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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Christian Mendl
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Abstract

As one of the most powerful tools in the machine learning community, deep learning
methods have demonstrated record-breaking success in previously challenging tasks
such as computer vision, natural language processing, speech recognition, and social
multimedia retrieval.

Different from other traditional machine learning algorithms relaying on a hand-
crafted way by well-experienced researchers, deep learning is capable of mimicking
the workings of the human brain in automatically processing data and extracting
features for use in decision making. Recently, considering the enormous amounts of
data containing valuable knowledge for clinical diagnosis and treatment are generated,
medical experts have become fatigued to make interpretations and have begun to
benefit from deep learning-based computer-assisted interventions. Essentially, deep
learning allows the radiologists for less labor-intensive intervention and mines the
informative representations from sparse and noisy data in a self-taught approach only
requiring little effort on data preprocessing. The applications make it possible for
non-experts to utilize deep learning for specific clinical-relevant studies, especially in
medical image analysis. Compared with the unprecedented success of deep learning in
general image analysis, the improvement of medical image analysis is still in the early
stage due to the complexity of medical imaging. There are some domains, including
the diversity of network architectures, training strategy, network interpretability, etc.,
which should be further explored and designed according to specific clinic tasks.

This thesis aims to develop effective and novel deep learning based algorithms
to resolve lesion segmentation, disease prognostic analysis issues, and medical im-
age synthesis, such as brain glioma multi-class segmentation, natural killer/T cell
lymphoma multi-stage segmentation, prognostic analysis of natural killer/T cell
lymphoma, and MR image enhancement. More specifically, (1). To incorporate the
nesting topological priors among whole tumor, tumor core, and active tumor, we
present a multi-level activation function embedded in 3D residual U-Net architecture
for hierarchical multi-class segmentation. (2). Considering that Extranodal natural
killer/T cell lymphoma (ENKL) segmentation is crucial for clinical decision support
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and treatment planning, we propose an automatic and coarse-to-fine approach for
ENKL segmentation using adversarial networks. (3). Due to a low-survival rate
and difficult prognostic prediction of ENKL disease, we develop a weakly supervised
deep learning (WSDL) method that could utilize incomplete/missing survival data
to predict the prognosis of extranodal natural killer/T cell lymphoma. We build a
positive–negative unlabeled (PNU) classifier to generate implicit labels for incomplete
survival data and then retrain deep convolutional neural networks with labeled and
unlabeled data to obtain the final prognosis. 4). To remove common distortions
(e.g., artifacts, blur, and noise) of degraded MRI via learning the symmetry and
self-similarity relationship of patch-based features in multi-modal brain MR images
where the structure of the brain is normally symmetry, we designed a specialized
Graph-based structure to merge the high-similarity information of sub-regions by
updating larger weights to the more important and similar nodes or features in a
graph attention fashion.
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Zusammenfassung

Als eine der leistungsstärksten Methoden des maschinellen Lernens hat Deep Learning
hervorragende Resultate in anspruchsvollen Gebieten wie Computer Vision, Natural
Language Processing, Spracherkennung und Social Multimedia Retrieval erzielt.

Anders als konventionelle Ansätze des maschinellen Lernens, die auf manuelle
Weise von erfahrenen Wissenschaftlern erstellt wurden, ist Deep Learning dazu fähig,
die Arbeitsweise des menschlichen Gehirns nachzuahmen und so automatisch Daten
zu verarbeiten und charakteristische Merkmale zu extrahieren. In Anbetracht der
enormen Menge an wertvollen Daten, die bei einer klinischen Diagnose und Behandlung
erstellt werden, haben medizinische Experten damit begonnen, die Vorteile von Deep
Learning angewandt auf medizinische Problemstellungen zu nutzen. Dies ermöglicht
Radiologen weniger arbeitsintensive Untersuchungen und benötigt nur wenig Aufwand
in der Vorbereitung der Daten, um informative Repräsentationen aus lückenhaften
und ungenauen Daten eigenständig zu erlernen. Die Anwendungen ermöglichen
es auch Nicht-Experten, Deep Learning für spezifische klinisch relevante Studien,
besonders im Bereich der medizinischen Bildverarbeitung, zu nutzen. Verglichen
mit dem Erfolg von Deep Learning in der allgemeinen Bildverarbeitung sind die
Fortschritte auf dem Gebiet der medizinischen Bildverarbeitung noch immer in
einem Frühstadium aufgrund der Komplexität medizinischer Bildgebung. Teilbereiche
wie beispielsweise die Architektur des Netzwerks, die Trainingsstrategie oder die
Interpretierbarkeit des Netzwerks sollten dabei weiter untersucht und entsprechend
für klinische Anwendungen angepasst werden.

Diese Arbeit beschäftigt sich damit, effektive neue Algorithmen basierend auf
Deep Learning zur Anwendung in Läsionssegmentierung, prognostischer Krankheits-
analyse und medizinischer Bildsynthese zu entwickeln. Insbesondere handelt es sich
dabei um Multiklassen-Segmentierung von Gehirn Gliomen, mehrstufige Segmentie-
rung von Natürlichen Killer-T-Zell-Lymphomen, prognostische Analyse Natürlicher
Killer-T-Zell-Lymphome und MRT Bildverbesserung. Spezifischer beschäftigt sich
diese Arbeit mit (1). Um jeweils den topologischen Prior des ganzen Tumors, des
Tumorkerns und des aktiven Tumors miteinzubinden, stellen wir eine mehrstufige
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Aktivierungsfunktion integriert in eine 3D Residual U-Net Architektur für hierarchi-
sche Multiklassen-Segmentierung. (2). In Anbetracht dessen, wie entscheidend die
Segmentierung der extranodalen Natürliche Killer-T-Zell-Lymphome (ENKL) für die
klinische Entscheidungsunterstützung und Behandlungsplanung ist, stellen wir einen
automatischen coarse-to-fine Ansatz für ENKL Segmentierung mittels adversarialen
Netzwerken vor. (3). Aufgrund der niedrigen Überlebensrate und schwieriger Prognose
der ENKL Erkrankung haben wir eine Weakly Supervised Deep Learning (WSDL) Me-
thode entwickelt, die unvollständige oder fehlende Überlebensdaten verwenden könnte,
um Prognosen für ENKL zu erstellen. Wir verwenden einen Positiv-Negativ Unla-
beled (PNU) Klassifikator, um implizite Labels für unvollständige Überlebensdaten
zu generieren. Mit diesen trainieren wir erneut Deep Convolutional Neural Networks
mit vollständigen und unvollständigen Daten, um die finale Prognose zu erhalten.
(4). Um häufige Störungen wie Artefakte, Unschärfe und Rauschen aus fehlerhaften
MRT-Scans zu entfernen, nutzen wir die symmetrische und selbstsymmetrische Bezie-
hung von Regions-Merkmalen aus MRT-Scans des Gehirns, in dem normalerweise
eine symmetrische Struktur vorliegt. Dafür haben wir eine spezielle graph-basierte
Struktur entworfen, die, im Stile von Graph Attention, Informationen von Regionen
mit hoher Ähnlichkeit zusammenführt, mit höherer Gewichtung für wichtigere und
ähnlichere Knoten und Merkmale.
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Introduction

Recently, a great explosion of medical image data attracts significant attention from
the data-driven research community but also brought massive burdens for radiologists
to make clinical-relevant interpretations. These medical imaging techniques such
as computed tomography (CT), positron emission tomography (PET), magnetic
resonance imaging (MRI), and X-ray are widely used into the stage of detection,
diagnosis, treatment and prognostic analysis [1]. Considering the labor-intensive
character of radiologists and the huge cost to train medical experts, it is a great
challenge to analyze all collected data within limited time in a human intervention way.
There exist urgent demands and strong desires for computer-assisted intervention
technique which can alleviate the workload of medical experts and give an efficient
and personalized diagnosis or treatment. Although the development progress in
computational medical image analysis is not satisfactory, the appearance of machine
learning techniques has greatly changed this situation. It mainly attributes to the fact
that machine learning can learn and capture the informative features that represent
the regularities or patterns of data and play a key role in different tasks of medical
image analysis. However, the features extraction was implemented by medical experts
on the basis of task-relative knowledge which was a difficult barrier for non-experts
to explore machine learning algorithms for their own researches [2].

As a most recent technique of machine learning, deep learning [3] improves the
feature extraction stage to an advanced learning stage from data. Specifically, it
can automatically extract and discover informative features from source data and
largely minimize human intervention only requiring minor preprocessing [4], which
is different from the previous features extraction in a handcrafted manner based on
domain-specific knowledge. The self-learning manner of deep learning requires massive
computational resources which are available nowadays due to the fast development
of computing power (i.e., (high-tech central processing units (CPUs) and graphics
processing units (GPUs) ). The generation of a huge amount of medical data also
boosts the performance of deep learning to an unprecedented level on different tasks of
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1. Introduction

medical image analysis [5, 6, 7, 8, 9]. Recently, reference [10] presents a deep learning
system based on a large representative dataset from the UK and USA and shows this
system is capable of outperforming human experts and decreasing absolute errors
of 5.7% and 1.2% in false positives and 9.4% and 2.7% in false negatives in breast
cancer diagnosis. Besides, a study [11] reported that the proposed deep learning
algorithm can achieve comparable or superior performance than radiologists using
6,716 National Lung Cancer Screening Trial cases to predict the risk of lung cancer.

Since the data type of medical image accounts for more than 90% medical data [12],
the medical image analysis plays an irreplaceable role in relevant clinical stages, such
as diagnosis, treating plan, and prognostic prediction. Although recent researches
have achieved some progress in these aspects, there are still some major challenges
and bottlenecks that we should overcome. Firstly, considering the various geometry
or clinical characters of different diseases, a tailored deep learning network embedding
these specific disease priors should be considered and constructed in priority. Secondly,
for label-scarcity diseases, an efficient semi-supervised or unsupervised system should
be developed to well exploit unlabeled data for performance improvement. Thirdly,
considering the lack of sufficient interpretability for decision making in deep learning
models, the networks investigating the interpretability and uncertainty in clinical
practice should be further analyzed to boost the widespread acceptance of model’s
decision. In our thesis, we aim to leverage state-of-the-art techniques to resolve all
the above bottlenecks and challenges, especially in segmentation tasks and prognostic
analysis.
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1.1. Medical Image Segmentation

1.1 Medical Image Segmentation

Since segmentation results provide the vital priors of the disease, such as lesion
location and the lesion volume size, we regard the segmentation as the foundation
of quantitative image analysis. However, manual segmentation is a tedious, time-
consuming, and labor-intensive task and requires knowledge from bio-medical experts.
There exists a great need for a fast and robust automated segmentation algorithm.
The technology can benefit plenty of downstream tasks (e.g., lesion quantification,
disease diagnosis, treatment planning, surgery monitoring, and navigation [13, 14, 15,
16, 17, 18, 19]). Specifically, after lesion quantification by segmentation, the diseases
are evaluated and cataloged into different stages based on the lesion-quantification
knowledge and other diagnoses information. For each stage, there exists a corre-
sponding suitable treatment planning. Furthermore, the data fusion based on the
lesion priors from segmentation and others (e.g. patients’ age, surgery performance,
recovery after surgery) is used to predicate the survival time and the risk of the
disease recurrence. Although there are some successful applications in medical image
segmentation, it is still a challenging task after considering the following causes:

• Low contrast characteristic: Low contrast medical images are more difficult to
segment the boundaries of lesion or anatomical structural in comparison with
high-contrast natural images.

• Noise: Random noise generated in the scanning process by motion disturbs the
uniformity of pixel-based intensity.

• Imbalance problem: Imbalance samples between foreground and background
lead to the ignorance of small lesions.

• Lack of label data: Label scarcity is a tough challenge for data-driven algo-
rithms to learn segmentation knowledge due to the costly and time-consuming
annotations by radiologists.

• Shape variability: Shape variability of different lesions or organs varies largely,
which impeding the proposal of unified neural architecture for multiply segmen-
tation tasks.

• Annotation Uncertainty: The annotations implemented by different radiologists
are not identical and this uncertainty characteristic weakens the interpretability
of neural network architecture and deteriorate the overall performance.
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1. Introduction

Recently, some studies including rule-based [20, 13, 21, 22], atlas based [23],
machine-learning based [24, 25, 26, 27] and deep-learning based segmentation al-
gorithms [28, 29] have proposed to tackle above problems. As a dominant area of
deep-learning based methods, convolutional neural network (CNN) and their variants
[28, 30, 31, 32] have been verified to be extremely effective for informative feature
extractions used in a variety of semantic segmentation tasks [29]. Another universal
architecture are encoder-decoder framework mainly consisting of down-sampling path,
up-sampling path, and skip connections, such as 2D U-net [33], 3D U-net [34, 35],
and their variants [36, 37, 38, 39]. This network consists of a contracting path to
capture context and a symmetric expanding path that enables precise localization for
segmentation. Although all these CNN methods have achieved promising results, they
suffer from the limitation of insufficiently learning both local and global contextual
information between pixels. Therefore, models such as the conditional Random Fields
(CRFs) are implemented to embed the spatial contiguity in the output maps [40].
Some generative Adversarial Networks (GANs) [41, 42] incorporating a multi-scale
L1 loss function are proposed to force the network to learn both global and local
features, for capturing long- and short-range spatial relationships between pixels.

1.2 Medical Image Diagnosis

Medical imaging is crucial in diagnosing the various types of diseases among patients
across the healthcare system [43]. The medical images including MRI, CT, Ultrasound,
and X-Rays are used for disease diagnosis implemented by radiologists in a manual
manner. But diagnostic errors occur when radiologists are not well-trained or limited
by their time or attentions caused by numerous patients. Thus, some researchers aims
to explore computer-aided diagnosis to assist the radiologists in disease diagnosis [44,
45, 46]. Considering the limitation of machine learning in features extraction which
requiring well-skilled or well-experienced knowledge for clinicians, a deep learning
diagnosis system attracts a lot of attention due to its capability in automatic feature
selection. Specifically, deep neural networks can automatically learn informative
knowledge without human interventions from medical image data. Deep learning
has proven to be advantageous for computer-aided diagnosis in medical imaging,
such as for the differential diagnosis of coronavirus disease 2019 [47], skin cancer
[48], and diabetic retinopathy [49]. Moreover, it has been developed to help identify
imaging-based biomarkers, leading to an improvement in the prognosis of, for example,
lung cancer [50, 51], gliomas [52], and nasopharynx cancer [53].

Although the development of deep learning in diagnosis or prognostic analysis
depends on the availability of a huge amount of data, it is usually challenging to

4



1.3. Medical Image Synthesis

gather a large cohort of patients with survival follow-up after administering the same
therapeutic regime. Clinical trials are often associated with incomplete or missing
follow-up due to factors such as insufficient follow-up time, patient tolerance, and
compliance. This consequently hampers the extensive development of deep learning
methods for predicting therapeutic prognosis. Maximizing the utility of data gathered
by clinical trials is thus a key area of research, which should be explored and resolved
to further improve the diagnosis or prognosis results.

1.3 Medical Image Synthesis

Medical images have been widely used in clinics to provide visual representations
for disease diagnosis, treating plan, and prognostic analysis. But it is an inevitable
dilemma to achieve a balance between image resolution, signal-to-noise ratio, and
acquisition time [54]. For magnetic resonance imaging (MRI) sequences, higher
resolution imaging grasps more structural details and provides more diagnostic
information, but requires longer acquisition time [55]. Since the signal-to-noise ratio
is proportional to the slice thickness and the square root of scanning time, the longer
acquisition time leads to the performance drop of the signal-to-noise ratio and tends
to generate artifacts caused by physiologic motion such as respiratory motion and
physical movement of subjects. Considering the limited and costly MRI resource,
some thick slices and low scan time MRI images are usually utilized to get a desired
signal-to-noise ratio [56, 57, 58]. Consequently, the use of image synthesis techniques
to enhance medical image quality is an established field of research in medical image
computing and imaging physics [59], for example, to prevent blurring and information
loss when co-aligning different image volumes in a multi-parametric sequence. Besides,
due to modality corruption, incorrect machine settings, allergies to specific contrast
agents, and limited available time, it is often not guaranteed to obtain complete set of
MRI sequences to provide rich information for clinical diagnosis and therapy. In this
regard, development of cross-modality or cross-protocol MRI synthesis techniques is
important to homogenize and ”repair” such real-world data collections via efficient
data infilling and re-synthesis, and make them accessible for algorithms that require
complete data sets as input.

Recently, convolutional neural network (CNN) based approaches have shown
dramatic improvements and exhibited state-of-the-art performance in image synthesis.
For image enhancement, some studies [60, 61, 62] uses CNN to learn the mapping
between low-resolution and high-resolution images. But considering the recovering
more satisfactory level of image realism, generative Adversarial Networks (GANs) [63]
and its variants [64, 65, 66, 67, 68, 69, 70, 71, 72] are proposed to rehabilitate more
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1. Introduction

faithful images. GANs consist a generator network to generate synthesized images and
a discriminator network to discriminate the real or synthesized images. The generator
and discriminator are alternately trained by back propagation in an adversarial fashion
in a min-max game. GANs are extensively used in 7T MRI synthesis from 3T MRI
images [73], PET-CT translation [74], and MRI cross-modalities re-synthesis [75, 76].
But some networks fail to exploit global structural information and self-similarity
details of medical images and are effective for only specific tasks.

1.4 Summary of Contributions

This thesis aims to explore some challenging issues and advanced networks in the tasks
of lesion segmentation, disease diagnosis, and medical image synthesis. Specifically,
we focus on the two segmentation subtasks (i.e., the multi-class segmentation of
glioma and the segmentation of Extranodal natural killer/T cell lymphoma, nasal
type (ENKTL), prognostic diagnosis of ENKTL using the incomplete follow-up data,
and MRI enhancement based on graph neural network using self-similarity features
between nodes.

Chapter 3: Hierarchical Multi-class Segmentation of Glioma
Images Using Networks with Multi-level Activation Function

For many segmentation tasks, especially for the biomedical image, the topological prior
is crucial information that is useful to exploit. As the most common family of brain
tumors, Glioma forms some of the highest mortality and economically costly diseases
of brain cancer [77, 78, 79]. The containment/nesting is a typical inter-class geometric
relationship in MICCAI brain tumor (glioma) segmentation challenge with its three
hierarchically nested classes ‘whole tumor’, ‘tumor core’, ‘active tumor’. While CNN
segmentation algorithms are abundant in biomedical imaging, only very few make use
of nested-topological prior information. Among the few that do [80, 81, 16, 82, 83, 84,
85], we find three different approaches. First, the use of cascaded algorithms where
the network consists of successive segmentation networks. Second, the information
on the nested-classes is incorporated into the loss function, imposing penalties on
solutions that do not respect the nested geometry relations. Third, Markov random
fields are used to formalizing class relationships in the post-processing of the network
output.

