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Abstract

Mass spectrometry-based proteomics has become the leading technology to identify and quantify peptides
and proteins at scale. The identification of peptides strongly relies on software with sequence database
searching, and spectral library matching being the two most successful approaches. The lack of models that
can predict fragment ion intensity spectra accurately hinders both approaches to realize their full potential.
Database searching relies on theoretical spectra that do not reflect experimentally observed ion intensities
well. Spectral library matching, on the other hand, relies on previously identified experimental, which is
not available for many experiments or is challenging to acquire. This work presents Prosit, a deep learning
model whose predictions exceed the quality of experimental spectra measured from synthetic peptides.
It can be calibrated to different laboratory conditions and generalizes to various proteases, although it
only was trained on tryptic peptides. The utility of Prosit is shown on three applications. First, several in
silico spectral libraries are predicted, and it is shown that spectral library matching performs similarly with
them compared to experimental spectral libraries. The second application shows that the integration of
prediction-based scores into database searching leads to more identification at >10x lower false discovery
rates. The third application is using prediction-based scores in the context of metaproteomics. It is shown
that a vast database of more than 10 million proteins can be searched, identifying more peptides with a
simpler workflow than complex workflows utilizing multiple search engines. The source code of Prosit
and the trained model is freely available. In addition, it is integrated into ProteomicsDB, which allows the
rescoring of database search results and the prediction of custom spectral libraries for any organism.

Zusammenfassung

Massenspektrometriebasierte Proteomik hat sich als die fithrende, skalierbare Technologie zur Identifikation
und Quantifizierung von Peptiden und Proteinen etabliert. Die Identifikation von Peptiden stiitzt sich
wesentlich auf Software. Die Suche in Sequenzdatenbanken und der Abgleich mit Spektralbibliotheken
sind dabei die zwei erfolgreichsten Ansitze. Der Mangel an akkuraten Modellen zur Vorhersage von
Ionenintensitdten in Massenspektren hindert beide Ansétze ihr volles Potential zu entfalten. Die Suche in
Sequenzdatenbanken benutzt theoretische Spektren zum Abgleich, die nur eingeschrankt experimentell
gemessene lonenintensititen entsprechen. Der Abgleich mit Spektralbiblioteken hingegen, bedient sich
bereits vorher identifizierter experimenteller Spektren. Solche Spektralbibliotheken sind nicht fiir jedes
Experiment verftigbar, oder sie sind aufwendig in der Messung. Diese Arbeit stellt Prosit vor. Prosit ist
ein Deep Learning-basiertes Modell dessen Vorhersagen die Qualitdt experimenteller Spektren gemessen
von synthetischen Peptiden tibertreffen. Der Nutzen wird an drei Anwendungen gezeigt. Zuerst werden
mehrere Spektralbibliotheken vorhergesagt, die zu einer dhnlichen Anzahl identifizierter Peptide fiihren,
wie experimentellen Spektralbibliotheken. Als zweites werden vorhersagenbasierte Mafieinheiten in die
Suche von Sequenzdatenbanken integriert. Dies verbessert die Suche, sodass mehr Peptide bei >10
kleinerer False Discovery Rate identifiziert werden konnen. Die dritte Anwendung verdeutlich die Vorteile
von vorhersagebasierten Mafieinheiten im Kontext von Metaproteomics. Eine sehr grofle Datenbank
bestehend aus tiber 10 Million Proteinen wird zum Suchen benutzt. Im Vergleich zu den komplexen
Standardprozessen, die typischerweise mehrere Datenbanksuchen verwenden, identifiziert die von Prosit
unterstiitzte Suche mehr Peptide mit einem einfacheren Prozess. Der Code von Prosit und das trainierte
Modell ist frei verfiigbar. Zusatzlich kann Prosit in ProteomicsDB benutzt werden und ermoglicht
das erneute Analysieren von Datenbanksuchen und die Vorhersage von Spektralbibliotheken fiir jeden
Organismus.
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“COMPUTERS ARE USELESS. THEY CAN ONLY GIVE YOU ANSWERS.”

PABLO PICASSO






Part 1

General introduction






1
Motivation

PROTEINS are molecular machines that carry out the work necessary
to sustain life. They provide structure, function, and regulation to
cells in every living organism. As enzymes, proteins catalyze energy
production (Triosephosphate isomerase, Figure 1.1). Transport pro-
teins carry oxygen from our lungs to the rest of the body (Hemoglobin,
Figure 1.2). Proteins also carry messages between cells and signal
information. The Ras protein (Figure 1.3), for example, carries one bit
of information and is central in the signaling network regulating cell
growth. Mutations in Ras genes can disturb the signaling network
and lead to uncontrolled cell growth®. A deeper understanding of
proteins is necessary to answer fundamental biological questions.

The proteome of an organism is the entirety of proteins encoded in
its genome. In contrast to the genome, the proteome of an organism
is highly dynamic and changes to external influences of an organism,
its age, or in the context of disease. Proteomics (Chapter 2) studies
proteomes and its dynamics and thus helps to understand and treat
diseases such as cancer?3 (Figure 1.4).

Proteomics is the identification and quantification of proteins. To-
day, mass spectrometry (Part I Chapter 2) has emerged as the preva-
lent technology for protein identification and quantification, particu-
larly in large scale experiments. A mass spectrometer measures mass
to charge ratios to generate mass spectra. From this mass spectra,
identity and quantity of proteins in a sample are inferred. Due to the
complexity and scale of the generated data, its analysis heavily relies
on computation (Chapter 3). By applying recent advances from the
field of machine learning (Chapter 4) this work improves one core
step in the analysis—peptide fragment identification.

Peptide identification is a necessary preliminary step to protein
identification in mass spectrometry-based bottom-up proteomics. Sev-
eral techniques for peptide identification work by comparing ex-
perimental spectra to theoretical candidate spectra and score them
by similarity measures*>. Spectrum matches that exceed a score
threshold count as identified. Many algorithms model the fragment
intensity of theoretical spectra naively, as conventional machine learn-
ing models were not able to produce highly accurate results. The
reasons for this are manifold: there was no high-quality ground truth

)
Figure 1.1: Triosephosphate isomerase.
This enzyme is essential for efficient en-
ergy production. It is expressed in most
organisms. Richardson diagram draw-
ing by Jane S. Richardson, School of
Medicine, Duke University (1981).

Figure 1.2: Hemoglobin. This protein
transports oxygen by binding it in its
iron-containing heme groups (red). It
gives blood its color. It is expressed in
most vertebrates. Drawing by Irving
Geis (1978). Used with permission from
the Howard Hughes Medical Institute
(www.hhmi.org). All rights reserved.



Figure 1.3: Ras protein with a non-
hydrolyzable analogue of GTP (blue).
Proteins of this family regulate cell
behavior such as growth and divi-
sion. It is expressed in all ani-
mals.  The illustration is adapted
from the original by David S. Goodsell,
the Scripps Research Institute (2012).
doi:10.2210/rcsb_pdb/mom_2012_4 6

Figure 1.4: A T cell (at the bottom in
blue) recognizes and attacks a leukemia
cell (at the top side in green). The
CAR molecule is shown in red, bound
to CD19 on the leukemia cell. The
bound lead to activation of the T cell,
which releases perforin (purple), form-
ing pores in the cell surface. Granzymes
(magenta) then enter through the pore
and initiate apoptosis to kill the can-
cer cell. The illustration is adapted
from the original by David S. Goodsell,
the Scripps Research Institute (2017).
doi:10.2210/rcsb_pdb/mom_2017_10 6

dataset for training; the conventional models used were not powerful
enough; and—in some cases—the prediction problem was formulated
inadequately. Recently, deep learning—a set of machine learning
methods inspired by neurons in the brain—achieved breakthrough
results for many problems that were beyond capabilities of conven-
tional machine learning. It can advance the current state of machine
learning in proteomics.

Part II describes how to overcome traditional challenges in frag-
ment intensity prediction. A general deep learning architecture is
presented (Chapter 5) that can be trained (Chapter 6) to predict vari-
ous peptides properties including fragment intensity patterns. The
problem of a missing ground-truth is addressed by utilizing a new
resource of high-quality spectra from synthetic tryptic peptides. The
model reformulates the fragment intensity prediction problem and
is capable of accurate predictions as evidenced by comparing it with
current standard models and experimental spectra covering other

organisms as well as non-tryptic proteases (Chapter 7).

Spectrum predictions are not useful in and of itself. They are
useful when applied. Part III shows three applications. First is the
generation of in-silico spectral libraries for experiments using data in-
dependent acquisition (Chapter 8). Second, peptide database search in
proteomics experiments using a data-dependent acquisition method
is improved and allows much more stringent error tolerance levels
(Chapter 9). This stringency enables peptide identifications of highly
complex biological samples. The third application demonstrates this
in the context of metaproteomics—samples containing peptides from
not one, but many organisms (Chapter 10).


http://dx.doi.org/10.2210/rcsb_pdb/mom_2012_4
http://dx.doi.org/10.2210/rcsb_pdb/mom_2017_10

2
Mass spectrometry-based proteomics

Mass spectrometry (MS) expands our understanding of life and the
underlying complex biological processes and enables investigation
of proteomes in unprecedented detail”®. It does so by providing a
means to measure small molecules fast and accurately, thus allowing
the identification and quantification of thousands of proteins in a
single experiment.?™"" Aided by computational data analysis, MS
facilitates the proteome-scale analysis of biological systems'* and
permitted first drafts of the human proteome '37'5.

The high-throughput and high-accuracy capacity has made MS the
prevalent method in proteomics. There are two major approaches
termed “top-down” and “bottom-up” *® (Figure 2.1).

The top-down approach'” studies intact proteins and allows the
identification of proteoforms'® and degradation products. The
protein isolation and sample separation required in top-down analysis
are extensive and challenging, constraining the approach to limited
sample complexity>°. Effective fragmentation of proteins with a high
molecular mass remains an additional challenge. The large number
of potential fragments generate weak intensity signals that impede
sequence identification .

The bottom up approach (Figure 2.2) can analyze complex mix-
tures by first enzymatically digesting proteins into peptides. Re-
sulting peptides are separated by liquid chromatography (LC), put
into gas phase—commonly by electrospray ionization (ESI)— and
subsequently subjected to tandem mass spectrometry (MS/MS). In
a popular peptide identification technique, experimental fragment
spectra are compared to theoretical spectra generated from digesting
a protein database in-silico. Proteins in the sample are then inferred
from peptide identifications of the sample. The following will de-
scribe this workflow that generates proteomics data in more detail. It
is the prevalent technique today.

The process of peptide identification will be discussed later in the
context of computational proteomics (Chapter 3).

Top down proteomics

Protein

Protein fragment
ladder

Fragment in

Bottom up proteomics
Protein Peptide fragments

Digestion with
an enzyme

Ay = —
\

MS1 MS!

-

Identify protein
Deduce primary
structure

2

Figure 2.1: Top down versus bottom up
proteomics. In top down proteomics
(top) protein ions are put into gas phase
intact. Fragmentation produces protein
ion fragment ladders that can be used to
infer their primary structure. In bottom
up proteomics (bottom) proteins are en-
zymatically digested to peptides that are
subsequently put into gas phase. The
analysis has two stages: MS1 determines
masses of intact peptides; in MS2 pep-
tides are fragmented, and the fragment
ion masses and their intensities are mea-
sured. Proteins are indirectly inferred
from MS1 and MSz2 peptide information.
Adapted from Chait '



Sample preparation Peptide separation Data acquisition by Data analysis and

and ionization mass spectrometry interpretation
Protein Peptide Q C-trap
) - = I
Trypsin - on - MaxQuant

A DDA trajectory  —

~ I~ - Perseus

<g§ § 4 ““ Orbitrap mass
\ / ~—_—_— analyzer
y 3 / ———» Targeted agg agg agg —— - Skyline
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Collision  Time-of-flight
cell mass analyzer

Figure 2.2: General bottom up proteomics workflow. In the sample preparation stage of bottom up workflows, proteins are extracted
and enzymatically digested to peptides. Peptides are separated and ionized. There are three main methods to acquire data. In
data-dependent acquisition (DDA), at MS1 level a full spectrum is acquired, which determines which precursors are selected and
fragmented at the MS2 level. Exemplary a quadrupole-orbitrap mass analyzer is shown, but other analyzer types can be used, too. In
targeted acquisition, a predefined set of precursor ranges is selected in the first quadrupole, subsequently the peptide is fragmented
and measured over time. The result is multiplexed transitions. In data-independent acquisition (DIA) all theoretical fragment ions
are measured usually by sequentially selecting precursors in wide mass-to-charge windows. The precursors are fragmented and
measured by, for example, a time-of-flight mass analyzer. The result are multiplexed fragment spectra that are often interpreted with
the help of known fragment spectra. Adapted from Aebersold and Mann7.

2.1 Sample preparation

Sample processing

Proteomic samples are prepared for analysis specifically for the given
research question to facilitate a comprehensive identification of its
peptides and proteins. Individual preparation steps can be realized by
different techniques, in general though, the subsequently described
generic steps are followed. The first step is protein extraction from
cells by mechanical force or reagents'. Certain protein classes can be
enriched optionally. Also, proteins may be fractionated and denatured
to simplify the subsequent steps. To make them chemically inert,
Cysteine (Cys) residues are carbamidomethylated. Then, proteases
such as Trypsin, LysC, AspN, GluC, ArgC, and Chymotrypsin, are
used to digest proteins into short polypeptides (Figure 2.3 illustrates
trypsin and chymotrypsin). Trypsin is the most popular choice,
because of its desirable properties for MS analysis: It cleaves the
N-terminal at Lysine (Lys) and Arginine (Arg) resulting in peptides
that contain a basic residue at the C-terminus and an average length

of 14 amino acids.
Figure 2.3: Trypsin and Chymotrypsin. The peptide mixtures resulting from digestion are complex and

Mustration (‘;f ttrYI;Sin 1(;3?’) arg‘ld fChY‘ need to be further separated before they can be analyzed by MS.
motrypsin (bottom). apted from .. .
the original by David S. Goodsell, Reverse-phase liquid chromatography (RP-LC) separates peptides

the Scripps Research Institute (2003). based on their hydrophobicity and can be directly coupled to a mass

doi:1o0. csb_pdb 6 . . ..
doi:10.2210/1csb_pdb/mom_2003_10 spectrometer, which is commonly used and known as liquid chro-


http://dx.doi.org/10.2210/rcsb_pdb/mom_2003_10

matography mass spectrometry (LC-MS) (next section). Peptide mix-
tures with post-translational modifications (PTMs) are particularly
complex and are therefore often enriched and purified in a separate
step.

Reverse-phase high-performance liquid chromatography

LC separates peptides in a sample by one of their chemical properties
over time. (Figure 2.4) The organic sample is mixed with an aqueous
solution (mobile phase) and is pumped through a column of porous
adsorbent material (stationary phase). Each peptide (analyte) interacts
differently with the adsorbent, determining its retention time within
the column.

RP-LC?3 is based on hydrophobic interaction, which is determined
by a peptide’s amino acid sequence. Hydrophobic peptides contain
many aliphatic, non-polar amino acids such as Leucine (Leu) and
Isoleucine (Ile) and have longer retention times. Peptides consisting
predominantly of non-polar (e.g. Serine (Ser), Threonine (Thr)), basic
(Arg, Lys, and Histidine (His)) or acidic (Aspartic acid (Asp), and
Glutamic acid (Glu)) amino acids have weaker interactions and shorter
retention.

Usually, the ratio of acetonitrile or methanol in the mobile phase is
gradually increased (linear gradient) to prevent later eluting peaks
from flattening out. This ensures high peak capacity and high resolu-
tion. A common nano-LC has inner diameters from 75 pm to 300 pm
are packed with 1.9 pm to 5 pm C,g particles and has a flow rate from
100nlmin~! to 400nlmin~'.

Separation benefits the mass spectrometer two-fold. It enhanced
the dynamic range of the analysis because the elution of peptides is
spaced out over time. The possibility to couple RP-LC on-line to the
mass spectrometer is another advantage. These properties are the
reason for ubiquitous use of RP-LC in bottom-up proteomics.

Various scales have been proposed that consider different aspects
influencing hydrophobicity. 242 Those scales can be utilized to con-
struct retention time predictors, which can aid subsequent MS anal-
ysis.?” The most prevalent retention time models will be discussed
later in section 4.3.

Although the chemical properties of peptides are fixed, LC varies
from laboratory to laboratory and influences retention times. The
variation stems from laboratory-specific setup, differences in C,g
material, and how columns are packed. Humidity and temperature
also influence retention times and may even be unstable in a single
laboratory between runs.?® To make retention times comparable, a
reference set of peptides can be spiked into the sample as a standard.
Retention times of other peptides can then be interpolated to these
known references because all peptides in the sample are exposed to
the same variation. This technique is called indexed retention time
(iRT)*7*9 and allows for a better comparison of retention times. An
example of a retention time standard is PROCAL?.
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Figure 2.4: Reverse-phase liquid chro-
matography. The chromatographic col-
umn contains a solid porous adsor-
bent material (stationary phase) through
which the solution (mobile phase) flows.
Analytes (peptides A, B, and C) are sep-
arated because they interact differently
with the stationary phase. They elude at
different times based on this interaction.
Adapted from Nelson and Cox **.
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Figure 2.5: Retention time (RT) and in-
dexed RT (iRT). a) Chromatogram of a
cell line digest. The dashed gray line
highlights the linear gradient of organic
solvent (%B). b) The predefined pep-
tides A and B serve as reference points
to estimate an iRT value for peptide x
(left panel). iRT is transferable between
laboratories, setups and gradients (left
and right panel). Figure modified from
Escher et al. *9.

Figure 2.6: Electrospray ionization.
The solvent flows through a needle (left)
where it forms a droplet at its tip. The
application of a high voltage lets the
droplet burst into an aerosol, resulting
in charged peptides. These can then be
directed, filtered, and measured within
the mass spectrometer. Adapted from
Nelson and Cox *2.
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2.2 Mass spectrometry

Mass spectrometers are used for the identification and quantification
of molecules and perform several functions to do so. The instruments
have at least three components: an ion source, a mass analyzer, and a
mass detector. The ion source charges the analyte and transfers it into
the gas phase so that it can be directed and measured electrostatically.
Mass analyzers separate analytes in space or time based on the mass-
to-charge (m/z) ratio. The mass detector measures the mass-to-charge
ratio of selected ions. In addition, some mass spectrometers contain
ion-storing devices that can confine ions for a period of time. The
storage capability helps to multiplex the analysis, for example, when
a selected set of ions is currently measured by the mass analyzer.
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Various ionization techniques exist, but ESI3° (Figure 2.6) emerged
as the prevalent technique in bottom-up proteomics, as it can be
coupled on-line to LC. ESI is a "soft" ionization technique that causes
very little fragmentation of the analytes. The solvent eluting from
the RP-LC column flows through a needle forming a drop at its tip.
A potential difference (2kV to 4kV) is applied between the needle
and the detector entrance of the mass spectrometer. The solvent
forms a Taylor Cone and bursts into an aerosol when the droplets
pass the Rayleigh Limit3'. The mechanics of this process are not yet
fully understood, but two models exist: ion evaporation3>33 and the
charged residue model.3"34 ESI mostly generates doubly, or higher
charged peptides in the setting described here, namely using tryptic



digests and acidic gradients.

Ionization efficiency can be increased by using a very small needle
diameter353° (nanospray). This reduces the amount of sample needed
and also leads to less concentrated solvent impurities. Another way
to increase efficiency is to modulate the solvents surface tension by
adding DMSO. 37

Mass analyzers

The mass analyzer is the component of a mass spectrometer that gen-
erates mass spectral data. It separates charged molecules—ions— by
their m/z values and measure their abundances. Electrodes modulate
electromagnetic fields and thereby accelerate and steer the ions. Ion
trajectories in those fields and the ions responses to applied forces
indicate ion m/zs and abundances. There are different techniques to
analyze those responses, and they often lend the mass spectrometers
their name.3® This section discusses the function of four exemplary
types of mass analyzers: linear ion traps (LITs), quadrupole mass fil-
ters (QMFs), high-resolution Orbitraps and time-of-flight (TOF) mass
analyzers.

