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Abstract

In large-scale wireless networks, effective transceiver design based on
imperfect knowledge of the wireless channel is crucial. In this work, we
introduce methods for transceiver design and resource allocation that
make use of asymptotic results to reduce computational complexity.
We focus on linear transceivers, which are close to optimal for the
system dimensions we have in mind. Since the introduced methods
rely heavily on second order statistics of the wireless channel, we
further discuss efficient methods for the acquisition of these statistics
in practical systems.
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Chapter 1

Introduction

In the quest for higher spectral efficiency of wireless communication
systems, multiple-input-multiple-output (MIMO) technology plays a
crucial role. Advocates of MIMO technology promise huge gains
which are achieved by spatial multiplexing of several data streams.
However, while MIMO is slowly adopted in real-world applications,
the gains are significantly lower than those promised by theory due to
a myriad of practical problems. Early work on simple MIMO systems,
but also recent work on more complicated setups, assumes perfect
knowledge of the channel state. Acquiring this channel state infor-
mation is one of the major challenges in practical wireless MIMO
systems.

Starting a few years back, there has been a growing interest in
large-scale wireless systems. The vision is to have large antenna arrays
at the base stations, which serve a large number of mobile users simul-
taneously. If the number of base-station antennas is several times the
number of served users, simple linear signal processing methods are
close to optimal. The large systems, sometimes called massive MIMO
systems, again promise large multiplexing gains through multi-user
MIMO, but with simpler, more practical signal processing methods
than those necessary for smaller MIMO systems.

The question which a curious reader might ask now is, what is
the difference between the large-scale system and the small system
from a theoretical perspective? While the basic models and signal
processing approaches are the same, new challenges become apparent
when scaling a wireless system. Not surprisingly, these challenges

While single-user MIMO is widely used
in todays communication systems, effec-
tive multi-user MIMO operation is still
challenging.



1. Introduction

It will come as no surprise to the sea-
soned researcher that a lot of work in
massive MIMO rediscovers results from
the last thirty years.

I An effect which is known as channel
hardening [1].

mostly concern the acquisition of channel state information. Since
imperfect channel state information is one of the main challenges
for MIMO, and even more so for massive MIMO communications,
most work on massive MIMO uses stochastic models to describe the
uncertainty of the available side-information with respect to the channel
state.

One central issue concerning acquisition of channel state informa-
tion in large-scale communication systems is the limited coherence
interval of the fast-fading channels. In fact, for certain channel models,
the limited coherence interval acts as a dimensionality bottleneck of
the system: We know from information theory that for a block-fading
MIMO channel with the usual assumptions, the maximal number of
interference-free transmission streams — interpreted as the dimension
of the system — is half the length of the coherence interval (in chan-
nel accesses). Because it is not reasonable to serve more users than
interference-free transmission streams can be generated, the number
of simultaneously served users is essentially limited by the length of
the coherence interval.

After first encountering those results, one might have a grim out-
look on the potential of a large-scale wireless communication system.
After all, the coherence intervals are quite short and thus scaling the
system beyond a certain point appears futile. We are saved, however,
by the fact that this theoretic result only holds for channels without
correlation between the channel coefficients. Since in a typical wireless
MIMO channel, we have different spacial correlations for different
users, these correlations can be exploited to actually break out of the
dimensionality bottleneck. While work on transceiver design with im-
perfect channel state information (CSI) existed before massive MIMO,
we will see that for large-scale systems it is essential to use an explicit
model for the imperfect CSI.

In this sense, research on signal processing for massive MIMO is
an evolution from previous work that focuses on the imperfect CSI,
but also on the imperfect knowledge of the channel statistics. We will
see that robust methods, which take imperfect CSI into account, rely
on the channel covariance matrices. We will also see that in large-
scale systems the influence of the fast fading vanishes and accurate
approximations of system performance can be calculated using the
channel statistics only.! Such approximations can be used for system
analysis but more importantly for low-complexity resource allocation.
Since all of these methods are based on covariance matrices of the
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channels, we will additionally discuss how to acquire second-order
statistics in a practical manner.

This work is divided into three major chapters. We go from perfect
knowledge of the channel in Chapter 2 over imperfect knowledge of the
channel in Chapter 3 to imperfect knowledge of the channel covariance
matrices in Chapter 4. Each reduction in available information leads
to additional challenges that we need to overcome with efficient signal
processing methods.

Chapter 2, where we discuss optimal linear transceiver design with
perfect CSI, introduces the system model and also some basic methods
for asymptotic analysis. These methods are extended in Chapter 3,
where we augment the system model by different models for the avail-
able CSI. We will see that knowledge of the covariance matrices is
important to achieve good performance with a large number of anten-
nas. As usual in engineering, we can design algorithms with different
trade-offs between computational complexity and performance. Since
for a large-scale system it is essential to keep the computational com-
plexity in check, we introduce a low-complexity bilinear transceiver
design, which is asymptotically optimal.

Since covariance matrix information plays such an important role,
we discuss methods for covariance matrix information in Chapter 4.
We introduce established maximum likelihood estimators, but also
novel learning-based methods that make use of prior information of
the covariance matrices.

The work is concluded in Chapter 5 where we summarize the
key takeaways of this work and give an outlook on future research
directions.

Chapters 2 to 4 all have a Summary section that summarizes im-
portant theoretical results of the chapters.

1.1 Notation

Boldface lowercase letters (a, x, . . .) are used for vectors and boldface
upper case letters (A, X, ...) for matrices. We use the following
special matrices and vectors.

0 vector or matrix of all zeros
vector or matrix of all ones
identity matrix
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) diagonal matrix with diagonal elements
diag(ay,...,an) . f—l N g
it =1,..,
block-diagonal matrix with diagonal
blocks A;,i=1,...,n

C, covariance matrix of a random vector

blkdiag(A1,..., Ay)

We use the following operators.

diagonal matrix with the elements in a on the diago-

diag(a) nal

diag*(A) adjoint of the diag(x) operator, i.e., the result is a
vector containing the diagonal elements of A

AT transpose of a matrix of vector

AH conjugate transpose of a matrix or vector

AL inverse of a matrix

tr(A) trace of a matrix

det(A) determinant of a matrix

rank(A)  rank of a matrix

E[] expectation

axb asymptotic equivalence

A0 positive definite
var(a) variance



Chapter 2
Transceiver Design with
Perfect CSI

In this chapter, we introduce the system model for wireless commu-
nication in a cellular network that is used throughout this work. We
continue to discuss the design of linear receive filters and linear pre-
coders based on this system model. For now, we assume that the
wireless channel between receiver and transmitter is perfectly known
on both sides. An assumption that will be removed in the subsequent
chapters.

The results in the first few sections of this chapter are well-known
and are covered in textbooks and fundamental publications on MIMO
systems. A detailed introduction to wireless communication is given
in [2] and additional information on MIMO systems can be found
in [3].

2.1 System Model for the Cellular Network

In most of this work, we will consider a single base station which
serves several users simultaneously. The base station makes use of
an array of antennas to transmit and receive signals, while each user
has only a single antenna. The antennas could also be distributed in
a larger area in a “cell-free” architecture. The antenna arrangement
determines the structure of the channel and will be quite important in
the next chapter when we discuss imperfect CSI.
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For more details on system models used
in wireless communications we refer again
to the excellent book by Viswanath and
Tse [2].

In practice, we need proper calibration
to ensure channel reciprocity (see e.g. [4]).
We assume that such a calibration is in
place.

We assume flat-fading channels between the different users and
the base station, which in a practical cellular system is the result of
orthogonal frequency division multiplexing (OFDM). That is, in one
channel access in the uplink each user k transmits a unit-variance data
symbol s, amplified by the normalized transmit power coeflicients
Pk, which is linearly scaled by the channel vector hy. The base station
receives the superposition of the scaled signals

Y =D rhpsi + o e CM (2.1
k

with additive white Gaussian noise v*! ~ N¢ (0, Cy).

In the downlink, we have the reverse model. That is, the base-
station transmits a vector of signals & from the antenna array leading
to the scalar received signal

yd = hlx + o (2.2)

at user k. Without loss of generality, we assume that the system is
normalized such that the noise has unit variance, i.e., v,‘il ~ Nc(0,1).
Thus, if we impose an average sum-power constraint on the transmit
vector x of the form

Elz"z] < pa

then pg; denotes the signal to noise ratio (SNR) in the downlink, i.e.,
the ratio of the maximum transmit power at the base station to the noise
power at the receiver. In the discussion of imperfect CSI in Chapter 3,
we assume that the channels in the uplink and downlink are identical.
This assumption of channel reciprocity is not actually necessary in the
case of perfect CSI at both the transmitter and the receiver.

The results for perfect CSI, which we derive in the following, serve
as an upper bound for the case of imperfect CSI, which we discuss
later on. We will also introduce several techniques and results that will
appear in similar forms in subsequent chapters.

2.2 Uplink Filter Design

The amount of data that can be transmitted depends on the processing
of the received signals ¢! in the uplink and the design of the transmit
signals « in the downlink. We focus the discussion on linear signal pro-
cessing since, especially for larger antenna arrays, non-linear methods
need a significant overhead in computational complexity for limited
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gains. In the uplink, we apply linear filters to the received signals to
get scalars

Sk = giy" = V/orgi hisi + Z VPngi hnsn + giot - (2.3)
n#k

which can be interpreted as estimations of the data symbols s, trans-
mitted by the users. Now only the estimates §;, are used to reconstruct
the information transmitted by user k. The challenge from a signal
processing perspective is to optimize the linear filters g; and the trans-
mit powers py, with respect to some performance measure and subject
to constraints on the p;. For the estimation of s, we consider all in-
terfering users as noise. Consequently, it does not matter whether
an interfering user is served by the same base station or whether the
interferer is located in a neighboring cell.

In a communication system, the performance measure of choice
is the achievable rate, i.e., the maximum amount of information that
can be received with arbitrarily small probability of error for a given
transceiver design. A fundamental result from information theory
states that the achievable rate for our system is given by the mutual
information Z(sg; §) which depends on the probability distribution
of the transmit symbols s;. In the following, we assume Gaussian
signaling s; ~ N¢(0, 1), for which closed form expressions of the
achievable rates are known.

If we consider again the system model for linear processing for
user k,

Sk = VDRGEPE Sk + > \/Pgihnsn + gt (24)
h'ﬁ n#k

hd
Veff

we note that it can be interpreted as a single input single output (SISO)
system with effective channel heg = \/szg}fhk and effective noise
Veff, Which contains bot the filtered additive noise and the interference.
Thus, we can apply the results from Appendix A to calculate the mutual
information

= T(sp; 85) = logy (1 4+ ) (2.5)

Gaussian signalling is optimal for a sin-
gle user but also for optimal non-linear
processing at the base station. It is not
optimal for the per-stream linear process-
ing we are doing here due to the inter-
stream interference [2]. For most inter-
ference scenarios, the optimal distribu-
tion of the transmit symbols is unknown.
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This filter is proportional to the linear
minimum mean square error (LMMSE)
filter, i.e., the linear filter that minimizes
the mean square error (MSE) E[|s; —
5x|?]. It is well known that an LMMSE
receive filter is optimal in our setup.

where 'y,;‘l is the signal to interference and noise ratio (SINR)

2
ul |h6ff|
F 7 var(veg)
2
_ | /PR b
Var(gkvlﬂ + En;ﬁk \/pnnghnSn)
2
_ Pr: |gj: |
- 2
ggcvgk + En;ék Pn ‘gghn}
_ Prgy hihy g, 2.6)
g]I;I (C'v + ank pnhnhg) gk
The rate is maximized with respect to the filter by solving
max 3l 2.7)
9k
For A = 0, we know that
H,..H
x'ccx
T =aA™! 2.8
arg:rcnax Ty « c (2.8)

for arbitrary v # 0. Consequently, one optimal filter is given by
-1
gt =|Co+ D puhnhil | My (2.9)
n£k
leading to the optimal SINR
-1

Vi =prhp [ Co+ > pohnhll | by (2.10)
n#k

= prhi g 2.11)

The following reformulation of the optimal SINRs will be useful for
asymptotic analysis later on.

Lemma 2.1. For a non-trivial power allocation p > 0, the optimal
SINR of user k is given by

elHUC;'H (P~ + HUC,'H) ' ¢y,
el (P~' + HUC, 'H) ey,

Yk = Pk (2.12)
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where P = diag(p) and H = [hy,...,hk]. The optimal LMMSE
filter for user k can be expressed as

1
g = ﬁcglﬂufl + HUC,'H) ey, (2.13)

which is a scaled versions of the (also) optimal filter g;; in (2.9).

Proof. With the matrices introduced in Lemma 2.1 the optimal filter
(2.9) can be rewritten to

* -1
gr = (Cy + HPH" — phih))  hy. (2.14)

Substituting A = C,, + H P H" and applying the matrix inversion
lemma we get

AilhkhI];IAfl
gi=(A1t- Tk h (2.15)
< hi!A=th; — -
h1A-Th
— A lp, (1 - Hk_l’“1> (2.16)
hilA=thy — -
_1
= A" 'n, (”) (2.17)
hi!A=thy — -
1
= A" 'hy < . ) : (2.18)
1-— pkhk Ailhk
If we apply the matrix inversion lemma again, we get
A'hy = (C, + HPH") ' He, (2.19)
1 _
— —C,'H(H'C,'H+P ") e, (220
Dk
and thus
hHAflhk
r = pphligr = Pk 221
el HIC,'H(P~' + HUC,'H) le;
11— €l HHC,'H(P~! + HUC,'H) l¢,
_ el HUC,'H(P~' + HIC,'H) e,
el 1-HHC,'H(P~1 + HUC,'H) ') ¢,
THHCle Pfl HHCle —1
= i €k v ( + v ) € (2.22)

el (P~ + HHC,'H) e,

From (2.20), we see that (2.13) is optimal, since scaling of the receive
filter does not affect the SINR. O
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For notational convenience we assume
that all users have the same maximum
transmit power py.

The optimal SINRs ~; of the different users are coupled via the
power coeflicients py, increasing p;, for one user k increases ~y; but
decreases the SINRs of other users n for which gilh;, # 0. In other
words, we have a multi-objective problem, since the rates of different
users cannot be maximized separately. Each set of feasible power
allocations p = [p1,..., pK]T leads to a vector of achievable rates
r = [r1,...,7k]T. The set of all possible rate vectors, the rate region,
depends on the constraints that we impose on the power allocation. If
we require p to be fixed and impose an average power constraint on
each user we get

R={r(p):0<p< pul} (2.23)

which is non-convex in general. Typically, the multiple objectives are
combined in a network utility maximization (NUM) problem. That is,
we want to solve

max U(r) (2.24)

for a concave utility function U (r). Important examples include the
proportional fair utility

UP(r) = log(rs) (2.25)
k

the weighted sum-rate (WSR) maximization
UWSR(p ) = ¢ (2.26)
which is parameterized by the weights &, and the max-min utility
pmax-min () min 7. (2.27)

In general, the rate region R is non-convex and there is no practical
algorithm that solves (2.24) globally optimally. The exception is the
max-min problem that results from using the max-min utility (2.27).
The max-min problem can be shown to have a unique optimizer [5, 6],
which can be found efficiently via a fixed-point method or other convex
programming approaches [7, 8, 6].

Locally optimal solutions for other objectives can be obtained in a
straightforward manner by applying a projected gradient algorithm to
the problem.

In a multi-cell network, we only control the power coefficients
of the local users. There are various approaches for distributed op-
timization in such a setup (e.g. [7]). There are some heuristics we
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could use that do not require communication between the base stations.
For example, we could try to estimate the power coefficients of the
interfering users during the data phase and then apply a gradient step
on the local coefficients, assuming the transmit power of the interferers
stays constant. In this work, we will focus on the single-cell setup
when we discuss resource allocation and leave the extension to the
multi-cell case for future work.

2.2.1 Ergodic Rate

In a wireless communication scenario with mobile users, the channel
vectors are time-varying in relatively short time intervals, so called
fast fading. In this case, the achievable rate has to be averaged over the
different channel realizations. This leads us to the ergodic rate

Pt = Efri] = Ellogy(1+17)] (2.28)

The size of the ergodic rate region depends on how fast we are able to
adapt the power coeflicients p.

If the power coefficients vary slowly compared to the channel
coefficients, we can consider the power coeflicients as deterministic
and define the ergodic rate region

R ={E[r(p)] : 0 < p < pul} (2.29)

very similarly to the instantaneous rate region. Instead of a gradient-
based approach we could use a stochastic gradient method to find the
optimal power allocation for some NUM problem.

On the other hand, if we are able to choose a different p for each
channel realization H = [hq, ..., hx| we have to consider all map-
pings p(H) that return a feasible power allocation. That is, the region
of achievable ergodic rates is given by

R ={E[r(p(H))] : 0 <E[p(H)] < pul,p: C""** —» R¥}.
(2.30)
Here we restrict the average power E[r(p(H))] instead of the deter-
ministic coefficients we had in (2.29). Clearly, we have R C 75, since
p(H) is no longer restricted to be constant.
Analogously to the case of constant channels, the goal is to solve
the NUM problem

maxU(7) or maxU(r) (2.31)
TER FER
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Remember: Two sequences ans and bas
are asymptotically equivalent (denoted
as apr < bar) if limps— oo ane /b =
1.

with concave utility U (7). There is no easy method to solve the NUM
problem with either the rate region R in (2.29) or the rate region R
in (2.30). In principle, optimizing a constant power allocation needs
lower complexity, since the optimization has to be done at the time
scale of the channel statistics. To (approximately) optimize the adaptive
power allocation in (2.30), we have to solve an optimization problem
for each channel realization (cf. [2]). Also, as we will see later on, the
large-scale systems we are interested in are governed by the channel
statistics, i.e., a constant power allocation is close to optimal for large
numbers of antennas.

For these reasons, we focus on achievable rate regions with constant
power allocation throughout this work. As we will demonstrate in the
next section, we can use asymptotically accurate approximations of the
ergodic rate to find a close to optimal constant power allocation. An
analogous approach for imperfect CSI is discussed in the next chapter.

2.3 Asymptotic Analysis

Since we are interested in scenarios where the number of users K is
significantly smaller than number of antennas M, we are interested
in the behavior of the SINRs ~; for growing M. Additionally to
the insights on the system performance, the resulting asymptotically
equivalent rate expressions are also useful to optimize the resource
allocation.

For the asymptotic analysis for growing numbers of antennas,
the distribution of the channel vectors hj plays a fundamental role.
Throughout this work, we assume the channel vectors of different
users to be independent. Each channel vector is circularly symmetric
complex Gaussian, i.e., by, ~ Ng(0, Ch,).

If we analyze the asymptotic behaviour for M going to infinity,
we implicitly consider growing sequences of channel vectors hj with
growing covariance matrices C,, . The following results cannot be
proven for all possible sequences of channel and noise covariance
matrices.

In the following, we will discuss the conditions on the covariance

matrices that are required for our asymptotic analysis. The first condi-
tion concerns the additive noise.
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Condition 2.1.
limsup ||Cy|| < oo and lim sup HC;lH < 0. (2.32)
M—ro0 M—o0

This simply means that each spatial direction has a finite amount
of noise power. This is a reasonable condition, since directions with
infinite amount of noise are not useful and, on the other hand, modelling
a communication system without noise (in some directions) is “like
playing tennis without a net”. For some results in this paper we assume
the noise covariance matrix to be a scaled identity matrix, which is
also the typical assumption in massive MIMO literature. This special
case assumes each receive antenna and the corresponding processing
chain introduces an independent noise source. A scaled identity matrix
clearly fulfills Condition 2.1.

The channel covariance matrices Cp,, need to fulfill

Condition 2.2.

liminftr(Cp, )/ M > 0 and limsuptr(Ch, )/ M < co.  (2.33)

M—o0 M—00

With this condition, we restrict ourselves to models for which the
captured energy grows linearly with the number of antennas. Most
channel models that ignore antenna coupling have this property. If we
take antenna coupling into account, Condition 2.2 requires a growing
aperture of the array with the number of antennas.

Conditions 2.1 and 2.2 are used in all of the asymptotic results in
this work. We need at least one additional condition that makes sure
that the energy of the channel vector is spread in many directions.

For our first result, the following channel hardening condition is
sufficient.

Condition 2.3.
1i Hp /M) = i M? = 2.34
Jim var(hithy /M) = lim _t(Cp,Ch,)/ 0 (234

This condition is violated, e.g., by line of sight models where a
single eigenvalue of Cj,, grows linearly with M, but holds for typical
non-line-of-sight models.

In other work, the channel hardening condition is often replaced
by more restrictive conditions on the spectral norm of the covariance
matrices [9]. It is easy to see that Condition 2.3 holds when the spec-
tral norm is asymptotically bounded. However, requiring a bounded
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spectral norm excludes common channel models, e.g., the ubiquitous
far-field model with a uniform linear array at the base station (cf. Ap-
pendix B.1).

We get the following, less restrictive result.

Lemma 2.2. Given Condition 2.2, the channel hardening condition
(Condition 2.3) is equivalent to

lim [, | /M =0. (2.35)

Proof. If we have (2.35) and Condition 2.2, then

Ch, || tr(C,
lim sup tr(Cp, Ch, )/M? < lim sup [Ch )| & (Cr) _ (5 36)

For the converse, consider the case where tr(Cp, Ch, )/ M? is fixed
and we want to find the covariance matrix with maximum spectral
norm. Clearly, the optimal choice is a rank-one matrix, such that
tt(Ch, Ch,)/M? = ||Ch,||* / M?. Thus, we get (2.35) directly from
Condition 2.3. O

Conditions 2.2 and 2.3 together tell us that the normalized inner
product hl,jhk /M converges towards a deterministic non-zero value.
Due to this property, we can derive an asymptotically equivalent SINR

7Y = pp tr(Ch, Cy ). (2.37)

Theorem 2.1. Suppose we have independent channel vectors hy, ~
Ne(0, Ch,). If the channel and noise covariance matrices fulfill Con-
ditions 2.1, 2.2, and 2.3 we have

IS sty (2.38)
and
liminf~;/M > 0. (2.39)
M—o0

Proof. Due to Conditions 2.1 and 2.2 we have
liminf~,> /M = liminf py, tr(Ch, Cy ')/ M > 0. (2.40)
M—o0 M—o0
Thus, if we can show that
lim vg/M—yzsy/M =0 (2.41)
M —o00

we proof the theorem.
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We define a general function to express the normalized SINR

e} B(aP™' 4+ B) e,
ej(aP~'+B) e,

Ye(B, ) = pi (242)
With B= HUC,;'H /M and o = 1/ M we get 95, (B, ) = v/ M.

Due to Conditions 2.1 and 2.3, the variance of the elements of
B vanishes and thus the entries are asymptotically equivalent to their
expectations. We have

1
lim Mh‘,;IC;lhn =0 (2.43)

M—o0

for n # k and for n = k we get

. 1 H tr(Chk) _
Jim Rl hy =0 (2.44)
With B = diag(tr(Cp, C; ")/ M, ..., te(Ch, . Cy1)/ M), we have
thus
lim B—B=0. (2.45)

M —oc0

We see that 7, (B, 0) = py tr(Ch, Cy 1)/ M is exactly the normal-
ized asymptotic SINR. From lim,,_,, a,, — b, = 0 does not always
follow lim,,—,~, g(an) — g(by) = 0. But it does follow if g is uniformly
continuous.

