
Meikel Pöss

Methodologies for a
Comprehensive
Approach to Measuring
the Performance of
Decision Support
Systems





Fakultät für Informatik

Methodologies for a Comprehensive
Approach to Measuring the

Performance of Decision Support
Systems

Meikel Pöss

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Michael Gerndt
Prüfer der Dissertation:

1. Prof. Dr. Hans-Arno Jacobsen
2. Prof. Oliver Günther, Ph.D.

Die Dissertation wurde am 29.11.2017 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 12.12.2017 angenommen.





Abstract
Industry standard benchmarks for measuring the performance of computer systems
have been very valuable tools for both companies providing solutions and customers
seeking the best solution for their needs. Solution providers utilize benchmarks for
internal and external purposes. Internally, they gauge the performance of current
features and drive the development of new features. Externally, they are used in
official benchmark publications to claim superior performance and price-performance
compared to competitors. Customers seeking solutions for their business problem can
be confident that publications of Industry standard benchmarks accurately reflect
system performance.

Because of these needs, benchmark consortia such as the Standard Performance Eval-
uation Corporation (SPEC) [1], Storage Performance Council (SPC) [2], Embedded
Microprocessor Benchmark Consortium (EMBC) [3], and the Transaction Processing
Performance Council (TPC) [4] continue to develop benchmarks.

Since the early decision support systems (DSS) were developed in the 1960s, they
have evolved over time, from relying on isolated, specialized applications to using
connected, general purpose database management systems. The DSS, combining data
from a myriad of data sources, triggered the development of data integration systems.
With the evolution and broad availability of network technology, the application of
DSS is extended into the Internet of Things (IoT).

In this work, we propose methodologies for a comprehensive approach to measuring
the performance of decision support systems in the domains of IoT, data integration
(DI) and SQL-based big data systems. Firstly, we develop a benchmark for measuring
the performance of IoT gateway systems that must ingest, persist, and analyze massive
amounts of data arriving from edge devices. This benchmark was integrated into
TPCx-IoT, the first industry standard benchmark to measure the performance of
IoT gateway systems. It was released by the TPC in September 2017. Secondly, we
develop a data integration benchmark for measuring the performance of systems
while integrating data from a variety of data source, formatting it into a unified data
model representation, and loading it into a data warehouse. This benchmark was
integrated into the first industry standard benchmark for measuring the performance

iii



of data integration systems, TPC-DI, and released by the TPC in January 2014.
Thirdly, we develop changes to be implemented in the first version of the TPC-DS,
which will enable big data systems to run the benchmark. These changes were
incorporated into the second version of TPC-DS, released by the TPC in August
2015.

For each of the benchmarks, TPCx-IoT, TPC-DI, and TPC-DS, we conduct a
performance analysis to demonstrate the benchmark measure performance of DSS in
the environment they address.

iv



Zusammenfassung
Für Hersteller von Computersystemen, sowie für deren Kunden sind Industriebench-
marks zur Leistungsmessung wertvolle Hilfsmittel. Für die Hersteller von Compu-
tersystemen sind Industriebenchmarks von internem und externem Nutzen. Intern
messen sie mit ihnen die Leistung neuer Funktionalitäten ihrer Computersysteme,
und haben damit die Möglichkeit noch während der Produktentwicklung Leistungs-
defizite zu erkennen und Leistungsverbesserungen durchzuführen. Extern sind sie
ein Marketinginstrument für den direkten Leistungs- und Preis/Leistungsvergleich
mit den Computersystemen ihrer Konkurrenten. Für Kunden sind Industriebench-
marks ein verlässliches Werkzeug zum Leistungs- und Preis/Leistungsvergleich der
Computersysteme von unterschiedlichen Herstellern.

Um die Bedürfnisse von Herstellern und Kunden zu decken arbeiten seit Ende der
achtziger Jahre Industriebenchmark Konsortien, wie zum Beispiel die Standard
Performance Evaluation Corporation (SPEC) [1], Storage Performance Council
(SPC) [2], Embedded Microprocessor Benchmark Consortium (EMBC) [3], und die
Transaction Processing Performance Council (TPC) [4] ständig an der Weiterentwick-
lung ihrer existierenden Benchmarks und an Neuentwicklungen für aufkommende
Anwendungsgebiete.

Die ersten Decision Support Systeme (DSS) aus den sechziger Jahren wurden
üblicherweise als isolierte Spezialentwicklungen implementiert. In den darauf folgen-
den Jahren kamen immer häufiger Standardsoftware, wie zum Beispiel relationale
Datenbanksysteme, zur Implementierung von DSS zum Einsatz. In den letzten Jahren
wird verstärkt Open-Source Software eingesetzt. Die für die Entscheidungsfindung in
Unternehmen benötigten Daten kommen oft aus verschiedenen Unternehmensberei-
chen, die ihre Daten in eigenen Systemen und Formaten speichern. Diese Daten zeitig
und effizient in ein einheitliches Datenmodel zu integrieren wird eine immer wichtiger
werdende Aufgabe von modernen DSS. Mit der Entwicklung und Verbreitung von
immer schnelleren Netzwerktechnologien eröffnet sich die Möglichkeit, DSS in Internet
of Things (IoT) Anwendungen zu integrieren.

In dieser Arbeit werden Methoden für einen umfassenden Ansatz zur Leistungsmes-
sung von DSS in den Bereichen Internet of Things (IoT), Datenintegration (DI) und

v



SQL-basierten Big Data Systemen entwickelt. IoT Gateway Systeme sind dadurch
geprägt, dass sie große Datenmengen von vielen Sensoren entgegennehmen, speichern
und in Realzeit analysieren müssen. In dieser Arbeit werden zuerst Methoden
für die Leistungsmessung von IoT-Gateway-Systeme entwickelt, die in TPCx-IoT,
dem ersten Industriebenchmark zur Leistungsmessung von IoT-Gateway-Systemen,
standardisiert wurden. Die TPC hat TPCx-IoT im September 2017 ratifiziert.

Datenintegrationssysteme sind dadurch geprägt, dass sie Daten von einer Vielzahl
von Datenformaten in ein einheitliches Datenmodell überführen, und diese Daten
dann in ein Datenbanksystem, zum Beispiel ein Data Warehouse, laden in dem sie
verwaltet und schnell analysiert werden können. In dieser Arbeit werden Methoden
zur Leistungsanalyse von Datenintegrationssystemen entwickelt, die in dem ersten
Industriebenchmark zur Leistungsmessung von Datenintegrationssystemen, TPC-DI,
standardisiert wurden. Die TPC hat TPC-DI im Januar 2014 ratifiziert.

Sind alle Daten in ein zentrales Datenbanksystem integriert, dann greifen verschiedene
Applikationen mit Anfragen auf die Daten zu. Diese Anfragen werden in vielen
Systemen mittels der Anfragesprache Structured Query Language (SQL) gestellt. Für
die Leistungsmessung von SQL basierten Systemen existiert der Industriebenchmark
TPC-DS. Da in den letzten Jahren immer häufiger SQL basierte Big Data Systeme
als Datenbanksystem für DSS eingesetzt werden, diese aber nicht in der Lage sind
TPC-DS auszuführen, werden in dieser Arbeit Änderungen erarbeitet, die es SQL
basierten Big Data Systemen ermöglicht, TPC-DS durchzuführen. Diese Änderungen
wurden in der zweiten Version des TPC-DS Industriebenchmarks standardisiert.
TPC-DS Version 2 wurde im August 2015 von der TPC ratifiziert.

Für jeden der oben genannten Benchmarks, TPCx-IoT, TPC-DI, und TPC-DS werden
Leistungsanalysen auf verschiedenen Hard-und Softwareplatformen durchgeführt,
um zu demonstrieren wie diese Industriebenchmarks die Leistung von DSS in den
verschiedenen Umgebungen messen.

vi



Acknowledgments
This doctoral dissertation was prepared at the Department of Informatics of the
Technical University of Munich under the supervision of Prof. Dr. Hans-Arno
Jacobsen. I would like to express my sincere gratitude to my supervisor Prof. Dr.
Hans-Arno Jacobsen and mentor, Prof. Dr. Tilmann Rabl, for their continuous
support and guidance.

I would like to thank the rest of my thesis committee: Prof. Dr. Oliver Günther for
agreeing to be the second examiner, and Prof. Dr. Michael Gerndt for accepting to
chair the committee.

I would like to thank Raghunath Nambiar, Chinmayi Narasimhadevara, and Karthik
Kulkarni from Cisco for their valuable information about the Internet of Things
and providing hardware to collect performance data running TPCx-IoT on industry
grade gateway systems.

Advice given by the following Transaction Processing Performance Council repre-
sentatives has been of great help in the completion of these benchmarks: Michael
Brey, Charles Levine, Alain Crolotte, Lubor Kollar, Murali Krishna, Bob Lane,
Larry Lutz, Juergen Mueller, Bob Murphy, Doug Nelson, Bryan Smith, Eric Speed,
Jack Stephens, John Susag, Dave Walrath, Mike Nikolaiev, Francois Raab, Yeye He,
Jerry Buggert, Nicholas Wakou, Vince Carbone, Wayne Smith, Yanpei Chen, John
Poelman, and Seetha Lakshmi.

I am particularly grateful to my wife, Monica Celle-Küchenmeister. Her unconditional
love, support, encouragement, proof-reading and, foremost, her belief in me made
my dream come true. Along with her, I would like to acknowledge my three children,
Darius, Dehlia, and Dorian. They are my greatest source of love and relief from
scholarly endeavors.

Finally, I would like to thank my parents. They have always allowed me to pursue
my dreams. It is not always been easy to let your only child live so far away. But
without your blessings and continued moral support, I could not have undertaken
this big step.

vii



viii



Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation for an industry standard benchmark for IoT systems
(TPCx-IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Motivation for an industry standard benchmark for data inte-
gration systems (TPC-DI) . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Motivation for an industry standard benchmark for SQL-based
big data systems (TPC-DS V2) . . . . . . . . . . . . . . . . . 5

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 TPCx-IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 TPC-DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 TPC-DS Version 2 . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 17
2.1 Industry Standard Benchmark Consortia . . . . . . . . . . . . . . . . 18
2.2 Transaction Processing Performance Council (TPC) . . . . . . . . . . 19

2.2.1 Organizational Structure . . . . . . . . . . . . . . . . . . . . . 19

ix



CONTENTS

2.2.2 Benchmark Development in the TPC . . . . . . . . . . . . . . 20
2.2.3 Benchmark Result Certification . . . . . . . . . . . . . . . . . 20

2.3 TPC Benchmark Classes . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Metric and Execution Rules . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Priced Configuration . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Full Disclosure Report and Executive Summary . . . . . . . . 27

3 Related Work 29
3.1 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Back-End Decision Support . . . . . . . . . . . . . . . . . . . . . . . 32

4 TPCx-IoT: First Industry Standard Benchmark for Measuring the
Performance of IoT Gateway Systems 35
4.1 Description of TPCx-IoT . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Use Case Description: Power Substations of Electric Utility
Providers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.2 Execution Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.3 Data Ingestion Workload . . . . . . . . . . . . . . . . . . . . . 45
4.1.4 Query Generation/Execution . . . . . . . . . . . . . . . . . . 48
4.1.5 Benchmark Driver . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.6 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.7 Express Model for TPCx-IoT . . . . . . . . . . . . . . . . . . 52

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Scaling the Number of Power Substations . . . . . . . . . . . . 53
4.2.2 Scaling the Number of Gateway Nodes (Scale-Out) . . . . . . 61

5 TPC-DI: First Industry Standard Benchmark for Measuring the
Performance of Data Integration Systems 65
5.1 The Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Source Data Model . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Target Data Model . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Real World Relevance of the Data Set . . . . . . . . . . . . . 76
5.2.2 Data Set Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 78

x



CONTENTS

5.2.3 Data Generation with PDGF . . . . . . . . . . . . . . . . . . 80
5.3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 History Keeping Dimensions . . . . . . . . . . . . . . . . . . . 87
5.3.2 Example: DimAccount Transformations . . . . . . . . . . . . 89

5.4 Execution Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.2 Estimating Benchmark Execution time . . . . . . . . . . . . . 98
5.6.3 Phase Throughput . . . . . . . . . . . . . . . . . . . . . . . . 99

6 TPC-DS V2: First Industry Standard Benchmark for Measuring
the Performance of SQL-Based Big Data Systems 101
6.1 Benchmark Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Paradigm Shift in Data Ownership . . . . . . . . . . . . . . . 103
6.1.2 Goodbye ACID - Welcome BASE . . . . . . . . . . . . . . . . 104
6.1.3 Periodic Data Integration Workload . . . . . . . . . . . . . . . 104
6.1.4 Query Workload . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.5 Metric and Execution Rules . . . . . . . . . . . . . . . . . . . 106

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.1 Data Scan Analysis . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2.2 Single-User Test Analysis . . . . . . . . . . . . . . . . . . . . . 114
6.2.3 Multi-User Test Analysis . . . . . . . . . . . . . . . . . . . . . 121
6.2.4 Resource Utilization Analysis . . . . . . . . . . . . . . . . . . 128

7 Conclusions 135

List of Figures 139

List of Tables 141

Bibliography 145

xi



CONTENTS

xii



Chapter 1

Introduction

The origins of decision support systems (DSS) go as far back as the 1960s when
model-oriented DSS were developed. At that time, the emphasis was on building
management information systems as “integrated man/machine systems to provide
information for supporting the operations, management, and decision-making func-
tions in an organization” [5]. Decision support systems have evolved over time from
relying on isolated, specialized applications to using connected, general purpose
database management systems (DBMS). The ability to integrate data sources from
a myriad of DBMS into one decision support system triggered the development of
data integration systems. With network technology evolving and becoming broadly
available, the application of decision support systems has been extended to the
Internet of Things (IoT).

This work addresses the need for methodologies for a comprehensive approach
to measuring the performance of decision support systems in the areas of IoT,
data integration (DI) and SQL-based big data systems. Firstly, we developed a
benchmark to measure the performance of IoT systems that must ingest, persist, and
analyze massive amounts of data arriving from edge devices. This benchmark was
integrated into TPCx-IoT [6], the first industry standard benchmark for measuring
the performance of IoT gateway systems. It was released by the TPC in September
2017. Secondly, we developed a data integration benchmark for measuring the

1



1.1. MOTIVATION

performance of systems that integrate data from a variety of data source formats
into a unified data model representation and load it into a data warehouse. This
benchmark was integrated into TPC-DI [7], the first industry standard benchmark
to measure the performance of data integration. It was released by the TPC in
January 2014. Thirdly, we developed changes in the first version of TPC-DS that
were necessary for big data systems to run the benchmark. These changes were
incorporated into the second version of TPC-DS [8] in August 2015. TPC-DS
Version 2 is the first industry standard benchmark for measuring the performance of
SQL-based big data systems.

1.1 Motivation

In the late 1980s, unverifiable marketing claims about system performance by
hardware vendors led to the formation of industry standard benchmark consortia [9]
such as the Standard Performance Evaluation Corporation (SPEC) [1] and the
Transaction Processing Performance Council (TPC) [4]. By enabling all system
vendors to compete on a level playing field, these consortia allow for fair performance
comparisons amongst vendors.

Recognizing the need for a standard benchmark to measure the performance of DSS
systems, the TPC released its first data warehouse benchmark, TPC-D [10], in April
1994. For the technology available at that time, TPC-D imposed many challenges to
both hardware and DBMSs. The development of aggregate/summary structures in
many products at the end of the 90’s, which dramatically decreased query elapsed
times resulting in an over-proportional increase in TPC-D’s main performance metric,
effectively broke the benchmark. While working on a long term solution, its next
generation decision support benchmark (TPC-DS) [11, 12, 13], the TPC spun off
two modified versions of TPC-D, namely TPC-H and TPC-R in April 1999 [14].

Since TPC-DS was released in November 2012, the development of new decision
support technology has accelerated, and its use has broadened dramatically. Big data
platforms enable decision support deployments on massive scales; this triggered the

2



CHAPTER 1. INTRODUCTION

need to integrate data from a myriad of data source. Lately, the wide proliferation
of networks and low cost sensor technologies have enabled the integration of data
from hundreds of thousands of devices into continuous data streams to DSS.

Without having industry standard benchmarks for measuring the performance of DSS
in these complex environments, system vendors can make marketing claims based on
unverifiable performance numbers [15, 16, 17, 18, 19, 20, 21, 22, 23]. This kind of
“benchmarketing” is not new to the industry, and it is precisely what triggered the
founding of the TPC 25 years ago.

Industry standard benchmarks provide the tools and rule framework for both
companies providing solutions and customers seeking the best solution for their
needs. Solution providers utilize benchmarks for internal and external purposes.
Internally, they gauge the performance of current features and drive the development
of new features. Externally, they are used in official benchmark publications to claim
superior performance and price-performance compared to competitors. Customers
seeking solutions for their business have confidence that these publications will
provide a fair performance comparison of products from various solution providers.

1.1.1 Motivation for an industry standard benchmark for
IoT systems (TPCx-IoT)

According to a 2017 projection by Gartner [24], the total number of IoT devices will
more than double between now and 2020 (8.4 Billion to 20.4 Billion). While the
initial hype around this Internet of Things (IoT) stems from consumer use cases, the
number of devices and data from enterprise use cases is significant in terms of market
share. With companies being challenged to choose the right digital infrastructure
from different providers, there is a pressing need to objectively measure hardware,
operating system, data storage, and data management systems that can ingest,
persist, and process massive amounts of data arriving from sensors (edge devices).

3



1.1. MOTIVATION

1.1.2 Motivation for an industry standard benchmark for
data integration systems (TPC-DI)

Historically, the process of synchronizing a decision support system with data from
operational systems has been referred to as Extract, Transform, Load (ETL), and
the tools supporting such process have been referred to as ETL tools. Recently,
ETL was replaced by a more comprehensive acronym, data integration (DI). DI
describes the process of extracting and combining data from a variety of data
source formats, transforming that data into a unified data model representation and
loading it into a data warehouse. This is done in the context of various scenarios,
such as data acquisition for business intelligence, analytics and data warehousing,
but also synchronization of data between operational applications, data migration
and conversions, master data management, enterprise data sharing and delivery
of data services in a service-oriented architecture context amongst others. With
these scenarios relying on up-to-date information, it is critical to implement a high-
performing, scalable and easy to maintain data integration system. This is especially
important as the complexity, variety and volume of data is constantly increasing
and performance of data integration systems is becoming very critical. Despite the
significance of a high- performing DI system, there has been no industry standard
for measuring and comparing their performance.

As a consequence, vendors publish one-off benchmark results claiming “World Record”
performance [19, 20, 21, 22]. Many of the vendors use simplistic data-sets, for instance,
TPC-H, that were not developed for ETL and cannot be used to realistically measure
the performance of ETL systems. Hence, there is no mechanism for comparing
performance results. The TPC, acknowledging this void, has released TPC-DI, an
innovative benchmark for data integration.

4



CHAPTER 1. INTRODUCTION

1.1.3 Motivation for an industry standard benchmark for
SQL-based big data systems (TPC-DS V2)

The advent of Web 2.0 companies, such as Facebook, Google, and Amazon with their
insatiable appetite for vast amounts of structured, semi-structured, and unstructured
data, triggered the development of Hadoop and related tools, e.g., YARN, MapReduce,
and Pig, as well as NoSQL databases. These tools form an open source software
stack to support the processing of large and diverse data sets on clustered systems
to perform decision support tasks. Recently, SQL has begun to resurrect in many of
these solutions, e.g., Hive, Stinger, Impala, Shark, and Presto. At the same time,
RDBMS vendors are adding Hadoop support to their SQL engines, e.g., IBM’s Big
SQL, Actian’s Vortex, Oracle’s Big Data SQL, and SAP’s HANA.

In need of benchmarks to showcase the performance of their big data SQL engines,
many vendors used custom benchmarks that they derived from the first version of the
TPC’s benchmark TPC-DS (V1). Rather than formally running an entire TPC-DS
V1 according to its specification and publishing fully certified results, vendors cherry-
picked those portions of the TPC-DS V1 benchmark that made their particular
brand of technology excel, ignoring the general use case TPC-DS V1 was designed to
test. Many marketing publications used a subset of the schema and queries, executed
the benchmark in a special way, and reported a metric that positions a system in
the best possible light [15, 16, 17, 18].

Instead of questioning the credibility of these highly customized claims and fining
vendors for violating its fair use polices, we redesigned the existing TPC-DS V1 to
create a fair and comprehensive benchmark that specifically targets the performance
measurement of big data SQL systems. The TPC branded the new benchmark
TPC-DS V2 to enhance market recognition. TPC-DS V2 specifically addresses the
domain of SQL-based big data systems.

5



1.2. PROBLEM STATEMENT

1.2 Problem Statement

The advent of big data platforms, the proliferation of networks and the availability
of low cost sensor technologies expand the use of DSS into many areas. At the same
time, DSS solution providers require methodologies for measuring the performance of
their solutions, and customers seeking products to solve their DSS problem require
reliable performance data for making informed purchase decisions. This work divides
the problem of measuring the performance of DSS into three main research areas:

1. Ingesting data from numerous sensors at high frequency and performing real-
time analytics for device monitoring

2. Integrating data from a myriad of data sources into a DSS for subsequent
querying

3. Performing the initial load, incremental periodic data maintenance and running
complex analytic queries in single- and multi-user situations of SQL-based big
data systems

Each of the three areas listed above have their own requirements for the basic
components of a benchmark: (i) data generation, (ii) execution rules, (iii) workload,
and (iv) metric. Data ingested from sensors is simple, comprising of a time stamp,
location and value. It is ingested at high frequencies into the data management
system (many samples per second). Data integrated from a myriad of data sources
is diverse and complex consisting of structured and unstructured data that need
to be cleansed. It is loaded at hourly or daily frequencies. Data for DSS, which
run complex analytics in back-end systems, is divided into initial load data and
incremental load data. Data that is initially loaded fulfills referential integrity, while
data that is loaded incrementally does not. Initial data is loaded very infrequently,
that is, once a month or once a year, while incremental data is loaded on an hourly
or daily basis.

The execution rules, workload and metric are intrinsically connected to each other
and they are equally powerful in controlling performance measurements. Execution

6



CHAPTER 1. INTRODUCTION

rules define the way benchmarks are executed, the type of workloads challenge
specific functionality of the system being measured and the metrics emphasize those
parts of the execution that are timed. When data is ingested at high frequencies
for real-time analytics, loading and querying occur concurrently. Benchmarks for
these DSS applications must be able to generate many queries at high frequency,
while scheduling data ingestion operations. Because the queries being issued are
simple in nature, the metric must emphasize data ingestion throughput rather
than query elapsed time. The emphasis when measuring the performance of data
integration systems is on the integration and load processes with infrequent querying
of data. Benchmarks for data integration systems must be able to provide a complex
integration workload. The queries executed as part of the data integration process
are simple, and metric emphasis is on the data load throughput. The emphasis when
measuring the performance of back-end DSS is on querying data as a single user and
as multiple concurrent users with very infrequent reloads of the entire data set and
periodic data maintenance.

In addition to the above listed general benchmark components, industry standard
benchmarks require the following additional components: (i) audit rules, (ii) disclosure
rules, and (iii) pricing rules. It is imperative that customers who make purchase
decisions based on performance results should be confident that the performance
results conform to the rules laid out by the benchmark. The audit rules of industry
standard benchmarks define how performance data, obtained during benchmark
runs, can be verified. Audit rules are benchmark specific and, therefore, need to be
developed for each benchmark. Disclosure rules define what information needs to
be disclosed as part of a benchmark publication. They allow for easy comparison of
different benchmark results, and allow anybody to verify that the performance data
was obtained according to the benchmark rules.

The quality and, ultimately, the success of benchmarks depend on many parameters.
Jim Gray defined the following four design principles that have been widely recognized
as success criteria for industry standard benchmarks [25]: (i) The benchmark measures
key performance criteria of the domain it addresses (relevant). (ii) The benchmark
can be implemented on many different systems and architectures (portable). (iii) The
benchmark should scale with computer systems becoming more powerful (scalable).

7



1.3. APPROACH

(iv) The benchmark must be understandable (simple). Michael Stonebraker suggested
that industry standard benchmarks should also be challenging, that is, benchmarks
should not reflect the least common denominator among the technologies available
from the companies that developed the benchmark, but they should challenge all
technologies using complex customer problems [26]. Based on his experience in
developing successful TPC benchmarks, Karl Huppler further extended this list with
three more criteria [27]: (i) The benchmark imposes the same workload every time it
is run, resulting in similar performance results (repeatable). (ii) Benchmark results
are verified and real (verifiable). (iii) Vendors are not excluded because of the high
cost of benchmarking (economical).

1.3 Approach

In order to address the complex problem of providing industries with an industry
standard benchmark for measuring the performance of DSS, we divided the problem
into three areas, that is, into three separate benchmarks, each of which were
standardized into industry standard benchmarks by the TPC:

1. TPCx-IoT: An industry standard benchmark for measuring the performance
of IoT gateway systems.

2. TPC-DI: An industry standard benchmark for measuring the performance of
data integration systems.

3. TPC-DS Version 2: An industry standard benchmark for measuring the
performance of SQL-based big data systems.

1.3.1 TPCx-IoT

To measure the performance of systems ingesting data from numerous sensors at high
frequency and performing real-time analytics for device monitoring, we developed the

8



CHAPTER 1. INTRODUCTION

benchmark TPCx-IoT. To grant TPCx-IoT a realistic context, we modeled it after a
monitoring gateway for sensor data originating from power substations of a typical
electric utility provider. We developed the data generator based on the Yahoo! Cloud
Serving Benchmark framework (YCSB) [28]. YCSB is well-known, open source, easily
adaptable to specific needs, and its built-in database management interface layer
allows connections to many common open-source database management systems
including NoSQL DBMS. We modified YCSB in two areas: (i) To make the data set
realistic, we add data from an electric utility provider. (ii) Because the real-time
analytical queries executed on IoT gateways are time-series range queries, we modified
the read workload generator in YCSB to issue range queries instead of scattered
reads. The range queries are simple group-by aggregations selecting data for one
specific sensor.

As the main performance metric, we designed a throughput metric, IoTps. It reflects
the effective gateway ingestion rate in seconds that the system can support during
a 30-minute measurement interval, while concurrently executing real-time analytic
queries.

Most industry implementations of IoT gateway solutions use commodity hardware,
especially x86-based systems and open-source software. Therefore, it seems reasonable
to develop TPCx-IoT following TPC’s express benchmark framework. Express
benchmarks are based on predefined executable software kits. They are restricted
to the technology implemented in the kit. However, they must provide mechanisms
to allow easy extensions to other technologies. Since TPCx-IoT uses the YCSB
framework, it already includes a database management interface layer that allows
connections to many common open-source technologies.

Because TPCx-IoT is an express benchmark, we include audit mechanism directly
into its executable software kit. These methods are divided into pre- and post-run
checks. For instance, pre-run checks assure that the kit has not been altered and that
the data storage system uses at least a three-way data replication, while post-run
checks assure that the benchmark runs for the required time and that the system
sustains the minimal average data ingest rate of 20 sensor reads per second.

9



1.3. APPROACH

1.3.2 TPC-DI

To measure the performance of data integration systems, we developed TPC-DI. Data
integration systems have no standard language for defining the data flow required
for integrating data from various sources. For this reason, we decided to develop
TPC-DI following TPC’s enterprise benchmark framework. This enables us to define
a set of functional requirements that can be run on any DI system, regardless of
specific hardware or software.

We designed TPC-DI using the data integration processes of a retail brokerage
firm that populates a DSS with transformed data from a variety of different
sources, including a trading system, internal Human Resource (HR) and Customer
Relationship Management (CRM) systems.

We designed the data model of TPC-DI to exercise much of the functionality typically
used in DI systems. It consists of two main parts, the source data model and the
target data model. The source data model represents the input data set to the
data integration process. We designed it by combining online trading operations
with other typical internal data sources, that is, human resource and customer
management system, externally acquired data, financial newswire data, and customer
prospect data. These sources cover many data formats, for example, comma separate
values (CSV), plain text, multi-format, and XML. The target data model resembles
a dimensional DSS following common practice in the industry [29]. It consists of
multiple fact tables that share various types of dimensions. This snowflake schema
variant enables easy and efficient responses to typical business questions asked in the
context of a retail brokerage firm.