The standard for many applications today is hybrid instruments
that combine several mass analyzers. An example is the Thermo
Fisher Scientific Orbitrap Fusion Lumos (Figure 2.7). QMFs direct
and filter ion classes of interest. It comes with two modes for mass
analysis, a low resolution LIT, and a high-resolution Ultra-High Field
Orbitrap. Another quadrupole serves as a collision cell.

Electron multiplier

Electron multipliers34° detect ions upon impact and are commonly
coupled mass analyzers lacking an integrated detector. When an ion
hits the electron multiplier, dynodes emit multiple electrons. The
dynode of the electron multiplier — or a series thereof — is arranged
so that the emitted electrons are multiplied again (Figure 2.8). This
amplified signal can then be recorded by an anode.

Linear ion trap

In addition to mass analysis, linear ion traps+“+* can store ions over
a period of time before further analysis (Figure 2.9) and consist of
four parallel electrode rods. Ions are confined radially by applying
alternating current (AC) to pairs of electrodes. The frequency lets
the ions oscillate between the rods confining them. This frequency is
in the radio frequency (RF) range and therefore called main RF. The
rod is segmented in three parts and a different direct current (DC)
is applied. The potentials form a potential well so that the ions are
confined axially within the middle segments. Ion motion is induced
by both currents, with smaller ions moving faster than larger ions.
Once trapped, the ions follow a corkscrew-like trajectory in response
to the main RE. Only ions within a certain m/z-range follow a stable

ETD source

Inlet
*— Seqmented quadrupole
Ultra-high fleld Orbitrap

o \\\\\\\ \

!
C-trap % \\ \

N

Collision cell 7

Dual-pressure / 9@0\4§

linear ion trap \y

Figure 2.7: Fusion Lumos ETD mass
spectrometer.  Schematic of a Fu-
sion Lumos ETD mass spectrometer.
Quadrupoles select ions of interest and
steer the ion flow. It is equipped with
two mass analyzers the high-resolution
Orbitrap and the low-resolution linear
ion trap. A quadrupole serves as a colli-
sion cell. Adapted with permission from
Thermo Fisher Scientific.

— Anode

Figure 2.8: Electron multiplier. An ion
hits the electron multiplier, which emits
several electrons. The device is curved
in a way so that the electrons hit the mul-
tiplier again, reinforcing the signal. The
signal is recorded by an anode (bottom).
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Figure 2.9: Linear ion trap (LIT). Ions
are trapped radially by main RF. Ax-
ially, ions are trapped in a potential
well created by DC. Ramping the main
RF allows a controlled ejection of ions
through a slit in the rod. Adapted from
Savaryn et al.3®
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with k: a machine-dependent constant.
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Figure 2.10: Quadrupole mass filter.
Ions are guided through the Quadrupole
by the applied DC and main RF to two
opposing rods, respectively. The result-
ing field provides stable secular trajec-
tories for ions of selected m/z ranges.
Those ions are directed to subsequent
modules inside the mass spectrometer.
Conversely, ions outside the selected
m/z range, do not pass the Quadrupole.
Adapted from Savaryn et al. 3
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trajectory, which effectively filters ions outside of that range. Specific
ion m/zs are scanned by ejecting them through slits and recording
the number of ejected ions with electron multipliers. An additional
AC is applied to the rods with ejection slit. The frequency lets ion
packets with a specific m/z resonate with the rod, eventually exiting
through the slits (resonance ejection).

In a scan, the main RF is continuously incremented so that ions
with increasing m/z are ejected. The actual m/z value of an ion
packet can be determined from the main RF and exit rod AC. Ion
stability in the electric field, therefore, determines measurement ac-
curacy. The scan speed of linear ion traps is high, but resolution
and mass accuracy are low. An additional function of ion traps is
ion isolation — a preliminary step before fragmentation (section 2.3).
Certain ion m/zs can be isolated by superimposing the ejection rod
AC with multiple frequencies, thus targeting multiple m/zs. This
complex superimposed isolation waveform ejects all unwanted ions
simultaneously.

TOF43 mass analyzers derive ion m/z values from the time it
needs to travel a trajectory with fixed acceleration. Lighter ions
have a higher velocity than larger ions at fixed acceleration; thus
m/z can be derived* Ions are accelerated with a certain voltage in
high vacuum and detected by a coupled detector such as an electron
multiplier. Reflectors can increase the flight distance, which increases
m/z resolution and reduces measurement variance. Scan speed of
TOF mass analyzers is fast with high accuracy and resolution. In
combination with a quadrupole (next section) and a collision cell,
such an instrument is called quadrupole time-of-flight (QTOF).

Quadrupole mass filter

Like an ion trap, a quadrupole4+4> consists of four rods and confines
ions radially by applying AC and DC to two opposing rods, respec-
tively. Also similar to an ion trap, ions are radially confined by main
RF from AC applied to the rods of the quadrupole. The difference is
that an additional quadrupolar DC is applied to the rods, instead of a
potential well in ion traps. The DC is applied with equal amplitude
to opposing pairs of the rods. Influenced by AC and DC, ions move
along the axial dimension in a continuous stream and are not trapped,
like in ion traps.

Filtering works by steering ions away from their stable paths, so
that they either crash into rods and de-charge or exit the quadrupole
radially. Those positive rods act as a "high mass pass filter", letting
only ions above a certain m/z pass. Smaller ions are drawn towards
the negative rods which act as "low mass pass filter".

In combination with a subsequent mass detector, a quadrupole
can also scan ion m/zs. For a scan, the current amplitudes are ad-
justed so that successively larger ion are steered towards the detector.
This makes the acquisition of large scan ranges slow. Therefore,
quadrupoles are commonly used in hybrid instruments for their ef-



fective mass filtering and ability to switch fast between small m/z
ranges

Orbitrap Fourier transform mass analysis

Fourier transform mass spectrometry (FTMS)4® measures the image
current of ion trajectories to derive their m/z from the oscillation
frequencies. The Orbitrap47 is the prime example of FTMS mass
analyzers. It consists of two electrodes: an outer electrode shaped like
a barrel and an inner electrode shaped like a spindle. Ions enter the
Orbitrap tangentially to its electric field, are then pulled towards the
inner electrode and adopt a stable orbit around the inner electrode.
Axially, the ions oscillate back and forth within the outer barrel-like
electrode. The axial oscillation frequency is inversely proportional to
the ions m/z.

Signal measurement requires multiple ions in the magnetic field,
resulting in lower sensitivity than other mass analyzers. Orbitraps
cannot store ions and are therefore mostly combined with ion traps
to collect the ion stream for them. Accuracy of Orbitraps is very
high, and m/z resolution increases linearly with the transient time
(the time the frequency is measured). Speed (> 40 Hz), accuracy (<
2ppm), and resolution (> 1 million) were recently enhanced by the
introduction of the compact high-field (HF) Orbitrap and improved
algorithms. Orbitrap-based hybrid instruments (such as the Thermo
Scientific Q Exactive®) are the most commonly used platform in
bottom-up proteomics today.

2.3 Tandem mass spectrometry

Liquid chromatography High-resolution MS1
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Measuring the m/z of a peptide with a first scan (MS1) can identify
its amino acid composition when its mass is unique. This does not
mean, however, that the peptide sequence can be deduced. Two
peptides may be composed of the same set of amino acids but differ
in their sequence. To deduce its sequence, a peptide is fragmented,
and those fragments are measured in a subsequent scan (MS2) (Figure
2.12). Measuring prefix and suffix fragments in a subsequent (MSz2
or MS/MS) scan yields valuable auxiliary information. For this,
a peptide ion population with a common m/z (precursor m/z) is
isolated while other ions are parked in an ion trap. The isolated ions
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Figure 2.11: Orbitrap Fourier trans-
form mass analyzer. Ions oscillate in
a stable orbit in an electric field spanned
by an outer and an inner electrode. Ion
m/z values are derived from the oscil-
lations within the field through FTMS.
Adapted from Savaryn et al. 3%
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with w;: the axial oscillation frequency
and k: a machine dependent constant

MS2 fragmentation

Figure 2.12: Tandem mass spectrome-
try. The m/z of peptides eluting (left) at
a given retention time is recorded with
high-resolution MS1 scans (middle).
Sets of ions are selected, fragmented,
and measured with MS2 scans (right).
The peptide sequence can be deduced
from the MS2 scan. Adapted from
Maarten Altelaar et al. 49.
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Figure 2.13: Fragment ion nomencla-
ture. The established nomenclature dif-
ferentiates three bonds that may break
during fragmentation. A-, b- and c-ions
are the fragments on the N-terminal side
and x-, y-, z-ions are on the C-terminal
side of the peptides. The ions are num-
bered based on the number of residues
they contain. N is the total number of
amino acids and m the residue before
the fragmentation. More ion types exist.
See Figure 2.14 for an example. Adapted
from Steen and Mann >°

R,

are then fragmented, either by physical force or chemical reactions in
the gas phase. The following details the physical structure of peptides
and the necessary nomenclature and available techniques to fragment
them. Also, three strategies to select and measure ion populations are
discussed, namely data-dependent, targeted, and data-independent
acquisition.

Nomenclature

Roepstorff, Fohlman>' and Biemann>*°3 devised the established
nomenclature that dissects a peptide into different sets of pre- and suf-
fixes. A peptide usually fragments at the peptide backbone because
it has the weakest bonds. The amino acid residues (Rn,) typically
stay intact. Three possible fragmentation sites are distinguished and
termed a, b, and ¢, when they are prefix and x, y and z when they
are suffix (Figure 2.13) Per convention, the N-terminal marks the start
of the peptide sequence (left) and C-terminal marks its end (right).
Prefix fragment ions are numbered starting from the N-terminal, with
m indicating the number of amino acid residues in the fragment. n
stands for the total number of residues of the intact peptide before
fragmentation (precursor). Figure 2.14 shows an example.

In addition to the breakage points defined by the abc and xyz
nomenclature, other fragment ion types can be produced during
fragmentation. During fragmentation, small molecules may break
off from the fragment ions producing ions that are called neutral
losses. Water (H,O) or ammonia (NH,) are the most frequent neutral
losses. Such ions produce characteristic peaks shifted by the m/z of
their neutral loss. For example, a y3 ion losing an ammonia is called

0
| f | . .
H,N -N _N N 0
N ~7 N N H \g
il S ! |
R, 5

Figure 2.14: Peptide backbone exam-
ple. The peptide backbone may frag-
ment at different sides. Y- and b-ions
are highlighted in this example as well
as one a-ion. See Figure 2.13 for the
nomenclature. Adapted from Steen and
Mann >°
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Another type of ion, internal ions, results from multiple fragment
events affecting one ion. Often internal ions are results of a combi-
nation of one y and ion b ion fragmentation and lose both terminals.
Immonium ions are a special case of internal ions, that only contain
a single amino acid residue. They are denoted by their amino acid
one-letter code. It must be noted that the list of fragment ion types
is not exhaustive. However, it contains the ion types that are most
frequently considered by the computational approaches covered in
chapter 3.
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Figure 2.15: Annotated spectrum. Frag-
ment ions in a MS2 spectrum are an-
notated in reference to the peptide

. . sequence AAGATTANITQAIEQM(ox)R.
dependent on fragmentation methods and the peptide sequence.>> M‘jny peaks can be explained by promi-

The following sections detail fragmentation patterns that are specific nent b- and y-ion series including their
H,O and NH; losses. Some of the
most intense peaks, though, remain un-
explained. Adapted from Neuhauser
etal.54.

The intensity distribution of fragment ions is non-uniform and

to different fragmentation methods.

Collision-induced dissociation

Collision-induced dissociation (CID) is a low-energy fragmentation
method that excites ions in an ion trap so that they collide with
molecules of an inert gas.5*5® For example, a dual linear ion trap
consists of two pressure cells, one with high, and one with low pres-
sure. Scans are performed in the low pressure and fragmentation
in the high-pressure cell. After an ion population is isolated, it is
excited in the high-pressure cell, typically using the same mechanism
as for ejection. The cell is filled with inert gas (helium). Excited ions
collide with the gas molecules and fragment into smaller ions. Frag-
ment ions have smaller m/z and are thus not excited by the applied
AC effectively preventing further fragmentation. Amide bonds in
the peptide backbone are most likely to break. Such a fragmenta-
tion generates characteristic y- and b-ion series. The ‘'mobile proton’
model597°% offers explanations for several observed fragmentation
pathways. Neutral losses, such as H;PO,, are frequent in CID spectra,
while immonium ions are often lost due to their small m/z value.

Higher-energy collisional dissociation

Higher-energy collisional dissociation (HCD) accelerates ions into an
inert gas using a DC offset to provoke fragmentation.® The principal
is similar to collision-induced dissociation (CID), except that the ions

15



Figure 2.16: Collision induced disso-
ciation spectrum. MS/MS spectrum
of the doubly-charged peptide SGEL-
GAVIEGLLR fragmented with CID. Only
a selection of the identified peaks is an-
notated. See Figure 2.17 for HCD and
Figure 2.18 ETD fragmentation spectra
of the same peptide.

Figure 2.17: Higher-energy collisional
dissociation spectrum. MS/MS spec-
trum of the doubly-charged pep-
tide SGELGAVIEGLLR fragmented with
HCD. Only a selection of the identified
peaks is annotated. See Figure 2.16 for
CID and Figure 2.18 ETD fragmentation
spectra of the same peptide.
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nearly instantly fragment upon impact and not through excitation.
Precursor ions are first isolated by an ion trap or quadrupole and are
then accelerated into a dedicated quadrupole mass analyzer called
"collision cell"®. HCD results in similar fragmentation patterns as
CID with dominant y- and b-ion series. Slight differences are due
to the higher energy used for collision.® Particularly H,O and NH,
neutral losses are frequent in HCD spectra, while H,PO, neutral
losses are less common.% Lys, His, and Tyrosine (Tyr) to produce
characteristic immonium ions. % Short activation time and excellent
performance for tryptic peptides established HCD as the current

standard fragmentation technique for bottom-up proteomics. %
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Electron-transfer dissociation

Electron-transfer dissociation (ETD)7 transfers electrons to the pep-
tide backbone so that radical anions (e.g. fluoranthene) fragment it
chemically. In contrast to collision-induced dissociation (CID) and
higher-energy collisional dissociation (HCD), kinetic energy is not
employed. ETD produces mainly c- and z-ions. Sidechains and modi-
fications typically stay intact, which makes this method interesting
for the analysis of PTMs.% Reaction efficiency is time-dependent,
leading to a slower fragmentation than in CID and HCD. Further,
higher charge states are required for efficient fragmentation.® This
prevents convenient application to ESI-based tryptic digests that most
frequently charry only two or three charges. This is why ETD is
mostly used when complementary information to CID or HCD scans
are essential.”® The approaches can also be directly combined into



ETciD and EThcD yielding four ion series.”"7>
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Acquisition strategies

How a mass spectrometer selects precursors for fragmentation de-
pends on the acquisition strategy chosen for the experiment. Isolating
a small m/z range ensures that precursor selection is specific, but
potentially not the whole m/z space can be covered by such specific
isolations. Depending on the requirements of a given experiment,
different strategies can be deployed to minimize shortcomings from
this trade-off. Data dependent acquisition (DDA) selects small m/z
ranges depending on precursor abundancy (Figure 2.19 a), whereas
data independent acquisition (DIA) partitions the whole m/z space
into wider isolation windows (Figure 2.19 b). Targeted strategies
preselect specific precursor m/z ranges and isolate those over an
extended retention time range (Figure 2.19 c).

Data-dependent acquisition

In DDA73 the m/z values isolated for MS2 scans is dependent on
a fixed number of the most abundant peaks in the MS1 scan. The
method does not require preliminary assumptions about the sample
composition, making it particularly suitable for discovery proteomics.
Precursors already fragmented, are excluded for a fixed time to avoid
its repeated selection. Technical variability influences peak intensity
and subsequently, the precursor selection for MS2.74 In addition, the
precursor selection is biased by the MS2 scan limit per MS1 peak.
The stochastic nature of this selection process hinders reproducibility
and can lead to different identification and quantification results of
the same sample in different runs.”> Despite these complications,
DDA enables the identification and quantification for more than 5000
proteins ™" per hour without relying on a priori information, makes it
the prevalent acquisition method today.

Targeted data acquisition

Targeted acquisition”® passes a predefined list of precursors to the
mass spectrometer for isolation and fragmentation. By directing the
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Figure 2.18: Electron-transfer disso-
ciation spectra. ~MS/MS spectrum
of the doubly-charged peptide SGEL-
GAVIEGLLR fragmented with HCD.
Only a selection of the identified peaks
is annotated. See Figure 2.16 for CID
and Figure 2.17 HCD fragmentation
spectra of the same peptide.
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Figure 2.19: Acquisition strategies for
bottom-up proteomics. a) In DDA
MS/MS scans are triggered based on
high-intensity MS1 scans in real-time.
Selected masses are then dynamically ex-
cluded. b) Targeted acquisition triggers
MS/MS scans for the m/z ranges of pep-
tides that are the focus of the analysis.
¢) DIA isolates, fragments and measures
wide constant m/z ranges independent
of the peptides analyzed. Adapted from
Sinitcyn et al. .
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mass spectrometer, this method overcomes the inherent stochasticity
of DDA at the expense of surrendering freedom from assumptions.
It is necessary to determine relevant m/z before the analysis so that
the mass spectrometer does not have to decide dynamically. Single
reaction monitoring (SRM), multiple reaction monitoring (MRM) 7778
and parallel reaction monitoring (PRM)7° are implementations of this
method that all allow reproducible and highly accurate measurements.
Targeted approaches are currently limited to small sets of a couple of
hundred proteins. Consequently, they are predominantly used when
reproducibility and quantification accuracy is paramount and rely on
other methods for peptide identification.

Data independent acquisition

DIA®" partitions the MS2 space into usually wide isolation windows
after an MS1 scan. The MS2 windows are iteratively circled inde-
pendent of MS1 precursor abundancy and cover the complete m/z
range. By avoiding precursor-based decision making, DIA is less
biased than DDA and yields a comprehensive coverage at the expense
of more complex MS2 spectra. Through wide isolation windows,
several peptides can be co-isolated and co-fragmented resulting in
chimeric MS2 spectra. This requires an additional deconvolution
step for subsequent analyses. A prominent implementation of DIA is
sequential window acquisition of all theoretical fragment ion spectra
(SWATH).%283 The application of DIA workflows is growing and re-
cent publications®+ show superior performance over DDA in peptide
and protein identification.



3
Computational proteomics

A typical one-hour DDA run generates more than fifty thousand MS2
spectra. This rate of data generation is far beyond what researchers
can manually interpret. Consequently, from the very beginning of
proteomics, researchers have developed algorithms and software ap-
plications to automate various steps in the workflow. Chapter 2
discussed the data generating workflow, the process that biological
samples undergo to produce mass spectrometric data — from cell
lysis to the generation of MS2 spectra. This chapter on computational
proteomics follows this workflow backward (Figure 3.1). The compu-
tational analysis starts with the identification of peptides from MSz2
spectra (section 3.1) to eventually quantify the proteins that were in
the original sample (section 3.2). Mass spectrometry data is noisy,
and some identifications in the process can only be performed with
some inherent statistical error. A particular focus will, therefore, be
on the estimation and control of errors. Data from previous research
can often help to streamline assumptions and greatly simplify com-
putational analysis. It also is the foundation for training every of the
machine learning models covered in the next chapter (section 4.3).
In preparation for that, section 3.3 of this chapter discusses different
proteomics data types and where to find it.