Here, we make use of a new activation function [86] that is directly implementing
class hierarchy in the network training and generalize it to 3 nested classes. For the
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1.4. Summary of Contributions

glioma labels, we assume that active tumor regions are always contained in the tumor
core which is surrounded by the tumor edema, resulting in a hierarchical three-class
model. In sharp contrast with nested-class method, the softmax-based method of
multi-class ignores the geometric prior between different classes, and assumes the
classes are mutually exclusive, meaning one pixel cannot belong to different classes at
the same time, which absolutely discards the topological information and sometimes
leads the unreasonable segmentation results. The nested classes relationship is
introduced into the 3D-residual-Unet architecture [87]. The network comprises a
context aggregation pathway and a localization pathway, which encodes increasingly
abstract representation of the input as going deeper into the network, and then
recombines these representations with shallower features to precisely localize the
interest domain via a localization path.

The model is trained on the training dataset of Brats2018 [14, 88, 89], and 20%
of the dataset is regarded as the validation dataset to determine parameters. When
the parameters are fixed, we retrain the model on the whole training dataset. The
performance achieved on the validation leaderboard is 86%, 77% and 72% Dice scores
for the whole tumor, enhancing tumor and tumor core classes without relying on
ensembles or complicated post-processing steps. Based on the same start-of-the-art
network architecture, the accuracy of nested-class (enhancing tumor) is reasonably
improved from 69% to 72% compared with the traditional Softmax-based method
which blind to topological prior. The comparison of Dice score criteria indicates
the nested-class method achieves higher accuracy than the softmax-based method,
especially for the internal-classes.

Chapter 4: Coarse-to-Fine Adversarial Networks and
Zone-Based Uncertainty Analysis for NK/T-Cell Lymphoma
Segmentation in CT/PET Images

Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is a kind of rare
disease with a low survival rate that primarily affects Asian and South American
populations. ENKTL occurs predominantly in the nasal, paranasal and oropharyngeal
sites. 18F-FDG PET/CT scanning is currently the most effective imaging modality for
staging, monitoring response, and predicting prognosis for many kinds of lymphomas
[90]. Several investigations identified that almost all ENKTL are FDG avid [91,
92]. The segmentation difficulties in the ENKTL dataset mainly stem from three
aspects: 1) The large variations in the shape, size and location of the lymphoma. 2)
Due to the large image sizes, network suffers from memory size, complicating image
processing approaches that take the whole volume as input. 3) The images coming
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1. Introduction

from PET and CT are not identical in their sizes. Consequently, this complicates the
straightforward usage of information from two modalities for boosting segmentation
accuracy

For pixel-wise semantic segmentation, CNNs have also achieved remarkable suc-
cesses. Different models, such as fully convolutional network (FCN) [28], encoder-
decoder structure [34], conditional random fields [40], U-Net [33], cascade architectures
[93], and 3D CNN [94], were proposed to segment pixel-level or voxel-level instances.
Recently, Xue et al. [41] employed a GAN-based network which combined with
multi-scale loss function to learn global and local features. However, it requires more
computational cost and memory for the network, when the image size gets too large.
Additionally, there is the problem of label and class imbalance, which deteriorates
the segmentation results. To mitigate these problems, we propose the coarse-to-fine
adversarial network for ENKTL segmentation, which achieves high segmentation
accuracy by locating lesion zones, while cropping unnecessary information reduces
computational cost.

To the best of our knowledge, this paper is one of the first deep learning studies
on computer-aided diagnosis systems for an ENKTL dataset. The coarse stage acts
as a dimensionality reduction to roughly locate the lesion bounding box and crops
redundant information to facilitate the fine segmentation, which is crucial to reduce
segmentation time and avoid memory problems. The fine segmentation is an end-to-
end adversarial network with a generator and a discriminator part. Spatial context
information and hierarchical features are exploited by introducing a multi-scale L1
loss function in both the generator and discriminator parts without further smoothing
of predicted label maps using CRFs. Further, we present an exploration of zone-based
uncertainty estimates based on Monte Carlo (MC) dropout [95, 96, 97] in the context
of deep networks for medical image segmentation. This uncertainty analysis can give
a clear understanding of the main source of uncertainty in the respective zones and
is crucial for a quantitative evaluation of an algorithm’s stability. It also makes it
possible to permit subsequent optimization by engineers and revision by clinicians.

Chapter 5: Weakly supervised deep learning for determining
the prognostic value of 18F-FDG PET/CT in extranodal
natural killer/T cell lymphoma, nasal type

Extranodal natural killer/T cell lymphoma, nasal type (ENKTL) is a rare type
of lymphoma with poor survival outcome [98, 99, 98]. It constitutes ≤1% of all
lymphomas in Western countries and 3–9% of all malignant lymphomas in Asia
[100]. Several investigations have identified that almost all ENKTL lesions are
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1.4. Summary of Contributions

fluorodeoxyglucose (FDG) avid [91]. In patients with ENKTL, the use of 18F-FDG
positron emission tomography/computed tomography (PET/ CT) for staging is
widespread [101, 102]. Nevertheless, many contradictions exist pertaining to the value
of 18F-FDG PET/CT in predicting the prognosis of ENKTL [103, 104].

Some studies [105, 106] have reported that maximum standardized uptake value
(SUVmax) of pretreatment 18F-FDG PET/CT is not a statistically significant predic-
tor of overall survival and progression-free surviva (PFS). Tumor 18F-FDG uptake
cannot reflect the aggressive biologic behavior of ENKTL; however, some studies have
reported contradictory results [107]. These studies found that high tumor 18F-FDG
uptake was closely associated with unfavorable treatment and survival outcomes.
Chang et al. [108] reported that baseline wholebody total lesion glycolysis (TLG)
was a good predictor of PFS and overall survival in patients with ENKTL. However,
treatment plans were not uniform in these studies, potentially affecting the treat-
ment outcome and predictive value of pretreatment 18F-FDG PET/CT. Prospective
research methods have also been used to assess the prognostic value of 18F-FDG
PET/CT in ENKTL [109], but considering some uncertainty in the reported results, it
remains unclear. A novel solution is accordingly needed. Although deep learning has
been advantageous in assisting molecular imaging to optimize therapeutic prognosis
[53], it is extremely difficult to develop appropriate deep learning methods for this
rare condition with only a limited number of cases.

We herein propose a weakly supervised deep learning (WSDL) method based
on positive–negative unlabeled (PNU) classification [110] to maximize the utility of
incomplete and missing follow-up data so as to predict the prognosis of ENKTL. We
investigated the accuracy and robustness of this data enhancement strategy on a
retrospective cohort to test a therapeutic regime for ENKTL. The algorithm for the
WSDL method is summarized as follows:

• Train deep convolutional neural networks (DCNNs) with labeled data to obtain
the baseline model.

• Use baseline DCNNs to extract features from labeled and unlabeled data.

• Build the PNU classifier to generate implicit labels for unlabeled data.

• Re-train DCNNs with labeled and unlabeled data to obtain the final prognosis.
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Chapter 6: Feedback Graph Attention Convolutional
Network for MR Images Enhancement by Exploring
Self-Similarity Features

Artifacts, blur, and noise are the common distortions degrading MRI images during
the acquisition process, and deep neural networks have been demonstrated to help in
improving image quality. Besides, graph Neural Networks (GNNs) [111] have also
shown their powerful ability to exploit structural information dealing with data of
graph structure. The notation of GNNs was firstly introduced, and then further
elaborated as a generalization of recursive neural networks, which is widely used
to explore the structural characters in various applications, including chemistry,
recommender systems, and social network study to deal with challenge tasks, e.g.,
finding the chemical compounds that are most similar to a query compound, tackling
the graph similarity computation for query systems [112].

Nowadays, it is an interesting trend to combine GNN and CNN to develop their
corresponding advantages [113]. GNNs help with reducing the data dimensionality
from image features extracted by CNN to high-level and compact features in graph
nodes. FCNs are limited in the receptive field. Adding GNNs could increase the
receptive field of networks when dealing with large images. The combination of CCN
and GNN is a convolutional graph neural network that generalizes the operation
of convolution from grid data to graph data. It plays a central role in building
up many complex GNN models [114]. Motivated by the idea that to learn the
symmetry and self-similarity relationship of patch-based features in multi-modal
brain MR images where the structure of the brain is normally symmetry, we designed
a specialized Graph-based structure to merge the high-similarity information of
sub-regions by updating larger weights to the more important and similar nodes or
features in a graph attention fashion. Specifically, We propose a Feedback Graph
Attention Convolutional Network (FB-GACN) for MR image enhancement using
a self-similarity learning strategy to update the features of each node in a graph.
Learning the symmetry and similarity relationship of each pair, the content with
same texture (e.g., edges, corners, and lesions) gets sharper and can be used to
remove some artifacts. It recovers more texture details by employing the feedback
mechanism (consecutive iterations) to facilitate low-resolution images to reconstruct
super-resolution images. We demonstrate the performance in two crucial tasks: i)
cross-protocol super resolution of diffusion MRI and ii) MRI artifacts removal. The
proposed network achieves better high-resolution criteria and superior visual quality
compared to state-of-the-art methods.
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1.5. Organization

1.5 Organization

This is a publication-based thesis with the following structure: Chapter 1 introduces
the topics of deep learning, medical image segmentation, prognostic diagnosis, and
medical image synthesis as well as their corresponding challenges, and meanwhile, we
also summarize our motivations and contributions for these tasks. In Chapter 2, We
give a brief and indispensable introduction on relevant terminology or knowledge of
convolutional neural networks and graph neural networks.

Chapter 3 to 6 are composed of four publications [115, 116, 117, 118], which have
been published as peer-reviewed journals or conference proceedings and are therefore
self-contained. Each of these chapters starts with a brief synopsis introducing the main
content of the corresponding publication and a statement of author’s contributions.

Chapter 7 provides discussions and conclusions and suggests some interesting
relevant directions as the outlook. Finally, a complete list of publications that wrote
in the period of this doctoral thesis can be found in Appendix A.
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2

Background

To better follow this thesis, the current chapter introduces some basic concepts and
knowledge of multi-layer perceptron (MLP), convolutional neural network (CNN),
and generative Adversarial Networks (GANs). For a detailed and complete overview
of state-of-the-art network architectures, please refer to these works [3, 29, 119].

Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ⁸ Output Layer ∈ ℝ¹

Figure 2.1: A diagram of typical multi-layer perceptron (MLP) architecture con-
sisting of an input layer, hidden layers, and an output layer.

2.1 Feedforward Neural Network

A feedforward neural network is the simplest artificial neural network wherein con-
nections between the nodes are feedforward without any cycles or loops. Multi-layer
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2. Background

perceptron is a kind of feedforward neural network. As shown in Fig. 2.1, a typical
feedforward neural network or multi-layer perceptron consists of an input layer, some
hidden layers, and an output layer. Each node mimics brain neurons via using a
nonlinear activation function as follows:

f̂(x) = h(wTx + b) (2.1)

where x means input data (e.g., images or vectors), h(·) is an activation function
distinguishing non-linear data. w = (w1, · · · , wn) and b are the weight and the bias
vector of a hidden layer. For most tasks, the commonly existing activation functions
[6] are listed as:
(1) Sigmoid

σ(x) =
1

1 + e−x
(2.2)

(2) Softmax

σ(x) =
exi∑J
j=1 e

xj
(2.3)

(3) Rectified Linear Unit (ReLU)

σ(x) = max(0, x) (2.4)

(4) Leaky ReLU

σ(x) = max(0.01x, x) (2.5)

(5) Tanh

σ(x) =
ex − e−x
ex + e−x

(2.6)

(6) Exponentional Linear Unit (ELU)

σ(x) =

{
x x ≥ 0

α(ex − 1), x < 0
(2.7)

To increase model nonlinear representation ability, more hidden layers can be added
to the feedforward neural network. Then a feedforward neural network with a number
of hidden layers can be expressed as:

f̂(x; Θ) = (fm ◦ · · · ◦ f1)(x)

= hm
(
hm−1

(
· · ·
(
h2
(
h1(wT

1 x + b1
)

+ b2
)

+ bm−1
)

+ bm
) (2.8)

14



2.2. Convolutional Neural Networks

where Θ = {w1, · · · ,wm, b1, · · · , bm} is the training parameter set and updated
by back-propagation gradient descent strategy [120] according to the loss function
representing the error between the prediction and the ground-truth. The loss function
is designed depending on the practical applications, such as mean absolute error,
cross-entropy loss, or dice loss.

2.2 Convolutional Neural Networks

Convolutional neural networks were designed from the inspiration of biological pro-
cesses where the organization connections of the animal visual cortex were similar to
the connectivity pattern between neurons. Each cortical neuron makes a response
for stimulus in a restricted region of the visual field, also named the receptive field.
The receptive field of each neuron is partial overlap and covers the entire visual field.
Considering the vectorization of image data ruined the structural information among
neighboring pixels, the convolutional neural network is proposed to tackle image
structural data, which is the dominant data type in the computer vision community.
There exist some representative neural architectures, ResNet [121], DenseNet [122],
VGGNet [123], and Inception net [124]] for image classification or diagnosis; Fully
convolutional network (FCN) [28], U-Net [33], V-Net [35] and their variants [36, 37]
for image segmentation. As shown in Fig. 2.2 and Fig. 2.3, convolutional neural
network commonly consists of convolutional layer, pooling layer, batch normalization,
and skip connection.

Max-Pool Convolution Max-Pool Dense

8x128x128

8x64x64

24x48x48
24x16x16 1x256

1x128

Figure 2.2: A sample convolutional network architecture mainly consisting of
convolutional layers, pooling layers, and dense layers.
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256 128

128 64

64 32 32
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256128

32

64

1

Figure 2.3: A typical convolutional network architecture for segmentation task:
U-Net. The number above the feature maps means the number of channels.

2.2.1 Convolutional layer

As the core building block of a convolutional neural network, the role of the convo-
lutional layer aims to detect local features at different positions of feature inputs
from the previous layer with learnable kernels K l

i,j. Essentially, the kernels are the
connection weights between feature maps of the current layer and that of the previous
layer. The convolutional process can be expressed as:

Y
(l)
i = h



N(l−1)∑

j=1

K
(l)
i,j ∗ Y (l−1)

j +B
(l)
i


 (2.9)

where Y
(l)
i is the ith feature map at lth layer, Bl

i is a bias matrix, h is a activation
function. To efficiently extract features and decrease the trainable parameters size,
deformable convolution [125], depth-wise separable convolution [126], and dilated
convolution [127] are proposed to improve representation ability.
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2.2. Convolutional Neural Networks

2.2.2 Pooling layer

The pooling layer aims to downsample the feature maps and reduce the training
parameters in the network, but meanwhile increases the receptive field of networks.
Specifically, each small region is pooled by pooling operations to generate a single
number that represents the information of the current small region. The pooling
operations are usually chosen from the max function or the average function. Similarly,
the convolutions with increased stride lengths can also get the same effect of pooling
operation [4].

2.2.3 Batch normalization

Batch normalization is usually located after the activation function to normalize
the feature map by subtracting the mean and dividing by standard deviation. This
process is acted as the regularize of a network to speed up the training stage and
make it less sensitive for parameter initialization [128].

2.2.4 Skip connection

Skip connection is a kind of residual learning to allow gradients to flow through a
network without passing through intermediate operations. The gradient of a network
vanishes when the depth of model increases. The skip connection can alleviate the
gradient vanishment by propagating the gradient through network [121, 122]. Besides,
the skip connection keeps the residual information with higher spatial priors to further
complementing deep latency features.

2.2.5 Loss function

The loss function acts as an objective function role for optimization problems to
supervise the training stage of networks. Thus, the loss functions are designed based
on specific tasks (e.g., classification or segmentation). In the image classification task,
the cross-entropy loss [129] is used to categorize input images into different classes as
follows:

LCE = − 1

N

N∑

i=1

C∑

c=1

δ(yi = c) log(P (yi = c)) (2.10)

where N means the N th data, C is the Cth class, δ(yi = c) is the indicator function
and P (yi = c) is the probability belong to current Cth class.
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c) Ground Truthb) Uncertainty of U-Neta) Uncertainty of GAN

Figure 2.4: Qualitative segmentation uncertainty analysis for (a) generative adver-
sarial networks method and (b) the U-Net, while (c) shows the corresponding ground
truth. The pixel-wise uncertainty is normalized to the interval [0, 255]. Brighter
zones indicate a higher uncertainty character.

For medical image segmentation task, the loss function is based on the dice score
and is defined as [35]:

minLDice =
2
∑N

n=1 pigi + s∑N
n=1 p

2
i +

∑N
n=1 g

2
i + s

(2.11)

where gi and pi represent the ground-truth and predicted probabilistic pixel, respec-
tively. The rest term s ensures stability by avoiding the division by 0. We set s to 1
in our experiments, where the entries of g and p are all zeros.

2.3 Uncertainty Analysis

Dropout is a way of Bayesian approximation. During training, the input channels x
and the corresponding ground truth lesion labels Y are used to learn the weights θ of
the network. To capture the uncertainty character in the model, a prior distribution is
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Discriminator

Fake

Real

 GeneratorInputs

Targets

K-space

GAN Perceptual  

loss

Figure 2.5: A sample of generative adversarial networks consisting of a generator
and a discriminator for brain MRI synthesis.

placed over θ and an estimate of the posterior p(θ|X, Y ) is calculated. An analytical
computation of this prior is intractable, but variational methods can approximate
it with a parameterized distribution q(θ) by minimizing the Kullback-Leibler (KL)
divergence [130]:

q∗(θ) = argminKL(q(θ)||p((θ|X, Y ))q(θ) (2.12)

According to [96], Yarin et al. declare that minimizing the cross-entropy loss
of a network with dropout applied after each layer of weights is equivalent to the
minimization of the KL-divergence. In order to analyze the reliable capability of the
network, the Monte Carlo dropout method is introduced here. Additionally, a novel
corresponding uncertainty evaluation criterion is proposed to measure the network’s
resistance to the epistemic uncertainty according to the variance map, which is
directly obtained from the probability map. The variance map intuitively reflects the
prediction fluctuation of the network architecture. The uncertainty sources are mainly
from two aspects, background and lesion. As shown in Fig. 2.4, the uncertainty from
the lesion-zone causes the lesion prediction error and severely affects many important
criteria such as the Dice Score and Sensitivity whose evaluation policy relies on the
lesion region and its boundary pixels. In sharp contrast to the uncertainty from the
lesions, the uncertainty from the background mostly affects the criteria, which rely
on pixels predicted as non-lesion pixels, such as specificity (true negative rate), which
measures the proportion of actual negatives that are correctly identified.
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2.4 Generative Adversarial Networks

Adversarial learning has gained plenty of attention from industry and academic
community due to its effectiveness in tackling domain shift and generating image
samples [131]. Basically, GAN [63] is a kind of neural network architecture where
two networks are trained simultaneously, a generator aims to generate images close
to ground truth, and a discriminator to distinguish between fake or real images.

