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Abstract

In this thesis, we present the three novel set representations sparse polynomial zonotopes,
constrained polynomial zonotopes, and the Z-representation of polytopes. One major appli-
cation for these novel set representations is the verification of cyber-physical systems using
reachability analysis, for which we introduce various improvements as well as novel algo-
rithms and approaches. Besides reachability analysis, there exist several other applications
that use set-based computations and consequently profit from our novel set representations,
some of which we discuss in detail in this thesis.

We first introduce sparse polynomial zonotopes, a novel non-convex set representation
that is closed under linear map, Minkowski sum, Cartesian product, convex hull, and
quadratic map. Constrained polynomial zonotopes extend sparse polynomial zonotopes by
adding polynomial equality constraints for the dependent factors to obtain a set representa-
tion that is additionally closed under intersection and union. For both, sparse polynomial
zonotopes and constrained polynomial zonotopes, the computational complexity for all rel-
evant set operations is only polynomial with respect to the dimension, so that these novel
set representations are well suited for the analysis and verification of high-dimensional
systems. Finally, our novel Z-representation of polytopes is often more compact than the
vertex representation and the halfspace representation for polytopes that are similar to
zonotopes.

Concerning reachability analysis, we first demonstrate the benefits of sparse polynomial
zonotopes for computing outer-approximations of reachable sets for nonlinear continuous
systems. Next, we show that with sparse polynomial zonotopes relations between initial
states and reachable states are preserved, which results in a very efficient method for the ex-
traction of reachable subsets. Finally, we introduce novel approaches for calculating tight
inner-approximations of reachable sets for nonlinear continuous systems and for reacha-
bility analysis of hybrid systems with nonlinear guard sets. All reachability algorithms
presented only have polynomial complexity with respect to the system dimension and we
demonstrate their superior performance compared to other state of the art approaches on
several numerical examples.

For constrained polynomial zonotopes, we discuss the two applications set-based obser-
vation and program verification using inductive invariants in detail, for both of which the
closedness under intersection and union is very advantageous. The novel Z-representation
of polytopes can be applied for range bounding on polytopic domains and has a strong
relationship to generalized barycentric coordinates.
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Zusammenfassung

In dieser Dissertation präsentieren wir die drei neuen Mengendarstellungen Sparse Polyno-
mial Zonotopes, Constrained Polynomial Zonotopes, und die Z-Representation von Poly-
topen. Eine der Hauptanwendungen dieser neuen Mengendarstellungen ist die Verifika-
tion von cyber-physischen Systemen mittels Erreichbarkeitsanalyse, wofür wir zahlreiche
Verbesserungen sowie neue Algorithmen und Methoden einführen. Zusätzlich zu Erreich-
barkeitsanalyse gibt es viele andere Anwendungen welche mengenbasierten Berechnungen
benutzen und somit von unseren neuen Mengendarstellungen profitieren.

Zuerst führen wir mit Sparse Polynomial Zonotopes eine neue Mengendarstellung ein
welche unter linearen Abbildungen, Minkowski Additionen, kartesischen Produkten, kon-
vexen Hüllen, und quadratischen Abbildungen geschlossen ist. Constrained Polynomial
Zonotopes erweitern Sparse Polynomial Zonotopes indem sie den Wertebereich der Fak-
toren durch polynomielle Gleichungen einschränken, was in einer Mengendarstellung re-
sultiert welche zusätzlich unter Schnitten und Vereinigungen geschlossen ist. Sowohl für
Sparse Polynomial Zonotopes als auch für Constrained Polynomial Zonotopes wächst die
Rechenkomplexität aller gängigen Mengenoperationen nur polynomiell mit der Dimension
an. Des Weiteren kann unsere neue Z-Representation Polytope welche Zonotopen ähnlich
sind oft kompakter darstellen als die Eckpunkt- und die Halbraum-Darstellung.

Für Erreichbarkeitsanalyse demonstrieren wir zunächst die Verbesserungen durch Sparse
Polynomial Zonotopes für die Berechnung von Über-Approximationen der erreichbaren
Menge für nichtlineare kontinuierliche Systeme. Anschließend zeigen wir, dass mit Sparse
Polynomial Zonotopes die Zuordnung zwischen den initialen Zuständen und den erreich-
baren Zuständen erhalten bleibt, was in einer sehr effizienten Methode für die Extraktion
von erreichbaren Teilmengen resultiert. Schließlich präsentieren wir neue Ansätze für die
Berechnung von engen Unter-Approximationen der erreichbaren Menge für nichtlineare
kontinuierliche Systeme sowie für Erreichbarkeitsanalyse von hybriden Systemen mit nicht-
linearen Übergängen zwischen den diskreten Moden. Für alle Erreichbarkeitsalgorithmen
welche wir präsentieren wächst die Rechenkomplexität nur polynomiell mit der Dimension
an. Darüber hinaus demonstrieren wir die Performanz unserer Algorithmen im Vergleich
zu anderen Ansätzen anhand zahlreicher numerischer Beispiele.

Für Constrained Polynomial Zonotopes diskutieren wir mengenbasierte Zustands-
beobachter und die Verifikation von Computerprogrammen mittels induktiver Invarianzge-
biete im Detail, wobei die Geschlossenheit unter Schnitten und Vereinigungen für beide
Anwendungen von großem Vorteil ist. Die neue Z-Representation von Polytopen kann
unter anderem dafür genutzt werden Grenzen für die Werte einer nichtlinearen Funktion
zu berechnen wenn die Werte für die Variablen der Funktion auf ein Polytop beschränkt
sind. Außerdem besteht eine starke Verbindung zwischen der Z-Representation und den
generalisierten baryzentrischen Koordinaten eines Polytops.
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Notations

In this thesis, we use the following notations: Vectors are denoted by lowercase letters, ma-
trices by uppercase letters, sets by calligraphic letters, matrix sets (e.g., interval matrices)
by bold calligraphic letters, tuples and lists by bold uppercase letters, objects by Ralph
Smith’s Formal Script Font (e.g., hybrid automaton H ), and operators in typewriter font
(e.g., center).

Number Sets

The set of natural numbers is denoted by N = {1, 2, . . . }, the set of natural numbers
including zero is denoted by N0 = {0, 1, 2, . . . }, the set of real numbers is denoted by R,
and the set of imaginary numbers is denoted by I.

Discrete Sets and Tuples

Given a discrete set H ∈ {h1, . . . , hn}, |H| = n denotes the cardinality of the set and the
empty set is denoted by ∅. Similarly, given a n-tuple H = (h1, . . . , hn), |H| = n denotes the
cardinality of the tuple and H(i) = hi refers to the i-th entry of tuple H. Moreover, given
a tuple K = (k1, . . . , kn) with ∀i ∈ {1, . . . , n} : ki ∈ Rmi , notation K(i,j) = ki(j) refers
to the j-th entry in the i-th element of K. The empty tuple is denoted by ∅. Given two
tuples H = (h1, . . . , hn) and K = (k1, . . . , km), (H,K) = (h1, . . . , hn, k1, . . . , km) denotes
the concatenation of the tuples.

Sets in Euclidean Space

Given two set operations A, B and a set S ⊂ Rn, the composition of the set operations
is denoted by A(B(S)) = (A ◦ B)(S). Moreover, 2S denotes the power set and ∂S denotes
the boundary. In addition, operation center(S) returns the center, operation volume(S)
returns the volume, and operation vertices(S) returns the vertices of the set S. Indices
for sets are passed on to variables describing quantities, e.g., the number of zonotope
generators li belongs to the zonotope Zi.

Matrices and Vectors

Given a vector b ∈ Rn, b(i) refers to the i-th entry. Similarly, given a matrix A ∈ Rn×m,
A(i,·) represents the i-th matrix row, A(·,j) the j-th column, and A(i,j) the j-th entry of
matrix row i. Given a discrete set of positive integer indices H = {h1, . . . , h|H|} with
∀i ∈ {1, . . . , |H|} : 1 ≤ hi ≤ m, notation A(·,H) is used for [A(·,h1) . . . A(·,h|H|)], where
[C D] denotes the concatenation of two matrices C and D. The symbols 0 and 1 represent
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matrices and vectors of zeros and ones of proper dimension and the empty matrix is denoted
by [ ]. The identity matrix of dimension n×n is denoted by In ∈ Rn×n. Given two vectors
a ∈ Rn and b ∈ Rn, we use the notation a ≺ b as a shorthand for a(1) ≺ b(1)∧. . .∧a(n) ≺ b(n),
where ≺∈ {≤, <,=, >,≥}. Moreover, |a| = [|a(1)| . . . |a(n)|]T is interpreted elementwise.
Given a matrix A ∈ Rn×n and a vector a ∈ Rn, operation diag is defined as

diag(A) =

A(1,1) . . . 0
...

. . .
...

0 . . . A(n,n)

 , diag(a) =

a(1) . . . 0
...

. . .
...

0 . . . a(n)

 ,
operation offdiag is defined as offdiag(A) = A−diag(A), and operation det(A) returns
the determinant of the matrix. For matrix sets such as interval matrices we use the same
notation as for numerical matrices.

Mathematical Operators

The ceil operator dxe and the floor operator bxc round a scalar number x ∈ R to
the next higher and lower integer, respectively. Given two integers p ∈ N0 and q ∈ N,
the modulo operation p mod q returns the remainder of the division p/q. The binomial
coefficient is denoted by

(
r
z

)
with r, z ∈ N, r ≥ z. Given a matrix A ∈ Rn×m, a vector

a ∈ Rn, and scalars x1, . . . , xn ∈ R, max(A) returns the maximum entry in the matrix
A, max(a) returns the maximum entry in the vector a, and max(x1, . . . , xn) returns the
maximum scalar. Similarly, min(A), min(a), and min(x1, . . . , xn) returns the minimum
entries. Moreover, given a vector a ∈ Rn, ||a||1 denotes the 1-norm, ||a||2 denotes the
Euclidean norm, and ||a||∞ denotes the infinity norm.

Functions

Given a function f : Rn → R, f(x)|a = f(a) denotes the evaluation of function f(x) at
a point x = a ∈ Rn. Moreover, the Nabla operator is defined as

∇f(x) =
∂f(x)

∂x
=

[
∂f(x)

∂x1

. . .
∂f(x)

∂xn

]T
,

where x = [x1 . . . xn]T ∈ Rn. For vector fields g : Rn → Rm we write ∇g(x) =
[∇g(1)(x) . . . ∇g(m)(x)]T and we use the shorthands ∇2g(x), ∇3g(x), etc., for higher order
derivatives. In addition, g(i) dentoes the i-th subfunction g(i) : Rn → R of the vector field
g(x).

Computational Complexity

The computational complexity is denoted using the Big O notation O. For operations
whose complexity depends on the used method we denote by O(reduce) the complexity of
zonotope order reduction (see Tab. 2.3), by O(bound) the complexity of range bounding
(see Tab. 2.4), and by O(contract) the complexity of contractors (see Tab. 2.5). Moreover,
for the derivation of computational complexity we consider all binary operations except
concatenations and initializations are explicitly not considered.



Computing Platform and
Implementation

All computations in this thesis are carried out in MATLAB on a 2.9GHz quad-core i7
processor with 32GB memory. Moreover, we integrated all approaches presented in this
thesis into the reachability toolbox CORA [1] published at https://cora.in.tum.de, so
that the corresponding code is already publicly available or will be made publicly available
with the next release of the CORA toolbox. For Chapter 4, we additionally published our
implementation in CodeOcean compute capsules, which make it possible to conveniently
reproduce the corresponding results:

• Section 4.1: Outer-Approximations of Reachable Sets for Nonlinear Continuous Sys-
tems (https://codeocean.com/capsule/3393653/tree/v1)

• Section 4.2: Reachable Subsets (https://codeocean.com/capsule/8904078/tree/
v1)

• Section 4.3: Inner-Approximations of Reachable Sets for Nonlinear Continuous Sys-
tems (https://codeocean.com/capsule/5233492/tree/v2)

• Section 4.4: Reachability Analysis for Hybrid Systems with Nonlinear Guard Sets
(https://codeocean.com/capsule/4124536/tree/v1)

https://cora.in.tum.de
https://codeocean.com/capsule/3393653/tree/v1
https://codeocean.com/capsule/8904078/tree/v1
https://codeocean.com/capsule/8904078/tree/v1
https://codeocean.com/capsule/5233492/tree/v2
https://codeocean.com/capsule/4124536/tree/v1
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Chapter 1

Introduction

1.1 Motivation

During the past three-hundred years, humanity witnessed three major industrial revolu-
tions: First, steam power and mechanization completely transformed the industry during
the 18th century. Next, the introduction of mass production and electric energy in the
19th century defined the second revolution. Finally, the third revolution during the 20th
century realized computers and automation in industry. Currently, we are in the middle
the forth industrial revolution, which is characterized by modern smart technology and
artificial intelligence. A major component of the resulting Industry 4.0 are cyber-physical
systems, where computer algorithms control mechanical or electrical components. Many of
these systems, like for example autonomous cars, robot surgery, and robots collaborating
with humans, are safety-critical, meaning that human lives get endangered every time these
systems fail. Consequently, one key aspect for accelerating the forth industrial revolution
is to formally verify that cyber-physical systems function correctly. However, since the
complexity of these systems increases permanently, their formal verification becomes more
and more complicated, so that novel verification approaches and algorithms with improved
performance are required. The development of such improved verification techniques is the
topic of this thesis.

In particular, we focus on the formal verification of complex cyber-physical systems using
reachability analysis. Given a cyber-physical system whose dynamic behavior is described
by an ordinary differential equation or a hybrid automaton, the reachable set of the system
consists of all states that are reachable from a given initial set X0 under consideration of
bounded disturbances that can change arbitrarily over time. As visualized in Fig. 1.1, this
implies that the reachable set contains all possible system trajectories that start in X0.
Since the exact reachable set cannot be computed in general, our goal is to compute a
tight outer-approximation instead. Safety requirements and desired system behaviors are
expressed by specifications, which define sets of unsafe or forbidden states the system should
not enter (see Fig. 1.1). Typical specifications are, for example, that the temperature in a
chemical reactor should stay below a certain threshold, that the altitude of a quadrocopter
reaches the desired value after a certain time, or that an autonomous car should not collide
with other traffic participants. To verify with reachability analysis that the specifications
are satisfied, we simply check if the outer-approximation of the reachable set intersects
any of the unsafe sets defined by the specifications. If no intersection occurs, then there
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X0

Figure 1.1: Schematic visualization of the reachable set (gray) for the initial set X0, where single
trajectories are depicted by black lines and the unsafe sets defined by the specifications are shown
in orange.

exists no trajectory starting in the initial set which enters an unsafe set. Consequently,
the specifications are satisfied and the system is proven to be safe. However, if the outer-
approximation intersects an unsafe set, we do not know if the system really is unsafe or
if the intersection only occurs due to the over-approximation, since we cannot compute
the exact reachable set. To solve this issue, an inner-approximation of the reachable set
can be used. If the inner-approximation intersects an unsafe set, it is guaranteed that the
specification is violated. In this thesis, we present novel approaches for computing tight
outer-approximations and inner-approximations for cyber-physical system, which can be
used to efficiently prove as well as disprove specifications.

All reachability algorithms we consider in this thesis use set-based computing. One major
requirement to obtain tight outer-approximations and inner-approximations of reachable
sets is therefore a powerful set representation. The four main performance evaluation
criteria for set-representations are their generality, their representation size, their closedness
under set operations, and their computational complexity:

• Generality: If all sets of a set representation A can be equivalently represented by set
representation B, we have that B is a generalization of A. For example, every interval
can be equivalently represented as a polytope, so that polytopes are a generalization
of intervals.

• Representation size: The representation size of a set representation refers to the
number of scalar values that have to be stored for each set of this set representation.
Intervals, for example, have a very small representation size since an n-dimensional
interval can be represented with 2n scalar numbers only.

• Closedness under set operations: A set representation is closed under a set
operation if the set which results from applying the set operation can be represented
exactly by the same set representation. For example, the intersection of two intervals
yields an interval, so that intervals are closed under intersections. On the other hand,
the linear map of an interval is not an interval, so that intervals are not closed under
linear maps.

• Computational complexity: The computational complexity of a set operation for
a specific set representation indicates how the computational effort increases with re-
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Figure 1.2: Visualization of the relations between different set representations, where A → B
denotes that B is a generalization of A.

spect to the dimension. For example, the Minkowski sum for intervals has complexity
O(n), so that the computation time increases linearly with the dimension n.

In this thesis we introduce novel set representations that can equivalently represent most
common set representations, have quite small representation size due to the usage of a
sparse representation, are closed under all relevant set operations, and realize those with
algorithms that only have polynomial complexity with respect to the dimension. Due to
these advantageous properties, our novel set representations are an excellent fit for reach-
ability analysis of cyber-physical systems. Moreover, there exist many other applications,
such as set-based observers or range bounding on polytopic domains, that benefit from our
novel set representations; we present some of them in detail in this thesis.

1.2 State of the Art

We now provide an overview of the current state of the art for set-based computing in
general, where we focus on different set representations and their respective properties in
particular. Literature reviews for specific applications, such as reachability analysis or set-
based observers, are provided separately in the corresponding sections later on to improve
readability. Over the past years, many different set representations have been used in or
developed for set-based computations. Relations between typical set representations are
illustrated in Fig. 1.2. Moreover, Tab. 1.1 shows which set representations are closed under
relevant set operations, and lists the corresponding computational complexities.

All convex sets can be represented by support functions [2, Ch. C.2]. Moreover, linear
map, Minkowski sum, Cartesian product and convex hull are trivial to compute for support
functions [3, Prop. 2], which makes them a good fit for reachability analysis of linear
continuous systems [3–5] and hybrid systems [6, 7]. Even though support functions are
closed under intersection, there exists no closed-form expression for the computation of
this operation, and support functions are not closed under union and quadratic maps. One
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special case of support functions are ellipsoids, which are closed under linear map only.
However, ellipsoids are very compact since an n-dimensional ellipsoid can be represented
with only n

2
(n+3) scalar numbers [8, Eq. 2.3]. Due to this advantageous property ellipsoids

have been widely used for various applications including reachability analysis [9], set-based
observers [10], and controlled invariant set computation [11,12].

Another special case of support functions are polytopes, which are closed under linear
map, Minkowski sum, Cartesian product, convex hull, and intersection [13, Ch. 3.1]. The
computational complexity of the set operations for polytopes depends on the used rep-
resentation [14], where the two main representations are the halfspace representation (H-
representation) and the vertex representation (V-representation): For the H-representation,
linear maps with full-rank square matrices, Cartesian products, and intersections are cheap
to compute, while Minkowski sums and convex hulls are computationally expensive [14].
For singular matrices the linear map defines a projection, whose computation is NP-hard
in H-representation [15, Tab. 1]. If redundant points are not removed, computation of the
Cartesian product and the convex hull are trivial for the V-representation. However, since
the number of vertices usually grows exponentially with the dimension, linear map and
Minkowski sum have exponential complexity for the V-representation, and calculating the
intersection is NP-hard [14]. The conversion from V-representation to H-representation
is known as the facet enumeration problem, and the inverse problem of finding the V-
representation given the H-representation is known as the vertex enumeration problem.
Due to the duality of H-representation and V-representation [13, Ch. 3.4], both problems
are actually equivalent and can be computed in polynomial time with respect to the num-
ber of polytope vertices [16], which, however, is exponential with respect to the dimension.
While polytopes have been applied for various applications including reachability analy-
sis [17,18], set-based observers [19], and controlled invariant set computation [20,21], they
are in general restricted to low-dimensional systems due to their large representation size
and high computational complexity for some set operations.

An important subclass of polytopes are zonotopes [23, Ch. 7.3], which can be compactly
represented by so-called generators: A n-dimensional zonotope with l generators might
have up to 2

(
l

n−1

)
halfspaces [24, Ch. 2.2.1]. In addition, linear map, Minkowski sum, and

Cartesian product can be computed exactly and efficiently for zonotopes [5, Tab. 1], which
makes them an excellent fit for reachability analysis of linear systems [5, 25]. Moreover,
zonotopes have been successfully applied for set-based observers [26,27], controlled invari-
ant set computation [28], and program verification [29]. Zonotopes are closely related to
affine arithmetic [30] with the zonotope factors being identical to the noise symbols in affine
arithmetic. Two extensions of zonotopes are zonotope bundles [31] and constrained zono-
topes [32], which are both able to represent any bounded polytope. Constrained zonotopes
additionally consider linear equality constraints for the zonotope factors, whereas zono-
tope bundles represent the set implicitly by the intersection of several zonotopes. Both
representations make use of lazy computations and thus suffer much less from the curse
of dimensionality as it is the case for the V-representation and H-representation of poly-
topes. Two other set representations related to zonotopes are complex zonotopes [33] and
zonotopes with sub-polyhedric domains [34]. Complex zonotopes are defined by complex
valued vectors and are well suited to verify global exponential stability for systems with
complex valued eigenvectors [33]. Zonotopes with sub-polyhedric domains use zones, oc-
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Table 1.1: Computational complexity of set operations with respect to the dimension n for differ-
ent set representations, where symbol × indicates that the set representation is not closed under
the operation, symbol − indicates that no closed-form expression exists, and the shorthand s. p.
denotes super-polynomial complexity. For zonotopes, polytopes, constrained zonotopes, zono-
tope bundles, support functions, and star sets the complexity for a set spanned by n generators is
specified, and it is assumed that potential redundancies in the set representation are not removed.
Moreover, w denotes the resulting dimension for the linear map and the quadratic map, and sym-
bol † indicates that the complexity for linear maps with full-rank square matrices is specified. The
computational complexities for sparse polynomial zonotopes and constrained polynomial zono-
topes slightly differ from those derived in this thesis since the removal of redundancies and the
generation of unique identifiers is omitted for a fair comparison. References for all set operations
are provided in [22, Tab. 1].

Set
Representation

Lin.
Map

Mink.
Sum

Cart.
Prod.

Conv.
Hull

Quad.
Map

Inter-
section

Union

Intervals × O(n) O(1) × × O(n) ×
Zonotopes O(wn2) O(n) O(1) × × × ×
Polytopes (H-Rep.) O(n3)† O(2n) O(1) s. p. × O(1) ×
Polytopes (V-Rep.) O(wn2n) O(n22n) O(1) O(1) × s. p. ×
Polytopes (Z-Rep.) O(wn2) O(n) O(n) O(n2) × s. p. ×
Con. Zonotopes O(wn2) O(n) O(1) O(n) × O(n) ×
Zonotope Bundles O(n3)† - O(1) - × O(1) ×
Ellipsoids O(n3)† × × × × × ×
Support Functions O(wn2) O(n) O(n) O(n) × − ×
Taylor Models O(wn2) O(n) O(1) O(n2) O(wn3) × ×
Level Sets O(n3)† − O(1) − − O(1) O(1)

Star Sets O(wn2) O(n) O(1) − − − −
Sparse Poly. Zono. O(wn2) O(n) O(1) O(n2) O(wn3) × ×
Con. Poly. Zono. O(wn2) O(n) O(1) O(n2) O(wn3) O(n) O(n)

tagons, and polyhedra instead of intervals to represent the domain for the zonotope factors,
which enables the efficient computation of intersections and unions of sets by exploiting
lazy computations [34]. Finally, two special cases of zonotopes are parallelotopes, which
are zonotopes with linearly independent generators, and multi-dimensional intervals. Due
to their computational efficiency, parallelotopes are a popular set representation for set-
based observers [35, 36]. Intervals are especially useful for range bounding of nonlinear
functions using interval arithmetic [37, Ch. 2.3], but have also been used for reachability
analysis [38,39] and controlled invariant set computation [40]. Since intervals are not closed
under linear map, algorithms computing with intervals often split them to obtain a desired
accuracy, which yields a so-called subpaving [37, Ch. 3].
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All set representations discussed so far are convex. However, most cyber-physical sys-
tems are characterized by nonlinear or hybrid dynamics, and reachable sets as well as
controlled invariant sets for nonlinear and hybrid systems are in general non-convex. Con-
sequently, non-convex set representations are required for the computation of tight outer-
approximations and inner-approximations if the computational expensive splitting of sets
should be avoided. Common non-convex set representations are Taylor models, polyno-
mial zonotopes, star sets, and level sets. Taylor models [41] consist of a polynomial and an
interval remainder part, and are typically used for range bounding [41,42] and reachability
analysis [43–46]. Polynomial zonotopes, which are introduced in [47] for reachability anal-
ysis of strongly nonlinear systems, can equivalently represent the set defined by a Taylor
model. Quadratic zonotopes [48] are a special case of polynomial zonotopes, which have
been used for program verification [48]. The concept of star sets [49] is similar to the one
of constrained zonotopes, but logical predicates instead of linear equality constraints are
used to constrain the values of the zonotope factors, which increases the expressiveness.
Star sets are especially useful for simulation-based reachability analysis [49–51]. Finally,
level sets of nonlinear functions are applied for reachability analysis [52, 53], controlled
invariant regions computation [54, 55], and program verification [56, 57]. One advantage
of level sets is that containment checks are straightforward and computationally efficient.
While star sets and level sets are very expressive, it is yet unclear how some operations,
such as nonlinear mapping, are computed.

In this thesis, we introduce the novel set representations sparse polynomial zonotopes,
constrained polynomial zonotopes, and the Z-representation of polytopes. As shown in
Tab. 1.1, contrary to existing set representations, these novel set representations only have
polynomial complexity for all relevant set operations. Moreover, constrained polynomial
zonotopes are the only set representation for which closed-form expressions for all set oper-
ations including intersection and union exist. In addition, all common set representations
except support functions, star sets and level sets can be equivalently represented as con-
strained polynomial zonotopes, which is illustrated in Fig. 1.2. Due to this advantageous
properties, our novel set representations are well suited for applications that use set-based
computing, such as reachability analysis, set-based observers, or program verification using
inductive invariants.

1.3 Outline of the Thesis

In this thesis, we introduce novel set representations with several advantageous proper-
ties, present new approaches for reachability analysis of nonlinear continuous and hybrid
systems, and discuss several other applications for our novel set representations in detail.

Chapter 2: Background and Preliminaries

We begin by introducing some concepts and operations that are required throughout
this thesis in Chapter 2. In particular, we first formally define all set operations that we
consider in Sec. 2.1, before we introduce common set representations in Sec. 2.2. Next, in
Sec. 2.3, we present different classes of dynamical systems and formally define reachable
sets. Afterward, we recapitulate some standard operations, such as linear programming and
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singular value decomposition in Sec. 2.4, and introduce some useful auxiliary operations in
Sec. 2.5. Finally, we explain and discuss some commonly used methods for zonotope order
reduction, range bounding, and contraction in Sec. 2.6, Sec. 2.7, and Sec. 2.8.

Chapter 3: Extensions of Polynomial Zonotopes

One of the main parts of this thesis is Chapter 3, where we introduce the three novel
set representations sparse polynomial zonotopes, constrained polynomial zonotopes, and
the Z-representation of polytopes. We first present our sparse representation of polynomial
zonotopes in Sec. 3.1, which stores polynomial zonotopes very compactly and consequently
only has polynomial complexity with respect to the system dimension for all relevant set
operations. Next, we introduce constrained polynomial zonotopes in Sec. 3.2, which extend
sparse polynomial zonotopes by adding polynomial equality constraints on the dependent
factors, resulting in a set representation that is closed under all relevant set operations in-
cluding intersection and union. Finally, we present the novel Z-representation of polytopes
in Sec. 3.3, which stores polynomial zonotopes that represent polytopes very efficiently
and is consequently often more compact than the H-representation or V-representation for
polytopes that are close to zonotopes. For each set representations we derive closed-from
expressions for all basic set operations, for the conversion from and to other set repre-
sentations, and for useful auxiliary operations, such as order reduction. In addition, we
present results for the tight enclosure with simpler set representations and for intersection
and containment checks.

Chapter 4: Reachability Analysis

A major application for our novel set representations is the verification of cyber-physical
systems using reachability analysis, which we consider in Chapter 4. We begin by demon-
strating the advantages resulting from the usage of sparse polynomial zonotopes for com-
puting outer-approximations of reachable sets for nonlinear continuous systems in Sec. 4.1.
Next, we show in Sec. 4.2 that sparse polynomial zonotopes preserve the relations be-
tween initial states and reachable states, which results in a very efficient method for the
extraction of reachable subsets. Afterward, we present a novel algorithm for efficiently
computing tight inner-approximations of reachable sets for nonlinear continuous systems
in Sec. 4.3. Finally, in Sec. 4.4, we introduce a novel approach for reachability analysis of
hybrid systems with nonlinear guard sets. For all reachability approaches we demonstrate
the superior performance compared to existing approaches on several numerical examples.

Chapter 5: Selected Applications

Besides reachability analysis, there exist many other applications for the novel set rep-
resentations presented in this thesis, some of which we discuss in detail in Chapter 5. In
particular, we present a novel set-based observer that uses constrained polynomial zono-
topes in Sec. 5.1.1 and demonstrate in Sec. 5.1.2 how constrained polynomial zonotopes
can be applied for program verification using inductive invariants. Moreover, we illustrate
the advantages resulting form the usage of the Z-representation for range bounding on
polytopic domains in Sec. 5.2.1 and discuss the strong connection of the Z-representation
to generalized barycentric coordinates in Sec. 5.2.2.
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Chapter 2

Background and Preliminaries

In this chapter, we introduce some general concepts and operations that are required
throughout the thesis.

2.1 Set Operations

Just as there are some standard operations like addition and multiplication for scalar
numbers, there also exist standard operations for sets. In this thesis we consider the
basic set operations linear map, Minkowski sum, Minkowski difference, Cartesian product,
convex hull, quadratic map, intersection, union, and set difference. Given sets S1,S2 ⊂ Rn,
and S3 ⊂ Rw, these set operations are defined as follows:

−Linear map : M ⊗ S1 :=
{
Ms

∣∣ s ∈ S1

}
(2.1)

−Minkowski sum : S1 ⊕ S2 :=
{
s1 + s2

∣∣ s1 ∈ S1, s2 ∈ S2

}
(2.2)

−Minkowski diff. : S1 	 S2 :=
{
s
∣∣ s⊕ S2 ⊆ S1

}
(2.3)

−Cartesian prod. : S1 × S3 :=
{

[sT1 sT3 ]T
∣∣ s1 ∈ S1, s3 ∈ S3

}
(2.4)

−Convex hull : conv(S1,S2) :=

{ n+1∑
i=1

λi si

∣∣∣∣ si ∈ S1 ∪ S2, λi ≥ 0,
n+1∑
i=1

λi = 1

}
(2.5)

−Quadratic map : sq(Q,S1,S2) :=
{
x
∣∣x(i) = sT1Qis2, s1 ∈ S1, s2 ∈ S2, i = 1 . . . w

}
(2.6)

−Intersection : S1 ∩ S2 :=
{
s
∣∣ s ∈ S1 ∧ s ∈ S2

}
(2.7)

−Union : S1 ∪ S2 :=
{
s
∣∣ s ∈ S1 ∨ s ∈ S2

}
(2.8)

−Set difference : S1 \ S2 :=
{
s
∣∣ s ∈ S1 ∧ s 6∈ S2

}
, (2.9)

where M ∈ Rw×n is a matrix, and Q = {Q1, . . . , Qw} with Qi ∈ Rn×n, i = 1, . . . , w is a
discrete set of matrices. We use the shorthands sq(Q,S) = sq(Q,S,S) and conv(S) =
conv(S,S) for quadratic maps and convex hulls involving a single set S ⊂ Rn.

A generalization of the quadratic map are higher-order polynomial maps. Given sets
S1, . . . ,So ⊂ Rn and a set of coefficients A = {a(i)

j1,...,jo
∈ R | i ∈ {1, . . . , w}, j1, . . . , jo ∈

{1, . . . , n}}, the polynomial map of order o ∈ N defined by the multiplication of the sets
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S1S1

S2S2

Figure 2.1: Linear combination (left) and convex hull (right) of two non-convex sets S1 and S2.

S1, . . . ,So with the coefficients in A is

poly(A,S1, . . . ,So) :=

{
x

∣∣∣∣ x(i) =
n∑

j1=1

. . .

n∑
jo=1

a
(i)
j1,...,jo

· s1(j1) · . . . · so(jo),

s1 ∈ S1, . . . , so ∈ So, i = 1, . . . , w

}
.

(2.10)

As for the quadratic map we use the shorthand poly(A,S) = poly(A,S, . . . ,S) for polyno-
mial maps involving a single set S. The linear map as defined in (2.1) and the quadratic
map as defined in (2.6) represent special cases of polynomial maps with order o = 1 and
o = 2, respectively. As we show in Appendix A, all polynomial maps with order o > 2 can
be computed using a sequence of quadratic maps.

Besides the standard set operations, we consider an additional set operation which we
refer to as the linear combination. Given two sets S1,S2 ⊂ Rn, their linear combination is

comb(S1,S2) :=

{
1

2
(1 + λ)s1 +

1

2
(1− λ)s2

∣∣∣∣ s1 ∈ S1, s2 ∈ S2, λ ∈ [−1, 1]

}
. (2.11)

For convex sets, the convex hull and the linear combination are identical. However, for
non-convex sets the two operations differ, as it is visualized in Fig. 2.1. We consider both
operations since for many algorithms, such as reachability analysis [24, Eq. (3.4)], it is
sufficient to compute the linear combination instead of the convex hull, which is often
easier and computationally more efficient. Moreover, for connected sets the convex hull
can be computed using the linear combination:

Lemma 2.1.1. Given two connected sets S1 ⊂ Rn and S2 ⊂ Rn, the relation

conv(S1,S2) = comb
(
comb(S1,S1), comb(S2,S2)

)
holds between the convex hull and the linear combination.

Proof. The definition of the convex hull in (2.5) is based on Carathéodory’s theorem [58],
which states that even if the set S1 ∪S2 consists of more than n+ 1 disjoint regions, every
point in the convex hull can be represented as a linear combination of at most n+ 1 points
from S1 ∪ S2. For a single connected set S ⊂ Rn, which per definition of connectedness
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does not have any disjoint regions, it consequently holds that every point in the convex
hull can be represented as a linear combination of at most two points from S, yielding

conv(S) =

{ 2∑
i=1

λi si

∣∣∣∣ si ∈ S, λi ≥ 0,
2∑
i=1

λi = 1

}
=
{
λ1s1 + (1− λ1)s2

∣∣ s1, s2 ∈ S, λ1 ∈ [0, 1]
}
.

(2.12)

In addition, it trivially holds that

conv(S1,S2) = conv
(
conv(S1), conv(S2)

)
(2.13)

and {
λ1

∣∣ λ1 ∈ [0, 1]
}

=
{

0.5 + 0.5λ
∣∣ λ ∈ [−1, 1]

}
. (2.14)

Moreover, given a set S ⊂ Rn we have according to (2.12) and the definition of the linear
combination in (2.11) that

conv(S)
(2.12)
=
{
λ1s1 + (1− λ1)s2

∣∣ s1, s2 ∈ S, λ1 ∈ [0, 1]
} (2.14)

={
0.5(1 + λ)s1 + 0.5(1− λ)s2

∣∣ s1, s2 ∈ S, λ ∈ [−1, 1]
} (2.11)

= comb(S,S).

(2.15)

Using (2.13) and (2.15), we can therefore equivalently formulate the convex hull as

conv(S1,S2)
(2.13)
= conv

(
conv(S1), conv(S2)

) (2.15)
= conv

(
comb(S1,S1), comb(S2,S2)

)
,

which is identical to comb(comb(S1,S1), comb(S2,S2)) since the sets comb(S1,S1) and
comb(S2,S2) are convex according to (2.15).

Lemma 2.1.1 comes in handy for several derivations and proofs throughout this thesis.

2.2 Set Representations

There exist many different possibilities to represent sets. The most common set represen-
tations are introduced in this section. We begin with multi-dimensional intervals:

Definition 2.2.1. (Interval) [37, Eq. (2.59)] Given a lower bound l ∈ Rn and an upper
bound u ∈ Rn with l ≤ u, a multi-dimensional interval I ⊂ Rn is defined as

I := {x ∈ Rn | l ≤ x ≤ u}.

For a concise notation we use the shorthand I = [l, u].

Similar to Def. 2.2.1, an interval matrix I = [L,U ] ⊂ Rn×n, ∀i, j = 1, . . . , n : L(i,j) ≤
U(i,j) is a matrix where each matrix entry is an interval. For polytopes, the two most
common representations are the halfspace representation and the vertex representation.
The halfspace representation expresses a polytope as the intersection of halfspaces:
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Definition 2.2.2. (Polytope H-Representation) [24, Def. 2.1] Given a matrix A ∈ Rm×n

and a vector b ∈ Rm, the halfspace representation of a polytope P ⊂ Rn is defined as

P := {x ∈ Rn | Ax ≤ b} .

If P is unbounded, the set is called a polyhedron. The H-representation is redundant if P
can be equivalently represented with less inequality constraints. For a concise notation we
use the shorthand P = 〈A, b〉H for the H-representation.

On the other hand, the vertex representation expresses a polytope as the convex hull of
its vertices:

Definition 2.2.3. (Polytope V-Representation) [24, Def. 2.2] Given the s polytope vertices
vi ∈ Rn, the vertex representation of a polytope P ⊂ Rn is defined as

P :=

{ s∑
i=1

βivi

∣∣∣∣ βi ≥ 0,
s∑
i=1

βi = 1

}
.

The V-representation is redundant if the matrix [v1 . . . vs] contains points that are not
vertices of P. For a concise notation we use the shorthand P = 〈[v1 . . . vs]〉V for the
V-representation.

Zonotopes are a special class of polytopes, which can be represented very compactly
using so-called generators:

Definition 2.2.4. (Zonotope) [25, Def. 1] Given a center vector c ∈ Rn and a generator
matrix G ∈ Rn×l, a zonotope Z ⊂ Rn is defined as

Z :=

{
c+

l∑
i=1

αiG(·,i)

∣∣∣∣ αi ∈ [−1, 1]

}
.

The scalars αi are called factors, the vectors G(·,i) are called generators, and the zonotope
order is defined as ρ = l

n
. For a concise notation we use the shorthand Z = 〈c,G〉Z.

Constrained zonotopes, which were introduced in [32] and can equivalently represent any
bounded polytope, extend zonotopes by restricting the values for the zonotope factors by
equality constraints:

Definition 2.2.5. (Constrained Zonotope) [32, Def. 3] Given a constant offset c ∈ Rn, a
generator matrix G ∈ Rn×l, a constraint matrix A ∈ Rm×l, and a constraint vector b ∈ Rm,
a constrained zonotope CZ ⊂ Rn is defined as

CZ :=

{
c+

l∑
i=1

αiG(·,i)

∣∣∣∣ l∑
i=1

αiA(·,i) = b, αi ∈ [−1, 1]

}
.

For a concise notation we use the shorthand CZ = 〈c,G,A, b〉CZ.

An ellipsoid can be interpreted as the linear map of a sphere:

Definition 2.2.6. (Ellipsoid) [8, Eq. 2.3] Given a center vector c ∈ Rn and a symmetric
and positive definite matrix Q ∈ Rn×n, an ellipsoid E ⊂ Rn is defined as

E :=
{
x
∣∣ (x− c)TQ−1(x− c) ≤ 1

}
.

For a concise notation, we use the shorthand E = 〈c,Q〉E.
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Support functions can equivalently represent any convex set:

Definition 2.2.7. (Support Function) [4, Def. 1] Given a set S ⊂ Rn and a direction
d ∈ Rn, the support function sS : Rn → R of S is defined as

sS(d) = max
x∈S

dTx.

The set S can therefore be equivalently defined by specifying a closed-form expression for
its support function sS(d).

While all set representations considered so far are convex, Taylor models can represent
non-convex sets:

Definition 2.2.8. (Taylor Model) [43, Def. 2.1] Given a vector field w : Rr → Rn, where
each subfunction w(i) : Rr → R is a polynomial function

w(i) (x) =

mi∑
j=1

bi,j

r∏
k=1

x
Ei(k,j)
(k) , i = 1, . . . , n,

an interval domain I ⊂ Rr, and an interval remainder Y ⊂ Rn, a Taylor model T (x) ⊂ Rn

is defined as

∀x ∈ I : T (x) :=


w(1)(x)

...
w(n)(x)

+

y(1)
...
y(n)


∣∣∣∣∣∣∣ y ∈ Y

 ,

where Ei ∈ Nr×mi
0 is an exponent matrix and bi,j ∈ R are the polynomial coefficients. While

we consider the more general case with arbitrary interval domains I, Taylor models are
also often defined for normalized domains I = [−1,1]. The set defined by a Taylor model is
S = {T (x) | x ∈ I}. For a concise notation we use the shorthand T (x) = 〈w(x),Y , I〉TM .

Also level sets can represent non-convex sets:

Definition 2.2.9. (Level Set) [22, Def. 10] Given a vector field w : Rn → Ro, a level set
LS ⊂ Rn is defined as

LS :=
{
x
∣∣ w(x) ≺ 0

}
,

where ≺∈ {<,≤,=}. For a concise notation, we use the shorthand LS = 〈w(x),≺〉LS.

Relations between the different set representations are illustrated in Fig. 1.2.

2.3 Dynamic Systems and Reachable Sets

In order to verify the correct functionality of cyber-physical systems, a mathematical de-
scription of the system behavior is required. In this section, we present different types of
system models and introduce reachable sets. The dynamic behavior of a system can often
be represented with an ordinary differential equation.
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In the simplest case, this differential equation is linear:

Definition 2.3.1. (Linear System) Given a system matrix A ∈ Rn×n and an input matrix
B ∈ Rn×m, a linear system is defined by the differential equation

ẋ(t) = Ax(t) +Bu(t), (2.16)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the vector of system inputs, and t ∈ R≥0

is the time.

While linear systems are often easy to analyze and verify due to their simplicity, the
dynamics for most systems in the real world is actually nonlinear:

Definition 2.3.2. (Nonlinear System) Given a nonlinear Lipschitz continuous function
f : Rn × Rm → Rn, a nonlinear system is defined by the differential equation

ẋ(t) = f
(
x(t), u(t)

)
, (2.17)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the vector of system inputs, and t ∈ R≥0

is the time.

Linear systems as defined in Def. 2.3.1 represent a special case of nonlinear systems.
A further generalization of nonlinear systems are hybrid systems, which divide the state-
space into multiple discrete regions with different continuous dynamics. In this thesis, we
represent hybrid systems by hybrid automata:

Definition 2.3.3. (Hybrid Automaton) A hybrid automaton H with p discrete modes
consists of:

• A list F = (f1(x, u), . . . , fp(x, u)) storing the differential equations ẋ(t) =
fi(x(t), u(t)) describing the continuous dynamics in each mode i = 1, . . . , p.

• A list Y = (Y1, . . . ,Yp) storing the invariant sets Yi ⊂ Rn for each mode i = 1, . . . , p,
where the invariant set describes the region where the continuous dynamics of a mode
is active.

• A list T = (T1, . . . ,Tq) of transitions Ti = 〈Gi, ri(x), si, di〉T , i = 1, . . . , q between
discrete modes, where Gi ⊂ Rn is a guard set, ri : Rn → Rn is a reset function, and
si, di ∈ {1, . . . , p} are the indices of the source and target modes.

The state of a hybrid automaton consists of the continuous state x(t) ∈ Rn and the discrete
state σ(t) ∈ {1, . . . , p}. We use the shorthand H = 〈F,Y,T〉HA.

The evolution of a hybrid automaton is described informally as follows: Given an initial
continuous state x0 = x(0) and an initial discrete state σ0 = σ(0) with x0 ∈ Yσ0 , the
continuous state x(t) evolves according to the flow function fσ0(x, u) of mode σ0. If x(t)
is within the guard set Gi of a transition Ti = 〈Gi, ri(x), si, di〉T ∈ T with si = σ0, the
transition to the mode di is taken and the continuous state x(t) is updated according to the
reset function ri(x). Afterward, the evolution of the continuous state continues according
to the flow function fdi(x, u) of mode di until the next transition is taken. We denote
the trajectory of the continuous state for the evolution of the hybrid automaton described
above by ξ(t, x0, σ0, u(·)), where u(·) ∈ Rm is an input trajectory.
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To verify that cyber-physical systems modeled as linear systems, nonlinear systems, or
hybrid automata behave as desired, we use reachable sets:

Definition 2.3.4. (Reachable Set) Given an initial set X0 ⊂ Rn and a set of uncertain
inputs U ⊂ Rm, the reachable set for a linear or nonlinear system is

R(t) :=
{
ξ
(
t, x0, u(·)

) ∣∣ x0 ∈ X0, ∀τ ∈ [0, t] : u(τ) ∈ U
}
,

and the reachable set for a hybrid automaton is

R(t) :=
{
ξ
(
t, x0, σ0, u(·)

) ∣∣ x0 ∈ X0, ∀τ ∈ [0, t] : u(τ) ∈ U
}
,

where ξ(t, x0, u(·)) denotes the solution to (2.16) or (2.17) for an initial state x(0) = x0 and
the input trajectory u(·), and ξ(t, x0, σ0, u(·)) denotes the evolution of a hybrid automaton
for a continuous initial state x(0) = x0, a discrete initial state σ(0) = σ0, and the input
trajectory u(·).

Sometimes, we use the notation RX0(t) to denote the reachable set starting from the
initial set X0. Moreover, without loss of generality we assume throughout this thesis that
the initial time is equal to zero.

2.4 Standard Operations

In this section we present some mathematical standard operations and specify their com-
putational complexity. We begin with the sorting operation:

Definition 2.4.1. (Sorting) Given a vector d ∈ Rn, the operation sort sorts the entries
of d in ascending order and returns a vector o ∈ Nn that stores the indices of the sorted
vector:

sort(d) = o with d(o(1)) ≤ . . . ≤ d(o(n)).

The computational complexity of sorting a vector is O(n log(n)) [59, Ch. 5].

Next, we consider the eigenvalue decomposition:

Definition 2.4.2. (Eigenvalue Decomposition) Given a square matrix A ∈ Rn×n, eigen-
value decomposition computes the eigenvalues λ1, . . . , λn ∈ I and an orthonormal matrix
V ∈ In×n that stores the eigenvectors, such that

A = V

λ1 0
. . .

0 λn


︸ ︷︷ ︸

D

V T .

The above decomposition is only possible if the matrix A is diagonalizable. For symmetric
matrices all eigenvalues and eigenvectors are real, and all symmetric matrices are diago-
nalizable. The computational complexity is O(n3) [60].
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Singular value decomposition (SVD) can be interpreted as an extension of eigenvalue
decomposition to non-square matrices:

Definition 2.4.3. (Singular Value Decomposition) Given a matrix A ∈ Rn×m, singular
value decomposition computes an orthonormal matrix U ∈ Rn×n, a rectangular diagonal
matrix Σ ∈ Rn×m, and an orthonormal matrix V ∈ Rm×m such that

A = UΣV T .

The computational complexity is O(n2m+ n3) [61, Tab. 1].

Principal component analysis (PCA) applies SVD to determine the main directions of a
point cloud:

Definition 2.4.4. (Principal Component Analysis) Given points x1, . . . , xm ∈ Rn stored
in a matrix X = [x1 . . . xm] ∈ Rn×m, principal component analysis computes an orthonor-
mal matrix U = [u1 . . . un] ∈ Rn×n consisting of the n orthonormal direction vectors
u1, . . . , un ∈ Rn that maximize the variance by using the following SVD:

X̂ = UΣV T with X̂ = X − c · 1, c =
1

m

m∑
i=1

X(·,i).

For a concise notation, we use the shorthand U = pca(X). The computational complexity
is O(n2m+ n3) [62, Sec. 2].

The convex hull of a point cloud removes all points that are not extreme points:

Definition 2.4.5. (Convex Hull) Given points x1, . . . , xm ∈ Rn stored in a matrix X =
[x1 . . . xm] ∈ Rn×m, the convHull operation returns the extreme points:

convHull(X) = X(·,K),

where

K =

{
i

∣∣∣∣ ∀β1, . . . , βm ≥ 0 :

((
xi =

m∑
j=1

βjxj

)
∧
( m∑

j=1

βj = 1

))
⇒ (βi = 1)

}
.

The computational complexity for calculation of the convex hull depends on the algorithm.
We consider the Beneath-Beyond algorithm [63], which has according to [64, Thm. 3.16]
complexity O(mbn/2c+1).

Linear programs are a special type of optimization problem that can be solved very
efficiently:

Definition 2.4.6. (Linear Program) Given a vector c ∈ Rn defining the objective function,
a matrix A ∈ Rm×n and a vector b ∈ Rm defining the inequality constraints, and a matrix
Aeq ∈ Rp×n and a vector beq ∈ Rp defining the equality constraints, a linear program is
defined as

x∗ = min
x∈Rn

cTx

s.t. Ax ≤ b

Aeqx = beq.
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Table 2.1: Computational complexity of standard operations.

Operation Description Complexity Reference

Matrix multiplication A ·B, A ∈ Rn×m, B ∈ Rm×p O(nmp) [67, Ch. 1.1]

Sorting sort(d), d ∈ Rn O(n log(n)) [59, Ch. 5]

Eigenvalue decomp. A = V DV T , A ∈ Rn×n O(n3) [60]

Singular value decomp. A = UΣV T , A ∈ Rn×m O(n2m+ n3) [61, Tab. 1]

Principal comp. analysis pca(X), X ∈ Rn×m O(n2m+ n3) [62, Sec. 2]

Convex hull convHull(X), X ∈ Rn×m O(mbn/2c+1) [64, Thm. 3.16]

Linear program n variables O(n3.5) [65]

Convex quad. program n variables O(n4) [66, Thm. 4.1]

We use the shorthand x∗ = linProg(c, A, b, Aeq, beq). The computational complexity for
linear programming depends on the algorithm. We consider the algorithm in [65], which
has computational complexity O(n3.5) with respect to the number of optimization variables
n.

Quadratic programs are a generalization of linear programs. We consider convex
quadratic programs, which can be solved exactly:

Definition 2.4.7. (Convex Quadratic Program) Given a positive semi-definite matrix Q ∈
Rn×n and a vector c ∈ Rn defining the objective function, a matrix A ∈ Rm×n and a vector
b ∈ Rm defining the inequality constraints, and a matrix Aeq ∈ Rp×n and a vector beq ∈ Rp

defining the equality constraints, a convex quadratic program is defined as

x∗ = min
x∈Rn

xTQx+ cTx

s.t. Ax ≤ b

Aeqx = beq.

We use the shorthand x∗ = quadProg(Q, c, A, b, Aeq, beq). The computational complexity for
solving convex quadratic programs depends on the algorithm. We consider the algorithm
in [66], which has according to [66, Thm. 4.1] computational complexity O(n4) with respect
to the number of optimization variables n.

A summary of the computational complexities for all standard operations presented in
this section is provided in Tab. 2.1.

2.5 Auxiliary Operations

In this section we introduce some useful auxiliary operations and derive their computational
complexity. We begin with the operation sortColumns, which sorts the columns of a matrix
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Algorithm 1 Sort matrix columns

Require: Matrix A ∈ Rn×m

Ensure: Sorted matrix A ∈ Rn×m

1: o← sort(A(1,·))

2: A← [A(·,o(1)) . . . A(·,o(m))]

3: for i← 1 to n− 1 do

4: cnt← 1

5: for j ← 1 to m+ 1 do

6: if (j > m) ∨ (A(1,j) 6= A(1,cnt)) ∨ . . . ∨ (A(i,j) 6= A(i,cnt)) then

7: if j > cnt + 1 then

8: H ← {cnt, . . . , j − 1}
9: A← A(·,H)

10: o← sort(A(i+1,·))

11: A← [A(·,1) . . . A(·,cnt−1) A(·,o(1)) . . . A(·,o(|H|)) A(·,j) . . . A(·,m)]

12: end if

13: cnt← j

14: end if

15: end for

16: end for

A ∈ Rn×m in ascending order. Decisive for the order are the entries in the first matrix row,
where for duplicate entries the order is determined by the entries in the second row, and
so on and so forth. For an exemplary matrix A, this yields the result

A =

1 2 5 2 1 1
0 1 3 2 4 4
4 2 1 0 1 2

 , sortColumns(A) =

1 1 1 2 2 5
0 4 4 1 2 3
4 1 2 2 0 1

 .
The implementation of sortColumns is shown in Alg. 1. First, the matrix columns are
sorted according to the entries in the first row in lines 1-2 of Alg. 1. Afterward, the for-loop
in lines 3-16 iterates of the remaining matrix rows and sorts columns with identical entries
in the first i rows according to the entry in row i + 1. The computational complexity of
sortColumns is as follows:

Proposition 2.5.1. (Sort Matrix Columns) Given a matrix A ∈ Rn×m, the computational
complexity of sorting the matrix columns with the operation sortColumns(A) as imple-
mented in Alg. 1 is O(nm log(m)).

Proof. To derive the computational complexity of Alg. 1, we first consider a matrix with
only two columns for simplicity. In this case the matrix columns are first sorted according to
the entries in the first row in Line 1 of Alg. 1, which has according to Tab. 2.1 computation
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Algorithm 2 Remove duplicate matrix columns

Require: Matrix A ∈ Rn×m

Ensure: Matrix C ∈ Rn×k storing the non-redundant columns of A

1: A← sortColumns(A)

2: C ← A(·,1)

3: cnt← 1

4: for i← 2 to m do

5: if C(·,cnt) 6= A(·,i) then

6: C ← [C A(·,i))]

7: cnt← i

8: end if

9: end for

complexity O(m log(m)). Next, in lines 3-16, the second matrix row is split into K ∈
{1, . . . ,m} parts of variable length mi ∈ {1, . . . ,m} with

∑K
i=1mi = m, where each part

consists of columns with identical entries in the first matrix row. Finally, each of these
parts is sorted according to the values in the second matrix row in Line 11. Since the
complexity for sorting each part is O(mi log(mi), the overall complexity for Alg. 1 is

O(m log(m)) +
K∑
i=1

O(mi log(mi)) = O(m log(m)) +O
( K∑

i=1

mi log(mi)︸ ︷︷ ︸
≤log(m)

)

≤ O(m log(m)) +O
(

log(m)
K∑
i=1

mi︸ ︷︷ ︸
=m

)
= 2 · O(m log(m)).