3.1 Peptide identification and validation

The goal of bottom up proteomics is to identify and quantify proteins
in a sample. As the proteins were digested for better MS results and
fragmented to derive sequence information, the first step is to identify
peptides from MS2 data. To do so, various approaches exist®%.
The most direct approach — de-novo sequencing — aims at deriving
a peptide sequence directly from an MS2 spectrum. This process
is difficult because noise peaks in the MS2 spectra complicate the
confident derivation of the correct amino acid sequence. The very
large space of potential peptide sequences and error control further
impede de novo sequencing. It is significantly easier to look up
whether an unidentified spectrum is part of a spectral library of already
identified spectra. Naturally, this approach demands a collection of
identified peptide spectrum matches (PSMs) that cover the relevant
peptides in the sample of interest. Such a collection of identified

Bottom up MS workflow

® 1. Sample preparation

2. Fractionation

3. Ionization

Computational Analysis

4. Protein quantification A

3. Protein inference

4. MS1

2. Peptide inference

1. Preprocessing

5.MS2

Y Mass spectrometry data °

Relative intensity
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Figure 3.1: Overview: computational
proteomics The computational pro-
teomics workflow mimics the MS work-
flow that generates the data. From the
data (bottom) in form of MS2 and MS1
spectra it works its way up, first identify-
ing peptides, then proteins, then protein
quantities.
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Figure 3.2: Database searching. In
database searching, spectra are first pre-
processed to enforce spectrum quality
standards (1.). For each spectrum, the
peptide database is then restricted to
sequence candidates with theoretical
m/zs that match the spectrums precur-
sor m/z (2.). A spectrum is annotated
with each candidate sequence (3.) and
subsequently scored (4.) based on the
similarity between the experimental and
theoretical spectrum.
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PSMs may not be available. The database searching approach narrows
the space of peptide candidates to peptides derived from a protein
database. Such databases are based on prior genomic information,
for example, genomic or RNAseq experiments, and as such do not
require prior identification of the peptides. The target-decoy strategy
is a simple yet powerful approach to control error rates in database
searching. The combination of database searching with the target-
decoy strategy is the prevalent approach in discovery proteomics
and is consequently discussed first after an introduction to data
preprocessing that is essential also to other approaches.

Data preprocessing

The effectiveness of the identification algorithms discussed in the
following is determined to a relevant extent by data quality. Raw
spectra may contain noise from chemical or electronic sources®.
Commonly, the preprocessing of spectra, therefore, includes several
steps®’. Strategies to remove some noise can be categorized into
three broad classes®®. The first class is spectral scoring. It accesses
data quality and filters low-quality spectra but does not modify the
selected spectra®. Second is precursor preprocessing, which tries to
enhance MS1 information. Examples include precursor charge state
identification, peak centroiding and picking, spectra joining and
automatic calibration®°. In addition, MS2 spectra can be subjected
to decharging and deisotoping based on the precursor information.
The third class is MSz spectrum processing. Techniques include peak
filtering based on cutoff thresholds and intensity normalization".
Many popular workflows rely on heuristic criteria. The popular
MaxQuant9*93 software, for example, preprocesses the data on several
levels. Peaks in MS1 spectra are detected by fitting a Gaussian and
peaks are de-isotoped. In MS2, Maxquant applies a local peak filter
selecting only the n most intense MS2 peaks in a 100 m/z window.
Spectronaut?4, a prominent DIA search engine, per default only
includes the 6 most intense MS2 peaks in its spectral library search.

Database search

To identify an MS2 spectrum, the best matching peptide sequence is
searched in a sequence database. The result is a list of PSMs that are
scored by the quality of each match.

The sequence database is a list of proteins that are expected to
be found in the sample. Such databases can be derived from the
genome of the organism or from RNAseq information for the sample
of interest. Uniprot% is a repository that offers protein databases
for many model organisms. The protein database is then digested
in-silico depending on the protease used to digest the sample. The
in-silico digest is performed by cleaving the protein sequences on
the cleavage sites specific to that protease, optionally allowing for a
specified number of missed cleavages.

The in-silico digest may include peptide modifications, such as



PTMs. Including modifications immensely increases the peptide
sequence search space. For example, Methionine (Met) frequently
gets oxidized, becoming oxidized Methionine (M(0x)). Including
this modification alone may already increase the database by several
factors.” As this modification may or may not occur, they are called
variable modifications. Fixed modifications, in contrast, are assumed
to always occur and therefore do not increase database size when
specified. An example is Cys that is carbamidomethylated in the
sample processing step to render it chemically inert.

For each spectrum, a list of candidate peptides is selected by
searching the database for peptides that match the precursor mass
(Figure 3.2). Mass errors are tolerated by a threshold that is dependent
on the mass accuracy of the instrument. A 20 parts per million (ppm)
mass tolerance, for instance, is common for Orbitrap readouts as an
example. Usually, the precursor mass filtering results in multiple
PSM candidates per MS2 spectrum.

A theoretical spectrum is then constructed for each PSM candidate.
The sequence is fragmented in-silico by calculating masses for ion
series frequently seen experimentally for that fragmentation method.
In the case of higher-energy collisional dissociation (HCD) these are
b- and y-ion series with H,O and NH, being common neutral losses.
Immonium and internal ions may be considered as well. When the
spectrum is not decharged, ion series for each potential charge up to
the precursor charge are derived.

Then, the theoretical spectrum is matched against the experimental
spectrum to annotate it. Each theoretical peak is matched against
the experimental peaks, again with some error tolerance as for the
precursor mass. When many ion types and neutral losses are con-
sidered, this may result in several annotations that explain the same
peak. MaxQuant9*% resolves this problem by an intricate rule-based
expert system>4 that decides which annotation to keep.

Many different scores have been devised to measure the quality
of experimental MS2 spectra. It can be determined by the number
of shared peaks?’, cross correlation%®, or probabilistically 997°°. Yet,
all the mentioned choices are not meaningful statistically. The next
section will discuss this in more detail.

Database search in combination with DDA is the standard work-
flow for bottom-up proteomics and has been implemented in a myriad
of applications. The above sketched the general principles, but imple-
mentation choices for specific steps are plentiful. Table 3.1 shows the
most ten database searching tools cited in 2018 and figure 3.3 shows
database searching tools by their overall number of citations. By both

100 gearch

measures, MaxQuant®>93 with its integrated Andromeda
engine, Mascot? and SEQUEST% are the most popular choices for
database searching software.

Usually, more than half of all spectra cannot be explained with

108

high confidence when searching for unmodified peptides'*®. How-

tUpdated data found at https://github.com/mvaudel/Verheggen 2017 (accessed
2019-03-05)

*When allowing only a single M(ox)
per peptide, the database already grows
by m, the total number of Met in the
database. Note, that m may be larger
than n, the number of peptides in the
database.
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Figure 3.3: Most cited database search-
ing software since 1994. The stacked
areas under the line indicate citations
per year. In 2018 Andromeda has the
most citations (see Figure 3.1). Adapted
from Verheggen et al. .

Citations
2018

Name Year

Andromeda'™® 2011 333

Mascot?? 1999 185
SEQUEST % 1994 143
X!Tandem *°* 2004 104
Comet %2 2013 76
MS-GF+ 193 2014 76
Paragon 4 2007 65
PeaksDB %5 2012 56
OMSSA 0 2004 48

MyriMatch *%7 2007 29

Table 3.1: Most cited database search-
ing software in 2018. The year col-
umn denotes the year of publication.
Adapted from Verheggen et al. %t
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PSM
PSM Score  g-value
153 0.003
122 0.005
122 0.005
100 0.007
1% FDR 85 0.009
cutoff 80 0010

0.01
0.
0.014

0.045
0.045

Figure 3.4: Target-decoy competition.
In target-decoy competition, the target
database of the organism competes with
a decoy database of peptides that are not
assumed in the sample. The top shows
how a decoy database is generated from
a tryptic in silico digest by reversing the
sequence (except the tailing R and K).
The concatenated database is used to
generate candidate PSMs for the spec-
tra generated in the experiment. These
PSMs are ranked according to a score,
and g-values can be calculated indicat-
ing the ratio of decoys at that score (bot-
tom). An FDR cutoff is chosen to declare
target PSMs with g-value below that cut-
off as confident identifications. Only a
selected number of PSMs are shown for
illustration.
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ever, including PTMs vastly increases the search space and makes
traditional database searching slow and error-prone.*® Open search is
a strategy that incorporates PTMs by allowing precursor mass errors
that cover PTM mass shifts at the PSM matching step to alleviate this
problem °%11°. Prominent open search examples are MSFragger "
and pFind'**. Still, the number of PSMs to evaluate dramatically
increases and error control remains a challenge.

In other experimental settings, such as metaproteomics *'3''4, search
spaces are vast, as the protein database incorporates the proteomes
of multiple genomes. Error control (next section) is crucial no matter
the size of the search space. Nevertheless, searches against large

databases are particularly vulnerable 109115116,

Evaluating identification quality and controlling errors

There are many sources of biological, technical, and software variance
in database searching that can lead to false identifications. A PSM
where the identified peptide did not generate the spectrum is a false
positive (type I) error. For example, this can occur when a peptide
very similar to the peptide of the spectrum’s origin gets a higher score
due to a more complete fragment ion series. A spectrum that was
generated by a peptide and that is not identified is a false negative
(type II) error. For example, when the spectrum-generating peptide is
not part of the sequence database it cannot be identified. Suboptimal
search parameters, a poor choice of the database, and insensitive
scoring measures are just a few sources of such errors arising during
the data analysis. There are plenty of other variance sources stemming
from the biological sample and technical measurement levels®>. It
is therefore crucial to precisely control errors and uncertainty in
database searching.

A simple approach to error control is the target decoy strategy
(TDS)*'7:118 (Figure 3.4). The database consisting of potentially cor-
rect target sequences from an in-silico digest is extended by decoy
sequences that are known to be absent from the sample. Several strate-
gies to generate decoy sequences exist, but the choice of methods
appears to have little influence on search results''%*>°. A common
strategy is to reverse target sequences while fixing protease cleavage
sites. It ensures equal numbers of target and decoy sequences in
the resulting concatenated database. The false discovery rate (FDR)
can be estimated by sorting top-scoring candidate PSMs and calcu-
lating the ratio of decoys by targets at one particular score cutoff. It
is important to note that this approach assumes that random false
positive identifications follow the same distribution as decoy identifi-
cations. Breaking or exploiting this assumption may lead to rigged
results 1724,

TDS allows the estimation of the global FDR of all PSMs, but not
a statistical confidence in a single PSM.®> This value, the posterior
error probability (PEP) can be calculated by fitting a bimodal mixture
model that separates target and decoy score distributions, usually



125,126 The posterior probabilities

by expectation maximization (EM).
subsequently can be used to estimate FDRs for arbitrary score cut-
offs 11127, Fitting mixture models is an alternative to TDS and does
work unsupervised without decoy sequences, but a semi-supervised
scenario that includes decoys improves the robustness of the fitted
model 28, A well-calibrated score'?# and distinct target and decoy
distributions are required for this approach for a proper model fit.
Due to its practical and conceptual simplicity, the de facto standard
for FDR today is TDS.

A myriad of scores to evaluate PSM quality have been proposed
and implemented 9510193, Most of them are heuristics rather than
statistically meaningful "> measures, but if they are, interpretation
proves difficult"*'. In addition to these main scores, search engines
often make use of delta scores, the difference of the first and second
ranking candidate PSM 9%, As each score has its own strengths
and weaknesses, it is attractive to make use of them in combina-
tion. Furthermore, the integration of auxiliary information such as
precursor mass error or peptide length allows ironing out model
biases. PeptideProphet 2*'3° and iProphet'3' are two examples that
integrate such information from different search engines. Later, in
section 4.3, the semi-supervised machine learning tool for the same
task Percolator '3*'33 will be discussed.

Spectral library search

In a spectral library search®>'34, previously identified high-confidence
PSMs are compared with unidentified spectra for identification. Such
a collection of previously identified spectra is called spectral library.
Instead of constructing theoretical spectra this approach uses data
from previous experiments to rank PSMs. As spectral libraries also
include intensity information more rigorous similarity measures can
be applied to compare two spectrum vectors. Popular measures are
the dot-product, cosine similarity, Pearson’s correlation or normalized
spectral contrast angle>. The latter has been shown to be particularly
sensitive when spectra are very similar+.

The incorporation of intensity information into PSM scoring allows
more stringent separation of true from false spectrum identifications.
In particular, some peptide sequences tend to generate only a few
fragments relative to their length. Several measures used in database
searching are biased towards peptides that produce many fragment
ions. For example, the Andromeda score has the underlying assump-
tion that all theoretical fragment ions can be experimentally observed.
Practically that is not the case which biases Andromeda score towards
long peptides where the ratio between the observed and theoretical
fragment ions is closer to one.

One assumption in spectral library search is that fragment intensity
patterns are consistent and reproducible if variables such as instru-
ments and instrument parameters are controlled for. Although this
assumption generally holds true for experimental data, some factors
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of variability can be hard to determine. Zolg et al.?®, for example,
identified shifts in fragmentation patterns over time while using the
same instruments and parameters.

Spectral libraries are typically constructed from spectra identified
in previous experiments '3>. When such a library stems from external
data, it can perform poorly because it is specific to the laboratory it
was measured at'3°. A common approach is therefore to generate a
spectral library specifically for a specific biological question with the
same instruments and settings. The most comprehensive approach
would be to generate such libraries from synthetic standards, but
for many applications and laboratories this would be prohibitively
expensive. In-silico spectral libraries based on spectrum predictions
have not been used so far, as prediction quality did not suffice for
confident and exhaustive identifications.

Several spectral library resources exist 3774 and will be discussed
in more detail in section 3.3. All share the same limitation: they
only cover a subset of all peptides and proteins, as not all peptides
have the same likelihood to be detectable by LC-MS. This limit is
more pronounced than in database searching, that searches against a
complete in-silico digest.

DDA spectra can be scored against spectral libraries, when precur-
sor and fragment ion tolerances are given. Software tools for DDA
spectral library search include MSPepSearch '+, SpectraST '4?, and
Bibliospec *34. This type of analysis is called spectrum-centric. It starts
from the spectra and tries to assign the most likely peptide sequence
to it. Spectral library search is computationally less demanding than
database searching.

Spectral libraries are a common tool in targeted proteomics, as
those experiments in any case rely on previously collected information
to identify which precursors to target. Previous experiments can be
used to construct a spectral library to identify the spectra subsequently
measured by targeted acquisition. Skyline '3 is the prevalent software
for this analysis. Instead of using statistical measures to control false
identifications, stringent similarity cutoffs are employed and often
identifications are manually verified *44.

Due to wide isolation windows, DIA spectra often contain frag-
ments from multiple precursors in one spectrum—they are chimeric.
A classical database searching or spectrum-centric spectral library
searches are unable to disentangle this relationship. The peptide-
centric approach®>'45, in contrast, starts from a peptide sequence and
tries to match its accompanying spectral library spectra to spectra
acquired by DIA. The most prominent software tools for spectral
library search of DIA spectra are OpenSWATH '4° and Spectronaut%4.
mProphet '+ implements FDR for DIA spectral library searches, al-
though the correct FDR estimation strongly relies on the quality of
the spectra as well as protein information that is present in both, DIA
data and the spectral library '47.

Due to the diversity of PTMs and the exponential combinatorics
of modified peptides, vast spectral libraries are needed. It is un-



likely that experimental high-quality spectral libraries will be able
to comprehensively cover modified peptide spaces needed in the
near future. A substantial amount of information may be hidden in
existing datasets because it is not covered by current spectral libraries.

De-novo sequencing

De-novo sequencing *4® deduces peptide sequences directly from MS2
spectra. To generate a set of peptide sequence hypotheses, the mass
differences of fragment ions in an MS2 spectrum are matched to
amino acid masses. Not relying on sequence databases or spectral
libraries makes this identification method disproportionately more
complex. The reason to rely on de-novo is that database searches
are fundamentally limited to organisms which proteomes are well
characterized. Further, they cannot identify peptides that escape cur-
rent in-silico genome translation and digestion. One specific example
is post-translational processes that modify peptides*#. The same
limitation holds true for spectral library search. In fact, de novo can
be viewed as a database searching against the database of all possible
peptides'>°.

Typically, de-novo algorithms build a spectrum graph'>° that rep-
resents the set of sequences of amino acid masses that match the
spectrum. The spectrum graph is then traversed to score each candi-
date sequence probabilistically. Alternatively, the scoring can rely on
empiric rules that have been established for fragmentation techniques
and prioritize peptide sequences accordingly. Notable examples of
de-novo sequencing algorithms include Lutefisk >*, PEAKS 5%, Pep-
Novo '3, pNovo+ >4, and Novor >>.

So far, only algorithmic approaches to de-novo have been discussed.
A different approach is to train a machine learning model to learn to
deduce peptide sequences from MS2 spectra. Section 4.3 will briefly
revisit de-novo sequencing and discuss this approach

Noise and missing ions in a series, sometimes only allow partial
sequencing of a spectrum and make de-novo error-prone. This is
a major problem, as the next section on error control for peptide
identification highlights. Nonetheless, there is no accepted method to
control error rates for de-novo today '49. That is the reason why the
use of de-novo approaches is almost entirely refined to settings were
sequences are unknown '5°.

3.2 Protein inference and quantification

Peptide identification is only one preliminary step in the data analysis
for bottom up proteomics experiments. Although this work largely
focuses on improving peptide identifications by applying machine
learning, a list PSMs is rarely the desired end-result of proteomics
researchers. They are interested in protein identifications or their
quantification. Due to its importance to practitioners, protein infer-
ence and quantification will be discussed briefly in the following.
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b) proteins peptides
1 2 3 4
A
B
o proteins peptides
1 2 3 4
A
B
D proteins peptides
1 2 3 4
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Figure 3.5: Mapping peptide identifica-
tions to proteins. Peptide sequences are
depicted as rectangles that are part of
certain proteins. Blue peptide sequences
can be distinctly mapped to one protein.
Red peptide sequences occur in more
than one protein. (a) distinct proteins.
(b) differentiable proteins. (c) indistin-
guishable proteins. (d) B is a subset pro-
tein. (e) B is a subsumable protein. (f)
proteins identified by shared peptides
only. Adapted from Nesvizhskii and
Aebersold '57.
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Figure 3.6: Grouping proteins by a pep-
tide mapping. Peptides are assigned to
corresponding proteins. A minimal list
of proteins covering all observed pep-
tides can be derived. Some proteins
can be differentiated by distinctly identi-
fied peptides (light blue) and constitute
their own protein group. Other proteins
(grey-blue) cannot be differentiated by
the identified peptides and are collapsed
into a protein group (F and G) or (H, I,
and J). Alternatively, groups can also be
collapsed into a single entry. An asterisk
marks a shared peptide. Proteins that
cannot be conclusively identified are not
counted (red). They are shown at the
bottom of the list (D). Adapted from
Nesvizhskii and Aebersold '57.
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Protein inference

In bottom up proteomics, a protein cannot be directly identified within
a sample, but it needs to be inferred from peptide identifications *>7.
A peptide is but a subsequence of a complete protein and it may
match to more than one protein. Figure 3.5 shows the exhaustive list
of peptide to protein mappings. Case a) distinct proteins is simple as
there is no ambiguous mapping. In case b) only the unique peptides
1 and 4 serve to infer protein expression as the other peptides are
ambiguous. The rest of the cases c)-d) does not allow unambiguous
peptide to protein mappings. That is why, in such cases, proteins are
grouped, and those protein groups are reported. It is common practice
to report a minimal list of protein groups that covers all peptides
identified '5°. There are various approaches to group proteins and
assign scores 577 Figure 3.6 shows an example.

Protein level FDR estimation is a complex topic, because different
viewpoints exist how to define error in protein inference and the mer-
its of the different definitions #1192, Estimating an unbiased protein
FDR has proven to be particularly challenging for large datasets *°%1%3.
The picked FDR approach is one method that avoids a bias towards
decoy proteins by pairing target and decoy sequences for one protein.
This approach does not have the computational overhead as other
approaches and scales to large datasets'®?. That is why the picked
FDR approach is well-received and implemented in software like
percolator '33. The TDS approaches developed for FDR estimation in
DDA can also be adjusted to fit DIA experiments and to calculate
protein FDR'47.