For the generator G, the input is random noise sampled from a distribution usually
chosen from a uniform or Gaussian. The output of the generator is encouraged to be
closer to real samples from real data distribution. Fig. 2.5 shows an illustration of
GAN architecture and generator of this example is to synthesize brain MRI images.
For the discriminator D, the input is either a real sample or a fake sample and the
corresponding output is an indicator showing the probability of input being a real or
fake sample. The objective of generator G and discriminator D can be formulated as
[131]:

LGAND = max
θD

Ex∼Pdata
[log D(x)] + Ez∼Pz log(1−D(G(z))) (2.13)

LGANG = min
θG

Ez∼Pz log(1−D(G(z))) (2.14)

where x is a real image from the unknown data distribution Pdata, and z is a random
input for the generator, following a probability distribution. θG and θD represent the
parameters for the generator and the discriminator in a GAN. The ideal outcome
after training is that the samples synthesized by a generator approximate to the real
data distribution.
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Hierarchical Multi-class
Segmentation of Glioma Images

Using Networks with Multi-level
Activation Function

This chapter has been published as peer-reviewed conference paper:.
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multi-class segmentation of glioma images using networks with multi-level activation
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Synopsis: This work deals with the problem of multi-class segmentation of Glioma
images. We present a multi-level activation function incorporating nesting topological
priors for MICCAI Brain tumor segmentation challenge with its three hierarchically
nested classes ‘whole tumor’, ‘tumor core’, ‘active tumor’. Based on the same start-
of-the-art network architecture, the accuracy of nested-class (enhancing tumor) is
reasonably improved from 69% to 72% compared with the traditional Softmax-based
method which blind to topological prior.

Contributions of thesis author: algorithm design and implementation, compu-
tational experiments and composition of manuscript.
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Abstract. For many segmentation tasks, especially for the biomedical
image, the topological prior is vital information which is useful to exploit.
The containment/nesting is a typical inter-class geometric relationship.
In the MICCAI Brain tumor segmentation challenge, with its three hi-
erarchically nested classes ‘whole tumor’, ‘tumor core’, ‘active tumor’,
the nested classes relationship is introduced into the 3D-residual-Unet
architecture. The network comprises a context aggregation pathway and
a localization pathway, which encodes increasingly abstract representa-
tion of the input as going deeper into the network, and then recombines
these representations with shallower features to precisely localize the in-
terest domain via a localization path. The nested-class-prior is combined
by proposing the multi-class activation function and its corresponding
loss function. The model is trained on the training dataset of Brats2018,
and 20% of the dataset is regarded as the validation dataset to deter-
mine parameters. When the parameters are fixed, we retrain the model
on the whole training dataset. The performance achieved on the valida-
tion leaderboard is 86%, 77% and 72% Dice scores for the whole tumor,
enhancing tumor and tumor core classes without relying on ensembles
or complicated post-processing steps. Based on the same start-of-the-art
network architecture, the accuracy of nested-class (enhancing tumor) is
reasonably improved from 69% to 72% compared with the traditional
Softmax-based method which blind to topological prior.

Keywords: Topological prior · nested classes · 3D-residual-Unet ·multi-
class activation function

1 Introduction

Glioma are the most common family of brain tumors, and forms some of
highest-mortality and economically costly diseases of brain cancer [1–3]. The
diagnosed method is highly relayed on manual segmentation and analysis of
multi-modal MRI scans by bio-medical experts. Nevertheless, this diagnosed way
is severely limited by the labor-intensive character of the manual segmentation
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process and disagreement or mistakes between manual segmentation. Conse-
quently, there exists a great need for a fast and robust automated segmentation
algorithm. Convolutional neural networks (CNNs) have been verified to be ex-
tremely effective for a variety of semantic segmentation tasks [4].

While CNN segmentation algorithms are abundant in biomedical imaging,
only very few make use of nested-topological prior information. Among the few
that do [5–11], we find three different approaches. First, the use of cascaded algo-
rithms where the network consists of successive segmentation networks. Second,
the information on the nested-classes is incorporated into the loss function, im-
posing penalties on solutions that do not respect the nested geometry relations.
Third, Markov random fields are used to formalizing class relationship in the
post-processing of the network output. Here, we make use of a new activation
function [12] that is directly implementing class hierarchy in the network train-
ing and generalize it to 3 nested classes. For the glioma labels we assume that
active tumor regions are always contained in the tumor core which is surrounded
by the tumor edema, resulting in a hierarchical three-class model. In sharp con-
trast with nested-class method, the softmax-based method of multi-class ig-
nores the geometric prior between different classes, and assumes the classes are
mutually-exclusive, meaning one pixel cannot belong to different classes at the
same time, which absolutely discards the topological information and sometimes
leads the unreasonable segmentation results. The comparison of Dice score crite-
ria between two different methods is implemented and it obviously indicates the
nested-class method achieves higher accuracy than the softmax-based method,
especially for the internal-classes.

In the following, we introduce a brief overview of start-of-the-art 3D-residual
U-net architecture and multi-class-nested activation and loss function. We then
propose and evaluate our model architectures for Brats tumor segmentation.
Finally, we implement the comparison between two main avenues and illustrate
the multi-level activation performs better especially in the inter-class.

2 Methodology

2.1 Network Architecture

The nested-classes relationship between different labels are shown in Fig.2.
The general network structure shown in Fig.1 is stemming from the previously
used glioma segmentation network by Isensee [13] to process large 3D input
blocks of 144x144x144 voxels. The original network is inspired by the U-net
[14] which allows the network to intrinsically recombine different scales through-
out the entire network. This vertical depth is set as 5, which balances between
the spatial resolution and feature representations. The context module is a pre-
activation residual block, and is connected by 3x3x3 convolutions with input
stride 2. The purpose of the localization pathway is to extract features from the
lower levels of the network and transform them to a high spatial resolution by
means of a simple upscale technology. The upsampled features and its corre-
sponding level of the context aggregation feature are recombined via concate-
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Fig. 1. Network architecture from [13]: Context pathway (left) aggregates high level
information;Localization pathway (right) localizes precisely

nation. Furthermore, the localization module, consisting of a 3x3x3 convolution
followed by a 1x1x1 convolution, is designed to gather these features.

Tumor

Tumor core

ET

Fig. 2. Schematic description of the nesting of classes in the BRATS challenge, which
respects the following hierarchy: Enhancing Tumor (ET) ∈Tumor core ∈ Tumor

The deep supervision is introduced in the localization pathway by integrating
segmentation layers at different levels of the network and combining them via
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elementwise summation to form the final network output. The output activa-
tion layer is multi-level Sigmoid layer instead of softmax layer in the Isensee’s
network which converting the multi-class problem to binary ones. Intrinsically,
the multi-level activation is the assemble of multi-sigmoid function and then
straightforwardly maps to multi-class segmentation incorporating the topologi-
cal prior. Consequently, it overcomes the softmax-based method’s shortcoming
which is blind to the geometric prior.

2.2 Crop preprocessing

For 3D network architecture, the larger patch size of training dataset con-
tains more continuous context knowledge and localization information which are
beneficial to improve the segmentation accuracy. In order to acquire to the larger
cube size patch of 3D image, the valuable knowledge in the MRI is extracted as
much as possible while the meaningless information is cropped. Then the crop
processing is implemented, and the maximum size of cube patch is selected as
[144,144,144].

The crop preprocessing equation is defined as:

array = [amin − (bsize − a)/2 : amin + (bsize + a)/2]

a = amax − amin
(1)

where amin and amax are the min and max non-zero information index of MRI
image, and a represents the length of non-zero information.bsize is the cube patch
size and selected as 144.

The index is recorded and used in the image post-processing stage to re-
covery back to the original shape [155,240,240]. However, a little of meaningful
information which exceeds the cube patch size 144 is unavoidably ignored and
have little effect on the segmentation result. In order to equally compare the
softmax-based with the multi-level method, no data augmentation operation is
used in the stage of image pre-procssing.

2.3 Multi-level method

Here, we use one output channel and a multi-class-nested activation func-
tion, as first proposed in [12].The multi-level method is inspired by continuous
regression, and thereby generalizing logistic regression to hierarchically-nested
classes. It is shown in Fig.3 and defined as

a(x) =
m∑

n=1

σ(k[x+ h(n− m+ 1

2
)]) (2)

Where σ is the sigmoid function, k is the steepness and h is the spacing
between consecutive Sigmoids. For Brain tumor segmentation challenge 4-classes
nested label case, we have m+1=4, and we take h=0.5 and steepness=10. The
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Threshold1

Threshold2

Threshold3

Fig. 3. Multi-class activation function, Eq.(1) with m+1=4, h=0.8 and k=10

corresponding loss function, called Modified Cross-Entropy (MCE) in [12], is
defined as

LMCE = − 1

Ntot

∑

pixel i

∑

classes c

yciw
clog(P c[a(xi)]) (3)

where wc is the weight of corresponding label,which we take as wcα(wcα =
(Ntot

Nc
)α), where Ntotis the sum number of pixels,Nc the number of pixels in

each class, and where yc = 1 for the ground-truth label c of pixel i and yc = 0
otherwise. Furthermore, the mapping function P c is defined as

P c=0(a) = 1− a/3
P c=1(a) = aΘ(1− a) + (3− a)/2Θ(a− 1)

P c=2(a) = a/2Θ(2− a) + (3− a)Θ(a− 2)

P c=3(a) = a/3.

(4)

Where Θ(x) is the Heaviside function. The other one loss function, called
Normalized Cross-Entropy (NCE) in [12], is defined as

LNCE = − 1

Ntot

∑

pixel

∑

i classes

yciw
clog(Θc[a(xi)]) (5)
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6 X.B.Hu et al.

Furthermore, the mapping function Qc is defined as

Qc=0(a) = s(1− a)

Qc=1(a) = aΘ(1− a) + s(2− a)Θ(a− 2)

P c=2(a) = s(a− 1)Θ(2− a) + (3− a)Θ(a− 2)

P c=3(a) = s(a− 2).

(6)

where s is the softplus function,, and Θ(x) is the Heaviside function.
Weighted modified and Normalized cross-entropy losses are naturally com-

bined with standard cross-entropy loss and mitigate the class unbalance problem.
They also have the ability to encode of any hierarchical and mutually-exclusive
topological relationship of classes in a network architecture.

2.4 Evaluation metrics

In the task for BRATS, the number of positives and negatives are highly un-
balanced. Consequently, four typical different metrics are used by the organizers
to evaluate the performance of the algorithm and then rank the different teams.

Give a ground-truth segmentation map G and a segmentation map corre-
sponding one class generated by the algorithm. The four evaluation criteria are
defined as following.

Dice similarity coefficient(DSG):

DSC =
2(G ∩ P )

|G|+ |P | (7)

The Dice similarity coefficient measures the overlap in percentage between
G and P.

Hausdorff distance (95th percentile) is defined as :

H(G,P ) = max(supinfx∈G,y∈P d(x, y), supinfy∈P,x∈Gd(x, y)) (8)

where d(x, y) denotes the distance of x and y, sup denotes the supremum and
inf for the infimum. This measures how far two subsets of a metric space are
from each other. As used in this challenge, it is modified to obtain a robustified
version by using the 95th percentile instead of the maximum(100 percentile)
distance.

Sensitivity (also called the true positive rate) measures the proportion of
actual positives that are correctly identified. Specificity (also called the true
negative rate) measures the proportion of actual negatives that are correctly
identified. Assume P is the number of real positive prediction pixel of lesion and
N is the number of real negative prediction pixel of lesion. Condition positive
P consists with true positive TP and false negative FN . Besides, the condition
negative N is also divided into TN true negative and FP false positive.

Then, the metrics of Sensitivity and Specificity are illustrated as:

Sensitivity =
TR

P
=

TP

TP + FN
(9)
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Specificity =
TN

N
=

TN

TN + FP
(10)

Then the values of those four metrics were computed by the organizers inde-
pendently and made available in the validation leaderboard.

3 Experiment results

In BRATS 2018 dataset [15–19], there are four types, Necrotic core, Edema,
Non-enhancing core and Enhancing core that form the three tumor classes in
Fig.2. The dataset contains 4 different modalities for MRI, native (T1), post-
contrast T1-weighted (T1Gd), T2-weighted (T2) and T2 Fluid Attenuated Inver-
sion Recovery (FLAIR) which are all used as different input channels. We train
the networks using ADAM optimizer with an initial learning rate of 0.0005, and
to regularize the network, we use early stopping when the precision on the 20%
of the training dataset reserved for validation is no longer improved, and dropout
(with rate 0.3) in all residual block before the multi-class sigmoid function. Some
slices of segmentation results containing the tumor, tumor core and enhancing
core are shown in Fig.4. We observe that the topology geometry between differ-
ent labels is constrained to the nested-classes relationship, consequently avoiding
errors stemming from the lack of topological prior.

Dice score
Enhancing core whole tumor tumor Core Weight scheme

Multi-level(MCE) 0.719 0.857 0.769 0.4

Multi-level(NCE) 0.676 0.857 0.755 0.4

Multi-level(NCE) 0.633 0.837 0.736 0.5

Multi-level(NCE) 0.655 0.856 0.758 0.3

Softmax-based method 0.691 0.861 0.763 -

Table 1. Validation results presented on the leaderboard

The segmentation result is severely affected by highly unbalanced problems
existing in the Brats dataset. As class imbalance in a data set increases, the per-
formance of a neural net trained on that data has been shown to decrease dramat-
ically [20]. In order to mitigate this issue, many methods [21–23] were proposed
to modify the loss function to alleviate this problems. Here,the weighted cross
entropy incorporating the nested-class information is proposed and investigated.
We experimented with different weighting schemes (α=1,0.5,0.4,0.3) and with
the different losses MCE and NCE proposed in [12]. The best performing combi-
nation turned out to be α=0.4 and MCE loss function. The segmentation thresh-
olds to determine the boundaries between classes, were set to [0.95,1.65,2.2] on
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8 X.B.Hu et al.

(b) Flair image (c) Prediction (d) Ground-truth(a) T1image

Fig. 4. Segmentation results, for five different validation cases. The tumor class is
depicted in red, tumor core in green and enhancing tumor in blue.

the validation process. For this final configuration, we reached Dice scores of 86%
for the complete tumor, 77% for the tumor core and 72% for the enhancing core
as presented in Table 1. The weighted-modified-cross-entropy performs much
better than the result achieved by normalized cross-entropy, and weight scheme
affects the segmentation result severely since the extraordinary unbalance prob-
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Dice score Enhancing core whole tumor tumor Core

Mean 0.71965 0.85685 0.76906

StdDev 0.28526 0.09802 0.21962

Median 0.84268 0.87823 0.84325

25quantile 0.6889 0.83379 0.70743

75quantile 0.8876 0.90895 0.91292

Table 2. Quantitative evaluation of Dice score

lem. The different weight schemes [0.5, 0.4, 0.3] are compared and the optimal
weight scheme is taken as 0.4. In comparison with the softmax-based method
based on the same network architecture proposed by Isensee without ensembles
operation, any complicated image pre-processing and post-processing steps and
extra training dataset, it indicates that the Dice score of nested-class (enhanc-
ing core) drastically improved from 0.691 to 0.719 while the Dice core of whole
tumor and tumor core almost remains at same extent. The quantitative evalu-

Mean Enhancing core whole tumor tumor Core

Sensitivity 0.74119 0.93916 0.78743

Specificity 0.9974 0.98715 0.99591

Hausdorff95 5.50007 10.84397 9.98557

Table 3. Sensitivity, Specificity and Hausdorff95 results presented on the leaderboard

ation (Mean, std, Median, 25%, 75% quantile) of Dice score of enhancing core
and whole tumor and tumor core are showed in Table 2. And other evaluation
metrics (the proportion of actual positives correctly identified—Sensitivity, the
proportion of actual negatives correctly identified—Specificity and Hausdorff95)
are listed in Table 3.

3.1 Threshold scheme definition and analysis

Setting the optimal threshold is an important component of the multi-class
segmentation task, and it is straightforwardly linked to segmentation bound-
ary. From the activation function (4 nested-class sigmoid function) Fig.3, the 4
classes segmentation problem is corresponding with the threshold scheme with
3 parameters [Threshold-1, Threshold-2, Threshold-3]. The threshold scheme is
optimally chosen during the validation procedure, and then fixed and applied
into test dataset.

In order to analyze how the threshold affects the segmentation accuracy, the
relationship between boundary threshold and Dice score is illustrated in Fig.5.
The target threshold is changed to the value taken from a specific interval which
is considered to be possible to achieve optimal segmentation result when other
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Fig. 5. Boundary division of Threshold scheme

thresholds are fixed at the optimal value. The criteria Dice score of three classes
is very sensitive to the threshold-3 value compared with other two threshold
indexes, that it may drop into Dice score valley within interval [2.2,2.4]. The
threshold-2 index has little impact on the Dice score of whole classes except
for threshold greater than 1.8. Consequently, it is easier to make an optimal
threshold scheme after determining indexes of threshold-3 and threshold-2. Af-
ter experiment and optimization, the suitable threshold scheme in the Brats
challenge is selected as [0.95,1.65,2.2].

4 Conclusions

In this paper we applied the technique of multi-level activation to the nested
classes segmentation of glioma. The results of our experiments indicate that the
multi-level activation function and its corresponding loss function are efficient
compared to Softmax output layer based on the same network framework. Using
the MCE loss function and a reweighting scheme with power-law =0.4, we obtain
Dice scores 86% for complete tumor, 77% for tumor core and 72% for enhancing
core on the validation leaderboard of the 2018 BRATS challenge, proving the
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applicability of the multi-level activation scheme. Finally, this activation could
be combined with other network architectures. Using it with the best performing
architecture of the BRATS challenge could even lead to further improved results.
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Synopsis: This work proposed a coarse-to-fine adversarial network for ENKTL
semantic segmentation. The coarse stage acts as a dimensionality reduction to
roughly locate the lesion bounding box and crop redundant information to facilitate
the fine segmentation. The fine segmentation is an end-to-end adversarial network
with a generator and a discriminator part. An exploration of zone-based uncertainty
estimates based on Monte Carlo (MC) dropout was presented for segmentation
networks. Uncertainty analysis makes it possible to permit subsequent optimization
by engineers and revision by clinicians.

