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Abstract

Mass spectrometry-based proteomics has become the leading technology to identify and quantify peptides
and proteins at scale. The identification of peptides strongly relies on software with sequence database
searching, and spectral library matching being the two most successful approaches. The lack of models that
can predict fragment ion intensity spectra accurately hinders both approaches to realize their full potential.
Database searching relies on theoretical spectra that do not reflect experimentally observed ion intensities
well. Spectral library matching, on the other hand, relies on previously identified experimental, which is
not available for many experiments or is challenging to acquire. This work presents Prosit, a deep learning
model whose predictions exceed the quality of experimental spectra measured from synthetic peptides.
It can be calibrated to different laboratory conditions and generalizes to various proteases, although it
only was trained on tryptic peptides. The utility of Prosit is shown on three applications. First, several in
silico spectral libraries are predicted, and it is shown that spectral library matching performs similarly with
them compared to experimental spectral libraries. The second application shows that the integration of
prediction-based scores into database searching leads to more identification at >10x lower false discovery
rates. The third application is using prediction-based scores in the context of metaproteomics. It is shown
that a vast database of more than 10 million proteins can be searched, identifying more peptides with a
simpler workflow than complex workflows utilizing multiple search engines. The source code of Prosit
and the trained model is freely available. In addition, it is integrated into ProteomicsDB, which allows the
rescoring of database search results and the prediction of custom spectral libraries for any organism.

Zusammenfassung

Massenspektrometriebasierte Proteomik hat sich als die führende, skalierbare Technologie zur Identifikation
und Quantifizierung von Peptiden und Proteinen etabliert. Die Identifikation von Peptiden stützt sich
wesentlich auf Software. Die Suche in Sequenzdatenbanken und der Abgleich mit Spektralbibliotheken
sind dabei die zwei erfolgreichsten Ansätze. Der Mangel an akkuraten Modellen zur Vorhersage von
Ionenintensitäten in Massenspektren hindert beide Ansätze ihr volles Potential zu entfalten. Die Suche in
Sequenzdatenbanken benutzt theoretische Spektren zum Abgleich, die nur eingeschränkt experimentell
gemessene Ionenintensitäten entsprechen. Der Abgleich mit Spektralbiblioteken hingegen, bedient sich
bereits vorher identifizierter experimenteller Spektren. Solche Spektralbibliotheken sind nicht für jedes
Experiment verfügbar, oder sie sind aufwendig in der Messung. Diese Arbeit stellt Prosit vor. Prosit ist
ein Deep Learning-basiertes Modell dessen Vorhersagen die Qualität experimenteller Spektren gemessen
von synthetischen Peptiden übertreffen. Der Nutzen wird an drei Anwendungen gezeigt. Zuerst werden
mehrere Spektralbibliotheken vorhergesagt, die zu einer ähnlichen Anzahl identifizierter Peptide führen,
wie experimentellen Spektralbibliotheken. Als zweites werden vorhersagenbasierte Maßeinheiten in die
Suche von Sequenzdatenbanken integriert. Dies verbessert die Suche, sodass mehr Peptide bei >10

kleinerer False Discovery Rate identifiziert werden können. Die dritte Anwendung verdeutlich die Vorteile
von vorhersagebasierten Maßeinheiten im Kontext von Metaproteomics. Eine sehr große Datenbank
bestehend aus über 10 Million Proteinen wird zum Suchen benutzt. Im Vergleich zu den komplexen
Standardprozessen, die typischerweise mehrere Datenbanksuchen verwenden, identifiziert die von Prosit
unterstützte Suche mehr Peptide mit einem einfacheren Prozess. Der Code von Prosit und das trainierte
Modell ist frei verfügbar. Zusätzlich kann Prosit in ProteomicsDB benutzt werden und ermöglicht
das erneute Analysieren von Datenbanksuchen und die Vorhersage von Spektralbibliotheken für jeden
Organismus.





Table of contents

Abstract / Zusammenfassung i

Table of contents iii

List of figures ix

List of tables xi

Abbreviations xiii

I General introduction

1 Motivation 5

2 Mass spectrometry-based proteomics 7

2.1 Sample preparation 8

2.2 Mass spectrometry 10

2.3 Tandem mass spectrometry 13

3 Computational proteomics 19

3.1 Peptide identification and validation 19

3.2 Protein inference and quantification 25

3.3 Data resources 28

4 Machine learning 31

4.1 Conventional machine learning 32

4.2 Deep learning and artificial neural networks 35

4.3 Machine learning in bottom-up proteomics 40

iii



iv

II Prosit: a predictive model for peptide fragment intensity

5 Model architecture 45

5.1 Preliminary work 45

5.2 The Prosit model architecture 46

5.3 Architecture optimization 49

5.4 Generalization 50

6 Model training 51

6.1 Data preparation 51

6.2 Spectrum similarity as objective function 53

6.3 Hyperparameter optimization 54

6.4 Controlling overfitting 55

7 Evaluating prediction accuracy 57

7.1 Synthetic human tryptic data 57

7.2 Prediction accuracy for external datasets 60

7.3 Non-tryptic proteases 61

III Applications of predicted spectra

8 Generating in-silico spectral libraries 67

8.1 Comparing predicted to experimental spectral libraries 67

8.2 Comparing predicted and experimental QTOF spectra 69

9 Enhancing database searching 73

9.1 Separating true from random peptide-spectrum matches 74

9.2 Integrating intensity information into database searching 75

9.3 Rescoring database searches with different sets of scores 76

9.4 Analyzing the influence of individual scores 76

9.5 Rescoring database searches with MS2PIP predictions 78

10 Rescoring metaproteomics measurements 81

10.1 Re-ranking candidate peptides 81

10.2 Database size influences search results 82

10.3 Understanding identification gains 83

10.4 Evaluating search results 85



v

11 Prosit availability 87

11.1 Online workflows 87

11.2 Speed analysis 88

IV Discussion

12 Conclusions 93

12.1 Prosit and data-dependent acquisition 93

12.2 Prosit and data-independent acquisition 95

12.3 Fragment intensity prediction and de novo search 98

13 Outlook 99

13.1 Integration into standard software 99

13.2 Improving Prosit 100

13.3 Prosit and targeted proteomics 101

13.4 Improving in-silico spectral libraries 101

13.5 Post-translational modifications 102

13.6 Better scoring functions 104

13.7 What lies ahead 105

V Appendix

A Fragment ion existence prediction 109

A.1 Model architecture and training 109

A.2 Evaluation 110

A.3 Rescoring database search 112

B Prosit peptide spectrum match scores 113

C False discovery rate cut-off analyses 115

VI Backmatter

Bibliography 127

Acknowledgements 155



vi

157Publication Record 



List of Figures

1.1 Triosephosphate isomerase 5

1.2 Hemoglobin 5

1.3 Ras protein 6

1.4 A T cell attacks a leukemia cell 6

2.1 Top down versus bottom up proteomics 7

2.2 General bottom up proteomics workflow 8

2.3 Trypsin and Chymotrypsin illustrations 8

2.4 Reverse-phase liquid chromatography 9

2.5 Retention time (RT) and indexed RT (iRT) 10

2.6 Electrospray ionization 10

2.7 Fusion Lumos ETD mass spectrometer 11

2.8 Electron multiplier 11

2.9 Linear ion trap 12

2.10 Quadrupole mass filter 12

2.11 Orbitrap Fourier transform mass analyzer 13

2.12 Tandem mass spectrometry 13

2.13 Fragment ion nomenclature 14

2.14 Peptide backbone example 14

2.15 Annotated spectrum 15

2.16 Collision induced dissociation spectrum 16

2.17 Higher-energy collisional dissociation spectrum 16

2.18 Electron-transfer dissociation spectra 17

2.19 Acquisition strategies for bottom-up proteomics 18

3.1 Overview: computational proteomics 19

3.2 Database searching 20

3.3 Most cited database searching software since 1994 21

3.4 Target-decoy competition 22

3.5 Mapping peptide identifications to proteins 25

3.6 Grouping proteins by a peptide mapping 26

3.7 Overview of relative protein quantification methods 27

3.8 ProteomeTools peptide sets 29

3.9 ProteomeTools identified peptides over Andromeda score cutoff 30

4.1 Entropy in natural images 31

4.2 Branches of machine learnig 32

4.3 Linear regression 33

4.4 logistic regression classification 34

4.5 PeptideSieve features 34

4.6 Learning higher-level abstractions. 35

4.7 Learning a linearly separable feature space 36

vii



viii

4.8 Error backpropagation in a neural network 37

4.9 Unrolling a recurrent neural network over time 38

4.10 Long Short-Term Memory 38

4.11 Encoder-decoder architecture 39

4.12 Bidirectional neural network 39

4.13 Visual attention 40

5.1 Prosit deep learning architecture overview 46

5.2 Prosit deep learning architecture for fragment ion intensity prediction 47

5.3 Length distribution of human tryptic peptides 48

5.4 Length distribution of ProteomeTools peptides 48

6.1 Comparison of fragmentation efficiencies of two different mass spectrometers. 52

6.2 Correlating R and SA similarity 53

6.3 Training, Test and Holdout split 55

6.4 Evaluating Prosit on different training splits 56

7.1 Representative spectrum prediction 57

7.2 Prediction performance for different collision energies 58

7.3 Collision energy-dependent spectrum 58

7.4 Collision energy dependency of experimental and predicted spectra 59

7.5 Evaluating collision energy interpolation 59

7.6 Comparing uncalibrated with calibrated predictions on external data 60

7.7 Comparing calibrated predictions with reference spectra 60

7.8 Precursor charge influence on prediction accuracy 61

7.9 Spectrum prediction for different proteases 61

7.10 Bias analysis of Prosit and MS2PIP 62

7.11 Overfitting evaluation MS2PIP versus Prosit 62

8.1 Filtering spectral libraries 67

8.2 In silico spectral library spectrum similarity - Orbitrap 68

8.3 In silico spectral library peptide identifications 68

8.4 In silico spectral library protein identifications 69

8.5 In silico spectral library spectrum similarity - QTOF 69

8.6 Comparing QTOF a spectrum with a prediction 70

8.7 QTOF spectrum similarity by base peak intensity 70

8.8 Impact of fragment ion filter on spectral library size 71

9.1 Comparison of spectral angle and Andromeda score 73

9.2 False positive and false negative spectrum matches 74

9.3 Examples of Prosit scores 75

9.4 Impact of rescoring on FDR cut-offs 75

9.5 Impact of rescoring on peptide identifications 76

9.6 Comparison of Andromeda and Prosit peptide identifications 76

9.7 Percolator weights for Bekker-Jensen tryptic 77

9.8 Comparing MS2PIP and Prosit predictions for external data 77

9.9 Evaluation of high accuracy MS2PIP prediction 78

9.10 Comparison of rescoring with MS2PIP and Prosit 79

10.1 Improving candidate peptide ranking 81

10.2 Database sizes in metaproteomics 82

10.3 Uniquely identified peptides with different databases 82

10.4 Comparing percolator scores for Prosit and Andromeda for metaproteomics 83

10.5 Analysis of target peptides above the FDR cut-off 84



ix

10.6 Delta score analysis 84

10.7 Comparison of Andromeda and Prosit peptide identifications for metaproteomics 85

11.1 Online resource workflow 87

11.2 Prosit online resource 88

11.3 Prosit file upload 88

11.4 Prosit speed analysis 89

12.1 Chimeric spectrum deconvolution 96

12.2 Empirically-corrected in-silico spectral libraries 97

A.1 Existence prediction model 110

A.2 Existence prediction evaluation 111

A.3 Impact of rescoring with the existence model on FDR cut-offs 112

B.1 Prosit extended scores 114

C.1 Cutoff Analysis: Olsen Trypsin 117

C.2 Cutoff Analysis: Olsen LysC 118

C.3 Cutoff Analysis: Olsen Chymotrypsin 119

C.4 Cutoff Analysis: Olsen GluC 120

C.5 Cutoff Analysis: Metaproteomics SwissProt Human 121

C.6 Cutoff Analysis: Metaproteomics SwissProt Bacteria + Human 122

C.7 Cutoff Analysis: Metaproteomics SwissProt All 123

C.8 Cutoff Analysis: Metaproteomics IGC 124





List of Tables

3.1 Most cited database searching software in 2018 21

3.2 Protein sequence databases 28

3.3 Proteomics resources 28

3.4 Spectral library resources 29

4.1 Mathematical symbol notation 32

4.2 Symbol meaning conventions 32

5.1 Model architecture exploration 49

6.1 Optimizing batch size and learning rate 54

B.1 PSM score sets 113

xi





Abbreviations

AC alternating current. 11, 12, 15

Arg Arginine. 8, 9

Asp Aspartic acid. 9

AUC area under the curve. 26

CID collision-induced dissociation. 15, 16, 29, 48, 99, 103

CPU central processing unit. 100

Cys Cysteine. 8, 20, 51

DC direct current. 11, 12, 15

DDA data dependent acquisition. 17, 18, 19, 21, 24, 26, 40, 67, 70, 93, 95, 96, 97, 98, 105

DIA data independent acquisition. 17, 18, 20, 24, 26, 40, 67, 68, 93, 95, 96, 97, 98, 102

EM expectation maximization. 22

ESI electrospray ionization. 7, 10, 16

ETD electron-transfer dissociation. 15, 16, 29, 48, 99

FDR false discovery rate. 22, 24, 26, 29, 41, 51, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 86, 87, 93, 94, 96,
110, 112, 115, 116

FTMS Fourier transform mass spectrometry. 13

GAN generative adversarial network. 32

Glu Glutamic acid. 9

GPF gas-phase fractionation. 97

GPU Graphics processing unit. 46, 89, 100

GRU gated recurrent unit. 38, 46, 50, 100, 109

HCD higher-energy collisional dissociation. 15, 16, 21, 29, 45, 48, 57, 61, 67, 68, 69, 70, 109

HF high-field. 13

His Histidine. 9, 15

HLA human leukocyte antigen. 94, 96, 100

i.i.d. independent and identically distributed. 31

xiii



xiv

IGC human gut microbiome integrated gene catalog. 82

Ile Isoleucine. 9, 105

IQR interquartile range. 59, 84

iRT indexed retention time. 9, 29, 39, 46, 50, 57, 67, 68, 87, 97, 101

KL Kullback-Leibler divergence. 104

LC liquid chromatography. 7, 9, 10, 27, 29, 45, 50, 94, 97

LC-MS liquid chromatography mass spectrometry. 8, 24, 29

LDA latent dirichlet allocation. 32

Leu Leucine. 9, 105

LIT linear ion trap. 11

LSTM long short-term memory. 38, 50, 100

Lys Lysine. 8, 9, 15

M(ox) oxidized Methionine. 20, 47, 48, 52, 67, 96, 99, 102

m/z mass-to-charge. 9, 11, 12, 13, 14, 15, 17, 18, 20, 27, 29, 38, 48, 51, 52, 53, 70, 71, 76, 78, 96, 97, 98,
99, 102, 103, 104, 105

Met Methionine. 20

MRM multiple reaction monitoring. 17, 101

MS mass spectrometry. 7, 8, 9, 19, 26, 27, 29, 55, 95, 97

MS/MS tandem mass spectrometry. 7, 13, 15, 16, 18, 27, 31, 34, 45, 51, 55, 58, 84, 85, 93, 94, 95, 101,
104

NCE normalized collision energy. 45, 46, 51, 52, 57, 58, 59, 60, 61, 62, 69, 70, 73, 75, 87, 88, 93, 95, 97,
98, 101, 109, 115

NIST National Institute of Standards and Technology. 29

NMT neural machine translation. 38, 39, 100

PCA principal component analysis. 32, 35

PEP posterior error probability. 22

ppm parts per million. 21, 51

PRM parallel reaction monitoring. 17, 101

Pro Proline. 102

PSM peptide spectrum match. 19, 20, 21, 22, 23, 25, 26, 30, 41, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 67,
68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 83, 84, 85, 87, 93, 96, 100, 101, 103, 104, 105, 109, 110, 112,
113, 115, 116

PTM post-translational modification. 8, 16, 20, 21, 24, 29, 47, 48, 52, 67, 96, 99, 102, 103



xv

QMF quadrupole mass filter. 11

QTOF quadrupole time-of-flight. 12, 67, 68, 69, 70, 95

R Pearson correlation. 41, 53, 57, 58, 59, 61, 62, 73, 78, 99

RAM random-access memory. 49, 89

ReLU rectified linear unit. 36

RF radio frequency. 11, 12

RP-LC reverse-phase liquid chromatography. 8, 9, 10

SA normalized spectral contrast angle. 53, 57, 58, 59, 60, 61, 62, 67, 68, 69, 70, 73, 74, 75, 76, 78, 81,
83, 84, 104, 113, 115, 116

SAL normalized spectral contrast angle loss. 49, 53, 54, 55

Ser Serine. 9, 102, 103

SILAC stable isotope labeling with amino acids in cell culture. 26

SMILES Simplified molecular-input line-entry system. 102

SRM single reaction monitoring. 17, 29

SSD solid-state drive. 89

SVM support vector machine. 32, 40, 41, 76

SVR support vector regression. 32

SWATH sequential window acquisition of all theoretical fragment ion spectra. 18, 68, 97

TDS target decoy strategy. 22, 26, 29, 73

Thr Threonine. 9, 102, 103

TMT tandem mass tag. 26

TOF time-of-flight. 11, 12, 67

TPP Trans-Proteomic Pipeline. 42

Tyr Tyrosine. 15, 102, 103

VAE variational autoencoder. 32





“ C O M P U T E R S A R E U S E L E S S . T H E Y C A N O N LY G I V E YO U A N S W E R S .”

PA B L O P I C A S S O





Part I

General introduction

3





1
Motivation

Figure 1.1: Triosephosphate isomerase.
This enzyme is essential for efficient en-
ergy production. It is expressed in most
organisms. Richardson diagram draw-
ing by Jane S. Richardson, School of
Medicine, Duke University (1981).

Proteins are molecular machines that carry out the work necessary
to sustain life. They provide structure, function, and regulation to
cells in every living organism. As enzymes, proteins catalyze energy
production (Triosephosphate isomerase, Figure 1.1). Transport pro-
teins carry oxygen from our lungs to the rest of the body (Hemoglobin,
Figure 1.2). Proteins also carry messages between cells and signal
information. The Ras protein (Figure 1.3), for example, carries one bit
of information and is central in the signaling network regulating cell
growth. Mutations in Ras genes can disturb the signaling network
and lead to uncontrolled cell growth1. A deeper understanding of
proteins is necessary to answer fundamental biological questions.

The proteome of an organism is the entirety of proteins encoded in
its genome. In contrast to the genome, the proteome of an organism
is highly dynamic and changes to external influences of an organism,
its age, or in the context of disease. Proteomics (Chapter 2) studies
proteomes and its dynamics and thus helps to understand and treat
diseases such as cancer2,3 (Figure 1.4).

Figure 1.2: Hemoglobin. This protein
transports oxygen by binding it in its
iron-containing heme groups (red). It
gives blood its color. It is expressed in
most vertebrates. Drawing by Irving
Geis (1978). Used with permission from
the Howard Hughes Medical Institute
(www.hhmi.org). All rights reserved.

Proteomics is the identification and quantification of proteins. To-
day, mass spectrometry (Part I Chapter 2) has emerged as the preva-
lent technology for protein identification and quantification, particu-
larly in large scale experiments. A mass spectrometer measures mass
to charge ratios to generate mass spectra. From this mass spectra,
identity and quantity of proteins in a sample are inferred. Due to the
complexity and scale of the generated data, its analysis heavily relies
on computation (Chapter 3). By applying recent advances from the
field of machine learning (Chapter 4) this work improves one core
step in the analysis—peptide fragment identification.

Peptide identification is a necessary preliminary step to protein
identification in mass spectrometry-based bottom-up proteomics. Sev-
eral techniques for peptide identification work by comparing ex-
perimental spectra to theoretical candidate spectra and score them
by similarity measures4,5. Spectrum matches that exceed a score
threshold count as identified. Many algorithms model the fragment
intensity of theoretical spectra naïvely, as conventional machine learn-
ing models were not able to produce highly accurate results. The
reasons for this are manifold: there was no high-quality ground truth
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dataset for training; the conventional models used were not powerful
enough; and—in some cases—the prediction problem was formulated
inadequately. Recently, deep learning—a set of machine learning
methods inspired by neurons in the brain—achieved breakthrough
results for many problems that were beyond capabilities of conven-
tional machine learning. It can advance the current state of machine
learning in proteomics.

Figure 1.3: Ras protein with a non-
hydrolyzable analogue of GTP (blue).
Proteins of this family regulate cell
behavior such as growth and divi-
sion. It is expressed in all ani-
mals. The illustration is adapted
from the original by David S. Goodsell,
the Scripps Research Institute (2012).
doi:10.2210/rcsb_pdb/mom_2012_4

6

Part II describes how to overcome traditional challenges in frag-
ment intensity prediction. A general deep learning architecture is
presented (Chapter 5) that can be trained (Chapter 6) to predict vari-
ous peptides properties including fragment intensity patterns. The
problem of a missing ground-truth is addressed by utilizing a new
resource of high-quality spectra from synthetic tryptic peptides. The
model reformulates the fragment intensity prediction problem and
is capable of accurate predictions as evidenced by comparing it with
current standard models and experimental spectra covering other
organisms as well as non-tryptic proteases (Chapter 7).

Figure 1.4: A T cell (at the bottom in
blue) recognizes and attacks a leukemia
cell (at the top side in green). The
CAR molecule is shown in red, bound
to CD19 on the leukemia cell. The
bound lead to activation of the T cell,
which releases perforin (purple), form-
ing pores in the cell surface. Granzymes
(magenta) then enter through the pore
and initiate apoptosis to kill the can-
cer cell. The illustration is adapted
from the original by David S. Goodsell,
the Scripps Research Institute (2017).
doi:10.2210/rcsb_pdb/mom_2017_10

6

Spectrum predictions are not useful in and of itself. They are
useful when applied. Part III shows three applications. First is the
generation of in-silico spectral libraries for experiments using data in-
dependent acquisition (Chapter 8). Second, peptide database search in
proteomics experiments using a data-dependent acquisition method
is improved and allows much more stringent error tolerance levels
(Chapter 9). This stringency enables peptide identifications of highly
complex biological samples. The third application demonstrates this
in the context of metaproteomics—samples containing peptides from
not one, but many organisms (Chapter 10).
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2
Mass spectrometry-based proteomics

Mass spectrometry (MS) expands our understanding of life and the
underlying complex biological processes and enables investigation
of proteomes in unprecedented detail7,8. It does so by providing a
means to measure small molecules fast and accurately, thus allowing
the identification and quantification of thousands of proteins in a
single experiment.9–11 Aided by computational data analysis, MS
facilitates the proteome-scale analysis of biological systems12 and
permitted first drafts of the human proteome13–15.

Digestion with
an enzyme

MS1 MS2

Identify protein
Deduce primary

structure

Protein Peptide fragments

Fragment in
MS

Protein Protein fragment
ladder

Top down proteomics

Bottom up proteomics

Figure 2.1: Top down versus bottom up
proteomics. In top down proteomics
(top) protein ions are put into gas phase
intact. Fragmentation produces protein
ion fragment ladders that can be used to
infer their primary structure. In bottom
up proteomics (bottom) proteins are en-
zymatically digested to peptides that are
subsequently put into gas phase. The
analysis has two stages: MS1 determines
masses of intact peptides; in MS2 pep-
tides are fragmented, and the fragment
ion masses and their intensities are mea-
sured. Proteins are indirectly inferred
from MS1 and MS2 peptide information.
Adapted from Chait 16

The high-throughput and high-accuracy capacity has made MS the
prevalent method in proteomics. There are two major approaches
termed “top-down” and “bottom-up”16 (Figure 2.1).

The top-down approach17 studies intact proteins and allows the
identification of proteoforms18 and degradation products19. The
protein isolation and sample separation required in top-down analysis
are extensive and challenging, constraining the approach to limited
sample complexity20. Effective fragmentation of proteins with a high
molecular mass remains an additional challenge. The large number
of potential fragments generate weak intensity signals that impede
sequence identification16.

The bottom up approach (Figure 2.2) can analyze complex mix-
tures by first enzymatically digesting proteins into peptides. Re-
sulting peptides are separated by liquid chromatography (LC), put
into gas phase—commonly by electrospray ionization (ESI)— and
subsequently subjected to tandem mass spectrometry (MS/MS). In
a popular peptide identification technique, experimental fragment
spectra are compared to theoretical spectra generated from digesting
a protein database in-silico. Proteins in the sample are then inferred
from peptide identifications of the sample. The following will de-
scribe this workflow that generates proteomics data in more detail. It
is the prevalent technique today.

The process of peptide identification will be discussed later in the
context of computational proteomics (Chapter 3).
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Sample preparation

DDA

Data acquisition by
mass spectrometry

Q

Peptide separation
and ionization

C-trap

Ion 
trajectory

Orbitrap mass 
analyzer

 - Skyline

Data analysis and
interpretation

 - MaxQuant
 - Perseus

 - OpenSWATH

Trypsin

Protein Peptide

DIA

Targeted

Q1

Q
Collision 

cell
Time-of-flight
mass analyzer

Q2 Q3

Figure 2.2: General bottom up proteomics workflow. In the sample preparation stage of bottom up workflows, proteins are extracted
and enzymatically digested to peptides. Peptides are separated and ionized. There are three main methods to acquire data. In
data-dependent acquisition (DDA), at MS1 level a full spectrum is acquired, which determines which precursors are selected and
fragmented at the MS2 level. Exemplary a quadrupole-orbitrap mass analyzer is shown, but other analyzer types can be used, too. In
targeted acquisition, a predefined set of precursor ranges is selected in the first quadrupole, subsequently the peptide is fragmented
and measured over time. The result is multiplexed transitions. In data-independent acquisition (DIA) all theoretical fragment ions
are measured usually by sequentially selecting precursors in wide mass-to-charge windows. The precursors are fragmented and
measured by, for example, a time-of-flight mass analyzer. The result are multiplexed fragment spectra that are often interpreted with
the help of known fragment spectra. Adapted from Aebersold and Mann 7 .

2.1 Sample preparation

Sample processing

Proteomic samples are prepared for analysis specifically for the given
research question to facilitate a comprehensive identification of its
peptides and proteins. Individual preparation steps can be realized by
different techniques, in general though, the subsequently described
generic steps are followed. The first step is protein extraction from
cells by mechanical force or reagents21. Certain protein classes can be
enriched optionally. Also, proteins may be fractionated and denatured
to simplify the subsequent steps. To make them chemically inert,
Cysteine (Cys) residues are carbamidomethylated. Then, proteases
such as Trypsin, LysC, AspN, GluC, ArgC, and Chymotrypsin, are
used to digest proteins into short polypeptides (Figure 2.3 illustrates
trypsin and chymotrypsin). Trypsin is the most popular choice,
because of its desirable properties for MS analysis: It cleaves the
N-terminal at Lysine (Lys) and Arginine (Arg) resulting in peptides
that contain a basic residue at the C-terminus and an average length
of 14 amino acids.

Figure 2.3: Trypsin and Chymotrypsin.
Illustration of trypsin (top) and chy-
motrypsin (bottom). Adapted from
the original by David S. Goodsell,
the Scripps Research Institute (2003).
doi:10.2210/rcsb_pdb/mom_2003_10

6

The peptide mixtures resulting from digestion are complex and
need to be further separated before they can be analyzed by MS.
Reverse-phase liquid chromatography (RP-LC) separates peptides
based on their hydrophobicity and can be directly coupled to a mass
spectrometer, which is commonly used and known as liquid chro-

8
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matography mass spectrometry (LC-MS) (next section). Peptide mix-
tures with post-translational modifications (PTMs) are particularly
complex and are therefore often enriched and purified in a separate
step.

Reverse-phase high-performance liquid chromatography

LC separates peptides in a sample by one of their chemical properties
over time. (Figure 2.4) The organic sample is mixed with an aqueous
solution (mobile phase) and is pumped through a column of porous
adsorbent material (stationary phase). Each peptide (analyte) interacts
differently with the adsorbent, determining its retention time within
the column.

Peptide sample
(mobile phase)

Solid porous matrix
(stationary phase)

Porous support

Effluent

Reservoir

Peptides

A

B

C

time

Figure 2.4: Reverse-phase liquid chro-
matography. The chromatographic col-
umn contains a solid porous adsor-
bent material (stationary phase) through
which the solution (mobile phase) flows.
Analytes (peptides A, B, and C) are sep-
arated because they interact differently
with the stationary phase. They elude at
different times based on this interaction.
Adapted from Nelson and Cox 22 .

RP-LC23 is based on hydrophobic interaction, which is determined
by a peptide’s amino acid sequence. Hydrophobic peptides contain
many aliphatic, non-polar amino acids such as Leucine (Leu) and
Isoleucine (Ile) and have longer retention times. Peptides consisting
predominantly of non-polar (e.g. Serine (Ser), Threonine (Thr)), basic
(Arg, Lys, and Histidine (His)) or acidic (Aspartic acid (Asp), and
Glutamic acid (Glu)) amino acids have weaker interactions and shorter
retention.

Usually, the ratio of acetonitrile or methanol in the mobile phase is
gradually increased (linear gradient) to prevent later eluting peaks
from flattening out. This ensures high peak capacity and high resolu-
tion. A common nano-LC has inner diameters from 75µm to 300µm
are packed with 1.9µm to 5µm C

18
particles and has a flow rate from

100nlmin−1 to 400nlmin−1.
Separation benefits the mass spectrometer two-fold. It enhanced

the dynamic range of the analysis because the elution of peptides is
spaced out over time. The possibility to couple RP-LC on-line to the
mass spectrometer is another advantage. These properties are the
reason for ubiquitous use of RP-LC in bottom-up proteomics.

Various scales have been proposed that consider different aspects
influencing hydrophobicity.24–26 Those scales can be utilized to con-
struct retention time predictors, which can aid subsequent MS anal-
ysis.27 The most prevalent retention time models will be discussed
later in section 4.3.

Although the chemical properties of peptides are fixed, LC varies
from laboratory to laboratory and influences retention times. The
variation stems from laboratory-specific setup, differences in C

18

material, and how columns are packed. Humidity and temperature
also influence retention times and may even be unstable in a single
laboratory between runs.28 To make retention times comparable, a
reference set of peptides can be spiked into the sample as a standard.
Retention times of other peptides can then be interpolated to these
known references because all peptides in the sample are exposed to
the same variation. This technique is called indexed retention time
(iRT)27,29 and allows for a better comparison of retention times. An
example of a retention time standard is PROCAL28.
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Figure 2.5: Retention time (RT) and in-
dexed RT (iRT). a) Chromatogram of a
cell line digest. The dashed gray line
highlights the linear gradient of organic
solvent (%B). b) The predefined pep-
tides A and B serve as reference points
to estimate an iRT value for peptide x
(left panel). iRT is transferable between
laboratories, setups and gradients (left
and right panel). Figure modified from
Escher et al. 29 .

2.2 Mass spectrometry

Mass spectrometers are used for the identification and quantification
of molecules and perform several functions to do so. The instruments
have at least three components: an ion source, a mass analyzer, and a
mass detector. The ion source charges the analyte and transfers it into
the gas phase so that it can be directed and measured electrostatically.
Mass analyzers separate analytes in space or time based on the mass-
to-charge (m/z) ratio. The mass detector measures the mass-to-charge
ratio of selected ions. In addition, some mass spectrometers contain
ion-storing devices that can confine ions for a period of time. The
storage capability helps to multiplex the analysis, for example, when
a selected set of ions is currently measured by the mass analyzer.

Figure 2.6: Electrospray ionization.
The solvent flows through a needle (left)
where it forms a droplet at its tip. The
application of a high voltage lets the
droplet burst into an aerosol, resulting
in charged peptides. These can then be
directed, filtered, and measured within
the mass spectrometer. Adapted from
Nelson and Cox 22 .

