M) Translation: computes the multipole ex-
pansion coefficients due to source points in each leaf box.

• Multipole-to-Multiple (M2M) Translation: a linear operator, which
obtains the multipole coefficients of coarser level tree nodes from mul-
tipole coefficients of the children nodes by mapping the coefficients
with respect to children and parent nodes’ centers.

• Multipole-to-Local (M2L) Translation: a linear operator, which trans-
lates the multipole expansion of well separated nodes into local expan-
sion of a target node.

• Local-to-Local (L2L) Translation: a linear operator, which obtains the
contributions of far fields to the local expansion of a target node by
shifting the local expansion of its parent’s node to the center of the
target node.

• Local-to-Target (L2T) Translation: computes the far field contribu-
tions of potentials for a leaf node at its target points by evaluating its
local expansion.

In Figure 5, M2M, M2L and L2L translations are depicted.
The total field at a target point in a leaf node will be computed as the

sum of the field due to the source points in the nodes of near fields and
the contributions from sources in the far field. The later is approximated by
evaluating the local expansion of the node at the target point. Hence, the
main task in FMM is to hierarchically construct the local expansion of each
tree node. Thus the FMM algorithm can be summarized into two steps:
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(a) M2M Translation (b) M2L Translation (c) L2L Translation

Figure 5: Schematic illustration of M2M, M2L and L2L translations.

• The Upward Pass: In a post-order traversal of the tree, we compute
the multipole expansions for all leaf nodes. Then for all the non-leaf
nodes we compute the M2M translations.

• The Downward Pass: For all nodes we compute the M2L translations
from well-separated source nodes. Then in a pre-order traversal of
the tree we compute the L2L translations. In the next step we evaluate
the local expansions at the target points for all leaf nodes. Finally
we compute the direct interactions from leaf nodes that are not well-
separated and add them to the target potentials.

The expansion and translation operators introduced in the classical FMM
algorithm depend on the underlying PDE. Therefore developing an opti-
mized FMM software for various kernels can be quite cumbersome and
time consuming. In the next section we introduce the KIFMM, which ad-
dresses this issue.

3.2 kernel independent fast multipole method

In this section we discuss the Kernel Independent Fast Multipole Method
algorithm. This method has the same structure as the classical FMM but
does not require implementation of expansions and translation operators
for each underlying kernel. Instead, it requires only a black-box kernel
evaluation. The original KIFMM was introduced in [103]. The parallel im-
plementation and HPC optimizations of the method were developed in [57],
[104]. In a nutshell, the crucial element of this approach is to use the concept
of the equivalent density representations instead of the analytic expansions
and translations. That is, to represent the potential due to sources inside
a tree node, we use an equivalent density on a surface enclosing the tree
node (equivalent surface) that has the same contribution to potentials in far
field as the original sources inside the surface. To find this equivalent den-
sity, we match the potential due to original sources with the potential of
the equivalent densities at another surface in the far field (check surface). To
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compute the equivalent densities, by using the integral equation formula-
tion, the local exterior and interior problems on the check surface will be
solved. For instance, in KIFMM instead of the construction of the multipole
expansion in the upward pass in classical FMM, we solve the local exterior
inverse problems to compute the equivalent densities. More precisely, we
define a set of source points (req,B

k ,qeq,B
k ) on the equivalent surface around

the tree node B. This is depicted in Figure 6a. The points are arranged as
a m×m grid on each face of the surface, where m, the multipole order,
specifies the accuracy of the expansion. To compute the equivalent density
q
eq
k , we first compute the potential uch,B

i at points on the check surface rch,B

due to original sources inside the equivalent surface

uch,B
i =

∑
yj∈B

G(rch,B
i ,yj)qj, ∀i, (28)

where yj is position of a source inside the equivalent surface of B. Then we
solve the following linear system to obtain the equivalent density qeq,B

k

uch,B
i =

∑
k

G(rch,B
i , req,B

k )qeq,B
k , ∀i. (29)

The potential generated by the equivalent source densities qeq,B
k can accu-

rately approximate the potential due to source points inside the tree node
B at target points in well-separated nodes.

In Figure 6b, we illustrate the M2M translation in the context of KIFMM.
To compute the equivalent density for a non-leaf node B, we evaluate the
potentials due to equivalent densities of its children on the check surface
of non-leaf node. Then we compute the equivalent density of the non-leaf
node by solving the linear system as explained before.

In Figures 6c and 6d we depict the M2L expansion and the L2L transla-
tion operator for the KIFMM approach. Here, we use a similar procedure
as the multipole expansion and M2M translation to compute the equivalent
densities. However, notice the relative location of the equivalent and check
surfaces for local expansion and L2L translation.

Once M2M, M2L and L2L translation operators in the context of KIFMM
are available we can use the same algorithm as the classical FMM to solve
the N-body problems. Since computing the equivalent densities requires
only the evaluation of the kernel function G at some points on the check
surfaces (instead of multipole and local expansion of the underlying kernel),
this scheme has the advantage that it is relatively simple to extend to more
general kernels as long as the kernel is associated with a non-oscillatory
second-order elliptic PDEs such as the Laplacian, the modified Laplacian,
the steady or unsteady Stokes operators.
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Sources density

Equivalent Surface (req
k , qeq

k )

Check Surface (rch
j )

(a) Multipole expansion

Sources (rs
i , qi )

Equivalent Surface (req
k , qeq

k )

Check Surface (rch
j )

(b) Multipole to Multipole translation

Sources (rs
i , qi)

Check Surface (rch
j )

Equivalent Surface (req
k , qeq

k )

(c) Multipole to Local translation

Sources (rs
i , qi)

Check Surface (rch
j )

Equivalent Surface (req
k , qeq

k )

(d) Local to Local translation

Figure 6: Schematic illustration of multipole and local expansions as well as M2M, M2L
and L2L translations in the context of KIFMM. The images are from [11].

3.3 volume fast multipole method

In this section we describe the basic idea behind the volume FMM and how
to adapt the KIFMM to compute the potentials with continuous source
distribution where the summation in particle FMM turns to an integral.
The volume FMM computes the convolution of a given density function f
with a kernel function G

u(x) =

∫
Ω
G (x,y) f(y)dy, (30)

where G is considered to be the fundamental solution for an elliptic PDE
(see Section 2.2.1). To represent the input density function f and the poten-
tial u, the pvfmm library uses octree based spatial discretization method
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which we describe in Section 3.3.1. Thus the integral in Equation (30) is
computed as the sum of integrals over each leaf octant B in octree T:

u(x) =
∑
B∈T

∫
y∈B

G (x,y) f(y)dy. (31)

Similar to particle FMM we split each integral into near and far field inter-
actions (well-separated from the target evaluation point x)

u(x) =
∑
B∈T

(∫
N(x)

G (x,y) f(y)dy+
∫
F(x)

G (x,y) f(y)dy

)
. (32)

The far interactions are approximated by using multipole and local expan-
sions as in KIFMM and can be computed efficiently using standard Gaus-
sian quadrature. The near interactions are evaluated exactly however due
to the 1/‖x − y‖ factor in kernel functions for the target points inside or
close to the boundary of an octant this leads to singular or near-singular
integrals.

In this section we first introduce the piecewise Chebyshev octree based
data structure used in pvfmm library. Then we discuss the approach used in
pvfmm library to efficiently compute the singular integrals in the context of
this spatial disctretization. The details of the volume FMM and in particular
the error and complexity analysis of the pvfmm software can be found in
[11], [54].

3.3.1 Chebyshev Octree-based Spatial Discretization

As we explained in previous section the pvfmm library discretizes the com-
putational domain using an octree data structure. Hierarchical data struc-
tures such as octrees have a variety of important applications in areas such
as adaptive finite element methods, adaptive mesh refinement methods,
and many-body algorithms. Design and use of large scale distributed tree
data structures that scale to thousands of processors is still a major chal-
lenge and is an area of active research. The pvfmm library uses distributed-
memory parallelized Chebyshev octree data structure, which we explain in
the following. The distributed parallelization of this domain discretization
is discussed in Section 4.2.1.

piecewise chebyshev octree data structure In our approach,
the computational domainΩ is discretized by an octree T. We use piecewise
polynomial representations for discretizing the field values on this domain.
More precisely, we approximate the field values by constructing Chebyshev
polynomials of degree q in each leaf octant B ∈ T

û(x,y, z) =
∑

i+j+k6q

αB
ijkTi(x)Tj(y)Tk(z), (33)
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Figure 7: Quadtree Chebyshev approximation of two Gaussian functions positioned at two
corners of the domain. The Chebyshev grid in each octant is demonstrated via
blue dots. Recall that each octant has the same grid resolution. The approxima-
tion accuracy is controlled by tree error tolerance εtree. Adaptive refinement of
tree by increasing the spatial accuracy of the approximation is shown in multiple
snapshots.

where Tk(x) is the Chebyshev polynomial of degree k in x. To construct the
Chebyshev coefficients we evaluate the field function on (q+ 1)3 Chebyshev
grid points in leaf octant B. We use these values to construct the Chebyshev
coefficients αB

ijk (0 6 i, j,q 6 q). In Equation (33) for computational efficiecy
we use only (q + 1)(q + 2)(q + 3)/6 coefficients to approximate the field
values. In the current implementation q is fixed for each octant, thus hp-
adaptivity is not supported. To achieve spatial adaptivity we estimate the
truncation error per octant by computing the absolute sum of the highest
order coefficients

εB =
∑

i+j+k=q

|αB
ijk|. (34)

The leaf nodes with truncation errors larger than a prescribed threshold
εtree are refined recursively until the required accuracy is achieved. In case
of a multidimensional field, we treat each component independently with
a similar approach.

In Figure 7 we depict an adaptive construction of Chebyshev quadtrees
presenting two Gaussian functions positioned at two corners of the domain.
The Chebyshev grid in each octant is demonstrated via blue dots. Recall
that each octant has the same grid resolution. The approximation accuracy
is controlled by a predefined tree error tolerance εtree. As it is shown in
this figure, by decreasing εtree, more refinement is required to resolve the
field values with the desired accuracy. In the next section, we show how to
compute the singular or near singular integrals discussed in Equation (32)
on top of this spatial discretization.
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3.3.2 Singular Quadratures

We would like to compute the potential due to a single leaf octant B where
the density function in B is given as a Chebyshev polynomial approxima-
tion as described in the previous section. If the target point is located suf-
ficiently far away, we can use normal Gaussian quadrature. However, for
target points inside or close to the boundaries of the octant this requires
solving singular or near singular integrals, which can be very expensive.
For a the density function f approximated by a Chebyshev polynomials
f̂(y) =

∑
i,j,k α

B
i,j,kTi,j,k(y), the potential at a target point x due to the source

density in octant B can be computed as follows

u(x) =

∫
y∈B

G(x,y)f̂(y)

=

∫
y∈B

G(x,y)

∑
i,j,k

αB
i,j,kTi,j,k(y)


=

∑
i,j,k

αB
i,j,k

[∫
y∈B

G(x,y)Ti,j,k(y)
]

︸ ︷︷ ︸
Ii,j,k

. (35)

Then the potential due to a leaf octant B at any point can be computed as
a summation

u(x) =
∑
i,j,k

αB
i,j,kIi,j,k, (36)

where Ii,j,k is the integral over the Chebyshev basis functions for each eval-
uation point x (the integral term in Equation (35)). These integrals can be
precomputed using the Duffy transformation method [25] and a tensor-
product Gauss quadrature rule. In this way, the S2M translations and near
interactions between leaf nodes can be represented as matrix-vector prod-
ucts. For example, in the case of S2M translations, the potential quadrature
at each point on the check surface will be precomputed. Then the check
potential can be computed as

ucheck =Ms2ch ×α, (37)

where α = [α1, · · · ,αn]T are the Chebyshev coefficients representing the
source density of the leaf octant. Similar to before, we compute the equiva-
lent density by solving the linear system. A similar approach can be used
for near interactions between leaf nodes.

In volume FMM in contrast to classical particle FMM, the source density
is given as a polynomial approximation. Therefore all transformations in
classical FMM which involve source terms need to be modified. In addi-
tion, in volume FMM the target points are Chebyshev node points in each
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octant such that after computing the potentials at these targets points we
can compute the final results as a polynomial approximation by using a
linear transformation. Since the positions of the target points (Chebyshev
nodes in each octant) are fixed, the translation operators involving the tar-
get points such as L2T can be precomputed. M2M, L2L, M2L remain the
same as the particle FMM.

2 :1 balance constraint In S2M translations the target octant and
the source octant can be at the same level or can be at arbitrary coarser or
finer level relative to each other. The quadratures in Equation (36) need to
precomputed for all possible combinations of these cases. For trees with
high depth precomputing the quadrature for every possible combination
leads to enormous memory consumption and becomes quickly infeasible.
Therefore we set a maximum allowed depth for the tree. In addition, the
2:1 balance constraint needs to be enforced. That is, the adjacent leaf nodes
can be at most one level finer or coarser relative to each other. By apply-
ing these techniques the pvfmm library is capable of limiting the memory
consumption.

3.4 summary

This chapter gives a brief description of the main numerical and algorith-
mic ideas behind the pvfmm library, which is a FMM-based volume inte-
gral elliptic solver. We began with an introduction to the N-body problem
and the FMM algorithm. We showed that the FMM can solve the N-body
problems with optimal complexity by separating the near and far interac-
tions and approximating the far interactions in a hierarchical manner. In the
next step we introduced the KIFMM, which uses the concept of equivalent
density representations instead of multipole and local expansions and there-
fore compared to classical FMM is much simpler to extend to more general
non-oscillatory second-order elliptic kernels. Finally we described the vol-
ume FMM approach where we compute the potentials due to continuous
source distributions instead of discrete particles. In this case the summa-
tion in particle FMM transforms to an integral, which we compute by using
the KIFMM. We also described the piecewise Chebyshev octree spatial dis-
cretization depolyed in the pvfmm library. In the next chapter we develop
our semi-Lagrangian advection solver on top of this spatial discretization.





4
T H E S E M I - L A G R A N G I A N A D V E C T I O N S O LV E R

In this chapter we propose parallel, scalable and spatially-adaptive semi-
Lagrangian algorithms for solving the scalar advection problem on top of
a Chebyshev octree data structure. More precisely, we solve the following
advection equation for the concentration c(x, t):

∂c(x, t)
∂t

+ v(x, t) ·∇c(x, t) = 0, x ∈ Ω, (38)

with initial condition c(x, 0) = c0(x) and with either free-space or peri-
odic boundary conditions at the boundary ∂Ω of a unit cube. Here v is a
given time-dependent velocity field. The spatial discretization for both the
concentration and velocity fields is based on the arbitrary-order piecewise
Chebyshev octree data structure described in Section 3.3.1. This problem
appears in porous media flows [81], transport phenomena in complex flu-
ids [56], and multiphysics simulations [3], [24].

The advection equation presents several hurdles, both with respect to its
discretization and its solution on HPC systems. First, depending on the ve-
locity field and the initial condition, the solution c(x, t) can develop sharp
gradients that are hard to resolve. Second, the spatio-temporal scales in v
need not to be consistent with the scales of the initial condition c0. Third,
special discretization schemes are necessary for the advection scheme. If a
conditionally stable scheme is used with qth-order elements and the small-
est element size is hmin, then the time step δt should be O(hminq

−2). For
large q this can result in an excessive number of time steps. The effective
solution of these problem is the subject of this chapter.

As we explained our methodology in Chapter 2, we apply the uncon-
ditionally stable semi-Lagrangian method to solve the Equation (38). In
Section 4.1, we begin with a brief introduction to the shared-memory semi-
Lagrangian scheme, highlighting our piecewise Chebyshev octree discretiza-
tion and using the Morton IDs to determine the location of the Lagrangian
particles in a dynamic adaptive hierarchical domain decomposition. Evalu-
ating the field values at the location of the Lagrangian particles is a funda-
mental component of the semi-Lagrangian algorithm. Hence, as the next
step, we discuss our optimization techniques, such as optimization for
cache usage as well as vectorization for modern CPUs by using Intel intrin-
sics, to compute the Chebyshev polynomial interpolations at an arbitrary
set of Lagrangian points.

In Section 4.2, we extend our scheme to distributed-memory paralleliza-
tion by using MPI for internode communication. First, we describe the ap-

39
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proach used in the pvfmm library to construct distributed-memory Cheby-
shev octrees, where Morton space-filling curves are used to partition the
tree octants among MPI processes. We then discuss the the algorithm for
the semi-Lagrangian scheme on top of parallel octrees. The next step will be
to efficiently evaluate an arbitrary set of Lagrangian points at a distributed-
memory Chebyshev octree.

The tree evaluation at the positions of a set of Lagrangian particles re-
quires each process to find the leaf in the octree in which the particle is
located. If the given particle is not locarted on the local process, the remote
process that owns the element must be determined. This can be done effi-
ciently given the linear order of the octree [96].

In our implementation, in order to resolve each field with a desired accu-
racy we allow for different adaptive trees for the velocity and concentration.
However, working with two trees that are constructed and partitioned com-
pletely independent of each other can create significant imbalances that can
actually exceed memory resources due to load imbalance. In addition, the
communication cost of the semi-Lagrangian will be independent of CFL
number and depend solely on the partitioning of the concentration and ve-
locity trees. We propose a novel partitioning scheme that addresses these
issues by defining an upper-bound for communication cost in distributed-
memory semi-Lagrangian schemes with minimal increase in computational
cost. We elaborate on this in Section 4.3.

In Section 4.4 of this chapter, we discuss our dynamic AMR algorithm. By
using AMR, we show that the number of unknowns for a computation with
a fixed target accuracy can be reduced by orders of magnitude compared
to the same computation using uniform grid for the same target accuracy.

Since the velocity values are given only at discrete points in time, comput-
ing the trajectories of the Lagrangian particles in unsteady velocity fields
requires interpolation of velocity values in time. In Section 4.5 we address
this issue.

Finally, in Section 4.6, we study the convergence of our scheme in differ-
ent scenarios for steady and unsteady velocity fields and test our algorithm
with time-steps that are orders of magnitude larger than the CFL stability
limit.

4.1 shared-memory semi-lagrangian solver

In this section we describe our algorithms for implementing the semi-Lagrangian
method on top of the Chebyshev octree data structure. Recall that the semi-
Lagrangian method consists of two main components (see Section 2.1):

1. Backward trajectory computation to obtain the departure points of the
Lagrangian particles

2. Interpolation of concentration values at the departure points
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The semi-Lagrangian time-stepping scheme requires the evaluation of the
concentration and velocity fields at a large number of arbitrary points in the
domain. So, given the octree-based piecewise polynomial representation of
a function, as discussed in 3.3.1, we need to efficiently evaluate it at a large
number of arbitrary points {x1, · · · , xn}. To assign an evaluation point to a
leaf node we use the Morton encoding technology which is explained in the
next section. The algorithm to evaluate arbitrary target points at a Cheby-
shev octree is given in Section 4.1.2. Once these building blocks are avail-
able, we discuss the algorithmic details of our semi-Lagrangian advection
solver with a Chebyshev octree spatial discretization in Section 4.1.4.

4.1.1 Morton Encoding

Morton encoding is a mapping of multidimensional data to a one dimen-
sional array while preserving the locality of the data points. In this thesis,
we use the Morton encoding as a locational code to identify the Lagrangian
particles as well as the octants of a tree. By using Morton ordering, we can
represent a tree as a linear array of leaf octants.

To construct the Morton encoding for a tree octant, given three coordi-
nates of the octant’s anchor (x,y, z), and the maximum permissible depth
of the tree Dmax, we first interleave the Dmax bits length binary representa-
tion of the three coordinates. Then, we append the binary representation of
octant’s level to this sequence of bits [9], [21], [97]. To compute the Morton
Identification (Morton ID) of a point instead of an octant, we proceed with
the same procedure, however, we use the coordinates of the point as the
(x,y, z) and Dmax as its tree depth. In the followlling, we list a few interest-
ing properties of the Morton encodings that we exploit in our algorithms
in this thesis [88]:

property 1 Sorted list of the Morton IDs of all leaves of an octree in an
ascending order is eqivalent to Preorder traversal of the leaves of the
octree. By connecting the centers of the leaves, we can construct the
Morton space-filling curve (see Figure 9).

property 2 Given three octants Ba < Bb < Bc such that Bc is not one
of the descendants of the octant Bb then for each descendant of the
octant Bb, the inequality Ba < Bd < Bc. is valid.

property 3 The Morton ID of any descendents of a node is is bigger than
the node itself.

property 4 The Morton id of any node and of its first child are consecu-
tive.
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By using the Morton IDs and exploiting their properties, an octree can be
represented as a linear array of leaf-octants sorted by their Morton IDs. We
call the sorted array of leaf-octants the linear representation of the octree.