Due to the conditions on the covariance matrices we know that in
the limit, the smallest and largest singular values of B are bounded
below and above respectively. Thus, for large M, the B (and conse-
quently also the B with high probability) are in a compact subset of
the positive definite matrices. Since 7y is continuously differentiable
we even have Lipschitz continuity and thus

lim  4(B,a) — 5(B,0) =0 (2.46)
a%O,HBféu—)O

which is the desired result. OJ

That is, we have an asymptotically equivalent SINR where the
interference from other users is completely suppressed by the linear
receive filter. Thus, for a large number of antennas it is clearly optimal
to use the full power budget for each user irrespective of the utility
function. For imperfect CSI, the asymptotically equivalent SINR has
a fundamentally different structure as we will see in the next chapter.
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Figure 2.1: Achievable ergodic rate re-
gions for a base-station with M = 4,
16, 64 antennas that serves ' = 2 users.
We also depict the approximate rate
regions that result from replacing the
SINRs with the asymptotically equiva-
lent expressions. That is, we replace ;!
with ;" to calculate the achievable rate
of user k.
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The asymptotically equivalent rate region
R = {r: [r]; = logy(1 +717), 0 < p < pyl} (2.47)

is rectangular and only depends on the statistics of the channel. In
Fig. 2.1 we depict the ergodic rate regions and the corresponding
asymptotic rate regions for different numbers of antennas. We can see
clearly that the rate region in (2.29) approaches the rectangular shape
of the asymptotic region.

Since the asymptotically equivalent SINR in (2.37) does not depend
on the instantaneous channel realizations, the asymptotic approxima-
tion of the instantaneous rates is also the asymptotic approximation of
the ergodic rates. In fact, we can show that the asymptotic equivalent
SINR yields an asymptotically tight outer bound of the ergodic rates.

Theorem 2.2. The asymptotic rate region is an outer approximation
of the ergodic rate region in (2.30)

Proof. For a single user and constant channel h;, with maximum aver-
age transmit power py, the capacity, i.e., the maximum of the mutual
information Z (s; y"') with respect to all distributions of s;, with unit
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variance, is given by
Oy = logy(1 + puhiCy thy). (2.48)
We use Jensen’s inequality to bound the ergodic capacity
Cy = E[Cy] = E[logy (1 + puhj C, ' hy)]

< logy(1+ pu B[R} C ' h]) = logy (1 + pu tr(Ch, Cy 1)).
(2.49)

This completes the proof, since the single user capacity is an up-
per bound for achievable multi-user rates, and since the upper bound
in (2.49) is exactly the asymptotic rate for maximum transmit power

Pr = pul- O
Corollary 2.1. Linear precoding achieves capacity in the asymptotic
limit.

Proof. The proof follows directly from Theorem 2.2. O

These types of results prompted the rise in popularity of large-scale
“massive MIMO” systems [10]. Since linear processing is asymptot-
ically optimal, we no longer have to discuss complicated non-linear
transceiver designs. Instead we can focus on more practical problems
concerning resource allocation and the acquisition of channel state
information.

2.3.1 Degrees of Massiveness

In interference limited networks, one popular performance measure
are the degrees of freedom (DoF) [11]. If the network achieves a sum
rate r(p) with respect to the SNR p, the number of DoFs is given by

#DOF — 1im )
p— log(p)

. (2.50)

Basically, the DoFs are the number of interference-free data streams
that can be transmitted in the network. In our scenario, for py — oo,
the optimal filters g; converge to zero-forcing filters, which achieve
#DoF = K as long as the channel vectors are linearly independent.

Similarly, for a sum-rate (M) that depends on the number of
antennas M, we can define the degrees of massiveness as

#DoM — 1im M)
M—oo log(M)

(2.51)
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Analogously to the DoF, the DoM tell us something about the number of
interference-free data streams, but for an infinite number of antennas
at the base station. For perfect CSI #DoM = #DoF = K since
for large M the SINRs grow linearly with M. For suboptimal low-
complexity transceiver designs or for systems with imperfect CSI, there
are significant differences between the DoF and the DoM.

2.3.2 Is the Matched Filter Asymptotically Optimal?

Interestingly, due to the asymptotic orthogonality of the channel vectors
(cf. (2.43)), the SINR for simple matched filters g, = hy, at the receiver
also scales linearly with the number of antennas. Thus, the relative
difference of the achievable rates between using matched filters and
optimal linear filters vanishes for large numbers of antennas, i.e., the
matched filter achieves the full K DoM. This is in contrast to the
DoF for the matched filter, which are zero for non-orthogonal channel
vectors since the SINRs saturate for large SNRs.

To show this, we first introduce a lower bound on the ergodic rate
that is used in numerous works on massive MIMO [12, 7, 9, 13] and is
based on the results in [14, 15]. The assumption behind the bound is
that the decoder has no instantaneous CSI and can rely only on statistics
to decode the desired signals.

Theorem 2.3. For deterministic power allocations py, the achievable
ergodic rates are lower bounded by

e > logy (1 + 7EB) (2.52)
with
2
%1;3 _ Pk ‘E[g,?hk”
= 5
E[g?Cvgk] + Pk Var(glljhk) + Zn;ék; Dn E[‘g?hn’ ]
(2.53)

Proof. The result follows from the considerations in Appendix A for a
SISO system. Due to the per-user linear processing

Sk = V/PRGE Pk Sk + > \/Pgi hnsn + giv" (2.54)
g' n#k

v

we have the effective scalar channel g = /pkg?hk, which we now
assume to be unknown at the decoder. That is, the decoder only knows
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the statistics of the channel and thus the MMSE estimate of the ef-
fective channel is simply the expectation g = E[\/]Tkgghk] From
Appendix A, Eq. (A.19) we know that for imperfect CSI we get an
effective SINR of

ALB g/? (2.55)
var(v) + var(g) ’

which is the SINR given in (2.53). ]

We can now evaluate the expectations in the bound in (2.53) when
we use a matched filter at the base station.

Corollary 2.2. For complex Gaussian channel vectors hy, ~ N¢ (0, Ch,)

and matched filters g, = hy at the receiver, the achievable ergodic

rates are lower bounded by
e > logy (1 + 4MF) (2.56)
with

,YMF _ Pk tr(Chk)2
k tr(Ch,,Cy) + >, Pntt(Ch, Ch,,)

Proof. To derive the lower bound for the matched filter we need to

(2.57)

evaluate the expectations in (2.52) for g = hi. We use Lemma C.2
to get
2
E[|h}{hi|"] = tr(Ch, Ch,) + tr(Ch,)? (2.58)

and thus
var(hjlhy) = tr(Cp,, Ch,). (2.59)

Due to the independence of the different channel vectors we have
2
E[|h} hn|"] = tr(Ch, Ch,) (2.60)

for k£ # n. Incorporating these results into (2.52) leads to the SINR
given in (2.57). O

For the following asymptotic result, the channel hardening condi-
tion (Condition 2.3) is no longer sufficient. We need the more restrictive
condition on the Frobenius norm

Condition 2.4.

limsup ||Ch, || /M < oo (2.61)
M—o0

Condition 2.3 tells us that ||Ch, ||, =
o( M) while Condition 2.4 requires ||Ch, || . =
O(VM).
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The noise term is bounded since tr(AB) <
|| B]| tr(A) for positive semi-definite A.

The limits of both, yy'" /M and ~;* / M,
are bounded above and below due to the
properties for the covariance matrices
described earlier.

to get the result

Corollary 2.3. The rates achievable with matched filters are asymp-
totically equivalent to the capacity under Conditions 2.1, 2.2, and 2.4.
That is, the matched filter achieves the full #DoM = K.

Proof. For the given conditions on the covariance matrices, the nor-
malized lower bound for matched filters in (2.57) is further bounded
below by

i tr(Ch, )*/ M?
tr(Ch,,Co)/M + >, P |Chy |l Ch | p /M
(2.62)

WM >

Since liminfy;_o tr(Ch, ) /M > 0 due to Condition 2.2 the numera-
tor is strictly greater than zero. Due to Conditions 2.1 and 2.2 the noise
term is bounded and since limsup,;_, . [|Ch, || » /V'M < oo due to
Condition 2.4, the summands in the denominator are also bounded.
Thus, we have
lim AME/M >0 (2.63)
M—o0

and consequently

lim logy(YMF/M) > —oo. (2.64)
M—o0

We get the limit

o logy (L) logy(M) + logy (1/M + 43"/ M)
Moo logy(1+7Y) — M=o logy(M) + logy(1/M + 7™ /M)
(2.65)

1 M
_ gim l0s(M) (2.66)
M—o0 logy (M)
Thus, we have one DoM per user which gives the full X DoMs in

total. O]

Just a quick comment regarding Condition 2.4. As we mentioned
before, for different results in this work we need different levels of
restrictions on the channel covariance matrices. We could just assume
a bounded spectral norm of the channel covariance matrices and be
done with it (because this would be the most severe restriction), but
we like to use the most general conditions that still lead to the desired
result.
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In fact, Condition 2.4 is already too restrictive in that it does not
include the uniform linear array (ULA) and uniform rectangular ar-
ray (URA) channel models in Appendix B.1. The reason is that the
underlying spectrum from which the eigenvalues of the channel covari-
ance matrices are sampled is (barely) not quadratically integrable in
some cases. That is, the terms tr(Cp, Ch,, ) might grow as M log(M)
instead of M. However, since M log(M) is almost the same as M,
this effect is not really visible in our simulations. In Section 3.8 of the
next Chapter, we discuss a robust matched filter that does not have this
limitation.

The result in Corollary 2.3 indicates that for a setup with M > K
we get close to optimal results by transmitting with full power and
applying matched filters at the receiver. However, one important thing
to note is that there can be a significant difference in the number of
antennas that achieve a certain performance, even in the asymptotic
regime. For example, if the covariance matrices are scaled identities
with Cp,, = B, I and we transmit with full power (pi, = pu VE), we

have 5 Mpu
MF k Pul Pk
=M = (2.67)
T 1/,[)ul + Zn Bn 1+ En puan
and
Yo = MpufBy. (2.68)

To achieve the same SINRs in the asymptotic regime, we need a factor
of

more antennas for the matched filter. Since 72/”: yields a lower bound
on the performance, the factor might be smaller in practice, but nev-
ertheless, we can expect such a constant factor in required number of
antennas even for high spectral efficiencies.

In other words, we have a choice between a more sophisticated
filter design with a lower number of antennas and a simple filter with
a higher number of antennas. Which choice is preferable depends on
many practical considerations. One advantage of the matched filter
is that it enables decentralized processing at each antenna, i.e., the
channel coefficients do not have to be collected at a central processor.
This is especially important for cell-free systems where the antennas
are distributed in a large area.
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Figure 2.2: Comparison of a matched
filter to the optimal filter in a simple ex-
ample scenario with K = 6 users.
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In Fig. 2.2 the achievable uplink rates of a matched filter are com-
pared to the optimal filter. As described above, the lower scaling of the
SINR when using a matched filter leads to a constant gap in achievable
rate. For a large number of antennas, the relative difference vanishes,
but the relative amount of antennas that has to be added to achieve
identical performance with the MF stays constant. For this example,
we need to increase the number of antennas about 50% to achieve the
same performance with the matched filter as with the optimal one.

Another point is that for strong variation in the channel gains of
the different users, we need significantly more antennas to reach the
asymptotic regime. The large-scale fading coefficients 8 can vary by
several orders of magnitude depending on the position of the user in the
cell. This issue is often referred to as the near-far-effect. If 3, /8% is of
the order of 30 dB, we need thousands of base station antennas to reach
the asymptotic regime. Thus, even for a large number of antennas at
the base station, say in the hundreds, there might still be a benefit of
proper power allocation to the different users.

A popular heuristic for power allocation in setups with a lot of an-
tennas is to simply choose the power coefficient inversely proportional
to the large-scale fading (3, such that

pkBr =min B, = B Vk. (2.70)
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For this allocation the lower bound on the SINR simplifies to

MF B 1

=M - =M .
Tk 1/pu+ KB L+ K

@.71)

Clearly, if the effective SNR, py B, is much smaller than one, this
approach might not offer any benefits. When possible, it is preferable
to serve users simultaneously if they have similar channel gains.

In summary, saying that the matched filter is asymptotically optimal
is not wrong, but it is also not really helpful for practical considerations.

2.4 Downlink Precoder Design with Uplink-Downlink Duality

For the precoder design in the downlink we focus on a single-cell
scenario. Same as for the uplink power allocation problem, the ex-
tension to a multi-cell scenario is possible but not straightforward.
Since we need several power constraints for a multi-cell setup, the
simple SINR duality introduced in Appendix C.1, which can only han-
dle a single sum-power constraint, does not apply. Results based on
Lagrange-duality can be used to deal with multiple constraints [16, 17].
A detailed discussion of the multi-cell case is out of scope for this
work.

The expressions for instantaneous and ergodic rates in the downlink
are similar to the expressions in the uplink. We use linear precoding
to design the transmit signal

=) tis (2.72)
k

with the data symbols s, ~ N¢(0, 1) and the beamforming vectors #y.
With the linear precoding in (2.72), user k receives the signal

Y = hitisk + Y hiths, +vp. (2.73)
n#k

The achievable rate for constant channels hy, is thus given by
i = logy(1+ ) (2.74)

where
|t |”
143 sk }hgtk‘Q

= (2.75)

Remember that we assume that the beam-
forming vectors ¢, are normalized such
that the noise has unit variance.
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Analogously to the uplink case, pq de-
notes the ratio of the maximum total
transmit power at the base station to the
noise power at receiver of the mobile
user, which we assume is the same for
all users.

is the downlink SINR of user k. At the base station we typically have
a sum-power constraint

Elzfa] =) " tiit, < pa (2.76)
k

leading to the non-convex rate region

RY = {r ) "4ty < pa}- (2.77)
k

To solve a NUM maximization in the downlink we can optimize with
respect to the beamforming vectors ¢, by applying a projected gradi-
ent algorithm. Compared to the uplink we have M K optimization
variables instead of the K uplink power coefficients.

Fortunately, there is a connection between the feasible uplink and
downlink SINRs [18, 19, 20]. In fact, for our system model we can
express the downlink rate region in terms of uplink rates. That is,

RY = {r" :1"p < pai, p > 0} (2.78)

where the difference to the uplink rate region in (2.23) is that we
replaced the per-user constraints by a sum-power constraint and the
uplink noise covariance is set to C,, = I. The beamforming vectors
that achieve the dual uplink rates can be expressed in terms of the
optimal uplink filters (cf. (2.9))

ty = Vargi(p)- (2.79)
The downlink power allocation gy, is determined by equating
W=7 Vk (2.80)

and solving the resulting linear system of equations. For a detailed
derivation of the uplink-downlink duality, we refer to Appendix C.1.
As aresult of the uplink-downlink duality, the analysis of the down-
link rates is analogous to the analysis of the uplink rates. Again, the
only difference is the constraint set with the sum-power constraint
1Tp < pgi for the downlink rates instead of the component-wise con-
straints p < py1. We remember the asymptotically equivalent SINR
(now with C,, = 1)
oY = pp te(Ch,). (2.81)

For the uplink it is clearly optimal to choose p = py1 for any NUM
problem based on the asymptotic rates, i.e., to let each user transmit
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logy (1 + ’yzsy ) are still coupled due to the sum-power constraint, but,
since the asymptotic SINRs are linear in the power coefficients, NUM
maximization based on the asymptotic rates is a convex problem as

long as we have a concave utility function. That is, we can solve the
NUM problem

with maximal power. For the downlink, the asymptotic rates ry,> =

p* = argmax U(r*¥(p)) (2.82)
p=0,1Tp=pq

globally optimal with a projected gradient method if the utility function
is concave.

Fig. 2.3 shows ergodic downlink rate regions and the corresponding
region of asymptotically equivalent rates. Due to the uplink-downlink
duality, NUM problems can be treated similarly for uplink and down-
link scenarios. However, due to the different nature of the power
constraints, the resulting rate regions differ significantly.

Figure 2.3: Achievable ergodic rate re-
gions in the downlink for a base-station
with M = 4, 16, 64 antennas that
serves K = 2 users. We also depict the
approximate rate regions that result from
replacing the SINRs with the asymptoti-
cally equivalent expressions. That is, we
replace the dual uplink SINR ~}! with
v to calculate the achievable rate of
user k.

This holds as long as the utility func-
tion is non-decreasing in the individual
achievable rates, which is typically the
case.



26

2. Transceiver Design with Perfect CSI

2.5 Summary

We saw that, for linear, per-user processing in the uplink with perfect
CSI, we get achievable data rates of

= logy (1 + ) (2.83)

with SINRs

7;;1_ Prg Ny g (2.84)

ng (Cv + En;ﬁk pnhnhE) gk

where the hj, are the channel vectors, the g, the linear receive filters,
and the py, the transmit powers of the different users.
The optimal filters are given by

-1

gi= | Co+ Y puhnhll | hy (2.85)
n#k

and lead to the optimal SINRs
-1

Vi = ol | Co+ Y pahahyl | by (2.86)
n#k

Since we have a fast-fading channel, we were interested in the
ergodic rates
7 = E[ri] = Ellogy(1 + %)) (2.87)

We assumed that the power coeflicients p are deterministic to reduce
the complexity of the resource allocation. Each user has an individual
power constraint. For notational convenience we assumed it is the
same for all users, i.e., we have p < py 1. Thus the ergodic rate region,
i.e., the region of all achievable ergodic rates in the uplink, is given by

R = {E[r(p)] : 0 < p < pul}. (2.88)

Optimal power control maximizes a network utility function. That
is, we solve the NUM problem

max U (7). (2.89)
TER

Due to the expectation in (2.87) this problem is not easy to solve.
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Instead, we introduced the deterministic SINRs
7Y = pi tr(Ch, Cy t) (2.90)

which are asymptotically equivalent to 7} Since 'yzsy is deterministic,
we were able to simplify the NUM maximization significantly by replac-
ing the ergodic rates 7y, with the asymptotic rates risy = log,(1+ sty).
Due to the asymptotic equivalence, the resulting power allocation is
close to optimal for systems with many antennas. In fact, since 7,
only depends on py, the optimal solution for large numbers of antennas
is that all users transmit with full power.

For linear beamforming in the downlink, there is no analytical
solution for the beamforming vectors comparable to the solution we
have for the optimal uplink filters in (2.85). Thus, we have M times
more optimization variables in the NUM problem. However, thanks to
uplink-downlink duality, we could formulate an equivalent dual uplink
problem were we then only have the dual uplink powers as optimization
variables. The difference compared to the NUM for the actual uplink
is that we have a sum-power constraint 17p < pg in the dual uplink.
Thus we find the optimal dual uplink power allocation by solving

p* = argmax U(r*¥(p)) (2.91)
p>0,1"p=pq

with a projected gradient method. If the utility function U is concave,
we find the globally optimal solution.

The uplink-downlink duality allowed us to calculate optimal down-
link beamforming vectors from the optimal uplink power allocation
p* and the corresponding optimal uplink filters g;.






Chapter 3

Transceiver Design with
Imperfect CSI

For imperfect CSI matters get even more exciting. We will shortly
see an example with “naive” signal processing to demonstrate that it
is important to approach the issue of imperfect CSI in a principled
manner. One major challenge is that there is no closed-form expression
for the mutual information if the receiver has imperfect knowledge of
the channel. It is thus common practice to use a lower bound instead
of the actual mutual information to optimize the system. We use the
bound introduced in [14, 15], which lets us incorporate the imperfect
CSI in a straightforward manner into our objective function.

For this we need a model for the available knowledge, i.e., a stochas-
tic model for the distribution of the channel given the information that
is available at the receiver. We will see that, if we apply the lower bound
from [14, 15] to our system model, the achievable rate only depends
on the first and second order moment of this conditional distribution.

The conditional distribution is usually expressed in terms of a prior
distribution of the channels and a joint distribution of the channels
with the available side-information. We assumed Gaussian distributed
channel vectors for some asymptotic results in the previous chapter.
We will use the same assumption in this chapter.

We will discuss scenarios with uplink and downlink training, where
the conditional distribution is Gaussian, but also semi-blind estimation
where we have to deal with a non-Gaussian conditional distribution. For
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The number of channel accesses 7" de-
pends on the mobility of the user and the
physical environment. In a typical LTE
setting 7" ranges from tens to hundreds
of channel accesses.

this non-Gaussian distribution it is more challenging to acquire the first
and second order moments that appear in the mutual information lower
bound and are required for the transceiver design. We will see that a
variational inference approach can be used to get good approximations.

As mentioned before, computational complexity is a major concern
when we develop algorithms for large-scale wireless systems. For
practically relevant antenna-array geometries at the base station, the
channel covariance matrices have structure which can be exploited to
reduce the complexity of the transceiver designs we discuss in this
chapter.

We can still use uplink-downlink duality for downlink precoder
design, but the resulting rate expressions may actually no longer yield
achievable rates due to side-information asymmetry between transmit-
ter and receiver, as we will discuss later on. In other words, precoder
design based on uplink-downlink duality is a heuristic method in this
scenario and does not yield guarantees on the achievable rates.

3.1 Extensions to the System Model

We assume block-fading channels. That is, the channel is assumed
constant for a coherence interval of 7" channel accesses. The channels
in different coherence intervals are assumed to be independent. How-
ever, the covariance matrices are static over several channel coherence
intervals. For now we assume that the channel covariance matrices are
known. Imperfect knowledge of the channel statistics is discussed in
the next chapter.

Out of the coherence interval of length T, 7}, channel accesses
are used for training, the remaining channel accesses are for data
transmission. For the data transmission we have the same model as
before, i.e., in the uplink

v =) Vpehisy + oM e CV (3.1)
k

and in the downlink
i = hiths, + v, (3.2)
n

However, the Gaussian-distributed channel vectors hy, ~ N¢ (0, Ch,)
are unknown.

Remember that we are interested in asymmetric large-scale systems,
i.e., the number of antennas M is significantly larger than the number
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of simultaneously served users K. Thus, time-division duplexing
(TDD), which allows us to exploit the reciprocity of the channel, has
an advantage over frequency-division duplexing (FDD) in terms of
necessary training and feedback resources. To estimate the channel in
a TDD system, we ideally send K orthogonal pilot sequences from the
different users. The resulting estimate is then used to design both, the
uplink filters and the downlink precoders. In an FDD system we have
to resort to downlink pilots and feedback to be able to design suitable
precoders at the base station. We will discuss both approaches in this
chapter.

3.2 Training as Dimensionality Bottleneck

To illustrate the fundamental difference between perfect and imperfect
CSI, we first consider the case of matched filters, which was discussed
in Section 2.3.2 for perfect CSI. We consider a TDD system with uplink
training and assume that each user transmits one of 7; predefined
orthogonal pilot sequences. After correlating with the pilot sequence
at the base station, we get 7T}, observations of the form

1
b k%]:p \ Pu

where €2, is the set of users that transmit pilot sequence p, with p = 1,
..., Ty and we have additive noise v ~ N¢(0,T).

We do not only model noise in the observation, but also distortions
due to interference. In the uplink, it does not matter whether the inter-
ferers in €2, are from the same cell as user k or whether the interference
originates from neighboring cells. The effect on uplink performance is
the same. In a large network with many users, this interference during
the training phase, so called pilot-contamination, is difficult to avoid
due to scarcity of training resources.

Now, we directly use the observation corresponding to the pilot
sequence transmitted by a user to filter the received signals. That is,
we set g, = ¢, if user k transmitted pilot sequence p.

If we assume that none of the observations are interference free,
we get the following result for the asymptotic rates.

Theorem 3.1. Suppose Conditions 2.1 and 2.2 are fulfilled (the noise
is covariance matrix is well-conditioned and the channel power grows
linearly with M) and we have the observations in (3.3), with |Q| >

The observation ¢, is the least-squares
estimate of the channel vector hj and
the matched filter based on the least-
squares estimate is a common choice
when complexity is a concern.
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The proof for the linear growth without
pilot-contamination is almost identical
to the one in Corollary 2.3 and is omitted
here.

2 Vp. An upper bound on the asymptotic SINR with the matched filter
gi. = @p for a user k that transmits pilot sequence p is given by

asy _ Dk tr(Chk)2
b Ynea iy Pott(Ch,)?

