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Abstract

This dissertation presents methods for guaranteeing safety of autonomous vehicles. A major
challenge in safe motion planning is the unknown future evolution of prior unseen traffic
situations, which are usually only partially observable. To cope with these uncertainties, we
develop novel solutions for predicting both detected and undetected traffic participants and
for planning collision-free maneuvers in a fail-safe manner.

We propose a set-based prediction that computes all acceptable future behaviors of other
traffic participants. By performing reachability analysis based on formalized traffic rules and
nondeterministic motion models, we predict the set of all possible states of vehicles, pedes-
trians, and cyclists. Even if traffic participants violate traffic rules or if sensor measurements
are noisy or incomplete, safety is not compromised due to our constraint management. To
also consider occluded traffic participants, we create phantom objects at all safety-relevant
parts outside of the observed area.

Subsequently, we develop methods that ensure safe motions for autonomous vehicles. Since
all acceptable behaviors of other traffic participants are captured by our set-based prediction,
we can plan maneuvers for the autonomous vehicle that do not cause accidents. In particular,
our approach determines the latest point in time at which a collision can still be avoided and
computes evasive maneuvers that safeguard the autonomous vehicle. To reveal safety gaps in
motion planners, conversely, we propose an efficient testing method based on falsification.

Extensive real-world experiments with test vehicles validate our solutions. For example,
we verify the safety of the autonomous vehicle online in various traffic scenarios, including
jaywalking pedestrians and taxis braking suddenly. Overall, our methods can be directly used
as a safety layer for existing planning frameworks to drastically reduce the number of traffic
accidents.

Summary: Our novel methods capture all acceptable behaviors of other traffic participants
and prevent autonomous vehicles from causing accidents.
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Zusammenfassung

Diese Dissertation präsentiert Methoden, um die Sicherheit von autonomen Fahrzeugen zu
garantieren. Bei der sicheren Bewegungsplanung stellen besonders unbekannte und meist
nur teilweise einsehbare Verkehrsszenarien, deren zukünftiger zeitlicher Verlauf sehr ungewiss
ist, eine große Herausforderung dar. Diese Unsicherheiten werden durch neuartige Lösungen
bewältigt, indem sowohl erfasste als auch verdeckte Verkehrsteilnehmer prädiziert und so
kollisionsfreie, ausfallsichere Manöver für das eigene Fahrzeug geplant werden.

Eine mengenbasierte Prädiktion wird vorgestellt, die für jeden Verkehrsteilnehmer alle
zulässigen Bewegungen vorausberechnet. Auf Basis von formalisierten Verkehrsregeln und
nichtdeterministischen Bewegungsmodellen werden Erreichbarkeitsanalysen durchgeführt. Da-
durch können alle möglichen Zustände von Fahrzeugen, Fußgängern und Fahrradfahrern vor-
hergesagt werden. Auch wenn sich Verkehrsteilnehmer nicht an die Verkehrsregeln halten oder
die Sensormessungen ungenau oder unvollständig sind, wird die Sicherheit durch automati-
sches Anpassen der Prädiktionsparameter gewährleistet. Um verdeckte Verkehrsteilnehmer zu
berücksichtigen, werden Phantomobjekte in allen sicherheitsrelevanten Bereichen außerhalb
der erfassten Umgebung erstellt.

Als Nächstes werden Methoden zur garantiert sicheren Bewegungsplanung von autonomen
Fahrzeugen entwickelt. Da alle zulässigen Bewegungen anderer Verkehrsteilnehmer in der
mengenbasierten Prädiktion enthalten sind, können Manöver für das autonome Fahrzeug
geplant werden, die keine Unfälle verursachen. Der vorgestellte Ansatz findet insbesondere
den spätmöglichsten Zeitpunkt, an dem eine Kollision noch vermieden werden kann, und
berechnet Ausweichmanöver, die das autonome Fahrzeug jederzeit in einen sicheren Zustand
bringen können. Zuletzt wird eine effiziente Testmethode entwickelt, die durch Falsifikation
Sicherheitslücken von Bewegungsplanern aufdeckt.

Die ausgearbeiteten Lösungen werden mit Testfahrzeugen in umfassenden Versuchen vali-
diert. Zum Beispiel wird die Sicherheit des autonomen Fahrzeugs online verifiziert, wobei in
diversen Verkehrsszenarien etwa unachtsam querende Fußgänger oder plötzlich abbremsende
Taxis berücksichtigt werden. Zusammenfassend lässt sich feststellen, dass die vorgestellten
Methoden zur Absicherung von bestehenden Systemen eingesetzt werden können, um die
Häufigkeit von Verkehrsunfällen drastisch zu reduzieren.

Kurzdarstellung: Die entwickelten Methoden berücksichtigen alle zulässigen Bewegungen
anderer Verkehrsteilnehmer und verhindern, dass autonome Fahrzeuge Unfälle verursachen.
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1 Introduction

Autonomous vehicles will drive modern society to completely new means of mobility. Human
drivers get relieved from driving tasks and can enjoy other things, like reading a dissertation.
If eventually no driver is required, even people who cannot drive, such as elderly people and
children, will be able to reach more places by car. Also public transportation systems are
expected to become more flexible. Besides the change of mobility solutions, autonomous
vehicles can significantly reduce the number and severity of traffic accidents. However, to
realize these benefits, we need to ensure that autonomous vehicles are safe in all traffic
situations, such as the critical day-to-day situations pictured in Figure 1.1.

It is commonly requested that autonomous vehicles have to be more reliable than human
drivers [1]. Since we want autonomous vehicles to prevent accidents, at least severe ones, let
us describe the risk of driving by the number of accidents involving causalities per distance
traveled. For example, in the United States of America, 1.747 million accidents involving

Figure 1.1: Autonomous vehicles have to cope with various situations, such as the following ones
we recorded during a single test drive in Germany on October 25, 2018, from 1 p.m. to 6 p.m. (A)
Entering a highway. (B) Sudden, close lane change of a truck into the own lane. (C) Driving on a
highway with dense traffic. (D) Cyclist who unexpectedly crosses the road. (E) Multiple cyclists
in different lanes. (F) Pedestrian who is jaywalking. (G) Interacting with trams and motorcycles.
(H) Turning at an intersection despite occlusions. (I) Driving in dense urban traffic.
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1 Introduction

casualties have been reported in 2015 [2], while a total of 3, 095, 373 million km has been
driven [3]. Thus, the probability of an accident involving casualties was 5.64 · 10−7 per km.
However, it is challenging to optimize autonomous driving systems so that their collision risk
converges to such a low value. Alternatively, 7.99 billion km can be driven to demonstrate that
the system is better by 20 % than the human driver fatality rate (with 95 % confidence) [1].
Yet, a fleet of 1, 000 autonomous test vehicles requires about 12.2 years for this distance when
driven 24 hours every day at an average speed of 75 km per hour. Instead of real driving,
we can use driving simulations, but they are also no remedy due to the vast amount of test
cases [4]. Overall, conventional approaches are not sufficient to achieve desired levels of safety.
In consequence, we require a paradigm shift to new solutions that can eliminate even residual
collision risks of autonomous vehicles in a fail-safe manner. One of the main challenges in
avoiding collisions is the unknown future behavior of other traffic participants, such as of
surrounding vehicles and pedestrians. Only if considering the future evolution of the traffic
scenario, autonomous vehicles can plan collision-free motions.

This dissertation proposes novel solutions for predicting all future behaviors of other traffic
participants, which enables safe motion planning for autonomous vehicles. In particular,
we develop a formal prediction that captures all possible evolutions of any traffic scenario.
Subsequently, we demonstrate that this prediction can be used online by autonomous vehicles
to compute safe fallback plans that prevent causing accidents. Furthermore, we identify
behaviors of other traffic participants that lead to safety gaps in existing motion planners. All
our solutions are designed both for vehicles without a human driver and for driver assistance
systems.

1.1 Motion safety

Approaches for safe motion planning often originate from concepts applied to mobile robots.
Yet, the application to autonomous road vehicles poses specific challenges but also allows
certain optimizations, e. g., due to the structure of traffic scenarios and traffic rules. In this
dissertation, we review only selected works on general robotics and mainly focus on approaches
applicable to autonomous vehicles in traffic environments. Note that we do not rely on an
explicit communication between traffic participants; for discussions on connected vehicles, we
refer to [5–7].

1.1.1 Safety specifications

Many works on safe motion planning have been proposed, even though they often do not
describe or fulfill desired safety properties. In fact, it is usually relatively easy to find an
acceptable behavior for another traffic participant so that the proposed system eventually
causes a collision. In contrast, even residual collision risks can be eliminated by using formal
methods [8–13]. These methods propose a safety specification and ensure that this formal
specification is fulfilled. In line with these works, we want to encourage a strict handling of
safety. We believe that it is important to carefully specify safety properties and to only claim
what can be proven.

To begin with, we need to determine which situations we regard as safe and which future
evolutions we want to consider. Absolute safety requires that the ego vehicle, i. e., the au-
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1.1 Motion safety

tonomous vehicle under control, is not involved in any accident. This is clearly not possible,
since other traffic participants can easily cause collisions inevitable for the ego vehicle, e. g.,
by crashing into the back of the ego vehicle. In contrast, self-inflicted accidents can and
should be eliminated. Thus, sophisticated safety specifications require that the ego vehicle
does not cause any accident:

• Passive safety [8] requires the ego vehicle to be at rest when a collision occurs. Passive
safety is suitable for mobile robotics, but has limited applicability to road traffic, since
it does not require the ego vehicle to stop such that other traffic participants are still
able to avoid collisions.

• Legal safety [9,11] requires the ego vehicle to be collision-free against all legal behaviors
of other traffic participants. The legal behaviors are defined based on traffic rules, i. e.,
other traffic participants are allowed to perform any behavior that conforms with traffic
rules. If another traffic participant severely violates traffic rules and hence a collision
occurs, the ego vehicle is not considered responsible for the collision.

• Responsibility-Sensitive Safety [14] requires the ego vehicle to perform proper responses
in case longitudinal or lateral safe distances to other traffic participants are violated.
The safe distances and proper responses are defined based on common sense rules and
behaviors.

• Not-at-fault driving [15] requires the ego vehicle to be collision-free against other traffic
participants while moving and allows the ego vehicle to be at rest anywhere. In this
specification, the behaviors of other traffic participants are not specified, but required
as input.

To fulfill any of these safety specifications, a prediction of other traffic participants is
required. This prediction must provide at least all the future behaviors that need to be
considered according to the safety specification. However, we need to decide which future
behaviors must be accounted for and which can be disregarded.

1.1.2 Acceptable behaviors

Let us discuss different perspectives on which behaviors to consider using the scenario in
Figure 1.2 as a running example.

(a) Actual behavior Ideally, we want to exactly know the behavior each other traffic par-
ticipant will perform in the future, i. e., its actual behavior (cf. Figure 1.2a). This is not
possible, since even the traffic participant itself might not be aware of its intended behavior
and can also suddenly change its behavior.

Thus, we need to make a sophisticated forecast about the future behaviors of other traffic
participants.

(b) Dynamically feasible behaviors On the one hand, we can consider traffic environments
as adversarial. Then, possible evolutions of the environment are all dynamically feasible
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actual behavior

pedestrian

ego vehicle other
vehicle

(a) The actual future behavior of other traffic
participants is not known. Thus, we re-
quire a prediction so that the ego vehicle
can avoid collisions.

all dynamically
feasible behaviors

(b) It is dynamically feasible for traffic partic-
ipants to accelerate in any direction. Yet,
such a prediction is overly conservative and
drastically limits the ego vehicle.

most likely
behaviors

(c) The most likely behaviors of other traffic
participants might be to continue with con-
stant velocity. Yet, when only relying on
such a prediction, the ego vehicle might
cause a collision if the actual future behav-
ior is missed.

all acceptable
behaviors

collision-free
trajectories

(d) Acceptable behaviors are those allowed by
traffic rules, e. g., pedestrians may walk but
not run across the road and other vehicles
respect the right of way. Such a prediction
allows the ego vehicle to obtain collision-
free trajectories.

Figure 1.2: The ego vehicle approaches an oncoming vehicle and pedestrians who are walking on
the sidewalk (cf. initial states in Figure 1.2a). To obtain safe motions for the ego vehicle, which
future behaviors of the other traffic participants do we need to anticipate?

behaviors of every traffic participant (cf. Figure 1.2b). These behaviors can be computed as
described in [16–18].

Yet, this prediction is overly conservative, e. g., since pedestrians are considered to suddenly
jump on the road at any time. As a result, the maneuverability of the ego vehicle is often
limited too drastically. Even passing an oncoming vehicle on a two-lane road would not be
possible safely, since oncoming vehicles are always allowed to drive into the lane of the ego
vehicle (if accounting for all dynamically feasible behaviors).

(c) Most likely behaviors On the other hand, we can try to only consider most likely
behaviors of other traffic participants (cf. Figure 1.2c). Using probabilistic methods, we can
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infer behaviors that other traffic participants are most likely performing currently or will
perform in the near future [19].

The prediction of most likely behaviors can be used to optimize the comfort of motions
for the ego vehicle. Yet, the safety of planned motions may be derogated, if the prediction
does not contain the actual future behavior of other traffic participants, e. g., since rather
unlikely behaviors have been disregarded. In fact, if traffic participants behave differently
than predicted, the ego vehicle may no longer be able to avoid a collision.

(d) Acceptable behaviors We believe that the solution for achieving safety lies in between
the above two perspectives (b) and (c). In particular, future behaviors should be predicted
considering traffic rules; otherwise, the prediction often either misses the actual behavior or
is too conservative, which would lead to an overestimation or underestimation of the actual
collision risk [9, Sec. IV-A]. For example, we do not have to expect other vehicles to drive
120 km per hour in urban areas, but we have to expect critical behaviors allowed by traffic
rules, such as emergency braking, full acceleration, or rapid lane changes. Note that in court
proceedings, traffic rules are essential in deciding who is responsible for an accident.

Thus, we request that all behaviors allowed according to traffic rules should be considered
by the ego vehicle (cf. legal safety of Section 1.1.1). Let us denote these behaviors as the
acceptable behaviors of other traffic participants (cf. Figure 1.2d). In other words, acceptable
behaviors are all dynamically feasible behaviors that do not violate traffic rules.

Yet, some behaviors are forbidden by traffic rules but common for human drivers, such as
slight overspeeding. Thus, the specification of acceptable behaviors should be parameterizable
to user preferences, and the prediction should be able to automatically adapt to other traffic
participants violating traffic rules.

Our specification of acceptable behaviors (cf. formal specification later in Chapter 3) can
now be included in the desired safety specification (cf. Section 1.1.1). As a result, safety can
be ensured if the prediction includes all acceptable behaviors.

1.2 Overview of related literature

This section provides a brief overview of the state of the art without discussing individual
works. Yet, we provide references to thorough literature reviews in later sections of this dis-
sertation or in existing surveys. Section 1.2.1 introduces the different categories of prediction
methods, and Section 1.2.2 introduces concepts to ensure safety based on such a prediction.

1.2.1 Prediction of traffic participants

Approaches that predict future behaviors of other traffic participants can be categorized
according to different aspects:

• by the objective: the most likely behavior (e. g., for motion planners requiring high
accuracy for long prediction horizons), all dynamically feasible behaviors (e. g., for en-
suring safety of mobile robots in environments shared with pedestrians), all acceptable
behaviors (e. g., for ensuring safety of autonomous vehicles in traffic environments), or
for other specific use cases (e. g., computationally efficient for driver assistance systems
on tightly restricted hardware);
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• by the type of considered traffic participants: motorized vehicles, pedestrians, or cy-
clists;

• by the applied methodology: e. g., Bayesian filtering, neural networks, or reachability
analysis;

• by the abstraction of underlying motion models (also known as evolution or propagation
models), if applicable: e. g., physics-based, maneuver-based, or interaction-aware;

• by the consideration of traffic rules: e. g., explicitly formalized as constraints or learned
by observations; or

• by the type of the prediction result and its representation: a classification into maneu-
vers (which represent intentions), a single trajectory, a finite number of trajectories, a
probability distribution (e. g., continuous distribution over state variables or discretized
distribution in an occupancy grid), or set-based (e. g., occupancy polygons, velocity
intervals, or other bounded sets of states).

The literature on predicting other traffic participants is extensively reviewed in Section 3.1
with regards to these aspects. Section 3.2 puts particular emphasis on predicting pedestrians
and Section 3.3 on considering interaction between traffic participants. A contemporary
survey on motion prediction of road vehicles does not exist; we refer to [19] for the most
recent one. For surveys on the prediction of pedestrians and their interaction with the ego
vehicle, we refer to [20–22].

The vast amount of works on predicting other traffic participants reveals that research
in this area has been intensifying in the last few years. Especially, many approaches for
predicting most likely behaviors have been proposed. However, a sophisticated prediction of
detected and undetected traffic participants containing all their acceptable behaviors based
on traffic rules does not yet exist.

1.2.2 Safe motion planning

To ensure safety of motions of the ego vehicle, we can make use of different techniques: (a)
assess the risk of the traffic situation, (b) plan safe trajectories for the ego vehicle, (c) verify
the safety of planned trajectories, and (d) falsify the safety of a motion planner. In all these
areas, predicting other traffic participants is required.

(a) Risk assessment Risk assessment or threat assessment determines the criticality of the
current traffic situation for the ego vehicle [19, 23]. It can be used to trigger warnings or
interventions in driver assistance systems or to make decisions in motion planning that are
the least critical. Since the criticality highly depends on which options are available for the
ego vehicle, a prediction of the future behavior of other traffic participants is usually required.

Prominent risk assessment approaches are reviewed in Section 4.1, and we refer to [23] for
an extensive, contemporary survey. While most approaches determine a probabilistic risk
measure, an upper bound of the risk is usually not provided. However, such a worst-case
analysis is required for the ego vehicle to remain safe even if the traffic situation evolves in
the worst possible way.
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1.3 Contributions

(b) Motion planning Motion planning for autonomous vehicles is usually separated into
the prediction of other traffic participants and subsequent decision making and trajectory
planning for the ego vehicle [24–26]. Thus, the future behavior of other traffic participants is
regarded as independent from the decision of the ego vehicle during one planning cycle, and
the interaction is implicitly modeled by replanning. In contrast, interactive motion planning
directly includes the prediction in the decision making [27]. Overall, predicting other traffic
participants is an integral part of motion planning.

Existing motion planning approaches are reviewed in Section 4.2, and we refer to [24] for the
most contemporary survey. Most planning approaches assume a given prediction. However,
when considering all acceptable behaviors, the solution space for the ego vehicle often be-
comes small and convoluted, which poses challenges for trajectory planners. In addition, the
interplay between trajectory planning and prediction needs to be considered for consecutive
planning cycles.

(c) Safety verification Formal verification allows us to mathematically prove that the ego
vehicle always complies with a desired specification (cf. Section 1.1.1), i. e., the ego vehicle
always remains outside of unsafe sets [13].

Approaches for safety verification make use of different techniques and are reviewed in
Sections 4.2 and 4.3. Yet, most of these works require a prediction that provides all acceptable
future behaviors of other traffic participants, since these behaviors are regarded as the time-
variant unsafe sets according to the desired safety specification. Furthermore, it is unclear
how the ego vehicle can react if traffic participants perform behaviors not considered to be
acceptable and whether the approaches generalize to situations that have not been tested or
considered during development.

(d) Safety falsification Falsification is a testing method [28] and aims to disprove a desired
property of a given system [29,30]. Instead of proving the safety as in safety verification, we
challenge the system by trying to find counter-examples. Such counter-examples constitute
of a valid behavior for another traffic participant that led to a safety violation of the ego
vehicle.

Approaches for safety falsification are reviewed in Section 4.4, and we refer to [28, 30] for
contemporary surveys. However, existing approaches are often computationally expensive or
do not exploit specific domain knowledge.

1.3 Contributions

This dissertation proposes a novel set-based prediction that encloses all acceptable behaviors
of both detected and undetected traffic participants (see Figure 1.3 for an example). As
a result, other traffic participants may perform any acceptable behavior in the future, but
the prediction is guaranteed to already contain this behavior; i. e., the prediction is over-
approximative. At the same time, all behaviors not contained in the prediction are guaranteed
to be not acceptable behaviors; i. e., the prediction is bounded. In other words, the actual
future behavior is included in the prediction with a probability of 1 and is not included in the
prediction with a probability of strictly 0 (under the premise that other traffic participants
are allowed to perform any acceptable behavior).
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ego vehicle

oncoming vehicle

trajectory

prediction

prediction of
hidden vehicles

Figure 1.3: The ego vehicle is approaching an intersection. For the detected, oncoming vehicle, we
predict all acceptable behaviors, including turning at the intersection. Due to limited observability,
we also determine where vehicles could be potentially hidden and predict all their acceptable
behaviors. Based on the prediction result, the ego vehicle can obtain a collision-free trajectory.

Previous works [11, 31] presents fundamentals for the reachability analysis of other traffic
participants. Reachability analysis computes the set of states that can be reached by a traffic
participant (cf. formal introduction later in Section 2.2) and thus can be used to compute
all acceptable behaviors. This dissertation relaxes some simplifications made in the previous
works and proposes various, novel solutions:

• We ensure an over-approximation by additionally considering occlusions, all measure-
ment uncertainties, changes of the heading of vehicles, and reversing of vehicles.

• We reduce the over-approximation by improving existing models; developing new mod-
els, e. g., for interaction and the minimum turning radius; and formalizing traffic rules,
e. g., on the safe distance between vehicles, on priorities at intersections, and regarding
pedestrians crossing the road.

• We validate our prediction in several real-world experiments to demonstrate that the
proposed prediction is real-time capable and applicable for different use cases. Figure 1.4
shows exemplary experiments with our test vehicles.

In addition, we propose a specification for the prediction that defines the acceptable behav-
iors based on dynamic constraints and traffic rules. In consequence, the prediction enables
motion planners to fulfill desired safety specification. Our specification also allows users to
tune the degree of conformity to traffic rules. Furthermore, behaviors that are not acceptable
(according to the specification and are thus not necessarily included in our prediction) get
included as soon as another traffic participants actually performs such a behavior, as pos-
tulated by [9]. Therefore, we propose a constraint management that makes the prediction

8



1.3 Contributions

(a) Inside view of the BMW test vehicle on public roads in Germany.

(b) Overview of a fenced test track, in which the BMW test vehicle avoids collisions with pedestrians.

Figure 1.4: Real-world experiments of the proposed set-based prediction and safe motion planning.

robust against traffic participants violating traffic rules, large measurement uncertainties, and
if information about the environment is missing.

Since a method to predict all acceptable behaviors is now available, this dissertation subse-
quently examines the impact of the prediction on ensuring safety and answers open questions
(cf. Section 1.2.2) like:

• What applications does set-based prediction have in motion planning and do they gen-
eralize to arbitrary traffic situations?

9
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• When is the latest time at which the ego vehicle needs to react or at which the driver
assistance system needs to intervene?

• Given a motion planning framework, how can we construct a safety layer that ensures
safety over consecutive planning cycles and copes with convoluted solution spaces? How
useful are motions that result from this safety layer?

• How can we ensure safety despite traffic participants violating traffic rules?

• Where are safety gaps of existing motion planners and which future behaviors of other
traffic participants lead to them? How can we obtain these counter-examples in a com-
putationally efficient way when performing black-box testing (i. e., without knowledge
about the system under test)?

1.4 Outline

The contributions of this dissertation have been developed in eleven publications [61–71]. All
of them have been published in peer-reviewed, international journals or conferences.

1.4.1 Included publications

This cumulative dissertation includes a selection of those publications. The author of this
dissertation is the first author or one of the first authors of each included publication. Together
with the included reprint of each publication, the content of the publication is summarized
and related to the other included publications. As required by the regulations for the award
of doctoral degrees, the main contributions of M. K., the author of this dissertation, are listed.
Nonetheless, also the co-authors have significantly contributed to each publication, which is
gratefully acknowledged, but their individual contributions are not listed. The contributions
of the publication compared to the literature are discussed within the publication.

Prior to presenting the publications, the underlying, general methodology is briefly intro-
duced in Chapter 2. The subsequently included publications are structured in two parts: the
set-based prediction of traffic participants in Chapter 3 and the applications of this prediction
to safe motion planning in Chapter 4.

Chapter 3 presents the theory of the set-based prediction as well as experimental results.
This chapter is organized as follows. Section 3.1 presents [70], which holistically describes the
set-based prediction of other traffic participants. In particular, this journal article defines the
motion models for all different types of traffic participants, considers occlusions, and presents
real-world experiments. Section 3.2 details the prediction of pedestrians by presenting [67],
and Section 3.3 extends the prediction to consider interactions between vehicles by presenting
[63].

Chapter 4 presents methods for safe motion planning that are enabled by the set-based
prediction and is organized as follows. Section 4.1 determines the maximum Time-to-React
for risk assessment of autonomous vehicles by presenting [66]. Section 4.2 presents [71],
which develops a safety layer for existing motion planning frameworks to prevent autonomous
vehicles from causing accidents. Thus, this journal article demonstrates the effectiveness of
formal safety verification for autonomous driving on real-world data, resulting in legally safe

10



1.4 Outline

and not overly conservative motions. Section 4.3 investigates the influence on safety when
traffic participants violate traffic rules that have been an assumption for predicting their future
behavior, i. e., when traffic participants perform behaviors that have not been considered to
be acceptable, by presenting [64]. Section 4.4 efficiently tests and falsifies the safety of motion
planners using rapidly-exploring random trees by presenting [69].

Chapter 5 closes this dissertation by discussing conclusions and suggestions for future
research.

1.4.2 Excluded publications

The following publications of the author are within the scope of this dissertation but not
included:

[61] presents SPOT, which is a publicly available MATLAB toolbox for the set-based pre-
diction of traffic participants.1

[68] presents the integration of [61] as a safety layer into existing motion planning frame-
works.

[62] presents CommonRoad, which is a benchmark suite for trajectory planners. The com-
posable benchmarks consist of traffic scenarios, cost functions, and vehicle models. As
a result, CommonRoad enables reproducible experiments and comparable results.2

[65] presents the conversion of road networks from OpenDRIVE to lanelets, which are both
commonly used map formats, as publicly available Python modules.2

Lastly, we acknowledge the students [72–89], which have completed their Bachelor Thesis
or Master Thesis at the Technical University of Munich under supervision of the author of
this dissertation and have thereby contributed to this dissertation.

1available at spot.in.tum.de
2available at commonroad.in.tum.de
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2 Preliminaries for Prediction and
Motion Planning

In this chapter, we introduce methodology that is relevant for prediction and motion planning.
First, we mathematically describe the problem statements of this dissertation in Section 2.1.
Please note that these problem statements are defined for our purposes but can also be defined
differently. Subsequently, we introduce the admissible and reachable sets for the reachability
analysis in Section 2.2, and we describe our model of the traffic environment in Section 2.3.

2.1 Problem statements

Let us introduce the state x(p) ∈ Rn and a set of states X (p) ⊆ Rn of a traffic participant
p ∈ P , where P is the set of all other traffic participants, which may be detected but can also
be occluded. We distinguish between different types of states:

x
(p)
actual(t) denotes the actual state, i. e., the ground-truth, at time t.

X (p)
meas(t) denotes the set of states obtained from an uncertain measurement at t that

contains at least the actual state, i. e., x
(p)
actual(t) ∈ X

(p)
meas(t) (cf. Figure 2.1).

X (p)
pred(t; t0) denotes the set of states predicted for time t based on information at an initial

time t0.

x
(p)
plan(t; t0) denotes the state at time t resulting from executing a (dynamically feasible)

trajectory that was planned based on information at t0.

X (p)
accept(t; t0) denotes the set of states at time t that would result from performing all

acceptable behaviors when starting at t0.

To denote that a state describes the ego vehicle and not another traffic participant, we
use x(ego), which can be of the same types as introduced above for p. We further introduce
the operator occ

(
x(p)

)
: Rn → Pow(R2) returning the set of points in the two-dimensional

Cartesian frame that are occupied by the traffic participant p (or the ego vehicle if using
x(ego) instead of x(p)), where Pow(R2) denotes the power set of R2. For a set of states X (p),
the occupancy operator is defined as occ

(
X (p)

)
:= {occ

(
x(p)

)
|x(p) ∈ X (p)}.

Problem statement 1 (Prediction) Based on the measurement X (p)
meas(t0), the goal of the

prediction for traffic participant p is to determine a set X (p)
pred(t; t0) for a desired future time

t ≥ t0 that over-approximates all acceptable behaviors, i. e.,

∀t ≥ t0 : X (p)
pred(t; t0) ⊇ X (p)

accept(t; t0),

13



2 Preliminaries for Prediction and Motion Planning

while containing as little over-approximation as possible, i. e., the size of X (p)
pred(t; t0) shall be

minimal.

As a result, a prediction solving Problem statement 1 is guaranteed to contain the actual
state for any future time, i. e., ∀t ≥ t0 : x

(p)
actual(t) ∈ X

(p)
pred(t; t0), if the other traffic participant

p is only performing acceptable behaviors. However, if p is misbehaving, i. e., ∃t1 > t0 :
x
(p)
actual(t1) 6∈ X

(p)
accept(t1; t0), the actual state might be missed by the prediction. Thus, we

require a constraint management that adapts the prediction.

Problem statement 2 (Constraint management) If we detect at t1 > t0 that a traffic

participant p is performing a behavior that is not considered acceptable, i. e., x
(p)
actual(t1) 6∈

X (p)
accept(t1; t0), the goal of the constraint management is to modify the prediction parameters

so that this unacceptable behavior gets included in subsequent prediction results for this
traffic participant, i. e.,

∀t ≥ t1 : x
(p)
actual(t) ∈ X

(p)
pred(t; t1),

under the assumption that p does not perform other unacceptable behaviors (i. e., p may
continue to perform the detected unacceptable behavior or may perform any acceptable be-
havior).

Problem statement 3 (Motion planning) The goal of the motion planning for the ego
vehicle is to determine a trajectory of states that are collision-free against the prediction of
all other traffic participants from t0 until the final planning time tf , i. e.,

∀t ∈ [t0, tf ],∀p ∈ P : occ
(
x
(ego)
plan (t; t0)

)
∩ occ

(
X (p)

pred(t; t0)
)

= ∅.

If a trajectory is planned such that it satisfies Problem statement 3 and the utilized pre-
diction satisfies Problem statement 1, the ego vehicle will not cause a collision with any other
traffic participant according to our safety specification of legal safety (cf. Section 1.1.1),
since the prediction over-approximates all acceptable behaviors of other traffic participants.
Also note that Problem statement 3 is applicable for both planning and verification (cf.
Section 1.2.2).

Problem statement 4 (Risk assessment) The goal of the risk assessment at the current
time t′ is to determine the latest point in time t0 ∈ [t′, t′ + tf ] at which Problem statement 3
can still be solved.

Problem statement 5 (Falsification) The goal of the falsification is to determine a tra-
jectory of states from t0 until tf for a specific traffic participant p1 (using only acceptable
behaviors) so that a trajectory planned by the motion planner of the ego vehicle subsequently
at t1 ∈ [t0, tf ] eventually causes a collision, i. e.,

∀t ∈ [t0, tf ] : x
(p1)
plan(t; t0) ∈ X (p1)

accept(t; t0) ∧
∃t ∈ [t1, tf ] : occ

(
x
(ego)
plan (t; t1)

)
∩ occ

(
x
(p1)
plan(t; t0)

)
6= ∅.
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2.2 Reachability analysis

2.2 Reachability analysis

To solve these problems, we make use of reachability analysis [32–34]. In addition to the set
of states X (p) ⊆ Rn, let us introduce the set of inputs U (p) ⊆ Rm.

Definition 1 (Model M) A model M (p) for the dynamics of traffic participant p is defined

as the tuple M (p) := 〈f (p)
M ,X (p)

M ,U (p)
M 〉, where f

(p)
M is the right-hand side of the differential

equation describing the motion of a traffic participant by

ẋ(p)(t) = f
(p)
M

(
x(p)(t),u(p)(t)

)
, (2.1)

the set of admissible states X (p)
M (t) bounds the states, i. e., ∀t : x(p)(t) ∈ X (p)

M (t), and the set

of admissible inputs bounds the inputs, i. e., ∀t : u(p)(t) ∈ U (p)
M (t).

When starting at an initial state x(p)(t0) and using an input trajectory u(p)(·), a possible
solution of (2.1) at time t ≥ t0 is denoted by χ(p)

(
t;x(p)(t0),u

(p)(·)
)
.

Definition 2 (Reachable set R) The reachable set R(p) of model M (p) is the set of states
that are reachable at time t ≥ t0 from the initial set X (p)(t0) when applying all admissible

inputs U (p)
M (t) while staying within X (p)

M (t):

R(p)(t;M (p),X (p)(t0)) :=

{
χ(p)

(
t,x(p)(t0),u

(p)(·)
) ∣∣∣∣x(p)(t0) ∈ X (p)(t0),∀t? ∈ [t0, t] :

χ(p)
(
t?;x(p)(t0),u

(p)(·)
)
∈ X (p)

M (t?),u(p)(t?) ∈ U (p)
M (t?)

}
.

In Chapter 3, we use reachability analysis for prediction to determine all possible future
states that can be reached by a traffic participant when performing any acceptable behavior
(cf. Problem statement 1). In Sections 4.1 and 4.2, we use reachability analysis for motion
planning to determine the drivable area of the ego vehicle and to ensure that a planned tra-
jectory of the ego vehicle is collision-free (cf. Problem statements 3 and 4). In Section 4.4, we
sample only a few future states instead of determining all reachable states (cf. Problem state-
ment 5).

Key challenges in performing reachability analysis are (a) developing an appropriate model
of a real system, which includes deriving differential equations and defining the set of admis-
sible states and the set of admissible inputs, (b) solving these differential equations, and (c)
choosing an efficient set representation.

2.3 Environment model

The most important input for the prediction and motion planning is a model of the traffic
environment. This environment model contains current information about the map and other
traffic participants, as illustrated in Figure 2.1.

The map is usually generated offline and describes the road, which is partitioned in lanes
and specific areas for pedestrians. The map may also contain information about traffic rules,
such as speed limits or priorities at intersections.
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crossing

lanes of the ego vehicle

sidewalk

measured set X (p)
meas(t)

actual state x
(p)
actual(t)

observable area

Figure 2.1: Our environment model describes the road and all other traffic participants within the

observable area. The set X (p)
meas(t) estimating the current state of a traffic participant contains the

actual state x
(p)
actual(t) and allows for bounded measurement uncertainties.

The information about other traffic participants is gathered online by on-board sensors of
the ego vehicle or obtained by communication with infrastructure, for example. However, the
complete environment can usually not be detected, and we need to handle restricted observ-
ability. Thus, the environment is classified into either unobservable areas or observable areas
(see Figure 2.1). All objects present within observable areas are included in our environment
model. For each observed traffic participant, the model contains its type and its current
state. The type can be passenger car, truck, bus, motorcycle, bicycle, pedestrian, static, or a
combination of these types. For the state estimation, we require that it contains the actual
state and that measurement uncertainties are strictly bounded (see Figure 2.1). Our require-
ments on the object detection are common and are already mostly met by contemporary
approaches, such as [35–44], especially when using set-based observers [45,46].
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3 Set-based Prediction of Traffic
Participants

In this chapter, we develop a formal set-based prediction that solves Problem statement 1,
i. e., our prediction contains all acceptable future behaviors of detected and undetected traffic
participants in arbitrary traffic environments. Section 3.1 fully introduces the set-based pre-
diction of other traffic participants, proposes an algorithm to tackle occlusions, and presents
real-world experiments. Section 3.2 focuses on the prediction of pedestrians, and Section 3.3
focuses on the interaction between vehicles.

3.1 TIV 2020: Set-based Prediction of Traffic Participants
Considering Occlusions and Traffic Rules [70]

Summary A major challenge in provably safe motion planning is the unknown future be-
havior of other traffic participants. We propose a set-based prediction that enables the ego
vehicle to anticipate all acceptable behaviors of other traffic participants. Therefore, we
perform reachability analysis based on formalized traffic rules and nondeterministic models,
which over-approximate the real dynamics of vehicles and pedestrians. Each model is for-
mally defined, and its reachable set is computed to efficiently obtain the maximum possible
positions and velocities. As prediction features, we use longitudinal and lateral dynamics,
the motion history, and contextual information.

Yet, many traffic participants cannot be predicted directly, since they are hidden due to
occlusions. To capture this risk, we create phantom traffic participants at all safety-relevant
boundaries of the field of view of the ego vehicle. These phantom traffic participants are then
predicted together with the detected traffic participants.

For the first time, our set-based prediction is validated in test vehicles. Real-world ex-
periments in various traffic situations demonstrate that our over-approximative prediction is
applicable for both online verification and fail-safe motion planning. We perform online veri-
fication in the presence of pedestrians in a parking environment. As a result, the ego vehicle
only executes trajectories that are collision-free against all acceptable behaviors of pedestri-
ans. In further experiments, we execute our prediction while driving on public roads. Our
constraint management successfully deals with traffic participants violating traffic rules, large
measurement uncertainties, and incomplete environment models (cf. Problem statement 2).
Even in congested, complex traffic situations, our approach enables the ego vehicle to obtain
collision-free fail-safe trajectories.

Contributions of M. K. M. K. developed the legal specification, the algorithm to consider
occlusions, the abstractions that extend previous work, and the constraint management.
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M. K. designed and conducted the experiments (together with C. P., S. K., and F. S.). M. K.
evaluated the experiments. M. K. wrote the article.

Journal article c©2020 IEEE. Reprinted, with permission, from Markus Koschi and Matthias
Althoff, Set-based Prediction of Traffic Participants Considering Occlusions and Traffic Rules,
IEEE Transactions on Intelligent Vehicles.

Attachments The video attachment of this publication is available at go.tum.de/812843.
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Set-based Prediction of Traffic Participants
Considering Occlusions and Traffic Rules

Markus Koschi and Matthias Althoff

Abstract—Provably safe motion planning for automated road
vehicles must ensure that planned motions do not result in a
collision with other traffic participants. This is a major challenge
in autonomous driving, since the future behavior of other traffic
participants is not known and traffic participants are often
hidden due to occlusions. In this work, we propose a formal set-
based prediction that contains all acceptable future behaviors of
both detected and potentially hidden traffic participants. Based
on formalized traffic rules and nondeterministic motion models,
we perform reachability analysis to predict the set of possible
occupancies and velocities of vehicles, pedestrians, and cyclists.
Real-world experiments with a test vehicle in various traffic
situations demonstrate the applicability and real-time capability
of our over-approximative prediction for both online verification
and fail-safe trajectory planning. Even in congested, complex
traffic scenarios, our forecasting approach enables self-driving
vehicles to never cause accidents.

I. INTRODUCTION

BY accounting for safety in a rigorous and formal manner,
we verify that autonomous vehicles do not cause any

accident, which is referred to as legal safety [1]–[5]. Absolute
safety is not possible, since other traffic participants can easily
cause inevitable collisions, e. g., by crashing into the back of
an autonomous vehicle. If every traffic participant adheres to
legal safety, which most traffic participants do, no collisions
will occur. Related safety concepts are passive safety [6],
which requires the autonomous vehicle to be at rest when
a collision occurs, and Responsibility-Sensitive Safety (RSS)
[7], which determines the traffic participant responsible for a
collision based on safe distances for specific driving situations.

However, if traffic participants behave differently than pre-
dicted by the autonomous vehicle, a collision for which the
autonomous vehicle is responsible might be inevitable. There-
fore, we propose a set-based prediction that formally encloses
all acceptable future behaviors of other traffic participants. A
legal specification defines which behaviors are considered to
be acceptable. It explicitly represents our assumptions based
on traffic rules, while the degree of conformity to traffic rules
can be parameterized by the user. Some people might argue
that one cannot restrict acceptable behaviors; however, these
behaviors are based on applicable law, and we believe that it
is better to provide guarantees under these legal assumptions
than to provide no guarantees (which is the case for most
probabilistic approaches).

The planned motion of the ego vehicle, i. e., the autonomous
vehicle under control, is safe if its motion does not intersect

Markus Koschi and Matthias Althoff are with the Department of Infor-
matics, Technical University of Munich, 85748 Garching, Germany (email:
markus.koschi@tum.de and althoff@tum.de).

Digital Object Identifier 10.1109/TIV.2020.3017385

ego vehicle

oncoming vehicle

safe trajectory

occupancies

occupancies of
phantom vehicles

Fig. 1. Snapshot of our real-world experiments with a BMW 7 series test
vehicle. The motion of the ego vehicle is provably safe if its trajectory
never intersects with any predicted occupancy of detected and phantom (i. e.,
potentially hidden) traffic participants.

with any predicted occupancy of all detected and potentially
hidden traffic participants. For example, consider a situation
where the ego vehicle intends to turn left at an intersection
but has to yield to oncoming traffic (cf. Fig. 1). Set-based
prediction allows the ego vehicle to obtain a trajectory that
is provably collision-free against all oncoming and crossing
traffic. In [8], we have shown that this does not result in overly
conservative behaviors for the ego vehicle. Our proposed
method has several applications for autonomous vehicles and
driver assistance systems:

a) Safe states: Based on the predicted occupancies, we
can determine the maximum drivable area [9], the maximum
Time-To-React [10], and the Point of No Return [11]. By ad-
ditionally considering the predicted velocity, we can compute
safe states for the ego vehicle, e. g., to maintain a safe distance
to other vehicles [12]. To guarantee safety for an infinite time
horizon, the planned motion of the ego vehicle must end in
a state that is safe forever. Such invariably safe states can be
determined using our set-based prediction [13].

b) Trajectory planning: Several trajectory planners for
provably safe motions without being overly conservative use
our prediction tool (SPOT [14]) [15]–[18] or assume the
existence of a set-based prediction [19], [20].

c) Verification: Verification of a trajectory means that
we check whether this trajectory complies with a given spec-
ification. Online verification of automated vehicles using set-
based prediction is shown in [3], [8]. It can be extended to an
anytime approach [21] and be embedded in any given vehicle
framework [22]. For industrial robots, set-based prediction
of human body parts has also been successfully used for
verification [23].