In our semi-Lagrangian advection scheme, we need to evaluate the Cheby-
shev tree at points along the characteristics. For each evaluation point, we
have to determine the leaf-octant containing that point. An efficient method
for doing this is to sort all the evaluation points by their Morton ID using a
sorting algorithm. It then becomes trivial to build correspondences between
the array of evaluation points and the array of leaf-octants when both arrays
are sorted by Morton ordering. This becomes clear in the next section.

4.1.2 Single-Node Octree Evaluation

In order to evaluate arbitrary target points at a piecewise Chebyshev octree
we first need to assign the evaluation points to leaf octants. Therefore we
compute the Morton ID mi for each evaluation point xi and then sort the
points by their Morton ID to {mk1 , · · · ,mkn}. This requires O(n logn) work.
Then for each leaf octant B we determine the Morton IDsMB for B andMB ′

for the next leaf octant in the tree B ′. In the sorted array of point Morton
IDs, we determine the index range IB such that MB 6 mki < MB ′ for each
i ∈ IB. This requires just two binary searches in the sorted array of point
Morton IDs for each B. Now, we evaluate the Chebyshev approximation at
each point (x,y, z) ∈ {xki : i ∈ IB},

cki =
∑
i6q

Ti(x)
∑
i+j6q

Tj(y)
∑

i+j+k6q

Tk(z)α
B
ijk (39)

After evaluating the Chebyshev approximation at all evaluation points for
each leaf octant, we rearrange the values {ck1 , · · · , ckn} according to the orig-
inal ordering of the points {c1, · · · , cn}. For shared memory systems, we use
an OpenMP merge-sort algorithm for sorting the Morton IDs. The proce-
dure for evaluating a Chebyshev tree at arbitrary target points is given in
Algorithm 1. In the next section, we discuss how to optimize this evaluation
process.

4.1.3 Chebyshev Interpolation Optimization

Computing the sum in Equation (39) requires O(q3) floating point opera-
tions. Even for high order approximations (q = 14), the coefficients αB

ijk

easily fit in the L1 CPU cache. Therefore for all nB evaluation points, the co-
efficients αB

ijk must be read from the main memory only once. The 3(q+ 1)
Chebyshev polynomial values Ti(x), Tj(y), Tk(z) are also available in the L1

cache. Therefore, the ratio of floating-point operations to the number of
memory accesses to main memory (arithmetic intensity) is high and when
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Algorithm 1 Evaluate Sequential Chebyshev Octree at Arbitrary Target
Points
Input:

T: Input tree
X: List of target points

Output:
V: Evaluated tree values at target points

1: procedure EvaluateSequentialTree(T,X)
2: MX ←MortonID(X)

3: N← LeafNodes(T)

4: for B ∈ N do
5: MB ←MortonID(B)

6: XB ← BinarySearch(MX,MB)

7: V← V∪ChebyshevPoly(B,XB)

8: end for
9: end procedure

carefully implemented achieves high flop-rates. We have also vectorized
the above computation for double precision using AVX vector intrinsics to
maximize the intranode performance. For double-precision AVX vectoriza-
tion, we vectorize to evaluate for 4 points together. In addition, we have
parallelized the loop over the evaluation points using OpenMP. With these
optimizations, we are able to achieve about 150gflops on a single node
of Stampede achieving 43% of peak double-precision floating-point perfor-
mance.

4.1.4 Semi-Lagrangian on a Chebyshev Octree

Our approach to implementing the semi-Lagrangian with Chebyshev octree
discretization is illustrated in Figure 8. We assume that the velocity and
concentration fields at time tk are given. The process of applying the semi-
Lagrangian method on top of a Chebyshev octree can thus be summarized
as follows: we first initialize a new tree Tk+1 with the same refinement as
the concentration tree Tck at time tk. Then we select a set of interpolation
points at each leaf-octant in Tk+1. To obtain the departure points Xk = x(tk)
at time tk, we start from the interpolation points xgrid at time step tk+1 and
use the explicit second order midpoint rule (Runge-Kutta) with backward
velocity:

x̂ = xgrid −
δt

2
v(xgrid, tk+1), (40)

Xk = xgrid − δtv(x̂, tk + δt/2). (41)
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Computing the trajectory with the midpoint scheme requires evaluating
the velocity values at times tk+1 and tk+ δt/2 for all the Lagrangian points.
For steady velocity fields where the velocity does not change over time, it
requires two tree evaluations at xgrid and x̂. However, for unsteady veloc-
ity fields, since the velocity values are given only at discrete time points,
determining the velocity values at time tk + δt

2 requires temporal interpo-
lation which is discussed in Section 4.5. Once the departure points are de-
termined, to obtain the concentration at time tk+1, we need to construct
the interpolants of the form c(Xk, tk) by evaluating the concentration so-
lution at time tk at the semi-Lagrangian point Xk. From these values at
the interpolation points, we compute the coefficients in the Chebyshev ap-
proximation, by solving a least-squares problem for each leaf octant in
Tk+1. To do this, we have to construct a piecewise polynomial approxi-
mation of the form discussed in Section 3.3.1. For a given set of n in-
terpolation points (xi,yi, zi) and i ∈ {1, · · · ,n}, we construct the matrix
Mij = Tj(xi,yi, zi). Here, Tj(x,y, z) are the Chebyshev polynomials of the
form Tj1(x)Tj2(y)Tj3(z) such that j1 + j2 + j3 6 q. We precompute the pseu-
doinverse M−1 for the matrix M. Then, from the set of n values cBi at the
interpolation points for a tree octant B, the coefficients for its Chebyshev
approximation are given by the matrix-vector product αB =M−1cB.

Typically, we want to choose the interpolation points in such a way that
the matrixM is well-conditioned. If we consider a tree octant defined by the
box [−1, 1]3 and choose the Chebyshev points (xi,yj, zj) for i, j,k ∈ {1, · · · ,n}
with xi,yi, zi = cos((2i−1)π/(2q)) as interpolation nodes, then the columns
of the matrix M are orthogonal and the matrix is well-conditioned. How-
ever, because these node points are strictly in the interior of the box, for
sufficiently small time-step size or low velocity, it results in an unstable ad-
vection scheme because no information is obtained from the octree octants
in the upstream direction. Therefore, we scale the Chebyshev interpolation
node coordinates by 1/ cos(π/(2q)).

Notice that we are using (q+ 1)3 node points to compute approximately
(q+ 2)3/6 coefficients for the Chebyshev approximation. However, we ob-
served that using fewer interpolation points results in a larger condition
number for the matrix M, which leads to a numerically unstable scheme
for long time-horizon simulations.

4.2 distributed-memory semi-lagrangian solver

To target large problems with complex geometries and high spatial resolu-
tion, due to restricted available memory at each compute node, we need to
extend our solver to support large parallel systems with multiple compute
nodes. For such problems, the tree needs to be partitioned across compute
nodes. For distributed-memory parallelism we use the Morton ID of leaf
octants for tree construction, partitioning of octants across MPI processes
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Tck Tvk Tck+1

(a)

Tck Tvk Tck+1

(b)

Tck Tvk Tck+1

(c)

Figure 8: Semi-Lagrangian with a piecewise Chebyshev octree spatial disctretization: we
assume that the velocity and concentraiton fields at time tk are given. We first
initialize a new tree Tk+1 with the same refinement as the concentration tree
Tc
k at time tk. In this figure, the interpolation points (Chebyshev grid) for a leaf

octant B are indicated by blue dots. We compute the backward characteristics for
these points using a second-order Runge-Kutta scheme (requires two evaluations
of the velocity tree) and evaluatation of the concentration values at departure
points. The evaluation points are highlighted with red dots. (a) (First row) First
evaluation of velocity tree along the characteristics. (b) (Second row) The second
evaluation of velocity tree along the characteristics. (c) (Third row) Evaluation
of concentration tree at departure points. From the values at the interpolation
points, we compute the coefficients in the Chebyshev approximation, by solving
a least-squares problem for the leaf octant B.
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and load-balancing [100]. In the Section 4.2.1, we briefly discuss these algo-
rithms.

The algorithm to evaluate an arbitrary set of Lagrangian particles at a
distributed-memory octree and the communication steps for the evalua-
tion process is comprehensively discussed in Section 4.2.2. Finally, in Sec-
tion 4.2.3, we extend our sequential semi-Lagrangian algorithm explained
in Section 4.1.4 to a distributed-memory parallel implementation.

4.2.1 Distributed-Memory Chebyshev Octrees

To construct a parallel adaptive Chebyshev octree, first we start with a set
of uniformly positioned initial seed points. We compute the Morton ID of
the seed points. Then we parallel sort the points by using the Morton ID
as the sort key and partition the points uniformly among the processes.
Each process constructs a linear octree by using its local points. The pa-
rameter maximum number of points per octant is used as the refinement
criterion. After this step, we might need to remove the duplicate octants
at the boundaries of the partitions. This gives us a uniform octree where
the leaf octants are sorted by their Morton IDs. In the next step, each pro-
cess performs the adaptive Chebyshev refinement procedure based on the
given initial values as explained in Section 3.3.1. Depending on the field
values being represented by the tree, we may encounter significant load im-
balance during the adaptive refinement. Therefore we repartition the leaf
octants whenever the load imbalance exceeds a threshold. To partition the
leaf octants of a distributed memory octree among MPI processes, we rely
on space-filling curves wich provide a unique linear ordering of all the leaf
octants of the octree. In our approach we use a Morton space-filling curve
which is one of many other space-filling curves [21]. The Hilbert curve is con-
sidered as an alternative approach with a better order-preserving behavior.
However, the calculations for the Hilbert curve are significantly more com-
pute intensive. By comparision the Morton space-filling curve is simpler to
implement. In addition, in algorithms employed in this thesis, we exploit
the considerable advantages of the ordering properties of Morton IDs to
locate the Lagrangian particles in a dynamic adaptive hierarchical domain
decomposition (see Sections 4.1.1 and 4.2.2).

The Morton space-filling curve is constructed as a distributed-memory
sorted array of the Morton IDs of all the leaf octants. Recall that the compu-
tational cost of the semi-Lagrangian method is proportional to the number
of octants in the concentration tree. Hence, to enforce the load balance we
repartition the sorted octants among processes such that each partition has
the same number of octants while we maintain the Morton ordering of the
octants. This load balancing procedure requires only point-to-point commu-
nication. An example of a Morton space-filling curve is shown in Figure 9a.



4.2 distributed-memory semi-lagrangian solver 47

(a) (b)

Figure 9: Distributed memory tree partitioning by using Morton space-filling curves: (a)
To partition the leaf octants of a distributed memory octree among MPI processes,
we use the Morton space-filling curves. The Morton space-filling curve is con-
structed by creating and distributed memory sorting of an array of the Morton
IDs of all the leaf octants. (b) Then we equally partition the sorted octants among
processes. The octants are color-coded based on the MPI process they belong to.

Figure 9b depicts the octants that are distributed over four MPI processes.
The octants are color-coded according to the MPI process they belong to.

4.2.2 Distributed-Memory Octree Evaluation

The most expensive task in our semi-Lagrangian solver is evaluating the
piecewise Chebyshev polynomial discretizations at a set of arbitrary La-
grangian points along the characteristics. In Section 4.1.2 we discussed our
approach to address this problem for the shared-memory systems. In this
section we extend our octree evaluation algorithm to distributed-memory
systems.

The procedure for evaluating an arbitrary set of Lagrangian points at a
distributed-memory partitioned Chebyshev octree is given in Algorithm 2.
In a distributed-memory context, in addition to determining the octant con-
taining the Lagrangian particle, we also need to determine the MPI process
the particle is located in its domain’s partition. To do this, similar to the
approach discussed in Section 4.1.2, we exploit the order-preserving prop-
erties of Morton IDs. More precisely, we first compute the Morton IDmi for
each local evaluation point xi and then sort the points by their Morton ID
to {mk1 , · · · ,mkn}. This requires O(n logn) work. Then, we determine the
minimum Morton ID of the current partition which is the Morton ID of the
first leaf octant Mmin

P (also called the breakpoint of the partition). Then, we
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(a) (b) (c)

Figure 10: Illustration of the separation of the local and remote query points for the par-
allel tree evaluation: (a) The query points in the yellow rank are indicated with
black dots. (b) The local and remote points are indicated with red and blue dots,
respectively. (c) The positions for the remote points need to be scattered to cor-
responding processes. After Chebyshev evaluation of the remote points, their
values will be gathered to the original process (rank yellow).

determine the Morton ID of the next partition Mmin
P ′ by global communica-

tion of the minimum Morton ID of all partitions. The values of all the points
which have a Morton ID in the range Mmin

P 6 mki < M
min
P ′ are locally avail-

able. In Algorithm 2, we denote these points with Xlocal. Determining this
range for each partition requires just two binary searches in the sorted ar-
ray of point Morton IDs. We call the remaining points remote points because
the positions of these points need to be scattered to the MPI processes of the
corresponding partitions. Each MPI process evaluates the local points and
other processes’ remote points whose values are available at the partition’s
domain of the current MPI process. In Algorithm 2, the later is denoted by
X̃local. Finally, we gather the remote points values to the original process.

The global sort for assigning Lagrangian points to octants and MPI par-
titions can be quite costly. Since the locations of the evaluation points are
related to the Chebyshev grid points, we expect the values of the majority
of the semi-Lagrangian points to be locally available. Thus, we reduce the
communication by first separating all the local points and performing the
global sort only on the remote points. For the global sorting, we use an
efficient parallel hypercube sorting algorithm [87].

In Figure 10, we illustrate the separation of the local and remote query
points for the parallel tree evaluation. In Figure 10a, the query points in
the yellow rank are indicated with black dots. In Figure 10b, the local and
remote points are indicated with red and blue dots, respectively. The po-
sitions and values of the remote points need to be exchanged with corre-
sponding MPI processes as depicted in Figure 10c.
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Algorithm 2 Evaluate Parallel Chebyshev Octree at Arbitrary Target Points
Input:

T: Parallel input tree
X: List of target points

Output:
V: Evaluated tree values at target points

1: procedure EvaluateParallelTree(T,X)
2: MX ←MortonID(X)

3: MX ←MergeSort(MX)

4: N← LeafNodes(T)

5: Mmin
P ←MortonID(N[0]) . Local breakpoint

6: Mmin ←MPI_Allgather(Mmin
P ) . Global breakpoint list

7: Mmin
P ′ ←Mmin[myrank+ 1] . Next partition’s breakpoint

8: Imin ← BinarySearch(MX,Mmin
P )

9: Imax ← BinarySearch(MX,Mmin
P ′ )

10: Xlocal ←MX[Imin · · · Imax]
11: Vlocal ← EvaluateSequentialTree(T,Xlocal) . Algorithm 1

12: Xremote ←MX \ Xlocal
13: X̃local ← ParallelSort(Mmin,Xremote)
14: Ṽremote ← EvaluateSequentialTree(T, X̃local) . Algorithm 1

15: Vremote ←MPI_Alltoall(Ṽremote)

16: V← Vlocal ∪Vremote
17: end procedure

4.2.3 Semi-Lagrangian on Parallel Chebyshev Octrees

Once an efficient distributed-memory algorithm for octree evaluation is
available (see Algorithm 2), we can extend the sequential semi-Lagrangian
scheme to distributed-memory systems by constructing the trees in a paral-
lel manner and integrating the parallel tree evaluation algorithm in the two
main components of the semi-Lagrangian, namely computing the charac-
teristics and interpolating the concentration values at the departure points.
This procedure is given in Algorithm 3.

In analogy to the sequential algorithm, we initialize a new tree for the
next time step with the same refinement as the concentration tree of the
previous time step. Each process iterates over each local leaf-octant to con-
struct a single array of the interpolation points of all the local octants in
each process. Then we solve the characteristics backward in time by using
the positions of the interpolation points as the initial value. This requires
two parallel velocity tree evaluations for each interpolation point. In the
next step we evaluate the concentration values at the departure points and
based on these values we construct the Chebyshev coefficients for each leaf-
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octant. Finally, we adapt our mesh to new values by performing our adap-
tive mesh refinement/coarsening procedure (see Section 4.4).

In general velocity and concentration values are represented by separate
octrees. This allows us to resolve each field with any desired accuracy. In
addition, by using separate velocity and concentration fields, coupling the
semi-Lagrangian solver to any other solver becomes straightforward.

However, since the trees are partitioned independently across MPI tasks,
the load balancing, minimization of communication, and efficient memory
utilization for tree evaluations in the naive implementation of the semi-
Lagrangian become quite challenging. In the next section, we address these
issues by introducing a novel tree partitioning scheme.

Algorithm 3 Semi-Lagrangian on Parallel Chebyshev Octree Data-Structure
Input:

Tc,Tv: Input tree for c and v
Output:

Updated Tc

1: procedure SolveSemiLag(Tc,Tv)
2: N← LeafNodes(Tc)

3: for each B ∈ N do
4: X← X∪ InterpPoints(B)

5: end for
6: Xdeparture ← Trajectory(Tv,X) . Multiple Algorithm 2

7: c← EvaluateParallelTree(Tc,Xdeparture) . Algorithm 2

8: for each B ∈ N do
9: αB ←M−1cB

10: end for
11: RefineTree(Tc) . See Section 4.4
12: end procedure

4.3 distributed-memory partitioning schemes

If we allow the velocity tree to be partitioned independently of the con-
centration tree (Separate-Trees (ST) approach, see Figures 11 and 12a), the
following two issues arise:

• Firstly, the evaluation points may be partitioned completely differ-
ently from the partitioning of the velocity tree, requiring a very high
communication load to send evaluation coordinates to remote veloc-
ity tree partitions and to bring back the evaluated velocity data to the
concentration tree partition. As a result, the communication cost is in-
dependent of the CFL number and depends solely on the partitioning
of the trees.
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• Secondly, for regions with a very fine concentration mesh and a coarse
velocity mesh, a very large number of evaluation points will be as-
signed to a single velocity partition causing imbalances in terms of
computation and memory. If the spatial features of the velocity and
concentration trees are very different, such imbalances can be quite
significant to the extent that they can exhaust the memory in a hard-
ware node and cause crashes.

Both issues would severely impair the scalability and robustness of our
solver. Hence, a preprocessing step is necessary to address this problem.

In Figure 11, we illustrate the Semi-Lagrangian scheme with two sepa-
rate trees Tc and Tv for the concentration and velocity values, respectively.
The two trees are constructed and partitioned independently. The blue dots
present the Chebyshev grid in the concentration tree. Starting with this grid,
we solve the characteristics with the mid-point method. The evaluation of
concentration and velocity trees along the characteristics and the departure
points are indicated with red dots. For simplicity, we present the procedure
for only one particular octant located in the domain’s partition of the yel-
low rank. For this octant, the grid positions and the evaluated velocity val-
ues need to be exchanged between blue and yellow ranks (see Figures 11a
and 11b). Once the departure points are determined, an evaluation of the
concentration tree is required which also needs internode communication
with the green rank (see Figure 11c).

As is shown in Figure 11, computing the characteristics in the Semi-
Lagrangian scheme with two separate trees which are partitioned inde-
pendently requires high communication cost. This cost is independent of
the CFL number and has no upper-bound. Conventional methods such as
creating Ghost Layers and communicating the overlapping domains before
proceeding with the semi-Lagrangian procedure can not address this issue,
since it might lead to complete replication of the velocity partitions in the
concentration tree’s processes. This results in excessive memory consump-
tion. In addition, the procedure for predicting ghost layers introduces an
additional overhead.

Typically, for reasonable CFL numbers, the displacement of the Lagrangian
points in one time-step is small. Therefore, to a large extent, the evaluation
points are distributed according to the discretization of the concentration
tree. Based on this observation, in Sections 4.3.1 and 4.3.2, we propose two
possible solutions to the above stated issues.

4.3.1 Complete-Merge Scheme

Having the same partitioning for both concentration and velocity values,
such that the same domain areas of the concentration and velocity fields
are assigned to the same MPI process, is a desirable property. Since the
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Tck Tvk Tck+1

(a) Evaluation of velocity tree along the characteristics: First Evaluation

Tck Tvk Tck+1

(b) Evaluation of velocity tree along the characteristics: Second Evaluation

Tck Tvk Tck+1

(c) Evaluation of concentration tree at departure points

Figure 11: Illustration of the Semi-Lagrangian scheme with two separate trees for the
concentration (Tc) and velocity (Tv) values. Computing the characteristics in
the Semi-Lagrangian scheme with two separate independently partitioned trees
requires high communication cost. This cost is independent of the CFL number
and has no upper-bound: (a) (First row) The two trees are constructed and
partitioned independently. The blue dots represent the Chebyshev grid in the
concentration tree. Starting with this grid, we solve the characteristics with the
mid-point method. The evaluation points in the velocity tree are indicated with
red dots. (b) (Second row) For this particular octant, the grid positions and
the evaluated velocity values need to exchanged between yellow and blue ranks.
(c) (Third row) Once the departure points are determined, an evaluation of
the concentration tree is required which also requires internode communication
with green rank.
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displacement of the Lagrangian particles in one time-step is small, this im-
proves the data locality and therefore reduces the communication cost for
computing the characteristics for Lagrangian particles.