(3.4)

Proof. We use the uplink SINR definition from (2.6) in Chapter 2.
Since we do not actually have perfect CSI at the receiver, this SINR
leads to an upper bound on the achievable rate. Incorporating the
receive filters g, = ¢, into the SINR for perfect CSI leads to

H 2
Ve = o o PR ( . )
Pp C’v““pp + Zn;ﬁk Dn ‘SOP h”‘
Using Lemma C.3 we get
vhy  tw(C
fim Poim_ 0(Cr) _, (3.6)

if user n transmitted pilot sequence p. On the other hand, if user n
transmitted a pilot sequence different from pilot sequence p we get

H
. Lpp hn
lim 222" — . 37
M M (3.7)

Extending numerator and denominator of (3.5) with 1/M 2 we can
replace both with their asymptotically equivalent expressions. This
works since we know that the denominator is non-zero in the limit
due to Condition 2.2. The noise part vanishes and we end up with

T = 0

The important thing to note here is that the SINRs do not grow
linearly with M, in contrast to the SINRs for perfect CSI (cf. Corol-
lary 2.3). Instead, if the observation for a user k is subject to inter-
ference, the SINR saturates to a deterministic value, i.e., we get zero
DoMs for users that suffer from pilot contamination. The SINR of
users that do not suffer pilot-contamination, increases linearly, i.e., we
get one DoM.

This pilot-contamination problem prompted a lot of research in re-
cent years. The impact of pilot-contamination can, e.g., be reduced by
a smart allocation of pilot sequences to the mobile users. One simple
approach is to divide the available pilot sequences in G groups and
employ a reuse pattern for the pilot sequences as depicted in Fig. 3.1
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for G = 3 (cf. [13]). This way, neighboring cells never use the same
pilot sequences. However, the amount of training sequences per cell
is reduced to T} /G and thus if we want to avoid pilot-contamination
within the cell we are only able to serve K = Ty /G users simultane-
ously. On the other hand, the amount of training cannot exceed the
coherence interval 7" and in practice should be significantly lower.

Other work exploits structure in the covariance matrices of the
channel vectors in some way. Be it to suppress the interference during
the training [21] or to design two-stage linear transceivers, where one
stage only depends on the channel statistics [22, 23]. As we will see in
the next section, if we use a reasonable objective function that captures
our model for the imperfect CSI, the impact of pilot-contamination is
already significantly reduced for commonly used channel models.

It is also possible to design a “robust” matched filter that can deal
with pilot-contamination and exhibits the desired linear growth of the
SINR with the number of antennas. Discussion of this robust matched
filter approach for imperfect CSI follows in Section 3.8.

3.3 Exploiting Statistical Information

In practice, the channels to different users have different spatial struc-
ture, i.e., different channel covariance matrices. In the following we
will derive a well-known lower bound on the achievable rates which
depends on the channel statistics. Asymptotic analysis will show that
under mild assumptions, we can exceed the DoM that are achievable

Figure 3.1: Depiction of a factor three
reuse pattern in a cellular network of
regular hexagonal cells. Differently col-
ored cells use different pilots. That is,
the pilot sequences are split into three
disjoint sets, one of which is used by
each color.
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by the simple matched filter discussed in the previous section.
Suppose that in the uplink, the side information ¢ on the channels is

available at the base station (e.g., after training). This side information

is used to design the filters g;. The signal model is the same as before

Sk = ghy" = VrgRhksk + Y V/Dngh sy + giv". (3.8)
n#k

Due to the uncertainty in the channels hj we can no longer find a closed-
form expression for the mutual information Z(sy; §x|¢). However,
using the same approach as in Theorem 2.3, we can derive a lower
bound.

Theorem 3.2. The conditional mutual information Z(sy; S|) is lower
bounded by

rf =logy(1+75) (3.9)
with
2
NP = Pk ‘Elsﬂ[gllc{hk”
kT 2
9rCugi + prvary,(gihe) + 32,1 n Bl i R[]
(3.10)
which simplifies to
2
Pk ‘g?hk‘
"= —
gy <Cv + PkChylp + 20tk Pn(Chyjp + hnh§)> gk
3.11)

where hy|p ~ Nc(ilk, Chklcp)‘

Proof. The derivation of (3.10) is equivalent to the one for Theorem 2.3
and also makes use of the results in Appendix A. The only difference is
that the expectations are now conditioned on the available observation
®.

Since the filters g;, are deterministic given the observation ¢, we
can express the expectations in terms of the conditional means

hy, = E|, [hy] (3.12)

which are the MMSE estimates of the channel, and the conditional
covariance matrices

Chylp = Ejplhihyl] — by (3.13)

which describe the estimation error. O
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The difference to the uplink SINRs for perfect CSI in (2.6) is
that the actual channels are replaced by the MMSE estimates and we
have additional deterministic interference terms, which depend on the
covariance matrices Cp, |, of the channel estimation errors and scale
with the transmit powers py.

Analogously to the perfect CSI case, the optimal uplink filters
(with respect to the lower bound on the achievable rate) are given by

-1

gi=|Co+> mrChop+ Y prhahil | hp (314
n n#k

with resulting SINRs

v = pihigr (3.15)
-1
=pehfl | Co+> pnCh o+ > pnhnhll | ki (3.16)
n n#k

Since the rates r,f are a lower bound on the instantaneous achievable
rate for a given observation ¢, we get the lower bound on the ergodic
rates

7 = E[rf]. (3.17)

The discussion regarding NUM with respect to the ergodic rates is
identical to the one for perfect CSI. We only have to replace “for each
channel realization” by “for each observation ¢”. Same as for perfect
CSI, we prefer a static power allocation p that does not have to be
recalculated for each observation.

Since the structure of the equivalent SINRs in (3.11) is similar to
the SINRs for perfect CSI in (2.6), we might expect the rate regions
to take on similar shapes in both cases. In fact, the shape of the rate
region depends on the available observation ¢. If we have independent
observations for different users, the behavior is similar to the case
of perfect CSI. However, if the observations are coupled, e.g., by
interference during the training phase, the behavior is fundamentally
different. We will see this shortly when we discuss the different types
of channel observations encountered in practice.

To facilitate the asymptotic analysis we use the same kind of refor-
mulation of the SINRs that we used for perfect CSI.
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Lemma 3.1. For a non-trivial power allocation p > 0, the optimal
SINR of user k is given by

TEgH—1 1 -1 ArH ~—1 £\ —1
e, H Cy|¢H(P + H Cyth) e

Vi = Dk TPy I:IHC?Il}pIQI)_lek (3.18)
where P = diag(p) and H = [h1, ... hg| and
Cyip = Co+ Y DkChyjpr (3.19)
k
Optimal filters can be calculated as
gi = L H(P'+ ISIHC;‘LFI)_lek. (3.20)

N Yly

Proof. The proof is equivalent to the one for perfect CSIin Lemma 2.1.
O

The filters in (3.20) not only maximize the SINR in (3.11) but also
minimize the MSE E[|s;, — ghy|?|¢]. That is, the filter in (3.20) is the
linear minimum mean squared error (LMMSE) filter for the estimation
of the transmit symbols s; from the signals y given observations

 [24].

3.4 Uplink-downlink Duality

Basically, uplink-downlink duality works the same as for perfect CSI.
The system model for the downlink is the same as before

i = hitise + > hiths, +vp. (3.21)
n#k

In the downlink, if we have the observation (¢ at the receiver, we can
derive a lower bound on the conditional mutual information.

Theorem 3.3. The conditional mutual information I (yy; si|) is lower
bounded by r{' = log,(1 + ~{') with

H; 2

e = —=
1+ t}];lchkhotk’ + Zn#k tS(C’hW + hkhlk{)tn

(3.22)

Proof. The proof is analogously to the one in Theorem 3.2 based on
the results in Appendix A. O
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If we refer to the notes in Appendix C.1, we realize that the uplink
SINR in (3.11) with C,, = I and the downlink SINR in (3.22) fit into
our uplink-downlink duality framework. Thus, uplink-downlink duality
can be applied the same way as in Chapter 2.

The issue with designing precoding vectors for the downlink is
that the result in Theorem 3.3 assumes that the same observation ¢ is
available at transmitter and receiver, which is not the case in general.

We will still use the SINR expression in (3.22) with the MMSE
estimates at the base station to design the precoders. In this case, the
rate expressions that we optimize are not lower bounds on the mutual
information but just approximations. The accuracy of the approxima-
tion depends on the system design. We could, e.g., send additional
downlink pilots along the precoding vectors or use a more sophisticated
detector at the receivers [25] to make sure that the calculated rates are
actually achievable.

3.5 Uplink Pilots

In this section we analyze the achievable rates with the SINRs in (3.15)
when we have observations from uplink training. That is, we consider
the same system model as in Section 3.2, where each user transmits
one of Ty, predefined orthogonal pilot sequences. After correlating
with the pilot sequence at the base station, we get Ti. observations of

the form
1

ep= Y hp+—o" (3.23)
keQ, Pu

where €2, is the set of users that transmits pilot sequence p, withp = 1,
.oss Tye and v ~ N (0, 1) is additive noise.

Because everything is Gaussian, the MMSE channel estimate of a
user k that transmits pilot sequence p is given by

hi, = E[hyo} | Elpne}l]or = Cn, C,l er (3.24)
with the covariance matrix of the observations

1
Cp,=—1I+ > Ch,. (3.25)
Pu keQ,

The covariance matrices of the estimation errors are given by

Chylp = Chy, — Cn,Cy Ch,- (3.26)

In practice, we would change the chan-
nel code rate using an outer loop link
adaptation at the base station based on
decoding success and decoding failure
reports from the mobile user. Thus, it
is not necessary to know the achievable
rate exactly.
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3.5.1 Asymptotic Analysis

Asymptotic analysis of this scenario for optimal receive filters has also
been done in [9] for both the uplink and the downlink. We show the
same result, namely that the SINRs grow linearly with the number of
antennas, even in the presence of pilot-contamination. Our focus is on
the asymptotically equivalent SINRs, since, analogously to Chapter 2,
we want to use the deterministic asymptotic SINRs for power allocation.
In the scenario with imperfect CSI the asymptotic results can also
be used for other resource allocation tasks such as pilot-sequence
allocation.

If we have observations from an uplink training phase as given
in (3.23), we can perform the analysis for large numbers of antennas
similarly to the analysis for perfect CSI. Analogously to the analysis
in Chapter 2, the main idea is that the matrix H HC;thISI /M in the
optimal SINR ~; in (3.15) converges to a deterministic matrix. Again
we need the channel hardening condition (Condition 2.3) to show that
the variance of the products ﬁl,jC;';iLn /M vanishes.

Lemma 3.2. Under Conditions 2.1 and 2.3, we have

lim H"C_ | H/M - E[ISIHC?;‘LIQI/M] = 0. (3.27)

M —oc0

Proof. We use Lemma C.2 to calculate the following variances for
users k and n, which use pilots p and q respectively:

var(hi{C,, L by /M) = t(Ch, C,} Cn, C, Ch, C [ Ch, C L) /M
(3.28)
where Cy‘go is defined in (3.19).

Since ChkC;;Chk < Cp, and C?;‘}p < Cyl < HC’ITIHQI we

get
TH~—17 —1)2 2
var(hy Cy hn /M) < |C, |, r(Ch,, Ch,) /M (3.29)

2 [Chillp [Chall
2 M M
which goes to zero for M — oo due to Conditions 2.1 and 2.3. O

<||c | (3.30)

We define I' = E[PAIHC;lLPAI/M] € CK*K which has the ele-
ments

T, = t(Ch, C;“lDChn C;pl) if both & and n use pilot p,
0 otherwise.

(3.31)
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Incorporating Lemma 3.2 into the optimal SINR we get

Theorem 3.4. If additionally to Conditions 2.1 and 2.3 we have

limsup [T, < o0 (3.32)
M—o0
then v}, < ’yk Y where
: My,
= e (3.33)
k ezr_lek
Additionally,
lim ~;/M > 0. (3.34)
M—o0

Proof. The proof is almost identical to the one for Theorem 2.1. We
can express the involved SINR expressions using the same function

e;B(aP™ '+ B)™!

. 3.35
el (aP~'+ B) e (333)

(B, o) = py

With B = IAIHCyWH/MandB I" we have v /M = (B, 1/M)
and 7> /M = 3,(B,0).
We already know from Lemma 3.2 that B =< B. Due to the

condition that ||T"~||5 is asymptotically bounded

lim ’yk(B 0) > 0. (3.36)

M—o0
For the same reason, ’yk(B 0) is well-behaved for large M and asymp-
totically equivalence (B 1/M) = 5;,(B,0) follows from B < B
and 1/M — 0. Since v, Y /M is non-zero in the limit, the same holds
for ;' /M due to the asymptotic equivalence. O

We still have to clarify under which conditions on the channel
covariance matrices, we have the full-rank property of I" in (3.32). To
answer this question we take a closer look at I'. If the users’ indices are
arranged according to pilot association, I' = blkdiag(T'y,...,I'r;,)
has a block-diagonal structure with one block I';, € CEr»*Eyp for each
pilot sequence. The number of users that transmit pilot sequence p is
denoted as K.

We consider the set of users 2, = {1,..., K,} which use the
pilot sequence p, where without loss of generality we assume that the
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users are indexed from 1 to K,. We collect the vectorized covariance
matrices of the users in

B = [vec(Ch,), . .., vec(Chy )] (3.37)
We use tr(A"B) = vec(A)"vec(B) to be able to express I';, in matrix notation
and vec(AX B) = (B" ® A)vec(X).
1 =H —T —1\=
r,= e (CW ® Cykp):. (3.38)

where ® denotes the Kronecker product.
If we have bounded spectral norms of the covariance matrices

Condition 3.1.

limsup ||Ch, || < oo, VEk (3.39)

M—o0

and asymptotically linearly independent covariance matrices

Condition 3.2.
1 2
1}4mjgofA:|&ﬁ2:1M %;p \eCr, i >0 (3.40)
or equivalently
lim sup||(EME/M) 7|2 < oo (3.41)

M—o0

we get

Theorem 3.5. If the covariance matrices fulfill Conditions 3.2 and 3.1,
we have lim sup||T 1| < oo.

Proof. Since the covariance matrices have bounded spectral norm by
Condition 3.1, we have lim sup ;|| Cy| ;|2 < co andlim sup || Cy, [|2 <

For the spectral norm of a Kronecker oo and thus
product we have ||A ® B|| = ||A||||B||-

limA;UPHF_llb < lim]\;uPHCyMHQHCQapH2H<EHE/M)_1H2 < o0
(3.42)
due to Condition 3.2. O

Consequently, if all covariance matrices are asymptotically linearly
independent, the SINRs grow linearly with the number of antennas
even in the presence of pilot-contamination. We could thus train all
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users with a single channel access — using the remaining 7" — 1 channel
accesses for data transmission — and achieve #DoM = K(T' —1)/T ~
K. That is, compared to the matched filter example in Section 3.2, the
DoM are not limited by the number of available orthogonal training
sequences but grow with the number of users K.

In practice, the covariance matrices of different users are linearly
independent as long as the users are at different positions in the cell.
However, as mentioned earlier, the scaling factor of the asymptotic
SINR has a significant impact on the number of antennas needed for
a certain prformance. Thus, for a finite number of antennas, it is
still preferable to use several channel accesses for training to avoid
unfavorable situations where users with similar covariance matrix
structure use the same pilot sequence. This opens the door to various
resource allocation methods that assign pilot sequences to users.

As we already noted in the last chapter, Condition 3.1 is too re-
strictive for many practical channel models. Fortunately, the bounded
norm is not necessary. In Appendix B we discuss the conditions that
are required for some relevant channel models.

3.5.2 Resource Allocation

For imperfect CSI, same as for perfect CSI, we want to solve a NUM
problem with respect to (a lower bound of) the ergodic rates. Addition-
ally to the (dual) uplink power allocation, we can optimize over the
allocation of pilot sequences to users. Since it is not possible to change
the pilot-sequence allocation for a given observation after the fact, the
allocation should be quasi-static. That is, the pilot sequence allocation
should change in the same time frame as the channel statistics which
for our purposes means the allocation is static.

Working with the lower bound on the ergodic rate in (3.17) to
optimize the pilot allocation is difficult due to the expectation over
the observations. A less complex approach is to use the asymptotic
SINRs in (3.33) which do not actually depend on the instantaneous
observations but only on the channel statistics. That is, we solve

max max U (r®). (3.43)
Qp P
Clearly, the outer maximization with respect to the pilot sequence
allocation is a combinatorial optimization problem. In practice, greedy
approaches are often used to find suboptimal solutions to combinatorial
problems [26].



42

3. Transceiver Design with Imperfect CSI

3.5.3 Computational Complexity

When discussing the computational complexity of the introduced signal
processing approaches, it is important to consider the time frame in
which the calculations have to be done. Since the channel statistics
vary slowly compared to the fast-fading channel coefficients, we will
in the following only consider the complexity of operations that rely on
the instantaneous observation ¢ of the channel vectors. This excludes
for example the allocation of pilot sequences discussed in the previous
section.

For given beamforming vectors ¢, or receive filters gy, the required
computational complexity in processing the transmit and receive sig-
nals, respectively, is the same, since we rely on linear processing. For
one channel access we need one matrix-vector multiplication which
requires O(M K) floating-point operations. If the same filters and
beamforming vectors are used for Ty, channel accesses in one coher-
ence interval we need O(M KTy, ) operations in total.

The filters and beamforming vectors have to be calculated once per
coherence interval. In terms of computational complexity, the LMMSE
filters in (3.20) are preferable over the optimal filters in (3.14), due to
smaller dimensionality of the matrix that needs to be inverted.

The calculation of all LMMSE filters g} requires O(M2K +
MK? + K3) complex operations. This assumes that the deterministic
covariance matrices C;‘}p are pre-calculated. The calculations neces-
sary for the uplink-downlink transformation are O(K?3) and thus do
not affect the total order of complexity.

Overall, the computational complexities for the filter calculations
might be too high for practical application in a massive MIMO system.
In contrast to the complexity for the application of the filters, which is
linear in M, the calculation of the filters is at least quadratic in M.

The issue with respect to the computational complexity stems from
the M x M covariance matrices Cp, . To reduce the complexity, we
want to find a lower-dimensional parameterization of the covariance
matrices. Incidentally, such a parameterization is also beneficial for
the covariance matrix estimation discussed in Chapter 4.

The following assumption on the covariance matrices will be ex-
ploited throughout this work to reduce the computational complexity
of the introduced methods.
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Assumption 3.1. The covariance matrices Ch, are diagonal, i.e.,
Cy, = diag(cp,) (3.44)
or equivalently, they can be decomposed as
Ch, = Q diag(cp,)Q" (3.45)

with a common unitary matrix Q € CM>*M  for which the matrix prod-
uct Qx can be calculated in O(M log M) floating-point operations.

Examples. The following examples of array geometries are dis-
cussed in more detail in Appendix B. For a ULA, the channel co-
variance matrices, which have Toeplitz structure, are asymptotically
equivalent to corresponding circulant matrices [27]. That is, if F'
denotes the unitary DFT matrix, we have the asymptotic equivalence

Ch, < Fldiag(cp, )F Vk (3.46)

where cp,, contains the diagonal elements of F'C},, FH,

An analogous result can be derived for uniform rectangular arrays.
In this case the transformation Q" = FT® F is the Kronecker product
of two DFT matrices. The sizes of the DFT matrices correspond to the
number of antennas in both directions of the array.

A third example with a decomposition as in Assumption 3.1 are
distributed antennas [28, 29]. For distributed antennas, the covariance
matrices are typically modelled as diagonal matrices. That is, for
distributed antennas we simply have Q = 1.

If we use Assumption 3.1, namely that the covariance matrices
are diagonal (or jointly diagonalizable) the complexity reduces signifi-
cantly. For the examples following Assumption 3.1, the transformation
into array space needs at most O(M log(M)) operations. Calculating
the LMMSE filter only needs O(M K? + K?3) operations, which is
linear in the number of antennas. Thus, per channel coherence inter-
val we need in total O(M K Ty + M log(M)Tyaa + MK? + K3)
operations.

3.6 Downlink Pilots

In an FDD system we cannot exploit channel reciprocity and thus
have to use downlink training and feedback to get side information

If the all covariance matrices have the
same eigenbasis Q we can transform all
incoming signals in the uplink once by
Q. That is, if we receive y", we use
7" = QMy" instead and then only work
with the diagonal matrices diag(cn,,)

that contain the eigenvalues.

By transformation to array space we mean
the multiplication with Q. The columns
of @ can be seen as the “natural” basis
for the given array geometry.
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on the channel state. To reduce the training and feedback overhead,
the number of channel accesses used for training should be signifi-
cantly smaller than the number of antennas. Authors of earlier work
realized that low-rank structure of the channel covariance matrices
can be exploited to reduce the amount of training without sacrificing
performance. These considerations lead to multi-stage precoder de-
sign [23, 22]. With the insights from Section 3.3, we already know
how to design the precoders based on the LMMSE filter. The only
remaining issue is how to design the downlink pilot signals.

In Section 3.5 we saw that for uplink training, the asymptotic SINRs
are useful to optimize the power allocation. Similarly, we would like
to use asymptotic SINRs that only depend on the channel statistics
to design the downlink pilot signals. However, as we will see in the
following, if we fix the amount of training we do not get the linear
scaling of the SINRs that we could show with uplink training and we
also do not get a deterministic asymptotically equivalent SINR.

Suppose the base station transmits downlink pilot vectors b, p =
1, ..., Ty. If we assume perfect feedback, we get from user k the
observation

o, = Bih, + v, (3.47)

where B = [by,...,bp,] € CM*Tw and vy, ~ N(0,1). The pilot-
matrix has to fulfill at least the average sum-power constraint tr( BHB) <
pu With py = Tirpq.

We denote those observations collectively by 0¥ = {1, ..., K }.
We calculate the MMSE estimates

by = E[hy| " = Ch, B (BYC,, B +1) "' ¢ (3.48)
and conditional covariance matrices
H -1 oH
Chk‘wdl = Chk - Cth (B Cth + I) B Chk (3.49)
that are required to evaluate the dual uplink SINR given in (3.18). With
the conditions on the covariance matrices we have used previously, we
can show that the SINR does not scale with M if Ty, is kept constant.

Theorem 3.6. With Conditions 2.1 to 2.3 we get

lim ~}/M = 0. (3.50)
M—o0
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Proof. The optimal SINR 7 is bounded above by the single-user SINR
of user k

. 1 \"'.
= hjl (CW - p(ﬂl) hy, (3.51)

that we get if we evaluate the SINR in (3.15) for a single user.
We have

. 1 \ 1.
E[y'] =E [hll;l (Chklso + oa I) b (3.52)
T\t
— 1 <<Chw +— I) E[hkhlk{]> (3.53)
Pdl
< partr (E[ilkfllg;l]) : (3.54)

We know that E[h,hll] < Cj,, and rank(E[hhl]) < T. Thus,
tr(E[hyhll]) < Ty||Ch,|l. Since limps ;oo ||Ch, || /M = 0 due to
Condition 2.3, the bound on the SINR goes to zero for M going to
infinity. O

The result follows intuitively from the channel-hardening condition,
which requires that for large M the energy of the channel vectors is
spread in many spatial directions. With a small, fixed 7}, our signal pro-
cessing methods are limited to a small subspace and thus lose the array
gain and asymptotic orthogonality that make massive MIMO so com-
pelling. In the uplink, on the other hand, we saw that the SINR scales
linearly with M irrespective of 1. For this reason, TDD operation is
preferable if we want to scale the system to massive numbers.

If, for whatever reason, we still need to do downlink training, we
can nevertheless achieve significant gains by increasing the number of
antennas, as long as the covariance matrices adhere to certain low-rank
assumptions. The first assumption that we will use in the following
is Assumption 3.1, namely that all covariance matrices are diagonal
(Ch, = diag(cn,)).