Protein quantification

Many proteomics studies are interested in the abundance of proteins
in a sample. The focus is mostly on relative protein abundance in
different conditions®'%4. All quantification approaches assume that
the MS signal is proportional to analyte abundance. This assumption
allows the relative quantification of thousands of peptides and pro-
teins in parallel and is one of the reasons for the success of bottom-up
MS.

Proteins can be quantified by spectral counting or peak integration
in label-free proteomics'%. In spectral counting 1°'%7, the number of
PSMs serves as indicator for protein abundance. Spectral counting is
unreliable because counts are not stable for low abundant proteins.
In addition, in modern DDA experiments , dynamic exclusion for-
bids the repeated measurement of the same peptide and thus lowers
the number of PSMs per peptide. Peak integration ', in contrast,
calculates the area under the curve (AUC) of peaks to estimate pro-
tein abundance. In DDA experiments, MS1 peaks are integrated
(MaxLFQ'%®, Figure 3.7a), whereas targeted software uses MS2 peaks
(Skyline "4, mProphet *#+). DIA may consider both MS levels.

Some quantification techniques label proteins metabolically, for
example, stable isotope labeling with amino acids in cell culture



(SILAC) %9 (Figure 3.7b) , or chemically (Figure 3.7c), for example,
tandem mass tag (TMT)'7°, to flag them for the subsequent data
analysis. This introduces additional labor-intensive steps to experi-
ments and increases expenses. Such approaches have been covered in

reviews extensively ®1717173,

Still, various sources of error plaque protein quantification since
signals are indirect as they originate from the peptide level. Trigler 74
tries to solve this issue in that it integrates error probabilities from
peptide to protein level in a probabilistic graphical model. Another
advance in protein quantification is an absolute quantification ap-
proached called proteomic ruler that utilizes the fact that the amount
of histones in cells is constant'7>. It is newly part of MaxQuant®> and

Perseus'7°.
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Figure 3.7: Overview of relative protein quantification methods. a) Label-free quantification integrates MS1 peaks to estimate
protein abundance. Those are compared between different LC MS/MS runs. b) MS1 labeling enables a comparison within one run.
Samples are labeled either metabolically or chemically. ¢) MS2 (isobaric) labeling quantifies the sample via reporter ions in the low
m/z range of the MS/MS spectra. Colored squares depict samples. Adapted from Sinitcyn et al. 5.
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Name Website

RefSeq % ncbi.nlm.nih.gov/
refseq

Ensemble'®  ebi.ac.uk/reference
proteomes

UniProt 82 uniprot.org

Table 3.2: Protein sequence databases.

Name Website
ProteomeX- proteomexchange.
Change 184,185 org

PRIDE 86187 ebi.ac.uk/pride

PeptideAtlas 188,189 peptideatlas.org

ProteomicsDB *#"9° proteomicsdb.org

Table 3.3: Proteomics resources.
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3.3 Data resources

Several steps in the MS workflow heavily rely on prior information.
Sequenced genomes, transcriptomes, and RNAseq data help to esti-
mate which proteins could potentially be expressed in a given sample.
Protein sequence databases, in turn, can help to limit the peptide
search space. Spectral libraries rely on previous measurements. In a
growing number of steps in the proteomic workflow, machine learning
models support computational data analysis and facilitate automation.
To train such models, access to data of high quality is paramount. The
open and standard community resources discussed in the following
sections are their core enablers. Fortunately, it is becoming the norm
to publish data, code, and statistical models, along with proteomics
studies 777179,

Sequence databases

Protein sequence databases are composed of sequences that can
be mapped to genes, transcripts, or other resources. Many such
databases exist.

RefSeq'® assembles non-redundant gene, transcript, and protein
sequences that are generated from selected genomes. It is available in
Genebank '3,

Ensembl '®! is a collection of automatically annotated gene, tran-
script, and protein identifiers that is integrated with other biological
data. It offers the GRCh37 and GRCh38 human reference genomes.
The Universal protein resource (UniProt) '®> maintains the most fre-
quently used protein database of the same name. It is divided into
a hand-curated database of non-redundant sequences called Swiss-
Prot and a computationally generated supplement called TrEMBL.
SwissProt integrates experimental results with computed features,
and all entries are reviewed by experts. T'TEMBL derives sequences
from various genome projects and aims to cover all protein sequences
not yet covered by SwissProt.

Proteomics resources

Although very relevant for proteomics, the resources above do not nec-
essarily contain information from proteomics experiments or studies.
Such data is deposited in dedicated repositories.

ProteomeXChange '+'%5 is a de-centralized consortium that coor-
dinates the various distributing data resources to facilitate structure
and organization to the proteomics landscape. The repository is cate-
gorized in unprocessed primary data and processed data. The latter is
data that accompanies published studies as processed by the authors.
ProteomeXChange provides unique identifiers for every dataset in
one of its partnering repositories via ProteomeCentral.

The PRoteomics IDEntification (PRIDE) '8¢'%7 database is the main
archival resource at ProteomeXChange that does not reprocess up-
loaded MS studies. Peptide and protein information as well as meta-
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data from one study are organized and grouped together. PRIDE is
the recommended repository for data publication required by many
scientific journals that publish proteomics studies.

PeptideAtlas‘SS'TS‘), in contrast to PRIDE, reprocesses all incom-
ming data with a standardized pipeline and makes the results avail-
able in regular releases. The pipeline utilizes SEQUEST %, X!Tandem *°*
or SpectraST for the identification of peptides and PeptideProphet
and ProteinProphet for FDR calculation. Although direct submission
is possible, most data in PeptideAtlas is ingested via ProteomeX-
Change. Furthermore, PeptideAtlas provides the PeptideAtlas SRM
Experiment Library (PASSEL) 9" to facilitate reuse of data in SRM
experiments.

ProteomicsDB '+'%° is a human-centric database that offers re-
searchers to interactively explore quantitative proteomics data from
more than 19k LC-MS experiments. Its initial release enabled a
first draft of the human proteome in 2014 '4. All data contained in
ProteomicsDB is reprocessed in a standardized pipeline that is based
on MaxQuant993.1°°, Recently, additional information was added, for

192 and functional

example, protein-protein interactions from STRING
annotations from KEGG '3. The extension to other species, such as

Mus musculus and Arabidopsis thaliana is planned.

Spectral libraries

Currently, spectral library searches are mostly performed with project-
specific spectral libraries. The reason for this is that specific work-
flows, hardware, and instrument parameters make it difficult to com-
pare MSz2 spectra and retention times between laboratories. Despite
these challenges, there are efforts to offer standardized, high-quality
spectral libraries. The National Institute of Standards and Technol-
ogy (NIST)'37, SRMAtlas3%'39, and MassIVE are spectral library
resources that aggregate and post-process experimental data. Usually,
this involves filtering for high-quality spectra and clustering them.
Most recently, the ProteomeTools **° project introduced PROSPEC, a
spectral library from synthetic peptides that covers almost all human
genes.

The ProteomeTools synthetic standard

The data published in the above repositories relies on various layered
assumptions and prior information. For example, protein abundance
information in ProteomicsDB relies on sequence databases for the
annotation and identification of spectra. Identification and quantifi-
cation is performed with a standard MaxQuant workflow and the
error is estimated in form of TDS. Still, multiple sources of variance
remain. Although the first draft maps of model organisms start to
take shape 34194, by definition of the FDR, some identifications in

these drafts are false. The ProteomeTools '4°

project aims at develop-
ing molecular and digital tools to reduce such sources of variance to

a minimum.

Name

ProteomicsDB '419°

NIST 37

SRMA tlas 38139

Website

proteomicsdb.org
chemdata.nist.gov
srmatlas.org

MassIVE https://massive.ucsd.
edu
ProteomeTools *4° http://www.

proteometools.org/

Table 3.4: Spectral library resources.

Other
~ 54,000
Non-Tryptic
~ 70,000
Ubiquitination
~ 71,000
Acetylation
~ 48,000
PNGaseF
~ 29,000
Other Methylation

~ 5,000 ~ 18,000

Citrullination O-Glycosylation

~ 7,000 ~ 5,000
Figure 3.8: ProteomeTools peptide sets.
Number of synthesized peptides in dif-
ferent categories of the ProteomeTools
project The top blue bar chart depicts
general categories. The smaller bottom
bar chart further details the PTMs carry-
ing peptides within ProteomeTools. Fig-
ure adapted from www.proteometools.
org (accessed 2019-05-02).
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376,658 peptides
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median score = 195

Identified peptides [x1,000]
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0
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Andromeda score cutoff

Figure 3.9: ProteomeTools identified
peptides over Andromeda score cutoff.
Number of identified peptides at differ-
ent Andromeda score cutoffs. The num-
ber of peptides at Andromeda score 100
and the median Andromeda score of
all identified peptides are highlighted.
From Gessulat et al. 13°.
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ProtomeTools defines a set of 1.4M peptides (Figure 3.8), called
PROPEL, which was synthetized by SPOT synthesis 959, They
were measured by HCD, collision-induced dissociation (CID) and
electron-transfer dissociation (ETD) on a Orbitrap Fusion Lumos
at different collision energies resulting in a vast and high-quality
spectral library resource termed PROSPEC. In addition, iRT values
were systematically measured with the PROCAL?® retention time
standard. Tryptic peptides were chosen to cover all human proteins
with a preference for high proteotypicity '497 wherever possible. To
avoid MS ambiguity, the peptides were grouped in pools of 1000 so
that precursor m/z values were spread across the entire LC gradient.
Many false identifications can be easily ruled out as the set of peptides
in one pool is known a priori.

To date, 377k peptides have been identified with a high Andromeda
scores (Figure 3.9). The identifications come from 22M spectra
from 550k precursors that have been released and are available on
ProteomeXChange, proteometools.org and in ProteomicsDB. The
currently released data already covers 98.5% of all human protein-
encoding genes and distinguish 63.0% of between SwissProt annotated
isoforms for a specific gene. The synthetic peptides are available to
interested researchers and measurements in different laboratories on
other instruments are initiated.

Apart from being a high-quality reference standard for the identi-
fication and quantification of human proteins, ProteomeTools is an
excellent foundation to train machine learning models that can be
used at several steps within the computational analysis of proteomics
data. Retention time and fragment intensity prediction are immediate
applications. On other levels, ProteomeTools could enable proteo-
typicity, and precursor charge prediction, or the refinement of PSM
scoring functions.


proteometools.org

4
Machine learning

Science strives for explanations that are both: elegant and empirically
substantiated. Some hard problems, however, may not have a beauti-
ful solution. 9% When searching for answers to hard questions, it is
appealing to let machines do the work. For example, in proteomics
MS/MS intensity patterns have long been studied, and rules could be
identified 9. Irrespective of these efforts, the set of identified rules
fails to explain complete fragment spectra comprehensively. Conse-
quently, various machine learning models have been applied to this
problem with varied success—they are revisited in section 4.3.

Machine learning studies the construction of systems that improve
themselves to optimize a given objective. A system does so by learning
from exemplary data, rather than being programmed explicitly. After
training, the system should be able to generalize what it learned to
unseen data.

It is often not trivial to present the data to a learning system, as it
is high-dimensional. Images, for example, span a high-dimensional
space by the number of their pixels. On the other hand, natural images
are highly structured, and this structure is unlikely to occur randomly.
Although the mountain range shown in Figure 4.1 a) looks scattered
on the lower left, its color scale is tightly confined to a cold dark
grey-blue. Pixels in the sky exhibit a smooth color gradient spatially
from green-yellow (at the top) to a warm orange (on the horizon).
In contrast, pixels in Figure 4.1 b) do not have context: their color
values are uniform independent and identically distributed (i.i.d.),
and although mostly colorful, appear as a grey mush. The physical
laws governing the natural world generate images of a specific (albeit
complex) distribution that occupies only a tiny fraction” of the image
space.

The manifold hypothesis formalizes this intuition by stating that
natural data forms a low-dimensional manifold embedded in high-
dimensional space. Theoretical considerations and empirical evidence
exist that support the hypothesis*°**°*. The manifold of natural
images has complex priors. On a low level, priors exist on spatial
structure and color context, as illustrated in Figure 4.1 ¢). In addition,
there are various other priors, for example governing the observable
3-dimensionality of the natural world expressed by perspective. Dis-
entangling this manifold from its high dimensional space, makes
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Figure 4.1: Entropy in natural images.
a) The Alps as seen from Schneeferner-
haus, Bavaria. b) An image of the same
size as a) with randomly assigned col-
ors. ¢) Images related by their spatial
structure and color contexts of its pix-
els. Exemplary marked are a) and the
random image b).

* The image space of Figure 4.1 b), for ex-
ample, is much larger than the number
of atoms in our universe:

(512512 px)23¢ <olors 5, 1082atoms
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Dimensionality
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Unsupervised learning

Data unlabeled
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Supervised learning

Continuous Categorical
target label
Regression Classification
L SVR SVM
linear regres- random forest
sion logistic regression

Figure 4.2: Branches of machine learn-
ing.

Entity Notation Example
scalar lower b
vector bold lower t

tensor bold upper X
function italic lower y

Table 4.1: Mathematical symbol nota-
tion.

Symbol  Meaning
X training data
Xi the i-th sample in X
t target values accompa-
nying X
n numbers of samples in
X
m numbers of dimension
in X3
Yw model function
w model weights
(0] feature transformation
function
(o] feature tensor
ex,t error function

Table 4.2: Symbol meaning conven-
tions.
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solving problems substantially easier.

Conventionally, machine learning uses domain knowledge to do
part of the necessary disentanglement by engineering features from
the raw data that represent the problem better. As an example, plants
tend to be greener than cars. A naive model could classify the two
objects by analyzing just the object’s greenness. Section 4.1 illustrates
how domain knowledge is applied in proteomics by the example of
PeptideSieve '%7. Instead of directly using the character-level amino
acid sequence to infer the proteotypicity, PeptideSieve uses a set of
chemo-physical properties derived from peptide sequences as features
to summarize the characteristics of the peptide.

Deep learning (section 4.2), in contrast, aims to disentangle the data
end-to-end. For example, by—in a first layer—learning to infer a pep-
tides” chemo-physical features from its sequence, and subsequently—
in some higher layer—to infer proteotypicity from its features.

4.1 Conventional machine learning

Machine learning aims to learn something from a given dataset X.
In general, X is a rank r tensor. The number of ranks depends on
the given data, with its first rank enumerating the n examples of
the dataset. A dataset of colored images, for example, could be
represented as a rank’ 4 tensor (n-512px - 512px - 3 color channels).
For example, in this section, X is rank 2 and n - m to ensure brevity,
but all examples generalize to higher-ranked tensors. (See table 4.1 for
mathematical notation and 4.2 for the list of commonly used symbols.)

One categorization of machine learning is to divide the field by
what should be learned from X (Figure 4.2). If the dataset is labeled,
meaning it comes with target values t the task is called supervised
learning. Often, t is an n-dimensional vector. Depending on the
nature of 's values, supervised learning can be further differentiated
into classification when t is categorical and regression when ¢ contin-
uous. For classification, most prominent examples are support vector
machines (SVMs)*°?, random forests>°3, and logistic regression. Sup-
port vector regression (SVR)*%4, and linear regression are commonly
used for the regression task. For both tasks, the underlying assump-
tion is that there exists a process or function y* that produces the
values t given X. The goal is to find a function y that approximates
y* so that target values can be predicted for unseen data.

A label t is not necessary to learn from X. When there are no labels
or target values t, the setting is called unsupervised learning (Figure
4.2). Common tasks include dimensionality reduction, clustering, and
data generation. Standard techniques to reduce the dimensionality

206’ or

of X include principal component analysis (PCA)>°, t-sne
most recently UMAP?°7. Various methods for clustering exists, for
example k-means>°®, DBSCAN 2", and self-organizing maps>'°. For

data generation, latent dirichlet allocation (LDA)>'* is used, as well as

* Note the difference of a tensor and matrix rank



deep neural networks (section 4.2), such as variational autoencoders
(VAEs)>'? and generative adversarial networks (GANs)>"3.

In proteomics, however, many applications of machine learning—
including this thesis—fall in the supervised learning category (see
section 4.3). The ProteomeTools dataset (see 3.3) offers a high-quality
resource of labeled data for the problem of fragment intensity predic-
tion. It can be formulated as a regression problem, with one target
value for each peak in a spectrum. To set the following into perspec-
tive, the rest of this section describes the most prevalent techniques
from conventional supervised learning: linear and logistic regression.

Function fitting

Constructing a supervised learning system involves the formulation
of three functions: First is the model function y(x) that, given
its parameters (or weights) w, shall approximate the process that
generated the data (X, t). ¥ Let the matrix X contain n m-dimensional
training examples x. Second is a loss (or error) function ex (w)
evaluating the quality of y with respect to its parameters w and all n
target values in ¢. A third function ¢(x) transforms the input vectors
x to a feature space that is better suited for the model y. ¢ is often
not formally defined but described in terms of preprocessing the data.
Training the model y, becomes searching for the optimal parameters
w by evaluating the model function with e. Let the output of ¢ be the
vector @ with an additional dimension @y = 1 to simplify the math
that follows.S Note that w is also (m + 1)-dimensional.
For example, a regression model is formulated linearly as:

Yul(x) =w' ¢(x) (4.1)

The sum-of-squares (figure 4.3 dashed box) is commonly chosen to
evaluate w:

exelw) =23 [ti—ywi)]” 42
i=1

For linear regression (figure 4.3) on the input data without feature
transformation ¢ (x) = x. The optimal w™* resulting in the best fit is
when e is minimal. In the chosen convex example the minimum of e
has a closed-form solution, so we can obtain w* directly:

w* = (X"X)7'X'T (4-3)

The linear regression model (equation 4.1) can be easily adapted to
a binary-classification task by applying a function to it, that transforms
its range to probability space (IR € [0, 1]). Logistic regression (equation
4.4 and figure 4.4) models classification by applying the sigmoid
function o (equation 4.5) and uses cross-entropy for its error function
(equation 4.6). Note that logistic regression—confusingly—is not a
regression in the meaning used today in machine learning. Logistic
regression is a classifier.

Yoo (%) = o(w " @(x)) (4-4)

********

Figure 4.3: A linear regression fitted to
two-dimensional data. The model y,,
(equation 4.1) is a function predicting
targets t from data x. The weights w,
and w; determine the orientation of 1/,
and can be learned by stochastic gra-
dient descent using the sum-of-squares
error (inset, equation 4.2) or directly by
the closed-form solution given in equa-
tion 4.3.

*In an unsupervised setting, the error
function is formulated based just on X.

§ Equation 4.1 is a reformulation of lin-
ear regression commonly familiar as:
y(x) = w'x+b. In equation 4.1, the
bias b becomes part of w

1(XTX)~" might not be invertible if X
is not a full rank matrix
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X1

10 20 30 %

Figure 4.4: A logistic regression fitted
to two-dimensional data. The model
Yw (equation 4.4) is a function proba-
bilistically separates the input data x
into two classes t € 0, 1. The weights
w, and w,; determine the orientation of
Yw and can be learned by optimizing the
cross-entropy (equation 4.6).

Figure 4.5: PeptideSieve features. A
peptide sequence is transformed into a
feature vector based on a set of chemo-
physical properties of its amino acids.
The average of all amino acid values for
the respective property constitutes one
vector dimension. Figure adapted from
Mallick et al. 97 and all numerical val-
ues are shown as in the original publi-
cation. Total and average values do not
add up.
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1

o(z) = 1 —exp(—z)

(4-5)

m
exa(w) ==Y [t ny(X)+(1—t) n(1-y(X0))|  (46)

i=1
Linear regression and the classifier logistic regression are two of
the very simplest machine learning models and are widely used.
Thanks to their simplicity, one characteristic that also applies to more
advanced models such as the random forests classifier 2 becomes
apparent: A model’s success is critically dependent on good features—

especially when the data is complex.