For the general case with n instead of two matrix rows this procedure is repeated n times,
resulting in an overall complexity of n · O(m log(m)) = O(nm log(m)).

Next, we consider the operation uniqueColumns which removes all duplicate columns
from a matrix A ∈ Rn×m. The implementation of uniqueColumns is specified in Alg. 2.
First, the matrix columns are sorted in Line 1 of Alg. 2 using the operation sortColumns.
Afterward, the for-loop in lines 4-9 iterates over all columns and selects all columns that
are not duplicates. The computational complexity is as follows:

Proposition 2.5.2. (Unique Columns) Given a matrix A ∈ Rn×m, the computational
complexity of removing duplicate matrix columns with the operation uniqueColumns(A) as
implemented in Alg. 2 is O(nm log(m)).

Proof. Sorting the matrix columns with the operation sortColumns in Line 1 of Alg. 2 has
according to Prop. 2.5.1 a computational complexity of O(nm log(m)). In each iteration of
the for-loop in lines 4-9 we check in Line 5 if two vectors are identical, which has complexity
O(n). Since the for-loop consists of m iterations, the complexity of the whole for-loop is
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Algorithm 3 Generate unique identifiers

Require: Number of requested unique identifiers n ∈ N
Ensure: Vector id ∈ N1×n storing the generated identifiers

1: cnt← load current counter from memory

2: id← [ ]

3: for i← 1 to n do

4: cnt← cnt + 1

5: id← [id cnt]

6: end for

7: cnt→ write current counter to memory

Table 2.2: Computational complexity of auxiliary operations.

Operation Description Complexity

Sort matrix columns sortColumns(A), A ∈ Rn×m O(nm log(m))

Remove duplicate matrix columns uniqueColumns(A), A ∈ Rn×m O(nm log(m))

Generate unique identifiers uniqueID(n), n ∈ N O(n)

O(mn), which results in an overall complexity of O(nm log(m))+O(nm) = O(nm log(m))
for Alg. 2.

Finally, we consider the operation uniqueID which generates a vector of unique integer
identifiers. Alg. 3 shows the implementation of uniqueID. The counter cnt that is stored
in memory can be initialized with zero at a beginning of an algorithm that uses unique
identifiers. The computational complexity for uniqueID is as follows:

Proposition 2.5.3. (Unique Identifiers) The computational complexity for generating n ∈
N unique integer identifiers with the operation uniqueID as implemented in Alg. 3 is O(n).

Proof. In the for-loop in lines 3-6 of Alg. 3 n additions are performed, so that the overall
complexity is O(n).

An overview of the computational complexities for the auxiliary operations introduced
in this section is shown in Tab. 2.2.

2.6 Zonotope Order Reduction

For zonotopes, repeated calculation of Minkowski sums as required by many algorithms
significantly increased the number of generators, and consequently the representation size.
To prevent exploding computation times when computing with zonotopes, one therefore
requires efficient methods for representation size reduction. Since the zonotope order ρ
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Table 2.3: Computational complexity O(reduce) of zonotope order reduction methods, where
n ∈ N is the dimension of the zonotope, l ∈ N0 is the number of zonotope generators, and k ∈ N0

is the number of generators that are reduced.

Method Complexity
Complexity using

Reference
Assumption 2.6.2

Girard O(n(l + k) + l log(l)) O(n2) [25, Sec. 3.4]

PCA O(l log(l) + n3 + n2k + nl) O(n3) [68, Sec. III.A]

Scott O(n2l + kln) O(n3) [32, Appendix]

Exh. Search O
((

k
n

)
k
)

O
((

k
n

)
k
)

[69, Sec. 5.3]

represents a dimensionless measure for the complexity of a zonotope, representation size
reduction is commonly realized by reducing the zonotope order to a desired maximum value
using zonotope order reduction:

Definition 2.6.1. (Zonotope Order Reduction) Given a zonotope Z = 〈c,G〉Z ⊂ Rn and
a desired zonotope order ρd ≥ 1, the operation reduce defined as

reduce(Z, ρd) ⊇ Z

returns a zonotope with order smaller than or equal to ρd that encloses Z.

There exist many different approaches for zonotope order reduction. An overview is
provided in [68]. We shortly introduce some of the most commonly used methods and
derive their computational complexity. For this, we require the following assumption:

Assumption 2.6.2. Given a zonotope Z ⊂ Rn with l ∈ N0 generators, we assume for the
derivation of the computational complexity that

l = cl n,

with cl ∈ R≥0.

The assumption is justified by the fact that the zonotope order ρ = l
n

is reduced to
the desired order ρd when computing with zonotopes, such that l ≤ ρdn holds. We first
consider the order reduction approach proposed in [25, Sec. 3.4], which we refer to as
Girard’s method. Given a zonotope Z = 〈c,G〉Z ⊂ Rn this method first sorts the generators
according to the following metric:

||G(·,o(1))||1 − ||G(·,o(1))||∞ ≤ . . . ≤ ||G(·,o(l))||1 − ||G(·,o(l))||∞, (2.18)

where the vector o ∈ Nl stores the indices of the sorted generators. Next, the k =
dmax(0, l − n(ρd − 1))e smallest generators according to the matrix in (2.18) are selected
and enclosed by an interval, which results in the reduced zonotope:

reduce(Z, ρd) =

〈
c,

[
G(·,K) diag

(∑
i∈H

|G(·,i)|
)]〉

Z

, (2.19)
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Figure 2.2: Order reduction for an exemplary zonotope with order ρ = 3 to the desired order
ρd = 2 using Girard’s method (top, left), PCA (top, right), Scott’s method (bottom, left), and
exhaustive search (bottom, right), where the original zonotope is depicted in red, and the reduced
zonotope is depicted in blue.

where H = {o(1), . . . , o(k)} and K = {o(k+1), . . . , o(l)}. Computation of the norms in (2.18)
has complexity O(nl), and the complexity of sorting is according to Tab. 2.1 O(l log(l)).
Finally, the summation of the generators in (2.19) has complexity O(kn), which results in
an overall complexity of O(nl) +O(l log(l)) +O(kn) = O(n(l + k) + l log(l)). Since k ≤ l
holds, this can be simplified to O(n2) using Assumption 2.6.2.

A simple extension to Girard’s method is to incorporate principal component analysis
[68, Sec. III.A], where prior to the interval enclosure the generators that get reduced are
transformed to a different coordinate system that is determined using PCA:

reduce(Z, ρd) =

〈
c,

[
G(·,K) U diag

(∑
i∈H

UT |G(·,i)|
)]〉

Z

,

where the transformation matrix U = pca(X) is determined by applying the pca oper-
ation as defined in Def. 2.4.4 to the matrix X = [−G(·,H) G(·,H)]. Since PCA aligns the
coordinate system with the main directions of the reduced generators, the interval enclo-
sure for PCA-based order reduction is expected to be tighter than for Girard’s method.
PCA has complexity O(2n2k + n3) = O(n2k + n3) according to Tab. 2.1 and the matrix
multiplications with U and UT have complexity O(n2k) according to Tab. 2.1. Together
with the complexity for Girard’s method we therefore obtain an overall complexity of
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O(n(l+ k) + l log(l)) +O(n2k+n3) +O(n2k) = O(l log(l) +n3 +n2k+nl), which is O(n3)
using Assumption 2.6.2.

The reduction methods discussed so far are based on heuristics, and consequently often
not optimal. For non-degenerate zonotopes with l = n + 1 generators, the enclosing
parallelotope with minimum volume can be computed efficiently using [36, Thm. 3]. The
approach in [32, Appendix], which we refer to as Scott’s method, recursively applies [36,
Thm. 3] to reduce general zonotopes with l > n+ 1 generators, where the generators that
are reduced are selected with a heuristic. The computational complexity is O(n2l + kln)
[32, Appendix], which is O(n3) using Assumption 2.6.2. While Scott’s method uses a
heuristic to select suitable generators, the approach in [69, Sec. 5.3] explicitly determines
the optimal generators by applying an exhaustive search. This, however, comes at the cost
of high computational complexity O

((
k
n

)
k
)

for k ≥ n [69, Prop. 10]. The computational
complexities for the different zonotope order reduction methods presented in this section
are summarized in Tab. 2.3. A comparison of the different methods for order reduction of
an exemplary zonotope is shown in Fig. 2.2.

2.7 Range Bounding

It is usually infeasible to determine the minimum and maximum function value on a certain
domain exactly for general nonlinear functions with multiple variables. However, for many
applications it is sufficient to compute tight bounds for the function values instead, which
can be achieved using range bounding:

Definition 2.7.1. (Range Bounding) Given a function f : Rn → R and a domain D ⊂ Rn,
the range bounding operation

bound
(
f(x),D

)
⊇
[
min
x∈D

f(x), max
x∈D

f(x)

]
returns an enclosure of the exact bounds.

For range bounding of vector fields g : Rn → Rm we use the shorthand notation
bound(g(x),D) = bound(g(1)(x),D)× . . .×bound(g(m)(x),D). There exist several different
approaches for range bounding, the simplest one being interval arithmetic [37, Ch. 2.3].
To compute guaranteed bounds, interval arithmetic defines closed-form expressions for the
calculation of enclosing intervals for all elementary operations such as +, −, or sin(·) [70].
Successive application of these closed-form expressions to all elementary operations in the
function f(x) then yields guaranteed bounds for the function values. Let us consider the
range bounding problem bound(f(x),D) with

f(x) = sin(x)− x3 + x, D = [−1, 2], (2.20)

for which interval arithmetic yields the bounds

bound
(
f(x),D

)
= bound

(
sin(x)− x3 + x, [−1, 2]

)
= sin([−1, 2])− [−1, 2]3 + [−1, 2] = [−0.842, 1]− [−1, 8] + [−1, 2] = [−9.842, 4].
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Figure 2.3: Bounds for the range bounding problem in (2.20) computed with interval arithmetic
(left), affine arithmetic (middle), and Taylor models (right).

This small example also nicely demonstrates the main disadvantage of interval arithmetic:
The expressions sin(x), −x3, and x are treated as if they were independent from each
other, even though they share a common variable x. In particular, this means that interval
arithmetic for example computes the upper bound by summation of the maxima for sin(x),
−x3, and x. However, since sin(x) reaches its maximum value on D at x = π/2, −x3 reaches
its maximum value on D at x = −1, and x reaches its maximum value on D at x = 2, it
is not possible that all expressions reach their maximum value at the same x. This loss
of dependency between expressions is called the dependency problem [30, Sec. 2] and often
results in quite conservative bounds when using interval arithmetic for range bounding.
To overcome this issue, affine arithmetic [30] explicitly keeps track of dependencies by
representing the variables as affine forms. Range bounding using Taylor models [41] further
extends this concept by using polynomials instead of affine forms, which allows to tightly
enclose the nonlinear function f(x) with a Taylor model T (x):

∀x ∈ D : f(x) ∈ T (x).

Bounds for the function are then computed by enclosing the set S = {T (x) | x ∈ D}
defined by the Taylor model with an interval, which can for example be computed by
applying interval arithmetic to the polynomial function defining the Taylor model, or by
using branch-and-bound methods [71].

While interval arithmetic, affine arithmetic, and Taylor models are the most commonly
used methods for range bounding, there also exist other approaches: For polynomial func-
tions f(x) Bernstein polynomials [72] can be used for range bounding. Since Bernstein
polynomials have the property that all function values are smaller than the maximum
polynomial coefficient and larger than the minimum polynomial coefficient [72, Thm. 1],
guaranteed bounds can directly be obtained from the polynomial coefficients after con-
verting f(x) to Bernstein form [73]. While the previous techniques do not provide any
guarantees for the tightness of the computed bounds, verified global optimization as intro-
duced in [42] refines the bounds until a user-defined precision is achieved. However, since
this approach is based on a subdivision of the domain D, its computational complexity
grows exponentially with respect to the number of variables n.
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Table 2.4: Computational complexity O(bound) of range bounding methods, where e ∈ N0 is
the number of elementary operations in the corresponding function f : Rn → R.

Method Complexity Reference

Interval arithmetic O(e) [37, Ch. 2.3]

Affine arithmetic O(en) [30]

Taylor models ≥ O(en) [41]

For the derivation of the computational complexity we denote by e ∈ N0 the number of
elementary operations such as +, −, or sin(·) in a function f : Rn → R. The evaluation of
one elementary operation with interval arithmetic has constant complexity O(1) [37, 70],
so that the overall computational complexity for range bounding with interval arithmetic
is e · O(1) = O(e). For affine arithmetic each elementary operation has to be evaluated on
an affine form with n variables [30, Sec. 3], which has complexity O(n). Consequently, the
overall computational complexity for range bounding with affine arithmetic is e · O(n) =
O(en). The computational complexity for range bounding using Taylor models depends
on the representation of Taylor models as well as on the implementation of elementary
operations on them. However, since Taylor models are an extension of affine arithmetic, it
holds that the computational complexity is at least larger than O(en). The computational
complexities for the range bounding techniques introduced in this section are summarized
in Tab. 2.4. Moreover, a comparison of the bounds for an exemplary function computed
with different range bounding methods are visualized in Fig. 2.3. An extensive performance
comparison of range bounding techniques on multiple benchmarks can be found in [74].

2.8 Contractors

It is well known that characterizing the solution set for a constraint satisfaction problem
defined by multiple nonlinear equality constraints is in general NP-hard [37, Ch. 4.1].
Consequently, the goal is often to determine a tight enclose of the solution set instead.
Contractors represent an efficient method to downsize interval domains without losing any
solutions to the constraint system, and are therefore well suited for the computation of
tight solution set enclosures:

Definition 2.8.1. (Contractor) Given an interval I ⊂ Rn and a vector field f : Rn → Rm

which defines the constraint f(x) = 0, the operation contract returns an interval that
satisfies

contract
(
f(x), I

)
⊆ I

and
∀x ∈ I : f(x) = 0⇒ x ∈ contract

(
f(x), I

)
,

so that it is guaranteed that all solutions for f(x) = 0 contained in I are also contained in
the contracted interval.
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Figure 2.4: Forward propagation (left) and backward propagation (right) of the forward-
backward contractor for the contraction problem in (2.21).

Note that the constraint f(x) = 0 in Def. 2.8.1 corresponds to the intersection of m
single constraints f(1)(x) = 0 ∧ . . . ∧ f(m)(x) = 0. There exist many different contractors,
an overview of which is provided in [37, Ch. 4]. In this section we shortly introduce three
commonly used contractors and derive their computational complexity. As a running
example throughout this section we consider the contraction problem contract(f(x), I)
with

f(x) =
(
1 + 0.1x2

)(
x1 + 0.05x3

1

)
+ 0.2x2, I = [−1, 1]× [−1, 1], (2.21)

where x = [x1 x2]T . As for range bounding in Sec. 2.7, we again denote by e ∈ N0 the
number of elementary operations required to evaluate each subfunction f(i) : Rn → R, i =
1, . . . ,m of the vector field f : Rn → Rm.

We begin with the forward-backward contractor [37, Ch. 4.2.4], which considers the
case m = 1 corresponding to one single constraint. This contractor applies a forward-
backward-propagation scheme to the syntax tree of the function f(x) that defines the
constraint. This is visualized in Fig. 2.4 for the contraction problem in (2.21). During
forward propagation, bounds for the function f(x) on the domain I are computed using
interval arithmetic, where intermediate results at the nodes of the syntax tree are stored.
Since the constraint is defined as f(x) = 0, the resulting interval has to be equal to
zero. Consequently, during backward propagation, the value 0 is back-propagated through
the syntax tree and the bounds at all nodes are updated by intersection with the back-
propagated value. This procedure then yields updated domains for all variables. To extend
the forward-backward contractor to the general case involving multiple constraints, one can
apply a sequential evaluation scheme, where the interval domain is first contracted using
the first constraint, and the resulting contracted interval is then used as the initial domain
for contraction with the remaining constraints. Usually, the forward-backward contractor
performs well for large interval domains I, where other contractors often fail to contract the
set. For both, forward propagation using interval arithmetics and backward propagation,
the computational complexity for one elementary operation is O(1). Since the contractor
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Figure 2.5: Visualization of the extremal function based contractor (left) and the parallel lin-
earization contractor (right) for the contraction problem in (2.21). The original interval domain I
is depicted in green, the contracted domain in gray, the values satisfying the constraint f(x) = 0
in blue, and the enclosing extremal functions (left) as well as the enclosing strip (right) are de-
picted in red.

is sequentially applied to all m constraints, the overall complexity of the forward-backward
contractor is therefore m · e · O(1) = O(me).

The contractor in [75] considers the case where the constraints are defined by a polyno-
mial function f(x). Like for the forward-backward contractor, the case m = 1 correspond-
ing to one single constraint is considered. To contract the interval domain, the contractor
encloses f(x) by extremal functions. For this, all variables except for one variable xi are

substituted by their corresponding interval domains. This yields a function f̂(xi) with one
variable that is a polynomial with interval coefficients. For the contraction problem in
(2.21), for example, we obtain the function

f̂(x1) = [−0.2, 0.2] + [0.9, 1.1] · x1 + [0.045, 0.055] · x3
1.

by substituting variable x2 by the interval [−1, 1], which is visualized in Fig. 2.5. Next,

this function is enclosed by two extremal functions g(xi) ≤ f̂(xi) ≤ g(xi) that are con-
structed using the bounds for the interval coefficients. To contract the domain for variable
xi based on the extremal function enclosure, the zero crossings of the extremal functions
have to be computed. If the extremal functions are constant, linear, quadratic, or cubic,
the solutions for g(xi) = 0 and g(xi) = 0 can be calculated analytically. For polynomials
with higher order branch-and-bound techniques [71] can be used. The whole contraction
process is applied for all n variables xi. To extend the contractor to the general case involv-
ing multiple constraints one can apply the same sequential evaluation scheme as for the
forward-backward contractor. Computation of the interval coefficients with interval arith-
metic has a worst-case complexity of O(e) according to Tab. 2.4. Because both g : R→ R
and g : R→ R are function in a single variable, contraction of the corresponding interval
domain using the analytical solution or branch-and-bound techniques has worst-case com-
plexity O(e). Since the contraction is executed for all n variables and all m constraints,
the overall worst-case complexity is n ·m · (O(e) +O(e)) = O(nme).
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Table 2.5: Computational complexity O(contract) of contractors, where e ∈ N0 is the number
of elementary operations in each subfunction f(i) : Rn → R, i = 1, . . . ,m of the vector field
f : Rn → Rm that defines the constraint f(x) = 0.

Method Complexity Reference

Forward-backward O(me) [37, Ch. 4.2.4]

Extremal functions O(nme) [75]

Parallel linearization O(nme+ n4.5) [37, Ch. 4.3.4]

The idea of the parallel linearization contractor [37, Ch. 4.3.4] is to enclose each con-
straint with a strip defined by the intersection of two parallel halfspaces, which yields:

∀x ∈ I : Ax+ l ≤ f(x) ≤ Ax+ u, (2.22)

where

A = ∇f(x)
∣∣
c
, c = center(I)

[l, u] = (f(c)− Ac)⊕
(
bound(∇f(x)− A, I)⊗ (I ⊕ (−c))

)
.

For the contraction problem in (2.21) the strip enclosure is visualized in Fig. 2.5. The
tightest interval enclosing the intersection of the strips for the m constraints can be deter-
mined with linear programming. While the previous contractors consider each constraint
separately, parallel linearization directly considers the intersection of all constraints, which
often results in a bigger contraction. However, for large interval domains I parallel lin-
earization might not be able to contract the set at all due to potentially large linearization
errors. To compute the lower bound l ∈ Rm and the upper bound u ∈ Rm of the lin-
earization error for the strip enclosure in (2.22), we have to apply range bounding for
all mn entries of the Jacobian matrix ∇f(x). Under the assumption that taking the
derivative of a function only changes the number of elementary operations by a constant
factor, this has computational complexity O(nme) according to Tab. 2.4 if interval arith-
metic is used. Moreover, to compute the tightest interval that encloses the intersection
of the m strips we have to solve 2n linear programs in n variables, which has according
to Tab. 2.1 complexity 2n · O(n3.5) = O(n4.5). The overall computational complexity of
the parallel linearization contractor is therefore O(nme) + O(n4.5) = O(nme + n4.5). A
summary of the computational complexities for the different contractors presented in this
section is shown in Tab. 2.5. As the final results for the contraction problem in (2.21) we
obtain contract(f(x), I) = [−0.28, 0.28] × [−1, 1] for the forward-backward contractor,
contract(f(x), I) = [−0.23, 0.23] × [−1, 1] for the extremal function based contractor,
and contract(f(x), I) = [−0.57, 0.57]× [−1, 1] for the parallel linearization contractor, so
that in this case the extremal function based contractor achieved the largest contraction.

Since all contractors presented in this chapter apply range bounding, the conservatism in
the contraction heavily depends on the size of the initial interval domain I. It is therefore
often meaningful to repeat contraction multiple times since the smaller interval domain I
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after each contraction results in tighter bounds for range bounding, which then potentially
enables to contract the domain even further. If the number of repetitions is constant, the
repetitive application of the contractor does not change the computational complexity. Due
to the dependence on the size of the interval domain I, the results can also significantly be
improved by dividing I into smaller intervals. This, however, has exponential complexity
with respect to the dimension n. Often, the accuracy can also be improved by running
multiple different contractors in parallel and then intersecting the results. Yet another way
to improve contraction is to compute a contracted domain [l, u] = contract(f(x), I) by
solving the optimization problems

l(i) = min
x∈I

x(i) s.t. f(x) = 0 and u(i) = max
x∈I

x(i) s.t. f(x) = 0 (2.23)

for all dimensions i = 1, . . . , n using nonlinear programming. Since it is not guaranteed
that nonlinear programming actually finds the global optimum, we additionally have to
verify the correctness of the obtained result, which can be done with a contractor: It holds
that the result from (2.23) is correct if the remaining domain I \ [l, u] can be contracted
to the empty set contract(f(x), I \ [l, u]) = ∅.



30 Chapter 2 Background and Preliminaries



Chapter 3

Extensions of Polynomial Zonotopes

In this chapter we present three novel set representations that are extensions of polynomial
zonotopes as introduced in [47]. We begin with the sparse representation of polynomial
zonotopes in Sec. 3.1, which enables to represent polynomial zonotopes very compactly.
Constrained polynomial zonotopes as introduced in Sec. 3.2 extend polynomial zonotopes
by adding equality constraints to the zonotope factors, resulting in a set representation
that is additionally closed under intersection and union. Finally, we introduce the Z-
representation of polytopes in Sec. 3.3, which represents polytopes as polynomial zonotopes.

3.1 Sparse Polynomial Zonotopes

We introduce sparse polynomial zonotopes (SPZs) in this section1 and derive closed-form
expressions for all relevant set operations on this novel non-convex set representation. The
structure of the section is as follows: We first define SPZs in Sec. 3.1.1 and introduce
some preliminaries in Sec. 3.1.2. Next, we show in Sec. 3.1.3 how to convert other set
representations to SPZs and provide algorithms for tightly enclosing SPZs with simpler set
representations in Sec. 3.1.4. Closed-form expressions for all basic set operations on SPZs
are derived in Sec. 3.1.5. Finally, we present some results on containment and intersection
checks for SPZs in Sec. 3.1.6 and specify several useful auxiliary operations, such as order
reduction, in Sec. 3.1.7. An overview showing all operations on SPZs considered in this
section is provided in Tab. 3.1.

3.1.1 Definition

Let us first define sparse polynomial zonotopes:

Definition 3.1.1. (Sparse Polynomial Zonotope) Given a constant offset c ∈ Rn, a genera-
tor matrix of dependent generators G ∈ Rn×h, a generator matrix of independent generators
GI ∈ Rn×q, and an exponent matrix E ∈ Np×h

0 , a sparse polynomial zonotope PZ ⊂ Rn is
defined as

PZ :=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
.

1This section is based on [76].
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(a) (b) (c) (d)

Figure 3.1: Step-by-step construction of the SPZ in Example 3.1.2: (a) shows the set spanned by
the constant offset vector and the second and third dependent generator, (b) shows the addition
of the dependent generator with the mixed term α3

1α2, (c) shows the addition of the independent
generator, and (d) visualizes the final set.

The scalars αk are called dependent factors since a change in their value affects mul-
tiplication with multiple generators. Consequently, the scalars βj are called independent
factors because they only affect multiplication with one generator. Moreover, the expres-

sion α
E(1,i)

1 · . . . · αE(p,i)
p · G(·,i) is called a monomial, and α

E(1,i)

1 · . . . · αE(p,i)
p the variable

part of the monomial. The number of dependent factors is p, the number of independent
factors is q, and the number of dependent generators is h. The degree-of-freedom order
ρf = p+q

n
of a SPZ is a measure for the complexity of the set, and the order ρ = h+q

n
of a

SPZ estimates the representation size. The SPZ is regular if the exponent matrix E does
not contain duplicate columns or all-zero columns:

∀i, j ∈ {1, . . . , h} : (i 6= j)⇒
(
E(·,i) 6= E(·,j)

)
and ∀i ∈ {1, . . . , h} : E(·,i) 6= 0.

To keep track of identical dependent factors in different SPZs, an unambiguous integer
identifier is assigned to each dependent factor αk, and the identifiers for all dependent
factors are stored in a row vector id ∈ N1×p. For a concise notation we use the shorthand
PZ = 〈c,G,GI , E, id〉PZ.

Let us demonstrate SPZs with the following example:

Example 3.1.2. The SPZ

PZ =

〈[
4
4

]
,

[
2 1 2
0 2 2

]
,

[
1
0

]
,

[
1 0 3
0 1 1

]
, [1 2]

〉
PZ

defines the set

PZ =

{[
4
4

]
+

[
2
0

]
α1 +

[
1
2

]
α2 +

[
2
2

]
α3

1α2 +

[
1
0

]
β1

∣∣∣∣ α1, α2, β1 ∈ [−1, 1]

}
,

where the identifier vector [1 2] stores the identifier 1 for the dependent factor α1 and
the identifier 2 for the dependent factor α2. The construction of this SPZ is visualized in
Fig. 3.1.
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Table 3.1: Overview showing all set operations on SPZs presented in this thesis.

Set Operation Reference Page

Merge of identifier vectors (mergeID) Prop. 3.1.5 35

Redundancy removal (compact) Prop. 3.1.7 36

Conversion zonotope to SPZ Prop. 3.1.9 37

Conversion interval to SPZ Prop. 3.1.10 37

Conversion polytope to SPZ Prop. 3.1.11 38

Conversion Taylor model to SPZ Prop. 3.1.12 39

Conversion SPZ to Taylor model Prop. 3.1.13 40

Zonotope enclosure of SPZ (zonotope) Prop. 3.1.14 41

Polytope enclosure of SPZ (polytope) Prop. 3.1.15 42

Support function enclosure of SPZ Prop. 3.1.16 44

Ellipsoid enclosure of SPZ (ellipsoid) Prop. 3.1.17 45

Linear map Prop. 3.1.18 47

Minkowski sum Prop. 3.1.19 48

Exact addition Prop. 3.1.20 49

Cartesian product Prop. 3.1.22 50

Linear combination Prop. 3.1.26 53

Convex hull Prop. 3.1.28 55

Quadratic map Prop. 3.1.31 59

Containment check SPZ in SPZ Prop. 3.1.34 63

Containment check interval in SPZ Prop. 3.1.36 64

Intersection check Prop. 3.1.38 66

Order reduction (reduce) Prop. 3.1.39 68

Restructuring (restructure) Prop. 3.1.41 70

Subset extraction (getSubset) Prop. 3.1.43 72

Splitting (split) Prop. 3.1.44 73

For the derivation of the computational complexity of operations on SPZs we make the
following assumption:

Assumption 3.1.3. Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn with p ∈ N0 depen-
dent factors, h ∈ N0 dependent generators, q ∈ N0 independent factors, and a maximum
exponent matrix entry ε = max(E), we assume for the derivation of the computational
complexity that

p = cpn, h = chn, q = cqn, ε = cεn,

with cp, ch, cq, cε ∈ R≥0.
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The assumption is justified by the fact that the order ρ = h+q
n

is reduced to the desired
order ρd when computing with SPZs, such that h + q ≤ ρdn holds. Every SPZ can be
equivalently represented as a SPZ without independent generators:

Proposition 3.1.4. Given a polynomial zonotope PZ = 〈c,G,GI , E, id〉PZ, PZ can be
equivalently represented without independent generators:

PZ = 〈c,G,GI , E, id〉PZ =

〈
c, [G GI ], [ ],

[
E 0
0 Iq

]
, [id uniqueID(q)]

〉
PZ

,

where the operation uniqueID introduced in Sec. 2.5 generates new unique identifiers.

Proof. The result follows directly from the substitution of the independent factors βj in
Def. 3.1.1 with additional dependent factors αh+1 = β1, . . . , αh+q = βq.

However, the independent generators are required for computational reasons: while com-
putations on the dependent generators are exact but computational expensive, computa-
tions on the independent generators are often over-approximative but fast. When com-
puting with SPZs we therefore usually define large generators as dependent and small
generators as independent, which often yields a good trade-off between computational cost
and accuracy.

SPZ are a more compact representation of polynomial zonotopes [47], resulting in
completely different algorithms for operations on them. In [47, Def. 1], the generators
g([o],i,k,...,m) for all possible combinations of dependent factors up to a certain polynomial
degree µ are stored:

PZ =

{
c+

p∑
i=1

αi g
([1],i) +

p∑
i=1

p∑
k=i

αiαk g
([2],i,k) + . . .+

p∑
i=1

p∑
k=i

. . .

p∑
m=l

αiαk . . . αm g([µ],i,k,...,m) +

q∑
j=1

βjGI(·,j)

∣∣∣∣
αi, αk, . . . , αm, βj ∈ [−1, 1]

}
,

with g([o],i,k,...,m) ∈ Rn, c ∈ Rn, GI ∈ Rn×q. This results in h =
(
µ+p
p

)
generators [77,

Eq. (3.8)]. For the one-dimensional polynomial zonotope PZ = {α1 + . . . + α19 +
α10

20 | α1, . . . , α20 ∈ [−1, 1]} with p = 20 dependent factors and with a polynomial de-
gree of µ = 10, the number of dependent generators is h = 30045015. This demonstrates
that the number of generators that have to be stored can become very large if the polyno-
mial degree and the number of dependent factors are high, which makes computations on
the previous set representation very inefficient. SPZs on the other hand employ a sparse
representation storing required generators only. Even in comparison with quadratic zono-
topes, which correspond to a polynomial order of µ = 2, SPZs consequently have lower or
equal complexity for all set operations considered in [47], as shown in Tab. 3.2. Moreover,
SPZ do not require limiting the polynomial degree of the polynomial zonotope in advance,
which often significantly reduces the over-approximation.
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Table 3.2: Comparison of the computational complexity of set operations on SPZs and the
quadratic zonotopes in [47], where n ∈ N is the dimension of the set.

Set Operation SPZ Quad. Zono.

Linear map with matrix M ∈ Rw×n O(n2w) O(n2w)

Minkowski addition with zonotope O(n) O(n)

Enclosure by zonotope O(n2) O(n2)

Quadratic map with Q = {Q1, . . . , Qw} O(n3(w + log(n)) O(n4w)

3.1.2 Preliminaries

We first derive some preliminary operations on SPZs that are required for many other
operations. In order to fully exploit the dependencies between identical dependent factors
from different SPZs, it is necessary to build a common representation of exponent matrices,
which is done with the operator mergeID:

Proposition 3.1.5. (Merge ID) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1, id1〉PZ and
PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ, mergeID returns two adjusted SPZs PZ1 and PZ2 with
identical identifier vectors that are equivalent to PZ1 and PZ2:

mergeID(PZ1,PZ2) =
(
〈c1, G1, GI,1, E1, id〉PZ︸ ︷︷ ︸

PZ1

, 〈c2, G2, GI,2, E2, id〉PZ︸ ︷︷ ︸
PZ2

)
,

where

id =
[
id1 id2(H)

]
, H =

{
i | id2(i) 6∈ id1

}
, E1 =

[
E1

0

]
∈ N(p1+|H|)×h1

0 ,

E2(i,·) =

{
E2(j,·), ∃j ∈ {1, . . . , p2} : id(i) = id2(j)

0, otherwise
, i = 1, . . . , p1 + |H|.

The computational complexity is O(p1p2), where p1 is the number of dependent factors of
PZ1 and p2 is the number of dependent factors of PZ2.

Proof. The extension of the exponent matrices with all-zero rows only changes the repre-
sentation of the set, but not the set itself.

Complexity: The only operation with super-linear complexity is the construction of the
set H with worst-case complexity O(p1p2).

We demonstrate operation mergeID with an example:

Example 3.1.6. Given the two SPZs

PZ1 =

〈[
1
4

]
,

[
1 2
1 0

]
, [ ], [1 3], 1

〉
PZ

, PZ2 =

〈[
2
2

]
,

[
1 1
0 3

]
, [ ],

[
1 2
0 1

]
, [1 2]

〉
PZ

,
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mergeID as defined in Prop. 3.1.5 returns the adjusted SPZs

PZ1 =

〈[
1
4

]
,

[
1 2
1 0

]
, [ ],

[
1 3
0 0

]
, [1 2]

〉
PZ

, PZ2 =

〈[
2
2

]
,

[
1 1
0 3

]
, [ ],

[
1 2
0 1

]
, [1 2]

〉
PZ

,

which have identical identifier vectors.

Many operations result in a SPZ that is not regular. We therefore introduce the operation
compact which converts a non-regular SPZ to a regular one by removing duplicate columns
from the exponent matrix:

Proposition 3.1.7. (Compact) Given a non-regular SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn,
the operation compact returns the corresponding regular SPZ:

compact(PZ) =

〈
c+

∑
i∈K

G(·,i)︸ ︷︷ ︸
c

,

[∑
i∈H1

G(·,i) . . .
∑
i∈Hw

G(·,i)

]
︸ ︷︷ ︸

G

, GI , E, id

〉
PZ

,

where

K =
{
i | ∀k ∈ {1, . . . , p} : E(k,i) = 0

}
, E = uniqueColumns(E(·,N )) ∈ Np×w

0 ,

N = {1, . . . , h} \ K, Hj =
{
i | ∀k ∈ {1, . . . , p} : E(k,j) = E(k,i)

}
, j = 1, . . . , w,

and the operation uniqueColumns introduced in Sec. 2.5 removes identical matrix columns
until all columns are unique. The computational complexity is O(h(n+ p log(h))), where n
is the dimension, p is the number of dependent factors, and h is the number of dependent
generators.

Proof. For a SPZ where the exponent matrix E = [e e] consists of 2 identical columns
e ∈ Np

0, it holds that{( p∏
k=1

α
e(k)

k

)
G(·,1) +

( p∏
k=1

α
e(k)

k

)
G(·,2)

∣∣∣∣ αk ∈ [−1, 1]

}

=

{( p∏
k=1

α
e(k)

k

)(
G(·,1) +G(·,2)

) ∣∣∣∣ αk ∈ [−1, 1]

}
.

Summation of the generators for monomials with identical exponents therefore does not
change the set, which proves that compact(PZ) equivalently represents PZ. Moreover,
since all duplicate and all-zero columns are removed, it holds that the resulting SPZ is
regular.

Complexity: The construction of the vector c and the matrix G has worst-case complexity
O(nh), and the construction of the set K has worst-case complexity O(ph). Applying the

operator uniqueColumns to the matrix E(·,N ) ∈ Np×|N|
0 has complexity O(p|N | log(|N |))

according to Tab. 2.2, which is O(ph log(h)) since |N | ≤ h. The sets Hj can be constructed
during the removal of duplicate columns with uniqueColumns and therefore do not require
any additional computations. The overall worst-case complexity is therefore O(nh) +
O(ph) +O(ph log(h)) = O(h(n+ p log(h))).
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Let us demonstrate the operation compact with an example:

Example 3.1.8. Given the non-regular SPZ

PZ =

〈[
−1
2

]
,

[
1 2 0 2
0 1 2 −1

]
, [ ],

[
1 0 1 2
0 0 0 1

]
, [1 2]

〉
PZ

,

compact as defined in Prop. 3.1.7 returns the equivalent SPZ

compact(PZ) =

〈[
1
3

]
,

[
1 2
2 −1

]
, [ ],

[
1 2
0 1

]
, [1 2]

〉
PZ

,

which is regular.

Both operations, mergeID and compact, are very useful for the implementation of many
other operations on SPZs.

3.1.3 Conversion from other Set Representations

In this section we show how to convert other set representations to SPZs. We begin with
zonotopes:

Proposition 3.1.9. (Conversion Zonotope) A zonotope Z = 〈c,G〉Z ⊂ Rn can be equiva-
lently represented by a SPZ

Z =
〈
c,G, [ ], Il, uniqueID(l)

〉
PZ
,

where l ∈ N0 is the number of zonotope generators. The computational complexity of the
conversion is O(n) with respect to the dimension n.

Proof. If we insert E = Il and GI = [ ] into the definition of SPZs in Def. 3.1.1, we obtain
a zonotope as defined in Def. 2.2.4.

Complexity: The only operation that is required is the generation of l unique identifiers
using uniqueID, which has complexity O(l) according to Tab. 2.2. With Assumption 2.6.2
we therefore obtain an overall complexity of O(l) = O(n).

Next, we consider the conversion of intervals, for which we can reuse the previous result
for zonotopes since intervals are a special case of zonotopes:

Proposition 3.1.10. (Conversion Interval) An interval I = [l, u] ⊂ Rn can be equivalently
represented by a SPZ

I =
〈
0.5(l + u), diag

(
0.5(u− l)

)
, [ ], In, uniqueID(n)

〉
PZ
.

The computational complexity of the conversion is O(n) with respect to the dimension n.

Proof. Since according to [24, Prop. 2.1] an interval I = [l, u] can be equivalently repre-
sented as a zonotope I = 〈0.5(l + u), diag(0.5(u − l))〉Z , the result follows directly from
Prop. 3.1.9.

Complexity: Computation of the vectors 0.5(l + u) and 0.5(u− l) has complexity O(n),
and the generation of n unique identifiers with uniqueID has complexity O(n) according
to Tab. 2.2, which results in an overall complexity of O(n).
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The conversion of polytopes is based on the Z-representation, which we introduce later
in Sec. 3.3:

Proposition 3.1.11. (Conversion Polytope) Given a bounded polytope in V-representation
P = 〈[v1 . . . vs]〉V ⊂ Rn, a SPZ equivalently representing P can be computed by
first converting P to a set in Z-representation using Alg. 4, and then converting the Z-
representation to a SPZ using Prop. 3.3.12. The computational complexity of the conver-
sion is O(s2(n+ log(s))) with respect to the number of zonotope vertices s, where n is the
dimension.

Proof. Alg. 4 converts from polytope V-representation to polytope Z-representation. Since
the Z-representation, which is later introduced in Sec. 3.3, is just a more compact way of
storing SPZs that represent polytopes, every polytope in Z-representation can be easily
converted to a SPZ using Prop. 3.3.12.

Complexity: The conversion from V-representation to Z-representation using Alg. 4
has complexity O(s2(n + log(s))) according to Prop. 3.3.6 and conversion of a set in Z-
representation to a SPZ using Prop. 3.3.12 has complexity O(µ + p), where p and µ are
the number of factors and number of tuple entries of the Z-representation (see Def. 3.3.1).
According to (3.96) and (3.108), upper bounds for the number of factors and tuple entries
are given by

p
(3.96)

≤ 2s− 1,

µ
(3.108)

≤ 4dlog(s)e
(

1

6
dlog(s)e+

1

9

)
− 1

9

≤ 4log(s)+1

(
1

6

(
log(s) + 1

)
+

1

9

)
− 1

9
= 4s2

(
1

6
log(s) +

5

18

)
− 1

9
,

so that O(µ + p) = O(s2 log(s)). The overall complexity is therefore O(s2(n + log(s))) +
O(s2 log(s)) = O(s2(n+ log(s))).

Since any bounded polytope in H-representation and any constrained zonotope can be
equivalently represented as a polytope in V-representation, Prop. 3.1.11 can also be used
to represent polytopes in H-representation and constrained zonotopes as SPZs. Finally, we
consider the conversion of Taylor models:

Proposition 3.1.12. (Conversion Taylor Model) The set S = {T (x) | x ∈ I} ⊂ Rn

defined by a Taylor model T (x) = 〈w(x),Y , I〉TM with w : Rr → Rn, Y = [lR, uR] ⊂ Rn,
and I = [lD, uD] ⊂ Rr can be equivalently represented by a SPZ

S =

〈
lR + uR

2
,


[
b1,1 . . . b1,m1

]
0

. . .

0
[
bn,1 . . . bn,mn

]
 ,

diag
(
0.5(uR − lR)

)
,
[
E1 . . . En

]
, uniqueID(r)

〉
PZ

,
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where the coefficients bi,j and the matrices Ei result from the definition

w(i)

(
[δ1(α1), . . . , δr(αr)]

T
)

:=

mi∑
j=1

bi,j

r∏
k=1

α
Ei(k,j)
k , i = 1, . . . , n, (3.1)

with

δk(αk) =
lD(k) + uD(k)

2
+
uD(k) − lD(k)

2
αk, αk ∈ [−1, 1], k = 1, . . . , r. (3.2)

The compact operation as defined in Prop. 3.1.7 is applied to make the resulting SPZ
regular. The computational complexity of the conversion is O(n4+n log(n)) with respect to
the dimension n.

Proof. The auxiliary variables δk(αk) in (3.2) equivalently represent the domain I with
dependent factors αk ∈ [−1, 1]:

I = [lD, uD] =
{ [
δ1(α1) . . . δr(αr)

]T ∣∣ α1, . . . , αr ∈ [−1, 1]
}
. (3.3)

Moreover, the interval Y = [lR, uR] can be equivalently represented as a zonotope Y =
〈0.5(lR + uR), diag(0.5(uR − lR))〉Z according to [24, Prop. 2.1]. The set S defined by the
Taylor model T (x) can therefore be equivalently expressed as

S =
{
T (x)

∣∣ x ∈ I} (3.3)
=
{
T (δ(α))

∣∣ α ∈ [−1,1]
} Def. 2.2.8

=


w(1)(δ(α))

...
w(n)(δ(α))

+

y(1)
...
y(n)


∣∣∣∣∣∣∣ y ∈ Y


(3.1),

I=[lR,uR]
=

{
lR + uR

2
+

m1∑
j=1

[
b1,j

0

] r∏
k=1

α
E1(k,j)

k + . . .+
mn∑
j=1

[
0

bn,j

] r∏
k=1

α
En(k,j)

k

+
1

2

[
uR(1) − lR(1)

0

]
β1 + . . .+

1

2

[
0

uR(n) − lR(n)

]
βn

∣∣∣∣ αk, β1, . . . , βn ∈ [−1, 1]

}

=

〈
lR + uR

2
,


[
b1,1 . . . b1,m1

]
0

. . .

0
[
bn,1 . . . bn,mn

]
 ,

diag
(
0.5(uR − lR)

)
,
[
E1 . . . En

]
, uniqueID(r)

〉
PZ

,

where α = [α1 . . . αr]
T and δ(α) = [δ1(α1) . . . δr(αr)]

T .
Complexity: Construction of the constant offset 0.5(lR + uR) and the matrix of inde-

pendent generators diag(0.5(uR − lR)) of the resulting SPZ has complexity O(n) and the
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generation of r unique identifiers with uniqueID has complexity O(r) according to Tab. 2.2.
It remains to consider the complexity of the subsequent application of the compact opera-
tion. Let m = max(m1, . . . ,mn) and ε = max(max(E1), . . . ,max(En)), where according to
Def. 2.2.8 the variables mi denote the number of monomials and the variables Ei represent
the exponent matrices of the polynomial functions w(i)(x) defining the Taylor model. Since
the auxiliary variables δk(αk) in (3.2) represent linear functions δk(αk) = c0 + c1αk with
c0, c1 ∈ R, we have that δk(αk)

ε is a polynomial in αk with ε + 1 monomials. Naive eval-
uation without intermediate simplification of the function w(i)(δ(α)) with w(i)(x) defined
as

w(i)(x)
Def. 2.2.8

=

mi∑
j=1

bi,j

r∏
k=1

x
Ei(k,j)
(k) , i = 1, . . . , n,

therefore results in a multivariate polynomial with m = m(ε+ 1)r monomials in the worst
case. The exponent matrix [E1 . . . En] with Ei ∈ Rr×mi of the resulting SPZ consequently
consists of at most h = nm = nm(ε+1)r columns since ∀i ∈ {1, . . . , n} : mi ≤ m. Because
the complexity of compact is O(h(n+p log(h))) according to Prop. 3.1.7 and the number of
dependent factors of the resulting SPZs is p = r, the subsequent application of the compact
operation has complexity O(nm(ε+ 1)r(n+ r log(nm(ε+ 1)r))). The overall complexity is
therefore

O(n)+O(r) +O
(
nm(ε+ 1)r(n+ r log(nm(ε+ 1)r))

)
=

O
(
nm(ε+ 1)r(n+ r(log(n) + log(m) + r log(ε+ 1)))

)
,

which is O(n4+n log(n)) since similar to Assumption 3.1.3 for SPZs it holds for Taylor
models that r = crn, m = cmn, and ε = cεn with cr, cm, cε ∈ R≥0.

SPZs and Taylor models are equivalent, so that also any SPZ can be represented by a
Taylor model:

Proposition 3.1.13. A SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn can be equivalently repre-
sented by the set defined by a Taylor model

PZ =
{
T (x)

∣∣ x ∈ [−1,1
}
, T (x) =

〈
w(x), ∅, [−1,1]

〉
TM

,

where

w(x) = c+
h∑
i=1

( p∏
k=1

x
E(k,i)

(k)

)
G(·,i) +

q∑
j=1

x(p+j) GI(·,j).

The computational complexity of the conversion is O(1).

Proof. Substitution of the dependent factors αk and the independent factors βj in the
definition of a SPZ in Def. 3.1.1 with variables x(k) and x(p+j) yields a Taylor model as
defined in Def. 2.2.8.

Complexity: The conversion does not require any computations, so that the computa-
tional complexity is constant.

While SPZs and Taylor models are equivalent in regard to the sets they can represent,
there exist some key differences: For SPZs the independent generators can be viewed
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as a zonotope remainder. Since computations on this zonotope remainder are less over-
approximative than computations on the interval remainder of Taylor models while still
being computationally efficient, SPZs often offer a better trade-off between accuracy and
computation costs. Moreover, the generator-based representation used by SPZs signifi-
cantly simplifies the task of reducing the representation size without adding much over-
approximation, as we demonstrate later on in Sec. 3.1.7. For Taylor models, on the other
hand, reduction of the representation size [43, Sec. II] is often more conservative.

3.1.4 Enclosure by other Set Representations

Many algorithms that compute with sets require to enclose sets by simpler set represen-
tations for computational reasons. Therefore, we show in this section how SPZs can be
enclosed by other set representations. As a running example throughout this section we
consider the SPZ

PZ =

〈[
−0.5
−0.5

]
,

[
1 1 1 1
1 0 −1 1

]
, [ ],

[
1 0 1 2
0 1 1 0

]
, [1 2]

〉
PZ

. (3.4)

We first show how a SPZ can be enclosed by a zonotope:

Proposition 3.1.14. (Zonotope Enclosure) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn,
the operation zonotope returns a zonotope that encloses PZ:

PZ ⊆ zonotope (PZ) =

〈
c+ 0.5

∑
i∈H

G(·,i),
[
0.5 ·G(·,H) G(·,K) GI

]〉
Z

,

where

H =

{
i

∣∣∣∣ p∏
j=1

(
1− (E(j,i) mod 2)

)
= 1

}
, K = {1, . . . , h} \ H.

The computational complexity with respect to the dimension n is O(n2).

Proof. We over-approximate the variable parts of all monomials in the definition of SPZs
in 3.1.1 with additional independent factors βq+i, which yields a zonotope as defined in
Def. 2.2.4:

PZ =

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}

=

{
c+

∑
i∈H

( p∏
k=1

α
E(k,i)

k

)
︸ ︷︷ ︸

∈[0,1]

G(·,i) +
∑
i∈K

( p∏
k=1

α
E(k,i)

k

)
︸ ︷︷ ︸

∈[−1,1]

G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}

=

{
c+ 0.5

∑
i∈H

G(·,i) + 0.5
∑
i∈H

βq+i G(·,i) +
∑
i∈K

βq+i G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ βj, βq+i ∈ [−1, 1]

}
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Def. 2.2.4
=

〈
c+ 0.5

∑
i∈H

G(·,i),
[
0.5 ·G(·,H) G(·,K) GI

]〉
Z

,

where we exploit that monomials with exclusively even exponents (i ∈ H) are strictly
positive so that we can enclose them tighter using

∀i ∈ H :

( p∏
k=1

[−1, 1]E(k,i)

)
G(·,i) = [0, 1]G(·,i) = 0.5 G(·,i) + [−1, 1] 0.5 G(·,i).

For all other monomials (i ∈ K), evaluation of the monomial variable part directly re-
sults in the interval [−1, 1]. A dependent factor affects all monomials that contain the
dependent factor. Since the over-approximation of the monomial variable parts with
new independent factors destroys this dependence between different monomials (e.g.,
{α1α

2
2 + α3

1α2 | α1, α2 ∈ [−1, 1]} ⊆ {β1 + β2 | β1, β2 ∈ [−1, 1]}), the resulting zonotope
encloses PZ because removing dependence results in an over-approximation [30, Sec. 2].

Complexity: The calculation of the set H has complexity O(ph), and the summations
and multiplications required for the construction of the enclosing zonotope have complexity
O(nh) in the worst-case where all exponents are exclusively even, resulting in an overall
complexity of

O(ph) +O(nh) = O(h(p+ n)), (3.5)

which is O(n2) using Assumption 3.1.3.

The enclosing zonotope for the SPZ in (3.4) calculated with Prop. 3.1.14 is visualized in
Fig. 3.2. Next, we show how to enclose a SPZ by a polytope:

Proposition 3.1.15. (Polytope Enclosure) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn,
the operation polytope returns a polytope that encloses PZ:

PZ ⊆ polytope(PZ) = 〈[v1 . . . vs]〉V ,

where the polytope vertex-representation 〈[v1 . . . vs]〉V is computed by applying Alg. 5 to
the SPZ

PZ =
〈
cz, G(·,K), [GI Gz], E(·,K), id

〉
PZ

with

H =
{
i
∣∣ ∃j ∈ {1, . . . , p} : E(j,i) > 1

}
, K = {1, . . . , h} \ H,

〈cz, Gz〉Z = zonotope
(
〈c,G(·,H), [ ], E(·,H), id〉PZ

)
,

and the zonotope enclosure is computed using Prop. 3.1.14. The computational complexity
with respect to the dimension n is O(4nn).

Proof. Alg. 5 computes an enclosing polytope for the Z-representation introduced later
in Sec. 3.3, which is a special case of a SPZ where the exponent matrix is restricted
to having only zeros or ones as entries. We therefore first split PZ into one part
〈0, G(·,K), GI , E(·,K), id〉PZ with only zeros or ones in the exponent matrix, and one re-
mainder part 〈c,G(·,H), [ ], E(·,H), id〉PZ . In order to remove exponents that are greater
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Figure 3.2: Enclosure of the SPZ in (3.4) with a zonotope (top, left), a polytope (top, right),
an interval (bottom, left), and an ellipsoid (bottom, right).

than one the remainder part is enclosed by a zonotope using Prop. 3.1.14. Combination of
the two parts finally yields the SPZ PZ which satisfies

PZ ⊆ PZ
Alg. 5

⊆ 〈[v1 . . . vs]〉V .

Complexity: The calculation of the sets H and K has complexity O(ph) and the compu-
tation of an enclosing zonotope using Prop. 3.1.14 has complexity O(h(p+n)) according to
(3.5). Moreover, the complexity of Alg. 5 is O(2pbn/2c+4p(p+n)) according to Prop. 3.3.9.
The overall complexity is therefore

O(ph) +O(h(p+ n)) +O(2pbn/2c + 4p(p+ n)),

which is O(4nn) using Assumption 3.1.3.

Since every polytope in V-representation can be converted to an equivalent H-
representation, Prop. 3.1.15 can also be used to enclose a SPZ by a polytope in H-
representation. The enclosing polytope for the SPZ in (3.4) calculated with Prop. 3.1.15
is visualized in Fig. 3.2. We now demonstrate how to compute an over-approximation of
the support function of a SPZ, which forms the basis for enclosing a SPZ by an interval or
a template polyhedron:
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Proposition 3.1.16. (Support Function Enclosure) Given a SPZ PZ = 〈c,G,GI ,
E, id〉PZ ⊂ Rn, an over-approximation of its support function sPZ(d) for a given direc-
tion d ∈ Rn can be computed as

sPZ(d) ≤ dT c+ u+

q∑
j=1

∣∣dT GI(·,j)
∣∣ ,

where u ∈ R is computed using range bounding

[l, u] = bound
(
w(α), [−1,1]

)
, w(α) =

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
dTG(·,i).

The computational complexity with respect to the dimension n is O(n2) +O(bound).

Proof. We first project the SPZ onto the direction d using the linear map specified later
on in Prop. 3.1.18, and then divide the resulting one-dimensional SPZ into one part with
dependent generators and one with independent generators:

dT ⊗ PZ Prop. 3.1.18
=

〈
dT c, dTG, dTGI , E, id

〉
PZ

=

dT c⊕
{ h∑

i=1

( p∏
k=1

α
E(k,i)

k

)
dTG(i)

∣∣∣∣ αk ∈ [−1, 1]

}
︸ ︷︷ ︸

⊆[l,u] (dependent part)

⊕
{ q∑

j=1

βjd
TGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}
︸ ︷︷ ︸

=[−a,a] (independent part)

, (3.6)

where a =
∑q

j=1 |dTGI(·,j)|. The bounds for the independent part calculated by the sum of
absolute values correspond to the support function of a zonotope [4, Sec. 2] and are exact.
However, the upper bound u of the dependent part is over-approximative since the range
bounding operation bound as defined in Def. 2.7.1 returns an over-approximation, so that

sPZ(d)
Def. 2.2.7

= max
x∈PZ

dTx = max
y∈dT⊗PZ

y
(3.6)

≤ dT c+ max
y∈[l−a,u+a]

y = dT c+ u+

q∑
j=1

∣∣dT GI(·,j)
∣∣

︸ ︷︷ ︸
a

.