Mass
spectrometer

Vacuum interface

Sample
solution

High voltage
+

AerosolSpray needle

Taylor
cone

-

Sample Ionization

Various ionization techniques exist, but ESI30 (Figure 2.6) emerged
as the prevalent technique in bottom-up proteomics, as it can be
coupled on-line to LC. ESI is a "soft" ionization technique that causes
very little fragmentation of the analytes. The solvent eluting from
the RP-LC column flows through a needle forming a drop at its tip.
A potential difference (2 kV to 4 kV) is applied between the needle
and the detector entrance of the mass spectrometer. The solvent
forms a Taylor Cone and bursts into an aerosol when the droplets
pass the Rayleigh Limit31. The mechanics of this process are not yet
fully understood, but two models exist: ion evaporation32,33 and the
charged residue model.31,34 ESI mostly generates doubly, or higher
charged peptides in the setting described here, namely using tryptic
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digests and acidic gradients.
Ionization efficiency can be increased by using a very small needle

diameter35,36 (nanospray). This reduces the amount of sample needed
and also leads to less concentrated solvent impurities. Another way
to increase efficiency is to modulate the solvents surface tension by
adding DMSO.37

Mass analyzers

ETD source

Collision cell

Dual-pressure
linear ion trap

Ultra-high field Orbitrap

Seqmented quadrupole

C-trap

Inlet

Figure 2.7: Fusion Lumos ETD mass
spectrometer. Schematic of a Fu-
sion Lumos ETD mass spectrometer.
Quadrupoles select ions of interest and
steer the ion flow. It is equipped with
two mass analyzers the high-resolution
Orbitrap and the low-resolution linear
ion trap. A quadrupole serves as a colli-
sion cell. Adapted with permission from
Thermo Fisher Scientific.

The mass analyzer is the component of a mass spectrometer that gen-
erates mass spectral data. It separates charged molecules—ions— by
their m/z values and measure their abundances. Electrodes modulate
electromagnetic fields and thereby accelerate and steer the ions. Ion
trajectories in those fields and the ions responses to applied forces
indicate ion m/zs and abundances. There are different techniques to
analyze those responses, and they often lend the mass spectrometers
their name.38 This section discusses the function of four exemplary
types of mass analyzers: linear ion traps (LITs), quadrupole mass fil-
ters (QMFs), high-resolution Orbitraps and time-of-flight (TOF) mass
analyzers.

The standard for many applications today is hybrid instruments
that combine several mass analyzers. An example is the Thermo
Fisher Scientific Orbitrap Fusion Lumos (Figure 2.7). QMFs direct
and filter ion classes of interest. It comes with two modes for mass
analysis, a low resolution LIT, and a high-resolution Ultra-High Field
Orbitrap. Another quadrupole serves as a collision cell.

Electron multiplier

Electron multipliers39,40 detect ions upon impact and are commonly
coupled mass analyzers lacking an integrated detector. When an ion
hits the electron multiplier, dynodes emit multiple electrons. The
dynode of the electron multiplier — or a series thereof — is arranged
so that the emitted electrons are multiplied again (Figure 2.8). This
amplified signal can then be recorded by an anode.

Anode

Ion

Dynode

Dynode

Figure 2.8: Electron multiplier. An ion
hits the electron multiplier, which emits
several electrons. The device is curved
in a way so that the electrons hit the mul-
tiplier again, reinforcing the signal. The
signal is recorded by an anode (bottom).

Linear ion trap

In addition to mass analysis, linear ion traps41,42 can store ions over
a period of time before further analysis (Figure 2.9) and consist of
four parallel electrode rods. Ions are confined radially by applying
alternating current (AC) to pairs of electrodes. The frequency lets
the ions oscillate between the rods confining them. This frequency is
in the radio frequency (RF) range and therefore called main RF. The
rod is segmented in three parts and a different direct current (DC)
is applied. The potentials form a potential well so that the ions are
confined axially within the middle segments. Ion motion is induced
by both currents, with smaller ions moving faster than larger ions.
Once trapped, the ions follow a corkscrew-like trajectory in response
to the main RF. Only ions within a certain m/z-range follow a stable
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trajectory, which effectively filters ions outside of that range. Specific
ion m/zs are scanned by ejecting them through slits and recording
the number of ejected ions with electron multipliers. An additional
AC is applied to the rods with ejection slit. The frequency lets ion
packets with a specific m/z resonate with the rod, eventually exiting
through the slits (resonance ejection).

Front Rod
Rear Rod

Center Rod

Ejection slit

Main RF

y

x
zy

z x

-9V

-12V

-7V
„Potential well“

Figure 2.9: Linear ion trap (LIT). Ions
are trapped radially by main RF. Ax-
ially, ions are trapped in a potential
well created by DC. Ramping the main
RF allows a controlled ejection of ions
through a slit in the rod. Adapted from
Savaryn et al. 38

In a scan, the main RF is continuously incremented so that ions
with increasing m/z are ejected. The actual m/z value of an ion
packet can be determined from the main RF and exit rod AC. Ion
stability in the electric field, therefore, determines measurement ac-
curacy. The scan speed of linear ion traps is high, but resolution
and mass accuracy are low. An additional function of ion traps is
ion isolation — a preliminary step before fragmentation (section 2.3).
Certain ion m/zs can be isolated by superimposing the ejection rod
AC with multiple frequencies, thus targeting multiple m/zs. This
complex superimposed isolation waveform ejects all unwanted ions
simultaneously.

TOF43 mass analyzers derive ion m/z values from the time it
needs to travel a trajectory with fixed acceleration. Lighter ions
have a higher velocity than larger ions at fixed acceleration; thus
m/z can be derived* Ions are accelerated with a certain voltage in*

t = k
√
m/z

with k: a machine-dependent constant.
high vacuum and detected by a coupled detector such as an electron
multiplier. Reflectors can increase the flight distance, which increases
m/z resolution and reduces measurement variance. Scan speed of
TOF mass analyzers is fast with high accuracy and resolution. In
combination with a quadrupole (next section) and a collision cell,
such an instrument is called quadrupole time-of-flight (QTOF).

Quadrupole mass filter

Like an ion trap, a quadrupole44,45 consists of four rods and confines
ions radially by applying AC and DC to two opposing rods, respec-
tively. Also similar to an ion trap, ions are radially confined by main
RF from AC applied to the rods of the quadrupole. The difference is
that an additional quadrupolar DC is applied to the rods, instead of a
potential well in ion traps. The DC is applied with equal amplitude
to opposing pairs of the rods. Influenced by AC and DC, ions move
along the axial dimension in a continuous stream and are not trapped,
like in ion traps.

Ion 
Source

Detector

Quadropolar
DC & Main RF

Mass filter
m/zTr

an
sm

is
si

on

y
z

x

Figure 2.10: Quadrupole mass filter.
Ions are guided through the Quadrupole
by the applied DC and main RF to two
opposing rods, respectively. The result-
ing field provides stable secular trajec-
tories for ions of selected m/z ranges.
Those ions are directed to subsequent
modules inside the mass spectrometer.
Conversely, ions outside the selected
m/z range, do not pass the Quadrupole.
Adapted from Savaryn et al. 38

Filtering works by steering ions away from their stable paths, so
that they either crash into rods and de-charge or exit the quadrupole
radially. Those positive rods act as a "high mass pass filter", letting
only ions above a certain m/z pass. Smaller ions are drawn towards
the negative rods which act as "low mass pass filter".

In combination with a subsequent mass detector, a quadrupole
can also scan ion m/zs. For a scan, the current amplitudes are ad-
justed so that successively larger ion are steered towards the detector.
This makes the acquisition of large scan ranges slow. Therefore,
quadrupoles are commonly used in hybrid instruments for their ef-
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fective mass filtering and ability to switch fast between small m/z
ranges

Orbitrap Fourier transform mass analysis

r

z

Right 
Electrode

Left
Electrode

Transient

Time (mz)
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ns
ity

Fourier
Transform

Mass Spectrum

m/z

Figure 2.11: Orbitrap Fourier trans-
form mass analyzer. Ions oscillate in
a stable orbit in an electric field spanned
by an outer and an inner electrode. Ion
m/z values are derived from the oscil-
lations within the field through FTMS.
Adapted from Savaryn et al. 38

Fourier transform mass spectrometry (FTMS)46 measures the image
current of ion trajectories to derive their m/z from the oscillation
frequencies. The Orbitrap47 is the prime example of FTMS mass
analyzers. It consists of two electrodes: an outer electrode shaped like
a barrel and an inner electrode shaped like a spindle. Ions enter the
Orbitrap tangentially to its electric field, are then pulled towards the
inner electrode and adopt a stable orbit around the inner electrode.
Axially, the ions oscillate back and forth within the outer barrel-like
electrode. The axial oscillation frequency is inversely proportional† to

†

wz =

√
k

m/z

with wz: the axial oscillation frequency
and k: a machine dependent constant

the ions m/z.
Signal measurement requires multiple ions in the magnetic field,

resulting in lower sensitivity than other mass analyzers. Orbitraps
cannot store ions and are therefore mostly combined with ion traps
to collect the ion stream for them. Accuracy of Orbitraps is very
high, and m/z resolution increases linearly with the transient time
(the time the frequency is measured). Speed (> 40Hz), accuracy (<
2ppm), and resolution (> 1million) were recently enhanced by the
introduction of the compact high-field (HF) Orbitrap and improved
algorithms. Orbitrap-based hybrid instruments (such as the Thermo
Scientific Q Exactive48) are the most commonly used platform in
bottom-up proteomics today.

2.3 Tandem mass spectrometry

Liquid chromatography
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Figure 2.12: Tandem mass spectrome-
try. The m/z of peptides eluting (left) at
a given retention time is recorded with
high-resolution MS1 scans (middle).
Sets of ions are selected, fragmented,
and measured with MS2 scans (right).
The peptide sequence can be deduced
from the MS2 scan. Adapted from
Maarten Altelaar et al. 49 .

Measuring the m/z of a peptide with a first scan (MS1) can identify
its amino acid composition when its mass is unique. This does not
mean, however, that the peptide sequence can be deduced. Two
peptides may be composed of the same set of amino acids but differ
in their sequence. To deduce its sequence, a peptide is fragmented,
and those fragments are measured in a subsequent scan (MS2) (Figure
2.12). Measuring prefix and suffix fragments in a subsequent (MS2

or MS/MS) scan yields valuable auxiliary information. For this,
a peptide ion population with a common m/z (precursor m/z) is
isolated while other ions are parked in an ion trap. The isolated ions
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are then fragmented, either by physical force or chemical reactions in
the gas phase. The following details the physical structure of peptides
and the necessary nomenclature and available techniques to fragment
them. Also, three strategies to select and measure ion populations are
discussed, namely data-dependent, targeted, and data-independent
acquisition.

Nomenclature

N
H

Rm+1 

O

H
N

Rm

O

yn-m

bm
cm

zn-m

xn-m

am

C-terminal

N-terminal

Figure 2.13: Fragment ion nomencla-
ture. The established nomenclature dif-
ferentiates three bonds that may break
during fragmentation. A-, b- and c-ions
are the fragments on the N-terminal side
and x-, y-, z-ions are on the C-terminal
side of the peptides. The ions are num-
bered based on the number of residues
they contain. N is the total number of
amino acids and m the residue before
the fragmentation. More ion types exist.
See Figure 2.14 for an example. Adapted
from Steen and Mann 50

Roepstorff, Fohlman51 and Biemann52,53 devised the established
nomenclature that dissects a peptide into different sets of pre- and suf-
fixes. A peptide usually fragments at the peptide backbone because
it has the weakest bonds. The amino acid residues (Rm) typically
stay intact. Three possible fragmentation sites are distinguished and
termed a, b, and c, when they are prefix and x, y and z when they
are suffix (Figure 2.13) Per convention, the N-terminal marks the start
of the peptide sequence (left) and C-terminal marks its end (right).
Prefix fragment ions are numbered starting from the N-terminal, with
m indicating the number of amino acid residues in the fragment. n
stands for the total number of residues of the intact peptide before
fragmentation (precursor). Figure 2.14 shows an example.

In addition to the breakage points defined by the abc and xyz
nomenclature, other fragment ion types can be produced during
fragmentation. During fragmentation, small molecules may break
off from the fragment ions producing ions that are called neutral
losses. Water (H

2
O) or ammonia (NH

3
) are the most frequent neutral

losses. Such ions produce characteristic peaks shifted by the m/z of
their neutral loss. For example, a y3 ion losing an ammonia is called
y3−NH

3
.
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Figure 2.14: Peptide backbone exam-
ple. The peptide backbone may frag-
ment at different sides. Y- and b-ions
are highlighted in this example as well
as one a-ion. See Figure 2.13 for the
nomenclature. Adapted from Steen and
Mann 50

Another type of ion, internal ions, results from multiple fragment
events affecting one ion. Often internal ions are results of a combi-
nation of one y and ion b ion fragmentation and lose both terminals.
Immonium ions are a special case of internal ions, that only contain
a single amino acid residue. They are denoted by their amino acid
one-letter code. It must be noted that the list of fragment ion types
is not exhaustive. However, it contains the ion types that are most
frequently considered by the computational approaches covered in
chapter 3.

14



A A G A T T A N I T Q A I E Q M(ox) R
b b b b b b b b2 3 4 5 6 7 8 9

-H O -H O -H O2 2 2

y y y y y y y y y y y12 11 10 9 8 7 6 5 4 3 1

-NH3

-NH3

b2

b3

b4

b5 b6 b7 b8 b9

b  -NH8 3

b  -H O7 2

b  -H O6 2
b  -H O5 2

y1
y3

y4

y5

y6

y7

y8

y10 y11

y12y  -NH7 3

a2
y9

100 500
m/z
900 1,300

0.0

1.0

Re
la

tiv
e i

nt
en

sit
y

0.8

Figure 2.15: Annotated spectrum. Frag-
ment ions in a MS2 spectrum are an-
notated in reference to the peptide
sequence AAGATTANITQAIEQM(ox)R.
Many peaks can be explained by promi-
nent b- and y-ion series including their
H

2
O and NH

3
losses. Some of the

most intense peaks, though, remain un-
explained. Adapted from Neuhauser
et al. 54 .

The intensity distribution of fragment ions is non-uniform and
dependent on fragmentation methods and the peptide sequence.55

The following sections detail fragmentation patterns that are specific
to different fragmentation methods.

Collision-induced dissociation

Collision-induced dissociation (CID) is a low-energy fragmentation
method that excites ions in an ion trap so that they collide with
molecules of an inert gas.56–58 For example, a dual linear ion trap
consists of two pressure cells, one with high, and one with low pres-
sure. Scans are performed in the low pressure and fragmentation
in the high-pressure cell. After an ion population is isolated, it is
excited in the high-pressure cell, typically using the same mechanism
as for ejection. The cell is filled with inert gas (helium). Excited ions
collide with the gas molecules and fragment into smaller ions. Frag-
ment ions have smaller m/z and are thus not excited by the applied
AC effectively preventing further fragmentation. Amide bonds in
the peptide backbone are most likely to break. Such a fragmenta-
tion generates characteristic y- and b-ion series. The ’mobile proton’
model59–62 offers explanations for several observed fragmentation
pathways. Neutral losses, such as H

3
PO

4
, are frequent in CID spectra,

while immonium ions are often lost due to their small m/z value.

Higher-energy collisional dissociation

Higher-energy collisional dissociation (HCD) accelerates ions into an
inert gas using a DC offset to provoke fragmentation.63 The principal
is similar to collision-induced dissociation (CID), except that the ions
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Figure 2.16: Collision induced disso-
ciation spectrum. MS/MS spectrum
of the doubly-charged peptide SGEL-
GAVIEGLLR fragmented with CID. Only
a selection of the identified peaks is an-
notated. See Figure 2.17 for HCD and
Figure 2.18 ETD fragmentation spectra
of the same peptide.

200 400 600 800 1000 1200

0.0

1.0 CID ion trap readout

m/z

Re
la

tiv
e n

te
ns

ity

b3 b4 b5

b6

b7 b8

b9

b10

b11 b12
y2

y4
y5

y6

y7 y9

y8
y10

y11

nearly instantly fragment upon impact and not through excitation.
Precursor ions are first isolated by an ion trap or quadrupole and are
then accelerated into a dedicated quadrupole mass analyzer called
"collision cell"63. HCD results in similar fragmentation patterns as
CID with dominant y- and b-ion series. Slight differences are due
to the higher energy used for collision.64 Particularly H

2
O and NH

3

neutral losses are frequent in HCD spectra, while H
3
PO

4
neutral

losses are less common.65 Lys, His, and Tyrosine (Tyr) to produce
characteristic immonium ions.63 Short activation time and excellent
performance for tryptic peptides established HCD as the current
standard fragmentation technique for bottom-up proteomics.66

Figure 2.17: Higher-energy collisional
dissociation spectrum. MS/MS spec-
trum of the doubly-charged pep-
tide SGELGAVIEGLLR fragmented with
HCD. Only a selection of the identified
peaks is annotated. See Figure 2.16 for
CID and Figure 2.18 ETD fragmentation
spectra of the same peptide.
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Electron-transfer dissociation

Electron-transfer dissociation (ETD)67 transfers electrons to the pep-
tide backbone so that radical anions (e.g. fluoranthene) fragment it
chemically. In contrast to collision-induced dissociation (CID) and
higher-energy collisional dissociation (HCD), kinetic energy is not
employed. ETD produces mainly c- and z-ions. Sidechains and modi-
fications typically stay intact, which makes this method interesting
for the analysis of PTMs.68 Reaction efficiency is time-dependent,
leading to a slower fragmentation than in CID and HCD. Further,
higher charge states are required for efficient fragmentation.69 This
prevents convenient application to ESI-based tryptic digests that most
frequently charry only two or three charges. This is why ETD is
mostly used when complementary information to CID or HCD scans
are essential.70 The approaches can also be directly combined into
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ETciD and EThcD yielding four ion series.71,72
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Figure 2.18: Electron-transfer disso-
ciation spectra. MS/MS spectrum
of the doubly-charged peptide SGEL-
GAVIEGLLR fragmented with HCD.
Only a selection of the identified peaks
is annotated. See Figure 2.16 for CID
and Figure 2.17 HCD fragmentation
spectra of the same peptide.

Acquisition strategies

How a mass spectrometer selects precursors for fragmentation de-
pends on the acquisition strategy chosen for the experiment. Isolating
a small m/z range ensures that precursor selection is specific, but
potentially not the whole m/z space can be covered by such specific
isolations. Depending on the requirements of a given experiment,
different strategies can be deployed to minimize shortcomings from
this trade-off. Data dependent acquisition (DDA) selects small m/z
ranges depending on precursor abundancy (Figure 2.19 a), whereas
data independent acquisition (DIA) partitions the whole m/z space
into wider isolation windows (Figure 2.19 b). Targeted strategies
preselect specific precursor m/z ranges and isolate those over an
extended retention time range (Figure 2.19 c).

Data-dependent acquisition

In DDA73 the m/z values isolated for MS2 scans is dependent on
a fixed number of the most abundant peaks in the MS1 scan. The
method does not require preliminary assumptions about the sample
composition, making it particularly suitable for discovery proteomics.
Precursors already fragmented, are excluded for a fixed time to avoid
its repeated selection. Technical variability influences peak intensity
and subsequently, the precursor selection for MS2.74 In addition, the
precursor selection is biased by the MS2 scan limit per MS1 peak.
The stochastic nature of this selection process hinders reproducibility
and can lead to different identification and quantification results of
the same sample in different runs.75 Despite these complications,
DDA enables the identification and quantification for more than 5000

proteins11 per hour without relying on a priori information, makes it
the prevalent acquisition method today.

Targeted data acquisition

Targeted acquisition76 passes a predefined list of precursors to the
mass spectrometer for isolation and fragmentation. By directing the
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mass spectrometer, this method overcomes the inherent stochasticity
of DDA at the expense of surrendering freedom from assumptions.
It is necessary to determine relevant m/z before the analysis so that
the mass spectrometer does not have to decide dynamically. Single
reaction monitoring (SRM), multiple reaction monitoring (MRM)77,78

and parallel reaction monitoring (PRM)79 are implementations of this
method that all allow reproducible and highly accurate measurements.
Targeted approaches are currently limited to small sets of a couple of
hundred proteins. Consequently, they are predominantly used when
reproducibility and quantification accuracy is paramount and rely on
other methods for peptide identification.
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Figure 2.19: Acquisition strategies for
bottom-up proteomics. a) In DDA
MS/MS scans are triggered based on
high-intensity MS1 scans in real-time.
Selected masses are then dynamically ex-
cluded. b) Targeted acquisition triggers
MS/MS scans for the m/z ranges of pep-
tides that are the focus of the analysis.
c) DIA isolates, fragments and measures
wide constant m/z ranges independent
of the peptides analyzed. Adapted from
Sinitcyn et al. 80 .

Data independent acquisition

DIA81 partitions the MS2 space into usually wide isolation windows
after an MS1 scan. The MS2 windows are iteratively circled inde-
pendent of MS1 precursor abundancy and cover the complete m/z
range. By avoiding precursor-based decision making, DIA is less
biased than DDA and yields a comprehensive coverage at the expense
of more complex MS2 spectra. Through wide isolation windows,
several peptides can be co-isolated and co-fragmented resulting in
chimeric MS2 spectra. This requires an additional deconvolution
step for subsequent analyses. A prominent implementation of DIA is
sequential window acquisition of all theoretical fragment ion spectra
(SWATH).82,83 The application of DIA workflows is growing and re-
cent publications84 show superior performance over DDA in peptide
and protein identification.
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Figure 3.1: Overview: computational
proteomics The computational pro-
teomics workflow mimics the MS work-
flow that generates the data. From the
data (bottom) in form of MS2 and MS1

spectra it works its way up, first identify-
ing peptides, then proteins, then protein
quantities.

A typical one-hour DDA run generates more than fifty thousand MS2

spectra. This rate of data generation is far beyond what researchers
can manually interpret. Consequently, from the very beginning of
proteomics, researchers have developed algorithms and software ap-
plications to automate various steps in the workflow. Chapter 2

discussed the data generating workflow, the process that biological
samples undergo to produce mass spectrometric data — from cell
lysis to the generation of MS2 spectra. This chapter on computational
proteomics follows this workflow backward (Figure 3.1). The compu-
tational analysis starts with the identification of peptides from MS2

spectra (section 3.1) to eventually quantify the proteins that were in
the original sample (section 3.2). Mass spectrometry data is noisy,
and some identifications in the process can only be performed with
some inherent statistical error. A particular focus will, therefore, be
on the estimation and control of errors. Data from previous research
can often help to streamline assumptions and greatly simplify com-
putational analysis. It also is the foundation for training every of the
machine learning models covered in the next chapter (section 4.3).
In preparation for that, section 3.3 of this chapter discusses different
proteomics data types and where to find it.

3.1 Peptide identification and validation

The goal of bottom up proteomics is to identify and quantify proteins
in a sample. As the proteins were digested for better MS results and
fragmented to derive sequence information, the first step is to identify
peptides from MS2 data. To do so, various approaches exist80,85.
The most direct approach — de-novo sequencing — aims at deriving
a peptide sequence directly from an MS2 spectrum. This process
is difficult because noise peaks in the MS2 spectra complicate the
confident derivation of the correct amino acid sequence. The very
large space of potential peptide sequences and error control further
impede de novo sequencing. It is significantly easier to look up
whether an unidentified spectrum is part of a spectral library of already
identified spectra. Naturally, this approach demands a collection of
identified peptide spectrum matches (PSMs) that cover the relevant
peptides in the sample of interest. Such a collection of identified
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PSMs may not be available. The database searching approach narrows
the space of peptide candidates to peptides derived from a protein
database. Such databases are based on prior genomic information,
for example, genomic or RNAseq experiments, and as such do not
require prior identification of the peptides. The target-decoy strategy
is a simple yet powerful approach to control error rates in database
searching. The combination of database searching with the target-
decoy strategy is the prevalent approach in discovery proteomics
and is consequently discussed first after an introduction to data
preprocessing that is essential also to other approaches.
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Figure 3.2: Database searching. In
database searching, spectra are first pre-
processed to enforce spectrum quality
standards (1.). For each spectrum, the
peptide database is then restricted to
sequence candidates with theoretical
m/zs that match the spectrums precur-
sor m/z (2.). A spectrum is annotated
with each candidate sequence (3.) and
subsequently scored (4.) based on the
similarity between the experimental and
theoretical spectrum.

Data preprocessing

The effectiveness of the identification algorithms discussed in the
following is determined to a relevant extent by data quality. Raw
spectra may contain noise from chemical or electronic sources86.
Commonly, the preprocessing of spectra, therefore, includes several
steps87. Strategies to remove some noise can be categorized into
three broad classes88. The first class is spectral scoring. It accesses
data quality and filters low-quality spectra but does not modify the
selected spectra89. Second is precursor preprocessing, which tries to
enhance MS1 information. Examples include precursor charge state
identification, peak centroiding and picking, spectra joining and
automatic calibration90. In addition, MS2 spectra can be subjected
to decharging and deisotoping based on the precursor information.
The third class is MS2 spectrum processing. Techniques include peak
filtering based on cutoff thresholds and intensity normalization91.

Many popular workflows rely on heuristic criteria. The popular
MaxQuant92,93 software, for example, preprocesses the data on several
levels. Peaks in MS1 spectra are detected by fitting a Gaussian and
peaks are de-isotoped. In MS2, Maxquant applies a local peak filter
selecting only the n most intense MS2 peaks in a 100 m/z window.
Spectronaut94, a prominent DIA search engine, per default only
includes the 6 most intense MS2 peaks in its spectral library search.

Database search

To identify an MS2 spectrum, the best matching peptide sequence is
searched in a sequence database. The result is a list of PSMs that are
scored by the quality of each match.

The sequence database is a list of proteins that are expected to
be found in the sample. Such databases can be derived from the
genome of the organism or from RNAseq information for the sample
of interest. Uniprot95 is a repository that offers protein databases
for many model organisms. The protein database is then digested
in-silico depending on the protease used to digest the sample. The
in-silico digest is performed by cleaving the protein sequences on
the cleavage sites specific to that protease, optionally allowing for a
specified number of missed cleavages.

The in-silico digest may include peptide modifications, such as

20



PTMs. Including modifications immensely increases the peptide
sequence search space. For example, Methionine (Met) frequently
gets oxidized, becoming oxidized Methionine (M(ox)). Including
this modification alone may already increase the database by several
factors.* As this modification may or may not occur, they are called * When allowing only a single M(ox)

per peptide, the database already grows
by m, the total number of Met in the
database. Note, that m may be larger
than n, the number of peptides in the
database.

variable modifications. Fixed modifications, in contrast, are assumed
to always occur and therefore do not increase database size when
specified. An example is Cys that is carbamidomethylated in the
sample processing step to render it chemically inert.

For each spectrum, a list of candidate peptides is selected by
searching the database for peptides that match the precursor mass
(Figure 3.2). Mass errors are tolerated by a threshold that is dependent
on the mass accuracy of the instrument. A 20 parts per million (ppm)
mass tolerance, for instance, is common for Orbitrap readouts as an
example. Usually, the precursor mass filtering results in multiple
PSM candidates per MS2 spectrum.
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Figure 3.3: Most cited database search-
ing software since 1994. The stacked
areas under the line indicate citations
per year. In 2018 Andromeda has the
most citations (see Figure 3.1). Adapted
from Verheggen et al. 96 †.

A theoretical spectrum is then constructed for each PSM candidate.
The sequence is fragmented in-silico by calculating masses for ion
series frequently seen experimentally for that fragmentation method.
In the case of higher-energy collisional dissociation (HCD) these are
b- and y-ion series with H

2
O and NH

3
being common neutral losses.

Immonium and internal ions may be considered as well. When the
spectrum is not decharged, ion series for each potential charge up to
the precursor charge are derived.

Then, the theoretical spectrum is matched against the experimental
spectrum to annotate it. Each theoretical peak is matched against
the experimental peaks, again with some error tolerance as for the
precursor mass. When many ion types and neutral losses are con-
sidered, this may result in several annotations that explain the same
peak. MaxQuant92,93 resolves this problem by an intricate rule-based
expert system54 that decides which annotation to keep.

Many different scores have been devised to measure the quality
of experimental MS2 spectra. It can be determined by the number
of shared peaks97, cross correlation98, or probabilistically99,100. Yet,
all the mentioned choices are not meaningful statistically. The next
section will discuss this in more detail.

Name Year Citations
2018

Andromeda 100
2011 333

Mascot 99
1999 185

SEQUEST 98
1994 143

X!Tandem 101
2004 104

Comet 102
2013 76

MS-GF+ 103
2014 76

Paragon 104
2007 65

PeaksDB 105
2012 56

OMSSA 106
2004 48

MyriMatch 107
2007 29

Table 3.1: Most cited database search-
ing software in 2018. The year col-
umn denotes the year of publication.
Adapted from Verheggen et al. 96 †.

Database search in combination with DDA is the standard work-
flow for bottom-up proteomics and has been implemented in a myriad
of applications. The above sketched the general principles, but imple-
mentation choices for specific steps are plentiful. Table 3.1 shows the
most ten database searching tools cited in 2018 and figure 3.3 shows
database searching tools by their overall number of citations. By both
measures, MaxQuant92,93 with its integrated Andromeda100 search
engine, Mascot99 and SEQUEST98 are the most popular choices for
database searching software.

Usually, more than half of all spectra cannot be explained with
high confidence when searching for unmodified peptides108. How-

† Updated data found at https://github.com/mvaudel/Verheggen_2017 (accessed
2019-03-05)

21

https://github.com/mvaudel/Verheggen_2017


ever, including PTMs vastly increases the search space and makes
traditional database searching slow and error-prone.109 Open search is
a strategy that incorporates PTMs by allowing precursor mass errors
that cover PTM mass shifts at the PSM matching step to alleviate this
problem108,110. Prominent open search examples are MSFragger111

and pFind112. Still, the number of PSMs to evaluate dramatically
increases and error control remains a challenge.

In other experimental settings, such as metaproteomics113,114, search
spaces are vast, as the protein database incorporates the proteomes
of multiple genomes. Error control (next section) is crucial no matter
the size of the search space. Nevertheless, searches against large
databases are particularly vulnerable109,115,116.

Evaluating identification quality and controlling errors
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Figure 3.4: Target-decoy competition.
In target-decoy competition, the target
database of the organism competes with
a decoy database of peptides that are not
assumed in the sample. The top shows
how a decoy database is generated from
a tryptic in silico digest by reversing the
sequence (except the tailing R and K).
The concatenated database is used to
generate candidate PSMs for the spec-
tra generated in the experiment. These
PSMs are ranked according to a score,
and q-values can be calculated indicat-
ing the ratio of decoys at that score (bot-
tom). An FDR cutoff is chosen to declare
target PSMs with q-value below that cut-
off as confident identifications. Only a
selected number of PSMs are shown for
illustration.

There are many sources of biological, technical, and software variance
in database searching that can lead to false identifications. A PSM
where the identified peptide did not generate the spectrum is a false
positive (type I) error. For example, this can occur when a peptide
very similar to the peptide of the spectrum’s origin gets a higher score
due to a more complete fragment ion series. A spectrum that was
generated by a peptide and that is not identified is a false negative
(type II) error. For example, when the spectrum-generating peptide is
not part of the sequence database it cannot be identified. Suboptimal
search parameters, a poor choice of the database, and insensitive
scoring measures are just a few sources of such errors arising during
the data analysis. There are plenty of other variance sources stemming
from the biological sample and technical measurement levels85. It
is therefore crucial to precisely control errors and uncertainty in
database searching.

A simple approach to error control is the target decoy strategy
(TDS)117,118 (Figure 3.4). The database consisting of potentially cor-
rect target sequences from an in-silico digest is extended by decoy
sequences that are known to be absent from the sample. Several strate-
gies to generate decoy sequences exist, but the choice of methods
appears to have little influence on search results119,120. A common
strategy is to reverse target sequences while fixing protease cleavage
sites. It ensures equal numbers of target and decoy sequences in
the resulting concatenated database. The false discovery rate (FDR)
can be estimated by sorting top-scoring candidate PSMs and calcu-
lating the ratio of decoys by targets at one particular score cutoff. It
is important to note that this approach assumes that random false
positive identifications follow the same distribution as decoy identifi-
cations. Breaking or exploiting this assumption may lead to rigged
results121–124.

TDS allows the estimation of the global FDR of all PSMs, but not
a statistical confidence in a single PSM.85 This value, the posterior
error probability (PEP) can be calculated by fitting a bimodal mixture
model that separates target and decoy score distributions, usually
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by expectation maximization (EM).125,126 The posterior probabilities
subsequently can be used to estimate FDRs for arbitrary score cut-
offs116,127. Fitting mixture models is an alternative to TDS and does
work unsupervised without decoy sequences, but a semi-supervised
scenario that includes decoys improves the robustness of the fitted
model128. A well-calibrated score124 and distinct target and decoy
distributions are required for this approach for a proper model fit.
Due to its practical and conceptual simplicity, the de facto standard
for FDR today is TDS.