3.1 Prediction considering occlusions (TIV 2020)
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A. Related work
We solely focus on motion prediction of other traffic

participants [24]–[26], which is an integral part of motion
planning [27]–[29] and risk assessment [24], [30]. The fol-
lowing related aspects are beyond the scope of this paper:
extracting the information of surrounding traffic participants
from sensor measurements [31]–[33], the uncertainty of these
measurements [34]–[36], and implications on the prediction
for connected vehicles [37], [38].

We categorize prominent early or most recent works by
whether they compute a) a finite number of future trajectories,
b) a probability distribution, or c) a bounded set of states. Since
our proposed prediction considers occlusions, unlike most of
the reviewed works, we subsequently present works on motion
planning in the presence of occlusions1.

a) Trajectories: Early works consider single trajectories
of other traffic participants for collision avoidance [39]. To
obtain a probabilistic prediction, multiple trajectory hypothe-
ses can be weighted by probabilities obtained from Monte
Carlo sampling [40]. Alternatively, intention estimation, i. e.,
a probabilistic classification into discrete, semantically inter-
pretable maneuver classes, is often performed based on support
vector machines [41], hidden Markov models [42], or Bayesian
networks [43]–[45]; particularly for pedestrians, Gaussian pro-
cess dynamical models are often used [46]. In most of these
works, motion models generate a trajectory for each distinct
maneuver class. In contrast, recurrent neural networks often
directly predict a trajectory [47], [48]. Predicted trajectories
can be compared using validation metrics [49] or similarity
measures [50].

b) Probability distribution: To consider that other traffic
participants have infinitely many future behaviors, we can
compute a probability distribution, e. g., of kinematic variables
using dynamic Bayesian networks [51]–[53]. Furthermore,
neural networks have been proposed to predict most likely
behaviors of vehicles on highways [54], [55], of pedestrians
[56], and of cyclists [57]. For pedestrians, also linear quadratic
regulator-based models are used [58]. Probability distributions
can be represented as occupancy grids, which are obtained
through machine learning [59]–[62] or Markov chains [63].
Overall, probability distributions can be used for motion
planning [64]–[66], but they usually do not strictly bound
all possible future behaviors as required for provably safe
motions.

c) Bounded sets: Set-based prediction utilizes reachabil-
ity analysis to compute all future behaviors of other traffic
participants in accordance with the assumptions made [67].
Instead of specifying the input constraints for the reacha-
bility analysis in the assumptions, the constraints can also
be estimated from Gaussian processes [68]. The work of
[67] is extended in [16] by considering occlusions. Set-based
prediction is also able to consider interaction between traffic
participants [69] and formalized traffic rules [14], [70]. The
predicted occupancy sets can also be weighted by probabilities
[71], [72]

1By the term occlusion, we mean that the environment model of the ego
vehicle misses information from non-observable parts outside of its field of
view.

d) Occlusion: The risk from occlusions is tackled either
by shrinking the field of view over the prediction horizon
[73]–[76] or by introducing and predicting individual, po-
tentially present obstacles (aka phantom or virtual objects)
[1], [16], [77]–[85]. Early works considering occlusions are
motion planners for mobile robots [86], [73]–[75]. Later, risk
assessment systems for road vehicles have included occluded
intersections [77]–[80]. In recent motion planners, a partially
observable Markov decision process optimizes the behavior of
the ego vehicle such that the collision risk due to occlusions is
reduced [81]–[84]. In a pedestrian collision avoidance system,
a partially observable Markov decision process propagates the
belief states of occluded pedestrians based on reachable sets
[85]. The occlusion-aware motion planner in [87] remains
collision-free in specific traffic situations for which the authors
have manually defined the worst-case. In contrast, the planners
in [16], [88] generalize to arbitrary traffic situations, since they
use a set-based prediction. In particular, [16] introduces phan-
tom vehicles that could have right of way, and [88] extends
[16] by optimizing comfort while keeping safety guarantees.
Using reachability analysis, [76] guarantees passive safety for
autonomous vehicles despite occlusions.

B. Contributions

This work significantly extends our previous work on set-
based prediction [14], [67], [69], [70] and other previous
works, especially [16], by considering 1) all safety-relevant
occluded vehicles, pedestrians, and static obstacles, 2) priori-
ties of traffic participants at intersections, 3) safe distances to
the ego vehicle, 4) limited turning radii of vehicles, and 5) by
validating the prediction in real-world experiments.

Overall, we present a holistic, formal prediction that enables
provably safe motions for the ego vehicle. In particular, our
prediction offers the following properties:
• uncertainty-aware, i. e., we consider all uncertainties from

sensor measurements as well as of the future evolution
of the environment;

• complete, i. e., our over-approximative prediction is guar-
anteed to contain any acceptable behavior;

• occlusion-aware, i. e., risks due to occlusions are consid-
ered by formally creating phantom objects;

• interaction-aware, i. e., interactions between the ego ve-
hicle and other vehicles and between other vehicles are
considered;

• considering traffic rules, i. e., restrictions due to the
internationally applicable convention on road traffic [89];

• robust against traffic participants violating traffic rules,
high measurement uncertainties, and incomplete environ-
ment models in the conducted experiments;

• designed for both structured and non-structured environ-
ments and not restricted to predefined behaviors;

• computes predictions for arbitrary time intervals without
having to consider predictions of previous time steps; and

• real-time capable for a replanning rate of 50 Hz.
The remainder of this paper is organized as follows. Sec. II

introduces the required formalization and our problem state-
ment. In Sec. III, we describe our legal specification and

3 Set-based Prediction of Traffic Participants
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provide an overview of the prediction algorithm. Sec. IV
presents our extension for occlusions, and Sec. V details
all used models for the prediction. We continue with our
constraint management in Sec. VI and evaluate our prediction
by numerical and real-world experiments in Sec. VII. Finally,
Sec. VIII concludes this paper and proposes future work.

II. PRELIMINARIES

Throughout this paper, we will describe our method for
the current planning cycle starting at t0 when receiving an
updated environment model from the ego vehicle. The initial
time of the planning cycle before t0 is denoted by tc−1. The
environment model Ω := 〈P,N ,DP ,F〉 is formalized by its
elements in the following subsections.

A. Notation

Vectors and matrices are written in bold and sets using a
calligraphic font. For a vector ν ∈ Rn, the operator proj�(ν)
projects ν to its element(s) �. The lower and upper limits of
an interval [ν] ⊂ R are written with overlines and underlines,
respectively, i. e., [ν] := [ν, ν], and the comparison operators
for intervals are defined as [ν] > a⇔ ν > a.

The operator conv(C1, C2) returns the convex hull of the
sets C1 and C2, and C1 ⊕ C2 denotes the Minkowski addition
of C1 and C2. The set of the Boolean values is denoted by B :=
{true, false}. The power set of Rn is denoted by Pow(Rn). A
disk, i. e., a circular area, with center [cx, cy]T and radius r is
denoted by C

(
[cx, cy]T , r

)
:=
{

[x, y]T | (x−cx)2+(y−cy)2 ≤
r2
}

. The 2-dimensional rotation matrix is defined as

R(α) :=

[
cos(α) − sin(α)
sin(α) cos(α)

]
. (1)

B. Formalization of traffic participants

The state vector of a traffic participant in a Cartesian
coordinate frame is s(t) :=

[
x(t), y(t), v(t), ψ(t)

]T ∈ R4

and consists of the position in x-direction and y-direction[
x(t), y(t)

]T
, the scalar velocity v(t), and the heading ψ(t).

The set of all traffic participants is P . Each traffic participant
p ∈ P is described by the tuple p := 〈cp,Sp0 ,Ap,Qp〉, where
• cp ∈ C is the classification consisting of the type,

which is either ego vehicle, pedestrian, or vehicle
(with subtypes car, truck, bus, motorcycle, and bicy-
cle), the attribute detected or phantom (see Sec. IV),
and the attribute dynamic or static. Thus, C :={
{ego,ped, {veh × {car, truck,bus,motcyc, cyc}}} ×
{detected,phantom} × {dyn, static}

}
.

• Sp0 :=
[
[x0], [y0], [v0], [ψ0]

]T ⊂ R4 is the set of uncertain
initial states at t0. Bounded measurement uncertainties
can be provided by set-based observers [90], [91].

• Ap is the uncertain size of p. For the ego vehicle and other
vehicles, we use rectangles with length [`] and width [w],
and for pedestrians, we use circles with radius [r]. The
reference point of a traffic participant is its geometric
center.

• Qp is the tuple of parameters for p (see Tab. I).

The superscript � in ν� denotes that variable ν describes
traffic participant � ∈ P or all traffic participants with
classification � ⊂ C, e. g., we write νveh for all vehicles
except the ego vehicle. For the sake of clarity, we write ν
instead of ν� unless a distinction is necessary.

The operator occ(s(t),A) : R4 × R2 → Pow(R2) returns
the set of points in the two-dimensional Cartesian frame that
are occupied by the traffic participant. For a set of states
S(t), the occupancy operator is defined as occ(S(t),A) :=
{occ(s(t),A) | s(t) ∈ S(t)}.

To account for the limited sensor range of the ego vehicle
and occlusions from other objects, we introduce the field of
view:

Definition 1 (Field of view F ): The field of view F ⊂ R2

is the maximum area in which all other traffic participants are
guaranteed to be detected at the initial time.

C. Formalization of the road network

The road network N := 〈Wroad,Wprio(t),D〉 describes the
environment in separate layers for vehicles (N veh), bicycles
(N cyc), and pedestrians (N ped) and is formalized by its
elements as follows.

Definition 2 (Allowed positions Wroad): Wroad ⊂ R2 de-
scribes all positions in the road network that the corresponding
types of traffic participants may occupy.

For example, Wcyc
road can be restricted to bicycle lanes or also

contain the rest of the carriageway (cf. [89, 25§1(a), 27§4]).
The allowed positions Wped

road for pedestrians consist of all
sidewalks and pedestrian crossings and, if desired, other parts
of the environment, e. g., parking areas or unclassified areas.

Definition 3 (Priority-based positions Wprio): Wprio(t) ⊂
Wroad describes the time-dependent positions that the corre-
sponding types of traffic participants may occupy at time t
without violating the priority of other traffic participants. This
especially includes restrictions due to traffic lights and when
turning at intersections.

In each layer2, the road network is modeled by lanelets [93],
which are atomic, interconnected, and drivable/walkable road
segments:

Definition 4 (Lanelet l): A lanelet l is defined by its left and
right bound, where each bound is represented by an array of
points, as shown in Fig. 2a for l1.

The bounds of a lanelet should be constructed so that the
lanelet is at least as wide as the real lane; to anticipate that
traffic participants slightly violate lane markings, the width of
a lanelet can be enlarged by a user-defined margin. The driving
direction of a lanelet is implicitly defined by its left and right
bound; for pedestrian lanelets, we do not make a distinction of
the driving direction. If two lanelets have a drivable/walkable
connection, their relation is modeled as either longitudinally
adjacent (i. e., predecessor and successor) or laterally adjacent.

2Instead of separate layers, one can also use the concept in Lanelet2 [92].
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We construct a graph of the road network (for each of its
layers), where a node represents a set of laterally adjacent
lanelets depending on the two Boolean constraint parameters
blane1 ∈ {noLat, lat} and blane2 ∈ {drivDir, anyDir}:
• if blane1 = noLat, a node contains only one lanelet and

no laterally adjacent lanelets (see graph in Fig. 2a);
• if blane1 = lat ∧ blane2 = drivDir, a node contains all

laterally adjacent lanelets with the same driving direction
(see graph in Fig. 2b or 2c);

• if blane1 = lat ∧ blane2 = anyDir, a node contains all
laterally adjacent lanelets (see graph in Fig. 2d).

Two nodes are connected in the graph, if at least one lanelet in
the one node is longitudinally adjacent to at least one lanelet
in the other node.

Definition 5 (Driving corridor D): A driving corridor D is
a union of lanelets along a path through the graph of the road
network, as shown in Fig. 2.

If a lanelet or its laterally adjacent lanelets have multiple
successors/predecessors, as in the case of road forks/merges,
multiple driving corridors are created, e. g., l2 is included
in D2 describing a right turn (see Fig. 2b) and also in D3

describing a left turn (see Fig. 2c). Furthermore, each driving
corridor provides a speed limit vspeedLim > 0, and the operator
occ(D) : D → Pow(R2) returns the occupancy of D.

Definition 6 (All driving corridors D): The set of all driv-
ing corridors D(blane1 , blane2) is obtained by performing
breadth-first graph search on the graph of the road network
constructed for the given values of blane1 and blane2 . The
initial nodes are all nodes that contain only lanelets with no
predecessor, and the goal nodes are all nodes that contain only
lanelets with no successor.

Definition 7 (Corridors of a traffic participant Dp): The
set of driving corridors of traffic participant p is denoted by
Dp(blane1 , blane2) ⊂ D(blane1 , blane2) and is provided by the
environment model.

For example, the set of driving corridors of the vehicle in Fig. 2
can be Dp(noLat, drivDir) = {D1} or Dp(lat, drivDir) =
{D2, D3}. When using the parameters bplane1

, bplane2
of a traffic

participant p, we only write Dp for brevity. Furthermore, let
the forward driving corridor ~D be the part of D that is not
behind occ(S0,A) with respect to the driving direction (cf.
~Dego

reach in Fig. 3 later).

D. Reachable set of traffic participants
Let us define the prerequisites for the reachability analysis

based on [67, Sec. IV].

Definition 8 (Model M ): A model M is defined as the tuple
M := 〈fM ,SM ,UM 〉, where fM is the right-hand side of
the differential equation describing the motion of a traffic
participant by

ṡ(t) = fM
(
s(t),u(t)

)
, (2)

and SM (t) ⊆ Rn and UM (t) ⊆ Rm denote the admissible
sets bounding the states s(t) and inputs u(t) of the traffic
participant, respectively.

Γ(ζ)
driving corridor Di

road networkleft and right bound of l1
graph of the

l1

(a) D1 using blane1 = noLat.

Υ(ξ)l2

(b) D2 using blane1 = lat and blane2 = drivDir.

Υ(ξ)l2

(c) D3 using blane1 = lat and blane2 = drivDir.

Υ(ξ)

(d) D4 using blane1 = lat and blane2 = anyDir.

Fig. 2. The road network N (here, we only show the layer for vehicles) is
modeled by lanelets l (see left part). (a)–(d) Given the values for blane1 and
blane2 , we construct the graph of the road network (see right part) and show
a possible driving corridor Di (yellow in both left and right part).

When starting at a state s(t0) ∈ S0 and using an input
trajectory u(·), a possible solution of (2) at time t ≥ t0 is
denoted by χ

(
t; s(t0),u(·)

)
.

Definition 9 (Reachable set R): The reachable set R of
model M is the set of states that are reachable at time t ≥ t0
from the initial set S0 when applying all admissible inputs
UM (t) while staying within SM (t):

R(t;M, t0) :=

{
χ
(
t, s(t0),u(·)

) ∣∣∣∣ s(t0) ∈ S0,∀t? ∈ [t0, t] :

χ
(
t?; s(t0),u(·)

)
∈ SM (t?),u(t?) ∈ UM (t?)

}
.

To over-approximate the reachable set of a model, we intro-
duce abstractions:

Definition 10 (Abstraction): Model M2 is an abstraction of
model M1, if ∀t ≥ t0 : R(t;M1, t0) ⊆ R(t;M2, t0).

To efficiently minimize the over-approximation caused by an
abstraction, we use several abstractions:

Lemma 1 (Combining abstractions): If Mi, i = 2, . . . ,m,
are abstractions of model M1, the intersection of their reach-
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able sets remains an over-approximation of the reachable set
of the original model M1:

∀t ≥ t0 : R(t;M1, t0) ⊆
m⋂

i=2

R(t;Mi, t0). �

Proof: The over-approximation directly follows from [3,
Prop. V.1]. �

If considering the reachable set only at distinct points
in time, we cannot provide any safety guarantees for the
ego vehicle between these points in time. Thus, we need to
compute the reachable set for a time interval [t] := [t, t] ≥
t0 : R([t];M, t0) :=

⋃
t∈[t]R(t;M, t0).

E. Problem statement

Let Mreal be the model that exactly describes the motions
of a traffic participant that can be performed in the real world
and comply with all applicable traffic rules. Our goal is to
predict the future reachable set of a model Mpred that is an
abstraction of Mreal, i. e., R(t;Mreal, t0) ⊆ R(t;Mpred, t0)
for any t ∈ [t], with as little over-approximation as possible.

III. SPECIFICATION AND OVERALL ALGORITHM

Instead of trying to explicitly describe all acceptable be-
haviors in abstraction Mpred, we define constraints in our
specification that lead to an over-approximation of acceptable
behaviors. Our specification is chosen such that the prediction
conforms to legal safety based on traffic rules. Thus, it is
in line with RSS [7] and rulebooks [95], which both specify
acceptable behaviors for the ego vehicle, while we, from the
prediction perspective, focus on the acceptable behaviors of
other traffic participants. Note that our approach has the benefit
that even if we do not model all traffic rules, our prediction
remains over-approximative.

Our parameterizable specification consists of independent
constraints C that are listed in Tab. I. Each constraint is
defined by its parameters, textual description, formalization,
and source. The Boolean parameters b allow us to enable
or disable constraints individually, and the parameters ∆
allow us to tune our reaction to violations of constraints (see
Sec. VI later). The longitudinal direction is described with
respect to the driving direction. In summary, our specification
either constrains the dynamics of other traffic participants (see
upper part of Tab. I) or constrains the allowed regions in the
environment (see lower part of Tab. I).

Alg. 1 provides an overview of our prediction running in
every planning cycle. At the current initial time t0, we receive
as input an updated environment model Ω0 = 〈P,N ,DP ,F〉
of the ego vehicle. If available, the environment model from
the previous planning cycle can also be provided (cf. optional
input of Alg. 1). The parameters Q (cf. Tab. I) are initialized
as desired by the user (cf. Tab. IV later).

First, we create phantom traffic participants that capture the
risks from potentially undetected traffic participants (line 1 of
Alg. 1; cf. Sec. IV). For each traffic participant (except the
ego vehicle), we validate its constraint parameters Qp (line 3;
cf. Sec. VI) and choose all valid abstractions Mp

� (line 4; cf.

Algorithm 1 SET-BASEDPREDICTION

Input: environment model Ω0 = 〈P,N ,DP ,F〉 at t0 (containing
p = 〈cp,Sp0 ,Ap,Qp〉 for each p ∈ P), default parameters Q,
and set τ of arbitrary time intervals [t] ≥ t0

Optional input: environment model Ωc−1 from previous cycle
Output: over-approximative reachable set Rp for each p ∈ P

1: P .ADDPHANTOMS(N , F , Q) . consider occlusions
2: for all p ∈ P do
3: Qp ← VALIDATECONSTRAINTS(Ω0, Ωc−1)
4: Qp ← SELECTVALIDABSTRACTIONS(cp, Qp)
5: Rp(·;Mp

pred, t0) ← R4 . initialize
6: for all Mp

� ∈ Qp do
7: for all [t] ∈ τ do
8: Rp([t];Mp

� , t0) ← REACH([t], Mp
� , p, N , Dp, Qp)

9: Rp([t];Mp
pred, t0)←Rp([t];Mp

pred, t0)∩Rp([t];Mp
� , t0)

10: end for
11: end for
12: end for
13: INTERACTION(Rp(·) for all p ∈ P , N ) . optional
14: return Rp([t];Mp

pred, t0) for all p ∈ P and [t] ∈ τ

Tab. II). Next, for each given time interval [t], we compute the
reachable set of each valid abstraction (line 8; cf. Sec. V) and
intersect them to obtain a tight over-approximative reachable
set (line 9; cf. Sec. V-F).

The time complexity of our algorithm is linear in the number
of traffic participants and the number of time intervals. Our
algorithm can be parallelized for each traffic participant and
each abstraction. Line 13 of Alg. 1 optionally considers the
interaction between vehicles as described in [69], e. g., that a
vehicle cannot tunnel through a stationary vehicle.

IV. OCCLUSION

To consider traffic participants that are hidden due to oc-
clusions and therefore cannot be predicted directly, we create
all phantom traffic participants p = 〈c,S0,A,Q〉 that could
be relevant for the motion of the ego vehicle, as summarized
in Alg. 2, visualized in Fig. 3, and described subsequently.

Def. 1 implies that no traffic participant can suddenly appear
within the field of view, but may enter the field of view at
any time t > t0. Thus, we intersect the boundary of the
field of view with all driving corridors D(lat, drivDir) of
each layer and split the boundary at each intersection point
into border segments (or edges) e (lines 1–3 of Alg. 2; cf.
Fig. 3). The resulting set E := {e1, . . . , ei} contains all border
segments e of the field of view through which phantom traffic
participants can emerge. To consider additional sources of
traffic participants, e. g., doors where pedestrians can appear,
each source can be modeled as an additional driving corridor.

Border segment e is relevant for the motion of the ego
vehicle, if the ego vehicle can be influenced by a phantom
traffic participant that is positioned at e and performs any
acceptable behavior in accordance with our legal specification.
Therefore, we require all forward driving corridors of the ego
vehicle ~Dego

reach := ~Dego(bego
lane1

, bego
lane2

), as shown in Fig. 3.
When using bego

lane1
= lat and bego

lane2
= anyDir, we will create

phantom traffic participants considering all possible behaviors
of the ego vehicle. In case we know that the ego vehicle will

3.1 Prediction considering occlusions (TIV 2020)
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TABLE I
LEGAL SPECIFICATION CONSTRAINING THE ACCEPTABLE BEHAVIORS OF OTHER TRAFFIC PARTICIPANTS.

Constraint Parameters Description and formalization (based on state variables ∀t ≥ t0) Source

Camax amax > 0, ∆amax ≥ 0 Absolute acceleration, i. e., accelerating and braking, does not exceed amax:
|v̇(t)| ≤ amax.

physical law (friction circle)

Cvmax vmax > 0, ∆vmax ≥ 0 Absolute velocity does not exceed vmax: |v(t)| ≤ vmax. physical law and [94]

CspeedLim fspeed ≥ 1, ∆fspeed
≥ 0 For vehicles, longitudinal velocity does not exceed the official speed limit

vspeedLim multiplied by a speeding factor fspeed:|vξ(t)|≤vspeedLim·fspeed.
[89, 13§1–2]

Cengine vS > 0 For vehicles, above the switching velocity vS , longitudinal acceleration is
decreasing inversely proportional to longitudinal velocity due to limited engine
power: |vξ(t)| < vS ∨ |v̇ξ(t)| ≤ amax · vS

|vξ(t)| .

physical law

Creverse breverse∈B, ∆vreverse≤0 For vehicles, it is forbidden to reverse, i. e., to drive backwards in longitudinal
direction: vξ(t) ≥ 0.

[89, 14§2]

Cvmin vmin ∈ R, ∆vmin ≥ 0 For vehicles, longitudinal velocity does not fall below vmin: vξ(t) ≥ vmin. [89, 13§4, 23§1]

Cturn 0 ≤ δmax ≤ π/2, `wb> 0,
`ovr ≥ 0, `ovr ≥ 0

For vehicles, the steering angle does not exceed δmax, and turning within lanes
is forbidden: occ

(
s(t),A

)
∩ Oturn(tc−1) = ∅.

physical law and [89, 14§2]

Croad broad ∈ B It is forbidden to leave Wroad, which are the allowed positions for this type
of traffic participant (cf. Def. 2): occ

(
s(t),A

)
⊆ Wroad.

[89, 1§(d)–(j)]

Cprio bprio ∈ B It is forbidden to occupy parts of the road network that intersect with other
lanes (including forks and merging lanes) for which other traffic participants
currently have priority: occ

(
s(t),A

)
⊆ Oprio(t; t0).

[89, 18§1–7, 20§6(b), 21§2]

Clane blane1 ∈ {noLat, lat},
blane2 ∈ {drivDir, anyDir}

For vehicles, changing lanes is restricted: ~D(t)⊆ ~D(tc−1) using the same N ;
if blane1 = noLat : It is forbidden to change to any other lane.
if blane2 = drivDir : It is forbidden to change to a lane that is not appropriate
with respect to the direction of traffic.

[89, 10§4–5, 11§1–11]

Csafe T ego ≥ 0, aegocomfort ≥ 0 For vehicles, a safe distance (measured along the centerline of the lanes) to
the ego vehicle must be kept when driving behind the ego vehicle or merging
in front of it.

[89, 13§5, 11§2(d)]

not overtake in a lane not appropriate to the direction of traffic,
we can use bego

lane2
= drivDir, and if we know that the ego

vehicle will not change to any laterally adjacent lane, we can

Seg. e Phantom

dyn. vehicle
static vehicle

pedestrian
not relevant

dashed unnecessary

Fig. 3. When intersecting the field of view (bright area) of the ego vehicle
with all driving corridors of each layer of the road network, we obtain
border segments e. At each e, we introduce phantom traffic participants
(see legend) if they could be relevant for the motion of the ego vehicle,
which is determined using the forward driving corridors of the ego vehicle
~Dego
reach = ~Dego(lat, drivDir) (yellow area) and extends [16, Fig. 2].

use bego
lane1

= noLat; this minimizes the set ~Dego
reach to reduce

computation costs.
Let us denote the forward driving corridors when starting at

e by ~D(e) ⊂ D(lat, drivDir). By comparing ~Dego
reach with ~D(e)

as described in lines 5–17 of Alg. 2, we determine whether
e is relevant and what classification c for a phantom traffic
participant at e is required (cf. Fig. 3). An example for a border
segment that is not relevant for the motion of the ego vehicle
is the blue segment in Fig. 3.

Next, in lines 18–28 of Alg. 2, we set the initial positions as
the border segment e (which spans across all laterally adjacent
lanelets with the same driving direction), the initial velocities
as all admissible velocities in the driving corridor of e, the
initial heading aligned with the driving direction, and the
size to the values given in Tab. IV so that e ⊂ occ(S0,A).
As a result, the phantom traffic participant is modeled as
an abstraction of any possibly appearing traffic participant.
Finally, we add the phantom traffic participant to P (line 29
of Alg. 2); thus, it will be predicted analogously to the detected
traffic participants (cf. Alg. 1).

We might have added multiple phantom vehicles in the same
driving corridor, as shown in the right part of Fig. 3 (dashed
segments). If the forward driving corridor of a dynamic
phantom vehicle is completely enclosed by the forward driving
corridor of another dynamic phantom vehicle, we can remove
the latter phantom vehicle, since it is further away from the
ego vehicle and its threat is already considered by the other,
former phantom vehicle (line 31 and 40 of Alg. 2).

3 Set-based Prediction of Traffic Participants
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Algorithm 2 ADDPHANTOMS()
Input: road network N , field of view F , default parameters Q
Output: set of phantom traffic participants P

1: Eveh ← F ∩ Dveh(lat, drivDir)
2: Ecyc ← F ∩ Dcyc(lat, drivDir)
3: Eped ← F ∩ Dped(lat, drivDir)
4: for all e ∈ {Eveh ∪ Ecyc ∪ Eped} do
5: if e ∈ Eveh and ~D(e) ⊆ ~Dego

reach then
6: c ← {veh, phantom, static} . vehicle ahead
7: else if e ∈ Eveh and ~Dego

reach ⊆ ~D(e) then
8: c ← {veh, phantom, dyn} . vehicle behind
9: else if e ∈ Eveh and occ( ~Dego

reach) ∩ occ
(
~D(e)

)
6= ∅ then

10: c ← {veh, phantom, dyn} . crossing vehicle
11: else if e ∈ Ecyc and occ( ~Dego

reach) ∩ occ
(
~D(e)

)
6= ∅ then

12: c ← {cyc,phantom, dyn} . crossing cyclist
13: else if e ∈ Eped then
14: c ← {ped, phantom, dyn} . pedestrian
15: else
16: continue . not relevant, as no interaction with ego vehicle
17: end if
18: if ped ∈ c then . initial state for pedestrian
19: [v0] ← [0, vpedmax] . from Q
20: [ψ0] ← [−π, π]
21: A ← CREATECIRCLE(Q)
22: else . initial state for vehicle (incl. cyclist)
23: [v0] ← [0, vmax,ξ] . from Q and (5)
24: ψ0 ← GETDRIVINGDIRECTION( ~D(e))
25: A ← CREATERECTANGLE(Q)
26: end if
27: [[x0], [y0]]T ← CREATEBOUNDINGBOX(e)
28: D ← D(e)

29: P .ADD(〈c,
[
[x0], [y0], [v0], [ψ0]

]T
,A,Q〉)

30: end for
31: P ← REMOVEUNNECESSARYPHANTOMS(P , N ) . optional
32: return P

33: function REMOVEUNNECESSARYPHANTOMS(P , N )
34: for all i, j ∈ P do
35: if i = j or veh 6∈ ci or phantom 6∈ ci or ci 6= cj then
36: break
37: else if static ∈ ci and ~Di ⊆ ~Dj then
38: P .REMOVE(i) . j is behind i and the ego vehicle is

behind both
39: else if dyn ∈ ci and ~Di ⊆ ~Dj then
40: P .REMOVE(j) . i is in front of j and either both are

behind the ego vehicle or both are approaching the ego vehicle
41: end if
42: end for
43: return P
44: end function

V. ABSTRACTIONS

We minimize the over-approximation of our prediction by
using several abstractions (cf. Lemma 1). Tab. II provides
an overview of the proposed abstractions and their covered
constraints so that all constraints of Tab. I are considered.
Some abstractions require that other constraints have not been
violated, i. e., the Boolean parameters given in Tab. II must
be true; otherwise, this abstraction cannot be computed and
gets disabled, e. g., Mlong is omitted if broad = false. In the
following subsections, we define these abstractions and present
how to compute their reachable set and occupancy.

TABLE II
OVERVIEW OF THE ABSTRACTIONS.

Abstraction Covers constraints Requires See

Macc Camax n/a Sec. V-A

Mvel Cvmax n/a Sec. V-A

Mlong CspeedLim, Cengine,
Creverse, Cvmin , Croad,
Clane (and both Camax

and Cvmax only in
longitudinal direction)

broad Sec. V-B

Mturn Cturn broad ∧ breverse Sec. V-D

Mprio Cprio broad ∧ bprio Sec. V-E

Msafe Csafe broad ∧ breverse Sec. V-C

A. Abstractions based on point-mass model (Macc and Mvel)

To describe a point-mass model, let us rewrite the state
vector as s(t) = [x(t), y(t), vx(t), vy(t)]T ∈ R4 with vx(t) =
v(t) · cos(ψ(t)) and vy(t) = v(t) · sin(ψ(t)). Analogously, the
set of initial states is S0 =

[
[x0], [y0], [vx0

], [vy0 ]
]T ⊂ R4.

The input for the abstractions based on a point-mass model
consists of the acceleration in x-direction and y-direction, i. e.,
u(t) = [ux(t), uy(t)]T ∈ R2.

Definition 11 (Acceleration-bounded abstraction Macc):
Abstraction Macc := 〈fMacc

,SMacc ,UMacc〉 is an acceleration-
bounded point-mass model (Camax ), where

ẋ(t) = vx(t), ẏ(t) = vy(t), v̇x(t) = ux(t), v̇y(t) = uy(t),

SMacc := R4,

UMacc
:=
{

[ux(t), uy(t)]T
∣∣
√
ux(t)2+uy(t)2 ≤ amax

}
.

Proposition 1 (Reachable set of Macc): The reachable set
of Macc for a time interval [t] ≥ t0 is

R([t];Macc, t0) = conv
(
T hom(t) · S0,T hom(t) · S0

)
⊕

T inp(t) · UMacc
,

as shown in the blue part of Fig. 4 and where

T hom(t) =




1 0 t− t0 0
0 1 0 t− t0
0 0 1 0
0 0 0 1


 ,

T inp(t) =




1/2 · (t− t0)2 0
0 1/2 · (t− t0)2

t− t0 0
0 t− t0


 . �

Proof: The reachable set directly follows from [70, Prop. 2].�
To compute the occupancy of R([t];Macc, t0) for vehicles,

we require the heading. However, due to the state represen-
tation of the point-mass model, the reachable set does not
contain a bound for the heading. In our previous work [67], we
have assumed that the heading is constant over the prediction
horizon. In this work, we do not make this assumption. We
can bound the heading until the earliest point in time tv=0 at

3.1 Prediction considering occlusions (TIV 2020)

25



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, 2020 8

x

y

conv
(
T hom(t) · S0,T hom(t) · S0

)

T inp(t) · UMacc

R([t];Macc, t0)

ξmin(t)

T inp(t+ ∆t) · UMacc

T inp(∆t) · UMacc

ψ
0

T hom(t+ ∆t) · S0

[vx(t), vy(t)]T ψ̃(t)

S0

R?(t+ ∆t;Macc, t0)

Fig. 4. Blue part (upper left): The reachable set R([t];Macc, t0) is bounded
by the Minkowski addition of the homogeneous solution T hom([t]) ·S0 with
the input solution T inp(t) · UMacc (cf. Prop. 1 and [70, Fig. 3]). Green part
(lower right): A bound on the heading ψ([t]) for Macc is obtained from the
velocity vector [vx(t), vy(t)]T that has to point withinR?(t+∆t;Macc, t0)
(cf. Lemma 2). Red line (left): To prevent reversing, we restrict the minimum
positions in Mlong to ξmin(t) based on R(tv=0;Macc, t0) (cf. (8)). Note
that all sets are projected onto the position domain.

which the vehicle can come to a standstill when fully braking:

tv=0 :=

{
v0
amax

+ t0 if v0 ≥ 0

−∞ otherwise.
(3)

Lemma 2 (Bounds for ψ of Macc): Due to the limited ac-
celeration in Macc, the heading of a vehicle for [t] ≥ t0 is

ψ([t]) ∈
{[
ψ

0
− ψ̃(t), ψ0 + ψ̃(t)

]
if t < tv=0

R otherwise,

with ψ̃(t) := sin−1
(
amax

v0
· (t− t0)

)
. �

Proof: Let ∆t > 0, t ≥ t0, and t + ∆t < tv=0. A
velocity vector [vx(t), vy(t)]T at t in R(t;Macc, t0)
has to point to a position in R?(t + ∆t;Macc, t0) :=
T hom(t+∆t) ·S0⊕

(
T inp(t+∆t) ·UMacc

−T inp(∆t) ·UMacc

)
,

since we can accelerate by UMacc
during ∆t but must satisfy

Prop. 1 at t + ∆t (see Fig. 4). The maximum angle of
this velocity vector can be described by the tangent against
projx,y

(
R(t;Macc, t0)

)
and projx,y

(
R?(t+∆t;Macc, t0)

)
.

The angle of a tangent on two circles is the inverse of the sine
function of the difference of their radii divided by the distance
of their center points [96]; for our case (see Fig. 4), ψ̃(t) =

sin−1

(
projx,y((T inp(t+∆t)−T inp(∆t))·UMacc−T inp(t)·UMacc)

‖projx,y(T hom(t+∆t)·S0−T hom(t)·S0)‖
2

)
.

Using t? := t − t0 and a v0 ∈ [v0], this evaluates to
ψ̃(t) = sin−1

(
1/2·((t?+∆t)2−∆t2)·amax− 1/2·t?·amax

v0·(t?+∆t)− v0·t?
)

. After
simplifying the term and by selecting the v0 ∈ [v0] that
maximizes ψ̃(t), we obtain ψ̃(t) = sin−1

(
amax

v0
· (t− t0)

)
.

Since the inverse of the sine function is monotonic,
∀t ∈ [t, t] : ψ̃(t) ≤ ψ̃(t). Finally, we add the initial heading
[ψ0] and obtain the bound on ψ([t]). �

Definition 12 (Velocity-bounded abstraction Mvel):
Abstraction Mvel := 〈fMacc

,SMvel
,UMvel

〉 is a velocity-
bounded point-mass model (Cvmax ), where

SMvel
:=
{

[x(t), y(t), vx(t), vy(t)]T
∣∣

√
vx(t)2 + vy(t)2 ≤ vmax

}
,

UMvel
:= R2.

When using Macc and Mvel at the same time, the constraint
on acceleration is more restrictive than the constraint on
velocity until the earliest point in time tvmax at which vmax or
−vmax can be reached:

tvmax =
vmax −max

(
|v0|, |v0|

)

amax
+ t0. (4)

Thus, if tvmax
> t0, we can reduce the over-approximation in

the reachable set of Mvel by initializing it at tvmax
with the

result of Macc (instead of at t0 with S0):

Proposition 2 (Reachable set of Mvel): The reachable set
of Mvel for [t] > tvmax

is

R([t];Mvel, tvmax
) =

{
[x, y, v, ψ]T

∣∣∣∣ [x, y]T ∈

projx,y
(
R(tvmax ;Macc, t0)

)
⊕ C

(
[0, 0]T , vmax · (t− tvmax)

)
,

v ∈ [−vmax, vmax], ψ ∈ R
}
. �

Proof: The reachable set directly follows from [70, (9)]. �

B. Abstraction in longitudinal direction (Mlong)

So far, we have covered constraints on absolute acceleration
and absolute velocity. With abstraction Mlong, we restrict the
motion of vehicles in longitudinal direction and to the road.
According to Croad and Clane, the admissible positions on the
road are obtained from the driving corridors of vehicle p as
occ(Dp).

For each driving corridor D ∈ Dp, we define a curvilinear
coordinate frame along a reference path Υ(ξ) : R → R2,
where the path variable ξ represents the arc length. Since
we want to over-approximate the behavior of vehicles when
accelerating in driving direction, we require that Υ(ξ) is
the shortest possible path through the driving corridor. This
shortest path is obtained by following the inner bound of the
driving corridor (i. e., the bound in the inside of the curve),
while jumping at inflection points instantaneously to the new
inner bound, as described in [67, Def. 8] and illustrated in
Fig. 2b–2d.

To describe motions along Υ(ξ), we rewrite s(t) =

[ξ(t), vξ(t)]
T ∈ R2 and S0 =

[
[ξ0], [vξ0 ]

]T ⊂ R2 by using
vξ(t) = v(t), i. e., we over-approximate the longitudinal
velocity by the absolute velocity. The maximum longitudinal
velocity is determined by the more restrictive constraint of
CspeedLim and Cvmax

(cf. Tab. I) as

vmax,ξ := min(vspeedLim · fspeed, vmax), (5)

3 Set-based Prediction of Traffic Participants
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and the minimum longitudinal velocity is determined by the
more restrictive constraint of Creverse, Cvmin , and Cvmax as

vmin,ξ :=

{
max(vmin, 0) if breverse = true
max(vmin,−vmax,ξ) otherwise.

(6)

In combination with Camax
(only in longitudinal direction)

and Cengine, we describe the maximum longitudinal accelera-
tion amax,ξ (i. e., the limit on increasing the signed velocity)
and the minimum longitudinal acceleration amin,ξ (i. e., the
limit on decreasing the signed velocity) as

amax,ξ

(
vξ(t)

)
:= (7a)





0 if vξ(t) ≥ vmax,ξ

amax · vS
|vξ(t)| if vS ≤ vξ(t) < vmax,ξ

amax if 0 ≤ vξ(t) < min(vS , vmax,ξ)

∞ if vξ(t) < 0,

amin,ξ

(
vξ(t)

)
:= (7b)





−∞ if vξ(t) > 0

−amax if 0 ≥ vξ(t) > max(−vS , vmin,ξ)

−amax · vS
|vξ(t)| if − vS ≥ vξ(t) > vmin,ξ

0 if vξ(t) ≤ min(0, vmin,ξ),

which extends [67, ac2,long] by considering reversing. Note
that in (7a) and (7b), the braking acceleration (i. e., decreasing
the absolute velocity) is set to infinity, since braking behaviors
cannot be over-approximated using the shortest path. However,
braking behaviors are already considered by Macc. Since Macc

does not consider vmin,ξ, we restrict the minimum reachable
position (see red line in Fig. 4) to

ξmin(t) := (8){
projx

(
R(tv=0;Macc, t0)

)
if vmin,ξ ≥ 0 ∧ t ≥ tv=0 ≥ t0

−∞ otherwise,

when assuming without loss of generality that the mean
heading is aligned with the x-axis and by transforming ξmin(t)
to Υ(ξ). Using the above definitions, we define our abstraction:

Definition 13 (Abstraction Mlong for driving corridors):
Abstraction Mlong := 〈fMlong

,SMlong
,UMlong

〉 is defined
along the shortest path Υ(ξ) of each driving corridor D:

ξ̇(t) = vξ(t), v̇ξ(t) = uξ(t),

SMlong
:=
{

[ξ(t), vξ(t)]
T
∣∣ ξ(t) ≥ ξmin(t),

vξ(t) ∈ [vmin,ξ, vmax,ξ]
}
,

UMlong
:=
{
uξ(t) ∈ [amin,ξ

(
vξ(t)

)
, amax,ξ

(
vξ(t)

)
]
}
.