To enable both historical loads, that is, loads that occur during the initial creation
of a DSS and periodic incremental updates to a DSS, we implemented TPC-DI with
two different execution phases, a historical load phase and two incremental load
phases. Splitting the execution into these two phases is important because they have
very different performance characteristics and impose different requirements on the
DSS as it does not need to be queryable during the historical load, but it does need
to be queryable during each incremental load. For each phase, we calculate the rows

10



CHAPTER 1. INTRODUCTION

per second throughputs. We then combine the two throughput numbers into one
main performance metric using the geometric mean of the two.

It represents the number of rows processed per second as the geometric mean of the
historical and incremental loading phases. In order to calculate throughput numbers,
we need to define the measurement interval and what we mean by rows processed.
TPC-DI defines four completion time stamps (CTs) to be taken at a precision of
0.1 seconds (rounded up), for example, 0.01 is reported as 0.1. The number of rows
processed in each phase is provided by TPC-DI’s data generator, DIGen.

We build our data generator using PDGF, the Parallel Data Generation Framework,
originally developed at the University of Passau [30] ; since 2013, it has been
commercialized by bankmark1. PDGF’s core functionality, which includes parallel
data generation of generic data types and complex inter- and intra-column data
dependencies across multiple data, allowed us to implement a highly scalable data
generator. With our extensions to PDGF, we can generate data for the initial load
and subsequent incremental updates.

1.3.3 TPC-DS Version 2

To measure the performance of SQL-based big data systems, we utilize TPC-DS
Version 1, a comprehensive benchmark for measuring the performance of DSS. We
modified TPC-DS Version 2 in the areas of database load, ACID2, incremental data
integration, queries, metric and execution rules. Because big data systems follow an
open data approach, in which all products in its ecosystem can access and modify
the same full-fidelity data sets, we redefined what constitutes a database load and
how the database system guarantees durability. We accomplished that by making
the copying of data into a storage subsystem that is not exlusively owned by the data
management system part of the benchmark load. Additionally, we dropped the ACI3

requirements and require data read and write access during and after a permanent
1http://www.bankmark.de
2Atomicity, Consistency, Isolation and Durability
3Atomicity, Consistency and Isolation

11

http://www.bankmark.de


1.4. CONTRIBUTION

irrecoverable failure of any single durable medium containing any database objects.
Typical big data implementations of DSS do not necessarily undergo a rigid data
integration process where dimension tables are updated; in TPC-DS V2 we focus on
the loading of new and purging of old fact table data.

While most queries are carried over from TPC-DS V1 to TPC-DS V2, we modify some
queries. Most of the modifications address inconsistencies between the functional
query definition (SQL text) and its business description. Queries that returned
non-deterministic query results were amended with order-by clauses. We also added
equivalent rewrites to allow more big data products to run the queries. We conduct
a thorough performance analysis of four systems using different technology, showing
insights into relative query elapsed times within a system and across all four systems.
We classify the queries using data scan analysis, coefficient of variation analysis and
k-means analysis to show which queries are important and which may be dropped
from the benchmark.

We redesigned the execution rules and metric in TPC-DS V2 to emphasize the
performance characteristics of big data systems. To reflect the multi-user emphasis of
big data systems, we require one single-user and two multi-user tests. The multi-user
tests, in addition to executing queries, also execute the data integration workload.

Despite the pros and cons of using geometric means of calculating a single number
to represent performance [31], we decided to change TPC-DS performance metric
in Version 2, QphDS@SF , from an arithmetic mean to a geometric mean of the
elapsed time for the four execution phases: (i) Load, (ii) single-user, (iii) multi-user,
and (iv) data integration. This change addresses concerns by some TPC member
companies that the original metric could, for some implementations, be dominated
by data maintenance and load.

1.4 Contribution

The main contributions for the Internet of Things benchmark, TPC-IoT, are:

12



CHAPTER 1. INTRODUCTION

i. We develop TPCx-IoT, the first industry standard benchmark to measure the
performance of IoT gateway systems.

ii. We provide an in-depth analysis of TPC-IoT with emphasis on its key features,
and design decision, that is, we explain TPCx-IoT’s underlying use case, how
it is mapped to the benchmark specifications and the system being measured.
We explain the execution rules, the ingest and analytical workloads and how
the metric reveals the main performance characteristics of a typical gateway
deployment.

iii. We explain how the technical ideas of TPCx-IoT are embedded in the TPC
infrastructure that makes TPCx-IoT a robust industry standard benchmark.
This includes pricing, auditing and reporting of TPCx-IoT benchmark results.

iv. We analyze how TPCx-IoT measures the performance of IoT gateway systems by
presenting the performance measurements of TPCx-IoT against three different
hardware configurations.

The main contributions for the Data Integration benchmark, TPC-DI, are:

i. We design TPC-DI, the first industry standard benchmark for measuring the
performance of systems executing data integration processes for analytical
analysis in data warehouses.

ii. We describe the benchmark in a deep and comprehensive way, discuss alternative
designs wherever possible and provide reasons behind design decisions.

iii. We analyze the workload and present results obtained from a test system.

The major contributions of our TPC-DS approach to measuring performance of
SQL-based big data systems are:

i. We designed the first industry standard benchmark for measuring the perfor-
mance of SQL-based big data systems, TPC-DS V2. Based on TPC-DS V1, the
development of TPC-DS V2 allows SQL-based big data platforms to complete a
fully audited TPC-DS benchmark.

13



1.4. CONTRIBUTION

ii. We provide an in-depth analysis of TPC-DS V2 with emphasis on its key features,
design decisions and workload differences to TPC-DS V1.

iii. We conduct experiments running all queries in single-user and multi-user modes
on four analytical platforms, that resemble the diversity of systems being deployed
in big data solutions: two big data systems, one traditional relational database
system (RDBMS) and one columnar in-memory database system.

iv. We develop methods to categorize queries into equivalence classes, which give
indicators for query redundancies and query deficiencies and apply these methods
to the elapsed times gathered during our our experiments.

v. We analyze system resources consumptions during the execution of queries in
single-user and multi-user runs.

Parts of the content and contributions of this work have been published in:

• M. Poess, T. Rabl, and H.-A. Jacobsen. “Analysis of TPC-DS: the first
standard benchmark for SQL-based big data systems.” In: Proceedings of the
2017 Symposium on Cloud Computing, SoCC 2017, Santa Clara, CA, USA,
September 24 - 27, 2017. ACM, 2017, pp. 573–585. isbn: 978-1-4503-5028-0.
doi: 10.1145/3127479.3128603. url: http://doi.acm.org/10.1145/
3127479.3128603 [32]

• M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield. “TPC-DI: The First
Industry Benchmark for Data Integration.” In: PVLDB 7.13 (2014), pp. 1367–
1378. url: http://www.vldb.org/pvldb/vol7/p1367-poess.pdf [33]

• M. Poess, R. Othayoth, C. Narasimhadevara, K. Kulkarni, T. Rabl, and H.-A.
Jacobsen. “Analysis of TPCx-IoT: The First Industry Standard Benchmark
for IoT Gateway Systems.” In: Proceedings of the 34th IEEE International
Conference on Data Engineering, ICDE 2018, Paris, France, April 16-20, 2018.
[34]

14

https://doi.org/10.1145/3127479.3128603
http://doi.acm.org/10.1145/3127479.3128603
http://doi.acm.org/10.1145/3127479.3128603
http://www.vldb.org/pvldb/vol7/p1367-poess.pdf


CHAPTER 1. INTRODUCTION

1.5 Organization

The remainder of this document has been organized as follows. Chapter 2 provides a
background on benchmarks in general and benchmarks from the TPC specifically.
Chapter 3 presents the related work on the area of benchmarks for the DSS domain.
Chapters 4 describes TPCx-IoT beginning with a description of its use case and
continuing with a detailed description of the benchmark specifics. Chapter 4 concludes
with a performance analysis of TPCx-Iot running on three hardware configurations.
Chapter 5 presents details about the design of TPC-DI. After describing its use case,
it dives into a detailed description of the underlying data model, both source and
target. It continues with an in-depth description of the its data generation, PDGF
and the data it generates. Before discussing the execution rules and metric, it explains
how the transformations stress the capabilities of a data integration system. Chapter
5 concludes with a performance study. Chapter 6 covers TPC-DS. It is divided
into two sections. The first section presents and analyzes TPC-DS, emphasizing
the differences between Version 1 and Version 2 of TPC-DS The second section
presents a detailed performance analysis of TPC-DS Version 2 on four different setups.
Using cluster techniques the performance section analyzes the TPC-DS queries and
proposes which queries do not contribute to the quality of the TPC-DS and which
do. It concludes with recommendations about which types of queries to drop and
which type of queries the TPC should develop more.

15



1.5. ORGANIZATION

16



Chapter 2

Background

A computer benchmark is a methodology for quantitatively measuring the perfor-
mance of a subset of a computer system, both hardware and software. At the
minimum, a computer benchmark includes a workload and metric. The workload
defines the work that the tested computer system must complete. The metric
defines how performance is derived from the execution of the workload. Developing a
benchmark specifically for a particular computer system is costly and time consuming.
Such benchmarks have limited scopes, that is, they are designed for measuring the
absolute performance of a very small subset of a computer system, typically during
the design and development phases of new system features. Benchmarks designed
for comparing the relative performance of multiple computer systems typically have
larger scopes.

Independent of their scopes, benchmarks can be designed to be generic or domain
specific. Generic benchmarks measure the performance of computer systems without
considering the context in which they are used. Domain specific benchmarks are
designed to measure the performance of computer systems running a particular family
of applications, for example, database management software or scientific applications.

Benchmarks intended for publicly comparing the performance of computer systems
are considered industry standard benchmarks. Industry standard benchmarks are

17



2.1. INDUSTRY STANDARD BENCHMARK CONSORTIA

developed by an industry standard benchmark consortia. They enable all system
vendors to compete on a level playing field by providing fair performance comparisons.
In addition to workload and metric, industry standard benchmarks must include rules
to ensure fairness: (i) disclosure requirements, (ii) benchmark compliance, (iii) realistic
system design, and (iv) fair pricing (if system price is part of the metric).

Disclosure requirements ensure that the reported performance is for a specific system
configuration and that, in case changes were made to the benchmark, these changes
remain disclosed. Benchmark compliance rules ensure that benchmark results are
compliant with their benchmark standards. Rules for realistic system design ensure
that the system being measured is a typical system a customer would deploy to run
in the domain of the benchmark. For instance, an unrealistic system is a system
that was specifically designed to run the benchmark and may not run other typical
operations of the benchmark domain. Fair pricing rules are intended to ensure that
the system being measured is priced in a realistic and fair way. For instance, an
unrealistic or unfair pricing may include discounts not available for customers.

This work focuses on domain specific industry standard benchmarks.

2.1 Industry Standard Benchmark Consortia

Industry standard benchmark consortia are organizations that design, develop,
maintain and publish industry standard benchmarks. They are mostly nonprofit
organizations targeting a specific class of computer systems and class of domains. Well-
known and respected industry standard benchmark consortia include the Standard
Performance Evaluation Corporation (SPEC) [1], Storage Performance Council
(SPC) [2], Embedded Microprocessor Benchmark Consortium (EMBC) [3] and the
Transaction Processing Performance Council (TPC) [4]. They continue to develop
benchmarks.

This work focuses on industry standard benchmarks for the TPC.

18



CHAPTER 2. BACKGROUND

2.2 Transaction Processing Performance Council
(TPC)

Under the leadership of Omri Serlin, the TPC was founded in 1988 as a nonprofit
organization. The initial set of eight members— Control Data Corporation, Digital
Equipment Corporation, Pyramid Technology, Stratus Computer, Sybase, Tandem
Computers, and Wang Laboratories— grew to 35, a year later [9]. The mission
of the TPC is “to define transaction processing and database benchmarks and
to disseminate objective, verifiable TPC performance data to the industry.”[35].
Following this mission, the TPC has provided the industry with 16 benchmarks in
many domains, such as, Online Transaction Processing (OLTP), Decision Support
(DS), Web Application (APP), Virtualization, Big Data and Internet of Things.
These benchmarks produced over 1000 benchmark publications.

2.2.1 Organizational Structure

The main organ of the TPC is the full council (FC). Each member company of the
TPC may send at least one representative to the meetings of the FC, which take
place at least five times per year. Each company names one of its representative to
be a director of the board. Each director is entitled to one vote. The FC is lead by
one elected TPC director, the chair of the TPC. All major decisions are taken in
the FC. Actual work is conducted in three types of committees, who meet regularly
between FC meetings: (i) Standing committees and (ii) Technical committees.

There are three standing committees: (i) Steering committee (SC), (ii) Technical
advisory board (TAB), and (iii) Public relations committee. The SC consists of five
representatives from five different member companies and is lead by the chair of the
TPC. The SC provides an overall direction of the TPC and oversees all administrative
business of the TPC. The TAB is an arbitrator in settling disputes among member
companies over benchmark interpretations and published benchmark results. The
PR promotes the TPC, establishes TPC benchmarks as industry standards and
organizes the TPCTC, TPC’s annual technology conference.

19



2.2. TRANSACTION PROCESSING PERFORMANCE COUNCIL (TPC)

Benchmarks are developed and maintained in technical committees lead by elected
chairs. Each chair reports the work and decisions made in his subcommittee directly
to the FC. There is one technical committee for each active benchmark standard:
(i) TPC-C, (ii) TPC-DI, (iii) TPC-DS, (iv) TPC-E, (v) TPC-H, (vi) TPC-VMS,
(vii) TPCx-BB, (viii) TPCx-HS, and (ix) TPCx-V, and each supporting benchmark
standard: (x) TPC-Pricing and (xi) TPC-Energy. All chair positions and members
of standing committees are elected annually for a one year term. The Bylaws [36] and
Policies [37] of the TPC define and rule the operation of the TPC as an organization.

2.2.2 Benchmark Development in the TPC

The TPC provides mechanisms that facilitate the processes of turning a benchmark
into an industry standard benchmark and maintaining it. These mechanisms are
implemented in three locations: (i) TPC policies [37], (ii) supporting benchmarks
standards, and (iii) the benchmark specification. The following sections describe these
mechanisms in more detail.

2.2.3 Benchmark Result Certification

To ensure that the result of a benchmark execution is compliant with the spirit
and letter of its benchmark standard, it must be certified by either a TPC certified
auditor or a pre-publication board before its results can be published on the TPC
website. A TPC certified auditor is an independent person, free of conflicts-of-
interest who has successfully passed the TPC’s auditor certification process. The
certification process is done for each benchmark standard for which the auditor desires
to be certified. Auditors who have passed the certification process for a particular
benchmark standard have sufficient knowledge of it to certify benchmark results for
it. The pre-publication board consists of one or more representatives from TPC
member companies that have sufficient knowledge to certify a TPC benchmark result.
Whether a benchmark standard requires a TPC certified auditor or pre-publication
board is defined in the benchmark standard.

20



CHAPTER 2. BACKGROUND

2.3 TPC Benchmark Classes

A benchmark class in TPC is a set of benchmark standards that share the same
characteristics and the same rules for creation, maintenance, and publication. The
TPC currently has two benchmark classes, namely, enterprise and express. Both
approaches have merit. It depends on the domain of the benchmark whether it
should be implemented as enterprise or express.

Enterprise class benchmarks, namely, TPC-C, TPC-E, TPC-H, TPC-DS, and TPC-
DI, are defined in a technology agnostic way in the form of paper specifications. This
paper specification defines a set of functional requirements that can be run on any
system, regardless of specific hardware or software, as long as the system can fulfill
the functional requirements of the specification.

Enterprise class benchmarks enable the performance evaluation of a broad spectrum
of hardware and software tools, which is to be conducted in a fair and open way.
They allow the use of technology that had not been developed when the benchmark
specification was written. For example, when TPC-D was originally developed in
the beginning of the 90’s, no commercial product existed with aggregate/summary
structures, that is, pre-computed auxiliary structures to speed up query execution.
However, these are now common in many commercial database products.

On the contrary, enterprise class benchmark specification are complex. All functional
requirements, such as workload, timings and durability characteristics need to be
expressed in a hardware and software neutral way. Also, being technology agnostic
renders it almost impossible to provide a kit that can be downloaded and run
unmodified. Hence, each vendor using a specific hardware/software solution needs
to develop their own implementation of an express class benchmark specification.
This is expensive and time consuming as vendors have to submit proof that their
implementations meet all benchmark requirements. This is usually done through an
auditor.

Enterprise class benchmarks have served the TPC well for many years because when
it was founded in 1988 there existed a myriad of database management software

21



2.3. TPC BENCHMARK CLASSES

and computer vendors, some provided only database management software, such as
Microsoft, some only hardware, such as Compaq and some provided both such as
IBM. Through acquisition, consolidation and other market forces, the number of
independent software and hardware vendors shrunk. At the same time, we saw a
shift toward the construction of enterprise systems based on commodity hardware,
especially, x86-based systems and open-source software. This convergence into fewer
architectures has weakened the need for technology-agnostic specifications.

This led the TPC to develop the express benchmark framework. Express benchmarks
are based on predefined executable software kits. They are restricted to the technology
implemented in the kit. Consequently, they can be deployed rapidly with minimal
modifications, while satisfying the rigid rules the TPC benchmarks are known for.
There are many pros and cons of choosing a benchmark class for a given benchmark.
For a more detailed discussion, see [38]. TPC currently supports four express
benchmarks, TPCx-BB, TPCx-V, TPCx-HS, and TPCx-IoT.

Regardless of class, all benchmarks developed by the TPC share the same values of
the TPC, namely:

• Publish only one performance metric

• Publish a price/performance metric

• Ensure availability of the measured system

• Ensure repeatability of a benchmark run

• Mandate a rigid audit process

The TPC breaks an enterprise benchmark standard into the following components,
which it refers to as clauses:

• Preamble: In addition to introducing the benchmark on a very high, non-
technical level, the preamble contains a clause that assures only commercially
available products may be used for performance evaluation. This is important
to prevent the use of “benchmark special” implementations that were designed
only for the purpose of publishing a TPC benchmark result.

22



CHAPTER 2. BACKGROUND

• Business and benchmark model: The business and benchmark model clause
outlines the use-case of the benchmark. While each TPC benchmark may
be applied to any industry that operates their system in the domain of the
benchmark, each benchmark workload has been granted a realistic context. For
example, TPC-DS models the decision support operations of a typical retail
product supplier. The benchmark model aids the reader of the benchmark
specification in relating intuitively to the benchmark.

• Logical database design: The logical database design clause describes the design
of the database by abstraction. Column data types do not correspond to
any specific SQL-standard data type. Instead these abstract data types
define the minimum requirements for the properties of columns. A benchmark
implementation may use any internal representation or SQL data type that
meets the minimal requirements.

• Scaling and database population: The scaling and database population clause
defines the minimal and maximal sizes of tables and how the tables are
populated using the TPC provided data generator.

• Workload overview: The workload section defines the workload. For instance,
in the case of TPC-C, this section defines the transactions while in the case of
TPC-H it defines the queries and update functions.

• ACID or data accessibility properties: Keeping data accessible amid system
failures is important for TPC benchmarks. While most TPC benchmarks do
not measure the performance of system failures, all benchmarks require data
to be accessible after a system failure.

• SUT and driver implementation: A System Under Test (SUT) is a term that
describes all components of the system being tested. It contains priced and
non-priced components. Each TPC benchmark defines the mandatory and
optional parts of its SUT.

• Full disclosure: Defines what needs to be disclosed and how to organize the
disclosure reports.

• Audit: Defines the minimum requirements for the audit process. The auditor
is not bound by the content in this clause. On the contrary, an auditor must

23



2.4. METRIC AND EXECUTION RULES

certify that the benchmark result is compliant with the entire benchmark
specification.

2.4 Metric and Execution Rules

Execution rules and metric are two fundamental components of any benchmark
definition and they are probably the most controversial when trying to reach an
agreement between different vendors. The execution rules define the way individual
pieces of a benchmark are executed and timed, while the metric emphasizes them
by specifying their weight in the final metric. The metrics and execution rules are
described in one section, as they are intrinsically connected to each other and they
are equally powerful in controlling performance measurements. Both can change the
focus of a benchmark because only those parts of a system that are executed, as
described in the execution rules, can be measured in the metric. Conversely, even
though a part is executed, if it is not timed and included in the metric, it will remain
unnoticed. For instance, TPC-H’s execution rules mandate the measurement of the
initial database load. However, the primary metric (QphH) does not take the load
time into account. Consequently, little consideration is given to it while running the
benchmark.

TPC is best known for providing robust, simple and verifiable performance data.
The most visible part of the performance data is the performance metric and the
rules that lead to it. Producing benchmark results can be expensive and time
consuming. Hence, the TPC’s goal is to provide a robust performance metric, which
allows for system performance comparisons for an extended period and, thereby,
preserving benchmark investments. A performance metric needs to be simple such
that easy system comparisons are possible. If there are multiple performance metrics,
for example, A, B, C, system comparisons will become difficult because vendors
can claim they perform well on some of the metrics, for example, A and C. This
might still be acceptable if all components are equally important, but without this
determination, it would lead to much debate on this issue. In order to unambiguously
rank results, the TPC benchmarks focus on a single primary performance metric that

24



CHAPTER 2. BACKGROUND

encompass all aspects of a system’s performance weighting the individual components.
Taking the example from above, the performance metric M is calculated as a function
of the three components A,B and C , for example M=f(A,B,C). Consequently, the
TPC’s performance metrics measure the system and overall workload performance
rather than individual component performance. In addition to the performance
metric, the TPC also includes other metrics, such as price-performance metrics.

2.4.1 Priced Configuration

The TPC is one of the few performance consortia that defines very strict rules for
pricing a system and defining the availability of components of a system. Karl
Huppler from IBM has summarized the pricing methodology and outlined the future
direction of TPC pricing in [39].

Rules for pricing the priced system and its associated software and maintenance
are included in the TPC pricing specification [40], which is listed under common
benchmark specifications. Common benchmark specifications apply to all TPC
benchmarks.

The system to be priced must include all hardware and software components listed in
the SUT, a communication interface that can support user interface devices, additional
operational components configured on the test system, and the maintenance of all
above components. The cost of a priced system consists of the following costs:

• SUT price

• Price of additional products (software or hardware) in system

• Price of additional products (software or hardware) required for customary
operation, administration and maintenance of the SUT for three years

• Price of all products required to create, execute, administer and maintain the
executables necessary to create and populate the test environment

25



2.4. METRIC AND EXECUTION RULES

The following components are excluded from the cost of a priced system:

• End-user communication devices including related cables, connectors, and
switches

• Equipment and tools used exclusively for FDR1 production

Pricing is strictly associated with the availability of system components. If any
component of a benchmark becomes unavailable, the benchmark result must be
withdrawn. If, however, components with comparable performance are available,
pricing rules allow for component substitutions. If corrections to components of
the priced configuration are required during the life of a product, these changes are
not considered substitutions as long as the part number of the priced component
is identical to the new component. The idea behind this change is that hardware
and software suppliers may update the components of the priced configuration so
long as these updates do not negatively impact the reported performance metric or
numerical quantities by more than two percent.

The following are not considered substitutions:

• Software patches to resolve a security vulnerability

• Silicon revision to correct errors

• New supplier of functionally equivalent components, for example, memory chips
and disk drives

• Durable Media (for example, disk drives) and cables2

1Full Disclosure Report
2A durable medium is defined as a data storage medium that is inherently non-volatile, such as

a magnetic disk or tape

26



CHAPTER 2. BACKGROUND

2.4.2 Full Disclosure Report and Executive Summary

Each benchmark results is required to provide a full disclosure report (FDR) and
executive summary (ES). The intent of these disclosures is to simplify comparisons
between results and for facilitating replication of the results of any given benchmark,
given appropriate documentation and products. The FDR must contain all customer-
tunable parameters and options that have been changed from the defaults found
in actual products, including, but not limited to, the configuration parameters and
options of the operating system, server, storage, network, and any other hardware
components incorporated into the pricing structure. In addition if any software is
specifically compiled for running a benchmark, compiler optimization options, if any,
must be disclosed.

Furthermore, the FDR must list diagrams of both the measured and the priced
configurations, along with a description of the differences. The diagrams must clearly
show the number of nodes used and the total number and types of processors used
including sizes of L2 and L3 caches. The diagrams must further show the size of
memory; any specific mapping/partitioning of memory that is unique to the SUT;
number and type of disk units (and controllers, if applicable), number of channels or
bus connections to disk units, including protocol type, number and speed of LAN
connections and switches; and any other hardware components physically used in
the test or incorporated into the pricing structure.

27



2.4. METRIC AND EXECUTION RULES

28



Chapter 3

Related Work

The need for methodologies to measure the performance of computer systems dates
back to the development of the first systems. The need for industry standard
benchmarks for data processing systems, however, arose in the beginning of the 90’s
when companies began engaging in “benchmarketing”. Instead of using the same
methods for measuring the performance of their system, vendors defined benchmarks
that highlighted the performance of their system. This made performance comparison
virtually impossible. One of the first publications of industry standard benchmarks
is Jim Gay’s “The Benchmark Handbook: For Database and Transaction Processing
Systems” [41]. In his introduction, Jim Gray motivated the need for domain specific
benchmarks [42]. Most modern industry standard benchmarks are domain specific.

This chapter is divided into three sections. The first section presents the related
work in the area of Internet of Things. The second section presents the related work
in the area of ETL and Data Integration, and the third section lists the related work
in the area of back-end decision support systems.

29



3.1. INTERNET OF THINGS

3.1 Internet of Things

While there have been industry standard benchmarks for measuring the performance
of IoT edge devices and datacenter analytic systems, TPCx-IoT is the first industry
standard benchmark for measuring the performance of IoT gateway systems. As
TPCx-IoT is an express benchmark that provides a working kit, the TPC specification
is limited to providing high-level information. This thesis provides a detailed
description of TPCx-IoT.

The nonprofit Embedded Microprocessor Benchmark Consortium (EMBC) has
developed and is actively supporting IoTMark [43], a suite of micro-benchmarks
for analyzing edge devices. The benchmark suite focuses on measuring the energy
consumption of the three main parts of an edge node, sensors, processing, and
communication protocol. IoTMark is based on real-world use cases and, therefore,
determines the combined energy consumption of the entire edge platform (sensor
interface, processor, and radio interface). However, none of the benchmarks published
by the EEMBC include any performance or price-performance metric in contrast to
TPCx-IoT.

IoTABench is an experimental benchmark toolkit [44]. It currently implements a
smart meter use case (electricity) [45], which includes the loading of synthetic data,
performing simple data cleansing, and six analytical queries. The synthetic data
is generated by a Markov chain data generator that was trained using real data
from Irish households. The data-cleansing step requires the insertion of missing data
(1% dropped samples) and the six analytical queries perform projection, aggregation,
selection, and order by operations. The sophisticated data generator of IoTBench
generates very realistic data in parallel. IoTABench models a data ingestion rate of
about 67,000 smart meter readings per second. In comparison, TPCx-IoT models
millions of inserts per second. IoTABench models a single sensor type, while TPCx-
IoT models 200 sensor types. IoTABench measures the data ingestion rate and query
performance sequentially, while TPCx-IoT measures insert and query operations
concurrently. The number of queries executed by the two benchmarks also differs.
While TPCx-IoT executes five queries for every 10,000 sensor readings, IoTABench
executes a total of 12 queries (two times six different queries). With this model,

30



CHAPTER 3. RELATED WORK

IoTABench can be considered to be a datacenter and not a gateway benchmark. In
addition, IoTABench is not an industry standard benchmark.

TPC-H [14] is an industry standard benchmark that is used extensively in industry
and academia for measuring the performance of data warehouse systems, which are
deployed in IoT datacenter back-end systems. TPC-H requires an ACID compliant
database system.