Complexity: The vector matrix multiplications dT c, dTG and dTGI required for the
projection dT ⊗ PZ of PZ onto direction d have complexity O(n) + O(nh) + O(nq) =
O(n(h+q)) according to Tab. 2.1. Moreover, calculation of

∑q
j=1 |dTGI(·,j)| has complexity

O(q) and the complexity O(bound) for the calculation of the interval [l, u] using range
bounding depends on the applied range bounding technique (see Tab. 2.4). The overall
complexity is therefore

O(n(h+ q)) +O(q) +O(bound) = O(n(h+ q)) +O(bound), (3.7)

which is O(n2) + O(bound) using Assumption 3.1.3. The computational complexity of
range bounding depends according to Tab. 2.4 on the number of elementary operations in
the corresponding function. In our case, evaluation of the function w(α) requires at most

e = 2ph+ (h− 1) (3.8)

elementary operations if the result for dTG is precomputed, which results in the complex-
ities listed in Tab. 3.3.
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Table 3.3: Computational complexity with respect to the dimension n ∈ N for support function,
interval, and ellipsoid enclosure of SPZs using the range bounding techniques from Sec. 2.7.

Method Support Function Interval Ellipsoid

Interval arithmetic O(n2) O(n3) O(n4)

Affine arithmetic O(n3) O(n4) O(n5)

Taylor models ≥ O(n3) ≥ O(n4) ≥ O(n5)

Note that the tightness of the support function enclosure solely depends on the tightness
of the bounds of the function w(α) obtained by one of the range bounding techniques from
Sec. 2.7. The computational complexity for different range bounding techniques is summa-
rized in Tab. 3.3. One approach to improve the tightness is to first split the SPZ multiple
times using the split operator introduced later in Prop. 3.1.44, and then over-approximate
the support functions for the split sets. A template polyhedron enclosing a SPZ can easily
be constructed by enclosing the support function sPZ(d) according to Prop. 3.1.16 for a
discrete set of directions D = {d1, . . . , dr}, di ∈ Rn, i = 1, . . . , r. The enclosure by an
interval represents a special case where D = {In(·,1), . . . , In(·,n),−In(·,1), . . . ,−In(·,n)}. We
denote the enclosure of a SPZ PZ with an interval by interval(PZ). The enclosing
interval for the SPZ in (3.4) calculated with Prop. 3.1.16 using Bernstein polynomials for
range bounding is visualized in Fig. 3.2. Finally, we demonstrate how to tightly enclose a
SPZ by an ellipsoid:

Proposition 3.1.17. (Ellipsoid Enclosure) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn,
the operation ellipsoid returns an ellipsoid that encloses PZ:

PZ ⊆ ellipsoid(PZ) = 〈ce, Q · b〉E,

where

U = pca
(
[−G −GI GI G]

)
, [l, u] = interval(UT ⊗ PZ), sP̂Z(1) ≤ b,

ce = 0.5 · U(l + u), PZ = 〈c− ce, G,GI , E, id〉PZ , P̂Z ⊇ sq
(
{Q−1},PZ

)
,

Q = 0.25 · U


(
u(1) − l(1)

)2
0

. . .

0
(
u(n) − l(n)

)2


︸ ︷︷ ︸

D

UT , Q−1 = 4 · UD−1UT ,

where the operator pca as defined in Def. 2.4.4 performs Principal Component Analysis,
the linear map UT⊗PZ is computed using Prop. 3.1.18, the enclosure of the quadratic map
sq({Q−1},PZ) is computed using Prop. 3.1.31, and the interval enclosure as well as the
over-approximation of the support function sP̂Z(1) are calculated using Prop. 3.1.16. The
computational complexity with respect to the dimension n is O(n3 log(n)) + n · O(bound).
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Proof. The main concept of the ellipsoid enclosure is as follows: We first compute the
ellipsoid center ce and the matrix Q that defines the orientation and shape of the ellipsoid
based on a heuristic. For this, the principal axes of the ellipsoid represented by the columns
of the matrix U are computed by applying PCA to the point cloud [−G − GI GI G]
defined by the generators of PZ. Next, the extent of the ellipsoid along the principal axes
corresponding to the diagonal entries of the matrix D is computed based on an interval
enclosure [l, u] of the set in the transformed state-space UT ⊗ PZ. The same interval
enclosure is used to heuristically select the ellipsoid center as ce = 0.5 · U(l + u). Once
the shape of the ellipsoid is fixed, the size of the ellipsoid is properly scaled by the scalar
b ∈ R≥0 such that the ellipsoid encloses PZ. Since the correctness of the result from the
proposition consequently doesn’t depend on the matrix Q and the center ce, it is sufficient
to show that the scaling with b always yields an ellipsoid that encloses PZ. Based on the
definition of the quadratic map in (2.6) it holds that

∀x ∈ PZ : 0 ≤ (x− ce)T︸ ︷︷ ︸
∈ PZ

Q−1 (x− ce)︸ ︷︷ ︸
∈ PZ︸ ︷︷ ︸

∈ P̂Z ⊇ sq({Q−1},PZ)

≤ sP̂Z(1) ≤ b, (3.9)

where (x− ce)TQ−1(x− ce) ≥ 0 since Q is positive definite. Using (3.9) we have

PZ =
{
x ∈ PZ

} (3.9)
={

x ∈ PZ
∣∣ (x− ce)TQ−1(x− ce) ≤ b

}
⊆
{
x
∣∣ (x− ce)TQ−1(x− ce) ≤ b

}
={

x
∣∣ (x− ce)T (Q · b)−1(x− ce) ≤ 1

} Def. 2.2.6
= 〈ce, Q · b〉E,

where the equality of the first and second line follows from the fact that the constraint
(x − ce)

TQ−1(x − ce) ≤ b does not further restrict the values for x according to (3.9).
Finally, the equation

Q−1 = (0.25 · UDUT )−1 = 0.25−1 · (UT )−1D−1U−1 = 4 · UD−1UT

for computing Q−1 is obtained by exploiting that U is an orthonormal matrix for which
U−1 = UT holds.

Complexity: Since [−G −GI GI G] is a matrix of dimension n×2(h+q), PCA has com-
plexity O(2n2(h+ q) +n3) = O(n2(h+ q) +n3) according to Tab. 2.1. Computation of the
linear map UT ⊗ PZ using Prop. 3.1.18 has complexity O(n2(h+ q)) according to (3.10).
Since calculating an interval enclosure requires the over-approximation of 2n support func-
tions using Prop. 3.1.16, computing interval(UT⊗PZ) has complexity 2n·(O(n(h+q))+
O(bound)) = O(n2(h + q)) + n · O(bound) according to (3.7). The matrix multiplications
required to compute Q and Q−1 have complexity O(n3) according to Tab. 2.1. Computa-
tion of the quadratic map sq

(
{Q−1},PZ

)
has complexity O(n3(w + log(n))) according to

Prop. 3.1.31, which is O(n3 log(n)) in our case since w = 1. Since the SPZ P̂Z calculated

with Prop. 3.1.31 has ĥ = h2 +2h dependent and q̂ = 2q(h+1)+q2 independent generators
according to Tab. 3.4, over-approximating its support function sP̂Z(1) using Prop. 3.1.16
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has complexity O(n̂(ĥ+ q̂))+O(bound) = O(n̂(h2+2h+2q(h+1)+q2))+O(bound) accord-

ing to (3.7), which is O(h2 + hq+ q2) +O(bound) in our case since P̂Z is one-dimensional
so that n̂ = 1. The overall complexity is therefore

O(n2(h+ q) + n3) +O(n2(h+ q)) +O(n2(h+ q)) + n · O(bound)

+O(n3) +O(n3 log(n)) +O(h2 + hq + q2) +O(bound)

= O(n2(h+ q) + n3) +O(n3 log(n)) +O(h2 + hq + q2) + n · O(bound),

which isO(n3 log(n))+n·O(bound) using Assumption 3.1.3. Range bounding for computing
the interval enclosure interval(UT⊗PZ) consists of e1 = 2ph+h−1 elementary operations
according to (3.8). Moreover, range bounding for computing the support function enclosure

sP̂Z(1) ≤ b consists of e2 = 2pĥ+ ĥ− 1 elementary operations according to (3.8), which is

e2 = 2ph2 +4ph+h2 +2h−1 since ĥ = h2 +2h. The overall number of required elementary
operations is therefore e1 + e2 = 2ph2 + 6ph + h2 + 3h − 2, which results according to
Tab. 2.4 in the computational complexities listed in Tab. 3.3.

The ellipsoid enclosure for the SPZ in (3.4) calculated with Prop. 3.1.17 is visualized in
Fig. 3.2, where we used Bernstein polynomials for range bounding. Tab. 3.3 summarizes
the computational complexity for calculating an ellipsoid enclosure with different range
bounding techniques.

3.1.5 Basic Set Operations

In this section we derive closed-form expressions for the basic set operations in Sec. 2.1 on
SPZs. We begin with the linear map:

Proposition 3.1.18. (Linear Map) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn and a
matrix M ∈ Rw×n, the linear map is

M ⊗ PZ =
〈
Mc,MG,MGI , E, id

〉
PZ
,

which has complexity O(wn2) with respect to the dimension n, where w is the number of
rows of matrix M . The resulting SPZ is regular if PZ is regular.

Proof. The result follows directly from inserting the definition of SPZs in Def. 3.1.1 into
the definition of the linear map in (2.1):

M ⊗ PZ (2.1)
=
{
Ms

∣∣ s ∈ PZ} Def. 3.1.1
=

{
Mc+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
MG(·,i) +

q∑
j=1

βj MGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}

=
〈
Mc,MG,MGI , E, id

〉
PZ
.
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Complexity: The three matrix multiplications Mc, MG, and MGI have complexity

O(wn) +O(wnh) +O(wnq) = O(wn(h+ q)) (3.10)

according to Tab. 2.1, which is O(wn2) using Assumption 3.1.3.

Even though every zonotope can be represented as a SPZ, we provide a separate definition
for the Minkowski sum of a SPZ and a zonotope for computational reasons:

Proposition 3.1.19. (Minkowski Sum) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1, id1〉PZ
⊂ Rn and PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rn, as well as a zonotope Z = 〈cz, Gz〉Z ⊂ Rn,
their Minkowski sum is

PZ1⊕PZ2 =

〈
c1 + c2,

[
G1 G2

]
,
[
GI,1 GI,2

]
,

[
E1 0
0 E2

]
, uniqueID(p1 + p2)

〉
PZ

(3.11)

and

PZ1 ⊕Z =
〈
c1 + cz, G1,

[
GI,1 Gz

]
, E1, id1

〉
PZ
, (3.12)

where (3.11) and (3.12) both have complexity O(n) with respect to the dimension n. The
resulting SPZs are regular if PZ1 and PZ2 are regular.

Proof. Inserting the definition of SPZs in Def. 3.1.1 into the definition of the Minkowski
sum in (2.2) yields

PZ1 ⊕ PZ2
(2.2)
=
{
s1 + s2

∣∣ s1 ∈ PZ1, s2 ∈ PZ2

} Def. 3.1.1
=

{
c1 + c2 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i)

+

q1∑
j=1

βj GI,1(·,j) +

q2∑
j=1

βq1+j GI,2(·,j)

∣∣∣∣ αk, αp1+k, βj, βp1+j ∈ [−1, 1]

}

=

〈
c1 + c2,

[
G1 G2

]
,
[
GI,1 GI,2

]
,

[
E1 0
0 E2

]
, uniqueID(p1 + p2)

〉
PZ

,

where we generate new identifiers for all factors since the Minkowski sum per definition
removes all dependencies between the two sets which are added. The Minkowski sum with a
zonotope is obtained in the same way by inserting the definition of a zonotope in Def. 2.2.4,
where the zonotope generators are added to the independent generators for computational
reasons.

Complexity: Addition of the center vectors c1 + c2 and c1 + cz has complexity O(n)
and the generation of p1 + p2 unique identifiers using operation uniqueID has complexity
O(p1 + p2) according to Tab. 2.2. The Minkowski sum with a zonotope has therefore
complexity O(n), and Minkowski addition of two SPZs has complexity O(n) +O(p1 + p2),
which is O(n) using Assumption 3.1.3.
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During calculation of the Minkowski sum of two SPZs PZ1 and PZ2 using Prop. 3.1.19,
possible dependencies between PZ1 and PZ2 due to common dependent factors get lost.
We therefore introduce the exact addition PZ1 � PZ2 of two SPZs, which explicitly con-
siders dependencies between PZ1 and PZ2. To bring the exponent matrices to a common
representation, we apply mergeID as defined in Prop. 3.1.5 prior to the computation.

Proposition 3.1.20. (Exact Addition) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1, id〉PZ ⊂
Rn and PZ2 = 〈c2, G2, GI,2, E2, id〉PZ ⊂ Rn with a common identifier vector id, their exact
addition is defined as

PZ1 � PZ2 =
〈
c1 + c2,

[
G1 G2

]
,
[
GI,1 GI,2

]
,
[
E1 E2

]
, id
〉
PZ
,

which has complexity O(n2 log(n)) with respect to the dimension n. The compact operation
as defined in Prop. 3.1.7 is applied to make the resulting SPZ regular.

Proof. The result is identical to the one for the Minkowski sum of two SPZs in (3.11),
with the difference that the common identifier vector id is used instead of newly generated
unique identifiers.

Complexity: Merging the identifier vectors using mergeID has complexity O(p1p2) ac-
cording to Prop. 3.1.5 and the addition of the center vectors c1 + c2 has complexity O(n).
Subsequent application of the compact operator has complexity O(h(n+p log(h))) accord-
ing to Prop. 3.1.7, where h = h1 + h2 and p = p1 = p2 denote the number of dependent
generators and the number of dependent factors of the resulting SPZ. The overall com-
plexity is therefore

O(p1p2) +O(n) +O
(
h(n+ p log(h))

)
h=h1+h2
p=p1=p2

= O(p1p2) +O(n) +O
(
(h1 + h2)(n+ p1 log(h1 + h2))

)
,

which is O(n2 log(n)) using Assumption 3.1.3.

Let us demonstrate the difference between Minkowski sum and exact addition with an
example:

Example 3.1.21. Consider that we want to compute the set B = {s+Ms | s ∈ PZ} with

PZ =

〈[
0
0

]
,

[
2 0 1
1 2 1

]
, [ ],

[
1 0 1
0 1 3

]
, [1 2]

〉
PZ

, M =

[
−0.5 0.2
−0.1 0.6

]
.

As visualized in Fig. 3.3, using the Minkowski sum yields the over-approximation B ⊆
PZ ⊕ (M ⊗ PZ). With the exact addition, on the other hand, we obtain the exact result
B = PZ� (M⊗PZ) since the exact addition explicitly considers the dependencies between
the sets PZ and M ⊗ PZ. While for this simple example the exact result can also be
obtained without the exact addition by using the simplification B = (I2 +M)⊗PZ, this is
in general not possible for more complicated equations and algorithms.

Next, we consider the Cartesian product. Even though every zonotope can be represented
as a SPZ, we provide a separate definition for the Cartesian product of a SPZ and a
zonotope for computational reasons:
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Figure 3.3: Visualization of the results from Example 3.1.21, where the SPZ PZ is shown on
the left and the resulting sets B calculated with Minkowski sum and exact addition are shown on
the right.

Proposition 3.1.22. (Cartesian Product) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1,
id1〉PZ ⊂ Rn and PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rw, as well as a zonotope Z =
〈cz, Gz〉Z ⊂ Rw, their Cartesian product is

PZ1×PZ2 =

〈[
c1

c2

]
,

[
G1 0
0 G2

]
,

[
GI,1 0
0 GI,2

]
,

[
E1 0
0 E2

]
, uniqueID(p1 + p2)

〉
PZ

(3.13)

and

PZ1 ×Z =

〈[
c1

cz

] [
G1

0

]
,

[
GI,1 0
0 Gz

]
, E1, id1

〉
PZ

, (3.14)

where (3.13) has complexity O(n) with respect to the dimension n, and (3.14) has com-
plexity O(1). The resulting SPZs are regular if PZ1 and PZ2 are regular.

Proof. Inserting the definition of SPZs in Def. 3.1.1 into the definition of the Cartesian
product in (2.4) yields

PZ1 × PZ2
(2.4)
=
{

[sT1 sT2 ]T
∣∣ s1 ∈ PZ1. s2 ∈ PZ2

} Def. 3.1.1
=

{[
c1

0

]
+

[
0
c2

]
+

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)[
G1(·,i)

0

]
+

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)[
0

G2(·,i)

]

+

q1∑
j=1

βj

[
GI,1(·,j)

0

]
+

q2∑
j=1

βq1+j

[
0

GI,2(·,j)

] ∣∣∣∣ αk, αp1+k, βj, βq1+j ∈ [−1, 1]

}

=

〈[
c1

c2

]
,

[
G1 0
0 G2

]
,

[
GI,1 0
0 GI,2

]
,

[
E1 0
0 E2

]
, uniqueID(p1 + p2)

〉
PZ

.

The Cartesian product with a zonotope is obtained in the same way by inserting the
definition of a zonotope in Def. 2.2.4, where the zonotope generators are added to the
independent generators for computational reasons.
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Complexity: The construction of the resulting SPZs only involves concatenations and
therefore has complexity O(1). For the Cartesian product of two SPZs, p1 + p2 unique
identifiers have to be generated with uniqueID, resulting in complexityO(p1+p2) according
to Tab. 2.2, which is O(n) using Assumption 3.1.3.

For both, the linear combination and the convex hull on SPZs, we require the enclosure
of the convex hull of two zonotopes, which we compute as follows:

Proposition 3.1.23. Given two zonotopes, Z1 = 〈c1, G1〉Z ⊂ Rn and Z2 = 〈c2, G2〉Z ⊂
Rn, an enclosure of their convex hull can according to [24, Eq. (2.2)] be computed as

conv
(
Z1,Z2

)
⊆
〈
0.5(c1 + c2), G

〉
Z
,

where

G =

{[
0.5(c1 − c2) Ĝ1 G1(·,{l2+1,...,l1})

]
, l1 ≥ l2[

0.5(c1 − c2) Ĝ2 G2(·,{l1+1,...,l2})
]
, l1 < l2

,

Ĝ1 = 0.5
[
G1(·,K2) +G2 G1(·,K2) −G2

]
, K1 = {1, . . . , l1},

Ĝ2 = 0.5
[
G1 +G2(·,K1) G1 −G2(·,K1)

]
, K2 = {1, . . . , l2}.

The computational complexity is O(nmin(l1, l2)), where l1 and l2 are the number of gener-
ators of Z1 and Z2.

Proof. Since the result is taken from [24, Eq. (2.2)], the corresponding proof can be found
in [24, Ch. 2.4].

Complexity: Calculation of the vectors 0.5(c1 + c2) and 0.5(c1 − c2) has computational

complexityO(n), and construction of the matrix Ĝ1 or Ĝ2 has complexityO(2nmin(l1, l2)).
The overall complexity is therefore O(n) +O(2nmin(l1, l2)) = O(nmin(l1, l2)).

Moreover, we require the following lemma:

Lemma 3.1.24. Given sets S1, S2, S3, S4 ⊂ Rn, the relation

comb(S1 ⊕ S2, S3 ⊕ S4) ⊆ comb(S1, S3)⊕ comb(S2, S4)

holds for the linear combination.

Proof. According to the definition of the linear combination in (2.11) we have

comb(S1 ⊕ S2, S3 ⊕ S4)
(2.11),(2.2)

=

{
0.5(1 + λ)(s1 + s2) + 0.5(1− λ)(s3 + s4)

∣∣ s1 ∈ S1, s2 ∈ S2, s3 ∈ S3, s4 ∈ S4, λ ∈ [−1, 1]
}

=
{

0.5(1 + λ)s1 + 0.5(1− λ)s3︸ ︷︷ ︸
comb(S1,S3)

+ 0.5(1 + λ)s2 + 0.5(1− λ)s4︸ ︷︷ ︸
comb(S2,S4)

∣∣ s1 ∈ S1, s2 ∈ S2, s3 ∈ S3,
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s4 ∈ S4, λ ∈ [−1, 1]
}

(2.2)

⊆
{

0.5(1 + λ)s1 + 0.5(1− λ)s3

∣∣ s1 ∈ S1, s3 ∈ S3, λ ∈ [−1, 1]
}

⊕
{

0.5(1 + λ)s2 + 0.5(1− λ)s4

∣∣ s2 ∈ S2, s4 ∈ S4, λ ∈ [−1, 1]
}
,

where the last step results in an over-approximation since the dependence between the
variable λ in the set comb(S1,S3) and the variable λ in the set comb(S2,S4) gets lost, and
removing dependence results in an over-approximation [30, Sec. 2].

For the linear combination as defined in (2.11) we first consider the case without inde-
pendent generators and later present the general case:

Proposition 3.1.25. (Linear Combination) Given two SPZs, PZ1 = 〈c1, G1, [ ], E1,
id1〉PZ ⊂ Rn and PZ2 = 〈c1, G2, [ ], E2, id2〉PZ ⊂ Rn, their linear combination is

comb(PZ1,PZ2) =

〈
0.5(c1 + c2), 0.5

[
(c1 − c2) G1 G1 G2 −G2

]
, [ ],0 E1 E1 0 0

0 0 0 E2 E2

1 0 1 0 1

 , uniqueID(p1 + p2 + 1)

〉
PZ

,

which has complexity O(n2) with respect to the dimension n. The resulting SPZ is regular
if PZ1 and PZ2 are regular.

Proof. We first generate new unique identifiers for all dependent factors to remove possible
dependencies between the two SPZs. Inserting the definition of SPZs in Def. 3.1.1 into the
definition of the linear combination is (2.11) yields

comb(PZ1,PZ2)
(2.11)
=

{
1

2
(1 + λ)s1 +

1

2
(1− λ)s2

∣∣∣∣ s1 ∈ PZ1, s2 ∈ PZ2, λ ∈ [−1, 1]

}
Def. 3.1.1

=

{
1

2
(c1 + c2) +

1

2
(c1 − c2)λ+

1

2

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

1

2

h1∑
i=1

λ

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i)

+
1

2

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i) −

1

2

h2∑
i=1

λ

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i)

∣∣∣∣ αk, αp1+k, λ ∈ [−1, 1]

}

αp1+p2+1:=λ
=

〈
1

2
(c1 + c2),

1

2

[
(c1 − c2) G1 G1 G2 −G2

]
, [ ]0 E1 E1 0 0

0 0 0 E2 E2

1 0 1 0 1

 , uniqueID(p1 + p2 + 1)

〉
PZ

,
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where we substituted the parameter λ with an additional dependent factor αp1+p2+1 = λ.
Since λ ∈ [−1, 1] and αp1+p2+1 ∈ [−1, 1], this substitution does not change the set.

Complexity: Construction of the constant offset 0.5(c1 + c2) requires n additions and n
multiplications, and construction of the generator matrix 0.5[(c1 − c2) G1 G1 G2 − G2]
requires n subtractions and n(2h1 + 2h2 + 1) multiplications. The overall complexity is
therefore

O(n) +O(n) +O(n) +O(n(2h1 + 2h2 + 1)) = O(n(h1 + h2), (3.15)

which is O(n2) using Assumption 3.1.3.

We now extend Prop. 3.1.25 to the general case including independent generators. Since
according to Prop. 3.1.4 every SPZ can equivalently be represented as a SPZ without inde-
pendent generators, we could compute the exact linear combination based on Prop. 3.1.25.
This, however, would significantly increase the number of dependent generators and con-
sequently slow down subsequent computations on the SPZ. Instead of the exact result we
therefore compute a tight enclosure of the linear combination if the SPZs contain indepen-
dent generators to achieve a good trade-off between accuracy and computational cost:

Proposition 3.1.26. (Linear Combination) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1,
id1〉PZ ⊂ Rn and PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rn, it holds that

comb(PZ1,PZ2) ⊆
〈
c,G,GI , E, id

〉
PZ
,

where〈
c,G, [ ], E, id

〉
PZ

= comb
(
PZ1,PZ2

)
,
〈
0, GI

〉
Z
⊇ conv

(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)
,

PZ1 =
〈
c1, G1, [ ], E1, id1

〉
PZ
, PZ2 =

〈
c2, G2, [ ], E2, id2

〉
PZ
,

the linear combination comb(PZ1,PZ2) is calculated using Prop. 3.1.25, and the enclo-
sure of the convex hull of the two zonotopes 〈0, GI,1〉Z and 〈0, GI,2〉Z is computed using
Prop. 3.1.23. The computational complexity with respect to the dimension n is O(n2), and
the resulting SPZ is regular if PZ1 and PZ2 are regular.

Proof. Each SPZ can equivalently be represented as the Minkowski sum of a SPZ and a
zonotope:

PZ = 〈c,G,GI , E, id〉PZ = 〈c,G, [ ], E, id〉PZ ⊕ 〈0, GI〉Z . (3.16)

According to Lemma 3.1.24 it therefore holds that

comb(PZ1,PZ2)
(3.16)
= comb

(
PZ1 ⊕ 〈0, GI,1〉Z ,PZ2 ⊕ 〈0, GI,2〉Z

)
Lemma 3.1.24

⊆ comb
(
PZ1,PZ2

)
⊕ comb

(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)
=

= comb
(
PZ1,PZ2

)︸ ︷︷ ︸
=〈c,G,[ ],E,id〉PZ

⊕ conv
(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)︸ ︷︷ ︸
⊆〈0,GI〉Z

⊆
〈
c,G,GI , E, id

〉
PZ
,
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where we exploit that linear combination and convex hull are equivalent for zonotopes since
zonotopes are convex.

Complexity: According to (3.15), the complexity for computing the linear combination
of two SPZs without independent generators is O(n(h1 + h2)). Moreover, the complexity
for calculating an enclosure of the convex hull of two zonotopes using Prop. 3.1.23 is
O(nmin(l1, l2)), where in our case the number of zonotope generators is l1 = q1 and
l2 = q2. Consequently, the overall complexity is

O(n(h1 + h2)) +O(nmin(q1, q2)), (3.17)

which is O(n2) using Assumption 3.1.3.

For the convex hull of two SPZs we again first consider the case without independent
generators, and later present the general case:

Proposition 3.1.27. (Convex Hull) Given two SPZs, PZ1 = 〈c1, G1, [ ], E1, id1〉PZ ⊂ Rn

and PZ2 = 〈c2, G2, [ ], E2, id2〉PZ ⊂ Rn, their convex hull is

conv(PZ1,PZ2) =

〈
0.5(c1 + c2), 0.5

[
(c1 − c2) G1 G1 G2 −G2

]
, [ ],0 E1 E1 0 0

0 0 0 E2 E2

1 0 1 0 1

 , uniqueID(2p1 + 2p2 + 3)

〉
PZ

,

(3.18)

where

G1 = 0.5
[
G1 G1 G1 −G1

]
, G2 = 0.5

[
G2 G2 G2 −G2

]
,

E1 =

E1 E1 0 0
0 0 E1 E1

0 1 0 1

 , E2 =

E2 E2 0 0
0 0 E2 E2

0 1 0 1

 , (3.19)

which has complexity O(n2) with respect to the dimension n. The resulting SPZ is regular
if PZ1 and PZ2 are regular.

Proof. According to Lemma 2.1.1, the convex hull can be computed as

conv(PZ1,PZ2) = comb
(
comb(PZ1,PZ1), comb(PZ2,PZ2)

)
.

Using Prop. 3.1.25, we obtain

comb(PZ1,PZ1) =
〈
c1, G1, [ ], E1, uniqueID(2p1 + 1)︸ ︷︷ ︸

id1

〉
PZ
,

comb(PZ2,PZ2) =
〈
c2, G2, [ ], E2, uniqueID(2p2 + 1)︸ ︷︷ ︸

id2

〉
PZ
.

Applying Prop. 3.2.20 again to compute

conv(PZ1,PZ2) = comb
(
〈c1, G1, [ ], E1, id1〉PZ , 〈c2, G2, [ ], E2, id2〉PZ

)
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then yields the result in (3.18).
Complexity: Computation of the matrices G1 and G2 in (3.19) requires 4(h1 + h2)

multiplications, and construction of the constant offset 0.5(c1 + c2) in (3.18) requires
n additions and n multiplications. Additionally, construction of the generator matrix
0.5[(c1 − c2) G1 G1 G2 −G2] in (3.18) requires n subtractions and n(2h1 + 2h2 + 1) mul-
tiplications, where h1 = 4h1 and h2 = 4h2 denote the number of columns of the matrices
G1 and G2. Finally, generation of 2p1 + 2p2 + 3 unique identifiers using uniqueID has
complexity O(2p1 + 2p2 + 3) according to Tab. 2.2. The overall complexity is therefore

O(4(h1 + h2)) +O(4n) +O(n(2h1 + 2h2 + 1)) +O(2p1 + 2p2 + 3)

h1=4h1

h2=4h2=

O(4(h1 + h2)) +O(4n) +O(n(8h1 + 8h2 + 1)) +O(2p1 + 2p2 + 3) =

O(n(h1 + h2)) +O(p1 + p2),

(3.20)

which is O(n2) using Assumption 3.1.3.

We now extend Prop. 3.1.27 to the general case including independent generators. As for
the linear combination we compute a tight over-approximation instead of the exact result
for computational reasons:

Proposition 3.1.28. (Convex Hull) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1, id1〉PZ ⊂
Rn and PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rn, it holds that

conv(PZ1,PZ2) ⊆
〈
c,G,GI , E, id

〉
PZ
,

where〈
c,G, [ ], E, id

〉
PZ

= conv
(
PZ1,PZ2

)
,
〈
0, GI

〉
Z
⊇ conv

(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)
,

PZ1 = 〈c1, G1, [ ], E1, id1〉PZ , PZ2 = 〈c2, G2, [ ], E2, id2〉PZ ,

the linear combination comb(PZ1,PZ2) is calculated using Prop. 3.1.27, and the enclo-
sure of the convex hull of the two zonotopes 〈0, GI,1〉Z and 〈0, GI,2〉Z is computed using
Prop. 3.1.23. The computational complexity with respect to the dimension n is O(n2), and
the resulting SPZ is regular if PZ1 and PZ2 are regular.

Proof. Since every SPZ can equivalently be represented as the Minkowski sum of a SPZ
and a zonotope

PZ = 〈c,G,GI , E, id〉PZ = 〈c,G, [ ], E, id〉PZ︸ ︷︷ ︸
PZ

⊕〈0, GI〉Z , (3.21)

we have

comb(PZ,PZ)
(3.21)
= comb

(
PZ ⊕ 〈0, GI〉Z ,PZ ⊕ 〈0, GI〉Z

) Lemma 3.1.24

⊆

comb
(
PZ,PZ

)
⊕ comb

(
〈0, GI〉Z , 〈0, GI〉Z

)︸ ︷︷ ︸
〈0,GI〉Z

= comb
(
PZ,PZ

)
⊕ 〈0, GI〉Z ,

(3.22)



56 Chapter 3 Extensions of Polynomial Zonotopes

where we utilize that the linear combination of two identical zonotopes is equivalent to the
zonotope itself since zonotopes are convex. Since every SPZ is connected, we can apply
Lemma 2.1.1 to obtain

conv(PZ1,PZ2)
Lemma 2.1.1

= comb
(
comb(PZ1,PZ1), comb(PZ2,PZ2)

) (3.22)
=

comb
(
comb(PZ1,PZ1)⊕ 〈0, GI,1〉Z , comb(PZ2,PZ2)⊕ 〈0, GI,2〉Z

) Lemma 3.1.24

⊆

comb
(
comb(PZ1,PZ1), comb(PZ2,PZ2)

)︸ ︷︷ ︸
Lemma 2.1.1

= conv(PZ1,PZ2))

⊕ comb
(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)
=

conv
(
PZ1,PZ2

)︸ ︷︷ ︸
=〈c,G,[ ],E,id〉PZ

⊕ conv
(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)︸ ︷︷ ︸
⊆〈0,GI〉Z

⊆ 〈c,G,GI , E, id〉PZ ,

where we exploit that linear combination and convex hull are identical for zonotopes since
zonotopes are convex.

Complexity: Computing the convex hull of two SPZs without independent generators
using Prop. 3.1.27 has complexity O(n(h1+h2))+O(p1+p2) according to (3.20). Moreover,
the computation of an enclosure of the convex hull of two zonotopes using Prop. 3.1.23 has
complexity O(nmin(l1, l2)), where in our case the number of zonotope generators is l1 = q1

and l2 = q2. The overall complexity is therefore

O(n(h1 + h2)) +O(p1 + p2) +O(nmin(q1, q2)),

which is O(n2) using Assumption 3.1.3.

Let us demonstrate the tightness of the enclosures for the linear combination and the
convex hull with an example:

Example 3.1.29. We consider the SPZs

PZ1 =

〈[
−5
0

]
,

[
2 0 2
0 2 2

]
, [ ],

[
1 0 1
0 1 1

]
,
[
1 2

]〉
PZ

and

PZ2 =

〈[
3
3

]
,

[
1 −2 2
2 3 1

]
,

[
0.5
0

]
,

[
1 0 2
0 1 1

]
,
[
1 2

]〉
PZ

.

A comparison of the exact linear combination and the exact convex hull with the enclosures
computed using Prop. 3.1.26 and Prop. 3.1.28 is shown in Fig. 3.4.

For the quadratic map, we first consider the special case without independent gener-
ators, and later present the general case. To bring the exponent matrices to a common
representation, we apply mergeID as defined in Prop. 3.1.5 prior to the computation.
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Figure 3.4: Visualization of the results from Example 3.1.29, where the SPZ PZ1 is depicted in
green and the SPZ PZ2 is depicted in blue.

Proposition 3.1.30. (Quadratic Map) Given two SPZs PZ1 = 〈c1, G1, [ ], E1, id〉PZ ⊂ Rn

and PZ2 = 〈c2, G2, [ ], E2, id〉PZ ⊂ Rn with a common identifier vector id and a discrete
set of matrices Q = {Q1, . . . , Qw} with Qi ∈ Rn×n, i = 1, . . . , w, the result of the quadratic
map is

sq(Q,PZ1,PZ2) =
〈
c,
[
Ĝ1 Ĝ2 G1 . . . Gh1

]
, [ ],

[
E1 E2 E1 . . . Eh1

]
, id
〉
PZ
,

where

c =

c
T
1Q1c2

...
cT1Qwc2

 , Ĝ1 =

c
T
2Q

T
1G1
...

cT2Q
T
wG1

 , Ĝ2 =

c
T
1Q1G2

...
cT1QwG2

 ,

Ej = E2 + E1(·,j) · 1, Gj =

G
T
1(·,j)Q1G2

...
GT

1(·,j)QwG2

 , j = 1, . . . , h1.

(3.23)

The compact operation as defined in Prop. 3.1.7 is applied to make the resulting SPZ
regular. The computational complexity with respect to the dimension n is O(n3(w+log(n))),
where w is the dimension of the resulting SPZ.

Proof. Inserting the definition of SPZs in Def. 3.1.1 into the definition of the quadratic
map in (2.6) yields:

sq(Q,PZ1,PZ2)
(2.6)
=
{
x
∣∣ x(i) = sT1Qis2, s1 ∈ PZ1, s2 ∈ PZ2, i = 1, . . . , w

}
Def. 3.1.1

=

{
x

∣∣∣∣ x(i) =

(
c1 +

h1∑
j=1

p1∏
k=1

α
E1(k,j)

k G1(·,j)

)T
Qi

(
c2 +

h2∑
l=1

p2∏
k=1

α
E2(k,l)

k G2(·,l)

)
,

i = 1, . . . , w, αk ∈ [−1, 1]

}
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=

{
x

∣∣∣∣ x(i) = cT1Qic2︸ ︷︷ ︸
(3.23)

= c(i)

+

h1∑
j=1

p∏
k=1

α
E1(k,j)

k GT
1(·,j)Qic2︸ ︷︷ ︸

(3.23)
= Ĝ1(i,j)

+

h2∑
l=1

p∏
k=1

α
E2(k,l)

k cT1QiG2(·,l)︸ ︷︷ ︸
(3.23)

= Ĝ2(i,l)

+

h1∑
j=1

h2∑
l=1

( p∏
k=1

α
E1(k,j)+E2(k,l)

k︸ ︷︷ ︸
(3.23)

= α
Ej(k,l)
k

)
GT

1(·,j)QiG2(·,l)︸ ︷︷ ︸
(3.23)

= Gj(i,l)

, i = 1, . . . , w, αk ∈ [−1, 1]

}

=
〈
c,
[
Ĝ1 Ĝ2 G1 . . . Gh1

]
, [ ],

[
E1 E2 E1 . . . Eh1

]
, id
〉
PZ
,

where p = p1 = p2 holds since both SPZs have an identical identifier vector id. Note that
only the generator matrix, but not the exponent matrix, is different for each dimension
x(i).

Complexity: According to Prop. 3.1.5, the complexity of mergeID is O(p̂1p̂2), where p̂1

and p̂2 represent the number of dependent factors before applying mergeID. Since p = p1 =
p2 ≤ p̂1 + p̂2, this is identical to O(p2). Using the complexity of matrix multiplication
in Tab. 2.1 we can derive the complexity for constructing the constant offset c in (3.23)

as O(n2w) and the complexity for constructing Ĝ1 and Ĝ2 in (3.23) as O(n2w(h1 + h2)).
Moreover, construction of the exponent matrices Ej in (3.23) has complexity O(h1h2p) and
construction of the generator matrices Gj in (3.23) has complexity O(n2h2w)+O(nh1h2w)
if the results for QiG2 are stored and reused. Subsequent application of the compact

operation has according to Prop. 3.1.7 complexity O(h(n+ p log(h))), where n = w, p = p,
and h = h1h2 + h1 + h2 denote the dimension, the number of dependent factors, and the
number of dependent generators of the resulting SPZ. The resulting overall complexity is
therefore

O(p2) +O(n2w) +O(n2w(h1 + h2)) +O(h1h2p) +O(n2h2w)

+O(nh1h2w) +O(h(n+ p log(h)))

h=h1h2+h1+h2
n=w, p=p

= O(p2) +O(n2w(h1 + h2)) +O(h1h2p) +O(nh1h2w)

+O((h1h2 + h1 + h2)(w + p log(h1h2 + h1 + h2)))

= O(p2) +O(n2w(h1 + h2)) +O(nh1h2w) +O(h1h2(w + p log(h1h2))),

(3.24)

which is O(n3(w + log(n)) using Assumption 3.1.3.

We now extend Prop. 3.1.30 to the general case including independent generators. As
for the linear combination and the convex hull we compute a tight over-approximation
instead of the exact result for computational reasons. Again we apply mergeID as defined
in Prop. 3.1.5 prior to the computation to bring the exponent matrices to a common
representation.
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Proposition 3.1.31. (Quadratic Map) Given two SPZs PZ1 = 〈c1, G1, GI,1, E1, id〉PZ ⊂
Rn and PZ2 = 〈c2, G2, GI,2, E2, id〉PZ ⊂ Rn with a common identifier vector id and a
discrete set of matrices Q = {Q1, . . . , Qw} with Qi ∈ Rn×n, i = 1, . . . , w, it holds that

sq(Q,PZ1,PZ2) ⊆
〈
cz, Ĝ(·,H), Gz, Ê({1,...,p1},H), id

〉
PZ
,

where〈
ĉ, Ĝ, [ ], Ê, id

〉
PZ

= sq
(
Q,PZ1,PZ2

)
, PZ1 = 〈c1, G1, [ ], E1, id〉PZ ,

PZ2 = 〈c2, G2, [ ], E2, id〉PZ , 〈cz, Gz〉Z = zonotope
(〈
ĉ, Ĝ(·,K), [ ], Ê(·,K), id

〉
PZ

)
,

K =
{
i
∣∣ ∃j > p1 : Ê(j,i) 6= 0

}
, H =

{
i
∣∣ ∀j > p1 : Ê(j,i) = 0

}
.

(3.25)

The quadratic map sq(Q,PZ1,PZ2) is calculated using Prop. 3.1.30, the zonotope enclo-
sure is computed using Prop. 3.1.14, and the extended generator and exponent matrices
G1, G2, E1, E2, as well as the extended identifier vector id are defined as

E1 =

[
E1 0
0 Iq

]
, E2 =

[
E2 0
0 Iq

]
, id =

[
id uniqueID(q)

]
,

G1 =
[
G1 GI,1 0

]
∈ Rn×(h1+q), G2 =

[
G2 0 GI,2

]
∈ Rn×(h2+q),

(3.26)

where q = q1 + q2. The resulting SPZ is regular, and the computational complexity with
respect to the dimension n is O(n3(w+ log(n))), where w is the dimension of the resulting
SPZ.

Proof. According to Prop. 3.1.4 the extended generator and exponent matrices
G1,G2,E1,E2 as well as the extended identifier vector id as defined in (3.26) equivalently
represent PZ1 and PZ2 as SPZs PZ1 and PZ2 without independent generators, which en-
ables the computation of the quadratic map according to Prop. 3.1.30. For computational
reasons, the resulting matrices Ĝ and Ê from Prop. 3.1.30 are divided into a dependent
part that contains the dependent factors α1, . . . , αp only (i ∈ H), and a remainder part
that contains all remaining monomials (i ∈ K):

sq
(
Q,PZ1,PZ2

)
=

{
ĉ+

∑
i∈H

( p∏
k=1

α
Ê(k,i)

k

)
Ĝ(·,i)︸ ︷︷ ︸

dependent part

+
∑
i∈K

( p+q∏
k=1

α
Ê(k,i)

k

)
Ĝ(·,i)︸ ︷︷ ︸

remainder part

∣∣∣∣ αk ∈ [−1, 1]

}
,

where p = p1 = p2 holds since both SPZs have an identical identifier vector. Since the part
containing the remaining monomials is enclosed by a zonotope, it holds that the resulting
SPZ encloses the quadratic map.

Complexity: The computational complexity of mergeID is O(p̂1p̂2) according to
Prop. 3.1.5, where p̂1 and p̂2 represent the number of dependent factors before apply-
ing mergeID. Since p = p1 = p2 ≤ p̂1 + p̂2, this is identical to O(p2). According to (3.24),
calculation of the quadratic map sq(Q,PZ1,PZ2) using Prop. 3.1.30 has complexity

O(p2) +O(n2w(h1 + h2)) +O(nh1h2w) +O(h1h2(w + p log(h1h2))),
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Figure 3.5: Visualization of the results from Example 3.1.32, where the SPZ PZ is depicted on
the left and its quadratic map on the right.

where p = p+q1+q2, h1 = h1+q1+q2, and h2 = h2+q1+q2 denote the number of factors and
the number of dependent generators of the SPZs PZ1 and PZ2. Moreover, construction
of the sets K and H in (3.25) has worst-case complexity O(ĥp̂), where ĥ = h1h2 + h1 + h2

and p̂ = p denote the number of columns and rows of the exponent matrix Ê, respectively.
Finally, the zonotope enclosure in (3.25) computed with Prop. 3.1.14 has in the worst case

complexity O(ĥ(p̂ + n̂)) according to (3.5), where n̂ = w denotes the dimension of the
resulting SPZ. The overall complexity is therefore

O(p2) +O(p2) +O(n2w(h1 + h2)) +O(nh1h2w)

+O(h1h2(w + p log(h1h2))) +O(ĥp̂) +O(ĥ(p̂+ n̂))

ĥ=h1h2+h1+h2
p̂=p, n̂=w

= O(p2) +O(p2) +O(n2w(h1 + h2)) +O(nh1h2w)

+O(h1h2(w + p log(h1h2))) +O((h1h2 + h1 + h2)(p+ w))
p=p+q1+q2
h1=h1+q1+q2
h2=h2+q1+q2

= O((p+ q1 + q2)2) +O(n2w(h1 + h2 + 2q1 + 2q2))+

O(n(h1 + q1 + q2)(h2 + q1 + q2)w)+

O((h1 + q1 + q2)(h2 + q1 + q2)(w + (p+ q1 + q2) log((h1 + q1 + q2)(h2 + q1 + q2)))),

which is O(n3(w + log(n)) using Assumption 3.1.3.

We use the shorthand sq(Q,PZ) = sq(Q,PZ,PZ) to denote the quadratic map of a
single polynomial zonotope. As we show in Appendix A, all higher-order polynomial maps
can be reformulated as a sequence of quadratic maps, so that we can compute maps on
SPZs of arbitrary order based on Prop. 3.1.31. Let us demonstrate the tightness of the
quadratic map enclosure according to Prop. 3.1.31 with an example:

Example 3.1.32. We consider the SPZ

PZ =

〈[
0
0

]
,

[
1 −1 1
−1 2 1

]
,

[
0.1
0

]
,

[
1 0 2
0 1 1

]
, [1 2]

〉
PZ
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Table 3.4: Growth of the number of dependent factors p, the number of dependent generators
h, and the number of independent generators q for basic set operations on SPZs, where we use
the shorthand a = q1q2 + q1(h2 + 1) + q2(h1 + 1).

Set Operation
Dependent

Factors
Dependent
Generators

Independent
Generators

Linear map p h q

Minkowski sum p1 + p2 h1 + h2 q1 + q2

Exact addition p = p1 = p2 h1 + h2 q1 + q2

Cartesian product p1 + p2 h1 + h2 q1 + q2

Linear combination p1 + p2 + 1 2h1 + 2h2 + 1 q1 + q2

Convex hull 2p1 + 2p2 + 3 8h1 + 8h2 + 1 q1 + q2

Quadratic map p = p1 = p2 h1h2 + h1 + h2 a

and the matrices discrete set of matrices Q = {Q1, Q2} with

Q1 =

[
0.5 0.5
1 −0.5

]
, Q2 =

[
−1 0
1 0

]
.

Computing an enclosure of the quadratic map using Prop. 3.1.31 yields

sq(Q,PZ) ⊆
〈[

0.0025
−0.005

]
,

[
94.5 5.5 91.5 91.5 2 1.5
93 5 92 3 92 0

]
,[

0.0025 90.05 0.15 0.15 0 0.05 0.1
90.005 90.2 0.3 0 90.1 0.1 90.1

]
,

[
0 1 2 2 3 4
2 1 0 2 1 2

]
, [1 2]

〉
PZ

.

A comparison of the exact quadratic map and the enclosure computed with Prop. 3.1.31 is
shown in Fig. 3.5.

SPZs are not closed under intersection and union. However, we can compute a tight
enclosure of the intersection and union of two SPZs based on constrained polynomial
zonotopes as introduced later in Sec. 3.2. For this, we first convert the SPZs to constrained
polynomial zonotopes using Prop. 3.2.9, calculate the intersection or union for constrained
polynomial zonotopes according to Prop. 3.2.23 or Prop. 3.2.25, and then enclose the
resulting constrained polynomial zonotope with a SPZ using Prop. 3.2.12.

We conclude this section with an analysis of the growth of the representation size of
SPZs. As shown in Tab. 3.4, many basic set operations on SPZs significantly increase the
number of factors and generators, and therefore the representation size. For computational
reasons, it is therefore crutial to limit this growth when computing with SPZs. This can
be realized by repeatedly reducing the order of the SPZ using the operation reduce which
we present later in Prop. 3.1.39.
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3.1.6 Intersection and Containment Checks

In this section we provide necessary and sufficient conditions for intersection and set con-
tainment of two SPZs. Moreover, we discuss mixed intersection and containment checks
involving a SPZ and another set representation. For our derivations we require the following
lemma:

Lemma 3.1.33. Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1, id1〉PZ ⊂ Rn and PZ2 =
〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rn, their intersection is

PZ1 ∩ PZ2 =

{
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

q2∑
j=1

βjGI,1(·,j)

∣∣∣∣ f(y) = 0, y ∈ [−1,1]

}
,

where

f(y) = c1 − c2 +

h1∑
i=1

( p1∏
k=1

y
E1(k,i)

(k)

)
G1(·,i) −

h2∑
i=1

( p2∏
k=1

y
E2(k,i)

(p1+k)

)
G2(·,i)

+

q1∑
j=1

y(p1+p2+j)GI,1(·,j) −
q2∑
j=1

y(p1+p2+q1+j)GI,2(·,j)

(3.27)

and y = [α1 . . . αp1+p2 β1 . . . βq1+q2 ]T .

Proof. The intersection of two SPZs can be computed by restricting the factors αk, βj of
PZ1 to values that belong to points that are located inside PZ2, which is identical to
adding the equality constraint

c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

q1∑
j=1

βjGI,1(·,j)︸ ︷︷ ︸
x∈PZ1

= c2 +

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i) +

q2∑
j=1

βq1+jGI,2(·,j)︸ ︷︷ ︸
x∈PZ2

to PZ1:

PZ1 ∩PZ2 ={
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

q2∑
j=1

βjGI,1(·,j)

∣∣∣∣ αk, αp1+k, βj, βq1+j ∈ [−1, 1],

c1 − c2 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) −

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i)

+

q1∑
j=1

βjGI,1(·,j) −
q2∑
j=1

βq1+jGI,2(·,j)︸ ︷︷ ︸
f(y)

= 0

}
,

where y = [α1 . . . αp1+p2 β1 . . . βq1+q2 ]T .
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Based on Lemma 3.1.33, we formulate the following criterion for set containment:

Proposition 3.1.34. (Containment Check) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1,
id1〉PZ ⊂ Rn and PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rn, it holds that(

I ⊂ [−1,1]
)
⇒
(
PZ1 * PZ2

)
,

where the interval I is

I = [l(1), u(1)]× . . .× [l(p1), u(p1)]× [l(p1+p2+1), u(p1+p2+1)]× . . .× [l(p1+p2+q1), u(p1+p2+q1)],

the lower bound l ∈ Rp1+p2+q1+q2 and the upper bound u ∈ Rp1+p2+q1+q2 are calculated by
contraction

[l, u] = contract
(
f(y), [−1,1]

)
,

and the function f(y) is defined as in (3.27).

Proof. If PZ1 ⊆ PZ2, it obviously holds that PZ1 ∩PZ2 = PZ1. Using the equation for
the intersection of two SPZs from Lemma 3.1.33, this condition is identical to

PZ1 ∩ PZ2 =

{
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

q2∑
j=1

βjGI,1(·,j)

∣∣∣∣ y ∈ [−1,1], f(y) = 0

}

=

{
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

q2∑
j=1

βjGI,1(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
= PZ1,

where y = [α1 . . . αp1+p2 β1 . . . βq1+q2 ]T . Note that PZ1 ∩ PZ2 is identical to PZ1, but
values for the factors αk, βj of PZ are restricted by the constraint f(y) = 0. Consequently,
if it is possible to contract any of the intervals αk ∈ [−1, 1], k = 1, . . . , p1 or βj ∈ [−1, 1],
j = 1, . . . , q1 with regard to the constraint f(y) = 0, which is identical to the condition
I ⊂ [−1,1], then there exists a point x ∈ PZ1 that is not contained in the intersection
PZ1 ∩ PZ2, so that PZ1 * PZ2.

The criterion presented in Prop. 3.1.34 can be used to show that a SPZ is not contained
in another SPZ. To derive a criterion for verifying that a SPZ is contained in another SPZ,
we first recapitulate the following result from [78], which provides a sufficient condition for
an interval to be contained in the image of a nonlinear function:

Lemma 3.1.35. ( [78, Corollary 3.1]) Given a function f : Rm → Rn with m ≥ n, an
interval I ⊂ Rn, and an interval Y = Y1 × Y2 ⊂ Rn × Rm−n satisfying

∀i ∈ {1, . . . , n} : 0 6∈ J(i,i) and ∀J1 ∈ J1 : det(J1) 6= 0,

where the matrix set J = [J1 J2] ⊇ {∇f(y) | y ∈ Y} encloses the Jacobian matrix of the
function f(y) on Y, it holds that(

func
(
J , ỹ,Y , I, f(y))

)
⊆ Y1 \ ∂Y1

)
⇒
(
I ⊆

{
f(y)

∣∣ y ∈ Y}),
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where

func
(
J , ỹ,Y , I, f(y)

)
= ỹ1 ⊕ diag(J1)−1 ⊗

(
I ⊕

(
− f(ỹ)

)
⊕(

− offdiag(J1)
)
⊗
(
Y1 ⊕ (−ỹ1)

)
⊕ (−J2)⊗

(
Y2 ⊕ (−ỹ2)

))
,

and ỹ = [ỹT1 ỹT2 ]T ∈ Y1 × Y2 is a point in Y that satisfies f(ỹ) ∈ I.

Proof. A detailed proof is provided in [78].

Lemma 3.1.35 is a generalization of the result in [79], where the special case m = n is
considered. Based on Lemma 3.1.35, we can formulate the following criterion for interval
in SPZ containment:

Proposition 3.1.36. (Containment Check Interval) Given a SPZ PZ = 〈c,G,GI ,
E, id〉PZ ⊂ Rn with degree-of-freedom order ρf = p+q

n
≥ 1 and an interval I ⊂ Rn, it

holds that (
func(A, ỹ,Y , I, f(y)) ⊆ Y1 \ ∂Y1

)
⇒
(
I ⊆ PZ

)
, (3.28)

where

f(y) = c+
h∑
i=1

( p∏
k=1

y
E(k,i)

(k)

)
G(·,i) +

q∑
j=1

y(p+j)GI(·,j),

A = [A1 A2] = bound(∇f(y),Y), ỹ = center(Y),

the operator func is defined as in Lemma 3.1.35, and Y = Y1 × Y1 ⊂ Rn × Rp+q−n is a
suitable interval that guarantees that the four conditions

(a) ∀i ∈ {1, . . . , n} : 0 6∈ A(i,i)

(b) ∀A1 ∈ A1 : det(A1) 6= 0

(c) f(ỹ) ∈ I
(d) Y ⊆ [−1,1]

(3.29)

are satisfied.