Proposition 3 (Reachable set of Mlong): The reachable set
of Mlong for [t] ≥ t0 is

R([t];Mlong, t0) =

{
[ξ, vξ]

T

∣∣∣∣

ξ ∈
[

max

(∫ t

t0

∫ t

t0

amin,ξ

(
vξ(t)

)
d2t, ξmin(t)

)
,

∫ t

t0

∫ t

t0

amax,ξ

(
vξ(t)

)
d2t

]
,

vξ ∈
[ ∫ t

t0

amin,ξ

(
vξ(t)

)
dt,

∫ t

t0

amax,ξ

(
vξ(t)

)
dt

]}
,

where the integrals can be solved stepwise according to the
discontinuities in (7). �
Proof: The reachable set directly follows from [67, Thm. 2].�

To compute the occupancy of R([t];Mlong, t0), we enlarge
[ξ([t])] by ±

(
`
2

+ w2
)
1/2 so that all headings ψ(t) ∈ R are

considered, and we restrict the lateral positions such that the
occupancy remains within occ(D).

C. Abstraction based on safe distance (Msafe)

To consider that vehicles have to maintain a safe distance
to the ego vehicle (Csafe), we determine the area Osafe that
has to be kept free by other vehicles. In contrast to the other
abstractions, we need to construct Osafe such that it is under-
approximative, since Osafe is subtracted from the prediction
via set difference.

We apply this abstraction Msafe for each forward driving
corridor of the ego vehicle without laterally adjacent lanelets,
i. e., ∀ ~Dego

safe ∈ ~Dego(noLat, drivDir) (cf. Fig. 5 and Def. 7).
Vehicles driving in front of the ego vehicle are excluded for
Msafe, since it is the responsibility of the ego vehicle to main-
tain a safe distance in this case. Thus, we only consider vehi-
cles for Msafe that drive behind or next to the ego vehicle with
the same driving direction or that can eventually merge into
the lane of the ego vehicle, i. e.,

(
~D(noLat, drivDir) 6⊆ ~Dego

safe

)

∧
(
~D(lat, drivDir) ∩ ~Dego

safe 6= ∅
)

(cf. Fig. 2 and 5).
To compute the safe distance, we assume that vehicles

brake until standstill and do not reverse, i. e., breverse = true.
We further assume that the ego vehicle may accelerate with
aego

comfort ≥ 0 until vego
max,ξ (cf. (5)), i. e., its velocity is at

least vego(t) := min(vego
0 + aego

comfort · (t − t0), vego
max,ξ). If

another vehicle merges in front of the ego vehicle and performs
emergency braking, we assume that the ego vehicle is able to
react by braking with −aego

max after its reaction delay T ego.

Lemma 3 (Relative safe distance): A vehicle is only al-
lowed to merge in front of the ego vehicle if it maintains
at least the safe distance dsafe:

dsafe([t]) :=





dsafe,1 if (amax < aego
max) ∧

(
vego

aegomax
< v?

amax

)
∧

(
v? < vego

)

dsafe,2 otherwise,

other vehicle

ego vehicle

ζsafe,front([t])

Γ(ζ) of ~Dego
safe

~Dego
safe

dsafe(tmerge)

ζsafe,rear

~D(true, true)

ζego(tmerge)

`ego/2

ζsafe(tmerge)

ζ(tmerge)

dbrake(t− tmerge)

Osafe([t]; t0)

Fig. 5. The safe distance occupancy Osafe([t]; t0) is constructed from
ζsafe,rear to ζsafe,front([t]) along Γ(ζ) of each ~Dego

safe and considers that
the other vehicle may legally be allowed to merge in front of the ego vehicle.
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27



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, 2020 10

where

dsafe,1 :=

(
v − amax · T ego − vego

)2

2 · (aego
max − amax)

+ 1/2 · amax · T ego2+

(
vego − v

)
· T ego,

dsafe,2 :=
vego2

2 · aego
max
− v2

2 · amax
+ vego · T ego,

with, for [t] ≥ t0,

v := max
(
projvξ(R(t;Mlong, t0)), 0

)
,

v? := max
(
projvξ(R(t;Mlong, t0))− amax · T ego, 0

)
,

vego := max
(
vego(t+ T ego), 0

)
. �

Proof: The safe distance for exact velocities, a single point in
time, and constant velocity of the ego vehicle during T ego

is provided in [97, Thm. 2.8]. Since the safe distance is
monotonic with respect to v and vego (which can be easily
shown by computing the derivative of dsafe,1 and dsafe,2) and
both v and vego are monotonic with respect to t, we can select
the bound of each interval such that the safe distance is under-
approximated, i. e., argmin

(
dsafe(·)

)
, and we can allow the

ego vehicle to accelerate during its reaction delay. �
To describe the safe distance along the centerline of the road

and relative to the minimum position of the ego vehicle for an
under-approximation, we define a curvilinear coordinate frame
along the reference path Γ(ζ) for each driving corridor ~Dego

safe,
where Γ(ζ) corresponds to the centerline (cf. Fig. 2a and 5).
Thus, we rewrite the state vector as s(t) = [ζ(t), vζ(t)]

T and
the safe distance in front of the ego vehicle (see Fig. 5) as

ζsafe([t]) := ζego(t) + `ego/2 + dsafe([t]), (9)

where ζego(t) is obtained from vego(t). However, a vehicle
can merge in front of the ego vehicle while maintaining the
safe distance at

tmerge := min
({
t ≥ t0

∣∣ ζ(t)− /̀2 ≥ ζsafe(t)
})
, (10)

where ζ(t) is obtained by transforming
projξ

(
R(t;Mlong, t0)

)
to Γ(ζ) of ~Dego

safe (see Fig. 5).

Proposition 4 (Safe distance in front of the ego vehicle):
The under-approximative safe distance in front of the ego
vehicle (see Fig. 5) is

ζsafe,front([t]) :=



ζsafe([t]) if t < tmerge

ζsafe(tmerge) + dbrake(t− tmerge) if tmerge ≤ t < tstandstill

ζsafe(tmerge) + dbrake(tstandstill − tmerge) otherwise,

where dbrake(t) := −1/2 · amax · t2 + vmerge · t,
vmerge := max(projvξ(R(tmerge;Mlong, t0)), 0), and
tstandstill := vmerge/amax + t0. �
Proof: For t < tmerge, (9) holds (cf. Lemma 3). At tmerge,
the other vehicle can legally merge into ~Dego

safe and can brake
with −amax. Thus, for tmerge ≤ t < tstandstill, the minimum
distance between the ego vehicle and the other vehicle is
ζsafe(tmerge) plus its braking distance dbrake(t − tmerge). For

t ≥ tstandstill, the safe distance is no longer increasing, since
the other vehicle could have come to a standstill. �

For the case that the other vehicle remains behind the ego
vehicle, the safe distance is the initial position of the ego
vehicle (see Fig. 5):

ζsafe,rear := ζego

0
− `ego/2, (11)

since this over-approximates a legally allowed emergency
braking maneuver by the ego vehicle.

Finally, the safe distance occupancy Osafe([t]; t0) is ob-
tained by transforming [ζsafe,rear, ζsafe,front([t])] to the Carte-
sian coordinate frame and limiting the lateral positions to
occ( ~Dego

safe), as shown in Fig. 5.

D. Abstraction for kinematic constraints (Mturn)

So far, we have only covered dynamic constraints that do
not consider the nonholonomic constraints of vehicles. In
particular, we are interested in the minimum turning radius
(Cturn):

Definition 14 (Turning radius abstraction Mturn):
Derived from the kinematic single-track model [98, Sec. 2.2],
abstraction Mturn removes the maximum area a vehicle does
not penetrate when turning with positive velocity and steering
angle up to δmax, as shown in Fig. 6:

SMturn
:= R4 \ (Cturn,left ∪ Cturn,right),

where

Cturn,left := C
(
R(ψ) · [xturn, Rturn]T + [x, y]T , rturn

)
,

Cturn,right := C
(
R(ψ) · [xturn,−Rturn]T + [x, y]T , rturn

)
,

with xturn := − /̀2 + `ovr, Rturn := `wb · tan(π/2 − δmax),
and rturn := Rturn − w/2. The rear overhang `ovr and the
wheelbase `wb are vehicle parameters.

Note that the turning radius is often referred to as the radius
of the path the outside front wheel is describing during turning.
In contrast, our definition of rturn describes the smaller radius
of the path of the inside rear wheel (cf. Fig. 6). Moreover, since
it is possible to enter the turning circle Cturn when performing
a full turn, constraint Cturn assumes that vehicles do not turn
within lanes (cf. Tab. I and [89, 14§2]).

Given a set of initial states and uncertain vehicle parameters,
we under-approximate the minimum turning radius:

Proposition 5 (Non-reachable occupancy of Mturn): As
illustrated in Fig. 6, the time-independent area not reachable
due to Mturn for any [t] ≥ t0 is

Oturn = Oturn,left ∪ Oturn,right,

where Oturn,left =
⋂

[x0,y0,ψ0,xturn]T ∈ S
C
(
R(ψ0)·[xturn, Rturn]T + [x0, y0]T , rturn

)
,

with S :=
{
{x0, x0}×{y0

, y0}×{ψ0
, ψ0}×{xturn, xturn}

}
,

xturn = − /̀2 + `ovr, xturn = min(− /̀2 + `ovr, 0),
Rturn=`wb·tan(π/2−δmax), and rturn=max(|Rturn|−w/2, 0).

3 Set-based Prediction of Traffic Participants
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`ovr
`wb

`

w/2
ψ

[x, y]T

δmax

Oturn,left

rturn

Rturn
π
2
− δmax

x

y xturn

ψ

Fig. 6. Oturn is constructed by intersecting the minimum turning circles of
the kinematic single-track vehicle model for all initial states and uncertain
vehicle parameters. For the sake of clarity, we only show the vehicle traces
and turning circles for ±ψ (black and blue).

Oturn,right is constructed analogous as Oturn,left except that
Rturn is multiplied by −1. �

Proof: To under-approximate Def. 14 for all intervals [x0],
[y0], [ψ0], [`], [w], [`ovr], and [`wb], we would require infinitely
many intersections of all possible combinations with all inter-
val values. However, we can reduce the solution to a finite
amount of intersections. The intersection of the solution using
x0 and the one using x0 contains the solution for all [x0], since
x0 only linearly translates the solution over a closed interval.
In addition, [x0] has no influence on the other variables. Both
properties also apply to [y0] as well as [`] and [`ovr]. We
only need to consider the upper bound of [w], since w is
minimizing rturn and all intersections of arbitrary circles with
the same center always contain the circle with the minimum
radius. Due to the same reason, the lower bound of [`wb]
suffices. The centers (see crosses in Fig. 6) of the turning
circles with ψ0 ∈ [ψ

0
, ψ0] lie on a circular arc with radius

‖[xturn, Rturn]T ‖2. Since rturn ≤ ‖[xturn, Rturn]T ‖2 for all
possible xturn and Rturn, the intersection of the solution using
ψ

0
and the one using ψ0 contains the solution for all [ψ0]. By

intersecting the solution of all possible combinations of the
remaining extreme values given in S, we obtain the result. �

In summary, abstraction Mturn especially reduces the over-
approximation in the prediction for low initial velocities and
small initial heading intervals. For high measurement uncer-
tainties, however, Oturn can also be empty.

E. Abstraction based on priority traffic rules (Mprio)

The only constraint we have not yet considered is Cprio.

Definition 15 (Priority-based abstraction Mprio): Based
on priority traffic rules, abstraction Mprio restricts the

occupancy to Wprio(t), which is provided by the environment
model (cf. Def. 3), without constraining the dynamics.

The occupancy of Mprio for [t] ≥ t0 is Oprio([t]; t0) =⋃
t∈[t]Wprio(t). Since pedestrians often do not observe the pri-

ority of vehicular traffic, e. g., by jaywalking, Oped
prio(t; t0) can

be extended to a more sophisticated prediction of pedestrians
stepping on the road and potentially crossing it as described
in [70, Sec. III-B].

F. Summary of abstractions

After introducing all abstractions and the computation of
their reachable set and occupancy, we summarize the predic-
tion for each type of traffic participant for a time interval
[t] ≥ t0 in accordance with Lemma 1 and such that all
applicable constraints of Tab. I are considered (cf. Tab. II).
For vehicles, the reachable occupancy is

Oveh([t]; t0) := occ
(
R([t];Macc, t0),A

)
∩ O{turn

∩ occ
(
R([t];Mlong, t0),A

)

∩ O{safe([t]; t0) ∩ Oprio([t]; t0),

(12)

where O{ denotes the complement of O. For pedestrians, the
reachable occupancy is

Oped([t]; t0) := occ
(
R([t];Macc, t0),A

)
(13)

∩ occ
(
R([t];Mvel, t0),A

)
∩ Oprio([t]; t0),

since the other abstractions are only applicable to vehicles.

VI. CONSTRAINT MANAGEMENT

Our assumptions can become violated, if other traffic partic-
ipants misbehave, i. e., perform an unacceptable behavior, or
if measurement uncertainties are very high. To enable the ego
vehicle to react to these violations, we validate the constraint
parameters Qp of each traffic participant based on the current
environment model Ω0 and, if available, on the environment
model Ωc−1 of the previous planning cycle.

We adjust the constraint parameters in case of violations
such that observed but unacceptable behavior gets no longer
excluded from our prediction, as described in Tab. III, which
extends [14, Tab. III]. Numerical parameters are updated to
the measured state plus a threshold, where we use thresholds
∆amax

,∆vmax
,∆fspeed

,∆vmin
to prevent an updated constraint

from directly being violated again, and threshold ∆vreverse to
prevent noisy velocity measurements slightly below 0 from
being considered as reversing. Boolean parameters are updated
to false so that violated constraints get disabled. Cengine and
Cturn also get disabled in case of a violation by setting their
parameter to the maximum value (cf. Tab. III).

Our default set of parameters Q is provided in Tab. IV.
Note that these values are suggestions to over-approximate
the real and legal motions of traffic participants in accordance
with Mreal, but that they can be adjusted to user preferences.
Especially, the parameters for Cturn to under-approximate
the turning radius should be adapted to the applicable legal
regulations of the target country (cf. [89, 30§4–5]). The default
values for Clane forbid vehicles to overtake in a lane not

3.1 Prediction considering occlusions (TIV 2020)
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TABLE III
CONSTRAINT MANAGEMENT.

Constraint
of Tab. I

If formalization of Tab. I evaluates to false
for t = t0, update parameters as

Camax amax ← a0 + ∆amax

Cvmax vmax ← max
(
|v0|, |v0|

)
+ ∆vmax

CspeedLim fspeed ← v0
vspeedLim

+ ∆fspeed

Cengine vS ←∞
Creverse if v0 < ∆vreverse : breverse ← false

Cvmin vmin ← v0 −∆vmin

Cturn δmax ← π/2

Croad broad ← false

Cprio bprio ← false

Clane if blane1 = noLat : blane1 ← lat
else if blane2 = drivDir : blane2 ← anyDir
else: broad ← false

TABLE IV
DEFAULT PARAMETERS.

Constraint
of Tab. I

Parameter and its default value

Camax avehmax 8.0 m/s2 apedmax 1.0 m/s2 acycmax 3.5 m/s2

∆amax 0.5 m/s2

Cvmax vvehmax 70.0 m/s vpedmax 2.0 m/s vcycmax 12.0 m/s

∆veh
vmax

0.5 m/s

CspeedLim fspeed 1.2 ∆fspeed
0.1

Cengine vvehS 7.0 m/s vcycS ∞
Creverse breverse true ∆vreverse −1.0 m/s

Cvmin vmin −10.0 m/s ∆vmin 1.0 m/s

Cturn `carwb 1.8 m `motcyc
wb 1.1 m `cycwb 0.8 m

`truckwb 3.0 m `buswb 3.0 m

δmax 1.0 rad `ovr 0

`
car
ovr 3.7 m `

motcyc
ovr 1.0 m `

cyc
ovr 1.0 m

`
truck
ovr 3.7 m `

bus
ovr 4.9 m

Croad broad true

Cprio bprio true

Clane blane1 lat blane2 drivDir

Csafe T ego 1.0 s aegocomfort 1.0 m/s2

Aphantom w 0 ` 0.5 m r 0.25 m

appropriate to the direction of traffic, since such a behavior is
only allowed if not endangering or interfering with oncoming
traffic [88, 11§2(c)], and thus it is forbidden in the vicinity of
the ego vehicle.

VII. EXPERIMENTAL RESULTS

For a prediction that claims to be over-approximative (cf.
our problem statement in Sec. II-E), it is crucial to demonstrate
this property. In our previous work, we have already shown

conformance of the prediction on recorded data of 1074 vehi-
cles in [67, Sec. V-C] and of 400 pedestrians in [70, Sec. IV-
A], and we have evaluated how conservative the prediction
is against a high-fidelity vehicle model in [67, Sec. V-B].
These results demonstrate that the ground-truth trajectories
were always contained in the prediction and that the over-
approximation was not unreasonably conservative.

In this paper, we want to demonstrate that our prediction
works on complicated, real-world scenarios and, despite being
over-approximative, allows the ego vehicle to obtain collision-
free trajectories. Therefore, we simulate an urban intersection
with occlusions in Sec. VII-A, and, for the first time, we
present real-world experiments with test vehicles in Sec. VII-B
and VII-C. The video attachment of this paper contains further
results. For all experiments, we used the parameters of Tab. IV
if not noted otherwise and implemented Alg. 1 without consid-
ering interaction, i. e., we omitted the optional line 13. Initial
positions are over-approximated either by rectangles aligned
with the mean heading of the traffic participant or by circles
to ease the consideration of the traffic participant’s size. As
representation for the predicted set, we choose polygons for
the position domain and intervals for the other states. Thus,
the states are not coupled with each other to allow for efficient
computations despite some over-approximations.

A. Intersection with occlusions and priorities

Fig. 7 presents an urban intersection with different detected
traffic participants. The road network is provided with one
layer for vehicles and one for bicycles, and the speed limit
of all lanes is vspeedLim = 13.89 m/s. Due to occlusions and
a limited sensor range with radius of 33 m, the field of view
F0 is restricted. To capture this risk, our approach creates 3
phantom vehicles, 2 phantoms cyclists, and 24 static phantom
obstacles. The prediction result is shown for a time horizon
of 1.0 s with a time step size of 0.1 s. The oncoming phantom
vehicle (from the top) is forbidden to make a left turn, since
the ego vehicle has the right of way, which is modeled by
Wprio(t). Based on the predicted occupancies, the ego vehicle
can decide when to safely proceed into the intersection.

Fig. 7. Urban intersection (CommonRoad ID: S=DEU Muc-30 1 S-1:2018b
[99]): the ego vehicle (black) has to yield to crossing traffic. Since two vehicles
(blue) and one cyclist (blue) cause occlusions, we create phantom traffic
participants (dynamic: green, static: grey) at the boundary of the field of
view (black). (background image: Google, GeoBasis-DE/BKG)

3 Set-based Prediction of Traffic Participants
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(a) (b)

Fig. 8. Online verification of parking maneuvers for the ego vehicle (black)
considering a pedestrian (blue). The predicted occupancy of the pedestrian
(light blue) and the occupancy of the verified maneuver of the ego vehi-
cle including safety margins (red) are both shown for two time intervals,
t ∈ [0 s, 0.8 s] and [0.8 s, 1.6 s]. (a) The ego vehicle executed a verified
braking maneuver such that it definitely will come to a stop in front of the
pedestrian. The recorded stopping position of the ego vehicle 1.6 s later is
shown transparently. (b) Since the occupancies did not intersect anymore, a
new maneuver for the ego vehicle has been verified as safe. A video of this
real-world experiment is attached to this paper.

B. Online verification considering pedestrians

We have performed online verification of maneuvers in the
presence of pedestrians. Online verification ensures that the
ego vehicle only executes trajectories that have been verified as
safe [3], [8]. For our experiments, we want to achieve passive
safety, i. e., a trajectory is verified as safe if the maneuver
is collision-free against all acceptable future behaviors of
surrounding traffic participants and brings the ego vehicle to
a standstill. In particular, our self-driving BMW 5 series test
vehicle has to avoid collisions with pedestrians in a parking
lot, i. e., an unstructured environment. The ego vehicle receives
trajectories that are following a predefined path with constant
velocity vego

des = 2.0 m/s for a planning horizon of th = 1.6 s
(with constant time offset to be robust against processing
time delays). These intended trajectories are not aware of
pedestrians. Thus, we append a path-consistent braking profile
to the given intended trajectory such that the ego vehicle
comes to a stop within th, and we predict the pedestrians
using aped

max = 2.0 m/s2. If the new trajectory does not intersect
with the predicted occupancies, the ego vehicle will execute it;
otherwise, it will keep executing the trajectory that has been
verified in the previous planning cycle.

This online verification has been executed on our test
vehicle on November 09, 2018, and Fig. 8 shows recordings
of these real-world experiments. Since the pedestrian was
blocking the path of the ego vehicle, the ego vehicle eventually
could not verify a new trajectory and, by executing the
previously verified trajectory, came to a stop (see Fig. 8a).
A few seconds later, the pedestrian walked away and a new
trajectory has been verified as safe (see Fig. 8b).

C. Online experiments on public roads

We have executed our prediction online in a test vehicle
on public roads. Therefore, we implemented our approach in
C++ on a BMW 7 series test vehicle. The environment model
provides the initial states of surrounding traffic participants
based on [33] and the rectangular field of view without
occlusions that extends 100 m in longitudinal and 60 m in
lateral direction of the current pose of the ego vehicle. We use

the planner of [15] to obtain trajectories for the ego vehicle
that are collision-free against all predicted occupancies and
bring the ego vehicle to a standstill; for the few cases the
initial velocity is too high to come to a standstill within the
planning horizon, we constrain the final state to comply with
safe distances to predicted traffic participants. The prediction
and planning horizon is 3.0 s with a time step size of 0.25 s.

We conducted four test drives in Germany from 1.30 p.m.
to 5 p.m. on Wednesday, March 13, 2019. Each test drive was
along the 17 km long route between the BMW Autonomous
Driving Campus in Unterschleißheim and the BMW Research
and Innovation Center in Munich and contains both urban
and rural multi-lane roads with speed limits ranging from
8.3 m/s to 27.8 m/s. While we have performed the prediction
online, we did not perform the trajectory planning closed-
loop but offline in a postprecessing step, since approval by
authorities has not yet been given. In all test drives combined,
we have predicted 163, 715 detected and 211, 863 phantom
traffic participants (dynamic and static) in 29, 818 replanning
steps. Fig. 1 and 9 show exemplary results. Predicted occu-
pancies and planned trajectories are shown for the full time
horizon. The visualization of the ego vehicle, its trajectory, and
other traffic participants can have a slight time offset to each
other due to the asynchronous updates. Overall, the results
demonstrate that the prediction performs well in arbitrary
road networks and with vast numbers of traffic participants.
Even in crowded environments, the prediction incorporates the
interaction with the ego vehicle and allows to obtain collision-
free trajectories, while containing all acceptable behaviors of
other traffic participants. Only in a few situations, a new
safe trajectory for the ego vehicle could not be obtained, as
shown in Fig. 10; since the prediction was not provided with
Wprio(t), it could not consider the right of way for the ego
vehicle.

During the real-world experiments, our legal specification
has been violated a few times by the recorded traffic partici-
pants. Tab. V evaluates how often the constraint management
had to update the values of the constraints according to
Tab. III, when using as initial values the ones of Tab. IV
except for vmin. For each parameter, we present its relative
number of updates for all detected, dynamic traffic participants
in our test drives (i. e., for 90, 779 motorized vehicles, 15, 650
pedestrians, and 4, 770 cyclists), the maximum value it has
been updated to, and the mean value of all updated values.
Note that the maximum and mean values are the measured
values plus our thresholds (cf. Tab. III). In most cases, the vi-
olations were caused by high measurement uncertainties or an
incomplete environment model, e. g., when no driving corridor
was provided for a traffic participant (see Fig. 10). In other
cases, a traffic participant indeed violated our specification.
Since the mean values of all violations are only slightly above
the initial values, the initial parameterization seems reasonable,
but can be adjusted to user preferences. To reduce the influence
of violated constraints on the safety of motion plans, we
refer to [11]. Legal safety can be ensured despite constraint
violations by planning fail-safe trajectories [15] and switching
to a reactive mode for collision mitigation in case of inevitable
collisions.

3.1 Prediction considering occlusions (TIV 2020)
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(a) Even on multi-lane roads, the ego vehicle has enough free space, since the safe distance forbids
passing vehicles from merging directly in front of the ego vehicle.

(b) The pedestrian is predicted to cross the road per-
pendicular plus a deviation depending on its heading.

(c) While overtaking a truck, a vehicle ahead is merg-
ing into the lane of the ego vehicle.

Fig. 9. Set-based prediction of various traffic participants (car: green, truck/bus: red, cyclist: turquoise, motorcyclist: blue, pedestrian: magenta, static: grey
box, phantom: grey area) in different urban and rural scenarios of our real-world experiments. Based on the predicted occupancies, we successfully obtained
collision-free trajectories (red) for the ego vehicle (silver-colored vehicle). Videos of further real-world experiments are attached.

Let us finally evaluate the required computation times for
the prediction, i. e., for the loop over all traffic participants
in Alg. 1. The test vehicle is equipped with an Intel i7
6900K processor and 64 GB memory; the frequency of the
processor is underclocked from 3.2 GHz to 1.2 GHz to
improve the energy consumption and heat management. The
mean computation time for one planning cycle was 9.86 ms
with a standard deviation of 12.02 ms for a prediction horizon
of 2.0 s. Note that the outliers mostly occurred due to high
computational load caused by other software modules. Further

TABLE V
EVALUATION OF THE CONSTRAINT MANAGEMENT.

Constraint
of Tab. I

Para-
meter

Initial
value

Mean value
of updates

Max. value
of updates

Num. of
updates

Camax avehmax 8.0 m/s2 9.50 m/s2 15.14 m/s2 0.03 %

apedmax 1.0 m/s2 2.18 m/s2 7.41 m/s2 6.91 %

acycmax 3.5 m/s2 4.57 m/s2 7.89 m/s2 0.59 %

Cvmax vvehmax 70.0 m/s n/a n/a 0.00 %

vpedmax 2.0 m/s 3.39 m/s 6.78 m/s 5.83 %

vcycmax 12.0 m/s 12.92 m/s 13.48 m/s 0.27 %

CspeedLim fvehs 1.2 1.43 3.36 0.21 %

Cengine vvehs 7.0 m/s n/a ∞ 0.83 %

Creverse bvehreverse true n/a n/a 2.01 %

bcycreverse true n/a n/a 0.27 %

Cvmin vvehmin −1.0 m/s −1.64 m/s −10.93 m/s 2.01 %

vcycmin −1.0 m/s −2.10 m/s −5.84 m/s 0.27 %

Clane/ Croad bvehroad true n/a n/a 2.27 %

bcycroad true n/a n/a 31.07 %

experiments showed that the computation time is linear with
the prediction horizon.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a set-based prediction for provably safe
motion planning based on legal safety. Our prediction is
guaranteed to contain all acceptable behaviors in accordance
with a legal specification. This is achieved by rigorous com-
putations in a formal manner, nondeterministic models that
over-approximate the dynamics of the traffic participants, and
conservative parameterization. As prediction features, we use
longitudinal and lateral dynamics, the motion history, and the
types of traffic participants in combination with contextual
information and the field of view.

For the first time, we have validated our prediction in test
vehicles. These real-world experiments demonstrate that our

Fig. 10. Situation of our real-world experiments (cf. Fig. 9) in which a safe
trajectory could not be obtained. Since the environment model did not restrict
the priority-based positions Wprio(t) for the oncoming vehicle (ID 1515),
the prediction allows this vehicle to traverse the lane of the ego vehicle.
In addition, since the environment model did not provide a driving corridor
for the cyclist (ID 1498) next to the ego vehicle, the constraint management
updated broad ← false and the prediction of this cyclist can only use Macc.

3 Set-based Prediction of Traffic Participants
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prediction runs online in arbitrary traffic scenarios and that
motion planners are able to obtain collision-free trajectories
despite the over-approximative prediction and even in con-
gested environments. In addition, our constraint management
successfully dealt with traffic participants that violate traffic
rules, high measurement uncertainties, and incomplete envi-
ronment models.

For a good performance of the prediction, we require a
detailed and precise environment model with strictly bounded
measurement uncertainties. Future work includes more restric-
tive bounds on the admissible velocity by considering the
curvature of the road and on the admissible lateral acceleration
(e. g., based on [100]) while remaining over-approximative. It
also seems interesting to use our proposed set-based prediction
as propagation model for object tracking.
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3 Set-based Prediction of Traffic Participants

3.2 ITSC 2018: Set-Based Prediction of Pedestrians in
Urban Environments Considering Formalized Traffic
Rules [67]

Summary A set-based prediction tailored to the acceptable behaviors of pedestrians does
not yet exist. Thus, this section extends the general set-based prediction, which has been
presented in the previous Section 3.1, especially by formalizing traffic rules applicable for
pedestrians. By incorporating the dynamics of pedestrians, contextual information, and
traffic rules related to the interaction between vehicles and pedestrians, we obtain tight over-
approximations of pedestrians’ reachable occupancy (cf. Problem statement 1), which signif-
icantly improves predictions compared to a solely dynamical model. Particular focus lies on
the models to predict pedestrians disregarding traffic rules, such as jaywalking pedestrians,
to solve Problem statement 2. We introduce atomic constraints that automatically adapt to
possible violations so that all behaviors relevant for approaching vehicles are included in the
prediction. In particular, we distinguish between behavior that does not enter the road, that
stops as quickly as possible, that crosses the road perpendicular, and that occupies only the
edge of the road.

Using datasets containing 400 recorded pedestrians, we validate our proposed method.
Conformance of the over-approximation is achieved, since the ground-truth trajectories are
fully contained in the predicted occupancy sets. We also demonstrate the usefulnesses of
our set-based prediction for evasive maneuver planning. Our results show that by using the
predicted occupancies, the ego vehicle is able to avoid the jaywalking pedestrian. Thus, our
approach can improve systems for collision avoidance with pedestrians. Real-world vehicle
experiments, which are proposed as future work at the end of the publication, are realized in
Section 4.2.

Contributions of M. K. M. K. developed the motion models and their reachability analysis
(together with M. A.), the formalization of traffic rules (together with M. B.), and the con-
straint management. M. K. designed, conducted, and evaluated the experiments (together
with C. P.). M. K. wrote most of the article.

Conference paper c©2018 IEEE. Reprinted, with permission, from Markus Koschi, Chris-
tian Pek, Mona Beikirch, and Matthias Althoff, Set-Based Prediction of Pedestrians in Urban
Environments Considering Formalized Traffic Rules, in Proc. of the 21st IEEE International
Conference on Intelligent Transportation Systems.

Attachments The video attachment of this publication is available at go.tum.de/074008.
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Set-Based Prediction of Pedestrians in Urban Environments
Considering Formalized Traffic Rules

Markus Koschi1, Christian Pek1,2, Mona Beikirch1,2, and Matthias Althoff1

Abstract— Set-based predictions can ensure the safety of
planned motions, since they provide a bounded region which
includes all possible future states of nondeterministic models
of other traffic participants. However, while autonomous vehi-
cles are tested in urban environments, a set-based prediction
tailored to pedestrians does not exist yet. This paper addresses
this problem and presents an approach for set-based predictions
of pedestrians using reachability analysis. We obtain tight over-
approximations of pedestrians’ reachable occupancy by incor-
porating the dynamics of pedestrians, contextual information,
and traffic rules. In addition, since pedestrians often disregard
traffic rules, our constraints automatically adapt so that such
behaviors are included in the prediction. Using datasets of
recorded pedestrians, we validate our proposed method and
demonstrate its use for evasive maneuver planning of automated
vehicles.

I. INTRODUCTION

A. Motivation

Automated vehicles may endanger other traffic participants
in the event that they misjudge a traffic situation. In urban
environments in particular, vulnerable road users such as
pedestrians impose strict safety requirements. For example,
if autonomous vehicles do not consider that an approaching
pedestrian might try to cross the road at the last second (cf.
Fig. 1), a fatal collision could be inevitable.

To prevent such situations at an early stage, the future
motion of pedestrians needs to be accurately predicted [1],
[2]. Current probabilistic approaches are limited when pre-
dicting all feasible and legal future motion, since they are
not designed to enclose all behaviors given an uncertain
pedestrian model. In contrast, set-based predictions guarantee
that all planned motions are safe, even when traffic partici-
pants deviate from the most likely prediction [3]. Recently,
a prediction approach using reachability analysis to account
for any feasible future motion of other traffic participants in
a set-based fashion was proposed [4]. However, a set-based
prediction method for pedestrians considering both structured
and unstructured environments does not yet exist, making it
difficult to provide advanced safety systems which ensure
the safety of vulnerable road users.

1Department of Informatics, Technical University of Munich, 85748
Garching, Germany.

2BMW Group, 85716 Unterschleissheim, Germany.
markus.koschi@tum.de, christian.pek@tum.de,

mona.beikirch@tum.de, matthias.althoff@tum.de
This work was partially supported by the BMW Group within the

CAR@TUM project, the German Federal Ministry of Economics and Tech-
nology through the research initiative Ko-HAF, and the German Research
Foundation (DFG) under grant number AL 1185/7-1.

Wside Wveh

Pedestrian

Ego vehicle

Wcross

Sidewalk Roadway

Crossing

Fig. 1. The safety of the ego vehicle’s planned motions can be guaranteed
for given model assumptions by predicting all possible future behaviors of
the pedestrian, which may include crossing the road even when traffic rules
(e.g., a red light for the pedestrian) forbid such behavior.

B. Related Work

We review existing work on pedestrian prediction for
automated vehicles in unknown environments categorized by
whether they compute a) a single behavior, b) a probability
distribution of multiple behaviors, or c) a bounded set of
future behaviors. In order to apply such predictions, we
require the current state of pedestrians from sensor data,
which can be obtained as described in [5]–[7]; however, this
process itself is beyond the scope of this work.

a) Single behavior: The probability of whether pedes-
trians intend to cross the roadway is computed in [8]–
[12] using one or more of the following sources: motion
information (previous path and current position), situation
awareness (e.g., head pose), and contextual information (e.g.,
proximity to curb or intersection). Based on the predicted
intention, the most likely behavior can be inferred, while
other works directly compute a single trajectory [13], [14]
or the time until the pedestrian will most likely cross [15].

b) Probability distribution: Predicting only a single
behavior may suffice for short-term prediction; however,
since many possible maneuvers exist, it is beneficial to
compute a probability distribution of future behaviors by
considering the possible goals of pedestrians [16]–[20].

c) Set of future behaviors: To verify that one does not
collide with a pedestrian, a bounded set containing its pos-
sible future behaviors must be considered. While dynamic-
based models have been used in [21]–[23], set-based models
which integrate map-based information or traffic rules have
not yet been developed, to the best of our knowledge.

2018 21st International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA, November 4-7, 2018
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C. Contribution

This paper significantly extends previous work on set-
based predictions [4], [23] by considering not only motorized
traffic participants but also pedestrians, while exploiting
traffic rules based on the given environment map. This
extension will be available in the next version of our open-
source prediction tool SPOT1. More specifically, our method
is the first that can:

1) predict the feasible future motion of pedestrians in a
formal and set-based manner,

2) obtain tight over-approximative occupancies by mak-
ing use of formalized traffic rules and contextual
information,

3) explicitly consider measurement uncertainties in the
initial state of pedestrians, and

4) guarantee the safety of planned motions according to
our assumptions.

The remainder of this paper is organized as follows. Sec. II
introduces the required models and definitions, and Sec. III
explains the set-based prediction of pedestrians. Sec. IV
demonstrates our approach by using different datasets of
recorded pedestrians and by evasive planning for autonomous
vehicles. Finally, Sec. V concludes the paper.

II. PRELIMINARIES

A. Road Model

We model our environment in R2 using lanelets, which
are atomic, interconnected, and drivable road segments [24].
Lanelets are defined using a left and right bound represented
by a linearly interpolated list of points. As Fig. 1 shows,
we distinguish two types of lanelets: vehicular lanelets (i.e.,
roadways) and pedestrian lanelets (i.e., sidewalks/pavements
and crossings).

Definition 1 (Road networks)
We define the following types of road networks:

• The vehicular network is the union of all vehicular
lanelets and is denoted by Wveh ⊂ R2.

• The pedestrian network Wped ⊂ R2 is the union of all
pedestrian lanelets, i.e., sidewalks Wside and crossings
Wcross. We use Wprio

cross(t) to denote the crossings a
pedestrian is allowed to cross at time t (cf. Sec. III-
B).

• The forbidden network Wforbid := Wveh ∩ W{
ped is the

part ofWveh pedestrians are not allowed to enter (where
W{

ped denotes the complement of Wped, cf. Fig. 4). The
boundary of Wforbid is denoted by δWforbid.

Let a disk, i.e., a circular area, with center [cx, cy]T and
radius r be denoted as C

(
[cx, cy]T , r

)
:=
{

[sx, sy]T | (sx −
cx)2 +(sy− cy)2 ≤ r2

}
. If cx = cy = 0, we just write C(r).

The following predicates are defined using first-order logic
to argue about the position of pedestrians:

1Available at spot.in.tum.de

Definition 2 (Not intruding Wforbid)
The predicate notInWf(Xs, r) evaluates to true if all points
[sx, sy]T ∈ Xs ⊂ R2 intrude the vehicular network by at
most the distance r:

notInWf(Xs, r)⇔
(
Wforbid 	 C(r)

)
∩ Xs = ∅,

where 	 denotes the Minkowski difference defined for sets A
and B as A	B := (A{⊕B){ using the Minkowski addition
(A⊕ B := {a+ b | a ∈ A, b ∈ B}).

Definition 3 (Conforming to crossing priority)
The predicate confPrio(Xs, t) evaluates to true if none of the
points [sx, sy]T ∈ Xs are located in a forbidden crossing at
time t:

confPrio(Xs, t)⇔Wcross ∩Wprio
cross(t)

{ ∩ Xs = ∅.

B. Reachable Set of Pedestrians

The motion of a pedestrian can be described by the
differential equation

ẋ(t) = f
(
x(t), u(t)

)
, (1)

where x ∈ Rn is the state, u ∈ Rm is the input, and t is
the time. The possible states and inputs are bounded by the
sets X and U , respectively. We denote the initial time by t0,
the final time by tf > t0, an input trajectory by u(·), and a
possible solution of (1) at time t by χ

(
t, x(t0), u(·)

)
.

Definition 4 (Reachable set)
The reachable set R ⊆ X of (1) is the set of states which
are reachable at time t from an initial set X 0 ⊆ X at time
t0 and subject to the set of inputs U:

R(t) =

{
χ
(
t, x(t0), u(·)

) ∣∣∣∣x(t0) ∈ X 0,

∀t? ∈ [t0, t] : χ
(
t?, x(t0), u(·)

)
∈ X , u(t?) ∈ U

}
.

Our state vector is x = [sx, sy, vx, vy]T , where sx and sy
denote the position, vx and vy the velocity, each in x- and
y-direction, respectively. We define the occupancy of a state
as:
Definition 5 (Occupancy of a state)
The operator occ(x) returns the set of points in the two-
dimensional Cartesian space occupied by the pedestrian in
state x due to its circular dimensions with radius rped:

occ(x) :=
{
Px⊕ C(rped)

}
,

where P is the projection matrix P = [I 0] ∈ R2×4, I the
identity matrix, and 0 a matrix of zeros, both with proper
dimensions. Given a set of states X , the operator is defined
as occ(X ) := {occ(x) |x ∈ X}.

To obtain the future occupancy of pedestrians efficiently,
we over-approximate their reachable occupancy:
Definition 6 (Over-approximative occupancy set)
Based on Def. 4 and Def. 5, the occupancy set O(t) over-
approximates the set of occupied points which are reachable
by the pedestrian: O(t) ⊇ occ

(
R(t)

)
.
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ϕ

Fig. 2. The set of initial velocities, i.e., X̂ 0
v × X̂ 0

ϕ, is modeled by an
annulus sector, i.e., a circular ring sector.

Since an occupancy O(t) can be non-convex, we represent
it by a polygon, and since a collision check with the intended
trajectory of the ego vehicle requires an infinite number of
points in time to be checked, we compute occupancies for
consecutive time intervals τk = [tk, tk+1] ⊆ [t0, tf ] with
time step size ∆t = tk+1 − tk.

The initial set X 0 in Def. 4 contains measurement uncer-
tainties. Using a polar coordinate system to describe vx and
vy by the radius v and the polar angle ϕ, we introduce the
following initial sets:

X̂ 0
s := C

(
s0,∆s

)
, (2)

X̂ 0
v := [v0 −∆v, v0 + ∆v], (3)

X̂ 0
ϕ := [ϕ0 −∆ϕ, ϕ0 + ∆ϕ], (4)

where s0 := [sx0
, sy0 ]T , and ∆s, ∆v , and ∆ϕ denote the

measurement uncertainty of the corresponding variable. As
Fig. 2 shows, the set of initial velocities is bounded by
an annulus sector. The initial set X̂ 0 is constructed by the
Cartesian product of the partial initial sets X̂ 0 := X̂ 0

s ×X̂ 0
v ×

X̂ 0
ϕ; the set X̂ 0 in Cartesian coordinates is denoted by X 0.

The initial occupancy is O0 := occ(X 0), which accounts for
uncertainties in the pedestrian’s dimensions by choosing rped
as the maximum of the measured radii.

III. PREDICTION OF PEDESTRIANS

To efficiently compute a tight over-approximative occu-
pancy of (1), we use two types of occupancies: 1) the
occupancy Odyn(t) considering the dynamics of the pedes-
trian and 2) the occupancy Orule(t) considering possible
states according to traffic rules, as described in Sec. III-A
and Sec. III-B, respectively. Then, the over-approximative
occupancy is the intersection of both over-approximations:

∀τk ⊆ [t0, tf ] : O(τk) = Odyn(τk) ∩ Orule(τk). (5)

A. Dynamic-Based Occupancy

We use a kinematic model for pedestrians:
Definition 7 (Dynamic model of pedestrians)
The dynamics of a pedestrian are described by a velocity-
and acceleration-bounded point mass:

s̈x = ux, s̈y = uy, (6a)√
|ux|2 + |uy|2 ≤ amax, (6b)√
|vx|2 + |vy|2 ≤ vmax, (6c)

where ux and uy denote the acceleration input in the x-
and y-direction, respectively, amax the maximum allowed
acceleration, and vmax the maximum allowed velocity.