Now suppose we have T, = M, i.e., we can scan the whole M-
dimensional space with our training signals. Since we assume that all
channel covariance matrices are diagonal, the only reasonable choice
for the pilot covariance matrix and thus for B seems to be a diagonal
matrix. Intuitively, this should be the optimal choice. We do not yet
have a proof that a diagonal B is optimal for diagonal covariance
matrices, but we will still use it as a working assumption.

Clearly ~;' > ~f since we remove the
interference caused by all other users.

We use the identity tr(AB) = tr(BA)
and (A4+1)7* <L

After all, we are engineers not mathe-
maticians.
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Since a complex phase-shift of the pilot vectors does not affect the
estimation, we choose a real-valued matrix without loss of generality.
That is, we have B = D'/? where D = diag(d) and d € RM . The
power constraint is then simply 17d = p.

With this pilot matrix, we get the MMSE estimate (cf. (3.48))

hy = C, DY?(DC, +1)"' ¢y, (3.55)
= Cp, DV (DC},, + 1) (DY2hy, + vy). (3.56)

Now we investigate for which assumptions we get an equivalent MMSE
estimate but with a smaller amount of training. Consider the following
low-rank assumption.

Assumption 3.2. There exists a constant S > 1 such that for M
antennas, the spectra cp,, are non-zero in at most M /S consecutive
entries. For notational convenience, we additionally assume that both
S and M /S are integers.

This assumption holds (asymptotically), e.g., for the one-ring
model, which has been used to justify various approaches to FDD
signal processing with large numbers of antennas and users [23].

Theorem 3.7. For a fixed total training power p,,, and for covariance
matrices following Assumption 3.2 and T;, = M /S, the pilot design

B = D'/28 ¢ RM*Tr (3.57)

with S = [L, ..., 1|7 achieves the same performance as the full-dimensional
design B = D'/2.

Proof. Firstly, note that tr(DSST) = tr(D) and thus the power con-
straint is still 1Td < Drr-

Since D and the Ch,,, are diagonal the If we incorporate (3.57) into (3.48), we get
matrix multiplications commute.

hy, = Cy, D'2S (S1Cy, DS +1) " ¢4 (3.58)
= Cy, D25 (S"Cy, DS +1) " (S"DV2C, "y + vy)
(3.59)

where both ilk and v;. have i.i.d. Gaussian distributed entries with zero
mean and unit variance (we substituted hy, = C ,111 2 ilk). What we need
to show is that, with Assumption 3.2, we can eliminate all occurrences
of the matrix S. Because then, the estimate (3.59) has exactly the



3.6. Downlink Pilots

47

same stochastic distribution as the estimate from a full-dimensional
pilot-matrix in (3.55), which leads to identical ergodic rates.

We have several diagonal matrices in (3.59) that all have the same
sparsity structure

D = Cy D%, Dy=CyD, Ds;=C;/’D'?  (3.60)

The matrices can thus all be represented by a diagonalization D; =
U AU, where U € {0,1}M*Tr is a subunitary matrix. More
specifically, due to Assumption 3.2, U, contains a shifted identity
matrix, i.e. it has the form

U, = (3.61)

(=T )

It is easy to see that UkT S is a unitary permutation matrix. Conse-
quently, it can be moved out of the inverse and eliminated altogether:

hi = UpMULS (STULAULS +1) ' STU(AsU Ry, + )
(3.62)
= UpA; (Ay + 1) (A3UThy, + 9y) (3.63)
= U,MUU, (Ay + 1) UL UL(A3UL by, + 3y) (3.64)
= U MU} (UpAUT +1) " (Ui AsU by, + Uydsg), (3.65)

where after eliminating the .S, we move the U, and U, kT back into the
inverse. Now, since the null-space of U ,;F (UkAgUkT + I)_1 is the
orthogonal complement of range(Uy, ), we can simply replace Uy Uy
by a full vector with i.i.d. entries, which completes the proof. O

The key requirements for the derivation are that .S has norm-one
rows (for the power constraint) and that Ug S is unitary for all Uy.
In our case, both, U}, and S, only contain zeros and ones, thus, each
column of S has to be orthogonal to all but one column of each Uy. In
other words, each pilot vector should only pick one non-zero dimension
of each covariance matrix.

If the spectra ¢y, are sparse but the non-zero entries are not con-
secutive, we can in principle try to design the non-zero entries of S
with a greedy method such that each column of S picks at most one
of the non-zero entries of the spectra. If the covariance matrices are

We replace vy, by ¥, = Uy Svy which
has the identical distribution since U} S
is unitary.
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The matrix Cywdf is the matrix Cy|,

with observations from downlink train-

ing and an identity matrix for the noise

covariance, i.e. C’y‘

Pl = I+kakchk‘¢dl.

orthogonal, i.e., we have non-overlapping supports of the spectra cp, ,
it is trivial to find an optimal selection matrix. However, in general we
can make no guarantee that T, = M /.S pilot signals will be sufficient
for a greedy assignment.

If we find a selection matrix S such that we have an estimate as
in (3.55), the remaining question is how to choose the power allocation
D. To this end, we now perform the asymptotic analysis given the
channel estimates in (3.55). The analysis requires that the amount
of training scales with the number of antennas but only at a factor
Te = M/S.

Theorem 3.8. For Conditions 2.1 to 2.3 and with Assumptions 3.1
and 3.2 we can choose D such that

hm fyk/M ’ymy/M =0 (3.66)
and
lim v,/M >0 Vk. (3.67)
M—oo
where
3 = e (( DChk +17' DG}, C, L) (3.68)
Dk Chk 1
- x . (369
[l H L+ Yol

Proof. We can use steps equivalent to the ones in Lemma 3.2 to show
that under Conditions 2.1 to 2.3

lim HYC— " VUH /M — [ISIHCy_‘;d,FI/M] =0. (3.70)

M—oo

Since there is no pilot-contamination, I'!! = E[H HC?]LMI:I /M]isa
diagonal matrix. The diagonal elements are given by

[T%)uk = E[R{C, b,/ M] (3.71)

1
T ((DChk +1)7' DG}, C, L,

) . (3.72)
If we compare to Theorem 3.4, we see that as long as

lim [T, >0 (3.73)
M—oo
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then

asy _ prM

VY = = p MDY (3.74)
k ez(I‘dl)_lek

which is exactly what we have in (3.68).
To show (3.73) for some D, we set D = % I. Since py = Tirpar
and T;, = M /S this leads to D = £¢' 1. We get

2
1
asy/M _ Z Chk] >
W2 o+ S/ 17 DO o e
(3.75)
1 p [y )
> — . (3.76)
M1+S — [Chk]m +S/pd1
We know from Condition 2.2 that
) 1
Jim ;[chk]m > 0. (3.77)

We partition the elements of the vector ¢, into two vectors. The
vector ¢, which contains elements larger than S/ pq;, and the vector
co, which contains all other elements. We have

1
lim ;[cl]m + 7 2 leadm >0 (3.78)

and thus at least one of the normalized summations does not vanish.
We use the same partition for the bound in (3.75) to get

oy 0 el 379
K MEm:[ tlm +5/pa MZ [c2]m +S/Pd1 G7)
a [
> — — — (3.80
— M fem +[e] MZS/plerS/Pdl 50
oyl o 1
= M;2[c11m+ M35 (3.81)

with a = 1{2&5 Due to the Cauchy-Schwartz inequality we have

2
cher > % (Z[cz]m> (3.82)

m

and thus we can combine (3.78) and (3.81) to complete the proof. [

leh,lm

We replace ) . pn
upper bound % >oubn < S

[eh, mpa/S+1

by its
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Note that the asymptotic SINR is an upper bound on the achievable
rates. The inter-user interference is eliminated and the resulting SINR
is replaced by its expectation, which leads to an upper bound due to
Jensen’s inequality (cf. Theorem 3.6). Howeyver, it is an upper bound
which is asymptotically tight as M — oc.

Since the asymptotic SINR only depends on the channel statistics,
we can use it to optimize the power allocation D. If we only have a
single user the asymptotic SINR in (3.69) simplifies resulting in the
following optimization problem

pk[chk]gndm 1
d m [Chk]mdm +1 1 +pk[c’fc#}m

st. d>01"d =p,. (3.83)

If we analyze the KKT conditions, we find that the solution to (3.83)
can be found with a typical waterfilling procedure. A similar approach
was developed in [30] in a slightly different context. Since the single-
user case is not really of interest for our large-scale systems, we will
not give further details.

In a multi-user scenario where we optimize a general network
utility function, we can no longer find a semi-analytical waterfilling
solution. In fact, the SINRs are no longer guaranteed to be concave in
the power allocation d. Nevertheless, we can as always find a locally
optimal power allocation with our favorite projected gradient method.

Since we also need to optimize the power allocation for the data
transmission, we should perform a joint optimization of the power
allocation of both, the training and the data phase, with a projected
gradient method. In the end we get a close to optimal pilot allocation
and precoder design.

If we desire a simpler power allocation that does not require an
adaptive update, we can simply use a normalized selection vector for
the power allocation. That is, we choose d = a.s where s € {0, 1}
and « is a normalization factor. We can for example set the non-zero
dimensions in s such that for each user at least 80% of the energy in
the spectrum ¢y, is covered, i.e., s selects the larges elements of each
Ch,, such that sTchk > %chhk.

While the projected gradient approaches work well for a continu-
ously differentiable utility function, we need to take special care when
we are interested in maximizing the minimum rate. Since we consider
the max-min objective in the simulation results at the end of this chap-
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ter, we will briefly describe a method that maximizes the minimum of
the asymptotic SINRs of all users. The optimization problem is given
by

max max  minv, "’ (p,d) (3.84)
d:1"d=py,d>0 p:1Tp=pa,p>0 k

and can be rewritten to

max max o st 7. (p,d)>aVk  (3.85)
d:1Td=pi,d>0 p:1"p=pg,p=>0

For a fixed d we can solve the inner problem with respect to p efficiently.
The reason is that p; /v, (p, d) fulfills the conditions of a standard
interference function [31]. Consequently, all inequality constraints
will be fulfilled with equality at the optimum and there is a unique

solution p*, a* to the system of equations

¥ (p*,d) = a*1
1"p* = pa (3.86)

asy asy

where v (p, d) = [\” (p,d), ..., ¢ (p,d)]".

We can, e.g., use the Yates fixed point method [31] to find an
optimal p* given some d. Specifically, we iterate the following steps
until convergence:

[ph cee 7pk]T — [pl/fYTSY(pv d)a cee 7pK/’YEIl§y(p7 d)]T (387)

p
— = 3.88
P, (3.88)
Once we found an optimal power allocation p*(d) and objective
a*(d) for some training power d, we optimize the training power with
a projected gradient method. That is, we solve
max o (d). (3.89)
d:1Td=py,d>0
To this end, we need to calculate the derivative of o*(d) with
respect to d. The function o*(d) is only defined implicitly in the
non-linear equation system (3.86). We can use the chain rule for multi-

variate differentiation to get The Jacobi matrix of a vector valued
function f : R™ +— R" is here de-
asy asy
Dy dp* . Oy _ da* (3.90) noted by 2%, Thus %”T, o, and
apT p=p* OdT odT |p=p* odT g% are M x M matrices and % is
op* an M -dimensional row-vector.
TP _ (3.91)

odT
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We solve the first equation for

op* [y (0 oy
p=p* odT  odT

odT
which we plug into the second equation to get

opT
DSy -1 Do Oy
T — =
1 < p:p*) (1 S~ odt ,,:p*) 0 (3.93)

opT
which we finally solve for

1
1T (58’7’“;y ) %’Z;;Y

oa* D —* -

= i~ e (3.94)

T —1
6d lT < 8,yasy ) 1
p=p*

opT
Equipped with the derivative, we can apply the methods from Ap-

) (3.92)
p=p*

pendix D to solve the problem (3.89).

For a given power allocation, the instantaneous complexity of cal-
culating the receive filters is equivalent to the complexity for uplink
training (cf. Section 3.5.3). With our approach to pilot design, the

matrices Cy a are diagonal and the MMSE estimates can be calcu-

lated in O(]WW)J operations. Note that state-of-the-art methods such as
JSDM [23] rely on equivalent assumptions for practical implementa-
tion.

JSDM makes additional assumptions on the user covariance ma-
trices and relies on a grouping of the users which is not necessary
with our approach. Thus, a direct comparison in our simulation setup
is difficult. Since JSDM does not optimize the power allocation, we
expect the performance to be similar to our approach for a fixed power

allocation as long as those grouping assumptions are fulfilled.

3.7 Semi-blind Channel Estimation

In addition to observations from an uplink training phase we can also
incorporate all signals received during the uplink data phase to improve
the channel estimates. We have the uplink data signals

y' = Vprhese + o t=1,...,Ta. (3.95)
k

or in matrix-vector notation

Y = HPY2§ + v ¢ cMxTu (3.96)
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where the entries of the data matrix S and the noise V" are i.i.d.

complex Gaussian with zero-mean and unit variance.
In the following, we consider semi-blind filter design using the set
of observations containing uplink training

(ptr = {9017 ceey QOTH} (3.97)

and uplink data signals Y, i.e., we use

o® = {p", Y} (3.98)

To calculate the LMMSE filters and the corresponding achievable
uplink SINRs we need the MMSE estimates ﬁzb = E[hy|¢™] and the
corresponding covariance matrices of the estimation errors Cl, | .
Since the posterior fp s (H | ©*) cannot be given in closed form in this
scenario, it is impractical to calculate the conditional means exactly.

There are various methods to get channel estimates based on semi-
blind observations, some blind methods even work with no training
signals at all. We have methods that make use of the eigenvalue decom-
position of the uplink signals Y [32, 33, 34], which can be connected
to maximume-likelihood estimation [34]. Other approaches exist for
semi-blind estimation [35].

Since we want to use the LMMSE filter, we focus on the approach
used in [24] to approximate the joint posterior of the channels and data
symbols as the product

nslow (H, S|0™) & qs(S) [ | an, (ha)- (3.99)
K

Specifically, we look for the best approximation in terms of Kullback-
Leibler divergence that factorizes in a function of .S and functions of
h;.. This approach is known as variational Bayesian inference [36] and
allows us to get estimates of the conditional mean and the conditional
covariance matrix of the channel vectors.

In general, we approximate a posterior of a vector of random vari-
ables x by a function that factorizes with respect to the entries of

xTr
n

Fop(@lo) ~ [ qw: (). (3.100)

i=1
That is, we want to solve

n
min D (H Qz;
i=1

Qo selan

fmw) . (3.101)
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This problem is typically solved using coordinate descent, i.e., we
iteratively optimize one ¢,; while keeping all other ¢, with j # ¢
fixed. The optimal g, for fixed g, j # i is given by

log qx; = quj ,j;éi[log fa:|go(w)] + ¢ (3-102)

where the expectation is with respect to all x; with j # ¢ and is
calculated using the approximate densities g,,;. The constant ¢; scales
gz, such that it integrates to one.

This alternating optimization approach can be applied to approxi-
mate the posterior fj, ;» by the factorization in (3.99). That is, we
alternatingly calculate

.....

and
102 Gny, (P) = Eq, qn, (108 fi g0 (L, S|™)] + . (3.104)
The posterior is given by
10g fi g0 (H, S|¢™) = = pu [|Y — HS|3 + || S|}
— Y (b —hDCL! (= RY) + ¢4
k

with the training based MMSE estimate fbg in (3.24) and the corre-
sponding error covariance matrix Cp, |« in (3.26).

Calculating the optimal gg and gp,, as in (3.103) and (3.104), we
realize that the results are multivariate Gaussian densities and the
update of one of the factors gg or gp, only depends on the first and
second order moments of the other factors. If we have the following
(estimated) moments for gg and gy,

'E[ = EQh17"'7QhK [H]7 S = EQS [S]
Bu = thl,---,th [HHHL Bs = Eqg [SSH]
then we get

loggs(S) = —putr(S"ByS — YHHS — SHAMY)
—tr(SSM) + ¢ (3.105)
IOg qhy, (hk) = _pul(_hI];IYSHek — G};SYHhk
+ [Bslerhihy + > _[Bslakhy bin + [Bslen bl hy)
n#k

— (b — RDMC L o (hy = B) + o (3.106)
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We identify the moments of gg and gy, to formulate an algorithm that
iteratively updates the moments of one density based on the moments
of the other densities. The algorithm is given in detail in Alg. 1. After
convergence of the updates we get approximate MMSE estimates ﬁzb

and corresponding error covariance matrices Cp,, |» Which we can

use to calculate uplink filters and corresponding achievable rates.

Algorithm 1 Variational Bayesian inference applied to joint channel

estimation and detection

1:

AN

7:

9:

Calculate the training based MMSE estimates fztkr and the corre-
sponding error covariance matrices Cp, | u
Initialize S with its linear MMSE estimate (cf. [24))

A~ ~ 1 ~ A -1
S H”’H<p— I+ Chyppe + H”(H“)H) Y
tr
k

The second order statistics are given by

-1
. . 1 -1
Bs « §8" + T, (I +H"N (; 1+ Cyer) H“)
tr
k

fort:=1,...do
fork=1,..., Kdo
Update moments of hy

Ch, oo < ([Bslkkpul +Ci;kl\<p")_1

by, < puChy g (YS'Hek = il/n[BS]nk>
n#k

—1 7T
+ Chk|¢75b hklgouhtkr
BH <— ﬁHﬁ + diag(tr(Chlwsb), e ,tr(ChKst)).

end for
Update moments of S

~ —1 ~
S+ (puBu +1) puH"Y
Bg + S'S'H + Tu1(pulBH + I)fl

end for

Since *® contains more information than ¢, we expect better

performance compared to the methods that only use training based
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estimation. Of course, the computational complexity is also consider-
ably larger. Unfortunately, asymptotic analysis seems difficult for the
variational approach. We can still use a fixed uplink power allocation,
e.g., the same as for uplink training, and only use the improved channel
estimates to calculate the instantaneous filter vectors.

The computational complexity per iteration of the variational in-
ference method is comparable to the computational complexity of the
LMMSE filter. However, for the variational inference approach we
have to do several iterations per coherence interval to get significant
performance gains.

The variational method also works if the data symbols are from
a discrete modulation alphabet [24]. The algorithm can be adapted
such that the complexity is linear in the size of the alphabet. Thus, if
we use the correct, discrete distribution of the data symbols we get
better channel estimates at the cost of a slightly higher computational
complexity.

Using iterative variational inference might be too complex for
practical consideration, but it demonstrates that there are indeed gains
available if we do not restrict ourselves to training based estimation.
There surely is room for a middle ground between the simple training
based estimation and the iterative variational method. This is room
that we leave to future researchers.

3.8 Robust matched Filter

We saw that for perfect CSI, a simple matched filter achieves the full
DoMs. For imperfect CSI with pilot-contamination, however, the
SINRs saturate and we have zero DoMs. In the following we present a
robust matched filter design, that keeps the simplicity of the matched
filter but enables us to exploit channel structure to reach the full DoMs.
Basically, we combine the classical matched filter with a pre-filter that
exploits statistical information. We focus on the scenario with uplink
pilots as described in Section 3.5.

Consider again the optimal LMMSE filter (3.20)

-1
—[A ~ 1 _ 116 -1 TH -1 £ —1/2
G=1g1,...,9x] = C . H <P +H C’yl‘pH) P12,
(3.107)
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The filtered uplink signals are given by The uplink receive signals were mod-
eledasy = HPY?s +v.

. . N1
=Gy —p1/? (P—l + HYC? H) HY'C 'y (3.108)
yle Yl
-1
_ p-1/2 (p-1, fFHH-1 H ~—1 1/2 H ~—1
o (P +H CWH) (H C,LHP'?s + H va) .
(3.109)
Following the analysis in Section 3.5, we get the asymptotically equiv-
alent Remember: ' = E[I—AIHC;‘;I:I/M] =
§= p-l/2p-t (rPl/Zs + 0) = . @3.110)  H'CLH.

That is, the estimation error goes to zero, which is consistent with our
result that the SINR goes to infinity.
If we replace the filter in (3.107) by

1 N
G = MC;';HF—lp—l/? (3.111)

we get the same result. The estimation error still goes to zero since we
replaced a part of the filter with an asymptotically equivalent part.

The instantaneous observations ¢,, appear in G only in form of the
MMSE estimates H. Thus, the filters G are linear in the observations
since the MMSE estimates are linear in the observations. Further-
more, since I is block-diagonal the filter for user k that transmits pilot
sequence p only depends on ¢,,. That is,

gk = Bipy (3.112)

where the linear transformation By, € CMxM jq deterministic, i.e.,
depends only on the channel statistics.

We call this structure for a general deterministic By, a generalized
matched filter (GMF). We can interpret By, as a generalized spatial
weighting of the received signals, however, note that B, does not have
to be positive semi-definite. For a GMF receiver, the estimate

Sk = oy By (3.113)

is not only linear in the data vector ¢!, which is a common restriction,
but also linear in the observations ;. We already know from the
analysis above that for a specific choice of By, the estimation error
goes to zero. We will study the optimal choice for By, in the following.
This leads to a robust matched filter (RMF) that is able to suppress the
interference caused by pilot contamination as the number of antennas
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grows large and thus exhibits the desired linear growth of the effective
SINR.

To characterize the achievable rates we use the lower bound in (2.52)
which assumes that the decoder only knows the channel statistics. We
have in the uplink SINRs

Dk \E[g?hk]|2

E[glCyugr] + pr varlgihi] + 32, 4 pn Bllgihnl’]
(3.114)
With Lemma C.2 we are able to evaluate the expectations for the filter

design in (3.112) to get

ul
Ve =

tr(Ch,, By)|?

tr(CyBiCo,B}) + 3 cq,\ (1) P |tr(Ch, By)|?

where

Cy=Cy+ Y piCh,- (3.116)
k

With vectorized linear transformations by, = vec(B}y,) and covari-
ance matrices cp, = vec(Clp, ) the notation simplifies to
2
Pk ‘Cgk bk‘

by (Cip ®Cy + > e\ (k) Pnchncgn) by,

Al — (3.117)

which has exactly the same Rayleigh-quotient structure as, e.g., the
SINRs in (3.11). The optimal vectorized transformation is thus given
by

-1

bi=(CL ®Cy+ > pucnch | cn  (3.118)
neQp\{k}

with optimal SINRs

W = prej by (3.119)
—1

:pkcgk C’:,p ® Cy + Z pnchncgn ch,- (3.120)
n€Qp\{k}

The filter g, = Bj ¢, (Where Bj is obtained from b} by writing the
vector into a matrix) is the robust matched filter (RMF). As we will
see later on, with this filter we achieve the maximum DoM.
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In the downlink we can use equivalent beamforming vectors
t, = Appp (3.121)

with the deterministic linear transformation A;. We use the same
lower bound as in the uplink, i.e., we assume that the users only know
the channel statistics. This leaves us with
H 2
|E[t) hal|

dl
Al . (3.122)
C b var(t Ry + 3, Ell R )

Again we evaluate the expectations yielding

|tr(Ch, Ap)|?

di

Tk 1+, tr(Ch, AnQp) Al + Zneﬁp\{k} \tr(ChkAn)F

(3.123)
which we rewrite in vectorized form with ay, = vec(Ay)
‘CH ay. ’2
= . .
1+, alQum) ® Cha, + D one\ {k} agchkcgkan

(3.124)

An average sum-power constraint E[zx] < pg on the transmit signal
expands to

Elz"z] = w(E[tpt]]) =) u(ArCyp, Af) (3.125)
k k
— Za;(c;p @ Day < pa. (3.126)
k

It follows from the uplink-downlink duality presented in Appendix C.1
that, for each feasible downlink SINR, we can find an uplink SINR of
the form (3.119) with the noise covariance matrix C,u = I and the
sum-power constraint 17p < pg;. That is, uplink-downlink duality also
works for the GMF design.