3.2 Data Integration

Little research has been conducted on benchmarks for ETL systems. Today, most
systems are tested with rather simple workloads such as loading TPC-H data (cf.,
[46, 47, 48]). A more involved proposal was presented by Manapps [49]. In this
benchmark, 11 independent ETL jobs were used for comparing 5 ETL systems.
These jobs included simple loading, joining two tables, and aggregations. This is a
typical example of a component benchmark, which singularizes certain features of
the system under test. While this is beneficial for understanding the bottlenecks
in a ETL workload, it does not necessary relate to real world performance, since
the interplay of operations has a significant impact on the performance. Therefore,
TPC-DI was developed as a full end-to-end benchmark with a complex workload,
giving a realistic view of the end-to-end system performance.

Vassiliadis et al. characterized patterns in ETL workflows, as well as metrics and
parameters a ETL benchmark should cover [50]. These were extended to a complete
ETL workload based on TPC-H [51]. In contrast to TPC-DI, this benchmark contains
only simple transformations that can be handled with regular SQL constructs and,
therefore, do not necessarily stress elaborate ETL systems.

31



3.3. BACK-END DECISION SUPPORT

3.3 Back-End Decision Support

TPC-DS V2 is the first industry standard benchmark for measuring the performance
of SQL-based big data systems. It is based on TPC-DS V1, which has been widely
used in academia and industry to analyze the analytic features of SQL-based database
engines. While there have been two publications describing TPC-DS V1 [52, 53],
they only describe the early versions of the benchmark specifications and do not
contain modifications made to the query set, metric, executions rules, and the update
model, before TPC-DS V1 was ratified as an industry standard benchmark. This
thesis describes the second version of the TPC benchmark in its released form and
touches on its differences with Version 1.

Several other benchmarks have been proposed for big data benchmarking. An
overview of benchmarks can be found in [54]. In the following, we will only discuss
the benchmarks directly related to TPC-DS V2. We do not discuss other types of
big data benchmarks, e.g., domain specific benchmarks (graph-based benchmarks
[55, 56]) or benchmarks targeted only at a single type of system (MapReduce [57] or
Spark [58]).

TPC-DS V2 is not the first big data benchmark to be released by the TPC. Having
identified the need for big data benchmarking, the TPC released TPCx-HS, a
benchmark based on the Hadoop/MapReduce Terasort implementation, as a stopgap
solution [59]. TPCx-HS was the TPC’s first kit-based benchmark and as such has a
fully implemented kit that can be easily run on publicly available Hadoop/MapReduce
distributions. Unlike most TPC benchmarks, TPCx-HS is not an application level
benchmark that simulates a use case realistically, but a component benchmark that
targets mainly the storage system and sorting engine.

Another big data benchmark, recently released by the TPC is TPCx-BB, which is
based on BigBench [60, 61], which in turn is partially based on TPC-DS V1. Instead
of stressing the SQL capabilities of an engine, it allows for non-SQL implementations
and engine specific optimizations. BigBench only has 30 queries, 10 of which are
based on TPC-DS V1 queries. The remaining queries address use cases that are
difficult to express in standard SQL. In general, BigBench targets read-only big data

32



CHAPTER 3. RELATED WORK

platforms with some SQL aspects, while TPC-DS V1 is specifically designed for an
in-depth read/write performance testing of SQL engines.

Most other benchmarks for big data systems are suites of small workloads, which are
much less complex than the workloads of TPC-DS and TPCx-BB. Popular examples
include Pavlo’s benchmark [62], its successors HiBench [63], and the AMPLab
Benchmark [64]. These benchmarks consist of dependent workloads with only small
SQL parts, comprised of simple filter and aggregation queries. Today, TPC-DS V2
is the most comprehensive and most complex benchmark, not only for SQL-based
big data systems but for any kind of SQL engines as well.

33



3.3. BACK-END DECISION SUPPORT

34



Chapter 4

TPCx-IoT: First Industry
Standard Benchmark for
Measuring the Performance of IoT
Gateway Systems

Without doubt, the IoT has been an influential key driver of innovation, both in the
consumer and business segments of many industries. The initial hype around the IoT
stemmed from typical consumer use cases such as wearable fitness trackers, smart
watches, and smart home devices. However, the number of devices and data from
enterprise use cases such as smart city, patient healthcare, preventative maintenance,
and smart power grid have a significant market share. Regardless of use case, the
IoT will continue to drive innovation of physical devices, networks, and back-end
analytical infrastructure. According to a 2017 projection by Gartner [24], the total
number of IoT devices will more than double between now and 2020 (8.4 Billion to
20.4 Billion). The breakdown between consumer and business devices will remain
steady at 62% and 38%, respectively.

Figure 4.0.1 shows a simplified three-tier architecture of a typical IoT system with
edge devices on the left, gateways in the middle, and datacenter on the right. Data

35



Figure 4.0.1: Schematic overview of a typical IoT infrastructure

flows with very high frequencies and very low latency requirements from a myriad of
sensors into edge devices, where the typically analog signals are converted into digital
data. The frequencies at which sensors generate data depend on the sensor type. For
instance, a phasor measurement unit (PMU), which measures electrical waves using
synchrophasors [65], can generate 60-121 readings per second. Vibration sensors for
monitoring machine health as part of predictive machine maintenance are capable of
generating data at a much higher rate of thousands of samples per second (sps). The
edge devices then send that data at high frequencies with low latency requirements
by using a variety of network protocols, such as TCP/IP, Bluetooth Low Energy
(BLE) [66], ZigBee [67], Wireless Internet (WiFi) [68], Global System for Mobile
(GSM) [69], and MQTT [70], to gateway systems. Acting as a single point of access
for these devices, gateways perform the functions of short-term persistent storage
and lightweight local analytics (filter, aggregation) in their own DBMS, which often
runs open-source software on industry standard servers1. With these capabilities,
gateways serve as a crucial monitoring tool for a selected area of an operational field
by providing dashboard-like functionality. The back-end system on the right side of
Figure 4.0.1 ingests data from, potentially, multiple gateways at low frequencies, for
example, once a day, without much latency requirement. It stores data for a long
term and performs complex global analytics.

Analytics that run on gateways are restricted to the data sent from the edges
connected directly to a given gateway. Typical analytical queries in gateways run

1Usually x86-based servers built with commodity hardware parts.

36



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

frequently and include data aggregation, duplicate removal, and outlier and error
detection. They usually operate on a subset of the data, for example, they are
restricted to a specific sensor or date range (ingested within the previous minutes).
As they are run very frequently and, potentially, concurrently with other queries,
they are required to be completed in sub-second.

Analytics that run on datacenters usually span multiple gateways and consider data
from previous weeks and years. They include both reporting and ad-hoc queries,
which tend to be complex, long-running and based on a large subset of data. Usually,
few queries run concurrently, and they are allowed to run for an extended period.

Foreseeing a massive increase in the volume of data originating from edge devices
that need to be processed by gateway systems with high reliability and performance,
the Transaction Processing Performance Council (TPC) [4] released TPC Express
Benchmark IoT (TPCx-IoT) [71], the first industry standard benchmark for gateway
systems. Its first version was released in May 2017. Following the tradition of
previous TPC benchmarks, TPCx-IoT provides an objective measure of hardware,
operating system, data storage, and data management systems to the industry and
academia with verifiable performance, price-performance, and availability metrics.

TPCx-IoT specifically targets the gateway tier because the existing industry standard
benchmarks already cover the edge and datacenter tiers. IoTMark, developed by
Embedded Microprocessor Benchmark Consortium (EEMBC), is a suite of IoT
connectivity benchmarks for testing and analyzing microcontrollers and connectivity
interfaces of edge devices. The datacenter tier is covered by the TPC’s own
benchmarks, TPC-H and TPC-DS. Covering gateway systems seemed a natural
fit for the TPC as it focuses on data intensive applications. TPC discussed
combining benchmarks from all three tiers into one end-to-end benchmark, but
it concluded that there would be too many different devices and software solutions
distributed by different vendors in such an end-to-end benchmark. This would make
benchmarking extremely time consuming and expensive. In addition, interpretation
of the benchmark results would become extremely difficult.

TPCx-IoT provides an objective measure of hardware, operating system, data storage,
and data management systems to offer the industry with verifiable performance,

37



4.1. DESCRIPTION OF TPCX-IOT

price-performance, and availability metrics for systems that are meant to ingest and
persist massive amounts of data from a large number of devices and provide real-time
insights, typical in IoT gateway systems running commercially available systems,
both software and hardware. The TPCx-IoT benchmark models a continuous system
that is available 24h a day, 7 days a week. It can be used for assessing a broad range
of system topologies and implementation methodologies in a technically rigorous,
directly comparable, and vendor-neutral manner.

The remainder of this chapter is divided into five sections. The first section describes
TPCx-IoT in detail, including its use case, execution rules, metrics, data ingestion
workload, query workload and workload driver. The second section explains how
TPCx-IoT is embedded in TPC’s benchmark infrastructure, including a description of
its benchmark class, and its pricing and auditing requirements. In the third section, we
demonstrate how TPCx-IoT measures the performance of real systems by analyzing
TPCx-IoT performance data gathered from different hardware configurations running
HBase.

4.1 Description of TPCx-IoT

This section provides a detailed description of the design of TPCx-IoT, including
background information for key decisions. For the full specification and kit download
of TPCx-IoT, please refer to the TPC website [6].

4.1.1 Use Case Description: Power Substations of Electric
Utility Providers

While the performance data of TPCx-IoT may be applied to any IoT installation that
must ingest and persist massive amounts of data from a larger number of sensors,
and provide real-time analysis of incoming data, the workload of TPCx-IoT has been
granted a realistic context. It models the power substations of a typical electric
utility provider.

38



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.1.1: High level description of TPCx-IoT’s use-case

A schematic description of an electric utility provider’s infrastructure has been
illustrated in Figure 4.1.1. It consists of power producers, for example, power plants
and distributed energy resources (DERs), a power grid, and power consumers.

To transport power from producers to consumers, it needs to be converted to various
voltages and distributed over a grid of transmission lines. Situated at every junction
of this power grid are power substations that undertake a variety of tasks: Step-up
transmission substations increase the voltage for the efficient movement of large
amounts of electricity over long distances. Step-down transmission substations do
the reverse, that is, reduce voltage as the electric power approaches its destination.
Transmission substations connect two or more transmission lines. They contain high-
voltage switches that allow transmission lines to be connected or disconnected for
maintenance. Distribution substations transfer power from the transmission system
to the distribution system of an area. In case power needs to be fed into the power
grid from distributed power generation, for example, wind farms, collector substation
are used. They allow power flow in the opposite direction, back into the transmission
grid. According to a 2017 report of the California Energy Commission [72], the
power grid of the state of California includes 3,200 power substations, of which 982

39



4.1. DESCRIPTION OF TPCX-IOT

Figure 4.1.2: Overview of a gateway architecture serving power substations

are owned by one utility provider, Pacific Gas and Electric Company (PG&E) [73].

Utility providers use IoT technology in every step from thousands of edge sensors
in power plants to a few sensors measuring power consumption at consumer sites.
Requirements for gateways serving edge devices in each step vary dramatically. For
instance, fossil fuel power plants deploy upto 4,000 sensors [74], while neighborhood
smart meters only contain one. Hence, for TPCx-IoT, we decided to model sensor data
generated by power substations with 200 sensors each. Power producers, consumers,
and the actual transmission lines are outside of the scope of TPCx-IoT, as indicated
by the non-shaded boxes in Figure 4.1.1.

The size of power substations vary depending on their purpose and the number of
customers they serve. For instance, the Larkin power substation in downtown San
Francisco [75] measures 12,200 square feet, while the Martin power substations [76]
occupies 319,000 square feet. Power substations contain various types of sensors [77].
Figure 4.1.2 illustrates four examples: load tap changers gassing sensors measure
gas levels in load tap changes (LTC) that regulate output voltages of transform-
ers. Gas levels can identify overheating, coking and worn contacts of an LTC.
Metal–insulator–semiconductor (MIS) gas sensors measure H2 and C2H2 levels [78].
Phasor measurement units (PMU) measure electrical waves using synchrophasors [65].
Leakage current sensors measure the amount of current leakage to earth (ground).
These sensors send their data via edge devices to a gateway that can either be
situated close to the power substation or in a datacenter/cloud. The gateways ingest
sensor data at a high rate, store that data for short durations, and provide real-time
analytics to help take immediate action in associated power substations. Gateways

40



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.1.3: Mapping of real-world, benchmark, and physical devices

send data for long-term storage and complex analytics to an analytical platform.
This is, however, out of the scope of TPCx-IoT.

Figure 4.1.3 shows how the real-world use case of power substations (see Figure 4.1.1)
is mapped to the specification of TPCx-IoT and how it is mapped to physical
systems. Each power substation in the simulated “real-world” maps directly to
one instance of TPCx-IoT workload driver on the benchmark level. One instance
of the workload driver generates sensor data from one power substation and the
corresponding queries that can be run against that data. The physical level shown at
the bottom of Figure 4.1.3 lists the number of physical systems needed to support the
number of simulated power substations, that is, the number of driver instances that
can be run. As long as the run-time requirements for the driver are being met, driver
instances can be run on one or across multiple physical systems. These systems are
not priced.

The gateway supporting our power substations is mapped directly to the SUT.

41



4.1. DESCRIPTION OF TPCX-IOT

Figure 4.1.4: TPCx-IoT system under test (SUT)

TPCx-IoT defines the SUT as representing an IoT gateway system consisting of
commercially available servers, switches, and storage systems running a database
management system, for example, a NoSQL database. Figure 4.1.4 shows a diagram
of the SUT as defined in the TPCx-IoT specification.

4.1.2 Execution Rules

A TPCx-IoT benchmark run is composed of two benchmark iterations (see Fig-
ure 4.1.5). Each benchmark iteration executes the TPCx-IoT workload twice, once
to warm up the system and once for a measured execution of the workload. Before
the first warm-up run, the benchmark driver performs a couple of prerequisite checks:
The file check compares the checksums (md5sum) of all non-changeable kit files2 on
the system with reference checksums in the kit; The data replication check ensures

2Most files in the kit must not be altered by a benchmark sponsor. However configuration
related files may be altered.

42



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.1.5: Benchmark execution rules

that the storage system uses a three-way replication of data. If any of these two
checks fail, the benchmark driver will abort the run.

The warm-up run is not timed. The start and end timestamps of the measured run
are denoted by TSa,b where a ∈ {start, end} and b ∈ {1, 2}. The elapsed time of
a workload execution is TEa where a ∈ {1, 2}. Each workload execution performs
concurrent data ingestion (write) and query (read) operations.

The amount of data to be ingested is a parameter of the workload driver. After the
measured workload execution has been completed, a data check assures that the
benchmark run fulfills all necessary runtime requirements. The second benchmark
iteration is a repetition run to ensure measurement repeatability. To achieve identical
conditions in both runs, a system cleanup is performed between iterations. A cleanup
consists of purging all data ingested into the data management system during the
previous warmup and measured workloads, deleting all temporary files, and restarting
the data management system. No additional activities are allowed between the end
of the first benchmark iteration and start of the second one. After the system cleanup
has been completed, the second iteration is executed. After data check of the second
iteration, the TPCx-IoT driver runs a report that prints all information needed to
audit and publish a benchmark result.

43



4.1. DESCRIPTION OF TPCX-IOT

For each benchmark run, the benchmark sponsor must choose the amount of ingest
data and the number of simulated power substations to fulfill the following two
execution rule requirements:

1. Workload execution elapsed time: Both the warmup and the measured workload
execution need to run for at least 1800s each.

2. Sensor data ingest rate: The benchmark system must guarantee a minimal
average data ingest rate per sensor of 20kvps

s
.

The acronym kvp stands for key-value-pair, plural is kvps. It is commonly used in
NonSQL systems for describing a set of two data items, key and value. The key is a
unique identifier for the value. In our use case, kvp stand for the sensor readings
arriving to the gateway system from edge devices. In the remainder of this work, we
shall use the terms kvp(s) and sensor reading(s) interchangeably.

Each workload run must be at least 1, 800s so that the benchmarked system can
demonstrate that it can sustain high performance during an extended period before
the data is forwarded to analytical systems in the back-end.

A minimal average data ingest rate per sensor is required to prevent benchmark
sponsors3 from artificially reducing the amount of reads required by queries. Assuming
a fixed number of sensors, there is a direct correlation between the system-wide data
ingest rate per sensor and the average number of readings retrieved by each query,
because each query reads data from a 5s interval. Keeping the system-wide data
ingest rate constant, because the gateway system is saturated, one could reduce
the average per sensor ingest rate by increasing the number of sensors, that is, by
increasing the number of power substations, that is, the number of TPCx-IoT driver
instances.

Requiring a minimal average ingest rate of 20kvps
s

per sensor has a couple of other
consequences, which we will discuss below. As one power substation has 200 sensors,

3Vendors producing benchmark results and publishing them under TPC rules.

44



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.1.6: Sensor reading (kvp) generated by the driver program of TPCx-IoT

the system-wide minimal average ingest rate is:

200sensors ∗ 20 kvps

sensors ∗ s
= 4000kvps

s
= 3.91MB

s
(4.1.1)

The minimal average number of kvps retrieved per query is:

20 kvps

sensor ∗ s
∗ 5s = 100 kvps

sensor
(4.1.2)

4.1.3 Data Ingestion Workload

The TPCx-IoT workload generator is based on the Yahoo! Cloud Serving Benchmark
framework (YCSB) [28]. We chose YCSB for developing of TPCx-IoT because
it is well-known, open source, easily adaptable to specific needs, and its built-in
database interface layer allows connections to many common open-source database
management systems including NoSQL DBMS.

Before diving into the details of the changes, we briefly review the requirements of
the data ingestion part of our workload driver. As outlined in the use case description
(Figure 4.1.3) the workload driver of TPCx-IoT must be able to generate sensor
data related to different power substations. In real life, power substations vary in
size depending on the number of transmission lines they connect or the number
of customers they serve. The number of sensors in a substation varies accordingly.
However, in our model, we assume that each substation has the same number of
sensors, that is, 200.

To distinguish sensor data from different power substations, we added support in

45



4.1. DESCRIPTION OF TPCX-IOT

YCSB for keys and values that are based on attributes from sensors commonly
deployed in power substations of utility companies. Each YCSB instance, which we
refer to as a TPCx-IoT driver instance, generates sensor data arriving from one power
substation. The power substation key is passed to the TPCx-IoT driver instance
along with the number of sensor readings it should generate (SR). Figure 4.1.6 shows
the structure of key-value pairs. Each represents one reading of one sensor of one
power substation. The key part consists of the power substation key, which uniquely
identifies a power substation, the sensor key, which uniquely identifies a sensor within
a power substation and the timestamp, coded as POSIX time, which represents the
time the sensor reading was taken. The value part consists of the sensor value,
which represents the value that the sensor read, sensor unit, which represents the
measurement unit of the sensor value, and padding, which contains random text to
fill a kvp to one KByte.

Figure 4.1.7 illustrates the bare generation speed at which TPCx-IoT drivers generate
kvps. We measure this speed by redirecting the driver’s output to /dev/null. These
experiments were conducted on a Cisco UCS C220 M4 driver system with 128GB
main memory and two Intel Xeon 2680 v4 CPUs running at 2.4 GHz. Each socket
had 14 cores, 28 multi-threaded. On the x-axis, we varied the number of TPCx-IoT
drivers from 1 to 64. The left y-axis shows the aggregated driver throughput in
thousand kvps per second (kvps

s
). The right y-axis shows the CPU utilization of

the driver system in percentage. As we increased the number of TPCx-IoT drivers
from 1 to 64, the total throughput increased from 120,000kvps

s
with one driver to

1.1 Millionkvps
s

with 32 drivers, while CPU utilization increased from 4% with one
driver to 75% with 32 drivers. Total throughput drops to 900,000kvps

s
with 64 drivers

with CPU utilization increasing to 100% with the system CPU portion increasing
from 5% to 15%. This is not surprising because 64 drivers spawn 640 threads, which
impose overheads of garbage collection and scheduling. The above generation speed
of 1.1 millionkvps

s
is sufficient to simulate the amount of data generated by one

power substation. Each TPCx-IoT driver simulates the data volume of one power
substation with 200 sensors. That means, 1.1 millionkvps

s
generated with 32 drivers

simulates a sensor frequency of about 170 samples per second (sps) per sensor.

46



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.1.7: Key-Value pair generation speed

47



4.1. DESCRIPTION OF TPCX-IOT

4.1.4 Query Generation/Execution

We added support for the concurrent querying of ingested sensor data. Unlike in
the traditional YCSB deployments, where YCSB picks a random set of keys to read,
TPCx-IoT issues queries that read random key ranges. Queries are generated from
the following four query templates, which represent typical dash-board-like queries:

1. Max-Reading: The max-reading query compares the maximum sensor reading
in the two intervals.

2. Min-Reading: The min-reading query compares the minimum sensor reading
in the two intervals.

3. Average-Reading: The average-reading query compares the average sensor
reading in the two intervals.

4. Reading-Count: The sample-count query compares the number of sensor
readings in the two intervals.

Each query compares the readings of one sensor of one power substation ingested in
the last 5s with data from another 5s interval that is randomly selected within the
previous 1800s. We chose the interval of the second query to be randomly picked, as
opposed to picking it from a fixed time window to minimize caching effects. All four
query templates perform projections, selections, and aggregations. The projection
returns the fields required by the query, namely sensor value and time stamp. The
selection filters data relevant to a specific power substation, sensor, and date range.
The aggregation performs max, min, average, and count operations. Listing 4.1.1
shows a sample query.

As the database is empty before the start of the warm-up run, queries issued during
the warm-up run might not return any data for the second, randomly chosen time
interval, because there might be an absence of data in that time interval. This is not
a problem as the warm-up run is not timed nor is any information from it part of
the metric.

48



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Scan s=new Scan ( ) ;
ResultScanner scanner = n u l l ;
t ry {

s . setTimeRange ( timestamp , timestamp+ 5 0 0 0 ) ;
S t r i n g B u f f e r startKey=new S t r i n g B u f f e r ( ) ;
startKey . append ( c l i e n t F i l t e r ) ;
startKey . append ( " : " ) ;
startKey . append ( f i l t e r ) ;
startKey . append ( " : " ) ;
startKey . append ( timestamp ) ;
S t r i n g B u f f e r endKey=new S t r i n g B u f f e r ( ) ;
endKey . append ( c l i e n t F i l t e r ) ;
endKey . append ( " : " ) ;
endKey . append ( f i l t e r ) ;
endKey . append ( " : " ) ;
endKey . append ( timestamp +5000);
s . setStartRow ( startKey . t o S t r i n g ( ) . getBytes ( ) ) ;
s . setStopRow ( endKey . t o S t r i n g ( ) . getBytes ( ) ) ;
i f ( f i e l d s==n u l l ) {

s . addFamily ( columnFamilyBytes ) ;
} e l s e {
f o r ( S t r i n g f i e l d : f i e l d s ) {

s . addColumn ( columnFamilyBytes , Bytes . toBytes ( f i e l d ) ) ;
}

}
scanner = currentTable . getScanner ( s ) ;
i n t numResults = 0 ;
f o r ( Result r r = scanner . next ( ) ;

r r != n u l l ;
r r = scanner . next ( ) ) {

S t r i n g key = Bytes . t o S t r i n g ( r r . getRow ( ) ) ;
i f ( debug ) {

System . out . p r i n t l n ( " Got r e s u l t f o r key : " + key ) ;
}

}
}

Listing 4.1.1: Sample Query Code

4.1.5 Benchmark Driver

Figure 4.1.8 shows the architecture of the benchmark driver of TPCx-IoT. It
is responsible for running the entire workload: performing prerequisite checks,
performing data inserts (write operations), executing queries (read operations),
checking data, performing system cleanup, and, generating reports. It serves as a
wrapper around the TPCx-IoT driver instances, which are based on YCSB. Many of
the TPCx-IoT driver instances are spawn depending on the gateway size.

The benchmark driver is invoked with two arguments, number of TPCx-IoT driver
instances and total number of kvps. The number of TPCx-IoT driver instances

49



4.1. DESCRIPTION OF TPCX-IOT

determines the number of processes that generate data, the number of power
substations that are simulated and the number of different sensors that send data
to the gateway. The total number of kvps, which simulate the number of sensor
readings sent to the gateway, determines how many kvps are ingested into the
gateway. The default number of kvps is 1 Billion. By increasing the number of kvps,
the benchmark sponsor can adjust the run time of the workload run. As the metric
is throughput-based, longer runs offer no advantages.

Each TPCx-IoT driver instances i generates about the same number of kvps, KV P (i).
With P being the number of simulated power substations and K being the total
number of kvps generated by all drivers, the number of kvps generated by each
driver can be calculated as follows:

KV P (i) =

b
K
P
c if 1 ≤ i < P

bK
P
c+K mod P otherwise

(4.1.3)

As real benchmark configurations are expected to use values for K that are much
larger (Billions) than P (hundreds), the above equation will not introduce a significant
workload skew.

4.1.6 Metrics

TPCx-IoT defines three primary metrics:

1. Performance metric: IoTps

2. Price-performance metric: $/IoTps and

3. System availability: Date

The performance metric reflects the effective gateway ingestion rate in seconds that
the SUT can support during a 30-minute measurement interval, while executing

50



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.1.8: Architecture of TPCx-IoT workload generator

51



4.2. EXPERIMENTS

real-time analytic queries. The total number of kvps ingested into the database,
Ni, where i ∈ {1, 2} being the iteration, is used to calculate the performance metric.
The performance run is defined as the measured run m with the lower number of
kvps ingested, that is, m ∈ {1, 2}, n ∈ {1, 2} such that m 6= n and Nm < Nn. IoTps
is calculated as follows:

IoTps = Nm

TSend,m − TSstart,m
(4.1.4)

The price-performance metric reflects the total cost of ownership per unit IoTps
performance. It is calculated as follows:

$
IoTps

= ownership cost ∗ (TSend,m − TSstart,m)
Nm

(4.1.5)

The system availability metric reflects the date when all line items of the price
configuration are generally available,that is, to any costumer. The system availability
metric is important because it guarantees that the benchmarked system is a pro-
duction system that can be purchased and not an experimental system that was
implemented only for running the benchmark.

4.1.7 Express Model for TPCx-IoT

We selected the express model for TPCx-IoT, because the gateway architectures
are mostly based on industry standard servers (x86-based) and use open software
stacks, which makes the development of a kit feasible. Development times for express
benchmarks are much shorter compared to those for enterprise benchmarks.

4.2 Experiments

We ran our tests against HBase 1.2.0 [79, 80], which is a good representative system
for this workload. Key-value stores for IoT data are being used in a variety of
products and services, such as Google Cloud IOT [81] and Microsoft Azure IoT [82].

52



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Our benchmarks are run on a cluster of eight Cisco UCSB-B200-M4 blade servers,
each with the following configuration:

• 2 Intel(R) Xeon(R) CPU E5-2680 v4 clocked at 2.40GHz, each with 14 cores
and 28 threads

• 256 GB RAM

• 2 Cisco UCS 6324 FI (10 GBps per server node)

• 2 Samsung 3.8 TB 2.5-inch Enterprise Value 6G SATA SSD

We used the following tuning parameters for HBase:

• hbase.client.write.buffer=8GB

• hbase.regionserver.handler.count=224

• Maximum number of Write-Ahead Log (WAL) files=128

• hbase.hstore.blockingStoreFiles=28

• Java Heap Size of HBase RegionServer=32GB

• Client Java Heap Size=8GB

This section is intended to show the basic performance characteristics of TPCx-IoT.
However, it does not intend to showcase the best performance of the HBase nor
analyze it in detail. The above tuning steps for HBase follow the best practices.

4.2.1 Scaling the Number of Power Substations

In order to determine how many power substations our gateway system supports,
while still fulfilling the execution rule requirements outlined in Section 4.1.2, we
ran experiments varying the number of power substations (number of TPCx-IoT

53



4.2. EXPERIMENTS

Table 4.2.1: Experiment parameters & requirement fulfillment

Power Rows Elapsed Time [s] Ingestion Rate kvps
s

sub- Ingested Warm- Mea- System- Per-
stations [Million] up sured Wide Sensor

1 50 4,795 5,099 9,806 49.0
2 60 2,024 2,222 26,999 67.5
4 100 1,813 1,812 56,822 71.0
8 240 2,606 2,837 84,602 52.9
16 400 2,822 2,986 133,940 41.9
32 400 1,897 2,149 186,109 29.1
48 400 1,992 2,188 182,815 19.0

instances) from 1 to 48. We increased the number of power substations in steps of
power of 2, except from 32-48, where we added 16.