To efficiently obtain the occupancy, we do not directly
perform reachability analysis on (6), but use the approach
proposed by [23]: We separately compute an acceleration-
constrained occupancy Oacc(t) considering only the con-
straint (6b) and a velocity-constrained occupancy Ovel(t)
considering only the constraint (6c), as explained in Sec. III-
A.1 and III-A.2, respectively.

1) Acceleration-constrained occupancy:

Proposition 1 (Reachable positions Rpos
acc(t) for point in time)

The reachable positions Rpos
acc(t) of (6a) with (6b) are

Rpos
acc(t) = Γhom(t)X 0 ⊕ Γinp(t)U ,

where

Γhom(t) =

[
1 0 t 0
0 1 0 t

]
, Γinp(t) =

1

2
t2
[
1 0
0 1

]
.

Proof: Let us first write (6a) in state-space form:
ṡx
ṡy
v̇x
v̇y


︸ ︷︷ ︸
ẋ

=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

A


sx
sy
vx
vy


︸ ︷︷ ︸
x

+


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

B

[
ux
uy

]
︸ ︷︷ ︸
u

. (7)

In general, the exact reachable set of linear systems cannot be
computed, except for when A is nilpotent or the eigenvalues
are purely real or imaginary [25]. Since A is nilpotent (A2

is a matrix of zeros), we can compute the exact reachable
set as presented in [26, Sec. 3.2]:

Racc(t) = eAtX 0 ⊕
∞⊕
i=0

Aiti+1

(i+ 1)!
BU

nilpotence
= (I +At)X 0 ⊕ (BUt)⊕ 1

2
At2BU .

Since we are only interested in the reachable set of the
positions, we multiply the above solution with the projection

x

y
Γhom(t)X 0

Γinp(t)U

Rpos
acc(t)

Fig. 3. The reachable positions of the acceleration-constrained model
Rpos

acc(t) are bounded by the Minkowski addition of Γhom(t)X 0 with
Γinp(t)U (cf. Prop. 1).
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TABLE I
DEFINITION OF THE OCCUPANCIES BASED ON FORMALIZED TRAFFIC RULES, WHICH ARE COMPUTED DEPENDING ON THEIR BOOLEAN VARIABLE.

Constraint Boolean Description Traffic rule [29] Occupancy

Cprio bprio Within Wcross, pedestrians are allowed to
cross if they have priority over vehicular
traffic, i.e., at pedestrian crossings, at inter-
sections when pedestrians have green traffic
lights, and at intersections without traffic
lights when vehicles take a turn2.

20§6(b), 21§2 Oprio(t) =

{
Wprio

cross(t), bprio,

Wcross, ¬bprio.

Cstop bstop When (carelessly) stepping on the road-
way outside Wcross (i.e., onto Wforbid), the
pedestrian immediately slows down with
astop to come to a stop as soon as possible
in order to not impede vehicular traffic.

20§6(a,c) Ostop =


∅, bstop,

C
(
s0, rstop + rped

)
, ¬bstop ∧ notInWf(O0, 0),

C
(
pW (s0), rstop + rped

)
, ¬bstop ∧ ¬notInWf(O0, 0).

Cperp bperp Crossing the roadway outside Wcross is
not allowed. If crossing nevertheless, the
shortest path of width ξperp, which is per-
pendicular to the driving direction, must be
chosen.

20§6(c,d) Operp =

{
∅, bperp,

Wperp ∩Wforbid, ¬bperp.

Cslack bslack Walking on the roadway is not allowed;
Wforbid may be entered by the margin ξslack
only if no usable sidewalk is provided.

20§2(a), 20§3,
20§4

Oslack =

{
∅, bslack,(
W{

forbid ⊕ C(ξslack)
)
∩Wforbid, ¬bslack.

matrix P (cf. Fig. 3):

Rpos
acc(t) = PRacc(t) =

[
1 0 t 0
0 1 0 t

]
︸ ︷︷ ︸

Γhom

X 0 ⊕ 1

2
t2
[
1 0
0 1

]
︸ ︷︷ ︸

Γinp

U .

Next, we consider the reachable set for time intervals.
Proposition 2 (Reachable positions Rpos

acc(τk) for time interval)
The reachable positions of the acceleration-bounded model
for a time interval τk = [tk, tk+1] are

Rpos
acc(τk) = conv

(
Γhom(tk)X 0,Γhom(tk+1)X 0

)
⊕ Γinp(tk+1)U ,

where conv(A,B) returns the convex hull of the sets A and
B.

Proof: The proof follows directly from [27, Alg. 1],
where the matrix F in that algorithm is a matrix of zeros
due to the nilpotence of A.

Finally, the acceleration-constrained occupancy for a sin-
gle point in time is Oacc(t) = occ

(
Rpos

acc(t)
)

and Oacc(τk) =
occ
(
Rpos

acc(τk)
)

for a time interval.
2) Velocity-constrained occupancy: Up until now, we

have ignored the maximum velocity constraint in (6c). Let us
first determine the earliest point in time when the maximum
velocity is reached:

vmax = v0 +∆v+amaxtvmax
⇔ tvmax

=
vmax − (v0 + ∆v)

amax
.

When starting at the origin with the maximum velocity in all
directions, the reachable set is a disk centered at the origin

2In order to automatically consider that pedestrians have priority over
turning vehicles at intersections, it is necessary to compute this occupancy
depending on the intended motion of the ego vehicle.

with radius vmax(t− tvmax
). Thus, an over-approximation of

the reachable positions considering the velocity constraint
for t > tvmax

is

Ovel(t) = Oacc(tvmax
)⊕ C

(
vmax(t− tvmax

)
)
. (8)

Due to the monotonic growth of C
(
vmax(t − tvmax

)
)
, it

follows that C
(
vmax(tk+1 − tvmax

)
)
⊇ C

(
vmax(tk − tvmax

)
)
,

and thus

Ovel(τk) = Oacc(tvmax)⊕ C
(
vmax(tk+1 − tvmax)

)
. (9)

Since Ovel(t) is not required for t ≤ tvmax , the overall
dynamic-based occupancy is

Odyn(τk) =

{
Oacc(τk), tk ≤ tvmax ,

Oacc(τk) ∩ Ovel(τk), tk > tvmax .
(10)

B. Rule-Based Occupancy

We incorporate formalized traffic rules into our prediction
[28]. As a legal source, we use the Vienna Convention
on Road Traffic [29]. We assume that pedestrians adhere
to traffic rules and do not obstruct vehicular traffic [29,
7§1]. However, if pedestrians violate rules, we have to take
necessary precautions to avoid endangering pedestrians [29,
21§1].

Pedestrians are generally not allowed to leave the pedes-
trian network and enter the roadway [29, 20§2]. Since this
rule has different cases of violations, we deduce four atomic
constraints described in Tab. I; these constraints each have a
Boolean variable, denoted by b, which allows us to enable
and disable this constraint individually.

The occupancies resulting from these constraints are il-
lustrated in Fig. 4 and are computed as presented in Tab. I,
where we use the following variables: The distance required
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TABLE II
THE CONSTRAINT MANAGEMENT DEACTIVATES OR ADAPTS THE CONSTRAINTS IF UNDERLYING ASSUMPTIONS ARE VIOLATED.

Constraint Parameter with default values Condition adapting the constraint variable

Cprio — bprio ⇔ confPrio(O0, t0) ∧ bperp

Cstop astop = 0.6 m/s2 bstop ⇔ ∀t ∈ [t0, tf ] :
(
Odyn(t) ∩ Orule(t)

)
	 C(rped) 6= ∅

Cperp ξperp = 2.0 m bperp ⇔ notInWf
(
O0,max(ξslack, rstop + rped)

)
∧
(
bstop ∨ ∀t ∈ [t0, tf ] :(

Odyn(t) ∩ Orule(t)
)
	 C(rped) 6= ∅

)
Cslack ξslack = 1.0 m bslack ⇔ notInWf(O0, 0)

Camax amax = 0.6 m/s2, ∆amax = 0.05 m/s2 amax ← max(amax, a0 + ∆a + ∆amax )

Cvmax vmax = 2 m/s, ∆vmax = 0.1 m/s vmax ← max(vmax, v0 + ∆v + ∆vmax )

for the pedestrian to stop with deceleration astop from its
current velocity is rstop := 1

2astop
(v0 + ∆v)

2 + ∆s. The
point on δWforbid closest to the center of O0 is pW(s0) :=
argmin
p∈δWforbid

‖p− s0‖2 (cf. Fig. 4), and the unit vector at pW(s0)

tangential to δWforbid is denoted by tW(s0). We choose s0

as the center of Ostop, since we assume that pedestrians
immediately slow down to avoid entering the road (i.e.,
entering Wforbid); however, for a pedestrian already located
inWforbid, we assume that the pedestrian had started slowing
down when entering Wforbid, and thus choose pW(s0) as the
center of Ostop (cf. Tab. I). For Operp, we compute the area
perpendicular to the roadway by

Wperp :=

{[
sx
sy

] ∣∣∣∣ ∥∥∥∥ tW(s0)T
([
sx
sy

]
− pW(s0)

)∥∥∥∥ ≤ ξperp

2

}
,

where the parameter ξperp describes the width of this corridor
(cf. Fig. 4).

Finally, we define the rule-based occupancy Orule(t) as
the area of the whole vehicular and pedestrian network
respecting the constraints of Tab. I:
Definition 8 (Rule-based occupancy)
Using the partial occupancies from Tab. I, the rule-based
occupancy of a pedestrian is

Orule(t) =Wside ∪ Oprio(t) ∪ Ostop ∪ Operp ∪ Oslack.

Note that all partial occupancies of Orule(t), except Oprio(t),

ξperp

Operp

O0

OstopWforbid

Ostop

Oslack ξslack

O0

O0

pW (s0)

Wcross

Wside

Fig. 4. Visualization of the occupancies based on formalized traffic rules
of Tab. I.

are constant over the prediction horizon, and Wside, Wcross,
and Oslack can be precomputed offline for given road net-
works.

C. Constraint Management

The prediction of each pedestrian is based on traffic rules,
which are represented by the constraints introduced in Tab. I.
The Boolean variables are initialized with b = true and then
set according to the conditions listed in the last column of
Tab. II. Thus, constraints are automatically deactivated as
soon as assumptions on the traffic rules are violated. Let
us explain the constraint management for Cstop and Cperp in
more detail. For Cstop, pedestrians are anticipated to step
on the roadway if they cannot stop before; in this case,
bstop = false. The condition of Cperp further anticipates that
the pedestrian crosses the road if stopping within Ostop is not
possible or if Wforbid is intruded by more than the maximum
of ξslack and rstop + rped; in these cases, bperp = false.

Note that the proposed conditions for the constraints are
deduced from traffic rules, but may be adapted to obtain more
or less conservative behavior, e.g., a sophisticated intention
prediction may directly set bperp and bslack to false (and
increase ξperp and ξslack) for a child playing at the side of the
road. Thus, our approach offers the possibility of deactivating
constraints based on the specifications of users while still
remaining formally valid.

For the dynamic-based occupancy, the constraints (6b) and
(6c) are not deactivated if we measure higher values; instead,
their maximum allowed values are adjusted as presented in
the last two rows of Tab. II, where the parameters ∆amax

and
∆vmax are thresholds to anticipate that the measured values
might be exceeded and thus, the updated maximum values
will not be directly violated again.

IV. EVALUATION WITH REAL-WORLD DATA

We evaluate our approach using recorded data with mea-
surement noise obtained from a moving vehicle [30]. Fig. 5
shows the view from the front camera of the autonomous
vehicle and three tracked pedestrians crossing the street.
The default values for the constraints in our prediction are
listed in Tab. II. For the dynamic-based occupancy, the
maximum acceleration and velocity must be parametrized.
As in [23], we use as the default amax = 0.6 m/s2 (based
on a labeled video source [31]) and vmax = 2.0 m/s (which
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Fig. 5. View from the front camera of the autonomous vehicle approaching
three pedestrians crossing the street. The recorded data is provided by [30].
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(a) Odyn(τk), k = 0, . . . , 19.
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(b) Odyn(τ9).

Fig. 6. The predicted dynamic-based occupancy contains the recorded
occupancy of the three pedestrians at the crossing of Fig. 5.

is the transition speed between walking and running and is
suggested by [32]). One can also choose different values,
e.g., from extensive physiological experiments on walking,
running, and stopping [33]. Our results have been obtained
using MATLAB 2016a on a machine with a 2.6 GHz Intel
Core i7 processor with 20 GB 1600 MHz DDR3 memory.

A. Conformance of Dynamic-Based Occupancy

We validate our dynamic-based occupancy by checking
whether our model over-approximates the real behavior of
walking-only pedestrians, using ∆t = 0.1 s, tf − t0 =
2.0 s, and rped = 0.35 m. From [30], we predict 11 pedes-
trians for a total of 7008 s with ∆s ∈ [0.19 m, 0.96 m],
∆v ∈ [0.21 m/s, 1.5 m/s], and ∆ϕ ∈ [0.21 rad, 0.88 rad].
We achieve a coverage of 100 %, since all recorded oc-
cupancies, i.e., ground-truth trajectories without uncertainty
enlarged by rped, were fully contained within the predicted
Odyn(τk). As an example, Fig. 6a depicts our result of the
three pedestrians from Fig. 5. A snapshot in Fig. 6b for
τ9 = [0.9 s, 1.0 s] shows that our set-based prediction is not

unreasonably conservative. Note that our prediction remains
over-approximative for longer time horizons (tested for up
to 5.0 s).

The computation time for each pedestrian was 23 ms;
however, since the set intersection in (10) requires the most
resources, the prediction only required 5 ms for ∆t = 0.5 s.

Furthermore, we also validated our model using ground
truth trajectories of 389 pedestrians from the publicly avail-
able BIWI Walking Pedestrians dataset of a street scene
in Zurich, Switzerland [31]. Again, we achieved 100 %
coverage using ∆s ∈ [0.15 m, 0.3 m], ∆v = 0.15 m/s, and
∆ϕ ∈ [0.2 rad, 0.5 rad].

B. Evaluation of Rule-Based Occupancy

Next, we demonstrate the influence of the constraints
deduced from the traffic rules. As shown in Fig. 7a, the
pedestrian just stepped onto the roadway (with v0 = 1.40 m/s
at t0 = 0 s). According to Tab. II, bslack = false and since
∃t ∈ [t0, tf ] :

(
Odyn(t)∩Orule(t)

)
	C(rped) = ∅, bstop = false.

The resulting occupancy (Oslack∪Ostop)∩Odyn(t) restricts the
pedestrian from completely crossing the street. For tf−t0 =
3.0 s, the computation time was 66 ms for ∆t = 0.1 s and
was reduced by a factor of 3 for ∆t = 0.5 s.

When the initial state is updated at t0 = 0.5 s, the
pedestrian had made another step onto the roadway (v0 =
1.58 m/s, cf. Fig. 7b). Since the constraint management again
detects that the occupancy is empty, bperp = false and we
predict the pedestrian crossing the street perpendicular to
the driving direction, as shown in Fig. 7b.

C. Application to Evasive Motion Planning

To demonstrate how the obtained prediction can be used
for evasive trajectory planning of autonomous vehicles, we
make use of a trajectory planner based on convex opti-
mization techniques [3]. The scenarios presented next are
available in the CommonRoad benchmark suite including all
simulation parameters3 [34].

3commonroad.in.tum.de

4 5 6 7 8
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y
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∩Odyn(t)

(a) Oslack and Ostop are enabled.
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(b) Ostop and Operp are enabled.

Fig. 7. The rule-based occupancy intersected with Odyn(t) for different
stages of a pedestrian crossing the roadway.
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Fig. 8. By making use of our set-based prediction, planned maneuvers
of the ego vehicle are guaranteed to be collision-free. As an example, we
show an evasive trajectory and the predicted occupancies with bstop = false
for t ∈ [0 s, 1.8 s].

The ego vehicle in our first scenario (cf. Fig. 8, Com-
monRoad ID: S=ZAM Intersect-1 1 S-1:2018a) is approach-
ing the intersection with a velocity of 13.8 m/s, while the
pedestrian approaches a forbidden crossing (without priority
due to a red traffic light) with v0 = 1.35 m/s. Similar to
the example in Sec. IV-B, the pedestrian cannot stop before
entering the roadway and thus is predicted with bstop = false.
We plan an evasive maneuver which involves swerving to
the left adjacent lane to avoid a collision. The obtained
evasive trajectory is guaranteed to be collision-free given our
assumptions (cf. Fig. 8).

Furthermore, the prediction can be used to proactively
evaluate evasive options so that the number of available
evasive maneuvers is increased. As an example, we consider
the situation 0.5 s later when the pedestrian has already
entered the forbidden crossing (v0 = 1.40 m/s), implying
bprio = false (cf. prediction in Fig. 9; CommonRoad ID:
S=ZAM Intersect-1 2 S-1:2018a). Considering the current
velocity of the ego vehicle, a collision with the crossing
pedestrian can only be avoided by swerving to the left
adjacent lane (similar to the maneuver of the previous
scenario, cf. Fig. 8). However, this may not be an option
in the presence of other vehicles. Thus, we simultaneously
plan evasive trajectories for different velocities of the vehicle.
As a result, we observe that the ego vehicle is still able to
avoid a collision using emergency braking for a velocity of
12.5 m/s (cf. trajectory in Fig. 9).

V. CONCLUSIONS

This paper proposes a formal prediction of the possible and
legal future motion of pedestrians in an over-approximative,
set-based fashion. By considering contextual information and
the traffic rules pedestrians should adhere to, the prediction

-10 0 10
x [m]

-30

-20

-10

0

y
[m

]

Ego vehicle
at t0

Evasive
maneuver

Predicted
occupancies

Fig. 9. The pedestrian has just entered the crossing and is predicted with
bstop = bprio = false and tf − t0 = 5.0 s. If the ego vehicle reduces its
speed from 13.8 m/s (in Fig. 8) to 12.5 m/s, it is also able to perform a
collision-free braking maneuver.

is significantly improved compared to a solely dynamical
model. Nevertheless, our approach anticipates that pedestri-
ans disregard rules and automatically adapts the prediction
to ignore violated rules. We have validated our method using
recorded motions of pedestrians and highlighted its use for
evasive maneuver planning.

Future work includes further studies on pedestrian behav-
ior to validate and parameterize the constraints based on the
traffic rules. Furthermore, we are currently preparing real-
world vehicle experiments for evasive maneuver planning
considering pedestrians crossing the road.
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3.3 Interaction-aware prediction (ITSC 2017)

3.3 ITSC 2017: Interaction-Aware Occupancy Prediction of
Road Vehicles [63]

Summary The set-based prediction introduced so far considers traffic rules to reduce the
set of predicted behaviors. However, it neglects mutual influences between detected vehicles.
This section presents an extension to consider interaction in set-based prediction so that
the over-approximation of the prediction is reduced (cf. Problem statement 1). Instead of
explicitly modeling mutual dependencies between vehicles, we remove unreachable occupancy
regions, which is computationally much more efficient. Therefore, we sort all vehicles based
on their current position and determine all vehicles that have to follow another one. A vehicle
has to follow another one if overtaking is not possible or allowed, until the preceding vehicle
reaches a road fork, and after a vehicle has merged into the lane of another vehicle. In these
cases, the order of two vehicles is given ambiguously. In consequence, we can determine the
areas that are unreachable by the following vehicle, since its maximum reachable position can
never be greater than the maximum reachable position of the preceding vehicle.

The usefulness of the proposed anytime algorithm is demonstrated in four traffic scenarios
from the CommonRoad benchmarks. If considering interaction in scenarios where overtaking
is not possible, the drivable area of the ego vehicle is significantly increased. On a multi-lane
road, vehicles can easily overtake each other; thus, almost all occupancy regions are reachable
and our method would not be very beneficial. Overall, by using the proposed extension to
set-based prediction, the quality of prediction result is improved due to a reduced over-
approximation.

Note that the CommonRoad IDs given in the publication are referring to version 2017a of
CommonRoad. They differ to the IDs in contemporary versions of CommonRoad, since the
construction of IDs has been unified in version 2018a. Thus, we also provide the updated
IDs. The presented scenarios with IDs S=GER B471 1a, S=GER Ffb 1b, S=Z Merge 1a,
and S=GER Muc 2b of version 2017a, are now available under the IDs S=DEU B471-1 1 T-
1:2018a, S=DEU Ffb-1 1 T-1:2018a, S=ZAM Merge-1 1 T-1:2018a, and S=DEU Muc-4 1 T-
1:2018a, respectively.

Contributions of M. K. M. K. developed the sorting of vehicles. M. K. designed and con-
ducted the experiments (together with H. B. and V. B.). M. K. evaluated the experiments.
M. K. wrote the article (together with M. A.).

Conference paper c©2017 IEEE. Reprinted, with permission, from Markus Koschi and
Matthias Althoff, Interaction-Aware Occupancy Prediction of Road Vehicles, in Proc. of the
20th IEEE International Conference on Intelligent Transportation Systems.
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Interaction-Aware Occupancy Prediction of Road Vehicles

Markus Koschi and Matthias Althoff

Abstract— A crucial capability of autonomous road vehicles
is the ability to cope with the unknown future behavior
of surrounding traffic participants. This requires using non-
deterministic models for prediction. While stochastic models
are useful for long-term planning, we use set-valued non-
determinism capturing all possible behaviors in order to verify
the safety of planned maneuvers. To reduce the set of solutions,
our earlier work considers traffic rules; however, it neglects mu-
tual influences between traffic participants. This work presents
the first solution for establishing interaction within set-based
prediction of traffic participants. Instead of explicitly modeling
dependencies between vehicles, we trim reachable occupancy
regions to consider interaction, which is computationally much
more efficient. The usefulness of our approach is demonstrated
by experiments from the CommonRoad benchmark repository.

I. INTRODUCTION

It is commonly agreed that purely reactive controllers for
collision avoidance only considering the current situation are
insufficient for avoiding collisions in road traffic. Integrating
a prediction of other traffic participants facilitates much
better solutions [1].

Depending on the purpose of the vehicle motion planner
or driving assistant system, different types of prediction are
appropriate. For driving assistant systems, simple predictions
only producing a single behavior are sufficient [2]–[6], since
warnings are not necessarily safety-critical. However, for
long-term planning of automated vehicles, simple predic-
tions are insufficient, since they do not explicitly consider
the growing uncertainty when one increases the prediction
horizon. Stochastic approaches account for this shortcoming
[7]–[11]. To guarantee safe movement, however, one cannot
rely on stochastic approaches, since ensuring safety or a very
small crash probability (around 10−10 for a 5 s prediction
horizon) is necessary in order to obtain motions which
are superior to those of humans. Such small probabilities
are difficult to verify, so we propose set-based predictions
as developed in our previous work [12], [13]. Set-based
prediction, based on models with uncertain yet bounded
inputs and parameters, contains all possible movements of
traffic participants.

Clearly, set-based prediction considering all possible be-
haviors can block unnecessarily large sections of a road net-
work for the motion planner. To manage this issue, we predict
behaviors that comply with traffic rules only, which can be
individually deactivated in case of violation. In addition, one
can restrict the prediction horizon by computing fail-safe
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ego vehicle

planned trajectory

obstacle occupancy of ego vehicle along its trajectory

occupancy of vehicle 1 occupancy of vehicle 2

vehicle 2 vehicle 1

(a) Planned trajectory is unsafe without considering interaction.

(b) Planned trajectory can be verified as safe when considering interaction.

Fig. 1. Occupancies of interacting vehicles for a selected time interval.

maneuvers [14]. However, we have not yet exploited mutual
influences between traffic participants to improve the quality
of the prediction.

One possibility for considering interaction would be to use
a concrete model of dependencies. However, such models
are typically unknown [15] and result in large combined
systems, which are hard to analyze. Instead, we consider
interaction between traffic participants on a more abstract
level: e.g. when two cars drive in a lane as shown in Fig. 1,
the maximum reachable position of the following vehicle 1
can never be greater than the maximum reachable position
of the leading vehicle 2. Fig. 1(a) shows the occupancies
of both vehicles, i.e. the region they can occupy in the
selected time interval (see Def. 9 later), without considering
their interaction. When taking this into account, the region
occupied by vehicle 1 can be shortened for all consecutive
time intervals such that it no longer reaches in front of the
occupancy of vehicle 2, as shown in Fig. 1(b).

There is only very little work considering interactions
between traffic participants for prediction, as pointed out in
[1]. For single behavior prediction, one can assume that other
vehicles avoid collisions and thus penalize the trajectories
which result in a collision [16], [17]. In terms of stochastic
prediction, the work in [18] considers interaction by adjust-
ing the acceleration and lane-change behavior of following
vehicles. Since modeling the pairwise dependencies between
traffic participants grows with the number of entities, one can
reduce the complexity by assuming unidirectional influence
[19], [20]. Instead of considering the dependencies pairwise,
the authors of [21] model mutual influences as a function
of the local situational context. Based on [21], a fully
probabilistic model is presented in [22]. The work in [23]
presents experience-based data on the interaction between the
ego and surrounding vehicles during lane changes. In order to
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consider interaction in situation assessment, one can compute
an interaction-aware joint probability distribution [24] or
detect conflicting intentions at intersections by comparing
what vehicles intend to do with what they are expected to
do [25].

This work is the first which incorporates interaction into
set-based prediction of other traffic participants. Our paper is
organized as follows: After providing relevant definitions in
Sec. II, we introduce set-based prediction in Sec. III. Sec. IV
defines our concept for considering interaction and describes
our algorithm for removing unreachable occupancy regions.
Numerical experiments are presented in Sec. V and discussed
in Sec. VI.

II. PRELIMINARIES

A. Road Network

Our road network model is composed by lanelets [26],
which are atomic, interconnected, and drivable road seg-
ments:

Definition 1 (Lanelets [26]): A lanelet is defined by its
left and right bound, where each bound is represented by an
array of points (a polyline), as shown in Fig. 2. The driving
direction of a lanelet is implicitly defined by its left and right
bound.

To represent the road network as a directed graph, we
introduce relations between two lanelets: successor, left, and
right.

Definition 2 (Lanes): We define lanes as the union of
lanelets which are longitudinally adjacent, i.e. are successors
of each other.

Note that a lanelet which has multiple successors, as in
the case of road forks, becomes an element of multiple lanes
(e.g. see lanelet2 in Fig. 2).

Definition 3 (Merging Lanes): Two lanes are merging
into one lane, if they are constructed from distinct lanelets
which eventually have a common successor lanelet (e.g. see
Fig. 5). The geometric condition for merging lanes is that
the start points of the two lanes must be different and their
end points must be equal (see Fig. 2 for the definition of
these points).

Definition 4 (Current Lanes of a Vehicle): The current
lanes of a vehicle are defined as all lanes in which the
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Fig. 2. Our road network is modeled by lanelets and lanes.

vehicle is currently positioned (e.g. in Fig. 2, lane2 and
lane3 are the current lanes of the vehicle).

In addition to the Cartesian space in world coordinates xy,
we require a lane coordinate system uw:

Definition 5 (Curvilinear Lane Coordinate System): A
curvilinear lane coordinate system uw is defined for each
lane such that the u-axis is parallel to the center line of
the lane and the w-axis is perpendicular to u, as shown in
Fig. 2. The origin of the lane coordinate system is in the
start point of each center line, and the positive u-axis points
in the driving direction. The u-coordinate of a point p in
lane li is denoted by ulip .

Definition 6 (Front-Most and Rear-Most Point): For a set
of points P , the point with the maximum u-coordinate in lane
li is defined as

max(uliP) := max(ulip |p ∈ P).

The rear-most point of P in li, min(uliP), is defined analo-
gously.

For the sake of clarity, we omit the lane’s notation by using
only up or uP if the point or the set of points is defined in
only one lane.

B. Occupancy of a Vehicle

The dynamics of a vehicle can be described by the
differential equation

ẋ(t) = f
(
x(t), u(t)

)
, (1)

where x ∈ Rn is the state and u ∈ Rm is the input. The
possible initial states and the possible inputs are bounded by
sets: x(0) ∈ X0, ∀t : u(t) ∈ U .

Definition 7 (Reachable Set): The reachable set R ⊆ X
of (1) is the set of states which are reachable at a certain
point in time r from a set of initial states X 0 at time t0 and
subject to the set of inputs U :

R(r) =
{∫ r

0

f(x(t), u(t))dt

∣∣∣∣x(0) ∈ X 0, ∀t : u(t) ∈ U
}
.

Furthermore, we introduce a relation from a state vector
x to the Cartesian coordinate system xy:

Definition 8 (Relation to Cartesian Space): The operator
state2occ(x) relates the state of a vehicle to the set of points
in Cartesian space occupied by the vehicle (including its
dimensions) as

state2occ(x) : X → P(R2),

where P(R2) is the power set of R2. Given a set of
states X , the relation is defined as state2occ(X ) :=
{state2occ(x)|x ∈ X}.

Definition 9 (Over-approximative Occupancy Set):
Based on Def. 7 and Def. 8, the occupancy set O(t)
over-approximates the set of occupied points in Cartesian
space which are reachable by the vehicle:

∀t : O(t) ⊇ state2occ
(
R(t)

)
.

We can use over-approximative occupancy sets to describe
the unknown future behavior of vehicles.
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III. SET-BASED PREDICTION

The set of future occupancies according to Def. 9 can
be obtained with set-based prediction [12]. Using reacha-
bility analysis, we predict occupancies for consecutive time
intervals as shown in Fig. 3, where we use polygons as
set representation. Given the predicted occupancies of other
vehicles and the occupancy of the ego vehicle along its
planned trajectory, the planned trajectory can be verified as
safe [27]: If none of the computed occupancies intersects
with the occupancy of the ego vehicle for all points in time,
one can guarantee that the ego vehicle does not cause a
collision.

obstacle

obstacle

obstacle

other vehicle

ego vehicle planned trajectory

t ∈ [t0, t1]:

t ∈ [t1, t2]:

t ∈ [t2, t3]:

Fig. 3. Snapshots of the predicted occupancy of the other vehicle for
selected consecutive time intervals.

Set-based prediction is designed to verify motion plans of
short time horizons. Due to the full consideration of uncer-
tainties, the future occupancy of other vehicles grows over
time and thus limits the solution space for the ego vehicle.
For this reason, we suggest performing trajectory planning
for two time horizons in parallel [12]: While non-formal
prediction techniques help to find long-term motion plans,
set-based occupancy prediction can be used to guarantee the
safety of short-term motion plans.

We compute over-approximative occupancies including all
possible behaviors under given constraints, which are listed
in Tab. I. All assumptions are taken from [13] and are either
physical constraints (Camax and Cengine) or a formalization
of the Vienna Convention on Road Traffic [28], [29]. Please
note that we deactivate constraints individually during online
execution if traffic rules are violated. For more details on our
constraint management, please see [13].

IV. INTERACTIONS BETWEEN VEHICLES

Since vehicles share the same road, their presence and
actions constantly influence other vehicles. As an example,
Fig. 1 shows a traffic scenario in which considering interac-
tion is important. While the ego vehicle plans an overtaking
maneuver similar to the situation in Fig. 3, it has to con-
sider two oncoming vehicles with different initial velocities.

TABLE I
VEHICLE CONSTRAINTS.

Constraint Description

Camax Maximum absolute acceleration is limited by amax.
Cvmax Positive longitudinal acceleration is stopped when

a parameterized speed vmax is reached.
Cengine Above a parameterized speed vS , acceleration in

the driving direction is along = amax
vS
v

, which
models limited engine power.

Cback Driving backwards in a lane is not allowed.
Clane Leaving the lane is forbidden. Changing lanes is

only allowed if the new lane has the same
driving direction as the previous one.

The following vehicle 1 moves faster than the preceding
vehicle 2. Hence, the independently predicted occupancy of
vehicle 1 is larger than the occupancy of vehicle 2, as shown
in Fig. 1(a). For a certain time interval, the ego vehicle might
crash into vehicle 1 when following its planned trajectory.
However, vehicle 1 cannot reach the part of its occupancy
where it ranges in front of the occupancy of vehicle 2, since it
cannot surpass vehicle 2. When considering the interactions,
we can remove the unreachable region and thus the plan of
the ego vehicle can be verified as safe (see Fig. 1(b)).

Set-based occupancy prediction has neglected dependen-
cies between traffic participants so far. In this section, we
describe our extension to consider the interactions between
vehicles. Our rule-based approach focuses on two-lane roads
with only one lane per driving direction. We do not include
roads with multiple lanes per driving direction, since vehicles
can easily overtake others in the left and right lanes, as
demonstrated later in Sec. V. Thus, only small regions
are not reachable. For set-based prediction, which must
include all reachable occupancies (see Def. 9), considering
interactions in multi-lane scenarios is not beneficial. Instead,
we incorporate dependencies between vehicles which are in
the same lane of two-lane roads, i.e. the considered vehicles
are either in the same current lane or in merging lanes, as
described later in Sec. IV-B. Since we only handle vehicles
in the same lane, it is sufficient to compare vehicles pairwise
to consider their interaction.

A. Overall Algorithm

Alg. 1 gives an overview of the computation steps to
consider interaction. From the set-based prediction, we re-
quire the independently computed occupancies of all vehicles
for all time intervals τk from the initial time t0 until the
prediction horizon tf , where τk = [tk, tk+1] with a time
step size of ∆t = tk+1− tk. First, we sort all vehicles which
are in the same lane based on their initial position (see line 1
of Alg. 1 and Sec. IV-B). The returned list [v] contains the
pairwise sorted vehicles as a tuple (vi, vi+1)

[tsi ,tei ], which
represents the fact that vi is behind vi+1 in the time interval
[tsi , tei ]. Please note that due to road forks and merging
lanes, the order of the vehicles in each tuple is only valid
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from the specified start time tsi to the end time tei , as
explained in more detail later. An example of the list [v]
is

[v] = [(v1, v2)
[ts1 ,te1 ], (v3, v4)[ts3 ,te3 ], . . . ,

(vn, vn+1)
[tsn ,ten ]].

Second, we consider the interaction of all vehicle pairs
(vi, vi+1)

[tsi ,tei ] from front to back in each lane (see line 2
to 4 of Alg. 1). The occupancy of all following vehicles
vi is trimmed ∀τk ⊆ [tsi , tei ] such that unreachable areas
are removed, as described in Sec. IV-C. In the following,
we denote an element of [v] without loss of generality by
(v1, v2)[ts,te] and omit further indices for the sake of clarity.

Algorithm 1 Consider Interaction in Two-Lane Roads
Require: vehicles (incl. their occupancies O(τk)), lanes

1: [v] ← SORTVEHICLESINLANES(vehicles, lanes)
2: for all (vi, vi+1)

[tsi ,tei ] ∈ [v] do
3: for all τk ⊆ [tsi , tei ] do
4: Ovi(τk) ← TRIMREACHABLE(Ovi(τk), Ovi+1(τk))
5: end for
6: end for

B. Sort Vehicles in the Same Lane

Through a pairwise comparison of all vehicles, the func-
tion SORTVEHICLESINLANES() of Alg. 1 sorts vehicles in
their lanes in ascending u-coordinates and returns them in the
list [v]. If we cannot guarantee that one vehicle will precede
another due to the growing uncertainty in the prediction, this
vehicle pair is omitted in [v]. When sorting, we distinguish
three different cases:

1) Sort Vehicles in the Same Current Lane: Two vehi-
cles are in the same current lane if they are in only one
current lane (see Def. 4) and this lane is the same for both
vehicles. Then, their order is unambiguously given by their
u-coordinates in the lane coordinate system (see Def. 5). As
an example, Fig. 1 shows the sorted vehicles 1 and 2, which
can be added to [v] as (v1, v2)[t0,tf ] since uv1 < uv2 .

2) Sort Vehicles in Forking Lanes: In the case of road
forks, where more than one current lane is identical, we
can also sort two vehicles until their reachable occupancies
split onto two different lanes after the road fork. Since the
assumption of one lane per driving direction is invalid after
road forks, we can no longer guarantee that one vehicle
will precede another. To determine the time until we can
sort vehicles in forking lanes, we introduce the point pfork

as the intersection of the corresponding lane bounds of the
bifurcating lanes, as shown in Fig. 4.

Definition 10 (Not Passed the Lane Fork): We formulate
the predicate NOT PASSED FORK(Ov2 , pfork, t) using first-
order logic:

NOT PASSED FORK(Ov2 , pfork, t)⇔
max

(
ul1Ov2

(t)
)
≤ ul1pfork

∧max
(
ul2Ov2

(t)
)
≤ ul2pfork

.

v1 v2

pfork

Ov1(t
′)

Ov2(t
′)

l1

l2

Fig. 4. The vehicles v1 and v2 cannot be unambiguously sorted for t ≥ t′,
since Ov2(t

′) splits after the road fork.

It evaluates to true at time t if the front-most point of Ov2(t)
(see Def. 6) has not passed pfork in both bifurcating lanes l1
and l2.

Definition 11 (Time until the Lane Fork): We define
tfork as the latest time at which the predicate
NOT PASSED FORK(Ov2

, pfork, t) still evaluates to true:

tfork := max
T∈R

(
∀t : t ≤ T : NOT PASSED FORK(Ov2 , pfork, t)

)
.

Proposition 1 (Precedence in Forking Lanes): ∀t : t̃ ≤
t ≤ tfork, vehicle v1 cannot precede vehicle v2 no matter what
vehicle v2 is doing, where t̃ is some time within [t0, tfork[.

Proof: If NOT PASSED FORK(Ov2 , pfork, t) evaluates to
true (see Def. 10), vehicle v1 cannot precede vehicle v2

at time t, since they are still in the same current lane. In
combination with Def. 11, Prop. 1 follows. The uncertainty
of t̃ originates from the unspecified road network traversed
before reaching the road fork.

Thus, we can sort vehicles in forking lanes analogously to
vehicles in the same current lane (see previous paragraph),
but only in the time interval ts = t̃ to te = tfork.

3) Sort Vehicles in Merging Lanes: If two vehicles are
not yet in the same current lane, but their current lanes
are merging (see Fig. 5), we also consider their interaction.
All merging lanes can be detected by evaluating all pairs
of lanes according to Def. 3. In order to argue about the
order of vehicles in merging lanes, we must first define some
distances, which are shown in Fig. 5. The distance along the
u-axis of lane l2 between the rear-most point of Ov2(t) and
the intersection point of the merging lanes pmerge is defined
as

dmerge(t) = ul2pmerge
−min

(
ul2Ov2

(t)
)
. (2)

After describing the intersection of the occupancy of v1 with
the lane l2 in which the other vehicle v2 is positioned as

Ol2
v1(t) := Ov1(t) ∩ l2, (3)

the distance between the front-most point of Ol2
v1(t) and the

rear-most point of Ov2
(t) in l2 can be defined as

dbounds(t) = max
(
ul2
Ol2

v1

(t)
)
−min

(
ul2Ov2

(t)
)
. (4)

Please note that both dmerge(t) and dbounds(t) can be negative.
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Fig. 5. The vehicles v1 and v2 in the merging lanes can be sorted at t′,
since v1 cannot precede v2 no matter what v2 is doing.

Definition 12 (Passed the Lane Merge): We define the
predicate PASSED MERGE(Ov1 ,Ov2 , pmerge, t) as

PASSED MERGE(Ov1 ,Ov2 , pmerge, t)⇔
dmerge(t) < lengthv2∧(

Ol2
v1(t) = ∅ ∨ dbounds(t) < lengthv2

)
,

where lengthv2 denotes the length of the vehicle’s enclosing
rectangle.

Definition 13 (Time after the Lane Merge): We
introduce tmerge as the earliest time at which
PASSED MERGE(Ov1 ,Ov2 , pmerge, t) evaluates to true:

tmerge := min
T∈R

(
∀t : t ≥ T :

PASSED MERGE(Ov1
,Ov2 , pmerge, t)

)
.

Proposition 2 (Precedence in Merging Lanes):
∀t : tmerge ≤ t ≤ t̂, vehicle v1 cannot precede vehicle
v2 no matter what v2 is doing; t̂ ∈ ]tmerge, tf ].

Proof: Vehicle v1 can precede v2 at time t, either if v2

has not passed pmerge but v1 has, or if dbounds(t) ≥ lengthv2 .
Thus at t′, if dmerge(t

′) < lengthv2 , v2 certainly passed the
intersection point pmerge. If, in addition, either Ol2

v1(t
′) = ∅

(i.e. v1 has not passed pmerge) or dbounds(t
′) < lengthv2 ,

the predicate PASSED MERGE(Ov1
,Ov2 , pmerge, t

′) evaluates
to true (see Def. 12), and it is not possible to shift v1 in
Ov1(t

′) so that it is in front of v2 in Ov2(t
′). Since v2

certainly precedes v1 at time t′, v2 is the preceding vehicle
∀t : t′ ≤ t ≤ t̂. Using Def. 13, Prop. 2 follows. The
uncertainty of t̂ originates from the unspecified road network
after the lane merge.

Consequently, at tmerge, we can formally guarantee for the
first time that v1 cannot precede v2 in the merging lanes,
no matter what vehicle v2 is doing (see Fig. 5). Note that
before tmerge, we cannot eliminate the possibility that v1 can
precede v2 in the future.