Contributions of thesis author: algorithm design and implementation, compu-
tational experiments and composition of manuscript.
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Coarse-to-Fine Adversarial Networks and
Zone-based Uncertainty Analysis for NK/T-cell

Lymphoma Segmentation in CT/PET images
Xiaobin Hu∗, Rui Guo∗, Jieneng Chen, Hongwei Li, Diana Waldmannstetter, Yu Zhao†, Biao Li†, Kuangyu Shi

and Bjoern Menze

Abstract—Extranodal natural killer/T cell lymphoma (ENKL),
nasal type is a kind of rare disease with a low survival rate
that primarily affects Asian and South American populations.
Segmentation of ENKL lesions is crucial for clinical decision
support and treatment planning. This paper is the first study on
computer-aided diagnosis systems for the ENKL segmentation
problem. We propose an automatic, coarse-to-fine approach for
ENKL segmentation using adversarial networks. In the coarse
stage, we extract the region of interest bounding the lesions
utilizing a segmentation neural network. In the fine stage, we
use an adversarial segmentation network and further introduce
a multi-scale L1 loss function to drive the network to learn
both global and local features. The generator and discriminator
are alternately trained by backpropagation in an adversarial
fashion in a min-max game. Furthermore, we present the
first exploration of zone-based uncertainty estimates based on
Monte Carlo dropout technique in the context of deep networks
for medical image segmentation. Specifically, we propose the
uncertainty criteria based on the lesion and the background,
and then linearly normalize them to a specific interval. This is
not only the crucial criterion for evaluating the superiority of the
algorithm, but also permits subsequent optimization by engineers
and revision by clinicians after quantitatively understanding the
main source of uncertainty from the background or the lesion
zone. Experimental results demonstrate that the proposed method
is more effective and lesion-zone stable than state-of-the-art deep-
learning based segmentation model.

Index Terms—coarse-to-fine adversarial network, multi-zone
uncertainty estimate, medical image segmentation, Monte Carlo
dropout

I. INTRODUCTION

Extranodal natural killer/T cell lymphoma, nasal type
(ENKL) is a rare disease, which is much more prevalent in
Asia and South America. ENKL occurs predominantly in the
nasal, paranasal and oropharyngeal sites. 18F-FDG PET/CT
scanning is currently the most effective imaging modality for
staging, monitoring response, and predicting prognosis for
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many kinds of lymphomas [1]. Several investigations identified
that almost all ENKL are FDG avid [2], [3]. ENKL segmen-
tation results provide the vital priors of the disease, such as
lesion location and the lesion volume size. According to the
lesions priors and other diagnose information, the diseases
are evaluated and cataloged into different stages. For each
stage, there exists a corresponding suitable treatment planning.
Furthermore, the data fusion based on the lesion priors from
segmentation and others (e.g. patients age, surgery perfor-
mance, recovery after surgery) is used to predicate the survival
time and the risk of the disease recurrence. Consequently,
judging the scope of ENKL violation is very important for
the patients’ staging and prognosis. But the current method is
highly dependent on the manual segmentation and the anal-
ysis of multi-modal scans by bio-medical experts. Moreover,
diagnosis like this is severely limited by the labor-intensive
character of the manual segmentation process and mistakes in
manual segmentations. Consequently, there exists a great need
for a fast and robust automated segmentation algorithm [4]–
[8]. In this paper, we focus on lymphoma segmentation from
CT and PET scans.

Convolutional neural networks (CNNs) have been verified
to be extremely effective for a variety of semantic segmen-
tation tasks [9]–[12]. For pixel-wise semantic segmentation,
CNNs have also achieved remarkable successes. The first fully
convolutional network (FCN) was proposed by Long et al.
for semantic segmentation [13]. Here, the fully connected
layers in CNNs are replaced by convolutional layers and a
skip architecture is defined to combine semantic information
from a shallow, fine layer to produce accurate and detailed
segmentations. Noh et al. [14] proposed an encoder-decoder
structure for a semantic segmentation algorithm using a deep
deconvolution network. Conditional Random Fields (CRFs)
and CNNs are combined for a better exploration of spatial
correlations between pixels by Lin et al. [15]. Ronneberger et
al. [16] presented a more elegant architecture, the U-Net. This
network consists of a contracting path to capture context and a
symmetric expanding path that enables precise localization, for
segmentation of neuronal structures in electron microscopic
stacks. Inspired by the idea of skip-connection [17], the U-Net
architecture improves its performance using a large margin,
and has been successfully applied and modified into different
tasks [17]. Havarei [18] explored a cascade architecture where
two CNNs are concatenated to gain additional information,
achieving good performance for brain tumor segmentation.
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Kamnitsas et al. [19] proposed a 3D CNN using two pathways
with inputs of different resolutions. Additionally, 3D CRFs
were also used for resolution refinement.

Although all these CNN methods have achieved promising
results, they suffer from the limitation of insufficiently learning
both local and global contextual information between pixels.
Therefore, models such as the CRF are implemented to embed
the spatial contiguity in the output maps. Xue [20] proposed a
multi-scale L1 loss function to force the network to learn both
global and local features, for capturing long- and short-range
spatial relationships between pixels. However, it requires more
computational cost and memory for the network, when the
image size gets too large. Additionally, there is the problem of
label and class imbalance, which deteriorates the segmentation
results. To mitigate these problems, we propose the coarse-
to-fine adversarial network for ENKL segmentation, which
achieves high segmentation accuracy by locating lesion zones,
while cropping unnecessary information reduces computa-
tional cost. The multi-scale L1 loss function is employed
to enforce the learning of hierarchical features in a more
straightforward and efficient 2D network manner. We make use
of a coarse-to fine approach in our framework. In the coarse
stage, we first train a shallow U-Net for reducing the image
size of our dataset by roughly localizing the target lesion from
the whole PET and CT dataset. Then, a modified adversarial
network is trained from the sub-volumes sampled from the
ground truth bounding boxes of the target lymphoma. We
refer to this as coarse-to-fine framework, which is designed to
achieve better segmentation performance and relieve memory
issues as well as class imbalance problems. The coarse step
removes a large amount of the unrelated background region.
Then, due to the reduced region size, we simplify the task for
the fine step, where the network learns patterns to distinguish
the lymphoma from the background. In specifically, the net-
work exploits local context in order to obtain more accurate
segmentation results.

Standard deep learning based segmentation models usually
produce probability estimates, if a pixel belongs to a certain
segmentation label. This kind of approach typically lacks of
uncertainty quantification [21], [22]. In medical applications,
it can lead to false conclusions when the uncertainty esti-
mates are not well quantified and calibrated. Because of the
mathematical complexity of Bayesian approaches in traditional
deep learning, Gal and Ghahramani [23] proposed a simple
approach of uncertainty estimation. There, they train a dropout
network [24] and extract MC samples from the prediction
by using dropout at test time. This approach produces an
approximation of the posterior of the network’s weights. Tanya
et.al [25] developed a CNN for Multiple Sclerosis (MS) lesion
segmentation and provided an augmentation for providing
four different voxel-based uncertainty measures based on MC
dropout. This theory has been applied to many medical appli-
cations [26]–[28], but there is limited research on zone-based
normalization uncertainty analysis to judge the superiority
of an algorithm. This paper proposes quantitatively multi-
zone uncertainty criteria (lesion-based and background-based)
to clearly understand the main source of uncertainty in the
background and the lesion zones.

The main contributions of the paper are the following:
1. To the best of our knowledge, this paper is one of

the first deep learning studies on computer-aided diagnosis
systems for an ENKL dataset. We propose a coarse-to-fine
adversarial network for ENKL semantic segmentation. The
network architecture is specifically designed to address dif-
ficulties of the ENKL dataset. The coarse stage acts as a
dimensionality reduction to roughly locate the lesion bounding
box and crops redundant information to facilitate the fine seg-
mentation, which is crucial to reduce segmentation time and
avoid memory problems. Experiments show that the coarse-
to-fine mechanism is effective to improve the segmentation
accuracy by reducing the background information.

2. The fine segmentation is an end-to-end adversarial net-
work with a generator and a discriminator part. Spatial context
information and hierarchical features are exploited by intro-
ducing a multi-scale L1 loss function in both the generator
and discriminator parts without further smoothing of predicted
label maps using CRFs. In order to verify the effectiveness
and superiority, the presented method is compared with the
start-of-the-art U-Net. Extensive experiments demonstrate that
the proposed method achieves comparable or better results in
terms of volume similarity, lesion overlap and spatial distance
than the state-of-the-art CNN-based U-Net architecture.

3. We present an exploration of zone-based uncertainty
estimates based on Monte Carlo (MC) dropout in the context
of deep networks for medical image segmentation. We pro-
posed uncertainty criteria including two parts: lesion-based
and background-based uncertainty criterion. The pixel-based
deviation map computed by the MC dropout is normalized to
the specific interval using the linear normalization. The lesion-
zone pixel-wise sum of normalization map is calculated as
the definition of lesion-based uncertainty criterion while the
background-zone pixel-wise sum is defined as the background-
based uncertainty criterion. A clear understanding of the main
source of uncertainty in the respective zones is crucial for a
quantitative evaluation of an algorithm’s stability. Furthermore,
it makes it possible to permit subsequent optimization by
engineers and revision by clinicians.

In the following, we present a brief overview of the coarse-
to-fine adversarial network architecture and uncertainty theory.
We then propose and evaluate our model architectures for our
ENKL dataset. Finally, we compare three different network
frameworks and show that the proposed network performs
much better than the state-of-the-art U-Net segmentation
method in terms of volume similarity, lesion overlap, spatial
distance and lesion-based stability.

II. METHODOLOGY

A. ENKL dataset and preprocessing

Extranodal natural killer (NK)/T-cell lymphoma, nasal type
(ENKL) is a predominantly extranodal lymphoma associated
with EpsteinBarr virus (EBV) [29], [30]. ENKL is much
more common in Asia and Latin America than in the USA
and Europe [31], [32]. From June 2011 to March 2018, 83
patients with recently diagnosed ENKL underwent a 18F-FDG
PET/CT scan for initial staging at Shanghai Ruijin Hospital.
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The diagnosis is according to the World Health Organization
pathologic classification. The diagnosis was established by
histopathological examination of biopsy tissue from nodal or
extranodal disease sites. All patients were followed up at
least 12 months. All procedures performed in the study were
in accordance with the ethical standards of the committee
from Ruijin Hospital, Shanghai Jiaotong University, School of
Medicine. 18F-FDG PET/CT was performed on a Discovery
STE16 system (GE Healthcare, Waukesha, Wisconsin, USA).
Patients were required to fast for at least 6 h before undergoing
imaging, and the serum glucose level was kept under 7.0
mmol/L. A image was obtained about 1h after intravenous
administration of 5-6 MBq of 18F-FDG per kilogram of body
weight.

The difficulties in the dataset mainly stem from three
aspects: 1) The large variations in the shape, size and location
of the lymphoma. 2) Due to the large image sizes, network
suffers from memory size, complicating image processing
approaches that take the whole volume as input. 3) The images
coming from PET and CT are not identical in their sizes.
Consequently, this complicates the straightforward usage of
information from two modalities for boosting segmentation
accuracy. Details on the properties of the dataset are listed in
Table I. Therefore, we perform a rigid co-registration using
the P-Mod 3.9 to get identical image sizes. The Normalized
Mutual Information was chosen as the dissimilarity function
because of the good performance in many multi-modality
situations. The interpolation method was the trilinear method.
The value of the function tolerance was set as 1.0E-5. This
process is shown in Fig. 1. The dataset consists of 83 subjects
in total, including both PET and CT images, along with the
corresponding binary masks, annotated by three experts who
have more than 8-year experience. Two radiologists outlined
the shape of lesions based on two modalities information. The
other radiologist further checked and modified the original
ground-truth maps to decrease the intra-raters errors.

TABLE I
THE DATASET CONSISTS OF 83 SUBJECTS IN TOTAL, INCLUDING BOTH

PET AND CT IMAGES, ALONG WITH THE CORRESPONDING BINARY
MASKS, ANNOTATED BY EXPERTS BASED ON THE PET AND CT IMAGES

AFTER THE CO-REGISTRATION PROCESS.

ENKL lymphoma data Patients Size
CT 83 47 × 512 × 512

PET 83 47 × 128 × 128
Masks by experts after co-registration 83 47 × 512 × 512

Image preprocessing plays a crucial role in the deep learning
framework. Firstly, for minimizing the variation of voxel
intensities, Gaussian normalization is implemented for each
3D scan. Secondly, we augment the training set to achieve
invariance and robustness. While normalization is applied for
training and testing data, including both PET and CT, data
augmentation is only used during training.

B. Data Augmentation

Data augmentation is an effective way to equip deep net-
works with invariance and robustness properties, when training

Image size 

512 x 512

Image size      

128 x 128

Rigid 

Co-Registration
 

Image size

 512 x 512

Image size 

512 x 512

Fig. 1. Illustration of the rigid co-registration for achieving identical image
sizes in PET and CT.

data is limited. Biomedical images from different subjects and
scanners show variations in head orientation, voxel size and
lesion distribution. Therefore, rotation and scale invariance
as well as robustness to shear transformation is of capital
importance here. For each axial slice, three transformations
including rotation, shear mapping and scaling are applied,
each within a specific parameter range. The parameter range
represents the variation in different aspects between subjects
in clinical practice. For instance, rotation of the brain is in the
range of [−15◦,15◦]. Table II lists the parameter range for each
of the three transformations. It should be noted that the scaling
used for training is in the range of [0.9, 1.1], representing
the range of voxel size ratios in the training dataset. This
indicates the robustness of our approach, but also leaves room
for improvement in future studies exploring the optimal data
scaling during training. After data augmentation, we obtain a
dataset four times larger than the original one.

TABLE II
PARAMETERS RANGES FOR DATA AUGMENTATION

Data Augmentation Rotation Shearing Scaling(x,y)
Parameters [−15◦,15◦] [−18◦,18◦] [0.9,1.1]

C. Coarse-to-fine network architecture

In this section, we introduce our coarse-to-fine adversarial
segmentation network, consisting of a coarse and a fine stage.
The coarse stage is a 4-layers shallow U-Net to quickly get
a coarse bounding box around the lesion. As shown in Fig.
2, both PET and CT are fed into the coarse stage as two-
channel input. The coarse part consists of a contracting path
to capture context and a symmetric expanding path, which
enables precise localization. Skip connections between the
contracting path and the expanding path are employed. Two
convolutional layers are repeatedly applied, each followed
by a rectified linear unit (ReLU) and a 2 × 2 max pooling
operation with stride 2 for downsampling. For the first two
convolutional layers, we change the kernel size from 3 × 3
to 5 × 5, which claims that a larger kernel size enhances a
network’s capability to handle different transformations. After
the preliminary coarse segmentation, we detect the lesion and
extract a volume of 128× 128 around it as shown in Fig. 3.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JBHI.2020.2972694

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

38



4
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Fig. 2. The coarse net: 2D Convolutional network architecture to locate the
lesion.Different operations are denoted by different arrows.The multi-channel
feature maps are shown in blue and the copied feature maps are shown in
gray. The digit above the feature maps denotes the number of channels.

Fig. 3. The bounding box (128 × 128) defined around the lesion location
after the coarse segmentation stage. The bounding box in green having the
lesion rectangle in red as its center.

The fine network is an end-to-end adversarial network
architecture with a multi-scale L1 loss function, as shown
in Fig. 4. It consists of two parts: the generator network G
and the discriminator network D. The task for the generator
network G is to generate binary masks for the input dataset.
The task for the discriminator network D is to distinguish two
different input types: the ground truth and the prediction label
map. During the adversarial learning, the generator network
is forced to learn more accurate prediction maps. The G
and D networks are alternately trained by backpropagation
in an adversarial fashion. G aims to minimize the multi-
scale L1 loss, while D maximizes this loss function. A fully
convolutional encoder-decoder structure similar to the U-Net is
used for the generator network G. In the decoder step, for the
convolutional kernel, we choose relatively large kernel sizes
of 11, 9, 7, in order to achieve a large reception field. Residual
blocks, dropout layers and batch normalization are added to
the network for preventing overfitting and incorporating of
a spatial prior. The discriminator network D has a similar
structure as the decoder in G, but in a reverse direction and
without residual blocks. The loss function used for the coarse
network as well as for the comparison network is based on
the dice score and is defined as [33]:

minLDice =
2
∑N
n=1 pigi + s

∑N
n=1 p

2
i +

∑N
n=1 g

2
i + s

(1)

where gi and pi represent the ground-truth and predicted prob-
abilistic pixel, respectively. The rest term s ensures stability by
avoiding the division by 0. We set s to 1 in our experiments,
where the entries of g and p are all zeros.

Conventional GANs [34] typically use loss functions in an
adversarial manner:

min
θG

max
θD

ξ (θG, θG)

= Ex∼Pdata
[logD(x)] +Ex∼Pz log(1−D(G(z)))

(2)

where x is a real image from the unknown data distribution
Pdata, and z is a random input for the generator, following a
probability distribution. θG and θD represent the parameters
for the generator and the discriminator in a GAN.

Given a dataset with N training images xn and the corre-
sponding ground truth maps yn, the multi-scale loss function
is expressed as:

min
θG

max
θD

ξ (θG, θD)

=
1

N

N∑

n=1

`maefD(xn •G(xn)), fD(xn • yn))
(3)

Where ξmae is the mean absolute error(MAE) and xn•G(xn)is
the entry-wise product of the original images and the segmen-
tation prediction, while xn•yn is the pixel-wise multiplication
of the original images and the ground truth. The mean absolute
error is defined as:

`mae(fD(x), fD(x
′
)) =

1

L

L∑

i=1

∥∥∥f iD(x)− f iD(x
′
)
∥∥∥
1

(4)

where L is the number of layers in the discriminator network
and f iD(x)is the feature map at the ith layer of the discrimi-
nator network.