Table 4.2.1 lists the benchmark input parameters, number of power-substations and
number of kvps to be ingested in the first two columns. As we increased the number
of power substations from 1 to 48, we increased the number of rows ingested from
50 Million to 400 Million to keep the elapsed times of the warmup and measured
executions of the workload larger than 1800 s (columns three and four). Finding a
suitable number of rows to ingest was not difficult. We binary-searched a suitable
number for one power substation and extrapolated to multiple power substations.
The system-wide throughput, which corresponds to the main metric (IoTps) of
TPCx-IoT, increases from 9,806 kvps

s
with one power substation to 186,109 kvps

s
with

32 power substations. Adding 16 more power substations keeps the throughput
constant at about 182,815 kvps

s
. The per-sensor ingestion rate requirement of 20kvps

s

can be fulfilled up to 32 power substations. At 48 substations it falls to 19kvps
s

.

The following graphs show additional metrics of the above conducted experiments.
Unless noted otherwise, the number presented are measured, not derived. Figure 4.2.1
plots the system-wide throughput (IoTps). For each data point, we display the
scaling number s based on the throughput with one power substations, that is,
Si = IoTpsi

IoTps1
with i ∈ 2, 4, 8, 16, 32, 48 being the number of power substations. IoTps

scales super-linear until eight power substations. With two power substations S2 is
2.8, with 4 power substations S4 is 5.5 and with 8 power substations S8 is 8.6. With
16 and more power substations IoTps scales sub-linearly at S16 = 13.7, S32 = 19.0

54



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.2.1: System-wide kvp inserted per second [IoTps]

55



4.2. EXPERIMENTS

Figure 4.2.2: Per sensor kvp inserted per second

and S48 = 18.6.

Figure 4.2.2 plots the measured average per-sensor IoTps. The red line at 20 IoTps
indicates the minimum allowed for a valid benchmark run. IoTps increases from
49.0 IoTps with one power substation to 67.8 IoTps with 4 power substations.
Increasing the number of power substations to 48 causes IoTps to drop below
the allowable limit. The reason for the initial increase and subsequent drop in
per-sensor throughput is the initial super-linear system-wide throughput scaling,
which turns into a sub-linear scaling with 16 power substations. As the throughput
per sensor is calculated by dividing the system-wide throughput by the number of
sensors, and since the number of sensors increases linearly with the number of power
substations, there is a direct correlation between the system-wide scaling and the
per-sensor throughput: Sub-linear system-wide scaling causes a decrease in per-sensor
throughput, linear system-wide scaling causes constant per-sensor throughput, and
super-linear system-wide scaling causes an increase in per-sensor throughput.

56



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.2.3: Average sensor readings aggregated per query

57



4.2. EXPERIMENTS

Figure 4.2.4: Average system-wide query elapsed time [s]

Figure 4.2.3 plots the measured average number of kvps aggregated by each query.
This is essentially the average number of readings read per query for calculating the
dash-board value for each sensor. The curve looks very similar to that of the previous
Figure 4.2.2, because the number of data aggregated has the same correlation as the
Iotps per sensor. We have included this graph to show that a reasonable number of
values is considered while calculating the aggregate for each of the query template.
If the number drops below 200, the benchmark run becomes invalid.

Figure 4.2.4 plots the average system-wide query elapsed time for each of our runs.
Average query elapsed time is between 11.8 ms and 14.4 ms with up to 8 power
substations. With 16 power substations, average query elapsed time increases to 33.1
ms and reduces slightly to 29.1 ms with 32 power substations and 25.4 ms with 48
respectively.

The bar chart in Figure 4.2.5 shows the minimum, maximum and average query
elapsed times in milliseconds. For each number of power substations, the minimum

58



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.2.5: Query elapsed time variation

and average query elapsed times are in double digit milliseconds (max is 36 millisec-
onds). However, the maximum query elapsed times are very high starting with 4
power substations (larger than 1000 ms). The numbers above each bar represents
the coefficient of variation ( stdev

mean
). For each of the runs, the coefficient of variation

is larger than 1, which indicates a very large variation. We also calculated the 95
percentiles for each run (not shown in figure). They were below 25 ms up to 16 power
substations. They increased to 185 ms with 32 and 143 ms with 48 power substations.
The benchmark currently does not require a query elapsed time percentile. However,
due to the dash-board like use-case of TPCx-IoT, this is something to consider.

As TPCx-IoT requires the complete ingestion of a fixed number of sensor readings
kvps from each power substation, as opposed to run for a fix amount of time, the
benchmark tests the gateway system’s ability to load-balance the data ingestion
between all power substations. Figure 4.2.6 plots the minimum, maximum, and
average ingestion times for data from all power substations (see Table 4.2.2 for a
listing of the numbers). Although with one power substation all three values are

59



4.2. EXPERIMENTS

Figure 4.2.6: Power substation workload variation

60



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

identical, we include them for completeness. As we increase the number of power
substations, the difference between the fastest and the slowest ingest time increases
from 5% to 81%. Table 4.2.2 shows the times for the fastest ingest in the second
column, the slowest ingest time in the third column and the average ingest time
in the fourth column for each of the runs. The difference between the fastest and
slowest are printed in Column 4 (absolute) and Column 5 (relative). For instance,
the large difference of 81% in the 48 power substation case indicates that there is
large potential for speeding this run up.

Table 4.2.2: Difference between fastest and slowest power substation ingest time

Power Ingest Time [s] Difference
substation Min Max Avg Absolute Relative

1 5,099 5,099 5,099 n.a. n.a.
2 2,109 2,222 2165 113s 5%
4 1,637 1,845 1,676 208s 13%
8 2,524 2,837 2,704 313s 12%
16 2,497 2,986 2,735 489s 20%
32 1,563 2,149 1,861 586s 38%
48 1,212 2,188 1,653 976s 81%

4.2.2 Scaling the Number of Gateway Nodes (Scale-Out)

For the following set of experiments, we scaled the number of HBase servers from
two to eight nodes. Due to the replication requirements in TPCx-IOT, the minimum
number of nodes eligible for benchmark publication is two. All experiments conducted
in this section fulfilled the runtime requirement of a minimal workload execution
time of 1,800 s.

Figure 4.2.7 shows how TPCx-IoT throughput [IoTps] scales with the number of
power substations on all three configurations. The corresponding data is also listed
in Table 4.2.3. With the 2-node configuration (blue graph with rhombus markers),
system-wide throughput increases from 21,909 IoTps with one power substation to
105,877 IoTps with eight power substations. Increasing the number of substations
beyond eight increases the system-wide throughput to a peak of 115,486 IoTps. The
4-node configuration shows 15,706 IoTps with one power substation (red graph with

61



4.2. EXPERIMENTS

square markers). This is about 28% less throughput than the two-node configuration.
The system-wide throughput increases to 125,603 IoTps with 16 power substations.
Increasing the number of power substations beyond 16 increases the system-wide
throughput to a peak of about 134,248 IoTps. The 4-node configuration delivers a
16% higher peak system-wide throughput. As discussed in Section 4.2.1 the 8-node
configuration scales to 32 power substations, after which the performance remains
stagnant. At 9,806 IoTps, the 8-node configuration delivers the lowest performance
with one power substation. However, with 182,815 IoTps, it can deliver the highest
peak system-wide throughput.

Table 4.2.3: System-wide and per-sensor throughput for 2,4 and 8 nodes

Number Throughput [IoTps]
of Power System-wide Per-sensor

substations 2-node 4-node 8-node 2-node 4-node 8-node
1 21,909 15,706 9,806 109.5 78.5 49.0
2 38,939 33,612 26,999 97.3 84.0 67.5
4 63,076 57,113 54,201 78.8 71.4 67.8
8 105,877 90,160 84,602 66.2 56.4 52.9
16 114,508 125,603 133,940 35.8 39.3 41.9
32 114,764 132,100 186,109 17.9 20.6 29.1
48 115,486 134,248 182,815 12.0 14.0 19.0

Figure 4.2.8 shows the per-sensor throughput for the three configurations. Similarly
as the 8-node configuration, the 4-node configuration shows an initial increase in
per-sensor throughput from one to four power substations. Per-sensor throughput
begins to decrease after that. It stays above the limit of 20 IoTps until shortly
after 32 power substations. The 2-node configuration does not show an increase
in per-sensor throughput from one to two power substations, because, unlike the
other configurations, the 2-node configurations shows sub-linear scaling starting from
one to two power substations. Per-sensor throughput decreases steadily, starting
from one power substation to 48 power substations. It crosses the limit of 20 IoTps
exactly at 32 power substations.

62



CHAPTER 4. TPCX-IOT: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF IOT GATEWAY SYSTEMS

Figure 4.2.7: System-wide kvp inserted per second [IoTps]

63



4.2. EXPERIMENTS

Figure 4.2.8: Per Sensor kvp inserted per second

64



Chapter 5

TPC-DI: First Industry Standard
Benchmark for Measuring the
Performance of Data Integration
Systems

The term data integration (DI) covers a variety of scenarios, predominantly data
acquisition for business intelligence, analytics and data warehousing, but also
synchronization of data between operational applications, data migrations and
conversions, master data management, enterprise data sharing and delivery of data
services in a service-oriented architecture context, amongst others. Each of these
scenarios requires the extraction of data from one or multiple source systems and
data transformation and writing the data to one or more target systems.

While small DI deployments tend to be implemented using collections of customized
programs or database procedures, medium to large sized DI deployments are usually
implemented using general purpose DI tools. These deployments often must integrate
data from many disparate data sources with various formats requiring complex
formatting and data transformations prior to loading into one or more target
systems. General purpose DI tools can significantly increase developer productivity

65



by providing commonly used functionality for system connectivity and for standard
data transformations. They further improve the availability and maintenance of the
DI processes by visualizing connections, transformations and progress of running
tasks. A non-exhaustive list of commercially available tools includes, for example, Ab
Initio1, IBM InfoSphere Information Server for Data Integration2 Microsoft SSIS3,
and Oracle Warehouse Builder4.

Ever since vendors started implementing and marketing general purpose DI tools,
they started making competitive and performance claims. With no standard DI
benchmark available, the situation is similar to that of 1980s, when many system
vendors due to the the lack of standard database benchmarks practiced what is
now referred to as “benchmarketing”. A large number of world record claims have
been made for DI systems (for example, [83, 47, 48]). These are of no value to
customers who would like to evaluate DI performance across vendors. Having realized
this void the Transaction Processing Performance Council (TPC) released the first
version of its data integration benchmark, TPC-DI, in January 20145. TPC-DI is
modeled using the data integration processes of a retail brokerage firm, focusing
on populating a decision support system with transformed data from a variety of
desparate systems, including a trading system, internal Human Resource (HR) and
Customer Relationship Management (CRM) systems. The mixture and variety of
operations being measured by TPC-DI are not designed to exercise all possible
operations used in DI systems. And they are certainly not limited to those of a
brokerage firm. They rather capture the variety and complexity of typical tasks
executed in a realistic data integration application that are characterized by:

• The manipulation and loading of large volumes of data

• A mixture of transformation types including error checking, surrogate key
lookups, data type conversions, aggregation operations, data updates, etc.

1http://www.abinitio.com/
2http://www-03.ibm.com/software/products/en/infoinfoservfordatainte
3http://technet.microsoft.com/en-us/library/ms141026.aspx
4http://www.oracle.com/technetwork/developer-tools/warehouse/overview/

introduction/index.html
5http://www.tpc.org/tpcdi/default.asp

66

http://www.abinitio.com/
http://www-03.ibm.com/software/products/en/infoinfoservfordatainte
http://technet.microsoft.com/en-us/library/ms141026.aspx
http://www.oracle.com/technetwork/developer-tools/warehouse/overview/introduction/index.html
http://www.oracle.com/technetwork/developer-tools/warehouse/overview/introduction/index.html
http://www.tpc.org/tpcdi/default.asp


CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

• Historical loading and incremental updates of a decision support system using
the transformed data

• Consistency requirements ensuring that the integration process results in
reliable and accurate data

• Multiple data sources having different formats, including, multi-row formats
and XML

• Multiple data tables with varied data types, attributes and inter-table relation-
ships

Because there is no standard language to express a data integration workflow and
transformations, TPC-DI is implemented as an express class benchmark.

The remainder of this chapter is structured as follows. Section 5.1 introduces the
source and target data model. Section 5.2 presents the characteristics of the data
sets used to populate the source model and explains the technical details of how the
data sets are generated and scaled. In Section 5.3, the transformations of the DI
workload are explained. They form the core workload of the benchmark. Section 5.4
presents the execution rules that govern how the transformations have to be executed,
timed, and weighted to compute the ranking of DI systems. Section 5.5 presents the
metric and explains the decisions that led to its definition. A performance study is
presented in Section 5.6.

5.1 The Data Model

The data model of TPC-DI is designed to exercise much of the functionality typically
used in today’s DI systems. It consists of two main parts, the source data model
and the target data model. The source data model represents the input data set
to the data integration process. It resembles data from online trading operations
combined with other internal data sources, that is, a human resource and a customer
management system, externally acquired data, financial newswire data, and customer

67



5.1. THE DATA MODEL

prospect data. The target data model resembles a dimensional decision support
system following common practice in the industry [29]. It consists of multiple fact
tables sharing various types of dimensions. This snowflake schema variant enables
easy and efficient responses to typical business questions asked in the context of
a retail brokerage firm. There are other ways to define a decision support system,
but this format provides a well understood structure in the benchmark while also
allowing for an appropriate variety of data transformations to be exercised in the
core workload.

Figure 5.1.1 outlines the conceptual model of the TPC-DI benchmark. The top
portion displays the six data sources. While in real world scenarios it is necessary
to extract data from these sources including different database vendors and file
structures, the actual extraction from physical systems of these types is out of scope
of the benchmark. While it would be desirable to include the extraction from these
often heterogeneous source systems, it is an intractable problem from a benchmark
logistics point of view given the technology agnostic specification of the benchmark.
And it is often forbidden in the end-user license agreement of commercially available
products. Hence, TPC-DI models an environment where all source system data has
been extracted into flat files in a staging area before the timed portion of the DI
process begins. TPC-DI does not attempt to represent the wide range of data sources
available in the marketplace, but models abstracted data sources and measures all
systems involved in moving and transforming data from the staging area to the target
system. The use of a staging area in TPC-DI does not limit its relevance as it is
common in real world DI applications to use staging areas for allowing extracts to
be performed on a different schedule from the rest of the DI process, for allowing
backups of extracts that can be returned to in case of failures, and for potentially
providing an audit trail. The following two subsections describe the source and target
data models more in detail.

The lower part of Figure 5.1.1 shows the benchmarked system, commonly referred
to as the system under test (SUT). It consists of three conceptually different areas,
which may reside on any number of physical or logical systems. The staging area
holds the source data that is read by the data transformations. No manipulations are
allowed on the files after they are generated by the data generator and placed into

68



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

the staging area. This guarantees that all methods used to speed up the execution
of the data transformations, for example, sorting the data or splitting data into
multiple files, are performed in the following timed portion of the benchmark. The
data transformations read the source data and perform all necessary modifications so
the target system can be populated. The data transformations are described in detail
in Section 5.3. The target system can be a business intelligence, a data warehouse, a
business analytics system, or a master data management system. We refer to it as
the decision support system.

5.1.1 Source Data Model

Typical DI applications support two integration processes with different characteristics
and performance requirements. One process performs an initial load of the target
system, the historical load. A second process performs periodic trickle updates into
it, that is, incremental updates. The concepts of historical load and incremental
updates are described comprehensively in Section 5.5. For the most part, the general
structures of the data models for these two concepts are identical. However, there are
differences in the use of input files in each of the two types of load. In the remainder
of this section, we will introduce the various input files, their purpose in the context
of the DI process, what part of transformations they enable, how they are populated,
and how they scale.

As mentioned above, TPC-DI’s source data model is based on internal data of
the operational system of the fictitious retail brokerage firm, externally acquired
marketing data and reference data. The operational system is comprised of an online
transaction processing database (OLTP DB) for the online trading department system,
a human resource system (HR) and a customer relationship management system
(CRM). The externally acquired data is comprised of financial data (FINWIRE) of
publicly traded companies, delivered by a newswire system, and customer prospect
data, acquired through a marketing firm (PROSPECT). The reference data contains
static information, only required to be loaded during the historical load, such as
date/time, industry segments, tax rates, and trade types.

69



5.1. THE DATA MODEL

Figure 5.1.1: Benchmarked system and workflow

70



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

The OLTP DB represents a relational database with transactional information about
securities market trading. It contains the following tables: (i) customers, (ii) accounts,
(iii) brokers, (iv) account balances, (v) securities, (vi) trade details, and (vii) market
information. Files used in the historical load are full extracts containing all rows in
the corresponding table of the source system. Files used in the incremental update
are change data capture (CDC) extracts, and as such they contain additional flags,
that is, CDC_FLAG and CDC_DSN columns at the beginning of each row. The
CDC_FLAG is a single character I, U or D that tells whether the row has been
inserted (I), updated (U) or deleted (D) since the previous state. For updates there
is no indication as to which values have been changed. Rows that have not changed
since the last extract will not appear in the CDC extract file. A row may change
multiple times in the course of a day6. In this case, the DI process needs to merge all
change records to determine the values of the record to be inserted. The CDC_DSN
is a sequence number, a value whose exact definition is meaningful only to the source
database, but is monotonically increasing in value throughout the rows in a file. The
rows in a file are ordered by the CDC_DSN value, which also reflects the time order
in which the changes were applied to the database.

The HR system contains employee data of the fictitious retail brokerage firm
including employee name, job description, branch location, contact information,
and management chain. The HR database is represented by a single extract file,
HR.csv. There is no CDC on this data source; it is modeled as a full table extract
for the historical load.

The CRM system, an OLTP source, contains customer contact information and
information about their accounts. Data from this system is presented in form of
an XML file. Its structure is hierarchical to represent data relationships between
customers and their accounts. Each record in this file represents an action performed
in the CRM system, that is, New (new customer), AddAcct (add a new account),
UpdAcct (update an existing account), UpdCust (update an existing customer),
CloseAcct (close an existing account),Inact (inactivate an existing customer). This
data is only used in the historical load.

6day is the refresh interval for incremental updates

71



5.1. THE DATA MODEL

Data for the two external sources are also represented by file extracts. Prospect
represents data that is obtained from an external data provider. Each file contains
names, contact information and demographic data of potential customers. Since
the data is coming from an independent source, it cannot be guaranteed that it is
duplicate free, that is, some person in the prospect file might already be a customer
of the brokerage firm. The DI tool needs to account for duplicates. This file is
modeled as a full daily extract from the data source. This also means that there is
no indication as to what has changed from the previous extract.

Finwire data represents financial records from companies that have been recorded
over three month periods. Data for each three month period is grouped together in
one file, for example FINWIRE2003Q1 for data of the first quarter of 2003. Each
of these files can contain records of the following type CMP = company, SEC =
security, FIN = financial. Each record type has its own distinct schema. The type of
record in this variable length data extract is indicated in the first three bytes.

The reference data provided in, Date.txt, Time.txt, Industry.txt, StatusType.txt,
TaxRate.txt and TradeType.txt is loaded only during the historical load. While one
expects these tables to change in the lifetime of a real-world system, they are kept
static in TPC-DI.

Data from the above described sources is generated by a TPC provided data generator,
DiGen, which is implemented using PDGF, the Parallel Data Generation Framework,
developed at the University of Passau [30]. More on the data generator in Section
5.2.3.

Table 5.1.1 summarizes all source input files used during the historical and incremental
loads. The first column denotes the file name, the second the file format. The third
and fourth columns denote whether a file is used as input for the historical or/and
incremental load phases.

72



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Source Table Format H I
Account.txt CDC X
CashTransaction.txt DEL/CDC X X
Customer.txt CDC X
CustomerMgmt.xml XML X
DailyMarket.txt DEL X X
Date.txt DEL X
Time.txt DEL X
FINWIRE Multi-record X
HoldingHistory.txt DEL X X
HR.csv CSV X
Industry.txt DEL X
Prospect.csv CSV X X
StatusType.txt DEL X
TaxRate.xt DEL X
TradeHistory.txt DEL X
Trade.txt DEL/CDC X X
TradeType.txt DEL X
WatchItem.txt DEL/CDC X X

Table 5.1.1: Source files with type (DEL=full data dump, CDC=change data capture,
XML=Extensible Markup Language, CSV=Comma Separated Value) and load usage

73



5.1. THE DATA MODEL

5.1.2 Target Data Model

The target data model is organized as a snowstorm schema, an extension to the
well-known star schema. It is similar to that deployed in TPC’s latest decision
support benchmark, TPC-DS [84]. In general, a star schema includes a large fact
table and several small dimension (lookup) tables. The fact table stores frequently
added transaction data such as security trades and cash transactions. Each dimension
table stores less frequently changed or added data supplying additional information
for fact table transactions, such as customers who initiated a trade. An extension to
the pure star schema, the snowflake schema, separates static data in the outlying
dimension tables from the more dynamic data in the inner dimension tables and the
fact tables. That is, in addition to their relation to the fact table, dimensions can
have relations to other dimensions. Combining multiple snowflake schemas into one
schema results in a snowstorm schema. Usually, fact tables of a snowstorm schema
share multiple dimensions. In many cases joins between two or more fact tables are
possible in a snowstorm schema making it very interesting for writing challenging
queries and transformations.

The design goal for the TPC-DI target schema is to realistically model what real
world customers currently use as part of their data integration processes. There are
other ways to define a decision support system, but the snowstorm model provides
a well understood structure while also allowing for an appropriate variety of data
transformations to be exercised as part of the main task in TPC-DI. Figure 5.1.2
shows a simplified ER diagram of the target data schema.

TPC-DI defines seven dimension tables:(i) Date, (ii) Time, (iii) Customer, (iv) Ac-
count, (v) Broker, (vi) Security, and (vii) Company. These dimensions provide
details for six fact tables: Holding, (i) Trade, (ii) Cash Balances, (iii) Market History,
(iv) Watches, and (v) Prospects. The schema also includes five reference tables that
have no relation to any of the fact or dimension tables. Their purpose is to provide
additional information during the transformation. These are: (i) Trade, (ii) Type,
(iii) Status Type, (iv) Tax Rate, (v) Industry, and (vi) Financial.

74



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Figure 5.1.2: Target data schema

5.2 Data Set

The data set for a particular benchmark is driven by the need to challenge the
performance of all components it measures, hardware and software. In the case of
TPC-DI, these are reading and interpreting of source data from a staging area, and
data transformations and data loading into the target decision support system for
both the historical and incremental load phases. In this context, a well designed
data set stresses the statistic gathering algorithms, the data interpretation and
transformation engines, data placement algorithms, such as clustering, vertical or
horizontal partitioning as well as insert strategies for bulk and trickle loads. A good
data set design includes proper data set scaling, both domain and tuple scaling.
Like in other TPC benchmarks, a hybrid approach of domain and data scaling is
used for TPC-DI. The data domains for tables are very important. While pure
synthetic data generators have great advantages, TPC-DI follows a hybrid approach
of both synthetic and real world based data domains. Synthetic data sets are well
understood, easy to define and implement. However, following the TPC’s paradigm
to create benchmarks that businesses can relate to, a hybrid approach to data set
design has many advantages over both pure synthetic and pure real world data.

75



5.2. DATA SET

5.2.1 Real World Relevance of the Data Set

The data set used in TPC-DI resembles very closely that of a real brokerage firm.
This complex data set requires a sophisticated data generator that is able to create
patterns apparent in real life data sets, that is, address changes occurring in a certain
time order, trade transactions that affect multiple accounts, such as account balances
and security holdings, or trades that go through a series of states from placement to
fulfillment. These data characteristics can be formalized as intra row, intra table and
inter table dependencies [85]. Intra row dependencies occur when some fields of the
same row exhibit some sort of dependencies. For instance, in the US, value added tax
(VAT) varies by state and within some states by county. Hence, the VAT depends on
the location of the purchase. Intra table dependencies occur when values of different
rows within the same table have dependencies as it often occurs in history-keeping
dimensions. Inter table dependencies occur if rows in different tables need to be
related to each other, like for referential integrity when multiple tables are updated
as part of an event, for example, a security trade.

The following paragraphs illustrate the complexity of TPC-DI’s data set and its
real world relevance using security trades as an example. Securities are equities or
debentures of publicly traded companies that fluctuate in value over time. Trading
securities can either be an equity (cash account) or debenture (margin account) and
is done usually via a brokerage firm, either through a registered representative or
without a broker through an online brokerage trading firm. Cash accounts require all
transactions to be paid for in full by the settlement date three days after the trade
execution. Margin accounts allow the investor to borrow money for the purchase
of securities in hopes that they will not go down in price and a margin call for
the difference is demanded by the brokerage firm. TPC-DI models security trades
fulfilled by a cash account and done by a registered representative brokerage firm.

When trades occur four tables are affected. Rows in the trade, trade history, holding
history, and cash transaction tables are tightly interconnected using all three of
the above mentioned type of data dependencies. Additionally, the content of other
input tables, for example, security.txt and customer.txt need to be consulted to
assure that only valid customers trade existing securities, which is not trivial as

76



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Figure 5.2.1: State diagram for the order data creation of the historical load

new customers and security symbols are added over time. The trade table contains
information about each customer trade. The holding contains information about
customer securities holding positions that were inserted, updated, or deleted and
which trades caused each change in holding. The cash transaction table holds data
about cash transaction of customer accounts. These cash transaction usually follow
a trade fulfillment. Figure 5.2.1 shows the state diagram of trades for the historical
load. An order enters the system either as a market order or a limit order. Market
orders are executed at the current market price. Limit orders are executed at the
price specified or canceled. Market order transitions create an entry in the Trade
History table immediately after they enter submitted state. Within five minutes they
transition to completed where they create another entry in the Trade History table,
an entry in the Holding History table and in the Trade table. Within five days they
transition to settled where they create an entry in the Cash Transaction table. Limit
orders on the other hand transition immediately after they are placed to the pending
state where they create an entry in the Trade History table. Then they transition
either to the submitted state or they transition to the canceled state. When they
transition to submitted they follow the path of the market order or to canceled where
they create entries in the Trade History and Trade tables.

77



5.2. DATA SET

5.2.2 Data Set Scaling

Being able to scale a data set is pertinent for any benchmark because of two main
reasons. Firstly, for a benchmark to be relevant to real world problems, it needs
to reflect data sizes used in real world systems. Ultimately, the customers of TPC-
DI benchmark results are end-users trying to evaluate the performance and price
performance of DI solutions. Customer data sets tend to vary greatly from one
business to another and, therefore, those who publish benchmark results must be able
to size their benchmark publication to the customers they are catering to. Secondly,
systems and data sets tend to grow rapidly over time. A benchmark with a static
data set size will become obsolete within a few years due to the compute power used
by real world applications. Hence, a benchmark needs to be able to adapt to different
data sizes.

Data set scaling has two orthogonal aspects, determining the cardinality of each
individual relation of a schema based on a common scale factor SF and expanding a
base data set to reach the cardinalities desired. Using the same scale factor SF to
determine all table cardinalities helps in creating a coherent data set. Additionally,
using the cardinality of a particular entity modeled in the data set as the scale factor
SF helps understanding the data size resulting from a particular scale factor, for
example, number of customers or number of ticker symbols. There are two approaches
in defining SF :(i) continuous scaling, that is, SF ∈ N, or (ii) fixed scaling, that
is, a limited number of predefined scale factors SF ∈ {C1, C2, ..., Cn}. Continuous
scaling requires that performance of results obtained from different scale factors are
comparable. ”Comparable” in this context means that the workload scales linearly,
that is, data sizes and amount of work required by transactions. It is understood that
not all algorithms scale linearly with data sizes and work required by transactions.
However, for the purpose of comparing results with continuous scaling it is sufficient
that the following is met: Assuming throughput metric PS,BM (SF ) when run system
S using benchmark BM , then PS,BM(SF ) = ε ∗ PS,BM(SF ′) for small increments
from SF to SF ′. Fixed scaling avoid this issue by only requiring comparability of
results obtained with the same scale factor.