In the Complete-Merge (CM) scheme, we achieve the same partitioning of
the trees by enforcing the same refinement for both trees. That is, we refine
the velocity tree in regions where it is coarser than the concentration tree
and similarly refine the concentration tree in regions where it is coarser
than the velocity tree. The resulting trees, which now have the same re-
finement, are partitioned uniformly across the processes. As a result both
trees have the same partitioning. The Complete-Merge scheme is depicted
in Figure 12b.

Recall that the computational complexity of the semi-Lagrangian scheme
is proportional to the number of leaf-octants of the concentration tree. That
is, the refinement introduced in the concentration tree due to the Complete-
Merge scheme increases the computational cost without contributing to the
numerical accuracy. This increase in computational cost can be severe when
the two trees refinement varies significantly. As a result, a major disadvan-
tage of the Complete-Merge approach is that depending on the spatial fea-
tures of the velocity and concentration trees, it requires a larger number
of unknowns for a fixed target accuracy. A performance comparison be-
tween the Complete-Merge scheme and the original Separate-Trees scheme
is given in Section 4.3.3.

4.3.2 Semi-Merge Scheme

The Semi-Merge (SM) approach enforces the same partitioning for both con-
centration and velocity trees with the help of some additional refinement
but allows for the two trees to have non-identical refinements. That is, an
MPI task is responsible for the same spatial region in both trees but the
number of octants in the concentration and velocity trees in the region can
differ. An example of the Semi-Merge approach is depicted in Figure 12c.

The procedure used to establish the Semi-Merge partitioning scheme is
given in Algorithm 4. To determine the new partitioning, we merge the
Morton IDs of the leaf octants of both trees and then we sort them and
partition them such that each partition has the same number of leaves. The
partitioning of these Morton IDs gives us the optimal partitioning such that
the combined number of local leaf octants of both trees is roughly the same
across all processes. However, depending on the trees’ original refinement,
some of the leaf nodes corresponding to the Morton IDs at the new partition
boundary may not exist on one of the two trees. Therefore, we introduce
these new leaf nodes by refining the trees at the new partition boundary.
Then, we can impose the new partitioning to the original trees.

This approach adds only a very small number of octants to either tree
and in general would have significantly fewer octants compared to the
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Complete-Merge approach. The main memory costs are associated with
the leaves. Therefore, partitioning the merged leaves helps with memory
load balance and makes the overall scheme robust.

The strength of the Semi-Merge method comes from the ability of the
method to enforce the same partitioning on the two trees and hence im-
proves the data locality of the velocity and concentration, without notice-
ably increasing the computational cost due to additional refinement as in
the Complete-Merge scheme. Of course this doesn’t ensure optimal work
load balance, but in practice it performs reasonably well for communica-
tion bounded problems such as the distributed-memory semi-Lagrangian
scheme.
Algorithm 4 Semi-Merge Partitioning Scheme
Input:

Tc,Tv: input trees for c and v
Output:

Semi-Merged Tc and Tv

1: procedure SemiMerge(Tc,Tv)
2: M←MortonID(Tv)∪MortonID(Tc)

3: M← ParallelSort(M)

4: M← Redistribute(M)

5: b←M[0] . New local breakpoint
6: if b /∈ Tv then
7: RefineTree(Tv,b)
8: end if
9: if b /∈ Tc then

10: RefineTree(Tc,b)
11: end if
12: RepartitionTree(Tv,b)
13: RepartitionTree(Tc,b)
14: end procedure

For small CFL numbers we can prove that our code will not crash due to
insufficient memory caused by a large load imbalance. However, for a semi-
Lagrangian scheme, it is hard to balance the memory for arbitrarily large
CFL numbers and complex velocity fields since the particle distribution
during the interpolation phase can be different from both concentration and
velocity fields. Also, it is worth noting that it would be possible to introduce
some kind of weighted partitioning to improve performance but we do
not adopt this approach in this thesis. With suitable weighting factors, the
partitioning of these Morton IDs yeilds the optimal partitioning required to
ensure that the combined work of local leaf octants of both trees is roughly
the same across all processes.
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(a) Separate-Trees (ST): The concentration and velocity trees are constructed and partitioned
independently.

(b) Complete-Merge (CM): The trees are forced to have same the refinement and thus also the
same partitioning.

(c) Semi-Merge (SM): The trees are forced to have the same partitioning with the help of some
additional refinement but are allowed to have non-identical refinements.

Figure 12: Illustration of different partitioning schemes for concentration and velocity
trees.
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4.3.3 Comparison of Partitioning Schemes

In this section we present a detailed comparison of the total runtime break-
down for the three schemes: the original Separate-Trees approach in which
we do not attempt to merge the trees (denoted by ST), the Complete-Merge
scheme (denoted by CM) and the Semi-Merge scheme (denoted by SM). In
this test scenario, the initial concentration is given by one Gaussian function
with amplitude of 1.0 and variance σ = 5e-2 placed at r = (0.7, 0.7, 0.7) in a
unit cube. We use the Hopf field as our velocity field:

v (x,y, z, t) =
A

(r2 + x2 + y2 + z2)
2

 2 (−ry+ xz)

2 (rx+ yz)

r2 − x2 − y2 − z2

 ,

where r is the constant radius to the inner coil positioned at the center of
unit cube and A = 0.05. We solve the advection problem for one time step
with δt = 2.5e-2 and low-order discretization (q = 5).

The experiments are carried out on the Stampede system at the Texas
Advanced Computing Center. Stampede nodes have two 8-core Intel Xeon
E5-2680 (2.8GHz) processors and 32GB RAM. All of our runs were done
using 1 MPI task / node and 16 OpenMP threads.

performance comparison : strong scaling In Figure 13 we study
the fixed-sized (strong) scaling results, varying the number of MPI tasks
from 32 to 512 processes for a problem size of 40 Million unknowns. We
report the detailed breakdown of the total time (Tsolve) into tree merging
(Tmerge), sorting of local points (Tsort), communicating of points with other
processes (Tcomm), Chebyshev evaluation (Teval) and tree refinement (Tref).

The communication cost is the time for communicating point coordinates
and returning the evaluated values for points which have to be evaluated
on a remote processor. The communication cost in Separate-Trees scheme
accounts for 78%− 87% of total time while in Complete-Merge scheme this
is reduced to 50% − 64% of the total time. In the Semi-Merge scheme, the
communication accounts for only 5% − 20% of total time which is a rela-
tively small percentage. We observe a reduction of communication cost in
Semi-Merge scheme by a factor of 9× to 15.6× compared to Separate-Trees
scheme and 9.7× to 14.7× compared to Complete-Merge scheme.

The time spent in partitioning of the trees is denoted by Tmerge. In the
Complete-Merge scheme this accounts for 11%−17% of the total time while
it increases to 15%− 28% of the total time in the Semi-Merge scheme. How-
ever, due to additional refinement required in the Complete-Merge scheme,
the partitioning cost in Complete-Merge is more expensive than the Semi-
Merge scheme by a factor of 1.7× to 2.75×.

We observe that for all the runs of the Complete-Merge scheme, Tref, Tsort
and Teval are more expensive than both Separate-Trees and Semi-Merge. A
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(a) Comparision of the strong scaling results for different partitioning schemes. In each column
group, we present the results of Separate-Tree, Complete-Merge and Semi-Merge schemes, re-
spectively.

Merging p q Ndof
Semi-Lagrangian

Tref Tmerge Tcomm Tsort Teval Tsolve

ST
32 5

− − − − − − −

CM − − − − − − −

SM 4.0e+7 3.9 6.2 1.3 5.2 1.4 21.8

ST
64 5

4.0e+7 0.5 − 20.4 0.4 1.5 23.3
CM 4.3e+8 3.0 5.4 17.4 4.6 1.6 34.4
SM 4.0e+7 2.2 3.1 1.3 2.9 0.7 12.4

ST
128 5

4.0e+7 0.5 − 13.7 0.2 0.8 15.6
CM 4.3e+8 1.7 4.4 13.3 2.7 1.2 24.6
SM 4.0e+7 1.4 1.6 0.9 1.4 0.4 7.0

ST
256 5

4.0e+7 0.9 − 8.7 0.1 0.5 11.1
CM 4.3e+8 1.2 1.8 9.9 1.0 0.6 15.3
SM 4.0e+7 1.6 1.0 0.9 0.8 0.2 6.3

ST
512 5

4.0e+7 0.7 − 6.3 0.0 0.3 7.9
CM 4.3e+8 1.1 1.6 6.8 0.7 0.4 11.5
SM 4.0e+7 0.7 0.9 0.7 0.4 0.1 3.5

(b) Detailed breakdown of the total time of the strong scaling experiment for different partitioning schemes.
Here, the number of processes and unknowns are denoted by p and Ndof, respectively.

Figure 13: Performance comparison of merging schemes for a strong scaling test of an
advection problem with a Hopf field as the velocity field for one time step with
δt = 2.5e-2 and low-order discretization (q = 5). All of our runs were executed
using 1 MPI task / node and 16 OpenMP threads. We report the detailed
breakdown of the total time (Tsolve) into tree merging (Tmerge), sorting of
local points (Tsort), communicating of points with other processes (Tcomm),
Chebyshev evaluation (Teval) and tree refinement (Tref). In this test case, the
Semi-Merge algorithm is more than 2× faster than the original approach and
more than 3× faster than the Complete-Merge approach.
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major disadvantage of the Complete-Merge approach is that it requires a
larger number of unknowns. Both velocity and concentration fields have
to be represented on a finer mesh than what would be required if both
quantities were represented independently on separate trees. Therefore,
the Complete-Merge scheme has a larger memory footprint and requires
more work and more communication when compared to our Semi-Merge
scheme. These drawbacks can be clearly observed in the results presented
in Figure 13, where the Complete-Merge scheme is over 3x slower than the
Semi-Merge scheme. While the original approach requires a similar num-
ber of unknowns, it is over 2x slower than the Semi-Merge scheme due
to the high communication overhead. In this test case, both the original
and the Complete-Merge approaches failed for 32 processes due to exceed-
ing memory consumption while the Semi-Merge approach performed well.
The success of the Semi-Merge method is due in part to its ability to load
balance the memory footprint required for the evaluation of Lagrangian
particles.

performance comparison : separation of local and remote

points As we discussed in Section 4.2.2, to evaluate a set of arbitrary
points on a distributed-memory tree and to locate the corresponding parti-
tion for each evaluation point, we perform a global search over the Morton
ID of the points.

In Table 1, we compare the tree evaluation cost for the three partitioning
schemes discussed in the previous section. For each partitioning scheme,
we study two cases:

1. We perform the global search on all of the evaluation points. In Table 1,
the evaluation cost for this procedure is denoted by TG.

2. We first separate the evaluation points whose values are locally avail-
able and we perform the global search only for the remote points, so
reducing the communication cost for the global search procedure. The
evaluation cost for this case is denoted by TL.

We use the same velocity and concentration field as in Figure 13 but to
increase the number of remote points the CFL number is increased by a
factor of 10. We report the time spent in the tree evaluation with different
merging schemes in a one step semi-Lagrangian with RK2 for various num-
bers of processes (strong scaling). The first two evaluations compute the
velocity values at the positions of the Lagrangian particles along the char-
acteristics, while the third evaluation computes the concentration values at
the departure points.

For the first evaluation, separating the local points and remote points for
the Complete-Merge scheme results in a speedup of 1.6× to 2.57×, while
for the Semi-Merge scheme, we achieve a speedup of 3.46×. However, the
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speedup for the Separate-Trees scheme is negligible. The first tree evalua-
tion with local points separation for the Semi-Merge scheme is up to 4×
faster than the Complete-Merge scheme, when the number of processes is
increased, the speedup decreases. In comparison with the Separate-Trees
scheme, the Semi-Merge is up to 4.15× faster, however, when the number
of processes is increased, the speedup also increases.

For the second evaluation in the velocity field, the separation of local
points for the Separate-Trees, Complete-Merge and Semi-Merge schemes
results in speedups of up to 1.5×, 1.29× and 2.7×, respectively. Again, the
Semi-Merge scheme outperforms the Separate-Trees scheme by up to a fac-
tor of 2.7× and the Complete-Merge scheme by up to a factor of 3×.

For the evaluation of the concentration tree at the departure points (third
evaluation in Table 1), the separation of the local points and remote points
for all three schemes results in better performance. However, we observe
that the Separate-Trees scheme outperforms the other schemes. The reason
for this is that synchronizing the partitioning of the velocity and concen-
tration trees improves only the velocity tree evaluations and does not nec-
essarily contribute to the concentration tree evaluations at the departure
points.

4.4 dynamic adaptive mesh refinement/coarsening

Many problems require dynamic changes in spatio-temporal scales while
evolving over time. Accurate solving of these problems can be achieved
by using higher spatial resolution or by using higher order methods both
in space and time. Problems such as mantle convection, which describes
the thermal and geological evolution of the earth [18] or climate models to
study the local effects of climate change [69] are two examples of scientific
and engineering problems, which in practice require higher resolutions to
capture the phenomena of interest in sufficient detail.

In general, problems in scientific simulations scale as Nα. The power α
can be reduced by using fast methods such as Fast Multipole Method for
N-body problems and integral equations as we exploit in this work and is
discussed in Chapter 3. A further work reduction can only be obtained by
reducing N itself [19]. This can be achieved by using AMR methods.

AMR dynamically adapts the mesh to resolve spatio-temporal features
of interest during the simulation. For many problems, high spatial reso-
lutions are required only for particular regions of the simulation domain.
For such problems, AMR can reduce the number of unknowns by orders
of magnitude by invoking higher resolution only for the area of interest in
the simulation domain. For instance, the grid refinement follows the gra-
dient of the values or the local error estimates (see Chapter 3) and other
regions of the domain will be approximated on coarser grids. However,
designing an AMR algorithm that is dynamic, scalable, and that supports
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Table 1: Comparison of the time spent in tree evaluation by performing global sort on
all evaluation points (denoted by TG) vs. separating the local points and perform-
ing the global sort only on remote points (denoted by TL). The experiment was
conducted for different merging schemes for one time-step semi-Lagrangian with
RK2 (three evaluations). The first two evaluations compute the velocity values
at the positions of Lagrangian particles along the characteristics while the third
evaluation computes the concentration values at the departure points.

Tree Evaluation

Merging p First Second Third

TL TG TL TG TL TG

ST
1

7.59 7.66 7.74 7.76 2.57 2.60
CM 27.86 28.61 28.25 28.79 9.55 10.01
SM 7.77 8.12 7.04 7.92 2.52 2.64

ST
8

2.94 4.22 3.16 4.38 0.49 0.52
CM 3.92 10.09 3.74 4.84 1.35 1.75
SM 0.97 3.13 1.42 3.87 0.51 1.26

ST
16

1.79 2.17 2.05 2.29 0.28 0.32
CM 1.79 3.08 2.28 2.95 0.95 1.14
SM 0.48 1.63 0.75 1.78 0.32 0.78

ST
32

1.08 1.17 1.19 1.80 0.20 0.22
CM 0.91 1.52 1.46 1.81 0.49 0.62
SM 0.26 0.90 0.54 1.09 0.25 0.40

high-order methods is challenging. In order to gain better performance by
using AMR methods, the time needed for AMR components should remain
small compared to the solver time, so that inefficiencies of the algorithms
for adaptivity does not balance out the gains accrued by using AMR. De-
veloping efficient parallel dynamic load-balancing for AMR that does not
require large volumes of communication is an active area of research. Effi-
cient dynamic data-structures for multiscale problems are also essential.

In general the AMR methods fall into two categories: structured (SAMR)
and unstructured (UAMR). In SAMR method, the domain is decomposed
by adaptive, hierarchical, logically-rectangular or structured triangular [4],
[66] grid regions. In contrast to SAMR, the UAMR methods deploy con-
forming unstructured elements like tetrahedra in three dimensions. Un-
structured mesh algorithms and their adaptive strategies are out of the
scope of this thesis. For a comprehensive treatment and for references to
the extensive literature on the subject one may refer to [10], [23], [48].
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The SAMR methods are first developed in [7], [8] for shock hydrodynam-
ics problems but they have proved to be popular technique in other areas
such as CFD [2], [4], [52], [74], [90], [92] and cosmology and astrophysics
[14], [32]. A comprehensive review and references of SAMR methods are
provided in [23]. In this work, we take a great advantage of features of
tree-based SAMR method such as higher performance due to regular grid
structure and being able to reuse the structured grid code in nested do-
main components (see Section 3.3.1). In the following, we explain the essen-
tial components of our dynamic AMR, namely our tree refining/coarsening
algorithm and our dynamic mesh adaptation approach.

4.4.1 Tree Coarsening/Refining Procedure

The tree refining operation is designed to be local. Each process first builds
a list of all local leaf-octants by a post order traversal of the local tree. Then
we proceed with adaptive refinement of leaf-octants in the list. More pre-
cisely, we iterate over each leaf-octant in the list and check if it satisfies
the refinement criteria. That is, we estimate the truncation error per octant
by computing the absolute sum of the highest order coefficients (see Equa-
tion (34)) and in the event that the estimated error is bigger than the prede-
fined tree error tolerance, we subdivide the octant into eight childeren and
continue with the same procedure for the children, by adding them to the
leaf-octants list. This procedure continues until all the leaf-octants reach the
desired accuracy or the maximum permissible tree depth is reached. This
is done directly on the octree and consists of completely local operations
requiring no internode communication.

The Chebyshev coefficients of the newly created children are constructed
from the values of the parent octants. That is, we evaluate the values at
the Chebyshev node points of the new child octant. Then, obtaining the
coefficients from the points is accomplished using a tensor product rule as
it is explained in Section 3.3.1 (by applying 1D Chebyshev approximation
in each direction).

The independent local refinement of the tree can lead to load-imbalance.
To balance the load and avoid exceeding local memory, the mesh must be
redistributed uniformly among all processes. Consequently in the next step
we determine the load-imbalance by counting the number of octants in each
process (require MPI_Allreduce communication) and repartition the octants
if the load-imbalance has exceeded a predefined threshold (requires point-
to-point communication). The tree coarsening procedure follows a similar
approach, examining the local partition of the octree for eight leaves from
the same parent that satisfy the coarsening criteria.
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4.4.2 Dynamic Mesh Adaptation

Since the spatial features of the solution evolve over time, we need to dy-
namically adapt the mesh to the changing distribution of the concentration
values. In our semi-Lagrangian implementation in Algorithm 3, we first ini-
tialize a tree with the same refinement as in the previous time-step. Once
we have computed the values of the new time-step and stored them in this
tree, we call the Coarsen/Refine procedure to adapt the mesh to the new
field values. In our implementation, we adapt the mesh to the new values
after each time-step. However, depending on the speed of the propagation
of information in our domain and the CFL number, the AMR procedure
can be performed every few time-steps.

In Figure 14 we present the visualization of a slotted Zalesak disk in
a rotating velocity field and a sequence of meshes that are adapted to the
Zalesak disk as it changes over time. In this example, the maximum permis-
sible tree depth is Ddepth = 7 and we use high order spatial discretization
q = 14. This is an effective resolution of nearly 1 billion unknowns with a
uniform mesh.

4.5 semi-lagrangian with unsteady velocity fields

So far we have considered only transport problems with steady velocity
v(x) where the velocity does not change over time. Computing the tra-
jectory for Lagriangian particles using the explict second order midpoint
rule requires the evaluation of velocity fields at times tk+1 and tk + δt/2

along the characteristics (see Equations (40) and (41)). For steady velocity
fields, no temporal interpolation of discrete velocity values is required and
therefore we can exploit the same parallel tree evaluation described in Sec-
tion 4.2.2. However, since the velocity values are normally given at discrete
points in time, the evaluation for unsteady velocity fields at time tk + δt/2
requires additional treatment.

In this section, we propose two possible solutions to off-grid temporal
evaluation for unsteady velocity values represented with a tree data struc-
ture at discrete points in simulation time. We consider the following two
scenarios:

1. The velocity field is available for any arbitrary number of future time-
steps and is not affected by the features of the concentration field.
For example, the coupling of velocity and concentration values is one
directional and the velocity values are obtained independently from a
separate solver.

2. The velocity values are not available in future time-steps. For example,
the velocity itself is the quantity of interest we are computing. Solving
the incompressible Navier–Stokes equations by treating the advective
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(a) T = 0. (b) T = π/2.

(c) T = π. (d) T = 3π/2.

(e) T = 2π. (f) T = 5π/2.

Figure 14: Illustration of rotating slotted Zalesak’s disc in 3D in a vorticity velocity
field with dynamic AMR. The figure shows the snapshots of meshes that are
adapted to the Zalesak disk as it changes over time. The orange area represent
the Zalesak disc and the blue area shows the corresponding adapted meshes.
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term with the semi-Lagrangian scheme (see Chapter 7) falls into this
category.