D. Uncertainty theory

Dropout is a way of Bayesian approximation. During train-
ing, the input channels x and the corresponding ground truth
lesion labels Y are used to learn the weights θ of the network.
To capture the uncertainty character in the model, a prior
distribution is placed over θ and an estimate of the posterior
p(θ|X,Y ) is calculated. An analytical computation of this
prior is intractable, but variational methods can approximate
it with a parameterized distribution q(θ) by minimizing the
Kullback-Leibler (KL) divergence [35]:

q∗(θ) = argminKL(q(θ)||p((θ|X,Y ))q(θ) (5)

According to [23], Yarin et al. declare that minimizing the
cross-entropy loss of a network with dropout applied after each
layer of weights is equivalent to the minimization of the KL-
divergence. In order to analyze the reliable capability of the
network, the Monte Carlo dropout method is introduced here.
Additionally, a novel corresponding uncertainty evaluation
criterion is proposed to measure the networks resistance to the
epistemic uncertainty according to the variance map, which is
directly obtained from the probability map. The variance map
intuitively reflects the prediction fluctuation of the network
architecture. The uncertainty sources are mainly from two
aspects, background and lesion. The uncertainty from the
lesion-zone causes the lesion prediction error and severely
affects many important criteria such as the Dice Score and
Sensitivity whose evaluation policy relies on the lesion region
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Fig. 4. Architecture of the fine network: Adversarial network combining a generator and a discriminator network. Masked images are calculated by a pixel-wise
multiplication of a label map and two channels of an input image.

and its boundary pixels. In sharp contrast to the uncertainty
from the lesions, the uncertainty from the background mostly
affects the criteria, which rely on pixels predicted as non-
lesion pixels, such as specificity (true negative rate), which
measures the proportion of actual negatives that are correctly
identified. The lesion-based criteria (such as average vol-
ume difference) are insensitive to the uncertainty from the
background, especially for a low ratio of number of lesion
pixels to number of background pixels. Consequently, the
paper proposes a novel principle to evaluate the lesion-based
uncertainty by calculating the variance map lying in the lesion
and its boundary region, and converting the value to the same
magnitude. The lesion-based or background-based uncertainty
is defined as:

Uzone =
m∑

i⊂S

∑MC
j (Xj −X)2

MC
(6)

where i and m are the pixels from the set S lesion or the
background of the ground truth, respectively. MC represents
the iteration number of the Monte Carlo dropout method, X
represents the mean map calculated by the prediction probabil-
ity map and xj is the jth probability map of the MC dropout
method. Afterwards, linear normalization is implemented as
a post-processing step for the uncertainty map, which is
achieved from Eq. (6):

Ezone =
Omax −Omin
Umax − Umin

• (Ulesion − Umin) +Omin (7)

where Omax, Omin, Umin and Umax are the maximum and
minimum of the specific normalization interval and the origi-
nal uncertainty map. After defining the uncertainty evaluation
criteria, the lesion-based and background-based uncertainty
analysis is conducted in the following session.

III. EXPERIMENTS AND RESULTS

The whole dataset is divided into five folds, and a K-fold-
cross-validation (K=5) is implemented to comprehensively

evaluate the performance of the proposed network architecture.
The number of patients in each fold is 16, 16, 17, 17, 17,
respectively. For each model, we used approximately 80% of
the dataset for training and the remaining 20% for testing and
the training set was further split into a training and validation
subset in a ratio of 4:1 (where the validation set was used for
parameter tuning purpose).

In this section, for proving the remarkable performance of
our method, we compare the performance of the proposed fine
network with the performance of a U-Net based approach
for white matter hyperintensities segmentation, which won
the WMH Segmentation Challenge in 2017 [36]. We present
the experiments performed with three methods: our proposed
method, a U-Net using a bounding box 128x128 (U-Net
128) [36] but without adversarial network, a U-Net using the
original images of size 512x512 (U-Net 512) and 3D-UNet
[37]. For each method, a 5-fold cross validation was applied,
where each fold is used as a test case.

A. Evaluation Metrics

Given a ground-truth segmentation map G and a prediction
map R generated by the algorithm, four evaluation metrics are
introduced to evaluate the algorithm performance. The metric
dice similarity coefficient (DSC), which measures the overlap
between the ground truth and the prediction map, is defined
as:

DSC =
2 |R ∩G|
(|R|+ |G|) (8)

Sensitivity (also called the true positive rate) measures the
proportion of actual positives that are correctly identified.
Assume P is the number of all pixels that are real lesion
pixels (real positive) and N is the number of all pixels that
are real non-lesion pixels (real negative). P consists of the
true positive pixels TP, that are the pixels correctly predicted
as lesion pixels, and the false negative pixels FN, that are
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Ground Truth Proposed method U-Net 128 U-Net 512

Fig. 5. 3D view of sample lesion segmentations obtained by the proposed
method, the U-net 128 and the U-net 512(right) as well as the corresponding
ground truth (left).

the pixels wrongly predicted as non-lesion pixels. Then, the
sensitivity is defined as:

Sensitivity =
TP

P
=

TP

TP + FN
(9)

For the purpose of measuring the spatial similarity between
the prediction map and the ground truth, the Hausdorff dis-
tance is introduced here as a key criterion. The Hausdorff
distance (95th percentile) is defined as:

H(G,P ) =max(supinfx∈G,y∈P d(x, y),

supinfy∈P,x∈Gd(x, y))
(10)

where d(x, y) denotes the distance of x and y, sup denotes the
supremum and inf denotes the infimum. This measures
how far two subsets of a metric space are from each other.
For this comparison, it is modified to obtain a robust version
by using the 95th percentile instead of the maximum (100
percentile) distance. As a result, a closer distance (smaller
value) of the spatial geometry represents a higher spatial
similarity and therefore, a better performance.

The average volume difference is also a typical criterion to
evaluate the volume difference (such as over-segmentation or
under-segmentation) between ground truth and prediction map.
Let VG and VP be the volume of lesion regions in G and P,
respectively. Then the Average Volume Difference (AVD) is
defined as:

AVD =
|VG − VP |

VG
(11)

A smaller difference (smaller value) in the volume size of
the ground truth and the prediction map represents a better
performance and a higher volume similarity.

B. Comparison with State-of-the-art

The four metrics from the 5-fold cross validation experi-
ments are listed in Table III. It indicates that the 3D-UNet
performs a little better than the U-Net 128, but inferior than

the proposed method. Fig. 5 shows sample results of the
lesion segmentation. Obviously, the proposed method achieves
superior results to the U-Net 128 in terms of lesion volume
and shape, when comparing the respective segmentations to
the ground truth. Moreover, the U-Net 128 tends to over-
segment the lesions, which worsens the overall performance.
Four different metrics are used here to compare and rank
the methods. Those metrics evaluate the segmentation per-
formance in different aspects, such as the volume similarity,
the lesion overlap and the spatial distance. Besides, Fig. 6
shows the distributions of the segmentation performances on
the test patients of the 5-fold experiments using three different
methods.

We claim that the improvement over the traditional ap-
proaches is contributed by the coarse-to-fine setting and the
adversarial network. The coarse-to-fine stage aims to crop the
unnecessary information and roughly locate the lesion region
to relieve the class unbalance problem. Interpreting the Dice
scores as percentages, the mean Dice score obtained with
the U-Net 128 is almost 5% higher than the one achieved
by the U-Net 512. This shows that the coarse-to-fine ar-
chitecture is effective and beneficial in assisting to predict
a more accurate segmentation after extracting the bounding
box around the lesion. The presented method achieves a
more accurate segmentation result in terms of the dice score
metric compared with the U-net 128. This shows that the
adversarial network further improve the accuracy of the current
state-of-the-art U-Net architecture. From the comparisons of
three other metrics between the two U-Net-based methods, it
shows that the coarse-to-fine framework largely improves the
Hausdorff Distance and Dice Similarity Coefficients of seg-
mentations. Furthermore, the adversarial fine network makes
a great contribution to improve the average volume similarity
when compared with the fine U-Net 128.

Fig. 6 shows that our proposed network generates less
outliers than the other methods calculated by U-Net-based
methods. This demonstrates that our proposed method can
provide more stable and reliable segmentation results than the
other two U-Net frameworks.

C. Modality Analysis
Different modalities contain different information, which

is crucial to accurately predict the lesion region. For the
Extranodal natural killer (NK)/T-cell lymphoma (nasal type),
PET and CT images were collected for the lesion segmenta-
tion.Comparison experiments of different input modality for
the system are performed. Specifically, the models are trained
on the data from single modalities (either PET or CT) and
the combination of two modalities. The results calculated by
the proposed method from the four metrics are listed in Table
IV. It shows that the two modalities as input, which provide
more latent information, can obtain much better segmentation
results on four metrics. Comparing the results from the single
modalities, using only PET images achieves more accurate
segmentation results than using only CT images as input.
This indicates that PET modality plays the key role in the
ENKL segmentation task, while the CT modality just pro-
vides complementary information to boost the segmentation
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TABLE III
COMPARISON OF THE FOUR METRICS(DICE SIMILARITY COEFFICIENT,SENSITIVITY,HAUSDORFF DISTANCE,AVERAGE VOLUME DIFFERENCE) FROM

THE THREE METHODS,↓ INDICATES THAT THE SMALLER VALUE REPRESENTS BETTER PERFORMANCE.

Metrics Dice Similarity Coefficients Sensitivity Hausdorff Distance ↓ Average Volume Difference ↓
Proposed method 0.7115±0.132 0.7472±0.185 5.9781±9.317 0.3711±0.421

3D-UNet 0.6944±0.136 0.7446±0.186 6.8202±10.027 0.4566±0.463
U-Net 128 0.6798±0.177 0.7332±0.229 6.6061±8.199 0.6018±0.706
U-Net 512 0.6282±0.214 0.7006±0.286 21.0280±27.451 0.5594±0.495
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Fig. 6. Boxplot showing the four evaluation metrics of the three methods for the 5 fold test patients. The red line represents the mean value, the green dashed
line represents the median value and the circles represent outliers.

accuracy. Fig. 7 shows the distributions and outliers of the
four metrics obtained by three modality schemes for the 5
fold test patients. We can see that combining two modalities
produces less outliers and therefore, provides more stable and
more accurate segmentations, compared to the single modality.

D. Uncertainty evaluation

Uncertainty analysis is a crucial criterion to evaluate the
stability of neural network architectures and to improve the
understanding and quality of computer-assisted methods used
in medical applications. Additionally, we show that the uncer-
tainty criteria model can be combined with standard Monte
Carlo dropout Bayesian neural networks to characterize the
uncertainty of model parameters. The dropout layer is equally
embedded into the last layer of the proposed adversarial
network and the U-Net 128. The uncertainty level of the
dropout layer is set to 0.2. The main source of the uncertainty
is divided into two parts (the lesion-based and the background-
based uncertainty), where the uncertainty level calculated by

different methods is different, even for the same dataset. It is
vital to provide a reliable and quantitative uncertainty evalua-
tion where the uncertainty exactly comes from. Furthermore,
the quantitative uncertainty estimates for the predictions permit
subsequent revision by clinicians. The lesion-based uncertainty
is more critical compared to the background-based uncertainty
because it is directly linked to the precision of lesion volume
and location. A higher level of lesion-based uncertainty is
more likely to make a wrong prediction on the lesion volume.
Therefore, the lesion-based uncertainty is reasonable to be
regarded as an important performance evaluation criterion of
the segmentation models. In this section, we compare the
uncertainty criterion of the proposed method with the fine U-
Net 128, in order to quantitatively analyze the main uncertainty
source for background and lesions.

Fig. 8 shows the uncertainty probability maps of the pro-
posed method and the U-Net 128 with the corresponding
ground truth. It is obvious that the main uncertainty sources
of the two methods are fundamentally different. There, the
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TABLE IV
COMPARISON OF THE FOUR METRICS(DICE SIMILARITY COEFFICIENTS,SENSITIVITY,HAUSDORFF DISTANCE,AVERAGE VOLUME DIFFERENCE)

CALCULATED BY THE PROPOSED METHOD FROM THE THREE MODALITY SCHEMES. ↓ INDICATES THAT THE SMALLER VALUE REPRESENTS BETTER
PERFORMANCE

Metrics Dice Similarity Coefficients Sensitivity Hausdorff Distance ↓ Average Volume Difference ↓
CT 0.4811 0.5718 9.6206 1.3926

PET 0.6857 0.7066 7.1141 0.8805
CT+PET 0.7115 0.7472 5.9781 0.3711
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Fig. 7. Boxplot showing the four evaluation metrics of the different modality schemes for the 5 fold test patients. The red line represents the mean value,
the green dashed line represents the median value and the circles represent outliers.

darkest zones represent the lowest uncertainty level and the
brightest zones the highest uncertainty level. The main un-
certainty source of the proposed method comes from the
background, while the uncertainty of the U-Net 128 mainly
comes from the lesion zones and its boundaries. In order
to achieve a quantitative analysis of the uncertainty, the
uncertainty is normalized to [0, 255]. The mean pixel number,
the uncertainty score and its corresponding ratio are listed in
Table V and VI for lesion and background zone, respectively.
Regarding the lesion-based uncertainty, the uncertainty score
of the proposed method (0.064) is much smaller than the one
of the U-Net 128 (25.572). When it comes to lesion-stability,
the proposed method is much better than the U-Net 128.
Consequently, the predictions of the lesions are more stable,
which improves the performance for lesion overlap and volume
similarity. Having a look at the background-based uncertainty
scores, we can see that the score of the U-Net 128 is almost
one third of the score of the proposed method. Therefore, the
U-Net performs slightly better than the proposed method in

terms of background stability. The main uncertainty source
of the proposed method results comes from the background
(0.977). Therefore, we state another main contribution, since
the adversarial fine network performs more stable for the
lesion-based prediction, even though the U-net 128 performs
slightly better for the background uncertainty.

IV. DISCUSSION

In this work, we propose a coarse-to-fine adversarial net-
work, which is specifically adapted to the segmentation task
and produces superior accuracy in terms of volume similarity,
lesion overlap and spatial distance. With our coarse-to-fine
mechanism incorporating an adversarial network to locate the
lesion bounding box, we not only avoid memory problems
and save computation time, but also largely improve the seg-
mentation performance. We addressed the problem of unstable
pre-training in the adversarial network for segmentation [38]
by introducing the multi-scale feature loss. This measures the
difference between the segmentation prediction and the ground
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TABLE V
QUANTITATIVE UNCERTAINTY ANALYSIS OF THE LESION-BASED CRITERION. SMALLER VALUES REPRESENT BETTER AND MORE STABLE PERFORMANCE.

Methods Mean number of lesion Mean Uncertainty score Ratio(Uncertainty score/Lesion)
Proposed method 6059 529 0.064

U-Net 6059 102046 25.572

TABLE VI
QUANTITATIVE UNCERTAINTY ANALYSIS OF THE BACKGROUND-BASED CRITERION. SMALLER VALUES REPRESENT BETTER AND MORE STABLE

PERFORMANCE.

Methods Mean number of background Mean Uncertainty score Ratio(Uncertainty score/background)
Proposed method 763989 747003 0.97777

U-Net 763989 222756 0.29157

c)Ground Truthb)U-Net 128a)Proposed method 

Fig. 8. Qualitative uncertainty analysis for (a) the proposed method and (b)
the U-Net 128, while (c) shows the corresponding ground truth. The pixel-
wise uncertainty is normalized to the interval [0, 255]. Brighter zones indicate
a higher uncertainty character.

truth at multiple layers in the discriminator network, forcing
both the generator and the discriminator to learn hierarchical
features that capture long- and short-range spatial relationships
between pixels. Consequently, this provides sufficient gradi-
ents flowing through the discriminator to improve the accuracy
and stability of the generator.

In computer vision, modeling uncertainty improves the
performance of a standard scene understanding network with
no additional parameterization [39]. Moreover, producing
only deterministic outputs hinders deep learning from being
adopted into clinical routines. Uncertainty estimates for the
predictions permit subsequent revision by clinicians. To the
best of our knowledge, we present the first exploration of
zone-based (lesion-based and background-based) uncertainty
estimates based on the Monte Carlo dropout. The uncertainty
principles improve the understanding of the algorithm’s uncer-
tainty source, coming from the lesion and the background pix-
els. Additionally, they provide a simple and effective approach
to evaluate the stability performance of an algorithm and to

exactly verify the uncertainty source. The uncertainty analysis
of the proposed adversarial network as well as a U-Net based
method show that our method has a much smaller lesion-
based uncertainty (0.064) than background-based uncertainty
(0.977). However, the uncertainty of the worse performing U-
Net mainly comes from its lesion-based uncertainty (25.572),
which is much larger than its background-based uncertainty.
This induces that a good neural network architecture possesses
the property of low level lesion-based uncertainty, which
decreases the prediction error stemming from lesion volume
and location. This is a crucial criterion to evaluate the supe-
riority of an algorithm. Furthermore, it makes it possible to
optimize the uncertainty map and to reduce the uncertainty
level by employing post-processing techniques, when clearly
understanding the main uncertainty sources from background
and lesion zones.

All of the experiments were conducted on a GNU/Linux
server running Ubuntu 16.04, with Intel Core i7-6700 CPU and
64GB RAM. The networks were trained on a single NVIDIA
Titan-Xp GPU with 12GB RAM.

V. CONCLUSION

In this paper, we presented a coarse-to-fine adversarial net-
work architecture which introduces a multi-scale feature loss
to stabilize the adversarial network for biomedical image seg-
mentation tasks. The proposed architecture saves a significant
amount of computational memory and time by extracting the
lesion bounding box in the coarse stage. Moreover, the results
of the four metrics in the experiments (Dice Similarity Co-
efficient, Sensitivity, Hausdorff Distance and Average Volume
Dierence) on the ENKL dataset demonstrate that the proposed
method outperforms the state-of-the-art U-net segmentation
method. The presented method is a general framework and
has the potential to be used in general semantic segmentation
tasks.