In fact, we do not have the issue with information asymmetry that
we had for the conditional mutual information in Section 3.4. Since

here we use a bound on the mutual information that assumes no CSI at Since the SINR in (3.127) already only
the decoder, it is applicable in the uplink and the downlink. depends on the channel statistics, the
As before, we reformulate the SINR to a form which is more goal of the asymptotic analysis is not to

find a deterministic asymptotic equiva-
lent SINR that we can use to optimize
the power allocation. Instead, we are in-

convenient for asymptotic analysis. Applying steps equivalent to those
in Lemma 2.1 we get
terested in how the performance of the
TPRMF/ 1 p—1 RMF\—1
ekr (MP +T ) €k (3.127) RMF compares to that of the LMMSE
e}; ( ﬁ P14 FRMF) —le,, filter in (3.20) for a large number of an-
tennas.

Vi = Mpy,
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Remember that the p-th diagonal block

of I', I, is the same as
Cy replaced by C,.

RMF
FF

only with

with

Yy

[TRMF], ﬁ tr(Cp, Cy'Ch, C;j) if both £ and n use pilot sequence p
o =
0 otherwise.

(3.128)
This matrix is very similar to I" in (3.31). Instead of the matrix Cy,,
with the conditional covariance matrices, we have

Cy=Cy+ Y piCh,- (3.129)
k

Same as for T’ we also have a block-diagonal structure TRMF =
blkdiag(TFMF, ..., THMF). We can use the matrix that contains the
vectorized covariance matrices of users 2, = {1,..., K} that trans-
mit pilot sequence p, namely

Ep: [Chl,...,Cth] (3130)
to write
M ==l(C, © C,NE,. (3.131)

Analogously to the LMMSE filter (3.20), we have optimal transforma-
tions

“e 1

which are scaled versions of by in (3.118).

For the RMF, the asymptotic SINR is similar to the one in (3.33).
Note that since Cj,, = Chklso also Cy = Cy and thus TRMF < T,
We have

(CT e CyHE(PT/M +TMF) e, (3.132)

o

Mpy,

asy _
ez (I‘RMF) _lek

Vi (3.133)
Because T’™F < T, the asymptotic scaling factor for the RMF could
be significantly lower than for the LMMSE filter. However, we have
the same conditions for linear scaling with M.

Theorem 3.9. For observations gy, as in (3.23) and channel covari-
asy

ance matrices that fulfill Conditions 3.2 and 3.1 we have 7}, <X ),
and

liminf 4}/ M > 0. (3.134)
M—o0
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Proof. As for Theorem 3.4, we need

lim sup H(I‘RMF)_lH < 00 (3.135)
M—o0 2
which follows from the same steps as in Theorem 3.5. 0

Since the SINRs scale linearly with M, RMF achieves the full
DoMs. For a finite number of antennas we expect the LMMSE filter to
perform better. As so often, we have a trade-off between performance
and complexity.

The optimal transformations B} only depend on the channel statis-
tics. Therefore, they do not have to be recalculated in each channel
coherence interval, but in each coherence interval of the covariance
matrices. The complexity of calculating the transformations B is
dominated by the calculation of the matrix T”MF An efficient way to
calculate TRVT s to first calculate C; ' Ch, C_! forall k € €, and
then calculate the inner products with all Cy,, where n € €),,. This
procedure leads to a complexity of O(M?3K) floating point operations.

Given the Bj the calculation of the RMFs g, = Bj ¢, is one
matrix-vector multiplication per user. For full covariance matrices, the
complexity of the filter calculations is thus O(M?K).

We can use the assumptions in Section 3.3 to reduce the complexity.
We notice that the vectorized optimal transformations b in (3.132)
are linear combinations of vectors (C;pT ® Cy Dep,,. Reverting the
vectorization we see that

By =C,' [ Y onCh, | C,! (3.136)
LeQYy,

for some oy. For the following discussion, we assume C, = I and
thus, we have

Cy=1+> piCh,, (3.137)
and
1
Cp,=—1I+ > Cp,. (3.138)
P ke,

Taking a close look at (3.136), we realize that certain structure of
the covariance matrices carries over to the transformations Bj. An
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Figure 3.2: Small network with three
hexagonal cells. The base stations are
positioned at the corners and the users
are uniformly distributed in the shaded
circular area in the center.

The smallest possible distance of a user
to the serving base station is thus three
quarters of the distance to the center of
the network.

important example are covariance matrices that fulfill Assumption 3.1,
i.e., covariance matrices that share the same eigenbasis:

Ch, = Q diag(cp,)Q™ Vk (3.139)

for some unitary Q. We can easily verify that the matrices Cy and
C,, and thus the optimal transformations have the same eigenbasis as
well, i.e. we have

B} = Q diag(b}) Q™. (3.140)

As mentioned before, if the channel covariance matrices have the
desired structure, we can simply transform the incoming signals y and
@1 by Q. Then we no longer have to think about the eigenbasis Q
and can work with the diagonal covariance matrices, which is exactly
what we will do in the following.

If the covariance matrices are diagonal, the matrices Cy, = diag(¢y)
and C,, = diag(¢,, ) are diagonal as well. The operation which dom-
inates the complexity of calculating the transformations By, is still the
calculation of the matrix TRMF | For full matrices, all entries could be
calculated in O(M3K) floating point operations. For diagonal covari-
ance matrices, the computational complexity reduces to O(M K?2).

The complexity to calculate all linear filters g;, = B} ), reduces
to O(M K') which is significantly lower than the complexity of the
LMMSE filter in (3.14) which is O(M K?) for diagonal covariance
matrices.

3.9 Simulation Results

We want to present some simulation results of the methods discussed in
this chapter. We will show simulations for two setups. One multi-cell
setup to demonstrate the asymptotic behaviour of the methods that
we analyzed in this chapter and one single-cell scenario to illustrate
our approach for resource allocation based on asymptotic equivalent
SINRs.

First we consider the multi-cell uplink scenario where we have
three base stations as depicted in Fig. 3.2. Each base station employs a
large ULA to receceive signals from the users. The users are uniformly
distributed in the shaded circular area in the center of the network,
whose radius is half of the cell radius. We analyze the performance
in the uplink, when all users transmit with the same power, pr = pui
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for all k. The number of simultaneously served users in each cell is
exactly the number of available pilot sequences, i.e., we have a full
pilot-reuse.

We use the spatial channel model from the 3GPP report in [37] to
generate the covariance matrices, but without any shadow-fading. The
channel covariance matrices are normalized such that tr(Cy)/M =1
for a user exactly in the center of the network (the base stations are
positioned at the edges). Thus, the value py; is the worst possible SNR
for a user to the serving base station. The pathloss coeflicient is set to
3.76.

Our analysis shows that for the LMMSE filter as well as for the
RMEF, the SINRs of all users go to infinity as long as the covariance
matrices are linearly independent. To demonstrate this result in our
setup, we depict the achievable rate with respect to the number of
antennas in Fig. 3.3. Since the result has to hold for all users, we
depict the achievable rate of the worst user in the network. As a base-
line we show results for the matched filter and the zero-forcing filter
based on MMSE channel estimates, i.e., we use filters G = H and
G = H(H"H)™" respectively.

Figure 3.3: Average achievable rate of
the worst user in the cell. Results are
for the multi-cell scenario as depicted
in Fig. 3.2, with 5 users per cell and
the same number of orthogonal training
sequences. The cell-edge SNR is —6dB.

The largest possible SNR of a user in the

network is consequently (4/3)%7¢ py =

2.95pu.
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Figure 3.4: Average achievable rate of
the worst user in the cell. Results are
for the multi-cell scenario as depicted
in Fig. 3.2, with 5 users per cell and
the same number of orthogonal training
sequences. The number of antennas at
the base stations is M = 200.

2 Here we mean the diagonals of the
covariance matrices after transformation
in a suitable space. Since we assume
ULAs at the base stations, all incoming
signals are transformed into the array
space via FFTs.

ming 7
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We also consider the case where only the diagonals of the covari-
ance matrices are known.> We use the diagonal covariance matrices to
calculate (subotimal) LMMSE and RMF filters, denoted as LMMSE-D
and RMF-D. As we can see, the effect on the achievable rate is negli-
gible. Thus, there is no reason to use full covariance matrices in this
setup.

In Fig. 3.4 we show results with respect to the cell-edge SNR py;.
We see that the achievable rates saturate for high SNR. That is — at
least for our bound on the mutual information — pilot-contamination
limits the DoFs even though it does not limit the DoMs. Interestingly,
the saturation point for zero-forcing is lower than that of our RMF
approach.

Now let us switch to the second scenario to analyze the effec-
tiveness of our resource allocation methods. We consider a single
hexagonal cell with the base station in one corner. The users are uni-
formly distributed in the cell with a minimum distance from the base
station. All other parameters are the same as for the multi-cell scenario.

We first focus on the different methods that rely on observations
from an uplink training phase. In Fig. 3.5 we see the average rate of
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the worst user in the cell with respect to the number of base-station an-
tennas. We show results for the LMMSE and the RMF filter both with
an optimized dual-uplink power allocation and with a fixed uniform
allocation of the uplink powers. For the LMMSE we use the asymptot-
ically equivalent SINR expression (3.33) to optimize the static power
allocation. Clearly, the results with optimized allocation for maximum
minimal rate are far superior to the approaches without optimized
allocation.

In Fig. 3.6 we analyze the performance with respect to the number
of users in the cell. We keep the number of orthogonal training se-
quences fixed, thus, adding more users adds more interference during
the training. We have to normalize the per-user rates to get a fair com-
parison of the achievable rate of the worst user for different numbers
of users. Serving more users simultaneously does not increase the
achievable rate per user, but it allows to schedule the same user more
frequently. Say, for example, we have 20 active users in the cell. If
we serve all 20 users simultaneously instead of only 10 users, we can
schedule each user on twice as many channel accesses. Consequently,
we normalize the achievable rate of the worst user by a factor which

Figure 3.5: Average achievable rate of
the worst user in the cell. Results are
for a single-cell scenario with K = 20
users per cell and 7;; = 10 orthogo-
nal training sequences. The cell-edge
SNR is at —6dB. For the LMMSE and
the RMF filter we depict results with
uniform power allocation and with opti-
mized power allocation.
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Figure 3.6: Average achievable rate of
the worst user in the cell. Results are for
a single-cell scenario with M = 200 an-
tennas at the base-station and 7;, = 10
orthogonal training sequences. The cell-
edge SNR is at —6dB. For the LMMSE
and the RMF filter we depict results with
uniform power allocation and with opti-
mized power allocation.
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is proportional to the number of simultaneously served users. Specifi-
cally, we multiply the achievable rate by K /T, since Ty, is the minimal
number of users that we use in the simulations.

Since some of the LMMSE and RMF methods are in principle able
to deal with pilot contamination, the normalized achievable rate does
increase with growing numbers of users for the optimized methods. The
gains also depend on the pilot allocation and could, e.g., be improved
by approximately solving the NUM based on the asymptotic results
with a greedy algorithm (cf. [38, 21]). Methods that serve a flexible
number of users per channel access could lead to even larger gains.

For the system with downlink training we use the same setup as
for the uplink training. We first want to verify the effectiveness of
the pilot design proposed in Theorem 3.7. To this end we fix the
training power p, and vary the number of channel accesses 7 used
for training. We compare different methods for the power allocation.
We denote the method which distributes power uniformly and only on
certain dimensions as the ’simple training power” method. Namely,
we chose the dimensions where the channel covariance matrices have
large eigenvalues. For this simulation, we choose the dimensions such
that for each user at least 90% of the channel power is captured.
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The results are shown in Fig. 3.7. We note that the achievable
minimal rates saturate for growing 73, at a value much smaller than
the number of antennas at the base station. We observe a significant
gain for optimized user power allocation and another similar gain if
the training power allocation is also optimized.

—o— Jointly optimized data and training power
—B— Optimized data power, simple training power
- - = Uniform data power, simple training power
------ Uniform data and training power

A
O

2.00 - 2

0.50 |

| |
0 80 100 120 140 160 180 200

|
20 40 6
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The performance with respect to the number of users is shown in
Fig. 3.8. As for the uplink training, we show the normalized achievable
rate of the worst user. Note that there is no interference during the
downlink training and thus increasing the number of users does not
lead to pilot-contamination. However, for a higher number of users,
the training power has to be spread in more spatial directions and the
general inter-user interference increases due to the linear beamform-
ing.Thus, the performance peaks at a number of users much lower than
the number of transmit antennas.

3.10 Summary

We modelled imperfect channel state information by some side infor-
mation ¢ which could, e.g., be observations from a training phase.

Figure 3.7: Average achievable rate of
the worst user in the cell with respect
to Ti for different training power al-
locations. We depict a scenario with
M = 200 antennas and K = 20 users.
Due to the sparsity of the covariance
matrices, the sum-rates saturate at a 7
much smaller than the number of anten-
nas.
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Figure 3.8: Average achievable rate of
the worst user in the cell with respect
to the number of users. We depict a
scenario with M = 200 antennas and
T = 20 channel accesses for pilot trans-
mission.
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From the side information ¢ we calculated the MMSE estimates

hi = E[hy|¢] (3.141)
and the corresponding estimation error covariance matrices
Ch, o = Elhihil| o] — hyhjl. (3.142)

The achievable uplink rate given this side information is lower bounded
by

ry =logy(1+7;) (3.143)
with
as |2
. Pk ‘gk by
’)/k = N N .
g? (Cv + pkchk|<p + Zn#; pn(chnlgo + hnhg)) 9k
(3.144)

The ergodic rates are thus lower bounded by 7, > E[r}].
For a non-trivial power allocation p > 0, the optimal uplink SINR
of user k is given by

THHA-1 77 p—-1 . FHO-1 7)-1
e, H Cyle(P +H y\soH) ek

e (P~1+ IA{HC;'SIDIAJ)_lek

Yk = Pk (3.145)



3.10. Summary

69

where P = diag(p) and H= [ﬁl, e ﬁK] and

Cyio = Co+ > _DiChyjp- (3.146)
k

Optimal LMMSE filters can be calculated as

g = J%kcy';ﬁ(rl + ﬁHc?;';ﬁ)—lek. (3.147)

We are still able to use uplink-downlink duality to design down-
link beamforming vectors. However, the resulting downlink rates are
only guaranteed to be achievable if the receiver has the same side
information as the transmitter.

A common model for massive MIMO systems is that the side
information is acquired in an uplink training phase. That is, we have a
training phase where each user transmits one of 7;; orthogonal pilot
sequences, resulting in observations

1
ep= > hp+—o" (3.148)
keQ, Pu

where €2, is the set of users that transmit pilot sequence p, with p = 1,
ooy Ty and v ~ N (0,1) is additive noise. For some conditions
on the covariance matrices (Conditions 2.2, 3.1 and 3.2), we get an
asymptotically equivalent SINR

Mpy,
e = T — 3.149
k e;gl"*lek ( )
where I'" = E[IA{HC;'LI:I/M] € CK*K We have
lim ~.Y/M >0 (3.150)

M—oo

that is, the SINR grows linearly with the number of antennas.

Since the asymptotic SINR only depends on channel statistics, it
is useful to find close to optimal power and pilot allocations that do
not depend on the instantaneous side information.

We saw that for several common channel models, we can work
with diagonal covariance matrices. For diagonal covariance matrices,
the LMMSE filters can be calculated in O(M K? + K?) floating-point
operations.

We were able to improve the performance by considering both, the
observations from the training phase and the received uplink data, as
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side information. In this case, the MMSE estimates for the channel
vectors could no longer be given in closed form. With the iterative
variational inference approach we could obtain approximations. The
complexity is O(M K? + K3) per iteration.

Since low complexity is important in large-scale systems, we in-
troduced a robust matched filter (RMF)

gr = By (3.151)

with a deterministic matrix By that only depends on the channel statis-
tics. For diagonal covariance matrices, the Bj are also diagonal and
thus all filters can be calculated with O(M K) operations. We showed
that the SINR of the RMF also grows linearly with the number of
antennas and for low SNR, the performance is similar to the LMMSE
filter.

In an FDD system we cannot rely on uplink training to estimate
the downlink channels. We send downlink pilot vectors b, and get
observations

o, = Bh, + v, (3.152)

where B = [by,...,br,] € CM*Ts and vy, ~ Ng(0,1). We assume
perfect feedback of the observations to the base station.
With the downlink observations 9 we obtained MMSE estimates

hi = E[hy|¢"] = Ch, B (BYCH,B+1) ' ¢r  (3.153)
and conditional covariance matrices
Ch, ot = Chy — Cn, B (B"Cy,B+1)" BUCy,.  (3.154)

For low-rank diagonal covariance matrices, with consecutive non-zero
entries on the diagonal, the pilot design

B = D28 ¢ RM*Tx (3.155)
with § = [L,...,1]T and D = diag(d), d € RM, is optimal.

The power allocations for pilot transmission d and for data trans-
mission p can be jointly optimized using the asymptotically equivalent
SINR

3 = pptr ((DChk 1) DcikC;l;dl) (3.156)

with Cyhpdl =1+ Zk kahk“Odl.

For diagonal covariance matrices and our pilot design, the com-
plexity of calculating the LMMSE filter is the same as for uplink
observations.



Chapter 4

Imperfect Covariance Matrix
Information

In the previous chapter we saw that with the help of covariance matrix
information, we are able to achieve asymptotically optimal rates even in
the presence of pilot-contamination. So naturally, the acquisition of the
channel covariance matrices is an important topic for the considered
large-scale communication systems. In principle, we exploit that the
coherence interval of the covariance matrices is much longer than that
of the fast-fading channel.

The classical approach would be a two step procedure. First, es-
timate the covariance matrices based on uplink observations from
multiple channel coherence intervals. Then, assuming the estimated
covariance matrices are exact, calculate the MMSE channel estimates
and error covariance matrices required for the transceiver design.

Alternatively, we can directly formulate the MMSE estimator for
the channel with unknown covariance matrices. In this case, we need
a model for the prior distribution of the covariance matrices.

In the following we first discuss the classical maximum likelihood
(ML) estimation for interference-free observations. We continue with
the MMSE estimation for a known prior of the covariance matrices.
As we will see, the resulting estimator is too complex for practical
application. Thus, we exploit structure of the channel model to reduce
the complexity and we use a learning approach to close the gap to the
complex MMSE estimator.
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For example, if we spend one additional
channel access per channel coherence in-
terval for covariance matrix estimation
and the covariance matrices are quasi-
static for 700 channel coherence inter-
vals, we get 700 channel accesses to
estimate the covariance matrices of all
relevant users. If we serve 10 users in
our cell and 60 additional users from
the neighboring cells create significant
interference (K = 70 relevant users),
then we could use 10 channel accesses
to gather interference free channel esti-
mates for each of those users, which we
then use for covariance matrix estima-
tion.

We go on to discuss the more difficult case with pilot-contamination.
We introduce a novel approximate ML estimator that is able to deal
with interference in the observations. As of now, the extension of
the learning-based approximate MMSE estimator to the case with
interference is still open.

4.1 Interference Free Observations

Since the covariance matrices are quasi-static over many channel co-
herence intervals, we can use additional pilots to get interference-free
observations. These observations can then be used to estimate the
channel covariance matrices. Such a scheme is, for example, discussed
in [39].

We need nK extra pilots in the coherence interval of the covari-
ance matrix to get n interference-free observations per user. These

observations are of the form
<Pki:hki+vgi 1=1,...,n. “4.1)

If we have independent observations for each user we can focus on a
single user and drop the user index for notational convenience to get

pi=h;+vf i=1,...,n. “4.2)

The observations for different ¢ are independent and identically dis-
tributed with covariance matrices

Cp = Cp + C. (4.3)

A popular approach for parameter estimation with more complex mod-
els is the maximum likelihood (ML) estimator. Given n different
independent observations ¢; and known noise covariance matrix C,,,
the log-likelihood function of the covariance matrix Cy, is given by

Jon)) ==Y @rC,lpi — nlogdet(Cy).
' (4.4)

log(L(Cyepr. ..

The well-known solution to the ML problem

6'4[, = argmax log (L(Cy|ei, . ..

@

n)) 4.5)

is given by .
Co=—> il (4.6)
i
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which is called the sample covariance matrix.
ML estimation of the channel covariance matrix is slightly more
involved. The log-likelihood is given by

log (L(Ch|¥1;-- -5 n))
==Y ' (Ch +Cy) "' ; — nlogdet (Cp, + Cy)

x—tr ((Ch+Cy) " 61,,) —logdet (Ch + Cy) (4.7)
where f o« g denotes f = ag with a constant «. The derivative is
given by

dL

G = (Cnt G Cp (Gt C) 7 = (Crt Co) ! 48)

Setting the derivative to zero yields the intuitive result
Cn=C,—C,. (4.9)

The issue is that the resulting estimate éhk might not be positive
semi-definite. For a correct ML estimate we need to restrict the set of
feasible variables to the cone of positive semi-definite matrices. With
the constraint Cp, > 0 we get [40]

Theorem 4.1. The solution to

é’h = argmax log (L(Ch|pi, .-, ¢n)) (4.10)
Ch >0
is given by
Cn = C°Rs(Cy P, 00 1) Cyl? @.11)

where Ps(-) denotes the orthogonal projection onto the cone of positive
semi-definite matrices.

Proof. Given the decomposition C,, = A A and the transformations
Ry, = A7'Cr(A Y and R, = A'C, (A~ "), we formulate
the equivalent optimization problem

R}, = argmintr(Ry,(Ry, +1)7Y) 4 logdet(Ry, +1).  (4.12)
Rp>-0

After substituting T' = Ry, + 1 € CM*M we get

T* = argmin tr(R,T 1) + logdet T. (4.13)
T>1
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Incorporating the eigenvalue decomposition T = VAVH, with A =
diag(A1, ..., Aar), yields

M
T = argmin (VAR VAT + Zlog Ai- (4.14)
Ai>1Vi=1,...M P
V with VVH=I

Note that the constraints for the eigenvectors V" and the eigenvalues \;
are decoupled. We use the following lemma to determine an optimal
choice for V.

Lemma 4.1. The matrix of eigenvectors W of the eigendecomposition
R, = WEWH is an optimizer of

min u(VEIR, VA st VIV =1 (4.15)
Proof. The Lagrangian of (4.15) is given by
L(V,®) = tu(VAR,VA™Y) + w(®(VHV —1)) (4.16)

where ® is the Hermitian Lagrangian multiplier. Differentiation with
respect to V'* leads to

aLg/,* ®) _ R, VA ' +V®=0 (4.17)
from which follows that
VAR, VAT + @ =0. (4.18)
Consequently,
VAR, VAT = AT'VHR,V (4.19)

since ® has to be Hermitian. It can be inferred that the optimal eigen-
vectors V' diagonalize R<p as long as all eigenvalues \; are distinct.
If some of eigenvalues \; are identical, V* = W is one possible
optimizer. 0

Using the eigenvalue decomposition ch = WEWH and incor-
porating the optimizer V* = W into (4.14) yields

M
A*= argmin tr(ZAY) + Z log \;. (4.20)
A >1Vi=1,..,.M pry
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With the eigenvalues &; of 1%9(, we can also write the optimization as

(AL = argmin T g, 4.21)
\i>1yVi=1,..,M ;7 M T

which is clearly decoupled in the eigenvalues A;. The unconstrained
problem for each eigenvalue
&
min — + log \; (4.22)
i >\i
has a single stationary point at &; and the optimal eigenvalues can be
readily identified as
Af = max(&;, 1). (4.23)

Consequently, the eigenvalues of R} = T™ — I are given by
max(&; — 1,0) (4.24)

which can be expressed with the projection onto the cone of positive
semidefinite matrices

* — pg <R¢ — I) — Pg (A‘lé’¢(AH)_1 _ 1) . 4.25)
Finally, we have for the ML estimate of the covariance matrix of h

CML — A Pg (A“CQP(AH)” - I) Al (4.26)

O

If the noise covariance matrix is a scaled identity C,, = i L, the
solution simplifies to

Ch, = Ps <6¢ - I> . 4.27)
Pu

That is, we simply have to project the possibly indefinite estimate (4.9)

onto the cone of positive semi-definite matrices. This projection is quite

costly, since it requires an eigenvalue decomposition of the estimated

covariance matrices (AJ’LP.