In the next section, we address the first scenario by using a cubic interpo-
lation procedure for time-dependent fields, while for the second scenario,
we deploy a second-order extrapolation scheme which is discussed in Sec-
tion 4.5.2.

4.5.1 Temporal Interpolation Scheme

We would like to interpolate a time-dependent field v(x, t) at a given query
time tq for a given set of N interpolation points X = {xj : j ∈ {0, · · · ,N−

1}}. We assume the field values are given at a set of m discrete points
in time {tk−m/2+1, · · · , tk+m/2}. The field values at each of the time snap-
shots are represented with a piecewise Chebyshev octree data structure
{Ttk−m/2+1 , · · · ,Ttk+m/2}.

To interpolate the tree values at time {tq : tk < tq < tk+1} at positions
xj ∈ X we first evaluate each of the trees Ti and i ∈ {tk−m/2+1, · · · , tk+m/2}
at all the evaluation points in X by using our parallel tree evaluation pro-
cedure described in Algorithm 2. In this way, we construct m interpola-
tion data points {vtk−m/2+1(xj), · · · , vtk+m/2(xj)} for each evaluation point xj.
By using these interpolation data points and a (m− 1)-order interpolation
scheme, we approximate the field values at time tq. This procedure is given
in Algorithm 5.

In our semi-Lagrangian implementation, we use the above stated algo-
rithm to interpolate the time-dependent velocity values at off-grid points in
a space-time mesh. We use cubic interpolation, which requires 4 snapshots
of the velocity values {T

tk−1
v , · · · ,Ttk+2

v }. We evaluate the trees at evaluation
points and construct the 4 interpolation data points {vtk−1(xj), · · · , vtk+2(xj)},
which we use to compute the cubic interpolation at time {tq : tk < tq <

tk+1}. This procedure is depicted in Figure 15. We have also vectorized the
cubic interpolation by using AVX vector intrinsics such that we interpolate
four evaluation points together.

vk−1(x0) vk−1(x1) vk−1(x2) vk−1(x3)

. . .

. . .
vk−1(xN−1)vk−1(xN−2)vk−1(xN−3)vk−1(xN−4)

vk(x0) vk(x1) vk(x2) vk(x3)

. . .

. . .
vk(xN−1)vk(xN−2)vk(xN−3)vk(xN−4)

vk+1(x0) vk+1(x1) vk+1(x2) vk+1(x3)

. . .

. . .
vk+1(xN−1)vk+1(xN−2)vk+1(xN−3)vk+1(xN−4)

vk+2(x0) vk+2(x1) vk+2(x2) vk+2(x3)

. . .

. . .
vk+2(xN−1)vk+2(xN−2)vk+2(xN−3)vk+2(xN−4)

Interpolate

Figure 15: Temporal interpolation of a time-dependent velocity field represented with
piecewise Chebyshev Octree data structures at multiple discrete points in time.
We construct interpolation data points {vtk−1(xj), · · · , vtk+2(xj)} by evaluat-
ing the velocity snapshots {Ttk−1

v , · · · ,Ttk+2
v } at N evaluation points xj.
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By replacing the parallel tree evaluation in our trajectory computation al-
gorithm with the parallel tree interpolation algorithm stated above, we ex-
tend our transport solver for unsteady velocity fields. However, this method
is only applicable to problems where the velocity field is decoupled form
the concentration field and its values are available in m/2 time-steps in
advance, where m is our desired interpolation order.

Algorithm 5 Temporal Interpolation for Unsteady Fields.
Input:

{T
tk−m/2+1
v , · · · ,T

tk+m/2
v }: velocity trees at multiple discrete time snap-

shots
X, tq: queried space and time

Output:
V: interpolated values at time tq and position X

1: procedure InterpolateParallelTrees( {T
tk−m/2+1
v , · · · ,T

tk+m/2
v },X, tq)

2: for i ∈ {tk−m/2+1, · · · , tk+m/2} do
3: m[i]← EvaluateParallelTree(Tiv,X) . Algorithm 2

4: end for
5: V← Interpolate(m, tq)
6: end procedure

4.5.2 Temporal Extrapolation Scheme

In the previous section, the velocity at time tk+δt/2was computed by inter-
polating the velocity values using data points at times {tk−m/2+1, · · · , tk+m/2}
where m is a positive integer number and depends on the order of the in-
terpolation scheme. However, for the equations where the semi-Lagrangian
method is used to compute the velocity itself (such as the Navier–Stokes
equations in Chapter 7), the trajectory computing scheme described in Sec-
tion 4.5.1 can not be applied because the velocity field is not given in ad-
vance at any future time-steps. For this category of problems, we apply a
modified version of the explicit second order midpoint rule described in
[102]:

x̂ = xgrid −
δt

2
v(xgrid, tk), (42)

xd = xgrid − δtv(x̂, tk + δt/2). (43)

This differs slightly from the classical Runge-Kutta method (Equations (40)
and (41)) because the first stage (Equation (42)) uses the velocity v(xgrid, tk)
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rather than v(xgrid, tk+1). In the second stage (Equation (43)) the velocity at
tk + δt/2 is approximated using the second-order extrapolation:

vk+1
2
=
3

2
vk −

1

2
vk−1. (44)

In the next section, we deploy both interpolation and extrapolation schemes
to compute the trajectory in our semi-Lagrangian implementation and com-
pare the convergence and stability features of both methods for complex
unsteady velocity fields like Taylor-Green vortex flow.

4.6 numerical results

We conduct numerical experiments to demonstrate the correctness of our
semi-Lagrangian advection solver discussed in this chapter. All experiments
were carried out on the Stampede system at the Texas Advanced Comput-
ing Center. In Section 4.6.1, we consider the steady Taylor-Green vortex
velocity field to demonstrate the convergence of the advection solver. We
conduct the experiment for both uniform and adaptive tree data structures
and also report the single-node time-to-solution results to compare the per-
formance results of the AMR scheme. In Sections 4.6.2 and 4.6.3, we study
the convergence behavior of our solver for simple and complex velocity
fields. Moreover, for unsteady velocity fields, we compare the error of the
scheme for both temporal interpolation and extrapolation methods.

4.6.1 Convergence Study: Steady Taylor-Green Vortex Flow

To demonstrate the convergence of the advection solver, we consider the
steady Taylor-Green vortex velocity (see Figure 16):

v (x,y, z, t) =

 cos (2πx) sin (2πy) sin (2πz)

sin (2πx) cos (2πy) sin (2πz)

sin (2πx) sin (2πy) cos (2πz)

 . (45)

A Gaussian function is used for the initial concentration field. Since no ana-
lytical solution for this problem is available, to compute the error, we advect
the concentration field for the second half of the time horizon with the re-
versed velocity field and compare our solution with the initial condition. We
present convergence results for this test case for uniform and adaptive trees
in Table 2. For the uniform case, we increase the depth of the tree L and the
temporal resolution and report the error for a fixed time-horizon (T = 1.0).
For the case of the adaptive tree we control the error by reducing the tree re-
finement tolerance εtree. We present results for two different discretization
orders (q = 8, 14). In each case we conduct experiments to show conver-
gence as we reduce the time-step size δt while keeping the time horizon for
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the simulation fixed. We report the relative L∞ and L2 norm of the error at
t = T . The refinement tolerance for the Chebyshev tree is chosen experimen-
tally to minimize the number of unknowns Ndof while keeping the final
solution error unchanged. We also report the total time to solution Tsolve.

Figure 16: Visualization of the
steady Taylor-Green ve-
locity field.

We show the results for different time-
step sizes. Starting with δt = 0.01 and 100
time steps, we achieve about two digits of
accuracy for the uniform tree and three dig-
its of accuracy for the adaptive tree with
moderate discretization of order q = 8. For
high discretization of order q = 14 with the
same setup, we achieve better accuracy by
up to one order of magnitude. In the next
step, we reduce the time-step size by 2× to
δt = 5e-3 (200 time steps) while decreasing
the spatial tolerance. For the uniform case
we increase the maximum level of the tree
by one and for the adaptive case we reduce
the tree tolerance by a factor of 10. As the temporal and spatial resolu-
tion is increased in this way, we observe in the solution with moderate
discretization for both the uniform and adaptive trees that the L∞ error
drops approximately by a factor of 28×. For high order discretization, we
observe a factor of 164× reduction in error for the uniform tree and a factor
of 26× reduction for the adaptive tree. We achieve 7 digits of accuracy, as
we reduce the time-step size to δt = 2.5e-3 (400 time steps). For the same
accuracy, an adaptive mesh requires significantly fewer degrees-of-freedom
and hence, has lower computation costs. For 7 digits of accuracy, using an
adaptive mesh is about 10× faster compared to a uniform mesh.

4.6.2 Convergence Study: Unsteady Vorticiy Flow

In this section, we show convergence results for an advection problem
in a simple unsteady vorticity velocity field defined by v(x,y, z) = (1 +

sin(2πt))(−xı̂ + y̂). The initial concentration is given by a Gaussian func-
tion placed at location R0 = (0.6, 0.5, 0.5) in a unit cube Ω = [0, 1]3 with
variance σ = (6e-2, 6e-2, 6e-2) and amplitude 1.0. The analytic solution for
the concentration at a point r and time t is given by,

c(r, t) = exp
(
−
|r− R(t)|2

2σ2

)
, (46)

where

R(t) = |R|

(
cos
(
θ0 + t−

cos(2πt) − 1

2π

)
ı̂ + sin

(
θ0 + t−

cos(2πt) − 1

2π

)
̂

)
.
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Table 2: Convergence of the advection solver for steady Taylor-Green vortex flow with the
Gaussian function as the concentration field with uniform and adaptive trees. We
present results for two different discretization orders (q = 8, 14). In each case,
we conduct experiments to show convergence as we reduce the time-step size δt
while keeping the time horizon for the simulation fixed. Tsolve is the overall time
in seconds at a single node. L is the maximum level of the tree for the uniform
case. The tree refinement tolerance for the adaptive trees is denoted by εtree. We
observe that for 7 digits of accuracy, using an adaptive mesh is about 10× faster
compared to a uniform mesh.

q δt Niter
Uniform Tree Adaptive Tree

L L2 L∞ Tsolve εtree L2 L∞ Tsolve

8 1.0e-2 100 3 3.5e-2 2.5e-2 7.79 1e-3 3.2ee-3 2.7e-3 12.83
8 5.0e-3 200 4 1.3e-3 8.7e-4 93.78 1e-4 2.9ee-4 9.9e-5 57.03

14 1.0e-2 100 3 1.7e-3 1.3e-3 38.52 1e-3 1.7ee-3 6.0e-4 20.49
14 5.0e-3 200 4 7.5e-6 7.9e-6 525.48 1e-5 2.6ee-5 2.3e-5 133.88
14 2.5e-3 400 5 1.6e-7 2.8e-7 8059.58 1e-7 3.2ee-7 2.0e-7 809.80

In Table 3, we show the convergence results for a fixed time horizon T =

[0, 1.0]. We use a high order discretization q = 14 and we set the tree re-
finement tolerance to εtree = 1e-9. By using high-order accurate spatial
discretization and keeping the spatial accuracy fixed for all runs, we ensure
that our time integrator is the main source of error. We report the results
for two time integrators for unsteady fields, namely, the integrator using
the interpolation scheme and the one using the extrapolation scheme.

Starting with δt = 2.5e-1 and 4 time-steps, we achieve two digits of ac-
curacy with the interpolation time integrator, while the extrapolation time
integrator delivers only one digit of accuracy. We observe a 4× reduction
in error as we continue to reduce the time-step size by a factor of 2 for
both interpolation and extrapolation schemes. This confirms second-order
convergence in time. We also observe that for higher temporal resolution
and simple velocity fields such as the vorticity field in this example, the
difference in error for the interpolation and extrapolation time integrators
is negligible and the errors of both schemes are of the same order.

In Table 9, we study the convergence results of our solver for the same
setup described above, however, we conduct the experiment with a longer
time horizon T = [0, 2π] and as we reduce the time-step size by a factor of
2, we also reduce the tree error tolerance by a factor of 10. This is essential
due to the convergence behavior of the semi-Lagrangian schemes (see Sec-
tion 2.1.2), since the upper bound of the L∞ error grows proportionally to
the number of time-steps, while its magnitude depends on the spatial error.
We report the results for low and high order discretization (q = 3, 14).
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Table 3: Convergence study of advection solver for unsteady vorticity field for a fixed time
horizon T = [0, 1.0]. By using accurate spatial discretization (q = 14, εtree =

1e-9), we ensure that our time integrator is the main source of error. By reducing
the time-step size by a factor of 2, we observe a second-order convergence in
time. We also report the results for both interpolation and extrapolation time
integrators. We observe that both schemes result in temporal error of the same
order for simple velocity fields.

q δt Niter
L∞

Interpolation Extrapolation

14

2.50e-1 4 3.24e-2 1.22e-1

1.25e-1 8 8.54e-3 1.87e-2

6.25e-2 16 1.92e-3 2.93e-3

3.12e-2 32 4.42e-4 5.46e-4

1.56e-2 64 1.06e-4 1.18e-4

7.81e-3 128 2.61e-5 2.71e-5

3.91e-3 256 6.47e-6 6.60e-6

1.95e-3 512 1.61e-6 1.63e-6

For low order discretization, starting with a εtree = 1e-2 and a time resolu-
tion δt = 6.28e-2 (100 time-steps), both the interpolation and extrapolation
schemes achieve two digits of accuracy. As we increase the temporal and
spatial resolution, the extrapolation scheme error reduces by a factor of 4×.
The error reduction in interpolation scheme varies between factor of 8×
and 4×.

For high order discretization, we start with a temporal resolution δt =

1, 57e-2 (400 time-steps). As we decrease the time-step size to 3, 92e-3 (1600
time-steps) and the tree error tolerance to εtree = 1e-4, we observe for both
interpolation and extrapolation schemes a 16× drop in L∞ error, which
corresponds to second-order convergence.

4.6.3 Convergence Study: Unsteady Taylor-Green Vortex Flow

In this section, we study the convergence behavior of our solver for com-
plex unsteady velocity fields, in particular, a cosinusoidal time-dependent
Taylor-Green vortex velocity field. For the concentration field, we use a
Gaussian function placed at R0 = (0.6, 0.5, 0.5) in a unit cube Ω = [0, 1]3
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Table 4: Convergence study of advection solver for unsteady vorticity field with varying
temporal and spatial resolution. As we reduce the time-step size by a factor of
2, due to the convergence behavior of Semi-Lagrangian schemes, we also reduce
the tree error tolerance by a factor of 10. We conduct the experiment for both low
and high order discretization (q = 3, 14) for a time horizon T = [0, 2π]. For both
choices of discretization order and unsteady time integrators (interpolation and
extrapolation), we observe a second-order convergence.

q εtree L δt Niter
L∞

Interpolation Extrapolation

3

1e-2 5 6.28e-2 100 3.08e-2 3.32e-2

1e-3 7 3.14e-2 200 3.82e-3 7.18e-3

1e-4 8 1.57e-2 400 8.23e-4 1.57e-3

14

1e-2 3 1.57e-2 400 7.83e-4 1.57e-3

1e-3 3 7.85e-3 800 1.99e-4 3.83e-4

1e-4 4 3.92e-3 1600 5.02e-5 9.60e-5

with variance σ = (6e-2, 6e-2, 6e-2) and amplitude 1.0. We place this Gaus-
sian function in the time-dependent Taylor-Green vortex flow:

v (x,y, z, t) =

 cos (2πx) sin (2πy) sin (2πz)

sin (2πx) cos (2πy) sin (2πz)

sin (2πx) sin (2πy) cos (2πz)

 cos(ωt). (47)

No analytical solution exists for this problem, however, due to cosinusoidal
nature of the velocity field, the transporting substance oscillates around its
initial location. By exploiting this fact, we advect the concentration field for
the time horizon T = [0, 2π/ω] and to compute the error, we compare the
results with the initial condition of the concentration field.

In Table 5, we show the temporal convergence of the scheme by decreas-
ing the time-step size by a factor of 2 while we keep the spatial accuracy
fixed (q = 14, εtree = 1e-5). Depending on the temporal resolution, we ob-
serve an 8× to 4× reduction in the error, as we continue to reduce the
time-step size. Notice that for this complex velocity field, the extrapolation
scheme results in order of magnitude higher error for the same setup as the
interpolation scheme.
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Table 5: Convergence study of the advection solver for unsteady cosinusoidal Taylor-
Green velocity field for a fixed time horizon T = [0, 1.0]. We use a fixed spatial
accuracy (q = 14, εtree = 1e-5) and reduce the time-step size by a factor of
2. Depending on the temporal resolution, we observe an 8× to 4× reduction in
the error as we continue to reduce the time-step size. We also observe that for
this complex velocity field, the extrapolation scheme results in order of magnitude
higher error for the same setup as the interpolation scheme.

q δt Niter
L∞

Interpolation Extrapolation

14

2.50e-1 4 1.66e-1 9.38e-1

1.25e-1 8 9.35e-3 1.11e-1

6.25e-2 16 1.11e-3 1.44e-2

3.12e-2 32 1.38e-4 1.83e-3

1.56e-2 64 1.70e-5 2.30e-4

7.81e-3 128 4.28e-6 2.87e-5

3.91e-3 256 6.07e-6 6.80e-6

4.7 summary

In this chapter we introduced a semi-Lagrangian advection solver with an
aribitary order accurate piecewise Chebyshev octree spatial discretization.
We explained the algorithms we developed to extend the scheme to par-
allel octrees, where we use Morton IDs to determine the location of the
Lagrangian particles in a dynamic adaptive hierarchical domain decompo-
sition. In our implementation, we allow for different parallel adaptive trees
for the velocity and concentration fields and propose a novel partitioning
scheme for parallel trees to define an upper-bound for inter-node commu-
nication cost in distributed-memory semi-Lagrangian schemes without in-
creasing the computational cost. We also discussed our dynamic AMR al-
gorithms and showed that by using AMR the number of unknowns for a
computation with a fixed target accuracy can be reduced by orders of mag-
nitude compared to the same computation using a uniform grid. To extend
our scheme to unsteady velocity fields, we introduced two interpolation/
extrapolation-based methods for off-grid temporal evaluation of unsteady
velocity values represented with tree-based data structure at discrete points
in time. Finally, we study the convergence of our scheme in various scenar-
ios for complex steady and unsteady velocity fields.





Part II

A P P L I C AT I O N S

In this part we present how to apply our novel Semi-Lagrangian/
Volume-Integral methodology to three well-known problems in
CFD, the diffusion equation, the advection-diffusion equation
and the incompresible Navier–Stokes equations.

As the first application of our methodology we solve the un-
steady diffusion equation in Chapter 5, where we validate the
volume integral method as an attractive alternative to common
PDE-based approaches.

The advection-diffusion equation is considered in Chapter 6. In
this chapter we introduce three different temporal discretization
schemes for the advection-diffusion equation and study the sta-
bility, convergence, single-node performance, strong and weak
scalability of the scheme for various challenging examples.

Finally, in Chapter 7 we extend our Semi-Lagrangian/Volume-
Integral method to the incompresible Navier–Stokes equations.





5
T H E D I F F U S I O N E Q U AT I O N

In this chapter, as the first application for our methodology, we solve the
parabolic diffusion equation by applying the volume integral method de-
scribed in Chapter 2. Our goal is to validate the arbitrary-order accurate
volume integral solver introduced in Chapter 3 as an accurate and fast al-
ternative to common PDE-based solvers.

The diffusion equation is a PDE describing the concentration fluctuations
due to the diffusion process, which states that regions of high concentration
tend to spread into regions of low concentration. The diffusion equation can
be obtained from the continuity equation:

∂c

∂t
+∇ · j = 0,

where j is the flux of diffusive material. The continuity equation states that a
change in concentration c in any closed system is due to outflow and inflow
of concentration (flux) in the system. Fick’s first law states that the flux of
the material is proportional to the gradient of the local concentration:

j = −D(c, x)∇c(x, t),

where D(c, x) is the collective diffusion coefficient for concentration c at
location x. The diffusion equation can be easily obtained from the continu-
ity equation combined with Fick’s first law such that the general diffusion
equation can be written as:

∂c(x, t)
∂t

−∇ · (D(c(x, t), x)∇c(x, t)) = 0, x ∈ Ω. (48)

In homogeneous materials D does not vary in space. So when D is indepen-
dent of the concentration, e.g. it is constant, the diffusion equation reduces
to the following linear equation (also known as the heat equation):

∂c(x, t)
∂t

= D

∇

c(x, t), x ∈ Ω. (49)

In this chapter we propose fast algorithms for solving the linear diffusion
problem (Equation (49)) for the concentration c(x, t) with initial condition
c(x, 0) = c0(x) and with either free-space or periodic boundary conditions
at the boundary ∂Ω of Ω = [0, 1]3.