Additionally, we proposed the zone-based uncertainty cri-
teria (lesion-based and background-based criteria) based on
Monte Carlo dropout method. The uncertainty of our deep
learning model is quantitatively analyzed, and makes it possi-
ble to clearly understand the main uncertainty source. More-
over, the quantitative uncertainty analysis provides clinicians
with information permitting them to quickly assess, whether
they should accept or reject lesions of high uncertainty.
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Abstract
Purpose To develop a weakly supervised deep learning (WSDL) method that could utilize incomplete/missing survival data to
predict the prognosis of extranodal natural killer/T cell lymphoma, nasal type (ENKTL) based on pretreatment 18F-FDG PET/CT
results.
Methods One hundred and sixty-seven patients with ENKTL who underwent pretreatment 18F-FDG PET/CT were
retrospectively collected. Eighty-four patients were followed up for at least 2 years (training set = 64, test set = 20). A
WSDL method was developed to enable the integration of the remaining 83 patients with incomplete/missing follow-up
information in the training set. To test generalization, these data were derived from three types of scanners. Prediction
similarity index (PSI) was derived from deep learning features of images. Its discriminative ability was calculated and
compared with that of a conventional deep learning (CDL) method. Univariate and multivariate analyses helped explore
the significance of PSI and clinical features.
Results PSI achieved area under the curve scores of 0.9858 and 0.9946 (training set) and 0.8750 and 0.7344 (test set) in
the prediction of progression-free survival (PFS) with the WSDL and CDL methods, respectively. PSI threshold of 1.0
could significantly differentiate the prognosis. In the test set, WSDL and CDL achieved prediction sensitivity, specific-
ity, and accuracy of 87.50% and 62.50%, 83.33% and 83.33%, and 85.00% and 75.00%, respectively. Multivariate
analysis confirmed PSI to be an independent significant predictor of PFS in both the methods.
Conclusion The WSDL-based framework was more effective for extracting 18F-FDG PET/CT features and predicting the
prognosis of ENKTL than the CDL method.
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Introduction

The emergence of artificial intelligence (AI) in the field of
medical imaging has led to several breakthroughs [1, 2]. AI
has already proven to be advantageous for computer-aided
diagnosis in medical imaging, such as for the differential di-
agnosis of coronavirus disease 2019 [3], skin cancer [4], and
diabetic retinopathy [5]. Moreover, it has been developed to
help identify imaging-based biomarkers, leading to an im-
provement in the prognosis of, for example, lung cancer [6,
7], gliomas [8], and nasopharynx cancer [9]. Deep learning is
an indispensable part of AI and has been reported to be ex-
tremely effective in several medical imaging-related tasks,
such as image segmentation, registration, fusion, annotation,
computer-aided diagnosis and prognosis analyses, lesion and
landmark detection, and microscopic imaging analysis. In
such studies, deep learning networks have shown capabilities
to automatically extract characteristic features from images,
including explicit features, such as the location, distribution,
and volume size of lesions, and implicit features at different
levels, which were deduced using nonlinear, independent dis-
criminant, and invariant properties. The end-to-end automatic
feature extraction does not involve human interaction, and the
extracted features are the most implicit. Although the implicit
features may be difficult to interpret, they are determinant for
the performance of convolutional neural networks (CNNs)
and play critical roles in many medical applications [10, 11].

The development of deep learning depends on the avail-
ability of a huge amount of data. It is usually challenging to
gather a large cohort of patients with survival follow-up after
administering the same therapeutic regime. Clinical trials are
often associated with incomplete or missing follow-up due to
factors such as insufficient follow-up time, patient tolerance,
and compliance. This consequently hampers extensive devel-
opment of deep learning methods for predicting therapeutic
prognosis. Maximizing the utility of data gathered by clinical
trials is thus a key area of research.

Data augmentation methods such as deformation or gener-
ative adversarial networks are often applied to support the
development of deep learning methods in the field of image
analysis [12]. However, the relationship among imaging, ther-
apy, and survival is more complex than general image analy-
ses. The increased physiological complexity makes it difficult
to synthesize meaningful data for training. Furthermore, errors
in data preparation may mislead algorithmic development
[13]. Weakly supervised classification methods have been
established using unlabeled data for regularization under par-
ticular distributional assumptions, such as cluster or smooth-
ness assumption; however, the performance relies on the fi-
delity of the assumption [14–16], and it is usually challenging

to find a proper assumption in real application. In contrast,
positive–negative unlabeled (PNU) classification [15] is a
weakly supervised strategy to deal with a tough task with less
knowledge regarding data distribution and, therefore, is less
restricted in complex applications. Despite these advantages,
because PNU classification is generally applied for classifica-
tion problems based on low-dimensional feature vectors [15],
it is not straightforward to apply this classification to imaging
data for survival follow-up in order to improve therapeutic
prognosis.

Extranodal natural killer/T cell lymphoma, nasal type
(ENKTL) is a rare type of lymphoma with poor survival out-
come [17–19]. It constitutes <1% of all lymphomas in
Western countries and 3–9% of all malignant lymphomas in
Asia [18, 20, 21]. Several investigations have identified that
almost all ENKTL lesions are fluorodeoxyglucose (FDG) av-
id [22, 23]. In patients with ENKTL, the use of 18F-FDG
positron emission tomography/computed tomography (PET/
CT) for staging is widespread [24–26]. Nevertheless, many
contradictions exist pertaining to the value of 18F-FDG PET/
CT in predicting the prognosis of ENKTL [22, 27–30]. Some
studies [31, 32] have reported that maximum standardized
uptake value (SUVmax) of pretreatment 18F-FDG PET/CT
is not a statistically significant predictor of overall survival
and progression-free survival (PFS). Tumor 18F-FDG uptake
cannot reflect the aggressive biologic behavior of ENKTL;
however, some studies have reported contradictory results
[30, 33]. These studies found that high tumor 18F-FDG uptake
was closely associated with unfavorable treatment and surviv-
al outcomes. Chang et al. [34] reported that baseline whole-
body total lesion glycolysis (TLG) was a good predictor of
PFS and overall survival in patients with ENKTL. However,
treatment plans were not uniform in these studies, potentially
affecting the treatment outcome and predictive value of pre-
treatment 18F-FDG PET/CT. Prospective research methods
have also been used to assess the prognostic value of 18F-
FDG PET/CT in ENKTL [31, 35, 36], but considering some
uncertainty in the reported results, it remains unclear. A novel
solution is accordingly needed. Although deep learning has
been advantageous in assisting molecular imaging to optimize
therapeutic prognosis [9], it is extremely difficult to develop
appropriate deep learning methods for this rare condition with
only a limited number of cases.

We herein propose a weakly supervised deep learning
(WSDL) method based on PNU classification to maxi-
mize the utility of incomplete and missing follow-up
data so as to predict the prognosis of ENKTL. We
investigated the accuracy and robustness of this data
enhancement strategy on a retrospective cohort to test
a therapeutic regime for ENKTL.
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Material and methods

Patients

One hundred and sixteen-seven patients with histopathologi-
cally diagnosed ENKTL from June 2011 to October 2020
recruited at Shanghai Ruijin Hospital were retrospectively col-
lected. Patients who had undergone surgical resection, radio-
therapy, chemotherapy, and/or bone marrow transplantation
as well as those with other malignancies were excluded. All
patients underwent whole-body 18F-FDG PET/CT for initial
staging before therapy andwere then treated with a therapeutic
regime of methotrexate, etoposide, dexamethasone, and
pegaspargase (MESA). Eighty-four patients were followed
up for at least 2 years. Among them, 49 were sandwiched with
radiotherapy for the involved local focus 21 days after two
cycles of MESA. They were treated with a linear accelerator
producing 6 MV photons. The radiotherapy dose was 50 Gy
in 25 fractions, once a day, and 5 fractions every week.
Chemotherapy was restarted 28 days after radiotherapy.

Of the 84 patients, 64 were randomly included in the train-
ing set; the remaining 20 were unobserved and included in the
test set. The ratio of relapse to non-relapse individuals was
kept the same in the test and training sets to avoid an extreme
imbalance problem. PFS was the major endpoint. Recurrence
and lymphoma infiltration were mainly diagnosed based on
imaging methods and pathology. The remaining 83 patients
without follow-up information or followed up for <2 years
were also included in the training set using the proposed
WSDL method. To further test the generalization of the
WSDLmethod, data pertaining to the 83 patients were derived
from three types of scanners: Scanner 1 (Discovery VCT, GE
Healthcare, USA, 39 patients), 2 (Discovery MI, GE
Healthcare, USA, 29 patients), and 3 (Biograph Vision,
SIEMENS, Germany, 15 patients). The training set thus ulti-
mately comprised 147 patients (Fig. 1).

The clinical features of the 84 patients, including gender,
age, serum lactate dehydrogenase levels, Eastern Cooperative
Oncology Group (ECOG) score, Ki67, β2-microglobulin,
Epstein–Barr virus DNA, and B symptoms, were recorded.
Ann Arbor stage, SUVmax, mean SUV (SUVmean), meta-
bolic tumor volume (MTV), and TLG extracted from 18F-
FDGPET/CTwere alsomeasured. All procedures in the study
were performed in accordancewith the ethical standards of the
committee from Ruijin Hospital, Shanghai Jiao Tong
University, School of Medicine. Written informed consent
was obtained from all patients before treatment. Among the
84 patients enrolled in the clinical trial, 58 were alive (12
presented with persistent or recurrent disease at the last fol-
low-up), and 26 had died due to a tumor-related disease. The
clinical characteristics of patients in the training and test sets
have been summarized in Table 1; data pertaining to the 83
patients diagnosed with ENKTL but with missing or incom-
plete follow-up information are also listed.

18F-FDG PET/CT and preprocessing

Patients were required to fast for at least 6 h before 18F-FDG
PET/CT, and the serum glucose level was maintained under
7.0 mmol/L. Whole-body PET from the head to thigh was
performed 1 h after intravenously administering 5–6 MBq of
18F-FDG per kilogram of body weight. In case of Scanner 1,
PET was performed in the 3D mode with an acquisition time
of 2 min per bed position covering the same field as the CT
scan. CTwas performed using the following parameters: 120–
180 mA, 140 kV, gantry rotation speed of 0.8 s, and thick
axial section of 3.75 mm. After correcting attenuation (based
on CT), scatter, dead time, and random coincidences, PET
images were reconstructed using 3D ordered-subset expecta-
tion maximization (OSEM) with a Gaussian filter (full width
at half maximum of 6 mm), leading to images with voxel size
of 5.47 mm. In case of Scanner 2, PET was performed in the
3D mode with an acquisition time of 1.5 min per bed position
covering the same field as the CT scan. CT was performed
using the following parameters: 120–180 mA, 140 kV, and
gantry rotation speed of 0.8 s. PET images were reconstructed
using the block-sequential regularized expectation maximiza-
tion reconstruction algorithm (Q.clear, GE Healthcare, USA),
which had a β value of 550 with a 256 × 256 matrix (pixel
size = 2.7 × 2.7 mm2, slice thickness = 2.79 mm). Finally, in
case of Scanner 3, CT was performed using the following
parameters: 146 mA, 120 kV, and spiral pitch factor of 1.
Images were reconstructed using the 3D ordinary Poisson
OSEM algorithm, with four iterations and five subsets, appli-
cation of time-of-flight resolution modeling, and no filtering.
The obtained PET images had an image matrix of 440 × 440,
pixel size of 1.6 × 1.6 × 1.5 mm, and slice thickness of 2.0
mm. Lymphoma lesions in the training set were manually
delineated on the fusion map of PET/CT images using ITK-

Fig. 1 A flow chart depicting the study plan. ENKTL: extranodal natural
killer/T cell lymphoma, nasal type
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SNAP (v3.6.0) by a nuclear medicine physician with 15 years
of experience [9].

WSDL for feature extraction

The WSDL method based on Residual Network-18 (ResNet-
18) [37] was proposed to predict disease prognosis using a
well-exploiting unlabeled dataset (83 patients without
follow-up information). The summarized algorithm for the
WSDL method is as follows:

Input: 3D volumetric image I of size width × height ×
depth

Ensure: Image I is a rank 3 tensor

1: Train deep convolutional neural networks (DCNNs) with
labeled data to obtain the baseline model

2: Use baseline DCNNs to extract features from labeled and
unlabeled data

3: Build the PNU classifier to generate implicit labels for
unlabeled data

4: Re-train DCNNs with labeled and unlabeled data to ob-
tain the final prognosis

The ResNet is an artificial neural network that is inspired
by the biological neural networks constituting animal brains.

Table 1 Clinical characteristics of patients

Characteristics Training cohort (n=64), no.
(%)

Test cohort (n=20), no.
(%)

P Patients with missing or incomplete data (n=83), no.
(%)

Scanner 1 (n=
39)

Scanner 2 (n=
29)

Scanner 3 (n=
15)

*Gender 0.690

Male 45 (70.31) 15 (75.00) 28 (71.79) 21 (72.41) 10 (66.67)

Female 19 (29.69) 5 (25.00) 11 (28.21) 8 (27.59) 5 (33.33)

*Age (years) 0.861

< 60 50 (78.13) 16 (80.00) 24 (61.54) 22 (75.86) 10 (66.67)

≥ 60 14 (21.87) 4 (20.00) 15 (38.46) 7 (24.14) 5 (33.33)

*Primary site of tumor 0.078

Upper aerodigestive tract 51 (79.69) 12 (60.00) 30 (76.92) 25 (86.21) 13 (86.67)

Non-upper aerodigestive
tract

13(20.31) 8 (40.00) 9 (23.08) 4 (13.79) 2 (13.33)

*Ann Arbor stage 0.182

I–II 51 (79.69) 13 (65.00) 30 (76.92) 23 (79.31) 11 (73.33)

III–IV 13(20.31) 7 (35.00) 9 (23.08) 6 (20.69) 4 (26.67)

*B symptoms 0.213

Yes 25 (39.06) 9 (45.00) – – –

No 39 (60.94) 11 (55.00) – – –

*ECOG score 0.038

0 36 (56.25) 6 (30.00) – – –

1 19 (29.69) 7 (35.00) – – –

2–5 9 (14.06) 7 (35.00) – – –

*PINK 0.230

Low risk (0) 37 (57.81) 11 (55.00) – – –

Intermediate risk (1) 16 (25.00) 1 (5.00) – – –

High risk (2–4) 11 (17.19) 8 (40.00) – – –

**18F-FDG uptake
(SUVmax)

13.17±6.90 14.48±4.92 0.432 12.01±6.07 16.40±6.78 21.23±9.06

**Follow-up period
(months)

33.70±20.82 38.70±23.96 0.369 – – –

*P values were calculated using the chi-squared test for categorical variables and nonparametric test for continuous variables

**Mean ± SD; independent sample t test was used to compare differences in quantitative parameters between the groups

Abbreviations: LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; PINK, prognostic index of natural killer lymphoma;
SUVmax: maximum standardized uptake value
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DCNNs were constructed for deep learning feature extraction.
They are a simplified version of ResNet-18 and were imple-
mented using the Python Keras package with TensorFlow as
the backend. The 83 patients with missing or incomplete
follow-up data were included in the training set along with
64 patients with follow-up data. Labels for the 83 patients
were implicitly derived using the PNU classifier during the
training procedure, leading to maximized prediction probabil-
ity. Further details are provided in Supplementary Materials.

In total, 128 deep learning features were extracted from the
output of the average pooling layer of DCNNs for PET/CT
images in the training set, which were grouped into a 16 × 8
feature map for visualization. We herein propose a new bio-
marker in the form of prediction similarity index (PSI), which
is the ratio of the positive predicted probability value to the
negative predicted probability value. It was derived from these
features to predict the probability of recurrence and non-recur-
rence. PSI of 1 was used to differentiate between positive and
negative predictions. To determine the advantages of the
WSDL method, we compared it with the conventional deep
learning (CDL) method of our proposed DCNNs trained only
on the 64 patients followed up for at least 2 years (Fig. 2).

Statistics

SPSS v23.0 (SPSS Inc., Chicago, IL, USA) and GraphPad
Prism 8.0.1 (GraphPad, San Diego, USA) were used for sta-
tistical analyses. Univariate analysis using the Kaplan–Meier
method was performed for each variable with a potential prog-
nostic value. Time-dependent receiver operating characteristic
(ROC) analysis was performed to evaluate the discriminative
ability of PSI for the prognostic prediction of ENKTL. PSI-
based PFS, prediction sensitivity and specificity, and accuracy
of PSI were calculated. Differences in sensitivity and specific-
ity between the WSDL and CDL methods were compared

using the Fisher’s exact test. The log-rank test was used to
compare differences in PFS between the groups (PSI > 1 and
PSI < 1). Multivariate analysis using the Cox proportional
hazards model was used to assess the independent effects of
PSI and clinical parameters of the disease. P < 0.05 indicated
statistical significance.

Results

Extraction of deep learning features

One hundred and twenty-eight features were extracted from
tumor ROIs outlined on 18F-FDG PET/CT scans of each pa-
tient using the proposed WSDL method. These ROIs were
outlined based on lesion locations and shapes, while non-
meaningful background was cut off. The 128 features were
grouped into feature maps of 16 × 8 strips. The feature maps
of the test set (n = 20) have been illustrated in Fig. 3. In gen-
eral, characteristic differences between relapse and non-
relapse patients could be visualized on these maps. The feature
maps of the training set (n = 64) have been illustrated in
Supplementary Figure S1 (relapse) and S2 (non-relapse),
whereas those of the 83 patients with incomplete or missing
follow-up data and who were imaged using the aforemen-
tioned scanners are illustrated in Figure S3. The feature maps
of the test set (Figure S4) and training set (Figure S5 for
relapse, Figure S6 for non-relapse) with the CDLmethod have
also been illustrated in supplementary figures.

PSI as the prognostic score

Patients with PSI > 1 were considered to show a positive re-
sponse, while those with PSI < 1 were considered to show a
negative response. The ROC curves of the results of the

Fig. 2 An illustration of the concept of the proposed weakly supervised deep learning method
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WSDL and CDL methods were compared (Fig. 4). With the
WSDLmethod, in the training and test sets, PSI achieved area
under the curve (AUC) scores of 0.986 (P = 0.000, 95% CI,
0.957–1.000) and 0.875 (P = 0.005, 95% CI, 0.706–1.000),
respectively, in the prediction of PFS, while with the CDL
method, PSI achieved AUC scores of 0.995 (P = 0.000, 95%
CI, 0.984–1.000) and 0.734 (P = 0.083, 95% CI, 0.479–
0.989), respectively (AUC of the training set was calculated
only based on data pertaining to the 64 patients). Table 2
shows accuracy and prognosis results. In the training set, the
sensitivity of the WSDL method was superior to that of the

CDLmethod (86.7% vs 73.3%, P = 0.048), while the methods
showed the same specificity (100%). Due to the small number
of patients in the test set, a comparison was not feasible.