Additional knowledge of structure of the covariance matrices helps
to increase the estimation accuracy and reduce complexity. If we
use Assumption 3.1, namely that the channel covariance matrices are
diagonal, we get the following results (cf. also [41]).
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Corollary 4.1. For C,, = i I and with Assumption 3.1, the ML
estimate for the covariance matrix is given by

Ch, = diag(ép) (4.28)
where
én = [@ - 11] (4.29)
Prr |4
and 1
Cp=— > il (4.30)
)

Proof. By Assumption 3.1 the covariance matrices are diagonal and
thus the covariance matrices of the observations are also diagonal.
In this case, the estimation problem decouples in separate variance
estimation problems for each dimension. Corollary 4.1 follows directly
from Theorem 4.1 applied to the M scalar problems. O

To reiterate yet another time, one important example of matri-
ces which can be jointly diagonalized are circulant matrices. For the
physical channel model that we consider for the channel covariance
matrices, the covariance matrices are Toeplitz and not circulant. As
mentioned before, the Toeplitz matrices can be approximated as circu-
lant matrices with vanishing approximation error for a large number of
antennas. Thus, performing all signal processing under the assumption
of circulant matrices is reasonable from a practical stand-point. All
calculations simplify significantly and for a large enough number of
antennas the performance penalty is negligible as indicated by the
numerical simulations in the previous chapter.

To quantify the performance penalty of the circulant assumption
with estimated covariance matrices, we need to find ML estimates for
general positive semi-definite Toeplitz matrices as reference. Unfortu-
nately, there is no closed-form solution to this problem. We could apply
a general optimization method to the ML problem to find a locally
optimal solution. The complexity of the optimization depends on the
parameterization of the Toeplitz matrices.

There is plenty of literature on the estimation of structured covari-
ance matrices. There is well established work in the field [42, 43],
which can be extended to the case of noisy observations. Some recent
advances [44, 45] aim directly at ML estimation at low SNR and reveal
an interesting connection between ML covariance matrix estimation
and compressed sensing methods.
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A common form of structure is a linear parameterization of the
covariance matrices. That is, we know that the covariance matrices are
of the form

Cr=Y S (4.31)

where the «; € R are variables and the S; are Hermitian but not neces-
sarily positive-semidefinite matrices. Clearly, the S; span a subspace
of the real-valued vector space of Hermitian matrices. Of course, we
can represent the full space of Hermitian matrices with M? basis vec-
tors .S;. Matrices with special structure, such as Toeplitz matrices, lie
in a subspace with O(M) dimensions.

If we incorporate the linear parameterization into the ML problem,
the most challenging part is the constraint Cp, >~ 0. Preferably, we
would want a constraint directly on the variables «;, which is not
possible for most parameterizations. If we simply drop the positive-
semidefiniteness constraint, we get the optimality conditions

tr ((Ch +C,)HCyp — Cy — CL)(Ch + C,,)‘ISZ-> — 0 Vi.
(4.32)

which we want to solve for the variables «;. If we replace the inverses by
fixed positive definite matrices 1", we get the linear system of equations
(since C}, is linear in the o)

> (S TST)a; = (T (Cyp — C,)TS;) Vi. (4.33)
J
This suggests an iterative procedure where we use the current estimate
of the covariance matrix to calculate T' = (éh + C,)~! which we
then use to get a more accurate estimate. In fact, such a procedure has
been shown to yield consistent, asymptotically efficient estimates of
the covariance matrices even if only one iteration is performed [42].
For a small number of noisy observations, we have to force the
estimate to be positive definite to get good performance. If all S;
are positive definite we can restrict the constraint set and only allow
a; > 0, which enables us to use a projected gradient method.
Example. Circulant matrices can be represented as a linear combi-
nation of DFT basis vectors. For circulant matrices we have S; = f; fiH
with¢ =1, ..., M, where f; is the i-th DFT basis vector. In this case,
clearly all «; have to be non-negative to get a positive semi-definite
estimate.

We have 0L /0c; = tr((OL/OCh)(OCH /0cv;)).
The derivative OL/OCh, is given in (4.8)
and 80}7, /8@1 = S»L
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Figure 4.1: Achievable uplink rate of a
single user, when the estimated channel
covariance matrix is used to calculate
the LMMSE filter. We assume perfect

knowledge of the statistics at the decoder.

We have M = 64 antennas at the base
station and the effective training SNR is
pe = —10dB.

achievable rate

Toeplitz matrices can be represented similarly as combinations
of S; = ﬁ NiH, i =1, ..., 2M, where ﬁ is now the i-th vector of
a two times oversampled DFT matrix. In this case it is possible to
have negative «; and still have a positive-semidefinite combination. If
we restrict the optimization to positive «; we exclude some Toeplitz
matrices. However, the constraint set is clearly larger than if we restrict

the optimization to circulant matrices.
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It is not obvious that restricting the optimization to circulant matri-
ces will yield worse results than using a more general constraint set. In
the simulations in Fig. 4.1 we see that in fact, for certain system param-
eters, the circulant approximation outperforms the projected gradient
method based on Toeplitz structure. The low-complexity, approximate
ML method from [45] actually outperforms both, even though it uses
an approximate version of the likelihood function.

We also adapt the method from [43], which iteratively solves the
equation system in (4.33). Instead of solving the equation system
directly, we use a projected quasi-newton method (cf. Appendix D)
to solve the equivalent least-squares problem with a non-negativity
constraint on the coefficients ;. Interestingly, this approach yields the
best performance of the methods in Fig. 4.1. But none of the approaches
is significantly better than the simple circulant ML estimate.

In the end, what we actually want is MMSE estimates of the channel
vectors. As the results in Fig. 4.1 demonstrate, ML estimation of the
covariance matrices is clearly a suboptimal approach and leads to
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inconsistent results regarding the desired performance criterion. In the
following we discuss a more sophisticated Bayesian channel estimator
that uses techniques from machine learning and outperforms the ML
methods depicted in Fig. 4.1.

4.1.1 MMSE Channel Estimation

The techniques for covariance matrix estimation introduced in this
chapter only partially exploit the underlying spatial channel model. For
example, we can restrict the feasible set of the estimated covariance
matrices to the set of positive semi-definite Toeplitz matrices if we
know that the antennas at the base station form a uniform linear array.
However, the ML based techniques do not allow us to incorporate
general prior information in the estimators for the channel vectors and
covariance matrices. In this chapter we explore a Bayesian setting that
includes the spatial channel model in the channel estimation. In partic-
ular, we derive a MMSE estimator for a hierarchical channel model,
where the channel covariance matrices depend on a set of hyperpa-
rameters which are themselves random. We derive a low-complexity
estimator with free parameters, that can be trained to achieve close to
optimal performance in terms of estimation error.

To derive the MMSE estimator we use the simple system model
without pilot contamination. Extension to the case with interference
during the training should be investigated in future work.

Remember the system model with n independent observations

wi=h;+v;, 1=1,...,n. (4.34)

The channel vectors are Gaussian distributed given the hyperparameters
d. That is h;|d ~ N¢(0,Cs) with the same & for all n observations.
The hyperparameters are distributed with the probability density func-
tion p(d) and there is a deterministic mapping from hyperparameters
to covariance matrices. The channel model is explained in detail in
Appendix B.

We know from earlier discussion, that the MMSE estimate of h;
from the observations given § evaluates to

where
W;s = Cs5C,' = C5(Cs + Cy) " (4.36)
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In the following we will always assume i.i.d. noise coefficients, i.e.,
C, =021

For unknown hyperparameters we can exploit the hierarchical
channel model to rewrite

h; = E[hi|¢] = BE[Rilp, 8]] = B[Ws|plps = Wei. (437

That is, to calculate the MMSE estimate of the channel vector we need
the MMSE estimate of the filter W.
We use Bayes’ theorem to express the posterior distribution of § as

p(#|9)p(d)

é — (4.38)
pole) = J p(l8)p(8)dd
We can write the MMSE estimate of W as
= Wisp(p|6) p(8)ds
W:/W(;pé(pd(s:f (4.39)
1) [ p(¢]0) p(8)dd
For our system model we get the explicit expression
Lemma 4.2. With
bs = T log|I —Wi| (4.40)
and the scaled sample covariance matrix
1 « H
=5 %ip (4.41)
i=1
we get the MMSE estimate of Wy
— W, tr(WsS) + bs)dd
_ [ Wsp(9)exp (u(WsS) + bs) (4.42)

[ p(8)exp (tr(W5sS) + bs)dd

Proof. Common factors of p(y|d) that do not depend on § can be
dropped, since p(¢|d) appears in both the numerator and denominator
of the MMSE filter in (4.39). From our system model we get

p(p|6) ocexp( ZapHC 1<pi+Tlog\C;1]>

X exp ( — tr(aQC;l.S') + Tlog]C;H).
We use the fact that
1-W; =C,C,' - CsC,' =o°C.! (4.43)

to get the expression in (4.42). For the final expression, we remove all
summands in the exponent that do not depend on 6. O
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Note that the scaled sample covariance matrix .S is a sufficient
statistic to calculate the MMSE filter W. We have the basic structure

~ o~

hi = W(S)QDZ (4-44)

~

With H = [hy,...,h,] and ® = [p1, ..., @n], we get
H=W(S) ®. (4.45)

That is, we only need to estimate Ws once and apply the resulting filter
to all observations to calculate all channel estimates simultaneously.

This structure is also beneficial for applications where we are only
interested in the estimate of the most recent channel vector. In this case,
we can apply an adaptive method to track the scaled sample covariance
matrix. That is, given the most recent observation ¢, we apply the
update

S — aS + Bppt (4.46)
with suitable o, 8 > 0 and then calculate the channel estimate

h=W(S) . (4.47)

4.2 MMSE Estimation and Neural Networks

For arbitrary prior distributions p(d), the MMSE filter as given by
Lemma 4.2 cannot be evaluated in closed form. To make the filter
computable, we need the following assumption.

Assumption 4.1. The prior p(6) is discrete and uniform, i.e., we have
agrid{d; :i=1,..., N} of possible values for & and

p(8;) = % Vi=1,...,N. (4.48)

Under this assumption, we can evaluate the MMSE estimator of
Wi as
53 exp (1r(We,S) + bi) W,
N Ly exp (r(Ws,S) +by)

WeEe(S) = (4.49)

where Wj, is obtained by evaluating (4.36) for 6 = §; and

b; = T'log|I —Wj,|. (4.50)
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Figure 4.2: Block diagram of the grid-
ded estimator Wgg

Figure 4.3: Neural network with two
layers and activation function ¢(x)

If Assumption 4.1 does not hold, e.g., if p(d) describes a contin-
uous distribution, expression (4.49) is approximately true if the grid
points d; are chosen as random samples from p(d). By the law-of-
large-numbers, the approximation error vanishes as N is increased. Of
course, by using more samples N, we increase the complexity of the
channel estimation.

We can improve the performance of the estimator — for a fixed N —
by interpreting Wy, and b; as variables that can be optimized instead
of using the values in (4.36) and (4.50). This is the idea underlying
the learning-based approach we present in the following.

bge

= ;»%> o sl W

Let us analyze the structure of the gridded estimator. The input S
is element of the real-valued vector space of Hermitian matrices S. The
first step in Wgg(+) is to calculate inner products of the input S with
matrices W, € S. That is, we have a linear operator Agg : S — RN,
parameterized by the Ws,,7 =1, ..., n.

Then, after adding the offset bgg = [b1, ..., bx]|T we apply a non-
linear transformation, namely the softmax function

dsm(@) = lf’:’(gfi) .51)
and finally the adjoint of the linear operator Agg. The block-diagram
of Wgg(-) is given in Fig. 4.2. Note that, since S is a M? dimensional
space over the reals, the linear operator can be represented by a N x M2
real valued matrix.

b1 B2

J e
x = pe=lw{n o> w

A slightly more general structure is depicted in Fig. 4.3, which is
readily identified as a common structure of a feed-forward neural net-
work (NN) with two linear layers, which are connected by a nonlinear
activation function. The gridded estimator Wk is a special case of the
neural network in Fig. 4.3, which uses the softmax function in (4.51)
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as activation function and the specific choices A; = Agg, A2 = AR,
b, = b and By = 0 for the variables.

To formulate the learning problem mathematically, we define the
set of all functions that can be represented by the NN in Fig. 4.3 as

WAN = {f S8, f(X) = A2¢p(A1 X +b1) + Bs

A :S— RN, A, :RY — S, by e RY, By GS}.
(4.52)

Since we are interested in minimizing the channel MSE, the cost func-
tion with respect to the estimator W (-) that we use to estimate W
from S is given by

e(W()) =E[|H - W(S) ®|7]. (4.53)

The optimal neural network, i.e., the NN-MMSE estimator, is given

by
Win(-) = argmin (W (.)). (4.54)
W (-)EWnN

Since we assume that the dimension N and the activation function ¢(-)
are fixed, the variational problem in (4.54) is simply an optimization
over the linear transformations A, and the biases by and Bs.

If we choose the softmax function as activation function, and if
Assumption 4.1 is fulfilled, we have

—~

e(Wae(1)) = e(Win () = (W (")) (4.55)

since the gridded estimator is the MMSE estimator in this case. In
general, we have

e(Wae(+) = e(Win () = (W () (4.56)

since Wgg(+) € Wan and W (+) is the best estimator in this set.
The problem in (4.54) is a typical learning problem for a NN, with
a slightly unusual cost function. Due to the expectation in the objective
function, we have to revert to stochastic gradient methods to find (local)
optima for the variables of the NN. Unlike the gridded estimator (4.49),
which relies on analytic expressions for the covariance matrix Cs, the
neural network estimator merely needs a large data set of channel
realizations and observations to optimize the variables. In fact, we
could also take samples of channel vectors and observations from a
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A€> bla B2

off-line learning —\

S F> W§N£~) —

sample cov.
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\

Figure 4.4: Channel estimator with embedded neural network

W = WN*N(S)

measurement campaign to learn the NN-MMSE estimator for the “true”
channel model. This requires that the SNR during the measurement
campaign is significantly larger than the SNR in operation. If, as
assumed, the noise covariance matrix is known, the observations can
then be generated by adding noise to the channel measurements.

Note that the learning of the optimal variables is performed oft-line.
That is, the training data that is used to learn the optimal variables of
the neural network is not related to the training phase in operation. The
basic structure of the channel estimator is depicted in Fig. 4.4. From
the observations ® we form the scaled sample covariance matrix .S,
which is fed into the neural network W (+). The output W of the
neural network is then applied as a linear filter to the observations ® to
get the channel estimates H. Before this estimator is put into operation,
a learning procedure is used to find the optimal linear operators Ay
and bias variables by, B> for the neural network.

With proper initialization and sufficient quality of the training data,
the neural network estimator is guaranteed to outperform the gridded
estimator with the same complexity. However, there are two problems
with this learning approach, which we address in the following sections.
First, finding the optimal neural network WY is too difficult, because
the number of variables is huge and the optimization problem is not
convex. Second, even if the optimal variables were known, the compu-
tation of the channel estimate is too complex: Evaluating the output
of the neural network needs O(M?2N) floating point operations due
to the matrix vector products. For example, if the grid size /V needs
to scale linearly with the number of antennas M to obtain accurate
estimates, the computational complexity scales as O(M?), which is
too high for practical applications.
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To reduce the computational complexity and the number of vari-
ables that have to be learned, we impose restrictions onto the linear
operators A; and As. These restrictions are motivated by properties
of the linear operator Agg in Wgg, which emerge for certain array ge-
ometries and channel models. Specifically, under certain assumptions,
the operator Agg lies in a low-dimensional subspace A of all linear
operators £(S, R™) and the adjoint operator A in the corresponding
subspace A*. Thus, for the NN, we add the constraints A; € A and
Ay € A* to the set Wy resulting in a smaller set

Wa = {fﬁSHS,f(X) = A20(A1 X + b))+ By

A1 €A, Ay e A*, b eRY, By € u} 4.57)
C YWNN. (4.58)

As we will see in examples later on, the range space of the operators
in A* is typically a subspace U C S. Thus, we also restrict the bias
variable B> to this subspace U for consistency.

Analogously to (4.54), we can search for the optimal estimator in
Wy, i.e.,

Wi(-) = argmin e(W(.)). (4.59)
W()eEW

If we have Agg € A for the linear operator in the gridded estimator,
we have Wgg € W 4. Thus, we have

e(Wae(-) = e(W4(-) = e(W(-)). (4.60)

If the operator Agg is not exactly in A, we can approximate the
gridded estimator by projecting Agg onto A. We get the approximate
gridded estimator

WeE.A = Pa(Ace) ¢(Pa(Ace)S + b) (4.61)
where we could think of the projection as something like

Pa(4) = argmin |4~ TIA|]2, I e {0, 1}V M = 1.

(4.62)

We included a permutation matrix II in the projection, since such a
permutation has no effect on the estimator, but it might be relevant for
the projection onto the subspace .A.
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Similar to before, we get

—~

e(Weg.a(+) = e(WA()) = e(W (). (4.63)

We cannot make any statements about the performance of Wgg(+)
compared to W7 (-) in this case, but it is important to remember that
W () potentially has a much lower complexity due to the restriction
of the linear operators to the subspaces A and A*.

Two operator subspaces emerge from our channel model. First, the

The operator diag* : S — R is the subspace
adjoint of the diag(-) operator, i.e., it is
the operator that returns the vector of di- AQ = {A : A(S) =A di.’slg>’< (QHSQ), Ac€ RNXS} (4.64)

agonal elements of a symmetric matrix.
with a fixed matrix @ € CM*5. The corresponding set of adjoint

operators is given by
Af = {A" 1 A*(z) = Q diag(ATz)Q", A e RV} (4.65)
This is exactly the set of operators A* with range(A*) C Ug where
Ug = {X : Qdiag(x)Q", x € R} (4.66)
We have Agg € Ag if the following assumption holds.

Assumption 4.2. For all grid points ;, we have W, = Q diag(w;)Q"
for some w; € RS.

Examples follow shortly. To get WGE 4, for an operator Acg ¢
Ag, we replace the W, that parameterize Agg by matrices Q diag(w;)Q",
where

w; = argmin HW(;Z. - Qdiag(w)QHHi . (4.67)
w

The second subspace we encounter is
AH = {A: A(S) = Adiag"(Q"SQ), A € Cp} (4.68)

The set Cr denotes the set of real-valued where
circulant matrices.

Cp={A:A=[A],... A} A, cCrVp=1,...,P}. (4.69)

For the dimensions to match we need N = PS for some P € N.
So, the difference between Aqg and A% is that operators in Aq are

parameterized by a general matrix A € RV*%

, while for operators in
ACQ this matrix consists of circular convolutions.

To get Agg € A% we need
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Assumption 4.3. Assumption 4.2 holds and for each §; there is a §;
such that

w; = [[ il ] (4.70)

'wi]l:N—l

that is, w;j is a circularly shifted version of w;. Additionally, we have
p(wi) = p(wy).

With the set of convolutional neural networks (CNN5s)
Wenn = {SL' = A2¢(A1€B + bl) + by,

A, eCp, AT e Cp, by e RV by € RK} (4.71)

we can simplify NNs in W 4G, s follows.

Theorem 4.2. For any WA% € WA% with Q € CM*S | we have

W ¢ (8) = Q diag(wenn(s))Q" (4.72)

for some wenn(+) € Weny and
1 H (2
s= -2 Q% (4.73)
7

where || is applied element-wise.

Proof. Follows directly from the parameterization in (4.68) and the
fact that

1 1 2
Q"SQl = — Y _alwieilan= > laleil” @74
7 7

with the k-th column g, of Q. ]

The block-circulant matrices

Ay
A= | 4.75)
Ap

and

Az =[5, o, Aspl (4.76)
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Figure 4.5: CNN-estimator

in Wenn can be specified with K P parameters each. Given the re-
lationship between circulant matrices and circular convolution, we
rewrite a multiplication with Ay, € Cr as

Apx = FHdiag(Fay,)Fx = ayp + (4.77)

with ag, € RX. For a fixed, small P, the complexity of evaluating
the CNN is only O(S log S) thanks to the FFT. The complexity is thus
dominated by matrix-vector multiplications with @ and QY. Thus, it
would be desirable if the transformation ) had a special structure that
allowed for fast matrix-vector products.

agp, by

off-line learning —\

s é wENN\() i

W = Wiy (S
s = %ZHQ%F cnn(8)

P Q" diag(w)Q > H
Y

For the learning procedure of the CNN estimator

wing () = argmin e(QMw(diag"(Q" - Q))Q)  (4.78)
w(-)EWenN
we assume as before that the activation function ¢(-) is fixed. Thus, the
optimization is only with respect to the convolution kernels a4, and the
bias vectors by. The structure of the low-complexity CNN-estimator is
depicted in Fig. 4.5.

Of course, the inequalities we had for general subspaces A also
hold for the specific subspace A%. That is, if Assumptions 4.1 and 4.3
are fulfilled and we choose the softmax function as activation function
we have Wgg € W 4, and thus

—~

e(Wag) = e(Wje ) = (W()) (4.79)
and in general, we have

eWapag) = c(Wie) = e(W(). (4.80)
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In the following, we will look at examples of channel models and
array geometries that motivate the subspaces Ag and Ag.
Examples.
Assumption 3.1 is quite similar to Assumption 4.2. In Chapter 3
we saw examples which motivate diagonal structure of the covariance
matrices (Assumption 3.1) for ULAs, URAs, and distributed antennas.
This corresponds to unitary transformations @ in Assumption 4.2. For Specifically, the assumption of circulant

a ULA we use the DFT matrix, for a URA we use a Kronecker product covariance matrices for a large ULA cor-
responds to the restriction to the subset
Apr for the linear operators in the NN,
where F' is the discrete DFT matrix.

of two DFT matrices, and for distributed antennas we have Q = 1. For
ULAs and URAs the assumption holds approximately with vanishing
error for large M (cf. also Appendices B.1 and B.2).

However, Assumption 4.2 is more general than Assumption 3.1
since we allow arbitrary, non-quadratic transformations Q. If we
consider the low SNR regime where p = 1/0% < 1, we notice that

W5 = Cs5(Cs +a°1)™' = pCs(pCs +1)~* (4.81)
= pCs+ o(p). (4.82)

That is, for low SNR, the filters W have the same structure as the
covariance matrices C's.

For the ULA, the covariance matrices have Toeplitz structure and
thus we can use Q = F5, where F5 € CM*2M contains the first M

rows of a 2M x 2M DFT matrix.> Since Ap C A, we can also 3 All M-dimensional Toeplitz matrices

. . H

expect W} to perform well for a large number of antennas. can be parameterized by F diag(z) F;
F2 for some @ € C*M.

Analogous results can be derived for uniform rectangular arrays
(cf. Appendix B.2). In this case, the transformation @ is the Kronecker
product of two oversampled DFT matrices.

The CNN structure naturally arises in typical spatial channel mod-
els for a ULA at the base station. Given parameters 9, the covari-
ance matrices are determined by the power density function g(6; d)
with respect to the angle of arrival 6. If the line of sight angle of a
mobile user is uniformly distributed, there exist d; and 8, such that
9(60;6;) = g(0 — ¢; 6;) for any angle ¢ and also p(d;) = p(d;). This
is due to the fact, that the 3GPP channel model has a shift invariance
with respect to the line of sight angle of the users. In other words, if
the model generates a power density g(6) for a user, a shifted version
g(0 — ¢) would have been equally likely.