Proof. With the definition y = [α1 . . . αp β1 . . . βq]
T the polynomial zonotope PZ can

be equivalently represented as the image of the nonlinear function f : Rp+q → Rn

PZ =

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
=
{
f(y)

∣∣ y ∈ [−1,1]
}
,

which enables us to use Lemma 3.1.35. Moreover, since ỹ = center(Y) ∈ Y and
A = bound(∇f(y),Y) ⊇ {∇f(y) | y ∈ Y}, it holds that all conditions required to ap-
ply Lemma 3.1.35 are satisfied if Y satisfies conditions (a), (b), and (c) in (3.29).
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The main challenge when applying the criterion in Prop. 3.1.36 is to find a suitable
interval Y . A strategy that we observed to work well in practice is to first determine a
suitable point ỹ = center(Y) by solving the following polynomial optimization problem:

min
y∈[−1,1]

||y||2 s.t. f(y) = center(I), (3.30)

where we chose to minimize the length of x since this later helps to satisfy the constraint
Y ⊆ [−1,1]. In a second step, we inflate the interval Y around ỹ using the strategy
described in [79, Sec. 5.2] and [78, Alg. 3], which explicitly aims at finding an Y that
satisfies the condition in (3.28). Another issue with the criterion presented in Prop. 3.1.36
is that the conditions (a) and (b), which require that each sub-matrix A1 contained in the
matrix set A enclosing the Jacobian has full rank, could be violated. Since the number of
factors p+q of a SPZs is often larger than the dimension n, we can try to satisfy conditions
(a) and (b) by changing the order of the factors if the conditions are violated for the original
order. Different strategies for finding a suitable order to obtain a sub-matrix with full rank
are presented in [78, Sec. 4.3]. Finally, since the criterion in Prop. 3.1.36 is based on a
linearization of the nonlinear function f(y), it is in general only satisfiable for small intervals
I. To use Prop. 3.1.36 for checking if a SPZ PZ1 ⊂ Rn is contained in a SPZ PZ2 ⊂ Rn,
we therefore propose the following strategy: We first recursively split PZ1 into smaller sets
using the split operation that we present later in Prop. 3.1.44. Next, we enclose all split
SPZs with an interval as described in Sec. 3.1.4, and then apply Prop. 3.1.36 to prove that
all intervals are contained in PZ2, which ensures that PZ1 ⊆ PZ2. Since according to
Sec. 3.1.3 all intervals, zonotopes, bounded polytopes, constrained zonotopes, and Taylor
models can be represented as SPZs, we can apply the same strategy to check if any of
these set representations is contained in a SPZ. However, due to the recursive splitting,
the computational complexity is exponential with respect to the system dimension n. Let
us demonstrate containment checks for SPZs by an example:

Example 3.1.37. We consider the SPZs

PZ1 =

〈[
0
0

]
,

[
−0.5 −1 0.1
−1 0 −0.1

]
,

[
0.1
0

]
,

1 2 1
0 1 0
0 0 1

 , [1 2 3]

〉
PZ

and

PZ2 =

〈[
0
0

]
,

[
0 2 1
−2 0 1

]
,

[
0.1
0.5

]
,

[
1 0 3
0 1 1

]
, [1 2]

〉
PZ

.

To show that PZ1 ⊆ PZ2 holds, we recursively split PZ1 using Prop. 3.1.44 until the
interval enclosures of the split SPZs are small enough to successfully prove containment
using Prop. 3.1.36. The resulting enclosure of PZ1 with a union of intervals is visualized
in Fig. 3.6.

To check if a single point x ∈ Rn is contained in a SPZ, one could argue that it is sufficient
to show that the optimization problem in (3.30) has a feasible solution. However, nonlinear
optimization solvers only guarantee satisfaction of the constraints up to a certain precision
in practice, and the computations are subject to rounding errors. To soundly prove that a
point is contained in a SPZ, we therefore have to apply the criterion in Prop. 3.1.36.
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Figure 3.6: Visualization of the SPZs PZ1 (green) and PZ2 (blue) from Example 3.1.37. The
resulting enclosure of PZ1 with a union of intervals required to prove the containment PZ1 ⊆ PZ2

using Prop. 3.1.36 is shown on the right side.

While it is hard to show that a set is contained in a SPZ, it is significantly easier to
show that a SPZ is contained in another set representation: To check if a SPZ PZ ⊂ Rn

is contained in an ellipsoid E = 〈c,Q〉E ⊂ Rn, the following criterion can be used:(
interval

(
sq({Q−1},−c⊕ PZ)

)
⊆ [0, 1]

)
⇒
(
PZ ⊆ E

)
,

which follows directly from the definition of an ellipsoid in Def. 2.2.6 and the definition of
the quadratic map in (2.6). A similar criterion exists for checking if a SPZ PZ ⊂ Rn is
contained in a polytope in H-representation P = 〈A, b〉H ⊂ Rn:(

∀i : sPZ(A(i,·)) ≤ b(i)

)
⇒
(
PZ ⊆ P

)
, (3.31)

where Prop. 3.1.16 can be used to calculate an enclosure of the support function sPZ(A(i,·)).
The criterion in (3.31) follows directly from the definition of the polytope H-representation
in Def. 2.2.2. Since all intervals, zonotopes, and constrained zonotopes can be equivalently
represented as polytopes in H-representation, the criterion in (3.31) can also be applied to
check if a SPZ is contained in an interval, zonotope, or constrained zonotope. Next, we
provide a criterion for checking if two SPZs intersect:

Proposition 3.1.38. (Intersection Check) Given two SPZs, PZ1 = 〈c1, G1, GI,1, E1,
id1〉PZ ⊂ Rn and PZ2 = 〈c2, G2, GI,2, E2, id2〉PZ ⊂ Rn, it holds that(

contract(f(y), [−1,1]) = ∅
)
⇒
(
PZ1 ∩ PZ2 = ∅

)
,

where the function f(y) is defined as in (3.27).

Proof. According to Lemma 3.1.33, the intersection of two SPZs can be computed as

PZ1 ∩ PZ2 =

{
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

q1∑
j=1

βjGI,1(·,j)

∣∣∣∣ f(y) = 0, y ∈ [−1,1]

}
,

where y = [α1 . . . αp1+p2 β1 . . . βq1+q2 ]T . Consequently, if the domain y ∈ [−1,1] can be
contracted to the empty set under consideration of the nonlinear constraint f(y) = 0, then
it is guaranteed that the intersection PZ1 ∩ PZ2 is empty.
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Note that the criterion contract(f(y), [−1,1]) = ∅ presented in Prop. 3.1.38 is sufficient,
but not necessary for the intersection to be empty. The intersection could therefore still
be empty, even if contract(f(y), [−1,1]) 6= ∅. To prove that two SPZs intersect, we can
solve a polynomial optimization problem similar to (3.30)

min
y∈[−1,1]

||y||2 s.t. f(y) = 0,

where f(y) is defined as in (3.27), and then apply Prop. 3.1.36 to show that the corre-
sponding point is contained in PZ1 and PZ2.

In set-based computing it is often required to perform intersection checks with sets
belonging to a different set representation. Since according to Sec. 3.1.3 any interval,
zonotope, bounded polytope, and Taylor model can be equivalently represented as a SPZ,
we can first convert these set representations to SPZs and then apply Prop. 3.1.38 to check
for intersection. For a SPZ PZ ⊂ Rn and an ellipsoid E = 〈c,Q〉E ⊂ Rn, the following
criterion can be used to check for intersection(

interval
(
sq({Q−1},−c⊕ PZ)

)
∩ [0, 1] = ∅

)
⇒
(
PZ ∩ E = ∅

)
,

which follows directly from the definition of an ellipsoid in Def. 2.2.6 and the definition of
the quadratic map in (2.6). In order to speed up intersection tests, one can also enclose
SPZs with simpler set representations as described in Sec. 3.1.4, and then perform the
intersection tests on the simpler set representation.

3.1.7 Auxiliary Set Operations

This section derives useful auxiliary operations on SPZs. Many basic set operations on
SPZs, such as Minkowski sum or convex hull, increase the number of generators and conse-
quently also the representation size of the SPZ, as shown in Tab. 3.4. Thus, for computa-
tional reasons, it is necessary in many algorithms to repeatedly reduce the representation
size when computing with SPZs. Since the order ρ of a SPZ is proportional to the rep-
resentation size, this can be realized by order reduction. We propose an order reduction
operation for SPZs that is based on order reduction for zonotopes:

Proposition 3.1.39. (Order Reduction) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn and
a desired order ρd ≥ 1, the operation reduce returns a SPZ with an order smaller than or
equal to ρd that encloses PZ:

PZ ⊆ reduce(PZ, ρd) =
〈
cz, G(·,K),

[
GI(·,H) Gz

]
, E(N ,·), id(N )

〉
PZ
, (3.32)

where

〈cz, Gz〉Z = reduce(Z, 1), Z = zonotope
(〈
c,G(·,K), GI(·,H), E(·,K), id

〉
PZ

)
,

E = E(·,K), N =
{
i
∣∣ ∃j ∈ {1, . . . , |K|} : E(i,j) 6= 0

}
,

(3.33)

and the zonotope enclosure is calculated by applying Prop. 3.1.14. For reduction, the

a = max (0,min (h+ q, dh+ q − n(ρd − 1)e)) (3.34)
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smallest generators are selected:

K =

{
∅, a = 0{
i
∣∣ ||G(·,i)||2 ≤ ||G(·,o(a))||2

}
, otherwise

, K = {1, . . . , h} \ K,

H =

{
∅, a = 0{
i
∣∣ ||GI(·,i)||2 ≤ ||G(·,o(a))||2

}
, otherwise

, H = {1, . . . , q} \ H,
(3.35)

where
||G(·,o(1))||2 ≤ . . . ≤ ||G(·,o(h+q))||2 , G = [G GI ], (3.36)

and the vector o ∈ Nh+q stores the indices of the sorted generators. The resulting SPZ is
regular if PZ is regular. The computational complexity with respect to the dimension n is
O(n2) +O(reduce).

Proof. The resulting SPZ has |K| + |H| + n generators since Gz ∈ Rn×n. Since the order
ρ of a SPZ is defined as the number of generators divided by the dimension, we have

ρ =
|K|+ |H|+ n

n

(3.35)
=

h+ q − a+ n

n

(3.34)

≤ ρd

for ρd ≥ 1, so that the order of the resulting SPZ is smaller than or equal to the desired
order ρd. Moreover, reduce(PZ, ρd) ⊇ PZ since the zonotope enclosure zonotope and
order reduction for zonotopes reduce are both over-approximative operations, so that their
composition reduce ◦ zonotope is over-approximative, too. In addition, the assignment
E(N ,·) in (3.32) removes all-zero rows in the exponent matrix, which does not change the
set.

Complexity: Computing the norm ||G(·,i)||2 in (3.36) for all i = 1, . . . , h + q generators
has complexity O(n(h + q)) and sorting the generators with respect to their norm has
complexityO((h+q) log(h+q)) according to Tab. 2.1. In the worst case where all dependent
generators get reduced, the enclosure with a zonotope in (3.33) using Prop. 3.1.14 has
complexity O(h(p + n)) according to (3.5). Moreover, the construction of the set N in
(3.33) has complexity O(ph) in the worst case and we denote the complexity of zonotope
order reduction by O(reduce). The overall complexity is therefore

O(n(h+ q)) +O
(
(h+ q) log(h+ q)

)
+O(h(p+ n)) +O(ph) +O(reduce)

= O
(
(h+ q)(n+ log(h+ q))

)
+O(ph) +O(reduce),

(3.37)

which is O(n2) +O(reduce) using Assumption 3.1.3.

An overview of the computational complexity for different zonotope order reduction
methods is provided in Tab. 3.5. Let us demonstrate the tightness of the reduction strategy
proposed in Prop. 3.1.39 by an example:

Example 3.1.40. We consider the SPZ

PZ =

〈[
0
0

]
,

[
91 92 91 2 0.01 0.4
1 0 91 1 0.2 0

]
,

[
0.2 0.01
0.02 90.4

]
,

1 0 1 2 2 0
0 1 1 0 0 2
0 0 0 0 1 2

 , [1 2 3]

〉
PZ

,
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Table 3.5: Computational complexity with respect to the dimension n ∈ N for order reduction
and restructuring of SPZs for the zonotope order reduction methods from Sec. 2.6, where k ∈ N0

is the number of generators that are reduced.

Method Order Reduction Restructuring

Girard O(n2) O(n2)

PCA O(n3) O(n3)

Scott O(n3) O(n3)

Exhaustive Search O
((

k
n

)
k
)

O
((

k
n

)
k
)

which has order ρ = 4. Order reduction with Prop. 3.1.39 to a desired order of ρd = 3
using Girard’s method (see Sec. 2.6) for order reduction of zonotopes yields

reduce(PZ, 3) =

〈[
0.2
0

]
,

[
91 92 91 2
1 0 91 1

]
,

[
0.42 0

0 0.62

]
,

[
1 0 1 2
0 1 1 0

]
, [1 2]

〉
PZ

.

The original as well as the reduced SPZ are visualized in Fig. 3.7.

Order reduction as defined in Prop. 3.1.39 as well as other operations, such as Minkowski
sum or Cartesian product with a zonotope, increase the volume spanned by the independent
generators relative to the volume spanned by the dependent generators. Since computations
on the dependent part are exact while computations on the independent part are often over-
approximative, this has a negative effect on the accuracy when computing with SPZs. We
therefore define the operation restructure, which introduces new dependent generators
that over-approximate the independent ones. For computational reasons, we use an upper
bound pd for the number of dependent factors for the SPZ after restructuring.

Proposition 3.1.41. (Restructure) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn and an
upper bound for the number of dependent factors after restructuring pd ≥ n, the operation
restructure returns a SPZ that encloses PZ and generates new dependent factors from
the independent factors:

restructure(PZ, pd) =

{
PZ1, p ≤ pd − n
PZ2, otherwise

,

where PZ1 is constructed by redefining all independent factors after order reduction as new
dependent factors

PZ1 =

〈
cz, [G Gz]︸ ︷︷ ︸

G1

, [ ],

[
E 0
0 In

]
︸ ︷︷ ︸

E1

, [id uniqueID(n)]︸ ︷︷ ︸
id1

〉
PZ

, 〈cz, Gz〉Z = reduce
(
〈c,GI〉Z , 1

)
,

and PZ2 by reducing the number of dependent factors of PZ1 to satisfy the upper bound
pd:

PZ2 =
〈
cz, G1(·,H), Gz, E1(N ,H), id1(N )

〉
PZ
,
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with

N =
{
i
∣∣ di ≤ do(pd)

}
, N = {1, . . . , p+ n} \ N , H =

⋃
i∈N

Ki, H = {1, . . . , h+ n} \ H,

Ki = {j | E1(i,j) 6= 0}, di =
∑
j∈Ki

||G1(·,j)||2, i = 1, . . . , p+ n,

〈cz, Gz〉Z = zonotope
(
〈cz, G1(·,H), [ ], E1(·,H), id1〉PZ

)
, do(1)

≥ . . . ≥ do(p+n)
,

where the vector o ∈ Np+n stores the indices of the sorted scalars di and the zonotope enclo-
sure is computed using Prop. 3.1.14. The resulting SPZ is regular and the computational
complexity with respect to the dimension n is O(n2) +O(reduce).

Proof. For the case p ≤ pd − n we have restructure(PZ, pd) ⊇ PZ since reduce is over-
approximative and according to Prop. 3.1.4 the redefinition of independent generators as
new dependent generators just changes the set representation, but not the set itself. For
the case p > pd − n the generators G1(·,i) of PZ1 are split into generators that belong to
dependent factors that are removed (i ∈ H), and the remaining generators (i ∈ H). The
generators that belong to dependent factors that are removed are enclosed by a zonotope.
Since the enclosure of a SPZ with a zonotope using Prop. 3.1.14 is over-approximative, it
therefore holds that PZ2 ⊇ PZ1 ⊇ PZ.

Complexity: We first consider the construction of PZ1: The generation of n new unique
identifiers using uniqueID has complexity O(n) according to Tab. 2.2, so that the overall
complexity for constructing PZ1 is O(n)+O(reduce), where O(reduce) is the complexity
of zonotope order reduction. Next, we consider the construction of PZ2: Computation of
the setsN ,N ,H,H,Ki and the scalars di has in the worst case complexityO((h+n)(p+n)).
The SPZ that is enclosed by a zonotope has h = h+n generators and p = p+n dependent
factors in the worst case where all dependent factors are reduced. Since the enclosure by
a zonotope using Prop. 3.1.14 has complexity O(h(p+ n)) according to (3.5), we therefore
obtain a worst-case complexity of O((h+n)(p+ 2n)) = O((h+n)(p+n)) for the zonotope
enclosure. Finally, sorting the values di has complexity O((p+ n) log(p+ n)) according to
Tab. 2.1. The overall complexity of restructure is therefore

O(n) +O(reduce)︸ ︷︷ ︸
PZ1

+O((h+ n)(p+ n)) +O((h+ n)(p+ n)) +O((p+ n) log(p+ n))︸ ︷︷ ︸
PZ2

,

which is O(n2) +O(reduce) using Assumption 3.1.3.

An overview of the computational complexity for different zonotope order reduction
methods is provided in Tab. 3.5. A good heuristic for triggering the restructure process
is to check when the volume spanned by the independent generators exceeds a certain
threshold, as we demonstrate later in Sec. 4.1. Prop. 3.1.41 is based on a heuristic that
we observed to work well in practice. However, there also exist other possible strategies
for restructuring that might perform better in some cases. Instead of redefining all n
reduced independent factors as new dependent factors, one could for example only define
the independent factor corresponding to the longest generator as a new dependent factor.
Which strategy for restructuring performs best usually depends on the application. Even
though every execution of the restructure operation introduces an over-approximation,
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Figure 3.7: Visualization of the original and the reduced SPZ from Example 3.1.40 (left), as
well as the original and the restructured SPZ from Example 3.1.42 (right).

using restructuring often leads to tighter results since the over-approximation introduced
by restructuring is compensated by the more accurate computations on the dependent part
of the SPZ. Let us demonstrate restructuring with the method proposed in Prop. 3.1.41
by an example:

Example 3.1.42. We consider the SPZ

PZ =

〈[
0
0

]
,

[
3 1
1 −2

]
,

[
0.5 0.2 0.1
0 0.1 −0.1

]
,

[
1 3
1 0

]
, [1 2]

〉
PZ

.

Restructuring with Prop. 3.1.41 using an upper bound of pd = 3 for the number of dependent
factor and Girard’s method (see Sec. 2.6) for order reduction of zonotopes yields

restructure(PZ, 3) =

〈[
0
0

]
,

[
3 1 0.8
1 −2 0

]
,

[
0

0.2

]
,

1 3 0
1 0 0
0 0 1

 , [1 2 3]

〉
PZ

.

The original as well as the restructered SPZ are visualized in Fig. 3.7.

For many applications, and especially for the extraction of reachable subsets presented
later in Sec. 4.2, it is required to extract a subset of a SPZ by narrowing the domain for a
specific dependent factor. We implement this functionality with the operation getSubset:

Proposition 3.1.43. (Get Subset) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn, the
index of one dependent factor r ∈ {1, . . . , p}, and an interval [l, u] ⊆ [−1, 1], the operation
getSubset substitutes the domain for the dependent factor αr with αr ∈ [l, u], which yields
a SPZ that is a subset of PZ:

getSubset
(
PZ, r, [l, u]

)

=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1], αr ∈ [l, u]

}

=
〈
c,G,GI , E, uniqueID(p)

〉
PZ
⊆ PZ,

(3.38)
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where the exponent matrix E and the generator matrix G are defined as

E =
[
E(·,H) Êk1 . . . Êk|K|

]
, G =

[
G(·,H) Ĝk1 . . . Ĝk|K|

]
K =

{
i
∣∣ E(r,i) > 0

}
:= {k1, . . . , k|K|}, H = {1, . . . , h} \ K,

(3.39)

and the exponent matrices Êi and generator matrices Ĝi are defined as

Êi =

E({1,...,r−1},i) E({1,...,r−1},i) . . . E({1,...,r−1},i) E({1,...,r−1},i)
0 1 . . . E(r,i) − 1 E(r,i)

E({r+1,...,p},i) E({r+1,...,p},i) . . . E({r+1,...,p},i) E({r+1,...,p},i)

 , i ∈ K

Ĝi =
[
bi,0 ·G(·,i) . . . bi,E(r,i)

·G(·,i)
]
, i ∈ K,

(3.40)

with the scalars bi,0, . . . , bi,E(r,i)
obtained from the definition(

l + u

2
+
u− l

2
α̂r

)E(r,i)

:= bi,0 + . . .+ bi,E(r,i)
α̂
E(r,i)
r , i ∈ K. (3.41)

The compact operation as defined in Prop. 3.1.7 is applied to make the resulting SPZ
regular. The computational complexity with respect to the dimension n is O(n3 log(n)).

Proof. To represent the set getSubset(PZ, r, [l, u]) as a SPZ, we substitute αr ∈ [l, u] with
a new dependent factor α̂r ∈ [−1, 1]:

{
αr | αr ∈ [l, u]

}
=

{
l + u

2
+
u− l

2
α̂r

∣∣∣∣ α̂r ∈ [−1, 1]

}
. (3.42)

Inserting this substitution into the definition of getSubset(PZ, r, [l, u]) in (3.38) yields

getSubset
(
PZ, r, [l, u]

)
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1], αr ∈ [l, u]

}

K∪H={1,...,h}
=

{
c+

∑
i∈K

( p∏
k=1
k 6=r

α
E(k,i)

k

)
α
E(r,i)
r G(·,i) +

∑
i∈H

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

+

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1], αr ∈ [l, u]

}

(3.42)
=

{
c+

∑
i∈K

( p∏
k=1
k 6=r

α
E(k,i)

k

)(
l + u

2
+
u− l

2
α̂r

)E(r,i)

G(·,i)
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+
∑
i∈H

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, α̂r, βj ∈ [−1, 1]

}

(3.41)
=

{
c+

∑
i∈K

( p∏
k=1
k 6=r

α
E(k,i)

k

)(
bi,0 + . . .+ bi,E(r,i)

α̂
E(r,i)
r

)
G(·,i)

+
∑
i∈H

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, α̂r, βj ∈ [−1, 1]

}

(3.39),(3.40)
=

〈
c,G,GI , E, uniqueID(p)

〉
PZ
,

which concludes the proof.

Complexity: Generation of p unique identifiers using uniqueID has complexity O(p)
according to Tab. 2.1 and construction of the set K in (3.39) has complexity O(h). Let
ε = max(E(r,·)) denote the largest exponent for the dependent factor αr. Then (0.5(l +
u) + 0.5(u− l) α̂r)ε as defined in (3.41) is a polynomial in α̂r with ε + 1 monomials. The
number of required elementary operations for getSubset is largest if every monomial of
the SPZ contains the expression αεr. In this case, construction of the matrices Ĝi in (3.40)

has complexity O(nh(ε+ 1)) and each of the h matrices Êi and Ĝi constructed according

to (3.40) consists of ε + 1 columns. Due to the concatenation of the matrices Êi and Ĝi

in (3.39), the resulting SPZ consequently contains at most h = h(ε+ 1) generators. Since
the complexity of compact is O(h(n + p log(h))) according to Prop. 3.1.7, the subsequent
application of the compact operation has complexity O(h(ε + 1)(n + p log(h(ε + 1)))).
Summarizing all complexities finally results in an overall complexity of

O(p) +O(h) +O(nh(ε+ 1)) +O
(
h(ε+ 1)(n+p log(h(ε+ 1)))

)
= O

(
hε(n+ p log(hε))

)
,

(3.43)

which is O(n3 log(n)) using Assumption 3.1.3.

Splitting, amongst other things, is useful for computing an enclosing support function as
shown in Sec. 3.1.4. For polynomial zonotopes, we propose the following implementation
of the split operation:

Proposition 3.1.44. (Split) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn and the index
of one dependent factor r ∈ {1, . . . , p}, split(PZ, r) = (PZ1,PZ2) returns two SPZs

PZ1 = getSubset
(
PZ, r, [−1, 0]

)
,

PZ2 = getSubset
(
PZ, r, [0, 1]

)
that satisfy PZ1 ∪ PZ2 = PZ, where getSubset is defined as in Prop. 3.1.43. The
computational complexity with respect to the dimension n is O(n3 log(n)).
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Proof. The split operation for SPZs is based on the substitution of the selected dependent
factor αr with two new dependent factors αr,1 and αr,2:{

αr | αr ∈ [−1, 1]
}

=
{
αr,1 + αr,2 | αr,1 ∈ [−1, 0], αr,2 ∈ [0, 1]

}{
αr,1 | αr,1 ∈ [−1, 0]

}
∪
{
αr,2 | αr,2 ∈ [0, 1]

}
.

(3.44)

Inserting this substitution into the definition of SPZs in Def. 3.1.1 yields

PZ =

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
(3.44)
=

{
c+

h∑
i=1

( p∏
k=1
k 6=r

α
E(k,i)

k

)
(αr,1 + αr,2)E(r,i)G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣
αk, βj ∈ [−1, 1], αr,1 ∈ [−1, 0], αr,2 ∈ [0, 1]

}

(3.44)
=

{
c+

h∑
i=1

( p∏
k=1
k 6=r

α
E(k,i)

k

)
α
E(r,i)

r,1 G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1], αr,1 ∈ [−1, 0]

}
︸ ︷︷ ︸

=PZ1=getSubset(PZ,r,[−1,0])

∪
{
c+

h∑
i=1

( p∏
k=1
k 6=r

α
E(k,i)

k

)
α
E(r,i)

r,2 G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1], αr,2 ∈ [0, 1]

}
︸ ︷︷ ︸

=PZ2=getSubset(PZ,r,[0,1])

,

which concludes the proof.
Complexity: The operation getSubset has complexity O(n3 log(n)) according to

Prop. 3.1.43. For the split operation getSubset has to be applied two times, result-
ing in a complexity of 2 · O(n3 log(n)) = O(n3 log(n)).

The split operation for polynomial zonotopes is not exact, meaning that the resulting
sets usually overlap, where the size of the overlapping area mainly depends on the selected
dependent factor αr. One heuristic for minimizing the overlap that we observed to perform
well is to select the dependent factor αr that maximizes the value

∑
i∈K ‖G(·,i)‖2, where

the set K is defined as in (3.39). Let us demonstrate the operation split by an example:

Example 3.1.45. We consider the SPZ

PZ =

〈[
0
0

]
,

[
2 1 2
0 2 2

]
,

[
1
1

]
,

[
1 0 2
0 1 1

]
, [1 2]

〉
PZ

.

Splitting PZ along the first dependent factor using Prop. 3.1.44 yields the two SPZs

PZ1 =

〈[
1
0

]
,

[
1 1.5 1 0.5
0 2.5 1 0.5

]
,

[
1
1

]
,

[
1 0 1 2
0 1 1 1

]
, [3 4]

〉
PZ
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Figure 3.8: Splits of the SPZ PZ from Example 3.1.45 (gray) computed with Prop. 3.1.44 using
the first dependent factor (left) and the second dependent factor (right).

and

PZ2 =

〈[
−1
0

]
,

[
1 1.5 −1 0.5
0 2.5 −1 0.5

]
,

[
1
1

]
,

[
1 0 1 2
0 1 1 1

]
, [5 6]

〉
PZ

,

which are visualized in Fig. 3.8.
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3.2 Constrained Polynomial Zonotopes

In this section2, we extend SPZs by adding polynomial equality constraints on the de-
pendent factors, which results in a novel non-convex set representation called constrained
polynomial zonotopes (CPZs). Contrary to the previously presented SPZs, CPZs are also
closed under intersection and union. The section is structured as follows: After defining
CPZs in Sec. 3.2.1 we introduce some useful preliminaries in Sec. 3.2.2. Next, we demon-
strate how to convert other set representations to CPZs in Sec. 3.2.3 and show how to
tightly enclose CPZs by simpler set representations in Sec. 3.2.4. In Sec. 3.2.5 we derive
closed-form expressions for basic set operations on CPZs. Finally, we present necessary
and sufficient conditions for intersection and containment checks for CPZs in Sec. 3.2.6 and
introduce useful auxiliary operations on CPZs in Sec. 3.2.7. An overview for all operations
on CPZs considered in this section is shown in Tab. 3.6.

3.2.1 Definition

Let us first define constrained polynomial zonotopes. A CPZ is constructed by adding
polynomial equality constraints to a sparse polynomial zonotope:

Definition 3.2.1. (Constrained Polynomial Zonotope) Given a constant offset c ∈ Rn, a
generator matrix G ∈ Rn×h, an exponent matrix E ∈ Np×h

0 , a constraint generator matrix
A ∈ Rm×q, a constraint vector b ∈ Rm, and a constraint exponent matrix R ∈ Np×q

0 , a
constrained polynomial zonotope CPZ ⊂ Rn is defined as

CPZ :=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}
,

where the scalars αk are called factors of the CPZ. The number of factors is p, the number
of generators G(·,i) is h, the number of constraints is m, and the number of constraint
generators A(·,i) is q. The degree-of-freedom order ρf = p−m

n
of an CPZ is a measure for

the complexity of the set, and the order ρ = h+q
n

of an CPZ estimates the representation
size. The CPZ is regular if the exponent matrix E and the constraint exponent matrix R
do not contain duplicate columns or all-zero columns:

∀i, j ∈ {1, . . . , h} : (i 6= j)⇒
(
E(·,i) 6= E(·,j)

)
and ∀i ∈ {1, . . . , h} : E(·,i) 6= 0,

and

∀i, j ∈ {1, . . . , q} : (i 6= j)⇒
(
R(·,i) 6= R(·,j)

)
and ∀i ∈ {1, . . . , q} : R(·,i) 6= 0.

For a concise notation we introduce the shorthand CPZ = 〈c,G,E,A, b, R〉CPZ.

Similar to SPZs, it would be meaningful to introduce independent generators for CPZs to
accelerate the computations and to add unique identifiers for keeping track of dependencies.
However, to simplify the derivations of operations on CPZs and to maintain a compact
notation we omit independent generators and unique identifiers here and use the definition

2This section is based on [80].
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Figure 3.9: Visualization of the polynomial constraint (left), the unconstrained polynomial
zonotope (right,blue), and the constrained polynomial zonotope (right,red) for the CPZ in Ex-
ample 3.2.2.

of CPZs presented in Def. 3.2.1. Nevertheless, the incorporation of unique identifiers
into operations on CPZs is straightforward and can be done in the same way as for SPZ
presented in Chapter 3.1. In addition, we will shortly discuss how to extend CPZs with
independent generators at the end of Sec. 3.2.5. We demonstrate the concept of CPZs by
an example:

Example 3.2.2. The CPZ

CPZ =

〈[
0
0

]
,

[
1 0 1 −1
0 1 1 1

]
,

1 0 1 2
0 1 1 0
0 0 1 1

 , [1 −0.5 0.5
]
, 0.5,

0 1 2
1 0 0
0 1 0

〉
CPZ

defines the set

CPZ =

{[
0
0

]
+

[
1
0

]
α1 +

[
0
1

]
α2 +

[
1
1

]
α1α2α3 +

[
−1
1

]
α2

1α3

∣∣∣∣
α2 − 0.5α1α3 + 0.5α2

1 = 0.5, α1, α2, α3 ∈ [−1, 1]

}
,

which is visualized in Fig. 3.9.

For the derivation of the computational complexity of operations on CPZs, we make the
following assumption:

Assumption 3.2.3. Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ ⊂ Rn with p ∈ N0 factors,
h ∈ N0 generators, q ∈ N0 constraint generators, m ∈ N0 constraints, and a maximum
exponent matrix entry ε = max([E R]), we assume for the derivation of the computational
complexity that

p = cpn, h = chn, q = cqn, m = cmn, ε = cεn,

with cp, ch, cq, cm, cε ∈ R≥0.
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The assumption is justified by the fact that the order ρ = h+q
n

and the number of
constraints m are reduced to the desired order ρd and desired number of constraints md

when computing with CPZs, such that h+ q ≤ ρdn and m ≤ md holds.

Table 3.6: Overview showing all set operations on CPZs presented in this thesis.

Set Operation Reference Page

Redundancy removal for generators (compactGen) Prop. 3.2.5 80

Redundancy removal for constraints (compactCon) Prop. 3.2.6 80

Rescaling (rescale) Prop. 3.2.7 81

Conversion SPZ to CPZ Prop. 3.2.9 83

Conversion constrained zonotope to CPZ Prop. 3.2.10 84

Conversion ellipsoid to CPZ Prop. 3.2.11 85

SPZ enclosure of CPZ (polyZonotope) Prop. 3.2.12 86

Con. zonotope enclosure of CPZ (conZonotope) Prop. 3.2.13 88

Zonotope enclosure of CPZ (zonotope) Prop. 3.2.14 89

Support function enclosure of CPZ Prop. 3.2.15 91

Linear map Prop. 3.2.16 93

Minkowski sum Prop. 3.2.17 94

Exact addition Prop. 3.2.18 95

Cartesian product Prop. 3.2.19 95

Linear combination Prop. 3.2.20 96

Convex hull Prop. 3.2.21 97

Quadratic map Prop. 3.2.22 99

Intersection Prop. 3.2.23 101

Intersection with level set Prop. 3.2.24 102

Union Prop. 3.2.25 104

Minkowski difference with polytope Prop. 3.2.26 105

Containment check interval in CPZ Prop. 3.2.27 108

Intersection check Prop. 3.2.28 108

Order reduction (reduce) Prop. 3.2.29 110

Constraint reduction (reduceCon) Prop. 3.2.31 112

Subset extraction (getSubset) Prop. 3.2.34 117

Splitting (split) Prop. 3.2.35 118
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3.2.2 Preliminaries

Let us first establish some useful identities that are required in many of the proofs for
operations on CPZs. According to the definition of CPZs in Def. 3.2.1, it holds that{

c+

h1∑
i=1

( p∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

h2∑
i=1

( p∏
k=1

α
E2(k,i)

k

)
G2(·,i)

∣∣∣∣
q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}
=
〈
c, [G1 G2], [E1 E2], A, b, R

〉
CPZ

(3.45)

and{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q1∑
i=1

( p∏
k=1

α
R1(k,i)

k

)
A1(·,i) = b1,

q2∑
i=1

( p∏
k=1

α
R2(k,i)

k

)
A2(·,i) = b2, αk ∈ [−1, 1]

}

=

〈
c,G,E,

[
A1 0
0 A2

]
,

[
b1

b2

]
,
[
R1 R2

]〉
CPZ

.

(3.46)

Moreover, we have{
c+

p∑
k=1

αkG(·,k)

∣∣∣∣ p∑
k=1

αkA(·,k) = b, αk ∈ [−1, 1]

}
=

{
c+

p∑
i=1

( p∏
k=1

α
Ip(k,i)
k

)
G(·,i)

∣∣∣∣ p∑
i=1

( p∏
k=1

α
Ip(k,i)
k

)
A(·,i) = b, αk ∈ [−1, 1]

}

= 〈c,G, Ip, A, b, Ip〉CPZ .

(3.47)

Next, we introduce the lifted polynomial zonotope corresponding to an CPZ in the fol-
lowing lemma, which is inspired by [32, Prop. 3]:

Lemma 3.2.4. Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ ⊂ Rn, the corresponding lifted
polynomial zonotope PZ+ ⊂ Rn+m defined as

PZ+ =

〈[
c
−b

]
,

[
G 0
0 A

]
︸ ︷︷ ︸

G

, [ ],
[
E R

]︸ ︷︷ ︸
E

, uniqueID(p)

〉
PZ

(3.48)

satisfies

∀x ∈ Rn :
(
x ∈ CPZ

)
⇔
([

x
0

]
∈ PZ+

)
.
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Proof. According to the definition of CPZs in Def. 3.2.1 it holds that(
x ∈ CPZ

) Def. 3.2.1

⇔(
∃α ∈ [−1,1] :

(
x = c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

)
∧
( q∑

i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b

))

(3.48)

⇔
(
∃α ∈ [−1,1] :

([
x
0

]
=

[
c
−b

]
+

h+q∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

)
(3.48)

⇔
([

x
0

]
∈ PZ+

)
,

where α = [α1 . . . αp]
T .

As for SPZs, many operations on CPZs result in CPZs that are not regular. We therefore
introduce the operations compactGen and compactCon to remove redundancies from the
generator representation and from the constraints of a CPZs, respectively:

Proposition 3.2.5. (Compact Generators) Given a non-regular CPZ CPZ = 〈c,G,E,
A, b, R〉CPZ ⊂ Rn, the operation compactGen returns the corresponding CPZ with regular
exponent matrix E:

compactGen(CPZ) =
〈
c,G,E,A, b, R

〉
CPZ

,

where c,G,E are calculated using the compact operation for SPZs as defined in Prop. 3.1.7:

〈c,G, [ ], E, id〉PZ = compact
(
〈c,G, [ ], E, id〉PZ

)
,

with id = uniqueID(p). The computational complexity is O(h(n+ p log(h))).

Proof. According to Def. 3.2.1, the exponent matrix of a CPZ is regular if it does not
contain duplicate columns or all-zero columns. Since the definition of regularity for CPZs
is therefore identical to the definition of regularity for SPZs, we can apply the compact

operation for SPZs to remove redundancies in the exponent matrix.
Complexity: The compact operation for SPZs has complexity O(h(n+p log(h))) accord-

ing to Prop. 3.1.7, which is consequently also the complexity of compactGen.

While compactGen removes redundancies in the generator representation, compactCon
removes redundancies in the constraints:

Proposition 3.2.6. (Compact Constraints) Given a non-regular CPZ CPZ = 〈c,G,E,
A, b, R〉CPZ ⊂ Rn, the operation compactCon returns the corresponding CPZ with regular
constraint exponent matrix R:

compactCon(CPZ) =
〈
c,G,E,A,−b, R

〉
CPZ

,

where A, b, R are calculated using the compact operation for SPZs as defined in Prop. 3.1.7:

〈b, A, [ ], R, id〉PZ = compact
(
〈−b, A, [ ], R, id〉PZ

)
,

with id = uniqueID(p). The computational complexity is O(q(m+ p log(q))).
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Proof. Due to the similarity of the constraints of a CPZ

0 ∈
{
− b+

q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i)

∣∣∣∣ αk ∈ [−1, 1]

}
and the definition of SPZs in Def. 3.1.1

x ∈
{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
,

we can apply the compact operations for SPZs with the substitutions c = −b, G = A,
GI = [ ], and E = R to remove redundancies from the constraint exponent matrix R.

Complexity: According to Prop. 3.1.7 the compact operation for SPZs has complexity
O(h(n + p log(h))). Since we apply the compact operation for the constraints of the CPZ
we have to insert the substitutions n = m and h = q, so that the overall complexity of
compactCon is O(q(m+ p log(q))).

For the enclosure of CPZs with other set representations or for the reduction of the
number of constraints we often remove constraints from the CPZ. The over-approximation
resulting from the removal is mainly determined by the size of the corresponding uncon-
strained polynomial zonotope. Since the constraints often intersect only part of the factor
hypercube α1, . . . , αp ∈ [−1, 1], we can reduce the size of the unconstrained polynomial
zonotope prior to constraint removal by applying a contractor. For this, we introduce the
operation rescale:

Proposition 3.2.7. (Rescale) Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ ⊂ Rn, the oper-
ation rescale defined as

rescale(CPZ) = CPZp := 〈c,G,E,A, b, R〉CPZ

returns a CPZ that is equivalent to CPZ and satisfies〈
c,G, [ ], E, uniqueID(p)

〉
PZ
⊆
〈
c,G, [ ], E, uniqueID(p)

〉
PZ
,

where

CPZ i =

{
getSubset

(
CPZ i−1, i, [l(i), u(i)]

)
, (l(i) 6= −1) ∨ (u(i) 6= 1)

CPZ i−1, otherwise
, i = 1, . . . , p

CPZ0 = CPZ,

the operator getSubset is defined as in Prop. 3.2.34, and the new lower and upper bound
l, u ∈ Rp for the factor domain are computed by applying a contractor to the constraints of
the CPZ:

[l, u] = contract
(
f(α), [−1,1]

)
, f(α) = −b+

q∑
i=1

( p∏
k=1

α
R(k,i)

(k)

)
A(·,i).

The computational complexity with respect to the dimension n is O(n4 log(n)) +
O(contract).
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Table 3.7: Computational complexity of the rescale operation as defined in Prop. 3.2.7 with
respect to the dimension n ∈ N for the different contractors presented in Sec. 2.8.

Forward-backward Extremal functions Parallel linearization

O(n4 log(n)) O(n4 log(n)) O(n4.5)

Proof. According to the definition of contractors in Def. 2.8.1, it holds that

∀α ∈ [−1,1] :
(
f(α) = 0

)
⇒
(
α ∈ contract

(
f(α), [−1,1]

)︸ ︷︷ ︸
[l,u]

)
. (3.49)

The substitution of the factor domain α ∈ [−1,1] with α ∈ [l, u] therefore does not remove
any values for the factors α that satisfy the constraints, which proves that the set resulting
from rescale(CPZ) is equivalent to the original set CPZ:

CPZ =

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b︸ ︷︷ ︸

f(α)=0

, αk ∈ [−1, 1]

}
(3.49)
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [l(k), u(k)]

}
Prop. 3.2.34

=

getSubset
(
. . . getSubset

(
CPZ, 1, [l(1), u(1)]

)
. . . , p, [l(p), u(p)]

)
= rescale(CPZ),

where α = [α1 . . . αp]
T .

Complexity: The computational complexity for the operation getSubset is O(n3 log(n))
according to Prop. 3.2.34. Since we have to apply getSubset p times at most, the overall
complexity for the rescale operation is

p · O(n3 log(n)) +O(contract)
Assumption 3.2.3

= O(n4 log(n)) +O(contract).

The computational complexity O(contract) of the contractor depends according to
Tab. 2.5 on the number of elementary operations e ∈ N0 in the corresponding subfunc-
tion f(i)(α), i = 1, . . . ,m. In our case, evaluation of each subfunction f(i)(α) requires pq
exponentiations, pq multiplications, and q additions. Overall, this consequently results in

e = 2pq + q = q(2p+ 1)

elementary operations, which yields the computational complexities shown in Tab. 3.7.

The computational complexity of the rescale operation for different contractors is sum-
marized in Tab. 3.7.
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Figure 3.10: Visualization of resclaing using Prop. 3.2.7 for the CPZ CPZ from Example 3.2.8
(red, right), where the corresponding constraint is visualized on the left. The unconstrained
polynomial zonotope before rescaling is shown in blue, and the unconstrained polynomial zonotope
after rescaling is shown in green.

Let us demonstrate rescaling by an example:

Example 3.2.8. We consider the CPZ

CPZ =

〈[
0
0

]
,

[
2 0 0 0.4
0 −2 1 0.2

]
,

1 1 2 0
0 1 1 0
0 0 0 1

 ,
[
1 2 1 2 1

]
,−2,

2 1 0 0 0
0 0 2 1 0
0 0 0 0 1

〉
CPZ

,

which is visualized in Fig. 3.10. As depicted on the left side of Fig. 3.10, the constraint
only intersects a small part of the factor domain α1, α2, α3 ∈ [−1, 1], so that the domain
can be contracted to α1, α2, α3 ∈ [−1, 0]. Rescaling using Prop. 3.2.7 therefore significantly
reduces the size of the unconstrained polynomial zonotope, as visualized on the right side
of Fig. 3.10.

3.2.3 Conversion from other Set Representations

In this section we demonstrate how other set representations can be converted to CPZs.
We first show that each polynomial zonotope can be represented as a CPZ:

Proposition 3.2.9. (Conversion Polynomial Zonotope) A sparse polynomial zonotope
PZ = 〈c,G,GI , E, id〉PZ ⊂ Rn can be equivalently represented by a CPZ

PZ =

〈
c,
[
G GI

]
,

[
E 0
0 Iq

]
, [ ], [ ], [ ]

〉
CPZ

.

The computational complexity of the conversion is O(1).
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Proof. According to Prop. 3.1.4, each SPZ can be equivalently represented by a SPZ with-
out independent generators:

〈c,G,GI , E, id〉PZ
Prop. 3.1.4

=

〈
c,
[
G GI

]
, [ ],

[
E 0
0 Iq

]
,
[
id uniqueID(q)

]〉
PZ

.

The remainder of the conversion is trivial since a SPZ is simply a CPZ without constraints
(see Def. 3.1.1 and Def. 3.2.1).

Complexity: The complexity of the conversion is O(1) since the construction of the CPZ
only requires concatenations and initializations.

According to Prop. 3.1.12, the set defined by a Taylor model can be equivalently repre-
sented as a SPZ. Moreover, according to Prop. 3.1.10 and Prop. 3.1.9 any interval and any
zonotope can be represented as a SPZ. It therefore holds according to Prop. 3.2.9 that any
Taylor model, any zonotope, and any interval can equivalently be represented by a CPZ.
Next, we prove that any constrained zonotope can be represented as a CPZ:

Proposition 3.2.10. (Conversion Constrained Zonotope) A constrained zonotope CZ =
〈c,G,A, b〉CZ ⊂ Rn can be equivalently represented by a CPZ

CZ =
〈
c,G, Il, A, b, Il

〉
CPZ

.

The computational complexity of the conversion is O(1).

Proof. With the definition of constrained zonotopes in Def. 2.2.5 and the identity in (3.47)
we obtain

CZ Def. 2.2.5
=

{
c+

l∑
k=1

αkG(·,k)

∣∣∣∣ l∑
k=1

αkA(·,k) = b, αk ∈ [−1, 1]

}
(3.47)
=

{
c+

l∑
i=1

( l∏
k=1

α
Il(k,i)
k

)
G(·,i)

∣∣∣∣ l∑
i=1

( l∏
k=1

α
Il(k,i)
k

)
A(·,i) = b, αk ∈ [−1, 1]

}

=
〈
c,G, Il, A, b, Il

〉
CPZ

,

which concludes the proof.
Complexity: The complexity of the conversion is O(1) since the construction of the CPZ

only involves initializations.

There are two possibilities to represent a bounded polytope as a CPZ: According to
Prop. 3.1.11, every bounded polytope can equivalently be represented as a SPZ. There-
fore, any bounded polytope can be converted to a CPZ by first representing it as a SPZ
followed its conversion to a CPZ according to Prop. 3.2.9. In addition, it holds according
to [32, Thm. 1] that any bounded polytope can be represented as a constrained zonotope.
Therefore, the second possibility for the conversion of a bounded polytope to a CPZ is
to first represent the polytope as a constrained zonotope, and then convert it to a CPZ
using Prop. 3.2.10. Which of the two methods results in the more compact representation
depends on the polytope. Now, we prove that any ellipsoid can be converted to a CPZ:
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Proposition 3.2.11. (Conversion Ellipsoid) An ellipsoid E = 〈c,Q〉E ⊂ Rn can be equiv-
alently represented by a CPZ

E =

〈
c, V


√
λ1 0

. . .

0
√
λn


︸ ︷︷ ︸

G

,

[
In
0

]
︸︷︷︸
E

,
[
−0.5 1

]︸ ︷︷ ︸
A

, 0.5︸︷︷︸
b

,

[
0 2In
1 0

]
︸ ︷︷ ︸

R

〉
CPZ

, (3.50)

where the eigenvalues λ1, . . . , λn, the matrix of eigenvalues D, and the matrix of eigenvec-
tors V are obtained by the eigenvalue decomposition of the matrix Q according to Def. 2.4.2:

Q = V

λ1 0
. . .

0 λn


︸ ︷︷ ︸

D

V T . (3.51)

The computational complexity of the conversion is O(n3).

Proof. The matrices A,R and the vector b in (3.50) define the constraint

− 0.5αn+1 + α2
1 + . . .+ α2

n = 0.5. (3.52)

Since αn+1 ∈ [−1, 1], (3.52) is equivalent to the constraint

0 ≤ α2
1 + . . .+ α2

n ≤ 1. (3.53)

Using the eigenvalue decomposition of the matrix Q from (3.51) we obtain

Q−1 (3.51)
= (V DV T )−1 = V D−1V T , (3.54)

where V −1 = V T holds since V is an orthonormal matrix. Inserting (3.54) into the defini-
tion of an ellipsoid in Def. 2.2.6 yields

E Def. 2.2.6
=

{
x
∣∣ (x− c)TQ−1(x− c) ≤ 1

}
=
{
c+ x

∣∣ xTQ−1x ≤ 1
} (3.54)

=

{
c+ x

∣∣ (V Tx)TD−1(V Tx) ≤ 1
} z:=V T x

=

{
c+ V z

∣∣ zTD−1z ≤ 1
} (3.51)

=

{
c+ V z

∣∣∣∣ z2
(1)

λ1

+ . . .+
z2

(n)

λn
≤ 1

}
.

(3.55)

We define the factors αk of the CPZ as αk =
z(k)√
λk

, k = 1, . . . , n, so that

z(k) =
√
λk αk. (3.56)
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Inserting (3.56) into (3.55) finally yields

E (3.55)
=

{
c+ V z

∣∣∣∣ z2
(1)

λ1

+ . . .+
z2

(n)

λn
≤ 1

}
(3.56)
=

{
c+

n∑
k=1

√
λk αkV(·,k)

∣∣∣∣ α2
1 + . . .+ α2

n ≤ 1

}

(3.52)
(3.53)
=

{
c+

n∑
k=1

√
λk αkV(·,k)

∣∣∣∣ 9 0.5αn+1 + α2
1 + . . .+ α2

n = 0.5, α1, . . . , αn+1 ∈ [−1, 1]

}

(3.50)
= 〈c,G,E,A, b, R〉CPZ ,

which concludes the proof.
Complexity: Computation of the eigenvalue decomposition Q = V DV T in (3.51) has

complexity O(n3) according to Tab. 2.1. Moreover, computation of the generator matrix G
in (3.50) requires n2 multiplications and the calculation of n square roots and therefore has
complexity O(n2) +O(n) = O(n2). Since all other required operations are concatenations
or initializations, the overall complexity of the conversion is O(n2) +O(n3) = O(n3).

In summary, CPZs can equivalently represent all common set representations except
support functions, level sets, and star sets.

3.2.4 Enclosure by other Set Representations

To speed up computations, one often encloses sets by simpler set representations in set-
based computing. In this section, we therefore show how to enclose CPZs by polynomial
zonotopes, zonotopes, constraint zonotopes, and support functions. To demonstrate the
tightness of the enclosures, we use the CPZ

CPZ =

〈[
0
0

]
,

[
1 0.5 1 0.5
0 1 1 0.5

]
,

1 0 2 0
0 1 1 0
0 0 0 1

 [1 90.5 0.5
]
, 0.5,

1 0 0
0 1 2
0 1 0

〉
CPZ

(3.57)
as a running example throughout this section. Let us first present how to compute an
enclosing polynomial zonotope of a CPZ:

Proposition 3.2.12. (Polynomial Zonotope Enclosure) Given a CPZ CPZ ⊂ Rn, the
operation polyZonotope returns a SPZ that encloses CPZ:

CPZ ⊆ polyZonotope(CPZ) = 〈c,G, [ ], E, uniqueID(p)〉PZ ,

where the rescale operation as defined in Prop. 3.2.7 is applied to reduce the over-
approximation

〈c,G,E,A, b, R〉CPZ = rescale(CPZ),

and p ∈ N0 denotes the number of rows of matrix E. The computational complexity with
respect to the dimension n is O(n4 log(n)) +O(contract).
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Figure 3.11: Enclosure of the CPZ in (3.57) with a polynomial zonotope (top, left), a constrained
zonotope (top, right), a zonotope (bottom, left), and an interval (bottom, right).

Proof. According to Prop. 3.2.7, the rescale operation only changes the representation of
the set, but not the set itself. The enclosing SPZ is then obtained by simply removing the
constraints from the rescaled CPZ, which results in an over-approximation.

Complexity: The computational complexity is identical to the complexity of the rescale
operation, which is O(n4 log(n)) +O(contract) according to Prop. 3.2.7.

The enclosing polynomial zonotope for the CPZ in (3.57) is shown in Fig. 3.11 and
the computational complexity of Prop. 3.2.12 for different contractors is summarized in
Tab. 3.8. An alternative method for computing a polynomial zonotope enclosure of an
CPZ is to reduce all constraints of the CPZ using Prop. 3.2.31. While this is computation-
ally more demanding, if often results in a tighter enclosure. It is also possible to combine
both methods. For this, we first reduce all constraints for which we can show that the re-
sulting over-approximation is small using Prop. 3.2.31, and then simply drop the remaining
constraints as done in Prop. 3.2.12. Next, we show how to enclose a CPZ by a constrained
zonotope:

Proposition 3.2.13. (Constrained Zonotope Enclosure) Given a CPZ CPZ ⊂ Rn, the
operation conZonotope returns a constrained zonotope that encloses CPZ:

CPZ ⊆ conZonotope(CPZ) = 〈cz, Gz, Az,−bz〉CZ︸ ︷︷ ︸
CZ

,
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where

〈c,G,E,A, b, R〉CPZ = rescale(CPZ), id = uniqueID(p),

〈[
cz
bz

]
,

[
Gz

Az

]〉
Z︸ ︷︷ ︸

Z+

= zonotope

(
compact

(〈[
c
−b

]
,

[
G 0
0 A

]
, [ ],

[
E R

]
, id

〉
PZ︸ ︷︷ ︸

PZ+

))
,

and the zonotope enclosure of the SPZ PZ+ is calculated using Prop. 3.1.14. The rescale

operation as defined in Prop. 3.2.7 and the compact operation for SPZs as defined in
Prop. 3.1.7 are applied to reduce the over-approximation. The computational complexity
with respect to the dimension n is O(n4 log(n)) +O(contract).

Proof. To calculate an enclosing constrained zonotope we compute a zonotope enclo-
sure of the corresponding lifted polynomial zonotope as defined in Lemma 3.2.4. Back-
transformation of the lifted zonotope to the original space then yields an enclosing con-
strained zonotope:

∀x ∈ Rn : (x ∈ CPZ)
Lemma 3.2.4

⇒
([

x
0

]
∈ PZ+

)
PZ+⊆Z+

⇒
([

x
0

]
∈ Z+

)
Lemma 3.2.4

⇒ (x ∈ CZ),

where we omitted the operations rescale and compact since they only change the repre-
sentation of the set, but not the set itself.