There are many time integration methods available for systems of Ordi-
nary Differential Equations (ODEs) and PDEs including Runge-Kutta meth-
ods and linear multistep methods [45]. Since our goal in this chapter is to
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demonstrate the applicability of our volume integral formulation, we use
only a first-order time integrator, namely the backward Euler method. In
Chapter 6, we apply higher order temporal methods such as Strang splitting
and Stiffly-Stable methods as the temporal discretization of the advection-
diffusion equation. Applying the first-order backward Eular temporal dis-
cretization on Equation (49) leads to a steady elliptic problem, the modified
Poisson equation. What remains to be done is to solve the modified Poisson
equation in each time-step. We deploy the volume integral formulation de-
scribed in Section 2.2 to solve the steady elliptic modified Poisson equation,
where we solve the convolution integral by using the pvfmm library (see
Chapter 3). In Section 5.2, we conduct numerical experiments to show the
convergence of the scheme.

5.1 the first-order backward euler temporal integration

Given the concentration field c(x, tk), we would like to compute the con-
centration values c(x, tk+1), where tk+1 = tk + δt. By using the backward
Euler method as the time integrator, we discretize the unsteady diffusion
problem described in Equation (49) in time as follows:

c(x, tk+1) − c(x, tk)
δt

−D∆c(x, tk+1) = 0. (50)

We transform Equation (50) by bringing the known values to the right-hand
side and dividing the both sides by the constant diffusion coefficient D

1

Dδt
c(x, tk+1) −∆c(x, tk+1) =

1

Dδt
c(x, tk). (51)

The resulting equation corresponds to a modified Poisson equation (see
Section 2.2.3)

αck+1 −∆ck+1 = f, (52)

with α = 1/(Dδt) and f = αck. Here, we have suppressed the explicit
notation in x and t (compare with Equation (51)). To solve the Equation (52)
for ck+1, we use the volume integral formulation described in Section 2.2. In
this formulation, the solution of the modified Poisson problem is given as
a convolution of the right-hand side f = αck with the fundamental solution
of the modified Poisson PDE

ck+1(x) =

∫
y

e−λ|x−y|

4π|x−y|
f(y)dy =

∫
y

1

4πDδt

e−λ|x−y|

|x−y|
ck(y)dy, (53)

where λ =
√
1/(Dδt). Note that in this formulation, the convolution kernel

function depends on the temporal resolution δt.
The process of applying the volume integral method to the diffusion

equation with the temporal discretization given in Equation (51) can thus be
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summarized as follows: To step forward from the computed approximation
ck at times tk to new approximation at ck+1 at the forward time tk+1, we
first construct the right-hand side of the modified Poisson by multiplying
ck with the factor 1/(Dδt). Then, we solve the modified Poisson equation
by computing the integral in Equation (53). In our implementation, the con-
centration value ck is approximated with a parallel piecewise Chebyshev
octree data structure described in Sections 3.3.1 and 4.2.1. To compute the
convolution in Equation (53), we use the pvfmm library which is a KIFMM-
based volume integral solver (see Chapter 3). The pvfmm library takes the
modified ck tree as an input and updates the tree values to ck+1 by com-
puting the FMM with the modified Poisson kernel. The machinery of the
pvfmm library is comprehensively described in Chapter 3. The procedure of
solving the unsteady diffusion equation by using the first-order backward
Euler method for temporal discretization and applying the volume integral
method is given in Algorithm 6.

Algorithm 6 Solving the diffusion equation by using the backward Euler
method and the FMM-based volume integral solver.
Input:

T
tk
c : Concentration tree at time tk.

Output:
T
tk+1
c : Concentration tree at time tk+1.

1: procedure SolveDiffusion(Ttkc )
2: N← LeafNodes(Ttkc )

3: for each B ∈ N do
4: αB ←M−1(αB

k /(Dδt))

5: end for
6: T

tk+1
c ← RunFMM(Ttkc ) . FMM with modified Poisson kernel

7: end procedure

5.2 numerical results

In this section, we show convergence results for a diffusion problem with
a Gaussian function as the initial concentration. The Gaussian function is
placed at location R0 = (0.5, 0.5, 0.5) in a unit cube Ω = [0, 1]3. The analytic
solution for the concentration at a point r and time t is given by,

c(r, t) =
A

σ(t)3
exp

(
−
|r− R0)|

2

2σ2(t)

)
, (54)

where σ(t) =
√
σ20 + 2Dt. Table 6 gives the temporal convergence results

for a sequence of decreasing time-step size δt for a fixed time horizon
T = [0, 1.0]. To render the spatial error negligible, we use a high order dis-
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cretization q = 14 and we set the tree refinement tolerance to εtree = 1e-5
for all the runs. We present the relative L2 and L∞ error for three values of
diffusivity (D = 1e-3, 1e-4, 1e-5) as we increase the temporal resolution.

For all three diffusivity values, by increasing the temporal resolution by
a factor of 2×, we observe a 2× drop in both L2 and L∞ errors, which
confirms the expected first-order temporal convergence with the backward
Euler time discretization.
Table 6: Convergence of the diffusion solver for a diffusive Gaussian function with three

different diffusivity constants (D = 1e-3, 1e-4, 1e-5). We present results for high
order discretization(q = 14). In each case, we conduct experiments to show con-
vergence as we reduce the time-step size δt while keeping the time horizon for the
simulation fixed (T = [0, 1.0]). The tree refinement tolerance for the adaptive trees
is fixed to εtree = 1e-5. We observe the expected first-order convergence for all
three diffusivity constants.

q δt Niter
D = 1e-3 D = 1e-4 D = 1e-5

L2 L∞ L2 L∞ L2 L∞

14

1.00e-0 1 6.77e-2 1.15e-1 1.33e-3 2.56e-3 1.83e-5 2.95e− 05
5.00e-1 2 3.85e-2 6.54e-2 6.87e-4 1.33e-3 9.21e-6 1.48e− 05
2.50e-1 4 2.07e-2 3.52e-2 3.49e-4 6.79e-4 4.62e-6 7.42e− 06
1.25e-1 8 1.08e-2 1.83e-2 1.76e-4 3.43e-4 2.32e-6 3.71e− 06
6.25e-2 16 5.49e-3 9.36e-3 8.84e-5 1.72e-4 1.19e-6 1.86e− 06
3.12e-2 32 2.78e-3 4.73e-3 4.43e-5 8.64e-5 6.42e-7 9.29e− 07
1.56e-2 64 1.40e-3 2.38e-3 2.21e-5 4.32e-5 3.94e-7 4.65e− 07
7.81e-3 128 7.00e-4 1.19e-3 1.10e-5 2.16e-5 2.82e-7 2.32e− 07

The convergence results in Table 6 demonstrate the effectiveness of our
approach to apply the volume integral formulation to elliptic problems. In
the next chapter, we extend our method to the advection-diffusion equa-
tion, where we treat the advective term with an explicit semi-Lagrangian
scheme and the parabolic diffusion term with an implicit volume integral
formulation similar to the one deployed in this chapter.



6
T H E A D V E C T I O N - D I F F U S I O N E Q U AT I O N

In this chapter we consider the advection-diffusion problem as the sec-
ond application for our methodology. The advection-diffusion equation
describes transport phenomena where a physical quantity such as energy,
substances or particles transport in a flowing medium such as water or air.
The applications include porous media flows simulation [81], transport phe-
nomena in complex fluids [56], and multiphysics simulations [3], [24]. The
general equation describing the advection-diffusion is:

∂c(x, t)
∂t

+∇ · (v(x, t)c(x, t)) −∇ · (D(c(x, t), x)∇c(x, t)) = 0, (55)

where c(x, t) is the quantity of interest (e. g. concentration for mass or heat
transfer). v(x, t) is a given time-dependent velocity field and D(c, x) is the
collective diffusion coefficient.

For common situations where the diffusion coefficient is constant and
the velocity field describes an incompressible flow (i. e.∇ · v = 0), the Equa-
tion (55) simplifies to:

∂c(x, t)
∂t

+ v(x, t) ·∇c(x, t) −D
∇

c(x, t) = 0. (56)

Developing algorithms for solving the Equation (56) with initial condition
c(x, 0) = c0(x) and with either free-space or periodic boundary conditions
at the boundary of a unit cube is the subject of this chapter. In particular,
we would like to develop a fast, unconditionally stable, parallel, scalable
and high-order advection-diffusion solver. For this purpose we exploit the
semi-Lagrangian technology described in Chapter 4 and the KIFMM-based
volume integral solver discussed in Chapter 3.

In Section 6.1 we introduce three various time discretizations for the
advection-diffusion problem starting with the splitting methods. The main
idea of the splitting methods is to breakdown a complicated problem into
smaller subproblems and solve each part with dedicated numerical meth-
ods. The splitting methods allows to solve complex PDEs by splitting the
PDE into its simpler constituent differential operators and treat each differ-
ential operator individually using specialized numerical solver. This results
in significant reduction of the algorithmic complexity of the overall method
to evolve in time for the fully coupled problem. However, in addition to
the numerical error of each subproblem, the splitting methods introduce
the so called splitting error. In this chapter we study two different splitting
methods: the first-order Lie and the second-order symmetric Strang splitting

79
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method which we discuss in Sections 6.1.1 and 6.1.2, respectively. Moreover,
in Section 6.1.3 we discuss the stiffly-stable method [35], which is a variation
of second-order backward multistep method. In Section 6.2 we conduct var-
ious numerical experiments to show the convergence of our schemes. We
study the single-node performance and the cost of the main components of
the advection-diffusion solver for low and high order discretizations in Sec-
tion 6.3. The isogranular and fixed-sized scaling results of the solver are dis-
cussed in Chapter 8. Finally, in Section 6.4 we simulate a realistic scenario,
namley the transport of substance with stationary Stokes flow through a
porous medium with highly complex pore structure. This has applications
in many areas of science and engineering such as petroleum engineering,
geosciences and material sciences.

6.1 temporal integration methods

In this section our goal is to develop a stable, high-order accurate tempo-
ral discretization scheme for the advection-diffusion problem. We propose
three different approaches: (1) first-order Lie operator splitting method,
which we use later as a low order method to construct additional initial val-
ues for high-order multi-step methods (2) second-order symmetric Strang
operator splitting method, and (3) the second-order multi-step stiffly-stable
method.

In problems consisting of different components, one subproblem might
be very stiff and require an implicit approach, while an explicit method
might be much more suitable for the other subproblem of the PDE of inter-
est. Using the same implicit method for the whole problem often can lead
to a large, complex, nonlinear algebraic problem. Therefore it is in general
infeasible to apply the same numerical integration approach to the differ-
ent parts of the system. For such cases, the operator splitting method is
more favorable because it allows to independently discretize and solve the
subproblems. Moreover, different time-steps for different subproblems be-
comes feasible. As an example, splitting of the advection-diffusion problem
has the advantage that the stiff diffusion operator can be treated implicitly
while the advective term can be solved explicitly. However, splitting meth-
ods come with an additional numerical error, the splitting error. The splitting
error hase been studied in various works for both ODEs [42] and PDEs [45].
For the advection-diffusion-reaction equation, the derivation of the splitting
error is given in [55]. A high-order splitting method for the incompressible
Navier-Stokes equations is discussed in [50]. In Section 6.1.1, we discuss the
first-order Lie operator splitting method for the advection-diffusion prob-
lem. We briefly discuss the second-order symmetric Strang splitting method
in Section 6.1.2. To obtain a higher-order temporal integration methods, in
Section 6.1.3 we apply the second-order multi-step stiffly-stable method to
the advection-diffusion problem.
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6.1.1 The First-Order Lie Operator Splitting Method

We begin with the first-order Lie splitting approximation method, which
is the simplest splitting method [94]. In this method we split Equation (56)
into two operators

∂c(x, t)
∂t

+ (L1 +L2) c(x, t) = 0, (57)

where L1 and L2 represent the advective term v(x, t) ·∇ and the diffusive
term −D

∇

, respectively. To compute the solution of Equation (57) at time
tk + δt from a given approximated solution ck at time tk, we first march in
time from tk to tk + δt by applying only the L1 operator. That is, we first
solve the subproblem

∂c(x, t)
∂t

+L1c(x, t) = 0, (58)

with c(x, tk) = ck as the initial condition. We denote the solution of the
first subproblem by c̃k+1. Once the c̃k+1 is obtained, we solve the second
subproblem

∂c(x, t)
∂t

+L2c(x, t) = 0, (59)

from tk to tk + δt and using c̃k+1 as the initial condition instead of ck. This
gives the solution of the coupled advection-diffusion problem with overall
first order temporal accuracy O(δt). In our implementation, we solve the
first subproblem (the advective term) by using our explicit semi-Lagrangian
advection solver introduced in Chapter 4 and the second subproblem (the
diffusion term) with the implicit volume integral diffusion solver described
in Chapter 5.

For our spatial discretization, we use the parallel, aribitary-order accu-
rate, piecewise Chebyshev octree data structure (see Sections 3.3.1 and 4.2.1).
The procedure of solving the advection-diffusion problem with this tempo-
ral and spatial discretization is given in Algorithm 7. The concentration
tree at time tk is denoted by T

tk
c . Starting with this concentration tree, we

compute the semi-Lagrangian step for advection by using Algorithm 3. The
updated concentration values T̃

tk+1
c are plugged into Algorithm 6, which

solves the diffusion equation by using a volume integral formulation.

6.1.2 The Symmetric Strang Operator Splitting Method

A second-order splitting approximation can be obtained by using symmet-
ric Strang formulas [86]. Here, we briefly describe the method for a given
PDE consisting of two operators L1 and L2. Given approximated value ck
at time tk, to step forward to new approximation ck+1 at the forward time
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Algorithm 7 Solving the advection-diffusion equation with Lie splitting
method and Chebyshev octree data structures.
Input:

T
tk
c : Concentration tree at time tk.

{T
tk−m/2+1
v , · · · ,T

tk+m/2
v }: Velocity trees at m discrete points in time.

Output:
T
tk+1
c : Concentration tree at time tk+1.

1: procedure LieSplitting(Ttkc , {T
tk−m/2+1
v , · · · ,T

tk+m/2
v })

2: T̃
tk+1
c ← SolveSemilag(Ttkc , {T

tk−m/2+1
v , · · · ,T

tk+m/2
v }) . Algorithm 3

3: T
tk+1
c ← SolveDiffusion(T̃

tk+1
c ) . Algorithm 6

4: end procedure

tk + δt, we first solve the first subproblem with the initial value ck from
time tk to tk + δt/2. That is, we solve

∂c(x, t)
∂t

+L1c(x, t) = 0, c(x, tk) = ck, tk → tk+1/2. (60)

We denote the solution of Equation (60) by c̃k+1/2. In the next step, we solve
the second subproblem from tk to tk+ δt by using c̃k+1/2 as the initial value:

∂c(x, t)
∂t

+L2c(x, t) = 0, c(x, tk) = c̃k+1/2, tk → tk+1. (61)

We denote the solution of Equation (61) by ck+1/2. As the final step, we
solve again the first subproblem, however, we march in time from tk+ δt/2

to tk + δt and use ck+1/2 as the initial value:

∂c(x, t)
∂t

+L1c(x, t) = 0, c(x, tk+1/2) = ck+1/2, tk+1/2 → tk+1. (62)

If time-stepping of at least second-order is used for all subproblems, this
procedure results in a second-order time integration scheme to compute for
ck+1. Since our volume integral diffusion solver discussed in Chapter 5 is
only first-order, we can not obtain a second-order time integrator scheme by
using the procedure stated above. To overcome this issue, in the next section
we introduce a second-order backward multistep scheme, which does not
require additional technologies other than the ones we have introduced and
implemented so far.

6.1.3 The Second-Order Stiffly-Stable Method

In this section, to obtain a second-order time integration method for the
advection-diffusion problem, we employ a variation of the backward mul-
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tistep scheme [35]. We consider the advection-diffusion equation in the La-
grangian form by using the material derivative (see Section 2.1) :

Dc(x, t)
Dt

−D

∇

c(x, t) = 0. (63)

To discretize Equation (63), we follow the time-stepping scheme described
in [102]. Given the concentrations c(x, tk) and c(x, tk−1), we compute the
concentration c(x, tk+1), where tk+1 = tk + δt. A second-order time dis-
cretization is

3
2c(x, tk+1) − 2c(Xk, tk) + 1

2c(Xk−1, tk−1)
δt

−D

∇

c(x, tk+1) = 0, (64)

where Xk and Xk−1 are points in the trajectory of a (virtual) Lagrangian par-
ticle passively moving due to the velocity v and passing through x at time
tk+1. These positions are solved by the following equation (characteristics)
backward in time

dX(t)

dt
= −v(X(t), t), X(0) = x. (65)

We define the semi-Lagrangian departure points by Xk = X(δt) and Xk−1 =

X(2δt) (see Figure 17). Equation (65) can be solved using an explicit time
stepping scheme. In our implementation, we use a second-order Runge-
Kutta scheme with the same δt as in Equation (64). This way, we construct

x

(a)

x

Xk

(b)

x

Xk

Xk−1

(c)

Figure 17: Illustration of the departure points in stiffly-stable method. Starting from grid
points x at time tk+1, we compute the characteristics to obtain the departure
points of the Lagrangian particles at time tk and tk−1, which are denoted by
Xk and Xk−1, respectively.

an optimal upwind scheme for Equation (56) by numerically computing
the backward characteristics. Solving Equation (65) requires interpolation
for v(X(t), t). Furthermore, once we have the semi-Lagrangian points, we
need to interpolate c(·, tk) and c(·, tk+1) at these points. This interpolation
is critical for the performance of the scheme since it can introduce artificial
diffusion and overshooting. The algorithm for the interpolation is discussed
in Sections 4.1.2 and 4.2.2. Once we have the interpolated values, by bring-
ing the known values of Equation (64) to the right-hand side, we obtain the
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following equation (here, we have suppressed the explicit notation in x and
t):

3

2δt
ck+1 −D

∇

ck+1 =
2

δt
ck −

1

2δt
ck−1. (66)

This equation corresponds to the modified Poisson equation (see Section 2.2.3)

αck+1 −∆ck+1 = f, (67)

with α = 3/(2Dδt) and f = 2ck/(Dδt) − ck−1/(2Dδt). The solution of Equa-
tion (67) for ck+1 as a volume integral is

ck+1(x) =

∫
y

e−λ|x−y|

4π|x− y|
f(y)dy

=

∫
y

1

4πDδt

e−λ|x−y|

|x− y|

(
2ck(y) −

1

2
ck−1(y)

)
dy,

(68)

where λ =
√
3/(2Dδt). To solve this convolution integral, we use the pvfmm

library described in Chapter 3. Note that in this formulation, similar to
the volume integral formulation of the diffusion equation described in Sec-
tion 5.1, the convolution kernel function depends on the temporal reso-
lution δt. That is, for an adaptive time-stepping scheme, the convolution
kernel function needs to be modified accordingly. We would like to men-
tion that we have not implemented adaptive time-stepping in this thesis,
but there is nothing in our formulation that prevents it. Adaptive time step-
ping would improve time-to-solution by reducing the number of time-steps
for time-varying velocity fields. Since the stiffly-stable scheme belongs to
the category of multistep methods, we keep and use the information from
previous time-steps. In particular, to compute the solution at time tk+1, the
previous two time-steps of the concentration trees T

tk−1
c and T

tk
c needs to

be stored for later use. With each additional previous time-step values that
the multistep method requires, comes the need for an additional initial
value which is not normally provided. In our implementation, the T

t0
c is

given analytically and we construct the T
t1
c by using a lower order method

like the first-order splitting method explained in Section 6.1.1.To construct
additional initial values with low-order methods, we use a higher tempo-
ral resolution compared to our simulation time-step size δt. However, con-
structing the initial values with low-order methods, can be a potential ad-
ditional source of numerical error. We don’t have a mathematical stability
investigation of this approach, only empirical evidence. Algorithm 8 shows
the stiffly-stable method in the context of Chebyshev octree data structures.
For unsteady velocity fields, we use the temporal interpolation scheme de-
scribed in Section 4.5.1, which requires the velocity trees for m snapshots in
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Algorithm 8 Solving the advection-diffusion equation with the stiffly-stable
method and the Chebyshev octree data structure.
Input:

T
tk
c ,Ttk−1

c : Concentration trees at time tk and tk−1.
{T
tk−m/2+1
v , · · · ,T

tk+m/2
v }: Velocity trees at m time steps.

Output:
T
tk+1
c : Concentration tree at time tk+1.