How do we get from the shift invariance of the power densities to
the shift invariance of the vectors wgs? If we have a ULA at the base
station and a large number of antennas we know that the values in wg
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are approximately sampled from a continuous function w(-; §) which
depends point-wise on the spectrum f(-; d) (see Appendix B.1). Now
for small angles we have f(0; d) ~ ¢(6; &) and thus the shift invariance
holds approximately for w(6; ) as long as w(6; §) is non-zero only
for small values of 6.

As another illustration, consider a toy example where we have an
array of antennas along a long corridor, say in an airplane. Then we
could reasonably assume diagonal covariance matrices, i.e., @ = I,
but at the same time we have a shift-invariance for different positions
of the users in the corridor, i.e., Assumption 4.3 also holds.

4.2.1 Practical Considerations

The stochastic-gradient method that learns the CNN is described in
detail in Alg. 2. We want to stress again that the learning procedure is
performed off-line and does not add to the complexity of the channel
estimation. During operation, the channel estimation is performed by
evaluating w{yy (s) and the transformations involving the @ matrix for
given observations. If the variables are learned from simulated samples
according to the 3GPP or any other channel model, this algorithm
suffers from the same model-reality mismatch as does any other model-
based algorithm. The fact that the proposed algorithm can also be
trained on true channel realizations puts it into a significant advantage
compared to other non-learning based algorithms, which have to rely
on models only.

In the simulations, we compare two variants of the CNN estimator.
First, we use the softmax activation function ¢ = XP)  The result-

1T exp(+)
ing softmax CNN estimator is a direct improvement over W A

In the second variant, we use a rectified linear unit (ReLU) ¢(x) =
[z]+ as activation function since ReLUs were found to be easier to
train than other activation functions [47]. The order of complexity of
estimating a channel vector is the same for both estimators, but clearly
the ReLLU function is easier to evaluate.

Local optima are a major issue when learning the neural networks,
i.e., when calculating a solution of the nonlinear optimization prob-
lem (4.78). During our experiments, we observed that especially for
a large number of antennas, the learning often gets stuck in local op-
timal. To deal with this problem, we devise a hierarchical learning
procedure that starts the learning with a small number of antennas and
then increases the number of antennas step-by-step.
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Algorithm 2 Learning the CNN estimator
1: Initialize variables a, and b, randomly
2: Generate/select a mini-batch of B channel vectors H} and corre-
sponding observations ®; (and correspondings;) for b = 1, ...,
B
3: Calculate the stochastic gradients w.r.t. the variables of the CNN:

B
1 0
Gar, = 5 > dag, | H,Q" diag(wCNN(Sb))Q‘I’bHi
b=1
and
1 o H o 2
b, = E Z a—bg HHbQ dlag('wCNN(Sb))Qq)bHF
b=1

with wCNN(-) € WenNnN-
4: Update variables with a gradient algorithm (e.g., [46])
5: Repeat steps 2—4 until a convergence criterion is satisfied

If Assumptions 4.2 and 4.3 hold, we have Agg € Ag and for a
large uniform linear array, the convolution kernel w; contains samples
of the continuous function w(u; ), i.e., [w;]s = w(2w(s — 1)/S; &;).
If we assume that w(u; d;) is a smooth function, we can quite accu-
rately calculate the vector w; for a system with M antennas from the
corresponding vector of a system with less antennas by commonly
used interpolation methods.

This observation inspires the following heuristic for initializing
the variables a, and by of a K-dimensional CNN. We first learn the
variables of a smaller CNN, say we choose a CNN with dimension
S/2. We use the resulting variables to initialize every second entry
of the vectors ay and by. The remaining entries can be obtained by
numerical interpolation.

For the filter w{yy(+) it is desirable to have outputs of similar
magnitude, irrespective of the dimension S. By doubling the number of
entries of the convolution kernels via interpolation, we approximately
double the largest absolute value of ag, * x. This does not matter if we
use the softmax activation function, but for other activation functions
a normalization is useful. Thus, we we normalize the kernels of the
convolution after the interpolation such that we get approximately
similar values at the outputs of each layer.
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Figure 4.6: Box plot with outliers
(marked as dots) of the MSE after learn-
ing for 10 000 iterations for hierarchi-
cal and non-hierarchical learning. We
show results for M = 64 and M =
128 antennas for 50 data points per plot
and with the DFT matrix @ = F for
the transformation. Scenario with three
propagation paths, 0> = 1,7 = 1. We
see that without hierarchical learning,
local optima are a severe issue.
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Algorithm 3 Hierarchical Training
1: Choose upsampling factor 5 > 1 and number of stages K
2: Set M©) = [M/B7], S© = [S/67]
(0) p(0)
Ip * 74
nas with random initializations

3: Learn optimal a € R using Alg. 2 assuming M anten-

4: for i from 1 to n do
50 Set M®) = [M/B" "] and S® = [S/p"7]
: (4) 3(2) S (i=1) p(i=1) SG=1)
6: Interpolate ay, b,” € R>" from ay, , by eR
7: Normalize aZ)) by dividing by £
8: Learn optimal aé}?, bgi) using Alg. 2 assuming M; antennas
and using aéi,), bg) as initializations
9: end for

This heuristic leads to the hierarchical learning described in Alg. 3.
We start with a small number of antennas which is increased iteratively
until we reach the desired number. After each increase of M, the pa-
rameters a, and by are initialized by interpolating from the previously
trained smaller network.

The hierarchical learning significantly improves convergence speed
while also lowering computational complexity per iteration due to the
reduced number of antennas in most learning steps. In fact, for a large
number of antennas the hierarchical learning is essential to obtain good
performance. In Fig. 4.6 we show a standard box plot [48] of the MSE
after learning with 10 000 iterations. The box plot depicts a summary
of the resulting distribution, showing the median and the quartiles in
a box and outliers outside of the “fences” as additional dots. As we
can see, without the hierarchical learning, the learning procedure gets
stuck in local optima and only the occasional outlier converges to an
estimator with close to optimal performance. With the hierarchical
approach, we are less likely to be caught in local optima during the
learning process.

In Fig. 4.7, we see performance results of the neural network based
estimators compared to the circular ML covaraince matrix estimator
from Fig. 4.1. Another baseline is an iterative method from the area
of compressed sensing called orthogonal matching pursuit (OMP).
Finding an accurate stopping criterion for the OMP algorithm is not
straightforward, thus we compare to a genie-aided variant, which uses
the optimal number of iterations. For the CNN estimators we use
N = K, i.e., we only have a single convolution per layer. The CNN
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Genie OMP O(M log M)

q ML (4.28) O(M log M)

FE O(M log M),

2 - —»—  Softmax O(M log M)

—— ReLU O(M log M)

- % Toeplitz SE O(M?)
Genie Aided

Spectral efficiency in Bit/s/Hz

10 20 30 40 50 60 70 80

Number of observations 1T’

estimator with the ReLU activation function outperforms all other
methods significantly.

4.3 Dealing with Pilot-Contamination

In Section 4.1 we assumed that we get interference free channel esti-
mates for separate covariance matrix estimation by employing addi-
tional pilots which are only used for the covariance matrix estimation.
This requires that the covariance matrices are static over many chan-
nel coherence intervals. The learning-based method in Section 4.2
does not require separate covariance matrix estimation, however the
observations for channel estimation need to be interference free. The
extension of this method to scenarios with pilot-contamination is still
open and thus, for now, this approach cannot be applied in scenarios
where pilot-contamination has a major impact on performance. In this
section, we introduce a method that estimates the covariance matrices
separately, but which uses the same observations that are also used for
channel estimation. This poses additional challenges since, in general,
the observations used for channel estimation are subject to interfer-
ence. However, as we will demonstrate in the following, our method
generates accurate estimates of the channel covariance matrices, even
in the presence of interference and when the covariance matrices are
constant only for a few channel coherence intervals.

If we want to use all available observations to estimate the covari-

Figure 4.7: Single-user achievable rate
for M = 64 antennas and an SNR of
—10dB at the cell edge. The urban
macro channel model specified in [37] is
used to generate the channels. We show
the result with respect to the number of
observations, i.e., the coherence interval
of the covariance matrices.
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ance matrices we need a more complicated signal model. In general
we want to consider the case where we have a different allocation of
pilot sequences to users in different channel coherence intervals. We
use the matrix IT; € {0, 1}%*7¥ to define the allocation in coherence
interval ¢. Specifically,

1 if user k uses pilot sequence p in coherence interval ¢

TLt]kp =
P 0 otherwise.
(4.83)
With II; = [my,...,7r,], the observations in channel coherence
interval ¢ can then be expressed as
ept = Hympy +vp, p=1,..., T (4.84)
where H; = [hyy, ..., hy] is the channel in coherence interval .
For the covariance matrices we get
C‘Ppt = Z Chk [Trpt]k + C’U- (485)
k

With the vectorized covariance matrices c,,,, = vec(Cy,,) and ¢, =
vec(Cy) and

Cu = [vec(Ch,), ..., vec(Ch, )] (4.86)
we rewrite (4.85) to
Cp, = CHTp + Cy (4.87)
or for all observations in coherence interval ¢
[Cori- s Cor] — Cul’ = CyILL. (4.88)

If we use the same pilot allocation II in all coherence intervals,
the covariance matrices of the observations are the same for different
t. We can thus reconstruct the channel covariance matrices

Ch = ([epy,- - Cpp | — o) ITT (4.89)

from the covariance matrices of the observations, as long as K < T,
i.e., only when we could have interference free observations anyway.
For K > Ti;, when we have pilot-contamination, it is impossible to
uniquely reconstruct the channel covariance matrices from the covari-
ance matrices of the observations.
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If we use S different allocations instead, i.e., we iterate through
allocations Il;, i = 1, ..., S, we get ST}, observations with different
covariance matrices C‘Pm.. The equation system expands to

Cyl[lly,... ] = [Cor1ssCopse e+ s Corps) — colT. (4.90)

As long as the concatenation of the allocation matrices has full row
rank, it is now possible to reconstruct the covariance matrices of the
channel vectors from the covariance matrices of the observations. A
simple two-step approach to estimate the covariance matrices is thus
to first estimate the covariance matrices of the observations using
the methods discussed in Section 4.1 and then solving (4.90) for the
channel covariance matrices.

We see that to estimate the channel covariance matrices in the pres-
ence of pilot-contamination, we need a time-varying pilot allocation.
The ““additional pilots” which we used in Section 4.1 can bee seen as a
special case of such a time-varying allocation.

Example 1. Suppose we have Ti, = 2 orthogonal training sequences
and K = 4 users. This setup allows S = 3 distinct allocations of pilots

to users
10 10 10
I, = 10 Ry 01 Ry . 0 1
01 10 0 1
01 01 10

The compound matrix [f[l, ﬁg, ﬁg] is well-conditioned with a condi-
tion number of /3.

Example 2. Suppose we have Ti, = 3 orthogonal training sequences
and K = 4 users. We can use a fixed allocation for the first two pilot
sequences for channel estimation and use the “additional” third pilot to
facilitate the covariance matrix estimation. That is, we use the S = 4
different allocations

0

0 0

0 0
II, = I, =

1 2 1 1

1 1

S O = =
S O O =
S O = =
S O = =

0
1
1

In this case, the compound matrix [ﬁl, ﬁg, ﬁg, f[4] also has full row-
rank, but we waste one pilot-sequence per coherence interval for the
covariance matrix estimation.

We have II; = Il;1 5 = ﬁm(,d(t,s).
Thus, the covariance matrix of ¢, is
the same as that of ;45 and is de-
noted by C, , where i = mod(t, S) is
the remainder of ¢ divided by S.

S O = =
_— = O O
_ o O O
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4.3.1 ML Estimation

Alternatively to the two-step approach, we can analyze the ML problem
for general time-varying pilot allocations. We assume that we have a
sensible allocation where each user only transmits one pilot sequence
per coherence interval, i.e.,

e = 0. (4.91)

Thus, all observations ¢,; are mutually stochastically independent.
For notational convenience, we merge the double index pt into one
index i =1, ..., n where n = T.S.

For one observation ¢; with corresponding allocation 7r; we have
the density

1 - H(Z Ch [”'}k+cv>7l‘P'
f . A e P, k 7T i
oi(#1) det (3, Ch, [mi]i + Cy)
4.92)
Thus, for several observations ¢; with ¢ = 1, ..., n, the log-likelihood

is given by

-1
L(..)=> logdet (Z Ch, |7k + cv) +¢pft (Z Ch, |7k + cv) ©i.
A k k

(4.93)
In the following we assume diagonal or, equivalently, jointly di-
agonalizable, covariance matrices (Assumption 3.1). The analysis
also works for full covariance matrices, however, it requires ugly Kro-
necker product and vectorization hacks and the resulting estimator
is too complex to use in practice anyway. For diagonal covariance
matrices the estimation simplifies significantly, since the likelihood
can be separately optimized for each antenna element.
Using Assumption 3.1, let us consider the likelihood for the vari-
ances of the mth spatial dimension. We define the vector of the mth
entries of the channel vectors

h=[[hi]m,...,[hlm]". (4.94)
and the vector of the corresponding variances
¢ = [[ChiJmms - -+ [Chiclmm]" - (4.95)
Our model for the observation ¢; = [@;], simplifies to

@i = h+v; (4.96)
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with the noise v; = [v;],, with variance ¢, = [Cy]mm. If we plug this
into Eq. (4.93), we get the likelihood for the variances ¢

b,
_ T v
L(c|p) = El log ( Ek cm;+ cv> + S ST+ ey 4.97)

where b; = |¢; |2. The derivative with respect to c is given by

oL T —b;
Ly emte o (4.98)
dc i (Zk CTTri + CU)
If we define ]
d; = 5 (4.99)
(>opclmi+ co)
we can formulate the optimality condition
Ly dnTe =2 Y d; (b; 4.100
nEﬂ-z zﬂ-icn2ﬂ'z z(z_cv)- ( )
1= 1=

To emphasize the interpretation of the left- and righ-hand-sides as
averages we added the normalization with n.

We can also write the optimality condition in matrix-vector notation
if we define the matrix

II = [my,...,7) (4.101)
and the vector of all observations
b=[by,...,b,]" (4.102)

and the diagonal matrix D = diag(d;, . .., d,). The optimality condi-
tion is then given by

1 1
—TIDII"c = —TID(b — c,1). (4.103)
n n

Recall that our goal is to estimate the covariance matrix, that is, its
diagonal elements c from the observations that we wrote into b. If D
was independent of ¢, we could readily solve this linear system and
obtain c. Unfortunately, D depends on c. However, as D is relatively
insensitive to changes of ¢, the condition in (4.103) suggests a fixed
point iteration where we update

¢+ f(¢) = (ID(e) M) 'IID(&) (b — cu1) (4.104)
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based on a previous estimate of ¢ that is used to calculate D.

Let us analyze this fixed-point iteration. Since the entries of the
vector of observations b are independent we know from the law of
large numbers that

1 11
= —]___[D]___[T — idi (b; — 4.105
o) = (uomT) LS w05
1 1
= (=mIprhH)—'= d; (E[b;] = co 4.106
(n ) - E m;di (B[bi] — cv) ( )
— (lnpor _112 dimle* (4.107)
= " n i AT, C .
1 T - 1 T * *
= =“TIIDII —IIDII ¢ =c". (4.108)
n n

That is, for an increasing number of observations n, a single iteration of
the fixed point iteration converges to the desired variances c irrespective
of the choice of D (and, thus, independent of the initialization ¢). This

indicates that the fixed point iteration converges for a sufficient number

of(c)
dc’

large neighborhood of ¢* (f(c) is close to a constant function).

of observations since the norm of the derivative is small in a

As the summations in (4.100) are over the n last coherence inter-
vals, an adaptive algorithm would be desirable, which updates the left-
and the right-hand-sides of (4.100) for new observations. To this end,
we simply replace the averages by moving avarages, which leads to the
adaptive algorithm given in Alg. 4. Note that, depending on the ratio of
training T}, to number of users K, it might be advantageous to directly
update the Cholesky factorization of the left-hand-side in (4.103) to
reduce the computational complexity.

The ML estimation is simplified if we use the same scaling matrix
D for each spatial dimension m. In this case we can estimate all ele-
ments of the diagonal channel covariance matrices at once. Specifically,

we have
Cy = (B —¢21) DI (IIDII") (4.109)
where
2 2
B[l o]
If the same sequence I = [ﬁl, o ,ﬁs] of allocations (cf. Sec-

tion 4.3) is repeated in N blocks, such that n = SN, we group the
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Algorithm 4 Adaptive Variance Estimation

1: Similarly to many adaptive algorithms we use a constant forgetting
factor 0 < A < 1.
2: Initialize the estimate of the matrix & = TTDII'

[

e |

3: Initialize the variance estimates and accumulated observations of
the considered spatial dimension

c+—1 PYp+0

4: fort=1,...do
Acquire the current allocation II; and resulting observations

by = [H%t]mf,---aH#’Rt]m\Q]T

in the considered spatial dimension m
6: Calculate the approximate scaling matrix using the current
variance estimates

d], < 1/("mp + 022 ¥p=1,..., Ty
7: Update the accumulated observations
¥+ M\ + I diag(d) (b — 021)
8: Update the matrix =
E « \E + I, diag(d)TI}

9: Calculate the new variance estimates

[

C <+

10: end for
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observations into equally sized blocks B = [Bj, ..., By] to get

N
~ N B, e T o~ e~
C= (Z;\} - — 0—31)DHT(HDHT)—1.

Since
Yo Bs .

N [C‘Pl’ ce 7é‘PNT"]

is exactly the ML estimate of the covariance matrices of the observa-
tions, the suboptimal estimation in (4.109) has the two-step reconstruc-
tion method from Section 4.3 as special case, namely when we chose
D =1 (see (4.90)).

4.3.2 Pilot Allocation

If we implement the covariance matrix estimation with a repeated
schedule IT = [II4, . . ., ILg] of pilot allocations, IT must have full row-
rank for unique identifiability of the channel covariance matrices. If we
want to serve all /K users within one coherence interval, each user has
to be assigned a pilot sequence, i.e., II;1 = 1 for all ¢. Consequently,
by adding one coherence interval to the schedule IT, the rank increases
at most by Ty, — 1. We have

rank(IT) < Ty, + (S — 1)(Ty — 1) (4.110)

and we need rank(IT) = K, leading to the necessary condition for the
minimal schedule interval

4.111)

Thus, when we serve all users in each time-slot, we need at least two
training sequences to ensure full row-rank of 1.

Since the pilot-allocation schedules can be generated off-line for
given K, Ty, and the resulting schedule interval S, we could theoret-
ically do an exhaustive search over all feasible schedules to find the
schedule with best condition number of II. However, the design of
the allocation is not actually an issue in practice. Typically the coher-
ence interval of the covariance matrices is much larger than the bound
in (4.111). Thus, if we use a slightly larger .S and random allocations,
we get a full-rank matrix with high probability.
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4.3.3 Simulation Results

To showcase the performance of our algorithms, we present simu-
lation results for the same two scenarios we used in Section 3.9. We
simulate the multi-cell setup depicted (again) in Fig. 4.9. We have 5
users per cell for a total of K = 15 users.

We compare our approaches to the ones in [39], which use extra
pilots specifically for covariance matrix estimation. The authors of [39]
discuss two different pilot designs, which can be seen as a specific
dynamic pilot allocation as discussed in Section 4.3. One method
directly estimates the covariance matrices only using the extra pilots.
The other method combines the pilots used for channel estimation with
the extra pilots in a similar way as what we propose in Section 4.3. Of
course, for the first pilot design, we could also combine the observations
from the extra pilots and the observations used for channel estimation
to get better results.

The cell throughput with respect to the coherence interval of the
covariance matrices is depicted in Fig. 4.8. We show results for T =
6 orthogonal pilot sequences. For the method in [39], 5 of those
sequences are reused in all cells. The remaining pilot sequence is used
to generate additional observations that help to estimate the covariance
matrices. In each coherence interval of the covariance matrices, we
need at least one additional observation per user. Thus, for the given
parameters, the method in [39] requires the coherence interval to be at
least T = K = 15.

Figure 4.8: Achievable uplink rate of a
single user, when the estimated channel
covariance matrix is used to calculate
the LMMSE filter. We assume perfect
knowledge of the statistics at the decoder.
We have M = 64 antennas at the base
station and the effective training SNR is
pe = —10dB.

Figure 4.9: Small network with three
hexagonal cells. The base stations are
positioned at the corners and the users
are uniformly distributed in the shaded
circular area in the center.



102

4. Imperfect Covariance Matrix Information

4.4 Summary

We first focus on separate maximum likelihood (ML) estimation of
the covariance matrices. We start with the simple case where we have
interference free observations to estimate the covariance matrices of
the users. We can thus focus on a single user. We drop the user index
and write the independent observations as

pi=h;+vf i=1,...,n. 4.112)

where h; ~ N¢(0,Cp,) and v)" ~ N¢(0, Cy). Since noise and chan-
nel vectors are independent we have ; ~ N¢(0,C,) with

Cy, = Ch + Cy. (4.113)

The ML estimate for the covariance matrix of the observation is
given by

~ 1
Co=—> @il (4.114)
i
The positive definite ML estimate for the channel covariance matrix is
Cn = C°Rs(Ci°C, 0 ~1) 6y, (4.115)

where Ps(-) denotes the orthogonal projection onto the cone of positive
semi-definite matrices.
If the covariance matrices are diagonal and C,, = o2 I we get

~

C), = diag(én) (4.116)
where
én = [ep — 021]+ (4.117)
and 1
Co = loil. (4.118)

There exist different iterative approaches that are needed when the
covariance matrices have more complicated structure, e.g., Toeplitz
structure. In our experience, the gains over diagonal structure are
marginal.

Significant gains can be obtained from prior information for the
covariance matrices. We model the channel covariance matrix C's
as a function of the random parameters 6 ~ p(d). That is, h;|d ~

N(C(Oa CJ)
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The MMSE estimator for the channels H = [hq, ..., h,] from all
observations ® = [p1, ..., ;] is given by

H=W(®) ® (4.119)

where

T f W5p(5) exp (tI‘(Was) + b5)d6
W= fp(5) exp (tr(W5S) + bJ)d(s (4.120)

with
W5 =CsC,' =C5(Cs +Cy) " (4.121)

We approximate 1//17() with a convolutional neural network (CNN).

Specifically we have the CNN-estimator

W 4 (@) = Q diag(wonn(s(®))) Q" (4.122)
where Q € CM*S s a fixed matrix and
1
s(®) = 3@ (4.123)

)

The function wenn(+) @ RS — R is a two-layer CNN. The parameters
of the CNN are optimized in an off-line learning procedure.

The structure of the estimator W ,c (@) is motivated by typical
spatial channel models. The preferred choice of the matrix @@ depends
on the array geometry.