According to PSI, patients were divided into two groups:
PSI > 1 and PSI < 1. The Kaplan–Meier survival analysis
method was used to compare differences in PFS between the
groups. We observed that patients with low PSI (PSI < 1)
showed good prognosis and long PFS, while those with high
PSI (PSI > 1) showed poor prognosis and short PFS. Figure 5
shows the Kaplan–Meier curves of PFS according to PSI. The
extracted PSI was able to segregate patients in the training set

Fig. 3 Visualization of the feature maps (16 × 8) representing 128
features extracted by the proposed WSDL method in the test set. Each
strip represents the feature map of a patient. Red arrows indicate the

characteristic difference between the (A) relapse and (B) non-relapse
groups in the test cohort. PSI results with incorrect predictions have been
marked by red boxes

Fig. 4 ROC curves comparing
the predictive power of PSI for
PFS in the training (A) and test
(B) sets. ROC, receiver operator
characteristic; AUC, area under
the curve; PSI, prediction simi-
larity index; WSDL, weakly su-
pervised deep learning; CDL,
conventional deep learning
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with different PFS in case of both theWSDL (P < 0.0001) and
CDL (P < 0.0001) methods (Fig. 5A and C). Similarly, in the
test set, the WSDL (P = 0.0017) and CDL (P = 0.0177)
methods could distinguish patients with different PFS (Fig.
5B and D).

Predictive value of other clinical and imaging
parameters and integrated analysis

Major clinical factors, such as gender, serum lactate dehydro-
genase levels, ECOG score, β2-microglobulin levels, and
Epstein–Barr virus DNA, were significantly associated with
PFS in univariate analysis. Conventional imaging parameters,
including PET/CT-based Ann Arbor stage, MTV, and TLG,
were also significantly associated with PFS in univariate anal-
ysis (refer to Table 3 for more details). Furthermore, we com-
bined PSI with these clinical parameters to analyze the prog-
nosis of ENKTL using the multivariate Cox proportional

hazard model. We found that PSI was the only independent
significant predictor of PFS. TheWSDLmethod (HR, 15.183;
95% CI, 5.479–42.077; P = 0.000) achieved better PFS prog-
nosis than the CDL method (HR, 7.857; 95% CI, 3.276–
18.843; P = 0.000) after adjustment for various cofactors, as
listed above.

Discussion

The prognosis of high-risk ENKTL patients is generally poor
[32, 38], and treating such patients is thus challenging.
Although new regimes have been proposed, the response re-
mains suboptimal due to strong disease heterogeneity [38].
Prognostic index of natural killer lymphoma (PINK) is a
well-established index based on age, serum lactate dehydro-
genase level, performance status, and disease stage. The PINK
model [39] is based on clinical information; patients with the

Fig. 5 Kaplan–Meier estimates of
PFS in the training (A) and test
(B) sets of patients with high and
low PSI. PFS, progression-free
survival; PSI, prediction similari-
ty index; WSDL, weakly super-
vised deep learning; CDL, con-
ventional deep learning

Table 2 Deep learning feature-based detection efficiency and prognosis prediction

Training set with WSDL (n=64) Test set with WSDL (n=20) Training set with CDL (n=64) Test set with CDL (n=20)

Sensitivity 86.67% 87.50% 73.33% 62.5%

Specificity 100% 83.33% 100% 83.33%

Accuracy 93.75% 85.00% 87.50% 75.00%

2-year PFS (PSI>1) 34.6%±9.3% 33.3%±15.7% 36.4%±10.3% 28.6%±17.1%

2-year PFS (PSI<1) 92.1%±4.4% 90.9%±8.7% 85.7%±5.4% 84.6%±10.0%

5-year PFS (PSI>1) 3.8%±3.8% 22.2%±13.9% 4.5%±4.4% 28.6%±17.1%

5-year PFS (PSI<1) 92.1%±4.4% 90.9%±8.7% 77.1%±9.5% 74.0%±13.2%

Abbreviations: PFS, progression-free survival; PSI, prediction similarity index; WSDL, weakly supervised deep learning; CDL, conventional deep
learning
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same PINK score could even show different prognosis. As a
clinical molecular imaging method, 18F-FDG PET/CT shows
good potential to help stratify patients and optimize prognosis
for the treatment of many types of cancers [9, 40–42].
However, considering the low incidence of ENKTL, the po-
tential of this method for predicting the prognosis of ENKTL
remains poorly explored. Conventional 18F-FDG PET/CT-
related parameters, such as SUVmax, SUVmean, MTV, and
TGL, have been found to show a correlation with survival, but
the results have been debatable [30, 31, 36, 43]. These param-
eters cannot facilitate a comprehensive image-based analysis
of tumors and cannot be integrated in hematological guide-
lines [44] because prospective studies with larger cohort of
patients and methodological harmonization are needed [45].
Our univariate analysis indicated that SUVmax and
SUVmean were not related to prognosis, while MTV and
TGL were related to prognosis. However, multivariate analy-
ses indicated that none of them were associated with progno-
sis. Considering the rarity of ENKTL, it is difficult to predict
its prognosis, particularly in small cohort of patients.

Considering the potential of AI in facilitating data analyses
to discover useful information, we aimed to develop and val-
idate AI methods to overcome the restriction of limited data
availability and to explore the prognostic value of 18F-FDG
PET/CT in ENKTL. We herein proposed an AI model that
could utilize incomplete or missing follow-up data to enhance
the prediction potential of deep learning methods. This

improved prediction power of AI led to the extraction of fea-
ture maps from 18F-FDG PET/CT as effective surrogates for
prognosis prediction in patients with ENKTL. Furthermore,
the method could automatically discover characteristic fea-
tures in metabolic imaging. Our results confirmed the benefits
of AI for comprehensive imaging analyses, wherein the pro-
posed PSI was better than conventional clinical parameters
and other PET-related parameters for prognosis prediction.

AI methods tend to be biased toward texture rather than
shape, while human cognitive processes function in the oppo-
site manner [46]. Conventional 18F-FDG PET/CT-related pa-
rameters, such as Ann Arbor stage, SUVmax, SUVmean,
MTV, and TGL, have been already covered within the AI
framework, and they reportedly have inferior predictive per-
formance than deep learning methods [47]. The current devel-
opments occurring within the field of AI can add value to
conventional PET analyses. To avoid redundancy and corre-
lation of tested data and to lower the number of parameters
tested in view of the limited size of our cohort, Ann Arbor
stage, MTV, and TLG were not included in multivariate anal-
ysis, although they were found to be related to prognosis in
univariate analysis. For multivariate analysis, clinical prog-
nostic factors and PSI were included. PSI eventually emerged
to be the only independent predictor of PFS.

Despite their potential, the application of AI-based
methods to clinical trials remains challenging due to limited
sample sizes. Deep learning research is particularly difficult

Table 3 Univariate analysis involving patients with follow-up data

Characteristics Training cohort (n=64) Test cohort (n=20) Total (n=84)

Cutoff value P Cutoff value P Cutoff value P

Gender M/F 0.100 M/F 0.017 M/F 0.010

Age 60 0.184 60 0.041 60 0.742

Serum LDH 169* (0.092) 0.263 223* (0.137) 0.065 231.5 (0.019) 0.000

ECOG score 0/1/2/3/4 0.057 0/1/2/3/4 0.023 0/1/2/3/4 0.005

Ki67 60%* (0.767) 0.548 80%* (0.665) 0.870 70%* (0.970) 0.809

β2-microglobulin 188* (0.076) 0.387 454* (0.248) 0.328 820 (0.040) 0.001

EBV DNA +/− 0.018 +/− 0.012 +/− 0.001

Ann Arbor stage I–II/III–IV 0.000 I–II/III–IV 0.000 I–II/III–IV 0.000

B symptoms +/− 0.300 +/− 0.441 +/− 0.193

PSI with CDL 1 0.000 1 0.018 1 0.000

PSI with WSDL 1 0.000 1 0.002 1 0.000

SUVmax 11.1* (0.382) 0.876 15.05* (0.418) 0.880 12.25* (0.218) 0.871

SUVmean 6.35* (0.453) 0.927 8.6* (0.298) 0.312 6.875* (0.249) 0.677

MTV 18.04 (0.002) 0.000 15.695* (0.165) 0.415 25.325 (0.001) 0.000

TLG 94.738 (0.004) 0.000 124.133* (0.316) 0.415 109.952 (0.006) 0.001

*Median value

Abbreviations: M, male; F, female; +, positive; −, negative; PFS, progression-free survival; PSI, prediction similarity index; WSDL, weakly supervised
deep learning; CDL, conventional deep learning; LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; EB virus, Epstein–Barr
virus; SUV, standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis
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for rare diseases such as ENKTL. Moreover, not all recruited
patients can be finally enrolled due to missing or incomplete
follow-up. Therefore, we developed a WSDL method in an
attempt to solve this problem. During the training of WSDL,
implicit labels are generated by exploring similarities among
patients, and this diversity can be captured by a deep neural
network. Most supervised data augmentation methods have
been developed by using unlabeled data for regularization
under particular distributional assumptions, such as cluster
or smoothness assumption [48]. However, the performance
of such a model can be considerably deteriorated if the real
data distribution violates the assumed distribution [14]. In this
study, the proposedWSDLmethod with integrated PNU strat-
egy did not make additional assumptions about data distribu-
tion; therefore, the performance of prognosis prediction was
efficiently and robustly improved. We conducted a pilot study
to reutilize the data without follow-up information to boost the
prediction accuracy of patient survival; consequently, the ad-
vantages of the proposed WSDL method were confirmed in
our test set. By employingWSDL, prognoses of patients in the
test set could be significantly differentiated, and the results
were better than on using CDL. Therefore, the proposed
WSDL method may act as a practical tool for developing
individualized treatment strategies using clinical trial data.

Tumor heterogeneity in baseline PET/CT images may
allow better signature characterization and improve pre-
diction of therapy response and survival in malignant tu-
mors [49, 50]. Ko et al. [49] investigated whether the
textural features of pretreatment 18F-FDG PET images
could predict the prognosis for ENKTL; they reported that
dissimilarity and low-intensity short-zone emphasis were
significant predictors of disease progression in patients
with ENKTL and were able to improve their prognostic
stratification. However, there were only 17 patients in this
retrospective study and details pertaining to the regimen
were not mentioned. In our study, PSI was validated as a
potential index for risk stratification and future manage-
ment of patients with ENKTL. Compared with texture
analyses, the results of deep learning are more difficult
to interpret. Deep learning–based radiomics studies [9]
evidently draw several image-based texture parameters
and the significance of many of them cannot be explained
in a clinical perspective; this hinders the application in
clinical routine. In addition to the proposed PSI, we also
visualized the extracted features as strips of feature maps.
Although these maps did not give us an in-depth insight
into physiological interpretation, they did give us an ad-
ditional view of recommendations derived from the black
box, and the different activation patterns may facilitate
quality control in practice. The feature maps were com-
posed of multiple features, and, therefore, they contained
more information than a single scalar value of PSI. An
increase in the dimension of the features may improve

prediction but may lead to overfitting. On the other hand,
a single scalar value is convenient for clinical interpreta-
tion. Therefore, it may be practical to consider both PSI
values and feature maps to gather better, more robust
information.

This study had several limitations. First, although we
employed WSDL to enhance data utilization, the sample
size was still small, which may reduce the test power and
predictive ability of deep learning methods. Similar to
other studies based on rare diseases, the difference be-
tween overall survival and PFS was not great, and we
did not perform overall survival-related survival analysis.
We only performed survival analysis based on PFS.
Second, tumors were outlined by a specialist in medical
radiology and nuclear medicine. As with previous stud-
ies, interobserver variations may exist in the manual de-
lineation and may influence the reported results [9].
Nevertheless, deep learning methods can automatically
learn features included in the hidden layers of neural
networks from imaging data, and they are less sensitive
to segmentation variations [51, 52]. Third, study data
were collected from a single center, and external valida-
tion is thus necessary to validate our findings. Finally,
potential patient selection biases may exist because of
the retrospective nature of this study.

To summarize, our proposed WDSL method was able to
utilize incomplete or missing follow-up data to improve sur-
vival prediction. Deep learning involving 18F-FDG PET/CT
provides an effective approach for prognosis prediction in
patients with ENKTL. The identified feature maps and PSI
may potentially assist the stratification of patients in therapy.
Future prospective studies with external validation are never-
theless warranted to validate our findings.
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Synopsis: This work proposes a Feedback Graph Attention Convolutional Network
(FB-GACN) for MR image enhancement via a self-similarity learning strategy to
update the features of each node in a graph. Learning the symmetry and similarity
relationship of each pair, the content with the same texture (e.g., edges, corners, and
lesions) gets sharper and can be used to remove some artifacts. It recovers more
texture details by employing the feedback mechanism (consecutive iterations) to
facilitate low-resolution (LR) images to reconstruct super-resolution (SR) images.
The proposed network achieves better high-resolution criteria and superior visual
quality compared to state-of-the-art methods in two crucial tasks: i) cross-protocol
super resolution of diffusion MRI and ii) MRI artifacts removal.

Contributions of thesis author: algorithm design and implementation, compu-
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Abstract

Artifacts, blur, and noise are the common distortions degrading MRI images during the
acquisition process, and deep neural networks have been demonstrated to help in improving
image quality. To well exploit global structural information and self-similarity details,
we propose a novel MR image enhancement network, named Feedback Graph Attention
Convolutional Network (FB-GACN). As a key innovation, we consider the global structure
of an image by building a graph network from image sub-regions that we consider to
be node features, linking them non-locally according to their similarity. The proposed
model consists of three main parts: 1) The parallel graph similarity branch and content
branch, where the graph similarity branch aims at exploiting the similarity and symmetry
across different image sub-regions in low-resolution feature space and provides additional
priors for the content branch to enhance texture details. 2) A feedback mechanism with
a recurrent structure to refine low-level representations with high-level information and
generate powerful high-level texture details by handling the feedback connections. 3) A
reconstruction to remove the artifacts and recover super-resolution images by using the
estimated sub-region self-similarity priors obtained from the graph similarity branch. We
evaluate our method on two image enhancement tasks: i) cross-protocol super resolution of
diffusion MRI; ii) artifact removal of FLAIR MR images. Experimental results demonstrate
that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Magnetic resonance imaging, image enhancement, self-similarity, graph simi-
larity branch, feedback mechanism.

1. Introduction

For Magnetic Resonance Imaging (MRI) sequences, it is an inevitable dilemma to achieve a
balance between image resolution, signal-to-noise ratio, and acquisition time (Brown et al.,
2014). Higher resolution imaging grasps more structural details and provides more diagnos-
tic information, but requires longer acquisition time (Sui et al., 2019). Since the signal-to-
noise ratio is proportional to the slice thickness and the square root of scanning time, the
longer acquisition time leads to the performance drop of the signal-to-noise ratio and tends
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to generate artifacts caused by physiologic motion such as respiratory motion and physical
movement of subjects. Considering the limited and costly MRI resource, some thick slices
and low scan time MRI images are usually utilized to get a desired signal-to-noise ratio
(Lee et al., 2020; Wu et al., 2019; Meurée et al., 2019). Consequently, the use of image
enhancement techniques is an established field of research in medical image computing and
imaging physics (Shi et al., 2015), for example, to prevent blurring and information loss
when co-aligning different image volumes in a multi-parametric sequence.

Recently, Convolutional Neural Network (CNN) based approaches have shown dramatic
improvements over traditional super-resolution (SR) methods and exhibited state-of-the-
art performance in natural and medical images. A super-resolution convolutional neural
network (SRCNN) (Dong et al., 2014) was proposed to learn a nonlinear mapping between
the low-resolution (LR) and high-resolution (HR) images. Wide residual networks with
fixed skip connections (Shi et al., 2018) was presented for MR images super-resolution. A
new CNN-based model (Tanno et al., 2017) was proposed for a diffusion tensor imaging SR
task. Besides, Graph Neural Networks (GNN) have also shown their powerful ability to
exploit structural information dealing with data of graph structure. The notation of GNN
was firstly introduced (Gori et al., 2005), and then further elaborated as a generalization
of recursive neural networks, which is widely used to explore the structural characters in
various applications including chemistry, recommender systems, and social network study
to deal with challenge tasks, e.g., finding the chemical compounds that are most similar
to a query compound, tackling the graph similarity computation for query systems (Bai
et al., 2019). Nowadays, it is an interesting trend to combine GNN and CNN to develop
their corresponding advantages (Veličković et al., 2018). GNNs help with reducing the data
dimensionality from image features extracted by CNN to high-level and compact features
in graph nodes. FCNs are limited in the receptive field. Adding a GNNs could increase the
receptive field of networks when dealing with large images. The combination of CCN and
GNN is a convolutional graph neural network that generalizes the operation of convolution
from grid data to graph data. It plays a central role in building up many complex GNN
models (Wu et al., 2020).

To avoid generating inconsistent HR results after replacing the LR patches, in our
method, the similar patch pairs are matched in feature space and the graph attention
mechanism is used to update features representation of each patch (node) with the adap-
tive weight combination of those similar patches’ features. As far as we know, it is the first
work to explore the self-similarity and continuous relationship of MRI and fully exploit the
feedback mechanism to increase the reconstruction accuracy for MR images. More specifi-
cally, in this paper, we propose a novel biomedical image enhancement network based on the
feedback mechanism and graph attention convolutional network, where graph networks are
employed as a self-similarity strategy which assigns larger weights to the more important
and similar nodes or features.

The main contributions of this paper are:

1) We propose a Feedback Graph Attention Convolutional Network (FB-GACN) for MR
image enhancement. To the best of our knowledge, it is the first work to construct
a graph-based network into the image enhancement by exploring globally structural
similarity among similar paired sub-regions.

2

61



FB-GACN

Feature 

Extraction

Upsampling 

Block

Graph Similarity Branch 

...

Feedback  Connection

 Content Branch

Convolutional 

layer

Deconvolutional 

layer

Reshape

 Operation
GAT layer

Convolutional 

Layer (1×1)

i

T=4

X

XT

X+XT

X+XT

Element-wise Summation

i Judgment of Feedback Connection

T

Feedback Connection

Forward Pass

T< 4

Upscale

Figure 1: Architecture of the proposed FB-GACN model. Our FB-GACN contains three
parts: 1) The content block to generate the high-level texture details. 2) The
graph attention branch to exploit the similarity and symmetric knowledge across
MRI patches. 3) A reconstruction to remove the artifact and reconstruct super-
resolution MRI by using the estimated patch correlation priors. The feedback
mechanism is the recurrent structure to refine x features with high-level xT by
the feedback connections.

2) We propose a self-similarity learning strategy to update the features of each node in
a graph. Learning the symmetry and similarity relationship of each pair, the content
with same texture (e.g., edges, corners, and lesions) gets sharper and can be used to
remove some artifacts. It recovers more texture details by employing the feedback
mechanism (consecutive iterations) to facilitate LR images to reconstruct SR images.