A myriad of scores to evaluate PSM quality have been proposed
and implemented98–101,103. Most of them are heuristics rather than
statistically meaningful129 measures, but if they are, interpretation
proves difficult121. In addition to these main scores, search engines
often make use of delta scores, the difference of the first and second
ranking candidate PSM100,101. As each score has its own strengths
and weaknesses, it is attractive to make use of them in combina-
tion. Furthermore, the integration of auxiliary information such as
precursor mass error or peptide length allows ironing out model
biases. PeptideProphet126,130 and iProphet131 are two examples that
integrate such information from different search engines. Later, in
section 4.3, the semi-supervised machine learning tool for the same
task Percolator132,133 will be discussed.

Spectral library search

In a spectral library search82,134, previously identified high-confidence
PSMs are compared with unidentified spectra for identification. Such
a collection of previously identified spectra is called spectral library.
Instead of constructing theoretical spectra this approach uses data
from previous experiments to rank PSMs. As spectral libraries also
include intensity information more rigorous similarity measures can
be applied to compare two spectrum vectors. Popular measures are
the dot-product, cosine similarity, Pearson’s correlation or normalized
spectral contrast angle5. The latter has been shown to be particularly
sensitive when spectra are very similar4.

The incorporation of intensity information into PSM scoring allows
more stringent separation of true from false spectrum identifications.
In particular, some peptide sequences tend to generate only a few
fragments relative to their length. Several measures used in database
searching are biased towards peptides that produce many fragment
ions. For example, the Andromeda score has the underlying assump-
tion that all theoretical fragment ions can be experimentally observed.
Practically that is not the case which biases Andromeda score towards
long peptides where the ratio between the observed and theoretical
fragment ions is closer to one.

One assumption in spectral library search is that fragment intensity
patterns are consistent and reproducible if variables such as instru-
ments and instrument parameters are controlled for. Although this
assumption generally holds true for experimental data, some factors
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of variability can be hard to determine. Zolg et al. 28 , for example,
identified shifts in fragmentation patterns over time while using the
same instruments and parameters.

Spectral libraries are typically constructed from spectra identified
in previous experiments135. When such a library stems from external
data, it can perform poorly because it is specific to the laboratory it
was measured at136. A common approach is therefore to generate a
spectral library specifically for a specific biological question with the
same instruments and settings. The most comprehensive approach
would be to generate such libraries from synthetic standards, but
for many applications and laboratories this would be prohibitively
expensive. In-silico spectral libraries based on spectrum predictions
have not been used so far, as prediction quality did not suffice for
confident and exhaustive identifications.

Several spectral library resources exist137–140 and will be discussed
in more detail in section 3.3. All share the same limitation: they
only cover a subset of all peptides and proteins, as not all peptides
have the same likelihood to be detectable by LC-MS. This limit is
more pronounced than in database searching, that searches against a
complete in-silico digest.

DDA spectra can be scored against spectral libraries, when precur-
sor and fragment ion tolerances are given. Software tools for DDA
spectral library search include MSPepSearch141, SpectraST142, and
Bibliospec134. This type of analysis is called spectrum-centric. It starts
from the spectra and tries to assign the most likely peptide sequence
to it. Spectral library search is computationally less demanding than
database searching.

Spectral libraries are a common tool in targeted proteomics, as
those experiments in any case rely on previously collected information
to identify which precursors to target. Previous experiments can be
used to construct a spectral library to identify the spectra subsequently
measured by targeted acquisition. Skyline143 is the prevalent software
for this analysis. Instead of using statistical measures to control false
identifications, stringent similarity cutoffs are employed and often
identifications are manually verified144.

Due to wide isolation windows, DIA spectra often contain frag-
ments from multiple precursors in one spectrum—they are chimeric.
A classical database searching or spectrum-centric spectral library
searches are unable to disentangle this relationship. The peptide-
centric approach82,145, in contrast, starts from a peptide sequence and
tries to match its accompanying spectral library spectra to spectra
acquired by DIA. The most prominent software tools for spectral
library search of DIA spectra are OpenSWATH146 and Spectronaut94.
mProphet144 implements FDR for DIA spectral library searches, al-
though the correct FDR estimation strongly relies on the quality of
the spectra as well as protein information that is present in both, DIA
data and the spectral library147.

Due to the diversity of PTMs and the exponential combinatorics
of modified peptides, vast spectral libraries are needed. It is un-
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likely that experimental high-quality spectral libraries will be able
to comprehensively cover modified peptide spaces needed in the
near future. A substantial amount of information may be hidden in
existing datasets because it is not covered by current spectral libraries.

De-novo sequencing

De-novo sequencing148 deduces peptide sequences directly from MS2

spectra. To generate a set of peptide sequence hypotheses, the mass
differences of fragment ions in an MS2 spectrum are matched to
amino acid masses. Not relying on sequence databases or spectral
libraries makes this identification method disproportionately more
complex. The reason to rely on de-novo is that database searches
are fundamentally limited to organisms which proteomes are well
characterized. Further, they cannot identify peptides that escape cur-
rent in-silico genome translation and digestion. One specific example
is post-translational processes that modify peptides149. The same
limitation holds true for spectral library search. In fact, de novo can
be viewed as a database searching against the database of all possible
peptides150.

Typically, de-novo algorithms build a spectrum graph150 that rep-
resents the set of sequences of amino acid masses that match the
spectrum. The spectrum graph is then traversed to score each candi-
date sequence probabilistically. Alternatively, the scoring can rely on
empiric rules that have been established for fragmentation techniques
and prioritize peptide sequences accordingly. Notable examples of
de-novo sequencing algorithms include Lutefisk151, PEAKS152, Pep-
Novo153, pNovo+154, and Novor155.

So far, only algorithmic approaches to de-novo have been discussed.
A different approach is to train a machine learning model to learn to
deduce peptide sequences from MS2 spectra. Section 4.3 will briefly
revisit de-novo sequencing and discuss this approach

Noise and missing ions in a series, sometimes only allow partial
sequencing of a spectrum and make de-novo error-prone. This is
a major problem, as the next section on error control for peptide
identification highlights. Nonetheless, there is no accepted method to
control error rates for de-novo today149. That is the reason why the
use of de-novo approaches is almost entirely refined to settings were
sequences are unknown156.

peptidesproteinsa)

A
B

1 2 3 4

peptidesproteinsb)

A
B

1 2 3 4

peptidesproteinsc)

A
B

1 2 3 4

peptidesproteinsd)

A
B

1 2 3 4

peptidesproteinsf)

A

C

1 2 3 4

B

peptidesproteinse)

1 2 3 4
A

C
B

Figure 3.5: Mapping peptide identifica-
tions to proteins. Peptide sequences are
depicted as rectangles that are part of
certain proteins. Blue peptide sequences
can be distinctly mapped to one protein.
Red peptide sequences occur in more
than one protein. (a) distinct proteins.
(b) differentiable proteins. (c) indistin-
guishable proteins. (d) B is a subset pro-
tein. (e) B is a subsumable protein. (f)
proteins identified by shared peptides
only. Adapted from Nesvizhskii and
Aebersold 157 .

3.2 Protein inference and quantification

Peptide identification is only one preliminary step in the data analysis
for bottom up proteomics experiments. Although this work largely
focuses on improving peptide identifications by applying machine
learning, a list PSMs is rarely the desired end-result of proteomics
researchers. They are interested in protein identifications or their
quantification. Due to its importance to practitioners, protein infer-
ence and quantification will be discussed briefly in the following.
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Protein inference

In bottom up proteomics, a protein cannot be directly identified within
a sample, but it needs to be inferred from peptide identifications157.
A peptide is but a subsequence of a complete protein and it may
match to more than one protein. Figure 3.5 shows the exhaustive list
of peptide to protein mappings. Case a) distinct proteins is simple as
there is no ambiguous mapping. In case b) only the unique peptides
1 and 4 serve to infer protein expression as the other peptides are
ambiguous. The rest of the cases c)-d) does not allow unambiguous
peptide to protein mappings. That is why, in such cases, proteins are
grouped, and those protein groups are reported. It is common practice
to report a minimal list of protein groups that covers all peptides
identified158. There are various approaches to group proteins and
assign scores157–160. Figure 3.6 shows an example.
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Figure 3.6: Grouping proteins by a pep-
tide mapping. Peptides are assigned to
corresponding proteins. A minimal list
of proteins covering all observed pep-
tides can be derived. Some proteins
can be differentiated by distinctly identi-
fied peptides (light blue) and constitute
their own protein group. Other proteins
(grey-blue) cannot be differentiated by
the identified peptides and are collapsed
into a protein group (F and G) or (H, I,
and J). Alternatively, groups can also be
collapsed into a single entry. An asterisk
marks a shared peptide. Proteins that
cannot be conclusively identified are not
counted (red). They are shown at the
bottom of the list (D). Adapted from
Nesvizhskii and Aebersold 157 .

Protein level FDR estimation is a complex topic, because different
viewpoints exist how to define error in protein inference and the mer-
its of the different definitions14,161,162. Estimating an unbiased protein
FDR has proven to be particularly challenging for large datasets109,163.
The picked FDR approach is one method that avoids a bias towards
decoy proteins by pairing target and decoy sequences for one protein.
This approach does not have the computational overhead as other
approaches and scales to large datasets162. That is why the picked
FDR approach is well-received and implemented in software like
percolator133. The TDS approaches developed for FDR estimation in
DDA can also be adjusted to fit DIA experiments and to calculate
protein FDR147.

Protein quantification

Many proteomics studies are interested in the abundance of proteins
in a sample. The focus is mostly on relative protein abundance in
different conditions8,164. All quantification approaches assume that
the MS signal is proportional to analyte abundance. This assumption
allows the relative quantification of thousands of peptides and pro-
teins in parallel and is one of the reasons for the success of bottom-up
MS.

Proteins can be quantified by spectral counting or peak integration
in label-free proteomics165. In spectral counting166,167, the number of
PSMs serves as indicator for protein abundance. Spectral counting is
unreliable because counts are not stable for low abundant proteins.
In addition, in modern DDA experiments , dynamic exclusion for-
bids the repeated measurement of the same peptide and thus lowers
the number of PSMs per peptide. Peak integration165, in contrast,
calculates the area under the curve (AUC) of peaks to estimate pro-
tein abundance. In DDA experiments, MS1 peaks are integrated
(MaxLFQ168, Figure 3.7a), whereas targeted software uses MS2 peaks
(Skyline144, mProphet144). DIA may consider both MS levels.

Some quantification techniques label proteins metabolically, for
example, stable isotope labeling with amino acids in cell culture
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(SILAC)169 (Figure 3.7b) , or chemically (Figure 3.7c), for example,
tandem mass tag (TMT)170, to flag them for the subsequent data
analysis. This introduces additional labor-intensive steps to experi-
ments and increases expenses. Such approaches have been covered in
reviews extensively8,171–173.

Still, various sources of error plaque protein quantification since
signals are indirect as they originate from the peptide level. Triqler174

tries to solve this issue in that it integrates error probabilities from
peptide to protein level in a probabilistic graphical model. Another
advance in protein quantification is an absolute quantification ap-
proached called proteomic ruler that utilizes the fact that the amount
of histones in cells is constant175. It is newly part of MaxQuant93 and
Perseus176.
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Figure 3.7: Overview of relative protein quantification methods. a) Label-free quantification integrates MS1 peaks to estimate
protein abundance. Those are compared between different LC MS/MS runs. b) MS1 labeling enables a comparison within one run.
Samples are labeled either metabolically or chemically. c) MS2 (isobaric) labeling quantifies the sample via reporter ions in the low
m/z range of the MS/MS spectra. Colored squares depict samples. Adapted from Sinitcyn et al. 80 .
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3.3 Data resources

Several steps in the MS workflow heavily rely on prior information.
Sequenced genomes, transcriptomes, and RNAseq data help to esti-
mate which proteins could potentially be expressed in a given sample.
Protein sequence databases, in turn, can help to limit the peptide
search space. Spectral libraries rely on previous measurements. In a
growing number of steps in the proteomic workflow, machine learning
models support computational data analysis and facilitate automation.
To train such models, access to data of high quality is paramount. The
open and standard community resources discussed in the following
sections are their core enablers. Fortunately, it is becoming the norm
to publish data, code, and statistical models, along with proteomics
studies177–179.

Sequence databases
Name Website

RefSeq 180 ncbi.nlm.nih.gov/

refseq

Ensemble 181 ebi.ac.uk/reference_

proteomes

UniProt 182 uniprot.org

Table 3.2: Protein sequence databases.

Protein sequence databases are composed of sequences that can
be mapped to genes, transcripts, or other resources. Many such
databases exist.

RefSeq180 assembles non-redundant gene, transcript, and protein
sequences that are generated from selected genomes. It is available in
Genebank183.

Ensembl181 is a collection of automatically annotated gene, tran-
script, and protein identifiers that is integrated with other biological
data. It offers the GRCh37 and GRCh38 human reference genomes.
The Universal protein resource (UniProt)182 maintains the most fre-
quently used protein database of the same name. It is divided into
a hand-curated database of non-redundant sequences called Swiss-
Prot and a computationally generated supplement called TrEMBL.
SwissProt integrates experimental results with computed features,
and all entries are reviewed by experts. TrEMBL derives sequences
from various genome projects and aims to cover all protein sequences
not yet covered by SwissProt.

Proteomics resources

Although very relevant for proteomics, the resources above do not nec-
essarily contain information from proteomics experiments or studies.
Such data is deposited in dedicated repositories.

Name Website

ProteomeX-
Change 184,185

proteomexchange.

org

PRIDE 186,187 ebi.ac.uk/pride

PeptideAtlas 188,189 peptideatlas.org

ProteomicsDB 14,190 proteomicsdb.org

Table 3.3: Proteomics resources.

ProteomeXChange184,185 is a de-centralized consortium that coor-
dinates the various distributing data resources to facilitate structure
and organization to the proteomics landscape. The repository is cate-
gorized in unprocessed primary data and processed data. The latter is
data that accompanies published studies as processed by the authors.
ProteomeXChange provides unique identifiers for every dataset in
one of its partnering repositories via ProteomeCentral.

The PRoteomics IDEntification (PRIDE)186,187 database is the main
archival resource at ProteomeXChange that does not reprocess up-
loaded MS studies. Peptide and protein information as well as meta-
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data from one study are organized and grouped together. PRIDE is
the recommended repository for data publication required by many
scientific journals that publish proteomics studies.

PeptideAtlas188,189, in contrast to PRIDE, reprocesses all incom-
ming data with a standardized pipeline and makes the results avail-
able in regular releases. The pipeline utilizes SEQUEST98, X!Tandem101

or SpectraST for the identification of peptides and PeptideProphet
and ProteinProphet for FDR calculation. Although direct submission
is possible, most data in PeptideAtlas is ingested via ProteomeX-
Change. Furthermore, PeptideAtlas provides the PeptideAtlas SRM
Experiment Library (PASSEL)191 to facilitate reuse of data in SRM
experiments.

ProteomicsDB14,190 is a human-centric database that offers re-
searchers to interactively explore quantitative proteomics data from
more than 19k LC-MS experiments. Its initial release enabled a
first draft of the human proteome in 2014

14. All data contained in
ProteomicsDB is reprocessed in a standardized pipeline that is based
on MaxQuant92,93,100. Recently, additional information was added, for
example, protein-protein interactions from STRING192 and functional
annotations from KEGG193. The extension to other species, such as
Mus musculus and Arabidopsis thaliana is planned.

Name Website

ProteomicsDB 14,190 proteomicsdb.org

NIST 137 chemdata.nist.gov

SRMAtlas 138,139 srmatlas.org

MassIVE https://massive.ucsd.

edu

ProteomeTools 140 http://www.

proteometools.org/

Table 3.4: Spectral library resources.Spectral libraries

Currently, spectral library searches are mostly performed with project-
specific spectral libraries. The reason for this is that specific work-
flows, hardware, and instrument parameters make it difficult to com-
pare MS2 spectra and retention times between laboratories. Despite
these challenges, there are efforts to offer standardized, high-quality
spectral libraries. The National Institute of Standards and Technol-
ogy (NIST)137, SRMAtlas138,139, and MassIVE are spectral library
resources that aggregate and post-process experimental data. Usually,
this involves filtering for high-quality spectra and clustering them.
Most recently, the ProteomeTools140 project introduced PROSPEC, a
spectral library from synthetic peptides that covers almost all human
genes.

Tryptic
~ 532,000

PTM
~ 354,000

HLA
~ 239,000

Non-Tryptic
~ 70,000

Other
~ 54,000

Other
~ 5,000

Phospho
~ 171,000

Ubiquitination
~ 71,000 

Acetylation
~ 48,000

PNGaseF
~ 29,000

Methylation
~ 18,000

Citrullination
~ 7,000

O-Glycosylation
~ 5,000

undefined

Figure 3.8: ProteomeTools peptide sets.
Number of synthesized peptides in dif-
ferent categories of the ProteomeTools
project The top blue bar chart depicts
general categories. The smaller bottom
bar chart further details the PTMs carry-
ing peptides within ProteomeTools. Fig-
ure adapted from www.proteometools.

org (accessed 2019-05-02).

The ProteomeTools synthetic standard

The data published in the above repositories relies on various layered
assumptions and prior information. For example, protein abundance
information in ProteomicsDB relies on sequence databases for the
annotation and identification of spectra. Identification and quantifi-
cation is performed with a standard MaxQuant workflow and the
error is estimated in form of TDS. Still, multiple sources of variance
remain. Although the first draft maps of model organisms start to
take shape13,14,194, by definition of the FDR, some identifications in
these drafts are false. The ProteomeTools140 project aims at develop-
ing molecular and digital tools to reduce such sources of variance to
a minimum.
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ProtomeTools defines a set of 1.4M peptides (Figure 3.8), called
PROPEL, which was synthetized by SPOT synthesis195,196. They
were measured by HCD, collision-induced dissociation (CID) and
electron-transfer dissociation (ETD) on a Orbitrap Fusion Lumos
at different collision energies resulting in a vast and high-quality
spectral library resource termed PROSPEC. In addition, iRT values
were systematically measured with the PROCAL28 retention time
standard. Tryptic peptides were chosen to cover all human proteins
with a preference for high proteotypicity14,197 wherever possible. To
avoid MS ambiguity, the peptides were grouped in pools of 1000 so
that precursor m/z values were spread across the entire LC gradient.
Many false identifications can be easily ruled out as the set of peptides
in one pool is known a priori.

To date, 377k peptides have been identified with a high Andromeda
scores (Figure 3.9). The identifications come from 22M spectra
from 550k precursors that have been released and are available on
ProteomeXChange, proteometools.org and in ProteomicsDB. The
currently released data already covers 98.5% of all human protein-
encoding genes and distinguish 63.0% of between SwissProt annotated
isoforms for a specific gene. The synthetic peptides are available to
interested researchers and measurements in different laboratories on
other instruments are initiated.
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Figure 3.9: ProteomeTools identified
peptides over Andromeda score cutoff.
Number of identified peptides at differ-
ent Andromeda score cutoffs. The num-
ber of peptides at Andromeda score 100

and the median Andromeda score of
all identified peptides are highlighted.
From Gessulat et al. 136 .

Apart from being a high-quality reference standard for the identi-
fication and quantification of human proteins, ProteomeTools is an
excellent foundation to train machine learning models that can be
used at several steps within the computational analysis of proteomics
data. Retention time and fragment intensity prediction are immediate
applications. On other levels, ProteomeTools could enable proteo-
typicity, and precursor charge prediction, or the refinement of PSM
scoring functions.
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4
Machine learning

Science strives for explanations that are both: elegant and empirically
substantiated. Some hard problems, however, may not have a beauti-
ful solution.198 When searching for answers to hard questions, it is
appealing to let machines do the work. For example, in proteomics
MS/MS intensity patterns have long been studied, and rules could be
identified199. Irrespective of these efforts, the set of identified rules
fails to explain complete fragment spectra comprehensively. Conse-
quently, various machine learning models have been applied to this
problem with varied success—they are revisited in section 4.3.

Machine learning studies the construction of systems that improve
themselves to optimize a given objective. A system does so by learning
from exemplary data, rather than being programmed explicitly. After
training, the system should be able to generalize what it learned to
unseen data.
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Figure 4.1: Entropy in natural images.
a) The Alps as seen from Schneeferner-
haus, Bavaria. b) An image of the same
size as a) with randomly assigned col-
ors. c) Images related by their spatial
structure and color contexts of its pix-
els. Exemplary marked are a) and the
random image b).

It is often not trivial to present the data to a learning system, as it
is high-dimensional. Images, for example, span a high-dimensional
space by the number of their pixels. On the other hand, natural images
are highly structured, and this structure is unlikely to occur randomly.
Although the mountain range shown in Figure 4.1 a) looks scattered
on the lower left, its color scale is tightly confined to a cold dark
grey-blue. Pixels in the sky exhibit a smooth color gradient spatially
from green-yellow (at the top) to a warm orange (on the horizon).
In contrast, pixels in Figure 4.1 b) do not have context: their color
values are uniform independent and identically distributed (i.i.d.),
and although mostly colorful, appear as a grey mush. The physical
laws governing the natural world generate images of a specific (albeit
complex) distribution that occupies only a tiny fraction* of the image

* The image space of Figure 4.1 b), for ex-
ample, is much larger than the number
of atoms in our universe:

(512 · 512 px)256 colors � 1082atoms

space.
The manifold hypothesis formalizes this intuition by stating that

natural data forms a low-dimensional manifold embedded in high-
dimensional space. Theoretical considerations and empirical evidence
exist that support the hypothesis200,201. The manifold of natural
images has complex priors. On a low level, priors exist on spatial
structure and color context, as illustrated in Figure 4.1 c). In addition,
there are various other priors, for example governing the observable
3-dimensionality of the natural world expressed by perspective. Dis-
entangling this manifold from its high dimensional space, makes
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solving problems substantially easier.
Conventionally, machine learning uses domain knowledge to do

part of the necessary disentanglement by engineering features from
the raw data that represent the problem better. As an example, plants
tend to be greener than cars. A naïve model could classify the two
objects by analyzing just the object’s greenness. Section 4.1 illustrates
how domain knowledge is applied in proteomics by the example of
PeptideSieve197. Instead of directly using the character-level amino
acid sequence to infer the proteotypicity, PeptideSieve uses a set of
chemo-physical properties derived from peptide sequences as features
to summarize the characteristics of the peptide.

Deep learning (section 4.2), in contrast, aims to disentangle the data
end-to-end. For example, by—in a first layer—learning to infer a pep-
tides’ chemo-physical features from its sequence, and subsequently—
in some higher layer—to infer proteotypicity from its features.

Machine learning

Unsupervised learning

Supervised learning

Data unlabeled 

Data labelled

Continuous
target

Categorical
label

Clustering
Dimensionality

reduction Generation

Regression Classification

PCA
t-sne
UMAP

LDA
VAE
GAN

k-means
DBSCAN
self-organizing
  maps

SVM
random forest
logistic regression

SVR
linear regres-
  sion

Figure 4.2: Branches of machine learn-
ing.

4.1 Conventional machine learning

Entity Notation Example

scalar lower b

vector bold lower t
tensor bold upper X
function italic lower y

Table 4.1: Mathematical symbol nota-
tion.

Symbol Meaning

X training data
xi the i-th sample in X
t target values accompa-

nying X
n numbers of samples in

X
m numbers of dimension

in xi
yw model function
w model weights
ϕ feature transformation

function
Φ feature tensor

eX,t error function

Table 4.2: Symbol meaning conven-
tions.

Machine learning aims to learn something from a given dataset X.
In general, X is a rank r tensor. The number of ranks depends on
the given data, with its first rank enumerating the n examples of
the dataset. A dataset of colored images, for example, could be
represented as a rank†

4 tensor (n · 512px · 512px · 3 color channels).
For example, in this section, X is rank 2 and n ·m to ensure brevity,
but all examples generalize to higher-ranked tensors. (See table 4.1 for
mathematical notation and 4.2 for the list of commonly used symbols.)

One categorization of machine learning is to divide the field by
what should be learned from X (Figure 4.2). If the dataset is labeled,
meaning it comes with target values t the task is called supervised
learning. Often, t is an n-dimensional vector. Depending on the
nature of t’s values, supervised learning can be further differentiated
into classification when t is categorical and regression when t contin-
uous. For classification, most prominent examples are support vector
machines (SVMs)202, random forests203, and logistic regression. Sup-
port vector regression (SVR)204, and linear regression are commonly
used for the regression task. For both tasks, the underlying assump-
tion is that there exists a process or function y∗ that produces the
values t given X. The goal is to find a function y that approximates
y∗ so that target values can be predicted for unseen data.

A label t is not necessary to learn from X. When there are no labels
or target values t, the setting is called unsupervised learning (Figure
4.2). Common tasks include dimensionality reduction, clustering, and
data generation. Standard techniques to reduce the dimensionality
of X include principal component analysis (PCA)205, t-sne206, or
most recently UMAP207. Various methods for clustering exists, for
example k-means208, DBSCAN209, and self-organizing maps210. For
data generation, latent dirichlet allocation (LDA)211 is used, as well as

† Note the difference of a tensor and matrix rank
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deep neural networks (section 4.2), such as variational autoencoders
(VAEs)212 and generative adversarial networks (GANs)213.

In proteomics, however, many applications of machine learning—
including this thesis—fall in the supervised learning category (see
section 4.3). The ProteomeTools dataset (see 3.3) offers a high-quality
resource of labeled data for the problem of fragment intensity predic-
tion. It can be formulated as a regression problem, with one target
value for each peak in a spectrum. To set the following into perspec-
tive, the rest of this section describes the most prevalent techniques
from conventional supervised learning: linear and logistic regression.
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Figure 4.3: A linear regression fitted to
two-dimensional data. The model yw
(equation 4.1) is a function predicting
targets t from data x. The weights w0
and w1 determine the orientation of yw
and can be learned by stochastic gra-
dient descent using the sum-of-squares
error (inset, equation 4.2) or directly by
the closed-form solution given in equa-
tion 4.3.

Function fitting

Constructing a supervised learning system involves the formulation
of three functions: First is the model function yw(x) that, given
its parameters (or weights) w, shall approximate the process that
generated the data (X, t). ‡ Let the matrix X contain nm-dimensional

‡ In an unsupervised setting, the error
function is formulated based just on X.

training examples x. Second is a loss (or error) function eX,t(w)

evaluating the quality of y with respect to its parameters w and all n
target values in t. A third function ϕ(x) transforms the input vectors
x to a feature space that is better suited for the model y. ϕ is often
not formally defined but described in terms of preprocessing the data.
Training the model y, becomes searching for the optimal parameters
w by evaluating the model function with e. Let the output of ϕ be the
vector Φ with an additional dimension Φ0 = 1 to simplify the math
that follows.§ Note that w is also (m+ 1)-dimensional.

§ Equation 4.1 is a reformulation of lin-
ear regression commonly familiar as:
y(x) = w>x +b. In equation 4.1, the
bias b becomes part of w

For example, a regression model is formulated linearly as:

yw(x) = w>ϕ(x) (4.1)

The sum-of-squares (figure 4.3 dashed box) is commonly chosen to
evaluate w:

eX,t(w) =
1

2

n∑
i=1

[
ti − yw(xi)

]2
(4.2)

For linear regression (figure 4.3) on the input data without feature
transformation ϕ(x) = x. The optimal w∗ resulting in the best fit is
when e is minimal. In the chosen convex example the minimum of e
has a closed-form solution, so we can obtain w∗ directly¶:

¶ (X>X)−1 might not be invertible if X
is not a full rank matrix

w∗ = (X>X)−1X>T (4.3)

The linear regression model (equation 4.1) can be easily adapted to
a binary-classification task by applying a function to it, that transforms
its range to probability space (R ∈ [0, 1]). Logistic regression (equation
4.4 and figure 4.4) models classification by applying the sigmoid
function σ (equation 4.5) and uses cross-entropy for its error function
(equation 4.6). Note that logistic regression—confusingly—is not a
regression in the meaning used today in machine learning. Logistic
regression is a classifier.

yw(x) = σ(w>ϕ(x)) (4.4)
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σ(z) =
1

1− exp(−z)
(4.5)

eX,t(w) = −

m∑
i=1

[
ti ln yw(Xi) + (1− ti) ln

(
1− y(Xi)

)]
(4.6)
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Figure 4.4: A logistic regression fitted
to two-dimensional data. The model
yw (equation 4.4) is a function proba-
bilistically separates the input data x
into two classes t ∈ 0,1. The weights
w0 and w1 determine the orientation of
yw and can be learned by optimizing the
cross-entropy (equation 4.6).

Linear regression and the classifier logistic regression are two of
the very simplest machine learning models and are widely used.
Thanks to their simplicity, one characteristic that also applies to more
advanced models such as the random forests classifier199 becomes
apparent: A model’s success is critically dependent on good features—
especially when the data is complex.

Feature extraction

The transformation from data to features (ϕ : X → Φ) must be care-
fully designed for a model to be successful. Finding a suitable trans-
formation ϕ is traditionally a manual process in machine learning.
Domain experts formulate ϕ and choose its parameters rather than let-
ting its form being estimated by learning algorithms. PeptideSieve197,
a model for proteotypicity prediction, is a revealing example from the
field of proteomics. It shows why feature transformation is necessary
and how to apply it successfully.

Figure 4.5: PeptideSieve features. A
peptide sequence is transformed into a
feature vector based on a set of chemo-
physical properties of its amino acids.
The average of all amino acid values for
the respective property constitutes one
vector dimension. Figure adapted from
Mallick et al. 197 and all numerical val-
ues are shown as in the original publi-
cation. Total and average values do not
add up.

Frequency in turn 0.09 0.06 0.06 0.13 0.06 0.06 0.080.15 0.06 0.10 0.75 0.08
Hydrophobic moment 10.0 0.00 1.90 0.17 1.20 0.00 1.500.00 3.00 5.70 21.97 2.44

Negative charge 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 1.00 0.00 1.00 0.11
Hydrophilicity 3.00 –0.50 –1.30 –1.00 –1.80 –0.50 –0.400.00 3.00 3.00 4.90 0.54

Total Average

R A M C I A TG E K

Beta sheet propensity –0.40 –0.35 –0.46 –0.50 –0.60 –0.35 –0.480.00 –0.40 –0.40 3.46 0.38

... ...

Peptide sequence Feature
vector

A peptide is classified as proteotypic when it can be consistently
identified by MS/MS. As the identification process is influenced
by biological and technical variation, peptides exhibit different pro-
teotypicity. Knowing if a peptide is proteotypic or not, helps to
restrict the peptide search space effectively and profoundly simplifies
computational analysis. Alternatively, proteomics databases such as
ProteomicsDB and others (see section 3.3) can be used to restrict the
peptide search space, but they only reflect the space of peptides that
has been studyied so far. A classification model for proteotypicity can
generalize to organisms with yet incomplete proteome characteriza-
tions.

A conventional model like logistic regression needs a fixed-length
numerical input vector representing the peptide as X. PeptideSieve
transforms a peptide sequence to a feature vector by averaging phys-
iochemical properties of its amino acids. Figure 4.5 shows this for
peptide RAGMCIAEKT and a few exemplary amino acid properties
such as hydrophobicity and beta sheet propensity. Together with tar-
get values t, indicating a peptide’s proteotypicity, a logistic regression

34



model can be fitted with the techniques outlined above. In the case of
PeptideSieve, a gaussian mixture model is chosen instead of logistic
regression197.

Generally, reducing raw information to feature vectors often leads
to loss of information. Specifically, for PeptideSieve, the order of
amino acids within a peptide is lost—all permutations of RAGMCI-
AEKT result in the same feature vector. Although the information
value of features can be determined relative to each other (e.g., with
PCA) it is difficult or impossible to ensure that all relevant infor-
mation is retained. An additional complication is that the selection
and definition of suitable features is often not trivial. In the case of
PeptideSieve, for example, 1000 previously described features were
evaluated. Combined, this complexity often makes feature extrac-
tion the most laborious step in the design of a conventional machine
learning system.