TPC-DI uses continuous scaling based on the number of customers of the fictitious

78



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Source Table Size in Bytes Number of rows
Date.txt 3372643 25933
Time.txt 4060800 86400
Industry 2578 102
StatusType 83 6
TaxRate. 16719 320
TradeType 94 5

Table 5.2.1: Reference source files size and rowcount information

brokerage firm. The number of unique customers UCH that are present in the
historical data set can be computed as UCH(SF ) = SF ∗ 5000. Each incremental
load makes changes to or adds customers in the decision support system at a rate of
5 ∗ SF customers per update.

Data set expansion can take on two different characteristics. In one case, the number
of tuples in the base data set is expanded, but the underlying value sets (the domains)
remain static. The business analogy here is a system where the number of customers
remains static, but the volume of transactions per year increases. In the other case,
the number of tuples remains fixed, but the domains used to generate them are
expanded. For example, there could be a new ticker symbol introduced on wall street,
or it could cover a longer historical period. Clearly there are valid reasons for both
types of scaling within a dataset, just as there are valid reasons to stress a hardware
or software systems to highlight particular features or concerns, and often a test will
employ both approaches to expanding the dataset. As has been proven beneficial
for other TPC benchmarks, such as TPC-DS, in the case of TPC-DI, the choice
was made to use a hybrid approach. Most table columns employ data set expansion
instead of domain expansion, especially fact table columns. Some columns in small
tables employ domain expansion. The domains have to be scaled down to adjust for
the lower table cardinality.

Source data for fact tables and most dimension tables scale linearly with SF .
Therefore, the size sizeF of input file F at scale factor SF can be expressed as
sizeF (SF ) = SF ∗ SF , with SF being a factor specific for table F . Similarly,
we can express the number of rows rowsF of input file F at scale factor SF as
rowsF (SF ) = SF ∗RF . With RF again being a factor specific for Table F . Other

79



5.2. DATA SET

Source Table SH SI RH RI

CashTransaction.txt 10.58 0.0065 120.30 0.0663
CustomerMgmt.xml 2.87 N.A. 107.66 N.A.
DailyMarket.txt 30.02 0.0499 541.55 0.7619
FINWIRE 9.70 N.A. 49.32 N.A.
HoldingHistory.txt 2.66 0.0023 120.47 0.0663
TradeHistory.txt 10.31 N.A. 326.56 N.A.
Trade.txt 12.56 0.0175 130.00 0.1801
WatchItem.txt 13.37 0.0383 300.00 0.6896
Account.txt N.A. 0.0007 N.A. 0.0100
HR 0.3914 N.A. 5 N.A.
Customer N.A. 0.0099 N.A. 0.0050
Prospect N.A. 0.9958 N.A. 4.994

Table 5.2.2: Source files scaling information

tables, such as date and time, do not scale with SF , they remain static.

Table 5.2.2 summarizes the scaling of all source data files that scale with the scale
factor both for the historical load (H) and incremental loads (I). Columns labeled SH
and SI list the table specific factors to calculate the size [GB] and columns labeled
RH and RI list the table specific factors to calculate the number of rows for both
the historical load (H) and incremental loads (I). Table 5.2.1 summarizes the sizes of
all static tables.

5.2.3 Data Generation with PDGF

Since its first incarnation, the parallel data generation framework PDGF, which was
developed at the University of Passau [30], has been improved and extended with
many features. Its portable and high performance data generation methods are very
configurable and extensible, allowing the generation of data for any kind of relational
schema, while hiding the complexity of parallel data generation on today’s massive
scalable systems and drastically reducing the development time for a data generator.
All these features convinced the TPC to choose PDGF for the development of DiGen.

80



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Figure 5.2.2: Aggregated source data sizes for historical and incremental loads in GB

Since 2013 PDGF is being commercialized by bankmark7.

PDGF is configurable using two XML configurations files. And its rich plug-in system
enables Java knowledgeable programmers to extend it very easily. Performance tests
have shown that it is equally fast in generating TPC-H data as dbgen, TPC’s C-based
custom built reference implementation. It uses a special seeding strategy to exploit
the inherent parallelism in pseudo random number generators. By incrementally
assigning seeds to tables, columns, and rows the seeding strategy keeps track of the
random number sequences for each value in the data set. This makes it possible to
re-calculate values for references and correlations rather than storing them. This
makes PDGF highly scalable on multi-core, multi-socket, and multi-node systems,
that is, for scale-up and scale-out.

PDGF hides all reference, update, and general random number generation in an
abstraction layer called update black box. Generic generators for numbers, strings,
text, and references use the black box to get the correct random number sequences.
The data generation itself is performed by worker threads that generate blocks

7http://www.bankmark.de

81

http://www.bankmark.de


5.2. DATA SET

of data and optionally sort it using a cache. The generated data can be further
formatted using a post-processing system that enables elaborate transformations of
the generated data. Users specify the data model in form of an XML configuration
file. The data model consists of tables, columns, and generators, which contain the
semantic of the data model. Furthermore, users can specify transformations in a
second XML file. These transformations can be simple formatting instructions, but
also complex merging or splitting of tables.

Due to the complex dependencies in the TPC-DI specification additional forms
of repeatable data generation had to be developed in PDGF. One of the biggest
challenges was the generation of consistent updates to the historical load. An example
is the table Customer. Customers can be inserted, updated, and deleted. While
creating new customers in updates is relatively easy and is essentially the same
process as writing the historical table, updates are written as full records, repeating
historic or previously updated values. Also, updates and deletes cannot be generated
for previously deleted records. To support this tracking of change, an abstract notion
of time was introduced to PDGF [86]. In each abstract time step, a row or record
can either be inserted, updated, or, deleted. A row’s life cycle thus starts by its
insertion, potentially followed by updates, and ends with its deletion. To keep track
of the changes a set of permutations is used as described in [86].

One of the most complex parts of the TPC-DI data set is the model of security trades.
The trades have a live cycle that is shown in Figure 5.2.1. The different states of
trades are stored across multiple tables and these tables store the history of trades,
meaning that all states have to exist and be consistent already in the historical tables.
To achieve this level of detail at the required performance, a specialized update black
box was implemented, which completely implements the trade life cycle. Essentially,
all trade relevant information is modeled in a single table, which is split up during
the generation. Technically, the data will not be split up during generation, but
only the required values will be generated. To ensure the time consistency, all trade
related tables are built of many updates, in which each record can be transferred
into a new state. Depending on the time granularity of the tables the time unit is
fraction of days to quaters of years.

82



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

0

20

40

60

80

100

120

140

0 5 10 15 20 25 35 40 45

Throughput 

Real Cores  Hardware Threads

MB/s

30

Figure 5.2.3: DiGen scale-out performance

PDGF supports all file formats required by TPC-DI, such as CSV, text, multi format,
and XML. PDGF supports this using an output system that transforms data from
row oriented data to any other representation. PDGF comes with several output
plug-ins such as character separated value data (for example, CSV), XML formats,
and a generic output that can be scripted using Java code. Internally, the workers
generate blocks of data for each table or set of tables that is currently scheduled. The
output system receives the internal representation and uses the output plug-in to
transform the data. Besides the formatting, it is possible to merge or split tables in
the output, although this functionality can also be achieved by changing the model,
it is desirable to have a clean and understandable model and keep pure formatting
separated. The output system enables separate formatting per set of tables, it is also
possible to generate tables in multiple formats. Using a property system, the format
can also be determined at run time.

Figure 5.2.3 shows the scale-out performance of DiGen. We generated data for scale
factor 100 on a system with 2 E5-2450 Intel CPUs, that is, 16 cores and 32 hardware
threads. The data was generated repeatedly by increasing the number of workers
from 1 to 42. The generation scales almost linearly with the number of cores. Data
generation continues to increase beyond the number of threads (32), but slows down
after 38 threads.

83



5.3. TRANSFORMATIONS

5.3 Transformations

TPC-DI’s transformations define the work that must be completed to prepare and
load data into the data warehouse. In essence, they provide a mapping of data in
the source tables to data in the target tables. TPC-DI defines two transformations
for each of the fact and dimension tables of the target decision support system as
described in Figure 5.1.2, one for the historical and one for the incremental loads.
The transformations are not explicitly named, but since there are two for each
target table, they can be referred to by using a combination of the name of the
target table that they populate and name of their load phase. For instance, the
transformation that populates the DimAccount table during the historical load is
named TH,DimAccount. Each transformation stresses particular characteristics of a DI
system. While not all transformations cover disjunct characteristics, taken together,
all transformation cover most work performed during typical DI transformations.
Their characteristics are summarized in Table 5.3.1. The first column labels the
characteristic so that we can refer to it later, the second column briefly describes it.

There are a total of 18 transformations defined, each of which is defined in English text.
Unlike well established languages to describe query result sets, such as Structured
Query Language (SQL) or XQuery, to date there is no common language to describe
DI transformations. DI transformations are defined in terms of the data warehouse
table(s) they populate. For each field of the data warehouse table(s), the source data
field(s) and any transformations required to be performed on the source data are
specified in English text. While it allows for a wide degree of freedom in implementing
and optimizing the workload, it also imposes challenges to the benchmark specification
to assure a "level playing field" for everybody. To guarantee that all benchmark
sponsors interpret the English text in the same way, that is, get the same result
and do not over-optimize or cut corners, TPC-DI defines a qualification test. It
provides an input data set, that is, SF=5 DIGen data, and a corresponding dump
of the decision support system after all transformations have been executed.The
TPC-DI specification cannot provide qualification output for all scale factors because
of its continuous scaling model. The qualification tests must be performed on the
SUT using the same hardware and software components as the performance test
and configured identically to those of the performance test. The content of the

84



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Label Description
C1 Transfer XML to relational data
C2 Detect changes in dimension data, and applying

appropriate tracking mechanisms for history keeping
dimensions

C3 Update DIMessage file
C4 Convert CSV to relational data
C5 Filter input data according to pre-defined conditions
C6 Identify new, deleted and updated records in input data
C7 Merge multiple input files of the same structure
C8 Convert missing values to NULL
C9 Join data of one input file to data from another input

file with different structure
C10 Standardize entries of the input files
C11 Join data from input file to dimension table
C12 Join data from multiple input files with separate

structures
C13 Consolidate multiple change records per day and identify

most current
C14 Perform extensive arithmetic calculations
C15 Read data from files with variable type records
C16 Check data for errors or for adherence to business rules
C17 Detect changes in fact data, and journaling updates to

reflect current state

Table 5.3.1: Transformation characteristics

decision support tables must match that of the provided qualification output, with
the exceptions of specific fields, like surrogate keys, and precision of calculations. The
same technique has been successfully applied to other benchmarks, such as TPC-H
and TPC-DS.

To assure that the transformations are defined within a DI tool, the specification
defines the minimum requirements the data integration system must meet. These
common characteristics of DI tools are specified at a high level, for example, the
ability to read and write data to and from more than one data store and provide data
transformation capabilities. In addition, the specification requires the DI system to

85



5.3. TRANSFORMATIONS

D
SS

T
able

C
haracteristics

ofTransform
ations

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
T
H
,D
im
A
cco

u
n
t

X
X

X
X

X
X

T
H
,D
im
B
r
o
k
er

X
X

T
H
,D
im
C
o
m
p
a
n
y

X
X

X
X

X
X

X
X

T
H
,D
im
C
u
stu

m
er

X
X

X
X

X
X

X
X

X
T
H
,D
im
D
a
te

X
T
H
,D
im
S
ecu

r
ity

X
X

X
X

X
X

X
X

X
T
H
,D
im
T
im
e

X
T
H
,F
a
ctT

r
a
d
e

X
X

X
X

X
X

T
H
,F
a
ctC

a
sh
B
a
la
n
ces

X
X

X
T
H
,F
a
ctH

o
ld
in
g

X
X

X
X

X
X

T
H
,F
a
ctM

a
r
k
etH

isto
r
y

X
X

X
X

X
X

T
H
,F
a
ctW

a
tch

es
X

X
X

X
X

X
T
H
,I
n
d
u
str
y

X
T
H
,F
in
a
n
cia
l

X
X

X
X

X
T
H
,F
a
ctP

r
o
sp
ect

X
X

X
T
H
,S
ta
tu
sT
y
p
e

X
T
H
,T
a
x
R
a
te

X
T
H
,T
r
a
d
eT
y
p
e

X

T
able

5.3.2:
Transform

ations
and

their
characteristics

86



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

translate a DI specification into a DI application.

The order in which transformations are executed is left to the benchmark sponsor
provided that all functional dependencies between tables of the decision support
system are honored. This means when a dependent table column refers to a column
in a source table, any rows in the source table that would change the outcome of
processing a row in the dependent table must be processed before the dependent
row. For instance, DimCustomer is fully processed before DimAccount because
the account records refer to customer records. The specification defines these
dependencies precisely.

The benchmark requires that at the end of each phase, all transformations must have
completed successfully and their output data must be committed into the decision
support system. Starting from the first incremental update phase, the decision
support system must be operational and accessible to any user of the DI system.This
implies that data that has been committed must remain visible to any other user.

5.3.1 History Keeping Dimensions

History keeping dimension tables retain information about changes to its data over
time, while also allowing easy querying of current information. This is accomplished
using both the primary key of the source system table, which is constant over time,
and a surrogate key that is updated for each recorded change plus two additional
fields, EndDate and IsCurrent. While EndDate would be sufficient to identify the
most current record, in practice an additional field IsCurrent is added to simplifiy
query writing. The EndDate of the current record is set when updated information
is received, which essentially expires it. When querying a dimension to find the valid
record for a given time, a condition like EffectiveDate ≤ my_time < EndDate could
be used. Using a NULL value for EndDate complicates these sorts of queries as these
conditions will be UNKNOWN on current records, so additional logic would need
to be added to account for that. To avoid this complication, a date far off into the
future is used as the EndDate for current records, which allows a basic date range
search to work for all records. Fact tables that reference a history keeping dimension

87



5.3. TRANSFORMATIONS

include a foreign key reference to the surrogate key, not the natural key. The concept
of a history keeping dimension is common in the industry, and is sometimes referred
to as a type 2 changing dimension or a type 2 slowly changing dimension. Any
transformation that inserts data into a history keeping dimension must execute one
of the following two steps. When a record with a business key K does not exist in
the dimension table the following transformations are performed:

• A unique surrogate key value must be assigned and included in the inserted
record, that is, a dense sequence number.

• IsCurrent is set to TRUE to indicate that this is the current record correspond-
ing to the natural key.

• The EffectiveDate field is set to a value specified by the transformation, or
Batch Date if no value is specified.

• The EndDate field is set to December 31, 9999.

When a record with a business key K already exists in the dimension table the
following transformations are performed:

1. Update the existing dimension table record for that natural key where IsCurrent
is set to TRUE (these updates are known as ‘Expiring’ the record):

(a) The current indicator field, IsCurrent, is set to FALSE to indicate that
this is no longer the current record corresponding to the natural key.

(b) The EndDate field is set to the EffectiveDate of the new record.

2. After expiring the existing record in the dimension table, a new record is
inserted into the dimension table following the same transformation steps as
those for inserting a new record above.

88



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

5.3.2 Example: DimAccount Transformations

Two of the more complex transformations are specified for the DimAccount table.
The transformation for the historical load is different from the transformation
for the incremental loads as data for the historical load is obtained from the
CustomerMgmt.xml file while data for the incremental loads is obtained from the
account.txt file. In this section we discuss the transformation for the historical load.
For a description of the transformation in pseudo code see Algorithm 1. We refer to
specific data elements in the XML document using XPath notation8. All references
are relative to the context of the associated Action (/Action) data element.

Customer/Account/@CA_ID9 is the natural key for the account data. New accounts
may have missing information in which case the DI process has to insert a NULL
value in DimAccount. Updated account information contains only partial data, that
is, all properties that are missing values retain their current values in the DimAccount.
All changes to DimAccount are implemented in a history-tracking manner.

When processing data from the XML-file we have to differentiate between the
six different actions associated with customers and accounts, that is, New (new
customer), AddAcct (add a new account), UpdAcct (update an existing account),
UpdCust (update an existing customer), CloseAcct (close an existing account),Inact
(inactivate an existing customer). For new accounts a new record with information
from AccountID, AccountDesc and TaxStatus are filled with the corresponding XML el-
ements. Status is set to ’ACTIVE’. SK_Broker_ID and SK_Customer_ID are set by
obtaining the associated surrogate keys by matching Customer/Account/CA_B_ID
with DimBroker.BrokerID and Customer/@C_ID with DimCustomer.CustomerID
where the date portion of ./@ActionTS >= EffectiveDate and the date portion of
./@ActionTS <= EndDate. The BrokerID and CustomerID matches are guaranteed
to succeed. In case where updates to an existing account are received, fields that
exist in the source data are transformed to the target fields as done for new accounts.
Fields that do not exist in the source data retain their values from the current
record in DimAccount. For accounts that are closed Status is set to ’INACTIVE’. In

8http://www.w3.org/TR/xpath
9refers to the CA_ID of the account for customer

89

http://www.w3.org/TR/xpath


5.3. TRANSFORMATIONS

if @ActionType=NEW or ADDACCT then
AccountID ← Customer/Account/@CA_ID;
AccountDesc ← Customer/Account/@CA_NAME;
TaxStatus ← Customer/Account/@CA_TAX_ST;
SK_BROKER_ID ←

SELECT BrokerID
FROM DimAccount,DimBroker
WHERE Customer/Account/@CA_D_ID = DimBroker.BrokerID ;

SK_CUSTOMER_ID ←
SELECT C_ID
FROM DimAccount,DimCustomer
WHERE Customer/Account/@C_ID= DimCustomer.CustomerID
AND @ActionTS BETWEEN EffectiveDate AND EndDate ;

Status ← ACTIVE;
else if @ActionType=UPDACCT then

foreach source field with data do
the same as for NEW and ADDACCT;

end
foreach source field without data do

retain current values;
end

else if @ActionType=CLOSEACCT then
Status ← INACTIVE;

else if @ActionType=UPDCUST then
foreach account held by customer do

SK_CustomerID ← updated customer record;
end

else if @ActionType=INACT then
SK_CustomerID ← updated customer record;
Status ← INACTIVE;
foreach account held by customer do

SK_CustomerID ← updated customer record;
Status ← INACTIVE;
IsCurrent, EffectiveDate, and EndDate ← according to algorithm to
history keeping dimensions

end
Algorithm 1: DimAccount historical load transformation

90



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

addition, a transformation rule is defined that requires that changes to a Customer
also result in an update to all associated account records. These are implied changes
to the account, that is, there is nothing in the source data that specifies which
accounts must be updated. It is up to the implementation to identify the correct
accounts and perform the required transformations. When an associated customer is
updated, the SK_CustomerID field must be updated to the new customer surrogate
key. In addition if an associated customer is set to inactive, the account must also be
set to inactive. All of these changes to the account table must be handled as history
keeping changes.

5.4 Execution Rules

TPC-DI benchmark models the two most important workloads of any mature DI
system, one variant performs a historical load at times when the decision support
system is initially created or when it is recreated from historical records, for
example decision support system restructuring. The second variant performs periodic
incremental updates, representing the trickling of new data into an existing decision
support system. These two phases have very different performance characteristics and
impose different requirement to the decision support system as it does not need to
be queryable during the historical load, but it does need to be queryable during each
incremental load. There are many different rates at which incremental updates may
occur, from rarely to near real-time. Daily updates are common, and are the model
for the TPC-DI benchmark. The combination of these two workloads constitutes the
core competencies of any DI system. The TPC has carefully evaluated the TPC-DI
workload to provide a robust, rigorous, and complete means for the evaluation of
systems meant to provide that competency.

TPC-DI’s execution model consists of the following timed and untimed parts. It is
not permitted to begin processing of a phase until the previous phase has completed:
(i) Initialization Phase (untimed), (ii) Historical Load Phase (timed), (iii) Incremental
Update 1 Phase (timed), (iv) Incremental Update 2 Phase (timed), and (v) Automated
Audit Phase (untimed).

91



5.5. METRIC

Figure 5.4.1: Execution phases and metric

The preparation phase contains setting up the system, installing all necessary software
components and setting up the staging area. Before starting a measurement run the
test sponsor chooses a scale factor that result in an elapsed time of each incremental
update phase of 3600 seconds or less.

5.5 Metric

TPC-DI defines one primary performance metric and one primary price-performance
metric. The performance metric is a throughput metric. It represents the number of
rows processed per second as the geometric mean of the historical and the incremental
loading phases. In order to calculate throughput numbers, we need to define the
measurement interval and what we mean by rows processed. As indicated in Figure
5.4.1 TPC-DI defines four completion time stamps (CTs) to be taken at a precision
of 0.1 second (rounded up), for example 0.01 is reported as 0.1. The number of rows
processed in each phase is provided by TPC-DI’s data generator, DIGen. The metric
is then incrementally calculated as:

• CT0: Complection of the Initialization

• CT1: Completion of the Historical Load

• CTi: Completion of Incremental Load i ∈ {1, 2}

• RH : Rows loaded during the Historical Load

• RIi: Rows loaded during Incremental Load i ∈ {1, 2}

EH = CT1 − CT0;EIi = CT(i+1) − CTi; i ∈ {1, 2} (5.5.1)

92



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Figure 5.5.1: Scaling with incremental load time

TH = RH

EH
;TIi = RIi

max(TEi, 1800); i ∈ {1, 2} (5.5.2)

TPC_DI_RPS = b(
√
TH ,min(TI1, TI2))c (5.5.3)

Defining the elapsed time of a phase between the completion time stamps (CT ) of its
preceeding phase and it’s own CT assures that all work defined in the benchmark is
timed. The execution rules of TPC-DI define the historical and two incremental loads
as functionally dependent, that is, work done in one phase has to be completed before
the succeeding phase can start. Defining the start time of a phase as the completion
time of its preceeding phase assures that all work that should be attributed to that
phase is indeed timed. For instance, if the historical load phase reports all rows
loaded, but indexes are still being maintained, the following incremental update
phase either waits until all indexes have been maintained or it starts without using
them suffering performance as a consequence.

93



5.5. METRIC

The metric encourages the processing of a sufficiently large amount of data during
the execution of the benchmark. The actual amount of data depends on the system’s
performance. The higher the performance of a system the more data it needs
to process. The definition of the incremental load throughputs (see equations
5.5.2) entices the benchmark sponsor to achieve elapsed times TIii ∈ {1, 2} close
to 1800s. The benchmark rules allow elapsed times less than 1800s, however, with
a negative impact on the reported performance number. This is due to the max
function in the denominator of the throughput functions TI1, TI2. It calculates
the number of rows processed per second by dividing the actual rows loaded by
the elapsed time of the load, but by at least 1800. Assuming that a system is
capable of delivering load performance linear with data size, that is, TIi(1) = TIi

then TIi(SF ) = nIi ∗ SF ∗ TIi, i ∈ {1, 2}, nIi > 1, and TH(1) = TH then TH(SF ) =
nH ∗ SF ∗ TH , nH > 1, then TI1 and TI2 increase linearly until an overall elapsed
time of 1800s is achieved and stay flat thereafter. Figure 5.5.1 shows the flattening
effect on the primary performance metric TPC_DI_RPS. On the x-axis its shows
the elapsed time for the incremental load phase and on the y-axis it shows the main
metric ( rows

s
). The graph shows that the metric increases until an elapsed time of

1800s is reached for the incremental load phase.

The metric entices good performance during both types of loads, historical and
incremental. This is achieved by using the geometric mean to combine the historical
and incremental throughputs into one meanigful number. Because by its definition
the geometric mean treats small and large numbers equally. Hence, engineers are
enticed to improve the performance of all phases of the benchmark regardless what
their overall elapsed times are. This is especially important if there is a large elapsed
time discrepancy between the historical load and incremental loads. For instance,
reducing a the historical load from 100s to 90s, that is, 10% has the same effect on
the final metric as if the incremental load with the smaller elapsed times is reduced
from 10s to 9s. The above is not true when applied to ”absolute” improvements.

The metric encourages a constant incremental load performance. Production systems
execute many more than the two incremental load phases defined in TPC-DI. It
would be prohibitive to mandate the execution of many incremental load phases as
part of a benchmark due to time constraints. However, TPC-DI ensures that there is

94



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Figure 5.5.2: Linear scaling with adjusted elapsed time

no negative performance effect of executing multiple incremental load phases, that is,
a slow down from one incremental load phase to the next by only including the lower
of the two throughputs (see min in primary performance metric - Equation 5.5.3).

The metric scales linearly with system size. A very important feature of a performance
benchmark metric is that it allows to showcase the scalability of a system (scale-out
and scale-up), that is, a system with double the number of resources, for example
sockets, cores, memory etc. should show double the performance in TPC-DI. However,
this is only true if for each system size a scale factor is chosen that results in an
incremental elapsed time of 1800s. Figure 5.5.2 shows that the primary performance
metric increases linearly if the scale factor is adjusted for achieving an elapsed time
of 1800s in the incremental load phase. On the x-axis it shows system size as number
of cores and on the y-axis its shows the metric. The graph with the square labels
shows the metric when increasing the number of cores and keeping the scale factor

95



5.6. PERFORMANCE STUDY

constant. In this case the scale factor was chosen such that an elapsed time of 1800s
was achieved with 1 core. As the number of cores is increased and elapsed times
decrease the overall performance increases only slighly. If, however, the scale factor
is adjusted for the increase in system size, the primary performance metric increases
linearly as indicated by the triangular graph.

5.6 Performance Study

As of this writing, there are no published results of TPC-DI. However, implemen-
tations are being developed and have been used to evaluate various aspects of the
benchmark. The following sections discuss performance related topics based on
observations made from real implementations of the workload.

5.6.1 Scalability

In order for a benchmark to have longevity, it must provide a workload that can scale
as hardware and software systems become increasingly powerful. An implementation
of the workload may have bottlenecks or the system it is run on may have constraints
that limit its scalability, but the definition of the workload must not contain
any requirement that inherently prevents scaling of implementations. Workload
requirements that force implementations into bottlenecks can create situations where
hardware and software components can not be adequately utilized during a benchmark
run.

Using an implementation from IBM, the TPC-DI workload was run on the same
system with linearly increasing scale factors. Figure 5.6.1 shows the results. The x-
axis shows the normalized Source Data Set size, and the y-axis shows the normalized
time. Using the normalized numbers, it is easy to see as the source data set increases
by a factor of 2, the elapsed time increases correspondingly.

This demonstrates that the implementation is scaling up as expected. It was also

96



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Figure 5.6.1: Total lapsed time scaling

97



5.6. PERFORMANCE STUDY

Figure 5.6.2: Relative phase time

observed that when the hardware resources were scaled to match the data set scaling,
the execution time remained flat. This indicates the implementation is able to scale
out to utilize available hardware resources. While these results are specific to this
implementation, it indicates that the workload definition itself is scalable, that is, it
allows for scalable implementations to be created.

5.6.2 Estimating Benchmark Execution time

The TPC-DI workload consists of 3 measured phases, the historical load and two
incremental updates. The historical load phase has a set of required transformations,
and processes more and larger files. There is no time limit for this phase. The
transformations required for each incremental update phase are identical, and the
input data sets are different but similar in size. When planning for a benchmark
run, there may be a question as to how long it will take for the benchmark run to
complete.

Figure 5.6.2 shows the relative amount of time spent processing each phase, for a
specific implementation at 4 different scale factors. The historical load phase fairly
consistently represented 80% of the overall time running the benchmark, while each

98



CHAPTER 5. TPC-DI: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF DATA INTEGRATION SYSTEMS

Throughput Time Weighted (Th ∗ t)
10000 3000 30,000,000
17000 18000 306,000,000
2000 2700 5,400,000
8000 4200 33,600,000

0 900 0

Table 5.6.1: Throughput metric example

incremental update made up about 10%. This information can be used to project how
long it will take for a full benchmark to complete from a small sample run. Because
the incremental update phases are going to run somewhere between 30 and 60 mins
and will be 20% of the overall runtime, the expectation would be that execution
time for a full volume benchmark run would be between 5 and 10 hours for this
implementation. This can be expressed in a simple formula, 1800/p < et < 3600/p,
where et is the expected time (in seconds) and p is the proportion of time spent in
an incremental update phase. While the portion of time spent in the phases may
not be match this specific implementation, any implementation that is scaling well
can use to method to estimate the time for a full volume run.