Feature extraction

The transformation from data to features (¢ : X — @) must be care-
fully designed for a model to be successful. Finding a suitable trans-
formation ¢ is traditionally a manual process in machine learning.
Domain experts formulate ¢ and choose its parameters rather than let-
ting its form being estimated by learning algorithms. PeptideSieve %7,
a model for proteotypicity prediction, is a revealing example from the
field of proteomics. It shows why feature transformation is necessary
and how to apply it successfully.

Peptide sequence Feature

R A G M C 1 A E K T vector

Frequency in turn ~ 0.09 0.06 0.15 0.06 0.13 0.06 0.06 0.06 0.10 0.08 0.75 0.08
Hydrophobic moment ~ 10.0 0.00 0.00 1.90 0.17 120 0.00 3.00 570 1.50 21.97 2.44
Negative charge  0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.11
Hydrophilicity ~ 3.00 -0.50 0.00 -1.30 —1.00 -1.80 —0.50 3.00 3.00 —0.40 4.90 0.54

Beta sheet propensity -0.40 -0.35 0.00 —0.46 —0.50 -0.60 —0.35 -0.40 -0.40 —0.48 3.46 0.38

Total Average

A peptide is classified as proteotypic when it can be consistently
identified by MS/MS. As the identification process is influenced
by biological and technical variation, peptides exhibit different pro-
teotypicity. Knowing if a peptide is proteotypic or not, helps to
restrict the peptide search space effectively and profoundly simplifies
computational analysis. Alternatively, proteomics databases such as
ProteomicsDB and others (see section 3.3) can be used to restrict the
peptide search space, but they only reflect the space of peptides that
has been studyied so far. A classification model for proteotypicity can
generalize to organisms with yet incomplete proteome characteriza-
tions.

A conventional model like logistic regression needs a fixed-length
numerical input vector representing the peptide as X. PeptideSieve
transforms a peptide sequence to a feature vector by averaging phys-
iochemical properties of its amino acids. Figure 4.5 shows this for
peptide RAGMCIAEKT and a few exemplary amino acid properties
such as hydrophobicity and beta sheet propensity. Together with tar-
get values ¢, indicating a peptide’s proteotypicity, a logistic regression



model can be fitted with the techniques outlined above. In the case of
PeptideSieve, a gaussian mixture model is chosen instead of logistic
regression 7.

Generally, reducing raw information to feature vectors often leads
to loss of information. Specifically, for PeptideSieve, the order of
amino acids within a peptide is lost—all permutations of RAGMCI-
AEKT result in the same feature vector. Although the information
value of features can be determined relative to each other (e.g., with
PCA) it is difficult or impossible to ensure that all relevant infor-
mation is retained. An additional complication is that the selection
and definition of suitable features is often not trivial. In the case of
PeptideSieve, for example, 1000 previously described features were
evaluated. Combined, this complexity often makes feature extrac-
tion the most laborious step in the design of a conventional machine
learning system.

The approach to feature extraction described above involves expert
knowledge and manual decisions. ¢ is defined by hand. Recent
advances in machine learning allow automating substantial parts of
this process. This approach is called representation learning, and
deep learning (section 4.2) is one instance of it. Instead of manually
defining a feature extraction function, it is formulated as a learning
function as part of the model. By that, the model has to jointly learn
to discriminate signal from noise in the data and solve the given
problem.

4.2 Deep learning and artificial neural networks

Deep learning>'>7>'7 is a set of machine learning techniques that
learns representations at different hierarchical levels. More specifically,
deep learning builds models containing serval layers, mostly artificial
neural networks. The input layer reads data—often in its raw form, such
as all pixels of an image—and learns a representation of important
features. The subsequent higher layers learn ever more abstract
representations from lower-level input layers.

In figure 4.6 a) and b) respectively, the first layer learns basic
pattern (or motives) to detect edges. The second layer mixes these
motives to more abstract compositions that are already specific to
a) human faces (like eyes and noses) or b) cars (like tires). In more
technical detail, figure 4.7, highlights the relationship to the manifold
hypothesis discussed earlier. Even though the input space cannot be
classified completely into red and blue by a simple linear regression,
a neural network can. The first layer warps the input space into a
feature space that can be separated by the second layer. It will become
apparent in the following, that the second layer shown in figure 4.7 is,
in fact, a logistic regression (equation 4.4).

The idea to directly train a model on the data without feature
engineering is not new?>'7. In 1998, LeCun et al.>'® trained a neural
network on images without relying on common feature extraction
techniques used at the time, e.g., wavelet edge filters>'9. The character
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Figure 4.6: Learning higher-level ab-
stractions. Examples of image recogni-
tion for a) faces and b) cars. Each layer
consists of learned "filters" that repre-
sent image motives that are composed
into higher-level abstractions of the pre-
vious layer’s output. In both a) and b),
the first layer detects only basic image
motives, such as edges. In layer two,
topic-specific motives are becoming visi-
ble, such as eyes for a) and tires for b).
Adapted from>'+
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Figure 4.7: Learning a linearly separa-
ble feature space. The 2-dimensional
Input space of the data cannot be lin-
early separated into blue and red. Cir-
cles marked with ¢ depict neurons fol-
lowing the logistic regression equation
4.4. Layer 1 consisting of two such
neurons with varying learned weights.
The resulting transformed Hidden fea-
ture space can be separated linearly by
Layer 2. Adapted from Christopher
Olah (2014)".

'l Rectified linear unit activation:

f(x) = max(0,x)
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recognition model was trained directly on the raw images.

The representation is hierarchical because more complex motives
arise from simpler motives. It is distributed across layers. In addition,
the representation is distributed within each layer—there can be
multiple similar motives for human eyes. This redundancy enables
robustness. A technique called Dropout*° makes explicit use of it, to
reduce overfitting.

Conventional machine learning algorithms work well on a wide
variety of important problems, particularly when they are adapted to
the given problem. They have not succeeded, however, in solving hard
central problems in artificial intelligence. Under mild assumptions,
deep neural networks can approximate any function>*'">?3. Recently,
deep learning models set benchmarks in many standard machine
learning problems, such as in image*?4722° and speech recognition*7,
but also in biological applications??%23°. Further, deep learning
has been tremendously sucessful in playing games?3232. One such
model >33 that only learns from self-play (never seeing humans play)
generalizes to several games—Chess, Shogi and Go— and is able to
beat professional human players in all games.

The learning systems deployed in deep learning are generally
multilayer artificial neural network models that are “deeper” than one
layer. Each layer consists of simple learning entities called neurons>'°.
A neuron is usually formulated as a data transformation function on
top of which an activation function is applied. A layer that is neither
input nor output is called a hidden layer. A simple formulation is
treating inputs with linear regression (equation 4.1) and applying the
sigmoid function o (equation 4.5) as activation (effectively applying
logistic regression, equation 4.4) as in figure 4.7. It must be noted that
most neural networks in use today are formulated to be practical or
mathematically elegant, rather than biologically plausible®34235. For
example, rectified linear units (ReLUs)'' 23¢ are commonly used today
as activation?'® because they have been found to be more effective
than 0237,

Backpropagation

The prevalent method to train neural networks is an efficient version
of stochastic gradient descent called backpropagation®'® developed
individually by several researchers in the 1980535241, It leverages
the structure of the neural network, specifically its composition as a
function of functions and using the chain rule to calculate the loss
derivatives for all weights in the network. The error is calculated for a
small set of random samples (mini-batch) from the training set based
on some loss function. This calculation is called forward pass because
the calculation can be computed layer-by-layer forward-directed from
the input to the output layer. The error is then attributed to the
parameters proportionally by the partial gradient of each individual
parameter. This is called backward pass as the error is distributed

*colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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again, layer-by-layer, but in reverse, starting from the output layer
and moving back to the input. Figure 4.8 shows this at the example
of a neural network with two hidden layers.

Compare outputs with correct
answer to get error derivatives

A forward pass
Output units JE
- Ly -t
y=f(z) n Y-
4= E Wit Yie OE _OE oy
keH2 0z dy 9z
Hidden units H2 JE JE
=f(z = Wyt ——
Y f( k) Gz I Eout 9
Z = 2 Wi Y; OE _ OE dy
jeH1 0z, Y 0z
Hidden units H1 o 9E " O
(e 9% =
bi=1t W G 0
5= Y wx SE _OE %;
i eInput dz; dy; 0z;
Input units
P v backward pass

Building complex neural networks requires the calculation of par-
tial derivates for all weights as specified by backpropagation. For-
tunately, several software frameworks>4*74> exist that can compute
derivates automatically when a neural network is expressed as a com-
putational graph. Today, tensorflow 43 is the most popular framework.
Tensorflow works natively with keras™, a higher-level abstraction, that
facilitates simpler and more convenient architecture specifications.

Convolutional deep neural networks are the prevalent class of
current generation machine learning models>'©?2424%, They are a
specialized and efficient architecture of neurons, inspired by receptive
fields, designed to capture spatial context.**7 Although they have
been shown to also perform well for sequential data4® like peptide
sequences, the most research applications of deep learning to se-
quential data utilized another design called recurrent neural network,
particularly so in the context of one of the most flexible architectures:
the encoder-decoder (also sequence-to-sequence) model*4.

Recurrent neural networks

Recurrent neural networks contain loops that allow them to persist
information. This enables recurrent networks to read information
sequentially, for example, time-series data, audio data, or peptide
sequences. Recurrent networks have a memory so that they remember
elements in a sequence they saw before. As an example, the network
can remember whether it has observed proline in a peptide sequence,
to infer that occurrence has an influence of the overall fragment
behavior of the peptide.

Figure 4.9 shows one layer of a neural network consisting of only
one recurrent cell C (a construct usually more complex than the

Figure 4.8: Error backpropagation in
a neural network. The neural network
consists of the input Input, two fully con-
nected hidden layers H1 and H2, and
one output layer out. Connections with
w.. = 0 are omitted. Its output is com-
puted in the forward pass by calculating
the output layer by layer: y; (yx (y;(i))).
The error E is y; — t, with t being the
target values. In the backward pass, the
error is attributed proportionally to the
weights w of the model, according to
how much each w.. contributed to E.
The proportional contribution is given
by the partial derivative gTE' for each
layer. Note, that the partial derivative
for layer H1 can be computed from the
partial derivative of layer H2. Thus, the
calculation is again layer-by-layer: from
out g—fl to H2 aaTEk to Hx g—fj. Adapted

from LeCun et al. °

“www. keras.io (accessed 2019-05-02)
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Figure 4.9: Unrolling a recurrent neu-
ral network over time. One single cell-
layer with a recurrent loop (left). The
feedback loop allows persisting inform-
tion over several time steps. The feed-
back loop is equal to a set of copies of
a non-recurrent network with each in-
stance receiving a signal from the pre-
vious instance in time (right). This is
called unrolling the network over time.
Adapted from Christopher Olah (2015)3

Figure 4.10: Long Short-Term Memory.
Two signals flow from one time step
(t — 1) to the next (t): the cell state C¢
(top horizontal arrow) and the cell out-
put (bottom horizontal arrow) h:. In
addition, the cell receives input x{ from
the previous layer at time step t. Green
boxes depict sigmoid (o, equation 4.5)
or tanh activation functions. The left-
most o neuron is the forget gate that
can reset parts of C by multiplying O.
The next o and tanh neurons constitute
the input gate by transforming the sig-
nal from h{_; and adding it to C. The
right-most o neuron is the output gate
that transforms h;_; to the cells oup-
tut hy and C¢_7 to C¢. Note that the
transformations in all three gates are de-
pendent on both: C¢_; and x¢, but in-
dependent from each other. If C is not
adapted at t, the error signal can flow
backward without growing or vanishing
(top horizontal arrow). Adapted from
the original by Christopher Olah (2015)8
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neuron architecture described above). The cell C has a feedback loop
to itself, the recurrence, and a single output to the next layer. The
recurrence acts as a memory when the input x is time-dependent. At
time step x,, for example, cell C receives a signal from itself from
x1, which in turn generated under the influence of a signal that C
received from x¢. The feedback loop (Figure 4.9 left) equals a neural
network that is connected to itself for the number of time steps it
receives input (right side). The resulting unrolled network is deep as
its number of layers is multiplied by the number of time steps.

he

Cell state
Ci ) @ Cy

he_1 h

Hidden

hput xt

Neural networks are composite functions of functions, and their
error derivative is a product. Thus, in general, the error signal either
diminishes or grows exponentially by the number of layers (See proof
in Hochreiter*>°). This is particularly problematic for very deep
neural networks, such as recurrent neural network>>°7>>. Long short-
term memory (LSTM) cells were the first architecture circumventing
this problem in recurrent neural networks>>3 (Figure 4.10). They
use specifically designed input, output, and forget gates to guide the
error flow and modulate the LSTM cell state and its output. The
key idea is to limit multiplicative modulation of the error signal to a
minimum so that it does not explode or vanishes. Multiple variants
exist, but empirical evidence suggests that most variants perform
similarly well*>%255. Gated recurrent unit (GRU) 256 cells are a variant
of the LSTM idea that combine input and forget gates to update gates,
making them less computationally demanding.

S colah.github.io/posts/2015-08-Understanding-LSTMs/
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Neural machine translation

Neural machine translation (NMT)?249-257258 js concerned with trans-
lating an input sequence into an output sequence, usually from one
natural language into another. The task proved to be particularly
challenging, but very deep and large neural networks trained on
extensive text corpora recently reached human-level translation per-
formance®>°. NMT is also particularly flexible, and that is why it is
relevant for this work. For example, peptide fragmentation behavior
can be viewed as a translation problem: the input is a sequence of
amino acids, and the output is a sequence of fragment ion inten-
sity values at m/z values dependent on the input sequence. Aside
from recurrent cells, this section covers three additional commonly
used concepts from NMT: the encoder-decoder architecture 249252,
Bidirectional neural networks212%2 and Attention?55203.

The encoder-decoder architecture couples two neural networks
to first transform an input space into a latent representation and
second to transform that latent representation to the desired output
(Figure 4.11). In NMT both, the encoder and the decoder, are usually
recurrent neural networks. This construct enables the translation from
an input sequence which differs in length from the output sequence.
Another benefit of this architecture is that encoder or decoders can
be shared for different tasks. As described later, the same encoder
architecture for peptide sequences can be re-used to predict different
peptide properties, such as fragment intensity behavior, as well as

iRT.
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In some languages, it is common, that the meaning of a sentence
only becomes apparent at the very last word of a sentence. Examples
are the Chinese sentences: {{#f! (Hello!) and /X4FM&? (How are
you?). This dependence on the complete sequence to determine
meaning occurs in many contexts, also proteomics. To determine
certain properties of a peptide, for example, hydrophobicity, the
complete peptide sequence is needed and not just the prefix of the
first few amino acids. To address this, bidirectional neural networks,
are two coupled recurrent neural networks that remember not only
the past but also the future (Figure 4.12). One recurrent network
reads the sequence in the forward direction from start to end. The
second reads the sequence in reverse from end to start. The output
of the forward and reverse networks is then combined so that next
layer as access to the sequence from both directions at every time step.

hn Y1 Ym—1
Ei > En
X1 e Xn

Figure 4.11: Encoder-decoder architec-
ture. A conventional encoder-decoder
architecture consisting of two coupled
recurrent neural networks. The encoder
(blue cells E) transforms an input se-
quence X7i,...,Xn to latent space hy.
Encoder outputs other than h,, are dis-
carded. The decoder (red cells D) starts
with h, as input and outputs a se-
quence of a different length y1,...,Yym.
After the initial h,, it receives its own
output from the last time step as input,
for example y; at D;.

Figure 4.12: Bidirectional neural net-
work. A bidirectional neural network
consists of two recurrent neural net-
works that read the same input se-
quence Xi,...,x2 in different direc-
tions. The forward network (blue cells
CT) starts with input x1, whereas the
backward network (red cells CP) starts
with input x,,. The outputs of both
networks are joined for each time step
h.. Hence, the subsequent layer that re-
ceives hy, ..., hy as input has access to
information from each time step.
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Figure 4.13: Image description using
visual attention. A recurrent neural net-
work describes the content of the image
on the left as "A bird flying over a body
of water". The words are generated se-
quentially, and the network focuses on
different parts of the image at each word.
Important parts of the image are focused
on. They are highlighted in white and
less relevant parts in black. The intensity
of white and black corresponds to the
weights that the attention mechanism
gives each pixel of the image. Adapted
from Xu et al. 23,
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Also, note the similarities with the fragment ion nomenclature either
including the N- or C-terminal.

of

water

flying over a body

Attention 5523 lets recurrent neural networks focus on certain parts
of a sequence that are relevant at that particular time step. The most
common implementation learns to weight inputs by importance and
applies softmax (equation 4.7) to have a soft focus as in Figure 13.223.
This can be formulated as a fully connected neuron with softmax
activation, as in Wu et al.259.

el

W (4.7)
j=

softmax(x); =

4.3 Machine learning in bottom-up proteomics

Computational proteomics workflows are infused with machine learn-
ing at various steps%+. This section focuses on only a few of these,
that will be relevant for the rest of this work.

Peptide properties

Various factors can prevent a peptide from being ever identified, for
example, the bias to select high-intensity precursors in DDA *97. Omit-
ting peptides that cannot be identified from the computational work-
flow could alleviate difficulties arising from large search spaces, dis-
cussed in section 3.1. It is therefore desirable to infer a priori whether
a peptide can be reproducibly identified—a property called proteotyp-
icity '97. The ability to predict proteotypicity for a certain workflow
may also help to improve workflows so that more peptides become
proteotypic. There are many approaches for proteotypicity predic-
tion and all of them rely on conventional machine learning 972657270,
Specifically, they rely on feature engineering to transform the peptide
sequence into fixed-sized vectors of chemical, or sequence properties,
such as length or amino acid counts. Section 4.1 highlighted the
approach of PeptideSieve'¥’ to select those features (also see 4.5).
It is unclear whether the chosen features comprehensively cover all
information that is relevant for this task.

The retention time of a peptide (section 2.1) is another property
that is critical for the computational analysis. Accurate prediction
model, again, can streamline the search space and help precursor
selection. Particularly in a DIA setting with chimeric spectra, retention
time prediction helps to limit the space of potential peptides within



one spectrum. SSRCALC?7"?72, an early expert-designed additive
model, performs startingly well and is the baseline for other models
today. The SVM-based Elude>73*74 is the best-performing model
using conventional feature engineering. Recently, DeepRT?7> set a
new benchmark for retention time prediction using deep recurrent
neural networks.

Fragment ion intensity

The intensity of fragment ion is largely ignored by current database
search but is pivotal for spectral library search (see section 3.1). The
reasons why it has not been integrated into database search are mani-
fold, but a dominant one is that the lack of fast and highly accurate
prediction models. First attempts using decision trees*7®, shallow
neural networks77 and boosting27® did not yield high-quality spectra.
The comparison of these earlier attempts is difficult as comprehen-
sive studies that benchmark different quality measures for spectral
comparison are only recent#>. The mentioned earlier attempts give
information on an ion level or give information on self-defined mea-
sured that did not become comparison standards.

More recently, MS2PIP279-281 achieves around 0.9 Pearson correla-
tion (R) for predicted spectra®!. MS2PIP is a random forest regression
model and predicts each intensity of a spectrum independently. Each
fragment is modeled based on two fixed-size feature vectors, one for
the C- and one for the N-terminal side of the fragment ion. The first
deep learning-based model directly trained on the complete peptide
sequence, without feature engineering, is pDeep2%2. It achieves even
more accurate correlations (~0.93 R).

MS2PIP and pDeep employ separate models for each collision
energy. Both also report better performance on their validation sets,
than on external data with the same collision energy. Zolg et al.?®
show that collision energy is not comparable between laboratories and
even adjusts over time. This is an inherent problem of models trained
on one specific collision energy. First, their training dataset may be
composed of different sources; thus, although instrument settings
were the same, the fragment behavior may have varied. Second, the
models are not applicable to external sources, as the external collision
energy setting, may have an offset from the model’s perceived collision
energy. That is why MS2PIP and pDeep suggest to retrain their
models, specifically for one laboratory for best results.