3) We demonstrate the performance in two crucial tasks: i) cross-protocol super resolu-
tion of diffusion MRI and ii) MRI artifacts removal. The proposed network achieves
better high-resolution criteria and superior visual quality compared to state-of-the-art
methods.

2. Method

The whole pipeline consists of following three steps. Firstly, a stack of convolution layers
extracts the low-resolution features of input distortion images. Afterward, the content
branch and graph similarity branch work parallel to exploit the texture and self-similarity
information. Finally, the upsampling block reconstructs final super-resolution results using
the estimated patch correlation and texture priors.
Specialized design for MR images: Our method aims to learn the symmetry and self-
similarity relationship of patch-based features in multi-modal brain MR images where the
structure of the brain is normally symmetry, shown in Fig. 2 (a). To meet this requirement,
we designed a specialized Graph-based structure to merge the high-similarity information of
sub-regions by updating larger weights to the more important and similar nodes or features
in a graph attention fashion.
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Figure 2: (a) Exploring the self-similarity features to remove artifacts: Swapping the arti-
facts features in Patch 2 with clear features of Patch 1. (b) The employed at-
tention mechanism. A shared linear transformation W is applied to every node.
Afterwards, a self-attention mechanism a is calculated on features to learn the
correlation among nodes. (c) An illustration of multi-head attention mechanism
by node 1 on its neighbors.

2.1. Architecture of FB-GACN

The structure of the proposed FB-GACN is illustrated in Fig. 1. A long skip connection
is added to pass the upsampled LR image to the output result as we only want to learn
the residual modifications. After feature extraction, the output are low-resolution features
with the dimension of h × w × d, where h and w denote the spatial dimension of the LR
input and d is the number of feature channels. Then the LR features are imported into
the content branch and graph similarity branch, respectively. The upsampling block U is
made up of deconvolution layers to upscale the HR features, and convolutional layers to
recover a residual image. The final reconstruction SR images are the pixel-wise sum of the
upsampled LR input and the residual image. The mathematical formulation is elaborated
as:

ISR = fU
[
fG
(
fE
(
ILR

))
+ fF

(
fE
(
ILR

))]
+ ILRup , (1)

where fE(·), fG(·), fF (·), and fU (·) represent the operations of the feature extraction E,
graph similarity branch G, content branch F and upsamling U blocks, respectively. The
objective function is L1 norm-based loss function. The network is trained by minimizing
the objective function as following:

`(θ) =
1

n

n∑

i=1

∥∥ISRi − IHRi

∥∥
1
, (2)

whre θ and n are the parameters of the network and the number of images pairs, respectively.
ISRi is the reconstruction of super-resolution MRI, and IHRi is the corresponding ground
truth.

2.2. Graph Similarity Branch

Graph similarity branch employs graph attention network layers (GAT) (Veličković et al.,
2018) to make use of the contextual information among image patches to help recover struc-
ture and remove artifacts. After feeding the extracted LR feature maps to a convolutional
layer with stride of s and kernel size of p, we form a graph using the n × d matrix where
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we assume there exist n nodes with d-th dimensional features. Each node is connected
with five neighboring nodes and the attention coefficient of each node is updated. The
single graph attention layer is shown in Fig. 2. The input of the single attention layer is

a set of node features, h = {−→h 1,
−→
h 2, ...,

−→
h N }, hi ∈ RF , where N is the number of nodes,

and F is the number of features in each node. The GAT layer updates a new set of node

features, h
′

= {−→h ′
1,
−→
h

′
2, ...,

−→
h

′
N }, h

′
i ∈ RF ′

. Then a learnable linear transformation and
self-attention is performed on the nodes (a shared attention mechanism a : RF

′×RF ′ → RF

computes attention coefficients):

eij = a(W
−→
h i,W

−→
h j), (3)

which represents the importance of node j to node i. Afterwards, the attention coefficients
are normalized by the softmax function:

αij = softmaxj(eij) =
exp(eij)∑

k∈N
exp(eij), (4)

Following (Veličković et al., 2018), the attention mechanism a is a single-layer feedforward
neural network, parametrized by weight matrix −→a ∈ R2F ′

. After applying the LeakyReLU
nonlinearity, the coefficients are also expressed as:

αij =
exp(LeakyReLU(−→a T [W

−→
h i‖W

−→
h j ]))∑

k∈Ni
exp(LeakyReLU(−→a T [W

−→
h i‖W

−→
h k]))

, (5)

where (·)T represents the transposition operations and ‖ means the concatenation. Then
the final output of each node is updated on the strength of the similar neighborhood LR

feature nodes
−→
h j :

−→
h

′
i = σ


∑

j∈N
αijW

−→
h j


 , (6)

We also employ the content branch to recover texture details shown in Fig. 1, which is
a stack of 3 deconvlutional and 3 convolutional layers.

2.3. Feedback Mechanism

The feedback mechanism is a loop iteration to allow the network to correct previous states
and regenerate high-level representations. Such iterative cause-and-effect process helps to
achieve the principle of the feedback scheme for image SR: high-level information can guide
an LR image to recover a better SR image (Li et al., 2019). In our network, we utilize
the feedback mechanism to transfer the feature summation with high-level information
got from two branches to the low-level information of an input x. The judgment of the
feedback connection controller (shown in Fig. 1) determines the time (T ) of the feedback
iteration, also named the feedback connection. The feedback mechanism is the recurrent
CNN structure to refine x features with high-level xT by the feedback connections (T − th
iteration). It can be unfolded to T iteration, in which each iteration t is temporally ordered
from 1 to T. The hidden state of each iteration is tied with the loss function and the weight
parameters of each iteration are shared. The input of t-th iteration receives the feedback
information t-1 iteration to correct original low-level inputs.

5
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Table 1: Quantitative results of cross-protocol super-resolution and artifacts removal tasks.
The best results are highlighted in bold.

Methods Super-Resolution Artifacts Removal
PSNR SSIM PSNR SSIM

Bicubic 27.34±1.32 0.8882±0.0232 22.58±3.59 0.6855±0.1345
SRCNN (Dong et al., 2014) 29.46±1.68 0.9042±0.0796 24.68±3.38 0.7294±0.1216
VDSR (Kim et al., 2016) 29.66±1.18 0.9026±0.0731 25.39±2.72 0.7588±0.0921
EDSR (Lim et al., 2017) 30.23±1.56 0.9145±0.0229 25.68±3.61 0.7824±0.0952

DDBPN (Haris et al., 2018) 30.34±1.56 0.9171±0.0208 25.58±3.56 0.7821±0.0952
FB-GACN (Ours) 30.48±1.63 0.9185±0.0194 25.78±3.71 0.7839±0.1003

3. Experimental Results

3.1. Datasets

Two experiments were conducted to evaluate the performance of the feedback graph atten-
tion convolutional network. The first experiment is solving a cross-protocol super-resolution
problem on diffusion MRI data (MUSHAC) (Tax et al., 2019). The HR images were ob-
tained by state-of-the-art diffusion MRI acquisition by Prisma scanner with voxel size (1.5
× 1.5 × 1.5 mm3), and the corresponding LR images were scanned by the standard acqui-
sition of Prisma with a larger voxel size (2.4 × 2.4 × 2.4 mm3). Nine subjects are used
as training set and one subject for testing. For the second experiment, we utilize the pro-
posed network to remove the MRI artifacts and regenerate HR images by the scale ×2. We
randomly divided the public WMH dataset (Kuijf et al., 2019) into training (2225 images
from 48 patients), validation (278 images from 6 patients) and test parts (278 images from
6 patients). Afterward, the simulated artifacts of FLAIR modality (Kuijf et al., 2019) were
generated by the physical model of MRI motion artifacts.

Ground truth Proposed VDSR SRCNN Bicubic

Figure 3: Comparison with state-of-the-art methods of cross-protocol super-resolution on
the diffusion MRI data (MUSHAC). Best viewed by zooming in on the screen.
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3.2. Implementation Details

In each training batch, nine LR patches are randomly extracted as inputs. We train our
model 300 epochs with ADAM optimize and learning rate is set as 10−4 initially and is
divided by 2 every 80 epochs. We implement experiments with PyTorch using a NVIDIA
TITAN X GPU.

3.3. Comparisons with State-of-the-Art Methods

In order to evaluate the performances of our algorithms, we compare them with the start-
of-the-art methods qualitatively and quantitatively. The four most recent state-of-the-art
super-resolution methods are listed as follows: the Very Deep Super Resolution Network
(VDSR) from (Kim et al., 2016), the Super-Resolution Convolutional Neural Network (SR-
CNN) from (Dong et al., 2014),the Enhanced Deep Residual Networks (EDSR) from (Lim
et al., 2017), and the Deep Back-Projection Networks For Super-Resolution (DBPN) from
(Haris et al., 2018). We use open-resource implementations from the authors and train all
the networks on the same dataset for a fair comparison.

Ground truth Proposed VDSR SRCNN Bicubic

Figure 4: Comparison with state-of-the-art methods of artifacts removal with magnification
factors ×2 and the input size 100×100. Best viewed by zooming in on the screen.

3.4. Quantitative Results

The quantitative evaluation of the network using the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) scores are listed in Table 1.
Cross-Protocol Super-Resolution: This task is to evaluate the the performance of our
method on the cross-protocol diffusion MRI quality enhancement. Our method achieves
better results in comparison with other state-of-the-art methods, especially 3.46 dB higher
than the traditional bicubic interpolation method.
Artifacts Removal: To verify the effectiveness of our proposed network towards removing
MRI artifacts and super-resolution scale ×2, the PSNR and SSIM results of MRI artifacts
are listed in Table 1. Our method outperforms all the state-of-the-art algorithms with the
best PSNR 25.78 dB and SSIM 0.7839.
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3.5. Qualitative Evaluation

Cross-Protocol Super-Resolution: The qualitative results of our methods on the diffu-
sion MRI data (MUSHAC) by the standard and the start-of-the-art acquisition of Prisma
are shown in Figure 3. It can be observed that our proposed method obtains higher visual
quality and recovers clearer structures with finer contrast.
Artifacts Removal: The qualitative results of our methods at magnifications ×2 with
artifacts are shown in Figure 4. It can be observed that our proposed method can remove
artifacts and obtain the super-resolution results from the LR images. It recovers clearer
structures with finer contrast, edges and lesion information.

3.6. Ablation study

Table 2: Ablation study results (PSNR/SSIM): Comparisons our proposed model with the
configuration without (w/o) the graph similarity knowledge.

Ablation configuration Super-Resolution Artifacts Removal

w/o graph similarity 30.35/0.9177 25.65/0.7735

ours 30.48/0.9185 25.77/0.7835

Graph similarity knowledge: We conduct an ablation study to demonstrate the effec-
tiveness of the graph similarity branch. We compare the proposed network with and without
patch-based similarity knowledge in terms of PSNR and SSIM on the test data, shown in
Table 2. The graph similarity branch boosts the performance both in the super-resolution
and artifacts removal tasks.
Feedback Mechanism: We explore the effect of the iterative number of feedback connec-
tions. It can be observed from Table 3 that the reconstruction performance is improved
when the iterative number increases from T = 1 to T = 4. Considering the balance between
the computational time and the performance, T = 4 is chosen as the iterative number in
our paper.

Table 3: The impact of the iterative number T of feedback connection.
Feedback Connection T=1 T=2 T=3 T=4

Super-Resolution 30.22/0.9172 30.28/0.9173 30.34/0.9177 30.48/0.9185

Artifacts Removal 25.26/0.7632 25.41/0.7647 25.49/0.7682 25.77/0.7835

4. Conclusion

In this paper, we proposed a novel feedback graph attention convolutional network to en-
hance the visual quality and remove the common distortions (e.g., artifacts) of MR images,
considering the self-similarity and correlations across MRI sub-regions. We regard each
sub-region as a node and construct a graph to capture the global structure. We employ
the feedback mechanism to recover texture details by refining low-level representations with
high-level information in a time-series way. Comprehensive qualitative and quantitative ex-
periments show that our algorithm can remove artifacts and further generate high-resolution
MRI with finer structure, contrast and lesion information.

——————————————–
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7

Concluding Remarks

Nowadays, radiologists undertake an increasing number of clinical decisions based on
complex readings including medical images and tabular data. This complicated process
is a barrier that preventing the physicians from giving an appropriate report in time.
Nevertheless, the emergency of deep learning has boosted the development of medical
computer-aided technique and have assisted physicians in providing a more exact
diagnosis in a shorter time in the clinical workflow by exhibiting a quantitative analysis
of suspicious lesions. Furthermore, as a combination of diagnosis, treatment, and
prognosis considering individual variability, the success of precision medicine mainly
attribute to robust quantitative imaging biomarkers, which can be implemented
by deep learning algorithms. In this thesis, we aim to tackle some challenging
problems on medical image analysis(i.e., segmentation, prognostic analysis, medical
image synthesis) with state-of-the-art deep learning algorithms. Since this thesis is a
publication-based paper and each chapter 3 to 6 is independent, this final conclusion
provides a summary and a general discussion of medical image analysis as well as
outlook in the computer-aided medical system.

7.1 Conclusion

In Chapter 3 we applied the technique of multi-level activation to the nested classes
segmentation of glioma. The results of our experiments indicate that the multi-level
activation function and its corresponding loss function are efficient compared to
Softmax output layer based on the same network framework. Using the MCE loss
function and a reweighting scheme with power-law = 0.4, we obtain Dice scores 86%
for complete tumor, 77% for tumor core and 72% for enhancing core on the validation
leaderboard of the 2018 BRATS challenge, proving the applicability of the multi-level
activation scheme. Finally, this activation could be combined with other network
architectures. Using it with the best performing architecture of the BRATS challenge
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could even lead to further improved results.
In Chapter 4, we presented a coarse-to-fine adversarial network architecture

that introduces a multi-scale feature loss to stabilize the adversarial network for
biomedical image segmentation tasks. The proposed architecture saves a significant
amount of computational memory and time by extracting the lesion bounding box
in the coarse stage. Moreover, the results of the four metrics in the experiments
(Dice Similarity Coefficient, Sensitivity, Hausdorff Distance and Average Volume
Difference) on the ENKL dataset demonstrate that the proposed method outperforms
the state-of-the-art U-net segmentation method. The presented method is a general
framework and has the potential to be used in general semantic segmentation tasks.
We proposed the zone-based uncertainty criteria (lesion-based and background-based
criteria) based on Monte Carlo dropout method. The uncertainty of our deep learning
model is quantitatively analyzed, and makes it possible to clearly understand the
main uncertainty source. Moreover, the quantitative uncertainty analysis provides
clinicians with information permitting them to quickly assess, whether they should
accept or reject lesions of high uncertainty.

Additionally, in Chapter 5, our proposed WDSL method was able to utilize
incomplete or missing follow-up data to improve survival prediction. Deep learning
involving 18F-FDG PET/CT provides an effective approach for prognosis prediction
in patients with ENKTL. The identified feature maps and PSI may potentially assist
the stratification of patients in therapy. Future prospective studies with external
validation are nevertheless warranted to validate our findings.

Finally, in Chapter 6, we proposed a novel feedback graph attention convolutional
network to enhance the visual quality and remove the common distortions (e.g.,
artifacts) of MR images, considering the self-similarity and correlations across MRI
sub-regions. We regard each sub-region as a node and construct a graph to capture
the global structure. We employ the feedback mechanism to recover texture details
by refining low-level representations with high-level information in a time-series way.
Comprehensive qualitative and quantitative experiments show that our algorithm
can remove artifacts and further generate high-resolution MRI with finer structure,
contrast and lesion information

7.2 Outlook

7.2.1 Interpretability of Deep Learning

Although there are plenty of successful applications of deep learning models on
medical image analysis, the lack of interpretability is a key factor that preventing deep
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learning models from widely being adopted in healthcare [6]. This is mainly because
physicians find the deep learning models are complicated with numerous unexplained
hyper-parameters that are often designed on specific diseases. Considering that the
higher interpretability of models can give easier comprehensions and explanations of
healthcare decisions for end-users, there is a great desire to make deep learning models
more transparent and interpretable. Further, these interpretable deep learning models
allow radiologists to design reasonable solutions to make personalized decisions
or permit them to quickly assess whether they should accept or reject solutions.
Several strategies have been proposed to evaluate and visualize the saliency features
of intermediate layers in convolutional networks, such as deconvolution networks
[132], guided back-propagation [133] or deep Taylor composition [134], which aim to
understand what a network perceives. Another way to improve model transparency
is to provide uncertainty or probability analysis for outputs. As a powerful tool for
uncertainty, Bayesian deep learning [135] combined Bayesian statistics with deep
learning to approximate network uncertainty. Overall, the current interpretation
methods have their limitations [136, 137, 138, 139], which fail to give an accurate
and comprehensive explanation, and are still an interesting area to be explored.

7.2.2 Neural Architecture Search

For existing deep learning architectures of medical image analysis, the model design
heavily relies on the experience of artificial intelligence (AI) researchers and needs
higher requirements for radiologists who only have medical background and lack of
computer-aided system knowledge. Hence, in order to further decrease the human
intervention on model design, neural architecture search is proposed to achieve
an end-to-end automatic architecture design. Recently, neural architecture search
(NAS) attracts massive interests in developing algorithms to automatically search
desirable neural architectures [140, 141, 142, 143, 144] by using search strategies
(e.g., evolutionary algorthim [143], reinforcement learning [141] or gradient-based
differentiable methods [142]). Architectures obtained by the NAS have achieved
highly competitive performance especially in high-level medical image analysis tasks
such as image classification [145], localization [146], radiomics [147] and semantic
segmentation [148, 149]. But studies of neural architecture search on low-level
tasks (e.g., MRI cross-modality synthesis, CT/PET super-resolution) are still limited
and can be performed to meet the demand of purely automatic building of neural
architecture without manual adjustment.
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7.2.3 Federated Learning

Medical data collection of cross-institution and cross-centers is a good approach to
build a satisfactory data-driven deep learning architecture within the constraints of
data protection and privacy. Since data privacy and protection are crucially important
for medical data analysis [150], new techniques also named federated learning [151]
are proposed for training models without exposing the underlying training data to
the model users. Specifically, each local client learns the local model from its own
data and is blind to other client data. The federated learning aggregates the model
parameters of other clients at the central server to build up a global model. Although
some pilot progress has been achieved on segmentation tasks [152, 153], there are a
lot of issues that should be further addressed (e.g., improve model generalizability
onto unseen domains).
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