We sort vehicles in merging lanes by determining tmerge
by evaluating PASSED MERGE(Ov1 ,Ov2 , pmerge, τk) for all
vehicles pairwise and for all τk ⊆ [t0, tf ]. If the time tmerge
exists, the vehicles v1 and v2 can be included in the list [v] as
(v1, v2)[tmerge,t̂]. Otherwise, we omit the currently compared

vehicles in [v], since it is not possible to determine that v1

cannot precede v2 for any τk ⊆ [t0, tf ].
Please note that we do not include lengthv2 in Def. 10

to determine whether vehicle v1 can precede v2 in forking
lanes (unlike Def. 12 for merging lanes), since the earliest
point where v1 can possibly pass v2 on its left or right side
depends much on the lane geometry. To obtain a simple and
provable over-approximative solution, we choose pfork.

C. Remove Unreachable Occupancies

After sorting the vehicles in the same lane (for the
vehicles where an order can be determined), we remove the
occupancy regions of each following vehicle v1 which are
not reachable due to the preceding vehicle v2. The function
TRIMREACHABLE() of Alg. 1 trims the reachable occupancy
as shown in Fig. 6: The occupancy Ov1(t) is shortened such
that it is not ahead of the trim line, i.e. after trimming it
holds that max

(
uOv1

(t)
)
= max

(
uOv2

(t)
)
− lengthv2 .

v1v2

Ov1 (t)Ov2 (t)
trim line

lengthv2

front bound of Ov1(t)

after TRIMREACHABLE()

front bound of Ov2 (t)

Fig. 6. Removing unreachable occupancies of the following vehicle v1.

V. NUMERICAL EXAMPLES

We demonstrate our interaction-aware occupancy pre-
diction in hand-crafted scenarios from the CommonRoad
benchmarks1 [30]. Each benchmark has a unique ID, which
are mentioned later. For the sake of clarity, we have so far
extracted only two other vehicles, v1 and v2, besides the ego
vehicle (and a static obstacle in Scenario I). All results are
obtained first by independently predicting the occupancies of
v1 and v2 using our tool SPOT2 [13] and then by considering
their dependencies as described in Alg. 1. In order to evaluate
the benefit for the ego vehicle, we compute its drivable area
as presented in [31] for the occupancies without consid-
ering interaction (case A) and with considering interaction
(case B). The drivable area is the area which a vehicle can
reach without causing a collision.

Tab. II lists the parameters of the numerical examples, in
which we use different initial velocities for the following
and preceding vehicle (i.e. vv1,0

6= vv2,0
). To evaluate dif-

ferent road conditions, we vary the values for the maximum
acceleration amax, which are obtained by choosing a friction
coefficient of µ = 1.0 and µ = 0.82 for a dry, good road,
and µ = 0.25 for a road covered with snow (and a gravity
constant of g = 9.81m/s2) [32]. We use a time step size
of ∆t = 0.1 s and a prediction horizon of tf = 2.3 s for
Scenario III and tf = 5.0 s for the other scenarios.

1commonroad.in.tum.de
2spot.in.tum.de
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In all following figures, the following vehicle v1 and
the preceding vehicle v2 are depicted in blue and green,
respectively. Their predicted occupancies are plotted in their
vehicle color and such that the shorter occupancy region is on
top of the other one. For Scenarios I and II, the occupancies
Ov(t) are shown for the entire prediction interval, i.e. t ∈
[t0, tf ], while we set t ∈ [(tf −∆t), tf ] for Scenarios III and
IV. We mark the initial state of the ego vehicle at t = t0
with a red circle and its drivable area at t = tf with a red
region.

TABLE II
PARAMETERS FOR THE SCENARIOS (S.) I TO IV

Parameter S. Ia S. Ib S. II S. III S. IV

vv1,0 28m/s 28m/s 14.0m/s 14.0m/s 14.0m/s

vv2,0 8.3m/s 8.3m/s 0m/s 10.0m/s 6.0m/s

vvego,0 18.0m/s 18.0m/s 14.0m/s — 14.0m/s

vv1,max 28.0m/s 28.0m/s 14.0m/s 28.0m/s 14.0m/s

vv2,max 17.0m/s 17.0m/s 14.0m/s 28.0m/s 14.0m/s

vvego,max 28.0m/s 28.0m/s 14.0m/s — 14.0m/s

amax 8.0m/s2 2.5m/s2 2.5m/s2 10.0m/s2 2.5m/s2

A. Two-Lane Road (Scenario I)

Scenario I (CommonRoad ID: S=GER B471 1a) features
a rural road with one lane per driving direction and a static
obstacle (displayed as a gray box) in the lane of the ego
vehicle, as shown in Fig. 7. Thus, the ego vehicle requires
an overtaking maneuver but also has to avoid a collision
with the two oncoming vehicles. Fig. 8 shows the predicted
occupancies of v1 and v2 in Scenario Ia. The occupancies of
the following vehicle v1 (shown in blue) reach in front of the
slower preceding truck v2 (shown in green) (see Fig. 8(a)).
As mentioned before, we plot the occupancy sets such that
the shorter occupancy is on top of the other one. The result of
removing the unreachable occupancy regions after sorting the
two vehicles in the same current lane is shown in Fig. 8(b).
It can be seen that the difference is not much more than
the length of the preceding truck. In Scenario Ib, we use
amax = 2.5m/s2 and plot the occupancy sets in Fig. 9. When
comparing case A in Fig. 9(a) and case B in Fig. 9(b), it can
be observed that the effect of the interaction is significant
and greater than in Scenario Ia.

In Fig. 10, the benefit for the ego vehicle from the
interaction-aware prediction is evaluated using the drivable
area of the ego vehicle under the given velocity and accel-
eration limits (see Tab. II). Since no drivable area exists in
front of the static obstacle in case A, overtaking is only safely
possible when removing unreachable occupancies (case B).

Fig. 7. Initial configuration of Scenario I.

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 8. Occupancies in Scenario Ia (amax = 8.0m/s2).

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 9. Occupancies in Scenario Ib (amax = 2.5m/s2).

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 10. Drivable area of the ego vehicle in Scenario Ib.

B. Intersection of Multiple Two-Lane Roads (Scenario II)

Scenario II presents an urban intersection, where four two-
lane roads cross (CommonRoad ID: S=GER Ffb 1b). As
depicted in Fig. 11, the two vehicles v1 and v2 are driving
south, while the ego vehicle is approaching the intersection
from east. The independently predicted occupancy sets are
plotted in Fig. 12(a) together with the drivable area of the
ego vehicle. Fig. 12(b) shows the trimmed occupancies after
removing the unreachable area of v1. It can be seen that
when considering interaction in the occupancy prediction,
the ego vehicle can safely cross the intersection. At time tf ,
the difference of the drivable area between cases A and B
is larger than 100m2. Please note that in this intersection
scenario, which consists of multiple road forks, we can sort
the vehicles to consider their interaction, since the occupancy
of the preceding vehicle v2 does not split onto several lanes
yet, i.e. NOT PASSED FORK(Ov2 , pfork, tf) evaluates to true.

2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)

3.3 Interaction-aware prediction (ITSC 2017)

51



Fig. 11. Initial configuration of Scenario II.

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 12. Drivable area of the ego vehicle in Scenario II.

C. Road with Merging Lanes (Scenario III)

In Scenario III, we demonstrate the sorting of vehicles in
merging lanes (CommonRoad ID: S=Z Merge 1a). As shown
in Fig. 13, one vehicle is driving in each of the merging
lanes. Their occupancy sets are plotted for t ∈ [(tf−∆t), tf ],
where tf = 2.3 s. Since the green vehicle v2 will definitely
precede the blue vehicle v1 (as t ≥ tmerge), we can remove
the unreachable occupancy region of v1 (see Fig. 13(b)).

D. Multi-Lane Road (Scenario IV)

As mentioned in Sec. IV, considering interaction is not
beneficial in multi-lane roads, which we illustrate with
the following example (CommonRoad ID: S=GER Muc 2b).
Fig. 14 shows two lanes with the same driving direction,
where two vehicles v1 and v2 are driving in the right lane and
the ego vehicle in the left lane. It can be seen that considering
the vehicles pairwise for determining the interactions is not
sufficient, since the following vehicle v1 might be blocked
by two vehicles at once: the preceding vehicle v2 and the
ego vehicle. One might be able to remove small unreachable
regions of the following vehicle’s occupancies, yet that
region is also occupied by the preceding vehicle. Thus, we
gain no benefit for the drivable area of the ego vehicle.
Moreover, in contrast to two-lane roads, vehicles can easily
overtake each other on multi-lane roads and hence almost all
occupancy regions are reachable. For this reason, we have
not extended our method to multi-lane roads.

VI. DISCUSSION

The numerical examples show that considering interaction
between vehicles in the same lane increases the solution
space of the ego vehicle. However, removing unreachable
occupancies only shows substantial benefit in some cases,
e.g. only for bad weather conditions (i.e. low values of
amax) or certain configurations of initial states. Thus, we
suggest applying our approach selectively. The occupancy
sets of all surrounding vehicles should always be predicted
independently first. In the remaining computation time dur-
ing online execution, one can refine the over-approximative
prediction by trimming reachable occupancy regions. Due to
the anytime property of our algorithm, one can terminate it
when computation time is required elsewhere.

We remove unreachable occupancy regions under the
assumption that a vehicle does not change to a lane with

(a) Case A: not considering interaction.

(b) Case B: considering interaction.

Fig. 13. Initial configuration and occupancies for t ∈ [(tf − ∆t), tf ] in
Scenario III.

Fig. 14. Initial configuration and occupancies for t ∈ [(tf − ∆t), tf ] in
Scenario IV.
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the opposite driving direction (constraint Clane of Tab. I).
However, as described in the constraint management in
[13], we immediately remove Clane if it becomes violated.
Thus, the set-based prediction considers the occupancy of
the vehicle in its new lane, as well as in front of a preceding
vehicle, which might have been removed by our interaction-
aware method before the lane change.

VII. CONCLUSION AND FUTURE WORK

For the first time, we consider interaction between vehi-
cles in set-based prediction. Our formal approach removes
unreachable occupancy regions of vehicles in the same
lane by sorting all vehicles and determining unreachable
areas. The benefits of our anytime algorithm are demon-
strated in numerical experiments based on scenarios from the
CommonRoad benchmark repository. Since the drivable area
of the ego vehicle is larger in all scenarios when interaction
is considered, this work improves the quality of the over-
approximative occupancy prediction and increases the safe
solution space for the ego vehicle.

Future work contains further experiments on different
scenarios. In addition, we wish to include interaction be-
tween traffic participants at intersections when considering
applicable traffic rules.
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[31] S. Söntges and M. Althoff, “Computing the drivable area of au-
tonomous road vehicles in dynamic road scenes,” IEEE Transactions
on Intelligent Transportation Systems, [to appear].
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4 Applications to Safe Motion Planning

In this chapter, we develop methods for achieving safe motions that are enabled by our set-
based prediction of the previous Chapter 3. First, we propose a risk assessment approach in
Section 4.1, followed by safety verification in Sections 4.2 and 4.3, and ending with safety
falsification in Section 4.4.

4.1 IV 2018: Worst-case Analysis of the Time-To-React
Using Reachable Sets [66]

Summary Collision mitigation and collision avoidance systems reduce the severity and num-
ber of accidents. To determine the latest point in time at which such systems should intervene,
we need to perform risk assessment that solves Problem statement 4. Therefore, time-based
criticality metrics such as the Time-To-React (TTR) are commonly used. The TTR describes
the latest point in time along the current trajectory of the ego vehicle at which an evasive
trajectory still exists.

Since it is difficult to find exactly the latest TTR, we over-approximate the TTR at which
it is guaranteed that no evasive trajectory exists anymore. Our deterministic upper bound
of the TTR can be used to trigger a collision mitigation system with minimal intervention
or to find a feasible emergency maneuver that avoids the collision. Such an upper bound of
the TTR is obtained by using reachability analysis. We iteratively compute the set of states
reachable by the ego vehicle when starting at different states along the current trajectory. As
soon as the over-approximative reachable set becomes empty, an evasive trajectory definitely
does not exist.

The novelty of our approach is the guaranteed over-approximation of the TTR for arbitrary
traffic scenarios and current trajectories. Similar to most risk assessment methods, we also
require a prediction of the other traffic participants. Our approach works with any given set-
based prediction. For the numerical experiments, we use the set-based prediction of Chapter 3.
Thus, all legal behaviors of other traffic participants are anticipated in the risk assessment,
which results in a conservative TTR. In contrast, the TTR is often larger if the prediction
considers only a single most-likely behavior; yet, the actual risk be might underestimated.

The efficient computation of the over-approximated TTR is demonstrated in different urban
and rural traffic scenarios. By comparing our results to an estimated TTR obtained from
an optimization-based trajectory planner, we show that our upper bound is a tight over-
approximation of the exact TTR. In addition, the computation times of our approach decrease
for more critical situations.

Note that the CommonRoad IDs given in the publication are referring to version 2017a of
CommonRoad. They differ to the IDs in contemporary versions of CommonRoad, since the
construction of IDs has been unified in version 2018a. Thus, we also provide the updated IDs.
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4 Applications to Safe Motion Planning

The presented scenarios with IDs S=Z Overtake 1a, S=GER Ffb 1c, and S=GER Ffb 2b of
version 2017a, are now available under the IDs S=ZAM Over-1 1:2018a, S=DEU Ffb-1 2 S-
1:2018a, and S=DEU Ffb-2 2 S-1:2018a, respectively.

Contributions of M. K. M. K. developed the notion of the TTR using reachable sets and
the over-approximation of the TTR (both together with S. S.). M. K. developed the search
for the minimum, over-approximative TTR (together with S. S.). M. K. designed, conducted,
and evaluated the experiments (together with S. S.). M. K. wrote the article (together with
S. S.).

Conference paper c©2018 IEEE. Reprinted, with permission, from Sebastian Söngtes,
Markus Koschi, and Matthias Althoff, Worst-case Analysis of the Time-To-React Using
Reachable Sets, in Proc. of the IEEE Intelligent Vehicles Symposium.
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Worst-case Analysis of the Time-To-React Using Reachable Sets

Sebastian Söntges*, Markus Koschi*, and Matthias Althoff

Abstract— Collision mitigation and collision avoidance sys-
tems in intelligent vehicles reduce the severity and number of
accidents. To determine the optimal point in time at which
such systems should intervene, time-based criticality metrics
such as the Time-To-React (TTR) are commonly used. The
TTR describes the last point in time along the current trajec-
tory at which an evasive trajectory exists. In this paper, we
present a novel approach to determine the point in time after
which it is guaranteed that no evasive maneuver exists, i.e.,
by using reachable sets, we over-approximate the TTR. Our
deterministic upper bound of the TTR can be used to trigger a
collision mitigation system or to find a feasible emergency ma-
neuver which avoids the collision. We demonstrate the efficient
computation of the tight over-approximated TTR in different
urban and rural traffic scenarios, and compare our results to an
estimated TTR using an optimization-based trajectory planner.

I. INTRODUCTION

A. Motivation

Risk assessment is a crucial component of intelligent
vehicles to avoid collisions within and beyond the planning
horizon [1]. Advanced driver assistant systems (ADAS) have
to reliably determine whether the driver is able to avoid
potential collisions. If the assumed motion of the vehicle will
(most likely) end in a crash, a collision mitigation system
can reduce the severity of the impact. Such systems should
only intervene if no evasive trajectory exists so that the
driver has control of the vehicle as long as possible and to
prevent unnecessary interventions (false positives). However,
a system also has to detect every unavoidable collision so
that no missed intervention occurs (false negatives). Self-
driving vehicles, in addition, can use risk assessment to avoid
collisions and to obtain optimal trajectories which are the
least critical.

B. Related work

We review existing work in the categories a) detecting
unavoidable collisions, b) computing the Time-To-Collision,
and c) computing the time until the last evasive maneuver.

a) Detecting unavoidable collisions: Collision mitiga-
tion systems only intervene at unavoidable collisions, which
are often approximately detected by checking a finite set
of possible evasive maneuvers [2], [3]. To describe states
in which the system eventually collides regardless of what

*The first two authors have equally contributed to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany. {sebastian.soentges,
markus.koschi, matthias.althoff}@tum.de

This work was partially supported by the BMW Group within the
CAR@TUM project and by the project “interACT” within the EU Horizon
2020 programme under grant agreement No 723395.

trajectory it follows, the notion of Inevitable Collision States
(ICS) was introduced [4]. In order to guarantee that a
collision is unavoidable, one has to employ methods which
consider the set of all possible trajectories. For this purpose,
reachable sets, which are the set of states reachable for a
system subject to a set of inputs, are often used. The work
in [5] uses backward reachable sets for the example of a lane
departure system. The authors of [6] determine all reachable
positions while ignoring the velocity domain, which results
in overly large reachable regions. In our previous work
[7], we compute an over-approximation of the reachable set
considering position, velocity, and acceleration constraints.
This over-approximation can be used to determine the nonex-
istence of evasive trajectories [8].

b) Time-To-Collision: For practical employment, one
does not only wish to detect whether a collision is unavoid-
able given the current state, but rather wants to know the
time until a collision when continuing the current trajectory.
Time-To-Collision (TTC) denotes the time until impact,
given a predicted trajectory of the ego vehicle and of each
surrounding object [9]. A worst-case analysis of the TTC is
described in [10]. To account for uncertainties, one can use
stochastic predictions to obtain a probabilistic TTC [11]–
[13].

c) Time until last evasive maneuver: The TTC is not
sufficient for collision avoidance, since it provides no infor-
mation about possible evasive maneuvers. For that reason, the
Time-To-React (TTR) has been proposed as the remaining
time along the current trajectory until which a collision-
free and dynamically feasible trajectory still exists [14]. The
authors of [14] define the TTR as the maximum of the
Time-To-Brake (TTB), Time-To-Steer (TTS), and Time-To-
Kickdown (TTK), which correspond to maximum possible
braking, steering, and acceleration trajectories, respectively.
These time-based metrics are often generalized as Time-To-
X (TTX), i.e., the time remaining for an action X to avoid
a collision. Since [14] is only designed for restricted traffic
situations with one other object, an iterative search strategy
using predefined evasive trajectories is proposed in [15] for
scenarios with multiple objects. An active safety system for
pedestrian avoidance employing the concepts of TTB and
TTS is described in [16]. To consider uncertainties when
computing the TTR, one can use probabilistic collision detec-
tion systems [17]–[19], which are similar to the probabilistic
TTC as described above.

It is difficult to exactly determine the TTR, since all
possible evasive trajectories have to be evaluated. If only
a finite number of evasive trajectories is considered, it
cannot be guaranteed that one has found the latest possible
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trajectory. However, we wish to know when to react at the
latest, i.e., the earliest point in time at which an evasive
trajectory definitely does not exist.

C. Contribution
We propose an efficient method to over-approximate the

TTR. Existing sampling-based methods (e.g., [14]–[16])
under-approximate the TTR, since they determine the time
at which they can still obtain a feasible evasive trajectory. In
contrast, our novel set-based approach determines an over-
approximation of the TTR, since by using reachable sets, we
determine the time at which it is guaranteed that no evasive
maneuver exists.

Given an assumed motion of the vehicle, our upper bound
of the TTR makes it possible for collision mitigation systems
to know beforehand when, at the latest, to definitely intervene
or warn the driver. Similarly, collision avoidance systems
or autonomous vehicles can use the over-approximated TTR
as the upper bound when searching for evasive trajectories,
since it is guaranteed that no collision-free trajectory exists
after that time.

Using our over-approximated TTR, one can now judge the
accuracy of existing TTR computations. We show that our
upper bound is a tight over-approximation by estimating the
TTR using an optimization-based trajectory planner. Note
that our method is deterministic, i.e., it always returns the
same TTR for the same configuration. Furthermore, our
approach is independent of a particular prediction of other
objects and can be used with any given set-based traffic
prediction.

The remainder of this paper is organized as follows: After
defining the problem statement in Sec. II, we present our
algorithm to over-approximate the TTR in Sec. III. Sec. IV
describes the optimization-based trajectory generation we
use for comparison. Examples of traffic scenarios in Sec. V
illustrate that we can tightly over-approximate the TTR. We
conclude our paper in Sec. VI.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Definitions
We model the motion of the vehicle by a dynamical system

ẋ(t) = f
(
x(t), u(t)

)
, (1)

where x(t) ∈ X is the state within the state space X ⊆
Rn, u(t) ∈ U is the input within the set of admissible
control inputs U ⊆ Rm, and t is the time. The solution
of (1) for an input trajectory u(·) and an initial state x0 at
time t0 is denoted by the state trajectory x

(
t;x0, u(·)

)
. We

further introduce the planning horizon T and the final time
tf := t0 + T . Since we require that possible trajectories
are collision-free, the vehicle must avoid the occupancy of
(dynamic) obstacles O(t) ⊆ R2. Thus, we define the set of
all colliding states by

F(t) :=
{
x(t) ∈ X

∣∣A(x(t)
)
∩ O(t) 6= ∅

}
, (2)

where A
(
x(t)

)
⊆ R2 denotes the occupancy of the vehicle

on the road. Using the set of colliding states (obtained from

a given prediction), we can assess the risk of the current
input trajectory uc(·) ∈ U of the vehicle with initial state
x0 /∈ F(t0):

Definition 1 (Time-To-Collision) The Time-To-Collision
(TTC) is the maximum time we can continue the current
trajectory uc(·) ∈ U before we enter the set of colliding
states F(·):

TTC := sup
t∗∈R

{
t∗ − t0

∣∣ t∗ ∈ [t0, tf ],

∀t ∈ [t0, t∗] : x
(
t;x0, uc(·)

)
/∈ F(t)

}
.

Definition 2 (Time-To-React [14]) The Time-To-React
(TTR) is the maximum time we can continue the current
trajectory uc(·) ∈ U before we have to (and still can)
execute an evasive trajectory to avoid entering the set of
colliding states F(·) within the planning horizon T :

TTR := sup
t∗∈R

{
t∗ − t0

∣∣ t∗ ∈ [t0, tf ],∃u(·) ∈ U ,

∀t ∈ [t0, t∗] : x
(
t;x0, uc(·)

)
/∈ F(t) ∧

∀t ∈ [t∗, tf ] : x
(
t;x
(
t∗;x0, uc(·)

)
, u(·)

)
/∈ F(t)

}
.

An evasive trajectory in Def. 2 is any trajectory which
is collision-free until the end of the planning horizon. To
consider all evasive trajectories in the set of admissible
inputs, we define the reachable set of (1) given a set of
possible initial states X0:

Definition 3 (Reachable set) The reachable set is the set of
states which are reachable at time t from an initial set X0

at time t0 without entering F(·):

R(t;X0, t0) :=
{
x
(
t;x0, u(·)

) ∣∣∣x0 ∈ X0, u(·) ∈ U ,

∀τ ∈ [t0, t] : x
(
τ ;x0, u(·)

)
/∈ F(τ)

}
.

The reachable set is closely related to the existence of an
evasive trajectory:

Remark 1 (Existence of collision-free trajectory) From
Def. 3 it immediately follows that a collision-free trajectory
exists if and only if the reachable set of the current state x0

is nonempty at the final time tf :

R(tf ;x0, t0) 6= ∅ ⇒
∃u(·) : ∀τ ∈ [t0, tf ] : x

(
τ ;x0, u(·)

)
/∈ F(τ).

Thus, the TTR can also be expressed in terms of R:

Proposition 1 (Time-To-React using reachable sets) The
TTR is the last point in time along the current trajectory
from which the reachable set is nonempty at the end of the
planning horizon:

TTR = sup
t∗∈R

{
t∗ − t0

∣∣ t∗ ∈ [t0, tf ],

∀t ∈ [t0, t∗] : x
(
t;x0, uc(·)

)
/∈ F(t) ∧

R
(
tf ;x

(
t∗;x0, uc(·)

)
, t∗
)
6= ∅
}
.
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Proof: Prop. 1 directly follows from Def. 2 and Def. 3.

In order to efficiently search for the TTR, we want to
know the time interval in which the TTR is monotonic with
respect to time. Using the TTC from Def. 1, we can express
the monotonicity:

Proposition 2 (Monotonicity of the TTR) Given a set of
colliding states F(·) and the current trajectory uc(·) of the
vehicle starting at x0. If there is no emergency trajectory
starting from uc(·) at t1 ≥ t0, there cannot be any trajectory
starting from a later point in time t2 ∈ [t1, t0 + TTC]:

t0 ≤ t1 ≤ t2 ≤ t0 + TTC ≤ tf :

R
(
tf ;x

(
t1;x0, uc(·)

)
, t1
)

= ∅ ⇒
R
(
tf ;x

(
t2;x0, uc(·)

)
, t2
)

= ∅.

Proof: From Def. 3, it follows that x
(
t2;x0, uc(·)

)
∈

R
(
t2;x

(
t1;x0, uc(·)

)
, t1
)

and thus ∀t ∈ [t2, tf ] :
R
(
t;x
(
t2;x0, uc(·)

)
, t2
)
⊆ R

(
t;x
(
t1;x0, uc(·)

)
, t1
)
.

B. Problem statement

In this paper, we want to estimate the Time-To-React
according to Prop. 1 for a given obstacle prediction O(t)
by a strict and tight over-approximation TTRmax ≥ TTR,
so that we know the maximum time we have to avoid a
collision.

To model the motion of the vehicle, we use a velocity-
and acceleration-bounded point mass:

f(x, u) =


ṡx
ṡy
v̇x
v̇y

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



sx
sy
vx
vy

+


0 0
0 0
1 0
0 1

[uxuy
]
,

(3)
vmin,x ≤ vx ≤ vmax,x, |ux| ≤ amax,

vmin,y ≤ vy ≤ vmax,y, |uy| ≤ amax,

and assume that the occupancy of the vehicle on the road is
a circle with radius rego:

A
(
x(t)

)
=
{
y
∣∣∣ y ∈ R2,

∥∥∥[sx sy
]T − y∥∥∥

2
≤ rego

}
. (4)

The dynamical system (3) is deliberately simple and
cannot accurately model a vehicle in emergency situations.
However, with the two basic assumptions of bounded veloc-
ity and acceleration, it is a valid abstraction of more accurate
vehicle models, i.e., the reachable set of the abstract model
contains the reachable set of more accurate models, and we
may use Prop. 1 to find a valid over-approximation of the
TTR.

III. OVER-APPROXIMATION OF THE TTR

To determine an over-approximative TTRmax according to
Prop. 1, we have to compute the reachable set of (3). Since
the computation of the exact reachable set is often compu-
tationally not feasible, we resort to a method computing an
over-approximation (superset) of the reachable set, i.e., ∀t ≥
0 : R⊃(t;X0, t0) ⊇ R(t;X0, t0), as described in Sec. III-A.

t0 t1
t2

t3 t4 t5

initial position

y

x

obstacle region

Bk5
Bl5

Bj5

Fig. 1. Reachable set approximation for five time steps. Bold arrows indi-
cate which subsets Bqi−1 contribute to which subsets Bqi in the succeeding
time step ti.

Given a method to compute an over-approximation of the
reachable set, we can determine an upper bound of the TTR
using Prop. 1: If for a candidate t∗, our over-approximation
R⊃
(
t;x
(
t∗;x0, uc(·)

)
, t∗
)

vanishes at t = tf , there is no
evasive trajectory starting from t∗, and t∗−t0 is a valid over-
approximative TTRmax. To minimize TTRmax ≥ TTR, we
search the set of candidates t∗ ∈ [t0, tf ] to find the earliest at
which the reachable set vanishes, as described in Sec. III-B.

A. Over-approximation of the reachable set

We compute an over-approximation of the reachable set by
using [7], which is briefly described in the following. Our
method computes R⊃i iteratively at discrete points in time
ti. In each iteration, we first propagate R⊃i−1 one time step
forward to obtain the set of states Xi:

Xi ⊇
⋃

xi−1∈R⊃
i−1

⋃
u(·)∈U

x
(
ti;xi−1, u(·)

)
. (5)

Then, we remove the set of colliding states:

R⊃i ⊇ Xi \ F(ti). (6)

Note that this approach uses several approximations which
are necessary for an efficient numerical computation. These
are due in particular to an efficient set representation (convex
polytopes) and required set operations (e.g., set difference
and union). For further details, we refer the reader to [7].

The resulting set R⊃i is represented by the union of four-
dimensional convex polytopes Bqi (in the position/velocity
domain):

R⊃i =
⋃
q

Bqi . (7)

As an example, Fig. 1 shows the computed reachable set
at different time steps in the position domain. Each of the
polytopes Bqi originates from one or more parents Bqi−1. The
relationships between each Bqi−1 and its succeeding Bqi can
be represented as a directed acyclic graph. Each trajectory
which visits the set Bqi must have visited one of its parents
Bqi−1 and must visit one of its children Bqi+1, as is illustrated
in Fig. 1 for i = 1, . . . , 5.
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B. Search for the minimum TTRmax

The reachable set R⊃ allows us to determine whether a
candidate t∗ yields a valid TTRmax. To efficiently find the
minimum TTRmax in the set of candidates t∗ ∈ [t0, tf ], we
propose to use binary search. Alg. 1 gives an outline of the
discrete-time binary search for TTRmax. As the upper bound
for the search, we use the TTC, since uc(·) is only collision-
free from t0 until t0+TTC (cf. Def. 1 and Prop. 2). The TTC
is easily determined using uc(·) and F(·). We do not refine
the lower bound of the search, since this requires additional
computing resources; however, one could use the Time-To-
Brake as a lower bound. To compute this time, one can start
at the TTC and apply the maximum feasible acceleration
backwards along the path of uc(·) until a state x

(
t;x0, uc(·)

)
is reached [20].

Algorithm 1 Discrete-time binary search for TTRmax

Input: x0 at t0, ∆t, tf , TTC, F(t), uc(·)
Output: TTRmax

1: low = 0, high = dTTC/∆te
2: while low < high do
3: mid ← b(low + high)/2c
4: t∗ ← mid ·∆t+ t0
5: if R⊃

(
tf ;x

(
t∗;x0, uc(·)

)
, t∗
)

is not ∅ then
6: low ← mid + 1
7: else
8: high ← mid
9: end if

10: end while
11: return TTRmax ← low ·∆t

Usually, the TTR is computed online, i.e., during runtime
of the vehicle with regular updates of x0, uc(·), and F(t).
Thus, we can use the TTRmax based on the information from
the previous planning step to compute the TTRmax based on
the current information. By refining the previously obtained
TTRmax, we can enhance the search and save computation
time.

IV. ESTIMATION OF THE TTR THROUGH
OPTIMIZATION-BASED TRAJECTORY GENERATION

In order to evaluate the tightness of the over-approximation
of our proposed set-based algorithm, we compare the upper
bound TTRmax (computed with Alg. 1) with an estimate
TTR≈. We determine TTR≈ by searching for the latest point
in time from which we can explicitly generate a valid evasive
trajectory using the same vehicle model (3). Suppose we
have a set of possible TTR≈ candidates. For each candidate,
we try to find a feasible trajectory starting from t∗ = t0 +
TTR≈. Finally, we choose the longest TTR≈ for which a
feasible trajectory can be found. Each trajectory is generated
by iteratively solving a convex optimization problem around
an initial trajectory guess, as described below.

To generate a collision-free initial trajectory, we use a
depth-first search in the reachable set. The initial trajectory
guess

[
x̂0, . . . , x̂∗, . . . x̂n

]T
is constructed so that it matches

(a) yi, ri yi+1, ri+1
optimized trajectory

initial trajectory

(b)

ri rego
g

regox̂i

yi

obstacle region

Fig. 2. (a) We obtain the locally optimized trajectory (red) from the initial
trajectory (blue). At each time step i, the optimized trajectory may deviate
from yi at most by the radius ri. (b) The center points yi and radii ri are
determined from the initial trajectory by searching a circular region which
is collision-free and contains the initial trajectory x̂i. The circular region
is found by increasing ri and moving yi from x̂i along the direction g
(an approximation of the gradient of the distance function to the obstacle
region).

the intended trajectory from time t0 until time t∗ and lies in
the reachable set for the remaining time steps. The optimized
trajectory is obtained by displacing the states at the points in
time t∗+1, . . . , tf . As shown in Fig. 2(a), we constrain the
displacement to be smaller than r∗+1, . . . , rn to ensure that
the initial trajectory is only locally optimized, smooth, and
collision-free. Instead of directly using the center points x̂i
for the optimization, we introduce the positions yi, since if x̂i
is close to an obstacle, the allowed displacement ri would be
small and there would only be little space for optimization.
We determine yi and rj by a local search starting from x̂i,
as shown in Fig. 2(b).

The optimization problem is to minimize the absolute
maximum acceleration:

minimize
u∗,...,un−1

∥∥∥[u∗, . . . , un−1

]T∥∥∥
∞

subject to xi = Axi−1 +Bui−1,

x∗ = x̂∗,[
vmin,x

vmin,y

]
≤ C1xi,[

vmax,x

vmax,y

]
≥ C1xi,

‖C2xi − yi‖2 ≤ ri, i = ∗+ 1, . . . , n

(8)

where

A =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B =


∆t2

2 0

0 ∆t2

2
∆t 0
0 ∆t


and

C1 =

[
0 0 1 0
0 0 0 1

]
, C2 =

[
1 0 0 0
0 1 0 0

]
.
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If we obtain a trajectory with ‖
[
u∗, . . . , un−1

]T ‖∞ ≤ amax,
we accept the trajectory as a valid solution; otherwise, we
repeat the optimization with this trajectory as the initial
trajectory and with a new set of displacement constraints
until the optimization objective cannot be further reduced.

V. NUMERICAL EXAMPLES

We demonstrate our computation of the TTRmax and
TTR≈ in three scenarios, which are included in the
CommonRoad benchmarks1 [21]. Tab. I lists the parame-
ters of the numerical examples. We generate the intended
trajectory uc(·) such that the ego vehicle follows the center
of its current lane with constant velocity. To obtain the set
of occupied points of other traffic participants O(t) within
the planning horizon, we use our prediction tool SPOT [22],
which assumes that other vehicles have limited velocity and
acceleration and abide by the traffic rules.

A. Two-lane road (Scenario I)

The first, deliberately simple scenario is a rural two-lane
road2. Fig. 3(a) illustrates the initial position of the ego
vehicle, its current intended trajectory, and a static obstacle
in the lane of the ego vehicle.

We obtain TTRmax = 0.8 s, since it is the first time along
the intended trajectory at which the reachable set becomes
empty at tf . Fig. 3(b) depicts the reachable set which is
initialized at t∗ = TTRmax − ∆t. Using the optimization-
based trajectory planner, we obtain an evasive trajectory
which branches off at TTR≈ = 0.7 s, as shown in Fig. 3(c).
The maximum acceleration of this trajectory almost requires
the maximum allowed acceleration amax. When decreasing
the time step size to ∆t = 0.01 s, we obtain TTRmax =

1commonroad.in.tum.de
2CommonRoad ID: S=Z Overtake 1a; based on [23, Fig. 3]

TABLE I
PARAMETERS OF THE SCENARIOS (S.) I TO III.

Parameter of ego vehicle Value

Initial speed (S. I) v0 = 20.0 m/s

Initial speed (S. II) v0 = 7.0 m/s

Initial speed (S. III) v0 = 14.0 m/s

Minimum velocity (S. I) vmin,x = 0.0 m/s

Minimum velocity (S. I) vmin,y = −10.0 m/s

Maximum velocity (S. I) vmax,x = 25.0 m/s

Maximum velocity (S. I) vmax,y = 10.0 m/s

Minimum velocity (S. II, III) vmin,x/y = −14.0 m/s

Maximum velocity (S. II, III) vmax,x/y = 14.0 m/s

Absolute maximum acceleration amax = 10.0 m/s2

Radius of vehicle rego = 0.9 m

Parameter of simulation Value

Initial time t0 = 0 s

Time horizon T = 3.0 s

Time step size ∆t = 0.1 s

(a)

host vehicle

intended trajectory obstacle regions

(b)

t∗

intended trajectory

t0 reachable set over time

(c)

t∗t0

intended trajectory evasive trajectory

Fig. 3. Results of Scenario I: TTRmax = 0.8 s and TTR≈ = 0.7 s. (a)
Initial configuration with current trajectory uc(·) from t0 until tf . (b) The
reachable set R⊃(

t;x
(
t∗;x0, u(·)

)
, t∗

)
starting at t∗ = TTRmax−∆t is

plotted for all times t ∈ [t∗, tf ]. (c) The latest possible evasive trajectory
branches off the intended trajectory at t∗ = TTR≈.

0.79 s and TTR≈ = 0.72 s, which shows that TTRmax is a
rather tight upper bound.

B. Intersection (Scenario II)

Scenario II features an urban intersection, where the ego
vehicle intends a left turn3. As shown in Fig. 4(a), an
approaching vehicle is predicted to continue straight and
another vehicle, whose initial position is located outside of
the figure, is predicted to turn right.

Our over-approximation results in TTRmax = 1.1 s and
our estimation in TTR≈ = 1.0 s. The reachable set and the
optimized trajectory starting at state x

(
t∗;x0, uc(·)

)
along

the intended trajectory are depicted in Fig. 4(b)–(d) for
t∗ = TTRmax−∆t and different time intervals t. As shown
in Fig. 4(b), the reachable set is very small in early time
steps, and thus, we do not have much time to react. Once
we have evaded the approaching vehicle on the right, we
have much space on the road, as shown in Fig. 4(d). Note
that we can restrict the reachable set to certain lanes, e.g.,
lanes with same driving direction, by adding further position
constraints.

C. T-Intersection (Scenario III)

Fig. 5(a) illustrates the next urban traffic scenario, where
the current trajectory of the ego vehicle continues straight
with constant velocity, while three other traffic participants
are detected at the T-intersection ahead4. Since we are uncer-
tain about the intended maneuver of the other vehicles, the

3CommonRoad ID: S=GER Ffb 1c; based on [15, Sec. IV.-A]
4CommonRoad ID: S=GER Ffb 2b; based on [2, Sec. VI.-C]
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(a)

host vehicle

intended
trajectory

traffic
participants

occupancy
prediction

t∗ = 1.0s

t ∈ [0.0s, 2.0s]

(b)

t∗ = 1.0s

t ∈ [2.0s, 2.5s]

(c)

t∗ = 1.0s

t ∈ [2.5s, 3.0s]

(d)

Fig. 4. Results of Scenario II: TTRmax = 1.1 s and TTR≈ = 1.0 s. (a)
Initial configuration with predicted occupancies O(t), t ∈ [t0, tf ]. (b)–(d)
The reachable set and the evasive trajectory both starting at t∗ = TTR≈
are shown for different time intervals t.

occupancy prediction includes full acceleration and braking,
and, for the vehicle approaching the intersection, turning left
and right.

We obtain TTRmax = 0.5 s and TTR≈ = 0.3 s. Fig. 5(b)–
(d) depicts the reachable set and optimized trajectory starting
at different TTR candidates t∗. It can be seen that the
reachable set is very small, and thus, only a few evasive
maneuvers exist. Note that, as shown in Fig. 5(d), the opti-
mized trajectory starting at t∗ = 0.4 s leaves the reachable
set, and its maximum accleration ‖u‖∞ = 10.9 m/s2 is larger
than amax; thus, this trajectory is not dynamically feasible
for our vehicle model, and TTR≈ = 0.3 s.

D. Computation times

Next, we examine the computation times required to
determine the reachable set for all times from the current
candidate t∗ until the final time tf (i.e., line 5 of Alg. 1).
Tab. II compares the computation times of all presented
scenarios for different starting times t∗. We can see that
the computation time of our method drastically decreases
for a smaller solution space of the ego vehicle, which is
beneficial when trying to efficiently determine the TTR. The
computation times have been obtained using a Python/C++

(a)

host vehicle

intended trajectory

traffic participant

occupancy prediction

(b)

t∗ = 0.2s

(c)

t∗ = 0.3s

(d)

t∗ = 0.4s

Fig. 5. Results of Scenario III: TTRmax = 0.5 s and TTR≈ = 0.3 s. (a)
Initial configuration with predicted occupancies O(t), t ∈ [t0, tf ]. (b)–(d)
Starting at different TTR candidates t∗, the reachable set and the optimized
trajectory are plotted for times t ∈ [t∗, 2.2 s].
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TABLE II
COMPUTATION TIMES FOR THE REACHABLE SET UNTIL tf .

Scenario Initialization time Computation time

Scenario I t∗ = 0.7 s 57 ms

Scenario I t∗ = 0.8 s 1 ms

Scenario II t∗ = 1.0 s 86 ms

Scenario II t∗ = 1.1 s 0.2 ms

Scenario III t∗ = 0.4 s 28 ms

Scenario III t∗ = 0.5 s 1 ms

implementation on a machine with a 2.6 GHz Intel Core
i7 processor with 20 GB 1600 MHz DDR3 memory. (SPOT
requires around 30 ms to compute the occupancy of one
traffic participant for the whole planning horizon.)

VI. CONCLUSION AND FUTURE WORK

We present a novel approach to tightly over-approximate
the Time-To-React for risk assessment. The proposed method
provides an upper bound of the TTR by iteratively computing
the set of states reachable by the ego vehicle starting at
states along the current trajectory. As soon as the reachable
set becomes empty within the planning horizon, an evasive
maneuver definitely does not exist. The novelty of our
approach is that we obtain a guaranteed over-approximation
of the TTR for arbitrary traffic scenarios. Our deterministic
approach is independent of the prediction of other objects but
can consider uncertainties in their unknown future behavior.
Our experiments show that the computation times of our
proposed over-approximation of the TTR are very short
(below 100 ms) and decrease for more critical situations;
thus, our approach is promising for real-time application.