Peptide identification

Database and spectral library search must separate correct from incor-
rect PSMs. As discussed in section 3.1, many searches employ scores
and only select the highest-ranking PSMs. This separation is a stan-
dard machine learning classification task2%4. Percolator *27/13%133,283
is a commonly-used, standalone software that employs SVMs for
classifying PSMs. Internally, the algorithm trains SVM models on
a subset of the provided search data and a given decoy database.
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In an interative phase, the trained SVM rescores the training data,
and the rescored training data is used to train new SVM models.
Thus, the target and decoy assignments of the PSMs in the training
data improve at every iteration, yielding better models in the next
iteration. The iteration is continued for a fixed number of times.
After training, Percolator applies the learned classifier to the complete
search data and calculates g-values for each PSM and peptide level
posterior error probabilities. In addition to peptide FDR, it also im-
plements approaches to estimate protein FDR such as Picked FDR'®
and Fido *9.

An alternative formulation is clustering matched and unmatched
score distributions and fit a mixture model. An example of this ap-
proach is PeptideProphet '2° that is integrated into the Trans-Proteomic
Pipeline (TPP) '3° Kelchtermans et al. 264 reviews additional and inte-
grated approaches.
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5
Model architecture

Computational bottom up proteomics is focused on peptides. When
will a given peptide elude from the LC column? Is this peptide
proteotypic? How would an HCD spectrum of this peptide look like?
Ideally, there would be a single machine learning model architecture,
that is able to answer all of those questions—given enough training
data. The following chapter introduces the flexible encoder-decoder
architecture Prosit that can address those questions, but focuses on
fragment intensity.

5.1 Preliminary work

Models for intensity prediction that applied conventional machine
learning such as MS2PIP279-2%1 have to rely on feature engineering to
convert peptide sequences into a fixed-length vector representation.
The transformation from a variable-length peptide sequence to a
fixed size vector usually leads to information loss. Recurrent neural
networks offer an alternative that works with variable input directly.

282

pDeep >°* is a recent deep learning-based model for fragment intensity
prediction that is based on recurrent neural networks. It utilizes the
fact that the number of theoretical fragment ions is dependent on the
peptide sequence in its architecture: it stacks bi-directional recurrent
networks and uses the n — 1 outputs as fragment intensities for a
length n peptide. This approach works well but is less flexible than
an encoder-decoder architecture (see section 4.2) as it is specific to
peptide fragmentation and is harder to generalize for other peptide
properties. MS/MS spectra are strongly dependent on normalized
collision energy (NCE)®, but NCE is difficult to incorporate into
models, as it is machine-dependent and changes over time®. Both,
MS2PIP and pDeep, do not integrate NCE or other additional input
parameters but instead trained a model specific for one NCE. In fact,
the authors of both models note that best performance is achieved
when the models are specifically trained on and compared to data
stemming from the same experimental conditions. This leads to
models that are specific to one laboratory and do not generalize well to
others. Chapter 7 closely evaluates Prosit and MS2PIP in that regard.
The comparison in this work is confined to the archetypical (and
most recent) approaches of conventional machine learning—MS2PIP—
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Figure 5.1: Prosit deep learning archi-
tecture overview. The Prosit deep learn-
ing architecture for fragment ion inten-
sity prediction and iRT. The input data
(peptide sequences, precursor charge
state, and normalized collision energy)
are encoded into a latent representation
(space). This representation is then de-
coded to predict fragment ion intensities
(using all input parameters) or iRT (us-
ing sequences only).

* Although sequence length—1 is the up-
per bound for the number of y-ions, the
number of observed y-ions is usually far
lower.
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and deep learning—pDeep—, but it generalizes to the multitude of
models that exist for fragmentation prediction and that are reviewed
in section 4.3.

In preliminary work by the author, a precursor of the presented
architecture has been evaluated on the example of fragment ion
existence prediction. In contrast, to the architecture presented here, it
only predicted whether it is likely that a particular fragment ion will
be observed, but not its relative intensity. The existence prediction
model and its application are presented in Appendix A.

5.2 The Prosit model architecture

The encoder-decoder architecture described in section 4.2 is one of the
most versatile neural network architectures. It can incorporate several
input parameters, such as peptide sequence and NCE, and is flexible
with respect to the task it should solve, for example, fragmentation
ion intensity prediction or iRT. Figure 5.1 shows a high-level overview
of the Prosit model architecture for those two tasks. The encoders first
transform the input parameters to a latent representation, which—in
a second step—is transformed by a decoder to the desired output.

Advantages of Prosit

A fixed latent representation has several benefits. First, it decouples
the architecture needed for input and output. This is especially
helpful, when in the context of sequence-to-sequence translation,
where the input sequence length and output sequence length are not
dependent (e.g., natural languages). Second, it allows the simple
incorporation of multiple input parameters. Third, it makes part
of the architecture reusable for different tasks. Those advantages
match the requirements of peptide fragment intensity prediction well:
peptides have variable-length, and the number of expected fragment
ion spectra is not directly dependent on sequence length*. Also, a
peptide’s fragmentation pattern is not the only interesting property
that one might wish to predict. For example, when a suitable encoder
architecture to represent peptides for fragmentation prediction is
found, it can be fixed and re-used for other prediction tasks such
as iRT. As peptide fragmentation is dependent on both, precursor
charge and NCE, those parameters can be readily integrated as input
parameters in addition to the peptide sequence (Figure 5.1 top). The
particular importance of NCE as an input parameter will be elaborated
later in chapter 7.

Building blocks of Prosit

Figure 5.2 details the building blocks of Prosit’s architecture for frag-
ment intensity prediction. The model takes precursor charge, NCE,
and the peptide sequence as input. First, for every input, a specific
encoder is trained, consisting of one dense layer for precursor charge
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and NCE. The encoder for the peptide sequence consists of an em-
bedding layer, one bidirectional, one recurrent neural networks, and
an Attention layer®5®2%3. The encoder representations are element-
wise multiplied for a fixed size latent space representation. The
decoder for fragment ion intensity prediction consists of one recur-
rent layer resulting, an Attention layer and Dense layers on each
time step resulting in 6 predictions for up to 29 fragmentation po-
sitions (y- and b-ions for charge 1 to 3). All recurrent layers have
512 GRU?° memory cells. To avoid overfitting, a Dropout®*° prob-
ability of 30% is used, and LeakyReLUs>** are applied to increase
training stability (see chapter 6). An implementation can be found at
github.com/kusterlab/prosi‘c/1L

Limits of Prosit

Recurrent neural networks—and encoder-decoder models such as
Prosit—require a maximum length for their input and output se-
quences, as well as dimensionality of the input and output elements
in those sequences. For example, consider y- and b-ions charged
either +1, +2 or +3 for a maximum peptide length of 30 and no PTMs
except M(ox). The maximum input sequence length would be 30 and
the dimensionality of each element 21, one for each standard amino
acid plus M(ox) The maximum output sequence length would be 29t

Figure 5.2: Prosit deep learning archi-
tecture for fragment ion intensity pre-
diction. The peptide encoder consists of
3 layers: a bidirectional recurrent neural
network with GRU cells?5°, a recurrent
GRU layer and an Attention 2552 layer.
The recurrent layers use 512 memory
cells each. The latent space is also 512-
dimensional. Precursor charge and NCE
encoder is a single dense layer with the
same output size as the peptide encoder.
The latent peptide vector is decorated
with the precursor charge and NCE vec-
tor by element-wise multiplication. A
1-layer length 29 bidirectional neural net-
work with GRUs, Dropout, and Atten-
tion acts as a decoder for fragment inten-
sity. Circles denote normal neural cells
and Attention cells when color shades
vary. Dark squares denote GRU mem-
ory cells, and light blue squares denote
embedding cells. Black lines without
arrows denote Dropout.

"Implemented in Python with keras
2.1.1 and tensorflow 1.4.0 compiled to
use Graphics processing units (GPUs).

# maximum number of fragment ions =

peptide length —1.
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github.com/kusterlab/prosit/

§2ions types x 3charges X (30 —
1) amino acids = 174

19.1%| 72.8% peptides 8.1%
98.8% proteins

#Peptides (x10,000)

Sequence length

Figure 5.3: Length distribution of hu-
man tryptic peptides. Bars indicate the
frequency of sequence length. Blue bars
are covered by Prosit, and red bars are
not. Only sequences in the length range
of [1,52] are shown, but longer human
tryptic sequences exist. The percentages
include all human tryptic peptides, also
those not shown in the histogram.

1 Note that the combinatorial space of
theoretical fragment ions grows expo-
nentially with the length of the se-
quence.

S

%\m

=

g

5

>

*

Séquerme length

Figure 5.4: Length distribution of

ProteomeTools peptides. Bars indicate
the frequency of sequence length. Blue
bars are covered by Prosit and red bars
are not. All sequences of ProteomeTools
(as of 2019-07-07) are included.

"' compare Figure 6.3

*29amino acids x 3charge states =
87dimension
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and the dimensionality of each element 6, three charges times two
ion types (y- and b-). This example is specifically the dimensionality
chosen for Prosit and allows the prediction of 174 potential fragment
ions for a 30-merS.

Peptides that have more than 30 amino acids account for only 8%
of the tryptic human proteome (Figure 5.3). Further, they only amount
for 0.1% of the synthesized peptides in ProteomeTools, because longer
peptides are more difficult and costly to synthesize (Figure 5.4). As
those very long peptides are exceedingly rare, their underrepresenta-
tion is likely to result in poor model performance. This hypothesis
is later validated in section 7.2 at the example of different precursor
charge distributions (Figure 7.8). Therefore, longer peptides were not
included for training, but it is acknowledged that data stratification
or additional training data could allow models for longer peptides
with good performance.

Peptides with sequence length 7 to 30 cover 98.8% of the human
proteome as described by Uniprot as of April 21, 2019 (Figure 5.3).
The reason for a lower length limit is mostly historical. Typically, the
region below 350 m/z is not considered, as Orbitrap resolution is not
optimal. Further, shorter sequences mean fewer theoretical fragment
ions to match measured peaksl. That is why ProteomeTools does not
cover many sequences that are shorter than seven amino acids, and
Prosit also excludes those.

At the time when the Prosit was trained, the measurement of
synthesized peptides carrying PTMs was not completed yet. M(0x),
though, often occurs naturally during sample preparation and mea-
surement and was therefore included in the searches that are the basis
for spectrum annotations. Therefore Prosit includes M(ox) as the only
PTM alongside the standard 20 amino acids in their unmodified form.
For simplicity, it is treated internally as if it were an independent
amino acid.

The mostly human tryptic training data resulted in spectra with
overwhelmingly doubly and triply charged precursors. Although
precursor charge one, five and six only observed rarely''), those
charges were included for completeness. As the precursor charge
is read with a separate encoder, increasing the number of precursor
charges had an only marginal effect on the model size.

Prediction of Prosit focuses on HCD and CID prediction, and
mostly y and b ions are observed with this fragmentation methods.
X, z, a and c ions were excluded to keep the model simple, but it can
be readily extended, for example, for other fragmentation methods
such as ETD.

The addition of a single neutral loss would add another 87 outputs,
as it could occur on each amino acid and in all charge states™. Con-
sidering that the total number of outputs without neutral losses is
174, adding one neutral loss would increase the output space dispro-
portionately. An additional difficulty, specifically with the addition
of neutral losses, is that for certain peptide sequences, fragment ions
become indistinguishable by m/z. For example, when a peptide has



the same amino acid subsequence as prefix and suffix b-ions within
this prefix share the exact same m/z value with their corresponding
y-ions with water losses. Consider peptide AEQDELSQRLA, an 11-
mer, with A being N- and C-terminal amino acid. The b-10 +2 ion
has the theoretical same m/z as the y-10-H20 +2 ion: 585.7911m/z In
an annotation, those ions fall into the same m/z bin and the model
cannot tell which peak belongs to which fragment ion. As the initial
focus of Prosit is the mere prediction of fragment ion intensities, neu-
tral losses are excluded. In the future, ion intensity deconvolution
schemes could allow the addition of neutral losses as well.

Model architecture

#Encoder  #Decoder Latent Parameters Training [min]
1 1 128 140,234 288
1 1 256 524,618 520
1 1 512 2,030,666 812
1 1 1024 7,991,882 2088
1 2 512 3,606,602 377
2 1 512 3,606,602 338
3 1 512 5,182,538 663
2 2 512 5,182,538 663

5.3 Architecture optimization

The Prosit architecture consists of a set of encoders for its input
parameters and a decoder that is task-specific—in this work, specific
to fragment ion intensity prediction. The rationale behind this general
architecture and its inspirations have already been described above
in section 5.2. Still, there are endless options for how to construct a
specific instance following this architecture: How many layers to use?
How many neurons should each layer have? How large should the
latent space in-between en- and decoder be? Although an accurate
model is the primary target, several other factors need to be taken
into to ensure that the model is practically useful. Two additional
requirements are acceptable prediction times and a moderate memory
footprint of the model. To allow the prediction of full proteomes
within an hour, several hundred thousand spectra must be predicted
within minutes. The number of parameters of the model is dependent
on the number and choice of the layers used and is the main influence
on the memory footprint of the model. An exceedingly large memory
footprint needs to be prevented, to make sure that Prosit can fit into
the random-access memory (RAM) of a variety of hardware systems.

Table 5.1 shows the results of a heuristic search to determine an
appropriate model architecture. As the model trains from predicting
spectra and adjusting based on its errors, in this analysis, the time
to train the model is used as a heuristic for prediction speed. First,
a suitable latent space size is estimated by consecutively doubling
the space. Even restricting the number of encoder and decoder layers

#Epochs  Accuracy [1-SA]

35 0.187

39 0.142

28 0.124

28 0.108

28 0.114

25 0.103

38 0.101

38 0.102
Table 5.1: Model architecture explo-

ration. The number of encoders, de-
coders, and latent space dimensions of
the Prosit architecture are adapted. This
variation results in changes in model
accuracy (normalized spectral contrast
angle loss (SAL)), sizes (number of pa-
rameters), and training time. Model
sizes that exceed more than 3 million
parameters are shaded increasingly red.
Model accuracies that exceed SAL o.110
or lower are shaded increasingly blue.
The chosen Prosit architecture is high-
lighted with bold text.
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to one, leads to an excessive number (~8M) of parameters when the
latent space has 1024 dimensions. Keeping the latent space at 512 di-
mensions and adding encoder layers improved model accuracy while
keeping the number of parameters small. Adding decoder layers
did improve model performance compared to adding encoder layers.
Every decision for a model architecture is a trade-off between model
accuracy, memory requirements, and prediction speed. For example,
adding a third encoder layer, compared to keeping it at two layers,
only increases performance marginally from SAL o.103 to SAL o.101,
but nearly doubles training time and memory footprint (compare
Table 5.1 row six and seven). In this case, a 2-encoder, 1-decoder
architecture with a 512-dimensional latent space was chosen as a
compromise between fast prediction speed and reasonable memory
consumption.

In a separate analysis, it was analyzed whether LSTM or GRU
memory cells in the recurrent layers perform differently. GRU mem-
ory cells performed slightly better and for results shown in 5.1 those
cells were used. As discussed in 4.2, GRUs also use fewer parameters
than LSTMs, making the derivative calculation faster. Using dropout
values 0.5, 0.4 and 0.3 did not have a substantial impact on model
performance (results not shown). The use of the least strong regular-
ization value of 0.3 did not lead to an overfitted model (see Chapter
7). As overfitting was not an issue, we preferred a low Dropout, to
allow the model to utilize more parameters at the same time.

5.4 Generalization

The encoder-decoder architecture is flexible in that decoders can be
exchanged depending on the prediction task. For example, colleagues
have shown in independent research, that the Prosit architecture can
be re-used predict iRT'3°. The sequence encoder architecture was
re-used, and the precursor and collision energy encoders discarded,
as those parameters do not affect LC. The decoder was replaced by
one fully connected dense neural network layer that outputs a single
value: the peptide’s iRT value. Gessulat and Schmidt et al.*3° show
that this model outperforms the prevalent retention time models
SSRCalc?7* and Elude?74.

Unpublished preliminary research indicates that the architecture
can be utilized for various other peptide properties. For example,
the problem formulation of ion mobility prediction is highly similar
to iRT prediction, and initial tests look promising. Another initial
successful application could be shown by training a suitable decoder
for proteotypicity.



6
Model training

Training a machine learning model involves several steps. The fol-
lowing steps have been described in general in chapter 4 and are
applied to Prosit specifically in the following. An appropriate set of
data points is selected and prepared to be consumable by the model
(section 6.1). The objective of the model is formulated to properly
model spectrum similarity (section 6.2). Subsequently, model hyper-
parameters are to be optimized (section 6.3) and overfitting controlled
(section 6.4).

6.1 Data preparation

The ProteomeTools project '4°is a unique resource to train predictive
models for proteomics. All peptide identifications in the dataset
have high Andromeda scores, are synthesized, and were present in
the respective measured sample. This approach represents a solid
ground truth and reduces the probability of falsely matched PSMs to
a minimum. RAW spectra as well as peptide identifications by Max-
Quant are available on PRIDE". For model training though, the data
published cannot be used directly. It needs to be prepared and trans-
formed into suitable data formats. Unless otherwise mentioned, the
following transformations are performed by custom Python scripts.

Prosit trains on target PSM from 1% FDR MaxQuant searches’.
The databases for the search are specific to the dataset such that
they only contain the peptides present in a specific sample. In the
search, carbamidomethylated Cys is specified as fixed modification
and methionine oxidation as variable modification. Only top-ranking
PSMs are considered. Chapter 5 introduced how PSMs need to be
presented to the model. The input consists of the peptide sequence, an
NCE, and precursor charge; and the output is the annotated spectrum
consisting of y and b ions only.

Raw spectrum annotation

MS/MS spectra were extracted from the RAW files using Thermo
Fisher’s RawFileReaderf. The extracted information includes precur-
sor charge, the collision energy used for acquisition, and all fragment
ions (m/z and respective intensity values). Y and b ions of the ex-

* PXDoog732'4° and PXDo1o595 '3°

*version 1.5.3.30

thttp://planetorbitrap.com/
rawfilereader

51


http://planetorbitrap.com/rawfilereader
http://planetorbitrap.com/rawfilereader

NCE Offset: 6.7 .-

NCE QExactive

NCE Fusion Lumos

Figure 6.1: Comparison of fragmenta-
tion efficiencies of two different mass
spectrometers with different peptides
standards. The best matching HCD
spectra are from an Orbitrap Fusion Lu-
mos, and a Q Exactive are compared.
Each line depicts one peptide standard.
Note that lines are overlapping and may
not be distinguishable. The black dot-
ted line is a linear fit, and the dashed
black line is the diagonal. The NCE off-
set between the two machines is the dis-
tance between the fit and the diagonal.
Adapted from Zolg et al. 8.

Sy and b ions, 3 charges, 29 fragment
ions

1 The intensity value —1 encodes the
special meaning “This peak cannot exist”
and is excluded from similarity calcula-
tions.
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tracted spectra are annotated at fragment charges one, two and three.
The m/z matching tolerance is 25 ppm.

Selecting peptide-spectrum-matches for model training

Peptide length was restricted to a range of 7 to 30 amino acids and
precursor charge of <7 due to model limitations. This choice is mo-
tivated by the fact that the median peptide length in ProteomeTools
is 14 and peptides of more than 30 amino acids are rarely included.
Including longer or shorter peptides is unlikely to yield enough train-
ing data to train model representing those length well (see Chapter 7).
Amino acids are limited to the standard 20. M(ox) is allowed as the
only PTM and treated as an additional (21st) amino acid. To ensure
high spectrum quality, the data is filtered to include only PSMs with
Andromeda score >50. The annotation of Prosit—without decharging
and deisotoping and using different m/z matching tolerances—can
lead to different results than MaxQuant’s annotation. Therefore, all
PSMs without at least two matched fragment ions are discarded. For
some combinations of peptide sequence, NCE, and precursor charge,
there are multiple PSMs, whereas for other combinations there is only
one. To reduce biasing Prosit towards frequently occurring combina-
tions, the training data is filtered so that only the three PSMs with the
highest Andromeda score are included.