5.6.3 Phase Throughput

Each of the 3 benchmark phases is made up of a set of transformations, and a
validation query that executes at the end of the batch. So, although the throughput
for each phase is calculated a single number (total rows/total time), the actual
throughput of the system at any given point during the run may vary greatly from the
final calculated throughput. In fact, within a given phase the calculated throughput
could be considered to be the average of the achieved system throughputs, weighted
by the amount of time the system was sustaining each throughput. For example,
assume the historical load has 375 million records to process and completes in 8
hours (28800s), with the breakdown of the significant throughputs given in the chart
below. The calculated throughput of the phase would be 13020.8 TPC_DI_RPS.

99



5.6. PERFORMANCE STUDY

The weighted average of the throughputs yields 375000000
28800 = 13020.8. This demon-

strates an important characteristic of the metric. While higher throughputs are
rewarded and lower throughputs have a negative impact, short-lived spikes of either
kind are not significant. The throughputs that are sustained for the longest periods of
time have the greatest impact. The segment with throughput 0 represents the batch
validation query that is executed at the end of each phase. In terms of throughput,
the time spent in this segment is pure overhead, that is, it is not possible to process
any rows during this phase so the time spent can only lower the overall throughput.
Therefore, it is in the test sponsor’s interest to configure the data warehouse such
that this query performs as efficiently as possible. This is especially important for
the incremental update phases. Test runs have shown that the execution time of
the batch validation query remains fairly constant between the measured phases.
While a 900 second run time is relatively small for a 28800 second historical load,
incremental update phases have a maximum time of 3600 seconds, so a 900 second
run time would 25% of the overall time or more for the phase.

Also, the incentive for an incremental update to run at least 30 mins (1800 seconds)
can be understood using a similar analysis. Since the minimum amount of time
that can be reported is 1800 seconds, a run that ends in N seconds less than 1800,
effectively has 0 throughput sustained for N seconds. As the difference from 1800
gets larger, the more significance the 0 throughput has to the calculated throughput.

100



Chapter 6

TPC-DS V2: First Industry
Standard Benchmark for
Measuring the Performance of
SQL-Based Big Data Systems

The big data revolution, triggered by the availability of powerful yet affordable
commodity hardware running open source software stacks, is starting to provide
a viable alternative to traditional RDBMS technologies. Initially, only large Web
2.0 companies, such as Facebook, Google, and Amazon deployed systems based on
Hadoop and related tools, such as YARN [87], MapReduce [88], Pig [89], and NoSQL
databases. The amount of coding necessary to perform decision support tasks on
these systems, such as data mining, predictive analytics, text analytics and statistical
analysis, prevented a wide commercial adaptation of these technologies.

Only when higher level languages were added on top of Hadoop and MapReduce the
wide adaptation of these technologies in decision support installations was triggered.
Many big data solutions are moving away from the pure NoSQL model to a not-
only-SQL approach resulting in an explosion of SQL-based implementations, which
are designed to support big data on the Hadoop ecosystem, for example, Hive [90],

101



Stinger [91], Impala [92], Shark [93], Presto [94], and Spark [58]. Many RDBMS
vendors are following suit by adding Hadoop support into their SQL engines, for
example, IBM’s Big SQL [95], Oracle’s Big Data SQL [96], and SAP’s Vora [97].

Many reasons drive the use of SQL in big data solutions. It is intuitive to write data
analysis queries in SQL, because most users think about data as being organized
in two dimensional tables, that is, spreadsheets. The declarative nature of SQL
increases developer productivity and code maintainability, because writing a query in
SQL requires the description of a result set rather than the algorithm to compute it.

In need for benchmarks to showcase the performance of their big data SQL engines,
many vendors used custom benchmarks, which they derived from the first version of
the Transaction Processing Performance Council’s (TPC) benchmark TPC-DS (V1).
Rather than formally running an entire TPC-DS V1 according to its specification and
publishing fully certified results, vendors cherry-picked those portions of the TPC-DS
V1 benchmark that made their particular brand of technology excel, ignoring the
general use case TPC-DS V1 was designed to test. Many marketing publications
used a subset of the schema and queries, executed the benchmark in a special way,
and reported a metric that positions a system in the best possible light [15, 16, 17,
18]. This kind of “benchmarketing” is not new to the industry and it is precisely
what triggered the founding of the TPC 25 years ago.

Instead of questioning the credibility of these highly customized claims and fining
vendors for violating its fair use polices, we redesigned the existing TPC-DS V1 to
create a fair and comprehensive benchmark that specifically targets the performance
measurement of big data SQL systems. The TPC branded the new benchmark
TPC-DS V2 to enhance market recognition. TPC-DS V2 specifically addresses the
domain of SQL-based big data systems.

The remainder of this chapter is organized in two sections. Section 6.1 develops
the changes introduced in TPC-DS V2, that allow SQL-based big data solutions to
run and publish benchmark results. Motivation and analysis is provided for major
changes. Section 6.2 provides experimental results of four hardware and software
combinations that are typically deployed in the big data use case TPC-DS V2 aims
to address, including a detailed analysis of the experimental results.

102



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

6.1 Benchmark Analysis

This section presents and analyzes the key features in the new version of TPC-DS
(V2), while highlighting the differences to the old version (see [98] for the complete
specification).

6.1.1 Paradigm Shift in Data Ownership

Big data systems, many of which are based on the Hadoop ecosystem, introduced a
paradigm shift in data ownership. Traditionally, only one system had control over a
given data set, namely the DBMS. This control enables the use of techniques and
algorithms to implement performance enhancements and to enforce data correctness
that both rely on persistent auxiliary data structures. For instance, the uniqueness
of primary keys in a table is usually guaranteed by enforcing a constraint, which in
turn uses a primary key index for efficiency.

Big data systems follow an open data approach in which all products in its ecosystem,
including MapReduce, can access and modify the same full-fidelity data sets, mostly
saved in HDFS. While this approach eliminates the costly process of copying
and converting data into different formats, it makes concepts like enforcement
of constraints impractical, because the query engine does not necessarily know
immediately when the table data is modified by another product. TPC-DS V2 allows
constraints to be non-enforced, because query optimizers of most SQL engines rely on
understanding basic data characteristics, such as primary-foreign key relationships
and not-null constraints, so that they generate reasonable query plans. Being able
to operate on raw data also blurs the definition of what constitutes a database load
(see Section 6.1.5).

103



6.1. BENCHMARK ANALYSIS

6.1.2 Goodbye ACID - Welcome BASE

TPC-DS V1 requires full ACID compliance. It must be demonstrated before any
benchmark result can be published by running functional tests on a similar, but
much scaled-down database. Due to de-coupling of the ownership of data from the
processing of data, big data solutions are inherently not ACID, but BASE compliant
(Basically Available, Soft state, Eventual consistency), that is, they guarantee some
level of data accessibility through data mirroring.

Instead of ACID, TPC-DS V2 requires a more relaxed version of durability, which it
refers to as data accessibility. To satisfy data accessibility a system must continue
executing queries and data integration functions with full data access during and
after a permanent irrecoverable failure of any single durable medium containing any
database objects, for example, tables, explicit auxiliary data structures, or metadata.
With large cluster configurations being common in big data installations, including
a node failure test seems obvious. However, since the benchmark does not require
multi-node configurations and ACID is required to recover transactions from complete
system failures, a node failure is not included in TPC-DS V2.

6.1.3 Periodic Data Integration Workload

A DS refresh process usually involves data extraction, data transformation, and
data load, commonly referred to as data integration (DI). The data extraction step
extracts pertinent data from production OLTP databases or other relevant data
sources. The transformation step cleans the extracted data. The data load step
performs the actual insertion, modification, and deletion of decision support database
table data.

TPC-DS V1’s required a full implementation of a DI process for all non-static tables,
that is, maintenance of history and non-history keeping dimensions, inserts into fact
tables, and deletes from fact tables. Realizing that typical big data implementations
of DSS do not necessarily undergo such a rigid data integration process, the TPC
decided to focus on the adding and removing of fact table data in TPC-DS V2.

104



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Not requiring the maintenance of dimension tables eliminates the need for update
statements, which would have forced big data systems without native support for
update statements to implement them as deletes and inserts. Due to its slow
execution, implementing updates as deletes and inserts would have put big data
systems at a significant disadvantage and, consequently, discouraged rapid adoption
of the benchmark by new technologies.

The remaining insert and delete operations on fact tables are believed to be sensible
and adequate enough for analyzing the performance of data integration operations
that are currently deployed in big data implementations of DSS. The insert and delete
operations logically delete old facts, for example, old sales transactions to make room
for new fact data, that is, new sales transactions. The intention of these operations
is to exercise both range and scattered deletes. The deletion of fact table data can be
implemented by dropping database objects, (files in case of Hadoop-based systems),
if the corresponding data is clustered based on date ranges. Inserts then simply
recreate the deleted database objects with new content. On the other hand, the
delete operations on returns fact table are always scattered, since returns can occur
in a three month window after their corresponding sales and clustering.

6.1.4 Query Workload

TPC-DS utilizes a generalized query model that addresses the variety of queries
found in today’s big data systems. The queries cover the interactive and iterative
nature of on-line analytical processing (OLAP), long-running, complex data mining
tasks, knowledge discovery, and frequent reports. Amalgamating these different
query types, especially ad-hoc, and reporting into one benchmark is achieved by
allowing ddl-driven performance enhancement techniques, such as partitioning or
materialized views, only on a subset of the data. Queries referencing tables with
performance enhancing techniques are then classified as reporting queries; others are
ad-hoc queries.

While most queries are carried over from TPC-DS V1 to TPC-DS V2, some are
modified. Most of the modifications address inconsistencies between the functional

105



6.1. BENCHMARK ANALYSIS

Table 6.1.1: Query modifications applied to V2

Queries Modification
10, 35 Rewrote disjunctions of exist predicates into exist predicates of unions,

for example exists (SubQuery1) OR exists (SubQuery2) into
exists (SubQuery1 UNION ALL SubQuery2)

34, 56,
64, 73,
75, 76

Added additional columns to the order-by clause to make the query
output deterministic

59 Corrected wrong ratio tue_sales1/tue_sales1 into
tue_sales1/tue_sales2

77 Added group by cr_call_center_sk to catalog_returns common
subexpression

78 Refered to coalesce expression in ORDER BY by name rather than
repeating the expression.
Changed coalesce(ws_qty,0)>0 and coalesce(cs_qty, 0)>0 to
(coalesce(ws_qty,0)>0 or coalesce(cs_qty, 0)>0).
Changed (coalesce(ws_qty+cs_qty,1) to
(coalesce(ws_qty,0)+coalesce(cs_qty,0)).
Correced wrong join clause left join cs on
(cs_sold_year=ss_sold_year and cs_item_sk=cs_item_sk and
cs_customer_sk=ss_customer_sk) to left join cs on
(cs_sold_year=ss_sold_year and cs_item_sk=ss_item_sk and
cs_customer_sk=ss_customer_sk)

84 Added explicit coalesce around columns in concatenation expressions
due to some query engines evaluating columns concatenations to NULL
if one part of the expression is NULL

query definition (SQL text) and the business description in the specification, non-
deterministic query results, bugs and equivalent rewrites to allow more big data
products to run the queries. Table 6.1.1 lists the major query changes.

6.1.5 Metric and Execution Rules

The execution rules and metric in V2 have been redesigned to emphasize the
performance characteristics of big data systems.

106



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Figure 6.1.1: High level execution rules

Figure 6.1.1 illustrates the timed and the untimed phases of the execution of a
TPC-DS V2 benchmark run. The generation of the raw data set, that is, flat
files (Step 1) and the preparation of the System Under Test (SUT) in Step 2
are not timed. The size of the raw data is determined by the scale factor SF ∈
100, 300, 1000, 3000, 10000, 30000, 100000, which represents the data size in GB. The
timed portion starts with the execution of the load test (Step 3), followed by the
single-user test, aka power test, (Step 4) and two pairs of multi-user tests, aka
throughput tests, (Step 5) and data integration test (Step 6). Steps 5 and 6 are
executed twice to measure the impact of updates to the system after the first data
integration test.

The load test (TLoad) entails all steps necessary to prepare the SUT to execute the
subsequent performance tests. Due to TPC-DS V2 being technology agnostic, the
individual steps of the load test are not explicitly listed. However, validation of
unenforced constraints, if defined, and all requirements to assure BASE properties,
including synchronizing loaded data on RAID devices and taking database backups,
if necessary, are part of the load test. Additionally, the open data paradigm (see
Section 6.1.1) questions whether a load time is necessary at all. One could argue
that systems that efficiently query external data, that is, without performing costly
conversions into secondary formats (Parquet, AVRO, JSON, etc.) have a load time
of zero. However, because the load time is part of the geometric mean metric, it
could cause the metric to increase dis-proportionally if the load time approaches
zero, essentially breaking the metric. TPC-DS V2 counters this problem by defining

107



6.1. BENCHMARK ANALYSIS

Table 6.1.2: Differences between TPC-DS V1 and V2

TPC-DS V1 TPC-DS V2
Data ownership Inside DBMS Outside DBMS

Database load Conversion into propri-
etory format Simple text copy

Transactional properties ACID BASE
Node failure required Yes No
Number of queries 99 99, 12 modified
Updates Most tables Fact tables only
Trickle updates Optional Disallowed
Cloud pricing No Yes
Performance metric Arithmetic mean Geometric mean

the notion of a database location, for example, HDFS, and including the time it takes
to place text data into the database location into the load time. Consequently, at a
minimum, the load test performs the placing of the TPC-DS V2 flat files into the
database location, which, on many big data platforms, translates into copying data
to HDFS.

The single-user test (TSingleUser) executes all 99 queries consecutively in a single
session, measuring a system’s ability to maximize system utilization and minimize
query response time. The multi-user test (TMultiUsern , with n ∈ 1, 2) is followed by
the data integration test. Both are executed twice. Each multi-user test executes s
concurrent sessions, which in turn execute all 99 queries consecutively (s must be an
even number). Each session executes queries in a different permutation to prevent
the use of unrealistic data caching. The multi-user tests measure a system’s ability
to divide resources among concurrent sessions to maximize overall query throughput.

The data integration tests consist of inserting new sales/returns data and deleting
old sales/returns data. The data integration test measures the system’s ability
to periodically ingest new data and purge old data. It is run immediately after
each multi-user run, to reveal any query performance implications in the following
multi-user run that may occur due to the maintenance of auxiliary data structures, a
different data layout or changes in statistics. The elapsed time of the data integration

108



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

tests are denoted as TDataIntegrationn , with n ∈ 1, 2.

Data and query result caching techniques are not explicitly prohibited in TPC-DS
V2, because their use is in generally extremely difficult to police and, to some extent,
desirable as a performance differentiator. However, the queries and execution rules
are designed to make such caching unprofitable beyond its typical use in real world
systems. Selectivity predicates for each query Qi,j generated from template Ti are
generated at random to cover the entire range of possible values, thereby limiting
the use of data and query result caching.

The performance metric in Version 2, QphDS@SF , has been changed from an
arithmetic mean to a geometric mean of the four elapsed times of the above tests,
despite the pros and cons of using geometric means to calculate a single number
to represent performance [31]. This change was done to address concerns by some
TPC member companies that the original metric could, for some implementations,
be dominated by data maintenance and load.

QphDS@SF =
⌊

SF ∗Q
4
√
TPT ∗ TTT ∗ TDI ∗ TL

⌋
(6.1.1)

The nominator is the SF multiplied by the total number of queries, executed by all Sq
concurrent users, Q = Sq ∗ 99. The denominator is the geometric mean of the elapsed
times of all performance tests: TPT = TSingleUser ∗ Sq, TTT = TMultiUser1 + TMultiUser2 ,
TDI = TDataMaintenance1 + TDataMaintenance2 , and TL = 0.01 ∗ Sq ∗ TLoad. The elapsed
times for the load and single-user tests are multiplied by the number of concurrent
users, Sq, to avoid that the elapsed time of the multi-user run becomes the dominant
contributor to the metric for large Sq.

6.2 Experimental Results

We run our tests against four different setups, which resemble the diversity of
systems being used to run DSS workloads. Because of the licensing restrictions of

109



6.2. EXPERIMENTAL RESULTS

the commercial systems we are evaluating in this study, we cannot disclose absolute
numbers. Hence, the results are anonymized: Setup A and Setup B are big data
systems with their own storage engine on top of HDFS. Both setups use identical
hardware, namely nine nodes, each with 96GB of RAM, 12 high capacity SAS drives,
2 sockets with 8 cores and 16 threads. The total configuration has 864GB of RAM,
108 SAS drives and 288 threads. Setup C is a traditional RDBMS system using
its own storage format. This setup uses 14 nodes, each with 256GB of RAM, 13
high performance SAS drives, 2 sockets with 6 cores and 12 threads each. The total
configuration has 3.5TB of RAM, 168 high performance SAS drives and 336 threads.
Setup D is a columnar organized in-memory solution. It runs on a single SMP
system with 2TB of RAM, 24 high capacity SAS disks and 8 sockets, each with 18
cores and 36 threads (288 threads total). Using data compression, this configuration
is capable of keeping the entire 3000GB database in RAM. All setups are able to
perform intra-query as well as inter-query parallelism and provide mechanisms to
spill intermediate result sets to disks that are too big to keep in memory.

We do not claim to be experts in tuning all of the above setups. To conduct a fair
comparison among these setups, we perform our measurements “out of the box”. We
measure the performance immediately after installation without any configuration,
modification, or creation of auxiliary data structures. The numbers presented in this
section are the best out of three runs.

6.2.1 Data Scan Analysis

One of the main system factors of resource consumption in answering big data
queries is sifting through vast amounts of data in order to identify those parts that
are required to answer them. Minimizing the amount of data scanned, avoiding
reading data multiple times, and performing the remaining scans quickly are key
differentiators among big data solutions. The following paragraphs establish lower
and upper bounds for the amount of data the entire TPC-DS V2 query workload
requires.

The amount of data that is needed to compute a given query result depends not

110



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

just on the complexity of the query, but also on how optimally the generated query
plan can be executed on a given system, whether the system supports horizontal
table pruning to eliminate unnecessary rows, for example, partitioning and indexing,
and whether the system supports vertical pruning of tables to eliminate unnecessary
columns, for example, columnar access.

We establish an estimate for the upper bound of data needed to compute a query
result by assuming that all tables referenced by the query are accessed fully, that
is, no vertical or horizontal table pruning and disregarding common subexpression
elimination of with clauses may result in multiple reference counts of the same table
in a given query. We discount join methods that may result in multiple scans of the
same table, for example, nested loop join without index. Since traditional indexing
is not common in big data solutions, this is a fair assumption. Denoting TQi as the
subset of tables accessed by query i, ARL(t) as the average row length for table t in
bytes and C(t) as the cardinality of table t, then the amount of data required by a
given query is the sum of all table references multiplied by their sizes in bytes of raw
data, that is, uncompressed data as generated by the data generator, dsdgen. We
estimate the upper bound of data that is required to answer all 99 queries as follows:

99∑
i=1

∑
t∈TQi

ARL(t) ∗ C(t) ≈ 260, 000GB (6.2.1)

We establish an estimate for the lower bound of data needed to compute a query
result by assuming tables are accessed after horizontal table pruning, only referenced
columns are accessed in each table and each table’s data is only accessed once. The
minimum amount of data a query accesses for any table it references is the table
cardinality after horizontal table pruning multiplied by the sum of the average raw
column length in bytes of all columns referenced. Denoting Ct as the set of columns
referenced in table t, Chp(t) as the cardinality of a table t after horizontal pruning
and ACL(c) as the average column length of column c, we can estimate the lower
bound for the amount of data read to answer all 99 queries as follows:

111



6.2. EXPERIMENTAL RESULTS

Figure 6.2.1: Upper bound of data access by queries

112



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Figure 6.2.2: Minimum and maximum data access

99∑
i=1

∑
t∈TQi

∑
c∈Ct

ACL(c) ∗ Chp(t) ≈ 50, 000GB (6.2.2)

Figure 6.2.1 summarizes the upper bound of data needed to answer each of the 99
queries at scale factor 3000 (bar chart with y-axis on the left). Please note that these
should not be treated as actual bounds or min/max values, but as estimates. The
range of data scanned in each query varies widely from 394MB to 30TB. 17 queries
access less than 0.5TB each, 11 queries access between 0.5TB and 1TB each, 29
queries access between 1TB and 2TB each, 25 queries access between 2TB and 3TB
each, 5 queries access between 3TB and 5TB each, 7 queries access between 5TB
and 10TB each and 5 queries access up to 30TB each. The line chart (y-axis on the
right) shows the cumulative data amount accessed by all queries.

Figure 6.2.2 shows the amount of data the four different systems read during the
execution of all 99 queries and compares that to the theoretical Maximum established
in earlier paragraphs. Setup A reads 162,987GB, Setup B reads 126,974GB, Setup
C reads 118,808GB and System D reads 90,208 GB. Because none of the systems
reads the theoretical maximum of about 260,000GB during query execution, it is to
assume that each system performs some data pruning technique. However, none of
the systems reduce the amount of data read to the theoretical minimum of about

113



6.2. EXPERIMENTAL RESULTS

Figure 6.2.3: Sum of squared errors for each setup

50,000GB. We should also note that there is a very large discrepancy between the
system reading the most and the system reading the least amount of data of about
70,000GB.

6.2.2 Single-User Test Analysis

The single-user test, aka the Power Test, executes queries consecutively in one
session. Its purpose is to measure how well a particular system is able to minimize
the aggregated query elapsed times. For a benchmark query set to be considered
meaningful with respect to a single-user run, it not only needs to challenge all
resources of a system, but it also needs to be diverse enough to be able to reveal a
system’s particularities. Queries that execute in similar elapsed times on systems
need to be further investigated to see whether they provide additional value to the
benchmark. First, we discuss the distribution of query elapsed times of the four
setups.

In our implementation of the power test, we assign all available resources of a setup
to the execution of one query at any given time. Setup A finishes the power test in
39,763s, Setup B in 14,392s, Setup C in 6,222s and Setup D in 4,261s.

114



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Figure 6.2.4: Sorted elapsed times

Figure 6.2.4 shows the sorted elapsed times of all four setups on a logarithmic scale.
The elapsed times of Setup A vary between 21s and 3,178s. The elapsed times of
Setup B vary between 7s and 2,236s and those of Setup C vary between 2s and
1,531s. While Setup D outperforms all other setups for most queries, two of its
queries perform equally long as on the other systems.

Although the graphs of the four setups never cross, we cannot conclude that Setup D
executes each query faster than the other setups, as the queries are sorted on elapsed
time. However, from the graphs we can establish a total elapsed time ranking among
the setups and conclude that the elapsed times vary dramatically on each setup,
between just a few seconds to over one hour, indicating that the benchmark is doing
a good job in making each system struggle to execute some queries.

Ultimately, the queries must be able to categorize systems in meaningful ways and to
reduce the overhead of running the benchmark, the set should be minimalistic. To
determine whether the queries are able to assess today’s systems with respect to a
single user test, we analyze the data we collected on each system using the following
three methods:

1. Coefficient of Variation Analysis

115



6.2. EXPERIMENTAL RESULTS

2. K-means Cluster Analysis

3. Normalized Elapsed Time Analysis

Intra Setup Coefficient of Variation Analysis

To measure how much the single-user elapsed times fluctuate, we calculate their
coefficient of variation for each setup. Because the coefficient of variation is a unit-free
measure of relative variability, we can use it to assess the variation of the elapsed
times of one system, as well as the elapsed time variations across multiple systems.

The coefficient of variation of the query elapsed time distribution of Setup s is defined
as the ratio of the standard deviation σ to the mean µ of all elapsed times (CV=σ

µ
).

The coefficient of variation of the elapsed time distributions of Setup A is 1.36, of
Setup B it is 1.64, of Setup C is 2.49, and of Setup D is 4.37, which means that query
elapsed times on Setup D vary the most, namely, 4.37 times from the mean. Since all
systems show a coefficient of variation larger than 1, their elapsed times distribution
is considered statistically high-variance. This is a good indication that the query
set in its entirety is diverse enough to challenge systems in different ways. As a
comparison, the coefficient of variation of the top published TPC-H result for each
scale factor (100GB, 300GB, 1000GB, 3000GB, 10000GB, 30000GB and 100000GB)
vary between 0.69 and 1.2 [99].

Intra Setup K-means Analysis

The coefficient of variation analysis gives us a good idea of how disparate the values
in each elapsed time distribution are. We analyze the distributions further to see
whether we can divide the elapsed times into homogeneous query classes. A division
of the elapsed times into a small number of classes would indicate redundancy in the
query set. We analyze the elapsed time distribution of the queries run during the
power run (P ) for each system s ∈ {A,B,C,D}. Using the k-means algorithm [100]
we calculate the elapsed time centroids CP,s,k and clusters QP,s,k for k ∈ {2, 4, 6, 8, 10}.
To determine the best value for k we use the elbow method [101]. Our dataset size

116



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Figure 6.2.5: Number of queries in each cluster

is small enough to find the elbow for each system by visually inspecting the graphs.
For each value of k and setup s during the power run P , we calculate the sum of
squared errors (SSEP,s,k). First we calculate the mean as follows:

µP,s,k = 1
|Qk|

∑
q∈Qk

TP,s(q) (6.2.3)

We then calculate the SSEs as follows:

SSEP,s,k =
k∑
k=1

∑
q∈Qk

(µP,s,k − TP,s(q))2 (6.2.4)

Figure 6.2.3 graphs the SSEs for k ∈ 2, 4, 6, 8, 10 and each setup s ∈ {A,B,C,D}.
The “elbow” for each setup is at k = 4. That means our k-means analysis divides
the query elapsed times, and therefore the queries for each setup into four categories:
(i) fast-, (ii) medium-, (iii) , slow-, and (iv) very-slow-running queries. This seem to
be a very coarse granularity, but we can have a look at how many queries are in each
category and whether we can identify any intersecting query subsets across setups.

117



6.2. EXPERIMENTAL RESULTS

Figure 6.2.5 shows how many queries are in each of the four clusters on each setup.
The number of fast-running queries on each setup varies between 38 (Setup A) and
73 (Setup D). The number of medium-running queries varies between 5 (Setup D)
and 26 (Setup A). The number of slow-running queries varies between 1 (Setup D)
and 12 (Setup B) and the number of very-slow-running queries varies between 1
(setups B,C, and D) and 4 (Setup A). Across all setups, the fast-running category
has the most queries. Most significantly, the in-memory setup (D) has 90% of its
queries in this category, which suggests that many of these queries are redundant.
They do not add any value to the benchmark for evaluating this type of setup. Even
Setup A, which has the least number of fast-running queries, shows 38 (47%) in this
category. Overall, there seem to be too many short running queries in TPC-DS V2.

There are also very few queries in the very-slow category across all setups, suggesting
that more queries should be added to evaluating systems with respect to longer,
more complex queries. Setup A has four queries in the very-slow category while
setups B, C, and D have only one each.

Next, we analyze the individual queries in each of the categories. The fast category,
being the largest category, contains the largest intersection of queries across all four
setups (22), namely 19 ,20 ,21 ,22 ,26 ,30, 39, 42, 43, 52, 53, 55, 63, 66, 73, 29, 81,
85, 89, 91, and 98. These queries do not contribute much to differentiating the four
different systems as they execute fast on all of them. The other categories do not
have an intersecting set of queries. However, there are some that occur in three
out of the four systems. For instance, queries 2, 11, 31, and 51 are in the medium
category for setups A, B, and C and 76 is in the medium category for setups A, B,
and D. Query 4 is in the slow category of setups A, B, and C. Query 78 is in the
very-slow category of setups A, B, and C. However, it is the slow category of Setup
D that makes Query 78 a common long running query across systems.

Query 78 reports the top customer\item combinations having the highest ratio of
store channel sales to all other channel sales. It performs a large join of the sales
and returns fact tables of all three sales channels causing 2.8TB of I/O.