1: procedure AdvDiffStifflyStable(Ttk−1
c ,Ttkc , {T

tk−m/2+1
v , · · · ,T

tk+m/2
v })

2: N← LeafNodes(T
tk−1
c )

3: for each B ∈ N do
4: Xk+1 ← Xk+1 ∪ InterpPoints(B)

5: end for
6: Xk ← Trajectory({T

tk−m/2+1
v , · · · ,T

tk+m/2
v },Xk+1)

7: ck ← EvaluateParallelTree(Ttkc ,Xk) . Algorithm 2

8: Xk−1 ← Trajectory({T
tk−m/2+1
v , · · · ,T

tk+m/2
v },Xk)

9: ck−1 ← EvaluateParallelTree(T
tk−1
c ,Xk−1) . Algorithm 2

10: for each B ∈ N do
11: αB ←M−1

(
2

Dδtc
B
k − 1

2Dδtc
B
k−1

)
12: end for
13: T

tk+1
c ← RunFMM(T

tk−1
c ) . Modified Poisson kernel

14: RefineTree(T
tk+1
c ) . AMR algorithm in Section 4.4

15: end procedure

time from tk−m/2+1 to tk+m/2. In our implementation, we use a cubic inter-
polation in time (m = 4). Each process, by iterating over all leaf-octants of
its local concentration tree of the previous time-step (Ttk−1

c ), constructs an
array of Chebyshev interpolation points. In Algorithm 8, these are denoted
by Xk+1. Using the local array of the interpolation points as the initial value,
we compute the departure points at time tk (denoted by Xk). The trajectory
computation with unsteady velocity fields, requires multiple parallel tree
evaluation operations (Algorithm 5). Once the departure points Xk are de-
termined, an array of the concentration values ck at time tk at the departure
points, can be obtained by parallel evaluation of Ttkc at Xk. To obtain ck−1,
we proceed with the same procedure explained above, however, our initial
values for the trajectory computation will be departure points at time tk.
Once, the two arrays of ck and ck−1 are available, we store the linear combi-
nation of these values in T

tk−1
c . By reusing the T

tk−1
c , we avoid constructing

a new tree for the computed values in each time-step. In the next step, we
compute the convolution integral with modified Poisson kernel and finally
we apply our AMR algorithm described in Section 4.4 to adapt the tree
refinement to the updated values.
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6.2 numerical results

In this section we conduct various numerical experiments with both steady
and unsteady velocity fields to demonstrate the convergence of our numer-
ical scheme for the advection-diffusion problem.

In Section 6.2.1 we first consider a set of diffusive Gaussian functions in a
steady vorticity velocity field with known analytical solution and study the
convergence behavior of the our scheme. In 6.2.2, we study the temporal as
well as spatial convergence behavior of our scheme for unsteady vorticity
velocity fields.

6.2.1 Convergence Study: Steady Vorticity Flow

In this section we show convergence results for an advection-diffusion prob-
lem with a known analytical solution, which we solve by applying the
stiffly-stable temporal discretization method. The initial concentration is
given by a set of five Gaussian functions randomly placed at locations ri ∈
(0, 0.2) with variance σi ∈ (1e-2, 3e-2) and amplitude ai ∈ (−0.5, 0.5). This
concentration is placed in a vorticity velocity field defined by v(x,y, z) =

−xı̂ + y̂. For diffusivity D, the analytic solution for the concentration at a
point r = xı̂ + y̂ + zk̂ and time t is given by

c(r, t) =
∑
i

ai
σ3i (0)

σ3i (t)
exp

(
−
|r− ri(t)|

2

2σ2i (t)

)
(69)

where, ri(t) = |ri|
(
cos(θi + t)î+ sin(θi + t)ĵ

)
, σi(t) =

√
σ2i + 2Dt. In Ta-

ble 7, we present convergence results for two different values of the diffu-
sivity (D = 1e-4, 1e-5) and varying discretization orders (q = 4, 8, 14). In
each case, we conduct experiments to show convergence as we reduce the
time-step size δt while keeping the time horizon for the simulation fixed
at T = 1.6. We report the relative L∞ norm of the error at t = T . The
refinement tolerance for the Chebyshev tree is chosen experimentally to
minimize the number of unknowns Ndof while keeping the final solution
error unchanged. We also report the number of levels of refinement for
the adaptive octree, the total time to solution Tsolve and the overall flop-
rate in gflops. In addition, we report the breakdown of the time spent in
different stages of the algorithm: tree refinement (Tref), semi-Lagrangian
advection (Tsort+ Teval), and diffusion computation using FMM (Tfmm). For
the Chebyshev evaluation and FMM computation stages, we also report the
flop-rates.

For each choice of diffusivity and discretization order, we show results for
three different time-step sizes. Starting with δt = 0.1 and 16 time steps, we
achieve about two digits of accuracy. As we reduce the time step size by 4×
to δt = 2.5e-2 (64 time steps), we observe that the L∞ error in the solution
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drops by 16×. We observe a further 16× drop in error as we reduce the
time step size to δt = 6.25e-3 (256 time steps). This confirms the quadratic
convergence with δt.

6.2.2 Convergence Study: Unsteady Vorticiy Flow

In this section we show convergence results for the same test case as in
Section 4.6.2. However, we solve an advection-diffusion problem instead
of only an advection equation and use the stiffly-stable temporal discretiza-
tion. Recall that the unsteady vorticity velocity field is defined by v(x,y, z) =
(1+ sin(2πt))(−xı̂+y̂) and the initial concentration is given by a Gaussian
function placed at location R0 = (0.6, 0.5, 0.5) in a unit cube Ω = [0, 1]3. The
analytic solution for the concentration at a point r and time t is given by

c(r, t) =
A

σ(t)3
exp

(
−
|r− R(t)|2

2σ2(t)

)
, (70)

R(t) = |R|

(
cos(θ0 + t−

cos(2πt) − 1

2π
)ı̂ + sin(θ0 + t−

cos(2πt) − 1

2π
)̂

)
.

where σ(t) =
√
σ20 + 2Dt. In Table 8, we show convergence results for a

fixed time horizon T = [0, 1.0]. We use a high order discretization q = 14

and we set the tree refinement tolerance to εtree = 1e-5 and study the
temporal convergence behaivor of our scheme for both interpolation- and
extrapolation-based temproal integrators. Starting with temporal resolution
δt = 2.5e-1 and 4 time-steps, we obtain two digits of accurcay for the inter-
polation and and one digit of accurcay for the extrapolation schemes. For
the interpolation scheme, we observe a factor of 4× drop in relative L∞ er-
ror, as we decrease the time-step size by a factor of 2, which confirms the
second-order convergence rate. For the extrapolaiton scheme, we also ob-
serve the second-order convergence for higher temporal resolutions. How-
ever, for small time-step sizes the convergence order fluctuates.
In Table 9, we study the convergence and stability of the scheme for the
same test case as in Table 8, but we conduct the experiment for longer time
horizon, namely, for an integration over one period (T = [0, 2π]). We vary
the number of time-steps from 100 to 1600, which corresponds to an in-
crease in temporal resolution by a factor of 16×. As we increase our tempo-
ral accuracy by increasing the number of time-steps for a fixed time horizon,
we also increase our spatial accuracy, to avoid the accumulation of spatial er-
ror in semi-Lagrangian-based schemes for a high number of time-steps (see
Section 2.1.2). We use both low and high order discretization (q = 3, 14). For
a fixed tree error tolerance εtree, this does not affect the spatial accuracy but
rather the computational cost for a fixed problem.

For low discretization order, as we decrease the time-step size by a factor
of 2, from 6.28e-2 (100 time-steps) to 3.14e-2 (200 time-steps), we observe
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a 4× drop in relative L∞ error. We also observe a 15× drop in error, for
high order discretization, as we increase the spatial and temporal resolution
from εtree = 1e-3 and δt = 1.57e-2 (400 time-steps) to εtree = 1e-5 and
δt = 3.92e-3 (1600 time-steps).

6.3 single-node performance analysis

In this section we study the single-node runtime and performance results of
the advection-diffusion solver. All experiments were carried out on a single
node of the Stampede system at the Texas Advanced Computing Center.
Stampede nodes have two 8-core Intel Xeon E5-2680 (2.8GHz) processors
and 32GB RAM. Stampede has a theoretical peak performance of 345gflops

per node. While the discretization order does not affect the accuracy of the
solution (for fixed εtree), it can have a significant effect on the cost of the
algorithm.

Low-order High-order
0

25

50

75

100

Tref Tsort

Teval Tfmm

Tother

Figure 18: Comparison of the cost
of various components
of the stiffly-stable algo-
rithm depending on the
discretization order in
percentage of the total
cost.

In general, a higher discretization order
also results in a higher cost per unknown.
For example, in the case of Chebyshev
evaluation, the cost of each evaluation is
O(q3). Similarly, for the volume FMM, the
cost per unknown depends on the Cheby-
shev degree q and the multipole order
m. However, when approximating smooth
functions, a higher discretization order can
result in significantly fewer unknowns. In
Table 7, for δt = 0.1, we require about
5e+5 unknowns and 7 levels of octree re-
finement with low-order discretization. For
the same case, with high-order discretiza-
tion, we require about 3e+5 unknowns and
4 levels of octree refinement. For higher ac-
curacy (with δt = 6.25e-3), the difference is
even more significant with higher order dis-
cretization requiring 15× fewer unknowns.
We observe that for low accuracy, a moder-
ate discretization order (q = 8) works best
and for higher accuracy, q = 14 gives a
faster time to solution. In Table 7 and Figure 18, we have also presented
a detailed breakdown of the total solve time. Tref is the time spent in refine-
ment and coarsening of the Chebyshev octree. This makes up a small per-
centage (approximately 2%− 5%) of the total runtime. For semi-Lagrangian
advection, the most time consuming part of the computation is evaluating
the piecewise Chebyshev representation of the velocity and the concentra-
tion. It has the following two main components. Tsort is the time for sorting
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Table 8: Convergence study of advection-diffusion solver for unsteady vorticity field
for a fixed time horizon T = [0, 1.0]. By using accurate spatial discretization
(q = 14, εtree = 1e-5), we assure that our time integrator is the main source of
the error. By reducing the time-step size by a factor of 2, we observe a second-order
convergence in time. We also report the results for both interpolation and extrapo-
lation time integrators. We observe that the both scheme, result in temporal error
of the same order for the unsteady vorticity velocity field.

q δt Niter
L∞

Interpolation Extrapolation

14

2.50e-1 4 4.67e-2 1.35e-1

1.25e-1 8 1.13e-2 1.78e-2

6.25e-2 16 1.98e-3 1.46e-3

3.12e-2 32 4.06e-4 6.08e-4

1.56e-2 64 9.27e-5 1.69e-4

7.81e-3 128 2.22e-5 4.30e-5

Table 9: Convergence study of advection-diffusion solver for unsteady vorticity field for
varying temporal and spatial resolution. To avoid the accumulation of the spatial
error in the semi-Lagrangian scheme, we reduce the time-step size by a factor of 2,
as we reduce the tree error tolerance by a factor of 10. We conduct the experiment
for both low and high order discretization (q = 3, 14) for a time horizon T =

[0, 2π]. For both choices of discretization order and unsteady time integrators
(interpolation and extrapolation), we observe a second-order convergence.

q εtree L δt Niter
L∞

Interpolation Extrapolation

3
1e-2 5 6.28e-2 100 1.48e-2 1.24e-2

1e-3 6 3.14e-2 200 3.84e-3 3.80e-3

14

1e-3 3 1.57e-2 400 5.80e-4 4.46e-4

1e-4 3 7.85e-3 800 1.51e-4 9.18e-5

1e-5 4 3.92e-3 1600 3.85e-5 2.04e-5
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the evaluation points by their Morton IDs to determine the octant in which
each point resides and rearranging the evaluated values in the original or-
dering of the points. Teval is the time spent in evaluating the Chebyshev
representation of each leaf node at the points belonging to that octant. The
Chebyshev evaluation has O(q3) cost per evaluation point and therefore, for
low-order discretizations it is significantly less expensive than the sorting.
However, for q = 14 they have comparable cost. For high order discretiza-
tions, the Chebyshev evaluation has very high arithmetic intensity and we
are able to achieve about 146gflops or 42% of the theoretical peak per-
formance. This is due to careful vectorization and optimization for data
reuse in cache. Tsort and Teval together account for 20% − 30% of the solve
time for low order discretization and about 44% − 53% of the solve time
for high order discretization. The FMM evaluation time Tfmm accounts for
52%− 56% of the solve time for low order discretizations and 22%− 29% of
the solve time for high order discretizations. For high discretization orders
and sufficiently large problem sizes, the volume FMM can achieve high
flop rates. However, for low order discretization or small problem sizes, the
performance degrades quickly. In the results presented here, we observe a
performance in the range of 57gflops to 147gflops.

6.4 porous media simulation and visualization showcase

To demonstrate the capabilities of our solver for more reallistic and complex
geometries, we simulate the transport of substances in a porous medium
with highly complex pore structure. A porous medium is a solid mate-
rial containing voids. Many substances such as rocks, petroleum reservoir,
bones, cements and ceramics can be considered as porous media. The sim-
ulation of porous media has applications in many areas of science and en-
gineering such as filtration, rock mechanics, petroleum engineering, geo-
sciences, material science, etc.

The Stokes flow in the porous medium is computed by using a volume
integral equation solver and penalty formulation to enforce the no slip con-
dition. The Stokes flow solver is not part of this work and the interested
reader is referred to [63] for further information. The advection-diffusion
problem is solved using the stiffly-stable scheme described in this chapter.
In Figure 19 the red and orange areas represent the solid material. The
streamlines visualize the velocity field, which corresponds to a stationary
Stokes flow through this porous medium microstructure. We solve Equa-
tion (56) using this velocity field. The initial condition is the linear superpo-
sition of three Gaussians indicated by light blue, light green, and yellow. In
Figure 19b, we clip the geometry to better visualize the velocity streamlines
and initial concentrations fields. In Figure 19c and Figure 19d, we show
two different snapshots in time, as the three color-coded substances flow
through the porous medium.
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(a)

(b)

Figure 19: Advection-diffusion problem in a porous medium. The red and orange areas
represent the solid phase. The streamlines visualize the velocity field, which cor-
responds to a stationary Stokes flow through this porous medium microstruc-
ture. We solve Equation (56) using this velocity field. The velocity is calculated
using a volume integral equation solver, whereas the advection-diffusion prob-
lem is solved using the stiffly-stable scheme described in this chapter.
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(c)

(d)

Figure 19: The initial porous media and the stationary velocity field are visualized in (a).
In (b), we clip the geometry to better visualize the velocity streamlines and
initial concentrations fields. The initial condition is the linear superposition of
three Gaussians indicated by light blue, light green, and yellow. In (c) and (d),
we show two different snapshots in time, as the three color-coded substances
flow through the porous medium.
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6.5 summary

In this chapter we introduced an explicit-implicit solver for the advection-
diffusion problem, where we treat the linear advective term with the ex-
plicit, but unconditionally stable semi-Lagrangian method and the stiff
parabolic diffusion term with the implicit volume integral method. We
used the parallel aribitary-order accurate Chebyshev octree data structure
as our spatial discretization. For the temporal integration, we introduced
the first-order Lie splitting method, which we use to construct additional
initial values required for higher order multistep methods and the second-
order stiffly-stable multi-step method. We demonstrated the convergence
of our scheme for complex steady and unsteady velocity fields for both
interpolation- and extrapolation-based time integrators. In our single-node
performance analysis, we observed that using higher order discretization re-
sults in significantly fewer unknowns and therefore faster time-to-solution.
Finally, to demonstrate the capabilities of our solver we simulated a chal-
lenging realistic scenario, namely, the transport of substances in a porous
medium with highly complex pore structure. In the next chapter we extend
our Semi-Lagrangian/Volume-Integral approach to solve the incompress-
ible Navier–Stokes equations.



7
T H E I N C O M P R E S S I B L E N AV I E R - S T O K E S E Q U AT I O N

In the previous chapter we introduced our novel Semi-Lagrangian/Volume-
Integral method for the advection-diffusion equation. In this chapter our
goal is to extend this method to the incompressible Navier-Stokes equa-
tions. The Navier–Stokes equations are a set of nonlinear PDEs, which de-
scribe the flow of viscous fluid substances and are therefore used in vari-
ous applications in science and engineering such as modeling weather, the
design of vehicles, blood flow simulation, etc. In this chapter we provide
numerical and algorithmic details of our methodology to solve the incom-
pressible Navier–Stokes equations. We use a similar formulation as for the
advection-diffusion solver. However, since the velocity is not given at any fu-
ture time-steps, we deploy the extrapolation-based trajectory computation
method described in Section 4.5.2 in the semi-Lagrangian algorithm. Sim-
ilar to the advection-diffusion solver, we use the arbitrary-order accurate
Chebyshev octree spatial discretization combined with the explicit-implicit
time-marching scheme, where we treat the nonlinear convective term with
the second-order unconditionally stable semi-Lagrangian method and the
stiff unsteady Stokes operator with an implicit volume integral formulation.

Section 7.1 gives a breif description of the incompressible Navier–Stokes
equations with primitive variable formulation. We also discuss the non-
primitive variable formulation of the incompressible Navier–Stokes equa-
tions such as the velocity-vorticity formulation. In Section 7.2 we discuss
our two-step, second-order, stiffly-stable temporal discretization deployed
for our time-marching approach. Finally, in Section 7.3 we study the stabil-
ity and correctness of our proposed numerical scheme for a well-known
benchmark problem, the Taylor-Green vortex flow for a wide range of
Reynolds numbers. However, the stability of the nonlinear convective term
for more complex flows requires further numerical investigation.

7.1 the governing equations

For liquids we can assume the density to be constant. We refer to the flu-
ids with constant density as incompressible. For incompressible flows the
continuity equation reduces to ∇ · v = 0. Thus the incompressible Navier–
Stokes equations read

ρ

(
∂v(x, t)
∂t

+ v(x, t) ·∇v(x, t)
)

= −∇P(x, t) + µ∆v(x, t) +F, (71)

95
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where v(x, t) is the fluid velocity field, P(x, t) is the pressure, µ is the dy-
namic viscosity and ρ is the fluid density.

These simplications reduces the complexity of the Navier–Stokes equa-
tions for different flow regimes; however, they come at a cost that the sim-
plified equations might not be able to describe all physical phenomena. For
instance, the incompressibility rules out physical phenomena such as sound
or shock waves and therefore can not be used if these phenomena are of in-
terest. However, the incompressibility assumption typically holds well for
all fluid flows at low Mach numbers (the ratio of the flow velocity to the
local speed of sound is low).

7.1.1 The Non-Dimensional Formulation

To obtain the non-dimensional formulation of the incompressible Navier–
Stokes equation, we define a characteristic length L, a characteristic veloc-
ity U, and a characteristic time T based on the spatial and temporal fea-
tures of the problem. By introducing the dimensionless variables v ′ = v/U,
x ′ = x/L, t ′ = t/T and P ′ = PL/(µU), the incompressible Navier–Stokes
equation in non-dimensional form in absence of external forces read

β
∂v ′

∂t ′
+ Rev ′ ·∇ ′v ′ = −∇ ′P ′ +∆ ′v ′, (72)

where β = L2/νT is the frequency parameter, Re = UL/ν is the Reynolds num-
ber and ν = µ/ρ is the kinematic viscosity. The Reynolds number present the
ratio of inertial convective forces to viscous forces, while the frequency pa-
rameter expresses the ratio of inertial acceleration forces relative to viscous
forces.

Due to the complexity of the Navier–Stokes equations, for different flow
regimes the simplified versions of the incompressible Navier–Stokes equa-
tions will be used. The flow regimes are categorized based on the Reynolds
number and the frequency parameter. Flows with low Reynolds number are
called laminar while flows with high Reynolds number are turbulent. When
the Reynolds number and frequency parameters are very small Re,β � 1,
then the inertial forces can be neglected. For these cases the flow is named
Stokes flow or also known as creeping flow. The Stokes flow is described with
the Stokes equation, which is a linearization of the Navier–Stokes equations
(see also Section 2.2.4):

−∇P(x, t) + µ∆v(x, t) +F = 0. (73)

Stokes equations arises in several geophysical areas such as mantle convec-
tion [68] and ice sheet dynamics [46]. The stokes equations can also model
flows in biofuels, polymers and porous media flows (see Section 6.4). Due
to importance of the Stokes equations, there is extensive literature available
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using various numerical methods to solve the Stokes equations [91], [105].
The most common approaches to discretize the Equation (73) are finite ele-
ment [20], finite-difference or finite volume methods. In [63] a Stokes solver
is introduced with a volume integral formulation for problems with vari-
able coefficients and complex geometries based on the same pvfmm library
that we use in this dissertation. We used this Stokes solver in Section 6.4 to
compute the Stokes flow inside a porous medium with a highly complex
pore structure.

7.1.2 The Velocity-Vorticity Formulation

As an alternative to the more common velocity-pressure formulation of the
incompressible Navier–Stokes equations, the so called vorticity formulation
describes the motion of the local rotation of the fluid instead of the primi-
tive quantities such as velocity and pressure. This formulation relies on the
idea of eliminating the pressure variable by applying the curl operator and
introducing the vorticity ω as the curl of the velocity

Dω

Dt
=
∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v+ ν ∇ω. (74)

A detailed discussion of the advantages and disadvantages of this formula-
tion is given in [83].