Layer 1
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Faces

Layer 1

Layer 2

Layer 3

a)

Cars
b)

Figure 4.6: Learning higher-level ab-
stractions. Examples of image recogni-
tion for a) faces and b) cars. Each layer
consists of learned "filters" that repre-
sent image motives that are composed
into higher-level abstractions of the pre-
vious layer’s output. In both a) and b),
the first layer detects only basic image
motives, such as edges. In layer two,
topic-specific motives are becoming visi-
ble, such as eyes for a) and tires for b).
Adapted from 214

The approach to feature extraction described above involves expert
knowledge and manual decisions. ϕ is defined by hand. Recent
advances in machine learning allow automating substantial parts of
this process. This approach is called representation learning, and
deep learning (section 4.2) is one instance of it. Instead of manually
defining a feature extraction function, it is formulated as a learning
function as part of the model. By that, the model has to jointly learn
to discriminate signal from noise in the data and solve the given
problem.

4.2 Deep learning and artificial neural networks

Deep learning215–217 is a set of machine learning techniques that
learns representations at different hierarchical levels. More specifically,
deep learning builds models containing serval layers, mostly artificial
neural networks. The input layer reads data—often in its raw form, such
as all pixels of an image—and learns a representation of important
features. The subsequent higher layers learn ever more abstract
representations from lower-level input layers.

In figure 4.6 a) and b) respectively, the first layer learns basic
pattern (or motives) to detect edges. The second layer mixes these
motives to more abstract compositions that are already specific to
a) human faces (like eyes and noses) or b) cars (like tires). In more
technical detail, figure 4.7, highlights the relationship to the manifold
hypothesis discussed earlier. Even though the input space cannot be
classified completely into red and blue by a simple linear regression,
a neural network can. The first layer warps the input space into a
feature space that can be separated by the second layer. It will become
apparent in the following, that the second layer shown in figure 4.7 is,
in fact, a logistic regression (equation 4.4).

The idea to directly train a model on the data without feature
engineering is not new217. In 1998, LeCun et al. 218 trained a neural
network on images without relying on common feature extraction
techniques used at the time, e.g., wavelet edge filters219. The character
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recognition model was trained directly on the raw images.
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Figure 4.7: Learning a linearly separa-
ble feature space. The 2-dimensional
Input space of the data cannot be lin-
early separated into blue and red. Cir-
cles marked with σ depict neurons fol-
lowing the logistic regression equation
4.4. Layer 1 consisting of two such
neurons with varying learned weights.
The resulting transformed Hidden fea-
ture space can be separated linearly by
Layer 2. Adapted from Christopher
Olah (2014)†.

The representation is hierarchical because more complex motives
arise from simpler motives. It is distributed across layers. In addition,
the representation is distributed within each layer—there can be
multiple similar motives for human eyes. This redundancy enables
robustness. A technique called Dropout220 makes explicit use of it, to
reduce overfitting.

Conventional machine learning algorithms work well on a wide
variety of important problems, particularly when they are adapted to
the given problem. They have not succeeded, however, in solving hard
central problems in artificial intelligence. Under mild assumptions,
deep neural networks can approximate any function221–223. Recently,
deep learning models set benchmarks in many standard machine
learning problems, such as in image224–226 and speech recognition227,
but also in biological applications228–230. Further, deep learning
has been tremendously sucessful in playing games231,232. One such
model233 that only learns from self-play (never seeing humans play)
generalizes to several games—Chess, Shogi and Go— and is able to
beat professional human players in all games.

The learning systems deployed in deep learning are generally
multilayer artificial neural network models that are “deeper” than one
layer. Each layer consists of simple learning entities called neurons216.
A neuron is usually formulated as a data transformation function on
top of which an activation function is applied. A layer that is neither
input nor output is called a hidden layer. A simple formulation is
treating inputs with linear regression (equation 4.1) and applying the
sigmoid function σ (equation 4.5) as activation (effectively applying
logistic regression, equation 4.4) as in figure 4.7. It must be noted that
most neural networks in use today are formulated to be practical or
mathematically elegant, rather than biologically plausible234,235. For
example, rectified linear units (ReLUs)|| 236 are commonly used today|| Rectified linear unit activation:

f(x) =max(0,x) as activation216 because they have been found to be more effective
than σ237.

Backpropagation

The prevalent method to train neural networks is an efficient version
of stochastic gradient descent called backpropagation216 developed
individually by several researchers in the 1980s238–241. It leverages
the structure of the neural network, specifically its composition as a
function of functions and using the chain rule to calculate the loss
derivatives for all weights in the network. The error is calculated for a
small set of random samples (mini-batch) from the training set based
on some loss function. This calculation is called forward pass because
the calculation can be computed layer-by-layer forward-directed from
the input to the output layer. The error is then attributed to the
parameters proportionally by the partial gradient of each individual
parameter. This is called backward pass as the error is distributed

† colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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again, layer-by-layer, but in reverse, starting from the output layer
and moving back to the input. Figure 4.8 shows this at the example
of a neural network with two hidden layers.
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Figure 4.8: Error backpropagation in
a neural network. The neural network
consists of the input Input, two fully con-
nected hidden layers H1 and H2, and
one output layer out. Connections with
w·· = 0 are omitted. Its output is com-
puted in the forward pass by calculating
the output layer by layer: yl(yk(yj(i))).
The error E is yl − t, with t being the
target values. In the backward pass, the
error is attributed proportionally to the
weights w of the model, according to
how much each w·· contributed to E.
The proportional contribution is given
by the partial derivative ∂E

∂z· for each
layer. Note, that the partial derivative
for layer H1 can be computed from the
partial derivative of layer H2. Thus, the
calculation is again layer-by-layer: from
out ∂E∂zl

to H2 ∂E
∂zk

to H1 ∂E
∂zj

. Adapted

from LeCun et al. 216

Building complex neural networks requires the calculation of par-
tial derivates for all weights as specified by backpropagation. For-
tunately, several software frameworks242–245 exist that can compute
derivates automatically when a neural network is expressed as a com-
putational graph. Today, tensorflow243 is the most popular framework.
Tensorflow works natively with keras**, a higher-level abstraction, that ** www.keras.io (accessed 2019-05-02)

facilitates simpler and more convenient architecture specifications.
Convolutional deep neural networks are the prevalent class of

current generation machine learning models216,224,246. They are a
specialized and efficient architecture of neurons, inspired by receptive
fields, designed to capture spatial context.247 Although they have
been shown to also perform well for sequential data248 like peptide
sequences, the most research applications of deep learning to se-
quential data utilized another design called recurrent neural network,
particularly so in the context of one of the most flexible architectures:
the encoder-decoder (also sequence-to-sequence) model249.

Recurrent neural networks

Recurrent neural networks contain loops that allow them to persist
information. This enables recurrent networks to read information
sequentially, for example, time-series data, audio data, or peptide
sequences. Recurrent networks have a memory so that they remember
elements in a sequence they saw before. As an example, the network
can remember whether it has observed proline in a peptide sequence,
to infer that occurrence has an influence of the overall fragment
behavior of the peptide.

Figure 4.9 shows one layer of a neural network consisting of only
one recurrent cell C (a construct usually more complex than the
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Figure 4.9: Unrolling a recurrent neu-
ral network over time. One single cell-
layer with a recurrent loop (left). The
feedback loop allows persisting inform-
tion over several time steps. The feed-
back loop is equal to a set of copies of
a non-recurrent network with each in-
stance receiving a signal from the pre-
vious instance in time (right). This is
called unrolling the network over time.
Adapted from Christopher Olah (2015)§
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neuron architecture described above). The cell C has a feedback loop
to itself, the recurrence, and a single output to the next layer. The
recurrence acts as a memory when the input x is time-dependent. At
time step x2, for example, cell C receives a signal from itself from
x1, which in turn generated under the influence of a signal that C
received from x0. The feedback loop (Figure 4.9 left) equals a neural
network that is connected to itself for the number of time steps it
receives input (right side). The resulting unrolled network is deep as
its number of layers is multiplied by the number of time steps.

Figure 4.10: Long Short-Term Memory.
Two signals flow from one time step
(t− 1) to the next (t): the cell state Ct
(top horizontal arrow) and the cell out-
put (bottom horizontal arrow) ht. In
addition, the cell receives input xt from
the previous layer at time step t. Green
boxes depict sigmoid (σ, equation 4.5)
or tanh activation functions. The left-
most σ neuron is the forget gate that
can reset parts of C by multiplying 0.
The next σ and tanh neurons constitute
the input gate by transforming the sig-
nal from ht−1 and adding it to C. The
right-most σ neuron is the output gate
that transforms ht−1 to the cells oup-
tut ht and Ct−1 to Ct. Note that the
transformations in all three gates are de-
pendent on both: Ct−1 and xt, but in-
dependent from each other. If C is not
adapted at t, the error signal can flow
backward without growing or vanishing
(top horizontal arrow). Adapted from
the original by Christopher Olah (2015)§
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Neural networks are composite functions of functions, and their
error derivative is a product. Thus, in general, the error signal either
diminishes or grows exponentially by the number of layers (See proof
in Hochreiter 250). This is particularly problematic for very deep
neural networks, such as recurrent neural network250–252. Long short-
term memory (LSTM) cells were the first architecture circumventing
this problem in recurrent neural networks253 (Figure 4.10). They
use specifically designed input, output, and forget gates to guide the
error flow and modulate the LSTM cell state and its output. The
key idea is to limit multiplicative modulation of the error signal to a
minimum so that it does not explode or vanishes. Multiple variants
exist, but empirical evidence suggests that most variants perform
similarly well254,255. Gated recurrent unit (GRU)256 cells are a variant
of the LSTM idea that combine input and forget gates to update gates,
making them less computationally demanding.

§ colah.github.io/posts/2015-08-Understanding-LSTMs/
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Neural machine translation

Neural machine translation (NMT)249,257,258 is concerned with trans-
lating an input sequence into an output sequence, usually from one
natural language into another. The task proved to be particularly
challenging, but very deep and large neural networks trained on
extensive text corpora recently reached human-level translation per-
formance259. NMT is also particularly flexible, and that is why it is
relevant for this work. For example, peptide fragmentation behavior
can be viewed as a translation problem: the input is a sequence of
amino acids, and the output is a sequence of fragment ion inten-
sity values at m/z values dependent on the input sequence. Aside
from recurrent cells, this section covers three additional commonly
used concepts from NMT: the encoder-decoder architecture249,256,260,
Bidirectional neural networks261,262, and Attention258,263.

x1 ... xn

E 1 En

h1
... hn y 1 ... ym − 1

D 1 D 2 Dm

y 1 y 2 ... ym

Figure 4.11: Encoder-decoder architec-
ture. A conventional encoder-decoder
architecture consisting of two coupled
recurrent neural networks. The encoder
(blue cells E) transforms an input se-
quence x1, . . . ,xn to latent space hn.
Encoder outputs other than hn are dis-
carded. The decoder (red cells D) starts
with hn as input and outputs a se-
quence of a different length y1, . . . ,ym.
After the initial hn it receives its own
output from the last time step as input,
for example y1 at D2.

The encoder-decoder architecture couples two neural networks
to first transform an input space into a latent representation and
second to transform that latent representation to the desired output
(Figure 4.11). In NMT both, the encoder and the decoder, are usually
recurrent neural networks. This construct enables the translation from
an input sequence which differs in length from the output sequence.
Another benefit of this architecture is that encoder or decoders can
be shared for different tasks. As described later, the same encoder
architecture for peptide sequences can be re-used to predict different
peptide properties, such as fragment intensity behavior, as well as
iRT.
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Figure 4.12: Bidirectional neural net-
work. A bidirectional neural network
consists of two recurrent neural net-
works that read the same input se-
quence x1, . . . ,x2 in different direc-
tions. The forward network (blue cells
Cf· ) starts with input x1, whereas the
backward network (red cells Cb· ) starts
with input xn. The outputs of both
networks are joined for each time step
h·. Hence, the subsequent layer that re-
ceives h1, . . . ,hn as input has access to
information from each time step.

In some languages, it is common, that the meaning of a sentence
only becomes apparent at the very last word of a sentence. Examples
are the Chinese sentences: 你好! (Hello!) and 你好吗吗吗? (How are
you?). This dependence on the complete sequence to determine
meaning occurs in many contexts, also proteomics. To determine
certain properties of a peptide, for example, hydrophobicity, the
complete peptide sequence is needed and not just the prefix of the
first few amino acids. To address this, bidirectional neural networks,
are two coupled recurrent neural networks that remember not only
the past but also the future (Figure 4.12). One recurrent network
reads the sequence in the forward direction from start to end. The
second reads the sequence in reverse from end to start. The output
of the forward and reverse networks is then combined so that next
layer as access to the sequence from both directions at every time step.
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Also, note the similarities with the fragment ion nomenclature either
including the N- or C-terminal.

A bird flying over a body of water

Figure 4.13: Image description using
visual attention. A recurrent neural net-
work describes the content of the image
on the left as "A bird flying over a body
of water". The words are generated se-
quentially, and the network focuses on
different parts of the image at each word.
Important parts of the image are focused
on. They are highlighted in white and
less relevant parts in black. The intensity
of white and black corresponds to the
weights that the attention mechanism
gives each pixel of the image. Adapted
from Xu et al. 263 .

Attention258,263 lets recurrent neural networks focus on certain parts
of a sequence that are relevant at that particular time step. The most
common implementation learns to weight inputs by importance and
applies softmax (equation 4.7) to have a soft focus as in Figure 13.2263.
This can be formulated as a fully connected neuron with softmax
activation, as in Wu et al. 259 .

softmax(x)i =
exi∑n
j=1 e

xj
(4.7)

4.3 Machine learning in bottom-up proteomics

Computational proteomics workflows are infused with machine learn-
ing at various steps264. This section focuses on only a few of these,
that will be relevant for the rest of this work.

Peptide properties

Various factors can prevent a peptide from being ever identified, for
example, the bias to select high-intensity precursors in DDA197. Omit-
ting peptides that cannot be identified from the computational work-
flow could alleviate difficulties arising from large search spaces, dis-
cussed in section 3.1. It is therefore desirable to infer a priori whether
a peptide can be reproducibly identified—a property called proteotyp-
icity197. The ability to predict proteotypicity for a certain workflow
may also help to improve workflows so that more peptides become
proteotypic. There are many approaches for proteotypicity predic-
tion and all of them rely on conventional machine learning197,265–270.
Specifically, they rely on feature engineering to transform the peptide
sequence into fixed-sized vectors of chemical, or sequence properties,
such as length or amino acid counts. Section 4.1 highlighted the
approach of PeptideSieve197 to select those features (also see 4.5).
It is unclear whether the chosen features comprehensively cover all
information that is relevant for this task.

The retention time of a peptide (section 2.1) is another property
that is critical for the computational analysis. Accurate prediction
model, again, can streamline the search space and help precursor
selection. Particularly in a DIA setting with chimeric spectra, retention
time prediction helps to limit the space of potential peptides within
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one spectrum. SSRCALC271,272, an early expert-designed additive
model, performs startingly well and is the baseline for other models
today. The SVM-based Elude273,274 is the best-performing model
using conventional feature engineering. Recently, DeepRT275 set a
new benchmark for retention time prediction using deep recurrent
neural networks.

Fragment ion intensity

The intensity of fragment ion is largely ignored by current database
search but is pivotal for spectral library search (see section 3.1). The
reasons why it has not been integrated into database search are mani-
fold, but a dominant one is that the lack of fast and highly accurate
prediction models. First attempts using decision trees276, shallow
neural networks277 and boosting278 did not yield high-quality spectra.
The comparison of these earlier attempts is difficult as comprehen-
sive studies that benchmark different quality measures for spectral
comparison are only recent4,5. The mentioned earlier attempts give
information on an ion level or give information on self-defined mea-
sured that did not become comparison standards.

More recently, MS2PIP279–281 achieves around 0.9 Pearson correla-
tion (R) for predicted spectra281. MS2PIP is a random forest regression
model and predicts each intensity of a spectrum independently. Each
fragment is modeled based on two fixed-size feature vectors, one for
the C- and one for the N-terminal side of the fragment ion. The first
deep learning-based model directly trained on the complete peptide
sequence, without feature engineering, is pDeep282. It achieves even
more accurate correlations (~0.93 R).

MS2PIP and pDeep employ separate models for each collision
energy. Both also report better performance on their validation sets,
than on external data with the same collision energy. Zolg et al. 28

show that collision energy is not comparable between laboratories and
even adjusts over time. This is an inherent problem of models trained
on one specific collision energy. First, their training dataset may be
composed of different sources; thus, although instrument settings
were the same, the fragment behavior may have varied. Second, the
models are not applicable to external sources, as the external collision
energy setting, may have an offset from the model’s perceived collision
energy. That is why MS2PIP and pDeep suggest to retrain their
models, specifically for one laboratory for best results.

Peptide identification

Database and spectral library search must separate correct from incor-
rect PSMs. As discussed in section 3.1, many searches employ scores
and only select the highest-ranking PSMs. This separation is a stan-
dard machine learning classification task264. Percolator127,132,133,283

is a commonly-used, standalone software that employs SVMs for
classifying PSMs. Internally, the algorithm trains SVM models on
a subset of the provided search data and a given decoy database.
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In an interative phase, the trained SVM rescores the training data,
and the rescored training data is used to train new SVM models.
Thus, the target and decoy assignments of the PSMs in the training
data improve at every iteration, yielding better models in the next
iteration. The iteration is continued for a fixed number of times.
After training, Percolator applies the learned classifier to the complete
search data and calculates q-values for each PSM and peptide level
posterior error probabilities. In addition to peptide FDR, it also im-
plements approaches to estimate protein FDR such as Picked FDR160

and Fido159.
An alternative formulation is clustering matched and unmatched

score distributions and fit a mixture model. An example of this ap-
proach is PeptideProphet126 that is integrated into the Trans-Proteomic
Pipeline (TPP)130 Kelchtermans et al. 264 reviews additional and inte-
grated approaches.
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Part II

Prosit: a predictive model
for peptide fragment

intensity
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5
Model architecture

Computational bottom up proteomics is focused on peptides. When
will a given peptide elude from the LC column? Is this peptide
proteotypic? How would an HCD spectrum of this peptide look like?
Ideally, there would be a single machine learning model architecture,
that is able to answer all of those questions—given enough training
data. The following chapter introduces the flexible encoder-decoder
architecture Prosit that can address those questions, but focuses on
fragment intensity.

5.1 Preliminary work

Models for intensity prediction that applied conventional machine
learning such as MS2PIP279–281 have to rely on feature engineering to
convert peptide sequences into a fixed-length vector representation.
The transformation from a variable-length peptide sequence to a
fixed size vector usually leads to information loss. Recurrent neural
networks offer an alternative that works with variable input directly.
pDeep282 is a recent deep learning-based model for fragment intensity
prediction that is based on recurrent neural networks. It utilizes the
fact that the number of theoretical fragment ions is dependent on the
peptide sequence in its architecture: it stacks bi-directional recurrent
networks and uses the n− 1 outputs as fragment intensities for a
length n peptide. This approach works well but is less flexible than
an encoder-decoder architecture (see section 4.2) as it is specific to
peptide fragmentation and is harder to generalize for other peptide
properties. MS/MS spectra are strongly dependent on normalized
collision energy (NCE)64, but NCE is difficult to incorporate into
models, as it is machine-dependent and changes over time28. Both,
MS2PIP and pDeep, do not integrate NCE or other additional input
parameters but instead trained a model specific for one NCE. In fact,
the authors of both models note that best performance is achieved
when the models are specifically trained on and compared to data
stemming from the same experimental conditions. This leads to
models that are specific to one laboratory and do not generalize well to
others. Chapter 7 closely evaluates Prosit and MS2PIP in that regard.
The comparison in this work is confined to the archetypical (and
most recent) approaches of conventional machine learning—MS2PIP—
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and deep learning—pDeep—, but it generalizes to the multitude of
models that exist for fragmentation prediction and that are reviewed
in section 4.3.

In preliminary work by the author, a precursor of the presented
architecture has been evaluated on the example of fragment ion
existence prediction. In contrast, to the architecture presented here, it
only predicted whether it is likely that a particular fragment ion will
be observed, but not its relative intensity. The existence prediction
model and its application are presented in Appendix A.
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Figure 5.1: Prosit deep learning archi-
tecture overview. The Prosit deep learn-
ing architecture for fragment ion inten-
sity prediction and iRT. The input data
(peptide sequences, precursor charge
state, and normalized collision energy)
are encoded into a latent representation
(space). This representation is then de-
coded to predict fragment ion intensities
(using all input parameters) or iRT (us-
ing sequences only).

5.2 The Prosit model architecture

The encoder-decoder architecture described in section 4.2 is one of the
most versatile neural network architectures. It can incorporate several
input parameters, such as peptide sequence and NCE, and is flexible
with respect to the task it should solve, for example, fragmentation
ion intensity prediction or iRT. Figure 5.1 shows a high-level overview
of the Prosit model architecture for those two tasks. The encoders first
transform the input parameters to a latent representation, which—in
a second step—is transformed by a decoder to the desired output.

Advantages of Prosit

A fixed latent representation has several benefits. First, it decouples
the architecture needed for input and output. This is especially
helpful, when in the context of sequence-to-sequence translation,
where the input sequence length and output sequence length are not
dependent (e.g., natural languages). Second, it allows the simple
incorporation of multiple input parameters. Third, it makes part
of the architecture reusable for different tasks. Those advantages
match the requirements of peptide fragment intensity prediction well:
peptides have variable-length, and the number of expected fragment
ion spectra is not directly dependent on sequence length*. Also, a

* Although sequence length−1 is the up-
per bound for the number of y-ions, the
number of observed y-ions is usually far
lower.

peptide’s fragmentation pattern is not the only interesting property
that one might wish to predict. For example, when a suitable encoder
architecture to represent peptides for fragmentation prediction is
found, it can be fixed and re-used for other prediction tasks such
as iRT. As peptide fragmentation is dependent on both, precursor
charge and NCE, those parameters can be readily integrated as input
parameters in addition to the peptide sequence (Figure 5.1 top). The
particular importance of NCE as an input parameter will be elaborated
later in chapter 7.

Building blocks of Prosit

Figure 5.2 details the building blocks of Prosit’s architecture for frag-
ment intensity prediction. The model takes precursor charge, NCE,
and the peptide sequence as input. First, for every input, a specific
encoder is trained, consisting of one dense layer for precursor charge
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Figure 5.2: Prosit deep learning archi-
tecture for fragment ion intensity pre-
diction. The peptide encoder consists of
3 layers: a bidirectional recurrent neural
network with GRU cells 256, a recurrent
GRU layer and an Attention 258,263 layer.
The recurrent layers use 512 memory
cells each. The latent space is also 512-
dimensional. Precursor charge and NCE
encoder is a single dense layer with the
same output size as the peptide encoder.
The latent peptide vector is decorated
with the precursor charge and NCE vec-
tor by element-wise multiplication. A
1-layer length 29 bidirectional neural net-
work with GRUs, Dropout, and Atten-
tion acts as a decoder for fragment inten-
sity. Circles denote normal neural cells
and Attention cells when color shades
vary. Dark squares denote GRU mem-
ory cells, and light blue squares denote
embedding cells. Black lines without
arrows denote Dropout.

and NCE. The encoder for the peptide sequence consists of an em-
bedding layer, one bidirectional, one recurrent neural networks, and
an Attention layer258,263. The encoder representations are element-
wise multiplied for a fixed size latent space representation. The
decoder for fragment ion intensity prediction consists of one recur-
rent layer resulting, an Attention layer and Dense layers on each
time step resulting in 6 predictions for up to 29 fragmentation po-
sitions (y- and b-ions for charge 1 to 3). All recurrent layers have
512 GRU256 memory cells. To avoid overfitting, a Dropout220 prob-
ability of 30% is used, and LeakyReLUs284 are applied to increase
training stability (see chapter 6). An implementation can be found at
github.com/kusterlab/prosit/† † Implemented in Python with keras

2.1.1 and tensorflow 1.4.0 compiled to
use Graphics processing units (GPUs).

Limits of Prosit

Recurrent neural networks—and encoder-decoder models such as
Prosit—require a maximum length for their input and output se-
quences, as well as dimensionality of the input and output elements
in those sequences. For example, consider y- and b-ions charged
either +1, +2 or +3 for a maximum peptide length of 30 and no PTMs
except M(ox). The maximum input sequence length would be 30 and
the dimensionality of each element 21, one for each standard amino
acid plus M(ox) The maximum output sequence length would be 29

‡ ‡ maximum number of fragment ions =

peptide length −1.
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and the dimensionality of each element 6, three charges times two
ion types (y- and b-). This example is specifically the dimensionality
chosen for Prosit and allows the prediction of 174 potential fragment
ions for a 30-mer§.§ 2 ions types × 3 charges × (30 −

1) amino acids = 174 Peptides that have more than 30 amino acids account for only 8%
of the tryptic human proteome (Figure 5.3). Further, they only amount
for 0.1% of the synthesized peptides in ProteomeTools, because longer
peptides are more difficult and costly to synthesize (Figure 5.4). As
those very long peptides are exceedingly rare, their underrepresenta-
tion is likely to result in poor model performance. This hypothesis
is later validated in section 7.2 at the example of different precursor
charge distributions (Figure 7.8). Therefore, longer peptides were not
included for training, but it is acknowledged that data stratification
or additional training data could allow models for longer peptides
with good performance.
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Figure 5.3: Length distribution of hu-
man tryptic peptides. Bars indicate the
frequency of sequence length. Blue bars
are covered by Prosit, and red bars are
not. Only sequences in the length range
of [1,52] are shown, but longer human
tryptic sequences exist. The percentages
include all human tryptic peptides, also
those not shown in the histogram.

Peptides with sequence length 7 to 30 cover 98.8% of the human
proteome as described by Uniprot as of April 21, 2019 (Figure 5.3).
The reason for a lower length limit is mostly historical. Typically, the
region below 350 m/z is not considered, as Orbitrap resolution is not
optimal. Further, shorter sequences mean fewer theoretical fragment
ions to match measured peaks¶. That is why ProteomeTools does not

¶ Note that the combinatorial space of
theoretical fragment ions grows expo-
nentially with the length of the se-
quence.

cover many sequences that are shorter than seven amino acids, and
Prosit also excludes those.
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Figure 5.4: Length distribution of
ProteomeTools peptides. Bars indicate
the frequency of sequence length. Blue
bars are covered by Prosit and red bars
are not. All sequences of ProteomeTools
(as of 2019-07-07) are included.

At the time when the Prosit was trained, the measurement of
synthesized peptides carrying PTMs was not completed yet. M(ox),
though, often occurs naturally during sample preparation and mea-
surement and was therefore included in the searches that are the basis
for spectrum annotations. Therefore Prosit includes M(ox) as the only
PTM alongside the standard 20 amino acids in their unmodified form.
For simplicity, it is treated internally as if it were an independent
amino acid.

The mostly human tryptic training data resulted in spectra with
overwhelmingly doubly and triply charged precursors. Although
precursor charge one, five and six only observed rarely||), those

|| compare Figure 6.3

charges were included for completeness. As the precursor charge
is read with a separate encoder, increasing the number of precursor
charges had an only marginal effect on the model size.

Prediction of Prosit focuses on HCD and CID prediction, and
mostly y and b ions are observed with this fragmentation methods.
X, z, a and c ions were excluded to keep the model simple, but it can
be readily extended, for example, for other fragmentation methods
such as ETD.

The addition of a single neutral loss would add another 87 outputs,
as it could occur on each amino acid and in all charge states**. Con-

** 29amino acids × 3charge states =

87dimension sidering that the total number of outputs without neutral losses is
174, adding one neutral loss would increase the output space dispro-
portionately. An additional difficulty, specifically with the addition
of neutral losses, is that for certain peptide sequences, fragment ions
become indistinguishable by m/z. For example, when a peptide has
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the same amino acid subsequence as prefix and suffix b-ions within
this prefix share the exact same m/z value with their corresponding
y-ions with water losses. Consider peptide AEQDELSQRLA, an 11-
mer, with A being N- and C-terminal amino acid. The b-10 +2 ion
has the theoretical same m/z as the y-10-H20 +2 ion: 585.7911m/z In
an annotation, those ions fall into the same m/z bin and the model
cannot tell which peak belongs to which fragment ion. As the initial
focus of Prosit is the mere prediction of fragment ion intensities, neu-
tral losses are excluded. In the future, ion intensity deconvolution
schemes could allow the addition of neutral losses as well.

Model architecture
#Encoder #Decoder Latent Parameters Training [min] #Epochs Accuracy [1-SA]

1 1 128 140,234 288 35 0.187

1 1 256 524,618 520 39 0.142

1 1 512 2,030,666 812 28 0.124

1 1 1024 7,991,882 2088 28 0.108

1 2 512 3,606,602 377 28 0.114

2 1 512 3,606,602 338 25 0.103

3 1 512 5,182,538 663 38 0.101

2 2 512 5,182,538 663 38 0.102

Table 5.1: Model architecture explo-
ration. The number of encoders, de-
coders, and latent space dimensions of
the Prosit architecture are adapted. This
variation results in changes in model
accuracy (normalized spectral contrast
angle loss (SAL)), sizes (number of pa-
rameters), and training time. Model
sizes that exceed more than 3 million
parameters are shaded increasingly red.
Model accuracies that exceed SAL 0.110

or lower are shaded increasingly blue.
The chosen Prosit architecture is high-
lighted with bold text.

5.3 Architecture optimization

The Prosit architecture consists of a set of encoders for its input
parameters and a decoder that is task-specific—in this work, specific
to fragment ion intensity prediction. The rationale behind this general
architecture and its inspirations have already been described above
in section 5.2. Still, there are endless options for how to construct a
specific instance following this architecture: How many layers to use?
How many neurons should each layer have? How large should the
latent space in-between en- and decoder be? Although an accurate
model is the primary target, several other factors need to be taken
into to ensure that the model is practically useful. Two additional
requirements are acceptable prediction times and a moderate memory
footprint of the model. To allow the prediction of full proteomes
within an hour, several hundred thousand spectra must be predicted
within minutes. The number of parameters of the model is dependent
on the number and choice of the layers used and is the main influence
on the memory footprint of the model. An exceedingly large memory
footprint needs to be prevented, to make sure that Prosit can fit into
the random-access memory (RAM) of a variety of hardware systems.

Table 5.1 shows the results of a heuristic search to determine an
appropriate model architecture. As the model trains from predicting
spectra and adjusting based on its errors, in this analysis, the time
to train the model is used as a heuristic for prediction speed. First,
a suitable latent space size is estimated by consecutively doubling
the space. Even restricting the number of encoder and decoder layers
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to one, leads to an excessive number (~8M) of parameters when the
latent space has 1024 dimensions. Keeping the latent space at 512 di-
mensions and adding encoder layers improved model accuracy while
keeping the number of parameters small. Adding decoder layers
did improve model performance compared to adding encoder layers.
Every decision for a model architecture is a trade-off between model
accuracy, memory requirements, and prediction speed. For example,
adding a third encoder layer, compared to keeping it at two layers,
only increases performance marginally from SAL 0.103 to SAL 0.101,
but nearly doubles training time and memory footprint (compare
Table 5.1 row six and seven). In this case, a 2-encoder, 1-decoder
architecture with a 512-dimensional latent space was chosen as a
compromise between fast prediction speed and reasonable memory
consumption.

In a separate analysis, it was analyzed whether LSTM or GRU
memory cells in the recurrent layers perform differently. GRU mem-
ory cells performed slightly better and for results shown in 5.1 those
cells were used. As discussed in 4.2, GRUs also use fewer parameters
than LSTMs, making the derivative calculation faster. Using dropout
values 0.5, 0.4 and 0.3 did not have a substantial impact on model
performance (results not shown). The use of the least strong regular-
ization value of 0.3 did not lead to an overfitted model (see Chapter
7). As overfitting was not an issue, we preferred a low Dropout, to
allow the model to utilize more parameters at the same time.

5.4 Generalization

The encoder-decoder architecture is flexible in that decoders can be
exchanged depending on the prediction task. For example, colleagues
have shown in independent research, that the Prosit architecture can
be re-used predict iRT136. The sequence encoder architecture was
re-used, and the precursor and collision energy encoders discarded,
as those parameters do not affect LC. The decoder was replaced by
one fully connected dense neural network layer that outputs a single
value: the peptide’s iRT value. Gessulat and Schmidt et al.136 show
that this model outperforms the prevalent retention time models
SSRCalc271 and Elude274.