118



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Inter Setup Elapsed Times Comparison

The four systems are different in their hardware configuration and general approach
to executing queries. Systems A, B, and C use hard disks, with A and B using HDFS,
while System D keeps all data in memory. System A and B use identical hardware.
To compare the query response times of the four systems in a meaningful way, we
first normalize the query response times obtained on one system by the mean of all
elapsed times of this system and then use the coefficient of variation to express the
disparity of query elapsed time across setups.

Denoting the individual query times on system s during the power run as TP,s(qi), 1 ≤
i ≤ 99, we calculate the mean query elapsed time as follows:

µs = 1
99

99∑
i=1

TP,s(qi), 1 ≤ i ≤ 99 (6.2.5)

We express the normalized response times for each query as:

T normP,s (qi) = TP,s(qi)
µs

, 1 ≤ i ≤ 99 (6.2.6)

To compare the normalized elapsed times of each query between the four setups,
we use the coefficient of variation as a standardized measure of dispersion between
the normalized elapsed times. Using the normalized elapsed times for Query qi on
all four setups, we compute the mean query elapsed time across all four setups as
follows:

µ(qi) = 1
4

4∑
s=1

T normP,s (qi)1 ≤ i ≤ 99 (6.2.7)

we calculate the coefficient of variation function as follows:

CV (qi) =

√√√√ 1
99

99∑
i=1

(T normP,s (qi)− µ(qi))2, 1 ≤ i ≤ 99 (6.2.8)

The coefficient of variation function CV , plotted in Figure 6.2.6, shows the relative
dispersion of the normalized elapsed times of the four setups on a ratio scale. The

119



6.2. EXPERIMENTAL RESULTS

Figure 6.2.6: Single-user normalized elapsed times of all setups

lower the value, the less differ the normalized elapsed times between the four setups;
the higher the value the more differ the normalized elapsed times. 90% of all
normalized elapsed times vary between 0.2 and 1, which means that 90% of the
queries (73 queries) have a relative similar ranking within their data sets when
compared across all four systems. This means that the benchmark tests similar
characteristics of each of the systems.

There are however, some outliers that have a large coefficient of variation of more
than 1, namely, queries 12, 16, 17, 25, 77, 84, 91 and 95. Table 6.2.1 shows the
elapsed times and amount of data read by these queries. Among these queries, 16,
25, and 84 show the highest dispersion across systems. They have highly selective
predicates on the dimension tables, which for Systems B and C result in a relatively
low total amount of data read. The high amount of data read by System A in all
of the three queries indicates that it cannot take advantage of the highly selective
predicates, causing it to read over-proportionally more data compared to Systems B
and C. Please note that the amount of data scanned for System D, being a columnar
organized in-memory solution, includes both memory and disk IO (in case of spills).

120



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

Table 6.2.1: Elapsed time & data scanned by queries with high normalized elapsed time dispersion

Query Elapsed Time[s] Data Scanned [GB]
A B C D A B C D

12 51 7 4 185 276 4 54 532
16 1,508 22 5 11 2219 81 59 217
17 3,178 263 89 3 3,100 2,021 1,547 98
25 3,177 76 34 3 3,053 215 554 76
77 855 76 19 11 7251 79 543 234
84 482 24 6 70 7 97 76 341
91 16 8 2 22 3 1 19 264
95 619 481 387 2,581 1,485 1,348 1,298 37,854

6.2.3 Multi-User Test Analysis

The purpose of the multi-user test is to measure a system’s ability to maximize
query throughput. Estimating the elapsed time of n concurrent sessions by simply
multiplying the time of the single-user test with n, only works if queries are queued
to run consecutively. Unless a single-user test can utilize all systems’ resources to
100%, queuing n users to a single session will result in sub-optimal performance.
Hence, the multi-user test is a very valuable component of a DS benchmark. The
challenges running queries in multiple concurrent sessions on one system are different
from those running queries in a single session. To avoid over and under-allocation
of system resources, which may result in query failure or sub-optimal performance,
resources need to be allocated to each session considering all queries currently being
executed.

In our multi-user test, a system runs four concurrent sessions, each executing 99
queries consecutively. We chose four concurrent sessions because that is the minimum
number of concurrent sessions in a valid TPC-DS V2 run. Each session executes the
queries in a different permutation to avoid cross-session caching effects. All queries
are executed using intra-query parallelism and no query queuing is enabled. The
three setups benefit differently from the multi-user run because of the systems ability
to schedule concurrent tasks and overlap resources, for example, IO and CPU. Next,

121



6.2. EXPERIMENTAL RESULTS

Figure 6.2.7: Comparison single-user/multi-user tests

we discuss the CPU and IO resource utilization over time.

Figure 6.2.8 displays the CPU and I/O utilization during the single-user run of
Setup A. The execution is dominated by the IO (gray graph) as the system is almost
100% IO (black graph) bound during the entire execution of the run. This is in-line
with the IO analysis done in Figure 6.2.2 of Section 6.2.1. As this system seems to
have the least capability of pruning unnecessary data, it relies heavily on full table
scans. The resource utilization for System A during a multi-user run is shown in
Figure 6.2.9. The IO and CPU graphs in this figure look very similar compared to
their counterparts in the single-user figure. However, a closer look shows that the
IO utilization and the CPU utilization is slightly higher in both graphs suggesting
that the system was able to take advantage of the additional parallelism during the
multi-user run. This system remains IO bound and executes the multi-user test in
3.52 times the single-user test (see Figure 6.2.9).

Figure 6.2.10 displays the CPU and I/O utilization during the single-user run of
Setup B. The black graph shows percent CPU used, while the gray graph shows
percent I/O used. Both graphs are very ragged. While the CPU graph frequently
hits 100%, the I/O graph barely makes it over 50%, many times dropping to zero.
Notably, there is a period between 10,000 and 11,000 seconds during which the CPU
consumption fluctuates vastly. Summarizing the single-user run of Setup B, we can
say that Setup B uses, on average, 65% of the available CPU and 32% of the available

122



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

F
ig
ur
e
6.
2.
8:

Se
tu
p
A

-C
PU

an
d
IO

ut
ili
za
tio

n
fo
r
th
e
sin

gl
e-
us
er

te
st

F
ig
ur
e
6.
2.
9:

Se
tu
p
A

-C
PU

an
d
IO

ut
ili
za
tio

n
fo
r
th
e
m
ul
ti-
us
er

te
st

123



6.2. EXPERIMENTAL RESULTS

F
igure

6.2.10:
Setup

B
-C

PU
and

IO
utilization

for
the

single-user
test

F
igure

6.2.11:
Setup

B
-C

PU
and

IO
utilization

for
the

m
ulti-user

test

124



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

F
ig
ur
e
6.
2.
12
:
Se

tu
p
C

-C
PU

an
d
IO

ut
ili
za
tio

n
fo
r
th
e
sin

gl
e-
us
er

te
st

F
ig
ur
e
6.
2.
13
:
Se

tu
p
C

-C
PU

an
d
IO

ut
ili
za
tio

n
fo
r
th
e
m
ul
ti-
us
er

te
st

125



6.2. EXPERIMENTAL RESULTS

F
igure

6.2.14:
Setup

D
-C

PU
and

IO
utilization

for
the

single-user
test

F
igure

6.2.15:
Setup

D
-C

PU
and

IO
utilization

for
the

m
ulti-user

test

126



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

I/O capacity of the system. At no time interval is the system I/O bound.

Figure 6.2.11 shows the corresponding multi-user run. It behaves very differently
from the single-user run. Firstly, I/O is the predominant resource hovering around
80%, while CPU varies between 10 and 60%, rarely reaching 100%. The graphs of
the multi-user run fluctuate much less compared to the single-user run. Summarizing
the multi-user run of Setup B, we see that it uses an average of 30% CPU and 77%
of I/O. To our surprise, the numbers for average CPU and I/O utilization are almost
flipped in these two cases. The multi-user run was not anymore CPU bound as was
the single-user run, but was 7% I/O bound.

Figures 6.2.12 and 6.2.13 show the corresponding resource utilizations for the single-
and multi-user runs of Setup C. This setup behaves similar to Setup B as both the
IO and CPU graphs are very ragged. The setup is very IO dominated, although
it only reaches 100% of IO during very brief periods in the single-user run. In the
multi-user run, both IO and CPU graphs increase substantially suggesting that the
system can take advantage of the increased parallelism.

Figures 6.2.14 and 6.2.15 show the CPU and IO resource utilization of the in-memory
system. In the single-user test, this system is CPU bound almost during the entire
test; while it shows a moderate IO behavior, mostly due to spilling effects of large
sort and join operations. The multi-user test looks very similar. Both the IO and
CPU graphs are smoother as there is increased concurrency.

Comparing Single-User and Multi-User Tests

Figure 6.2.7 compares the single- and multi-user elapsed times for each system. The
multi-user test executes the fastest on Setup D (2h 27m 26s), followed by Setup C (4h
18m 36s) and Setup B (8h 18m 14s). The ratio of the elapsed times of the multi- and
single-user tests for system s is denoted as R(s)s = TT T

TP T
. It shows how well a system

can absorb concurrent users. A large ratio indicates that a system cannot absorb
more users while a small ratio indicates that the system can absorb more users. In
the extreme cases, a ratio of 1 means that single and multi-user runs execute in

127



6.2. EXPERIMENTAL RESULTS

the same time indicating that resources are available for 3 more users. This could
mean that the system cannot fully utilize a system with just one user; A ratio of 4
means that the system executes the mutli-user run 4 times that of the single-user
run indicating that it has no resources available for the additional 3 users, which in
turn could mean that the system is able to fully utilize the system with just one user.
These ratios are printed on top of each pair of single- and multi-user tests in Figure
6.2.7. Setup A has a ratio of 3.52, Setup B of 2.12, Setup C of 2.77, and Setup D of
3.24. This indicates that systems B and C gain the most, and System A the least
by running multiple concurrent users. To conclude, these ratios by themselves are,
however, no absolute indication of good multi-user performance. A low ratio can
be caused by a disproportionately longer single user test or by a disproportionately
shorter multi-user test - the latter being more desirable. Similarly, a high ratio can
be caused by a disproportionately longer multi-user test or by a disproportionately
shorter single-user test - again, the later being more desirable.

6.2.4 Resource Utilization Analysis

Each decision support query has its own hardware resource utilization pattern, unique
to the way it is executed on a particular system in a given situation. A hash-join
has a different query pattern than an index-driven join. Analyzing systems that
were used to publish TPC-H benchmark results, it becomes apparent that CPU, IO,
inter-node communication, and memory are the most important system resources for
executing decision support queries. In order to understand a workload, it is essential
to examine queries that exhibit extreme behaviors, such as CPU intensive queries or
I/O intensive queries and, at the same time, exhibit a simple structure. These queries
enable system analysis along single resource dimensions. This section characterizes
the TPC-DS V2 tests according to the following four resources: (i) CPU, (ii) I/O,
(iii) memory, and (iv) network. The sets in Figures 6.2.16-6.2.18 correlate the I/O,
memory, and network utilization to CPU utilization of all TPC-DS V2 queries.

For each resource r ∈ {CPU, IO,Memory,Network} and each one-second time
interval during the execution of Workload w ∈ {Power, Throughput,Q1, .., Q99} on
System s ∈ {A,B,C,D}, we record how many units of r are used. The unit for

128



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

(a) System A (b) System B

(c) System C (d) System D

Figure 6.2.16: IO-CPU utilization

CPU is [thread], that is, hardware threads of a huperthreaded x86 processor, and
includes user and system time as reported by tools, such as vmstat. The unit for IO
is [MBytes/s] and includes all read and write operations to all disks attached to the
system as reported by tools such as iostat. The unit for memory is [GB] and includes
all physical memory allocated by all processes on the system including the file system
cache. The unit for network is the amount of [Mbytes/s] sent and received over the
network measured with tools such as netstat. We further record the query elapsed
time of this workload as Tw(s, w). We denote the total number of CPU threads
available as Umax(CPU, s), the maximum I/O available as Umax(I/O, s), the total
memory available as Umax(MEM, s) and the total network bandwidth available as
Umax(NET, s). Assuming these resources are available to the big data application
during the entire duration of the query run, the average resource utilization Uavg of

129



6.2. EXPERIMENTAL RESULTS

(a) System A (b) System B

(c) System C (d) System D

Figure 6.2.17: Memory-CPU utilization

Resource r on System s ∈ {A,B,C} for each Workload w, expressed in percent, can
be computed as the sum of the ratios of actual resource utilization and maximum
resource available during each Time Interval t.

Uavg(r, s, w) = 100
T (s, q)

T (s,w)∑
t=1

Umeasured(r, s, w, t)
Umax(r, s)

(6.2.9)

When plotting the resource consumption of two resources R1 and R2, we add
horizontal and vertical lines, dividing the space into four equally sized quadrants.
Queries in the first quadrant, upper right, use both resources R1 and R2 intensively;
queries located in the second quadrant, upper left, use mostly R2, queries in the
third quadrant, left bottom, use neither R1 nor R2 intensively, and queries in the

130



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

(a) System A (b) System B

(c) System C (d) System D

Figure 6.2.18: Network-CPU utilization

fourth quadrant, right bottom, use both resources intensively. While it is common
to divide a plane into four quadrants with the origin point (0,0) being in the middle,
the division into four quadrants at 50% resource utilization is our own method to
describe query behavior. Because decision support queries are complex and often
join multiple tables requiring different join methods, sort large amounts of data and
compute aggregate data, their execution pattern is typically not in a steady state
for a long time. For example, the usual execution pattern of a hash join can be
described as a relatively short burst of intensive I/O during the creation of the hash
table of the left side of the join followed by a longer, usually CPU bound phase
where the right side of the join is scanned and probed into the hash table. Hence,
one cannot infer any specific CPU/ I/O pattern from the two parameters described
above. However, these parameters provide a general idea about resource intensive

131



6.2. EXPERIMENTAL RESULTS

queries and what the spread of the entire TPC-DS V2 query set is with regard to
two resources.

Single-User Resource Utilization

On each system we run the above query subset in a single-user fashion, recording
individual query elapsed and resource utilizations.

CPU vs. I/O: Figures 6.2.16a, 6.2.16b, 6.2.16c, and 6.2.16d plot the average I/O
utilization on the horizontal axis against the average CPU utilization on the vertical
axis. On System A, queries fall only into Quadrants III and IV indicating that
they are mostly I/O intensive. Most queries show around 20% CPU utilization in
both quadrants. 45 queries are located in Quadrant IV. Of the 36 queries that fall
in Quadrant III, 10 show less than 5% I/O utilization. On System B, queries fall
into all four quadrants: 24 fall into Quadrant I, 25 fall into Quadrant II, 41 fall
into Quadrant III and 9 fall into Quadrant IV. On System C, most queries fall into
Quadrants II (42) and IV (44). Quadrant III has 12 queries while Quadrant I has
only one query. On System D, all queries fall into Quadrant I (43) and Quadrant III
(56), indicating that they range from low CPU intensive to high CPU intensive, but
using very little IO. This is not surprising as Setup D is the in-memory setup, which
uses IO only for the spilling of large sort and join operations.

Query 22 is a low IO/high CPU intensive query on all three system. On Systems B
and C, Query 22 uses on average 62% and 85%, respectively, of the available compute
power, placing it in Quadrant II. On System A, it uses only 32% of the available
CPU power, placing it in III quadrant. While 32% CPU utilization is generally low,
on this system, it is the query with the highest CPU consumption. Query 22 uses
the compute intensive rollup functionality in SQL. For each product name, brand,
class, and category, it calculates the average quantity on hand rolling-up data by
product name, brand, class, and category. Query 22 only has to scan 1% (21GB) of
the total dataset. Query 88 can be classified as a high IO/low CPU intensive query
on all three systems. It is located in Quadrant IV utilizing on average between 70%
(System A) and 84% (System C) of the available IO bandwidth. Query 88 analyzes

132



CHAPTER 6. TPC-DS V2: FIRST INDUSTRY STANDARD BENCHMARK FOR
MEASURING THE PERFORMANCE OF SQL-BASED BIG DATA SYSTEMS

store sales by returning in one row the number of sales occurring during each 30
minute time interval between 8:30am and 12:30pm. As a consequence, this query,
without any optimization, scans store_sales eight times to a total of 5,161 GB.

CPU vs. Memory: Figures 6.2.17a, 6.2.17b, 6.2.17c, and 6.2.17d plot the average
memory utilization on the horizontal axis against the average CPU utilization on
the vertical axis for each system. Queries are very memory intensive across all four
systems. Most queries are using between 90% and 95% of the available memory on
Setups A, B, and C. Setup B and C seem to pre-allocate and never release memory as
all queries use about 95% of the available memory. System C shows some variation
of memory utilization with most queries using between 88% and 95% of the available
memory with one outlier using only 64%. The in-memory Setup D shows between
70% and 90% memory utilization. It is not surprising that this setup does not use
100% of the memory as this is a very large memory system and not all memory was
used for the workload. While most queries seem to use between 70% and 80% of
the available memory, the system used for Setup D seems to release some memory.
Likely, the memory that is used to store the actual data is fixed and the memory
used for query execution is partly released between queries.

CPU vs. Network: Figures 6.2.18a, 6.2.18b, 6.2.18c, and 6.2.18d plot the average
network utilization on the horizontal axis against the average CPU utilization on
the vertical axis for each system. All four setups show a very different network
utilization. Except for two outliers at 32% and 80%, most queries that run on Setup
A show only up to 20% network utilization and are located in Quadrant IV. Network
utilization is the lowest on Setup B, where most queries use less than 5% of the
network’s bandwidth. Four queries use around 10%. Setups C and D have the most
wide-spread network utilization. Most queries use less then 20%, four use between
30% and 40% and one uses 80%. There is no common pattern to be found among
these different systems, indicating that they distribute queries operations for the
various queries very differently.

To conclude, we can say that many queries show a wide spectrum of resource
utilization across the four setups indicating that they are very diverse and utilize the
systems depending on their architectural peculiarities.

133



6.2. EXPERIMENTAL RESULTS

134



Chapter 7

Conclusions

In this work, we developed industry standard benchmarks for the decision support
domain in three areas: (i) Internet of Things, (ii) Data Integration, and (iii) Decision
Support. For the Internet of Things domain, we developed TPCx-IoT, the first
industry standard benchmark for measuring the performance of IoT gateway systems.
Similar to previous TPC express benchmarks, TPCx-IoT is a kit-based benchmark. It
is modeled after a real-world scenario of a power utility provider that must distribute
power through a smart grid with many power substations. However, the performance
data of TPCx-IoT can be applied to any IoT installation that must ingest data from
edge-devices at high speeds, while concurrently performing real-time analytic queries
that feed a dash-board for monitoring purposes. We illustrated the power substation
use case in detail and showed how the elements of the use case map to elements of
the benchmark and parts of the SUT. The TPCx-IoT benchmark was accepted by
the TPC in May 2017.

We presented the performance results obtained from three different industry con-
figurations running HBase 1.2.0. The first set of performance experiments scaled
the number of power substations from one to 48. It showed that the read and write
operations of TPCx-IoT impose a significant workload to show where the limits
of a system are. It also showed that the execution rule requirement of executing
the workload for at least 1,800s can easily be fulfilled. The second requirement of

135



performing at least 20 kvps
s

per sensors showed to be reasonable and is also a good
gatekeeper in preventing benchmark sponsors from reducing the read requirements
during query execution. The larger the configuration, the more gateways can be
supported. We also showed that TPCx-IoT’s fixed workload requirement, that is,
to ingest a fixed number of kvps per power substation, can reveal deficiencies in a
system’s ability to load-balance data ingestion across multiple power substations.

For the Data Integration domain, we developed TPC-DI, the first industry standard
benchmark for data integration. It uses the enterprise benchmark model of the TPC.
Like previous enterprise TPC benchmarks, TPC-DI is a technology agnostic, end-
to-end benchmark. It is modeled after the real-world scenario of a retail brokerage
firm’s information system, where five different data sources have to be integrated into
a decision support system. The data sources feature different formats, granularities,
and constraints in a highly realistic data model. Target systems of the benchmark
are DI systems that enable data transformation and integration. The benchmark
was accepted by the TPC in January 2014.

For decision support, we developed the second version of TPC-DS, which allows
SQL-based big data systems to run and publish TPC-DS benchmark results. Our
analysis of pivotal parts of the benchmark and our experimental results on four
different setups show that TPC-DS V2 stresses many aspects of SQL-based big data
systems. Different resource consumptions and elapsed times of the queries suggest
that the workload is discriminatory enough to reveal interesting characteristics
of current big data solutions: (i) Our test systems apply various degrees of data
pruning, but no system prunes the maximum possible. (ii) Query elapsed times
during single-user runs on each system vary between seconds and hours. (iii) Our
test systems optimize differently for single- and multi-user runs. Some benefit more,
some less. (iv) Our test systems show vastly different resource utilizations for single-
and multi-user runs. (v) Many queries show a wide spectrum of resource utilization
across the four setups.

Our analysis also revealed some weaknesses of TPC-DS V2. Using elapsed time
coefficient of variation analysis and K-means analysis, we discovered that query
elapsed times are skewed towards short running queries, especially for in-memory

136



CHAPTER 7. CONCLUSIONS

systems (Setup D). On the contrary, we identified that only few queries show very
long elapsed times on our systems, which suggest that more complex queries should
be added to counter balance the short running queries. We also discovered that
there is large potential for current systems to prune unnecessary I/O. Plotting I/O,
memory, and network consumptions in two-dimensional grids against CPU utilization,
we identified queries that are single resource heavy on all systems. These queries can
be used to calibrate systems before running the entire TPC-DS V2 benchmark.

DSS continue to evolve which require incremental changes to the existing benchmarks,
TPCx-IoT, TPC-DI and TPC-DS. IoT systems are evolving to include smart edge
devices. As the compute power of sensors will increase, gateway systems will be able
to push data processing into sensors. This will create a two-tier compute architecture
that is currently not addressed in TPCx-IoT. Historically, DI processes were run
during a maintenance window. Companies require this maintenance window to reduce
or be completely eliminated for their DSS to be available 24 by 7. This requires
DSS to integrate new data as it arrives or execute queries on partially integrated
data. This is a concept not currently addressed in TPC-DI. The analysis of TPC-DS
queries done in this work has revealed that the current query mix can be improved
by developing new queries and eliminating non-discriminatory queries.

An emerging field in the area of DSS that is yet to be covered by any industry standard
benchmarks is deep learning, where machine learning algorithms are deployed to create
autonomous systems. With Watson IBM has introduced one of the first commercial
products that use deep learning to aid the decision making of companies. As the
domain of deep learning matures, and more companies offer commercial products for
it, the need for industry standard benchmarks to measure the performance of deep
learning solutions will increase. Performing deep learning tasks is data and compute
intensive, which aligns well with the mission of the TPC.

137



138



List of Figures

4.0.1 Schematic overview of a typical IoT infrastructure . . . . . . . . . 36
4.1.1 High level description of TPCx-IoT’s use-case . . . . . . . . . . . 39
4.1.2 Overview of a gateway architecture serving power substations . . 40
4.1.3 Mapping of real-world, benchmark, and physical devices . . . . . 41
4.1.4 TPCx-IoT system under test (SUT) . . . . . . . . . . . . . . . . 42
4.1.5 Benchmark execution rules . . . . . . . . . . . . . . . . . . . . . . 43
4.1.6 Sensor reading (kvp) generated by the driver program of TPCx-IoT 45
4.1.7 Key-Value pair generation speed . . . . . . . . . . . . . . . . . . 47
4.1.8 Architecture of TPCx-IoT workload generator . . . . . . . . . . . 51
4.2.1 System-wide kvp inserted per second [IoTps] . . . . . . . . . . . . 55
4.2.2 Per sensor kvp inserted per second . . . . . . . . . . . . . . . . . 56
4.2.3 Average sensor readings aggregated per query . . . . . . . . . . . 57
4.2.4 Average system-wide query elapsed time [s] . . . . . . . . . . . . . 58
4.2.5 Query elapsed time variation . . . . . . . . . . . . . . . . . . . . 59
4.2.6 Power substation workload variation . . . . . . . . . . . . . . . . 60
4.2.7 System-wide kvp inserted per second [IoTps] . . . . . . . . . . . . 63
4.2.8 Per Sensor kvp inserted per second . . . . . . . . . . . . . . . . . 64

5.1.1 Benchmarked system and workflow . . . . . . . . . . . . . . . . . 70
5.1.2 Target data schema . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 State diagram for the order data creation of the historical load . . 77
5.2.2 Aggregated source data sizes for historical and incremental loads

in GB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.3 DiGen scale-out performance . . . . . . . . . . . . . . . . . . . . 83

139



LIST OF FIGURES

5.4.1 Execution phases and metric . . . . . . . . . . . . . . . . . . . . . 92
5.5.1 Scaling with incremental load time . . . . . . . . . . . . . . . . . 93
5.5.2 Linear scaling with adjusted elapsed time . . . . . . . . . . . . . 95
5.6.1 Total lapsed time scaling . . . . . . . . . . . . . . . . . . . . . . . 97
5.6.2 Relative phase time . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1.1 High level execution rules . . . . . . . . . . . . . . . . . . . . . . 107
6.2.1 Upper bound of data access by queries . . . . . . . . . . . . . . . 112
6.2.2 Minimum and maximum data access . . . . . . . . . . . . . . . . 113
6.2.3 Sum of squared errors for each setup . . . . . . . . . . . . . . . . 114
6.2.4 Sorted elapsed times . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.5 Number of queries in each cluster . . . . . . . . . . . . . . . . . . 117
6.2.6 Single-user normalized elapsed times of all setups . . . . . . . . . 120
6.2.7 Comparison single-user/multi-user tests . . . . . . . . . . . . . . 122
6.2.8 Setup A - CPU and IO utilization for the single-user test . . . . . 123
6.2.9 Setup A - CPU and IO utilization for the multi-user test . . . . . 123
6.2.10 Setup B - CPU and IO utilization for the single-user test . . . . . 124
6.2.11 Setup B - CPU and IO utilization for the multi-user test . . . . . 124
6.2.12 Setup C - CPU and IO utilization for the single-user test . . . . . 125
6.2.13 Setup C - CPU and IO utilization for the multi-user test . . . . . 125
6.2.14 Setup D - CPU and IO utilization for the single-user test . . . . . 126
6.2.15 Setup D - CPU and IO utilization for the multi-user test . . . . . 126
6.2.16 IO-CPU utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.17 Memory-CPU utilization . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.18 Network-CPU utilization . . . . . . . . . . . . . . . . . . . . . . . 131

140



List of Tables

4.2.1 Experiment parameters & requirement fulfillment . . . . . . . . . 54
4.2.2 Difference between fastest and slowest power substation ingest time 61
4.2.3 System-wide and per-sensor throughput for 2,4 and 8 nodes . . . 62

5.1.1 Source files with type (DEL=full data dump, CDC=change data
capture, XML=Extensible Markup Language, CSV=Comma Sep-
arated Value) and load usage . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Reference source files size and rowcount information . . . . . . . . 79
5.2.2 Source files scaling information . . . . . . . . . . . . . . . . . . . 80
5.3.1 Transformation characteristics . . . . . . . . . . . . . . . . . . . . 85
5.3.2 Transformations and their characteristics . . . . . . . . . . . . . . 86
5.6.1 Throughput metric example . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Query modifications applied to V2 . . . . . . . . . . . . . . . . . 106
6.1.2 Differences between TPC-DS V1 and V2 . . . . . . . . . . . . . . 108
6.2.1 Elapsed time & data scanned by queries with high normalized

elapsed time dispersion . . . . . . . . . . . . . . . . . . . . . . . . 121

141



LIST OF TABLES

142



List of Algorithms

1 DimAccount historical load transformation . . . . . . . . . . . . . . . . 90

143



LIST OF ALGORITHMS

144



Bibliography

[1] SPEC. The Software Performance Evaluation Corporation (SPEC). http://www. business-
wire.com/news/home/20070417005047/en /SAS-Smashes-ETL-World-Record-Establishing-
New.

[2] S. P. Council. Storage Performance Council. http://www.storageperformance.org/home/.

[3] EMBC. http://www.eembc.org/. EMBC. 2017.

[4] TPC. Home Page TPC. http://www.tpc.org. 2017.

[5] G. B. Davis and M. H. Olson. Management Information Systems: Conceptual Foundations,
Structure, and Development (2Nd Ed.) New York, NY, USA: McGraw-Hill, Inc., 1985. isbn:
0-07-015828-2.