Calibrating collision energy of the training data

In theory, NCEs are supposed to be transferable between machines.
In practice though, NCEs differ from machine to machine and over
time at the same machine. For example, Zolg et al.?® report that
spectra from an Orbitrap Fusion Lumos and an Orbitrap Q Exactive
at the same laboratory match best at NCEs that differ substantially
by an offset of 6.7 (see Figure 6.1) To allow consistent NCE through-
out the training dataset, NCE for each RAW file is aligned to a
reference dataset as proposed by Zolg et al.?®. All ProteomeTools
measurements include the PROCAL2® standard set of peptides and
are compared to a standard measurement of those peptides acquired
at 15 NCEs. From this data, a calibrated curve is generated, and its
intercept used to calculate the RAW file specific NCE offset.

Encoding

The model is presented with three inputs: the calibrated NCE, the
precursor charge, and the peptide sequence; and one output: the
target spectrum. The spectrum is represented by a 174-dimensionalS
vector of continuous values and sorted as follows: y; (1+), yi (2+),
Y7 (+3), b1 (1+), by (2+), by (24), y2 (1+), etc.. Theoretical ions
without a matching peak are set to intensity zero and all others are
base peak normalized. Fragment ions intensity values at impossible
dimensions (i.e. Yy, for a 7-mer) are set to —11. Peptide sequences
are represented as length 30 discrete integer vectors. Integers from 1



to 21 represent one amino acid each. 0 is used as a padding value for
sequences shorter than 30. Precursor charge is one-hot encoded, and
the calibrated NCE is a continuous scalar.

6.2 Spectrum similarity as objective function

Various similarity measures have been proposed to compare fragment
spectra®>: simple ones such as cosine and common statistical ones
such as R (equation 6.4). Using a measure that is sensitive for high-
correlating spectra is particularly important when training machine
learning models via backpropagation (see Section 4.2) because the
error instructs the model how and where it needs to adapt to achieve
better predictions. A highly sensitive measure, therefore, simplifies
the search for optima and shortens model convergence time.

In an in-depth analysis, Toprak et al.# show that R is insensitive
for highly similar spectra and instead recommend the SA (equation
6.5) for as one potential alternative. Figure 6.2 visualizes this on the
basis of PSMs of the ProteomeTools project. The SA range [0.70,0.90]
only spans the R range [0.88,0.99]. Note that all PSMs in SAs [0.9,1.0]
are skewed in R [0.99,1.00]. This empirically validates the results of
Toprak et al.# and suggests that SA is a suitable objective function
to train Prosit. To highlight commonalities and differences of R, SA,
and SAL (equations 6.4, 6.5, 6.6) the equations below first define the
sum-of-squares and mean deviation (equations 6.1, 6.2).

SA is defined in the range of —1 (completely diametrical) and 1
(identical) whereas negative SA values only occur if negative intensity
values are allowed. As experimental intensities are non-negative, SA
is confined to [0, 1] when comparing experimental spectra in practice.
A machine learning model though, can predict negative intensities.
Reformulating the SA into the loss function SAL (equation 6.6) in
the range of 0 (identical spectra) and 2 (least similar) incentivizes the
model to predict non-negative intensity values and thus circumvents
the problem.

For training, SAL was calculated on all theoretical possible frag-
ment ions, while ignoring the m/z dimension. For example, two
sequences Sq and Sy, with length ng and ny, and precursor charges
zq and zy, are represented by vectors Vy and V. Vg and Vy are the
same length and contain all y- and b-ion intensities in Sq and Sy, up
to ion max(ng, np) — 1 for charges up to min(max(zq,zp),3) in the
same dimension, respectively. For example, when S = PPTD, z =3
and Sy, = PEPTIDE, z, = 2 then nq = 4, n, = 7 and Vg, Vp have
length 18'!. Intensity values are base peak normalized and intensities
not observed or predicted to be negative are defined to be zero. An im-
plementation can be found at www.github.com/kusterlab/prosit/.

Spectral angle
0.50

0.00 050 . .
Pearson correlation

Figure 6.2: Correlating R and SA sim-
ilarity. Comparison of R (equation 6.4)
and normalized spectral contrast angle
(SA) (equation 6.5) as measures for the
spectral similarity between experimental
and predicted spectra. Each dot repre-
sents one PSMs from the Holdout dataset
(see Section 6.4) with the experimental
spectra from ProteomeTools and predic-
tion from Prosit. Note that SA is much
more sensitive for high correlating spec-
tra than R.

" (7length — 1) X 3 precursor charge

53


www.github.com/kusterlab/prosit/

Table 6.1: Optimizing batch size and
learning rate. The same model was
trained at different learning rates and
batch sizes. Best SALs and the time of
convergences are indicated. For batch
size 32 and 64 the model experienced
exploding gradients (see text) within the
first epoch and could not converge there-
after. For those batch sizes (gray), the
SALs indicated are the values after the
first and final epoch. Note that usually, a
smaller learning rate increases the num-
ber of epochs needed for convergence
and therefore increases the total training
time. The model achieves the global best
SAL with batch size 512 and a learning
rate of 0.001 (green).

“the problem of exploding and van-
ishing gradients was described inde-
pendently by Hochreiter *>° and Bengio
etal. ?>".
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sum-of-squares V= Z Vi2 (6.1)
i=0
.I n
mean deviation V=V—-— Z \4 (6.2)
n
i=0
L2 normed vector V= v (6.3)
na K
Pearson correlation R(Vg, Vp) = Va-Vo_ (6.4)
Vi Vi
2cos (Vg -
Spectral angle SA(Vq,Vp)=1-— cos (T[Va Vb) (6.5)
Spectral angle loss ~ SAL(Vq, Vp) =1—5A(Vq, Vb) (6.6)
(6.7)

Spectral angle loss ~ Convergence time [min]

Learning rate: le—3 Tle—4 le-5 Tle-3 le—4 le—5
Batch size: 32 0.513 0.191  0.494 94 94 94
64 0.151 0.152 0.156 48 48 48

128 0.136 0.132 76 945 1,758

256 o0.115 0.113 0.143 198 570 1,387

512 0.103 0.123 0.129 435 465 2,070

1024 0.108 0.104 0.143 325 416 1,820

0.108

6.3 Hyperparameter optimization

Although the architecture has the most profound impact on model
performance, hyperparameters such as batch size and learning rate
affect performance because they influence model convergence. The
batch size is the number of samples considered for one update to the
model weights. The learning rate controls how strongly the error from
a single batch influences the update to the model weights. In practice,
smaller learning rates often lead to a better model performance at the
cost of longer model convergence times. The Adam optimizer>2®5 is
used to train Prosit, and its authors suggest a default learning rate of
0.001. Theoretical and empirical research suggests small batch sizes of
32 are most advantageous>®, while some examples show that larger
batch sizes can increase performance%. Table 6.1 shows the results
of a grid search to optimize batch size and learning rate for Prosit.
While lowering the learning rate does not conclusively increase model
performance, increasing the batch size did have a positive effect.
In fact, using batch sizes of 32 or 64 led to unstable training with
exploding gradients™. The exploding gradients causes float overflows
that prevent the neural network from reaching convergence. Best
model performance is achieved with a batch size of 512 at a 0.001
learning rate. Training the model with this hyperparameters took 7.5
hours.



6.4 Controlling overfitting

The goal of each machine learning model is that it should generalize
well to previously unseen data. To evaluate generalization, the train-
ing data is typically split into one part to train the model on and up
to two parts to evaluate generalization. The data was split into three
parts: Training (72%), Test (18%), and Holdout (10%)1t. Training is
used to train Prosit, Test is used to monitor overfitting during training,
and Holdout is used to evaluate model performance after the model
converged. Figure 6.3 shows sequence length and precursor charge
distributions for those datasets. The set of peptides in each split is
unique, so that no peptide in Training is also present in Holdout, for
example.

One approach to monitor and control overfitting during training
is the regularization technique early stopping>*®. After each training
episode, it is evaluated whether the loss on Test has decreased and
therefore the model’s generalization has improved. This is evaluated
on Test, as the Test loss is bound to increase when the model starts
to overfit Training. Prosit monitors at least ten episodes after the last
Test loss decrease (patience=10) before stopping training. The model
weights with the lowest Test loss are selected as final model weights.

Dropout?2>2% is a second regularization technique employed in
Prosit. For Dropout at each training batch, a portion of all model
weights (30% in Prosit’s case) are fixed to zero and not updated
after loss calculation. This effectively samples a different sub-model
from the overall general model at every weight update. Through this
scheme, the model cannot rely on single neurons anymore but has
to distribute its learning over several weights. Further, the weight
update is randomized not only by the samples within each batch
but also by the weight selection through Dropout. In practice, this
increases both, model generalization and representation robustness.

The technical variation inherent in MS data acts as another power-
ful regularizer. MS/MS intensity values can fluctuate, and collision
energy values slightly shift over time. This means two spectra for the
same peptide, precursor charge, and collision energy combination
are similar but not identical. Prosit trains on up to three PSM for
each such combinations, specifically those PSMs with the highest
Andromeda score. The model needs to minimize the overall error for
all those spectra and cannot simply memorize a single spectrum per
combination.

To rule out that the generalization observed is a result of a lucky
Training, Test, Holdout split, Prosit is trained on five random splits,
and the loss values are evaluated on each split. Figure 6.4 shows the
results of this analysis. Differences in model performance are neg-
ligible on an absolute scale (main panel). In the range of [0.08, 0.20]
SAL Training loss is only slightly lower than Test or Holdout, indi-
cating very good generalization. Reassuringly, the loss curves are
reproducible over the five splits, with the minimum, maximum, and
mean loss values being close to the training loss.

N W
|

#PSMs [x 1mio]

#PSMs [x100k]
| |

7 9 11 13 15 17 19 21 23 25 27 30

Sequence length
Holdout

Figure 6.3: Training, Test and Hold-
out split. Training data for Prosit is
split into Training (orange), Test (light
blue), and Holdout (dark blue). Se-
quence length (main panel) and precur-
sor charge (top right inset) distributions
are similar in each split to the overall
distributions in ProteomeTools.

™ This split might seem unusual but is
due to a stepwise splitting. First, the
data is split into 10% (Holdout) and 90%
(remaining), while enforcing that pep-
tides are unique to each split. Also, both
splits are shuffled. Then the remaining
90% is split into 80% Training and 20%
Test with the same procedure. This re-
sults in a 72:18:10 split
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Figure 6.4: Evaluating Prosit on differ-
ent training splits. Prosit performance
on five random splits of the Proteome-
Tools data into Training Test and Hold-
out. The main panel shows the best
performing models (colored lines) over
the five splits for each epoch. The in-
set shows the difference between the
best performing and worst performing
model for each epoch (shaded region)
and the median model performance (col-
ored lines).



7
Evaluating prediction accuracy

The following sections evaluate the prediction accuracy of Prosit on
various datasets for different classes of peptides. On the basis of the
ProteomeTools Holdout dataset, it is established that intensity predic-
tions by Prosit agree strongly with high-quality synthetic reference
spectra. Prosit is able to predict spectra specific to a certain NCE, and
it is able to inter- and extrapolate to NCEs it did not train on. This
ability is demonstrated on ProteomeTools Holdout and the PROCAL
dataset—a standard set of synethetic peptides for iRT calculation and
quality control. To evaluate Prosit’s NCE calibration on an external
dataset, the predictions are compared to the Bekker-Jensen dataset
that was acquired at a different laboratory. The sample was digested
with four different proteases, allowing the assessment of prediction
quality for non-tryptic peptides.

o0~ LKEATIQLDELNQK 3+ (NCE=35; n=3)

SA =0.92
<75 R=099
S Score = 125
g 50
=
I~ 25 I
0 I I i 1 f
250 500 750 1000
mfz
Synthetic

7.1 Synthetic human tryptic data

Fragment ion intensity predictions by Prosit correlate exceptionally
strong with experimental reference spectra from the ProteomeTools
Holdout set. Figure 7.1 shows an error plot (pseudo mirror plot) that
is representative for prediction accuracy at a median R=0.99 and
SA=0.92. With only minor exceptions, the predicted intensities and
experimental intensities robustly agree for both: the y and b ion
series. Note, that the predicted intensities are compared to three
experimental spectra and those fragment ions exhibiting low intensity

Figure 7.1: Representative spectrum
prediction. This pseudo mirror
plot compares the Prosit prediction
and three synthetic reference spectra
from ProteomeTools for the peptide
LKEATIQLDELNQK. The precur-
sor was triply charged and measured at
NCE 35. Those parameters were also
used for prediction. Black error bars in-
dicate one standard deviation around
the measured fragment ion intensities
and the color change between bars the
median. Red and light blue portions of
each peak indicate the portion of pre-
dicted intensity that is explained experi-
mentally for y- and b-ions, respectively.
Orange portions show predicted inten-
sities that exceed intensities experimen-
tally observed in the spectrum of the
synthetic peptide. Dark blue portions in-
dicate experimentally observed intensity
portions exceeding the predicted inten-
sities. The Andromeda score (Score), SA
and R are indicated. This example is rep-
resentative for the median performance
of Prosit
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Figure 7.2: Prediction performance
for different collision energies. In
ProteomeTools HCD spectra were mea-
sured at NCEs 20, 23, 25, 28, 30, and
35. The violin plots show prediction ac-
curacy distributions by Prosit for each
respective NCEs measured in SA. The
red part indicates the portion of PSMs in
the Training dataset of Prosit. The blue
part indicates PSMs in the Holdout set.
Black horizontal bars indicate the apex
of each distribution. A grey horizontal
line is drawn at SA=0.90 (R=0.99) for
orientation.

Figure 7.3: Collision  energy-
dependent spectrum. This dou-
ble pseudo mirror plot compares

experimental synthetic spectra
for the triply charged peptide
GDLLQVM(ox)HEAFEK  with

predictions by Prosit at different NCEs.
The top panel compares three measured
spectra and the Prosit prediction at
NCE 20, and the bottom panel at
NCE 35. Black error bars indicate
one standard deviation around the
measured fragment ion intensities
and the color change between bars
the median. Red and light blue
portions of each peak indicate the
portion of predicted intensity that is
explained experimentally for y- and
b-ions, respectively. Orange portions
show predicted intensities that exceed
intensities experimentally observed in
the spectrum of the synthetic peptide.
Dark blue portions indicate experi-
mentally observed intensity portions
exceeding the predicted intensities. The
Andromeda score (Score), SA, and R are
indicated.
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variance tend to correlate best with the predicted intensity. The same
high prediction accuracy was achieved across all investigated NCEs
(Figure 7.2). No substantial overfitting was observed.

Collision energy-dependent spectrum predictions

The NCE used for acquisition strongly influences the appearance
of MS/MS spectra. For example, figure 7.3 demonstrates the ef-
fect of an NCE change at the example of the triply charged peptide
GDLLQVM(ox)HEAFEK. The change of the experimental intensity
distribution is dramatic, but Prosit adapts its predictions accord-
ingly achieving high spectral angles of 0.93 (NCE=20, top) and 0.88
(NCE=35), respectively.
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NCE 35 used for acquisition and prediction

This specific example generalizes to all PSMs evaluated in the
Holdout dataset. Figure 7.4 compares spectra at different NCEs. Exper-
imental spectra of the same peptide sequence and precursor charge
show high agreement at the same NCE, but increasingly differ the
more the NCE diverges (Figure 7.4a). The same pattern holds when
comparing experimental spectra to predictions at various NCEs (Fig-
ure 7.4b) and predicted spectra to predicted spectra (Figure 7.4c).
This is an indication that Prosit learned how NCE influences peptide

fragmentation.



Collision energy (measured)

a,
o @ b)
08 o ~
T .
) =
=y 8 S
§06 F o Y |
— ~ ~—
[ =
B ? 0
3 8 2
ug; 0.4 § S
kS &
R R
S =2
0.2 8 &)
0.0

Collision energy (measured)

To evaluate Prosit’s ability to inter- and extrapolate between NCEs,
predictions were compared to experimental spectra from the PROCAL
standard set of 40 peptides that were acquired at 15 different NCEs
(Figure 7.5). Each peptide was predicted at every NCE between 10 and
50, and the resulting predictions were compared to the experimental
spectra of that peptides at the 15 different NCEs yielding bell-shaped
calibration curves.” The top inset of Figure 7.5 shows the calibration
curve with optimal prediction accuracy at NCE 30 that matches the
NCE used for acquisition in this case. Although Prosit was only
trained on the six NCEs, it consistently and very closely calibrates the
optimal NCE for prediction to the NCE used for acquisition. Dots on
the diagonal of Figure 7.5 show nearly perfect agreement. Overall,
the absolute median offset between optimal calibrated NCE and the
NCE used for acquisition is only 1 NCE (Figure 7.5 bottom inset).
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pDeep 22, are not able to calibrate themselves to data acquired under
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Figure 7.4: Collision energy depen-
dency of experimental and predicted
spectra. The heatmaps indicate frag-
ment ion intensity correlations (mea-
sured in SA) at different NCEs of 40 syn-
thetic peptides from the PROCAL reten-
tion time kit2®. Experimental reference
spectra are measurements of synthetic
peptides from ProteomeTools. Predicted
spectra are by Prosit. (a) Compares ex-
perimental vs. experimental spectra. (b)
Compares experimental vs. predicted
spectra. (¢) Compares predicted vs pre-
dicted spectra.

*Only precursor charge 2 and 3 were
considered. Those were predicted and
compared separately.

Figure 7.5: Evaluating collision energy
interpolation. The top-left inset cor-
relates predictions at NCEs 10-50 (in
steps of one) for 40 peptides from the
PROCAL retention time kit to the ex-
perimental spectra for those spectra ac-
quired at NCE 30. The predictions reach
the optimal agreement at NCE 30 (blue
line). The grey horizontal line is drawn
at SA=0.90 (R=0.99) for orientation. The
large plot shows the same analysis for
15 different NCEs (black dots). The grey
horizontal line marks optimal agree-
ment of estimated optimal NCE and the
NCE used for acquisition. The analy-
sis in the top left inset is highlighted in
this plot with the blue horizontal and
red vertical lines. The bottom-right inset
shows the absolute differences between
the NCEs used for acquisition and the
NCE that was estimated optimal from
the predictions. The box indicates the
interquartile range (IQR), its whiskers
1.5*IQR values, and the black line the
median.
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Figure 7.6: Comparing uncalibrated
with calibrated predictions on external
data. Experimental spectra from the
Bekker-Jensen® dataset are compared to
Prosit predictions for the same PSMs
at different NCEs. The left two box-
plots show SA distributions at NCE
28, the NCE Bekker-Jensen was acquired
with. The middle two boxplots show
SA distributions at NCE 30, the opti-
mal estimated NCE for predicting spec-
tra of that dataset. Blue boxes indi-
cate PSMs were also available of the
ProteomeTools Training. Red indicates
PSMs not part of ProteomeTools. The
right boxplot shows the SA distribution
of Bekker-Jensen PSMs, when compared
to ProteomeTools PSMs for the same
peptide carrying the same charge state
and measured at the same NCE. This is
the experimental upper limit that can be
achieved correlating to ProteomeTools
spectra. The number of PSMs is indi-
cated.

* Pride ID: PXDoo4452a

67% observations have higher

spectral similarity
to prediction
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SA difference to Bekker-Jensen et al.
(prediction - synthetic)

Figure 7.7: Comparing calibrated pre-
dictions with reference spectra. Fig-
ure 7.6 showed that calibrated predic-
tions correlate slightly better to Bekker-
Jensen spectra than reference spectra
from ProteomeTools. This histogram
shows the absolute difference of SA
of predicted and reference spectra for
those PSMs. DPositive values indicate
that the calibrated predictions correlate
more strongly to Bekker-Jensen spectra
(67%). Negative values indicate better
correlations of ProteomeTools reference
spectra.
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different conditions, which made a re-training on external datasets
necessary. NCE calibration allows Prosit to determine an optimal
NCE for prediction for such external datasets without re-training the
model. Specifically, to calibrate itself to external data, Prosit randomly
samples up to 10,000 high-scoring target PSMs from the dataset and
predicts those at every NCE from 20 to 40, generating a calibration
curve as described above. The NCE with the highest median SA is
considered the optimal NCE for prediction.