Unpublished preliminary research indicates that the architecture
can be utilized for various other peptide properties. For example,
the problem formulation of ion mobility prediction is highly similar
to iRT prediction, and initial tests look promising. Another initial
successful application could be shown by training a suitable decoder
for proteotypicity.
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6
Model training

Training a machine learning model involves several steps. The fol-
lowing steps have been described in general in chapter 4 and are
applied to Prosit specifically in the following. An appropriate set of
data points is selected and prepared to be consumable by the model
(section 6.1). The objective of the model is formulated to properly
model spectrum similarity (section 6.2). Subsequently, model hyper-
parameters are to be optimized (section 6.3) and overfitting controlled
(section 6.4).

6.1 Data preparation

The ProteomeTools project140is a unique resource to train predictive
models for proteomics. All peptide identifications in the dataset
have high Andromeda scores, are synthesized, and were present in
the respective measured sample. This approach represents a solid
ground truth and reduces the probability of falsely matched PSMs to
a minimum. RAW spectra as well as peptide identifications by Max-
Quant are available on PRIDE*. For model training though, the data * PXD004732

140 and PXD010595
136

published cannot be used directly. It needs to be prepared and trans-
formed into suitable data formats. Unless otherwise mentioned, the
following transformations are performed by custom Python scripts.

Prosit trains on target PSM from 1% FDR MaxQuant searches†. † version 1.5.3.30

The databases for the search are specific to the dataset such that
they only contain the peptides present in a specific sample. In the
search, carbamidomethylated Cys is specified as fixed modification
and methionine oxidation as variable modification. Only top-ranking
PSMs are considered. Chapter 5 introduced how PSMs need to be
presented to the model. The input consists of the peptide sequence, an
NCE, and precursor charge; and the output is the annotated spectrum
consisting of y and b ions only.

Raw spectrum annotation

MS/MS spectra were extracted from the RAW files using Thermo
Fisher’s RawFileReader‡. The extracted information includes precur- ‡ http://planetorbitrap.com/

rawfilereadersor charge, the collision energy used for acquisition, and all fragment
ions (m/z and respective intensity values). Y and b ions of the ex-
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tracted spectra are annotated at fragment charges one, two and three.
The m/z matching tolerance is 25 ppm.

10 20 30 40 50
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N
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NCE Offset: -6.7 

Figure 6.1: Comparison of fragmenta-
tion efficiencies of two different mass
spectrometers with different peptides
standards. The best matching HCD
spectra are from an Orbitrap Fusion Lu-
mos, and a Q Exactive are compared.
Each line depicts one peptide standard.
Note that lines are overlapping and may
not be distinguishable. The black dot-
ted line is a linear fit, and the dashed
black line is the diagonal. The NCE off-
set between the two machines is the dis-
tance between the fit and the diagonal.
Adapted from Zolg et al. 28 .

Selecting peptide-spectrum-matches for model training

Peptide length was restricted to a range of 7 to 30 amino acids and
precursor charge of <7 due to model limitations. This choice is mo-
tivated by the fact that the median peptide length in ProteomeTools
is 14 and peptides of more than 30 amino acids are rarely included.
Including longer or shorter peptides is unlikely to yield enough train-
ing data to train model representing those length well (see Chapter 7).
Amino acids are limited to the standard 20. M(ox) is allowed as the
only PTM and treated as an additional (21st) amino acid. To ensure
high spectrum quality, the data is filtered to include only PSMs with
Andromeda score >50. The annotation of Prosit—without decharging
and deisotoping and using different m/z matching tolerances—can
lead to different results than MaxQuant’s annotation. Therefore, all
PSMs without at least two matched fragment ions are discarded. For
some combinations of peptide sequence, NCE, and precursor charge,
there are multiple PSMs, whereas for other combinations there is only
one. To reduce biasing Prosit towards frequently occurring combina-
tions, the training data is filtered so that only the three PSMs with the
highest Andromeda score are included.

Calibrating collision energy of the training data

In theory, NCEs are supposed to be transferable between machines.
In practice though, NCEs differ from machine to machine and over
time at the same machine. For example, Zolg et al. 28 report that
spectra from an Orbitrap Fusion Lumos and an Orbitrap Q Exactive
at the same laboratory match best at NCEs that differ substantially
by an offset of 6.7 (see Figure 6.1) To allow consistent NCE through-
out the training dataset, NCE for each RAW file is aligned to a
reference dataset as proposed by Zolg et al. 28 . All ProteomeTools
measurements include the PROCAL28 standard set of peptides and
are compared to a standard measurement of those peptides acquired
at 15 NCEs. From this data, a calibrated curve is generated, and its
intercept used to calculate the RAW file specific NCE offset.

Encoding

The model is presented with three inputs: the calibrated NCE, the
precursor charge, and the peptide sequence; and one output: the
target spectrum. The spectrum is represented by a 174-dimensional§§ y and b ions, 3 charges, 29 fragment

ions vector of continuous values and sorted as follows: y1 (1+), y1 (2+),
y1 (+3), b1 (1+), b1 (2+), b1 (2+), y2 (1+), etc.. Theoretical ions
without a matching peak are set to intensity zero and all others are
base peak normalized. Fragment ions intensity values at impossible
dimensions (i.e. y20 for a 7-mer) are set to −1¶. Peptide sequences

¶ The intensity value −1 encodes the
special meaning “This peak cannot exist”
and is excluded from similarity calcula-
tions.

are represented as length 30 discrete integer vectors. Integers from 1
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to 21 represent one amino acid each. 0 is used as a padding value for
sequences shorter than 30. Precursor charge is one-hot encoded, and
the calibrated NCE is a continuous scalar.

6.2 Spectrum similarity as objective function
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Figure 6.2: Correlating R and SA sim-
ilarity. Comparison of R (equation 6.4)
and normalized spectral contrast angle
(SA) (equation 6.5) as measures for the
spectral similarity between experimental
and predicted spectra. Each dot repre-
sents one PSMs from the Holdout dataset
(see Section 6.4) with the experimental
spectra from ProteomeTools and predic-
tion from Prosit. Note that SA is much
more sensitive for high correlating spec-
tra than R.

Various similarity measures have been proposed to compare fragment
spectra4,5: simple ones such as cosine and common statistical ones
such as R (equation 6.4). Using a measure that is sensitive for high-
correlating spectra is particularly important when training machine
learning models via backpropagation (see Section 4.2) because the
error instructs the model how and where it needs to adapt to achieve
better predictions. A highly sensitive measure, therefore, simplifies
the search for optima and shortens model convergence time.

In an in-depth analysis, Toprak et al. 4 show that R is insensitive
for highly similar spectra and instead recommend the SA (equation
6.5) for as one potential alternative. Figure 6.2 visualizes this on the
basis of PSMs of the ProteomeTools project. The SA range [0.70, 0.90]
only spans the R range [0.88, 0.99]. Note that all PSMs in SAs [0.9, 1.0]
are skewed in R [0.99, 1.00]. This empirically validates the results of
Toprak et al. 4 and suggests that SA is a suitable objective function
to train Prosit. To highlight commonalities and differences of R, SA,
and SAL (equations 6.4, 6.5, 6.6) the equations below first define the
sum-of-squares and mean deviation (equations 6.1, 6.2).

SA is defined in the range of −1 (completely diametrical) and 1
(identical) whereas negative SA values only occur if negative intensity
values are allowed. As experimental intensities are non-negative, SA
is confined to [0, 1] when comparing experimental spectra in practice.
A machine learning model though, can predict negative intensities.
Reformulating the SA into the loss function SAL (equation 6.6) in
the range of 0 (identical spectra) and 2 (least similar) incentivizes the
model to predict non-negative intensity values and thus circumvents
the problem.

For training, SAL was calculated on all theoretical possible frag-
ment ions, while ignoring the m/z dimension. For example, two
sequences Sa and Sb with length na and nb and precursor charges
za and zb are represented by vectors Va and Vb. Va and Vb are the
same length and contain all y- and b-ion intensities in Sa and Sb up
to ion max(na,nb) − 1 for charges up to min(max(za, zb), 3) in the
same dimension, respectively. For example, when Sa = PPTD, za = 3

and Sb = PEPTIDE, zb = 2 then na = 4, nb = 7 and Va,Vb have
length 18||. Intensity values are base peak normalized and intensities || (7 length − 1)× 3precursor charge

not observed or predicted to be negative are defined to be zero. An im-
plementation can be found at www.github.com/kusterlab/prosit/.
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sum-of-squares V∗ =
n∑
i=0

V2i (6.1)

mean deviation Ṽ = V −
1

n

n∑
i=0

Vi (6.2)

L2 normed vector V̂ =
V√
V∗

(6.3)

Pearson correlation R(Va,Vb) =
Ṽa · Ṽb√
V∗a · V∗b

(6.4)

Spectral angle SA(Va,Vb) = 1−
2 cos−1(V̂a · V̂b)

π
(6.5)

Spectral angle loss SAL(Va,Vb) = 1− SA(Va,Vb) (6.6)

(6.7)

Table 6.1: Optimizing batch size and
learning rate. The same model was
trained at different learning rates and
batch sizes. Best SALs and the time of
convergences are indicated. For batch
size 32 and 64 the model experienced
exploding gradients (see text) within the
first epoch and could not converge there-
after. For those batch sizes (gray), the
SALs indicated are the values after the
first and final epoch. Note that usually, a
smaller learning rate increases the num-
ber of epochs needed for convergence
and therefore increases the total training
time. The model achieves the global best
SAL with batch size 512 and a learning
rate of 0.001 (green).

Spectral angle loss Convergence time [min]
Learning rate: 1e−3 1e−4 1e−5 1e−3 1e−4 1e−5
Batch size: 32 0.513 0.191 0.494 94 94 94

64 0.151 0.152 0.156 48 48 48

128 0.136 0.108 0.132 76 945 1,758

256 0.115 0.113 0.143 198 570 1,387

512 0.103 0.123 0.129 435 465 2,070

1024 0.108 0.104 0.143 325 416 1,820

6.3 Hyperparameter optimization

Although the architecture has the most profound impact on model
performance, hyperparameters such as batch size and learning rate
affect performance because they influence model convergence. The
batch size is the number of samples considered for one update to the
model weights. The learning rate controls how strongly the error from
a single batch influences the update to the model weights. In practice,
smaller learning rates often lead to a better model performance at the
cost of longer model convergence times. The Adam optimizer285 is
used to train Prosit, and its authors suggest a default learning rate of
0.001. Theoretical and empirical research suggests small batch sizes of
32 are most advantageous286, while some examples show that larger
batch sizes can increase performance287. Table 6.1 shows the results
of a grid search to optimize batch size and learning rate for Prosit.
While lowering the learning rate does not conclusively increase model
performance, increasing the batch size did have a positive effect.
In fact, using batch sizes of 32 or 64 led to unstable training with
exploding gradients**. The exploding gradients causes float overflows** the problem of exploding and van-

ishing gradients was described inde-
pendently by Hochreiter 250 and Bengio
et al. 251 .

that prevent the neural network from reaching convergence. Best
model performance is achieved with a batch size of 512 at a 0.001

learning rate. Training the model with this hyperparameters took 7.5
hours.
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6.4 Controlling overfitting
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Figure 6.3: Training, Test and Hold-
out split. Training data for Prosit is
split into Training (orange), Test (light
blue), and Holdout (dark blue). Se-
quence length (main panel) and precur-
sor charge (top right inset) distributions
are similar in each split to the overall
distributions in ProteomeTools.

The goal of each machine learning model is that it should generalize
well to previously unseen data. To evaluate generalization, the train-
ing data is typically split into one part to train the model on and up
to two parts to evaluate generalization. The data was split into three
parts: Training (72%), Test (18%), and Holdout (10%)††. Training is

†† This split might seem unusual but is
due to a stepwise splitting. First, the
data is split into 10% (Holdout) and 90%
(remaining), while enforcing that pep-
tides are unique to each split. Also, both
splits are shuffled. Then the remaining
90% is split into 80% Training and 20%
Test with the same procedure. This re-
sults in a 72:18:10 split

used to train Prosit, Test is used to monitor overfitting during training,
and Holdout is used to evaluate model performance after the model
converged. Figure 6.3 shows sequence length and precursor charge
distributions for those datasets. The set of peptides in each split is
unique, so that no peptide in Training is also present in Holdout, for
example.

One approach to monitor and control overfitting during training
is the regularization technique early stopping288. After each training
episode, it is evaluated whether the loss on Test has decreased and
therefore the model’s generalization has improved. This is evaluated
on Test, as the Test loss is bound to increase when the model starts
to overfit Training. Prosit monitors at least ten episodes after the last
Test loss decrease (patience=10) before stopping training. The model
weights with the lowest Test loss are selected as final model weights.

Dropout220,289 is a second regularization technique employed in
Prosit. For Dropout at each training batch, a portion of all model
weights (30% in Prosit’s case) are fixed to zero and not updated
after loss calculation. This effectively samples a different sub-model
from the overall general model at every weight update. Through this
scheme, the model cannot rely on single neurons anymore but has
to distribute its learning over several weights. Further, the weight
update is randomized not only by the samples within each batch
but also by the weight selection through Dropout. In practice, this
increases both, model generalization and representation robustness.

The technical variation inherent in MS data acts as another power-
ful regularizer. MS/MS intensity values can fluctuate, and collision
energy values slightly shift over time. This means two spectra for the
same peptide, precursor charge, and collision energy combination
are similar but not identical. Prosit trains on up to three PSM for
each such combinations, specifically those PSMs with the highest
Andromeda score. The model needs to minimize the overall error for
all those spectra and cannot simply memorize a single spectrum per
combination.

To rule out that the generalization observed is a result of a lucky
Training, Test, Holdout split, Prosit is trained on five random splits,
and the loss values are evaluated on each split. Figure 6.4 shows the
results of this analysis. Differences in model performance are neg-
ligible on an absolute scale (main panel). In the range of [0.08, 0.20]
SAL Training loss is only slightly lower than Test or Holdout, indi-
cating very good generalization. Reassuringly, the loss curves are
reproducible over the five splits, with the minimum, maximum, and
mean loss values being close to the training loss.
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Figure 6.4: Evaluating Prosit on differ-
ent training splits. Prosit performance
on five random splits of the Proteome-
Tools data into Training Test and Hold-
out. The main panel shows the best
performing models (colored lines) over
the five splits for each epoch. The in-
set shows the difference between the
best performing and worst performing
model for each epoch (shaded region)
and the median model performance (col-
ored lines).
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7
Evaluating prediction accuracy

The following sections evaluate the prediction accuracy of Prosit on
various datasets for different classes of peptides. On the basis of the
ProteomeTools Holdout dataset, it is established that intensity predic-
tions by Prosit agree strongly with high-quality synthetic reference
spectra. Prosit is able to predict spectra specific to a certain NCE, and
it is able to inter- and extrapolate to NCEs it did not train on. This
ability is demonstrated on ProteomeTools Holdout and the PROCAL
dataset—a standard set of synethetic peptides for iRT calculation and
quality control. To evaluate Prosit’s NCE calibration on an external
dataset, the predictions are compared to the Bekker-Jensen dataset
that was acquired at a different laboratory. The sample was digested
with four different proteases, allowing the assessment of prediction
quality for non-tryptic peptides.
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Figure 7.1: Representative spectrum
prediction. This pseudo mirror
plot compares the Prosit prediction
and three synthetic reference spectra
from ProteomeTools for the peptide
LKEATIQLDELNQK. The precur-
sor was triply charged and measured at
NCE 35. Those parameters were also
used for prediction. Black error bars in-
dicate one standard deviation around
the measured fragment ion intensities
and the color change between bars the
median. Red and light blue portions of
each peak indicate the portion of pre-
dicted intensity that is explained experi-
mentally for y- and b-ions, respectively.
Orange portions show predicted inten-
sities that exceed intensities experimen-
tally observed in the spectrum of the
synthetic peptide. Dark blue portions in-
dicate experimentally observed intensity
portions exceeding the predicted inten-
sities. The Andromeda score (Score), SA
and R are indicated. This example is rep-
resentative for the median performance
of Prosit

7.1 Synthetic human tryptic data

Fragment ion intensity predictions by Prosit correlate exceptionally
strong with experimental reference spectra from the ProteomeTools
Holdout set. Figure 7.1 shows an error plot (pseudo mirror plot) that
is representative for prediction accuracy at a median R=0.99 and
SA=0.92. With only minor exceptions, the predicted intensities and
experimental intensities robustly agree for both: the y and b ion
series. Note, that the predicted intensities are compared to three
experimental spectra and those fragment ions exhibiting low intensity
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Figure 7.2: Prediction performance
for different collision energies. In
ProteomeTools HCD spectra were mea-
sured at NCEs 20, 23, 25, 28, 30, and
35. The violin plots show prediction ac-
curacy distributions by Prosit for each
respective NCEs measured in SA. The
red part indicates the portion of PSMs in
the Training dataset of Prosit. The blue
part indicates PSMs in the Holdout set.
Black horizontal bars indicate the apex
of each distribution. A grey horizontal
line is drawn at SA=0.90 (R=0.99) for
orientation.
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variance tend to correlate best with the predicted intensity. The same
high prediction accuracy was achieved across all investigated NCEs
(Figure 7.2). No substantial overfitting was observed.

Collision energy-dependent spectrum predictions

The NCE used for acquisition strongly influences the appearance
of MS/MS spectra. For example, figure 7.3 demonstrates the ef-
fect of an NCE change at the example of the triply charged peptide
GDLLQVM(ox)HEAFEK. The change of the experimental intensity
distribution is dramatic, but Prosit adapts its predictions accord-
ingly achieving high spectral angles of 0.93 (NCE=20, top) and 0.88

(NCE=35), respectively.

Figure 7.3: Collision energy-
dependent spectrum. This dou-
ble pseudo mirror plot compares
experimental synthetic spectra
for the triply charged peptide
GDLLQVM(ox)HEAFEK with
predictions by Prosit at different NCEs.
The top panel compares three measured
spectra and the Prosit prediction at
NCE 20, and the bottom panel at
NCE 35. Black error bars indicate
one standard deviation around the
measured fragment ion intensities
and the color change between bars
the median. Red and light blue
portions of each peak indicate the
portion of predicted intensity that is
explained experimentally for y- and
b-ions, respectively. Orange portions
show predicted intensities that exceed
intensities experimentally observed in
the spectrum of the synthetic peptide.
Dark blue portions indicate experi-
mentally observed intensity portions
exceeding the predicted intensities. The
Andromeda score (Score), SA, and R are
indicated.
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This specific example generalizes to all PSMs evaluated in the
Holdout dataset. Figure 7.4 compares spectra at different NCEs. Exper-
imental spectra of the same peptide sequence and precursor charge
show high agreement at the same NCE, but increasingly differ the
more the NCE diverges (Figure 7.4a). The same pattern holds when
comparing experimental spectra to predictions at various NCEs (Fig-
ure 7.4b) and predicted spectra to predicted spectra (Figure 7.4c).
This is an indication that Prosit learned how NCE influences peptide
fragmentation.
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Figure 7.4: Collision energy depen-
dency of experimental and predicted
spectra. The heatmaps indicate frag-
ment ion intensity correlations (mea-
sured in SA) at different NCEs of 40 syn-
thetic peptides from the PROCAL reten-
tion time kit 28. Experimental reference
spectra are measurements of synthetic
peptides from ProteomeTools. Predicted
spectra are by Prosit. (a) Compares ex-
perimental vs. experimental spectra. (b)
Compares experimental vs. predicted
spectra. (c) Compares predicted vs pre-
dicted spectra.

To evaluate Prosit’s ability to inter- and extrapolate between NCEs,
predictions were compared to experimental spectra from the PROCAL
standard set of 40 peptides that were acquired at 15 different NCEs
(Figure 7.5). Each peptide was predicted at every NCE between 10 and
50, and the resulting predictions were compared to the experimental
spectra of that peptides at the 15 different NCEs yielding bell-shaped
calibration curves.* The top inset of Figure 7.5 shows the calibration

* Only precursor charge 2 and 3 were
considered. Those were predicted and
compared separately.

curve with optimal prediction accuracy at NCE 30 that matches the
NCE used for acquisition in this case. Although Prosit was only
trained on the six NCEs, it consistently and very closely calibrates the
optimal NCE for prediction to the NCE used for acquisition. Dots on
the diagonal of Figure 7.5 show nearly perfect agreement. Overall,
the absolute median offset between optimal calibrated NCE and the
NCE used for acquisition is only 1 NCE (Figure 7.5 bottom inset).
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Figure 7.5: Evaluating collision energy
interpolation. The top-left inset cor-
relates predictions at NCEs 10-50 (in
steps of one) for 40 peptides from the
PROCAL retention time kit 28 to the ex-
perimental spectra for those spectra ac-
quired at NCE 30. The predictions reach
the optimal agreement at NCE 30 (blue
line). The grey horizontal line is drawn
at SA=0.90 (R=0.99) for orientation. The
large plot shows the same analysis for
15 different NCEs (black dots). The grey
horizontal line marks optimal agree-
ment of estimated optimal NCE and the
NCE used for acquisition. The analy-
sis in the top left inset is highlighted in
this plot with the blue horizontal and
red vertical lines. The bottom-right inset
shows the absolute differences between
the NCEs used for acquisition and the
NCE that was estimated optimal from
the predictions. The box indicates the
interquartile range (IQR), its whiskers
1.5*IQR values, and the black line the
median.

Earlier fragment intensity models, such as MS2PIP279–281 and
pDeep282, are not able to calibrate themselves to data acquired under
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different conditions, which made a re-training on external datasets
necessary. NCE calibration allows Prosit to determine an optimal
NCE for prediction for such external datasets without re-training the
model. Specifically, to calibrate itself to external data, Prosit randomly
samples up to 10,000 high-scoring target PSMs from the dataset and
predicts those at every NCE from 20 to 40, generating a calibration
curve as described above. The NCE with the highest median SA is
considered the optimal NCE for prediction.

1.
0

0.
8

0.
6

0.
4

Sp
ec

tr
al

 a
ng

le
 to

 B
ek

ke
r-

Je
ns

en
 e

t a
l.

NoPeptides in ProteomeTools? Yes

NCE used for
acquisition

NCE after
calibration

Predicting Bekker-Jensen et al. with: Synthetic
peptides

22
5,

40
5 22

5,
40

5

62
,2

92

NCE 30

62
,2

92

62
,2

92

/

Figure 7.6: Comparing uncalibrated
with calibrated predictions on external
data. Experimental spectra from the
Bekker-Jensen 9 dataset are compared to
Prosit predictions for the same PSMs
at different NCEs. The left two box-
plots show SA distributions at NCE
28, the NCE Bekker-Jensen was acquired
with. The middle two boxplots show
SA distributions at NCE 30, the opti-
mal estimated NCE for predicting spec-
tra of that dataset. Blue boxes indi-
cate PSMs were also available of the
ProteomeTools Training. Red indicates
PSMs not part of ProteomeTools. The
right boxplot shows the SA distribution
of Bekker-Jensen PSMs, when compared
to ProteomeTools PSMs for the same
peptide carrying the same charge state
and measured at the same NCE. This is
the experimental upper limit that can be
achieved correlating to ProteomeTools
spectra. The number of PSMs is indi-
cated.

7.2 Prediction accuracy for external datasets

The Bekker-Jensen dataset9† is deep HeLa measurement covering

† Pride ID: PXD004452a

~584,000 peptides that were measured on an Orbitrap Q Exactive.
For evaluation, the RAW spectra were extracted, annotated, trans-
formed, and selected according to the same procedure described in
Chapter 6. The spectra were acquired by Bekker-Jensen et al. 9 with an
NCE of 28. NCE calibration yielded 33 as optimal NCE for prediction.
Figure 7.6 shows a comparison of spectrum prediction qualities of
those two NCEs. Compared to the original NCE of 28, the median
spectral angle increased from 0.78 to 0.89, when using the calibrated
NCE (Figure 7.6 left four boxes). This holds true for either peptides
that are or are not part of ProteomeTools.
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Figure 7.7: Comparing calibrated pre-
dictions with reference spectra. Fig-
ure 7.6 showed that calibrated predic-
tions correlate slightly better to Bekker-
Jensen spectra than reference spectra
from ProteomeTools. This histogram
shows the absolute difference of SA
of predicted and reference spectra for
those PSMs. Positive values indicate
that the calibrated predictions correlate
more strongly to Bekker-Jensen spectra
(67%). Negative values indicate better
correlations of ProteomeTools reference
spectra.

The analysis is repeated with reference spectra from the synthetic
peptides in ProteomeTools. Similar to Prosit’s NCE calibration, NCE
30 was estimated to be the best matching NCE from all NCEs used for
acquisition in ProteomeTools. Interestingly, the correlation between
experimental Bekker-Jensen spectra and calibrated Prosit predictions
is slightly higher (median SA 0.913) than for reference spectra from
ProteomeTools at optimal NCE (median SA 0.907, Figure 7.6 right
box). More specifically, for 67% of the peptides shared by the Bekker-
Jensen dataset and ProteomeTools, calibrated predicted spectra had a
stronger correlation to the experimental spectra than ProteomeTools
reference spectra (Figure 7.7). One possible explanation for this is that
ProteomeTools only offers spectra acquired at six different NCEs. In
this case, none of those six appear to match the Bekker-Jensen spectra
as good as Prosit calibrated to NCEs 33. Those results, indicate that
interpolation between collision energies works very well.

As seen already in Figure 7.6, spectrum prediction accuracy is
slightly better for peptides that are part of ProteomeTools. One
factor for this is the difference in precursor charge distributions of
the Bekker-Jensen and ProteomeTools data (Figure 7.11a). Prosit is
particularly strong for precursor charge 2 that relatively accounts for
far more spectra than in Bekker-Jensen. Prosit’s weaker predictions
for precursor charges 3 and 4 are likely caused by the low share
of those charges within the training data (Figure 7.8b). In general
though, prediction accuracy is consistent for peptides being either
present or absent in the ProteomeTools dataset (Figure 7.8b). This
indicates a slight overfit to the peptide distributions of ProteomeTools,
namely charge 2 peptides of median length 14 but does not indicate
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overfitting to peptides specific to ProteomeTools.
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Figure 7.8: Precursor charge influence
on prediction accuracy. The precursor
charge state is dependent on the peptide
resulting in different charge state distri-
butions for different datasets. (a) Com-
parison of precursor charge state distri-
butions for different datasets. The left in-
dicates the distribution in the Proteome-
Tools Holdout dataset and the right the
distribution for Bekker-Jensen. The num-
ber of PSMs is indicated. (b) Violin plots
showing SA distributions (experimen-
tal spectrum versus predicted spectrum)
split by precursor charge. The distri-
bution for peptides that were part of
the ProteomeTools Holdout dataset is col-
ored red and blue otherwise. Solid black
vertical lines indicate the apex of the SA
distribution. The number of PSMs is
indicated.

7.3 Non-tryptic proteases

Although Prosit was trained solely on tryptic peptides, there is no tech-
nical limit preventing it from predicting fragment intensity for non-
tryptic peptides. In addition to tryptic peptides, the Bekker-Jensen
dataset includes peptides that were digested by LysC, Chymotrypsin,
and GluC. The NCE calibration behaved for non-tryptic peptides
consistent with tryptic peptides (Figure 7.9a). All four calibration
scores estimate a very similar optimal NCE values for prediction. As
the data for all proteases were measured on the same machine, this
indicates that the NCE calibration indeed calibrates Prosit towards
specific machine conditions and is independent of the protease used.
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a) b) Figure 7.9: Spectrum prediction for dif-
ferent proteases. (a) NCE calibration
for Trypsin (orange), LysC (light blue),
Chymotrypsin (dark blue) and GluC
(red). Spectra from Bekker-Jensen are
correlated with respective predictions
from Prosit at NCEs 10-50 (in steps of
one). The NCE used for acquisition (ver-
tical solid line) and the optimal NCE
for predicting most proteases (vertical
dashed line) are indicated. A grey dot-
ted horizontal line is drawn at SA=0.90

(R=0.99) for orientation. (b) Violin plots
showing SA distributions (experimental
Bekker-Jensen spectrum versus predicted
spectrum) split by proteases. The dis-
tribution for peptides that were part of
the ProteomeTools Holdout dataset is col-
ored red and blue otherwise. Solid black
vertical lines indicate the apex of the SA
distribution. The number of PSMs is
indicated.

Figure 7.9b shows that prediction was high for all tested proteases
and is paticularly good for LysC (median spectral angle 0.88). This is
likely due to the overlapping substrate specificity of trypsin and LysC.
By including non-tryptic peptides during training, Prosit would prob-
ably be able to improve even further but in general, the results indicate
that Prosit learned general peptide fragmentaion characteristics.
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MS2PIP. Benchmark of fragment ion in-
tensity prediction by Prosit (blue) and
MS2PIP (red) for a random subset of
the ProteomeTools holdout dataset. The
data is split by sequence length (left) pre-
cursor charge (middle) and normalized
collision energy (right).

Comparison to MS2PIP

Prosit is not the first fragment intensity prediction model (section 4.3
reviews the field). Currently the two prevalent prediction models
for fragment intensities are MS2PIP and pDeep. Both models report
substantially lower R for HCD spectra in their respective publications:
pDeep reports an overall R of 0.90 and MS2PIP a R of 0.86 for +2

precursors. Prosit achieves a median R of 0.99 on the internal Holdout
dataset from ProteomeTools.

A local evaluation of pDeep was not possible as it does not offer
an online service for production and the available code‡ could not be
executed at local servers despite best efforts. Therefore, the following
comparison is limited to MS2PIP.

For evaluation, the ProteomeTools Holdout dataset was predicted
with Prosit and MS2PIP. In terms of sequence length, precursor charge,
and collision energy, Prosit shows a better generalization than MS2PIP
as evident from Figure 7.10. For example, spectrum correlations for
Prosit only lightly decrease from median SA=0.95 (R=1.00) for 7-mers
to SA=0.90 (R=0.98) for 17-mers. In contrast, MS2PIP’s correlations
fall from SA=0.68 (R=0.85) to SA=0.5 (R=0.65) for the same peptides.
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Figure 7.11: Overfitting evaluation
MS2PIP versus Prosit. A subset of
10,000 PSMs from the Bekker-Jensen Tryp-
tic dataset was predicted. SA distribu-
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are shown for peptides that were (left) or
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Still, Prosit exhibits some bias in those dimensions, but those are
likely due to the training data distributions. As previously shown for
precursor charge (Figure 7.8) very long sequences are very rare in the
training set, as well as spectra from with a precursor charge of +6.
Those differences in distributions are indicated by the box width’s in
7.10 and correlate according to the displayed bias. NCE is a notable
exception: Prosit takes NCE into account utilizes this information ef-
fectively averting any bias across all five NCEs evaluated. MS2PIP, on
the other hand, seems to be trained on NCE 35, for which it performs
reasonably with an SA of 0.7 (R=0.87), but performs unreliably for
low NCEs, for example, NCE 20 (SA=0.4, R=0.52).

The biases discussed limit MS2PIPs applicability when experimen-
tal data was acquired at a very different NCE. Therefore, we next
evaluate prediction performance on a random subset of 10,000 PSMs
from the Bekker-Jensen Tryptic dataset. Some, but not all, of those pep-

‡ http://pfind.ict.ac.cn/download/pDeep.zipdownloaded2017-11-20
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tide sequences were part of ProteomeTools. Figure 7.11 shows the SA
distributions for MS2PIP and Prosit on this dataset. SA distributions
for both, MS2PIP and Prosit, are very similar and exhibit a small bias
towards ProteomeTools sequences (left side). In general though, the
overall picture holds: Prosit performs much stronger than MS2PIP for
external data, too.

The substantial improvements in spectral quality can, for example,
be utilized to enhance database search. Chapter 9 will discuss this
application and again includes a comparison to MS2PIP that high-
lights Prosit’s benefits. In addition, Prosit proves to be especially
beneficial for applications that are currently at the frontiers of pro-
teomics: the analysis of non-model organisms, non-tryptic peptides,
or samples that contain proteins from various organisms. All of those
applications will be discussed in the next part.
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Part III

Applications of predicted
spectra
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8
Generating in-silico spectral libraries

DIA82 is a complementary and label-free alternative to DDA-based
protein quantification. Typical workflows rely on high-quality DDA
spectral libraries, which are previously acquired and add a substantial
overhead. Although there are tools to search DIA experiments without
spectral libraries such as DIA-Umpire290 and Pecan291, those tools—
in general—detect fewer peptides and are mostly used when acquiring
a spectral library is infeasible.