Complexity: The computational complexity for the rescale operation is O(n4 log(n)) +
O(contract) according to Prop. 3.2.7. Let n+ = n + m, p+ = p, and h+ = h + q denote
the dimension, the number of dependent factors, and the number of dependent generators
of the lifted polynomial zonotope PZ+. According to Prop. 3.1.7, the compact operation
for SPZs has complexity O(h+(n+ + p+ log(h+))), and the complexity for computing a
zonotope enclosure of a SPZ using Prop. 3.1.14 is O(h+(p+ +n+)) according to (3.5). The
overall computational complexity is therefore

O(n4 log(n)) +O(contract) +O(h+(n+ + p+ log(h+))) +O(h+(p+ + n+))

= O(n4 log(n)) +O(contract) +O(h+(n+ + p+ log(h+)))

n+=n+m, p+=p
h+=h+q

= O(n4 log(n)) +O(contract) +O((h+ q)(n+m+ p log(h+ q))),

which is O(n4 log(n)) +O(contract) using Assumption 3.2.3.

The enclosing constrained zonotope for the CPZ in (3.57) is shown in Fig. 3.11 and
the computational complexity of Prop. 3.2.13 for different contractors is summarized in
Tab. 3.8.
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Table 3.8: Computational complexity with respect to the dimension n ∈ N for polynomial zono-
tope, zonotope, constrained zonotope, and support function enclosure of CPZs for the different
contractors presented in Sec. 2.8.

Method
Polynomial
Zonotope

Constrained
Zonotope

Zonotope
Support
Function

Forward-backward O(n4 log(n)) O(n4 log(n)) O(n4 log(n)) O(n5)

Extremal functions O(n4 log(n)) O(n4 log(n)) O(n4 log(n)) O(n5)

Parallel linearization O(n4.5) O(n4.5) O(n4.5) O(n5)

Now, we consider the enclosure of a CPZ by a zonotope:

Proposition 3.2.14. (Zonotope Enclosure) Given a CPZ CPZ ⊂ Rn, the operation
zonotope returns a zonotope that encloses CPZ:

CPZ ⊆ zonotope(CPZ) = 〈cz, Gz〉Z = zonotope
(
polyZonotope(CPZ)︸ ︷︷ ︸

PZ

)
,

where the polynomial zonotope enclosure of CPZ is computed using Prop. 3.2.12 and the
zonotope enclosure of the SPZ PZ is computed using Prop. 3.1.14. The computational
complexity with respect to the dimension n is O(n4 log(n)) +O(contract).

Proof. According to Prop. 3.2.12, it holds that PZ = polyZonotope(CPZ) ⊇ CPZ.
Moreover, since 〈cz, Gz〉Z = zonotope(PZ) ⊇ PZ according to Prop. 3.1.14, we have

〈cz, Gz〉Z = zonotope(PZ)
Prop. 3.1.14

⊇ PZ = polyZonotope(CPZ)
Prop. 3.2.12

⊇ CPZ,

which concludes the proof.
Complexity: Computation of an enclosing polynomial zonotope for a CPZ has complexity
O(n4 log(n)) + O(contract) according to Prop. 3.2.12 and computation of a zonotope
enclosure of a SPZ has complexity O(n2) according to Prop. 3.1.14. Consequently, we
obtain

O(n4 log(n)) +O(contract) +O(n2) = O(n4 log(n)) +O(contract)

for the overall complexity.

The enclosing zonotope for the CPZ in (3.57) is shown in Fig. 3.11 and the compu-
tational complexity of Prop. 3.2.14 for different contractors is summarized in Tab. 3.8.
An alternative method for computing a zonotope enclosure is to first enclose the CPZ by
a constrained zonotope using Prop. 3.2.13, and then successively remove all constraints
as described in [32, Appendix], which yields a zonotope. Which method performs better
depends on the CPZ.
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Finally, we show how to enclose the support function of a CPZ. Computing the exact
support function of a CPZ is identical to solving a polynomial optimization problem,
which consists of a polynomial objective function and polynomial constraints. However,
computing the global optimum of a polynomial optimization problem up to a desired
accuracy requires to split the state space, and therefore has exponential complexity with
respect to the dimension [81, 82]. Instead of computing the exact support function, we
therefore compute a tight enclosure using quadratic programming:

Proposition 3.2.15. (Support Function Enclosure) Given a CPZ CPZ ⊂ Rn, an over-
approximation of its support function for a given direction d ∈ Rn can be computed as

sCPZ(d) ≤ cz − quadProg

([
−Q− 0

0 0

]
,

[
−f
−gz

]
,

[
Ip+pz
−Ip+pz

]
,

[
1
1

]
,
[
M Az

]
,−bz

)
.

To construct the matrices Q− ∈ Rp×p, M ∈ Rm×p, Az ∈ Rm×pz and the vectors
f ∈ Rp, gz ∈ Rpz , bz ∈ Rm for the quadratic program, we first calculate d ⊗ CPZ us-
ing Prop. 3.2.16, and then construct the corresponding lifted polynomial zonotope PZ+ as
defined in Lemma 3.2.4:

〈c, g, E,A, b, R〉CPZ = rescale(d⊗ CPZ), id = uniqueID(p),〈[
c

b

]
,

[
g
A

]
, [ ], E, id

〉
PZ

= compact

(〈[
c
−b

]
,

[
g 0
0 A

]
, [ ],

[
E R

]
, id

〉
PZ︸ ︷︷ ︸

PZ+

)
, (3.58)

where the rescale operation as defined in Prop. 3.2.7 and the compact operation as defined
in Prop. 3.1.7 are applied to reduce the over-approximation. Next, we extract the linear
and quadratic parts from the generators and the constraints:

∀i, j ∈ {1, . . . , p} : Q(i,j) =

{
0 +

∑
k∈Ki g(k), i = j

0 + 0.5
∑

k∈Hi,j g(k), otherwise
, f(i) = 0 +

∑
k∈Gi

g(k)

∀l ∈ {1, . . . ,m}, ∀i = {1, . . . , p} : M(l,i) = 0 +
∑
k∈Gi

A(l,k),

(3.59)

where the sets Ki, Hi,j, and Gi are defined as follows:

∀i, j ∈ {1, . . . , p} :

Ki =

{
k

∣∣∣∣ p∑
l=1

E(l,k) = 2, E(i,k) = 2

}
, Gi =

{
k

∣∣∣∣ p∑
l=1

E(l,k) = 1, E(i,k) = 1

}
,

Hi,j =

{
k

∣∣∣∣ p∑
l=1

E(l,k) = 2, E(i,k) = 1, E(j,k) = 1

}
.

To obtain a convex quadratic program we compute the eigenvalue decomposition of the
matrix Q according to Def. 2.4.2

Q = V

λ1 0
. . .

0 λp

V T , (3.60)
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which we use to split Q into a positive semi-definite matrix Q+ and a negative semi-definite
matrix Q−:

Q+ = V

max(λ1, 0) 0
. . .

0 max(λp, 0)

V T , Q− = V

min(λ1, 0) 0
. . .

0 min(λp, 0)

V T .

Finally, we enclose all remaining parts of CPZ with a zonotope using Prop. 3.1.14:〈[
cz
bz

]
,

[
gz
Az

]〉
Z

= zonotope
(
compact

(
P̂Z

+))
, (3.61)

where the compact operation as defined in Prop. 3.1.7 is applied to reduce the over-

approximation, the lifted polynomial zonotope P̂Z
+

is defined as

P̂Z
+

=

〈[
c

b

]
,

[
g(·,F) gq 0

0 0 A(·,N )

]
,
[
E(·,F) Eq E(·,N )

]〉
PZ

,

Q =
⋃

i,j∈{1,...,p}

Ki ∪Hi,j, G =
⋃

i∈{1,...,p}

Gi, N = {1, . . . , h} \ G, F = N \ Q,

〈
0, gq, [ ], Eq, id

〉
PZ

= sq
(
{Q+},PZ

)
, PZ =

〈
0, Ip, [ ], Ip, id

〉
PZ

with h denoting the number of columns of matrix E, and the quadratic map sq({Q+},PZ) is
calculated using Prop. 3.1.30. The computational complexity with respect to the dimension
n is O(n5) +O(contract).

Proof. To obtain an over-approximation of the support function, the CPZ d⊗CPZ is first
enclosed by the simpler set S consisting of quadratic monomials only:

d⊗ CPZ (3.58)
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
g(i)

∣∣∣∣ h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
A(·,i) = −b, αk ∈ [−1, 1]

}

=

{
c+

∑
i∈Q

( p∏
k=1

α
E(k,i)

k

)
g(i)︸ ︷︷ ︸

(3.59)
= αTQα=αTQ+α+αTQ−α

+
∑
i∈G

( p∏
k=1

α
E(k,i)

k

)
g(i)︸ ︷︷ ︸

(3.59)
= fTα

+
∑
i∈F

( p∏
k=1

α
E(k,i)

k

)
g(i)

∣∣∣∣
∑
i∈G

( p∏
k=1

α
E(k,i)

k

)
A(·,i)︸ ︷︷ ︸

(3.59)
= Mα

+
∑
i∈N

( p∏
k=1

α
E(k,i)

k

)
A(·,i) = −b, αk ∈ [−1, 1]

}

=

{
αTQ−α + fTα + c+ αTQ+α +

∑
i∈F

( p∏
k=1

α
E(k,i)

k

)
g(i)︸ ︷︷ ︸

(3.61)

⊆ {cz+gTz β | β∈[−1,1]}

∣∣∣∣
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Mα +
∑
i∈N

( p∏
k=1

α
E(k,i)

k

)
A(·,i)︸ ︷︷ ︸

(3.61)

⊆ {Azβ | β∈[−1,1]}

= −b, αk ∈ [−1, 1]

}

⊆
{
cz + αTQ−α + fTα + gTz β | Mα + Azβ = −bz, α, β ∈ [−1,1]

}︸ ︷︷ ︸
S

,

(3.62)

where α = [α1 . . . αp]
T . We omitted the rescale and compact operations in (3.62) since

they only change the representation of the set, but not the set itself. Inserting the relation
d ⊗ CPZ ⊆ S from (3.62) into the definition of the support function in Def. 2.2.7 finally
yields

sCPZ(d)
Def. 2.2.7

= max
x∈CPZ

dTx = max
y∈d⊗CPZ

y
d⊗CPZ⊆S
≤ max

y∈S
y

(3.62)
= cz + max

α,β∈[−1,1]
Mα+Azβ=−bz

αTQ−α + fTα + gTz β = cz − min
α,β∈[−1,1]

Mα+Azβ=−bz

−αTQ−α− fTα− gTz β

Def. 2.4.7
= cz − quadProg

([
−Q− 0

0 0

]
,

[
−f
−gz

]
,

[
Ip+pz
−Ip+pz

]
,

[
1
1

]
,
[
M Az

]
,−bz

)
,

which concludes the proof.
Complexity: Let us begin with the quadratic program. Since the program has p +

pz ≤ p + 3h ≤ p + 3h + 3q variables, solving the quadratic program has complexity
O((p + 3h + 3q)5) according to Tab. 2.1, which is O(n5) using Assumption 3.2.3. Next,
we consider the computations in (3.58). Computation of the linear map d ⊗ CPZ using
Prop. 3.2.16 has complexity O(wn2), which is O(n2) for our case since w = 1. In addition,
the computational complexity for the rescale operation is O(n4 log(n)) + O(contract)
according to Prop. 3.2.7. According to Prop. 3.1.7, the compact operation for SPZs has
complexity O(h+(n+ + p+ log(h+))), where n+ = m + 1, p+ = p, and h+ = h + q denote
the dimension, the number of dependent factors, and the number of dependent generators
of the lifted polynomial zonotope PZ+. The overall complexity for the computations in
(3.58) is therefore

O(n2) +O(n4 log(n)) +O(contract) +O(h+(n+ + p+ log(h+)))

n+=m+1, p+=p
h+=h+q

=

O(n4 log(n)) +O(contract) +O((h+ q)(m+ 1 + p log(h+ q)))
Assumption 3.2.3

=

O(n4 log(n)) +O(contract).

Moreover, construction of the matrices Q and M and the vector f in (3.59) has complexity
O(ph). Since h ≤ h + q we have O(ph) ≤ O(p(h + q)), which results in a worst-case
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complexity of O(n2) using Assumption 3.2.3. The eigenvalue decomposition of the matrix
Q in (3.60) has complexity O(p3) according to Tab. 2.1. Since O(p3) is also the complexity
for the matrix multiplications required to construct Q+ and Q−, we obtain an overall
complexity of 3 · O(p3) = O(p3), which is O(n3) using Assumption 3.2.3. Finally, we
consider the computation of the zonotope in (3.61). Computation of the quadratic map
sq({Q+},PZ) using Prop. 3.1.30 has complexity O(n3(w+ log(n))), which is O(n3 log(n))
in our case since w = 1. Furthermore, according to Prop. 3.1.7, the compact operation
for SPZs has complexity O(ĥ+(n̂+ + p̂+ log(ĥ+))) and the complexity for computing a

zonotope enclosure of a SPZ using Prop. 3.1.14 is O(ĥ+(p̂+ + n̂+)) according to (3.5),

where n̂+ = m + 1, p̂+ = p, and ĥ+ ≤ 3h ≤ 3h + 3q denote the dimension, the number
of dependent factors, and the number of dependent generators of the lifted polynomial

zonotope P̂Z
+

. The overall complexity for computing the zonotope in (3.61) is therefore

O(n3 log(n)) +O(ĥ+(n̂+ + p̂+ log(ĥ+)) +O(ĥ+(p̂+ + n̂+))

= O(n3 log(n))) +O(ĥ+(n̂+ + p̂+ log(ĥ+)))

n̂+=m+1, p̂+=p

ĥ+≤3h+3q
=

= O(n3 log(n)) +O((3h+ 3q)(m+ 1 + p log(3h+ 3q)))
Assumption 3.2.3

= O(n3 log(n)).

Combining all the complexities from the single parts of the support function computation
finally yields

O(n5) +O(n4 log(n)) +O(contract) +O(n2)+O(n3) +O(n3 log(n))

= O(n5) +O(contract)

for the overall complexity.

The computational complexity of Prop. 3.2.15 for different contractors is summarized
in Tab. 3.8. As described for SPZs in Sec. 3.1.4, a template polyhedron or an interval
enclosing a CPZ can be easily computed by evaluating the support function for a set of
discrete directions. The enclosing interval for the CPZ in (3.57) is shown in Fig. 3.11. To
improve the tightness of the support function enclosure, one can for example iteratively
split the CPZ multiple times using the split operation as defined in Prop. 3.2.35.

3.2.5 Basic Set Operations

In this section, we derive closed-form expressions for all basic set operations introduced in
Sec. 2.1. We begin with the linear map:

Proposition 3.2.16. (Linear Map) Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ ⊂ Rn and
a matrix M ∈ Rw×n, the linear map is

M ⊗ CPZ =
〈
Mc,MG,E,A, b, R

〉
CPZ

,

which has complexity O(wn2) with respect to the dimension n, where w is the number of
rows of matrix M . The resulting CPZ is regular if CPZ is regular.
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Proof. The result follows directly from inserting the definition of CPZs in Def. 3.2.1 into
the definition of the linear map in (2.1):

M ⊗ CPZ (2.1)
= {Ms | s ∈ CPZ} Def. 3.2.1

=

{
Mc+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
MG(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}

=
〈
Mc,MG,E,A, b, R

〉
CPZ

.

Complexity: The two matrix multiplications Mc and MG have complexity O(wn) +
O(wnh) = O(wnh) according to Tab. 2.1, which is O(wn2) using Assumption 3.2.3.

Next, we consider the Minkowski sum of two CPZs:

Proposition 3.2.17. (Minkowski Sum) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1, b1,
R1〉CPZ ⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn, their Minkowski sum is

CPZ1 ⊕ CPZ2 =

〈
c1 + c2,

[
G1 G2

]
,

[
E1 0
0 E2

]
,

[
A1 0
0 A2

]
,

[
b1

b2

]
,

[
R1 0
0 R2

]〉
CPZ

,

which has complexity O(n) with respect to the dimension n. The resulting CPZ is regular
if CPZ1 and CPZ2 are regular.

Proof. The result is obtained by inserting the definition of CPZs in Def. 3.2.1 into the
definition of the Minkowski sum in (2.2):

CPZ1 ⊕ CPZ2
(2.2)
=
{
s1 + s2

∣∣ s1 ∈ CPZ1, s2 ∈ CPZ2

} Def. 3.2.1
=

{
c1 + c2 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i)

∣∣∣∣
q1∑
i=1

( p1∏
k=1

α
R1(k,i)

k

)
A1(·,i) = b1,

q2∑
i=1

( p2∏
k=1

α
R2(k,i)

p1+k

)
A2(·,i) = b2, αk, αp1+k ∈ [−1, 1]

}

(3.45),(3.46)
=

〈
c1 + c2,

[
G1 G2

]
,

[
E1 0
0 E2

]
,

[
A1 0
0 A2

]
,

[
b1

b2

]
,

[
R1 0
0 R2

]〉
CPZ

,

where we used the identities in (3.45) and (3.46).
Complexity: The computation of the new constant offset c1 + c2 has complexity O(n).

Since all other operations required for the construction of the resulting CPZ are concate-
nations, it holds that this is also the overall complexity.
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As for SPZs, two CPZ with identical factors can be added in a dependency-preserving
way by using the exact addition rather than the Minkowski sum:

Proposition 3.2.18. (Exact Addition) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1, b1,
R1〉CPZ ⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn with p1 = p2, their exact
addition is defined as

CPZ1 � CPZ2 =

〈
c,
[
G1 G2

]
,
[
E1 E2

]
,

[
A1 0
0 A2

]
,

[
b1

b2

]
,
[
R1 R2

]〉
CPZ

,

which has complexity O(n2 log(n)) with respect to the dimension n. The compactGen and
compactCon operations as defined in Prop. 3.2.5 and Prop. 3.2.6 are applied to make the
resulting CPZ regular.

Proof. The result is similar to the result for the Minkowski sum in Prop. 3.2.17, with
the difference that we exploit the equality of the factors for the two CPZs to preserve
dependencies.

Complexity: The compactGen operation has complexity O(h(n+ p log(h))) according to
Prop. 3.2.5 and the compactCon operation has complexity O(q(m + p log(q))) according
to Prop. 3.2.6, where p = p1 = p2, h = h1 + h2, m = m1 + m2, q = q1 + q2 denote the
number of factors, the number of generators, the number of constraints, and the number
of constraint generators of the resulting CPZ. The overall complexity is therefore

O(h(n+ p log(h))) +O(q(m+ p log(q)))
p=p1=p2, h=h1+h2
m=m1+m2, q=q1+q2

=

O((h1 + h2)(n+ p1 log(h1 + h2))) +O((q1 + q2)(m1 +m2 + p1 log(q1 + q2))),

which is O(n2 log(n)) using Assumption 3.2.3.

Let us now present a closed-form expression for the Cartesian product:

Proposition 3.2.19. (Cartesian Product) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1,
b1, R1〉CPZ ⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rw, their Cartesian product
is

CPZ1 × CPZ2 =

〈[
c1

c2

] [
G1 0
0 G2

]
,

[
E1 0
0 E2

]
,

[
A1 0
0 A2

]
,

[
b1

b2

]
,

[
R1 0
0 R2

]〉
CPZ

,

which has complexity O(1). The resulting CPZ is regular if CPZ1 and CPZ2 are regular.

Proof. The result is obtained by inserting the definition of CPZs in Def. 3.2.1 into the
definition of the Cartesian product in (2.4):

CPZ1 × CPZ2
(2.4)
=
{

[sT1 sT2 ]T
∣∣ s1 ∈ CPZ1. s2 ∈ CPZ2

} Def. 3.2.1
=

{[
c1

0

]
+

[
0
c2

]
+

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)[
G1(·,i)

0

]
+

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)[
0

G2(·,i)

] ∣∣∣∣
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q1∑
i=1

( p1∏
k=1

α
R1(k,i)

k

)
A1(·,i) = b1,

q2∑
i=1

( p2∏
k=1

α
R2(k,i)

p1+k

)
A2(·,i) = b2, αk, αp1+k ∈ [−1, 1]

}

(3.45),(3.46)
=

〈[
c1

c2

] [
G1 0
0 G2

]
,

[
E1 0
0 E2

]
,

[
A1 0
0 A2

]
,

[
b1

b2

]
,

[
R1 0
0 R2

]〉
CPZ

,

where we used the identities in (3.45) and(3.46).
Complexity: The construction of the resulting CPZ only involves concatenations and

therefore has complexity O(1).

Before we consider the convex hull, we first derive a closed-form expression for the linear
combination of two CPZs, since we can reuse this result for the convex hull:

Proposition 3.2.20. (Linear Combination) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1,
b1, R1〉CPZ ⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn, their linear combination is

comb(CPZ1, CPZ2) =

〈
1

2
(c1 + c2),

1

2

[
(c1 − c2) G1 G1 G2 −G2

]
,0 E1 E1 0 0

0 0 0 E2 E2

1 0 1 0 1

 , [A1 0
0 A2

]
,

[
b1

b2

]
,

R1 0
0 R2

0 0

〉
CPZ

,

which has complexity O(n2) with respect to the dimension n. The resulting CPZ is regular
if CPZ1 and CPZ2 are regular.

Proof. The result is obtained by inserting the definition of CPZs in Def. (3.2.1) into the
definition of the linear combination in (2.11):

comb(CPZ1, CPZ2)
(2.11)
=

{
1

2
(1 + λ)s1 +

1

2
(1− λ)s2

∣∣∣∣ s1 ∈ CPZ1, s2 ∈ CPZ2, λ ∈ [−1, 1]

}
Def. 3.2.1

=

{
1

2
(c1 + c2) +

1

2
(c1 − c2)λ+

1

2

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i)+

1

2

h1∑
i=1

λ

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) +

1

2

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i) −

1

2

h2∑
i=1

λ

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i)

∣∣∣∣
q1∑
i=1

( p1∏
k=1

α
R1(k,i)

k

)
A1(·,i) = b1,

q2∑
i=1

( p2∏
k=1

α
R2(k,i)

p1+k

)
A2(·,i) = b2, αk, αp1+k, λ ∈ [−1, 1]

}

(3.45),(3.46)
αp1+p2+1:=λ

=

〈
1

2
(c1 + c2),

1

2

[
(c1 − c2) G1 G1 G2 −G2

]
,
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0 E1 E1 0 0
0 0 0 E2 E2

1 0 1 0 1

 , [A1 0
0 A2

]
,

[
b1

b2

]
,

R1 0
0 R2

0 0

〉
CPZ

,

where we used the identities in (3.45) and(3.46). For the transformation in the last line, we
substituted λ with an additional factor αp1+p2+1. Since λ ∈ [−1, 1] and αp1+p2+1 ∈ [−1, 1],
the substitution does not change the set.

Complexity: Construction of the constant offset c = 0.5(c1 + c2) requires n
additions and n multiplications. Moreover, construction of the generator matrix
0.5
[
(c1 − c2) G1 G1 G2 −G2

]
requires n subtractions and n(2h1 + 2h2 + 1) multi-

plications. This results in an overall complexity of

O(2n) +O(n(2h1 + 2h2 + 2)) = O(n(h1 + h2)),

which is O(n2) using Assumption 3.2.3.

The convex hull of two CPZs can be computed as follows:

Proposition 3.2.21. (Convex Hull) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1, b1, R1〉CPZ
⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn, their convex hull is

conv(CPZ1, CPZ2) =

〈
a · c,

[
c G G

]
,

[
0 E E

Ia 0 Ê

]
,

[
A 0
0 1

]
,

[
b
−n

]
,

[
R 0
0 Ia

]〉
CPZ

with

〈c,G,E,A, b, R〉CPZ = comb(CPZ1, CPZ2), a = n+ 1, c =
[
c . . . c

]
∈ Rn×a,

G =
[
G . . . G

]
∈ Rn×ah, E =

E 0
. . .

0 E

 ∈ Rap×ah, Ê =

1 0
. . .

0 1

 ∈ Ra×ah,

A =

A 0
. . .

0 A

 ∈ Ram×aq, b =

b...
b

 ∈ Ram, R =

R 0
. . .

0 R

 ∈ Rap×aq,

(3.63)

where the linear combination comb(CPZ1, CPZ2) is calculated using Prop. 3.2.20, and the
scalars p, h, q, and m denote the number of factors, the number of generators, the number
of constraint generators, and the number of constraints of the CPZ 〈c,G,E,A, b, R〉CPZ.
The computational complexity with respect to the dimension n is O(n2), and the resulting
CPZ is regular if CPZ1 and CPZ2 are regular.

Proof. According to the definition of the convex hull in (2.5), the definition of the union
in (2.8), and the definition of the linear combination in (2.11), it holds that

CPZ1 ∪ CPZ2 ⊆ comb(CPZ1, CPZ2) ⊆ conv(CPZ1, CPZ2). (3.64)
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The relation in (3.64) allows us to substitute the union in the definition of the convex hull
in (2.5) with the linear combination. This yields a resulting CPZ with less factors than if
we would have used the union according to Prop. 3.2.25, which is often advantageous:

conv(CPZ1, CPZ2)
(2.5)
=

{ n+1∑
j=1

λj sj

∣∣∣∣ sj ∈ CPZ1 ∪ CPZ2, λj ≥ 0,
n+1∑
j=1

λj = 1

}
(3.64)
=

{ n+1∑
j=1

(1 + λ̂j) sj

∣∣∣∣ sj ∈ comb(CPZ1, CPZ2),
n+1∑
j=1

(1 + λ̂j) = 1, λ̂j ∈ [−1, 1]

} Def. 3.2.1,
(3.63)
=

{ n+1∑
j=1

(1 + λ̂j)

(
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(j−1)p+k

)
G(·,i)

) ∣∣∣∣ α(j−1)p+k, λ̂j ∈ [−1, 1],

n+1∑
j=1

(1 + λ̂j) = 1, ∀j ∈ {1, . . . , n+ 1} :

q∑
i=1

( p∏
k=1

α
R(k,i)

(j−1)p+k

)
A(·,i) = b

}
=

{
(n+ 1)c+

n+1∑
j=1

λ̂j c+
n+1∑
j=1

h∑
i=1

( p∏
k=1

α
E(k,i)

(j−1)p+k

)
G(·,i)

+
n+1∑
j=1

h∑
i=1

λ̂j

( p∏
k=1

α
E(k,i)

(j−1)p+k

)
G(·,i)

∣∣∣∣ α(j−1)p+k, λ̂j ∈ [−1, 1],

∀j ∈ {1, . . . , n+ 1} :

q∑
i=1

( p∏
k=1

α
R(k,i)

(j−1)p+k

)
A(·,i) = b,

n+1∑
j=1

λ̂j = −n
}

(3.45),(3.46)

αap+j :=λ̂j

=

〈
a · c,

[
c G G

]
,

[
0 E E

Ia 0 Ê

]
,

[
A 0
0 1

]
,

[
b
−n

]
,

[
R 0
0 Ia

]〉
CPZ

,

where we used the identities in (3.45) and (3.46). For the transformation in the last

line we substituted the scalars λ̂j by additional factors αap+j. Since λ̂j ∈ [−1, 1] and
αap+j ∈ [−1, 1], the substitution does not change the set.

Complexity: The calculation of the linear combination comb(CPZ1, CPZ2) has com-
plexity O(n2) according to Prop. 3.2.20. Moreover, the construction of the constant
offset a · c requires n multiplications and therefore has complexity O(n). Since all
other operations that are required are initializations and concatenations which have con-
stant complexity O(1), the overall complexity for the computation of the convex hull is
O(n2) +O(n) +O(1) = O(n2).

For the convex hull conv(CPZ) = conv(CPZ, CPZ) of a single CPZ CPZ, we can
exploit that CPZ ∪ CPZ = CPZ holds to obtain a more compact representation. Next,
we demonstrate how to compute the quadratic map for CPZs. As shown in Appendix A,
all higher-order polynomial maps can be computed using a sequence of quadratic maps, so
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that all polynomial maps of CPZs can be calculated based on the quadratic map. Unlike
for SPZs, we defined CPZs without unique identifiers to simplify the notation. Due to
this, possible dependencies between different CPZs are not preserved, so that in general
sq(Q, CPZ) 6= sq(Q, CPZ, CPZ) for a CPZ CPZ. Therefore, we provide separate formulas
for computing the quadratic map sq(Q, CPZ) of a single CPZ and for computing the mixed
quadratic map sq(Q, CPZ, CPZ) for two CPZs CPZ1 and CPZ2:

Proposition 3.2.22. (Quadratic Map) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1, b1,
R1〉CPZ ⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn, and a discrete set of ma-
trices Q = {Q1, . . . , Qw} with Qi ∈ Rn×n, i = 1, . . . , w, the quadratic map of a single CPZ
is

sq(Q, CPZ1) =

〈
c,
[
Ĝ G1 . . . Gh1

]
,
[
E E1 . . . Eh1

]
, A1, b1, R1

〉
CPZ

, (3.65)

where

c =

c
T
1Q1c1

...
cT1Qwc1

 , Ĝ =

c
T
1Q1G1

...
cT1QwG1


︸ ︷︷ ︸

Ĝ1

+

c
T
1Q

T
1G1
...

cT1Q
T
wG1


︸ ︷︷ ︸

Ĝ2

,

Ej = E1 + E1(·,j) · 1, Gj =

G
T
1(·,j)Q1G1

...
GT

1(·,j)QwG1

 , j = 1, . . . , h1,

(3.66)

and the quadratic map of two different CPZs is

sq(Q, CPZ1, CPZ2) =

〈
qc,
[
Ĝ3 Ĝ4

qG1 . . . qGh1

]
,[

0 E1 E(·,1) · 1 . . . E(·,h1) · 1
E2 0 E2 . . . E2

]
,

[
A1 0
0 A2

]
,

[
b1

b2

]
,

[
R1 0
0 R2

]〉
CPZ

,

(3.67)

where

qc =

c
T
1Q1c2

...
cTQwc

 , Ĝ3 =

c
T
1Q1G2

...
cT1QwG2

 , Ĝ4 =

c
T
2Q

T
1G1
...

cT2Q
T
wG1

 ,

qGj =

G
T
1(·,j)Q1G2

...
GT

1(·,j)QwG2

 , j = 1, . . . , h1.

The compactGen operation as defined in Prop. 3.2.5 make the resulting CPZs regular.
The computational complexity of (3.65) and (3.67) with respect to the dimension n is
O(n3(w + log(n))), where w is the dimension of the resulting CPZs.
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Proof. The result in (3.65) is obtained by inserting the definition of CPZs in Def. 3.2.1 into
the definition of the quadratic map in (2.6), which yields

sq(Q, CPZ1)
(2.6)
= {x | x(i) = sTQis, s ∈ CPZ1, i = 1, . . . , w} Def. 3.2.1

=

{
x

∣∣∣∣ x(i) =

(
c1 +

h1∑
j=1

( p1∏
k=1

α
E1(k,j)

k

)
G1(·,j)

)T
Qi

(
c1 +

h1∑
l=1

( p1∏
k=1

α
E1(k,l)

k

)
G1(·,l)

)
,

q1∑
j=1

( p1∏
k=1

α
R1(k,j)

k

)
A1(·,j) = b1, i = 1, . . . , w, αk ∈ [−1, 1]

}
=

{
x

∣∣∣∣ x(i) = cT1Qic1︸ ︷︷ ︸
(3.66)

= c(i)

+

h1∑
l=1

( p1∏
k=1

α
E1(k,l)

k

)
cT1QiG1(·,l)︸ ︷︷ ︸

(3.66)
= Ĝ1(i,l)

+

h1∑
j=1

( p1∏
k=1

α
E1(k,j)

k

)
GT

1(·,j)Qic1︸ ︷︷ ︸
(3.66)

= Ĝ2(i,j)

+

h1∑
j=1

h1∑
l=1

( p1∏
k=1

α
E1(k,j)+E1(k,l)

k︸ ︷︷ ︸
(3.66)

= α
Ej(k,l)
k

)
GT

1(·,j)QiG1(·,l)︸ ︷︷ ︸
(3.66)

= Gj(i,l)

,

q1∑
j=1

( p1∏
k=1

α
R1(k,j)

k

)
A1(·,j) = b1, i = 1, . . . , w, αk ∈ [−1, 1]

}
=

〈
c,
[
Ĝ1 + Ĝ2︸ ︷︷ ︸

Ĝ

G1 . . . Gh1

]
,
[
E E1 . . . Eh1

]
, A1, b1, R1

〉
CPZ

.

Note that only the generator matrix, but not the exponent matrix, is different for each
dimension x(i). The proof for the mixed quadratic map in (3.67) is very similar to the proof
for the quadratic map with a single CPZ shown above and therefore omitted at this point.

Complexity: We begin with the derivation of the computational complexity of the
quadratic map with a single CPZ in (3.65). The construction of the constant offset c in

(3.66) has complexity O(wn2) and the construction of the matrix Ĝ in (3.66) has complex-
ity O(n2h1w). Moreover, construction of the matrices Ej in (3.66) has complexity O(h2

1p1),
and construction of the matrices Gj in (3.66) has complexity O(n2h1w) +O(nh2

1w) if the
results for QiG1 are stored and reused. Subsequent application of the compactGen opera-
tion has complexity O(h(n+ p log(h)) according to Prop. 3.2.5, where n = w, p = p1, and
h = h2

1 + h1 denote the dimension, the number of factors, and the number of generators of
the resulting CPZ in (3.65). The resulting overall complexity is therefore

O(wn2) +O(n2h1w) +O(h2
1p1) +O(n2h1w) +O(nh2

1w) +O(h(n+ p log(h)))
n=w, p=p1

h=h2
1+h1
= O(nh1w(n+ h1)) +O(h2

1p1) +O((h2
1 + h1)(w + p1 log(h2

1 + h1))),
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which is O(n3(w + log(n))) using Assumption 3.2.3. Due to the similarities between the
computation of the quadratic map for a single CPZ in (3.65) and the mixed quadratic map
in (3.67), the complexity for the mixed quadratic map is O(n3(w + log(n))), too.

Contrary to SPZs, CPZs are also closed under intersection:

Proposition 3.2.23. (Intersection) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1, b1, R1〉CPZ
⊂ Rn and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn, their intersection is

CPZ1 ∩ CPZ2 =

〈
c1, G1,

[
E1

0

]
,

A1 0 0 0
0 A2 0 0
0 0 G1 −G2

 ,
 b1

b2

c2 − c1

 , [R1 0 E1 0
0 R2 0 E2

]〉
CPZ

,

which has complexity O(n2 log(n)) with respect to the dimension n. The compactCon op-
eration as defined in Prop. 3.2.6 is applied to make the resulting CPZ regular.

Proof. The outline of the proof is inspired by [32, Prop. 1]. We compute the intersection
by restricting the factors αk of CPZ1 to values that belong to points that are located inside
CPZ2, which is identical to adding the equality constraint

c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i)︸ ︷︷ ︸

x∈CPZ1

= c2 +

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i)︸ ︷︷ ︸

x∈CPZ2

to CPZ1:

CPZ1 ∩ CPZ2 =

{
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i)

∣∣∣∣ q1∑
i=1

( p1∏
k=1

α
R1(k,i)

k

)
A1(·,i) = b1, ,

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

k

)
G1(·,i) −

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

p1+k

)
G2(·,i) = c2 − c1,

q2∑
i=1

( p2∏
k=1

α
R2(k,i)

p1+k

)
A2(·,i) = b2, αk, αp1+k ∈ [−1, 1]

}

(3.46)
=

〈
c1, G1,

[
E1

0

]
,

A1 0 0 0
0 A2 0 0
0 0 G1 −G2

 ,
 b1

b2

c2 − c1

 , [R1 0 E1 0
0 R2 0 E2

]〉
CPZ

,

where we used the identity in (3.46).
Complexity: The computation of c2 − c1 has complexity O(n). Moreover, subsequent

application of the compactCon operation has complexity O(q(m + p log(q))) according to
Prop. 3.2.6, where p = p1 + p2, q = q1 + q2 + h1 + h2, and m = m1 + m2 + n denote
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the number of factors, number of constraint generators, and number of constraints of the
resulting CPZ. The overall complexity is therefore

O(n) +O(q(m+ p log(q)))

p=p1+p2
q=q1+q2+h1+h2
m=m1+m2+

=

O(n) +O((q1 + q2 + h1 + h2)(m1 +m2 + n+ (p1 + p2) log(q1 + q2 + h1 + h2))),

(3.68)

which is O(n2 log(n)) using Assumption 3.2.3.

In set-based computing one often requires intersections between different set represen-
tations. For set representations that can be converted to CPZs, this can be done using
Prop. 3.2.23. Level sets, however, can in general not be equivalently represented as a CPZs.
We therefore provide a separate formula for tightly enclosing the intersection between a
CPZ and a level set:

Proposition 3.2.24. (Intersection Level Set) Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ
⊂ Rn and two level sets LS1 = 〈w(x),≤〉LS ⊂ Rn and LS2 = 〈w(x),=〉LS ⊂ Rn with
w : Rn → Ro, the intersections CPZ ∩ LS1 and CPZ ∩ LS2 can be tightly enclosed by

CPZ ∩ LS1 ⊆
〈
c,G,

[
E
0

]
,

[
A 0 0 0

0 KG Ĝ G1

]
,

[
b

b1

]
,

[
R E Ê 0
0 0 0 Io

]〉
CPZ

CPZ ∩ LS2 ⊆
〈
c,G,

[
E
0

]
,

[
A 0 0 0

0 KG Ĝ G2

]
,

[
b

b2

]
,

[
R E Ê 0
0 0 0 Io

]〉
CPZ

,

where

K = ∇w(c), Q = ∇2w(c), 〈0, Ĝ, Ê, A, b, R〉CPZ = 0.5 sq
(
Q, CPZ ⊕ (−c)

)
,

I = interval(CPZ), D = bound(∇3w(x), I), [lr, ur] =
1

6
poly

(
D, I ⊕ (−c)

)
,

[l, u] = bound(w(x), I), G1 = 0.5 diag(ur − lr − l), G2 = 0.5 diag(ur − lr)

b1 = 0.5(l − lr − ur)− w(c), b2 = −0.5(lr + ur)− w(c).

The computational complexity is O(n6) + on3 · O(bound), where n is the dimension and o
is the number of constraints of the level set.

Proof. Since [l, u] = bound(w(x), I) and CPZ ⊆ I it holds according to the definition of
range bounding in Def. 2.7.1 that l ≤ minx∈CPZ w(x), which yields

CPZ ∩ LS1
(2.7)
= {x ∈ CPZ | w(x) ≤ 0} = {x ∈ CPZ | l ≤ w(x) ≤ 0}. (3.69)

By using a Taylor series expansion with order 2 of the function w(x) around the expansion
point c we can equivalently express l ≤ w(x) ≤ 0 by the i = 1, . . . , o constraints

l(i) ≤ w(i)(c) +
∂w(i)(x)

∂x

∣∣∣∣
c︸ ︷︷ ︸

K(i,·)

(x− c) +
1

2
(x− c)T

∂2w(i)(x)

∂x2

∣∣∣∣
c︸ ︷︷ ︸

Qi

(x− c)⊕ Li(x)︸ ︷︷ ︸
⊆[lr(i),ur(i)]

≤ 0,
(3.70)
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where the Lagrange remainder L(x) = L1(x)× . . .× Lo(x) is enclosed by

∀x ∈ CPZ : L(x) =

{
s

∣∣∣∣ s(i) =

(
(x− c)T∇

)3
w(i)(x̂)

3!
, x̂ = c+ λ(x− c), λ ∈ [0, 1]

}
CPZ⊆I
⊆ 1

6

{
s
∣∣∣ s(i) =

(
(x− c)T∇

)3
w(i)(x̂), x, x̂ ∈ I

}
(2.10)
=

1

6
poly

(
D, I ⊕ (−c)

)
= [lr, ur].

Inserting (3.70) into (3.69) finally yields

CPZ ∩ LS1
(3.69)
= {x ∈ CPZ | l ≤ w(x) ≤ 0}

(3.70)

⊆

{
x ∈ CPZ

∣∣∣ ∀i = 1, . . . , o : l(i) − ur(i) ≤ w(i)(c) +K(i,·)(x− c)

+ 0.5(x− c)TQi(x− c) ≤ −lr(i)
}

=

{
x ∈ CPZ

∣∣∣ ∀i = 1, . . . , o : K(i,·)(x− c) + 0.5 (x− c)TQi(x− c)︸ ︷︷ ︸
∈ sq(Q,CPZ⊕(−c))

+ 0.5(ur(i) − lr(i) − l(i))︸ ︷︷ ︸
G1(i,·)

αp+i = 0.5(l(i) − lr(i) − ur(i))− w(i)(c)︸ ︷︷ ︸
b1(i)

, αp+i ∈ [−1, 1]
}

Def. 3.2.1
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b,

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
KG(·,i)

+
h2+h∑
i=1

( p∏
k=1

α
Ê(k,i)

k

)
Ĝ(·,i) +

o∑
i=1

G1(·,i)αp+i = b1, αk, αp+i ∈ [−1, 1]

}

=

〈
c,G,E,

[
A 0 0 0

0 KG Ĝ G1

]
,

[
b

b1

]
,

[
R E Ê 0
0 0 0 Io

]〉
CPZ

,

where Q = {Q1, . . . , Qo}. The result for PZ ∩ LS2 is obtained by inserting l = 0, which
corresponds to the constraint 0 ≤ w(x) ≤ 0 that is identical to w(x) = 0, into the formula
for PZ ∩ LS1.

Complexity: Computation of the quadratic map sq(Q, CPZ ⊕ (−c)) using Prop. 3.2.22
has complexity O(n3(o + log(n))). Moreover, calculation of the interval enclosure
interval(CPZ) requires the evaluation of 2n support functions using Prop. 3.2.15, which
results for all contractors considered in this thesis in a complexity of 2n · O(n5) = O(n6)
according to Tab. 3.8. Since ∇3w(x) consists of on3 scalar functions, construction of D
using range bounding has complexity on3 ·O(bound). In addition, computation of the cubic
map 1/6 poly(D, I ⊕ (−c)) as defined in (2.10) using interval arithmetic has complexity
O(on3). Computation of bound(w(x), I) has complexity o · O(bound) since w : Rn → Ro.
Finally, construction of the matrices G1,G2 and the vectors b1,b2 has complexity O(o) and
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the matrix multiplication KG has complexity O(ohn) according to Tab. 2.1. Summarizing
the complexities for the single parts yields an overall complexity of

O(n3(o+ log(n))) +O(n6) + on3 · O(bound)

+O(on3) + o · O(bound) +O(o) +O(ohn),

which is O(n6) + on3 · O(bound) using Assumption 3.2.3.

For level sets defined by polynomial functions w(x), the intersection with a CPZ can be
calculated exactly by considering a sufficiently high order for the Taylor series expansion
in Prop. 3.2.24. The union of two CPZs can be computed as follows:

Proposition 3.2.25. (Union) Given two CPZs, CPZ1 = 〈c1, G1, E1, A1, b1R1〉CPZ ⊂ Rn

and CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn, their union is

CPZ1 ∪ CPZ2 =

〈
0.5(c1 + c2),

[
0.5(c1 − c2) G1 G2

]
,


1 0 0
0 0 0
0 E1 0
0 0 E2

 ,

Â 0 0 0 0
0 A 0 0 0
0 0 A1 0 −0.5 b1

0 0 0 A2 0.5 b2

 ,


b̂

b
0.5 b1

0.5 b2

 ,
R̂ R


0 0 1
0 0 0
R1 0 0
0 R2 0


〉

CPZ

,

where

Â = 1, b̂ = 1, R̂ =


1
1
0
0

 , H =


[
2 . . . 2

]
0

. . .

0
[
2 . . . 2

]
2Ip2 . . . 2Ip2

 ,
A =

[
1 −1 1

2p1
1 − 1

2p1
1 − 1

2p2
1 − 1

2p2
1 − 1

4p1p2
1 1

4p1p2
1
]
, b = 0,

R =




1 0 0 1 0 1
0 1 0 0 0 0
0 0 2Ip1 2Ip1 0 0
0 0 0 0 2Ip2 2Ip2


0

0
H

 1
0
H


 ,

which has complexity O(n3 log(n)) with respect to the dimension n. The compactCon op-
eration as defined in Prop. 3.2.6 is applied to make the resulting CPZ regular.

Proof. A detailed proof of the above formula for computing the union of two CPZs is
provided in Appendix B.

Complexity: We first consider the assembly of the resulting CPZ. The computation
of the vectors 0.5(c1 + c2) and 0.5(c1 − c2) requires n additions, n subtractions, and 2n
multiplications. Moreover, computation of −0.5 b1, 0.5 b1 and 0.5 b2 requires 2m1 + m2

multiplications, and computation of the matrix A requires 3 multiplications and 2 divisions.
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Since the construction of the remaining matrices only involves concatenations, the resulting
complexity for the construction of the CPZ is O(4n + 2m1 + m2 + 5), which is O(n)
using Assumption 3.2.3. Next, we consider the subsequent application of the compactCon

operation. The constraint generator matrix A for the resulting CPZ has q = 1 + q̂ +
q + q1 + q2 = 4 + 2p1 + 2p2 + 2p1p2 + q1 + q2 columns since Â has q̂ = 1 column, A has
q = 2 + 2p1 + 2p2 + 2p1p2 columns, A1 has q1 columns, and A2 has q2 columns. Moreover,
the matrix A has m = m̂ + m + m1 + m2 = 2 + m1 + m2 rows since Â has m̂ = 1 row,
A has m = 1 rows, A1 has m1 rows, and A2 has m2 rows. The number of factors of the
resulting CPZ is p = p1 + p2 + 2. Since the complexity of the compactCon operation is
O(q(m+ p log(q)) according to Prop. 3.2.6, the subsequent application of compactCon has
complexity

O
(
(4 + 2p1 + 2p2 + 2p1p2 + q1 + q2)(2 +m1 +m2

+ (p1 + p2 + 2) log(4 + 2p1 + 2p2 + 2p1p2 + q1 + q2))
)
,

which isO(n3 log(n)) using Assumption 3.2.3. Combining the complexities for the assembly
of the resulting CPZ and the subsequent application of the compactCon operation finally
yields an overall complexity of O(n) +O(n3 log(n)) = O(n3 log(n)).

As a last set operation, we consider the Minkowski difference. While it is yet unclear how
to compute the Minkowski difference of two CPZs, we specify a closed-form expression for
the computation of the Minkowski difference of a CPZ with a polytope. Using this formula,
a tight inner-approximation of the Minkowski difference of two CPZs can be obtained by
first enclosing the minuend by a polytope as described in Sec. 3.2.4.

Proposition 3.2.26. (Minkowski Difference Polytope) Given a CPZ CPZ = 〈c,G,E,
A, b, R〉CPZ ⊂ Rn and the V-representation of a polytope P = 〈[v1 . . . vs]〉V ⊂ Rn, their
Minkowski difference CPZ 	 P is

CPZ 	 P =

〈
c− v1, G,E,

[
A1 0
0 A2

]
,

[
b1

b2

]
,
[
R1 R2

]〉
CPZ

, (3.71)

where

E =


E
0
...
0

 ∈ Nps×h
0 , R1 =

R . . . 0
...

. . .
...

0 . . . R

 ∈ Nps×qs
0 , R2 =

E . . . 0
...

. . .
...

0 . . . E

 ∈ Nps×hs
0 ,

A1 =

A . . . 0
...

. . .
...

0 . . . A

 ∈ Rms×qs, A2 =

G −G . . . 0
...

...
. . .

...
G 0 . . . −G

 ∈ Rn(s−1)×hs,

b1 =

b...
b

 ∈ Rms, b2 =

v1 − v2
...

v1 − vs

 ∈ Rn(s−1).

The compactCon operation as defined in Prop. 3.2.6 is applied to make the resulting CPZ
regular. The computational complexity is O(n2s2 log(ns)), where n is the dimension and s
is the number of polytope vertices.
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Proof. According to [83, Lemma 1], which is derived from [84, Thm. 2.1], the Minkowski
difference CPZ 	 P can be computed as

CPZ 	 P =
⋂

i∈{1,...,s}

(
CPZ ⊕ (−vi)

)
=
(
CPZ ⊕ (−v1)

)
∩
(
CPZ ⊕ (−v2)

)
∩ . . . ∩

(
CPZ ⊕ (−vs)

)
,

(3.72)

where vi ∈ Rn are the polytope vertices. Using Prop. 3.2.23, we obtain for the first
intersection between CPZ ⊕ (−v1) and CPZ ⊕ (−v2) in (3.72)(

CPZ ⊕ (−v1)
)
∩
(
CPZ ⊕ (−v2)

)
=

〈c− v1, G,E,A, b, R〉CPZ ∩ 〈c− v2, G,E,A, b, R〉CPZ
Prop. 3.2.23

=

〈
c− v1, G,

[
E
0

]
,

A 0 0 0
0 A 0 0
0 0 G −G

 ,
 b

b
(c− v2)− (c− v1)


︸ ︷︷ ︸

=v1−v2

,

[
R 0 E 0
0 R 0 E

]〉
CPZ

.

Repeated application of Prop. 3.2.23 for all intersections in (3.72) then yields the equation
in (3.71).

Complexity: Computation of the constant offset c − v1 requires n subtractions, and
computation of the vector b2 requires n(s − 1) subtractions. The construction of the
resulting set in (3.71) has therefore complexity O(n) +O(n(s− 1)) = O(ns). Subsequent
application of the compactCon operation has complexity O(q(m + p log(q))) according to
Prop. 3.2.6, where p = ps, m = (m + n)s − n, and q = (h + q)s denote the number of
factors, the number of constraints, and the number of constraint generators of the resulting
CPZ in (3.71). For the overall complexity we therefore obtain

O(ns)+O
(
q(m+ p log(q))

) p=ps, q=(h+q)s
m=(m+n)s−n

=

O(ns) +O
(
(h+ q)s((m+ n)s− n+ ps log((h+ q)s))

)
,

which is O(n2s2 log(ns)) using Assumption 3.2.3.

In Tab. 3.9, the growth of CPZ factors, generators, constraints, and constraint genera-
tors is summarized for all set operations presented in this section. Since many operations
on CPZs significantly increase the representation size, one requires efficient reduction tech-
niques when computing with CPZs. For this, we present in Sec. 3.2.7 the operations reduce
in Prop. 3.2.29 and reduceCon in Prop. 3.2.31, which reduce the number of generators and
the number of constraints of a CPZ, respectively.

Let us conclude this section with a discussion on how to extend CPZs with independent
generators. Given CPZs CPZ1, CPZ2 ⊂ Rn, the addition of independent generators G1 ∈
Rn×l1 , G2 ∈ Rn×l2 yields the sets S1 = CPZ1⊕〈0, GI,1〉Z and S2 = CPZ2⊕〈0, GI,2〉Z . For
the set operations linear map, Minkowski sum, exact addition, Cartesian product, linear
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Table 3.9: Growth of the number of factors p, the number of generators h, the number of
constraints m, and the number of constraint generators q for basic set operations on CPZs, where
n denotes the dimension, o denotes the number of level set constraints, s denotes the number of
polytope vertices, and we use the shorthands a = n+ 1 and b = q1 + q2 + 2(p1 + p2 + p1p2) + 4.

Set Operation Factors Generators Constraints
Constraint
Generators

Linear map p h m q

Minkowski sum p1 + p2 h1 + h2 m1 +m2 q1 + q2

Exact addition p = p1 = p2 h1 + h2 m1 +m2 q1 + q2

Cartesian product p1 + p2 h1 + h2 m1 +m2 q1 + q2

Linear combination p1 + p2 + 1 2h1 + 2h2 + 1 m1 +m2 q1 + q2

Convex hull a(p1 + p2 + 2) a(4h1+4h2+3) a(m1+m2)+1 a(q1 + q2 + 1)

Quadratic map p h2 + h m q

Mixed quad. map p1 + p2 h1h2 + h1 + h2 m1 +m2 q1 + q2

Intersection p1 + p2 h1 m1 +m2 + n q1+q2+h1+h2

Intersection level set p+ o h m+ o q+2h+h2 +o

Union p1 + p2 + 2 h1 + h2 + 1 m1 +m2 + 2 b

Mink. diff. polytope ps h (m+ n)s− n (h+ q)s

combination, convex hull, and quadratic map, independent generators can be included in
the same way as for SPZs in Sec. 3.1.5. Moreover, with independent generators a tight
enclosure of the intersection can be computed as

S1 ∩ S2 ⊆
(
CPZ1 ⊕ 〈0, GI,1, In, [ ], [ ], [ ]〉CPZ

)
∩
(
CPZ2 ⊕ 〈0, GI,2, In, [ ], [ ], [ ]〉CPZ

)
,

where we reduce the zonotopes corresponding to the independent generators to order 1
using one of the methods in Sec. 2.6 to minimize the number of factors of the resulting
CPZ:

〈0, GI,1〉Z = reduce
(
〈0, GI,1〉Z , 1

)
, 〈0, GI,2〉Z = reduce

(
〈0, GI,2〉Z , 1

)
.

In addition, the union can be tightly enclosed by

S1 ∪ S2 ⊆
(
CPZ1 ∪ CPZ2

)
⊕ conv

(
〈0, GI,1〉Z , 〈0, GI,2〉Z

)
,

where the enclosure of the convex hull of two zonotopes is computed using Prop. 3.1.23.
For the Minkowski difference, one can just omit the independent generators, which yields
an inner-approximation.
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3.2.6 Intersection and Containment Checks

In this section we present necessary as well as sufficient conditions that can be applied for
intersection and set containment checks on CPZs. We begin with a sufficient condition for
an interval to be contained in a CPZ:

Proposition 3.2.27. (Containment Check Interval) Given a CPZ CPZ = 〈c,G,E,
A, b, R〉CPZ ⊂ Rn with a degree-of-freedom order ρf = p−m

n
≥ 1 and an interval I ⊂ Rn, it

holds that (
(I × 0 · b) ⊆ compact(PZ+)

)
⇒ (I ⊆ CPZ),

where PZ+ is the lifted polynomial zonotope defined as in Lemma 3.2.4:

PZ+ =

〈[
c
−b

]
,

[
G 0
0 A

]
, [ ],

[
E R

]
, id

〉
PZ

.

The containment check (I × 0 · b) ⊆ compact(PZ+) is performed using the criterion for
SPZs in Prop. 3.1.36 and the compact operation as defined in Prop. 3.1.7 is applied to
reduce the conservatism of the criterion.

Proof. Using Lemma 3.2.4 we have

(
(I × 0 · b) ⊆PZ+

)
⇒
(
∀x ∈ I :

[
x
0

]
∈ PZ+

)
Lemma 3.2.4

⇒
(
∀x ∈ I : x ∈ CPZ

)
⇒ (I ⊆ CPZ),

which concludes the proof.