If the observations are subject to interference, things get more
complicated. We consider a general dynamic pilot allocation. We use
the matrix IT; € {0, 1}5>*T with TT;1 = 1 to define the allocation of
pilots to users in coherence interval t. With IT; = [mq, ..., 7, ], the
observations in coherence interval ¢ can then be expressed as

‘Ppt:Htﬂ-pt"i_,Upta pzl,...,ﬂr, tzl,...,TC (4124)

where H; = [hyy, ..., hgy] and T is the coherence interval of the
channel covariance matrices.
For the covariance matrices we get the relation

C<Ppt = Z Chk [Wpt]k + Cy. (4.125)
k
To get a convenient matrix-vector notation, we vectorize all covariance

matrices, i.e., we have c,,,, = vec(Cl,,) and ¢, = vec(C,) and

pt

Cu = [vec(Ch,), ..., vec(Ch,)]. (4.126)
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We get
Co, = CHTp + Cy. (4.127)

If we iterate through S different allocations ﬁi, i=1,...5 we get
observations with S7T;, different covariance matrices Csom which are
related to the channel covariance matrices via

CylI,... Ig] = [Cor1ssCopse s Cops] — col’. (4.128)

If we have estimates of the covariance matrices C, ,, we can solve for

the channel covariance matrices as long as TT = [IIy, ..., TI,] has full
row-rank. We can find such a matrix if

S>K_1.
T Ty —1

(4.129)

We also introduce a method that directly finds an approximate ML
estimate of the channel covariance matrices. The estimation is similar
to the two-step approach, but instead of applying the Moore-Penrose
pseudo inverse of II to the right hand side of (4.128), we use a different
pseudo inverse of the form DI:VIT(IA:IDIF:IT)*1 with a diagonal matrix
D.

Optimally, we use a different matrix D,,, for each row m of (4.128)
where D,,, depends on a previous estimate of the m-th row of Cy.



Chapter 5

Conclusion and Outlook

So, what did we learn so far? We saw the impact of different models for
channel uncertainty on algorithms for transceiver design and resource
allocation. We saw how asymptotic results can be used to optimize
power allocation based on channel statistics instead of instantaneous
channel realizations. We realized that obtaining the channel statistics
may also be non-trivial, but that for typical channel models, efficient
and accurate algorithms can be developed.

If we have an accurate model for the channel, noise, and the avail-
able observations, we often succeed in finding efficient algorithms with
close to optimal performance by combining asymptotic approxima-
tions with established optimization methods. For more complicated
models, it pays off to be aware of various tools from statistical signal
procssing, such as the variational bayesian inference used in Chapter 3
or the convolutional neural networks used in Chapter 4.

Many extensions of the system setup are possible, some were
mentioned throughout the thesis. For example, the extensions of the
downlink resource allocation algorithms to a multi-cell setup. Since
modern mobile phones typically have four antennas and are capable
of non-linear processing, this could also be taken into account in an
extended model. To handle multiple antennas at the mobile phone, we
might need a more general concept of uplink-downlink duality, such as
the one presented by Dotzler et al. in [16]. Finally, extending the new
learning-based channel estimation approach to more general system
models might also be worthwhile.

In most of this work we tried to keep the assumptions on the physi-
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cal model as general as possible, only incorporating assumptions that
helped to significantly reduce the computational complexity. Adding
more details to the channel model is better done by the product devel-
oper than the academic researcher. Since so many aspects of algorithm
design depend on the channel model and hardware constraints, it might
in practice not always be possible to directly apply the algorithms de-
scribed in this thesis. Nevertheless, I hope that the presented algorithm
designs and analyses provide fellow engineers with methods and tools
that help to tackle similar problems.



Appendix A

Information Theory
Preliminaries

Consider the simple scalar channel model with input symbols s, which
have variance one, and output

y=gs+v (A.1)

where the channel g is known, and we have some additive noise v.
The maximal amount of information that can be transmitted over
the channel is given by the mutual information

I(y;s) = h(s) — h(sly) (A2)

where h(-) denotes the differential entropy. The mutual information
depends on the distribution of the input s and the noise v.

In the following, we assume that s follows the normal distribution
s ~ Nc(0,1). In this case, we have h(s) = log,(me). If the noise is
independent of s and also normally distributed with v ~ N¢(0, 0%),
we get

I(y;s) = logy(1 + |g|* /o?) (A3)

which is in fact the maximal mutual information with respect to the
input distributions, since for additive white Gaussian noise, Gaussian
inputs are optimal [49].

If the noise is not Gaussian distributed (s is still Gaussian) and
possibly also not independent of the input, it might not be possible
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This step is missing in the original proof
in [15], where they simply assume that
var(s|y) = E[var(s|y)], which does not

hold in general (it holds for jointly Gaus-

sian distributed random variables).

to find a closed form expression for the conditional entropy h(s|y).
However, if we know the variance var(s|y), we can use the bound [14,
15]

h(sly) < E[logy(me var(s|y))]. (A4)

We then use Jensen’s inequality to get

h(sly) < logy(meE[var(s|y)]). (A5)

We further know that
E[var(s|y)] = E[(s — E[s|y]) (s — E[s[y])"] (A.6)
< E[(s = f(y)(s = f(y))"] (A7)

for any function f(y), since E[s|y] is the MMSE estimate of s from .
We can use the linear MMSE estimate of s for f,

) = cov(s,y)

s (A.8)
to get

— B{(s— ) ) = 1 cov(y, s)I* A9

a=E[s—fy)(s—fy)]=1- var(y) (&.9)

2
1o |g + cov(v, 5] (A.10)
l9|” + gcov(v, s) + g* cov(s,v) + var(v)
2
var(v) — [cov(v, s)] (A.11)

~ gl* + gcov(v, s) + g* cov(s, v) + var(v)
A lower bound for the mutual information is thus given by

I(y; ) = h(s) — h(sly) > logy(me) — Ellog, (e var(s|y)]
> logy(me) — logy(mea) = logy(1/)

2

var(v) — |cov(v, s)|?

(A.12)

If the noise v is uncorrelated with the input s, the bound simplifies to

. 9]
I(ys ) > log, (1 + Var(v)> , (A13)

which is simply the mutual information with equivalent Gaussian noise.



109

We can apply this bound to the scenario with imperfect CSI. We
have the side information ¢ on the channel at the receiver and want to
calculate the conditional mutual information I(y; s|p). To apply the
bound we split the channel into an estimate §, which is deterministic
given ¢ and the resulting estimation error § = g — g. We have

Yy=gs+v (A.14)
y=gs+(g—g)s+v. (A.15)
——

Veft

That is, § takes the role of g in (A.12) and v.g takes the role of v:

. 2
I(y:5) > log, [ 1+ — 9T covlver slo)] 7| (Ad6)
var(veg|p) — [cov(veg, $|©)]

We assume that the additive noise v is independent of s and g, but not
necessarily Gaussian. The total effective noise veg is clearly no longer
Gaussian and also not independent of the signal s. Thus, we need to
calculate var(veg|p) and cov(ves, s|p) to evaluate the bound in (A.12)
for the imperfect CSI scenario. With g = E[g|¢] we get

var(vest|p) = var(v) +E[lg — g” [¢]
= var(v) + var(g|p) + |g]> — g5* — 95" + |g|°
= var(v) + var(g|p) + |g — §|° (A.17)

and
cov(veft, S|¢) = g — g- (A.18)

The bound evaluates to

12
I(y; s|@) > log, (1 + var(v) —ﬁvar(g\go)) . (A.19)

Note, that the bound is independent of the choice of § and only
depends on the MMSE estimate g and the corresponding estimation
error var(g|e). If we directly chose § = g, the effective noise is
uncorrelated with the signal s and we get the same result

ki gI”
I(y:slp) > logy | 14+ —= | =log, [ 1+
(v:5l) 2 log, ( var(vef| ) 52 var(v) + var(g|)

(A.20)

) |






Appendix B

Spatial Channel Model

In general, the channel from a single user to the base station is modeled
as complex Gaussian h ~ N(0, Cs) where the covariance matrix
depends on parameters & of the physical environment.

Most channel models for cellular networks assume that the antenna
array at the base station is in the far-field of the impinging waves. In
this case, the covariance matrix is given by

Cs = / 9(0: 8)a(0)a(0)do B.1)

where a(f) is the array manifold vector and g(6;d) describes the
distribution of the incoming power over the angle of arrival. In the
following we derive asymptotic approximations for the uniform linear
and uniform rectangular array geometries. We also quickly discuss a
simple model for distributed antennas.

B.1 Uniform Linear Array

For a uniform linear array (ULA) with half-wavelength spacing at the
base station, the steering vector is given by

a(f) = [1, exp(irsinf), ..., exp(ir(M — 1)sin9)]H. (B.2)

Consequently, the covariance matrix has Toeplitz structure with entries

[Clomn = / " 0(0:8) exp(—in(m — n)sin@)do. (B3

—Tr
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If we substitute w = 7 sin 6, we get

Csln = 5= [ Sld)exp(—ilm—nw)ds B4
with
Flw; 6) = 2Trg(arcsin(w/7r); 0) +29(7r ; arcsin(w/7); §) B.5)

™ =W

where we extended ¢ periodically beyond the interval [—7, 7]. That is,
the entries of the channel covariance matrix are Fourier coefficients of
the periodic spectrum f(w;d).

An interesting property of the Toeplitz covariance matrices is that
we can define a circulant matrix Cj with the eigenvalues f(21k/M:; §),
k=0,...,M—1,suchthat Cs = Cys[27]. Thatis, to get the elements
of the circulant matrices we approximate the integral in (B.4) by the
summation (cf. [50])

1 M—

,_\

F(2rk/M;§)em—m)2mk/M (B.6)
k=0

B.2 Uniform Rectangular Array

To work with a two-dimensional array, we need a three-dimensional
channel model. That is, in addition to the azimuth angle 6, we also
need an elevation angle ¢ to describe a direction of arrival. Under the
far-field assumption, the covariance matrix is given by

/2
Cs = / /_ 0,9;6)a(0, ¢)a(0, ) dods. (B.7)

w/2

For a uniform rectangular array (URA) with half-wavelength spac-
ing at the base station, we have M = M My, antenna elements, where
Mz is the number of antennas in horizontal direction and My, the
number of antennas in vertical direction. The correlation between the
antenna element at position (m, p) and the one at (n, q), given the
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parameters 6, is given by

E [h(m,p) hz(n,q) ‘ 6]

3
_// ( , )m n—m) sin 6+ (g—p) cos 0 sin ¢) dode (B.8)

_ / §(0’¢’ 6) im((n—m) sin 0+ (g—p) cos 0 sin ¢) d9d¢ (B.9)

We can map the square [—7/2, 7/2]? bijectively onto the circle with
radius 7 with the substitution w = 7 sin§ and v = 7 cos 0 sin ¢. The
transformed integral can be written as

= / Flw,v; §)e~m(m=n)wt=av) g, 41, (B.11)
with
¢ %) f 2 2 < 2
flw,v;8) = fw,v39), forw+v" <, (B.12)
0, otherwise.

The non-zero entries of the two dimensional spectrum are given by

g(arcsin(w/m), arcsin(v/(mv1 — w?)) '

1
Y ) o) (B9

flw,v;8) =

That is, for a URA, the entries of the channel covariance matrix are two-
dimensional Fourier coefficients of the periodic spectrum f(w, v;6).
We can use the results for the ULA case to show that the URA
covariance matrix is asymptotically equivalent to a nested circulant
matrix with the eigenvalues f(27mm /My, 2np/ My ; ) where m = 0,
w Mg —Tlandp =0, ..., My — 1. The eigenvectors of the nested
circulant matrix are given by F);,, ® F)y,, where F); denotes the
M -dimensional DFT matrix. Clearly, the asymptotic equivalence only
holds if My and My, both go to infinity.
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Typically, we have something like
Clkkmn — min(cmax, Cod;,z)

with a path-loss coefficient « € [2, 4].

B.3 Distributed Antennas

In principle, distributed antennas offer much higher worst-case SINRs
than a single base station with the same number of antennas that has
to cover the same area. If we distribute many antennas, there will
be some antennas nearby at every location in the cell, i.e., cell-edge
users do not have the same disadvantage as with a compact antenna
array. However, there are many additional challenges with distribute
antennas, e.g., the backhaul link and synchronization. The typical
channel model for distributed antennas is quite simple: all channel
coeflicients are assumed to be independent. Consequently, the channel
covariance matrices are diagonal and we have one variance cg,,, for
each user/antenna pair. If d,, is the distance between user k£ and
antenna m, then the variance cy,, is a decreasing function of dg,,,.

If we reasonably assume that cy,,, is bounded as the distance goes
to zero, this channel model fulfills Condition 3.1. Users at different
positions have different distances to the antennas and thus Condition 3.2
is also fulfilled for practical scenarios.



Appendix C

Useful Lemmas

C.1 SINR Uplink-Downlink Duality

Lemma C.1. Consider downlink SINRs of the form

’w,I;ICkCI];,I’wk
1+ Zn w}ank.wn

=
and corresponding uplink SINRs

Sl Megilercligy,
" glQgr + X, Mgl Bragr

with positive semi-definite By, and positive definite Q.

For any gy, and X\, > 0 such that ) ;. A\, = P we can find wy,
such that ), wEka = Pand 7,;” = 7,‘;[ for all k. Conversely, for
any wy, with ), w?wak = P we can find gi, and A\, > 0 such that
Sp A = Pand ¥ = 4 for all k.

Proof. Given uplink filters g; and power allocations \; > 0 with
> A& = P which achieve certain uplink SINRs fyzl, we choose pre-
coding vectors

Wi = \/PkIk

and consider whether the system of equations fygl = 7,;‘1 for all k£ has
a feasible solution p > 0. With some manipulation we get the linear
system of equations

Ak = Dk (QEng +) AnngBlmgk) — > PnAngh Bukgn Yk
n n
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which we can write in matrix-vector notation as
A=®p
with
(®]in = {Q?ng T ZZ#: Mgl Bogi, fork=n
~Angn Brkgn, else.

Since ® is column-wise diagonally dominant with positive diagonal
entries and negative off-diagonal entries (M-matrix), ® ! exists and
has non-negative entries. Consequently, p = ®~'\ is non-negative.
Additionally, we have

P=1"A=1"®p =) pg'Qgr = ) w}Quy
k k

which completes the first part of the proof.

For the converse we start with some wj, such that k ngwk =
P. We choose g, = wy, and again consider the system of equations
'ygl = W}Q‘l for all k. We get the linear system of equations

wEka = /\k(l + Z 'wSBnkwk) — Z )\nkakn'wk.

The remaining steps of the proof are analogous to the first part.  []

The point of this duality is that we can use the uplink SINRs to
optimize downlink precoding. In the uplink, the optimal filters gj, can
be calculated analytically. We have the optimal filters

92 = (Q + Z )‘ann)ilck

with corresponding optimal SINR

’)/]: = )\kCI]g(Q + Z )\nB;m)_lck.

Thus, we only have to optimize the power allocation A, i.e., the number
of variables reduces to one real-valued scalar per user.

C.2 Fourth Order Moments

Lemma C.2. For two jointly Gaussian distributed vectors x and y
with zero mean, we have
2 2
E[j2"y|"] = u(E[z2"] Elyy")) + |u(Elyz"])|
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Proof. Let z = [z7, y"]T with E[221] = C;. We have = S,z and
Yy = Syz with

Sz =[,0] and S, =101
and thus

Elzflyytz) = E[EHSCESyiiHS;SwE]
= E[zHWz2HWhy)
tr(E[zzMW 2z wh) (C.1)

where z has i.i.d. entries with zero-mean and unit-variance and
w =cY*s's,cl?
=Lz ooyl -
‘We obtain

e] E[zz'Wz2H)e; = Elz;2] MW 2]

*
:E wye B zizjzrzc]
r,c

. Wij for Z;é ]
Wi+, wye for i =j.

Incorporating this result into (C.1) yields

E[|sc y‘ | = r(E[z2HW 2P W)

= tr(W + (W) D)WH)
(WWH) + (W)
(

— tr(S,C>858,C.ST) + |u(S,C.ST)|*

=1r

which is the desired result. OJ

C.3 Asymptotic Analysis

Lemma C.3. For two n- dimensional zero-mean, jointly Gaussian dis-
tributed random vectors ™ € N¢(0 Ca(;n)) and y™ € N¢(0, C?(,n))

we have " "
lim & Ay  E[z"Ay]

n—o00 n n

:O,

as long as the covariance matrices Cy, Cy and the matrix A have

bounded spectral norm.
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Proof. With Lemma C.2 we calculate the variance

var(z! Ay) = E[z Ayy Alz] — ‘E[mHAy]
= tr(Cz AC, A™) + ‘E[.’Jr:HAyH2 - !E[a:HAyH2

‘ 2

= tr(C, ACy A™).
Thus
var(zl Ay /n) = %V&I(%HA:U)
_ Gl AP ICyllu®) _ [ICall [ AI* [Cyll
- n? n

which goes to zero for n — oo if the matrices have bounded norm. [



Appendix D

Projected Gradient Methods

Since several optimization problems discussed in this work are solved
with projected gradient methods, we want to provide a short summary
of such methods.

D.1 Basic Projected Gradient Method

The projected gradient method is a straightforward extension of the
classical gradient descent method to optimization problems with simple
constraints. With simple constraints we mean a constraint set, for which
the orthogonal projection of a point onto the set can be calculated
efficiently. Preferably, we are also able to calculate the projection onto
the tangent cone at any point on the boundary of the constraint set.
Suppose we have an optimization problem

zip /(=) o
with the convex constraint set C C R™. We denote the orthogonal
projection onto the constraint set by

Pe(y) = argmin ||z — y||®. (D.2)
xzeC
Further, P, (g; «) denotes the projection of a vector g onto the tangent
cone of C at point € C. For notational convenience we introduce
the gradient g(x) = V f(x) and the projected gradient gc(x) =
P, (g(x); x), which is the gradient at x projected onto the tangent
cone of C at x.
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The projected gradient method starts from an initial x € C with
iterative updates of the form

x + Pe(x — sg(x)) (D.3)

with a suitable step-size s.

Algorithm 5 Backtracking line-search with Armijo’s rule

Require: Inital, sufficiently large s and constants 3,0 € (0, 1), e.g.
8 =0.5and o = 0.001.
while h.(s) — hy(0) > ohl,(0)s do
s+ s
end while

The step-size is typically found by an approximate minimization
of the one-dimensional function

he(s) = Pe(x — sg(x)). (D.4)

In our implementation we use a backtracking line-search with Armijo’s
rule to calculate the step-size which is described in Alg. 5. This method
requires the derivative h/,(s) at s = 0 which is given by

hy(0) = —g(x)"ge(®) = — llge (@) (D.5)

D.2 Projected Quasi-Newton Methods

For unconstrained problems (Quasi-)Newton methods can be signif-
icantly more efficient than the simple gradient descent method. It is
possible to formulate projected versions of those methods that can then
be applied to constrained problems instead of the projected gradient
method. The iterative update of the current optimizer x is similar:

x < Pe(x + sd(x)) (D.6)

for a search direction d(x).

For unconstrained Quasi-Newton methods, the search direction is
of the form d(x) = —Bg(x), where B > 0, which guarantees an
improving direction since g(z)"d(x) < 0. In the constrained case,
we use d(x) = —Bgc(x). If we define a one-dimensional function
equivalent to before

ha(s) = Pe(x — sd(x)) (D.7)
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we get
hyp(0) = —d(x) ge(z) < 0. (D.8)

That is, the direction d(x) = —Bge(x) based on the projected gradi-
ent and a positive definite matrix B is an improving direction. Thus,
we can again apply the backtracking line-search from Alg. 5 to find a
suitable step-size.

In Alg. 6 we summarize the steps of a projected Quasi-Newton al-
gorithm. This method is an extension of earlier work on Quasi-Newton
methods with simple box constraints [51] to a more general class of
constraints. We state the method here without proof of convergence or
convergence rate, but we think that such an analysis could be done anal-
ogously to that in the cited earlier work. Note that the matrix By, in the
algorithm does not have to be formed explicitly. We can for example
use the L-BFGS update [52] that stores an implicit representation of
By, that only requires a small amount of memory.

Algorithm 6 Constrained Quasi-Newton algorithm that makes use
of projections onto the constraint set and projections onto the tangent
cone of the constraint set
Require: Initial z; € Cand By >~ 0
fork=1,2,...do
Calculate the search direction using B

dy, < —Byjgc(xy)

Use backtracking line search to get the step-size sy, start with
S+ 1
Update the optimizer

Tpy1 — Pe(xp + srdy)

Calculate (or update) the matrix By using 1, ..., k41 and
g(xi),...,g(Trr1)
end for

D.3 Common Constraint Sets

The two constraint sets which are relevant for this work are the ball
B, ={x € R": ||z|| < r} and the simplex A, = {x € R" : 1Tz =



122

D. Projected Gradient Methods

p,x > 0}. The projection onto the ball is pretty straightforward. We
have

D.9)

x if ||| <r
Py, (z) = { ”

ra/ ||x| otherwise.

Since the tangent cone at a point & on the boundary of 5, is simply
the half space {g : g'x < 0}, the projection onto the tangent cone is
given by

if ||z <rorgTe <0
g |l g'x< (D.10)

P’TBT<g;CC) = {

x% if [|z|| =7 and gTx > 0.

Projection onto the simplex A, is slightly more complicated. There
exists a semi-analytical solution to the projection problem, which is
similar to the waterfilling procedure. The method is described in Alg. 7.

Algorithm 7 Iterative, waterfilling-like procedure for the projection
onto the simplex A,

Require: Vector x € R" that is projected and parameter p > 0
@' + entries of x sorted in ascending order
for i from 1 ton do
e
if [z']; > w* then
break
end if
end for

T+ [x — w4

The projection onto the tangent cone follows along similar lines and
is described in Alg. 8. Since we are not aware that this projection onto
the tangent cone of a simplex has been previously discussed, we will
derive the method in the following. The tangent cone of the simplex
A, at a point  is given by

Ta, () ={g:1"g=0,[g]; > 0Vi € A(z)} (D.11)

with the index-set of active constraints A(x) = {i : [z]; = 0}.
The optimization problem corresponding to the orthogonal projec-
tion onto the tangent cone is thus of the form

min ||g — y|*,s.t. 1Tg = 0, [g]; > 0 Vi < k, (D.12)
g
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Algorithm 8 Iterative procedure for the projection onto the tangent
cone of Ta, at

Require: Vector z € A, and a vector g € R" that is projected
Require: Bijective map 7 : {1,...,|A(x)|} — A(x) such that
[$]W(Z) < [x]ﬂ'(]) fori < J< |A("E>‘
for i from 1 to |A(x)| do
A=)

S st ) 1y —p
* jEA(z) IFlj j= [€D)
we = P

if [z/]; > w* then
break
end if
end for
[z]; + max([z]; — w*,0) Vi € A(x)
2} ¢ 2} — w* Vi ¢ A(z)

where we fixed the index set to A(x) = {1,. .., k} without loss of gen-
erality. We will further assume that for i < j < k we have [y]; < [y];.
We also do not lose generality with this assumption, because of the
symmetry of the constraints. To find the optimal solution for a general
vector, we permute the elements such that they fulfill the requirements,
solve the problem in (D.12), and then rearrange the elements of the
optimal solution with the inverse of the initial permutation.
The KKT conditions of (D.12) are given by

g >0Vi<k (D.13)

1"g=0 (D.14)

lgli —[yli + A —pi=0Vi <k (D.15)
gl —[yli +A=0Vi>k (D.16)
[glips =0 Vi € A. (D.17)

Since the problem is strictly convex, there exists a tuple (g*, \*, u*)
that fulfills the KKT conditions with a unique optimizer g*.

Given the optimal dual variable A* (let’s call it the water level) we
have

g*]i = [yli — N\ Vi >k (D.18)
and

[9]i = [[y)i — X*], Vi< k. (D.19)
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We note that, if the constraint [g]; > 0 is active for some i < k, then
the constraints for all 7 < ¢ are active, too.

Now suppose we know the constraints that are active at the opti-
mum. That is, we know the index k* < k such that [g*]; = 0 Vi < k*
and [g*]; > 0 Vk* < i < k. Since 1Tg* = 0 we can evaluate the
optimal water level

> [l (D.20)

Now the algorithm iteratively evaluates the water-level for all
hypotheses k* = 0, ...,k starting from k* = 0. If as expected
[Ylex+1 — A* > 0 the optimal water-level is found, otherwise k*
is increased by one.
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