7.2 Prediction accuracy for external datasets

The Bekker-Jensen dataset®' is deep HeLa measurement covering
~584,000 peptides that were measured on an Orbitrap Q Exactive.
For evaluation, the RAW spectra were extracted, annotated, trans-
formed, and selected according to the same procedure described in
Chapter 6. The spectra were acquired by Bekker-Jensen et al. 9 with an
NCE of 28. NCE calibration yielded 33 as optimal NCE for prediction.
Figure 7.6 shows a comparison of spectrum prediction qualities of
those two NCEs. Compared to the original NCE of 28, the median
spectral angle increased from 0.78 to 0.89, when using the calibrated
NCE (Figure 7.6 left four boxes). This holds true for either peptides
that are or are not part of ProteomeTools.

The analysis is repeated with reference spectra from the synthetic
peptides in ProteomeTools. Similar to Prosit’s NCE calibration, NCE
30 was estimated to be the best matching NCE from all NCEs used for
acquisition in ProteomeTools. Interestingly, the correlation between
experimental Bekker-Jensen spectra and calibrated Prosit predictions
is slightly higher (median SA 0.913) than for reference spectra from
ProteomeTools at optimal NCE (median SA o.9o7, Figure 7.6 right
box). More specifically, for 67% of the peptides shared by the Bekker-
Jensen dataset and ProteomeTools, calibrated predicted spectra had a
stronger correlation to the experimental spectra than ProteomeTools
reference spectra (Figure 7.7). One possible explanation for this is that
ProteomeTools only offers spectra acquired at six different NCEs. In
this case, none of those six appear to match the Bekker-Jensen spectra
as good as Prosit calibrated to NCEs 33. Those results, indicate that
interpolation between collision energies works very well.

As seen already in Figure 7.6, spectrum prediction accuracy is
slightly better for peptides that are part of ProteomeTools. One
factor for this is the difference in precursor charge distributions of
the Bekker-Jensen and ProteomeTools data (Figure 7.11a). Prosit is
particularly strong for precursor charge 2 that relatively accounts for
far more spectra than in Bekker-Jensen. Prosit’s weaker predictions
for precursor charges 3 and 4 are likely caused by the low share
of those charges within the training data (Figure 7.8b). In general
though, prediction accuracy is consistent for peptides being either
present or absent in the ProteomeTools dataset (Figure 7.8b). This
indicates a slight overfit to the peptide distributions of ProteomeTools,
namely charge 2 peptides of median length 14 but does not indicate



overfitting to peptides specific to ProteomeTools.
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7.3 Non-tryptic proteases

Although Prosit was trained solely on tryptic peptides, there is no tech-
nical limit preventing it from predicting fragment intensity for non-
tryptic peptides. In addition to tryptic peptides, the Bekker-Jensen
dataset includes peptides that were digested by LysC, Chymotrypsin,
and GluC. The NCE calibration behaved for non-tryptic peptides
consistent with tryptic peptides (Figure 7.9a). All four calibration
scores estimate a very similar optimal NCE values for prediction. As
the data for all proteases were measured on the same machine, this
indicates that the NCE calibration indeed calibrates Prosit towards
specific machine conditions and is independent of the protease used.
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Figure 7.9b shows that prediction was high for all tested proteases
and is paticularly good for LysC (median spectral angle 0.88). This is
likely due to the overlapping substrate specificity of trypsin and LysC.
By including non-tryptic peptides during training, Prosit would prob-
ably be able to improve even further but in general, the results indicate
that Prosit learned general peptide fragmentaion characteristics.

Figure 7.8: Precursor charge influence
on prediction accuracy. The precursor
charge state is dependent on the peptide
resulting in different charge state distri-
butions for different datasets. (a) Com-
parison of precursor charge state distri-
butions for different datasets. The left in-
dicates the distribution in the Proteome-
Tools Holdout dataset and the right the
distribution for Bekker-Jensen. The num-
ber of PSMs is indicated. (b) Violin plots
showing SA distributions (experimen-
tal spectrum versus predicted spectrum)
split by precursor charge. The distri-
bution for peptides that were part of
the ProteomeTools Holdout dataset is col-
ored red and blue otherwise. Solid black
vertical lines indicate the apex of the SA
distribution. The number of PSMs is
indicated.

Figure 7.9: Spectrum prediction for dif-
ferent proteases. (a) NCE calibration
for Trypsin (orange), LysC (light blue),
Chymotrypsin (dark blue) and GluC
(red). Spectra from Bekker-Jensen are
correlated with respective predictions
from Prosit at NCEs 10-50 (in steps of
one). The NCE used for acquisition (ver-
tical solid line) and the optimal NCE
for predicting most proteases (vertical
dashed line) are indicated. A grey dot-
ted horizontal line is drawn at SA=0.90
(R=0.99) for orientation. (b) Violin plots
showing SA distributions (experimental
Bekker-Jensen spectrum versus predicted
spectrum) split by proteases. The dis-
tribution for peptides that were part of
the ProteomeTools Holdout dataset is col-
ored red and blue otherwise. Solid black
vertical lines indicate the apex of the SA
distribution. The number of PSMs is
indicated.
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Figure 7.10: Bias analysis of Prosit and
MS2PIP. Benchmark of fragment ion in-
tensity prediction by Prosit (blue) and
MS2PIP (red) for a random subset of
the ProteomeTools holdout dataset. The
data is split by sequence length (left) pre-
cursor charge (middle) and normalized
collision energy (right).
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Figure 7.11: Overfitting evaluation
MS2PIP versus Prosit. A subset of
10,000 PSMs from the Bekker-Jensen Tryp-
tic dataset was predicted. SA distribu-
tions for MS2PIP (red) and Prosit (blue)
are shown for peptides that were (left) or
were not (right) part of ProteomeTools.
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Comparison to MS2PIP

Prosit is not the first fragment intensity prediction model (section 4.3
reviews the field). Currently the two prevalent prediction models
for fragment intensities are MS2PIP and pDeep. Both models report
substantially lower R for HCD spectra in their respective publications:
pDeep reports an overall R of 0.90 and MS2PIP a R of 0.86 for +2
precursors. Prosit achieves a median R of 0.99 on the internal Holdout
dataset from ProteomeTools.

A local evaluation of pDeep was not possible as it does not offer
an online service for production and the available codet could not be
executed at local servers despite best efforts. Therefore, the following
comparison is limited to MS2PIP.

For evaluation, the ProteomeTools Holdout dataset was predicted
with Prosit and MS2PIP. In terms of sequence length, precursor charge,
and collision energy, Prosit shows a better generalization than MS2PIP
as evident from Figure 7.10. For example, spectrum correlations for
Prosit only lightly decrease from median SA=0.95 (R=1.00) for 7-mers
to SA=0.90 (R=0.98) for 17-mers. In contrast, MS2PIP’s correlations
fall from SA=0.68 (R=0.85) to SA=0.5 (R=0.65) for the same peptides.

Still, Prosit exhibits some bias in those dimensions, but those are
likely due to the training data distributions. As previously shown for
precursor charge (Figure 7.8) very long sequences are very rare in the
training set, as well as spectra from with a precursor charge of +6.
Those differences in distributions are indicated by the box width’s in
7.10 and correlate according to the displayed bias. NCE is a notable
exception: Prosit takes NCE into account utilizes this information ef-
fectively averting any bias across all five NCEs evaluated. MS2PIP, on
the other hand, seems to be trained on NCE 35, for which it performs
reasonably with an SA of 0.7 (R=0.87), but performs unreliably for
low NCEs, for example, NCE 20 (SA=0.4, R=0.52).

The biases discussed limit MS2PIPs applicability when experimen-
tal data was acquired at a very different NCE. Therefore, we next
evaluate prediction performance on a random subset of 10,000 PSMs
from the Bekker-Jensen Tryptic dataset. Some, but not all, of those pep-

thttp://pfind.ict.ac.cn/download/pDeep.zipdownloaded2017-11-20


http://pfind.ict.ac.cn/download/pDeep.zip downloaded 2017-11-20

tide sequences were part of ProteomeTools. Figure 7.11 shows the SA
distributions for MS2PIP and Prosit on this dataset. SA distributions
for both, MS2PIP and Prosit, are very similar and exhibit a small bias
towards ProteomeTools sequences (left side). In general though, the
overall picture holds: Prosit performs much stronger than MS2PIP for
external data, too.

The substantial improvements in spectral quality can, for example,
be utilized to enhance database search. Chapter 9 will discuss this
application and again includes a comparison to MS2PIP that high-
lights Prosit’s benefits. In addition, Prosit proves to be especially
beneficial for applications that are currently at the frontiers of pro-
teomics: the analysis of non-model organisms, non-tryptic peptides,
or samples that contain proteins from various organisms. All of those
applications will be discussed in the next part.
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8
Generating in-silico spectral libraries

DIA®? is a complementary and label-free alternative to DDA-based
protein quantification. Typical workflows rely on high-quality DDA
spectral libraries, which are previously acquired and add a substantial
overhead. Although there are tools to search DIA experiments without
spectral libraries such as DIA-Umpire*° and Pecan?", those tools—
in general—detect fewer peptides and are mostly used when acquiring
a spectral library is infeasible.

High-quality models fragment ion intensity, and iRT for any pep-
tide of interest facilitate the in-silico generation of spectral libraries.
The following explores how to utilize Prosit predictions to do so.
Predicting iRT values with Prosit is not the focus of this work but is
discussed in detail and shown feasible in Gessulat and Schmidt et al.
(2019) 3°. The following analysis presumes iRT prediction with Prosit
as feasible.

8.1 Comparing predicted to experimental spectral libraries

Experimental spectral libraries were obtained for four different species:
human (HEK-293), S. cerevisiae, E. Coli, and C. Elegans from Pride.%+*
To evaluate whether Prosit’'s HCD spectrum predictions can also be
utilized to search experimental data from QTOF instruments, two

292 and S. cerevisiae '35

additional spectral libraries from D. melanogaster
were acquired.

To construct a comparable baseline, those spectral libraries were
filtered to only contain peptides that Prosit can predict—restricting
sequence length and PTMs (see section 5.2). Filtering reduces the
number of peptides that can potentially be found, and this also trans-
lates to less identified peptides when search results from the original
to the filtered counterpart are compared. Interestingly, those effects
are minimal. As shown in Figure 8.1, the total number of identi-
fies peptides, stays mostly constant, like other peptides, previously
unidentified peptides are found when the data is searched with fil-
tered spectral libraries. All comparisons in the rest of this section use
the filtered spectral libraries as experimental baselines.

In a first comparison, we calibrated Prosit to each spectral library
respectively and predicted spectra for each peptide in that library.
Figure 8.2 shows the resulting SA distribution. Those distributions
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Figure 8.1: Filtering spectral libraries.
Publicly available experimental spec-
tral libraries from different species
were filtered to facilitate comparisons
with Prosit-generated spectral libraries.
PSMs containing modifications other
than M(ox) and peptides shorter than
seven and longer than 30 amino acids
were removed. In a re-analysis, the orig-
inal and filtered Orbitrap (left) and TOF
(right) spectral libraries were queried
against the DIA data using Spectro-
naut. The bars (called diffbars) depict
the number of shared (orange) gained
(blue) and lost (red) identified peptide
sequences when using the filtered in-
stead of the unfiltered experimental
spectral libraries.

* Pride repository PXDoos573
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Figure 8.2: In silico spectral library
spectrum similarity - Orbitrap. Vi-
olin plots depicting SA distributions
when correlating experimental spectral
libraries to calibrated predictions by
Prosit. Four spectral libraries are evalu-
ated: HEK-293, Saccharomyces cerevisiae,
Escherichia coli, and Caenorhabditis elegans
(all from Bruderer et al.?). All spec-
tral libraries were acquired on Orbitrap
instruments. Solid black vertical lines
indicate the apex of the SA distribution.
The number of PSMs is indicated.

all apex near a SA of 0.9, indicating that Prosit is largely species
independent—at least for those species investigated. Small differences
in SA distributions could also result from different precursor charge
and length distributions, as seen earlier.

Then, we compared Spectronaut search results of those experimen-
tal spectral libraries with their in-silico counterparts. Specifically, the
overlap and differences of confidently identified peptide sequences
are compared for experimental and in-silico libraries. The analysis
separately investigates the influences of predicted iRT and spectra
by step-by-step exchanging experimental values by predicted ones.
For example, for the HEK-293 library, Figure 8.3, the left group of
bars shows the performance for the experimental library first—this
serves as a baseline for the other three bars. Next, only iRT values
are replaced by predictions, followed by only spectra predictions and
then both predicted values. Exchanging experimental iRT values
by, led to a gain of 7,103 peptides while losing only 4,749, resulting
in a small overall improvement. Replacing fragment ion intensity
values had a similar effect. Using only predicted values, 96.6% of the
identifications of the original filtered library are retained—a total loss
of 2578 confidently identified peptides.

The same analysis was repeated for the S. cerevisiae, E. Coli, and C.
Elegans Orbitrap DIA samples with similar findings (the next three
groups of bars under the Orbitrap heading). Analogous to peptides,
one can also investigate protein coverage of the search results, using
the same strategy. Figure 8.4 shows the analysis with very similar
overall results for all species investigated.
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Figure 8.3: In silico spectral library peptide identifications. Re-analysis of three DIA/SWATH datasets containing six spectral
libraries: HEK-293, C. elegans, S. cerevisiae, and E. coli (all from Bruderer et al. %) were acquired on Orbitrap instruments (left) and
S. cerevisiae '35, and D. melanogaster>9* on TripleTOF instruments (right). Diffbars indicate gained (blue), shared (orange), and lost
(red) identified peptide sequences compared to a baseline. The baseline for each diffbar is the filtered experimental spectral library.
For each organism, the baseline and the original number of peptides identified are shown on the left of the group. In the following
diffbars, experimental values (*-’) of spectra and retention time are gradually replaced by predictions (*+').
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Figure 8.4: In silico spectral library protein identifications. Re-analysis of three DIA/SWATH datasets containing six spectral
libraries: HEK-293, C. elegans, S. cerevisiae, and E. coli (all from Bruderer et al. %) were acquired on Orbitrap instruments (left) and
S. cerevisiae '35, and D. melanogaster>9* on TripleTOF instruments (right). Diffbars indicate gained (blue), shared (orange), and lost
(red) identified protein sequences compared to a baseline. The baseline for each diffbar is the filtered experimental spectral library.
For each organism, the baseline and the original number of peptides identified are shown on the left of the group. In the following
diffbars experimental values (-") of spectra and retention time are gradually replaced by predictions (‘+’).

8.2 Comparing predicted and experimental QTOF spectra

In all the above analysis, Prosit predictions were compared to HCD
measurements from Orbitrap instruments. In this section, the trans-
ferability of Prosit is analyzed by re-analyzing measurements from
QTOF instruments. The three datasets are all DIA-SWATH and are
the pan human library (AB SCIEX TripleTOF 5600+)'3%", S. cere-
visiae (ABScixex QTOF 6600)'35% and D. melanogaster(ABScixex QTOF
5600)292S. Collision energies were calibrated for the S. cerevisiae and
D. melanogaster dataset but not for the pan human library.

As can be seen in Figure 8.5, the spectral similarity varies greatly.
It is unexpectedly high for the pan human library with an apex of
0.84 and nearly as good as for Orbitrap data (Figure 8.2 for compar-
ison) although predictions were not NCE calibrated. In the case of
D. melanogaster spectral similarities are far lower than would be ex-
pected useful (achieving an apex SA of only 0.59). Interestingly, those
discrepancies impact spectral library search very differently. The S.
cerevisize QTOF library (apex SA of 0.70), for example, continues the
trend of the Orbitrap data (see Figure 8.3, second group of bars from
the right) with slightly higher losses. Prosit predictions for the D.
melanogaster QTOF library, in contrast, perform far better than the
experimental library (right group of bars) and spectral similarities
were mediocre at best. Those results hint at suboptimal experimental
data quality rather than low prediction quality.

One aspect that complicates comparison of predicted HCD and
experimental QTOF spectra is that the QTOF spectra are usually ac-
quired using "rolling" collision energies. Specifically, multiple scans of
the same peptide are measured while the collision energy is ramped,

* Pride repository PXD000954
¥ Pride repository PXD006495
§ Pride repository PXDoo1126
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Figure 8.5: In silico spectral library
spectrum similarity - QTOE. Violin
plots depicting SA distributions when
correlating experimental spectral li-
braries to calibrated predictions by
Prosit. Thee spectral libraries are evalu-
ated: Pan human 38, Saccharomyces cere-
visiae 35, and Drosophila melanogaster>9>.
All spectral libraries were acquired on
QTOF instruments. Solid black vertical
lines indicate the apex of the SA distribu-
tion. The number of PSMs is indicated.
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Figure 8.6: Comparing QTOF a spec-
trum with a prediction. A representa-
tive mirror spectrum comparing a pre-
dicted spectrum by Prosit at NCE 30
(top) with an experimental QTOF spec-
trum from the D. Melanogaster spectral
library>9>. Y- and b-ions are colored
red and light blue, respectively. Other
fragment ions are colored orange. Grey
dotted horizontal lines serve as orienta-
tion for the four distinct intensity values
in the QTOF spectrum.
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Figure 8.7: QTOF spectrum similarity
by base peak intensity. The QTOF spec-
tra from S. cerevisine'3> are binned by
their precursor intensities. The boxplots
show SA distributions for each bin com-
paring predicted spectra by Prosit and
DDA QTOF data from the experimental
library. The number of overall PSMs is
indicated.
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and then those scans are aggregated. The aggregation results in higher
signal-to-noise spectra. For low abundant species though, very low
signal to noise spectra exist, if there are not enough scans available
for aggregation. In these spectra, the relative fragment ion intensities
have a low dynamic range.
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The described effect was especially apparent in the D. melanogaster
dataset. For example, Figure 8.6 shows a representative mirror spec-
trum for that dataset. Although the experimental and predicted
fragment ions show very high agreement; the intensity dimension
does not. The measurement of single ions is clearly visible in the
QTOF experimental intensities, spanning only four distinct values
(lower spectrum, dashed lines). Spectral comparison, therefore, be-
comes unreliable as proper intensity ranking of fragment ions is
uncertain. A second factor is that the experimental spectral library
seems to have added intensities of multiply charged fragment ions
to the respective singly charged fragment. This processing changes
the spectrum appearance and hinders spectrum matching. Combined,
this explains the gain of 24% peptide and 16% protein identifications
for D. Melanogaster compared to the unfiltered libraries (Figures 8.3
and 8.4 left group of bars).

Predictions for the S. cerevisine dataset did suffer less because base
peak intensities were generally higher. To this point, SA values for all
spectra can be binned by their base peak intensity as in Figure 8.7 for
the S. cerevisiae dataset. Clearly, spectra in higher base peak intensity
bins are more similar to Prosit predictions. This finding is validated
by earlier results of Zolg et al. showing very high spectral similarity
when comparing HCD Orbitrap spectra to highly abundant QTOF
MS2 scans '4°.

Combined those results suggest that replacing low signal-to-noise
spectra with consistently predicted spectra can alleviate quality issues
of experimental libraries. Prosit provides a mean to do so. In general,
filters of the spectral library search software are a limiting factor for
predicted spectral libraries by Prosit. Spectronaut per default expects
spectra with at least six fragment ions that are larger than three amino
acids, larger than 300 m/z and have at least 5% base peak intensity.
This discards a significant portion of the predicted spectral library



before they are searched (Figure 8.8). Dropping this requirement may
yield higher gains for predicted libraries.
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Figure 8.8: Impact of fragment ion fil-
ter on spectral library size. Per de-
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