To extend Prop. 3.2.27 to CPZ in CPZ containment, one can first recursively split the
contained CPZ multiple times using the split operation as defined later in Prop. 3.2.35.
After enclosing all split sets with intervals as described in Sec. 3.2.4, one can then apply
the criterion in Prop. 3.2.27 to prove containment. To check if a CPZ is contained in other
set representations, such as ellipsoids or polytopes, one can use the same procedures as for
SPZs, which are described in Sec. 3.2.6. Next, we consider the problem of testing if two
CPZs intersect:

Proposition 3.2.28. (Intersection Check) Given two CPZs, CPZ1, CPZ2 ⊂ Rn, it holds
that (

contract(f(y), [−1,1]) = ∅
)
⇒ (CPZ1 ∩ CPZ2 = ∅),

where the function f(y) is defined as

f(y) = −b+

q∑
i=1

( p∏
k=1

y
R(k,i)

(k)

)
A(·,i), 〈c,G,E,A, b, R〉CPZ = CPZ1 ∩ CPZ2,

and the intersection CPZ1 ∩ CPZ2 is calculated using Prop. 3.2.23.
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Proof. The function f(y) represents the polynomial constraint f(y) = 0 of the CPZ
〈c,G,E,A, b, R〉CPZ = CPZ1 ∩ CPZ2, with y = [α1 . . . αp]

T storing the factors of the
CPZ. Consequently, if the factor domain y ∈ [−1,1] can be contracted to the empty set,
then CPZ1 ∩ CPZ2 is empty.

Prop. 3.2.28 presents a criterion to prove that two CPZs do not intersect. Contrary, to
show that two CPZs intersect, one can solve the polynomial optimization problem

min
y∈[−1,1]

||y||2 s.t. f(y) = 0,

where f(y) is defined as in Prop. 3.2.28, and then apply Prop. 3.2.27 to show that the
corresponding point is contained in CPZ1 and CPZ2. For intersection checks with other
set representations one can apply the same procedures as for SPZs, which are described in
Sec. 3.1.6.

3.2.7 Auxiliary Set Operations

Finally, we present several useful auxiliary operations on CPZs. As shown in Tab. 3.9,
many operations on CPZs significantly increase the representation size. For computational
reasons an efficient strategy for representation size reduction is therefore crucial when
computing with CPZs. Thus, we now introduce the operations reduce and reduceCon for
reducing the number of generators and the number of constraints of a CPZ:

Proposition 3.2.29. (Order Reduction) Given a CPZ CPZ ⊂ Rn and a desired order
ρd ≥ 2 · n+m

n
, the operation reduce returns a CPZ with an order smaller than or equal to

ρd that encloses CPZ:

CPZ ⊆ reduce(CPZ, ρd) =

〈
c,
[
G(·,H) GI(·,K)

]
,

[
E(·,H) 0

0 Ê(·,K)

]
,

[
A(·,G) AI(·,F)

]
,−b,

[
E(·,G) 0

0 Ê(·,F)

]〉
CPZ

,

where

〈c,G,E,A, b, R〉CPZ = rescale(CPZ), id = uniqueID(p),

PZ+ =

〈[
c
−b

]
,

[
G 0
0 A

]
, [ ],

[
E R

]
, id

〉
PZ

, ρ+
d =

ρdn

2(n+m)〈[
c

b

]
,

[
G
A

]
,

[
GI

AI

]
, E, id

〉
PZ

= reduce
(
compact(PZ+), ρ+

d

)
, Ê = In+m,

and the sets H,K,G,F defined as

H =
{
i
∣∣ ∃j ∈ {1, . . . , n} : G(j,i) 6= 0

}
, K =

{
i
∣∣ ∃j ∈ {1, . . . , n} : GI(j,i) 6= 0

}
,

G =
{
i
∣∣ ∃j ∈ {1, . . . ,m} : A(j,i) 6= 0

}
, F =

{
i
∣∣ ∃j ∈ {1, . . . ,m} : AI(j,i) 6= 0

} (3.73)
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store the indices of non-zero generators. The reduced order SPZ for PZ+ is calculated using
Prop. 3.1.39. We apply the rescale operation as defined in Prop. 3.2.7 and the compact

operation for SPZs as defined in Prop. 3.1.7 are applied to reduce the over-approximation.
The resulting CPZ is regular and the computational complexity with respect to the dimension
n is O(n4 log(n)) +O(contract) +O(reduce).

Proof. To calculate a reduced order CPZ we reduce the order of the corresponding lifted
polynomial zonotope as defined in Lemma 3.2.4 using the reduce operation on SPZs in
Prop. 3.1.39. Back-transformation of the lifted polynomial zonotope to the original space
then yields an over-approximative CPZ, which can be proven using Lemma 3.2.4:

∀x ∈ Rn : (x ∈ CPZ)
Lemma 3.2.4

⇒
([

x
0

]
∈ PZ+

)
PZ+⊆reduce(PZ+,ρ+

d )

⇒([
x
0

]
∈ reduce(PZ+, ρ+

d )

)
Lemma 3.2.4

⇒
(
x ∈ reduce(CPZ, ρd)

)
,

where we omitted the operations rescale and compact since they only change the repre-
sentation of the set, but not the set itself. It remains to show that the order of the resulting
CPZ is smaller than or equal to the desired order ρd. According to Prop. 3.1.39, we have

h+ q

n+m
≤ ρ+

d =
ρdn

2(n+m)
, (3.74)

where h and q denote the number of columns of the matrices G and GI , respectively.
Solving (3.74) for ρd yields

2 · h+ q

n
≤ ρd, (3.75)

so that

ρ =
|H|+ |K|+ |G|+ |F|

n

(3.73)

≤ 2 · h+ q

n

(3.75)

≤ ρd.

Complexity: The computational complexity for the rescale operation is O(n4 log(n)) +
O(contract) according to Prop. 3.2.7 and the generation of p unique identifiers using
uniqueID has complexity O(p) according to Tab. 2.2. Moreover, construction of the sets
H, K, G, and F has complexity O((h + q)(n + m)) in the worst case. Let n+ = n + m,
p+ = p, h+ = h+q, and q+ = 0 denote the dimension, the number of dependent factors, the
number of dependent generators, and the number of independent generators of the lifted
polynomial zonotope PZ+. According to Prop. 3.1.7, the compact operation for SPZs has
complexity O(h+(n+ + p+ log(h+))), and the complexity of order reduction of a SPZ using
Prop. 3.1.39 is O((h+ + q+)(n+ + log(h+ + q+))) + O(p+h+) + O(reduce) according to
(3.37). The overall computational complexity is therefore

O(n4 log(n)) +O(contract) +O(p) +O((h+ q)(n+m)) +O
(
h+(n+ + p+ log(h+))

)
+O

(
(h+ + q+)(n+ + log(h+ + q+))

)
+O(p+h+) +O(reduce)

n+=n+m, p+=p
h+=h+q, q+=0

= O(n4 log(n)) +O(contract)

+O
(
(h+ q)(n+m+ p log(h+ q))

)
+O(reduce),

which is O(n4 log(n)) +O(contract) +O(reduce) using Assumption 3.2.3.
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Table 3.10: Computational complexity for order reduction of CPZs using Prop. 3.2.29 with
respect to the dimension n ∈ N for different the zonotope order reduction methods presented
in Sec. 2.6 and the different contractors presented in Sec. 2.8, where k ∈ N0 is the number of
generators that are reduced.

Contractor Girard PCA Scott Exh. Search

Forward-backward O(n4 log(n)) O(n4 log(n)) O(n4 log(n)) O
(
n4 log(n)+

(
k
n

)
k
)

Extremal functions O(n4 log(n)) O(n4 log(n)) O(n4 log(n)) O
(
n4 log(n)+

(
k
n

)
k
)

Parallel linearization O(n4.5) O(n4.5) O(n4.5) O
(
n4.5 +

(
k
n

)
k
)

The computational complexity of operation reduce for different contractors and different
zonotope order reduction methods is summarized in Tab 3.10. One advantage of the order
reduction method in Prop. 3.2.29 is that it maintains dependencies between the generators
and constraints. On the other hand, one disadvantage is that the presented method cannot
reduce to orders smaller than 2n+m

n
. Let us demonstrate order reduction using Prop. 3.2.29

by an example:

Example 3.2.30. We consider the CPZ

CPZ =

〈[
−2
−2

]
,

[
2.5 0 2 0.05 0.02 −0.03 0
0 −4 3 0.02 −0.01 0 0.02

]
,

1 0 2 1 1 1 0
0 1 0 0 0 0 0
3 0 0 1 0 2 3

 ,
[
1 5 1 0.1 −0.2 0.2 0.05

]
, 0,

1 0 2 1 1 1 0
0 1 0 0 0 0 0
3 0 0 1 0 2 3

〉
CPZ

,

which has order ρ = 7. Order reduction to the desired order ρd = 6 using Prop. 3.2.29
yields

reduce(CPZ, 6) =

〈[
−2
−2

]
,

[
2.5 0 2 −0.031 −0.09 0.008
0 −4 3 0.03 −0.03 −0.024

]
,


1 0 2 0
0 1 0 0
3 0 0 0
0 0 0 I3

 ,
[
1 5 1 0.549 −0.003 0.002

]
, 0,


1 0 2 0
0 1 0 0
3 0 0 0
0 0 0 I3

〉
CPZ

if PCA is used for zonotope order reduction (see Sec. 2.6). The tightness of the resulting
reduced order CPZ is visualized in Fig. 3.12.
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Figure 3.12: Visualization of order reduction using Prop. 3.2.29 for the CPZ from Exam-
ple 3.2.30. The original CPZ CPZ (right) and the corresponding constraint (left) is depicted
in red, and the reduced order CPZ reduce(CPZ, 6) (right) is depicted in blue.

Next, we show how one can reduce the number of constraints of a CPZ:

Proposition 3.2.31. (Constraint Reduction) Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ
⊂ Rn, the index of one constraint r ∈ {1, . . . ,m}, and indices d, s ∈ N satisfying

∀i ∈ {1, . . . , p} : E(i,d) = R(i,s) and A(r,s) 6= 0, (3.76)

the operation reduceCon removes the constraint with index r and returns a CPZ that
encloses CPZ:

CPZ ⊆ reduceCon(CPZ, r, d, s) =
〈
c,G,E(N ,·), A, b, R(N ,·)

〉
CPZ

,

where

G =
[
G(·,{1,...,d−1}) − 1

A(r,s)
A(r,H)G(·,d) G(·,{d+1,...,h})

]
, R = R(·,H),

E =
[
E(·,{1,...,d−1}) R E(·,{d+1,...,h})

]
, A = A(K,H) −

1

A(r,s)

A(r,H)A(K,s),

c = c+
b(r)

A(r,s)

G(·,d), b = b(K) −
b(r)

A(r,s)

A(K,s),

and the sets H, K, and N are defined as

H = {1, . . . , q} \ s, K = {1, . . . ,m} \ r,

N =
{
i
∣∣ ∃j, k : E(i,j) 6= 0 ∨R(i,k) 6= 0

}
.

(3.77)

The compactGen operation as defined in Prop. 3.2.5 is applied to make the resulting CPZ
regular. The computational complexity with respect to the dimension n is O(n2 log(n)).
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Proof. To remove the constraint with index r, we solve the corresponding equation for the
variable part of the monomial with index s:

p∏
k=1

α
R(k,s)

k =
1

A(r,s)

(
−
∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
A(r,i) + b(r)

)
. (3.78)

Inserting the substitution in (3.78) into the definition of a CPZ in Def. 3.2.1 then yields

CPZ =

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}

(3.77)
=

{
c+

d−1∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

( p∏
k=1

α
R(k,s)

k

)
G(·,d) +

h∑
i=d+1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣
∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
A(·,i) +

( p∏
k=1

α
R(k,s)

k

)
A(·,s) = b, αk ∈ [−1, 1]

}

(3.78)

⊆
{
c+

d−1∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

1

A(r,s)

(
−
∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
A(r,i) + b(r)

)
G(·,d)+

h∑
i=d+1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ ∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
A(·,i)+

1

A(r,s)

(
−
∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
A(r,i) + b(r)

)
A(·,s) = b, αk ∈ [−1, 1]

}

remove
constraint

”0=0”
=

{
c+

b(r)

A(r,s)

G(·,d)︸ ︷︷ ︸
c

+
d−1∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) −

∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
1

A(r,s)

A(r,i)G(·,d)+

h∑
i=d+1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ αk ∈ [−1, 1],

∑
i∈H

( p∏
k=1

α
R(k,i)

k

)(
A(K,i) −

1

A(r,s)

A(r,i)A(K,s)

)
︸ ︷︷ ︸

A(·,i)

= b(K) −
b(r)

A(r,s)

A(K,s)︸ ︷︷ ︸
b

}

=
〈
c,G,E(N ,·), A, b, R(N ,·)

〉
CPZ

= reduceCon(CPZ, r, d, s).
(3.79)

The set N as defined in (3.77) only removes all-zero rows from the exponent matrix and
the constraint exponent matrix, and therefore does not change the set. For the constraint
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with index r, we obtain with the substitution from (3.78)∑
i∈H

( p∏
k=1

α
R(k,i)

k

)(
A(r,i) −

1

A(r,s)

A(r,i)A(r,s)

)
︸ ︷︷ ︸

=0

= b(r) −
b(r)

A(r,s)

A(r,s)︸ ︷︷ ︸
=0

the trivial constraint 0 = 0, which is removed in (3.79) by restricting the indices of the
constraints to the set K as defined in (3.77). The resulting CPZ therefore has one constraint
less than the original CPZ.

Complexity: The construction of the matrix G requires nq multiplications, the construc-
tion of the matrix A requires m(q − 1) multiplications and m(q − 1) subtractions, and
the construction of the vectors c and b requires n + m − 1 multiplications and n + m − 1
additions. Let p = p, h = h + q − 2, and q = q − 1 denote the number of factors,
the number of generators, and the number of constraint generators of the resulting CPZ
〈c,G,E(N ,·), A, b, R(N ,·)〉CPZ . Then application of the compactGen operation has complex-

ity O(h(n+ p log(h)) according to Prop. 3.2.5 and the construction of the set N in (3.77)
has in the worst case complexity O(p(h+ q)). The overall complexity is therefore

O(nq) +O(2m(q − 1)) +O(2n+ 2m− 2) +O
(
h(n+ p log(h))

)
+O

(
p(h+ q)

)
p=p q=q−1
h=h+q−2

= O(nq) +O(mq) +O
(
(h+ q − 2)(n+ p log(h+ q − 2))

)
+O

(
p(h+ 2q − 3)

)
= O(mq) +O

(
(h+ q)(n+ p log(h+ q))

)
,

which is O(n2 log(n)) using Assumption 3.2.3.

The crucial point for Prop. 3.2.31 is the selection of the constraint r that is removed, as
well as the selection of a suitable monomial with indices s, d that satisfies the conditions in
(3.76) and can therefore be used for reduction. Clearly, we want to select the indices r, s,
and d such that the over-approximation resulting from constraint reduction is minimized.
Since it is computationally infeasible to determine the optimal indices for reduction, we
instead present some heuristics on how to choose good values for r, s, and d. When
removing a constraint from a CPZ using Prop. 3.2.31, there are two sources contributing
to the resulting over-approximation:

1. Over-approximation due to lost bounds on factors

2. Over-approximation due to a loss of dependency

The over-approximation due to lost bounds results from the fact that due to the replace-

ment of the selected monomial
∏p

k=1 α
R(k,s)

k with the solved constraint in (3.78) we lose the

ability to enforce the bounds
∏p

k=1 α
R(k,s)

k ∈
∏p

k=1[−1, 1]R(k,s) . Consequently, if the solved
constraint in (3.78) has feasible values that are outside the domain

∏p
k=1[−1, 1]R(k,s){

1

A(r,s)

(
−
∑
i∈H

( p∏
k=1

α
R(k,i)

k

)
A(r,i) + b(r)

) ∣∣∣∣ αk ∈ [−1, 1]

}
*

p∏
k=1

[−1, 1]R(k,s) , (3.80)

constraint reduction results in an over-approximation. Let us demonstrate this by an
example:
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Figure 3.13: Visualization of constraint reduction using Prop. 3.2.31 for the CPZ CPZ from
Example 3.2.32 (red, right), where the corresponding constraint is visualized on the left. While
reduceCon(CPZ, 1, 1, 1) (green) results in an over-approximation, reduceCon(CPZ, 1, 2, 2) (blue)
is exact.

Example 3.2.32. We consider the CPZ

CPZ =

〈[
0
0

]
,

[
1 0 1.5
0 1 2

]
,

1 0 0
0 1 0
0 0 1

 , [1 2 0.5
]
, 0,

1 0 0
0 1 0
0 0 3

〉
CPZ

=

{[
0
0

]
+

[
1
0

]
α1 +

[
0
1

]
α2 +

[
1.5
2

]
α3

∣∣∣∣ α1 + 2α2 + 0.5α3
3 = 0, α1, α2, α3 ∈ [−1, 1]

}
,

which is visualized in Fig. 3.13. We first choose the indices s = 1 and d = 1 that correspond
to the monomial α1 for constraint reduction. In this case, solving the constraint α1 +2α2 +
0.5α3

3 = 0 for α1 yields α1 = −2α2− 0.5α3
3. As visible in Fig. 3.13 (left), the set of feasible

values for the solved constraint has feasible values outside the domain α1 ∈ [−1, 1]:

{−2α2 − 0.5α3
3 | α2, α3 ∈ [−1, 1]} = [−2.5, 2.5] * [−1, 1].

Constraint reduction using Prop. 3.2.31 with the indices s = 1 and d = 1 therefore results
in an over-approximation reduceCon(CPZ, 1, 1, 1) ⊃ CPZ (see Fig. 3.13 (right)). Next,
we consider the indices s = 2 and d = 2 that correspond to the monomial α2. Solving the
constraint for α2 yields α2 = −0.5α1−0.25α3

3. Since the set of feasible values for the solved
constraint is a subset of the domain α2 ∈ [−1, 1]

{−0.5α1 − 0.25α3
3 | α1, α3 ∈ [−1, 1]} = [−0.75, 0.75] ⊂ [−1, 1],

constraint reduction using Prop. 3.2.31 with the indices s = 2 and d = 2 does not result in
an over-approximation, so that reduceCon(CPZ, 1, 2, 2) = CPZ.

Computing the exact bounds for the solved constraint in (3.80) is in general computa-
tionally infeasible. Instead, one can use range bounding to compute over-approximations
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Figure 3.14: Visualization of constraint reduction using Prop. 3.2.31 for the CPZ CPZ from
Example 3.2.33 (red, right), where the corresponding constraint is visualized on the left. Due to
the loss of dependency, constraint reduction reduceCon(CPZ, 1, 2, 2) (blue) results in an over-
approximation.

of the bounds. Another heuristic that we observed to perform well in practice is to first
enclose the CPZ with a constrained zonotope using Prop. 3.2.13, and then select the con-
straint that is removed as well as the indices of the monomial that is used for reduction
based on the constrained zonotope enclosure. For constrained zonotopes, sophisticated
methods for selecting constraints and indices that result in the least over-approximation
are available in [32, Appendix].

The second source contributing to the over-approximation during constraint reduction

is the loss of dependency. This loss arises since if we substitute the monomial
∏p

k=1 α
R(k,s)

k

with the solved constraint in (3.78), the dependence between the factors αk in
∏p

k=1 α
R(k,s)

k

and the factors αk in other monomials gets lost. Let us demonstrate this by an example:

Example 3.2.33. We consider the CPZ

CPZ =

〈[
0
0

]
,

[
1 0 1.5 0.5
0 1 2 −2

]
,

1 0 0 0
0 1 0 2
0 0 1 1

 , [1 2 0.5
]
, 0,

1 0 0
0 1 0
0 0 3

〉
CPZ

,

which is identical to the CPZ from Example 3.2.32, except that we added an additional
monomial [0.5 − 2]Tα2

2α3. Since the polynomial constraint is identical to the constraint of
the CPZ in Example 3.2.32, constraint reduction using the indices s = 2 and d = 2 does not
result in an over-approximation due to lost bounds, as we demonstrated in Example 3.2.32.
However, with the indices s = 2 and d = 2, we substitute α2 by the solved constraint
α2 = −0.5α1− 0.25α3

3, so that the dependence between α2 in the second monomial [0 1]Tα2

and α2 in the additional monomial [0.5 −2]Tα2
2α3 gets lost. Due to this loss of dependency,

constraint reduction using Prop. 3.2.31 with indices s = 2 and d = 2 results in an over-
approximation, as visualized in Fig. 3.14.
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In the above example we could prevent the loss of dependency by substituting α2
2 with

α2
2 = (−0.5α1 − 0.25α3

3)2, which corresponds to the square of the solved constraint α2 =
−0.5α1 − 0.25α3

3. Similarly, it is possible to relax the constraint in (3.76) to

∀i ∈ {1, . . . , p} : Re
(i,s) = E(i,d) and A(r,s) 6= 0,

which allows powers of the selected monomial with arbitrary exponents e ∈ N. While this
relaxation often allows us to reduce constraints with less over-approximation, taking powers
of the solved constraint significantly increases the number of generators of the resulting
CPZ, and therefore also the computational complexity for the subsequent application of
the compactGen operation.

Now, we show how to obtain the CPZ corresponding to a subset of the factor domain,
which is crucial for the rescale operation as defined in Prop. 3.2.7:

Proposition 3.2.34. (Get Subset) Given a CPZ CPZ = 〈c,G,E,A, b, R〉CPZ ⊂ Rn, the
index of one factor r ∈ {1, . . . , p}, and an interval [l, u] ⊆ [−1, 1], the operation getSubset

substitutes the domain for the factor αr with αr ∈ [l, u], which yields a CPZ that is a subset
of CPZ:

getSubset
(
CPZ, r, [l, u]

)

=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1], αr ∈ [l, u]

}

=
〈
c,G,E,A,−b, R

〉
CPZ
⊆ CPZ,

where c,G,E,A, b, R are computed using getSubset for SPZs as defined in Prop. 3.1.43

〈c,G, [ ], E, id〉PZ = getSubset
(
〈c,G, [ ], E, id〉PZ , r, [l, u]

)
〈b, A, [ ], R, id〉PZ = getSubset

(
〈−b, A, [ ], R, id〉PZ , r, [l, u]

)
,

and id = uniqueID(p). The resulting CPZ is regular and the computational complexity
with respect to the dimension is O(n3 log(n)).

Proof. Since a CPZ without constraints 〈c,G,E, [ ], [ ], [ ]〉CPZ is identical to a SPZ, we
can apply the getSubset operation for SPZs to obtain the subset. Moreover, due to the
similarity of the constraints of the CPZ

0 ∈
{
− b+

q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i)

∣∣∣∣ αk ∈ [−1, 1]

}
and the definition of a SPZs in Def. 3.1.1

x ∈
{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i) +

q∑
j=1

βjGI(·,j)

∣∣∣∣ αk, βj ∈ [−1, 1]

}
,
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we can apply the getSubset operation for SPZs with the substitutions c = −b, G = A and
E = R to obtain the subset for the constraints.

Complexity: According to (3.43), the complexity of the getSubset operation for SPZs
is O(hε(n + p log(hε))), where ε is the maximum entry of the exponent matrix. When
applying getSubset to the constraints of the CPZ, we have to insert the substitutions
n = m and h = q. This yields an overall complexity of

O
(
hε(n+ p log(hε))

)
+O

(
qε(m+ p log(qε))

)
,

which is O(n3 log(n)) using Assumption 3.2.3.

As described in Sec. 3.2.4, the split operation can be applied to improve the support
function enclosure. In addition, splitting is also crucial for CPZ in CPZ containment checks,
as we explained in Sec. 3.2.6. We use the following implementation of the split operation
for CPZs:

Proposition 3.2.35. (Split) Given a CPZ CPZ ⊂ Rn and the index of one factor r ∈
{1, . . . , p}, split(CPZ, r) = (CPZ1, CPZ2) returns two CPZs

CPZ1 = getSubset(CPZ, r, [−1, 0]),

CPZ2 = getSubset(CPZ, r, [0, 1])

that satisfy CPZ1 ∪ CPZ2 = CPZ, where getSubset is defined as in Prop. 3.2.34. The
computational complexity with respect to the dimension is O(n3 log(n)).

Proof. The split operation for CPZs is based on the substitution of the selected factor
αr with two new dependent factors αr,1 and αr,2:{

αr | αr ∈ [−1, 1]
}

=
{
αr,1 + αr,2 | αr,1 ∈ [−1, 0], αr,2 ∈ [0, 1]

}{
αr,1 | αr,1 ∈ [−1, 0]

}
∪
{
αr,2 | αr,2 ∈ [0, 1]

}
.

(3.81)

Inserting this substitution into the definition of CPZs in Def. 3.2.1 yields

CPZ =

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}
(3.81)
=

{
c+

h∑
i=1

( p∏
k=1
k 6=r

α
E(k,i)

k

)
(αr,1 + αr,2)E(r,i)G(·,i)

∣∣∣∣ αk ∈ [−1, 1],

q∑
i=1

( p∏
k=1
k 6=r

α
R(k,i)

k

)
(αr,1 + αr,2)R(r,i)A(·,i) = b, αr,1 ∈ [−1, 0], αr,2 ∈ [0, 1]

}
(3.81)
=

{
c+

h∑
i=1

( p∏
k=1
k 6=r

α
E(k,i)

k

)
α
E(r,i)

r,1 G(·,i)

∣∣∣∣
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q∑
i=1

( p∏
k=1
k 6=r

α
R(k,i)

k

)
α
R(r,i)

r,1 A(·,i) = b, αk ∈ [−1, 1], αr,1 ∈ [−1, 0]

}
︸ ︷︷ ︸

=CPZ1=getSubset(CPZ,r,[−1,0])

∪
{
c+

h∑
i=1

( p∏
k=1
k 6=r

α
E(k,i)

k

)
α
E(r,i)

r,2 G(·,i)

∣∣∣∣
q∑
i=1

( p∏
k=1
k 6=r

α
R(k,i)

k

)
α
R(r,i)

r,2 A(·,i) = b, αk, βj ∈ [−1, 1], αr,2 ∈ [0, 1]

}
︸ ︷︷ ︸

=CPZ2=getSubset(CPZ,r,[0,1])

,

which concludes the proof.
Complexity: The operation getSubset has complexity O(n3 log(n)) according to

Prop. 3.2.34. For the split operation getSubset has to be applied two times, result-
ing in a complexity of 2 · O(n3 log(n)) = O(n3 log(n)).

As for SPZs, the split operation for CPZs is not exact so that the resulting sets usually
overlap. It is therefore desirable to choose the factor αr that minimizes the size of the
overlapping area for the split. While finding the optimal factor is computational infeasible
for general CPZs, one heuristic that we observed to perform well is to select the factor αr
that corresponds to the longest generator of the lifted polynomial zonotope as defined in
Lemma 3.2.4.
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3.3 Z-Representation of Polytopes

As we demonstrated in Sec. 3.1.3, every bounded polytope can be equivalently represented
as a polynomial zonotope. Motivated by this fundamental result, we present in this section3

the Z-representation of polytopes, which stores the polynomial zonotope representation of a
polytope in a very efficient way. The structure of the section is as follows: After introducing
the Z-representation in Sec. 3.3.1, we present in Sec. 3.3.2 algorithms for the conversion
between the Z-representation and other set representations, such as the V-representation
of polytopes. Next, we derive basic set operations on the Z-representation in Sec. 3.3.3 and
provide a criterion to check if a set in Z-representation is a polytope in Sec. 3.3.4. Finally,
in Sec. 3.3.5, we compare the representation size of our novel Z-representation with other
polytope representations. A summary of all operations on the Z-representation presented
in this thesis is shown in Tab. 3.11.

3.3.1 Definition

Let us first define the Z-representation of bounded polytopes:

Definition 3.3.1. (Z-Representation) Given a constant offset c ∈ Rn and a generator
matrix G ∈ Rn×h , the Z-representation defines the set

P :=

{
c+

h∑
i=1

( mi∏
k=1

αE(i,k)

)
G(·,i)

∣∣∣∣ αE(i,k)
∈ [−1, 1]

}
,

where the tuple E = (e1, . . . , eh) storing the factor indices satisfies

∀i ∈ {1, . . . , h} : ei ∈ Nmi
≤p,

∀i ∈ {1, . . . , h}, ∀j, k ∈ {1, . . . ,mi} : (j 6= k)⇒
(
E(i,j) 6= E(i,k)

)
.

The scalars αE(i,k)
are called factors, p is the number of factors, mi is the length of the i-th

element of E, and h is the number of generators. The overall number of entries in E is

µ =
h∑
i=1

mi.

The Z-representation is regular if the tuple E = (e1, . . . , eh) does not contain duplicate
entries:

∀i, j ∈ {1, . . . , h} : (i 6= j ∧mi = mj)⇒ (ei 6= ej).

For a concise notation, we introduce the shorthand P = 〈c,G,E〉Z.

The Z-representation defines a special type of polynomial zonotope (see Def. 3.1.1) where
the exponents of the factors αk are restricted to the values 0 and 1. Through this restric-
tion, the Z-representation requires less scalar numbers to represent a bounded polytope
compared to other parameterizations of polynomial zonotopes. While every bounded poly-
tope can be equivalently represented by the Z-representation, not every set defined by a
Z-representation is a bounded polytope, as we illustrate by the following examples:

3This section is based on [85].
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Figure 3.15: Visualization of the sets defined by the Z-representations from Example 3.3.2 (left)
and from Example 3.3.3 (right).

Example 3.3.2. The Z-representation

P =

〈[
−0.5
−0.5

]
,

[
1.5 −0.5 −0.5
−0.5 −2 0.5

]
,

(
1, 2,

[
1
2

])〉
Z

defines the polytope

P =

{[
−0.5
−0.5

]
+

[
1.5
−0.5

]
α1 +

[
−0.5
−2

]
α2 +

[
−0.5
0.5

]
α1α2

∣∣∣∣ α1, α2 ∈ [−1, 1]

}
,

which is visualized in Fig. 3.15 (left).

Example 3.3.3. The Z-representation

P =

〈[
−0.5
−0.5

]
,

[
−0.5 −0.5 1.5
0.5 −2 −0.5

]
,

(
1, 2,

[
1
2

])〉
Z

defines the set

P =

{[
−0.5
−0.5

]
+

[
−0.5
0.5

]
α1 +

[
−0.5
−2

]
α2 +

[
1.5
−0.5

]
α1α2

∣∣∣∣ α1, α2 ∈ [−1, 1]

}
,

which is not a polytope as shown in Fig. 3.15 (right).

A criterion to check if a set in Z-representation is a polytope is presented later in
Sec. 3.3.4.
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Table 3.11: Overview showing all set operations on the Z-representation presented in this thesis.

Set Operation Reference Page

Conversion V-representation to Z-representation Alg. 4 123

Conversion Z-representation to V-representation Alg. 5 128

Conversion Zonotope to Z-representation Prop. 3.3.11 130

Conversion Z-representation to SPZ Prop. 3.3.12 131

Linear map Prop. 3.3.13 132

Minkowski sum Prop. 3.3.14 132

Cartesian product Prop. 3.3.15 133

Convex hull Prop. 3.3.16 134

Polytope test Prop. 3.3.18 137

3.3.2 Conversion from and to other Set Representations

Since none of the existing polytope representations permits the efficient computation of
all basic set operations, algorithms for the conversion between different representations
are important. In this section we present algorithms for converting polytopes from V-
representation to Z-representation, and for the conversion from Z-representation to V-
representation. Moreover, we show how to convert zonotopes to Z-representation, and how
to convert a set in Z-representation to a SPZ. Let us begin with the formulation and proof
of the main theorem for the Z-representation:

Theorem 3.3.4. Every bounded polytope can be equivalently represented by the Z-
representation.

Proof. If the polytope is bounded, it can be described as the convex hull of its vertices (see
Def. 2.2.3). Each vertex vi ∈ Rn can be equivalently represented by the Z-representation
vi = 〈vi, [ ], ∅〉Z . Since the Z-representation is closed under the convex hull operation as
shown later in Prop. 3.3.16, computation of the convex hull of all vertices results in a
Z-representation of the polytope.

Next, we provide an algorithm for the conversion of a polytope in V-representation to
Z-representation in Alg. 4. The algorithm is structured as follows: First, all vertices of
the polytope are converted to Z-representation during the for-loop in lines 2-4 and the
result is stored in the tuple K. The remainder of the algorithm can then be viewed as the
exploration of a binary tree as shown in Fig. 3.17, where the nodes of the tree are polytopes
in Z-representation. Each iteration of the outer while-loop in lines 5-19 of Alg. 4 represents
the exploration of one level of the tree. For each of these levels, the inner while-loop in
lines 7-14 visits all nodes at one level and computes the convex hull of two nodes using
Prop. 3.3.16 to construct one node at the next higher level of the tree. If the root node
of the binary tree is reached, all polytope vertices have been united by the convex hull, so
that the root element is the desired Z-representation of the polytope P .
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Algorithm 4 Conversion from V-representation to Z-representation

Require: Bounded polytope in V-representation P = 〈[v1 . . . vs]〉V
Ensure: Z-representation P = 〈c,G,E〉Z of the polytope

1: K← ∅
2: for i← 1 to s do

3: K←
(
K, 〈vi, [ ], ∅〉Z

)
4: end for

5: while |K| > 1 do

6: K̂← ∅
7: while |K| ≥ 2 do

8: K̂←
(
K̂ , conv(K(1),K(2))

)
(convex hull computed using Prop. 3.3.16)

9: if |K| > 2 then

10: K←
(
K(3), . . . ,K(|K|)

)
11: else

12: K← ∅
13: end if

14: end while

15: if |K| = 1 then

16: K̂←
(
K̂, K(1)

)
17: end if

18: K← K̂

19: end while

20: 〈c,G,E〉Z ← K(1)

We demonstrate Alg. 4 by an example:

Example 3.3.5. The conversion of the polytope

P =

〈[[
1
6

] [
4
7

] [
5
6

] [
6
2

] [
3
1

] [
1
3

]]〉
V

from V-representation to Z-representation using Alg. 4 is visualized in Fig. 3.16. The
algorithm terminates after 3 iterations, where after the first iteration we obtain the tuple
K = (P(1)

1 ,P(1)
2 ,P(1)

3 ) in Line 18 of Alg. 4 with

P(1)
1 =

〈[
2.5
6.5

]
,

[
91.5
90.5

]
, (1)

〉
Z

, P(1)
2 =

〈[
5.5
4

]
,

[
90.5

2

]
, (1)

〉
Z

, P(1)
3 =

〈[
2
2

]
,

[
1
91

]
, (1)

〉
Z

,
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Figure 3.16: First (left), second (middle), and third (right) iteration of Alg. 4 applied to the
polytope P from Example 3.3.5.

after the second iteration we obtain K = (P(2)
1 ,P(2)

2 ) with

P(2)
1 =

〈[
4

5.25

]
,

[
91.5 90.75 90.75 90.25 0.25
1.25 90.25 90.25 1 91

]
,

(
3, 1,

[
1
3

]
, 2,

[
2
3

])〉
Z

, P(2)
2 = P(1)

3 ,

and after the third iteration we obtain the final result

P =

〈[
3

3.6125

]
, 0.5 G,

(
5, 3, 1,

[
1
3

]
, 2,

[
2
3

]
,

[
3
5

]
,

[
1
5

]
,

1
3
5

 , [2
5

]
,

2
3
5

 , 4, [4
5

])〉
Z

,

where

G =

[
2 91.5 90.75 90.75 90.25 0.25 91.5 90.75 90.75 90.25 0.25 1 91

3.25 1.25 90.25 90.25 1 91 1.25 90.25 90.25 1 91 91 1

]
is the generator matrix.

The Z-representation of a polytope is not unique. If Alg. 4 is used for the conversion
of a polytope given in V-representation, then the resulting Z-representation depends on
the order of the vertices in the matrix [v1 . . . vs], since this order defines which vertices
are combined by the convex hull operation. Therefore, it might be meaningful to sort
the matrix [v1 . . . vs] before applying Alg. 4 in order to obtain a Z-representation with
desirable properties. For example, to minimize the length of the vectors in the generator
matrix of the Z-representation, the vertices have to be sorted such that vertices located
close to each other are combined first. The computational complexity for the conversion
with Alg. 4 is as follows:

Proposition 3.3.6. The computational complexity of the conversion from V-representation
to Z-representation using Alg. 4 is O(s2(n+ log(s))) with respect to the number of polytope
vertices s, where n is the dimension of the polytope.
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Figure 3.17: Example of a binary tree as explored by Alg. 4.

Proof. The for-loop in lines 2-4 of Alg. 4 can be ignored since it only involves initializations.
Let us first consider the case where s = 2k, k ∈ N. Then each iteration of the outer while-
loop in lines 5-19 of Alg. 4 corresponds to one level of a perfect binary tree with depth
k = log(s) (see Fig. 3.17). Each node at level i = 0, . . . , k is a polytope in Z-representation
P(i) = 〈c(i), G(i),E(i)〉Z . From Tab. 3.12 we can derive the number of factors p(i), the
number of generators h(i) and the number of entries µ(i) in the tuple E(i) of a node at level
i of the binary tree; the values for a perfect binary tree on level i are:

p(i) = 2p(i−1) + 1 = 2ip(0) +
i−1∑
j=0

2j, h(i) = 4h(i−1) + 1 = 4ih(0) +
i−1∑
j=0

4j,

µ(i) = 4µ(i−1) + 2h(i−1) + 1 = 4iµ(0) +
i−1∑
j=0

4j
(
1 + 2h(i−1−j)) . (3.82)

The nodes at the bottom level of the binary tree are the polytope vertices vl represented
in Z-representation vl = 〈vl, [ ], ∅〉Z , so that p(0) = 0, h(0) = 0, and µ(0) = 0. Inserting these
values into (3.82) and using the finite sum of the geometric series [86, Ch. 1.2.2.2]

z∑
j=0

rj =
1− rz+1

1− r
, r ∈ R, r 6= 1, (3.83)

we obtain

p(i) =
i−1∑
j=0

2j
(3.83)
= 2i − 1, h(i) =

i−1∑
j=0

4j
(3.83)
=

4i − 1

3
,

µ(i) =
i−1∑
j=0

4j
(

1 +
2

3

(
4i−1−j − 1

))
=

1

3

i−1∑
j=0

4j +
2

3

i−1∑
j=0

4i−1 (3.83)
= 4i

(
1

6
i+

1

9

)
− 1

9
.

(3.84)

Each level i of the tree contains 2k−i nodes, where k is the depth of the tree. Consequently,
at each level 2k−i convex hulls have to be computed using Prop. 3.3.16, where each convex
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hull involves according to (3.103) 4n+4nh(i−1) +µ(i−1) elementary operations. The number
of elementary operations O required for the conversion with Alg. 4 is therefore

O =
k∑
i=1

2k−i
(
4n+ 4nh(i−1) + µ(i−1)

)
. (3.85)

In the general case, the binary tree explored by Alg. 4 is not a perfect binary tree. However,
the number of operations required for the general case is obviously smaller than the number
of operations required for the exploration of a perfect binary tree with depth dlog(s)e. Since
it holds that dlog(s)e = log(s) + a for some a ∈ [0, 1], inserting k = dlog(s)e = log(s) + a
for the tree depth in (3.85) yields

O =

log(s)+a∑
i=1

2log(s)+a−i (4n+ 4nh(i−1) + µ(i−1)
)

= 2a
log(s)+a∑
i=1

s

2i
(
4n+ 4nh(i−1) + µ(i−1)

)

(3.84)
= 2a

log(s)+a∑
i=1

s

2i

(
4n+

4

3
n
(
4i−1 − 1

)
+ 4i−1

(
1

6
(i− 1) +

1

9

)
− 1

9

)

= 2as

((
8

3
n− 1

9

) log(s)+a∑
i=1

1

2i︸ ︷︷ ︸
(3.83)

= 1− 1
2as

+

(
1

3
n− 1

72

) log(s)+a∑
i=1

2i︸ ︷︷ ︸
(3.83)

= 2(2as−1)

+
1

24

log(s)+a∑
i=1

i · 2i︸ ︷︷ ︸
(3.87)

= 2·(1+2as(a−1)
+2a log(s)s)

)

=
4a

12
s2 log(s) + 4a

(
1

12
a+

2

3
n− 1

9

)
s2 + 2(a+1)ns− 8

3
n+

1

9
,

(3.86)

where we used the finite sum of the arithmetic-geometric series [86, Ch. 1.2.2.3]

z∑
i=1

i · ri = r · 1− (z + 1)rz + zrz+1

(1− r)2
, r ∈ R, r 6= 1. (3.87)

Since a ∈ [0, 1], the complexity of Alg. 4 with respect to the number of polytope vertices
s is therefore O(s2(n+ log(s))) according to (3.86).

Next, we present an algorithm that converts a polytope in Z-representation to V-
representation. Our algorithm is based on the following proposition:

Proposition 3.3.7. Given a polytope P = 〈c,G,E〉Z ⊂ Rn in Z-representation, it holds
that the polytope vertices are a subset of the finite set K

vertices(P) ⊆ K,
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where K is defined as

K =

{
c+

h∑
i=1

(
mi∏
k=1

α̂E(i,k)

)
G(·,i)︸ ︷︷ ︸

f〈c,G,E〉(α̂)

∣∣∣∣ α̂ = [α̂1 . . . α̂p]
T ∈ vertices(I)

}
, (3.88)

and I = [−1,1] ⊂ Rp.

Proof. According to the definition of the Z-representation in Def. 3.3.1, the polynomial
function f〈c,G,E〉 : Rp → Rn in (3.88) maps a vector of factors α ∈ Rp to a corresponding
point f〈c,G,E〉(α) ∈ P . We therefore have to show that each vertex vj of the polytope P
corresponds to one vertex α̂(j) of the interval I:

vj = f〈c,G,E〉(α̂
(j)). (3.89)

As shown in [87, Prop. 7.2(d)], for each vertex vj of a polytope P there exists a vector
dj ∈ Rn such that

vj = arg max
x∈P

dTj x. (3.90)

With the relation in (3.89), (3.90) can be equivalently formulated as

vj = f〈c,G,E〉(α
∗), α∗ = arg max

α∈I
dTj f〈c,G,E〉(α)︸ ︷︷ ︸

g(α1,...,αp)

,
(3.91)

where α = [α1 . . . αp]
T . Consequently, we have to show that the point α∗ where the

polynomial function g : Rp → R in (3.91) reaches its extremum within the domain α ∈ I
is identical to a vertex α̂(j) of the interval I. Since g(α1, . . . , αp) results from the Z-
representation it doesn’t contain polynomial exponents greater than 1, so that the partial
derivative with respect to a variable αi does not depend on αi

∀i ∈ {1, . . . , p} :
∂g(α1, . . . , αp)

∂αi
= ĝi(α1, . . . , αi−1, αi+1, . . . , αp), (3.92)

which corresponds to a constant gradient. According to (3.92), the function g(α1, . . . , αp)
therefore reaches its extremum on the domain αi ∈ [−1, 1] at either α∗i = 1 or α∗i = −1.
Since this holds for all αi, i = 1, . . . , p, function g(α1, . . . , αp) reaches its extremum within
the domain α ∈ I at the point α∗ = [α∗1 . . . α∗p]

T with α∗j ∈ {−1, 1}, j = 1, . . . , p, which
is a vertex of the interval I.

Based on Prop. 3.3.7, we now present an algorithm for the conversion form Z-
representation to V-representation in Alg. 5. The algorithm is structured as follows: We
first compute the vertices of the interval I in Line 2 of Alg. 5. In the for-loop in lines 4-9
we then calculate the corresponding potential polytope vertex for each of the 2p interval
vertices according to Prop. 3.3.7. We check if the potential vertex v is already part of
the set K in Line 6 since this decreases the average runtime of the algorithm. The points
stored in K define a potentially redundant V-representation of the polytope P . Redundant
points are removed by computation of the convex hull in Line 10 of Alg. 5, where the
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Algorithm 5 Conversion from Z-representation to V-representation

Require: Bounded polytope in Z-representation P = 〈c,G,E〉Z
Ensure: V-representation P = 〈[v1 . . . vs]〉V of the polytope

1: I ← [−1,1] ⊂ Rp

2:
{
α̂(1), . . . , α̂(2p)

}
← vertices(I)

3: K ← ∅
4: for j ← 1 to 2p do

5: v ← f〈c,G,E〉(α̂
(j)) (f〈c,G,E〉(α) defined as in (3.88))

6: if v /∈ K then

7: K ← K ∪ v
8: end if

9: end for

10: [v1 . . . vs]← convHull([v̂1 . . . v̂|K|]), where K = {v̂1, . . . , v̂|K|}
11: P ← 〈[v1 . . . vs]〉V

operation convHull as defined in Def. 2.4.5 returns the convex hull of a point cloud. For
Z-representations that define non-convex sets (see Example 3.3.3), Alg. 5 returns the con-
vex hull of the set. Since it is required for the derivation of the computation complexity of
Alg. 5, we first derive a formula for the maximum number of generators and the maximum
number of tuple entries for a regular Z-representation with a fixed number of factors:

Lemma 3.3.8. Given a regular Z-representation P = 〈c,G,E〉Z with p factors, it holds
that

h ≤ 2p − 1 and µ ≤ p 2p−1

are upper bounds for the number of generators h of P and the number of entries µ in the
tuple E.

Proof. For the proof, we require the identities [88, Ch. 8.6, Eq. (7)]

z∑
i=0

(
z

i

)
= 2z, z ∈ N (3.93)

and [88, Ch. 8.6, Eq. (8)]
z∑
i=0

i

(
z

i

)
= z 2z−1, z ∈ N. (3.94)

For a regular Z-representation (see Def. 3.3.1), the maximum number of generators is equal
to the number of different monomials αE(i,1)

· . . . · αE(i,mi)
that can be constructed with p

factors αE(i,k)
. Given a fixed mi, there exist

(
p
mi

)
different monomials since there are

(
p
mi

)
possible combinations to choose mi of the p factors αE(i,k)

without order. Summation over
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all mi ∈ {1, . . . , p} therefore yields

h ≤
p∑

mi=1

(
p

mi

)
=

(
p∑

mi=0

(
p

i

))
− 1

(3.93)
= 2p − 1.

For each monomial, mi entries have to be stored in the tuple E. Consequently,

µ ≤
p∑

mi=1

mi

(
p

mi

)
=

p∑
mi=0

mi

(
p

mi

)
(3.94)
= p 2p−1

is an upper bound for the number of entries µ in the tuple E.

Using Lemma 3.3.8, we can now derive the computational complexity of Alg. 5:

Proposition 3.3.9. The computational complexity of the conversion from regular Z-
representation to V-representation using Alg. 5 is O(2pbn/2c + 4p(p + n)) with respect to
the number of factors p of the Z-representation, where n is the dimension of the polytope.

Proof. The interval I = [−1,1] ⊂ Rp has 2p vertices. Consequently, the for-loop in lines 4-
9 of Alg. 5 consists of 2p iterations. In each iteration, the potential vertex v is calculated
in Line 5 using the function f〈c,G,E〉(α) as defined in (3.88). This requires nh additions and
at most µ− 1 + nh multiplications, resulting for all iterations in

O1 = 2p (2nh+ µ− 1)
Lemma 3.3.8

≤ 2p
(
2n(2p − 1) + p2p−1 − 1

)
= 4p (0.5p+ 2n)− 2p(2n+ 1)

elementary operations. Moreover, the containment check v /∈ K in Line 6 of Alg. 5 requires
in the worst case

O2 =
2p∑
i=1

n(i− 1) = −2pn+ n
2p∑
i=1

i
(3.95)
= −2pn+

n

2
(4p + 2p) =

n

2
(4p − 2p)

comparisons of scalar numbers, where we used the finite sum of the arithmetic series [86,
Ch. 1.2.2.1]

z∑
i=1

i =
z2 + z

2
. (3.95)

The complexity of the computations in the for-loop in lines 4-9 of Alg. 5 is therefore
O(O1 +O2) = O(4p(p+ n)) with respect to p. Computation of the convex hull in Line 10
has complexity O(mbn/2c+1) according to Tab. 2.1, where m is the number of points in the
point cloud. In our case, the point cloud stored in the set K consists of m = 2p points in
the worst case, resulting in complexity O((2p)bn/2c+1) with respect to p. Combining the
complexities from the for-loop and from the convex hull computation results in an overall
complexity of

O(O1 +O2) +O
(
(2p)bn/2c+1) = O(2pbn/2c + 4p(p+ n)

)
with respect to p.
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For general Z-representations, it is not possible to specify a relation between the number
of polytope vertices and the number of factors. However, under the assumption that the
Z-representation is obtained by conversion from V-representation using Alg. 4, we can
compute an upper bound for the number of factors from the number of vertices, which
enables us to derive the computation complexity with respect to the number of polytope
vertices:

Proposition 3.3.10. Given a polytope in Z-representation which is obtained by conversion
from V-representation using Alg. 4, the computational complexity of the conversion from
Z-representation to V-representation using Alg. 5 is O(4sbn/2c+ 16s(s+ n)) with respect to
the number of polytope vertices s, where n is the dimension of the polytope.

Proof. We first determine a relation between the number of factors p of the Z-representation
and the number of polytope vertices s, where we use the assumption that the Z-
representation of the polytope is obtained from Alg. 4. As visualized in Fig. 3.17, conversion
from V-representation to Z-representation using Alg. 4 can be viewed as the exploration
of a binary tree with depth k = dlog(s)e = log(s) + a for some a ∈ [0, 1]. Using (3.84), we
obtain for the number of factors at the k-th level of the binary tree

p = p(k) (3.84)
= 2k − 1

k=log(s)+a
= 2as− 1, (3.96)

which is identical to the number of factors of the resulting Z-representation. Inserting this
result into the computational complexity of Alg. 5 as specified in Prop. 3.3.9 then yields

O(2pbn/2c + 4p(p+ n)
) (3.96)

= O
(
4asbn/2c + 16as(2as+ n)

)
,

which is O(4sbn/2c + 16s(s+ n)) since a ∈ [0, 1].

After showing how to convert between Z-representation and V-representation, we now
consider the conversion from and to other set representations. We first specify how to
convert a zonotope to Z-representation:

Proposition 3.3.11. (Conversion Zonotope) A zonotope Z = 〈c,G〉Z ⊂ Rn can be equiv-
alently represented by the Z-representation

Z =
〈
c,G, (1, . . . , l)︸ ︷︷ ︸

E

〉
Z
, (3.97)

where l is the number of zonotope generators. The computational complexity of the con-
version is O(1).

Proof. With the tuple E = (1, . . . , l) in (3.97) it holds that

l∑
i=1

αiG(·,i) =
l∑

i=1

( 1∏
k=1

αE(i,k)

)
G(·,i). (3.98)
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Inserting (3.98) into the definition of a zonotope in Def. 2.2.4 then yields

Z Def. 2.2.4
=

{
c+

l∑
i=1

αiG(·,i)

∣∣∣∣ αi ∈ [−1, 1]

}
(3.98)
=

{
c+

l∑
i=1

( 1∏
k=1

αE(i,k)

)
G(·,i)

∣∣∣∣ αE(i,k)
∈ [−1, 1]

}
Def. 3.3.1

=
〈
c,G, (1, . . . , l)︸ ︷︷ ︸

E

〉
Z
,

which concludes the proof.
Complexity: The conversion only involves initialization and therefore has constant com-

plexity O(1).

Finally, we show how to convert a set in Z-representation to a SPZ:

Proposition 3.3.12. (Conversion to SPZ) A set in Z-representation P = 〈c,G,E〉Z ⊂ Rn

can be equivalently represented by a SPZ

P =
〈
c,G, [ ], E, uniqueID(p)

〉
PZ
,

where

E(i,j) =

{
1, ∃k ∈ {1, . . . ,mj} : E(j,k) = i

0, otherwise
, i = 1, . . . , p, j = 1, . . . , h. (3.99)

The computational complexity of the conversion is O(µ + p), where p is the number of
factors of the Z-representation and µ is the number of entries in the tuple E.

Proof. With the exponent matrix E defined as in (3.99) it holds that

h∑
i=1

( mi∏
k=1

αE(i,k)

)
G(·,i)

(3.99)
=

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i). (3.100)

Inserting this into the definition of the Z-representation in Def. 3.3.1 yields

P Def. 3.3.1
=

{
c+

h∑
i=1

( mi∏
k=1

αE(i,k)

)
G(·,i)

∣∣∣∣ αE(i,k)
∈ [−1, 1]

}
(3.100)

=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ αk ∈ [−1, 1]

}
Def. 3.1.1

=
〈
c,G, [ ], E, uniqueID(p)

〉
PZ
,

which concludes the proof.
Complexity: Construction of the exponent matrix E in (3.99) has complexity O(µ)

and generation of p unique identifiers using uniqueID has complexity O(p) according to
Tab. 2.2, which results in an overall complexity of O(µ) +O(p) = O(µ+ p).

Since any polytope in H-representation can be equivalently represented by the V-
representation, Alg. 4 and Alg. 5 presented in this section can also be used to convert
between the Z-representation and the H-representation. Moreover, since any interval can
be equivalently represented by a zonotope, it holds according to Prop. 3.3.11 that any
interval can be equivalently represented by the Z-representation.
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3.3.3 Basic Set Operations

In this section we derive closed-form expressions for the linear map, the Minkowski sum,
the Cartesian product, and the convex hull on the Z-representation. For this, we require
the following identity:

{
c+

h1∑
i=1

(m1,i∏
k=1

αE1(i,k)

)
G1(·,i) +

h2∑
i=1

(m2,i∏
k=1

αE2(i,k)

)
G2(·,i)

∣∣∣∣ αE1(i,k)
, αE2(i,k)

∈ [−1, 1]

}

=
〈
c, [G1, G2],

(
E1,E2

)〉
Z
.

(3.101)

We begin with the linear map:

Proposition 3.3.13. (Linear Map) Given a set in Z-representation P = 〈c,G,E〉Z ⊂ Rn

and a matrix M ∈ Rw×n, the linear map is

MP = 〈Mc,MG,E〉Z .