As future work, we wish to define terminal states which
can be considered safe for an infinite time horizon so that
no finite planning horizon is required.
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[5] P. Falcone, M. Ali, and J. Sjöberg, “Predictive threat assessment via
reachability analysis and set invariance theory,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1352–1361,
2011.

[6] C. Schmidt, F. Oechsle, and W. Branz, “Research on trajectory
planning in emergency situations with multiple objects,” in Proc. of
the 9th International IEEE Conference on Intelligent Transportation
Systems, 2006, pp. 988–992.
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4.2 NMI 2020: Using online verification to prevent
autonomous vehicles from causing accidents [71]

Summary In this section, we present the first formal verification technique to guaranteeing
legal safety in arbitrary urban traffic situations, which solves Problem statement 3. Our tech-
nique serves as a safety layer for existing motion planning frameworks that provide intended
trajectories for the ego vehicle and may contain machine learning components. Since such in-
tended trajectories usually cannot ensure legal safety, we verify these trajectories and provide
fallback solutions for safety-critical situations to always comply with legal safety. Therefore,
we compute all legal behaviors of other traffic participants by using the set-based prediction
of Chapter 3. Next, we compute the drivable area of the ego vehicle, which results from its
reachable set that is collision-free against the prediction. From this drivable area, we obtain
dynamics-aware driving corridors, in which we optimize fail-safe trajectories respecting the
safety constraints. As a result, the ego vehicle never causes accidents although other traffic
participants are allowed to perform any behavior in accordance with traffic rules.

The benefits of our verification technique are demonstrated in urban scenarios. Intersec-
tions, interactions with pedestrians, and lane changes on multi-lane roads are accidents hot
spots and are featured by our experiments. Nevertheless, the ego vehicle executes only safe
trajectories, even when using an intended trajectory planner that is not aware of other traf-
fic participants. Our results, which are based on real traffic data, indicate that our online
verification technique can drastically reduce the number of traffic accidents while the driving
behavior of the ego vehicle does not suffer from unreasonable conservativeness.

Contributions of M. K. M. K. developed the verification technique during replanning (to-
gether with C. P. and S. M.). M. K. developed the concept and algorithms for the set-based
prediction. M. K. designed, conducted, and evaluated the experiments and collected the data
(all together with C. P. and S. M.). M. K. wrote the article and the Supplementary Informa-
tion (both together with C. P. and S. M.).
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Safety remains a major challenge in the realization of autono-
mous vehicles. Unsafe decisions by autonomous vehicles can 
endanger human lives and cause tremendous economic loss in 

terms of product liability. Although autonomous driving is becom-
ing a reality, recent accidents involving autonomous driving systems 
have raised major concerns in various institutions1, and policy mak-
ers continue to debate about adequate safety levels for certifying 
autonomous vehicles2. To achieve widespread acceptance, safety 
concerns must be resolved to the full satisfaction of all road users. 
So far, automotive safety relies primarily on simulation and testing. 
However, due to the infinitely many unique real-world scenarios, 
these techniques cannot ensure strict safety levels3,4, especially when 
using machine learning for motion planning5.

We call for a paradigm shift from accepting residual collision 
risks to ensuring safety through formal verification. Formal veri-
fication describes the process of proving that a system always ful-
fils a desired formal specification6. However, in the context of safe 
motion planning, specifying all unsafe scenarios and proper reac-
tions of autonomous vehicles is a tedious task6. Although it cannot 
be excluded that autonomous vehicles are involved in accidents, 
such as when a following car deliberately provokes a rear-end col-
lision, self-inflicted accidents can and should be eliminated. What 
can we expect from human drivers to avoid self-inflicted accidents? 
Based on the Vienna Convention on Road Traffic, which serves as 
a foundation for safe driving in 78 countries, human drivers ‘shall 
avoid any behaviour likely to endanger or obstruct traffic’ (article 7 
of ref. 7). Inspired by this general rule, we demand that motions of 
autonomous vehicles must be collision-free under the premise that 
other traffic participants are allowed to perform all legal behaviours, 
that is, all dynamically feasible behaviours that do not violate traffic 
rules. Following refs. 8,9, we refer to this specification as ‘legal safety’.

In contrast to related work, our holistic approach computes all 
legal behaviours of other traffic participants and collision-free fall-
back plans for the autonomous vehicle. Our solution serves as a 
safety layer for existing motion planning frameworks. These frame-
works generate intended trajectories but cannot guarantee legal 
safety. However, in combination with our verification technique, 

legal safety is ensured. Our technique provides the following three 
key features:

	1.	 Online situation assessment: The safety of each traffic situation 
is assessed online during operation of the autonomous vehicle 
by rigorously predicting all legal future evolutions of the sce-
nario (blue areas, Fig. 1) while accounting for measurement 
uncertainties. In contrast to classical testing approaches, even 
previously unseen traffic environments can be handled, that is, 
scenarios with arbitrary road geometries and number of traffic 
participants.

	2.	 Fail-safe operation: Our approach ensures that the autonomous 
vehicle always has a fail-safe trajectory to a standstill in des-
ignated safe areas, which serves as a fallback plan in the case 
where a safety-critical situation occurs (see the fail-safe trajec-
tory in Fig. 1).

	3.	 Correct by construction: Regardless of the provided motion 
planning framework, which may include machine learning com-
ponents, our verification technique ensures that the autonomous 
vehicle operates in compliance with legal safety at all times. Fur-
thermore, our safety guarantees hold even if certain traffic rules 
are not yet included in our technique, because, from the set of all 
dynamically feasible behaviours, we only remove the behaviours 
that are illegal according to the considered traffic rules.

At present, verification is performed during the design process—
that is, offline, before systems are deployed10. However, offline veri-
fication is not suitable for autonomous vehicles, as these vehicles 
operate in highly uncertain environments in which each scenario 
is unique. For this reason, online verification approaches have been 
introduced that verify safety properties during operation of the 
autonomous vehicles (section II-C of ref. 11), for example, through 
logical reasoning12,13 or avoiding inevitable collision states14,15. In the 
case where a trajectory is classified as unsafe, these approaches usu-
ally do not provide an alternative safe plan for the vehicle. In the 
field of control, popular safety techniques are robust model predic-
tive control approaches16–18 and correct-by-construction controllers, 

Using online verification to prevent autonomous 
vehicles from causing accidents
Christian Pek   1,2 ✉, Stefanie Manzinger   1,2 ✉, Markus Koschi   1,2 ✉ and Matthias Althoff   1

Ensuring that autonomous vehicles do not cause accidents remains a challenge. We present a formal verification technique 
for guaranteeing legal safety in arbitrary urban traffic situations. Legal safety means that autonomous vehicles never cause  
accidents although other traffic participants are allowed to perform any behaviour in accordance with traffic rules. Our tech-
nique serves as a safety layer for existing motion planning frameworks that provide intended trajectories for autonomous 
vehicles. We verify whether intended trajectories comply with legal safety and provide fallback solutions in safety-critical situ-
ations. The benefits of our verification technique are demonstrated in critical urban scenarios, which have been recorded in real 
traffic. The autonomous vehicle executed only safe trajectories, even when using an intended trajectory planner that was not 
aware of other traffic participants. Our results indicate that our online verification technique can drastically reduce the number 
of traffic accidents.
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for example, involving barrier certificates19, Lyapunov functions20 or 
automatic controller synthesis21. These approaches ensure that the 
vehicle avoids unsafe states or is kept within an invariant set of safe 
states22,23 at all times. Closely related recent approaches incorporate 
reachability analysis to compute the set of states that a system is able 
to reach over time. Thus, it can be verified that unsafe states are not 
reached during operation9,24–26. However, these existing approaches 
are often computationally intractable, do not generalize to arbitrary 
traffic scenarios or do not provide the required prediction of unsafe 
sets in dynamic environments.

In the context of autonomous driving, the time-variant unsafe sets 
are commonly defined as the future occupied positions of other traffic 
participants, which can be obtained by motion prediction27. Existing 
prediction approaches usually compute a countable set of most likely 
behaviours by applying probabilistic28–30 or machine learning meth-
ods31–33. The safety of autonomous vehicles is guaranteed only if no 
traffic participant deviates from the few predicted behaviours, but 
such deviations often occur in real traffic. By incorporating reach-
ability analysis, predictions are able to consider an infinite number 
of possible future behaviours of dynamic obstacles9,34–37. Yet, allow-
ing for all dynamically feasible behaviours of other traffic partici-
pants overly limits the manoeuvrability of the autonomous vehicle. 
Therefore, our reachability-based prediction only considers behav-
iours that are dynamically feasible in the road network and that do 
not violate a set of formalized traffic rules (blue areas, Fig. 1).

The motion planner for fail-safe trajectories must cope with 
small and convoluted solution spaces. Commonly used trajec-
tory planning techniques either discretize the input or state space 
of the autonomous vehicle38,39 or apply variational techniques in 
continuous space40–42. The former methods suffer from discretiza-
tion effects, such that narrow passageways in the solution space 
may not be found43 or safe terminal states may not be reached44. 
Although variational-based methods overcome these limitations, 
the non-convexity of the motion planning problem due to nonlinear 
vehicle dynamics and collision avoidance poses a major challenge. 
As a result, variational-based techniques are often computation-
ally complex45–47 or must be guided through the solution space to 
work in dense traffic situations48,49, for example, by specifying driv-
ing corridors that represent temporal tactical decisions, such as  

overtaking an obstacle on the left or right. Approaches for obtain-
ing driving corridors generally do not consider the dynamics of the 
autonomous vehicle50–52 and thus may not be able to reason about 
the drivability of driving corridors. Our approach combines reach-
ability analysis with convex optimization to determine drivable 
fail-safe trajectories within dynamics-aware driving corridors in 
arbitrary traffic scenarios (fail-safe trajectories, Fig. 1).

Results
Our verification technique ensures legal safety over consecutive 
verification cycles. A new verification cycle c 2 Nþ

I
 begins when-

ever an intended trajectory Ic is provided by the intended trajec-
tory planner of the existing motion planning framework, where c 
is incremented by one for each received intended trajectory. The 
autonomous vehicle can only start executing a new intended trajec-
tory Ic that is starting at tc if Ic is successfully verified as legally safe. A 
trajectory is legally safe if it (1) is collision-free against the predicted 
occupancy sets (that is, occupied positions) that result from all legal 
behaviours of other traffic participants and (2) leads the autono-
mous vehicle to a safe terminal state.

Typically, the time horizon TIc
I

 of Ic is several seconds for plan-
ning anticipatory motions. However, the predicted occupancy sets 
of the surrounding traffic participants become increasingly large for 
longer time horizons due to growing uncertainties regarding their 
future behaviours. Thus, Ic is often not safe over its entire time hori-
zon TIc

I
. For the safety verification (Fig. 2a), we therefore do not 

consider the entire intended trajectory Ic, but only a short part of Ic 
lasting from tc until tc þ Δsafe

c
I

, where Δsafe
c 2 Rþ
I

. We regard this part 
of Ic as legally safe and refer to it as Isafec

I
 if it is collision-free against 

the predicted occupancy sets within its entire time duration Δsafe
c
I

. 
Because Isafec

I
 does not ensure that the autonomous vehicle remains 

legally safe for t> tc þ Δsafe
c

I
, we compute a consecutive fail-safe 

trajectory Fc (the index of F indicates the corresponding intended 
trajectory I). The fail-safe trajectory Fc needs to smoothly continue 
Isafec
I

, be collision-free against the predicted occupancy sets for its 
entire time horizon TFc

I
, and transition the autonomous vehicle to 

a standstill in safe areas. We say that Ic is verified successfully if Isafec
I

 
and Fc exist and are computed prior to tc. The concatenation of Isafec

I
 

and Fc represents the verified trajectory and is denoted as Isafec k Fc

I
.

Fail-safe trajectory

Possible legal
behaviour

Set of all legal
behaviours

Intended
trajectory Set of

safe states

Autonomous
vehicle

Fig. 1 | Verification of legal safety. Intended trajectories (black line) are usually planned by only considering the most likely behaviours (grey lines) of 
other traffic participants. Our online verification technique ensures that the autonomous vehicle is safe in accordance with legal safety by maintaining 
fail-safe trajectories (red lines) at all times. These fail-safe trajectories are collision-free against the set of all legal behaviours (blue areas) of other traffic 
participants and safeguard the autonomous vehicle along its intended trajectory to safe states (grey areas).
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Let us explain the verification procedure during replanning 
using Fig. 2. Initially, at t0, we assume that the autonomous vehicle is 
in a safe state (for example, parked). Immediately after the autono-
mous vehicle successfully verifies a given intended trajectory I1 in 
verification cycle c = 1 (that is, Isafe1

I
 and F1 are obtained), the vehi-

cle is allowed to engage in the autonomous driving mode at time 
t1 and starts executing Isafe1

I
 of the verified trajectory Isafe1 k F1

I
 (see 

the result of c = 1 in Fig. 2b). The intended trajectory planner can 
then provide new intended trajectories Ic, c > 1, for verification. If 
a new trajectory Ic is successfully verified, the autonomous vehicle 
can transition from the previously verified trajectory to Isafec

I
 of the 

new verified trajectory Isafec k Fc

I
 at time tc (see Fig. 2a and the result 

of c ∈ {2, 4} in Fig. 2b). If the intended trajectory Ic cannot be veri-
fied, the most recently verified trajectory Isafec�i k Fc�i

I
 of cycle c − i, 

i ∈ {1, …, c − 1}, continues to be executed (see Fig. 2a and the result 
of c = 3 in Fig. 2b). While moving along Isafec�i k Fc�i

I
, the fail-safe tra-

jectory Fc − i is only executed if no new intended trajectory can be 
successfully verified before the final time of Isafec�i

I
. This previously 

verified trajectory Isafec�i k Fc�i

I
 remains collision-free as long as other 

traffic participants do not violate traffic rules, because our set-based 
prediction has already anticipated all their legal future behaviours. 
Thus, legal safety is ensured regardless of the verification result.

Experiments on real data. For all verification cycles c in our 
experiments, the starting time of fail-safe trajectories Fc is equal 
to the starting time of the next intended trajectory Ic + 1, that is, 
tc þ Δsafe

c ¼ tcþ1

I
 (see result for c = 2 in Fig. 2b). This is achieved by 

choosing a constant replanning rate Δt = tc + 1 − tc (meaning that new 
intended trajectories should be executed at rate Δt) that is set to 
the constant duration of Isafec

I
 as Δt ¼ Δsafe

c
I

 for all c. Consequently, 
when executing a verified trajectory Isafec k Fc

I
, the transition to the 

fail-safe trajectory Fc may only occur at tc + 1. Thus, in each time 
interval [tc, tc + 1], the autonomous vehicle either executes Isafec

I
 com-

pletely or a part of Fc − i of a previously verified Isafec�i k Fc�i

I
. In other 

words, only if the current verification result is not successful do the 
autonomous vehicles transition from the safe part of an intended 
trajectory to a fail-safe trajectory.

In urban environments, most accidents occur at intersec-
tions and with pedestrians53. To demonstrate that our proposed 

verification technique allows autonomous vehicles to handle these 
crucial cases, we created two scenarios by recording real traffic with 
a BMW 7 series vehicle. By post-processing the real-world record-
ings, as described in the Supplementary Information, and applying 
our verification technique offline, we obtained the results presented 
below. For each of the two scenarios we illustrate an overview of the 
traffic situation using recorded images from the BMW 7 series vehi-
cle and show the verification results of selected verification cycles c 
(Figs. 3 and 4). In addition, we demonstrate for both scenarios that 
our method guarantees legal safety for arbitrary intended trajectory 
planners (Fig. 5). In the Supplementary Information, we further pro-
vide a scenario illustrating safe lane changes (where the third most 
accidents occur53), further results including videos, detailed compu-
tation times (177 ms on average), all used parameters and software 
to visualize the verification results for all verification cycles.

Scenario I: left-turn at an urban intersection. In countries where 
vehicles drive on the right (we apply this throughout this Article), 
left turns at intersections are among the most hazardous manoeu-
vres, because the autonomous vehicle must consider the right of way 
of oncoming vehicles and yield to potential cyclists in their dedi-
cated lane (Fig. 3a). The behaviour of oncoming vehicles or cyclists 
may change rapidly over time. For example, vehicles may acceler-
ate or decelerate, and cyclists may even stop and dismount, which 
increases the uncertainty about the future evolution of the traffic 
scenario. Under all circumstances, the autonomous vehicle must 
yield to oncoming traffic while not disrupting the traffic flow due to 
overly conservative behaviour.

Our method accomplishes this challenge by safeguarding the 
opportunistic intended trajectory with fail-safe trajectories that (1) 
comply with the right of way and (2) never stop the autonomous 
vehicle in the intersection area. Because our prediction accounts 
for all legal behaviours of other traffic participants, our verification 
technique can decide whether a left turn manoeuvre can be com-
pleted before oncoming traffic can enter the intersection. Thus, the 
autonomous vehicle automatically respects the right of way.

As illustrated in Fig. 3b at t1 = 0 s, the autonomous vehicle first 
approaches the intersection along its intended trajectory, that 
is, Isafec

I
, c ∈ {1, …, 4}, is executed. From t5 = 2.4 s to t10 = 5.4 s, our 

I c

Verified Not verified

safe

safe
Execute Ic || Fc

safeI c -i ||Fc -i

intended trajectory Ic

Fc

b Verification results during replanninga Verification steps in cycle c

c = 1

c = 2

c = 3

c = 4

t1t0 t2 t3 t4 t5

Autonomous vehicle at tc

Intended trajectory Ic Fail-safe trajectory F
Occupancy sets

Successful Unsuccessful

UnsuccessfulSuccessful

Compute

Compute

Continue previously
from tc verified

I 1
safe

Fig. 2 | Verification during replanning. a, In each verification cycle c, the given intended trajectory Ic is verified by computing the safe part Isafec
I

 and the 
fail-safe trajectory Fc. b, If the verification result of cycle c is successful (as in c ∈ {1, 2, 4}), the verified trajectory Isafec k Fc

I
 is executed starting at tc. If the 

verification result is unsuccessful (as in c = 3), the verified trajectory Isafec�i
I

 and Fc−i of a previous successful verification cycle c − i is executed until a new 
intended trajectory is successfully verified again (as in c = 4).
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approach automatically detects that the intended trajectories lead to 
an unsafe situation in which a collision with the oncoming vehicle 
within the intersection area cannot be excluded before the cyclist 
has definitely passed. The fail-safe trajectory thus stops the autono-
mous vehicle at the intersection (see fail-safe trajectory at t6 = 3 s in 
Fig. 3b). Immediately after the cyclist has passed, our verification  
technique successfully verifies an intended trajectory and the 

autonomous vehicle continues its left turn before oncoming traf-
fic, as shown in Fig. 3b at t10 = 5.4 s. Note that, in this figure, the 
fail-safe trajectory overlays the occupancy sets, because the occu-
pancy sets are shown at the final time of the fail-safe trajectory (see 
Supplementary Fig. 8 for the occupancy sets at intermediate times). 
Figure 3b also demonstrates that our prediction incorporates traf-
fic rules. Consider the occupancy set of the oncoming vehicle with 

c 
= 

1,
 t 1

 =
 0

 s
c 

= 
6,

 t 6
 =

 3
 s

c 
= 

10
, t

10
 =

 5
.4

 s

Occupancy set

Intended trajectory Ic

Fail-safe trajectory F

Autonomous vehicle at tc

Autonomous vehicle at final time of F

Lateral driving corridor

a Scenario overview from recordings

b Verification results

Intended trajectory
(measured occupancy set without uncertainties shown at tc)

Fail-safe trajectory
(predicted occupancy set shown at a final time of F )

Front view at t = 0 s Front view at t = 4.7 s Top view at t = 0 s

Pedestrian
Motorcycle

Cyclist

Vehicles

ID = 1718

ID = 1719
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Motorcycle
Bicycle lane

Goal

Fig. 3 | Results of Scenario I (urban intersection). a, Camera images and top view of the scenario. b, Verification results of selected verification cycles c. 
The intended trajectory Ic is only shown if it is successfully verified. Credit: Google, GeoBasis-DE/BKG (satellite images).
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ID 1718 at t10 = 5.4 s. The legal safe distance forbids vehicles to turn 
after the autonomous vehicle in a way that obstructs the autono-
mous vehicle. Therefore, the vehicle with ID 1718 is only allowed to 
continue straight or turn left, but may not yet turn right.

Scenario II: jaywalking pedestrian. Vulnerable road users pose 
a special challenge to autonomous vehicles, because they often 
exhibit unexpected changes in behaviour. In particular, pedestri-
ans can quickly change their walking direction, which makes it 
difficult for autonomous vehicles to react in time. Even though 
it is illegal for pedestrians to jaywalk, that is, to cross the road 
in the presence of traffic, pedestrians are occasionally inattentive 
and cross directly in front of passing vehicles. If the prediction of 
the autonomous vehicle does not include this behaviour, a fatal 
accident could occur.

In the first verification cycle c = 1 presented in Fig. 4, the pedes-
trian with ID 323 (in a blue jacket) is walking on the sidewalk and is 
only looking at his cell phone (Fig. 4a). To anticipate that this inat-
tentive pedestrian may jaywalk, we broaden the set of considered 
legal behaviours for this pedestrian by relaxing the constraints in its 
prediction. As a result, the autonomous vehicle computes the future 
occupancies of this pedestrian for both crossing the road and walk-
ing partially on the road parallel to the sidewalk (see occupancy 

set in Fig. 4b for the fail-safe trajectory at t1 = 0 s; note that occu-
pancy sets of pedestrians are not visualized outside of the road). 
The resulting fail-safe trajectory F1 (starting at t2) ensures that the 
autonomous vehicle remains behind the pedestrian.

In the next verification cycles c ∈ {2, 3, 4}, the autonomous 
vehicle cannot verify the new intended trajectories. In fact, each 
intended trajectory collides with the jaywalking pedestrian. Thus, 
by automatically executing the first computed fail-safe trajectory F1, 
the autonomous vehicle slows down to avoid a collision with the 
pedestrian with ID 323 (see t4 = 1.8 s in Fig. 4b). After the pedestrian 
crosses, the autonomous vehicle accelerates to the desired velocity, 
and the fail-safe trajectory implies that the autonomous vehicle is 
able to pass before the pedestrian may walk back towards the lane of 
the autonomous vehicle (see t14 = 7.8 s in Fig. 4b).

As demonstrated in this scenario, our verification technique 
offers its users, such as mobility providers, the flexibility to define 
the legal behaviours differently for specific types of traffic partici-
pants. For example, when driving past a school, one may wish to 
anticipate that any child or even any pedestrian may cross the road.

Legal safety for arbitrary intended trajectories. We apply our ver-
ification technique to three different intended trajectory planners 
(for details see Supplementary Information):
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Fig. 4 | Results of Scenario II (jaywalking pedestrian). a, Camera images and top view of the scenario. b, Verification results of selected verification cycles 
c. The intended trajectory Ic is only shown if it is successfully verified. Credit: Google, GeoBasis-DE/BKG (satellite images).
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•	 Planner 1 uses continuous optimization to plan trajectories that 
are collision-free with regard to the most likely behaviour of 
other traffic participants. This planner is also used as an intended 
trajectory planner for the previous results of Scenarios I and II.

•	 Planner 2 is based on Planner 1 with the modification that other 
traffic participants are ignored. With this planner, we mimic a 
reinforcement learning approach that has not yet learned colli-
sion avoidance.

•	 Planner 339 samples in a discrete state space to plan trajectories 
that are collision-free with regard to the most likely behaviour of 
other traffic participants.

Figure 5 illustrates the velocity profiles of the autonomous vehi-
cle in Scenarios I and II for each intended trajectory planner. In 
Scenario I, our verification technique intervenes independently of 
the applied intended trajectory planner so that the autonomous 
vehicle stops in front of the intersection (Fig. 5a). Although Planner 
2 is not aware of other traffic participants, our verification technique 
enables the autonomous vehicle to safely turn left. Because Planner 
2 tries to reach the desired velocity (8 m s−1) more aggressively than 
Planners 1 and 3 (see the results of verification cycles c ∈ {1, 2} in 
Fig. 5a), the subsequently executed fail-safe trajectories cause a 
rapid deceleration of the autonomous vehicle (peak, −6 m s−2) (see 
the results of verification cycles c ∈ {3, …, 8} for Intended Planner 
2 in Fig. 5a). However, the execution of fail-safe trajectories for 
Planner 2 causes only a short delay, as the stopping time at the inter-
section is less than 2 s.

In Scenario II, the intended trajectory planners are not aware of 
the pedestrian’s intention to jaywalk. Therefore, fail-safe trajectories 
are executed to slow down the autonomous vehicle (see the results 
of verification cycles c ∈ {2, 3, 4} in Fig. 5b) until Planners 1 and 3 
react to the pedestrian. Planner 2 requires permanent guidance to 
avoid a collision with the pedestrian. Although the type of executed 

trajectory, that is, Isafec
I

 or Fc − i, continuously alternates, the average 
velocity of the autonomous vehicle with Planner 2 is 5% higher than 
that with Planner 1 (6.36 m s−1 and 6.09 m s−1, respectively).

In summary, we are able to guarantee legal safety for differ-
ent intended trajectory planners, even when using a planner that 
ignores other traffic participants. Furthermore, the resulting veloc-
ity profiles are smooth and continuous, as fail-safe trajectories are 
planned with full consideration of the vehicle’s dynamics.

Discussion
Certification is the main obstacle to achieving commercial success 
with the proposed verification technique. Regulatory guidelines have 
already been prepared for various domains, such as railway systems, 
industrial robots and aviation systems, but only limited regulations 
exist for motion planning of autonomous vehicles (for example, ISO 
26262 and ISO 21448). We have prepared the ground for certification 
by formulating legal safety and presenting a verification technique that 
ensures that this specification is met during operation of the autono-
mous vehicle. Moreover, the safety guarantees are maintained when 
adapting our considered set of traffic rules to new requirements. If 
legal safety becomes a recognized standard for autonomous vehicles, 
mobility providers can certify our proposed verification technique 
for usage in their vehicles. As a result, we expect that societal trust 
in autonomous vehicles will increase and that testing efforts can be 
significantly reduced, even if motion planning frameworks for gener-
ating intended trajectories are changed.

Legal safety is a promising novel safety approach inspired by 
traffic regulations that is suitable for certification. Related con-
cepts, such as responsibility-sensitive safety54, not-at-fault driving26 
and compositional and contract-based verification55, share our 
premise to avoid (self-inflicted) accidents, but differ substantially 
to our proposed solution. Responsibility-sensitive safety assumes 
that other traffic participants act according to common-sense rules 

Intended trajectory executed Fail-safe trajectory executed

a Velocity profiles of Scenario I (urban intersection)

b Velocity profiles of Scenario II (jaywalking pedestrian)
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and defines appropriate responses by the autonomous vehicle based 
on safe distances. However, despite the execution of appropri-
ate responses, self-inflicted accidents cannot be excluded, because 
other traffic participants may behave differently than expected. Our 
approach addresses this problem by considering all legal behaviours. 
Not-at-fault driving computes a single trajectory that is split into 
moving, braking and stopped phases and is provably collision-free 
against a given prediction. By contrast, we allow intended trajecto-
ries to be planned independently of fail-safe trajectories, for exam-
ple, using a most likely prediction to optimize comfort. In ref. 55,  
a finite number of offline-verified, local models are fitted online 
to the current traffic situation. However, this approach may result 
in unsafe behaviours if no valid composition of these local models 
can be found for the current situation. Our verification technique 
evaluates the safety of situations online and always provides fail-safe 
trajectories to eliminate self-inflicted accidents. The detailed com-
putation steps of our verification technique are described in the 
Methods and are visualized in Fig. 6.

Methods
Formal verification is often believed to cause performance drops (for example, 
lower average velocities resulting in longer travel times) and conservative 

behaviour in robotic systems56,57. However, we believe that autonomous vehicles can 
offer high performance and ensure legal safety at the same time. This has motivated 
us to improve on our previous work on set-based predictions58–60, fail-safe 
trajectory planning61 and trajectory planning using reachable sets62. Further to our 
previous work, we present the following innovations:

	1.	 Our proposed verification technique ensures legal safety in complex traffic 
scenarios and in a computationally efficient way. In particular, by embedding 
driving corridors62 into fail-safe trajectory planning61, we generalize the com-
putation of possible fail-safe manoeuvre options to different traffic situations 
and can consider multiple safe terminal sets.

	2.	 On various urban scenarios that have been recorded in real traffic in-
cluding measurement uncertainties, the applicability of the proposed 
verification technique is demonstrated. In addition, our results indicate 
that non-conservative driving behaviour can be achieved despite the 
over-approximative, set-based prediction.

	3.	 The temporal interplay over subsequent verification cycles of our verification 
technique with the intended trajectory planner of the autonomous vehicle is 
presented in detail.

	4.	 Further experiments with three different intended trajectory planners validate 
that our verification technique is able to ensure legal safety for arbitrary 
intended trajectory planners.

In the following paragraphs, we present the inputs of our verification 
technique, preliminaries for the reachability analysis, an overview of the 
algorithmic steps and the safety guarantees for our verification technique. 
Additional details are provided in the Supplementary Information.
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Inputs of the verification technique. Our verification technique is integrated 
between the motion planning layer and the control layer of the autonomous vehicle 
(see planning frameworks in refs. 63,64). In each verification cycle c, our verification 
technique receives as inputs the intended trajectory Ic and the environment 
model. The intended trajectories must be kinematically feasible and branch off the 
previously verified trajectory Isafec�i k Fc�i

I
. The environment model must contain the 

lanes of the road, pedestrian crossings and areas in which the autonomous vehicle 
is not allowed to stop, which are used to obtain the designated safe areas. For all 
safety-relevant traffic participants, the environment model must contain their type 
(that is, vehicle, motorcycle, bicycle or pedestrian) and their current states (that is, 
a set containing the exact state and bounded measurement uncertainties). If the 
type of traffic participant is unknown or uncertain, our verification technique can 
predict the set of future behaviours for all possible types in parallel.

Preliminaries of the verification technique. The motion of the pth traffic 
participant is governed by the differential equation _xðpÞðtÞ ¼ f ðpÞ xðpÞðtÞ; uðpÞðtÞ

� �

I
, 

where x(p) is the state and u(p) is the input. The admissible states and inputs are 
bounded by the respective sets XðpÞðtÞ  RnðpÞ

I
 and UðpÞðtÞ  RmðpÞ

I
. A possible 

solution of the differential equation at time t is denoted by χðpÞ t; xðpÞðτ0Þ; uðpÞðÞ
� �

I
, 

when starting at state xðpÞðτ0Þ 2 XðpÞ
0

I
, where XðpÞ

0
I

 is the set of states at an initial 
time τ0 including measurement uncertainties, and using input trajectory u(p)(⋅). The 
reachable set ReðpÞ ðt; τ0Þ  XðpÞðtÞ

I
 describes the set of states that are reachable by 

the pth traffic participant at a certain point in time t ≥ τ0 when starting in XðpÞ
0
I

 and 
applying all admissible inputs UðpÞðtÞ

I
:

ReðpÞ ðt; τ0Þ ¼ χðpÞ t; xðpÞðτ0Þ; uðpÞðÞ
� 

xðpÞðτ0Þ 2 XðpÞ
0 ; 8~τ 2 ½τ0; t :


n

χðpÞ ~τ; xðpÞðτ0Þ; uðpÞðÞ
� 

2 XðpÞð~τÞ; uðpÞð~τÞ 2 UðpÞð~τÞ
 ð1Þ

For brevity, we omit the superscript (p) when referring to the autonomous 
vehicle. In each verification cycle c, we compute the reachable set of other traffic 
participants to predict their future movement and that of the autonomous vehicle 
to obtain its drivable area.

As illustrated in Fig. 6a, we introduce the discrete points in time t0k for each 
verification cycle c, where k 2 f0; ¼ ; kI ; ¼ ; kF ; ¼Kg  N0

I
; for brevity, the 

notation of t0k does not reflect its dependency on c. Time t00 is the initial time 
of the prediction, that is, the point in time at which the most recently available 
environment model has been recorded. Time t0kI

I
 corresponds to the start time of 

the intended trajectory Ic (that is, t0kI ¼ tc
I

), t0kF
I

 corresponds to the start time of the 
fail-safe trajectory Fc (that is, t0kF ¼ tc þ Δsafe

c

I
) and t0K

I
 corresponds to the final time 

of the fail-safe trajectory (that is, t0K ¼ tc þ Δsafe
c þ TFc

I
). Without loss of generality, 

we assume that the times t0k are multiples of the time step size Δt0 2 Rþ
I

, that is, 
t0k ¼ t00 þ kΔt0

I
.

Recall that we set Δsafe
c
I

 to the replanning rate Δt in our experiments. To 
minimize the interventions of our verification technique, that is, how often a 
fail-safe trajectory is executed, the duration Δsafe

c
I

 can be dynamically adjusted 
to optimize the length of Isafec

I
 as described in ref. 65. To avoid that new intended 

trajectories cannot be verified solely due to a timeout, intended trajectories 
Ic should be provided prior to tc − Δverify, where Δverify 2 Rþ

I
 is the required 

computation time of our verification method.

Occupancy prediction. The goal in the first step of our verification technique is 
to over-approximate the area LeðtÞ

I
 that exactly encloses the occupied positions 

of the surrounding traffic participants for all their legal behaviours. Therefore, we 
first compute all dynamically feasible behaviours and subsequently remove illegal 
behaviours.

All dynamically feasible behaviours of other traffic participants are obtained 
using reachability analysis as defined in equation (1). For each pth traffic 
participant, the environmental model provides the initial states XðpÞ

0
I

 at t00, which 
are described by a set due to measurement uncertainties (Fig. 6b, step (1)). The 
dynamics of each traffic participant are abstracted by a second-order integrator 
model with bounded velocities and accelerations. We compute the reachable 
set RðpÞðt; t00Þ

I
 as a tight over-approximation of the exact reachable set, that is, 

RðpÞðt; t00Þ  ReðpÞ ðt; t00Þ
I

, and only for the position domain to allow for an efficient 
computation. For collision checks with planned trajectories of the autonomous 
vehicle, we introduce OðpÞ

dyn ðt; t00Þ
I

 as the dynamics-based occupancy set resulting 
from the over-approximative reachable set RðpÞðt; t00Þ

I
 by considering the 

dimensions of the pth traffic participant (Fig. 6b, step (1)).
Next, we remove behaviours that are not allowed according to traffic rules. 

Therefore, we formalize a set of traffic rules that is most relevant for motion 
planning (and which can be easily extended). Let v(p) and a(p) denote the velocity 
and acceleration of the pth predicted traffic participant, respectively, and ◇veh 
denotes that the parameter  ◇ 2 fv; ag

I
 bounding the velocity or acceleration is 

applicable for vehicles and motorcycles, while ◇cyc is for bicycles and ◇ped is for 
pedestrians (the values of the parameters are stored in a database generated offline, 
can be updated online, and are provided in the Supplementary Information). The 
considered traffic rules for vehicles, motorcycles and bicycles are as follows:
•	 Maximum velocity is bounded (article 13.2 of ref. 7): vðpÞ≤vlimitf

ðpÞ
S

I
, where vlimit 

is the legal speed limit of the road and f ðpÞS ≥1
I

 is a parameterized speeding 
factor to consider slight over-speeding. If no speed limit is available, such as 
for bicycles, vðpÞ≤vveh=cyc

I
.

•	 Driving backward is not allowed (article 14.2 of ref. 7): v(p) ≥ 0.
•	 Absolute acceleration is bounded (due to tyre friction): jaðpÞj≤aveh=cyc

I
.

•	 Leaving the road is forbidden (article 14.1 of ref. 7).
•	 A safe distance to the autonomous vehicle must be maintained when driving 

behind it or merging in front of it (articles 13.5 and 11.2d of ref. 7).
•	 Changing lanes is only allowed if the new lane has the same driving direction 

as the previous one (article 11.2c of ref. 7).
Note that, according to article 11.2c of ref. 7, overtaking in a lane not 

appropriate to the direction of traffic is only allowed if not endangering or 
interfering with oncoming traffic. Because such a legal overtaking manoeuvre does 
not interfere with the motion planning of the autonomous vehicle, we neglect it in 
our prediction without compromising legal safety.

Although pedestrians are generally not allowed to obstruct vehicular traffic, for 
example, to jaywalk (article 7.1 of ref. 7), vehicles are required to take precautions 
to avoid endangering pedestrians (article 21.1 of ref. 7). Thus, the considered traffic 
rules for pedestrians are as follows:
•	 Absolute velocity is bounded (for example, based on ISO 13855): jvðpÞj≤vped

I
.

•	 Absolute acceleration is bounded (due to physical capabilities): jaðpÞj≤aped

I
.

•	 Entering the road is forbidden (articles 7.1 and 20.2 of ref. 7) except

•	 on pedestrian crossings (articles 20.6b and 21.2 of ref. 7)
•	 when walking toward the road; then, crossing the road is allowed perpen-

dicularly with a deviation of angle α based on the current heading of the 
pedestrian (articles 20.6c,d of ref. 7)

•	 when walking parallel to the road; then, occupying the strip of the road 
edge with a width of dslack is allowed, for example, to avoid obstacles on 
the sidewalk (articles 20.2a, 20.3 and 20.4 of ref. 7).

In summary, our set of traffic rules either constrains the dynamics of other 
traffic participants (for example, their maximum velocity), which are considered 
by OðpÞ

dyn ðt; t00Þ
I

, or constrains the allowed regions in the environment (for example, 
certain lanes or pedestrian crossings), which are given by the environment model 
and are denoted by OðpÞ

legal ðt; t00Þ
I

. The resulting over-approximative occupancy set 
of the pth traffic participant is OðpÞðt; t00Þ ¼ OðpÞ

dyn ðt; t00Þ \ OðpÞ
legal ðt; t00Þ

I
 (Fig. 6b, step 

(1)). To verify that Isafec
I

 and Fc are collision-free, we compute the occupancy sets for 
consecutive time intervals ½t0k; t0kþ1

I
 until the final time of Fc

I
, that is, ∀ k ∈ {kI, …, K}.  

Note that the time intervals ½t0k; t0kþ1
I

 can be of different duration for each k, for 
example, in case Isafec

I
 and Fc are discretized differently. The predicted occupancy 

sets of all traffic participants are given by Lð½t0k; t0kþ1Þ ¼
S

p

S
t2½t0k ;t0kþ1 

OðpÞðt; t00Þ
I

.
Note that, regardless of how many traffic rules we consider, our prediction 

always over-approximates the exact set of all legal behaviours, that is, 
LðtÞ  LeðtÞ
I

. The reason is that only behaviours defined as illegal are removed 
from the over-approximation of all dynamically feasible behaviours. The fewer 
traffic rules we consider, the more cautiously the autonomous vehicle behaves, 
because it respects more behaviours than actually allowed according to all traffic 
rules. However, the autonomous vehicle definitely remains collision-free when 
other traffic participants adhere to all traffic rules, as prescribed by legal safety. If a 
collision occurs nonetheless, we can verifiably argue that another traffic participant 
must have violated traffic rules and that the collision is not self-inflicted by the 
autonomous vehicle. Nevertheless, we account for humans’ tendency to violate 
traffic rules, such as the speed limit. Therefore, we continuously monitor whether 
any traffic participant performs a behaviour that is not included in the set of legal 
behaviours. Whenever violations are detected, this behaviour is automatically added 
to the prediction result; for example, if another vehicle illegally changes lanes, we 
no longer exclude this behaviour from our prediction of this vehicle. As a result, 
our verification technique will attempt to find a new fail-safe trajectory in case the 
previous one is no longer collision-free. Furthermore, if a traffic participant appears 
likely to misbehave, such behaviours can be included in our prediction by disabling 
the corresponding constraint, as demonstrated in Scenario II.

Drivable area computation. To obtain possible sequences of high-level fail-safe 
manoeuvres (for example, overtaking other vehicles on their left or right), we 
compute the drivable area of the autonomous vehicle at discrete points in time 
t0k with k ≥ kF by projecting its reachable set Reðt0k; t0kF Þ

I
 defined in equation (1) 

onto the position domain (Fig. 6b, step (2)). As for the prediction of other traffic 
participants, we abstract the dynamics of the autonomous vehicle using two 
second-order integrator models in the longitudinal and lateral directions with 
bounded velocities and accelerations in a road-aligned coordinate system66. For 
computational efficiency, the reachable set is approximated through the union 
of base sets BðiÞ

k
I

, i 2 N0
I

, such that Reðt0k; t0kF Þ 
S

iB
ðiÞ
k

I
 holds. The base sets BðiÞ

k
I

 
are the Cartesian products of convex polytopes describing reachable position–
velocity pairs in the longitudinal and lateral directions. We use convex polytopes, 
because they are closed under required set operations such as Minkowski 
sum, linear mapping and intersection. The projection of base sets BðiÞ

k
I

 onto the 
position domain yields axis-aligned rectangles DðiÞ

k
I

 that represent the drivable 
area Dðt0k; t0kF Þ :¼

S
iD

ðiÞ
k

I
. The projection of the reachable set onto the position 

domain can be computed efficiently, because we only need to determine the 
minimum and maximum position coordinates of the convex polytopes of the 
base sets BðiÞ

k
I

.
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The state xðt0kF Þ
I

 of the fail-safe trajectory Fc at its start time t0kF
I

 is provided by 
the final state of Isafec

I
. We enclose xðt0kF Þ

I
 with a base set such that xðt0kF Þ 2 Bð0Þ

kF
I

 
holds. The reachable set of consecutive points in time t0kþ1

I
, k ≥ kF, is computed as 

illustrated in Fig. 6b (step (2)). First, we propagate each base set BðiÞ
k
I

 of the previous 
time step forward in time considering all admissible inputs. Second, we remove 
states outside the set of admissible states Xðt0kþ1Þ

I
, that is, positions in which the 

autonomous vehicle collides with the predicted occupancy sets Lð½t0k; t0kþ1Þ
I

 or the 
area Q

I
 outside of the road, to obtain Rðt0kþ1; t

0
kF
Þ 

S
jB

ðjÞ
kþ1

I
 at time t0kþ1

I
. Third,  

we store each base set BðjÞ
kþ1
I

 in a directed graph GR
I

. In GR
I

, each set BðjÞ
kþ1
I

 is 
associated with exactly one node and an edge indicates that base set BðjÞ

kþ1
I

 is 
reachable from BðiÞ

k
I

 within one time step. The procedure is repeated until the final 
time step t0K

I
 is reached.