Computing the numerical solution of the incompressible Navier–Stokes
equations is challenging due to nonlinear advective term, the incompress-
ibility condition and the coupling of the equations. In the next section we
discuss our explicit-implicit Semi-Lagrangian/Volume-Integral approach to
solve the incompressible Navier–Stokes equations.

7.2 the second-order stiffly-stable scheme

We consider the incompressible Navier–Stokes equations in the Lagrangian
form where the advective term in Equation (71) transforms to the material
derivative

Dv(x, t)
Dt

= −∇p(x, t) + ν∆v(x, t), (75)

∇ · v(x, t) = 0. (76)

Here, we assume no external forces are applied to the fluid (F = 0). We
solve the Equations (75) and (76) with the initial condition v(x, 0) = v0(x)

with free-space and periodic boundary conditions at the boundary ∂Ω of
a cubic domain Ω. A second-order temporal discretization is given by the
stiffly-stable method (see also Section 6.1.3)

3
2v(x, tk+1) − 2v(Xk, tk) + 1

2v(Xk−1, tk−1)
δt

= µ∆v(x, tk+1)−∇p(x, tk+1), (77)
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where Xk and Xk−1 are the departure points of the Lagrangian particles at
time tk and tk−1 that arrive at the grid points x at time tk+1. The depar-
ture points are obtained by solving the characteristics backward in time. In
contrast to the advection-diffusion problem, where the velocity field is nor-
mally given, here the velocity is the quantity we are computing. Therefore
to solve the characteristics equation backward in time, we need to apply the
extrapolation-based modified midpoint rule (see Section 4.5.2 and [102])

x̂ = x−
δt

2
v(x, tk), (78)

xd = x− δtv(x̂, tk + δt/2). (79)

Here, the velocity at tk is known and the velocity at tk + δt/2 is approxi-
mated by using the second-order extrapolation method

vk+1
2
=
3

2
vk −

1

2
vk−1. (80)

To compute Xk, we solve Equations (78) and (79) with the same tempo-
ral resolution δt as in Equation (77). The initial condition of the charac-
teristics is the Eulerian grid position x at time tk+1. We require velocity
values at times tk and tk + δt/2 at midpoint position x̃. The latter is ap-
proximated by evaluating the known velocity trees at time tk and tk−1 at
the midpoint position x̃ of each Lagrangian particle and extrapolating the
values at time tk + δt/2 according to Equation (80). Similarly, Xk−1 is ob-
tained by solving the characteristics starting at grid position x at time tk+1,
however with a temporal resolution of 2δt such that solving the modified
midpoint equations requires the known velocity values at time tk and tk−1.
By so doing, we avoid the interpolation of velocity values at tk− δt/2. Once
the departure points are computed, we can obtain the vk = v(Xk, tk) and
vk−1 = v(Xk−1, tk−1) by interpolation. In the next step, by bringing the
known values to the right-hand side, we transform Equation (75) to the
following equation:

3

2δt
vk+1 − µ∆vk+1 +∇pk+1 =

2

δt
vk −

1

2δt
vk−1. (81)

This equation corresponds to the unsteady Stokes formulation (see Sec-
tion 2.2)

αv− µ∆v+∇p = f,

with α = 3/2δt. Given the velocity values vk and vk−1, we solve for vk+1 =
v(x, tk+1) by computing the convolution of the right-hand side f = 2vk/δt−
vk−1/(2δt) with the unsteady Stokes kernel

vk+1(x) =
1

8πµ

∫
y

(
A(R)

r
I+

B(R)

r3
(r⊗ r)

)
f(y)dy

=
1

8πµ

∫
y

(
A(R)

r
I+

B(R)

r3
(r⊗ r)

)(
2

δt
vk(y) −

1

2δt
vk−1(y)

)
dy,

(82)
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where λ =
√
α
µ , r = |x− y| and R = λr. I is the identity operator and ⊗ de-

notes the tensor product. A(R) and B(R) are given in Equations (24) and (25)
in Chapter 2. Similar to the advection-diffusion solver our field values are
represented with parallel, piecewise Chebyshev octree data structures. We
use the pvfmm library to solve the volume integral in Equation (82) on this
spatial discretization. The procedure to solve the incompressible Navier–
Stokes equations based on the Semi-Lagrangian/Volume-Integral scheme
stated above is given in Algorithm 9. Notice in Algorithm 9 that for com-
puting the departure points at tk−1, in contrast to the advection-diffusion
solver in Algorithm 8, we use the Xk+1 as the initial value for the trajectory
computation and solve backward in time for a time-step size 2δt by using
the extrapolation scheme described in Equations (78) to (80).

Algorithm 9 Solving the incompressible Navier-Stokes equations with the
stiffly-stable method and Chebyshev octree data structure.
Input:

T
tk
v ,Ttk−1

v : Velocity trees at time tk and tk−1.
Output:

T
tk+1
v : Velocity tree at time tk+1.

1: procedure NSStifflyStable(Ttk−1
v ,Ttkv )

2: N← LeafNodes(T
tk−1
v )

3: for each B ∈ N do
4: Xk+1 ← Xk+1 ∪ InterpPoints(B)

5: end for
6: Xk ← Trajectory(T

tk−1
v ,Ttkv ,Xk+1, δt)

7: vk ← EvaluateParallelTree(Ttkv ,Xk) . Algorithm 2

8: Xk−1 ← Trajectory(T
tk−1
v ,Ttkv ,Xk+1, 2δt)

9: vk−1 ← EvaluateParallelTree(T
tk−1
v ,Xk−1) . Algorithm 2

10: for each B ∈ N do
11: αB ←M−1

(
2
δtv

B
k − 1

2δtv
B
k−1

)
12: end for
13: T

tk+1
v ← RunFMM(T

tk−1
v ) . Unsteady Stokes kernel

14: RefineTree(T
tk+1
v ) . AMR algorithm in Section 4.4

15: end procedure
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7.3 taylor-green vortex

The classical Taylor-Green vortex flow is a benchmark problem to study the
generation of small-scale vorticity by vortex stretching [13]. By having an
initial smooth analytical solution with simple periodic boundary condition,
the Taylor-Green vortex flow serves as a well-established benchmark test
problem, which provides an easy way to validate the code.

The Taylor-Green initial condition in a periodic domain Ω = [0, 2π]3 is
described by the following equations [98]:

ux(x, t = 0) =
2√
3

sin(θ+
2π

3
) sin(x) cos(y) cos(z),

uy(x, t = 0) =
2√
3

sin(θ−
2π

3
) cos(x) sin(y) cos(z),

uz(x, t = 0) =
2√
3

sin(θ) cos(x) cos(y) sin(z).

(83)

Here, we set the θ = 0 in all of our runs. This initial field is visualized in
Figure 20.

Figure 20: Initial condition of the Taylor-
Green benchmark problem visu-
alized with multiple Isosurfaces
plots of the velocity magnitude.

In Figure 21, we show the soluton of
the incompressible Navier–Stokes
equations for the time horizon T =

2π with this initial condition for
four different Reynolds numbers
varing from relatively low Reynolds
numbers such as 800 and 1600 to
very large Reynolds numbers in the
turbulent flow regime such as 5000
and 10000. Here, the Reynolds num-
ber is defined as Re = 1/ν. We use
a high order discretization q = 14

and tree error tolerance εtree = 1e-3
with a temporal resolution of δt =

6.28e-2. In Figure 21, to demonstrate
the vortex dynamics of the flow for
different Reynolds numbers, we visualize multiple snapshots of the isosur-
faces of the velocity magnitude |v| at times T = 0.6, 1.8, and 3.1. Notice the
transition to a turbulent flow regime for high Reynolds numbers. In Fig-
ure 22 we also illustrate the contour plots of the vorticity magnitude |ω| of
the Taylor-Green test case at plane y = π for Reynolds number Re = 1600

for multiple snapshots in time, which has been studied extensively in the
literature [13], [31], [34], [70], [80].
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T = 0.6 T = 1.8 T = 3.1

(a) Re = 800

(b) Re = 1600

(c) Re = 5000

(d) Re = 10000

Figure 21: Solution of the incompressible Navier–Stokes equations with Taylor-Green vor-
tex flow as the initial condition. Here, we visualize the isosurfaces of the velocity
magnitude |v| for multiple snapshots of the solution at T = 0.6, 1.8, and 3.1 for
various Reynolds numbers (a) Re = 800, (b) Re = 1600, (c) Re = 5000, and
(d) Re = 10000.
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(a) T = 0 (b) T = 0.3

(c) T = 0.6 (d) T = 2.5

(e) T = 3.7 (f) T = 6.2

Figure 22: Contour plots of the vorticity magnitude |ω| of the Taylor-Green test case at
plane y = π for Reynolds number Re = 1600 at multiple snapshots in time.
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7.4 summary

In this chapter we extended our Semi-Lagrangian/Volume-Integral method
introduced in previous chapters to the incompressible Navier–Stokes equa-
tions. Similar to the advection-diffusion solver, we used the arbitrary-order
accurate Chebyshev octree spatial discretization and second-order stiffly-
stable temporal discretization combined with the explicit-implicit Semi-
Lagrangian/Volume-Integral time-marching scheme, where we treat the
nonlinear advective term with the second-order unconditionally stable semi-
Lagrangian method and the stiff unsteady Stokes operator with an im-
plicit volume integral formulation. However, for the trajectory computa-
tion method in the semi-Lagrangian algorithm we used the extrapolation-
based modified mid-point method. To demonstrate the correctness of our
scheme, we conducted experiments for a wide range of Reynolds number
varying from laminar to turbulant flow regimes with a classical benchmark
problem for the incompressible Navier–Stokes solvers, namely the Taylor-
Green vortex flow. This chapter was devoted to demonstrate an example of
how our Semi-Lagrangian/Volume-Integral methodology can be extended
to more complex problems such as the incompressible Navier–Stokes equa-
tions. However, the stability of the nonlinear term for more complex flows
require further numerical investigation.





8
PA R A L L E L P E R F O R M A N C E A N A LY S I S

In this chapter we study the parallel performance of our AMR algorithm for
the advection-diffusion solver. We analysed the single-node performance
of our code in Section 6.2.1. Our goal in this chapter is to study the iso-
granular (weak) and fixed-sized (strong) scalability of our solvers. For the
isogranular scalability experiments, we simultaneously increase the prob-
lem size and number of cores to keep the problem size per core constant.
For the fixed-size scalability, we keep the total problem size constant as we
increase the number of cores. By using these performance indicators, we
are able to analyze our parallel implementation performance as well as our
algorithmic scalability.

To study the scalability of our solvers, we consider different problems
with various velocity and initial concentration fields with small, medium
and large sized test problems. For some of these problems, we do not have
an analytic solution so we only report timing and the breakdown for differ-
ent parts of the algorithm. In particular:

• In Table 10 we report strong scaling results for an advection-diffusion
problem with a modest number of unknowns. The initial condition
is a linear combination of Gaussians and the velocity field is a rigid
rotation; so we know the solution analytically. This problem is solved
to 4 digits of accuracy.

• In Tables 11 and 12 we report strong scaling for two much larger prob-
lems. The initial condition is a Gaussian sphere and the velocity field
is the Taylor-Green vortex flow. This configuration and multiple snap-
shots of the solution are visualized in Figure 23. The solution for this
scenario develops sharp gradients as it evolves over time, which re-
quire significant refinement to be resolved accurately. In Figure 16 we
also visualize the octree-mesh to highlight the dynamic mesh adapta-
tion. We scale this problem from 16 compute nodes up to 1024 com-
pute nodes (16 cores per compute node).

• In Table 13 we report weak scaling results from 32 to 1024 compute
nodes for the same problem setup as in Tables 11 and 12.

Before presenting the results of our experiments, we summarize first the
setting of the computing system we use to conduct the experiments.

hardware All experiments were carried out on the Stampede system at
TACC. Stampede is a Linux cluster consisting of 6400 compute nodes. The

105
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Figure 23: In this figure we show the contours of the Taylor-Green vortex flow, which we
use for the velocity field, and the Gaussian sphere that we use for the initial
condition of the concentration. We also depict a few snapshots from the evolu-
tion of c. We can see that it develops sharp gradients that require significant
refinement to resolve them accurately. We also observe that the spatial features
of c are quite different from the spatial features of v. In the second row, we
visualize the octree mesh for the different time steps to highlight the dynamic
mesh adaptation.

compute nodes are connected with a fat tree topology [58] using a 56gb/s

FDR Mellanox InfiniBand network. Each Stampede node has two 8-core
Intel Xeon E5-2680 (2.8GHz) processors and 32gb RAM. The system has a
theoretical peak performance of 345.5gflops per node.

software Our code is written in C++ and uses OpenMP for shared
memory parallelism, Intel MKL for high performance linear algebra opera-
tions, and Intel MPI for distributed memory parallelism. Our semi-Lagran
gian interpolation is optimized with SSE2 and AVX. We use the pvfmm [62]
library for the FMM. All our runs were done by using 1 MPI task / node
and 16 OpenMP threads.

In all of our runs, we adaptively refine or coarsen the octree at every
time step. All the velocity fields we use are scaled so that ‖v‖∞ ≈ 1. For an
octree with maximum depth L and discretization order q, we can estimate
the CFL number by

CFL =
δt

δxcfl
and δxcfl = 2

−Lq−2, (84)



8.1 test case : gaussian functions in vorticity flow 107

since the spacing of our points is that of the Chebyshev points [93]. Using
this formula, we see that the CFL number in most of our runs is quite large
(O(100)). In the tables, Ndof indicates the number of true degrees of free-
dom, roughly q3/6 Chebyshev coefficients at each octant. Recall that when
we perform the semi-Lagrangian advection, we use q3 actual points so the
problem size for the semi-Lagrangian, interpolation, sorting, and commu-
nication is six times larger than Ndof. We conduct the experiments by us-
ing Separate-Trees, Complete-Merge and Semi-Merge partitioning schemes.
Regarding the Semi-Merge scheme, we can relate the memory costs and
show the robustness of the code to the CFL number. More specifically, for
a CFL number smaller than q2, we would only need to move particles by
distances smaller than the dimension of the smallest octant. So the extra
memory needed would be bounded by the number of ghost octants. For a
2:1 balanced octree this is bounded.

8.1 test case : gaussian functions in vorticity flow

In Table 10 and Figure 24 we present strong scaling results up to 64 compute
nodes (1024 cores) of Stampede. Our test problem consists of 300 randomly
distributed Gaussian functions (similar to the one discussed in Section 6.2.1)
with variance σi ∈ (5e-3, 1.5e-2) as intial conditions. We use the time step
size δt = 6.25e-3 and 256 time steps. The relative L∞ norm of error at the
end of the simulation (t = 1.6) is 5.5e-5. We use the Semi-Merge scheme to
partition the concentration and velocity trees across processors. We report
results for moderate (q = 8) and high (q = 14) order discretizations. Overall
the high-order scheme delivers nearly a 2× speedup for the same accuracy.

For the q = 8 case, we require 8 levels of octree refinement with 122K leaf
octants corresponding to 20 million unknowns. Scaling from 1 compute
node to 8 nodes, we achieve 5× speedup or nearly 63% parallel efficiency.
The efficiency drops to 48% for 16 nodes. Scaling from 1 compute node to 64
compute nodes, we achieve nearly 18× speedup or 28% parallel efficiency.

The time for adaptive refinement, repartitioning and merging of the ve-
locity and concentration trees is reported as Tref. On a single compute node,
this accounts for just 2% of the total run time. On two compute nodes, we
observe a 3.4× increase in Tref due to the communication between compute
nodes. On 64 compute nodes, Tref makes up for nearly 26% of the total
time. The computation for the semi-Lagrangian advection is dominated by
evaluation of the piecewise polynomial representation of concentration and
velocity. We report a breakdown of the run time for the evaluation phase
into: Tcomm is the time for communicating point coordinates and bringing
back the evaluated values for points which have to be evaluated on a remote
processor, Tsort is the time for locally sorting the points by Morton ID to de-
termine the leaf octant on which the points have to be evaluated, and Teval
is the time for evaluating the Chebyshev representation of each leaf node
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Figure 24: We report strong scaling results for an advection-diffusion problem with dif-
fusivity D = 1e-5 solved to 4-digits of accuracy. We have used the time step
size δt = 6.25e-3 and 256 time steps. We visualize the results for high order
discretizations (q = 14). We present a detailed breakdown of the total runtime
Tsolve into Tref (adaptive refinement, repartitioning and merging of trees),
Tfmm (volume FMM computation), Tcomm, Tsort and Teval (communica-
tion, local sorting and Chebyshev evaluation at leaf nodes). As we scale from 1

compute node to 64 compute nodes, we achieve 17.9× speed up, 28% parallel
efficiency for q = 8 and 13.4× speed up, 21% parallel efficiency for q = 14.
The code scales reasonably well up to 16 nodes but then the efficiency drops.

at the points belonging to that octant. Among these, the local sorting is the
most expensive stage. As we scale from 1 node to 64 compute nodes, we ob-
serve a 79× speedup for the local sorting. The Chebyshev evaluation phase
is the second most expensive stage in our semi-Lagrangian scheme. For this
stage, we achieve about 34% parallel efficiency scaling up to 64 nodes. We
also report the percentage (remote%) of points which have to be commu-
nicated to a different processor for evaluation. This communication cost is
reported in Tcomm. As we increase the number of compute nodes, the com-
bined available network bandwidth increases. However, we also observe
that the percentage of points which need to be communicated increases
significantly. Consequently, the communication time Tcomm increases as we
increase the number of compute nodes. For 64 compute nodes, Tcomm ac-
counts for 16% for the total run time. We report the time for diffusion
computation (using the volume FMM) in two parts: the FMM setup time
(Tfsetup) and the actual FMM computation time Tfcomp. The FMM setup
stage involves constructing the local essential tree, creating interaction lists
and allocating memory buffers for the FMM computation. We need to setup
FMM whenever the tree refinement changes. In our case, we have to do this
in each time step. Some operations in the setup phase are communication
intensive. Therefore, the FMM setup phase scales relatively poorly, giving
a 5.6× speed up on 64 compute nodes. On the other hand, the computation
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phase of FMM is highly optimized and achieves good performance. Overall,
the FMM phase (Tfsetup + Tfcomp) of the algorithm accounts for 19% − 32%
of the total time.

In the same table, we have reported similar strong scaling results for
q = 14. Compared to q = 8, we require less than half the number of un-
knowns (9.4 million) and just 14K leaf octants. Consequently, the local sort
time Tsort is smaller. The cost for the Chebyshev evaluation per unknown
is higher. However, we also achieve higher flop-rates due to higher arith-
metic intensity. The Chebyshev evaluation time Teval shows 46.5× speed
up (73% parallel efficiency) when scaling to 64 compute nodes. The FMM
computation stage also shows higher flop-rates and scales well up to 16
compute nodes. Because we have such a small number of octants and a
relatively large CFL number, the tree refinement (Tref), the ghost point com-
munication (Tcomm) and the FMM setup (Tfsetup) show poor scalability due
to increasing communication costs.

8.2 test case : sphere in taylor-green vortex flow

In this section we report strong and weak scaling results for the advection-
diffusion solver up to 1024 compute nodes (16384 cores) of Stampede. The
initial concentration is given by c = exp (− (r/R)α), where R is the radius of
a sphere and r is the distance from the evaluation point to the center of the
sphere (see Figure 16). By increasing α, c develops a sharp gradient around
r = R. This way, we adjust our problem size only by changing the value of
α. Roughly speaking, by doubling α we increase the number of octants by
4. We present results for D = 1e-3 and R = 0.1. The concentration field is
placed in a Taylor-green vortex flow visualized in Figure 16.

This problem presents a challenging test for our AMR scheme for several
reasons. First, when the advection process dominates, sharp gradients trans-
port in domain which requires frequent refining/coarsening of the domain.
After each mesh adaptation step, the work-load needs to be balanced, which
requires internode communication. Second, by increasing the granularity as
we increase the number of processes in a fixed-size scaling, for a fixed CFL
number, the number of Lagrangian points whose values need to be commu-
nicated with the remote partitions increases. This is even more amplified in
semi-Lagrangian problems with extremely localized refinement. Moreover,
we stress our semi-Lagrangian solver by using extremely large CFL num-
bers.

8.2.1 Strong Scaling Results

In this section we present scaling results for two problems with 3.6e+8 and
7.4e+8 unknowns. As the number of cores increases, we keep the problem
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Figure 25: Strong scaling results with Complete-Merge and Semi-Merge partitioning
schemes for the advection-diffusion problem with diffusivity D = 1e-3 with
a Taylor-Green vortex flow as the velocity field. We show results for high order
discretizations (q = 14 ) for a problem size of 3.6e+8 unknowns. We present
a detailed breakdown of the total runtime Tsolve into Tref (adaptive refine-
ment and repartitioning of trees), Tfmm (volume FMM computation), Tcomm,
Tsort and Teval (communication, local sorting and Chebyshev evaluation at
leaf nodes). The time step dt = 6.25e-3. We show the results for one time step.

size fixed (strong scaling). We require 528K and 1M leaf octants for the
medium and large sized problem, respectively. This corresponds to approx-
imately 17K octants per compute node for 32 nodes in the medium sized
problem and 64 nodes for the large sized problem. Moreover, we provide
scaling results for the Separate-Trees, the Complete-Merge and the Semi-
Merge partitioning schemes.