The resulting Z-representation is regular if P is regular, and the computational complexity
is O(wnh), where n is the dimension, w is the number of rows of matrix M , and h is the
number of generators.

Proof. The result follows directly from inserting the definition of the Z-representation in
Def. 3.3.1 into the definition of the linear map in (2.1):

M ⊗ P (2.1)
= {Ms | s ∈ P} Def. 3.3.1

={
Mc+

h∑
i=1

(
mi∏
k=1

αE(i,k)

)
MG(·,i)

∣∣∣∣ αE(i,k)
∈ [−1, 1]

}
= 〈Mc,MG,E〉Z ,

which concludes the proof.
Complexity: The two matrix multiplications Mc and MG have complexity O(wn) +
O(wnh) = O(wnh) according to Tab. 2.1.

Next, we consider the Minkowski sum:

Proposition 3.3.14. (Minkowski Sum) Given two sets in Z-representation, P1 =
〈c1, G1,E1〉Z ⊂ Rn and P2 = 〈c2, G2,E2〉Z ⊂ Rn, their Minkowski sum is

P1 ⊕ P2 =
〈
c1 + c2, [G1 G2] ,

(
E1, Ê2

)〉
Z
,

where
Ê2 =

(
E2(1) + 1 · p1, . . . ,E2(h2) + 1 · p1

)
.

The resulting Z-representation is regular if P1 and P2 are regular, and the computational
complexity is O(n + µ2), where n is the dimension and µ2 is the number of entries in the
tuple E2.
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Proof. The proposition follows from inserting the definition of the Z-representation in
Def. 3.3.1 into the definition of the Minkowski sum (2.2):

P1 ⊕ P2
(2.2)
= {s1 + s2 | s1 ∈ P1, s2 ∈ P2}

Def. 3.3.1
=

{
c1 + c2 +

h1∑
i=1

(m1,i∏
k=1

αE1(i,k)

)
G1(·,i)

+

h2∑
i=1

(m2,i∏
k=1

αE2(i,k)+p1︸ ︷︷ ︸
α
Ê2(i,k)

)
G2(·,i)

∣∣∣∣ αE1(i,k)
, αÊ2(i,k)

∈ [−1, 1]

}

(3.101)
=

〈
c1 + c2, [G1 G2] ,

(
E1, Ê2

)〉
Z
,

where we used the identity in (3.101).
Complexity: The complexity for the addition of the constant offsets is O(n) and the

complexity for the construction of the tuple Ê2 is O(µ2), where µ2 denotes the number of

entries in Ê2 (see Def. 3.3.1). Thus, the overall complexity is O(n+ µ2).

We continue with the Cartesian product:

Proposition 3.3.15. (Cartesian Product) Given two sets in Z-representation, P1 =
〈c1, G1,E1〉Z ⊂ Rn and P2 = 〈c2, G2,E2〉Z ⊂ Rn, their Cartesian product is

P1 × P2 =

〈[
c1

c2

]
,

[
G1 0
0 G2

]
,
(
E1, Ê2

)〉
Z

,

where
Ê2 =

(
E2(1) + 1 · p1, . . . ,E2(h2) + 1 · p1

)
.

The resulting Z-representation is regular if P1 and P2 are regular, and the computational
complexity is O(µ2), where µ2 is the number of entries in the tuple E2.

Proof. The proposition follows from inserting the definition of the Z-representation in
Def. 3.3.1 into the definition of the Cartesian product in (2.4):

P1 × P2
(2.4)
= {[sT1 sT2 ]T | s1 ∈ P1, s2 ∈ P2}

Def. 3.3.1
=

{[
c1

0

]
+

[
0
c2

]
+

h1∑
i=1

(m1,i∏
k=1

αE1(i,k)

)[
G1(·,i)

0

]

+

h2∑
i=1

(m2,i∏
k=1

αE2(i,k)+p1︸ ︷︷ ︸
α
Ê2(i,k)

)[
0

G2(·,i)

] ∣∣∣∣ αE1(i,k)
, αÊ2(i,k)

∈ [−1, 1]

}
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(3.101)
=

〈[
c1

c2

]
,

[
G1 0
0 G2

]
,
(
E1, Ê2

)〉
Z

,

where we used the identity in (3.101).

Complexity: The complexity for the construction of the tuple Ê2 is O(µ2), where µ2

denotes the number of entries in Ê2 (see Def. 3.3.1). Since all other required operations
are concatenations and initialization, this is identical to the overall complexity.

Finally, we consider the convex hull of two sets in Z-representation. If both sets represent
polytopes, it holds according to Sec. 2.1 that the linear combination and the convex hull are
identical since polytopes are convex. However, if one of the sets in Z-representation is not
a polytope (see Example 3.3.3), linear combination and convex hull differ. For simplicity,
we assume here that the sets in Z-representation are polytopes. If this is not the case, one
can compute the convex hull using the equation for SPZs in Prop. 3.1.27.

Proposition 3.3.16. (Convex Hull) Given two sets in Z-representation P1 = 〈c1, G1,E1〉Z
⊂ Rn and P2 = 〈c2, G2,E2〉Z ⊂ Rn which both represent polytopes, their convex hull is

conv(P1,P2) =

〈
1

2
(c1 + c2) ,

1

2

[
(c1 − c2) G1 G1 G2 −G2

]
,
(

(p),E1,E1, Ê2,E2

)〉
Z

,

where

E1 =
(
[ET

1(1) p]
T , . . . , [ET

1(h1) p]
T
)
,

Ê2 =
(
E2(1) + 1 · p1, . . . ,E2(h2) + 1 · p1

)
,

E2 =
(
[ÊT

2(1) p]
T , . . . , [ÊT

2(h2) p]
T
)
,

(3.102)

with p = p1 + p2 + 1. The resulting Z-representation is regular if P1 and P2 are regular,
and the computational complexity is O(n(h1 + h2) + µ2), where n is the dimension, h1 and
h2 are the number of generators of P1 and P2, and µ2 is the number of entries in the tuple
E2.

Proof. Since we assume that P1 and P2 are polytopes and therefore convex sets, it holds
according to Sec. 2.1 that the linear combination and the convex hull are identical. The
result then follows from inserting the definition of the Z-representation in Def. 3.3.1 into
the definition of the linear combination in (2.11):

conv(P1,P1)
Sec. 2.1

= comb(P1,P2)
(2.11)
=

{
1

2
(1 + λ)s1 +

1

2
(1− λ)s2

∣∣∣∣ s1 ∈ P1, s2 ∈ P2, λ ∈ [−1, 1]

}
Def. 3.3.1

=

{
1

2
(c1 + c2) +

1

2
(c1 − c2)λ+

1

2

h1∑
i=1

(m1,i∏
k=1

αE1(i,k)

)
G1(·,i)
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+
1

2

h1∑
i=1

λ

(m1,i∏
k=1

αE1(i,k)

)
G1(·,i) +

1

2

h2∑
i=1

(m2,i∏
k=1

αE2(i,k)+p1︸ ︷︷ ︸
α
Ê2(i,k)

)
G2(·,i)

− 1

2

h2∑
i=1

λ

(m2,i∏
k=1

αE2(i,k)+p1︸ ︷︷ ︸
α
Ê2(i,k)

)
G2(·,i)

∣∣∣∣ αE1(i,k)
, αÊ2(i,k)

, λ ∈ [−1, 1]

} (3.101),
αp:=λ

=

〈
1

2
(c1 + c2) ,

1

2

[
(c1 − c2) G1 G1 G2 −G2

]
,
(

(p),E1,E1, Ê2,E2

)〉
Z

,

where we used the identity in (3.101). For the transformation in the last line, we substitute
λ with an additional factor αp. With this substitution and E1 and E2 defined as in (3.102)
it holds that

λ

m1,i∏
k=1

αE1(i,k)
= αp

m1,i∏
k=1

αE1(i,k)
=

m1,i+1∏
k=1

αE1(i,k)
,

λ

m2,i∏
k=1

αÊ2(i,k)
= αp

m2,i∏
k=1

αÊ2(i,k)
=

m2,i+1∏
k=1

αE2(i,k)
.

Since λ ∈ [−1, 1] and αp ∈ [−1, 1], substituting λ with αp does not change the set.
Complexity: The construction of the constant offset 0.5(c1 + c2) has complexity O(2n),

and the construction of the generator matrix 0.5[(c1− c2) G1 G1 G2 −G2] has complexity

O(2n(h1 + h2 + 1)). Moreover, the complexity for the construction of the tuple Ê2 is
O(µ2), where µ2 denotes the number of entries in E2 (see Def. 3.3.1). Summation of all
complexities yields

O(2n) +O(2n(h1 + h2 + 1)) +O(µ2) = O(n(h1 + h2) + µ2) (3.103)

for the overall complexity of the convex hull operation.

Contrary to previous set operations where the computation in Z-representation is
straightforward, the calculation of the intersection is non-trivial. Currently, there ex-
ists no algorithm to compute the intersection directly in Z-representation without con-
version to another polytope representation. As shown in Tab. 3.12, most set operations
on the Z-representation increase the representation size. One major advantage of the Z-
representation over the vertex and halfspace representation of polytopes is that it is possible
to efficiently reduce the representation size by using the order reduction method for SPZs
in Prop. 3.1.39.

3.3.4 Polytope Test

As demonstrated in Example. 3.3.3, not all sets in Z-representation are polytopes. The
natural question that arises is therefore how we can test if a set in Z-representation is
a polytope or not. In this section we derive a sufficient condition to show that a set in
Z-representation is not a polytope.
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Table 3.12: Growth of the number of factors p, the number of generators h, and the number of
tuple entries µ for basic set operations on the Z-representation.

Set Operation Factors Generators Tuple Entries

Linear map p h µ

Minkowski sum p1 + p2 h1 + h2 µ1 + µ2

Cartesian product p1 + p2 h1 + h2 µ1 + µ2

Convex hull p1 + p2 + 1 2h1 + 2h2 + 1 2µ1 + 2µ2 + h1 + h2 + 1

We first introduce the following Lemma, which we require for the proof of our criterion:

Lemma 3.3.17. A set in Z-representation is a polytope if and only if it is convex.

Proof. Trivially, every non-convex set in Z-representation is not a polytope since polytopes
are always convex. It remains to show that all convex set in Z-representation are polytopes.
Every convex set P ⊂ Rn can be represented as the convex hull of its extreme points

P =

{ s∑
i=1

βixi

∣∣∣∣ xi ∈ K, βi ≥ 0,
s∑
i=1

βi = 1

}
, (3.104)

where the set of extreme points K ⊂ Rn is defined as

K =

{
x

∣∣∣∣ ∃d ∈ Rn : x = arg max
y∈P

dTy

}
.

If P is a set in Z-representation P = 〈c,G,E〉Z ⊂ Rn, then it follows from the calculation
of the vertices as described in Alg. 5 that

∀d ∈ Rn :

(
arg max

y∈P
dTy

)
∈ vertices(P) = {v1, . . . , vs},

so that the set of extreme points is K = {v1, . . . , vs}. Inserting this result into the definition
of a convex set in (3.104) yields,

P (3.104)
=

{ s∑
i=1

βixi

∣∣∣∣ xi ∈ K, βi ≥ 0,
s∑
i=1

βi = 1

}
K={v1,...,vs}

=

{ s∑
i=1

βivi

∣∣∣∣ βi ≥ 0,
s∑
i=1

βi = 1

}
Def. 2.2.3

= 〈[v1 . . . vs]〉V ,

which is identical to the definition of a polytope in Def. 2.2.3.
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Based on this lemma, we formulate the following criterion:

Proposition 3.3.18. (Polytope Test) Given a set in Z-representation P = 〈c,G,E〉Z ⊂
Rn, it holds that(

∃I ⊆ I2 : contract(f(x), I1 × I) = ∅
)
⇒
(
P 6= conv(P)

)
,

where P 6= conv(P) implies according to Lemma 3.3.17 that P is not a polytope. The sets
I1 = [−1,1] ⊂ Rp and I2 = [−1,1] ⊂ Rp̂ are intervals, and the function f : Rp+p̂ → Rn

is defined as

f(x) = c+
h∑
i=1

(
mi∏
k=1

x(E(i,k))

)
G(·,i)︸ ︷︷ ︸

b〈c,G,E〉(α1)

−
(
ĉ+

ĥ∑
i=1

( m̂i∏
k=1

x(p+Ê(i,k))

)
Ĝ(·,i)︸ ︷︷ ︸

b〈ĉ,Ĝ,Ê〉(α2)

)
, (3.105)

where x = [αT1 αT2 ]T and 〈
ĉ, Ĝ, Ê

〉
Z

= conv(P) = conv(P ,P)

is computed using Prop. 3.3.16.

Proof. With the functions b〈c,G,E〉 : Rp → Rn and b〈ĉ,Ĝ,Ê〉 : Rp̂ → Rn in (3.105), the

Z-representations P and conv(P) can be equivalently represented as

P =
{
b〈c,G,E〉(α1)

∣∣ α1 ∈ I1

}
, conv(P) =

{
b〈ĉ,Ĝ,Ê〉(α2)

∣∣ α2 ∈ I2

}
.

By restricting the factor domain I2 = [−1,1] of conv(P) to a subset I ⊂ I2 we obtain a
subset P ⊆ conv(P):

P =
{
b〈ĉ,Ĝ,Ê〉(α)

∣∣∣ α ∈ I} I⊆I2⊆ {
b〈ĉ,Ĝ,Ê〉(α)

∣∣∣ α ∈ I2

}
= conv(P).

Since a set in Z-representation is a special type of SPZ, we can compute the intersection
between P and P using Lemma 3.1.33, which yields

P ∩ P =
{
b〈c,G,E〉(α1)

∣∣∣ b〈c,G,E〉(α1)− b〈ĉ,Ĝ,Ê〉(α2)︸ ︷︷ ︸
(3.105)

= f(x)

= 0, α1 ∈ I1, α2 ∈ I
}

=
{
b〈c,G,E〉(α1)

∣∣∣ f(x) = 0, x = [αT1 αT2 ]T ∈ I1 × I
}
.

Consequently, it holds that(
contract(f(x), I1 × I) = ∅

)
⇒
(
P ∩ P = ∅

)
, (3.106)

which then yields(
∃I ⊆ I2 : contract(f(x), I1 × I) = ∅

) (3.106)

⇒
(
∃P ⊆ conv(P) : P ∩ P = ∅

)
⇒
(
∃P ⊆ conv(P) : P 6⊆ P

)
⇒
(
P 6= conv(P)

)
as a final result.

To determine a suitable interval I ⊂ I2, the interval I2 can for example be recursively
split until either the criterion in Prop. 3.3.18 is satisfied or a user-defined minimal interval
width is reached.
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3.3.5 Representation Size Comparison

In this section, we compare the representation size in V-representation, H-representation,
and Z-representation for general polytopes, for polytopes defined by the convex hull of a
zonotope and a single point, and for polytopes defined by the convex hull of two zonotopes.
Given a polytope P , we denote by NV (P), NH(P) and NZ(P) the number of scalar values
required for V-, H-, and Z-representation, respectively. Moreover, we denote the number
of i-dimensional polytope faces by Fi(P). Let us first specify the representation size for
V-, H-, and Z-representation:

Proposition 3.3.19. The representation size of a polytope P = 〈[v1 . . . vs]〉V ⊂ Rn in
V-representation is

NV (P) = ns,

where s is the number of polytope vertices.

Proof. For each of the s vertices, a vector with n entries has to be stored.

Proposition 3.3.20. The representation size of a polytope P = 〈A, b〉H ⊂ Rn in H-
representation is

NH(P) = (n+ 1)Fn−1(P),

where Fn−1(P) is the number of polytope facets.

Proof. Since each of the Fn−1(P) polytopes facets corresponds to one inequality constraint,
it holds that A ∈ RFn−1(P)×n and b ∈ RFn−1(P).

Proposition 3.3.21. The representation size of a polytope P = 〈c,G,E〉Z ⊂ Rn in Z-
representation is

NZ(P) = n(h+ 1) + µ,

where h is the number of generators and µ is the number of entries in the tuple E.

Proof. The constant offset c ∈ Rn consists of n scalar values, the generator matrix G ∈
Rn×h of nh scalar values, and the tuple E of µ scalar values (see Def. 3.3.1).

General Case

We first derive the representation size in V-, H- and Z-representation for the general case
of a bounded n-dimensional polytope P with s vertices.

V-Representation: Trivially, the representation complexity of a polytope with s vertices
in V-representation is

NV (P) = ns

according to Prop. 3.3.19.

H-Representation: As stated by McMullens upper bound theorem [89], the polytope
that maximizes the number of facets for a fixed number of vertices is the cyclic polytope.
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Consequently, an upper bound for the number of n − 1 dimensional facets Fn−1(P) for a
polytope P with s vertices is according to [13, Ch. 4.7, Eq. (3)]

Fn−1(P) ≤
(
s− bn+1

2
c

s− n

)
+

(
s− bn+2

2
c

s− n

)
. (3.107)

Inserting (3.107) into Prop. 3.3.20 then yields the upper bound

NH(P)
Prop. 3.3.20

= (n+ 1)Fn−1(P)
(3.107)

≤ (n+ 1)

((
s− bn+1

2
c

s− n

)
+

(
s− bn+2

2
c

s− n

))
for the representation size in H-representation.

Z-Representation: The representation size of a polytope P in Z-representation is given
by Prop. 3.3.21. It remains to relate the parameters h and µ to the number of polytope
vertices s. For this, we assume that the Z-representation of P is calculated with Alg. 4. As
visualized in Fig. 3.17, conversion from V-representation to Z-representation using Alg. 4
can be viewed as the exploration of a binary tree with depth k = dlog(s)e. Using (3.84),
we obtain the following upper bounds for the number of generators h and the number of
tuple entries µ of the resulting Z-representation:

h ≤ h(k) (3.84)
=

4k − 1

3

k=dlog(s)e
=

4dlog(s)e − 1

3
,

µ ≤ µ(k) (3.84)
= 4k

(
1

6
k +

1

9

)
− 1

9

k=dlog(s)e
= 4dlog(s)e

(
1

6
dlog(s)e+

1

9

)
− 1

9
.

(3.108)

Inserting (3.108) into Prop. 3.3.21 then yields the upper bound

NP (P)
Prop. 3.3.21

= n(h+ 1) + µ
(3.108)

≤ 4dlog(s)e + 2

3
n+ 4dlog(s)e

(
1

6
dlog(s)e+

1

9

)
− 1

9
.

for the representation size in Z-representation.
A comparison of the representation sizes in V-, H-, and Z-representation for different

number of vertices is shown in Fig. 3.18 (left) for a 3-dimensional polytope. Obviously,
for the case of general polytopes the V-representation and the H-representation are more
compact than the Z-representation.

Convex Hull of a Zonotope and a Point

Next, we consider the special case of a polytope C = conv(Z, x) that can be described
by the convex hull of a zonotope Z = 〈c,G〉Z ⊂ Rn with l generators and a single point
x ∈ Rn.

V-Representation: The number of vertices s of an n-dimensional zonotope with l gen-
erators is according to [90, Prop. 2.1.2]

s = 2

min(n,l)−1∑
i=0

(
l − 1

i

)
. (3.109)



140 Chapter 3 Extensions of Polynomial Zonotopes

10 15 20 25 30
0

500

1000

1500

2000

5 10 15 20
0

500

1000

1500

2000

s l

NV (P)
NH(P)
NZ(P)

NV (C)
NH(C)
NZ(C)

Figure 3.18: Representation sizes for a general 3-dimensional polytope P with s vertices (left)
and for a 3-dimensional polytope C = conv(Z, x) defined by the convex hull of a zonotope and
a point (right). Exact values are depicted by solid lines, while upper bounds are depicted by
dashed lines.

The polytope C defined by the convex hull of a zonotope and a point has at most s + 1
vertices, so that according to Prop. 3.3.19

NV (C)
Prop. 3.3.19

≤ n(s+ 1)
(3.109)

= n

1 + 2

min(n,l)−1∑
i=0

(
l − 1

i

)
is an upper bound for the representation size in V-representation.

H-Representation: The number of facets of an n-dimensional zonotope Z with l gener-
ators is [24, Ch. 2.2.1]

Fn−1(Z) = 2

(
l

n− 1

)
. (3.110)

The maximum number of facets for the convex hull C = conv(Z, x) is obtained in the case
where x 6∈ Z and all facets of Z except for one facet F are facets of the convex hull C. It
therefore holds that

Fn−1(C) ≤ Fn−1(Z)− 1︸ ︷︷ ︸
FA

+Fn−1(conv(F , x))− 1︸ ︷︷ ︸
FB

, (3.111)

where FA is the number of facets of Z that are facets of C, and FB is the number of
additional facets resulting from the convex hull of the facet F with the point x. The
number of facets for the convex hull of facet F and point x is identical to

Fn−1(conv(F , x)) = Fn−2(F) + 1, (3.112)

where Fn−2(F) is the number of (n − 2)-dimensional faces of facet F . The maximum for
Fn−2(F) is obtained in the case where F is a (n−1)-dimensional zonotope with l generators,
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which yields the upper bound

Fn−2(F)
(3.110)

≤ 2

(
l

n− 2

)
. (3.113)

Overall, we therefore get the upper bound

NH(C) Prop. 3.3.20
= (n+ 1)Fn−1(C)

(3.111)

≤ (n+ 1)
(
Fn−1(Z) + Fn−1(conv(F , x))− 2

)
(3.112)

= (n+ 1)
(
Fn−1(Z) + Fn−2(F)− 1

) (3.110)
(3.113)

≤ (n+ 1)

(
2

(
l

n− 1

)
− 1 + 2

(
l

n− 2

))
for the representation size in H-representation.

Z-Representation: According to Prop. 3.3.11, the zonotope Z = 〈c,G〉Z can be equiv-
alently represented by the Z-representation Z = 〈c,G, (1, . . . , l)〉Z with hz = l genera-
tors and µz = l tuple entries. Moreover, the point x ∈ Rn can be represented by the
Z-representation x = 〈x, [ ], ∅〉Z with hx = 0 generators and µx = 0 tuple entries. Com-
putation of the convex hull C = conv(Z, x) using Prop. 3.3.16 therefore results according
to Tab. 3.12 in a Z-representation with h = 2hz + 2hd + 1 = 2l + 1 generators and
µ = 2µz + 2µd + hz + hd + 1 = 3l + 1 tuple entries. The representation size of C in
Z-representation is therefore

NZ(C) Prop. 3.3.21
= n(h+ 1) + µ

h=2l+1
µ=3l+1

= 2n+ 2ln+ 3l + 1.

The comparison of the representation size in Fig. 3.18 (right) illustrates that for polytopes
defined by the convex hull of a zonotope and a point the Z-representation is much more
compact than other representations. We further demonstrate this by an example:

Example 3.3.22. The representation sizes for the polytope C = conv(Z, x) corresponding
to the convex hull of the point x = [2 0]T ∈ R20 and the zonotope Z = 〈0, I20〉Z ⊂ R20 are
NV (C) = 20971540, NH(C) = 1617, and NZ(C) = 901.

Convex Hull of Two Zonotopes

Finally, we consider the case of a polytope C = conv(Z1,Z2) defined by the convex hull
of two full-dimensional zonotopes Z1 = 〈c1, G1〉Z ⊂ Rn and Z2 = 〈c2, G2〉Z ⊂ Rn, which
have l1 and l2 generators, respectively. While we can compute the exact representation
size for the Z-representation, this is not possible for the V- and H-representation since the
number of facets and vertices of C depends on the shape of the two zonotopes. We therefore
consider the case where the zonotope with fewer generators encloses the second zonotope,
which results in the minimum number of facets and vertices for C and therefore represents
the best case for the V- and H-representation.

V-Representation: The minimum number of vertices s for the convex hull C =
conv(Z1,Z2) is obtained in the case where the zonotope with less generators encloses
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Figure 3.19: Polytope representation with the smallest representation size for a polytope C =
conv(Z1,Z1) defined by the convex hull of two zonotopes for different dimensions n and numbers
of generators l1 and l2.

the other zonotope. Using the equation in (3.109) for the number of zonotope vertices
therefore yields the lower bound

NV (C) Prop. 3.3.19
= ns

(3.109)

≥ 2n

min(n,l1,l2)−1∑
i=0

(
min(l1, l2)− 1

i

)
for the representation size in V-representation.

H-Representation: The minimum number of facets for the convex hull C = conv(Z1,Z2)
is obtained in the case where the zonotope with less generators encloses the other zonotope.
Using the equation in (3.110) for the number of zonotope facets therefore yields the lower
bound

NH(C) Prop. 3.3.20
= (n+ 1)Fn−1(C)

(3.110)

≥ 2(n+ 1)

(
min(l1, l2)

n− 1

)
for the representation size in H-representation.

Z-Representation: According to Prop. 3.3.11, the two zonotopes Z1 = 〈c1, G1〉Z
and Z2 = 〈c2, G2〉Z can be equivalently represented by the Z-representations Z1 =
〈c1, G1, (1, . . . , l1)〉Z and Z2 = 〈c2, G2, (1, . . . , l2)〉Z , so that h1 = l1, µ1 = l1 and h2 = l2,
and µ2 = l2. Computation of the convex hull C = conv(Z1,Z2) using Prop. 3.3.16 there-
fore results in a Z-representation with h = 2h1 + 2h2 + 1 = 2l1 + 2l2 + 1 generators and
µ = 2µ1 + 2µ2 + h1 + h2 + 1 = 3l1 + 3l2 + 1 tuple entries according to Tab. 3.12. The
representation size of C in Z-representation is therefore

NZ(C) Prop. 3.3.21
= n(h+ 1) + µ

h=2l1+2l2+1
µ=3l1+3l2+1

= 2n(l1 + l2 + 1) + 3l1 + 3l2 + 1.

As shown in Fig. 3.19, for polytopes defined by the convex hull of two zonotopes the
Z-representation is often the most compact representation, even thought we considered
the best case resulting in the smallest representation size for the V-representation and the
H-representation.
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3.4 Summary

In this chapter we introduced the three novel set representations sparse polynomial zono-
topes, constrained polynomial zonotopes, and the Z-representation of polytopes. All of
these set representations are extensions to polynomial zonotopes as introduced in [47].
Due to their advantageous properties, our novel set representation are an excellent fit for
the verification of complex cyber-physical systems.

Sparse polynomial zonotopes store polynomial zonotopes much more compactly than
the non-sparse representation in [47]. A direct consequence of this is that operations on
sparse polynomial zonotopes are more efficient compared to the non-sparse representa-
tion. In particular, the computational complexity for all relevant set operations on sparse
polynomial zonotopes is at most polynomial with respect to the dimension. While sparse
polynomial zonotope are in theory closed under linear map, Minkowski sum, Cartesian
product, linear combination, convex hull, and quadratic map, exact computation of these
set operations often significantly increased the computation time. We therefore use so-
called independent generators to achieve a good trade-off between computation time and
accuracy. With independent generators, we compute tight enclosures instead of the exact
result for linear combination, convex hull, and quadratic map, which significantly accel-
erates the computations. Moreover, to keep track of dependencies between different sets
we equipped sparse polynomial zonotopes with unique identifiers. Since sparse polynomial
zonotopes consequently do not suffer from the dependency problem, one usually obtains
more accurate results compared to other set representations.

Constrained polynomial zonotopes extend sparse polynomial zonotopes by adding poly-
nomial equality constraints on the dependent factors. This extension enables us to addition-
ally derive closed-form expressions for the intersection and union. Currently, constrained
polynomial zonotopes are consequently the only set representation that is closed-under all
relevant set operations with existing closed-form expressions for all operations. Moreover,
as for sparse polynomial zonotopes, all relevant set operations on constraint polynomial
zonotopes only have polynomial complexity with respect to the dimension, so that this novel
set representation is well suited for computing with high-dimensional sets. In addition, we
demonstrated that constrained polynomial zonotopes are generalizations of most other
common set representations including intervals, zonotopes, polytopes, ellipsoids, polyno-
mial zonotopes, and Taylor models, which further substantiates the relevance of this novel
set representation.

Finally, we introduced the Z-representation of polytopes, which stores polynomial
zonotopes representing polytopes very efficiently. While for general polytopes the V-
representation and the H-representation are more compact than the Z-representation, we
showed that for polytopes that are close to zonotopes, such as the convex hull of a zonotope
and a point or the convex hull of two zonotopes, the Z-representation is much more com-
pact than the other polytope representations. Moreover, we demonstrated that linear map,
Minkowski sum, Cartesian product, and convex hull can be computed very efficiently in
Z-representation, and we provided algorithms for converting between the Z-representation
and the V-representation. Since not all sets in Z-representations are polytopes, we also
presented a criterion to check if a set in Z-representation defines a polytope.
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Chapter 4

Reachability Analysis

Using the novel set representations introduced in Chapter 3, we now present new ap-
proaches for reachability analysis of nonlinear continuous and hybrid systems. First, in
Sec. 4.1, we demonstrate how sparse polynomial zonotopes improve reachability analysis
for nonlinear continuous systems. Next, in Sec. 4.2, we present a novel method for the
efficient extraction of reachable subsets. Based on this reachable subset approach, we af-
terward introduce a new technique for computing inner-approximations of reachable sets
in Sec. 4.3. Finally, in Sec. 4.4, we propose a novel approach for reachability analysis of
hybrid systems with nonlinear guard sets.

4.1 Outer-Approximations of Reachable Sets for

Nonlinear Continuous Systems

In this section1, we demonstrate the improvements for computing outer-approximations
of reachable sets for nonlinear continuous systems resulting from the usage of SPZs as
introduced in Sec. 3.1. In particular, we consider the conservative polynomialization al-
gorithm [47] and show how SPZs increase the accuracy and reduce the computation time
of this algorithm. The section is structured as follows: We first provide an overview of
the state of the art for reachability analysis of nonlinear systems in Sec. 4.1.1, before we
describe the conservative polynomialization algorithm in detail in Sec. 4.1.2. Next, we elab-
orate on the advantages resulting from SPZs in Sec. 4.1.3 and derive the computational
complexity of the conservative polynomialization algorithm for SPZs in Sec. 4.1.4. Finally,
we demonstrate the performance of SPZs for reachability analysis on several benchmark
system in Sec. 4.1.5.

4.1.1 State of the Art

Let us first summarize the state of the art for computing outer-approximations of reachable
sets for nonlinear continuous systems. Reachability algorithms for nonlinear systems can
be categorized into four groups:

• Invariant generation

1This section is based on [76].
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• Optimization-based approaches

• Abstraction in solution space

• Abstraction in state space

Since any invariant set which includes the initial set is also a reachable set, approaches for
invariant generation can be used for reachability analysis [91–93]. However, the computa-
tion of invariant sets for nonlinear systems is challenging and the resulting invariants often
only yield a very rough enclosure of the reachable set.

Optimization-based approaches reformulate reachability analysis as an optimization
problem [52,94,95]. Thus, the approach in [94] optimizes the outward translation of poly-
tope halfspaces to obtain a flowpipe. Halfspaces are also used in [95], where Bernstein
polynomials are applied to abstract the optimization problem to linear programming. The
approach in [52] uses a differential game formulation of reachability analysis to obtain an
approximation of the reachable set as the solution to a partial-differential Hamilton-Jacobi
equation, which requires optimization over the uncertain inputs.

Other approaches abstract the solution space directly: The work in [96] uses validated
simulations for the construction of bounded flowpipes. Moreover, the approaches in [97,98]
implement Runge-Kutta integration methods with affine arithmetic to obtain an enclosure
of the reachable set. Taylor models computed from iterations, such as the Picard iteration,
were initially proposed in [45, 99] and later extended to include uncertain parameter [100]
and inputs [43].

Approaches based on an abstraction of the state space compute simplified differential
equations to which a compensating uncertainty is added. Often, nonlinear ODEs are ab-
stracted by a hybrid automaton with constant dynamics [101] or linear dynamics [102,103].
Other methods, such as the conservative linearization algorithm [104] and the simplex-
based approach in [105], linearize the nonlinear dynamics on-the-fly. The conservative
polynomialization algorithm [47] that we consider in this section extends conservative lin-
earization by applying a polynomial abstraction of the nonlinear dynamics, which usually
results in a tighter enclosure of the reachable set.

Common tools for reachability analysis of nonlinear systems are Adriadne [106], C2E2
[107], CORA [1], DynIbex [108], Flow* [44], Isabelle/HOL [109], and JuliaReach [110].
CORA is based on state space abstraction, and implements the conservative linearization
and the conservative polynomialization algorithm. All other tools apply an abstraction in
solution space, where Ariadne, Flow* and JuliaReach use Picard iteration, C2E2 constructs
flowpipes based on validated simulation, and DynIbex and Isbelle/HOL implement Runge-
Kutta integration methods with affine arithmetic.

4.1.2 Conservative Polynomialization Algorithm

In this section, we provide a detailed explanation of the conservative polynomialization al-
gorithm introduced in [47]. The algorithm considers nonlinear systems ẋ(t) = f(x(t), u(t))
with uncertain inputs as defined in Def. 2.3.2. Since for general nonlinear systems the exact
reachable set as defined in Def. 2.3.4 cannot be computed, the conservative polynomial-
ization algorithm computes a tight over-approximation Ro(t) ⊇ R(t) instead. Moreover,
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Figure 4.1: Computation of the reachable set for consecutive time intervals, where the time
point reachable sets R(tj) are depicted in white and the time interval reachable sets R(τj) are
depicted in gray.

as visualized in Fig. 4.1, the algorithm calculates the reachable set enclosure for consecu-
tive time intervals τj = [tj, tj+1] with tj+1 = tj + ∆t, so that the reachable set enclosure

for a time horizon tf is given as Ro([0, tf ]) =
⋃tf/∆t−1
j=0 Ro(τj), where t0 = 0 and tf is a

multiple of the time step size ∆t. Conservative polynomialization is an extension to the
conservative linearization approach in [104]. The principle of conservative linearization
is quite simple: In each time interval τj, the nonlinear function f(x(t), u(t)) that defines
the system dynamics is linearized and the set of linearization errors on Ro(τj) is treated
as an additional uncertain input to the system, which then enables the calculation of the
reachable set with a reachability algorithm for linear systems [24, Alg. 3]. The conservative
polynomialization approach improves this method by abstracting the nonlinear function
f(x(t), u(t)) by a Taylor expansion of order κ:

ẋ(i)(t) = f(i)(z(t)) ∈
κ∑
k=0

(
(z(t)− z∗)T∇

)k
f(i)(z

∗)

k!
⊕ Li(t), i = 1, . . . , n, (4.1)

where we introduced z(t) = [x(t)T u(t)T ]T to concisely denote the system dynamics as
ẋ(t) = f(z(t)). Moreover, the vector z∗ = [x∗T u∗T ]T ∈ Rn+m in (4.1) is the expansion
point for the Taylor expansion and the set L(t) = L1(t)× . . .× Ln(t) defined as

L(t) =

{
x

∣∣∣∣ x(i) =

(
(z(t)− z∗)T∇

)κ+1
f(i)(ẑ)

(κ+ 1)!
, ẑ = z∗ + λ(z(t)− z∗), λ ∈ [0, 1]

}
(4.2)

is the Lagrange remainder. For simplicity, we focus at this point on the case with Taylor
order κ = 2 since the extensions to higher orders is straightforward. For Taylor order
κ = 2, the Taylor expansion in (4.1) becomes

ẋ(i)(t) ∈ f(i)(z
∗) +

∂f(i)(x, u)

∂x

∣∣∣∣
z∗︸ ︷︷ ︸

A(i,·)

(x(t)− x∗) +
∂f(i)(x, u)

∂u

∣∣∣∣
z∗︸ ︷︷ ︸

B(i,·)

(u(t)− u∗)

+
1

2
(z(t)− z∗)T

∂2f(i)(z)

∂z2

∣∣∣∣
z∗︸ ︷︷ ︸

Qi

(z(t)− z∗)⊕ Li(t), i = 1, . . . , n.

(4.3)
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The crucial point of the conservative polynomialization algorithm is the division of the state
vector x(t) = x(tj) + x∆(t) and the input vector u(t) = u∗ + u∆(t) into a static part x(tj),
u∗ that is constant over time for one time interval τj = [tj, tj+1] and a time-varying part
x∆(t), u∆(t). This division allows one to combine the reachable set of the linearized system
and the set of static linearization errors using the exact addition � for SPZs as defined in
Prop. 3.1.20 instead of the Minkowski sum, which results in a much tighter enclosure as
we demonstrate later in Sec. 4.1.3. Inserting the substitutions x(t) = x(tj) + x∆(t) and
u(t) = u∗ + u∆(t) into the Taylor series expansion in (4.3) yields

ẋ(i)(t) ∈ f(i)(z
∗) + A(i,·)

(
x(t)− x∗

)
+B(i,·)

(
u∗ + u∆(t)− u∗

)
+

1

2

[
x(tj) + x∆(t)− x∗
u∗ + u∆(t)− u∗

]T
Qi

[
x(tj) + x∆(t)− x∗
u∗ + u∆(t)− u∗

]
⊕ Li(t)

= f(i)(z
∗)− A(i,·)x

∗ + A(i,·)x(t) +B(i,·)u
∆(t)

+
1

2

([
x(tj)− x∗

0

]
︸ ︷︷ ︸

zd(tj)

+

[
x∆(t)
u∆(t)

]
︸ ︷︷ ︸
z∆(t)

)T
Qi

([
x(tj)− x∗

0

]
︸ ︷︷ ︸

zd(tj)

+

[
x∆(t)
u∆(t)

]
︸ ︷︷ ︸
z∆(t)

)
⊕ Li(t)

= A(i,·)x(t) + f(i)(z
∗)− A(i,·)x

∗ +
1

2
zd(tj)

TQi zd(tj) +B(i,·)u
∆(t)

+
1

2

(
zd(tj)

TQi z
∆(t) + z∆(t)TQi zd(tj) + z∆(t)TQi z

∆(t)
)
⊕ Li(t).

(4.4)

For each time interval τj = [tj, tj+1], we have to compute an enclosure Ro(tj+1) of the
reachable set at the end of the time interval based on the reachable set enclosure Ro(tj) at
the beginning of the time interval. To achieve this, the Taylor expansion in (4.4) has to be
evaluated in a set-based manner. Obviously, the state x(tj) at the beginning of the time
interval is part of the final reachable set from the previous time interval x(tj) ∈ Ro(tj).
Moreover, the input vector u(t) is part of the set of uncertain inputs u(t) ∈ U . In addition,
the time-varying part of the system state x∆(t) ∈ R∆(τj) is contained in the reachable set
R∆(τj) defined as

R∆(τ) :=
{
ξ
(
t, x(tj), u(·)

)
− x(tj)

∣∣∣ t ∈ τj, x(tj) ∈ Ro(tj), ∀t ∈ τj : u(t) ∈ U
}
, (4.5)

where ξ(t, x(tj), u(·)) as introduced in Def. 2.3.4 denotes the solution to the differential
equation ẋ(t) = f(x(t), u(t)). Moreover, we have

u∆(t) ∈ U ⊕ (−u∗)︸ ︷︷ ︸
U∆

, zd(tj) ∈
(
Ro(tj)⊕ (−x∗)

)
× 0︸ ︷︷ ︸

Z(tj)

, z∆(t) ∈ R∆(τj)× U∆︸ ︷︷ ︸
Z∆(τj)

. (4.6)

Inserting (4.6) into (4.4) then yields the differential inclusion

ẋ(t) ∈ Ax(t) + f(z∗)− Ax∗ +
1

2

zd(tj)
TQ1 zd(tj)

...
zd(tj)

TQn zd(tj)


︸ ︷︷ ︸

∈V(tj)
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+Bu∆(t) +
1

2

zd(tj)
TQ1 z

∆(t) + z∆(t)TQ1 zd(tj) + z∆(t)TQ1 z
∆(t)

...
zd(tj)

TQn z
∆(t) + z∆(t)TQn zd(tj) + z∆(t)TQn z

∆(t)

⊕ L(t)

︸ ︷︷ ︸
∈V∆(τj)

, (4.7)

where the set of static linearization errors V(tj) is

V(tj) = (f(z∗)− Ax∗)⊕ 1

2
sq
(
Q,Z(tj)

)
, (4.8)

with Q = {Q1, . . . , Qn} and the set of dynamic linearization errors V∆(τj) is

V∆(τj) =
(
B ⊗ U∆

)
⊕ 1

2
sq
(
Q,Z(tj),Z∆(τj)

)
⊕ 1

2
sq
(
Q,Z∆(τj),Z(tj)

)
⊕

1

2
sq
(
Q,Z∆(τj)

)
⊕ L(t).

(4.9)

Since the differential inclusion ẋ(t) ∈ Ax(t)⊕V(tj)⊕V∆(τj) in (4.7) is linear in x(t) during
the time interval τj, the solution can be calculated as

x(tj+1) ∈ eA∆tx(tj)⊕
∫ ∆t

0

eA(∆t−t) ⊗
(
V(tj)⊕ V∆(τj)

)
dt =

eA∆tx(tj)⊕
((∫ ∆t

0

eA(∆t−t)dt

)
︸ ︷︷ ︸

Γ(∆t)

⊗V(tj)

)
⊕
∫ ∆t

0

eA(∆t−t) ⊗ V∆(τj)dt︸ ︷︷ ︸
⊆Rp,∆(τj)

,

(4.10)

where we exploited that V(tj) is constant over time and can therefore be moved outside
the integral. If the matrix A is invertible, the matrix Γ(∆t) can be computed as Γ(∆t) =
A−1(eA∆t−In). Otherwise, one can calculate Γ(∆t) using the power series of the exponential
matrix [24, Eq. (A.2)]. Inserting x(tj) ∈ Ro(tj) into (4.10) finally yields an enclosure of
the reachable set Ro(tj+1) at the end of the time interval τj = [tj, tj+1]:

R(tj+1) ⊇
(
eA∆t ⊗Ro(tj)

)
�
(
Γ(∆t)⊗ V(tj)

)
⊕Rp,∆(τj). (4.11)

What remains to show is how the expansion point of the Taylor series z∗ is chosen and
how enclosures of the Lagrange remainder L(τj), the reachable set due to time-varying
linearization errors Rp,∆(τj), and the reachable set of time varying states R∆(τj) can be
calculated. The expansion point is heuristically selected as z∗ = [x∗T u∗T ]T with x∗ =
xc + 0.5 ·∆t ·f(xc, u

∗) ≈ center(Ro(τj)), u
∗ = center(U), and xc = center(R(tj)), which

approximately corresponds to the center of the time interval reachable set and the input
set. Moreover, using

D = bound
(
∇3f(z), I

)
, I = interval

(
Ro(τj)× U

)
, (4.12)
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we obtain with Taylor order κ = 2 the following enclosure of the Lagrange remainder L(τj)
as defined in (4.2):

L(τj)
(4.2)
=

{
x

∣∣∣∣ x(i) =

(
(z(t)− z∗)T∇

)3
f(i)(ẑ)

3!
,

ẑ = z∗ + λ(z(t)− z∗), λ ∈ [0, 1], t ∈ τj
}

Ro(τj)×U ⊆ I

⊆ 1

6

{
x
∣∣∣ x(i) =

(
(z(t)− z∗)T∇

)3
f(i)(ẑ), z(t), ẑ ∈ I

}
(2.10)
=

1

6
poly

(
D, I ⊕ (−z∗)

)
,

(4.13)

where D is calculated with range bounding as introduced in Sec. 2.7, and the polynomial
map poly(D, I ⊕ (−z∗)) as defined in (2.10) is evaluated using interval arithmetic [37].
Next, we consider the time-varying inputs. Given a convex set S ⊂ Rn of time varying-
inputs, an enclosure of the reachable set due to time-varying inputs can be computed
as ∫ ∆t

0

(
eA(∆t−t) ⊗ S

)
dt ⊆

ν⊕
k=0

∆tk+1

(k + 1)!

(
Ak ⊗ S

)
⊕
(
∆t · E ⊗ S

)
︸ ︷︷ ︸

reachVarInput(S,A,∆t,ν)

(4.14)

according to [24, Eq. (3.7)], with

E = [−1,1]
(||A||∞∆t)ν+1

(ν + 1)!

1

1− ε
, ε =

||A||∞∆t

ν + 2
,

where the number of Taylor terms for the exponential matrix ν has to be chosen large
enough such that ε < 1 holds. We denote the calculation of the reachable set due
to time-varying inputs with the operation reachVarInput(S, A,∆t, µ). Consequently,
the reachable set due to time-varying linearization errors in (4.10) can be computed as
Rp,∆(τj) = reachVarInput(V∆(τj), A,∆t, ν). Finally, an enclosure of the reachable set for
the time-varying system state R∆(τj) as defined in (4.5) can be calculated using a slight
modification of the reachability algorithm for linear systems in [24, Alg. 3]:

R∆(τj) = comb
(
0,R∆(tj+1)

)
⊕
(
F ⊗Rd(tj)

)
⊕ F̂f(z∗)︸ ︷︷ ︸

Rs,∆(τj)

⊕Rp(τj), (4.15)

where

Ψ(τj) = interval
(
V(tj)⊕ V∆(τj)

)
⊕ (−f(z∗) + Ax∗),

R∆(tj+1) =
(
(eA∆t − In)⊗Rd(tj)

)
⊕ Γ(∆t)f(z∗),



4.1 Outer-Approximations of Reachable Sets for Nonlinear Continuous Systems 151

Rd(tj) = Ro(tj) + (−x∗), Rp(τj) = reachVarInput(Ψ(τj), A,∆t, ν), (4.16)

F =
ν⊕
k=2

[
(k
−k
k−1 − k

−1
k−1 )∆tk, 0

]Ak
k!
⊕ E ,

F̂ =
ν⊕
k=2

[(
(k + 1)

−k−1
k − (k + 1)

−1
k

)
∆tk+1, 0

] Ak

(k + 1)!
⊕∆t · E .

The resulting overall conservative polynomialization algorithm is shown in Alg. 6. To
fully exploit the advantages of SPZs, Alg. 6 is slightly modified from the original conser-
vative polynomialization algorithm in [47, Alg. 1]. We shortly explain the structure of the
algorithm: The while-loop in lines 2-28 of Alg. 6 iterates over all time intervals τj until the
time horizon tf is reached. For each time interval we first abstract the nonlinear equation
f(x(t), u(t)) by a Taylor expansion in Line 4. In lines 5-19 we then compute the set of lin-
earization errors Ψ(τj) on the time interval reachable setRo(τj). The problem we are facing
here is that we need Ro(τj) to calculate Ψ(τj), but on the other hand, we also need Ψ(τj)
to calculate Ro(τj). To resolve this mutual dependence, we first compute Ro(τj) using the
set of linearization errors from the previous time step (Ψ(τj) = Ψ(τj−1), see Line 27) as
an initial guess in Line 14. Next, we use Ro(τj) to calculate Ψ(τj) in Line 18. In the next
iteration of the repeat-until loop we then enlarge the set of linearization errors in Line 11
and calculate Ro(τj) and Ψ(τj) using the enlarged set Ψ(τj). We repeat this process until
the enlarged set of linearization errors Ψ(τj) contains the set of actual linearization errors
Ψ(τj) (see Line 19), which guarantees that Ro(τj) and Ψ(τj) are both over-approximative.
After we computed the set of linearization errors, we finally calculate an enclosure of the
reachable set Ro(tj+1) for the next point in time in Line 21, which we then use as the new
initial set for the next time interval τj+1.

For SPZs, many of the operations in Alg. 6 increase the order and therefore also the
representation size (see Tab. 3.4). For computational reasons, we therefore apply the
operation reduce in Line 22 to reduce the order to the desired order ρd. Moreover, many
of the operations in Alg. 6, like for example the Minkowski sum with a zonotope or order
reduction, increase the size of the independent part of the SPZ. Since computations on the
independent part are often over-approximative while computations on the dependent part
are exact, we apply the restructure operation as introduced in Prop. 3.1.41 in Line 24 of
Alg. 6 to redefine independent generators as dependent generators, which usually increases
the accuracy of the computed reachable set enclosure. The restructuring is heuristically
triggered using the operation volRatio defined as

volRatio
(
〈c,G,GI , E, id〉PZ

)
:=

volume
(
interval(〈0, GI〉Z)

)
volume

(
interval(〈G, [ ], E, id〉PZ)

) , (4.17)

which returns an approximation of the volume of the dependent part of a SPZ divided by
the volume of the independent part.
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Algorithm 6 Conservative Polynomialization Algorithm

Require: Initial set X0, input set U = 〈cu, Gu〉Z , time horizon tf , time step size ∆t,
enlargement factor λ, number of Taylor terms for the exponential matrix ν,
maximum zonotope order ρd, maximum number of dependent factors pd,
maximum volume ratio µd.

Ensure: Tight enclosure of the reachable set Ro([0, tf ]) ⊇ R([0, tf ]).

1: t0 ← 0, j ← 0, Runion ← ∅, Ro(0)← X0, Us ← 0, Ψ(τ0)← 0, U∆ ← U ⊕ (−cu)
2: while tj < tf do

3: xc ← center(R(tj)), x
∗ ← xc + 0.5 ·∆t · f(xc, cu), z

∗ ← [x∗T cTu ]T

4: [A B]← ∇f(z∗), Q ← ∇2f(z∗)

5: Rd(tj)← Ro(tj)⊕ (−x∗), Rd
z(tj) = zonotope(Rd(tj))

6: Z(tj)← Rd(tj)× Us, Zz(tj)← Rd
z(tj)× Us

7: R∆(tj+1)←
(
(eA∆t − In)⊗Rd(tj)

)
⊕ Γ(∆t)f(z∗) (see (4.16))

8: Rs,∆(τj)← comb
(
0,R∆(tj+1)

)
⊕
(
F ⊗Rd

z(tj)
)
⊕ F̂f(z∗) (see (4.15))

9: V(tj)←
(
f(z∗)− Ax∗

)
⊕ 1

2
sq(Q,Z(tj)) (see (4.8))

10: repeat

11: Ψ(τj)← (λ · In)⊗Ψ(τj)

12: Rp(τj)← reachVarInput(Ψ(τj), A,∆t, ν) (see (4.14))

13: R∆(τj)← zonotope
(
Rs,∆(τj)⊕Rp(τj)

)
, Z∆(τj)← R∆(τj)× U∆ (see (4.15))

14: Ro(τj)← Ro(tj)⊕R∆(τj)

15: I ← interval
(
Ro(τj)× U

)
, D ← bound

(
∇3f(z), I

)
(see (4.12))

16: L(τj)← 1
6
poly(D, I ⊕ (−z∗)) (see (4.13))

17: V∆(τi)←
(
B ⊗ U∆

)
⊕ 1

2
sq
(
Q,Zz(tj),Z∆(τj)

)
⊕ 1

2
sq
(
Q,Z∆(τj),Zz(tj)

)
⊕1

2
sq
(
Q,Z∆(τj)

)
⊕ L(τj) (see (4.9))

18: Ψ(τj)← interval
(
V(tj)⊕ V∆(τj)

)
⊕ (−f(z∗) + Ax∗) (see (4.16))

19: until Ψ(τj) ⊆ Ψ(τj)

20: Rp,∆(τj)← reachVarInput(V∆(τj), A,∆t, ν) (see (4.14))

21: Ro(tj+1)←
(
eA∆t ⊗Ro(tj)

)
�
(
Γ(∆t)⊗ V(tj)

)
⊕Rp,∆(τj) (see (4.11))

22: Ro(tj+1)← reduce(Ro(tj+1), ρd)

23: if volRatio(Ro(tj+1)) > µd then (see (4.17))

24: Ro(tj+1)← restructure(Ro(tj+1), pd)

25: end if

26: Runion ← Runion ∪Ro(τj)

27: tj+1 ← tj + ∆t, Ψ(τj+1)← Ψ(τj), j ← j + 1

28: end while

29: Ro([0, tf ])← Runion
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In addition to the standard operations on SPZs introduced in Sec. 3.1, Alg. 6 requires
some additional operations, which we shortly explain now. For the center operation used
in Line 3 of Alg. 6, we return for SPZs the constant offset since there exists no closed-
form expression for the computation of the arithmetic center of a SPZ. Moreover, the
Minkowski addition of a SPZ and a single point can be easily realized by just adding the
point to the constant offset. Construction of the set F⊗Rd(tj) in Line 8 of Alg. 6 requires
the computation of the linear map of an interval matrix and a zonotope, which can be
implemented according to [24, Thm. 3.3]. Moreover, the linear map of the interval matrix

F̂ and the vector f(z∗) in Line 8 of Alg. 6 can be evaluated using interval arithmetic [37].
The resulting set is an interval, which can be converted to a zonotope using [24, Prop. 2.1].
Finally, the quadratic maps on zonotopes in Line 17 of Alg. 6 can be calculated with the
quadratic map for SPZs in Prop. 3.1.31 followed by a zonotope enclosure using Prop. 3.1.14.

4.1.3 Advantages of using Sparse Polynomial Zonotopes

After recapitulating the conservative polynomialization algorithm, we now demonstrate
the advantages for this algorithm resulting from the usage of SPZs. In particular, using
SPZs instead of zonotopes for Alg. 6 has two major advantages:

• With SPZs the quadratic map sq(Q,Z(tj)) in Line 9 of Alg. 6 can be evaluated
without over-approximation.

• Since SPZs preserve dependencies, the reachable set of the linearized system eA∆t ⊗
Ro(tj) and the reachable set due to the static linearization error Γ(∆t) ⊗ V(tj) can
be combined using the exact addition � instead of the Minkowski sum ⊕ in Line 21
of Alg. 6.

Let us explain these two advantages in detail. As shown in Tab. 1.1, zonotopes are
not closed under quadratic maps. Consequently, the quadratic map has to be over-
approximated by a zonotope when computing with zonotopes. While zonotopes are convex,
the result of the quadratic map is usually non-convex, so that the enclosure by a zonotope
often yields quite large over-approximation errors. SPZs without independent generators,
on the other hand, are closed under quadratic maps according to Prop. 3.1.30, which al-
lows us to compute sq(Q,Z(tj)) exactly. For the general case with independent generators
we compute an enclosure using Prop. 3.1.31 for computational reasons. However, this
enclosure is in general still much tighter than an enclosing zonotope.