Driving corridor and trajectory optimization. We generate drivable fail-safe 
trajectories through continuous optimization. As convex optimization problems 
can be solved efficiently with global convergence, we convexify the inherently 
non-convex optimization problem by separating the longitudinal and lateral 
motion of the autonomous vehicle. However, longitudinal motion planning 
requires prior knowledge on the lateral motion and vice versa, as both subsystems 
are dynamically coupled. To overcome this issue, we obtain driving corridors 
from the drivable area that provide spatio-temporal position constraints for the 
optimization problems. We refer to the driving corridors for longitudinal and 
lateral optimization as the longitudinal and lateral driving corridors, respectively. 
To ensure legal safety for an infinite time horizon, we constrain the driving 
corridors to end in a safe terminal state based on the designated safe areas, for 
example, a standstill in the rightmost lane sufficiently far from an intersection. As 
illustrated in Fig. 6b (step (3)), our motion planner first optimizes the longitudinal 
trajectory within a longitudinal driving corridor, followed by optimizing the 
lateral trajectory in a suitable lateral driving corridor. Currently, we constrain 
fail-safe trajectories to be kinematically feasible, collision-free with respect to road 
boundaries and the predicted occupancy sets, respect the speed limit and end in a 
safe state. Further constraints can be imposed to consider additional properties, for 
example, rules on overtaking or stopping at the boundaries of the field of view of 
the vehicle.

We represent collision avoidance constraints by a minimum and maximum 
value on the longitudinal or lateral positions at each point in time. To obtain these 
limits, we exploit that a connected set in the position domain projected onto either 
the longitudinal or lateral direction yields an interval. Consequently, we define a 
longitudinal corridor and a lateral driving corridor for fail-safe motion planning 
as a temporal sequence of connected sets that are subsets of the drivable area 
Dðt0k; t0kF Þ
I

 from time t0kF
I

 to the final time t0K
I

.
To determine longitudinal driving corridors, we perform a search on the 

reachability graph GR
I

 backwards in time starting from the set of safe terminal 
states (Fig. 6b, step (3)). There may be multiple longitudinal driving corridors, 
because the drivable area can be disconnected due to surrounding traffic 
participants. We select the longitudinal driving corridor with the greatest 
cumulative drivable area from t0kF

I
 to t0K

I
 for trajectory planning (other heuristics can 

also be applied). For the longitudinal trajectory optimization, we use a fourth-order 
integrator model with jounce as input and bounded longitudinal velocity, 
acceleration and jerk. In addition to the collision avoidance constraints from the 
boundary of the longitudinal driving corridor, the autonomous vehicle must come 
to a standstill at the final time t0K

I
. To improve comfort, we choose a quadratic cost 

function that minimizes acceleration, jerk and jounce as well as deviations from 
the desired velocity.

The computation and selection of lateral driving corridors are performed 
similarly to the computation and selection of longitudinal driving corridors with 
the addition that the connected sets of the lateral driving corridor must provide a 
unique passing side for each obstacle. The lateral trajectories of the autonomous 
vehicle are optimized with respect to a linearized kinematic single-track model 
with limits on the steering actuators. Analogously to planning in the longitudinal 
direction, the position constraints for collision avoidance are obtained from the 
boundaries of the lateral driving corridor. We select a quadratic cost function to 
minimize the lateral distance and orientation deviation from a given reference path 
and to punish high curvature rates for comfort.

In the case that trajectory optimization is infeasible using the selected lateral 
or longitudinal driving corridor, we select a driving corridor with the next highest 
cumulative drivable area for optimization until either a fail-safe trajectory is 
identified or no further driving corridors remain. In the rare event that no feasible 
fail-safe trajectory is found, the previously verified trajectory is further executed.

Guarantees of our verification technique. To comply with legal safety, 
autonomous vehicles must not collide with any legal behaviour of other traffic 
participants:

8t≥ t0 : occ xðtÞð Þ \ LeðtÞ∪Qð Þ ¼ ; ð2Þ

where the operator occðxÞ
I

 relates the state x of the autonomous vehicle to the set of 
occupied points in the position domain as occðxÞ : X ! PowðRnÞ

I
, where PowðRnÞ

I
 

is the power set of Rn

I
.

Using the principle of induction, we sketch the proof that our technique 
ensures legal safety according to equation (2). For the base case (c = 1), for t ≥ t0, the 
autonomous vehicle is initially in a safe state in which it can remain. Only if Ic can 
be successfully verified will the autonomous vehicle start executing Isafec jjFc

I
 from 

tc. This trajectory is collision-free at all discrete time steps t0k 2 ½tc; tc þ Δsafe
c þ TFc 

I
 

against all legal behaviours LðtÞ  LeðtÞ
I

 of other traffic participants and the area 
Q
I
 outside the road. If no new intended trajectory can be successfully verified 

in a subsequent verification cycle before tc þ Δsafe
c þ TFc

I
, the fail-safe trajectory 

Fc transitions the autonomous vehicle to a standstill in a safe terminal state at 
tc þ Δsafe

c þ TFc

I
, which is legally safe for all future times. For the inductive step, 

assuming that the verification result of cycle c = r, for any r 2 Nþ
I

, ensures legal 
safety, we show that legal safety is also ensured regardless of the verification result 
of cycle c + 1. If the verification is unsuccessful, the autonomous vehicle continues 
to execute the trajectory Isafec�i jjFc�i; i 2 f0; ¼ ; c� 1g

I
 of the previous cycle c that 

ensures legal safety by definition. If the verification is successful in cycle c + 1, the 
autonomous vehicle executes Isafecþ1jjFcþ1

I
 from tc + 1. In this case, we can apply the 

same reasoning as in the base case to demonstrate that legal safety is also ensured 
from tc + 1 with the verified trajectory Isafecþ1jjFcþ1

I
.

To ensure that the autonomous vehicle is collision-free along Isafe and F in 
continuous time and despite control disturbances and model uncertainties, we 
refer to the approach in ref. 67.

Data availability
All data gathered and reported in this study are available in the Supplementary 
data file. This includes the environment model, the intended trajectory and the 
verification result of each verification cycle for all scenarios.
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study are included in the Supplementary data file.
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2 Supplementary results

2.1 Scenario III: Ensuring safe lane changes

Dense traffic in urban areas, which is expected to further increase with the rise of autonomous

vehicles [89], requires vehicles to manoeuvre in tight spaces. When following a single lane, au-

tonomous vehicles can simply brake if a preceding vehicle performs emergency braking. How-

ever, changing lanes is more challenging, as rapidly approaching vehicles from behind must be

considered. In addition, if autonomous vehicles are too considerate, they are likely to impede

traffic and are not able to find a gap large enough to perform a lane change. Our set-based ap-

proach safeguards arbitrary lane changes by planning fail-safe trajectories. As demonstrated in

this scenario, autonomous vehicles can perform lane changes using our verification technique

without being overly conservative.

In the beginning of Scenario III (see Supplementary Fig. 7a), the autonomous vehicle plans

to change lanes and merge in front of the vehicle with ID 227 that approaches from behind (see

t1 = 0 s in Supplementary Fig. 7b). However, because this vehicle does not have to maintain

a safe distance to the autonomous vehicle, it can accelerate until its velocity reaches the speed

limit. A lane change by the autonomous vehicle would then cause a collision. Thus, the fail-safe

trajectory swerves back to the initial right lane. This fail-safe trajectory is legally safe, as the

vehicle with ID 215 that is currently driving in the same lane behind the autonomous vehicle

must maintain a safe distance (i.e., its occupancy set ends just behind the autonomous vehicle

for t1 = 0 s in Supplementary Fig. 7b).

In the next verification cycle, the autonomous vehicle determines that the distance to the

vehicle with ID 227 in the left lane is sufficiently large, and it can thus safely complete the lane

change by executing the intended trajectory (see t3 = 1.2 s in Supplementary Fig. 7b). There-

after, the autonomous vehicle continues in the left lane, while our fail-safe prediction always
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Supplementary Figure 7: Results of Scenario III (lane change) (a) Camera images and
top view of scenario. (b) Verification results of selected verification cycles c. The intended
trajectory Ic is only shown if it is successfully verified. Satellite Images c©Google, GeoBasis-
DE/BKG.
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anticipates possible lane changes by leading vehicles in the right lane (the occupancies of vehi-

cles with IDs 179 and 232 in front of the autonomous vehicle in Supplementary Fig. 7b).

Note that throughout this scenario, the autonomous vehicle always has a fail-safe trajectory

available; however, unlike Scenarios I and II, it never has to execute it, since all intended tra-

jectories are successfully verified. The verification results of this scenario are also illustrated in

Supplementary Video 1.

2.2 Detailed results of selected verification cycles

The following Supplementary Figures illustrate the verification results obtained during selected

cycles c of Scenarios I–III. Supplementary Fig. 8 shows the intermediate results for verification

cycle c = 10 of Scenario I, in which the autonomous vehicle is able to turn left at the inter-

section although the solution space for planning is small (see t′16). In Supplementary Fig. 9,

we highlight the occupancy prediction for pedestrians for the different time steps in Scenario II.

Supplementary Fig. 10 shows how the obtained fail-safe trajectory in cycle c = 1 of Scenario III

smoothly aborts the planned lane change if vehicles on the left adjacent lane would accelerate.

Each figure shows the predicted occupancy sets of obstacles at different times t′k. The au-

tonomous vehicle is depicted with reference to Isafe
c for t′k < t′kF and with reference to Fc for

t′k ≥ t′kF . A comprehensive description of Scenarios I and II can be found in the article and of

Scenario III in Sec. 2.1 of the Supplementary Information. Other time steps of the verification

results can be visualized using our software provided in the Supplementary Data File.
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Supplementary Figure 8: Detailed verification results of Scenario I Visualized solution is
obtained during verification cycle c= 10.
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(a) Predicted scenario at time t′0.

(b) Predicted scenario at time t′4.

(c) Predicted scenario at time t′14.

(d) Predicted scenario at time t′33.

Supplementary Figure 9: Detailed verification results of Scenario II Visualized solution is
obtained during verification cycle c= 5.
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Supplementary Figure 10: Detailed verification results of Scenario III Visualized solution
is obtained during verification cycle c= 1.
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4.3 Identifying safety-critical passageways (CDC 2017)

4.3 CDC 2017: Enhancing Motion Safety by Identifying
Safety-critical Passageways [64]

Summary Formal verification methods, such as using reachability analysis, are capable of
guaranteeing safety for a given model and given assumptions, as demonstrated in the previous
Section 4.2. However, certain assumptions can be violated by dynamic obstacles during the
execution of the verified motion plan, exposing the ego vehicle to potential collisions. Note
that the constraint management detailed in Chapter 3 accounts for these violations only in the
subsequent planning cycle. Yet, we want to compensate for the invalidated verification in the
current planning cycle, i. e., solve Problem statement 2 at t0 (instead of at t1 > t0). Therefore,
this section introduces the Point of No Return (PNR) and the Point of Guaranteed Arrival
(PGA) by incorporating invariably safe sets. These concepts allow one to divide the planned
trajectory into inherently safe sections and inherently safety-critical passageways (SCP). For
the safe sections, we are able to provide safety guarantees for an infinite time horizon. In
contrast, within safety-critical passageways, the ego vehicle is exposed to potential collisions if
obstacles violate assumption used for the verification. Thus, we present a method to minimize
such safety-critical passageways prior to execution by assigning costs to it and integrating the
cost function into the optimization of the trajectory planner. In fact, if we obtain a trajectory
that does not contain a safety-critical passageway, we can guarantee safety for an infinite time
horizon.

The Point of No Return and the Point of Guaranteed Arrival of a trajectory cannot be
determined exactly, but we present an algorithm that computes an under-approximation
and an over-approximation of these points. Optionally, the online computation time can be
reduced by precomputing both points for different tasks offline.

Numerical examples of overtaking maneuvers highlight the safety benefits of the approach.
By employing the information of the safety-critical passageway, trajectories can be chosen
that are most robust against violated assumption. In addition, evasive trajectories that react
to violated assumptions can be obtained significantly faster.

Contributions of M. K. M. K. developed the notion of the safe sets, of the different assump-
tions, and of the PNR and PGA (all together with C. P. and M. A.). M. K. developed the
computation of the PNR and PGA and their implications for the safety of motion plans (all
together with C. P.). M. K. designed, conducted, and evaluated the experiments (together
with C. P.). M. K. wrote the article (together with C. P.).

Conference paper c©2017 IEEE. Reprinted, with permission, from Christian Pek, Markus
Koschi, Moritz Werling, and Matthias Althoff, Enhancing Motion Safety by Identifying
Safety-critical Passageways, in Proc. of the IEEE 56th Annual Conference on Decision and
Control.
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Enhancing Motion Safety by Identifying Safety-critical Passageways

Christian Pek1, Markus Koschi2, Moritz Werling1, and Matthias Althoff2

Abstract— Safety is the most important aspect of systems
which have to perform collision-free motions in dynamic en-
vironments. Formal verification methods, such as reachability
analysis, are capable of guaranteeing safety for a given model
and given assumptions (e. g. bounded velocity and acceleration).
However, certain assumptions can be violated by dynamic
obstacles during the execution of the verified motion plan,
exposing the system to potential collisions. To compensate for
the invalidated verification, this paper introduces the Point of
No Return (PNR) and the Point of Guaranteed Arrival (PGA)
by incorporating invariably safe sets. These concepts allow
one to divide the planned trajectory into safe sections and
safety-critical passageways. For the former, we are able to
provide safety guarantees for an infinite time horizon. For the
latter, we present a method to minimize such safety-critical
passageways prior to execution and thus reduce the risk of
potential collisions if assumptions are violated during execution.
The safety benefits are highlighted by a numerical example of
overtaking maneuvers of self-driving vehicles.

I. INTRODUCTION

A. Motivation

Formal verification is a promising technique for assessing
the safety of motion plans. It can prove whether a modeled
system behaves correctly with respect to a given specifica-
tion. However, these models are based on certain assump-
tions, e. g. that the velocity and acceleration of surrounding
dynamic objects are bounded. Without assumptions, it is
difficult to accomplish the provided task while ensuring
safety, as the infinite number of possible behaviors of objects
in the environment often results in collisions (cf. freezing
robot problem [1]).

Using assumptions comes with the disadvantage that the
safety of the system is no longer guaranteed if surrounding
dynamic obstacles violate one or more of these assumptions.
This unsafe situation has to be solved in a timely manner,
since the system is exposed to potential collisions and must
determine a feasible evasive trajectory to return to a safe state
as fast as possible. Thus, advanced safety mechanisms have
to recover safety even if certain assumptions are violated
during the execution of the motion plan.

B. Literature Overview

In [2], three criteria for obtaining safe motion plans are
introduced: a system should consider “its own dynamics”, the
“environment objects’ future behavior”, and “reason over an

*The first two authors have contributed equally to this work.
1BMW Group, D-85748 Garching, Germany, E-mail:

christian.pek@bmw.de and moritz.werling@bmw.de
2Department of Computer Science, Technical University of Munich, D-

85748 Garching, Germany, E-mail: markus.koschi@tum.de and
althoff@in.tum.de

infinite time horizon” to avoid collisions at all times. For this
purpose, the concept of Inevitable Collision States (ICS) was
introduced [3]. ICS are states in which the system, regardless
of which trajectory it follows, eventually collides with an
obstacle [4], [5]. A motion plan of the system is safe if it
avoids ICS at all times. To assess if a state is close to an ICS,
Regions of Near Collision (RNC) and Regions of Potential
Collision (RPC) are proposed in [6]. RNC contain states that
will end in an ICS if the system does not change its current
motion plan within a certain amount of time. On the other
hand, RPC describe states which may end in an ICS due
to uncertainties or faults in the control strategy. However,
most ICS checkers are computationally costly and require
deterministic motion predictions of dynamic obstacles [7].

Verifying the safety of systems can also be done by
applying logical reasoning as presented in [8] for highway
entry systems of self-driving vehicles or in [9] for the Euro-
pean train control system. Furthermore, some work defines
application-specific logics, e. g. Multi-lane Spatial Logic
(MLSL), which verifies the safety of a lane change controller
[10], or Quantified Differential Dynamic Logic, which ver-
ifies an adaptive cruise control system [11]. Nevertheless,
logical expressions for the verification of advanced systems
are often complex and subject to the specific controller of
the system.

Reachability analysis accounts for any feasible future
motion of dynamic obstacles [12], [13]. By calculating the
reachable set of each obstacle, i. e. the set of states reachable
from their current state, and checking for intersections with
the reachable set of the ego system, one can identify possible
future collisions. Safety verification using reachability anal-
ysis has been proposed for several domains, e. g. self-driving
vehicles [14] or robot manipulators [15].

Applying reachability analysis allows one to assess the
feasibility of motion plans, e. g. as presented in [16] for
overtaking maneuvers of self-driving vehicles with oncoming
traffic. This technique can also be used to examine the exis-
tence of evasive trajectories by evaluating over-approximated
reachable sets of the system. However, reachability analysis
can be computationally costly, as one has to consider every
possible control input for a given model and efficiently
represent the resulting sets.

As a way to overcome these difficulties, the concepts
Invariant Sets (IS) and Controlled Invariant Sets (CIS) [17]
are becoming more popular in robotics. Invariant sets are
sets of states which allow a system to remain within this set
for an infinite time horizon. In [18]–[22], invariant sets are
applied to motion planning of autonomous systems. Invariant
sets are also used for safety verification. For instance, CIS

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
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are used to verify the safety of unmanned aerial vehicles
(UAVs) [23], [24] or for safe controller design [25]. In
combination with reachability analysis, invariant sets are
used to verify the safety of adaptive cruise control systems
[26], [27] or for predicitive threat assessment [28]. States
within a CIS allow the system to stay in it indefinitely
long. However, determining invariant sets is computationally
costly, especially in dynamic environments.

C. Contribution

This paper presents a novel approach for assessing the
safety of motion plans in dynamic environments and recov-
ering the safety if a previously verified motion plan suddenly
becomes invalidated due to the violation of assumptions.
We derive invariably safe sets, which allow us to determine
the Point of No Return (PNR) and the Point of Guaranteed
Arrival (PGA) (cf. Def. in Sec. IV).

The properties of the PNR and PGA allow one to ef-
ficiently reason about safety. In time-critical situations in
which a previously verified motion plan suddenly becomes
unsafe during execution, our approach offers two advantages
over existing work: (1) we are able to provide additional
safety guarantees to find feasible trajectories to safe states,
and (2) we can use the PNR and PGA to construct a
utility function to reason about the safety of multiple motion
hypotheses prior to their execution.

The remainder of this paper is organized as follows: In
Sec. II, we model the system and define invariably safe sets.
Sec. III covers the safety verification of planned trajectories
using reachability analysis. In Sec. IV, the PNR and PGA
are defined, and their safety properties are highlighted. The
proposed concept is demonstrated by a numerical example in
Sec. V using overtaking maneuvers of self-driving vehicles.

II. PRELIMINARIES

Let us introduce X ⊂ Rn as the set of feasible states x
and U ⊂ Rm as the set of admissible control inputs u of a
system f , which is governed by the differential equation

ẋ(t) = f
(
x(t), u(t)

)
. (1)

We assume that the initial time is t0 = 0 and adhere to
the notation u([0, th]) to describe a trajectory u(t) ∈ U for
t ∈ [0, th], 0 < th. Furthermore, χ

(
th, x(0), u([0, th])

)
∈ X

denotes the solution of (1) at time th subject to x(0) = x0

and u([0, th]).
Definition 1 (Safe States)
The set F t describes the maximal set of safe states at the
point in time t.

Please note that the definition of the set of safe states F t

depends on the system and its environment; in this work, we
consider safe states to be collision-free, which describes the
safety of many systems.
Definition 2 (Safe Input Trajectory)
An input trajectory u([t1, t2]) is called a safe input tra-
jectory for the time interval [t1, t2] if ∀t ∈ [t1, t2] :
χ
(
t, x(t1), u([t1, t])

)
∈ F t.

By an abuse of notation, we use u([t1, t2]) =
Φ
(
x([t1, t2]), rref

)
to emphasize that a trajectory is

generated by a feedback control law Φ for a given reference
rref, e. g. a desired velocity.
Definition 3 (Safe Feedback Control Law)
A feedback control law Φ is called a safe feedback con-
trol law if every produced input trajectory u([t1, t2]) =
Φ
(
x([t1, t2]), rref

)
is a safe input trajectory.

We derive subsets of F t which only contain invariably safe
states, i. e. from these states, the system described in (1) is
always able to be safe for an infinite time horizon, even in
dynamic environments:
Definition 4 (Invariably Safe Set)
The Invariably Safe Set (ISS) St for a point in time t and a
safe feedback control law Φsafe is defined as

St =
{
x(t) ∈ F t

∣∣ ∀τ > t :

χ
(
τ, x(t),Φsafe(x([t, τ ]), rref)

)
∈ Fτ

}
.

In contrast, states x(t) ∈ (F t \St) := {x |x ∈ F t∧x �∈ St}
are only regarded as safe for a finite time horizon, since they
may inevitably lead to an unsafe state x(τ) �∈ Fτ , τ > t.
For the sake of clarity, we omit the notation of time in F t

and St if all points in time are considered.

III. VERIFICATION OF MOTION PLANS

Let us consider tasks where the system (1) has to traverse
from an initial state x(0) ∈ S0

pre to a final state x(th) ∈ Sth
post

(cf. Fig. 1). Both S0
pre ⊂ S0 and Sth

post ⊂ Sth are ISSs
according to Def. 4 for a given safe feedback control law
Φsafe. Often, one has situations in which ∀t ∈ [0, th] :
St

pre ∩ St
post = ∅, eliminating the possibility to use only

this dedicated safe feedback control law. As a result, we
cannot be sure that a planned trajectory u([0, th]) for the
given task is safe (cf. Def. 2). To verify the traversing
trajectory as collision-free with respect to the obstacles in
the environment, we make use of reachability analysis:
Definition 5 (Reachable Set)
The reachable set R ⊆ X of (1) is the set of states which
are reachable at a certain point in time r from a set of initial
states X 0 at time t0 and subject to the set of inputs U :

R(r) =

{
x(0) +

∫ r

0

f
(
x(t), u(t)

)
dt

∣∣∣∣

x(0) ∈ X 0, ∀t : u(t) ∈ U
}
.

To realize efficient collision checking, we introduce a rela-
tion from the state space to the Euclidean space in world
coordinates:
Definition 6 (Relation to Euclidean Space)
The operator occ(x) relates the state vector x to the set of
occupied points in Euclidean space as

occ(x) : X → P(R�),

where P(R�) is the power set of R�. Given a set of states
X , we define occ(X ) := {occ(x) |x ∈ X}.
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Sth
post

S0
pre

x(0)

x(th)

PNR PGA

u2([0, th])

u1([0, th]) Robs

F
R′

obs

Fig. 1. The trajectories u1([0, th]) and u2([0, th]), which start at an initial state x(0) ∈ S0
pre and end in a final state x(th) ∈ Sth

post, are verified as safe
for Aviol = ∅, which corresponds to the set of reachable states of all obstacles Robs. For a violation of assumptions (i. e. Aviol �= ∅) resulting in R′

obs, we
can determine the intervals of the PNR and the PGA along each trajectory. These points delimit the safety-critical passageway SCP, which is denoted by
a dashed line.

Definition 7 (Occupancy Set)
Based on Def. 5 and Def. 6, the occupancy set O(t) describes
the set of occupied points in Euclidean space at time t:

O(t) = occ
(
R(t)

)
.

We verify motion plans using occupancy sets:
Definition 8 (Collision-free Trajectory)
Given the possible occupancies of all surrounding obstacles
Oobs(t) =

⋃
b∈B Ob(t), B ⊂ N, and the occupancy of

the ego system along its planned trajectory Oego(t) :=
occ

(
χ(t, x(0), u([0, t])

)
, this trajectory is collision-free if

∀t ∈ [0, th] : Oego(t) ∩ Oobs(t) = ∅.

In order to obtain the occupancies Oobs(t) based on reachable
states, we require assumptions on the bounds of the set of
possible inputs for each obstacle (cf. U in Def. 5). These
bounds constrain the behavior of the dynamic obstacles, since
otherwise Oobs(t) would often intersect with Oego(t) and thus
the system is no longer able to safely accomplish a given
task. We consider different types of assumptions:
Definition 9 (Assumptions)

• Time-invariant assumptions A∞ are assumptions which
have to hold at any time.

• Violable assumptions AB are assumptions which con-
strain the motion of dynamic obstacles and might be
violated at some point in time.

• Violated assumptions Aviol ⊆ AB are the set of assump-
tions which have been violated by dynamic obstacles.

• Valid assumptions are defined as Avalid := A∞ ∪ (AB \
Aviol).

For instance, A∞ includes physical limitations, e. g. limited
acceleration, or general assumptions on safety, e. g. that
dynamic obstacles are not enforcing a collision with the ego
system. Per definition (cf. Def. 9), the sets Spre and Spost
only result from A∞. The set of violable assumptions AB
may contain the assumption that the velocity of obstacles
does not exceed a certain limit. From now on, we implicitly
mean Avalid if we use the term assumptions.

Remark 1 (Assumptions for Verification)
The verification of motion plans according to Def. 8 is based
on Avalid.

IV. ENHANCING SAFETY USING SAFE INVARIANT SETS

If the set of assumptions changes during execution of the
provided task, i. e. dynamic obstacles violate previously valid
assumptions, the verification result is no longer applicable.
Since a renewed verification of the motion plan according
to the reduced set of assumptions often fails, we use Spre
and Spost (which are invariant to Avalid) to propose safety-
relevant points along the planned trajectory u([0, th]), which
allow our system to regain safety (cf. Fig. 1):
Definition 10 (Point of No Return)
The Point of No Return (PNR) is the state x(tPNR), tPNR ∈
[0, th], along u([0, th]) from which returning to Spre is
ultimately possible using a safe trajectory u([t, r]), t < r:

∀t ∈ [0, tPNR] : ∃u([t, r]) : χ
(
r, x(t), u([t, r])

)
∈ Sr

pre

∧∀t ∈]tPNR, th] : � ∃u([t, r]) : χ
(
r, x(t), u([t, r])

)
∈ Sr

pre.

After a specific point along u([0, th]), the system is able to
safely enter Spost:

Definition 11 (Point of Guaranteed Arrival)
The Point of Guaranteed Arrival (PGA) is the state x(tPGA),
tPGA ∈ [0, th], along u([0, th]) from which point on safety is
guaranteed using a safe trajectory u([t, r]), t < r:

∀t ∈ [tPGA, th] : ∃u([t, r]) :χ
(
r, x(t), u([t, r])

)
∈ Sr

post.

By using Def. 10 and Def. 11, we define the safety-critical
passageway along u([0, th]) as:
Definition 12 (Safety-critical Passageway)
The safety-critical passageway (SCP) between S0

pre and Sth
post

is defined as the set of states between the PNR and the PGA
along u([0, th]):

SCP = {x |x = χ
(
t, x(0), u([0, t])

)
, tPNR < t < tPGA}.

A. Determining the PNR and PGA

We determine the PNR and PGA with respect to the
remaining valid assumptions Avalid. Based on the discussion
in [29], the exact PNR and PGA along a trajectory cannot be
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determined, but rather a time interval [ t, t ] of their possible
locations. For the PNR, we can obtain an upper bound
using reachability analysis and a lower bound using sampling
methods as demonstrated subsequently. Please note that we
focus on the basic concept of the search and not on specific
implementation details.
Proposition 1 (Under-approximation)
A lower bound of the location of the PNR tPNR is determined
by obtaining witnesses of Def. 10 from sampling techniques.

Proof: Per definition, the set of sampled trajectories is
a real subset of all feasible trajectories of (1). Thus, tPNR
represents an under-approximation.
Proposition 2 (Over-approximation)
By using over-approximated reachable sets of (1) (cf. Def. 5),
we define the upper bound as tPNR ∈ [0, th] such that

∀t ∈ [tPNR, th] : ∀r ≥ 0 : R(r) ∩ St+r
pre = ∅

subject to X 0 = {χ
(
t, x(0), u([0, t])

)
}.

Proof: Prop. 2 directly follows from the definition of
over-approximated reachable sets of (1), which ensures that
the system is not able to return to Spre from the obtained
upper bound.
The interval of the PGA can be obtained analogously.
Remark 2 (Precomputation)
One can precompute a sufficiently close approximation of
the PNR and PGA intervals for predefined tasks and sets
of violated assumptions. This precomputed approximation is
used as an initial guess and further refined online. Addi-
tionally, both searches can be sped up by incorporating a
binary search strategy to determine the optimal bound. The
advantage of using this strategy is its anytime property.

B. Significance to Motion Safety

As mentioned before in Sec. III, assumptions are required
for verifying the motion plan u([0, th]). Violation of assump-
tions during execution results in larger reachable sets of
obstacles (cf. R′

obs in Fig. 1). Thus, the passageway SCP
might contain unsafe states (i. e. SCP �⊆ F):
Theorem 1 (Safe and Safety-critical Stages)
The motion plan u([0, th]) can be divided into safe and
safety-critical stages using the PNR and PGA:

1) t ∈ [0, tPNR]: A feasible and safe trajectory to a safe
state x ∈ Spre is guaranteed until the PNR. (In contrast,
∀t > tPNR: A feasible and safe trajectory reaching Spre
does not exist.)

2) t ∈]tPNR, tPGA[: A feasible and safe trajectory to Spost
may not exist within the SCP.

3) t ∈ [tPGA, th]: A feasible and safe trajectory to a safe
state x ∈ Spost is guaranteed from the PGA onwards.

Proof: Thm. 1 directly follows from Def. 10–12. As
soon as the system enters Spre or Spost, it can switch to the
designated safe feedback control law and remain safe for an
infinite time horizon.

A motion planner can use safety-critical stages to evaluate
trajectories:
Remark 3 (Safety Costs)
The safety of j different motion plans ui([0, th]), i ≤ j, can
be assessed by using a cost function which assigns costs ci
to each passageway SCPi.

Rmk. 3 follows from Def. 12 and allows one to character-
ize and compare the passageway of different motion plans
ui([0, th]). The cost function has to be modeled depending
on the specific task and the utilized system. For example,
the costs correspond to the time-span of the safety-critical
passageway, and the safest motion plan to the one with the
lowest costs.

Motion planners which do not consider these safety costs
might determine trajectories with large safety-critical pas-
sageways. If we integrate the cost function of the passageway
as a separate cost term into the optimization of the motion
planner, the planner directly determines the safest trajectory.
As a result, one may be able to obtain a trajectory with a
passageway of size zero.
Remark 4 (Zero Passageway)
SCP = ∅ of a motion plan u([0, th]) guarantees that the
system is always able to safely enter Spre and Spost.

V. NUMERICAL EXAMPLE

In this section, the proposed concept is demonstrated for
the domain of self-driving vehicles. We consider highly
safety-critical overtaking maneuvers on a two-lane road with
oncoming traffic (cf. Fig. 2). The set of safe states F
corresponds to the set of states which are collision-free and
respect road boundaries. Given the time-invariant assumption
that maximum absolute acceleration is limited to amax, we
define Spre and Spost using the safe feedback controller Φsafe
which keeps a formal safe distance to preceding vehicles [30]
(cf. adaptive cruise control system (ACC) in [31]). We can
infer that Spre ∩ Spost = ∅, since overtaking requires the ego
vehicle to enter a lane with oncoming traffic.

The parameters of our numerical example are stated in
Tab. I, where (x, y, v)T describes the x- and y-positions and
velocity of a vehicle at the initial time t0 = 0 s. To obtain
the motion plan of the ego system, we utilize the trajectory
planner and the underlying vehicle model of [32]. Fig. 2
shows the resulting trajectory u1([0, th]) of the overtaking
maneuver.

A. Verification of the Overtaking Trajectory

The occupancy sets of all vehicles are predicted using
our tool SPOT1 [33]. This tool is based on reachability
analysis and allows one to efficiently over-approximate the
set of future occupancies of traffic participants under given
assumptions.

In addition to A∞, we consider the violable assumptions
AB listed in Tab. II, which are based on a formalization of
the Vienna Convention on Road Traffic [34], [35]. Based
on Avalid and initially assuming Aviol = ∅, we obtain the

1available at spot.in.tum.de
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Fig. 2. Since the occupancy of the ego vehicle (red) along its trajectory u1([0, th]) does not intersect with the occupancies of other vehicles (blue and
green) in any time interval, the motion plan is verified as collision-free. Note that for the sake of clarity, the occupancy sets are only shown for the time
intervals [0, 1], [3, 4], [6, 7], and [9, 10], and plotted transparently. The axes are in meters.

occupancy sets of each vehicle for consecutive time intervals
with prediction step size Δt = 0.1 s up to the time horizon
th = 10 s (cf. Fig. 2). The motion plan u1([0, th]) is verified
as collision-free, since none of the occupancies of other
vehicles intersects with the occupancy of the ego vehicle
along its planned trajectory in any time interval.

B. Determining the PNR and PGA

During the overtaking maneuver, we consider that
the oncoming vehicle violates the assumptions Aviol =
{Avmax

, Aback} (cf. Tab. II). Thus, the previously verified
overtaking maneuver is no longer collision-free. We de-
termine the PNR and PGA based on the remaining valid
assumptions Avalid:

a) PNR interval: To compute the upper bound tPNR
of the PNR according to Prop. 2, we use our tool SPOT.
For each state x(kΔt), kΔt ∈ [0, th], along the planned
trajectory, we run the occupancy prediction and check from
which k onwards the ego vehicle is not able to return to
its initial lane and maintain a safe distance to the preceding
vehicle.

After determining the upper bound, we can restrict the
search of the lower bound to states x(kΔt), kΔt ∈ [0, tPNR[.
We use our sampling-based trajectory planner [32] to deter-
mine trajectories reaching Spre and check if the ego vehicle
maintains the necessary safe distance at all times of the
resulting feasible trajectory. We obtain tPNR = 0.7 s and
tPNR = 0.6 s for the upper and lower bound of the PNR,
respectively. Fig. 4a visualizes the sampled trajectory and
the occupancy sets for the time interval at which the ego
vehicle is not able to maintain the safe distance.

TABLE I
PARAMETERS OF THE OVERTAKING SCENARIO.

Parameter Description

Ego vehicle (x, y, v)Tego = (0m, 0m, 16.7m/s)T

Preceding vehicle (x, y, v)Tpre = (19.0m, 0m, 11.1m/s)T

Oncoming vehicle (x, y, v)Tonc = (285.6m, 4.5m, 16.7m/s)T

Speed limit vlim = 16.7m/s

Maximum velocity vmax = 1.2vlim = 20m/s

Switching velocity vS = 5.0m/s

Maximum acceleration |amax| = 8.0m/s2

Lateral distance Δy = 4.5m

between the lanes
Time horizon th = 10.0 s

Time step size Δt = 0.1 s

b) PGA interval: Using SPOT, we obtain tPGA = 8.4 s
for the lower bound. The sampling method results in tPGA =
8.5 s for the upper bound. Fig. 4b visualizes the sampled
trajectory, which coincides with the overtaking trajectory
u1([0, th]), and the predicted occupancy sets starting at time
t = tPGA.

C. Significance to Motion Safety

We validate Thm. 1 by sampling evasive trajectories for
every state x(kΔt), kΔt ∈ [0, th], and checking them for
collisions. The trajectory starting at x(tPNR) and returning to
Spre is visualized in Fig. 3 by a dotted line. The trajectory
starting at x(tPGA) and ending in Spost coincides with the
overtaking trajectory u1([0, th]). All trajectories starting at
a state x(kΔt), kΔt ∈]tPNR, th], and ending in Spre result
in a collision, as the ego vehicle is not able to maintain the
necessary safe distance when the preceding vehicle performs
emergency braking.

Within the SCP, i. e. tPNR < t < tPGA, a collision-free
evasive trajectory ending in Spost may not exist if assumptions
are violated. To speed up the search for a feasible trajectory
in such situations, one can make use of the fact that the
ego vehicle has to reach the PGA to be safe again. This
information allows the motion planner to exclude trajectories
which end in Spre or have velocities below the maximum
reference velocity.

In our example, the oncoming vehicle violates the assump-
tion of maximum speed (i. e. accelerating beyond vmax) at
time t = 4.5 s, where the ego vehicle has already passed the
PNR and is located within the SCP. To avoid a potential
collision, we must determine an evasive trajectory which
exits the SCP as fast as possible. Using our novel concept,
we are able to reduce the number of trajectory hypotheses

TABLE II
VIOLABLE ASSUMPTIONS ON THE BEHAVIOR OF OTHER VEHICLES.

Assumptions Description

Avmax When a parameterized speed vmax is reached,
acceleration in driving direction is stopped.

Aengine To model limited engine power, acceleration in driving
direction is limited above a parameterized speed vS .

Alane Leaving the lane is forbidden. Changing lanes is only
allowed if the new lane has the same driving direction.

Aback Driving backwards in a lane is not allowed.
Aover If a vehicle is being overtaken, acceleration in driving

direction is stopped.
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Fig. 3. Trajectory u1([0, th]) with max. velocity of 16.7m/s is not collision-free if the oncoming vehicle violates Aviol. Two evasive trajectories, denoted
by dotted lines, branch off at the PNR and at t = 4.5 s within the SCP. An alternative collision-free trajectory u2([0, th]) with max. velocity of 19.4m/s
and shorter SCP is shown by a dashed line. The axes are in meters.

of our planner from 3500 down to 500, which shortens
planning time by around 30%. The obtained trajectory with
full acceleration allows the ego vehicle to enter Spost without
colliding with the speeding oncoming vehicle and is denoted
by a dotted line in Fig. 3.

To assess the safety of the SCP for overtaking trajectories
according to Rmk. 3, we model the cost function as c =
(tPGA − tPNR). The costs for the initial overtaking trajectory
u1([0, th]) with max. velocity 16.7m/s and for an alternative
trajectory u2([0, th]) with max. velocity 19.4m/s (cf. Fig. 3)
are c1 = 7.7 s and c2 = 6.0 s, respectively. If the oncoming
vehicle violates Avmax , u1([0, th]) results in a collision with
the oncoming vehicle (cf. occupancy set in Fig. 3). However,
the trajectory u2([0, th]) avoids a potential collision in this
scenario, since the ego vehicle traverses the SCP faster due to
the shorter passageway (indicated by lower costs c2 � c1).
Incorporating the costs of the SCP into a motion planner
allows it to minimize the SCP during optimization. In our
example, this corresponds to a trajectory with the maximal
feasible velocity profile during overtaking.

VI. CONCLUSIONS

This paper considers situations in which a verified motion
plan suddenly becomes unsafe due to the misbehavior of
dynamic obstacles and provides a solution to this problem
by introducing the PNR and PGA. These novel concepts
allow one to derive additional safety guarantees for systems
which have to perform collision-free motions in dynamic
environments. The PNR and PGA divide motion plans into
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(a) Upper and lower bound of the PNR.

110 115 120 125 130 135 140 145 150
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(b) Upper and lower bound of the PGA.

Fig. 4. The intervals of the PNR and PGA are obtained using set-based
prediction and trajectory sampling. The axes are in meters.

inherently safe sections and inherently safety-critical pas-
sageways.

Within the safety-critical passageway, the system is ex-
posed to potential collisions if obstacles violate assumptions
used in the verification. We show that one can minimize
the SCP prior to execution by assigning costs to it and
integrating the cost function into the optimization of the
planner. Trajectories with SCP = ∅ guarantee safety for an
infinite time horizon.

The presented concept is not restricted to self-driving
vehicles and can also be applied to other systems, such
as industrial robots or unmanned aerial vehicles (UAVs).
To reduce computational costs, one may conservatively pre-
compute the PNR and PGA for different tasks and switch
between them during runtime.
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4.4 Safety falsification of motion planner (ITSC 2019)

4.4 ITSC 2019: Computationally Efficient Safety
Falsification of Adaptive Cruise Control Systems [69]

Summary In the previous sections, we ensured the safety of motion plans using reachability
analysis. In this section, we tackle the safety problem from the other side by using extensive
testing in terms of falsification. Falsification aims to disprove the safety of systems by pro-
viding counter-examples that lead to a violation of safety properties. We present two novel
falsification methods that reveal safety gaps in adaptive cruise control (ACC) systems of
autonomous vehicles. Our methods use rapidly-exploring random trees to generate motions
for a leading vehicle such that the ACC under test causes a rear-end collision, which solves
Problem statement 5. To speed up the search, we do not try to directly find the only few
possible collision states, but instead define unsafe states that eventually result in a collision
and search for those. Since the set of unsafe states is still very small compared to the set of
safe states, our second falsification method starts at unsafe states and searches backward in
time, which makes finding a counter-example much more likely.