High-quality models fragment ion intensity, and iRT for any pep-
tide of interest facilitate the in-silico generation of spectral libraries.
The following explores how to utilize Prosit predictions to do so.
Predicting iRT values with Prosit is not the focus of this work but is
discussed in detail and shown feasible in Gessulat and Schmidt et al.
(2019)136. The following analysis presumes iRT prediction with Prosit
as feasible.
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Figure 8.1: Filtering spectral libraries.
Publicly available experimental spec-
tral libraries from different species
were filtered to facilitate comparisons
with Prosit-generated spectral libraries.
PSMs containing modifications other
than M(ox) and peptides shorter than
seven and longer than 30 amino acids
were removed. In a re-analysis, the orig-
inal and filtered Orbitrap (left) and TOF
(right) spectral libraries were queried
against the DIA data using Spectro-
naut. The bars (called diffbars) depict
the number of shared (orange) gained
(blue) and lost (red) identified peptide
sequences when using the filtered in-
stead of the unfiltered experimental
spectral libraries.

8.1 Comparing predicted to experimental spectral libraries

Experimental spectral libraries were obtained for four different species:
human (HEK-293), S. cerevisiae, E. Coli, and C. Elegans from Pride.84*

* Pride repository PXD005573

To evaluate whether Prosit’s HCD spectrum predictions can also be
utilized to search experimental data from QTOF instruments, two
additional spectral libraries from D. melanogaster292 and S. cerevisiae135

were acquired.
To construct a comparable baseline, those spectral libraries were

filtered to only contain peptides that Prosit can predict—restricting
sequence length and PTMs (see section 5.2). Filtering reduces the
number of peptides that can potentially be found, and this also trans-
lates to less identified peptides when search results from the original
to the filtered counterpart are compared. Interestingly, those effects
are minimal. As shown in Figure 8.1, the total number of identi-
fies peptides, stays mostly constant, like other peptides, previously
unidentified peptides are found when the data is searched with fil-
tered spectral libraries. All comparisons in the rest of this section use
the filtered spectral libraries as experimental baselines.

In a first comparison, we calibrated Prosit to each spectral library
respectively and predicted spectra for each peptide in that library.
Figure 8.2 shows the resulting SA distribution. Those distributions
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all apex near a SA of 0.9, indicating that Prosit is largely species
independent—at least for those species investigated. Small differences
in SA distributions could also result from different precursor charge
and length distributions, as seen earlier.
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Figure 8.2: In silico spectral library
spectrum similarity - Orbitrap. Vi-
olin plots depicting SA distributions
when correlating experimental spectral
libraries to calibrated predictions by
Prosit. Four spectral libraries are evalu-
ated: HEK-293, Saccharomyces cerevisiae,
Escherichia coli, and Caenorhabditis elegans
(all from Bruderer et al. 84 ). All spec-
tral libraries were acquired on Orbitrap
instruments. Solid black vertical lines
indicate the apex of the SA distribution.
The number of PSMs is indicated.

Then, we compared Spectronaut search results of those experimen-
tal spectral libraries with their in-silico counterparts. Specifically, the
overlap and differences of confidently identified peptide sequences
are compared for experimental and in-silico libraries. The analysis
separately investigates the influences of predicted iRT and spectra
by step-by-step exchanging experimental values by predicted ones.
For example, for the HEK-293 library, Figure 8.3, the left group of
bars shows the performance for the experimental library first—this
serves as a baseline for the other three bars. Next, only iRT values
are replaced by predictions, followed by only spectra predictions and
then both predicted values. Exchanging experimental iRT values
by, led to a gain of 7,103 peptides while losing only 4,749, resulting
in a small overall improvement. Replacing fragment ion intensity
values had a similar effect. Using only predicted values, 96.6% of the
identifications of the original filtered library are retained—a total loss
of 2578 confidently identified peptides.

The same analysis was repeated for the S. cerevisiae, E. Coli, and C.
Elegans Orbitrap DIA samples with similar findings (the next three
groups of bars under the Orbitrap heading). Analogous to peptides,
one can also investigate protein coverage of the search results, using
the same strategy. Figure 8.4 shows the analysis with very similar
overall results for all species investigated.
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Figure 8.3: In silico spectral library peptide identifications. Re-analysis of three DIA/SWATH datasets containing six spectral
libraries: HEK-293, C. elegans, S. cerevisiae, and E. coli (all from Bruderer et al. 84 ) were acquired on Orbitrap instruments (left) and
S. cerevisiae 135, and D. melanogaster 292 on TripleTOF instruments (right). Diffbars indicate gained (blue), shared (orange), and lost
(red) identified peptide sequences compared to a baseline. The baseline for each diffbar is the filtered experimental spectral library.
For each organism, the baseline and the original number of peptides identified are shown on the left of the group. In the following
diffbars, experimental values (‘-’) of spectra and retention time are gradually replaced by predictions (‘+’).
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Figure 8.4: In silico spectral library protein identifications. Re-analysis of three DIA/SWATH datasets containing six spectral
libraries: HEK-293, C. elegans, S. cerevisiae, and E. coli (all from Bruderer et al. 84 ) were acquired on Orbitrap instruments (left) and
S. cerevisiae 135, and D. melanogaster 292 on TripleTOF instruments (right). Diffbars indicate gained (blue), shared (orange), and lost
(red) identified protein sequences compared to a baseline. The baseline for each diffbar is the filtered experimental spectral library.
For each organism, the baseline and the original number of peptides identified are shown on the left of the group. In the following
diffbars experimental values (‘-’) of spectra and retention time are gradually replaced by predictions (‘+’).

8.2 Comparing predicted and experimental QTOF spectra

In all the above analysis, Prosit predictions were compared to HCD
measurements from Orbitrap instruments. In this section, the trans-
ferability of Prosit is analyzed by re-analyzing measurements from
QTOF instruments. The three datasets are all DIA-SWATH and are
the pan human library (AB SCIEX TripleTOF 5600+)138†, S. cere-

† Pride repository PXD000954

visiae (ABScixex QTOF 6600)135‡ and D. melanogaster(ABScixex QTOF

‡ Pride repository PXD006495

5600)292§. Collision energies were calibrated for the S. cerevisiae and

§ Pride repository PXD001126

D. melanogaster dataset but not for the pan human library.
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Figure 8.5: In silico spectral library
spectrum similarity - QTOF. Violin
plots depicting SA distributions when
correlating experimental spectral li-
braries to calibrated predictions by
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visiae 135, and Drosophila melanogaster 292.
All spectral libraries were acquired on
QTOF instruments. Solid black vertical
lines indicate the apex of the SA distribu-
tion. The number of PSMs is indicated.

As can be seen in Figure 8.5, the spectral similarity varies greatly.
It is unexpectedly high for the pan human library with an apex of
0.84 and nearly as good as for Orbitrap data (Figure 8.2 for compar-
ison) although predictions were not NCE calibrated. In the case of
D. melanogaster spectral similarities are far lower than would be ex-
pected useful (achieving an apex SA of only 0.59). Interestingly, those
discrepancies impact spectral library search very differently. The S.
cerevisiae QTOF library (apex SA of 0.70), for example, continues the
trend of the Orbitrap data (see Figure 8.3, second group of bars from
the right) with slightly higher losses. Prosit predictions for the D.
melanogaster QTOF library, in contrast, perform far better than the
experimental library (right group of bars) and spectral similarities
were mediocre at best. Those results hint at suboptimal experimental
data quality rather than low prediction quality.

One aspect that complicates comparison of predicted HCD and
experimental QTOF spectra is that the QTOF spectra are usually ac-
quired using "rolling" collision energies. Specifically, multiple scans of
the same peptide are measured while the collision energy is ramped,
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and then those scans are aggregated. The aggregation results in higher
signal-to-noise spectra. For low abundant species though, very low
signal to noise spectra exist, if there are not enough scans available
for aggregation. In these spectra, the relative fragment ion intensities
have a low dynamic range.

Figure 8.6: Comparing QTOF a spec-
trum with a prediction. A representa-
tive mirror spectrum comparing a pre-
dicted spectrum by Prosit at NCE 30

(top) with an experimental QTOF spec-
trum from the D. Melanogaster spectral
library 292. Y- and b-ions are colored
red and light blue, respectively. Other
fragment ions are colored orange. Grey
dotted horizontal lines serve as orienta-
tion for the four distinct intensity values
in the QTOF spectrum. 1.0
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The described effect was especially apparent in the D. melanogaster
dataset. For example, Figure 8.6 shows a representative mirror spec-
trum for that dataset. Although the experimental and predicted
fragment ions show very high agreement; the intensity dimension
does not. The measurement of single ions is clearly visible in the
QTOF experimental intensities, spanning only four distinct values
(lower spectrum, dashed lines). Spectral comparison, therefore, be-
comes unreliable as proper intensity ranking of fragment ions is
uncertain. A second factor is that the experimental spectral library
seems to have added intensities of multiply charged fragment ions
to the respective singly charged fragment. This processing changes
the spectrum appearance and hinders spectrum matching. Combined,
this explains the gain of 24% peptide and 16% protein identifications
for D. Melanogaster compared to the unfiltered libraries (Figures 8.3
and 8.4 left group of bars).

Predictions for the S. cerevisiae dataset did suffer less because base
peak intensities were generally higher. To this point, SA values for all
spectra can be binned by their base peak intensity as in Figure 8.7 for
the S. cerevisiae dataset. Clearly, spectra in higher base peak intensity
bins are more similar to Prosit predictions. This finding is validated
by earlier results of Zolg et al. showing very high spectral similarity
when comparing HCD Orbitrap spectra to highly abundant QTOF
MS2 scans140.
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Figure 8.7: QTOF spectrum similarity
by base peak intensity. The QTOF spec-
tra from S. cerevisiae 135 are binned by
their precursor intensities. The boxplots
show SA distributions for each bin com-
paring predicted spectra by Prosit and
DDA QTOF data from the experimental
library. The number of overall PSMs is
indicated.

Combined those results suggest that replacing low signal-to-noise
spectra with consistently predicted spectra can alleviate quality issues
of experimental libraries. Prosit provides a mean to do so. In general,
filters of the spectral library search software are a limiting factor for
predicted spectral libraries by Prosit. Spectronaut per default expects
spectra with at least six fragment ions that are larger than three amino
acids, larger than 300 m/z and have at least 5% base peak intensity.
This discards a significant portion of the predicted spectral library
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before they are searched (Figure 8.8). Dropping this requirement may
yield higher gains for predicted libraries.
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Figure 8.8: Impact of fragment ion fil-
ter on spectral library size. Per de-
fault, Spectronaut filters PSMs with five
or fewer fragment ions. The two his-
tograms show the differences between
the spectral library used by Spectronaut
(top) and the one generated by Prosit
(bottom). In both cases only fragments
containing at least four amino acids with
an m/z > 300 are considered. The num-
ber of PSMs is indicated
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9
Enhancing database searching

The removal of false (random matches) is a critical step in peptide
identification. In database searching, this is typically achieved by con-
trolling the FDR using the TDS117. In this approach, PSMs are ranked
by scores that indicate how well the experimental spectrum matches
the expectation of a theoretical spectrum for the given peptide candi-
date under consideration. Standard search engines like MaxQuant or
Sequest construct simple theoretical spectra with little consideration
to the peak intensity. This chapter evaluates the hypothesis that re-
placing simple theoretical spectra with spectrum predictions by Prosit
increases the target-decoy separation power, thus lowers the number
of false matches. The Bekker-Jensen9* dataset is used as an external * Pride ID: PXD004452a

dataset to evaluate this hypothesis. It has been introduced in section
7.2 in detail.
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Figure 9.1: Comparison of spectral an-
gle and Andromeda score. All tryp-
tic PSMs from Bekker-Jensen are corre-
lated with Prosit predictions that were
calibrated to that dataset. The scat-
terplot shows target (blue) and decoy
(red) PSMs scored by Andromeda and
SA. The boxed regions indicate strong
disagreement. PSMs in those regions
either have low-scoring Andromeda
score but high-scoring SA or vice versa.
The two PSMs LSGVEDHVK and
AQGLVTFR are examples for those
regions, and mirror plots for both can be
found in Figure 9.2. The histograms at
the top and to the right show target and
decoy distributions for Andromeda and
SA, respectively. They visualize the tar-
get and decoy separation of each score.
All PSMs are shown, and no FDR filters
were applied.
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Figure 9.2: False positive and false
negative spectrum matches. The
charts compare the spectra of the
two sequences AQGLVTFR (a) and
LSGVEDHVK (b), highlighted in Fig-
ure 9.1. The top panels compare
the experimental spectrum from Bekker-
Jensen to the respective spectrum from
ProteomeTools acquired from the syn-
thetic peptide of that sequence. Both,
the ProteomeTools spectrum and the
Bekker-Jensen spectrum were acquired
at NCE 28 in (a) and (b). The bot-
tom panels compare the spectrum from
ProteomeTools with a predicted spec-
trum by Prosit, both at the optimal NCE
estimated by calibrating Prosit to the
Bekker-Jensen dataset. Red and light blue
portions of each peak indicate the por-
tion of predicted intensity that is ex-
plained experimentally for y- and b-
ions, respectively. Orange, green and
dark blue portions indicate the differ-
ence in fragment intensities. Black er-
ror bars indicate one standard devi-
ation around the measured fragment
ion intensities and the color change be-
tween bars the median. The Andromeda
score (Score), SA, and R are indicated.
(a) suggests a false positive identifica-
tion of AQGLVTFR by Andromeda.
Although the PSM has a high Andro-
meda score of 112, the Bekker-Jensen spec-
trum neither matches the synthetic refer-
ence spectrum from ProteomeTools, nor
the predicted spectrum by Prosit. (a)
suggests false negative identification of
LSGVEDHVK by Andromeda. The
PSM has a low Andromeda score of 35,
but the Bekker-Jensen spectrum matches
the synthetic reference spectrum from
ProteomeTools well, as does the pre-
dicted spectrum by Prosit.
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9.1 Separating true from random peptide-spectrum matches

Figure 9.1 suggests that intensity information is helpful for target-
decoy separation. It compares Andromeda score and SA distributions
for the Bekker-Jensen tryptic dataset without applying any FDR filters.
The Andromeda scores are obtained from a MaxQuant search of the
experimental data, and the SAs are the results of a comparison of the
experimental spectra and a corresponding Prosit prediction for that
PSM.

Clearly, the target-decoy separation by SA is much stronger than
by Andromeda score (compare top and right histograms). The decoy
distribution is in exceptional accordance with low scoring target PSMs
for the SA. This is an indication that the generation of decoy spectrum
is not biased—a vital requirement to correctly estimate false positive
matches.

Albeit there is a rough correlation between the Andromeda score
and SA distributions, for a substantial amount of PSMs, both measures
strongly disagree. Those regions are highlighted by the two black
boxes in Figure 9.1. Exemplarily, two PSMs are highlighted: The ex-
perimental spectrum that matches the peptide candidate AQGLVTFR
achieves a high Andromeda score of 112, but a low SA of 0.18. The
spectrum for peptide LSGVEDHVK, in contrast, has a low Andro-
meda score of 35, but a high SA of 0.81.

The first example, AQGLVTFR (Figure 9.2a), suggests a false posi-
tive identification. Several fragment ions in the experimental spectrum
from Bekker-Jensen match the fragment ions in ProteomeTools spectra
from synthetic peptides, but the fragment intensities do not correlate
(top panel). The bottom panel shows a strong agreement between
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Prosit’s prediction and the experimental spectra from ProteomeTools.
Together this indicates that, despite several matching fragment ions,
it is unlikely that the peptide AQGLVTFR gave rise to the Bekker-
Jensen spectrum as its intensities neither correlate with experimental
reference spectra, nor Prosit predictions.
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Figure 9.3: Examples of Prosit scores.
Histograms show the target (blue) and
decoy (red) distributions of PSMs for
two Prosit scores and how well they sep-
arate target and decoys. (a) is similar
to Andromeda score and based on the
number of all theoretically possible y-
and b-ions. It is the number of matched
non-zero fragment ions divided by the
number of theoretical fragment ions. (b)
uses the Prosit predictions about frag-
ment intensities as a prior, whether frag-
ment ions are to be expected or not. It
is the number of non-zero intensity frag-
ment ions observed in the experimental
spectrum and predicted to be present
divided by the number of predicted non-
zero ions

Conversely, Figure 9.2b suggests that LSGVEDHVK represents a
false negative identification. The Andromeda score of 35 for the
Bekker-Jensen spectrum is low, and it would be unlikely that such
a PSM survives an FDR cut-off. The intensities, though, correlate
very well with both, experimental reference spectra from Proteome-
Tools (SA=0.81) and Prosit predictions for that peptide agree with
ProteomeTools exceptionally well (median SA=0.96). The Bekker-Jensen
spectrum likely stems from the peptide LSGVEDHVK but would not
have been identified by Andromeda.

Both examples highlight weaknesses of Andromeda, and spectrum
similarity measures that do not take into account intensity in general.
Intensity information can provide additional information and may be
used to improve the scoring of database searching.

9.2 Integrating intensity information into database searching

Andromeda score and SA take two contrasting approaches to evaluate
the similarity of two spectra†. Andromeda compares how much

† Andromeda estimates the likelihood of
an experimental spectrum based on the
corresponding theoretical spectrum

more likely a given peptide is to produce the matched fragment ions
compared to random peptides. Its focus is on the matched fragment
ions. SA, on the other hand, focuses solely on the matched fragments
intensity correlation and is independent of the number of matched
ions. Both measures, therefore, offer complementary information
about spectrum similarity.

Percolator is a tool that integrates different information, to re-rank
PSMs and estimates the FDR and q-values for a search‡. This makes ‡ Percolator also offers protein inference

algorithms, although those are not rele-
vant for this analysis

it easy to test different sets of scores and evaluate their impact on the
ranking process. In preliminary experiments (Appendix A), it was
shown that information on whether fragment ions will be observed
boosts peptide identification by Percolator.
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Figure 9.4: Impact of rescoring on FDR
cut-offs. Percolator is run to rescore the
tryptic Bekker-Jensen dataset with five dif-
ferent score sets. The line chart shows
the performance of each set in terms of
the number of identified PSMs at several
FDR cut-off levels.

For this analysis, 51 additional scores were constructed. Two of
them are shown in Figure 9.3. The first (a) is a non-probabilistic
simplification of the Andromeda score is taking the ratio of the num-
ber of experimentally observed fragment ions versus all theoretically
possible fragment ions of a peptide. Note how the target and decoy
distributions of this score roughly resemble the distributions of An-
dromeda in Figure 9.1. To integrate the predictions, the same score
can be used, but only with the fragment ions that were predicted—
using the prediction as an expectation. The distributions for such a
score are shown in Figure 9.3b and strongly separate target and de-
coys. Additional scores capture peptide-, charge- and NCE-dependent
number of observed versus predicted or observed but not predicted
b- and y-ions. An overview of all scores and their description can be
found in Appendix B.
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9.3 Rescoring database searches with different sets of scores

20

40

60

80

10 1 0.1 0.01 0.001

GainSharedLoss

U
ni

qu
e 

pe
pt

id
es

 [%
]

False discovery rate [%]

100

0

Figure 9.5: Impact of rescoring on pep-
tide identifications. The Percolator per-
formance of the Prosit score set com-
pared to the Andromeda score set. The
lines indicate the number of shared
(orange), gained (blue) and lost (red)
unique peptide identifications using the
Prosit score set at different FDR cut-off
levels. The baseline for comparison is
the Percolator run using the Andromeda
score set a 1% peptide level FDR cut-off.

To evaluate the merits of the scores, five input files for Percolator were
constructed for the Bekker-Jensen dataset. The files were constructed
from a 100% FDR MaxQuant search so that Percolator can rescore
them. All of the files include the default values that Percolator recom-
mends, such as the peptides’ sequence length, its experimental m/z
as well as its precursor charge. The Andromeda score set additionally
includes two scores that Andromeda uses in its ranking, namely An-
dromeda score and delta Andromeda score §. The Spectral angle set

§ Delta Andromeda score is the differ-
ence in Andromeda scores of the top
and second ranking peptide candidate
for the given spectrum

includes SA and delta SA instead of their Andromeda based equiva-
lents. Prosit scores contains all newly constructed scores, including SA
and delta SA, but no Andromeda based scores. The two remaining
input files are combinations of the above, specifically the Spectral
Angle + Andromeda score and Prosit + Andromeda score

The results of those five percolator runs are shown in Figure 9.4.
On their own, both the Spectral angle and Andromedas score sets per-
form similarly.at 1% and 0.1% FDR cut-offs. Combining the two,
substantially improves the number of identifications at 0.1% FDR to
essentially keeping the same number of identifications as at a ten-
times lower FDR cut-off. Prosit scores even improve on that, getting
a similar amount of PSM identifications at an FDR cut-off as low as
0.01% compared to Andromeda scores at 1%. Surprisingly, not only
the number but also the set of identified peptides roughly stayed the
same between the score sets (see Figure 9.5). Identifications from
Prosit scores at 0.1% FDR cover essentially all identifications of Andro-
meda at 1% FDR. Only at 0.01% FDR Prosit scores marginally starts to
lose peptide identifications. Also note, that the benefits of combining
Prosit scores and Andromeda score are minimal, suggesting that Prosit
scores essentially capture the information of Andromeda score and
Andromeda delta score.
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Figure 9.6: Comparison of Andromeda
and Prosit peptide identifications. The
performance of the Prosit score set
is evaluated at two FDR cut-off lev-
els (left group 1% and right group
0.1%) on Bekker-Jensen dataset for each
of its proteases: Trypsin, LysC, Chy-
motrypsin, and GluC. Diffbars indicate
gained (blue), shared (orange), and lost
(red) identified peptide sequences com-
pared to a baseline. The baseline for
each diffbar is the Percolator run using
the Andromeda score set with a 1% pep-
tide level FDR cut-off of for the respec-
tive dataset.

The above numbers are particular to the tryptic subset of the Bekker-
Jensen data, but Prosit scores also improve peptide identifications for
other proteases. The gain in identifications at 1% FDR through Prosit
scores ranges from 5% up to 35% (Figure 9.6 left group of bars).
Lowering the FDR cut-off ten-fold to 0.1% FDR does not lead to a
lower number of identifications compared to Andromeda scores at 1%
FDR. In the case of Chymotrypsin, the number of identifications even
increases. More detailed results, including FDR curves as in Figure
9.4 and 9.5, can be found in Appendix C.

9.4 Analyzing the influence of individual scores

Before rescoring a dataset, Percolator trains a support vector machine
(SVM) to classify each PSM as either target or decoy. The SVM
learns how to weight each information in the input file for optimal
classification. After training, the model is then used to rank all PSMs
by how confident the model is in its classification.

The weights indicate how a particular score (or other information,
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Figure 9.7: Percolator weights for
Bekker-Jensen tryptic. Blue bars indi-
cate a positive correlation (positive per-
colator weight) of the measure with a
PSM being a target. Red bars indicate
a negative correlation. Grey bars show
measures that are part of the default
Percolator measures. Every score set
mentioned above includes those default
measures. Exemplary, strongly correlat-
ing Percolator measures are annotated
and highlighted with bold colors.
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Figure 9.8: Comparing MS2PIP and Prosit predictions for external data. Comparison of SA distributions from MS2PIP and Prosit
for target (blue) and decoy (red) peptides. The histograms at the top and to the right show target and decoy distributions for
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These scatterplots are similar to Figure 9.1 but focus on SAs values of the different prediction models. The PSM LVDCLSR in (a) is
highlighted as an example of higher accuracy of MS2PIP compared to Prosit. It is investigated in Figure 9.9.

77



such as sequence length) correlates with a PSM being a target. Figure
9.7 shows the learned weights for the tryptic subset of the Bekker-
Jensen dataset. Intuitively, a high number of observed y-ions that were
also predicted to have non-zero intensity is a strong indicator that
a PSM is a target (second bar from the left side). In contrast, when
the number of observed ions that were predicted to be absent is high,
this indicates a decoy PSM (third bar from the right side). Note, that
this trained model focuses on absolute delta mass [da] as an indicator
for a decoy PSM (second grey bar from the right) and mostly ignores
other measures of precursor mass deviation (middle). This suggests
that including more than one such measure only marginally increases
the information gain.
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Figure 9.9: Evaluation of high accuracy
MS2PIP prediction. The mirror plots
investigate the highlighted PSM from
Figure 9.8a: LVDCLSR. Only y- and
b-ions are shown. (a) shows a strong
correlation of the Prosit prediction for
the PSM with 12 reference spectra from
the synthetic peptide in ProteomeTools
(SA=0.96, R=1.00). (b) shows that the
Bekker-Jensen spectrum for LVDCLSR
does not correlate with the 12 refer-
ence spectra from the synthetic pep-
tide in ProteomeTools (SA=0.96, R=0).
Only three peaks match the sequence in
the Bekker-Jensen spectrum. The Bekker-
Jensen PSM may be a false-positive iden-
tification. (c) shows that the Bekker-
Jensen spectrum for LVDCLSR cor-
relates better with the MS2PIP predic-
tion than with the Prosit prediction
(SA=0.774, R=0.93). Note that only three
peaks are matched. The fact that only
a few peaks are matched in the Bekker-
Jensen and that those are also the most
intense MS2PIP predicted peaks are the
reason for the high correlation.

9.5 Rescoring database searches with MS2PIP predictions

As shown earlier (section 7.3), Prosit achieves substantially higher cor-
relations than MS2PIP for peptides from ProteomeTools and external
datasets. This also generalizes to the context of database searching,
where spectrum predictions correlate strongly with target peptides
and only weakly with decoy peptides. Figure 9.8 showcases this in
comparison with MS2PIP exemplary for Bekker-Jensen Trypsin (a) and
Chymotrypsin (b). In most cases, experimental target peptides correlate
stronger with Prosit predictions (blue dots above the diagonal), and
decoy peptides correlate less with Prosit (red dot below the diagonal).
Also note, that the target and decoy distributions of Prosit are sharper
and separate more clearly than those of MS2PIP.

There are cases of PSM that correlate more strongly with MS2PIP
than with Prosit. Often, those are cases PSM that lack data quality,
such as experimental spectra with very few matching peaks. One
example, LVDCLSR is highlighted in Figure 9.8 and investigated in
Figure 9.9. Prosit’s spectrum prediction for LVDCLSR matches the
synthetic reference spectra from ProteomeTools exceptionally well
with an SA of 0.96 (Figure 9.9a) . However, they do not match with
the spectrum from Bekker-Jensen Trypsin (Figure 9.9b). In contrast, the
spectrum prediction of MS2PIP correlates with the experimental spec-
trum from Bekker-Jensen Trypsin, but the correlation is not very strong
(Figure 9.9c). Note that there are only three peaks in the experimental
spectrum that could be matched and that high SA or R correlations
are independent of the number of peaks in a spectrum¶. The MS2PIP
prediction correlates well with this three but would correlate only
very weakly with the reference spectrum from ProteomeTools (com-
pare 9.9a and c). Together, the low number of matching peaks and the
strong discrepancy to the synthetic reference in this case, suggest a
false positive sequence assignment to the spectrum—which by chance
matches the MS2PIP prediction—rather than a subpar prediction by
Prosit.

Although Prosit is able to separate target and decoy PSMs by SA

¶ Two normalized spectra with only one peak at the same fragment ion m/z, trivially,
have a maximum correlation.
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better than MS2PIP, it is still unclear if this results in better separation
by Percolator. To investigate this, on subsets of the Bekker-Jensen
Trypsin and Chymotrypsin datasets were predicted with both Prosit and
MS2PIP and the same sets of Percolator input files were constructed
based on these predictions. Then, Percolator was run for each set as
described in section 9.3. Figure 9.10 shows FDR curves for MS2PIP
(left), and Prosit (right) Percolator runs including prediction based
scores consistently perform better than the Andromeda baseline (red),
except for one run: SA based on MS2PIP. When all Prosit scores
(light blue curve) are used with Percolator, the number of target
peptide identifications for the Trypsin dataset (a) are very similar at
1% and 0.1% FDR cut-offs for both Prosit and MS2PIP. Interestingly,
when only SA (orange) or SA combined with Andromeda scores
(grey) are used as scores, the runs based on Prosit predictions identify
substantially more target peptides than MS2PIP. This indicates that
Percolator is able to rescue PSMs for MS2PIP based runs through he
added information of the Prosit scores, whereas it cannot do so when
only a few scores are available.
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with MS2PIP and Prosit. Percolator is
run on 10,000 randomly sampled PSMs
from Bekker-Jensen Trypsin (a) and Bekker-
Jensen Chymotrypsin (b) also shown in
figure 9.8 to rescore them with five dif-
ferent score sets: Spectral angle (orange),
Andromeda score (red), Spectral angle + An-
dromeda score (grey), Prosit scores (light
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(dark blue). Line charts show the per-
formance of each set in terms of the
number of identified PSMs at several
FDR cut-off levels. In the line charts
on the left, the score sets are based on
MS2PIP and based on Prosit on the right.
Note that in the left two line charts, the
light and dark blue lines are using Prosit
scores that are based on MS2PIP predic-
tions. Red, light blue, and dark blue
horizontal dotted lines mark the num-
ber of unique peptide identifications at
1% FDR cut-off for the respective score
sets based on MS2PIP. For Trypsin, the
difference between score sets based on
MS2PIP and Prosit is negligible. In the
case of Chymotrypsin, Prosit can iden-
tify substantially more sequences than
MS2PIP.

Target identification appears much harder for the Bekker-Jensen
Chymotrypsin dataset as the steady downhill FDR curves in Figure
9.10b indicate. In this case, accurate spectrum predictions by Prosit
prove more advantageous. At 1% FDR cut-off Prosit is able to identify
2,886 compared to 2,205 target PSMs with MS2PIP, both using Prosit
scores (light blue curves). More dramatically, at 0.1% Prosit identifies
2,221 compared to 1,673 target PSMs with MS2PIP.

The above analysis suggests that Prosit, together with Prosit scores,
is most beneficial for search spaces that are complex and deviate from
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a typical human tryptic for which standard tools such as MaxQuant
have been optimized. The next chapter discusses the application of
database rescoring on the basis of a particularly complex sample—one
containing peptides from multiple organisms.
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10
Rescoring metaproteomics measure-
ments

Ever-larger protein search spaces are being analyzed by bottom-up
mass spectrometry-based proteomics. One example is metaproteomics
samples that are complex as they contain proteins from several or-
ganisms. The necessary sequence databases are vast and hinder the
data analysis with standard computational workflows due to their
insufficient separation power of target and decoy PSMs.113 As the
database sizes grow, target PSMs need higher and higher scores to
survive FDR cut-offs293. In this chapter, Prosit-based database rescor-
ing is utilized to improve target-decoy separation, which enables the
interrogation of such very large databases.
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Figure 10.1: Improving candidate pep-
tide ranking. The two peptides
LLKDIR (left) and LLSGVLR (right)
are the top-ranking candidates for an
experimental spectrum. In both mir-
ror plots, the experimental spectrum is
shown at the top and a predicted spec-
trum by Prosit at the bottom. MaxQuat
assigns very similar Andromeda scores
for both annotations, 85 and 84 re-
spectively. Correlating the experi-
mental spectrum to predicted inten-
sity values strongly differentiates the
two candidates. Although narrowly
ranked second by MaxQuant, the pre-
dicted spectrum LLSGVLR correlates
strongly with the experimental spec-
trum (SA=0.94), and that of LLKDIR
does not (SA=0.33). Only matching y-
and b-ions are shown (red and blue, re-
spectively).

10.1 Re-ranking candidate peptides

In the preceding chapter, the rescoring workflow only considered the
top-ranking peptide sequence per spectrum. In the case of metapro-
teomics, though, the sequence collections investigated are so extensive
that the ability to properly rank those peptides is compromised.113

Figure 10.1 illustrates this problem. Andromeda scores for both
peptide candidates (rank 1 Figure 10.1a and rank 2 Figure 10.1b) are
very close to each other—Andromeda score 85 and 84, respectively.
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Even for human experts„ it would be difficult to establish which of the
peptide candidate annotation would be the better match. Including
intensity predictions by Prosit substantially differentiates the two. The
predicted intensities correlate much stronger with the second-ranked
peptide (SA=0.94) than with the top-ranked peptide (SA=033). This
strongly suggests that the second-ranked peptide is more likely a
correct identification.