[6] TPC. TPC EXPRESS BENCHMARK TM IoT (TPCx-IoT) Standard Specification Ver-
sion 1.0.0. http://www.tpc.org/TPC_Documents_Current_Versions\/pdf\/TPCx\
discretionary{-}{}{}IoT_v1.5.x.pdf. TPCx-IoT specification. 2017.

[7] TPC. TPC BENCHMARK TM DI Version 1.1.0. http://www.tpc.org/TPC_Documents_
Current_ Versions/pdf/TPC-DI_v1.1.0.pdf.

[8] TPC. TPC BENCHMARK TM DS Version 2.6.0. http://www.tpc.org/tpc_documents_
current_ versions/pdf/tpc-ds_v2.6.0.pdf.

[9] O. Serlin. “The History of DebitCredit and the TPC.” In: The Benchmark Handbook. 1991,
pp. 19–38.

[10] C. Ballinger. “TPC-D: Benchmarking for Decision Support.” In: The Benchmark Handbook
for Database and Transaction Systems (2nd Edition). Ed. by J. Gray. Morgan Kaufmann,
1993. isbn: 1-55860-292-5.

[11] M. Poess, B. Smith, L. Kollár, and P. Larson. “TPC-DS, taking decision support bench-
marking to the next level.” In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin, June 3-6, 2002. Ed. by M. J.
Franklin, B. Moon, and A. Ailamaki. ACM, 2002, pp. 582–587. isbn: 1-58113-497-5. doi:
10.1145/564691.564759. url: http://doi.acm.org/10.1145/564691.564759.

145

http://www.eembc.org/
http://www.tpc.org
http://www.tpc.org/TPC_Documents_Current_Versions\/pdf\/TPCx\discretionary {-}{}{}IoT_v1.5.x.pdf
http://www.tpc.org/TPC_Documents_Current_Versions\/pdf\/TPCx\discretionary {-}{}{}IoT_v1.5.x.pdf
https://doi.org/10.1145/564691.564759
http://doi.acm.org/10.1145/564691.564759


BIBLIOGRAPHY

[12] M. Poess and J. M. Stephens. “Generating Thousand Benchmark Queries in Seconds.” In:
(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto,
Canada, August 31 - September 3 2004. Ed. by M. A. Nascimento, M. T. Özsu, D. Kossmann,
R. J. Miller, J. A. Blakeley, and K. B. Schiefer. Morgan Kaufmann, 2004, pp. 1045–1053.
isbn: 0-12-088469-0. url: http://www.vldb.org/conf/2004/IND2P3.PDF.

[13] J. M. Stephens and M. Poess. “MUDD: a multi-dimensional data generator.” In: Proceedings
of the Fourth International Workshop on Software and Performance, WOSP 2004, Redwood
Shores, California, USA, January 14-16, 2004. Ed. by J. J. Dujmovic, V. A. F. Almeida,
and D. Lea. ACM, 2004, pp. 104–109. doi: 10 . 1145 / 974044 . 974060. url: http :
//doi.acm.org/10.1145/974044.974060.

[14] M. Poess and C. Floyd. “New TPC Benchmarks for Decision Support and Web Commerce.”
In: SIGMOD Record 29.4 (2000), pp. 64–71. doi: 10.1145/369275.369291. url: http:
//doi.acm.org/10.1145/369275.369291.

[15] J. Ericson, G. Rahn, M. Kornaker, and Y. Chen. Impala Performance Update: Now Reaching
DBMS-Class Speed. http://blog.cloudera.com/blog/2014/01/impala-performance-
qdbms-class-speed/.

[16] Michael Armbrust, Zongheng Yang. Exciting Performance Improvements on the Horizon
for Spark SQL. https://databricks.com/blog/2014/06/02/exciting-performance-
improvements-on-the-horizon-for-spark-sql.html.

[17] S. Harris. Big SQL 3.0: Hadoop-DS benchmark - Performance isn’t everything. . . https:
//developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-
performance-isnt-everything/.

[18] P. M. Davis. Pivotal HAWQ Benchmark Demonstrates Up To 21x Faster Performance
on Hadoop Queries Than SQL-like Solutions. https://content.pivotal.io/blog/
pivotal - hawq - benchmark - demonstrates - up - to - 21x - faster - performance - on -
hadoop-queries-than-sql-like-solutions.

[19] S. 2.0. Syncsort And Vertica Shatter Database ETL World Record Using HP BladeSystem C-
Class. http://www. itweb.co.za /index.php?option=com _content&view=article&id=89556.

[20] Microsoft. ETL World Record! https://blogs.msdn.microsoft.com/sqlperf/2008/02/27/etl-
world-record/.

[21] W. S. Computing. Informatica sets world record in data integration performance. http://www.
itweb.co.za/index.php?option=com_content&view=article&id=118340.

[22] B. Wire. SAS Smashes ETL World Record While Establishing New, Real-World Bench-
marks. http://www.businesswire.com/news/home/20070417005047/en/SAS-Smashes-ETL-
World-Record-Establishing-New.

146

http://www.vldb.org/conf/2004/IND2P3.PDF
https://doi.org/10.1145/974044.974060
http://doi.acm.org/10.1145/974044.974060
http://doi.acm.org/10.1145/974044.974060
https://doi.org/10.1145/369275.369291
http://doi.acm.org/10.1145/369275.369291
http://doi.acm.org/10.1145/369275.369291
http://blog.cloudera.com/blog/2014/01/impala- performance- qdbms- class-speed/
http://blog.cloudera.com/blog/2014/01/impala- performance- qdbms- class-speed/
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://content.pivotal.io/blog/pivotal-hawq-benchmark- demonstrates-up-to-21x-faster-performance-on-hadoop-queries-than-sql-like-solutions
https://content.pivotal.io/blog/pivotal-hawq-benchmark- demonstrates-up-to-21x-faster-performance-on-hadoop-queries-than-sql-like-solutions
https://content.pivotal.io/blog/pivotal-hawq-benchmark- demonstrates-up-to-21x-faster-performance-on-hadoop-queries-than-sql-like-solutions


BIBLIOGRAPHY

[23] VoltDB. Solving the Fast Data Problem for the Cloud Integrating VoltDB and the IBM
SoftLayer Cloud Computing Platform Delivers up to 5X the Performance of Amazon Web
Services. https://cdn2.hubspot.net/hubfs/2180197/content/data_sheets/lv_data_sheets/lv-
data-sheet-solving-the-fast-data-problem-for-the-cloud-voltdb-softlayer- benchmark.pdf ?t=
1472434607114.

[24] Gartner. IoT Growth Report By Gartner. http://www.gartner.com/newsroom/id/
3598917. SmartMeter. 2017.

[25] J. Gray, ed. The Benchmark Handbook for Database and Transaction Systems (2nd Edition).
Morgan Kaufmann, 1993. isbn: 1-55860-292-5.

[26] M. Stonebraker. “A New Direction for TPC?” In: Performance Evaluation and Benchmarking,
First TPC Technology Conference, TPCTC 2009, Lyon, France, August 24-28, 2009, Revised
Selected Papers. Ed. by R. O. Nambiar and M. Poess. Vol. 5895. Lecture Notes in Computer
Science. Springer, 2009, pp. 11–17. isbn: 978-3-642-10423-7. doi: 10.1007/978-3-642-
10424-4_2. url: http://dx.doi.org/10.1007/978-3-642-10424-4_2.

[27] K. Huppler. “The Art of Building a Good Benchmark.” In: Performance Evaluation and
Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon, France, August
24-28, 2009, Revised Selected Papers. 2009, pp. 18–30.

[28] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Benchmarking
cloud serving systems with YCSB.” In: Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010. Ed. by J. M.
Hellerstein, S. Chaudhuri, and M. Rosenblum. ACM, 2010, pp. 143–154. isbn: 978-1-4503-
0036-0. doi: 10.1145/1807128.1807152. url: http://doi.acm.org/10.1145/1807128.
1807152.

[29] R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling. 2nd. John Wiley and Sons, Inc., 2002.

[30] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. “A Data Generator for Cloud-Scale
Benchmarking.” In: TPCTC ’10. 2010, pp. 41–56.

[31] A. Crolotte. “Issues in Benchmark Metric Selection.” In: Performance Evaluation and
Benchmarking, First TPC Technology Conference, TPCTC 2009, Lyon, France, August
24-28, 2009, Revised Selected Papers. 2009, pp. 146–152.

[32] M. Poess, T. Rabl, and H.-A. Jacobsen. “Analysis of TPC-DS: the first standard benchmark
for SQL-based big data systems.” In: Proceedings of the 2017 Symposium on Cloud Computing,
SoCC 2017, Santa Clara, CA, USA, September 24 - 27, 2017. ACM, 2017, pp. 573–585.
isbn: 978-1-4503-5028-0. doi: 10.1145/3127479.3128603. url: http://doi.acm.org/
10.1145/3127479.3128603.

[33] M. Poess, T. Rabl, H.-A. Jacobsen, and B. Caufield. “TPC-DI: The First Industry Benchmark
for Data Integration.” In: PVLDB 7.13 (2014), pp. 1367–1378. url: http://www.vldb.
org/pvldb/vol7/p1367-poess.pdf.

147

http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917
https://doi.org/10.1007/978-3-642-10424-4_2
https://doi.org/10.1007/978-3-642-10424-4_2
http://dx.doi.org/10.1007/978-3-642-10424-4_2
https://doi.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
https://doi.org/10.1145/3127479.3128603
http://doi.acm.org/10.1145/3127479.3128603
http://doi.acm.org/10.1145/3127479.3128603
http://www.vldb.org/pvldb/vol7/p1367-poess.pdf
http://www.vldb.org/pvldb/vol7/p1367-poess.pdf


BIBLIOGRAPHY

[34] M. Poess, R. Othayoth, C. Narasimhadevara, K. Kulkarni, T. Rabl, and H.-A. Jacobsen.
“Analysis of TPCx-IoT: The First Industry Standard Benchmark for IoT Gateway Systems.”
In: Proceedings of the 34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-20, 2018.

[35] TPC. About the TPC. http://www.tpc.org/information/about/abouttpc.asp.

[36] TPC. BYLAWS OF THE TRANSACTION PROCESSING PERFORMANCE COUNCIL.
http://www.tpc.org/tpc_documents_current_versions/pdf/bylaws_v2.9.0.pdf.

[37] TPC. TPC Policies. http://www.tpc.org/tpc_documents_current_versions/pdf/policies_
v6.10.0.pdf.

[38] K. Huppler and D. Johnson. “TPC Express - A New Path for TPC Benchmarks.” In:
Performance Characterization and Benchmarking - 5th TPC Technology Conference, TPCTC
2013, Trento, Italy, August 26, 2013, Revised Selected Papers. 2013, pp. 48–60.

[39] K. Huppler. “Price and the TPC.” In: Performance Evaluation, Measurement and Character-
ization of Complex Systems - Second TPC Technology Conference, TPCTC 2010, Singapore,
September 13-17, 2010. Revised Selected Papers. Ed. by R. O. Nambiar and M. Poess.
Vol. 6417. Lecture Notes in Computer Science. Springer, 2010, pp. 73–84. isbn: 978-3-642-
18205-1. doi: 10.1007/978-3-642-18206-8_6. url: https://doi.org/10.1007/978-
3-642-18206-8%5C_6.

[40] TPC. TPC Pricing Specification Version 2.1.1. http://www.tpc.org/TPC_Documents
_Current_Versions/pdf/Pricing_v2.1.1.pdf.

[41] J. Gray, ed. The Benchmark Handbook for Database and Transaction Systems (1st Edition).
Morgan Kaufmann, 1991.

[42] J. Gray. “Introduction.” In: The Benchmark Handbook. 1991, pp. 1–17.

[43] IoTMARK. http://www.eembc.org/iot-connect/about.php. EMBC. 2017.

[44] M. F. Arlitt, M. Marwah, G. Bellala, A. Shah, J. Healey, and B. Vandiver. “IoTAbench:
an Internet of Things Analytics Benchmark.” In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, Austin, TX, USA, January 31
- February 4, 2015. Ed. by L. K. John, C. U. Smith, K. Sachs, and C. M. Lladó. ACM,
2015, pp. 133–144. isbn: 978-1-4503-3248-4. doi: 10.1145/2668930.2688055. url:
http://doi.acm.org/10.1145/2668930.2688055.

[45] Smart Meter. http://en.wikipedia.org/wiki/Smart_meter. SmartMeter. 2017.

[46] Informatica Corporation. Informatica And Sun Achieve Record-Setting Results In Data
Integration Performance And Scalability Test. http://www.informatica.com/ca/company/
news-and-events-calendar/press-releases/06062005d-sun.aspx. 2005.

148

https://doi.org/10.1007/978-3-642-18206-8_6
https://doi.org/10.1007/978-3-642-18206-8%5C_6
https://doi.org/10.1007/978-3-642-18206-8%5C_6
http://www.eembc.org/iot-connect/about.php
https://doi.org/10.1145/2668930.2688055
http://doi.acm.org/10.1145/2668930.2688055
http://en.wikipedia.org/wiki/Smart_meter
http://www.informatica.com/ca/company/news-and-events-calendar/press-releases/06062005d-sun.aspx
http://www.informatica.com/ca/company/news-and-events-calendar/press-releases/06062005d-sun.aspx


BIBLIOGRAPHY

[47] Syncsort Incorporated. Syncsort and Vertica Shatter Database ETL World Record Using HP
BladeSystem c-Class. http://www.prnewswire.co.uk/news-releases/syncsort-and-
vertica- shatter- database- etl- world- record- using- hp- bladesystem- c- class-
152940915.html. 2008.

[48] L. Wyatt, T. Shea, and D. Powell. We Loaded 1TB in 30 Minutes with SSIS, and So Can
You. http://technet.microsoft.com/en-us/library/dd537533(v=sql.100).aspx.
Microsoft Cooperation. 2009.

[49] Manapps. ETL Benchmarks. https://marcrussel.files.wordpress.com/2008/10/
etlbenchmarks_manappsc221008.pdf. 2008.

[50] P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. Simitsis. “Towards a Benchmark for
ETL Workflows.” In: QDB. 2007, pp. 49–60.

[51] A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, and V. Tziovara. “Benchmarking ETL
Workflows.” In: TPC TC ’09. 2009, pp. 183–198.

[52] R. O. Nambiar and M. Poess. “The Making of TPC-DS.” In: Proceedings of the 32nd
International Conference on Very Large Data Bases, Seoul, Korea, September 12-15, 2006.
2006, pp. 1049–1058.

[53] M. Pöss, R. O. Nambiar, and D. Walrath. “Why You Should Run TPC-DS: A Workload
Analysis.” In: Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, September 23-27, 2007. 2007, pp. 1138–1149.

[54] T. Ivanov, T. Rabl, M. Poess, A. Queralt, J. Poelman, N. Poggi, and J. Buell. “Big Data
Benchmark Compendium.” In: Proceedings of the Seventh TPC Technology Conference on
Performance Evaluation and Benchmarking. 2015.

[55] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. “LinkBench: a Database
Benchmark Based on the Facebook Social Graph.” In: SIGMOD. 2013, pp. 1185–1196.

[56] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang. “Introducing the Graph 500.”
In: Cray User’s Group (CUG) (2010).

[57] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Yeom. “MRBench: A Benchmark for
MapReduce Framework.” In: Parallel and Distributed Systems, 2008. ICPADS ’08. 14th
IEEE International Conference on. Dec. 2008, pp. 11–18.

[58] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. “SparkBench: A Comprehensive
Benchmarking Suite for in Memory Data Analytic Platform Spark.” In: Proceedings of the
12th ACM International Conference on Computing Frontiers. CF ’15. Ischia, Italy: ACM,
2015, 53:1–53:8. isbn: 978-1-4503-3358-0.

[59] R. O. Nambiar, M. Poess, A. Dey, P. Cao, T. Magdon-Ismail, D. Q. Ren, and A. Bond.
“Introducing TPCx-HS: The First Industry Standard for Benchmarking Big Data Systems.”
In: Performance Characterization and Benchmarking. Traditional to Big Data - 6th TPC
Technology Conference, TPCTC 2014, Hangzhou, China, September 1-5, 2014. Revised
Selected Papers. 2014, pp. 1–12.

149

http://www.prnewswire.co.uk/news-releases/syncsort-and-vertica-shatter-database-etl-world-record-using-hp-bladesystem-c-class-152940915.html
http://www.prnewswire.co.uk/news-releases/syncsort-and-vertica-shatter-database-etl-world-record-using-hp-bladesystem-c-class-152940915.html
http://www.prnewswire.co.uk/news-releases/syncsort-and-vertica-shatter-database-etl-world-record-using-hp-bladesystem-c-class-152940915.html
http://technet.microsoft.com/en-us/library/dd537533(v=sql.100).aspx
https://marcrussel.files.wordpress.com/2008/10/etlbenchmarks_manappsc221008.pdf
https://marcrussel.files.wordpress.com/2008/10/etlbenchmarks_manappsc221008.pdf


BIBLIOGRAPHY

[60] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. “BigBench:
Towards an Industry Standard Benchmark for Big Data Analytics.” In: SIGMOD. 2013.

[61] T. Rabl, A. Ghazal, M. Hu, A. Crolotte, F. Raab, M. Poess, and H.-A. Jacobsen. “BigBench
Specification V0.1.” In: Specifying Big Data Benchmarks. Ed. by T. Rabl, M. Poess, C.
Baru, and H.-A. Jacobsen. Vol. 8163. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2014, pp. 164–201.

[62] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker.
“A Comparison of Approaches to Large-Scale Data Analysis.” In: SIGMOD. 2009, pp. 165–178.

[63] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. “The HiBench Benchmark Suite:
Characterization of the MapReduce-Based Data Analysis.” In: ICDEW. 2010.

[64] AMP Lab. AMP Lab Big Data Benchmark. https://amplab.cs.berkeley.edu/benchmark/.
2013.

[65] M. Adamiak, B. Kasztenny, and W. Premerlani. “Synchrophasors: definition, measurement,
and application.” In: Proceedings of the 59th Annual Georgia Tech Protective Relaying,
Atlanta, GA (2005), pp. 27–29.

[66] Bluethooth. Core Version 5.0. https://www.bluetooth.com/specifications/bluetooth-
core-specification. Bluetooth Standard. 2017.

[67] IEEE. 802.15.4-2011 - IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs). http://standards.ieee.org/
findstds/standard/802.15.4-2011.html. 2017.

[68] IEEE. IEEE 802.11TM WIRELESS LOCAL AREA NETWORKS. http://www.ieee802.
org/11/. 2017.

[69] E. T. S. I. (ETSI). Mobile technologies GSM. http://www.etsi.org/technologies-
clusters/technologies/mobile/gsm. 2017.

[70] OASIS. MQTT Version 3.1.1 Plus Errata 01. http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/mqtt-v3.1.1.html. MQTT Standard. 2017.

[71] TPC. TPCx-IoT first standard for IOT Gateway systems. http://www.tpc.org/tpcx-
iot/default.asp. 2017.

[72] C. E. Commission. Energy Infrastructure: Statewide Operational Substations. http://www.
energy.ca.gov/maps/powerplants/Operational_Substations.xlsx. 2017.

[73] P. Gas and Electric. Pacific Gas and Electric Company Company Profile. https://www.
pge.com/en_US/about-pge/company-information/profile/profile.page. 2017.

[74] S. Selvam. “Efficient Monitoring in Fossil-Fueled Power Plants using Low-Cost Wireless
Sensors.” In: 2015, pp. 2319–3344.

[75] tefDesign. PG&E Larkin Substation. http://tefarch.com/projects/detail/64/. 2017.

150

https://www.bluetooth.com/ specifications/ bluetooth-core-specification
https://www.bluetooth.com/ specifications/ bluetooth-core-specification
http://standards.ieee.org/findstds/standard/802.15.4-2011.html
http://standards.ieee.org/findstds/standard/802.15.4-2011.html
http://www.ieee802.org/11/
http://www.ieee802.org/11/
http://www.etsi.org/technologies-clusters/technologies/mobile/gsm
http://www.etsi.org/technologies-clusters/technologies/mobile/gsm
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://www.tpc.org/tpcx-iot/default.asp
http://www.tpc.org/tpcx-iot/default.asp
http://www.energy.ca.gov/maps/powerplants/Operational_Substations.xlsx
http://www.energy.ca.gov/maps/powerplants/Operational_Substations.xlsx
https://www.pge.com/en_US/about-pge/company-information/profile/profile.page
https://www.pge.com/en_US/about-pge/company-information/profile/profile.page
http://tefarch.com/projects/detail/64/


BIBLIOGRAPHY

[76] S. F. P. Department. 320-400 Paul Avenue Data Center and associated Extension of PG&E
12kV Electrical Distribution Circuits. http://sfmea.sfplanning.org/2011.0408E_FMND.
pdf. 2014.

[77] E. P. R. Institute. Sensor Technologies for a Smart Transmission System. http://www.
remotemagazine.com/images/EPRI-WP.pdf. 2009.

[78] G. F. Fine, L. M. Cavanagh, A. Afonja, and R. Binions. “Metal Oxide Semi-Conductor Gas
Sensors in Environmental Monitoring.” In: Sensors 10.6 (2010), pp. 5469–5502. issn: 1424-
8220. doi: 10.3390/s100605469. url: http://www.mdpi.com/1424-8220/10/6/5469.

[79] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber. “Bigtable: A Distributed Storage System for Structured Data
(Awarded Best Paper!)” In: 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA. Ed. by B. N. Bershad and J. C. Mogul.
USENIX Association, 2006, pp. 205–218. isbn: 1-931971-47-1. url: http://www.usenix.
org/events/osdi06/tech/chang.html.

[80] Apache. Apache HBase homepage. https://hbase.apache.org/. 2017.

[81] Google. Overview of Internet of Things. https://cloud.google.com/solutions/iot-overview.

[82] Microsoft.Overview of Azure IoT Suite. https://docs.microsoft.com/en-us/azure/iot-suite/iot-
suite-overview.

[83] SAS Institute Inc. New Release of SAS Enterprise ETL Server Sets Performance World
Record. http://callcenterinfo.tmcnet.com/news/2005/mar/1126716.htm. 2005.

[84] M. Pöss, R. O. Nambiar, and D. Walrath. “Why You Should Run TPC-DS: A Workload
Analysis.” In: VLDB. 2007, pp. 1138–1149.

[85] T. Rabl and M. Poess. “Parallel data generation for performance analysis of large, complex
RDBMS.” In: DBTest ’11. 2011, p. 5.

[86] M. Frank, M. Poess, and T. Rabl. “Efficient Update Data Generation for DBMS Benchmark.”
In: ICPE ’12. 2012.

[87] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, and E.
Baldeschwieler. “Apache Hadoop YARN: Yet Another Resource Negotiator.” In: Proceedings
of the 4th annual Symposium on Cloud Computing. Ed. by ACM. 2013, p. 5.

[88] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters.” In:
Communications of the ACM 51.1 (2008), pp. 107–113.

[89] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig Latin: A Not-so-
Foreign Language for Data Processing.” In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12,
2008. 2008, pp. 1099–1110.

151

http://sfmea.sfplanning.org/2011.0408E_FMND.pdf
http://sfmea.sfplanning.org/2011.0408E_FMND.pdf
http://www.remotemagazine.com/images/EPRI-WP.pdf
http://www.remotemagazine.com/images/EPRI-WP.pdf
https://doi.org/10.3390/s100605469
http://www.mdpi.com/1424-8220/10/6/5469
http://www.usenix.org/events/osdi06/tech/chang.html
http://www.usenix.org/events/osdi06/tech/chang.html
https://hbase.apache.org/
http://callcenterinfo.tmcnet.com/news/2005/mar/1126716.htm


BIBLIOGRAPHY

[90] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. “Hive: A Warehousing Solution Over a Map-Reduce Framework.” In: PVLDB
2.2 (2009), pp. 1626–1629.

[91] Hortonworks. Stinger. http://hortonworks.com/innovation/stinger/.

[92] Cloudera. Impala. http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html.

[93] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. “Shark: SQL
and Rich Analytics at Scale.” In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of data. ACM. 2013, pp. 13–24.

[94] Facebook. Presto. https://prestodb.io/.

[95] IBM Big SQL. https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.1.0/
com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_access.html.
IBM. 2017.

[96] Oracle Big Data SQL. https://www.oracle.com/database/big-data-sql/index.html.
Oracle Corporation. 2017.

[97] SAP Vora. https://www.sap.com/products/hana-vora-hadoop.html. SAP. 2017.

[98] Transaction Processing Performance Council. Specification TPC-DS Version 2.1. http:
//www.tpc.org/tpcds/default.asp. 2015.

[99] Transaction Processing Performance Council. “Top 10 TPC-H publications grouped by scale
factor.” In: (July 2016). url: http://www.tpc.org/tpch/results/tpch_perf_results.
asp.

[100] J. MacQueen. “Some methods for classification and analysis of multivariate observations.”
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics. Berkeley, Calif.: University of California Press, 1967, pp. 281–297. url:
http://projecteuclid.org/euclid.bsmsp/1200512992.

[101] R. Tibshirani, G. Walther, and T. Hastie. “Estimating the number of clusters in a data
set via the gap statistic.” In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63.2 (2001), pp. 411–423. issn: 1467-9868. doi: 10.1111/1467-9868.00293.
url: http://dx.doi.org/10.1111/1467-9868.00293.

152

http://hortonworks.com/innovation/stinger/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
https://prestodb.io/
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_access.html
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_4.1.0/com.ibm.swg.im.infosphere.biginsights.product.doc/doc/bi_sql_access.html
https://www.oracle.com/database/big-data-sql/index.html
https://www.sap.com/products/hana-vora-hadoop.html
http://www.tpc.org/tpcds/default.asp
http://www.tpc.org/tpcds/default.asp
http://www.tpc.org/tpch/results/tpch_perf_results.asp
http://www.tpc.org/tpch/results/tpch_perf_results.asp
http://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1111/1467-9868.00293

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Motivation for an industry standard benchmark for IoT systems (TPCx-IoT)
	Motivation for an industry standard benchmark for data integration systems (TPC-DI)
	Motivation for an industry standard benchmark for SQL-based big data systems (TPC-DS V2)

	Problem Statement
	Approach
	TPCx-IoT
	TPC-DI
	TPC-DS Version 2

	Contribution
	Organization

	Background
	Industry Standard Benchmark Consortia
	Transaction Processing Performance Council (TPC)
	Organizational Structure
	Benchmark Development in the TPC
	Benchmark Result Certification

	TPC Benchmark Classes
	Metric and Execution Rules
	Priced Configuration
	Full Disclosure Report and Executive Summary


	Related Work
	Internet of Things
	Data Integration
	Back-End Decision Support

	TPCx-IoT: First Industry Standard Benchmark for Measuring the Performance of IoT Gateway Systems
	Description of TPCx-IoT
	Use Case Description: Power Substations of Electric Utility Providers
	Execution Rules
	Data Ingestion Workload
	Query Generation/Execution
	Benchmark Driver
	Metrics
	Express Model for TPCx-IoT

	Experiments 
	Scaling the Number of Power Substations
	Scaling the Number of Gateway Nodes (Scale-Out)


	TPC-DI: First Industry Standard Benchmark for Measuring the Performance of Data Integration Systems
	The Data Model
	Source Data Model
	Target Data Model

	Data Set
	Real World Relevance of the Data Set
	Data Set Scaling
	Data Generation with PDGF

	Transformations
	History Keeping Dimensions
	Example: DimAccount Transformations

	Execution Rules
	Metric
	Performance Study
	Scalability
	Estimating Benchmark Execution time
	Phase Throughput


	TPC-DS V2: First Industry Standard Benchmark for Measuring the Performance of SQL-Based Big Data Systems
	Benchmark Analysis
	Paradigm Shift in Data Ownership
	Goodbye ACID - Welcome BASE
	Periodic Data Integration Workload
	Query Workload
	Metric and Execution Rules

	Experimental Results
	Data Scan Analysis
	Single-User Test Analysis
	Multi-User Test Analysis
	Resource Utilization Analysis


	Conclusions
	List of Figures
	List of Tables
	Bibliography