For the medium sized problem, with high order discretizations (q = 14),
we require 9 levels of refinement. With a time-step size δt = 6.25e-3, this cor-
responds to a very large CFL number of approximately 600. In Table 11, we
report the breakdown of total runtime of the this problem into its compo-
nents: Tref (adaptive refinement and repartitioning of trees), Tfmm (volume
FMM computation), Tcomm, Tsort and Teval (communication, local sorting
and Chebyshev evaluation at leaf nodes). In Figure 26 we also report the
percentage of the total runtime for each component of the solver.

On 16 compute nodes, the Tref accounts for 32% of total runtime for the
Complete-Merge partitioning scheme, while for the Semi-Merge scheme,
the refinement cost is only 6.7%. The refinement and communication costs
combined account for 46.5% of the total runtime for the Complete-Merge
scheme on 16 compute nodes, while for the Semi-Merge scheme, this cost
is reduced by a factor of 2 and accounts for 26%. As we scale from 16 com-
pute nodes to 1024 compute nodes, we observe that the communicaiton cost
dominates the runtime. This is due to the unavoidable communication of
the positions and values of the Lagrangian particles for such a large CFL
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Figure 26: Strong scalability for the advection-diffuion problem using Complete-Merge
(left bars) and Semi-Merge (right bars) partitioning schemes. We report break-
down of the total runtime into different components with increasing number
of cores from 256 to 16384. The overall runtime is dominated by communi-
cation cost, which is due to the unavoidable communication cost of the semi-
Lagrangian scheme for very large CFL number.

number. In other words, by increasing the partitioning granularity in strong
scaling experiments, the number of semi-Lagrangian remote points whose
values are not locally available increases. For a fixed time-step size, this re-
sults in higher internode communication for a larger number of compute
nodes. Moreover, the communication pattern in semi-Lagrangian scheme is
unstructured and depends on the features of the velocity field. Therefore
for a distributed-memory semi-Lagrangian scheme, the communication pat-
tern may significantly vary depending on the test problem.

The local sorting is the next expensive component of our scheme. How-
ever, this component scales reasonably well. As we scale from 16 to 1024
compute nodes, the cost of local sorting drops 28.5× for the Complete-
Merge and 47.2× for the Semi-Merge scheme. This corresponds to 44%
and 73% strong scaling parallel efficiency for the Complete-Merge and
Semi-Merge partitioning schemes, respectively. Recall that we use q3 actual
points for the semi-Lagrangian, so the problem size for the local sorting,
chebyshev interpolation and communication is six times larger than Ndof.

On 16 compute nodes the Chebyshev evaluation part accounts for 19.5%
of the total runtime for the Complete-Merge scheme. This drops to 4.4% of
the total time, as we scale to 1024 compute nodes (31% parallel efficiency).
For the evaluation component of the Semi-Merge scheme, we observe simi-
lar parallel efficiency.

In Table 12 we report the strong scaling results for a 2× larger problem
with 7.4e+8 unknowns. For this problem, we require 10 levels of refine-
ment and scale from 32 to 1024 compute nodes. For 32 compute nodes,
the Complete-Merge scheme fails due to excessive memory consumption
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Figure 27: Strong scaling results with Complete-Merge and Semi-Merge partitioning
scheme for the advection-diffusion problem with diffusivity D = 1e-3 with
a Taylor-Green vortex flow as a velocity field. We show results for high order
discretizations (q = 14) for a problem size of 7.4e+8 unknowns. Here p is the
number of processors. We also present a detailed breakdown of the total run-
time Tsolve into Tref (adaptive refinement and repartitioning of trees), Tfmm

(volume FMM computation), Tcomm, Tsort and Teval (communication, local
sorting and Chebyshev evaluation at leaf nodes). The time step dt = 6.25e-3.
We show the results for one time step.

while the Semi-Merge scheme performs well. We observe that for 64 com-
pute nodes the Semi-Merge scheme is 1.6× faster than the Complete-Merge
approach. However, by increasing the number of compute nodes, the perfor-
mance gap between the two schemes decreases. This is due to the excessive
communication volume of the semi-Lagrangian scheme with such a large
CFL number.

Overall, considering the small number of octants per node, the extremely
high CFL number and the challenging test for AMR, where the solution
develops sharp gradients and requires very high locallized refinement, the
scalability of our solver is quite good. As can be clearly observed from
the results presented in Tables 11 and 12, the Semi-Merge partitioning is
quite efficient compared to the Complete-Merge approach and drastically
reduced the communication and refinement costs, while the Separate-Trees
approach failed for most of the runs due to excessive memory consumption
caused by severe load imbalance.

8.2.2 Weak Scaling Results

In this section we compare the isogranular scalability of the Complete-
Merge and the Semi-Merge partitioning scheme for the same test case as
above. As we increase the number of compute nodes from 32 to 1024, the
problem size increases from 47 million unknowns to 1.4 billion unknowns,
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Figure 28: Here we present weak scaling results for the same advection-diffusion problem
as in Figure 27. We present a detailed breakdown of the total runtime Tsolve
in to Tref (adaptive refinement and repartitioning of trees), Tfmm (volume
FMM computation), Tcomm, Tsort and Teval (communication, local sorting
and Chebyshev evaluation at leaf nodes). We vary the problem size from 4.7e+7
unknowns on 32 compute nodes of Stampede to 1.4e+9 unknowns on 1024
compute nodes. The problem size per node remains roughly constant to about
2,000 octants per node. Recall that we use 1 MPI task per node and 16 OpenMP
threads in all of our runs.

an increase of almost 31×. Nevertheless, we show that the overall timings
increase only by a factor of two. For the isogranular scaling, we keep the
problem size approximately constant at 2100 octants per compute node. The
time-step size is δt = 6.25e-3. That is, for the smallest problem, which re-
quires 8 levels of tree refinement, the CFL number is approximately 300. For
the biggest problem with 10 levels of refinement the CFL number exceeds
1000.

Figure 29 and Table 13 provide the breakdown of the overall runtime
into the time consumed by adaptive refinement and repartitioning of trees
(Tref), volume FMM computation (Tfmm), communication (Tcomm), local sort-
ing (Tsort) and Chebyshev evaluation at leaf nodes (Teval). The adaptive re-
finement and partitioning cost for the Complete-Merge is roughly 2× more
expensive than the Semi-Merge scheme and accounts for 26% − 31% of the
overall runtime for the Complete-Merge, while for the Semi-Merge this is
reduced to 21% − 24%. For 32 compute nodes, the communication cost for
the Complete-Merge scheme accounts for 35% of the overall runtime while
for the the Semi-Merge scheme, this is reduced to 12%. Overall, commu-
nication in the Complete-Merge scheme is up to 4× more expensive than
in the Semi-Merge scheme. The cost of the local sorting varies from 3.7%
to 7% of the total runtime for the Complete-Merge and 4% to 13% for the
Semi-Merge scheme. On 32 compute nodes, the Tfmm and Teval make up for
approximately 9% of the of total runtime with Complete-Merge partitioning



8.2 test case : sphere in taylor-green vortex flow 117

Ta
bl

e
13

:
H

er
e

w
e

pr
es

en
t

w
ea

k
sc

al
in

g
re

su
lts

fo
r

th
e

sa
m

e
ad

ve
ct

io
n-

di
ffu

si
on

pr
ob

le
m

as
in

Ta
bl

e
12

.H
er

e
p

is
th

e
nu

m
be

r
of

pr
oc

es
so

rs
,q

is
th

e
de

gr
ee

of
th

e
ap

pr
ox

im
at

io
n,
L

is
th

e
m

ax
im

um
tr

ee
le

ve
l

du
ri

ng
th

e
ad

ap
tiv

e
tr

ee
re

fin
em

en
t,

an
d
N

do
f

is
th

e
to

ta
l

nu
m

be
r

of
un

kn
ow

ns
.

W
e

al
so

pr
es

en
ta

de
ta

ile
d

br
ea

kd
ow

n
of

th
e

to
ta

lr
un

tim
e
T
s
o
lv

e
in

to
T
r
e
f

(a
da

pt
iv

e
re

fin
em

en
ta

nd
re

pa
rt

iti
on

in
g

of
tr

ee
s)

,T
f
m

m
(v

ol
um

e
FM

M
co

m
pu

ta
tio

n)
,T

c
o
m

m
,T

s
o
r
t

an
d
T
e
v
a
l

(c
om

m
un

ic
at

io
n,

lo
ca

ls
or

tin
g

an
d

C
he

by
sh

ev
ev

al
ua

tio
n

at
le

af
no

de
s)

.W
e

va
ry

th
e

pr
ob

le
m

si
ze

fr
om

4
.7

e
+7

un
kn

ow
ns

on
32

co
m

pu
te

no
de

s
of

St
am

pe
de

to
1
.4

e
+9

un
kn

ow
ns

on
10

24
co

m
pu

te
no

de
s.

Th
e

pr
ob

le
m

si
ze

pe
r

no
de

re
m

ai
ns

ro
ug

hl
y

co
ns

ta
nt

to
ab

ou
t2

,0
00

oc
ta

nt
s

pe
r

no
de

.R
ec

al
lt

ha
tw

e
us

e
1

M
PI

ta
sk

pe
r

no
de

an
d

16
O

pe
nM

P
th

re
ad

s
in

al
lo

fo
ur

ru
ns

.

p
M

er
gi

ng
L

N
do

f
R

efi
ne

m
en

t
Se

m
i-

La
gr

an
gi

an
FM

M
To

ta
l

T
r
e
f

T
c
o
m
m

T
s
o
r
t
T
e
v
a
l

(g
f
l
o

p
s
)
T
fm
m

(g
f
l
o

p
s
)
T
s
o
lv
e

(g
f
l
o

p
s
)

3
2

C
M

8
4

.7
e

+7
6
.9

7
.8

1
.3

2
.0

(
7
1

.9
)

2
.0

(
3
6

.4
)

2
2

.1
(
1
0

.4
)

SM
8
4

.7
e

+7
3
.3

2
.0

1
.4

4
.5

(
3
2

.0
)

1
.9

(
3
8

.0
)

1
5

.7
(
1
4

.6
)

6
4

C
M

9
9

.3
e

+7
9
.6

1
2
.3

2
.2

2
.3

(
6
1

.9
)

3
.0

(
2
4

.1
)

3
1

.4
(
7
.3

)
SM

9
9

.3
e

+7
3
.5

3
.5

2
.1

1
.9

(
7
2

.3
)

2
.2

(
3
3

.3
)

1
5

.8
(
1
4

.5
)

1
2
8

C
M

9
1

.8
e

+8
9
.9

1
5
.8

2
.2

2
.6

(
5
4

.8
)

2
.8

(
2
5

.8
)

3
5

.2
(
6
.5

)
SM

9
1

.8
e

+8
7
.0

8
.3

2
.5

2
.3

(
6
0

.6
)

3
.7

(
1
9

.5
)

2
6

.0
(
8
.7

)

2
5
6

C
M

9
3

.6
e

+8
1
1

.3
1
8
.2

1
.5

3
.4

(
4
0

.1
)

3
.7

(
1
8

.6
)

3
9

.9
(
5
.5

)
SM

9
3

.6
e

+8
6
.5

7
.4

2
.1

5
.8

(
2
3

.5
)

3
.1

(
2
2

.2
)

2
6

.8
(
8
.2

)

5
1
2

C
M

1
0
7
.4

e
+8

1
5

.5
2
2
.5

2
.4

4
.5

(
3
1

.1
)

8
.0

(
9
.0

)
5
4

.2
(
4
.2

)
SM

1
0
7
.4

e
+8

9
.2

1
6
.0

2
.3

3
.0

(
4
6

.7
)

4
.3

(
1
6

.5
)

3
7

.1
(
6
.1

)

1
0
2
4

C
M

1
0
1
.4

e
+9

1
4

.1
2
6
.8

2
.0

5
.3

(
2
5

.4
)

3
.7

(
1
8

.4
)

5
3

.5
(
4
.1

)
SM

1
0
1
.4

e
+9

8
.7

1
7
.6

1
.7

7
.4

(
1
8

.3
)

3
.3

(
2
0

.6
)

4
0

.3
(
5
.4

)



118 parallel performance analysis

scheme. For the Semi-Merge scheme, Tfmm accounts for 8%− 14% and Teval
up to 28% of the total runtime. The Chebyshev evaluation and local sorting
are slightly more costly in the Semi-Merge scheme compared to Complete-
Merge scheme. However, as we explained above, the communication cost
in the Complete-Merge is up to 4× more expensive. As a result, the Semi-
Merge scheme is overall up to 2× faster for the weak scaling experiments
we conducted in this section.

32 64 128 256 512 1024
0

25

50

75

100

compute nodes (p)

P
er
ce
n
ta
ge

of
ru
n
ti
m
e Tref Tcomm Tsort Teval Tfmm Tother

Figure 29: Weak scalability for the advection-diffuion problem using Complete-Merge (left
bars) and Semi-Merge (right bars) partitioning schemes. We report the break-
down of the total runtime into different components with increasing number of
cores from 512 to 16384. The overall runtime is dominated by the communica-
tion cost. This is due to the very large CFL number.

8.3 summary

In this chapter we studied fixed-size and isogranular scaling results of our
AMR scheme with small, medium and large sized test problems for sev-
eral challenging flows, which require extremely localized refinement to be
resolved accurately. We showed in various experiments that our novel Semi-
Merge partitioning scheme is quite efficient compared to the Complete-
Merge and Separate-Trees approaches and can reduce the communication
and refinement costs by orders of magnitude. For our largest run, we were
able to solve a problem with 1.4 billion unknowns on a tree with maximum
depth equal to 10 and using 14th-order elements on 16, 384 cores.
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In this dissertation we proposed parallel numerical algorithms for solving
the advection-diffusion and the incompressible Navier–Stokes equations,
which arise in many science and engineering applications simulating the
fluid flows and transport phenomena in complex fluids. Solving these prob-
lems presents various challenges, which require novel approaches, both in
terms of numerics and HPC. For example, in many problems adaptive non-
uniform grids are required to accurately resolve spatio-temporal features
of interest with minimum computational cost. Moreover, stability consid-
erations impose severe constraints on the time-step sizes in regions that
require high spatial resolution. Thus, large-scale and accurate simulation
of these phenomena for complex realistic scenarios requires high-order nu-
merical methods implemented with parallel and efficient algorithms with
optimal complexity and support of scalable AMR methods.

In the following we summarize the main contributions of this disserta-
tion, which address the above stated challenges, and their beneficial prop-
erties:

methodology Our methodology involves combining the method of char-
acteristics with the volume integral method by using an explicit-implicit
time integration method. To alleviate the stability constraints imposed
by the CFL condition, we treated the advective term with a second-
order accurate and unconditionally stable semi-Lagrangian scheme.
By so doing, we transformed the PDE of interest to a constant-coefficient
elliptic PDE, which we implicitly solve with a volume integral for-
mulation. Combing the semi-Lagrangian method with the volume in-
tegral method leads to an unconditionally stable scheme which al-
lows large CFL numbers with no loss in accuracy. Moreover, adaptive
quadrature rule to compute the volume integrals is relatively straight-
forward to implement by using a hierarchical domain decomposition.

optimal algorithms Discretization of volume integrals results in dense
linear systems. We addressed this issue by using the pvfmm library,
which computes the volume integrals with optimal complexity by ex-
ploiting the Kernel Independent Fast Multipole Method (KIFMM). By
using KIFMM, we separate the near and far interactions and approxi-
mate the far interactions in a hierarchical manner with arbitrary pre-
cision in space with provable a priori error estimates.

high-order accuracy For our spatial discretization, we used an arbitrary-
order accurate piecewise Chebyshev octree representation of the field
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values on the computational domain. We used this spatial discretiza-
tion for both the semi-Lagrangian and the volume integral solvers,
thus simplifying the coupling of the two components.

adaptive mesh refinement/coarsening For many problems, high
spatial resolutions are required only for particular regions of the sim-
ulation domain. We extended our solver with dynamic AMR algo-
rithms to accurately resolve the spatio-temporal features of interest at
these regions with minimal number of unknowns. We showed exam-
ples, where by using the AMR algorithm, the number of unknowns
for a computation with a fixed target accuracy was reduced by orders
of magnitude compared to the same computation using a uniform
grid and thus we obtained up to 10× shorter time-to-solution.

numerical experiments By combining the semi-Lagrangian method
with the volume integral method and using hierarchical domain de-
composition and accelerated algorithms such as the KIFMM, we ob-
tained an unconditionally stable, arbitrary-order accurate and fast al-
ternative to conventional PDE-based approaches such as finite differ-
ence, finite element or the spectral methods. We showed the conver-
gence of the scheme in various experiments using complex velocity
fields and well-known benchmark problems. We found that it is criti-
cal for stability to have points right on the boundary between different
octants and to filter the Chebyshev coefficients. We showed that once
these modifications are in place the scheme is stable and accurate.

high performance computing We developed efficient algorithms to
extend the scheme to parallel octrees with dynamic load-balancing
support. This was achieved by dynamically partitioning a Morton-
ordered space-filling curve.

Novel Partitioning Scheme: For cases where the velocity field and the
concentration field have different spatial scales and require sep-
arate discretization and thus independent distributed-memory
partitioning, we proposed a novel partitioning scheme that ef-
ficiently merges the two independent trees to define an upper-
bound for the communication cost with minimal increase in the
computational cost. We showed examples, where we reduced the
communication cost up to 20× and achieved a 3× speedup of the
total runtime by just applying our novel partitioning scheme in-
troduced in this dissertation.

Performance Analysis: We studied the single-node performance, strong
scaling, and weak scaling of our scheme for several challenging
flows that cannot be resolved efficiently without using high-order
accurate discretizations. In our single-node performance analysis,
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we observed that using high order discretization results in signifi-
cantly fewer unknowns and therefore, faster time-to-solution. We
constructed simple examples in which a 4th-order discretization
is at least two orders of magnitude slower than our 14th-order
scheme. We demonstrated the scalability of our scheme for up to
thousands of cores for hard cases with high levels of refinement,
and with remeshing and repartitioning at every time step. For
our largest run, we solve a problem with 1.4 billion unknowns in
40 seconds per time-step on a tree with maximum depth equal to
10 and using 14th-order elements on 16, 384 cores. This is an ef-
fective resolution of nearly 100 billion unknowns with a uniform
mesh.

By using the technologies developed in this dissertation, we were able
to simulate compute-intensive realistic scenarios with complex geometries
such as the transport phenomena in porous medium with highly complex
pore structure.

future work The main focus of this dissertation was to develop paral-
lel, scalable, arbitrary-order accurate and unconditionally stable solvers for
the advection-diffusion and the incompressible Navier–Stokes equations by
combining the method of the characteristics with the volume integral for-
mulation of the elliptic PDEs. However, in order to be able to apply this
machinery for more general problems, extending the scheme to complex
geometries and more sophisticated boundary conditions are required.

Future directions of this thesis also include using higher order temporal
integration methods, which can reduce the number of time-steps required
for a fixed target accuracy. This can be achieved by extending our tempo-
ral integration method to higher order Backward Differentiation Formula
(BDF) methods. However, by using the BDF method combined with the
semi-Lagrangian scheme several issues might arise: First, the BDF method
requires information from previous time steps at the departure points of
the Lagrangian particles. Therefore depending on the order of the scheme,
the solution at multiple time-steps need to be stored for later use. This
can significantly increase the memory footprint of the solver for large prob-
lems. Second, to achieve higher order in time, we also require higher order
backward time integration of the characteristics. Higher order time integra-
tors for the characteristics require more off-grid evaluation of the velocity
fields and thus increase the communication and the computation cost in
a distributed-memory context. In order to gain better time-to-solution by
using higher order time integrators, the time needed for higher order meth-
ods in each time step should remain small so that it does not balance out
the gains accrued by solving with lower number of time-steps. This requires
efficient and careful algorithmic design and implementation.
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Besides implementing high order temporal integration methods, extend-
ing the scheme to adaptive time-stepping can also reduce the number of
time-steps for time-varying velocity fields and thus further improve time-
to-solution.

Moreover, the stability of the nonlinear convective term in the Navier–
Stokes equations requires further numerical investigation. The scheme can
also be extended to problems with variable coefficients, i. e. to allow for a
variable (but smooth) diffusion coefficient. The main difference will be in
the elliptic solve, where we would need to solve a volume integral equation
instead of simply convolving with the Green’s function.
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