IGC + SwissProt All
10,330,558

 

SwissProt All
469,313

SwissProt
Human + Bacteria

276,628

SwissProt Human
20,260

SwissProt All
SwissProt Human + Bacteria

IGC

SwissProt Human

Figure 10.2: Database sizes in metapro-
teomics. Size comparison of the four
databases used for the analysis of a hu-
man gut sample in this chapter. The
light-blue database IGC includes all
Swissprot-annotated proteins and pro-
teins from the human gut microbiome
integrated gene catalog (IGC). The other
databases: SwissProt Human (dark blue),
SwissProt Human + Bacteria (red) and
SwissProt All (grey) are proper subsets of
their larger counterparts. The number of
proteins in the databases are indicated.

Cases like the one above are the reason why—for the following
analysis—up to 15 peptide candidates generated by MaxQuant are
included in the rescoring instead of just the top-scoring peptide
candidate, like previously.

10.2 Database size influences search results

To show the impact of increasingly complex databases in general,
a human gut sample from acute leukemia patients114 was searched
against four databases. The first three contain SwissProt annotated
proteins, and the fourth database additionally includes all proteins
from the human gut microbiome integrated gene catalog (IGC)294.

1. SwissProt Human: restricted to 20,260 SwissProt-annotated human
proteins.

2. SwissProt Human + Bacteria: combines 276,628 SwissProt-annotated
proteins from human and bacteria.

3. SwissProt All: includes 469,313 proteins from all organisms in
SwissProt.

4. IGC: integrates all proteins from SwissProt All with the IGC, cover-
ing 10,330,558 proteins.

A typical human tryptic search would make use of SwissProt Human
database. Figure 10.2 shows the relationships of the four databases:
each smaller database is a proper subset of the bigger databases,
respectively. Also, note the stark contrast in database size—IGC is
larger than SwissProt Human by a factor of >500.

Andromeda score Prosit scores
1% FDR level 1% FDR level

SwissProt All
SwissProt Human + Bacteria

IGC

SwissProt Human

6%

3%

13%

8%

4% 2%

4,418
12,820
12,820
55,186

2,707
6,563
6,536

24,158
Absolute number of peptides

Unique peptides

Figure 10.3: Uniquely identified pep-
tides with different databases. Venn di-
agrams indicate the overlap in uniquely
identified peptides by searches from
four different databases: SwissProt Hu-
man (dark blue), SwissProt Human + Bac-
teria (red), SwissProt All (grey) and IGC
(light blue). The left diagram shows
Percolator results that used Andromeda
scores. The right shows results with
Prosit scores. Percentages indicate the
number of peptides that are uniquely
identified by the respective search. Low
percentage for databases that are sub-
sets of IGC indicate more stringent pep-
tide identifications. The absolute num-
ber of peptide identifications are also
indicated.

The human gut sample was searched with all four databases and
subsequently rescored by Percolator using the Prosit score set and the
Andromeda score set as a baseline. As expected, increased database
sizes affected search results negatively for both scoring schemes.

When target-decoy separation would work perfectly, a search
against SwissProt Human + Bacteria should identify all the same hu-
man peptides that a search against SwissProt Human identifies. Figure
10.3 shows that this is not the case. An Andromeda search against
SwissProt Human identifies 13% of its peptides uniquely, although
those are also present in all other databases. The problem becomes
more severe as the search spaces become larger. The IGC search with
Andromeda scores loses a total of 25% peptide identifications that
could be identified with the other databases. Prosit, in contrast, can
cope with larger search spaces. Its sets of identified peptides overlap
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substantially more. For example, the SwissProt Human search only
identifies 6% of its peptides uniquely, and the IGC search loses a total
of only 11% peptide identifications from the other databases.

The increased number of peptide identification is an additional
indication that the integration of fragment intensity information leads
to more comprehensive and specific results. The IGC search utilizing
Prosit scores increased the total number of identifications by a factor
of 2.3 compared to an equivalent Andromeda search.

Targets
Decoys

Figure 10.4: Comparing percolator
scores for Prosit and Andromeda for
metaproteomics. Percolator is run on
all PSMs candidates in the Metapro-
teomics to rescore them with the Andro-
meda score and Prosit score set. The scat-
terplot shows target (blue) and decoy
(red) PSMs Percolator scores for the two
score sets. Solid black lines indicate 1%
FDR cut-off levels for the Prosit score and
Andromeda score sets. The histograms at
the top and to the right show target and
decoy distributions for Andromeda and
SA, respectively. They visualize the tar-
get and decoy separation of each score.
Note that Prosit lifts many PSMs above
the cut-off that Andromeda misses (top
left quarter). That is not the case for
Andromeda (bottom right quarter). See
Figure 10.5 for a detailed analysis.

10.3 Understanding identification gains

The factor of increased peptide identification is impressive, but is it
real? The following will address this question by analyzing where
exactly those additional identifications come from.

As for the human sample in chapter 9, also for the metaproteomic
sample, a much stronger true and random match separation is ob-
served (10.4). Percolator runs with the Andromeda and Prosit scores
mostly agree on decoy PSMs and correctly rank them below the Per-
colator score that marks their specific 1% FDR cut-off (bottom left
corner). Only very rarely did Andromeda identify peptides that Prosit
does not identify (bottom right corner). In contrast, Prosit confidently
identifies many PSMs spectra that did not pass the scoring threshold
of Andromeda (top left corner).

An analysis that compares the false positive target PSMs distribu-
tion* with the distribution of decoy PSMs sheds light on the different * the distribution of targets above the 1%

FDR thresholdcapabilities of Andromeda and Prosit to separate the two295 (Figure
10.5). Note that the two top distributions in Figure 10.5 (separation
based on Andromeda scores) are precisely the PSMs in the scatter plot
in 10.4 that do not make the 1% FDR cut (left half of the plot). Cor-
respondingly, the two bottom distributions in Figure 10.5 for Prosit
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depict PSMs not making the 1% FDR plot at the bottom half of Figure
10.4’s scatter plot.

Figure 10.5: Analysis of target pep-
tides above the FDR cut-off. This
chart shows PSMs candidates from the
Metaproteomics dataset that are scored
above a certain FDR cut-off. The his-
tograms on the left show target (blue)
and decoy (red) distributions for Andro-
meda and the histograms on the right
SA distributions. At the top PSMs were
scored with the Andromeda score set and
at the bottom with the Prosit score. In a
optimal setup, the distributions of target
and decoy PSM above the FDR cut-off
should differ only marginally. This is
not the case for both Prosit score and
Andromeda score, but much more severe
for Andromeda. Many PSMs with high
SA between prediction and experimen-
tal spectrum do not make the FDR cut-
off because Andromeda does not have
the necessary intensity prediction infor-
mation (top right histogram).
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The proportion of target sequences that do not make the FDR cut
is substantial at 1% when ranked by Andromeda (Figure 10.5 top
left)†. At a more stringent FDR cut-off of 0.1%, this effect is even† The target (blue) distribution is higher

than the decoy distribution (red) more dramatic (Figure 10.5 top right). Prosit in contrast can separate
those same PSMs better through the available intensity information.
At 1% FDR cut-off the distributions of decoys and targets not making
the cut are very closely aligned (Figure 10.5 bottom left). To a lesser
degree, that is also true at 0.1% FDR cut-off (Figure 10.5 bottom right).
Also, consider that the search space in this analysis is vast: Percolator
ranks up to 15 peptides candidate from the largest database (IGC).
Similar FDR cut-off analyses for the smaller searches from the last
chapter can be found in Appendix C.

0.8

0.4

0.0

100

50

0ΔA
nd

ro
m

ed
a 

sc
or

e

ΔS
pe

ct
ra

l a
ng

le

<1% FDR (Prosit) and >=1% (Andromeda)

<1% FDR (Andromeda) and >=1% (Prosit)

0.2

0.6

n = 58,852

n = 536

Figure 10.6: Delta score analysis. Delta
scores are calculated for the top-ranked
and second-ranked PSM candidate for
one spectrum. The boxplots show score
distributions for PSMs for that the An-
dromeda score and Prosit score Percolator
runs disagree. Either Prosit identifies
the PSM and Andromeda does not (blue)
or vice versa (red). A PSM is identified
by one score set if it is scored below 1%
FDR cut-off. The left two boxes show
∆ Andromeda score and the two right
boxes ∆ SA. Box widths scale with the
number of PSMs. Heights indicate IQR.
Whiskers represent 1.5*IQR values. The
median is highlighted. Outliers are not
shown.

Including up to 15 PSM candidates resulted in poor performance of
the Percolator runs using Andromeda scores. Only rarely could those
scores identify peptides that were not identified by Prosit (Figure 10.4
blue dots in the bottom right corner). Delta scores—the score differ-
ence between the top- and second- ranking peptide candidate—offer
another explanation on the reasons why. Specifically those PSMs are
interesting, that make the FDR cut in the Prosit Percolator run and do
not make it with Andromeda, and vice versa. Figure 10.6 shows the
delta score distributions for those PSMs for that Prosit and Andro-
meda disagree. The Andromeda delta score is not a distinguishing
factor. The median Andromeda score is around 30, independently
whether Prosit or Andromeda considers it a correct identification.
The picture is different for the median delta SA. PSMs that Prosit
accepts as identifications, but Andromeda rejects have a substantially
higher delta SA of 0.35. This means that in those cases MS/MS predic-
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tions for top- and second-ranking peptide candidates correlate very
differently to the experimental spectrum and Prosit exploits this infor-
mation by ranking the better-correlating PSM higher. Andromeda, on
the other hand, does not have the spectrum prediction information.
Delta spectral angle for PSMs that Andromeda accepts and Prosit
rejects is close to 0.

The above analysis generalizes the exemplary point made in Figure
10.1. In some cases, the number of matched fragment ions is not
sufficient to rank PSMs. Integrating the information from predicted
MS/MS spectra improves the ranking process. It improves target-
decoy separation, resulting in peptide identifications that are genuine
and would have been lost previously.
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Figure 10.7: Comparison of Andro-
meda and Prosit peptide identifica-
tions for metaproteomics. Percolator
is run to rescore all PSMs candidates
from four protein databases in increas-
ing size: Human, Human + Bacteria, All,
and IGC (see text). Diffbars indicate
gained (blue), shared (orange), and lost
(red) identified peptide sequences com-
pared to a baseline. For each group of
bars, the baseline is search with the Hu-
man database (always the left-most bar).
Numbers of confidently identified pep-
tides (y-axis in log10) are shown for the
Percolator sets Andromeda score, Prosit
score at 1% and 0.1% peptide FDR cut-
off (group one to four). The right-most
group of diffbars shows the results from
a MaxQuant search 1% FDR level that
was not rescored with Percolator. Note
the log-scale on the y-axis.

10.4 Evaluating search results

The effect of spectrum predictions in database search is most apparent
in a comparison of search results at different FDR cut-offs. Figure
10.7 shows such a comparison for Percolator runs with Andromeda
scores and Prosit scores for all four considered databases in contrast
with search results of an actual MaxQuant search.

Prosit scores consistently identify 2.3 times more peptides than
Andromeda at 1% FDR (Figure 10.7 left two groups of bars). Both
methods utilize the increased availability of peptide candidates from
larger databases, indicated by the growing number of peptides gained
compared to the runs with the Human database. The difference
is in the unique peptides lost due to an increase in database size.
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Andromeda loses 30% of the identifications when the Human database
is exchanged by IGC As the analysis above showed, Andromeda does
not replace those losses with more confident PSMs from bacterial
proteins. They are lost because their q-values become increasingly
poor as a result of overlapping target and decoy distributions.

Prosit, in contrast, loses only 15% identifications when switching
to IGC. This is even more pronounced at a more stringent FDR cut-off
of 0.1%. At such a low cut-off, the number of identified peptides is
meager. Prosit almost triples that number and can retain a substan-
tially bigger portion of peptides identified with smaller databases
(compare the third and fourth group of bars).

The standard approach to search metaproteomics today is a two-
step search that combines multiple search engines and smaller
databases296. In this approach, the measurements are first searched
with a large database without FDR control. The database is then
refined by discarding all peptides that were not identified in the sam-
ple. Subsequently, in the second step, the measurement is searched
again with the refined database this time controlling the FDR. Those
steps are performed with multiple databases, and the identification
results are combined, increasing the overall spectrum identification
rate. The Prosit-based approach discussed above by far outperforms
the standard approach with an overall spectrum identification rate of
35% compared to an average of 30.2% for the standard approach296.

The comparison to a standard MaxQuant search at 1% FDR is
most striking (right-most group of bars). Using the Human database
to search the gut samples identifies more (2,981) peptides than the
Andromeda scores search strategy that utilizes percolator (2,707 pep-
tides). Increasing the database search has a massive negative impact
on peptide identifications. A search using the All library loses 61%
peptide identifications compared to the search using Human. In addi-
tion, the overall increase of peptide identifications (199) is negligible.
The size of IGC swamps MaxQuants FDR calculation, which results
in only 343 peptide identifications, compared to 55,186 with Prosit at
the same FDR cut-off.
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11
Prosit availability

To make Prosit available to the Proteomics community, it has been
made available as an online resource at ProteomicsDB*. In addition, * www.proteomicsdb.org/prosit

the model definition YAML files and model weights (HDF5 files)
are available at figshare.com/projects/Prosit/35582/. This repos-
itory also includes datasets from ProteomeTools that were used as
“Training”, “Test”, and “Holdout” datasets in HDF5 format. Code for
training, prediction and to run a server on local hardware is available
at www.github.com/kusterlab/prosit/. The code can be used with
the pre-trained models made available on figshare.

ProteomicsDBUser Data

DIA

RAW and
search result

NCE

Identifications

Retention time prediction

NCE calibration

Fragment intensity prediction

Rescoring FDR

FASTA or
peptide list

DDA

Spectral libraries

Output

iRT calibration

Figure 11.1: Online resource workflow.
Schematic of the Prosit online resource
for user access to predictions. The
spectral library prediction workflow starts
with a peptide list as input, predicts frag-
ment intensity and iRT values and out-
puts the predicted spectral library for
the user to download. Based on a RAW
file and search results as inputs, the NCE
calibration workflow calibrates Prosit to
match the provided data and outputs an
optimal NCE for prediction. The rescor-
ing workflow also receives a RAW file
and search results as inputs. It runs the
NCE calibration, predicts spectra for pep-
tide candidates and rescores the PSMs
with Percolator. The results are made
available for download.

11.1 Online workflows

Not every user has the resources and means to run a version of Prosit
on local hardware. To facilitate the reproducibility of the results
presented in this work, Prosit is available as an online resource. The
online resource is accessible as a website and offers three workflows
that cover the analyses and use cases presented in this work.

The first workflow, NCE calibration, estimates the optimal NCE
value for Prosit predictions based on user measurements. The second
workflow covers spectral library prediction, as shown in chapter 8. The
third workflow is rescoring existing 100% FDR cut-off MaxQuant
searches based on prediction based scores, as discussed in chapter
9 and 10. Figure 11.1 is a schematic overview. Figure 11.2 shows a
screenshot of the main web interface and Figure 11.3 of the upload
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functionality for the NCE calibration and rescoring workflows.

Figure 11.2: Prosit online resource. A
Screenshot of the Prosit website. The
header shows general information and
gives access to previous prediction tasks
via the “Status” button. Below, one of
the three workflows can be selected to
start a new task.

Figure 11.3: Prosit file upload. The
NCE calibration and rescoring workflows
require the upload of a RAW and an
msms.txt file. The picture is a screen-
shot of the upload functionality of the
Prosit online resource for both of those
workflows.

11.2 Speed analysis

The usefulness of predictions is not solely determined by its accuracy.
Speed is another factor. Figure 11.4 shows speed analyses of the
prediction itself a) and including pre-and post-processing b). Prosit
consistently predicts more than 20 thousand spectra per second, which
is faster than the acquisition of experimental spectra on a current mass
spectrometer.

The overall workflow processing time is constrained by read and
write operations. Figure 11.4b shows that including pre- and post-
processing increases the processing time by a factor of ~2 (Drosophila
full proteome) up to ~10 (Olsen tryptic).

The main factor is the use of textual file formats, for example for
spectral library generation, because there is no commonly adopted
spectral library format297. Specifically, there is no standard binary
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Figure 11.4: Prosit speed analysis. a) The bar plot shows the prediction speed of predicted spectra per second using Prosit’s fragment
ion intensity prediction across several datasets investigated in this work. Data transformation, read and, write operations are excluded.
Numbers in each bar indicate the total number of predicted spectra. b) The scatterplot shows total processing time, including
prediction, transformation, and read and write operations. The processing time is correlated with the number of predicted spectra
using fragment ion intensity prediction by Prosit for differently sized datasets.

format that would allow more efficient read and write operations.
Writing textual files comes with significant overhead and depending
on the format, information such as the peptide sequence are stored
redundantly. Internally, Prosit makes extensive use of the HDF5

binary format to minimize read and write overhead.
All speed measurements were performed on a 24-core 2.6GHz

server with 1 Nvidia Titan Xp GPU, 512GB RAM, and a 512GB solid-
state drive (SSD) with 6Gb/s speed.
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12
Conclusions

This work introduces Prosit, a general and flexible deep neural net-
work architecture that can predict MS/MS spectra of peptides at high
quality. The quality of its predictions is similar to the reference spectra
of synthetic peptides Prosit was trained on and surpassed current
standard tools, such as MS2PIP279–281 and pDeep282, substantially.
Prosit was exclusively trained on human tryptic peptides, but its
predictions generalize very well. The prediction quality for other pro-
teases, organisms, and datasets from other laboratories came close to
the performance on internal human tryptic data. This result, together
with other extensive evaluations such as cross-validation of 5 separate
data splits of ProteomeTools, indicates that Prosit has very little bias.

The exceptional generalization suggests another point: Prosit
learned a suitable internal representation that approximates a chemo-
physical model for peptide fragmentation. Still, the inclusion of data
that is currently underrepresented would likely improve prediction
accuracy further. Specifically, longer peptides sequences; peptides
with precursor charges uncommon for tryptic peptides such as charge
one or higher than five; and non-tryptic peptides, in general, would
be promising additions to the training data.

Three different methodologies exist in Proteomics that are applied
depending on the scientific question that needs to be answered. DDA
is the standard workflow for the identification and quantification of
peptides and proteins in discovery Proteomics, whereas DIA offers a
more reproducible alternative that is also more complicated from a
data analysis standpoint. Targeted proteomics focuses on a specific
and small set of proteins and identifies and quantifies only this set
in a sample. The next sections argue that spectrum predictions by
Prosit have been demonstrated to be beneficial for DDA and DIA. The
outlook (Chapter 13) is a peek into the future and includes directions
on how Prosit could be beneficial for targeted proteomics as well.

12.1 Prosit and data-dependent acquisition

Prosit is not a full proteomics search engine, but Prosit’s sequence-
, charge- and NCE-dependent predictions of MS/MS spectra can
substantially improve database search results. Its application on
standard DDA use cases is showcased in Chapter 9. The number
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of identified peptides increases between 5% and 35% when holding
the FDR threshold constant. Alternatively, the number of identified
peptides remains comparable to Andromeda, when the FDR threshold
is substantially more stringent for Prosit. Even a reduction by a factor
of 100, to a 0.01% FDR cut-off level, yields a similar amount of peptide
identifications using Prosit, compared to Andromeda (see Chapter 9).
The source of these improvements is mainly the stronger target-decoy
separating by the incorporation of additional PSM scores (see Section
10.3, and Appendix C).

Complex search spaces

At the frontiers of proteomics, ever-larger search spaces are being
investigated. For example, peptide-centric research areas such as
proteogenomics109, metaproteomics296, and immune peptidomics298

investigate disproportionally large search spaces. Target-decoy sep-
aration is a central problem when search spaces are complex and
hinders all of the above fields.

Rechenberger et al. 114 exemplify the problem of target-decoy sepa-
ration in their study by the analysis of human feces. For this specific
dataset, the benefits of rescoring the database search with integrated
Prosit scores are showcased in Chapter 10. Prosit allows the use of
a database consisting of 10 million proteins from bacterial and hu-
man origin for rescoring. The results outperform standard two-stage
search approaches296 that use multiple search engines (identification
rate of 35% with Prosit and 30% with the standard approach) and
dwarf a standard MaxQuant search (identifying only 343 peptides
compared to 55,186 with Prosit).

In a proof-of-concept Verbruggen et al. 299 similarly show that
Prosit can be utilized for proteogenomics. “[They] believe these
MS/MS intensity-based identification strategies, all based on machine
learning, are part of the way forward in proteogenomics as FDR
calculation encounters challenges in this field because of the extended
search space size.”299

Immune peptidomics is another promising application of Prosit
rescoring, as the characterization of human leukocyte antigens (HLAs)
is particularly difficult. HLA peptides provide the immune system
the ability to recognize proteins and are a promising field of research
in developing anti-tumor and anti-viral therapies298. Those peptides
are highly heterogeneous, with many polymorphisms and isotypes,
and may contain mutations. Such complexity renders the standard
database search approach with a reference database unsuitable, al-
though it is commonly applied298. The two classes (class I and class II)
of HLA are restricted in size and sequence diversity, resulting in very
similar biophysical properties which makes it hard to separate HLA
peptides by LC. All of the above factors contribute to a distinctively
difficult target-decoy separation. The integration of Prosit predictions
can attenuate this problem and increases identifications as showcased
by the metaproteomics example in Chapter 10. For HLA initial results

94



indicate that the number of identifications can be increased by a factor
of two (personal communication with Daniel Zolg, Martin Frejno, and
Mathias Wilhelm).

Rescoring existing data

Although the effects of rescoring are most dramatic when search
spaces are most complex, it can be beneficial for any DDA dataset.
It makes identifications more robust in general and helps to reduce
hypotheses that are based on false positive identifications. Such better
hypotheses in research, result in money, time, and effort better spent.

Rescoring a search consumes far less time than the MS measure-
ment (see Chapter 11). The benefits in preventing a clinical trial based
on false positive identifications far outweigh this overhead. There is
also a great potential in rescoring publicly available datasets. The
rescoring does not have to be coupled to the original search—all DDA
data on PRIDE can potentially be rescored. There may be a vast
amount of un- or misidentified information in those datasets that can
be re-analyzed even without access to a mass spectrometer.

12.2 Prosit and data-independent acquisition

The results from Chapter 8 demonstrate that predictions by Prosit
can be utilized to analyze DIA data. The approach presented in this
thesis is a proof-of-concept, and its limitations are discussed below.
Nevertheless, the prediction of in-silico spectral libraries based on a
fixed set of peptides has several benefits of its own, compared to the
workflows that exclusively rely on experimental libraries.

High-quality in-silico spectral libraries

The first direct benefit of in-silico spectral libraries is that they are con-
sistent. In contrast to experimental spectra, MS/MS predictions are
precursor intensity independent. They, therefore, have consistently
high signal to noise ratio, which results in homogenous spectral
libraries. Consistent measurement quality is not guaranteed for ex-
perimental spectral libraries. Section 8.2 highlights an example of a
predicted spectral library by Prosit that performs substantially better
than a published experimental QTOF spectral library. In contrast to
the predicted spectral library, the experimental library showed a low
dynamic range for intensity values.

Secondly, in-silico spectral libraries can be adjusted to changing
laboratory conditions. Over time, instruments get replaced or their
calibration changes. For example, longitudinal studies can experi-
ence collision energy drifts, as was the case in the ProteomeTools
project28. Both circumstances, NCE drifts and instrument replace-
ment, affect the utility of spectral libraries measured before such
changes in conditions. Although the quality spectral library does not
change, the libraries do not represent the current measurement condi-
tions anymore—their correlation to newly measured data deteriorates.
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Through Prosit’s NCE calibration, in-silico spectral libraries can be
regenerated specifically for the current conditions.

A third benefit is the dynamic extension of existing spectral li-
braries with new peptide hypotheses. In large projects, for example,
longitudinal clinical studies, some peptides may be observed only at
later stages of the project. Including such measurements to experi-
mental spectral libraries can affect their homogeneity.

The assignment of peptides to experimental spectra bears the risk
of false-positive identifications. For example, although the experi-
mental spectrum stemmed from peptide A, it was confidently but
falsely identified as peptide B. An experimental spectrum with this
assignment will give rise to this false-positive identification and quan-
tification in experimental data. Predicted spectral libraries by Prosit
add a layer of security against this problem. Prosit is trained on
reference spectra from ProteomeTools, which are unlikely to contain
false identifications due to the synthetic nature of the peptides, and
intelligent pool design for acquisition. Even when the training data
does contain some falsely assigned PSMs, the training should, in
theory, average out those errors.

Current limitations
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Figure 12.1: Chimeric spectrum decon-
volution. (a) When to precursors are co-
fragmented, their pure spectra (blue and
red) are combined to mixed, chimeric
spectra (right). Intensities of peaks with
the same m/z add up (grey lines). (b)
In DDA, single precursors are selected
with very narrow m/z windows in de-
creasing order of their abundance, fre-
quently resulting in single precursor
spectra. DIA, in contrast, uses wider
m/z windows, which often leads to the
selection of multiple precursors in one
scan, resulting in chimeric spectra. (c)
Typically, a linear combination is as-
sumed for chimeric spectra. Specter, for
example, deconvolutes chimeric spectra
by solving the linear system of equa-
tions constructed from all spectral li-
brary spectra with precursors within the
given m/z window 300. Adapted from
Peckner et al. 300 .

Prosit imposes limits on the kind of peptides that can be predicted
and Prosit-generated libraries. Peptide length is restricted to 7-30

amino acids. The only PTM considered in the presented version is
M(ox). Due to ProteomeTools’ focus on tryptic peptides, the training
data is biased towards precursor charges two, three, and four. The
inclusion of HLA peptides is likely to improve accuracy substantially
for precursor charge one. At the moment, the intensity prediction
of Prosit is limited to y- and b-ions, ignoring other fragment ions
types, such as neutral losses or immonium ions. These choices are
substantiated in detail in section 5.2. Naturally, Prosit-generated
libraries are weak in the identification of peptides that frequently
exhibit fragment ions outside those limitations.

The analyses in Chapter 8 rely on experimental spectral libraries.
The set of peptides for the in-silico spectral libraries are derived from
the experimental libraries. The ultimate goal of predicted in-silico
libraries would be to instead derive the set of peptides from a full
proteome digest. A full proteome digest results in spectral libraries
that are larger than experimental ones by several orders of magnitude.
Current search tools suffer from such large spectral library sizes as
FDR control is challenging—in part because current target-decoy
models are limited.*

Instead of improving the target-decoy model and FDR calcula-
tion, another approach is to reduce large search spaces with the help
of additional machine learning. Section 13.4 will discuss the most

* One existing model, for example, constructs a decoy spectrum from a respective target
spectrum, by keeping fragment ion intensities and reversing the sequence. 301 This
method generates decoys that defy fragmentation rules and therefore exhibit unrealistic
fragmentation patterns for their given sequence.
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promising prediction models. Initial findings indicate that with the
help of these models and adjustment to spectral library search soft-
ware, the issue stemming from library size can be overcome in the
near future.

Another simplification of the presented analysis is to use a single
NCE as a proxy. In DIA spectra are generally acquired using multiple
(stepped) NCEs. Using the NCE calibration of Prosit can only ap-
proximate one NCE that matches spectra from stepped measurements
best. Further, experimental DIA spectra are usually acquired with
wide m/z windows, for example, 25Da in SWATH. This leads to
chimeric spectra that stem from multiple peptide precursors that are
co-isolated in the same scan. Predicted spectra from Prosit, in contrast,
are specific to single peptides. Matching the complex and chimeric
DIA spectra to predicted single precursor spectra from Prosit is not
trivially, but spectrum deconvolution approaches like MSPLIT-DIA302

and Specter300 (see Figure 12.1) are encouraging starting points.
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Figure 12.2: Empirically-corrected in-
silico spectral libraries. This DIA-only
workflow 303 utilizes Prosit to create
spectral libraries. Six gas-phase fraction-
ation (GPF)-DIA runs measure a sample
pool. These spectra are identified with
a full-proteome in-silico spectral library
from Prosit. The experimental spectra
from detected spectra serve as the “em-
pirically corrected” spectral library for
quantification. From Searle et al. 303 .

Enhancing experimental workflows with predictions

Apart from being used directly, fragmentation predictions enable new
experimental workflows. Recently, two groups303,304 independently
proposed a workflow that utilizes spectrum prediction to build spec-
tral libraries without relying on preliminary DDA runs, solely relying
on DIA. The approach of Searle et al. 303 specifically utilizes Prosit for
fragmentation and iRT prediction.

Some parameters in the MS workflow are particularly difficult to
model by machine learning because they are laboratory specific, and
the affecting variables are difficult to express numerically. Peptide
retention times is one example as the LC-setup is influenced by many
factors, such as column material, density, and flow rate. Curating a
training dataset that allows a machine learning model to generalize
well to any condition is difficult at best.

The above approaches solve this problem by de-coupling the identi-
fication and quantification aspect of the DIA workflow. In a standard
DIA workflow, first, a DDA spectral library is measured, which is
subsequently used to quantify a sample. The DDA-based libraries
share the problematic of stochasticity and focus on highly abundant
precursors.

Searle et al. 303 propose to replace the DDA spectral library with a
spectral library from GPF DIA runs. For that, the samples of interest
are pooled and measured in six narrow window DIA runs, with each
run only covering a narrow m/z range (see Figure 12.2). To assign
peptide identifications to such measured spectra, an in-silico spectral
library by Prosit is used. In contrast to normal DIA scans, the GPF-
scans have a very narrow measurement window of 2Da, reducing
the number of chimeric scans substantially. In addition, the problem
of very large in-silico spectral library by Prosit is reduced, as the
precursor window is small and restricts the search space effectively.

This workflow outperforms a comparable standard DIA and DDA
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approaches on different organisms, such as human and yeast with
37% and 66% increased peptide identifications, respectively. In an
additional analysis Searle et al. 303 was able to increase the previously
known proteome of the parasite P. falciparum by 58% and detect
parasite proteins in up to 1:99 dilution with uninfected blood cells303.

Puyvelde et al. 304 report a similar workflow that utilizes MS2PIP
and Elude for predictions. They report an increase in peptide identifi-
cations by 35% compared to a standard wide-window DIA workflow
using DDA spectral library for a HeLa sample.

12.3 Fragment intensity prediction and de novo search

If deep learning enables the prediction of fragment intensity spectra
of unprecedented quality, could we not use the same methodology
to solve peptide identification more directly? De novo sequencing
attempts to identify peptide sequences in spectra directly and with-
out relying on annotating a spectrum first with peptide sequence
candidates. Simply put, it is turning to Prosit model upside down.
The spectrum becomes the input that should be translated into two
outputs peptide sequence and precursor charge.† In fact, deep learn-† NCE could be modeled as both, input

or output, depending on the objective of
the model

ing has already been applied to this problem recently, and the model
shares some of the ideas of the Prosit model architecture305, but major
challenges remain.

One major challenge is how to present the spectrum to the machine
learning model. Fragment intensity prediction confines the spectrum
to only considering a set of fragment ions that match theoretical
m/z in some tolerance intervals. In Prosit case, these are the 174

dimensions that are made up by charge one to three y and b ions for
a 30-mer at maximum. In de novo common approach to represent the
spectrum in de novo is to bin the m/z space305. When considering
a maximum m/z value of 5,000Da would result in a vector of ˜0.5
million float values at a resolution of 0.01Da. A vector of this size can
be unfeasible due to hardware limitations.

Another challenge that binning poses is that low-resolution bins
result in convoluted fragment ion intensities. When two peaks with a
similar m/z are binned together, this training example is intrinsically
flawed. Constructing training datasets for de novo is, therefore, harder
than for fragment ion intensity prediction.

Lastly, de-convoluting chimeric spectra becomes a distinct problem
for de novo. As shown in Figure 12.1, in spectral library search,
chimeric spectra can be deconvoluted with single-peptide spectra
in the library. The same strategy can, in principle, be used with
predicted spectra. A simple de novo machine learning model would
start to estimate the single best matching peptide sequence for a given
spectrum. Extending such a model to chimeric spectra would likely
require a reformulation of the problem and generalization of the
model.
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13
Outlook

Previous chapters demonstrated how the presented version of Prosit
could improve existing proteomics workflows. Those applications are
just a start. To be applicable for the broader proteomics community,
they need to become integrated into standard proteomic software
workflows. Also, fragmentation is not the only peptide characteristic
that can benefit from accurate prediction models. With Prosit’s flexible
architecture, other models for peptide properties can be efficiently
designed. If Prosit shall generalize to other fragmentation methods,
such as CID and ETD, several issues need to be addressed. The
lower resolution of CID spectra can result in convoluted spectra,
specifically when two different fragment ions fall into the same m/z
bin for annotation and cannot be adequately distinguished. ETD
fragmentation, on the other hand, produces prominent z-ion series
that Prosit currently does not consider. Another lacking feature is
the prediction of fragment spectra for peptides carrying PTMs other
than M(ox). Those could not only prove useful for peptide sequence
identification but presumably also to improve PTM site localization.