We demonstrate the benefits of our methods by successfully falsifying the safety of contem-
porary ACC systems and comparing the results to that of existing testing approaches. By
integrating unsafe states in the standard forward search approach, we already achieve an im-
provement in the required computation time of up to 8 times. With this approach, however,
we were not able to falsify all ACC systems in a reasonable time period. In contrast, our
backward search approach is able to falsify even a sophisticated ACC system with collision
avoidance in every test run. By starting the search from a set of unsafe states, our backward
search algorithm is able to find counter-examples 300 times faster than standard approaches.
The backward search method can also help to reveal implementation errors in ACC systems
based on formal methods.

Overall, our proposed methods allow developers to detect safety gaps in their system with
minimal effort and already at early stages of their work. The obtained collision scenarios
can be directly used to improve the design of their system. While the forward search can
be used to generate diverse counter-examples, the backward search aims to quickly find any
counter-example.

Contributions of M. K. M. K. developed the definition of the safe and unsafe distance and
their corresponding set of states (all together with C. P. and S. M.). M. K. developed the
modification of rapidly-exploring random trees, the forward search, and the backward search
(all together with C. P. and S. M.). M. K. designed and evaluated the experiments (together
with C. P. and S. M.). M. K. wrote the article except Sec. I (Sec. IV together with S. M.).

Conference paper c©2019 IEEE. Reprinted, with permission, from Markus Koschi, Chris-
tian Pek, Sebastian Maierhofer, and Matthias Althoff, Computationally Efficient Safety Fal-
sification of Adaptive Cruise Control Systems, in Proc. of the 22nd IEEE International Con-
ference on Intelligent Transportation Systems.

Attachments The video attachment of this publication is available at go.tum.de/500310.
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Computationally Efficient Safety Falsification of
Adaptive Cruise Control Systems

Markus Koschi*, Christian Pek*, Sebastian Maierhofer*, and Matthias Althoff

Abstract— Falsification aims to disprove the safety of systems
by providing counter-examples that lead to a violation of safety
properties. In this work, we present two novel falsification
methods to reveal safety flaws in adaptive cruise control
(ACC) systems of automated vehicles. Our methods use rapidly-
exploring random trees to generate motions for a leading vehicle
such that the ACC under test causes a rear-end collision. By
considering unsafe states and searching backward in time,
we are able to drastically improve computation times and
falsify even sophisticated ACC systems. The obtained collision
scenarios reveal safety flaws of the ACC under test and can be
directly used to improve the system’s design. We demonstrate
the benefits of our methods by successfully falsifying the safety
of state-of-the-art ACC systems and comparing the results to
that of existing approaches.

I. INTRODUCTION

Safety is a mandatory requirement for the ever increas-
ing automation of vehicles. However, ensuring safety is a
challenging task; even in supposedly simple scenarios like
vehicle following (cf. adaptive cruise control (ACC) system
in Fig. 1), the variety of stop-and-go behaviors of other
vehicles may impose safety-critical situations.

Verifying that motion planning algorithms ensure certain
standards is often done by testing the system in a multitude
of simulations using large databases of test cases and traffic
scenarios [1]–[3]. However, simulations have the significant
disadvantage that they may miss testing certain scenarios
that inevitably lead to unsafe situations. In contrast, formal
verification approaches are able to provide strong safety
guarantees by verifying that each action of the vehicle
conforms to a formal specification [4]. Nevertheless, safety
only holds if the used specification appropriately models
the desired safety definition and no implementation mistakes
have been made.

To reveal safety-critical flaws in a system, falsification
approaches try to disprove the safety instead of proving it
[5]. Falsification for motion planning aims to find motions
that start in a safe state but eventually enter collision states
(cf. Fig. 2). The obtained motions serve as counter-examples
and can be used to revise the system’s design. Falsification
should be an integral part in the development of automated
vehicles; however, falsification approaches for automated
vehicle functions still have a huge potential in terms of
computational efficiency and applicability [6].
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Fig. 1: To follow a leading vehicle, ACC systems adjust the velocity of the
ACC-equipped vehicle so that the headway ∆s = slead−sacc is larger than
a safe distance ssafe.

A. Related work

In the following paragraphs, we a) provide a brief
overview of safety mechanisms in state-of-the-art ACC sys-
tems and b) review existing techniques for generating safety-
critical scenarios for automated vehicles.

a) Adaptive cruise control systems: ACC systems au-
tomatically adjust the velocity of the controlled vehicle to
maintain a certain headway to a leading vehicle [7], [8].
Reviews about major ACC developments can be found in
[9], [10]. Proportional integral ACCs (PI-ACCs) use PI
controllers to adjust the headway and are still widely used be-
cause of their simplicity [11], [12]. Their safety relies mainly
on the chosen gains to react to sudden changes in the behav-
ior of the leading vehicle. The Intelligent Driver Model ACC
(IDM-ACC) implements a more complex control scheme by
switching between different driving modes [13]. As a result,
the IDM-ACC can switch between comfortable or rather safe
parameterizations. Nevertheless, these ACC systems do not
incorporate dedicated collision avoidance mechanisms.

Collision avoidance ACCs (CA-ACCs) explicitly consider
collision avoidance by quickly adjusting their response be-
havior if the desired headway cannot be maintained [14].
Recently proposed ACCs make use of formal methods (FM-
ACC), e.g., set invariance theory or formalized traffic rules,
to provide safety guarantees during operation [15]–[18].

Collision states
Xcol

Unsafe states Xunsafe

X0

Safe states Xsafe

Unsafe
counter-example

Safe motions

Fig. 2: Falsification of motion planning aims to find counter-examples that
transition the system under test from an initial safe state x0 ∈ X0 ⊂ Xsafe

to a collision state x ∈ Xcol.
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b) Generating safety-critical scenarios: To test ACC
systems, some approaches synthesize safety-critical scenarios
[5], [19]–[22], e.g., by making use of Monte Carlo simulation
(MCS) to automatically generate a variety of random sce-
narios. Although MCS approaches quickly generate various
scenarios, they are not designed to specifically find scenarios
leading to collisions.

The authors of [23] propose a systematic approach to test
collision avoidance systems by primarily simulating scenar-
ios in which leading vehicles suddenly perform emergency
braking maneuvers. More sophisticated methods make use of
reachability analysis, neural networks, performance metrics,
or evolutionary algorithms to automatically generate safety-
critical scenarios for fully automated vehicles [24]–[29].
Rapidly-exploring random trees (RRTs) [30] are used in
[31]–[33] to falsify the safety of a given system, since RRTs
are well suited to efficiently explore large search spaces.

B. Contributions

This paper proposes two approaches based on RRTs to
falsify the safety of ACC systems. Since the aforementioned
falsification methods are often computationally expensive
and do not exploit domain knowledge to efficiently generate
counter-examples, our contributions tackle these issues by:

1) drastically improving the performance of forward
searches by integrating unsafe states, which eventually
lead to collisions and are much easier to reach than
collision states (cf. Fig. 2);

2) presenting a novel falsification approach that employs a
backward search scheme and can successfully falsify
sophisticated ACC systems in significantly less time
than that of forward searches; and

3) demonstrating that our approaches successfully falsify
state-of-the-art ACC systems from the literature in rea-
sonable time and outperform classical forward search
and MCS.

The remainder of this paper is organized as follows. Sec. II
introduces necessary mathematical definitions and the prob-
lem statement. Next, our falsification algorithms to generate
safety-critical situations are presented in Sec. III. In Sec. IV,
the proposed approaches are used to falsify the safety of
state-of-the-art ACC systems in numerical experiments, and
the results are compared to that of Monte Carlo falsification.
Conclusions are presented in Sec. V.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Vehicle configuration

Let us introduce X ⊂ R2 as the set of feasible states
x of a vehicle. The state vector x = [s, v]T consists of
the position s and the velocity v, each in the longitudinal
direction. Acceleration and jerk are denoted by a and j,
respectively. We assume discrete-time systems with a time
step size of ∆t > 0. We further introduce U ⊂ R as the
set of admissible control inputs u = a of the state transition
function fmotion, which describes the longitudinal dynamics

of a vehicle:[
s(tk+1)
v(tk+1)

]
︸ ︷︷ ︸

x(tk+1)

=

[
1 ∆t
0 1

] [
s(tk)
v(tk)

]
+

[
1
2∆t2

∆t

]
u︸ ︷︷ ︸

fmotion(x(tk),u)

, (1)

with bounded velocity, acceleration, and jerk: 0 ≤ v ≤ vmax,
amin ≤ u ≤ amax, jmin ≤ j ≤ jmax, where amin, jmin ∈ R<0

and j(tk) = (u(tk)−u(tk−1))/∆t. We adhere to the notation
x
(
[t0, tn]

)
to describe a trajectory of states x(ti) ∈ X for

ti ∈ {t0, t1, . . . , tn} that satisfy (1) and its constraints, and
we use u

(
[t0, tn]

)
analogously to describe an input trajectory.

As shown in Fig. 1, we consider situations in which
an ACC-equipped vehicle is following another vehicle. The
variables of the leading and ACC vehicle are denoted by
the subscript �lead and �acc, respectively. By defining the
reference point for the position of the leading vehicle at its
rear end and of the ACC vehicle at its front, the relative
distance between both vehicles is ∆s := slead − sacc (cf.
Fig. 1). Their relative velocity is defined as ∆v := vlead−vacc.

We treat the ACC control law under test as a black box:

uacc = fACC
(
xacc(tk), xlead(tk), δ

)
, (2)

where fACC is unknown and δ is the reaction delay of the
system, e.g., processing time of sensors and actuator delays.
For brevity, we combine fACC and fmotion in the function
fACC-motion

(
xacc(tk), xlead(tk), δ

)
, which returns xacc(tk+1).

B. Safety definition

To define safe states, we use the established safety def-
inition that the ACC vehicle must remain collision-free at
all times [34]. This must hold even if the leading vehicle
suddenly performs emergency braking, i.e., ubrake

lead (ti) :=
max

(
alead(ti−1)+jmin,lead∆t, amin,lead

)
. In response, an ACC

vehicle that conforms with [34] will fully brake; during its
reaction delay, we allow arbitrary acceleration, which can be
over-approximated by full acceleration. Thus, for our safety
analysis, we assume that the ACC vehicle applies the control
inputs

ubrake
acc (ti) :=


min

(
aacc(ti−1) + jmax,acc∆t,

amax,acc
)
, ti − tk < δ,

max
(
aacc(ti−1) + jmin,acc∆t,

amin,acc
)
, otherwise,

where tk is the point in time at which the leading vehicle
starts emergency braking. Let tstop

acc denote the point in time
at which the ACC vehicle is at a standstill.
Definition 1 (Safe distance)
The ACC vehicle can definitely avoid a rear-end collision,
if it maintains at least the minimal safe distance ssafe to the
leading vehicle:

ssafe(tk) := inf
({

∆s(tk)
∣∣∀ti ∈ {tk, tk+1, . . . , t

stop
acc } :

∆s(ti) > 0
})
,

where ∆s(ti) is obtained by simulating the leading and ACC
vehicle according to (1) from v(tk) with ubrake

lead

(
[tk, t

stop
acc ]
)

and
ubrake

acc

(
[tk, t

stop
acc ]
)
, respectively.
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Our definition is based on [34] and [35] with the following
extensions: in contrast to [34], we allow for a reaction delay
of the ACC vehicle; in contrast to [35], we do not assume
that the ACC vehicle maintains constant velocity during the
reaction delay, but we allow for arbitrary acceleration; and in
contrast to both, we consider limited jerk to allow for more
realistic braking profiles.
Definition 2 (Unsafe distance)
The ACC vehicle definitely cannot avoid a rear-end collision
with impact velocity of at least vcol (which is a parameter
≥ 0), if the leading vehicle performs emergency braking at
tk and if the ACC vehicle maintains less than or equal the
maximum unsafe distance sunsafe to the leading vehicle:

sunsafe(tk) := sup
({

∆s(tk)
∣∣∃ti ∈ {tk+1, tk+2, . . . , t

stop
acc } :

∆s(ti−1) > 0 ∧ ∆s(ti) ≤ 0 ∧ |∆v(ti)| ≥ vcol
})
,

where ∆s(ti−1), ∆s(ti), and ∆v(ti) are obtained by simu-
lation as in Def. 1 except that we set δ = 0 so that the ac-
celeration during the reaction delay is under-approximated.

Algorithmically, Def. 1 and 2 can be evaluated by simulat-
ing both vehicles from their given current states at tk with
ubrake

lead

(
[tk, t

stop
acc ]
)

and ubrake
acc

(
[tk, t

stop
acc ]
)
. The safe distance is

obtained by adding ∆s(tk) to the minimal required offset
of the relative position so that both position profiles do
not intersect (cf. soffset

safe in Fig. 3a). The unsafe distance is
obtained by adding ∆s(tk) to the maximal possible offset of
the relative position so that both position profiles intersect
and that the absolute value of the relative velocity at this
point in time is at least vcol (cf. ∆v(ti) in Fig. 3b).

t

s

slead
sacc

∆s(t) ≤ 0∆s(t) > 0

titk t
stop
acc

soffset
safe

∆s(tk)

(a) Simulated position profiles.
t

v

vlead
vacc

titk t
stop
acc

∆v(ti)

0

(b) Simulated velocity profiles.

Fig. 3: State plots of the leading and ACC vehicle to determine the safe
and unsafe distance.

Definition 3 (Sets of safe, unsafe, and collision states)
Using Def. 1 and 2, we define the set of all safe states of the
ACC vehicle at time tk as

Xsafe(tk) :=
{
xacc(tk) ∈ X

∣∣∆s(tk) ≥ ssafe(tk)
}
,

the set of unsafe states as

Xunsafe(tk) :=
{
xacc(tk) ∈ X

∣∣∆s(tk) ≤ sunsafe(tk)
}
,

and the set of collision states as

Xcol(tk) :=
{
xacc(tk) ∈ X

∣∣∆s(tk) ≤ 0 ∧ |∆v(tk)| ≥ vcol
}
.

Note that X = Xsafe(tk) ∪ Xunsafe(tk) only holds if δ = 0
and vcol = 0.

We use Def. 3 in our approach to detect if we have already
generated an unsafe situation for the ACC system. Therefore,
we model the search space of our RRT by combining the
state spaces of both vehicles. Thus, a node z(tk) of the search
tree T is defined as state tuple: z(tk) :=

(
xacc(tk), xlead(tk)

)
.

We denote a node as safe if xacc(tk) ∈ Xsafe(tk), as unsafe if
xacc(tk) ∈ Xunsafe(tk), and as colliding if xacc(tk) ∈ Xcol(tk).

C. Problem statement

In order to falsify an ACC system (cf. Fig. 2), we aim to
find a time series of inputs for the leading vehicle ulead(ti),
ti ∈ {t0, t1, . . . , tcol}, so that when starting in a safe state
xacc(t0) ∈ Xsafe(t0), the ACC vehicle will eventually collide
with the leading vehicle at tcol > t0 : xacc(tcol) ∈ Xcol(tcol).

III. FALSIFICATION APPROACHES

To quickly find counter-examples bridging the sets
Xsafe(tk) and Xunsafe(tk), we efficiently explore the search
space using RRTs (see Sec. III-A). We have developed two
methods to build the RRT: 1) We search forward in time
by creating random behaviors of the leading vehicle and by
evaluating the reactions of the ACC vehicle (see Sec. III-B).
However, this strategy may require many simulation runs if
the set of unsafe states is very small, which is the case for
many ACC systems (e.g., an ACC with advanced collision
avoidance). 2) Thus, our second approach starts from unsafe
states and searches backward in time (see Sec. III-C). As
a result, we can find counter-examples in fewer simulation
runs.

A. Rapidly-exploring random trees

RRTs are a popular approach for motion planning and
have already been used for falsification (cf. Sec. I-A). The
standard approach (e.g., [30], [36]) starts at an initial set of
nodes and generates new nodes from time step tk to tj as
follows. After drawing a random sample in the search space,
the node znear(tk) that is closest to the sample according
to a distance measure is selected as its parent. Then, the
optimal input u is applied to drive the system from the parent
node as close as possible to the sample, resulting in the new
node znew(tj). This procedure can be repeated such that the
same number of nodes, denoted by the parameter znum, is
generated for each time step. We have made modifications
to this standard approach, which are introduced next and are
combined with the standard approach in Alg. 1.

Our sampling process is performed in relative coordinates
∆z := [∆s,∆v]T , since only these are relevant for the
criticality. To avoid generating behavior that mostly uses the
minimal or maximal possible input, we do not sample in
the complete search space, but restrict the sampling range
depending on the states of already existing nodes. Therefore,
we first compute the minimum and maximum differences,
∆zmin(tk) and ∆zmax(tk), between the states of all nodes
at the current time step tk. To favor an increase of the relative
coordinates, we add a bias to obtain the sampling range
Z(tk) := [∆zmin(tk) − ∆zmin

add ,∆zmax(tk) + ∆zmax
add ] (cf.

line 1 of Alg. 1).
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Algorithm 1 EXPLORE(T , tk, tj , Xacc(tj))

Input: search tree T , current time tk, desired time tj , set
of states Xacc(tj)

Output: generated node z(tj)
1: Z(tk) ← T .GETSAMPLINGRANGE(tk)
2: ∆z(tj) ← DRAWSAMPLE(Z(tk))
3: znear(tk) ← T .GETNEARESTNODE(∆z(tj))
4: xacc(tj) ← GETSUCCESSORSTATE(znear(tk), Xacc(tj))
5: ulead ← CALCINPUT(znear(tk), ∆z(tj) + xacc(tj))
6: xlead(tj) ← fMOTION(znear(tk), ulead)
7: return znew(tj) ←

(
xacc(tj), xlead(tj)

)

As a distance measure for the selection of the nearest node
znear(tk) (cf. line 3), we use the L2 norm with normalized
state values. The normalization is done using the mean and
standard deviation of all nodes z(tk) to avoid the preference
of low numerical values in the position and velocity when
selecting the closest node.

As an additional input, our algorithm requires the set of
states of the ACC vehicle at the next time step, denoted by
Xacc(tj). From Xacc(tj), we select the state xacc(tj) that is
the successor of the state of the ACC vehicle in znear(tk)
(cf. line 4). This allows us to compute the input ulead that
drives the leading vehicle as close as possible to the sampled
configuration in global coordinates ∆z(tj) + xacc(tj) (cf.
line 5).

B. Forward search

First, we present the standard forward search approach
known from the literature and then our novel extensions; the
complete approach is summarized in Alg. 2.

We initialize the search tree T with znum randomly selected
safe nodes. In each time step tk, we apply the ACC control
law (2) and the motion equation (1) to all state tuples(
xacc(tk), xlead(tk)

)
such that we obtain the set of states of

the ACC vehicle Xacc(tk+1) at the next time step (cf. line 6 to
8 of Alg. 2). Then, we randomly generate the future behavior
of the leading vehicle by exploring the search space using
the RRT of Alg. 1 (cf. line 10 of Alg. 2). Before advancing
to the next time step, we can optionally remove childless
nodes to reduce the memory consumption.

Our extension, illustrated in Fig. 4, allows us to find the
state trajectory leading to a collision more quickly. At each
time step during the forward search, we check if we have
already generated an unsafe node (cf. line 4 of Alg. 2). Since
an unsafe state implies that the ACC vehicle will eventually
collide if the leading vehicle fully brakes (cf. Def. 2), we let
the leading vehicle perform emergency braking (cf. line 14 of
Alg. 2) until we have generated a collision node (cf. Fig. 4).

C. Backward search

Searching backward in time is especially difficult, since we
cannot compute the inverse of the ACC control law, which
would be required to simulate the ACC vehicle backward in
time (unless the ACC system is flat [37]). Thus, we generate
random inputs for the ACC vehicle to obtain states of the

Xsafe(·)

Xunsafe(·)

t

z

t0 t1 tcol−2 tcol−1 tcol

forward sampling z(tk) collision node

Fig. 4: Falsification by searching forward in time. Starting in safe states
at t0, the RRT is built until an unsafe node is found (i.e., xacc(tk) ∈
Xunsafe(tk)). Then, the leading vehicle performs emergency braking, which
will result in a collision.

Algorithm 2 Falsification by forward search

1: T .INITIALIZE(Xsafe(t0), znum)
2: k ← 0
3: while not T .HASCOLLISIONNODE(tk) do
4: zunsafe(tk) ← T .FINDUNSAFENODE(tk)
5: if zunsafe(tk) is null then
6: for all z(tk) in T do
7: Xacc(tk+1).ADD(fACC-MOTION(z(tk), δ))
8: end for
9: while T .NUMNODES(tk+1) < znum do

10: znew(tk+1) ← T .EXPLORE(tk, tk+1, Xacc(tk+1))
11: T .ADDNEWNODE(znew(tk+1))
12: end while
13: else
14: xlead(tk+1) ← fMOTION(zunsafe(tk), ubrake

lead (tk))
15: xacc(tk+1) ← fACC-MOTION(zunsafe(tk), δ)
16: T .ADDNEWNODE(xacc(tk+1), xlead(tk+1))
17: end if
18: k ← k + 1
19: end while
20: return T .COLLISIONTRACE

ACC vehicle at previous time steps. However, we need to
ensure that the ACC system drives the ACC vehicle into
unsafe states again, since we are only interested in generating
behaviors that lead to a collision.

Fig. 5 and Alg. 3 illustrate our solution. First, we initialize
the search tree T at an arbitrary time th with znum randomly
selected unsafe nodes. The falsification successfully termi-
nates if we have generated a safe node (with an optional
larger headway distance); otherwise, we continue searching
backward in time.

To obtain the states of the ACC vehicle at the next time
step tk−1 (backward in time), we create random inputs for
all xacc(tk) in T (cf. lines 4 to 6 of Alg. 3). The new states
for the leading vehicle at tk−1 are generated by the RRT
of Alg. 1 as in the forward search (cf. line 8 of Alg. 3).
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z′(tm)
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Fig. 5: Falsification by searching backward in time. Starting in unsafe states
at th, the RRT is built by sampling backward in time until a safe node is
found. Yet, a node znew(tk) generated by the backward search is discarded
as invalid, if applying the ACC control in a forward simulation does not
result in a node z′(tm), tk ≤ tm ≤ th, in which xacc(tm) ∈ Xunsafe(tm).

Algorithm 3 Falsification by backward search

1: T .INITIALIZE(Xunsafe(th), znum)
2: k ← h
3: while not T .HASSAFENODE(tk) do
4: for all z(tk) in T do
5: Xacc(tk−1).ADD(RANDOMINPUT(z(tk)))
6: end for
7: while T .NUMNODES(tk−1) < znum do
8: znew(tk−1) ← T .EXPLORE(tk, tk−1, Xacc(tk−1))
9: for m← k − 1; m ≤ h; m++ do

10: z′(tm) ← T .FORWARDSIM(znew(tk−1), tm, δ)
11: if ISUNSAFENODE(z′(tm)) then
12: T .ADDNEWNODE(znew(tk−1))
13: break
14: end if
15: end for
16: end while
17: k ← k − 1
18: end while
19: return T .COLLISIONTRACE

Next, we require to check whether the ACC system will
still cause a collision when starting at the new generated
node znew(tk−1) (cf. lines 9 to 15 of Alg. 3). Therefore,
we iteratively simulate forward in time to obtain z′(tm)
for tk ≤ tm ≤ th by applying the ACC control law (2),
which uses as input the states of the leading vehicle saved
in T (cf. forward simulation in Fig. 5). Note that z′(tm) is
generally different than znew(tm). Only if znew(tk−1) itself
or any z′(tm) is an unsafe node, the new node znew(tk−1)
is added to the tree; otherwise, we discard the new node as
invalid (cf. invalid node in Fig. 5). The final collision trace
is obtained by continuing the forward simulation from the
unsafe node with emergency braking of the leading vehicle
until the guaranteed collision.

IV. NUMERICAL EXPERIMENTS

We evaluate our forward and backward search by falsify-
ing different ACC systems. Our implementation in Python
is available at gitlab.lrz.de/tum-cps/safety-falsification-acc.
All simulations were executed on a machine with an Intel
Xeon Gold 6136 3.00 GHz processor and 128 GB of DDR4
2666 MHz memory. The safety-critical scenarios presented
next are included in the CommonRoad benchmark suite1 [3]
and are visualized in the video attachment of this paper.
Tab. I lists the parameters of the numerical experiments,
where nforward and nbackward are the user-defined maximum
number of iterations of the forward and backward search,
respectively.

A. Introduction to tested ACC systems

The four ACC control laws chosen for falsification vary
in their safety integrity, as discussed in Sec. I-A. Their
control laws are briefly introduced in this section, and their
parameters are listed in Tab. II, where vdes denotes the
desired velocity of the ACC vehicle, tdes the desired time
gap between the leading and ACC vehicle, and ∆smin the
desired minimum relative distance. We assume a reaction
delay of 0 s to provide a best case situation for the ACC
systems.

1) Proportional integral ACC (PI-ACC): The PI-ACC
[11] uses a PI controller:

u = kp
(
∆v + kq∆sPI

err

)
+ ki

1

∆t

(
∆v + kq∆sPI

err

)
, (3)

1commonroad.in.tum.de

TABLE I: User-defined parameters of the falsification.

Description Parameter with value

Time step size ∆t = 0.1 s

Max. number of time steps nforward = 12000, nbackward = 600

Number of nodes znum = 250

Increase of sampling range ∆zmin
add = [0 m, 0 m/s]T ,

∆zmax
add = [1.0 m, 0.25 m/s]T

Minimal impact velocity vcol = 0 m/s

Limit on jerk jmin = −10.0 m/s3, jmax = 10.0 m/s3

Limit on acceleration amin = −8.0 m/s2, amax = 1.5 m/s2

Limit on velocity vmax = 50.8 m/s

TABLE II: Parameters of the ACC systems. The values for the PI-ACC,
IDM-ACC, and CA-ACC are from [11], [13], and the authors of [14],
respectively. The parameters ∆smin, kp, ki, kq, and b are adapted to increase
the collision avoidance performance.

General PI-ACC [11] IDM-ACC [13] CA-ACC [14]

vdes = 30 m/s kp = 0.2 1/s b = 0.02 m/s2 K1 = 0.1 1/s2

tdes = 1.5 s ki = 0.1 K2 = 5.4 1/s2

∆smin = 3 m kq = 0.1 1/s P = 20 m

δ = 0 s h0 = 0.1 s Q = 1

hc = 0.2 s2/m
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where kp is a proportional gain, ki an integral gain, kq a
positive constant factor, and ∆sPI

err the spacing error ∆sPI
err :=

∆s − ∆smin + vacch. The time headway h favors a larger
spacing at higher velocities:

h =


1, h0 − hc∆v ≥ 1,

h0 − hc∆v, 0 < h0 − hc∆v < 1,

0, otherwise,
(4)

where h0 is a constant time headway and hc a constant factor.
2) Intelligent Driver Model (IDM-ACC): We use the

variant of the IDM for increased safety as proposed in [13].
Its control law is given by

u = amax

[
1−

(
vacc

vdes

)4

−
(

∆sIDM
des

∆s

)2
]
, (5)

where ∆sIDM
des := ∆smin + vacctdes + vacc∆v

2
√
amaxb

.
3) ACC with collision avoidance (CA-ACC): The CA-

ACC [14] uses the control law

u = K1∆sCA
err +K2∆vR(∆s), (6)

where K1 and K2 are constant gains and ∆sCA
err :=

min
(
∆s − ∆smin − vacctdes, (vdes − vacc)tdes

)
. The error

response function R(∆s) is

R(∆s) =
−1

1 + Pe−
∆s
Q

+ 1, (7)

where Q is the aggressiveness coefficient, and P is the
perception range coefficient.

4) ACC with safety guarantees (FM-ACC): The FM-ACC
[15] is divided into two modes, a nominal control mode
and an emergency control mode. The nominal mode uses
model predictive control (MPC) and is applied as long as
it can satisfy the safe distance. If it cannot find safe input
values, the emergency control mode executes a pre-defined
emergency deceleration profile so that the ACC vehicle is
formally guaranteed to remain collision-free.

B. Forward search

The forward search is able to falsify the PI-ACC and
IDM-ACC, but cannot find a counter-example for the CA-
ACC and FM-ACC. The state trajectories leading to one
of the obtained collisions for the PI-ACC and IDM-ACC
are shown in Fig. 6 and Fig. 7, respectively. Tab. III lists
the required computation times, the time tunsafe at which
the ACC vehicle first entered the set of unsafe states, and
the initial and final states of both vehicles. Even though
we set vcol = 0 m/s (cf. Tab. I), the generated collisions
have an impact velocity of 4.6 m/s and 2.2 m/s for the PI-
ACC and IDM-ACC, respectively. In real traffic, the obtained
trajectories of the leading vehicle are likely to occur during
stop-and-go traffic on a highway.

C. Backward search

The backward search is able to falsify the CA-ACC, even
though the forward search finds no counter-example. Fig. 8
shows the trajectories xlead([t0, tcol]) and xacc([t0, tcol]) that
are obtained from a backward search; we continued the
backward search not only until a safe node is found, but
until ssafe(t0) ≥ 100 m and ∆s(t0) ≥ 235 m, which signif-
icantly increased the required computation time (cf. results
in Tab. IV without this addition). Tab. III lists the details
of the falsification result. The generated counter-example
corresponds to a traffic situation in which the leading vehicle
is forced to brake due to a traffic jam. Note that the ACC
vehicle could have avoided a collision by braking earlier.

By applying the backward search to the FM-ACC, we
were able to identify an error in the code generation of the
FM-ACC. After correcting the code generation, the FM-ACC
remains collision-free in the backward search, whereas the
PI-ACC and IDM-ACC are falsified in every simulation run.

D. Comparison of the computational efficiency

We evaluate the computational efficiency of falsifying an
ACC system by comparing the forward search with and
without the consideration of unsafe states, backward search,
and MCS with each other. To improve the sampling of
MCS so that it is more uniform over the input space (since
|amin| 6= |amax|), we bias the sampling with a beta distribution
Beta(α = 14, β = 2). All four approaches attempt to find
a collision against the PI-ACC, IDM-ACC, and CA-ACC in
100 simulation runs with an iteration limit of n = 600, where
a run is aborted as soon as a collision node is generated
(the remaining parameters are set as presented in Tab. I
and Tab. II). The results of the comparison are given in
Tab. IV. The standard forward search (without considering
unsafe states) finds 4306 transitions into unsafe states for
the PI-ACC and 76 for the IDM-ACC, but it does not
exploit these situations to generate a collision. As we can
see, the consideration of unsafe states drastically improves

TABLE III: Falsification using the forward search for PI-ACC and IDM-
ACC and the backward search for CA-ACC.

Parameter PI-ACC IDM-ACC CA-ACC

Comp. time 3 min 2 min 16 min

tunsafe 53.1 s 53.2 s 5.3 s

aacc(t0) 0.0 m/s2 0.0 m/s2 −5.2 m/s2

alead(t0) 0.0 m/s2 0.0 m/s2 −2.1 m/s2

vacc(t0) 0.0 m/s 9.3 m/s 42.9 m/s

vlead(t0) 0.0 m/s 19.5 m/s 18.9 m/s

∆s(t0) 5.0 m 8.0 m 237.9 m

ssafe(t0) 0.0 m 0.0 m 100.0 m

aacc(tcol) −7.4 m/s2 −1.0 m/s2 −8.0 m/s2

alead(tcol) 0.0 m/s2 0.0 m/s2 0.0 m/s2

vacc(tcol) 4.7 m/s 1.4 m/s 2.7 m/s

vlead(tcol) 0.0 m/s 0.0 m/s 0.0 m/s

ssafe(tcol) 1.4 m 0.5 m 0.4 m
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Fig. 6: The forward search finds a trajectory for the leading vehicle so that the PI-ACC causes a collision (CommonRoad ID: S=ZAM ACC-1 1 T-1:2018b).
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Fig. 7: The forward search finds a trajectory for the leading vehicle so that the IDM-ACC causes a collision (CommonRoad ID: S=ZAM ACC-1 2 T-
1:2018b).
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Fig. 8: The backward search finds a trajectory for the leading vehicle, which is executed forward in time, so that the CA-ACC causes a collision
(CommonRoad ID: S=ZAM ACC-1 3 T-1:2018b).

the efficiency. The advantages of the forward search are its
simple setup and large variance of the generated counter-
examples. The advantage of the backward search is that it can
falsify more ACC systems as compared to the other methods.

V. CONCLUSIONS

This paper presents two novel approaches to efficiently
falsify the safety of adaptive cruise control systems. By
integrating unsafe states in the standard forward search
approach, we already achieve an improvement in the required
computation time of up to 8 times. With this approach,
however, we were not able to falsify all ACC systems in
a reasonable time period. In contrast, our backward search
approach is able to falsify even the sophisticated ACC system
with collision avoidance in every test run. By starting the
search from a set of unsafe states, our backward search
algorithm is able to find counter-examples 300 times faster
than standard approaches.

Our proposed methods allow developers to detect safety
flaws in their system at early stages of the development with
minimal effort. While the forward search can be used to
generate diverse traffic scenarios, the backward search aims
to quickly find an unsafe solution. In the future, we would
like to add stress testing of the string stability and extend our
method to falsify planning systems that combine longitudinal
and lateral motions.
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TABLE IV: Comparison of the standard forward search without considering
unsafe states (S-FS), our proposed forward search with considering unsafe
states (FS), our proposed backward search (BS), and Monte Carlo simulation
(MCS) in 100 simulation runs with an iteration limit of n = 600.

Results for PI-ACC S-FS FS BS MCS

Number of obtained collisions 0 94 100 1

Avg. number of iterations 600.00 81.14 1.08 594.15

Avg. computation time 84.80 s 10.78 s 0.30 s 17.82 s

Results for IDM-ACC S-FS FS BS MCS

Number of obtained collisions 0 13 100 11

Avg. number of iterations 600.00 553.58 1.00 545.51

Avg. computation time 82.88 s 73.77 s 0.45 s 16.25 s

Results for CA-ACC S-FS FS BS MCS

Number of obtained collisions 0 0 100 0

Avg. number of iterations 600.00 600.00 1.08 600.00

Avg. computation time 84.70 s 81.62 s 0.29 s 8.83 s
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5 Conclusions and Future Work

5.1 Conclusions

Novel solutions for safety problems in driver assistance systems and autonomous vehicles
have been presented. Our developed set-based prediction is guaranteed to always capture all
acceptable behaviors of other traffic participants. Since users can specify which behaviors are
considered acceptable, our prediction is useful for various applications. In particular, the pre-
diction can be used for safety verification and can be easily integrated as an additional module
in existing motion planning frameworks. Thus, our results enable safe motion planning and
facilitate official approval and homologation of autonomous vehicles.

Summary Let us briefly summarize each chapter of this cumulative dissertation, in which we
made use of various methods, such as reachability analysis, set invariance theory, formalization
of legal text, optimization, and search.

Chapter 1 motivated the need for solving safety problems in motion planning of autonomous
vehicles. After discussing related literature and requirements for the prediction of other traffic
participants, we highlighted the contributions of this dissertation. Chapter 2 formalized the
main problem statements of this dissertation: prediction, motion planning, and falsification.
Subsequently, reachability analysis and our environment model were introduced briefly.

Chapter 3 presented three peer-reviewed publications describing the set-based prediction
of other traffic participants. This prediction is designed to compute all acceptable behaviors
according to a legal specification based on traffic rules. Our nondeterministic models and
assumptions were formally defined so that the prediction result always complies with the
safety specification. In addition, we are able to consider traffic participants hidden due to oc-
clusions and interactions between detected traffic participants. Our constraint management
also handles traffic participants violating traffic rules. Extensive numerical and real-world ex-
periments demonstrated the applicability of our prediction. These experiments also validated
our models of other traffic participants and of the environment.

Chapter 4 presented four peer-reviewed publications describing approaches for safe motion
planning. Risk assessment, trajectory planning, and decision making were examined for
safety flaws, which were then holistically resolved. Above all, a safety layer was developed
in Section 4.2 that prevents autonomous vehicles from causing accidents, even in situations
that have not been tested before. Various numerical experiments on CommonRoad traffic
scenarios, some based on recorded traffic, demonstrated the achieved safety benefits.

Related work Other researchers proposed approaches similar to our set-based prediction
during or after the publications of this dissertation have been published. In [47–49], reachable
sets of pedestrians are computed, similar to the dynamic-based motion model of Section 3.2,
and used to generate synthetic trajectories for surrounding pedestrians and to obtain optimal
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motion plans for the ego vehicle. In [50], occupancies of pedestrians are computed and are
overlaid by a probability distribution. The same authors present a draft on extending their
approach to vehicles in [51].

For the benefit of the scientific community, we released our tool SPOT in 2017, which
computes the future occupancies of other traffic participants (cf. Section 1.4.2). Until now,
several works [52–57] have already used SPOT, e. g., by building upon its theory or for their
experiments. In [52], an anytime safety verification is proposed that uses SPOT for prediction
and only computes the motion models of SPOT required for a successfully verification. In
[53–55], fail-safe trajectories are computed that are collision-free against the predicted result
of SPOT. In [56], SPOT has been extended to consider occluded vehicles with right of way.
This extended version is used in [57] to obtain safe trajectories for the ego vehicle.

Most safety approaches can only consider a finite time horizon, such as the risk assessment
of Section 4.1. In practice, this is often not regarded as an issue due to long planning horizons
and high replanning rates. However, the ego vehicle could easily enter a state that inevitable
ends in a collision. To remain collision-free for an infinite time horizon, trajectories must end
in an state that is safe forever. Such states are denoted as invariably safe states. Based on
the prediction of Chapter 3 and the safety concepts of Section 4.3, invariably safe states can
be determined as described in the derivative work [54].

Safety first When will autonomous vehicles be safe enough to be employed on the road?
This question has been discussed for a long time [28]. In the past, many approaches have
focused on increasing the performance of autonomous vehicles, while not focusing on formally
ensuring safety and postponing the improvement of safety until after deployment. In fact,
it is often believed that when rigorously accounting for safety, the ego vehicle behaves too
conservatively. However, we are convinced that safety can and needs to be ensured. If safety is
not properly taken care of, the ego vehicle may ignorantly take high risks that could endanger
the lives of passengers and other traffic participants. Thus, approaches as presented in this
dissertation should be used and further enhanced to quantify risks and to knowingly reduce it.
Putting safety first would also simplify achieving legal certifications and strengthen societal
trust in autonomous vehicles. The results of Section 4.2 even indicate that nonconservative
driving behavior can still be achieved despite rigorously ensuring safety. In addition, if every
traffic participant adheres to legal safety, which most traffic participants do, no collisions will
occur at all.

Overall, the contributions of this dissertation seem to be feasible for realization in industrial
applications. Our developed approaches mostly focus on nominal safety, in particular on the
safety of the intended functionality (SOTIF) according to ISO 21448. Other aspects, such as
hardware failures for ensuring functional safety, need to be considered according to ISO 26262,
for example. In addition, an industrial standard specifying the motion safety of autonomous
vehicles does not yet exist [14]. If legal authorities recognize our concept of legal safety as
a standard, the presented approaches of this dissertation can be certified for usage in series
production of autonomous vehicles.
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5.2 Future work

Future work for each section of Chapters 3 and 4 is discussed within each included publica-
tion. Here, we highlight important aspects that might be worth improving in the set-based
prediction:

• To consider priorities at intersections as additional traffic rules in the prediction, these
priorities must be provided by the environment model. Then, another module or an
additional part of the set-based prediction can determine which traffic participants have
to yield and are not allowed to proceed before others have passed. The difficulty lies in
the question until when a traffic participant obligated to yield is still allowed to proceed.

• The interaction between traffic participants has been included in the set-based predic-
tion in Section 3.3. However, we have not yet investigated the interaction between
hidden and detected traffic participants. While actual traffic participants can move
through artificially created ones (which we introduced as phantoms objects), the oppo-
site is not true. This makes it possible to reduce the over-approximation in some cases,
e. g., at roundabouts. In addition, when observing the boundaries of the field of view
for multiple time steps, we can conclude that some states are not possible for hidden
traffic participants and thus, we can create the phantom objects with a smaller initial
set of states.

• The maximum admissible velocity for vehicles is restricted by the curvature of the road
due to reaching maximum tire forces. This critical velocity can be computed for a given
path based on [58]. In the prediction, however, it is difficult to consider this velocity
as a limit while remaining over-approximative due to infinitely many possible paths
through the road network. Yet, an stricter velocity constraint can significantly reduce
the over-approximation of the prediction, especially in tight curves or when turning.

• The lateral acceleration for vehicles is currently limited only by the maximum absolute
acceleration and thus is equal to the maximum braking acceleration. If stricter limits are
desired, e. g., from [59], we suggest to use an addition model that constrains the lateral
velocity and acceleration and remains over-approximative in longitudinal direction.

• The parameter values for the motion models need to be chosen carefully and in accor-
dance with the desired safety specification. We proposed conservative default values,
e. g., based on empirical studies or traffic rules. Yet, especially the acceleration and ve-
locity limits for pedestrians are difficult to argue for. Physiological experiments revealed
that peak values are much higher than mean values [60]. Thus, if the time step size
of the prediction is large enough, the mean values can be used as stricter acceleration
limits.

• When using the set-based prediction solely for online verification of given trajectories
(and not to extract constraints for motion planning, such as in Section 4.2), the perfor-
mance of the prediction can be further optimized. As described by [52], we can reuse
previous prediction results as long as the verification remains successful, and we can
perform reachability analysis only for selected models until the verification is success-
ful. Both techniques increase the over-approximation of the prediction but reduce the
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computational cost. In future work, we can select only those traffic participants that
are relevant for the ego vehicle, and we can group traffic participants close to each other
into a single object, e. g., a group of pedestrians.

• Besides the applications of the set-based prediction in risk assessment, trajectory plan-
ning, and decision making, our developed motion models might also be useful in other
applications, e. g., in the state estimation for object tracking.
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