13.1 Integration into standard software

Part III, “Applications of predicted spectra”, highlighted three po-
tential applications for predicted peptide fragmentation spectra and
integrations to many standard software workflows in Proteomics are
already underway.

Tiwary et al. 306 announce that fragmentation prediction will be
integrated into MaxQuant. The authors present two approaches,
DeepMass:Prism, and wiNNer. DeepMass:Prism is conceptually simi-
lar to Prosit, but the reported prediction accuracy is lower than that of
Prosit (DeepMass:Prism R=0.95 and Prosit R=0.99). WiNNer, although
neural network-based, is conceptually very different from Prosit and
DeepMass:Prism as it relies on feature engineering and does not make
use of modern neural network layers as those described in section 4.2.
It achieves an accuracy of R~0.90. Unfortunately, the timeline of the
integration and which of those models will be integrated is unclear at
the point of writing.

Other standard software tools are currently integrating Prosit. Na-
tive Prosit support is coming to Skyline and EncyclopeDIA. Prosit
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already supports the Spectronaut and msp spectral library formats.
In addition, upcoming versions of Spectronaut are adapted to work
better with large predicted spectral libraries, such as full proteome
predictions by Prosit.

Pipeline tools such as Proteome Discoverer and OpenMS307 are
also potential integration candidates. An initial study shows the
utilization of Prosit predictions in Proteoformer299.

13.2 Improving Prosit

Open issues with Prosit remain, that limit its applicability. One
is its dependence on graphic cards makes Prosit difficult to run
locally in laboratories that do not have the resources to support GPU
servers. Translating Prosit to a central processing unit (CPU)-based
architecture would open up the possibility to run Prosit on more
hardware, but also would make integration to other software tools
easier.

The field of machine learning is moving fast, and during the course
of this thesis, many new concepts have been introduced. Most notably
in the context of NMT, two models recently emerged that lead current
benchmarks. The Transformer308 model, heavily relies on Attention
(see section 4.2) and skips the use of computationally intense recur-
rent layers, such as GRU or LSTM cells. Reformulating Prosit as a
Transformer model could decrease the memory footprint, training,
and prediction time. BERT309 is a recent extension of Transformer that
adds a bidirectional component. It is leading current NMT bench-
marks. Experimenting with this architecture may yield improved
predictions.

To be able, to interpret why the model predicts certain values,
would be another significant advance for Prosit. For example, it is
conceivable to use an Attention layer to draw conclusions on what
part of the input the neural network focuses during its decision
making (see Figure in Section 4.2). The Attention mechanism is already
part of Prosit’s architecture, but it is currently only used to improve
prediction accuracy, not for interpretability of the model. Tiwary
et al. 306 explore the DeepMass:Prism model, at the example of long
term dependencies of the amino acid sequence of a peptide and how
it influences the fragmentation pattern. Unfortunately, their approach
is specific to the question at hand. Approaches that are general and
would make deep learning models interpretable are in its infancy.

For several applications, it is desirable to refine the Prosit model
by retraining it on a use case-specific dataset. The reasons range
from peptides with particular characteristics, such as HLA peptides
or specific laboratory conditions. To do so, it would be beneficial
to understand how much data is needed to achieve an acceptable
performance. In this work, the question of what a encompasses a
minimal dataset is not investigated. Prosit was trained on the entirety
of high scoring PSMs of ProteomeTools. The distributions of peptide
properties were not systematically controlled (see Figure 7.8). A
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well-distributed dataset, in respect to sequence length, amino acids,
precursor charges, and end terminals will presumably result in the
same level of accuracy, but trained in a shorter amount of time on
fewer data point. Also, biases such as those discussed in could be
reduced (see Figure 7.10).

13.3 Prosit and targeted proteomics

The target proteomics workflow starts with a hypothesis about specific
proteins being present in a sample. MRM or PRM experiments that
analyze the associated peptides require previously collected retention
times and MS/MS spectra of those peptides of interest. A common
approach is to synthesize peptides that were previously unobserved
to collect this information. However, synthetic peptides are costly and
successfully identifying them in the sample is uncertain a priori.

Synthetic reference spectral libraries, such as ProteomeTools, ease
those difficulties but only for peptides that are part of the spectral
library. Also, ProteomeTools, for example, can only offer spectra
acquired at a limited number of NCEs that may not perfectly match
other laboratory conditions.

Prosit offers a priori estimates of sets of peptides that would be
promising to synthesize and how to optimize NCE settings. Fragmen-
tation spectra, as well as iRT, values can be predicted. The MS/MS
spectra could be optimized similar to Prosit’s NCE calibration by
boosting or weakening specific fragment ion intensities.

For a first MRM/PRM such an optimized in-silico spectral library
can be used to circumvent the need for synthetic peptides. When
the set of peptides proves to be viable, they can be synthesized in a
second step for thorough validation.

13.4 Improving in-silico spectral libraries

The in-silico spectral libraries showed in Chapter 8, are based on the
list of peptides stemming from experimental spectral libraries. Full
proteome in-silico spectral libraries suffer from the massive number
of peptides that are included. Current spectral library tools are not
optimized for handling such large spectral libraries and their target-
decoy models may suffer. To reduce this burden, there are multiple
viable approaches.

A first approach is to utilize machine learning to reduce peptide
library size is by excluding PSMs from the library that are unlikely to
yield identifications. Models could be trained to predict whether it is
worthwhile to include specific peptides in the library. Proteotypicity
and precursor charge state prediction for peptides are intriguing
candidates.

The second category is to add separation dimensions, for example,
iRT and ion mobility. Gessulat and Schmidt et al.136 show that the
Prosit model also outperforms current standard tools for predicting
iRT values. There is no conceptual reason why this should not be
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reproducible for ion mobility. Based on these properties, the number
of peptide candidates matching a spectrum can effectively be reduced.

A third approach is to use experimental means to estimate the
appropriate scope of a spectral library. Chromatogram libraries310

for DIA, for example, utilize a gas-phase fractionation run. The lim-
ited m/z window size per fractionation can be leveraged to limit
library size effectively. Preliminary results suggest that Prosit gener-
ated in-silico spectral libraries can identify peptides in such samples
successfully (see Section 12.2).

13.5 Post-translational modifications

There is a multitude of modifications that can occur at amino acids.
Those PTMs influence the biological function of proteins, which is
why they are of particular interest. They also change the properties of
the peptide, such as its retention time, ion mobility, or fragmentation
pattern.

The current version of Prosit does not support PTMs except for
M(ox). The integration of PTMs is challenging because of several
factors. One is the question on how to encode PTMs to make them
known to the model. Second, how to model additional fragment ion
types such as neutral losses? Those fragment ion types become more
critical when investigating PTMs.

Integrating post-translational modifications to Prosit

The simplest approach to integrate PTMs is to treat them as if they
were independent amino acids. This is also how the current version
of Prosit integrates M(ox). Although appealing due to its directness
and simplicity, this approach comes with potential problems. If one
PTM can occur at different amino acids, it may be beneficial for
the model to know the underlying amino acid. For example, in
the case of phosphorylation, the model could learn the effects of
phosphorylation in general, rather than only its specific effects on
Thr, Ser, or Tyr. On the other hand, some PTMs only have a marginal
effect on fragmentation. Zolg et al. 311 show that hydroxylated Proline
(Pro) fragments similarly to unmodified Pro. In that case, a model
would need to learn the same fragmentation pattern for two specific
amino acids—memory that may be utilized more effectively.

A second approach to integrate PTMs decouples peptide sequence
and PTMs. A neural network could have two separate sequence
encoders: one reading the unmodified peptide sequence and one
reading the sequence of modifications at each amino acid. This
resolves the generalization issue, exemplified by phosphorylation
above. Other limitations remain. In a basic version, this would restrict
amino acids to carry at most one modification.

The most general approach is to encode peptide sequences with
the Simplified molecular-input line-entry system (SMILES) notation.
SMILES encode the complete molecular structure, rather than a se-
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quence of amino acids. Although SMILES have been successfully
applied in conjunction with neural networks312–314, it is uncertain
how well this approach might work in proteomics. Albeit the model
is designed explicitly for peptide sequences, it would need to learn
what an amino acid is.

Localizing modification sites

Often PTMs can occur on more than one acceptor site within the
amino acid sequence. Localizing where and how many PTMs are
present is challenging, because the fragmentation pattern only changes
partially. Currently, in database search, as for sequence identification,
localization methods focus on the m/z information and thus relies on
the unambiguous detection of site-determining fragment ions.315,316

Changes in intensity patters due to the presence of PTMs is largely
ignored.

As some modifications change the fragmentation intensity pattern
of a peptide, highly accurate predicted spectra could improve local-
ization. Still, predicted spectra by Prosit lack in some regards, mainly
due to the exclusion of neutral loss ions.

Phosphorylation, for example, leads to frequent neutral losses of
the phosphate group plus water315. Prosit currently does not account
for such fragment ions and thus predicted spectra are incomplete.
For better localization, this means that not only PTMs need to be
integrated as described in the last subsection, but also neutral loss
fragment ions need to be included.

Initial results show that Prosit can be adapted to predict the most
essential neutral loss fragment ion type, the phosphoryl group (HPO

3
)

in addition to the other fragment ions types. In the same experiments,
phosphorylation was included to modify Ser, Thr, and Tyr optionally.
Utilizing the predictions from this model in combination with Perco-
lator for site-localization performs at least as good as MaxQuant and
outperforms it in some cases.

Neutral losses and fragment ion deconvolution

The broader the set of PTMs investigated, the more important other
fragment ion types (i.e., neutral losses) become to identify the correct
PSM candidate. One reason why the current version of Prosit is
restricted to only y- and b-ions is that the inclusion of neutral losses
(at different charge states) can lead to overlapping m/z bins for
multiple theoretical fragment ions during annotation (see section 5.2).
The same problem occurs in CID spectra due to their low resolution.

One concept that could solve this problem a neural network layer
that convolutes fragment ion m/z values in the same way they are
convoluted by the annotation. For example, when one experimental
peak could be annotated as two different theoretical fragment ion, the
layer would add the predicted intensities for both fragment ions. The
output would be a single peak with the intensities of both predicted
fragment ions. In theory, a model predicting all theoretical fragment
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ion intensities with such an additional layer could learn to deconvo-
lute fragment ion intensities. First attempts into this direction have
been promising.

13.6 Better scoring functions

Andromeda score is based on the cumulative density function and
calculates the probability that a given PSM is a random match. Only
the m/z values matter in this estimation, as they are the only factor
determining matched fragment ions. The SA, in contrast, does focus
firmly on the intensities. It is based on the m/z values as a means
to match theoretical and experimental peaks, but the correlation is
based solely on the fragment ion’s intensity values. Clearly, both have
flaws in their own right, and there is room for improvement.

One important distinction is that scoring functions for PSMs and
loss function to train machine learning models must not be confused.
For example, the SA is a suitable loss function because of its focus on
fragment intensity. Learning accurate fragment intensity is the single
objective of the model. This does not, however, imply that SA also
makes for a proper scoring function that separates target and decoy
PSM well. This is can also be observed empirically (see Figure 9.4, for
example).

The following section will outline three potential strategies to
improve PSM scoring. The first is to rely pre-defined on similarity
functions that are fitting for MS/MS comparison. The second is to
use a machine learning model to learn the scoring function.

Kullback-Leibler divergence and Wasserstein distance

Fragment ion intensities are proportional to the number of measured
fragment ions. Tandem mass spectra can be therefore interpreted
as probability distributions of the occurrence likelihoods of each
fragment.* With this interpretation, evaluating the similarity of two* Normalizing peak intensities to sum to

one is a preliminary for this interpreta-
tion.

spectra is reformulated as measuring two probability distributions.
This interpretation is an alternative to the probabilistic perspective of
Andromeda score or the geometric perspective of SA.

One measure of dissimilarity between two probability distribu-
tions that is commonly used in statistics and machine learning is the
Kullback-Leibler divergence (KL).317 The divergence measures how
inefficient—from an information theory standpoint—it is to use distri-
bution A as a model when the real distribution is B. Typically, one of
the distributions represents a theoretical distribution and the other an
empirically measured distribution. However, there are several open
questions on how to apply KL in the context of spectrum comparison
in proteomics. For example, KL is not a metric, as is not symmetric†† KL(A||B) 6= KL(B||A)

and does not satisfy the triangle inequality.
Another intriguing alternative PSM scoring function is the Wasser-

stein distance. It measures how much and how far probability mass
needs to be moved to convert probability distribution A to distribu-
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tion B. Wasserstein distance has been already successfully applied to
compare MS/MS spectra and to help in spectrum deconvolution318.
The author is not aware of its use as a PSMs score so far.

Learning how to score

Instead of constructing a function that scores PSMs, machine learning
models can estimate optimal functions automatically. Percolator is
the prime example of this approach. Given a set of input scores that
encode information of a given PSM, Percolator scores it and sets it
in context to other PSMs in the dataset. However, this process is
not entirely automatic as the input scores need to be defined. In
the applications in chapter 9 and 10, this work showed the power of
integrating several prediction-based scores with Percolator, instead
of just a few. The main issue remains: the issue of constructing
one optimal function becomes constructing the set of functions that
performs optimal—manual work and expert knowledge are still very
much required.

Would it be possible to learn a scoring function without relying
on pre-defined scoring functions? A critical factor that limits con-
ventional machine learning models such as Percolator to do so is its
restriction on specific inputs, as discussed in Section 4.1. Deep learn-
ing models are more flexible and offer the possibility to directly use
spectra as input, in addition to meta information of a PSM (see Section
4.2). A model to classify PSMs as target or decoy could, for example,
get an annotated experimental spectrum as input, in addition to the
matched sequence candidate, the precursor mass and a respective
spectrum prediction by Prosit. This circumvents the issue of defining
a set of functions and pre-calculating them, as in Percolator’s case.
Still, this approach cannot readily be implemented as it shares a key
challenge with de novo sequencing: finding a suitable representation
for raw spectra (see Section 12.3).

13.7 What lies ahead

The dilution of computational proteomics and machine learning is
only likely to become stronger. Long-standing questions, such as “can
we distinguish Leu and Ile by other means than their m/z values?”
are being reconsidered and methods fundamental to the field, such
as DDA and database search are increasingly challenged by compu-
tationally more demanding approaches. Machine learning has the
potential to play a pivotal role to facilitate such novel approaches.
Many unsolved questions are ripe for the picking as proteomics be-
comes predictable.
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A
Fragment ion existence prediction

This chapter outlines preliminary experiments with existence predic-
tions that led to the intensity model presented in Chapter 5.

When theoretical spectra are generated by database search engines
such as MaxQuant or Mascot, they assume a perfect spectrum in
that every theoretical ion is present. For example, HCD spectra often
exhibit prominent y- and b-ion series. Thus, a theoretical spectrum
would include every y- and b-ion.

The described approach is flawed because not every fragment ion
is uniformly likely to be measured experimentally. This flaw also
affects the scoring of PSM candidates. For example, Andromeda score
evaluates the likeliood that a PSM is true, by comparing matched
peaks between the theoretical and experimentally measured spectrum.
It is therefore desirable to establish a model that can predict which
ions are expected to be observed experimentally and which are not.
This is a simpler problem than fragment intensity prediction, and the
existence prediction model in this chapter served as a precursor for
the more advanced intensity model.

A.1 Model architecture and training

The existence prediction model was a first experiment to predict
fragmentation properties from ProteomeTools data. To simplify the
design of the model, the set of PSMs considered was restricted to
doubly charged precursors measured at NCE 30. With this constraint,
a precursor charge and NCE encoder are not needed, and the training
data set is substantially smaller. The data was split into a training
dataset with 1.9 million PSMs from 300 thousand peptides, and a
test set with 0.5 million PSMs from 14 thousand peptides.

Figure A.1 shows this simplified architecture*. The architecture * Experiments similar to those described
in section 5.3 (page 49) and Table 5.1
were performed to optimize the model
architecture

is similar to the intensity prediction model, except for the smaller
latent space of 256 dimensions and the missing precursor charge and
NCE missing encoders. The model was trained for 22 epochs on
training dataset using binary cross-entropy as a loss function. Binary
cross-entropy models the probabilities for each fragment ion between
0 and 1 and is thus more suitable than other standard loss function†.

† See the cross-entropy equation in sec-
tion 4.1 (page 34, equation 4.6).
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Figure A.1: Existence prediction model.
The peptide encoder consists of 3 lay-
ers: a bidirectional recurrent neural net-
work with GRU cells GRU 256, a recur-
rent GRU layer, and an Attention 258

layer. The recurrent layers use 256 mem-
ory cells each. The latent space is also
256 -dimensional. A 1-layer length 29

bidirectional neural network with GRUs,
Dropout, and Attention acts as a de-
coder for fragment existence probabil-
ities. Circles denote regular neural cells
and Attention cells when color shades
vary. Dark squares denote GRU mem-
ory cells, and light blue squares denote
embedding cells. Black lines without
arrows denote Dropout.
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A.2 Evaluation

Two kinds of errors can occur, when predicting the with fragment
ions can be observed in an experimental spectrum. False positive
errors occur when a fragment ion is predicted to be present but is not
observed experimentally, and false negative errors when a fragment
ion is predicted to be absent but is observed. The theoretical spectra
constructed by Andromeda, contain all theoretical y- and b-ions, thus
only false positive errors are possible. A machine learning approach,
in contrast, can, in addition, lead to false negative errors.

Figure A.2 exemplarily compares the performance of the trained
model with theoretical spectra generated by Andromeda for 200

randomly sampled 7-mers and 200 random 23-mers from the test
set. The y-ions in the y-mer are mostly present for the 7mers in the
ProteomeTools data (Figure A.2a left panel). That is the reason why
the theoretical spectra generated by Andromeda exhibit only very
few errors, similarly to the predicted model. B-ions in contrast, are
not always present, some of them (for example b-1 ions) are correctly
predicted absent (Figure A.2a right panel), but false negative errors
(blue) are also frequent. In the case of 23-mers (Figure A.2b) both,
y- and b-ions are absent from the spectra resulting in a much higher
mismatch of Andromeda’s theoretical spectra with the experimental
spectra. The performance of the existence prediction model is only
marginally better, but the errors are distributed between false positives
and false negatives.
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Figure A.2: Existence prediction evaluation. Observed y and b ions (left and right panels, respectively) from the test dataset are
compared to theoretical spectra generated by Andromeda and predicted spectra from the existence prediction model. Ions that are
not observed but present in the theoretical or predicted spectra are colored red (false positives and ions that are observed but not
present in the theoretical or predicted spectrum are colored blue (false negative). (a) comparison of observed ions from 200 randomly
sampled 7-mer PSMs. (b) comparison of observed ions from 200 randomly sampled 23-mer PSMs.
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A.3 Rescoring database search

Although the existence prediction model—on large—can not accu-
rately predict whether an ion will be observed experimentally. Still,
the rough estimate given by the model can be utilized to improve
rescoring. To rescore a MaxQuant search (with 100% FDR cut-off),
several Percolator input files were constructed that incrementally
added PSMs scores. The approach is similar to the Prosit scoring
described in Chapter 9 and Appendix B.

Figure A.3: Impact of rescoring with
the existence model on FDR cut-offs.
Percolator is run to rescore the test
dataset with seven different score sets.
The line chart shows the performance
of each set in terms of the number of
identified PSMs at several FDR cut-off
levels. Andromeda (dark red) uses only
Andromeda scores as a feature. Perco-
lator (dark blue) uses the basic set of
scores recommended by Percolator, in-
cluding Andromeda. Counts (light red)
uses scores based on counts; for exam-
ple, the number of predicted ions were
also observed. Scores (light orange)
uses Andromeda scores calculated on
predicted ions. Ratios (orange) uses ra-
tios of false positive and false negatives
as scores. Counts + Scores (light blue)
and Counts + Scores + Ratios (grey) are
combinations of the above.

N
um

be
r o

f t
ar

ge
t P

SM
s (

x1
00

0)

60

69

78

87

96

105

114

123

132

141

150

FDR cutoff [%]

Andromeda Percolator ScoresCounts Ratios
Counts + Scores Counts+ Scores+ Ratios

0.010.1110

Figure A.3 shows the results of the rescoring. Interestingly, Per-
colators default scores already substantially improve upon standard
Andromeda scores. Adding the different sets of prediction-based
scores (Counts, Scores, and Ratios), improve upon the default Perco-
lator scores, but only marginally. Combining the prediction-based
scores yields substantial improvements, for example, a 4% increase in
identified target PSMs at 1% FDR cut-off and a 25% increase at 0.1%
FDR cut-off compared to the Percolator basic set of scores at the same
cut-offs.

The above analysis shows that estimating the likelihood to observe
specific ions, can substantially improve target-decoy separation and
the model used is the foundation to the more advanced Prosit model.
More fine-grained predictions, as fragment intensities, certainly can
improve upon existence prediction.
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B
Prosit peptide spectrum match scores

Part III “Applications of predicted spectra” describes the concept
to rescore a database search by including prediction based PSM
scores, such as SA. This chapter details which scores were used in the
analyses in Chapter 9 “Enhancing database search” and Chapter 10

“Rescoring metaproteomics measurements” and how the scores are
constructed.

Name Default An SA An + SA Prosit An + Prosit

SpecID x x x x x x
Sequence x x x x x x
Sequence length x x x x x x
Label x x x x x x
missedCleavage x x x x x x
Mass x x x x x x
ExpMass x x x x x x
deltaM [ppm] x x x x x x
abs. deltaM [ppm] x x x x x x
deltaM [da] x x x x x x
abs. deltaM [da] x x x x x x
Charge 2 x x x x x x
Charge 3 x x x x x x

Andromeda x x x
Delta score x x x

Spectral angle x x x x
Delta spectral angle x x x x

Prosit extended scores x x

Table B.1: PSM score sets. Different
scores are included in the score sets
that serve as Percolator input to rescore
database searches. Rows in the table
specify PSM scores and columns score
sets. An “x” indicates which score is
included in which set. Default is the
standard set of scores recommended by
Percolator. Those are included by de-
fault in all other score sets. An is the
Andromeda score set, SA is the Spectral
angle score set, and Prosit is the Prosit
score set. The last row, “Prosit extended
scores”, is a set of scores instead of a
single score. Those scores are detailed
in Figure B.1. They are all included in
the sets marked with “x”.

Five score sets (Andromeda score, Spectral Angle, Spectral Angle +
Andromeda score, Prosit scores, and Prosit scores + Andromeda score) were
constructed as Percolator input files for each analysis. The scores
used in those sets were partially overlapping. Table B.1 shows which
scores belong to which set. Percolator recommends a set of default
scores (also called features) (Default) that should always be included.
Thus, those scores are included in every of the five score sets.

The Prosit scores set, extends the Spectral Angle set by various scores
that are based on predicted intensities by Prosit. Those scores fall
into two categories: count-based scores and ratio. The ratios can
be separated further, based on what the ratios are relative to. One
category of ratios is relative to the number of theoretical fragment
ions, and the other is relative to the number of prediction ions. An
overview of all the Prosit scores can be found in Figure B.1.
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Figure B.1: Prosit extended scores.
Prosit scores are either count-based or
ratios based on specific sets of fragment
ions. The column numerator indicates
which ions are counted and colors indi-
cate whether the ions are restricted to
zero intensity (red) or non-zero inten-
sity (blue). For example, row 11, counts
the number of y-ions that are not ob-
served but have a non-zero predicted
intensity. Based on the numerator, three
kinds of scores are constructed: Count-
based, Relative scores that are based on all
theoretical ions, or Relative scores that are
based on predicted non-zero ions. The
three columns on the right (all denomina-
tor) indicate to what value the numerator
is relative. For example, based on the
numerator in row 11, three scores are
constructed. First Count-based: the num-
ber of y ions not observed but predicted
to have non-zero intensity. Second Rela-
tive to theoretical: the number of y-ions
not observed, but predicted to have non-
zero intensity divided by the number
of theoretical y-ions. Third Relative to
predicted: the number of y-ions not ob-
served, but predicted to have non-zero
intensity divided by the number of y-
ions predicted to have non-zero inten-
sity.
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All of the Prosit extended scores set observed fragment ions in
context to the likelihood of those ions as estimated by the Prosit
prediction model. The scores are either counts or ratios and are
conceptually simpler than the cumulative probability function that
is the bases for the Andromeda score. The analyses in Chapter 9,
10, and Appendix C demonstrate that the Prosit extended scores—
although simple computationally—suffice for rescoring and cover the
information provided by Andromeda score.
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C
False discovery rate cut-off analyses

Section 10.3 investigates the gains in identified target PSMs through
rescoring a database search with Prosit’s prediction-based scores.
It shows that many more PSMs can be identified with prediction-
based scores at a given FDR cut-off level. Specifically, the analysis
investigates where those gains come from. The analysis in section 10.3
focuses on one particular one specific Metaproteomics dataset—namely,
the dataset searched with the IGC + All database. This section repeats
the analysis for all datasets that were rescored in this work.

The figures in this chapter are specific to one of the following eight
datasets, respectively. The Bekker-Jensen dataset is split into four dif-
ferent subsets based on the protease used for digestion: Trypsin, Chy-
motrypsin, LysC, and GluC Additionally, one metaproteomics dataset
is evaluated with four different protein databases that vary in size:
SwissProt Human, SwissProt Human + Bacteria, SwissProt All, and IGC.

The procedure is similar for all dataset and encompasses the fol-
lowing steps. In the first step, the data is searched with the given
protein database with MaxQuant at 100% FDR cut-off to generate
a list of PSM candidates. For the Bekker-Jensen datasets, only the
top-ranking PSM per spectrum is considered. For the metaproteomics
datasets, the 15 PSM candidates with the highest Andromeda scores
are included. Second, Prosit estimates the optimal NCE for the given
dataset by calibration. The third step is the spectrum prediction for all
PSM candidates at the optimal NCE. Based on those predictions and
in comparison to the experimental data, score sets are computed as
input for Percolator in step four. There are five different sets of scores
that are discussed in detail in Section B. In short, they are constructed
so that a meaningful comparison of Andromeda based scores and
scores based on Prosit predictions (Prosit scores) is possible. In step
five, Percolator then rescores all PSMs and calculates q-values. Based
on the results of those five Percolator runs the different score sets are
be compared.

Each figure shows PSM identification gains in a). In all cases, Perco-
lator identifies a similar number or more PSMs with Prosit scores at an
0.01% FDR cut-off compared to Andromeda scores at 1% FDR cut-off.
To investigate the differences of the score sets in detail, it is helpful to
focus on the PSMs that do not make the FDR cut-off*. Those PSMs * This type of analysis has been intro-

duced in Serang et al. 295 .are separated into target and decoys. A perfect PSM score would
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generate distributions that mimic each other closely: the decoys are
a proper model for false positive target PSMs. In a suboptimal case,
the distributions differ, because the decoys do not model targets very
well, or the score is unable to differentiate the two accurately. When
the PSM score cannot differentiate target PSMs from decoys accu-
rately, the q-value of too many targets is above the FDR cut-off, and
they cannot be identified. This problem is investigated in b) and c)
by comparing the target and decoy distributions for PSMs above an
FDR cut-off. The left panels show those distributions as estimated
by Andromeda and the right panels with Prosit scores at different FDR
cut-off levels. In b) Andromeda is the PSM score to calculate the
distributions and in c) SA is the PSM score for the distributions. The
distributions differ substantially when based on Andromeda score Per-
colator runs (left panels). The disparity is especially apparent, when
evaluating the distributions with SA (see c), respectively). When the
identifications are based on Prosit scores (right panels), the problem
is less pronounced. For the Olsen datasets (Figure C.1-C.4), the dis-
tributions are well aligned. For the metaproteomics datasets (Figure
C.5-C.8), although the distributions are not aligned, their disparity
is smaller when using Prosit scores. The disparities grow with in-
creasing database size and are most severe in Figure C.8. All figures
suggest that the prediction-based score set Prosit scores substantially
improves target-decoy separation power, which is most likely due to
the additional intensity information.
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Figure C.1: Analysis of target peptides
above the FDR cut-off: Olsen Trypsin.

a) The dataset is rescored with five
different score sets: Spectral angle (or-
ange), Andromeda score (red), Spectral an-
gle + Andromeda score (grey), Prosit scores
(light blue) and Prosit scores + Andromeda
score (dark blue) (see Appendix B for an
explanation of the score sets and the text
for a detailed description of the rescor-
ing procedure). The line chart shows
the performance of each set in terms of
the number of identified PSMs at sev-
eral FDRs cut-off levels. The grey ver-
tical line highlights the 1% FDR cut-off
and the horizontal grey line the number
of identified PSMs of the Andromeda
score set at that cut-off. The charts in b)
and c) show PSMs candidates from the
dataset that are scored above a specific
FDR cut-off. They compare the perfor-
mance of the Andromeda score set (left
panels) and the Prosit scores set (right
panels). The histograms in b) show tar-
get (blue) and decoy (red) distributions
for Andromeda and c) shows SA distri-
butions.
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Figure C.2: Analysis of target peptides
above the FDR cut-off: Olsen LysC.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.

10 1 0.1 0.01 0.001

a)

0 100 200 300 400
Andromeda score

100 200 300 400

0

Andromeda score

b)

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
0

5

20

Spectral angle
0.0 0.2 0.4 0.6 0.8 1.0

Spectral angle

c)

Andromeda score

Prosit scores
Prosit scores 
+ Andromeda score

Spectral angle

Spectral angle
+ Andromeda score

False discovery rate [%]

0

150

#T
ru

e 
po

s. 
(x

10
00

) 350

0

>0.1 % FDR cutoff
Prosit score set

>1 % FDR cutoff
Andromeda score set

>0.1 % FDR cutoff
Andromeda score set

>1 % FDR cutoff
Prosit score set

>1 % FDR cutoff
Andromeda score set

>0.1 % FDR cutoff
Andromeda score set

>1 % FDR cutoff
Prosit score set

>0.1 % FDR cutoff
Prosit score set

#P
SM

s (
x1

00
0)

#P
SM

s (
x1

00
0)

#P
SM

s (
x1

00
0)

#P
SM

s (
x1

00
0)

15

10

0

5

10

15

20

0

5

20

15

10

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

DecoysTargets

DecoysTargets

118



Figure C.3: Analysis of target peptides
above the FDR cut-off: Olsen Chy-
motrypsin.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.
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Figure C.4: Analysis of target peptides
above the FDR cut-off: Olsen GluC.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.
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Figure C.5: Analysis of target pep-
tides above the FDR cut-off: Metapro-
teomics SwissProt Human.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.
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Figure C.6: Analysis of target pep-
tides above the FDR cut-off: Metapro-
teomics SwissProt Bacteria + Human.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.
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Figure C.7: Analysis of target pep-
tides above the FDR cut-off: Metapro-
teomics SwissProt All.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.
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Figure C.8: Analysis of target pep-
tides above the FDR cut-off: Metapro-
teomics IGC.

a) The dataset is rescored with with
five different score sets: Spectral angle
(orange), Andromeda score (red), Spectral
angle + Andromeda score (grey), Prosit
scores (light blue) and Prosit scores + An-
dromeda score (dark blue) (see Appendix
B for an explanation of the score sets
and the text for a detailed description
of the rescoring procedure). The line
chart shows the performance of each
set in terms of the number of identified
PSMs at several FDRs cut-off levels. The
grey vertical line highlights the 1% FDR
cut-off and the horizontal grey line the
number of identified PSMs of the An-
dromeda score set at that cut-off. The
charts in b) and c) show PSMs candi-
dates from the dataset that are scored
above a certain FDR cut-off. They com-
pare the performance of the Andromeda
score set (left panels) and the Prosit scores
set (right panels). The histograms in b)
show target (blue) and decoy (red) dis-
tributions for Andromeda and c) shows
SA distributions.
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