Moreover, SPZs preserve dependencies since they store a unique identifier for each de-
pendent factor. Therefore, relations between the reachable states of the linearized system
eA∆t ⊗ Ro(tj) and the corresponding points in the set of static linearization errors V(tj)
are preserved, so that for each state in the reachable set eA∆t ⊗Ro(tj) the corresponding
static linearization error is known. Consequently, we can combine the reachable set of
the linearized system eA∆t⊗Ro(tj) and the reachable set due to static linearization errors
Γ(∆t)⊗V(tj) using the exact addition operation � as introduced in Prop. 3.1.20 instead of
the Minkowski sum, which results in a much tighter enclosure of the reachable set. While
zonotopes are also dependency-preserving as shown in Tab. 4.3, the zonotope enclosure of
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the quadratic map introduces new factors that do not appear in the original set, which
destroys most of the dependencies.

Let us now demonstrate the advantages of SPZs with two examples. We begin with a
simple one-dimensional system:

Example 4.1.1. We consider the one-dimensional system ẋ = f(x) = −x + x2, the
initial set X0 = {α1 | α1 ∈ [−1, 1]}, and the time step size ∆t = 1. Computation of the
Taylor series expansion at z∗ = 0 in Line 4 of Alg. 6 results in the values f(z∗) = 0,
A = ∇f(z∗) = −1, and Q = ∇2f(z∗) = 2. The quadratic map in Line 9 evaluates to
V(0) = 0.5 · sq(Q,X0) = {α2

1 | α1 ∈ [−1, 1]} for SPZs. On the other hand, if we use
zonotopes, the quadratic map has to be enclosed by the zonotope V(0) = 0.5 · sq(Q,X0) ⊆
{0.5 + 0.5α2 | α2 ∈ [−1, 1]}. While in this simple case the enclosure by the zonotope does
not result in an over-approximation, the introduction of the new factor α2 destroys the
dependencies between the sets X0 and V(0). Consequently, for zonotopes the sets eA∆t⊗X0

and Γ(∆t)⊗V(0) in Line 21 of Alg. 6 have to be added using the Minkowski sum instead of
the exact addition, which results in an over-approximation due to the loss of dependency.
With zonotopes, we therefore obtain the rather rough enclosure(

eA∆t ⊗X0

)
⊕
(
Γ(∆t)⊗ V(0)

)
⊆
(
e−1 ⊗ {α1 | α1 ∈ [−1, 1]}

)
⊕
(
(1− e−1)⊗ {0.5 + 0.5α2 | α2 ∈ [−1, 1]}

)
=
{

0.368α1 + 0.632(0.5 + 0.5α2) | α1, α2 ∈ [−1, 1]
}

= [−0.368, 1].

With SPZs, on the other hand, we obtain(
eA∆t ⊗X0

)
�
(
Γ(∆t)⊗ V(0)

)
=
(
e−1 ⊗ {α1 | α1 ∈ [−1, 1]}

)
�
(
(1− e−1)⊗ {α2

1 | α1 ∈ [−1, 1]}
)

=
{

0.368α1 + 0.632α2
1 | α1 ∈ [−1, 1]

}
= [−0.054, 1],

which is the exact result.

Next, we consider an exemplary two-dimensional system:

Example 4.1.2. We consider the nonlinear system

ẋ1 = x1x2

ẋ2 = (1− x2
1)x2 − x1,

the initial set X0 = [−1.4, 0.6]× [0.6, 1.4], and the time step size ∆t = 1. The visualization
of the set of static linearization errors V(0) and the reachable set

(
eA∆t ⊗X0

)
�
(
Γ(∆t)⊗

V(0)
)

for the first time interval of the conservative polynomialization algorithm in Fig. 4.2
demonstrates the conservatism introduced by the enclosure of the quadratic map and the
loss of dependency when computing with zonotopes.

We will further quantify the advantages resulting from the usage of SPZs for conservative
polynomialization in Sec. 4.1.5 on several numerical examples.
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Figure 4.2: Visualization of the set of static linearization errors (left) and the reachable set
(right) in the first time interval of the conservative polynomialization algorithm for the nonlinear
system from Example 4.1.2 computed with zonotopes and SPZs.

4.1.4 Computational Complexity

We now derive the computational complexity of the conservative polynomialization algo-
rithm as specified in Alg. 6 for the case that SPZs are used to represent the reachable set.
To specify the computational complexity with respect to the system dimension, we require
the following assumption:

Assumption 4.1.3. Given a nonlinear system defined by the differential equation ẋ(t) =
f(x(t), u(t)) with x(t) ∈ Rn, u(t) ∈ Rm, and f : Rn×Rm → Rn, where e ∈ N0 denotes the
maximum number of elementary operations required for the evaluation of one subfunction
f(i) : Rn × Rm → R, i = 1, . . . , n, we assume for the derivation of the computational
complexity that

e = cen, m = cmn,

with constants ce, cm ∈ R≥0. In addition, we assume that that taking the derivative of a
subfunction f(i)(x(t), u(t)) only changes the number of required elementary operations by a
constant factor.

Clearly, this assumption does not always hold. If f(i)(x(t), u(t)) is for example a non-
sparse quadratic function, we have e = 0.5(n2 + n), which violates Assumption 4.1.3.
However, in practice, Assumption 4.1.3 is satisfied for most nonlinear systems. Since the
number of time intervals tf/∆t and the number of required iterations for the repeat-until
loop in lines 10-19 of Alg. 6 do in general not depend on the system dimension, each
line of the algorithm is executed a constant number of times. The overall computational
complexity of the algorithm is therefore identical to the computational complexity of the
most expensive line.

Let us begin with the complexity of set operations on SPZs that are required for Alg. 6.
The linear maps with quadratic matrices in Line 7 and Line 21 of Alg. 6 have complex-
ity O(n3) according to Prop. 3.1.18. Moreover, the Minkowski sums with zonotopes or
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single points as required in lines5, 7-9, 13, 14, 18, and 21 have complexity O(n) ac-
cording to Prop. 3.1.19. The exact addition � as applied in Line 21 of Alg. 6 has
complexity O(n2 log(n)) according to Prop. 3.1.20. In addition, the Cartesian prod-
ucts with zonotopes or single points in lines 6, 13, and 15 have complexity O(1) ac-
cording to Prop. 3.1.22. The linear combination in Line 8 has complexity O(n2) ac-
cording to Prop. 3.1.26 and the quadratic map sq(Q,Z(tj)) in Line 9 has complexity
O((n + m)3(n + log(n))) = O(n(n + m)3) according to Prop. 3.1.31 since Z(tj) ⊂ Rn+m.
Moreover, operation reduce in Line 22 and operation restructure in Line 24 both have
complexity O(n2) according to Tab. 3.5 if Girard’s method is used for zonotope order re-
duction. Finally, the zonotope enclosures in Line 5 and Line 13 have complexity O(n2)
according to Prop. 3.1.14 and the interval enclosures in Line 15 and Line 18 have complex-
ity O((n+m)3) +O(n3) = O((n+m)3) according to Tab. 3.3 if interval arithmetic is used
for range bounding. The resulting overall complexity of operations on SPZs is therefore

O(n3)︸ ︷︷ ︸
⊗

+O(n)︸ ︷︷ ︸
⊕

+O(n2 log(n))︸ ︷︷ ︸
�

+O(1)︸ ︷︷ ︸
×

+O(n2)︸ ︷︷ ︸
comb

+O(n(n+m)3)︸ ︷︷ ︸
sq

+O(n2)︸ ︷︷ ︸
reduce

+ O(n2)︸ ︷︷ ︸
restructure

+ O(n2)︸ ︷︷ ︸
zonotope

+O((n+m)3)︸ ︷︷ ︸
interval

= O(n(n+m)3).
(4.18)

The most expensive operation that does not involve operations on SPZs is the construc-
tion of the Lagrange remainder L(τj) in Line 16 of Alg. 6, which involves the computation
of D = bound(∇3f(z), I) using range bounding and the calculation of the cubic map
poly(D, I ⊕ (−z∗)). Since ∇3f(z) consists of n(n+m)3 scalar functions, the construction
of D has complexity O(ne(n+m)3) according to Tab. 2.4 if interval arithmetic is used for
range bounding. Moreover, computation of the cubic map poly(D, I⊕ (−z∗)) as defined in
(2.10) using interval arithmetic has complexityO(n(n+m)3), so that the overall complexity
for the construction of the Lagrange remainder L(τj) is O(ne(n+m)3) +O(n(n+m)3) =
O(ne(n + m)3). By combining this with the complexity for SPZ operations in (4.18) we
finally obtain the resulting overall complexity of Alg. 6 as

O(n(n+m)3)︸ ︷︷ ︸
SPZ operations

+O(ne(n+m)3)︸ ︷︷ ︸
Lagrange remainder

= O(ne(n+m)3), (4.19)

which isO(n5) using Assumption 4.1.3. Clearly, (4.19) shows that due to the computational
efficiency of SPZs the overall complexity of reachability analysis using the conservative
polynomialization algorithm is actually dominated by the computation of the Lagrange
remainder, and not by set operations on SPZs.

4.1.5 Numerical Examples

Finally, we demonstrate the performance of SPZs for reachability analysis based on the
conservative polynomialization algorithm on four different benchmarks. We mainly focus
on benchmarks from the ARCH competition [111, 112], which is the major platform for
performance comparisons of reachability analysis tools. The competition contains chal-
lenging benchmarks that define the limit of difficulty that can currently be handled by the
different tools.
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Figure 4.3: Reachable set for the Van-der-Pol oscillator calculated with different set represen-
tations, where the initial set is depicted in white with a black border. A comparison of the exact
reachable set at time t = 3.15s with the reachable set enclosure calculated using SPZs is shown
on the right.

Van-der-Pol Oscillator

The system considered first is the Van-der-Pol oscillator taken from the 2019 ARCH
competition [111, Sec. 3.1]:

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1.

(4.20)

For this system, we compare the results for reachability analysis with Alg. 6 using
zonotopes, the quadratic zonotopes from [47], and SPZs. We consider the initial set
X0 = [1.23, 1.57] × [2.34, 2.46] and execute Alg. 6 with the parameter values ∆t = 0.005s,
λ = 1.1, ν = 4, ρd = 50, pd = 100, and µd = 0.01. For a fair comparison, we use the same
parameter values for every set representation. The resulting reachable sets are shown in
Fig. 4.3 (left). It is clearly visible that the stability of the limit cycle can only be verified
with SPZs when reachable sets are not split. The computation time is 9.33 seconds for
zonotopes, 13.38 seconds for quadratic zonotopes, and 16.52 seconds for SPZs. An impres-
sion on how tight the reachable set can be enclosed with SPZs is provided in Fig. 4.3 (right),
where the reachable set at time t = 3.15s computed with a time step size of ∆t = 0.0001s
and a maximum volume ratio of µd = 0.001 is compared to the exact reachable set of the
system. The figure also demonstrates how well the SPZ approximates the shape of the
exact reachable set.

Drivetrain

For the second numerical example we examine a drivetrain, which is again a benchmark
from the 2019 ARCH competition [112, Sec. 3.3]. We consider the case with two rotating
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Figure 4.4: Reachable sets for the drivetrain benchmark calculated with zonotopes (left),
quadratic zonotopes (middle), and SPZs (right). The unsafe set defined by the specification
is depicted in orange.

masses, resulting in a system dimension of n = 11. The model is a hybrid system with
linear dynamics. However, we apply the approach in [113] for calculating the intersections
with guard sets, which is based on a time-triggered conversion of guards and results in
highly nonlinear dynamics due to the time-scaling process. The initial set is given by the
zonotope X0 = 〈c, 0.5 g〉Z , where c ∈ Rn and g ∈ Rn are defined as in [112, Sec. 3.3].
Moreover, we consider the same extreme acceleration maneuver as in [112, Sec. 3.3]. As a
specification, we require that the engine torque after 1.5 seconds is at least 59Nm, which
can be formally specified as ∀t ≥ 1.5s : Tm ≥ 59Nm. The results for the drivetrain model
are shown in Fig. 4.4. We explicitly consider the possibility of splitting the reachable sets
along the largest generator vector so that the specification can be verified with all set
representations. However, splitting sets prolongs the computation time: With quadratic
zonotopes, verification takes 93 seconds and with zonotopes verification takes 221 seconds.
It was only possible with SPZs to verify the specification without splitting, which results in
a computation time of 15 seconds. This is six times faster compared to quadratic zonotopes
and more than 14 times faster compared to zonotopes.

Spacecraft Rendezvous

As a third numerical example, we consider the docking maneuver of a spacecraft taken
from the 2019 ARCH competition [111, Sec. 3.4]. The model is a hybrid system with
nonlinear dynamics, where the four system states are the planar positions sx, sy and cor-
responding velocities vx, vy of the spacecraft. The three discrete modes are approaching,
rendezvous attempt, and aborting. We consider the same initial set and the same specifica-
tions as in [111, Sec. 3.4]. In particular, the specifications require that in mode rendezvous
attempt the spacecraft is located inside the line-of-sight cone and the absolute velocity stays
below 3.3m/min. Moreover, in mode aborting the spacecraft should not collide with the
space station that is located at the origin. We apply Alg. 6 using SPZs and the parameter
values ∆t = 0.2min (mode approaching and abortion), ∆t = 0.05min (mode rendezvous
attempt), λ = 1.1, ν = 5, ρd = 10, pd = 10, and µd = 1. To calculate the intersections
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Figure 4.5: Reachable set for the spacecraft rendezvous benchmark (green), where the initial
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unsafe sets defined by the velocity constraint and the spacestation are depicted in orange.

Table 4.1: Computation times in seconds for the spacecraft rendezvous benchmark. The results
for the different tools are taken from [111, Tab. 4]. The computation times are measured on the
machines of the participants, which are listed in [111, Appendix A].

Tool Computation Time Set Representation Language

Ariadne [106] 172 Taylor models C++
CORA [1] 11.8 Zonotopes MATLAB
DynIbex [108] 294 Zonotopes C++
Flow* [44] 18.7 Taylor models C++
Isabelle/HOL [109] 295 Zonotopes SML
Our approach 10.1 SPZs MATLAB

between the reachable set and the guard sets, we use the approach that we present later in
Sec. 4.4. The visualization of the reachable set in Fig. 4.5 demonstrates that all specifica-
tions are satisfied. To compare the performance of SPZs with other reachability tools, we
consider the results from the 2019 ARCH competition [111]. The comparison in Tab. 4.1
shows that using SPZs actually results in the smallest computation time.

Transcriptional Regulator Network

To demonstrate the scalability of reachability analysis using SPZs, we consider the bench-
mark in [114, Sec. VIII.D] describing a transcriptional regulator network with N genes.
For a network with N genes the system has n = 2N dimensions. We consider the case
without an artificial guard set so that the benchmark represents a continuous nonlinear
system with uncertain inputs. Moreover, we use the same initial set, time horizon, and
set of uncertain inputs as in [114, Sec. VIII.D]. We compute the reachable set with SPZs
using Alg. 6 together with the parameter values ∆t = 0.1min, λ = 1.1, ν = 3, ρd = 10,



160 Chapter 4 Reachability Analysis

Table 4.2: Computation times in seconds for the transcriptional regulator network benchmark
for different system dimensions.

System Dimension n = 12 n = 24 n = 36 n = 48

Computation Time 6 20 54 122
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Figure 4.6: Reachable set for the transcriptional regulator network for the system dimensions
n = 12 (left) and n = 48 (right). Simulations for random initial points and random inputs are
depicted in gray.

pd = 50, and µd = 1. The reachable set is visualized in Fig. 4.6 and the computation
times for different system dimensions are listed in Tab. 4.2. Even for a system dimension
of 48, the computation of the reachable set with SPZs takes only 122 seconds. Moreover,
as shown in Fig. 4.6, the accuracy of the calculated enclosure of the reachable set does not
get worse for higher system dimensions.
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4.2 Reachable Subsets

As we demonstrated in Sec. 4.1.3, the main advantage of the conservative polynomializa-
tion algorithm for reachability analysis of nonlinear systems is that it preserves relations
between the reachable states of the linearized system and the corresponding points in the
set of linearization errors. As a consequence, the reachable set due to linearization errors
can be added using the exact addition instead of the Minkowski sum, which yields a much
tighter enclosure. In this section2, we generalize this concept and prove that the conserva-
tive polynomialization algorithm indeed also preserves relations between initial states and
reachable states if a dependency-preserving set representation, such as SPZs, is used. These
relations can be exploited for the computationally efficient extraction of reachable subsets.
That is, given the reachable set RX0(t) for an initial set X0, we can extract the reachable

set RX̂0
(t) for any initial set X̂0 ⊆ X0 by evaluating an analytical equation (see Fig. 4.7),

which is much faster than computing RX̂0
(t) with a reachability algorithm. This novel

method offers great advantages for applications where reachable sets have to be computed
for many different subsets X̂0 ⊆ X0, like safety falsification, optimization over reachable
sets, and motion-primitive-based control.

X0

X̂0

RX0
(t)

R
X̂0
(t)

Figure 4.7: Given a reachable set RX0(t) for a set of initial states X0 and a subset of initial
states X̂0 ⊆ X0, we can obtain RX̂0

(t) without any reachability analysis.

The structure of the section is as follows: First, we provide an overview about related
approaches in Sec. 4.2.1. Next, in Sec. 4.2.2, we formally define the properties a set
representation has to fulfill to be dependency-preserving. Afterward, we prove in Sec. 4.2.3
that the conservative polynomialization algorithm is dependency-preserving and show how
this property can be exploited to efficiently extract reachable subsets. The computational
complexity of reachable subset extraction is derived in Sec. 4.2.4, and in Sec. 4.2.5 we
finally demonstrate the advantages resulting from our novel reachable subset approach on
multiple different applications.

4.2.1 State of the Art

While our approach is to the best of our knowledge the first one to explicitly consider the
extraction of reachable subsets, there exist many related approaches in the literature, for
which we provide an overview in this section.

Let us first consider approaches from different fields of research that utilize dependency
preservation. For range bounding, the loss of relation known as the dependency problem
is a big issue, as we already mentioned in Sec. 2.7. While intervals as used for interval

2This section is based on [115].



162 Chapter 4 Reachability Analysis

arithmetic [37, Ch. 2.3] are not dependency-preserving, affine arithmetic [30] and Taylor
models [41] explicitly preserve relations between different variables, and consequently often
enable the computation of much tighter bounds. Moreover, for abstract interpretation, the
work in [29] demonstrates how the parameterization of zonotopes can be utilized to preserve
relations between inputs and outputs of computer programs.

Dependency preservation is also used in combination with reachability analysis. In
[116], the relation between the initial and reachable states is used to compute inner-
approximations of reachable sets. Similarly, the approaches in [39, 43] utilize this relation
to tightly enclose the intersections with guard sets for hybrid system reachability analysis.
For linear systems with piecewise constant inputs, [51] extracts initial states and input sig-
nals resulting in a violation of the specification from the computed reachable set by solving
a linear program. A similar concept is used in [117], where reachability analysis is utilized
to efficiently determine falsifying trajectories for hybrid systems with linear continuous
dynamics.

The problem of finding falsifying initial states and input signals is known as safety
falsification. In addition to the previously mentioned reachability-based falsification ap-
proaches [51, 117], there exist many other safety falsification techniques that are based on
other concepts. Since we evaluate later in Sec. 4.2.5 the performance of safety falsification
using our novel reachable subset method in comparison with other state of the art falsifi-
cation approaches, we provide a short overview. Monte-Carlo methods [118,119] randomly
sample from the parameter space to determine falsifying trajectories. The cross-entropy
technique in [120] constructs a function that estimates the robustness for each parame-
ter. Moreover, ant-colony optimization in [121] divides the parameter space into multiple
discrete regions and then propagates samples between these regions to determine regions
corresponding to parameter values that most likely result in a falsification. Two common
toolboxes for safety falsification are S-TaLiRo [122] and Breach [123], which implement
multiple of the above-mentioned approaches.

4.2.2 Dependency-Preserving Set Representations

To prove that the conservative polynomialization algorithm preserves dependencies when
using SPZs, we first have to show that all set operations used by the algorithm are
dependency-preserving for SPZs. A prerequisite for preserving relations between points
in different sets is that the points inside the sets are parameterized. As shown in Tab. 4.3,
not all set representations fulfill this requirement. We demonstrate this exemplary for the
halfspace representation and the vertex representation of a polytope:

Example 4.2.1. Given a polytope P ⊂ Rn, its halfspace representation is according to
Def. 2.2.2 defined as

P = 〈A, b〉H = {x ∈ Rn | Ax ≤ b} ,

and its vertex representation is according to Def. 2.2.3 defined as

P = 〈[v1 . . . vs]〉V =

{ s∑
i=1

βivi

∣∣∣∣ βi ≥ 0,
s∑
i=1

βi = 1

}
.
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For the vertex representation, each point x ∈ P can be parameterized by specific values βi
so that

x =
s∑
i=1

βivi with βi ≥ 0,
s∑
i=1

βi = 1. (4.21)

For the halfspace representation, on the other hand, such a parameterization is not possible.

In general, the above parameterization of the vertex representation is not unique [124].
For parameterized sets, we introduce evaluation functions:

Definition 4.2.2. (Evaluation Function) Given a set S ⊂ Rn that is parameterized by
the parameter vector d ∈ D, the evaluation function S : D → 2S returns the set S that
corresponds to a specific value d ∈ D of the parameter vector d:

S (d) = S,

where the parameter domain D satisfies⋃
d∈D

S (d) = S.

We use the shorthand notation

S (D̂) =
{
S (d)

∣∣∣ d ∈ D̂}
for the evaluation function applied to a set of parameters d ∈ D̂ ⊆ D.

If the bracket-notation S (d) for the evaluation function is used in combination with set
operations, all set operations inside the brackets are evaluated first. For example, given a
set S ⊂ Rn and a matrix M ∈ Rw×n, we use the notation M ⊗ S (d) as a shorthand for

S (d) with S = M ⊗ S. Let us exemplary demonstrate the evaluation function for the
vertex representation of polytopes:

Example 4.2.3. For a polytope P = 〈[v1 . . . vs]〉V in vertex representation, the parameter
domain is

D =

{
β ∈ Rs

∣∣∣∣ β(i) ≥ 0,
s∑
i=1

β(i) = 1

}
and

P (β) =

{ s∑
i=1

β(i)vi

}
(4.22)

is the evaluation function.

After introducing parameterization and evaluation functions as preliminaries, we are now
ready to formally define dependency preservation:

Definition 4.2.4. (Dependency Preservation) Given an implementation of a set operation
op and a set S ⊂ Rn parameterized by d ∈ D, we call the implementation of op dependency-
preserving if

∀d ∈ D : op
(
S (d)

)
⊆ op(S) (d)

holds.



164 Chapter 4 Reachability Analysis

Table 4.3: Characterization of set representations with respect to parameterization and depen-
dency preservation of set operations.

Set
Representation

Parameter-
ization

Dependency Preservation

Linear Minkowski Cartesian Quadratic

Map Sum Product Map

Intervals ×
Zonotopes

√ √ √ √ √

Polytopes (H-Rep.) ×
Polytopes (V-Rep.)

√ √
× × ×

Polytopes (Z-Rep.)
√ √ √ √ √

Con. Zonotopes
√ √ √ √ √

Zonotope Bundles
√ √ √ √ √

Ellipsoids ×
Support Functions ×
Taylor Models

√ √ √ √ √

Level Sets ×
Star Sets

√ √ √ √
×

Sparse Poly. Zono.
√ √ √ √ √

Con. Poly. Zono.
√ √ √ √ √

A summary of the set operations that are dependency-preserving for different set rep-
resentations is shown in Tab. 4.3. Note that even if a set representation is not closed
under a set operation, a closed-form expression for enclosing the result of the set operation
can still be dependency preserving. For example, while zonotopes are not closed under
quadratic maps, the enclosure of the result from the quadratic map with a zonotope is de-
pendency preserving. Again, we demonstrate dependency-preservation with the example
of the vertex representation:

Example 4.2.5. Given a scalar M ∈ R and a one-dimensional polytope P = 〈[v1 v2]〉V ⊂
R, its linear map is computed as

M ⊗ P =
〈
[Mv1 Mv2]

〉
V
. (4.23)

Let us introduce the polytope P = 〈[−1 3]〉V , the point x = 2 ∈ P, and the scalar M = 2.
According to (4.21), the point x ∈ P can be parameterized by the values β = [0.25 0.75]T ,
so that x = P (β). Computation of the linear map according to (4.23) yields

M ⊗ P = 2⊗
〈
[−1 3]

〉
V

(4.23)
=
〈
[ −2︸︷︷︸
v̂1

6︸︷︷︸
v̂2

]
〉
V
. (4.24)
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If we evaluate the result for β corresponding to the point x, we obtain

M ⊗ P (β)
(4.22)
=

2∑
i=1

β(i)v̂i
(4.24)
= 0.25 · (−2) + 0.75 · 6 = 4 = Mx = M ⊗ P (β),

which demonstrates that the implementation of the linear map in (4.23) is dependency-
preserving according to Def. 4.2.4.

Next, we consider the quadratic map, which is not dependency-preserving for the vertex
representation:

Example 4.2.6. Given a scalar Q ∈ R and a one-dimensional polytope P = 〈[v1 v2]〉V ,
its quadratic map is computed as

sq({Q},P)
(2.6)
=
{
xTQx

∣∣ x ∈ P} =

{〈
[0 max(|v1|, |v2|)2Q]

〉
V
, 0 ∈ P〈

[min(v2
1, v

2
2)Q max(v2

1, v
2
2)Q]

〉
V
, otherwise

.

(4.25)

As in Example 4.2.5, we consider the polytope P = 〈[−1 3]〉V and the point x = 2 ∈ P,
which can according to (4.21) be parameterized by the values β = [0.25 0.75]T , so that
x = P (β). Computation of the quadratic map according to (4.25) for the value Q = 2
yields

sq({Q},P) = sq
(
{2}, 〈[−1 3]〉V

) (4.25)
=
〈
[ 0︸︷︷︸
v̂1

18︸︷︷︸
v̂2

]
〉
V
. (4.26)

If we evaluate the computed quadratic map for β corresponding to the point x, we obtain

sq({Q},P) (β)
(4.22)
=

2∑
i=1

β(i)v̂i
(4.26)
= 0.25 · 0+0.75 · 18 = 13.5

6= 8 = sq({Q}, x) = sq
(
{Q}, P (β)

)
,

which is not identical to sq({Q}, P (β)). The implementation of the quadratic map in
(4.25) is therefore not dependency-preserving according to Def. 4.2.4.

The overall conservative polynomialization algorithm in Alg. 6 consists of a sequence
of basic set operations. We therefore have to derive some results on the composition of
dependency-preserving set operations, for which we require the following assumption:

Assumption 4.2.7. Given two sets S1,S2 ⊂ Rn with S1 ⊆ S2, we assume that all unary
set operations un satisfy

un(S1) ⊆ un(S2). (4.27)

Moreover, given sets S1,S2 ⊂ Rn and S3,S4 ⊂ Rw with S1 ⊆ S2 and S3 ⊆ S4, we assume
that

bin(S1,S3) ⊆ bin(S2,S4) (4.28)

is satisfied for all binary set operations bin.



166 Chapter 4 Reachability Analysis

Clearly, some set operations, like for example the Minkowski difference as defined in (2.3),
violate Assumption 4.2.7. For the set operations used by the conservative polynomialization
algorithm, however, Assumption 4.2.7 is satisfied. Moreover, Assumption 4.2.7 equivalently
holds for the composition of set operations:

Lemma 4.2.8. Given two set operations A and B that satisfy Assumption 4.2.7, their
composition A ◦ B satisfies Assumption 4.2.7, too.

Proof. If A and B are unary set representations, it holds for sets S1,S2 ⊂ Rn with S1 ⊆ S2

that

(A ◦ B)(S1) = A( B(S1)︸ ︷︷ ︸
Ass. 4.2.7
⊆ B(S2)

)
Assumption 4.2.7

⊆ A(B(S2)) = (A ◦ B)(S2),

which is identical to the conditions in Assumption 4.2.7. Trivially, this result also holds
for compositions involving binary set operations.

Finally, we show that the composition of two dependency-preserving set operations is
dependency-preserving:

Lemma 4.2.9. Given two dependency-preserving set operations A and B, their composition
A ◦ B is dependency-preserving as well.

Proof. For simplicity, we consider the case where A and B are both unary set operations,
since the extension to compositions involving binary set operations is straightforward.
Consequently, we have to prove that

∀d ∈ D : (A ◦ B)
(
S (d)

)
⊆ (A ◦ B)(S) (d) (4.29)

holds for all sets S ⊂ Rn parameterized by d ∈ D. Since B is dependency-preserving, we
have according to Def. 4.2.4 that

∀d ∈ D : B
(
S (d)

)
⊆ B(S) (d). (4.30)

Then, using (4.30) and Assumption 4.2.7, we obtain

∀d ∈ D : A
(
B
(
S (d)

)︸ ︷︷ ︸
(4.30)

⊆ B(S) (d)

) Assumption 4.2.7

⊆ A
(
B(S) (d)

)
. (4.31)

Finally, since A is dependency-preserving, it holds according to Def. 4.2.4 that

∀d ∈ D : (A ◦ B)( S (d)) = A
(
B
(
S (d)

)) (4.31)

⊆ A
(
B(S) (d)

)
Def. 4.2.4

⊆ A(B(S)) (d) = (A ◦ B)(S) (d),

which is identical to (4.29) and therefore concludes the proof.
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While the results derived up to now hold for general set representations, we now specialize
on SPZs. We first consider the parameterization and the evaluation function of SPZs. In
general, SPZs as defined in Def. 3.1.1 are parameterized by the dependent factors α and the
independent factors β. However, as shown in Prop. 3.1.4, every SPZ can be equivalently
represented as a SPZ without independent generators. For simplicity, we therefore only
use the dependent factors α for the parameterization, since without loss of generality we
can assume that the initial set for reachability analysis is a SPZ without independent
generators. Consequently, we obtain the following evaluation function for SPZs:

Definition 4.2.10. (Evaluation Function SPZ) Given a SPZ PZ = 〈c,G,GI , E, id〉PZ
⊂ Rn, its evaluation function is

PZ (α) := c+
h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕

{ q∑
j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}
,

where the parameter domain is D = [−1,1] ⊂ Rp.

It is trivial to see that the result of the evaluation function as defined in Def. 4.2.10 can
be represented as a zonotope

PZ (α) =

〈
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i), GI

〉
Z

.

The simple definition of the evaluation function in Def. 4.2.10 is only applicable if the
dependent factors of the SPZ do not change. However, some operations on SPZs, such
as for example the restructure operation, potentially increase or decrease the number of
dependent factors, which would impede dependency preservation if the evaluation function
in Def. 4.2.10 is used. Luckily, SPZs store a unique identifier for each dependent factor,
which allows us to define an extended version of the evaluation function as follows:

Definition 4.2.11. (Extended Evaluation Function SPZ) Given a SPZ PZ = 〈c,G,GI ,

E, id〉PZ ⊂ Rn, a parameter vector α̂ ∈ Rw, and an identifier vector îd ∈ N1×w satisfying

∀i, j ∈ {1, . . . , w} : îd(i) 6= îd(j), the extended evaluation function of PZ is

PZ
(
α̂, îd

)
:=

{
c+

h∑
i=1

( p∏
k=1

α̃
E(k,i)

(k)

)
G(·,i)

∣∣∣∣ qα1, . . . , qαp ∈ [−1, 1]

}

⊕
{ q∑

j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}
,

where

∀k ∈ {1, . . . , p} : α̃(k) =

{
α̂(i), îd(i) = id(k)

qαk, otherwise

and the parameter domain is D = [−1,1] ⊂ Rw.
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Figure 4.8: Sets resulting from the application of different set operations to the SPZ PZ from
Example 4.2.12. The point x and its transformations are depicted by the black dots. Black lines
correspond to the case where α1 = 0.5 = const., α2 ∈ [−1, 1] and the case where α2 = 0.4 =
const., α1 ∈ [−1, 1].

We again use the shorthand PZ (D̂, îd) to denote the application of the extended eval-

uation function to a set of parameters α̂ ∈ D̂ ⊂ D. Note that the simple definition of
the evaluation function in Def. 4.2.10 is just a special case of the general definition in
Def. 4.2.11 with PZ (α) = PZ (α, id). The set resulting from the extended evalua-
tion function in Def. 4.2.11 can be represented as a SPZ, which we demonstrate later in
Sec. 4.2.4. Since the evaluation function of a SPZ as defined in Def. 4.2.10 and Def. 4.2.11
is nonlinear, finding a parameterization for a point inside a SPZ can be computationally
demanding. However, for many applications, such as reachability analysis, the initial set is
often a multi-dimensional interval. In this case the parameterization is unique and trivial
to compute, as we demonstrate with the following example:

Example 4.2.12. We consider a SPZ PZ and a point x defined as

PZ =

{[
1
0

]
α(1) +

[
0
1

]
α(2)︸ ︷︷ ︸

PZ (α)

∣∣∣∣ α(1), α(2) ∈ [−1, 1]

}
and x =

[
0.5
0.4

]
.

Trivially, the point x can be parameterized with α = [0.5 0.4]T , so that x = PZ (α).

For the conservative polynomialization algorithm in Alg. 6 we require the set oper-
ations linear map, Minkowski sum with a zonotope, Cartesian product with a zono-
tope, quadratic map, order reduction and restructuring. To show that the algorithm
is dependency-preserving, we consequently have to prove that all these operations are
dependency-preserving for SPZs. We exemplary demonstrate this here for the Minkowski
sum with a zonotope, and provide the proofs for the remaining set operations in Ap-
pendix C.

Proposition 4.2.13. (Dependency Preservation Minkowski Sum) Given a SPZ PZ =
〈c,G,GI , E, id〉PZ ⊂ Rn and a zonotopes Z = 〈cz, Gz〉Z ⊂ Rn, it holds that the implemen-
tation of the Minkowski sum PZ ⊕ Z in Prop. 3.1.19 is dependency-preserving.

Proof. According to the definition of dependency preservation in Def. 4.2.4, we have to
show that

∀α ∈ [−1,1] : PZ (α)⊕Z = PZ ⊕ Z (α). (4.32)
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Inserting the evaluation function for SPZs as defined in Def. 4.2.10, the definition of zono-
topes in Def. 2.2.4, and the implementation of the Minkowski sum in Prop. 3.1.19 into
(4.32) yields

∀α ∈ [−1,1] : PZ (α)⊕Z

Def. 4.2.10
= c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕

{ q∑
j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}
⊕Z

Def. 2.2.4
= c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕

{ q∑
j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}

⊕
{
cz +

l∑
j=1

βq+jGz(·,j)

∣∣∣∣ βq+j ∈ [−1, 1]

}
(2.2)
=

c+ cz +
h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕

{ q∑
j=1

βjGI(·,j) +
l∑

j=1

βq+jGz(·,j)

∣∣∣∣ βj, βq+j ∈ [−1, 1]

}

Def. 4.2.10
=

〈
c+ cz, G, [GI Gz], E, id

〉
PZ

(α)
Prop. 3.1.19

= PZ ⊕ Z (α),

which is identical to (4.32) and therefore concludes the proof.

A visualization of dependency preservation of SPZs for different set operations is shown
in Fig. 4.8.

4.2.3 Extraction of Reachable Subsets

After introducing dependency preservation for set operations in the previous section, we
now prove that the conservative polynomialization algorithm is dependency-preserving for
SPZs. Let us first introduce some notations. The computation of a tight enclosure of
the reachable set using the conservative polynomialization algorithm as specified in Alg. 6
is denoted by the operation Ro(tf ) = reach(X0). Moreover, we denote the expansion
point z∗ in the j-th time interval of Alg. 6 by z∗j . For the derivations in this section we

require a small variation of the algorithm in which the sets of linearization errors Ψ(τj)
and the expansion points z∗j for all time intervals are provided as additional input argu-
ments and consequently do not have to be computed. We denote this with the operation
Ro(tf ) = reach(X0,Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z

∗
N−1), where N = tf/∆t is the number

of time intervals. Note that if Ψ(τj) is provided as an additional input argument, the
repeat-until loop in lines 10-19 of Alg. 6 is not necessary any more, so that we only have to
consider one iteration of the loop. Moreover, if the sets Ψ(τj) enclose the exact lineariza-
tion errors, which we can guarantee in our case, providing Ψ(τj) and z∗j as additional input
arguments does not destroy the correctness of the algorithm. Finally, the computations for
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a single time interval of Alg. 6, which corresponds to a single iteration of the while-loop
in lines 2-28, are summarized by the operation Ro(tj+1) = post(Ro(tj),Ψ(τj), z

∗
j ), so that

the overall reachability algorithm can be equivalently described as the N -times consecutive
execution of the post operation.

The outline of the proof is as follows: We first show that the post operation is
dependency-preserving for SPZs since it represents a composition of dependency-preserving
set operations. Since Alg. 6 can be viewed as the N -times consecutive execution of the
post operation, it then holds that Alg. 6 is dependency-preserving, too, which enables the
efficient extraction of reachable subsets as we finally prove in our main theorem. Before
we consider the post operation, we first study the computation of the set of dynamic
linearization errors V∆(τj):

Lemma 4.2.14. The operation V∆(τj) = abstrErr(Ro(tj),Ψ(τj)) denoting the computa-
tion of the set of dynamic linearization errors V∆(τj) in Alg. 6 satisfies Assumption 4.2.7.

Proof. A flowchart visualizing the computations required for operation abstrErr is shown
in Fig. 4.9, where the operation reachDelta is defined as

reachDelta
(
Rd(tj)

)
= comb

(
0,
(
(eA∆t − In)⊗Rd(tj)

)
⊕ Γ(∆t)f(z∗)

)
⊕
(
F ⊗ zonotope(Rd(tj)

)
⊕ F̂f(z∗),

(4.33)

the operation lagrRem is defined as

lagrRem(I) =
1

6
poly

(
bound(∇3f(z), I), I ⊕ (−z∗)

)
, (4.34)

and the operation dynErr is defined as

dynErr
(
Zz(tj),Z∆(τj)

)
=
(
B ⊗ U∆

)
⊕ 1

2
sq
(
Q,Zz(tj),Z∆(τj)

)
⊕ 1

2
sq
(
Q,Z∆(τj),Zz(tj)

)
⊕ 1

2
sq
(
Q,Z∆(τj)

)
.

(4.35)

As Fig. 4.9 demonstrates, abstrErr is a composition of operations that satisfy As-
sumption 4.2.7, so that according to Lemma 4.2.8 operation abstrErr satisfies Assump-
tion 4.2.7.

Using Lemma 4.2.14, we can now show that the post operation is dependency-preserving:

Lemma 4.2.15. Given a set Ro(tj) = 〈c,G,GI , E, id〉PZ ⊂ Rn represented as a SPZ, a
set of linearization errors Ψ(τj) ⊂ Rn, and an expansion point z∗j ∈ Rn+m, we have

∀α ∈ [−1,1] : post
(
Ro(tj) (α, id),Ψ(τj), z

∗
j

)
⊆ post(Ro(tj),Ψ(τj), z

∗
j ) (α, id),

so that operation post is dependency-preserving according to Def. 4.2.4.
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Figure 4.9: Flowchart for the operation abstrErr that computes the set of dynamic linearization
errors V∆(τj) for the conservative polynomialization algorithm in Alg. 6, where operations that
satisfy Assumption 4.2.7 are depicted in blue. The operations reachDelta, reachVarInput,
lagrRem, and dynErr are defined as in (4.33), (4.14), (4.34), and (4.35), respectively.

Proof. As shown in Fig. 4.10, the operation post representing a single iteration of the
conservative polynomialization algorithm in Alg. 6 is defined as

post
(
Ro(tj),Ψ(τj), z

∗
j

)
=

restructure
(
reduce

(
stat(Ro(tj))⊕ dyn(Ro(tj),Ψ(τj)), ρd

)
, pd
)
,

where the operations stat and dyn are given as

stat
(
Ro(tj)

)
=
(
eA∆t ⊗Ro(tj)

)
�(

Γ(∆t)⊗ ((f(z∗)− Ax∗)⊕ 0.5sq(Q, (Ro(tj)⊕ (−x∗))× Us)
)

and
dyn
(
Ro(tj),Ψ(τj)

)
= reachVarInput

(
abstrErr(Ro(tj),Ψ(τj))

)
.
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The visualization in Fig. 4.10 demonstrates that the operation stat is defined by the com-
position of set operations that are dependency-preserving for SPZs, which proves according
to Lemma 4.2.9 that stat is dependency-preserving, too:

∀α ∈ [−1,1] : stat
(
Ro(tj) (α, id)

)
⊆ stat

(
Ro(tj)

)
(α, id). (4.36)

Moreover, since operation abstrErr satisfies Assumption 4.2.7 according to Lemma 4.2.14,
operation dyn is defined by a composition of set operations that satisfy Assumption 4.2.7,
as it is shown in Fig. 4.10. According to Lemma 4.2.8, operation dyn therefore satisfies
Assumption 4.2.7, so that

∀α ∈ [−1,1] : dyn
(
Ro(tj) (α, id),Ψ(τj)

)
⊆ dyn

(
Ro(tj),Ψ(τj)

)
since Ro(tj) (α, id) ⊆ Ro(tj), which implies that

∀α ∈ [−1,1] ∃S ⊂ Rn : dyn
(
Ro(tj) (α, id),Ψ(τj)

)
⊕ S = dyn

(
Ro(tj),Ψ(τj)

)
. (4.37)

Using (4.36) and (4.37), we obtain for the Minkowski sum stat(Ro(tj))⊕dyn(Ro(tj),Ψ(τj))
the result

∀α ∈ [−1,1] : stat
(
Ro(tj) (α, id)

)
⊕ dyn

(
Ro(tj) (α, id),Ψ(τj)

) (4.36)

⊆

stat
(
Ro(tj)

)
(α, id)⊕ dyn

(
Ro(tj) (α, id),Ψ(τj)

)
⊆

stat
(
Ro(tj)

)
(α, id)⊕ dyn

(
Ro(tj) (α, id),Ψ(τj)

)
⊕ S (4.37)

=

stat
(
Ro(tj)

)
(α, id)⊕ dyn

(
Ro(tj),Ψ(τj)

) Prop. 4.2.13
=

stat
(
Ro(tj)

)
⊕ dyn

(
Ro(tj),Ψ(τj)

)
(α, id),

which proves that stat(Ro(tj))⊕dyn(Ro(tj),Ψ(τj)) is dependency-preserving for SPZs ac-
cording to Def. 4.2.4. Consequently, as visualized in Fig. 4.10, the operation post is defined
by a composition of dependency-preserving set operations and therefore is dependency-
preserving due to Lemma 4.2.9.

Next, we extend the results for a single time interval in Lemma 4.2.15 to the overall
algorithm:

Lemma 4.2.16. Given an initial set X0 = 〈c,G,GI , E, id〉PZ ⊂ Rn represented as a SPZ,
it holds that

∀α ∈ [−1,1] : reach
(
X0 (α, id),Ψ(τ0), . . . ,Ψ(τN−1),z∗0 , . . . , z

∗
N−1

)
⊆ reach(X0) (α, id),

where Ψ(τ0), . . . ,Ψ(τN−1) and z∗0 , . . . , z
∗
N−1 are the sets of linearization errors and expan-

sions points resulting from the computation of reach(X0).
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Figure 4.10: Flowchart for a single time interval of the conservative polynomialization algorithm
in Alg. 6, where operations that are dependency-preserving for SPZs are depicted in green and
operations that satisfy Assumption 4.2.7 are depicted in blue.

Proof. Clearly, the conservative polynomialization algorithm in Alg. 6 can be equivalently
expressed as the N -times consecutive execution of the post operation:

Ro(tf ) = post
(
. . . post(X0,Ψ(τ0), z∗0) . . . ,Ψ(τN−1), z∗N−1

)︸ ︷︷ ︸
reach(X0,Ψ(τ0),...,Ψ(τN−1),z∗0 ,...,z

∗
N−1)

.

Consequently, since the operation post is dependency-preserving according to
Lemma 4.2.15 and the composition of dependency-preserving operations yields a
dependency-preserving operation due to Lemma 4.2.9, we have that reach is dependency-
preserving:

∀α ∈ [−1,1] : reach
(
X0 (α, id),Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z

∗
N−1

)
⊆ reach(X0,Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z

∗
N−1) (α, id)︸ ︷︷ ︸

= reach(X0) (α,id)

,

where reach(X0,Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z
∗
N−1) = reach(X0) holds since the sets of lin-

earization errors Ψ(τj) and the expansion points z∗j are obtained from the computation
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of reach(X0), which corresponds to the original version of conservative polynomialization
algorithm in Alg. 6 without additional input arguments.

Finally, we formulate the main result:

Theorem 4.2.17. Given an initial set X0 = 〈c,G,GI , E, id〉PZ ⊂ Rn represented as a
SPZ, it holds that reach(X0) (α, id) is an outer-approximation of the exact reachable set

Rx0(tf ) starting from x0 = X0 (α, id):

∀α ∈ [−1,1] : Rx0(tf ) ⊆ reach(X0) (α, id) with x0 = X0 (α, id),

where operation reach denotes the computation of an outer-approximation of the reachable
set using the conservative polynomialization algorithm as specified in Alg. 6.

Proof. As shown in Sec. 4.1.2, Alg. 6 always computes an outer-approximation of the reach-
able set, independent of the choice for the expansion points z∗0 , . . . , z

∗
N−1. Moreover, since

x0 = X0 (α, id) ∈ X0, it holds that the sets of linearization errors Ψ(τ0), . . . ,Ψ(τN−1) calcu-
lated during reach(X0) enclose the sets of linearization errors for the reachable set starting
from x0. Consequently, we have that reach( X0 (α, id),Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z

∗
N−1)

is an outer-approximation of the exact reachable set starting from x0:

Rx0(tf ) ⊆ reach
(
X0 (α, id),Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z

∗
N−1

)
. (4.38)

Using (4.38) and Lemma 4.2.16, we obtain

∀α ∈ [−1,1] : Rx0(tf )
(4.38)

⊆ reach
(
X0 (α, id),Ψ(τ0), . . . ,Ψ(τN−1), z∗0 , . . . , z

∗
N−1

)
Lemma 4.2.16

⊆ reach(X0) (α, id),

which concludes the proof.

Since Thm. 4.2.17 holds for all points x0 ∈ X0 inside the initial set X0, it is obvious
that Thm. 4.2.17 equally holds for all sets X̂0 ⊆ X0. In addition, Thm. 4.2.17 also holds
for all reachable sets at intermediate time points Ro(tj), j = 0, . . . , N . The time interval
reachable set Ro(τj) is computed in Line 14 of Alg. 6 by a Minkowski sum Ro(tj)⊕R∆(τj)
of the time point reachable set Ro(tj) and the zonotope R∆(τj). Since the Minkowski
sum with a zonotope is dependency-preserving for SPZs according to Prop. 4.2.13, we
consequently have that Thm. 4.2.17 equally holds for the all time interval reachable sets
Ro(τj), j = 0, . . . , N − 1. Let us finally demonstrate the extraction of reachable subsets
using Thm. 4.2.17 with an example:

Example 4.2.18. We consider the Van-der-Pol oscillator in (4.20) with the initial set

X0 =

{[
−1
1

]
+

[
0.2
0

]
α1 +

[
0

0.2

]
α2

∣∣∣∣ α1, α2 ∈ [−1, 1]

}



4.2 Reachable Subsets 175

-1.5 -1 -0.5 0 0.5 1 1.5
0.5

1

1.5

2

2.5

3

3.5

x1

x
2

x0 = X0 (α)
X0

reach(X0)

reach(X0) (α)

Figure 4.11: Visualization of the reachable set from Example 4.2.18, where the exact reachable
set Rx0(tf ) for the initial point x0 is depicted by a black dot and the extracted reachable subset
is shown in blue. The black lines correspond to the case where α1 = 0.5 = const., α2 = [−1, 1]
and the case where α2 = 0.4 = const., α1 ∈ [−1, 1].

and the initial point x0 = [−0.9 1.08]T ∈ X0. The initial point x0 can be parameterized with
α = [0.5 0.4]T , so that x0 = X0 (α). Computation of the reachable set for a time horizon
of tf = 1s with the conservative polynomialization algorithm in Alg. 6 yields the SPZ

Ro(tf ) = reach(X0) =

{[
0.73
2.52

]
+

[
0.25
−0.1

]
α1 +

[
0.26
0.2

]
α2 −

[
0.04
0.09

]
α2

1

−
[

0
0.1

]
α1α2 +

[
0.05

0

]
β1 +

[
0

0.27

]
β2

∣∣∣∣ α1, α2, β1, β2 ∈ [−1, 1]

}
.

To extract the reachable subset for the initial point x0, we evaluate Ro(tf ) with the param-
eter values α corresponding to x0. Since the number of dependent factors did not change,
it holds that reach(X0 (α, id) = reach(X0) (α), so that we can use the simple definition
of the evaluation function in Def. 4.2.10. This yields the set

Ro(tf ) (α) = reach(X0) (α) =

{[
0.949
2.5075

]
+

[
0.05

0

]
β1 +

[
0

0.27

]
β2

∣∣∣∣ β1, β2 ∈ [−1, 1]

}
,

which encloses the exact reachable set Rx0(tf ) starting from the initial point x0 according to
Thm. 4.2.17. A visualization of the extracted outer-approximation of the reachable subset
is shown in Fig. 4.11.

4.2.4 Computational Complexity

We now derive the computational complexity for the extraction of reachable subsets. For
this, we first show how the extended evaluation function for SPZs as defined in Def. 4.2.11
can be implemented:
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Proposition 4.2.19. (Extended Evaluation Function SPZ) Given a SPZ PZ = 〈c,G,GI ,

E, id〉PZ ⊂ Rn, a parameter vector α̂ ∈ Rw, and an identifier vector îd ∈ N1×w satisfying

∀i, j ∈ {1, . . . , w} : îd(i) 6= îd(j), the extended evaluation function PZ (α̂, îd) as defined
in Def. 4.2.11 can be computed as

PZ (α̂, îd) = 〈c,GD,GI , E(K,·), id(K)〉PZ ,

where

H =
{
i
∣∣ ∃j ∈ {1, . . . , w} : îd(j) = id(i)

}
, K = {1, . . . , p} \ H

D = diag

([∏
k∈H

α
E(k,1)

(k) . . .
∏
k∈H

α
E(k,h)

(k)

])
, ∀k ∈ {1, . . . , p} : α(k) =

{
α̂(i), îd(i) = id(k)

0, otherwise
.

The compact operation as defined in Prop. 3.1.7 is applied to make the resulting SPZ
regular. The computational complexity with respect to the dimension n is O(nw+n2 log(n)),
where w is the length of the parameter vector α̂.

Proof. The result is obtained by splitting the dependent factors into factors that are re-
placed by numerical values (k ∈ H) and remaining factors (k ∈ K):

PZ (α̂, îd)
Def. 4.2.11

=

{
c+

h∑
i=1

( p∏
k=1

α̃
E(k,i)

(k)

)
G(·,i)

∣∣∣∣ qα1, . . . , qαp ∈ [−1, 1]

}
⊕
{ q∑

j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}
=

{
c+

h∑
i=1

(∏
k∈K

qα
E(k,i)

k

)(∏
k∈H

α
E(k,i)

(k)

)
G(·,i)︸ ︷︷ ︸

D(i,i) G(·,i)

∣∣∣∣ qαk ∈ [−1, 1]

}
⊕ 〈0, GI〉Z

Def. 3.1.1
= 〈c,GD,GI , E(K,·), id(K)〉PZ ,

where

∀k ∈ {1, . . . , p} : α̃(k) =

{
α̂(i), îd(i) = id(k)

qαk, otherwise

is defined as in Def. 4.2.11.
Complexity: Construction of the sets H, K and the vector α ∈ Rp has complexity

O(wp). Computation of one diagonal entry
∏

k∈H α
E(k,i)

(k) of the matrix D requires at most

w exponentiations and w − 1 multiplications since |H| ≤ w, so that the complexity for
the construction of D ∈ Rh×h is h · O(2w − 1) = O(wh). Moreover, since D is a diagonal
matrix, the matrix multiplication GD has complexity O(nh). The resulting SPZ has h
generators and at most p dependent factors, so that the subsequent application of the
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compact operation has complexity O(h(n+p log(h))) according to Prop. 3.1.7. The overall
complexity for the evaluation function of a SPZ is therefore

O(wp) +O(wh) +O(nh) +O(h(n+ p log(h))),

which is O(nw + n2 log(n)) using Assumption 3.1.3.

The result of the evaluation function for an interval [l, u] ⊆ [−1,1] ⊂ Rp of possible
parameter values α ∈ [l, u] can be implemented by successive application of the getSubset

operation as specified in Prop. 3.1.43:

PZ ([l, u]) = getSubset
(
. . . getSubset(PZ, 1, [l(1), u(1)]) . . . , p, [l(p), u(p)]

)
, (4.39)

where we considered the definition of the evaluation function in Def. 4.2.10 for simplic-
ity since handling the extended evaluation function is straightforward. According to
Thm. 4.2.17, we can extract reachable subsets by applying the implementation of the
extended evaluation function in Prop. 4.2.19 to the computed outer-approximation Ro(tf )
of the final reachable set. The computational complexity of reachable subset extraction is
therefore O(nw+n2 log(n)) according to Prop. 4.2.19, which is O(n2 log(n)) using Assump-
tion 3.1.3 and the fact the parameter vector has dimension w = p, where p is the number
of dependent factors of the SPZ representing the initial set X0. Since the computational
complexity for reachability analysis using the conservative polynomialization algorithm is
O(n5) according to Sec. 4.1.4, our novel method for the extraction of reachable subsets is
computationally much more efficient than computing the reachable subset with a reach-
ability algorithm. We will further substantiate this by several numerical examples in the
next section.

4.2.5 Numerical Examples

Our novel reachable subset approach results in significant improvements for many differ-
ent applications. We exemplary demonstrate this for safety falsification, optimization over
reachable set, and motion-primitive-based control. As shown in Tab. 4.4, for all of these ap-
plications using reachable subsets results in significant speed-ups compared to the previous
solution without reachable subsets.

Safety Falsification

If the reachable set does not fulfill a given specification, it would be helpful to know
one concrete trajectory that demonstrates the violation. The task of finding such a tra-
jectory defined by an initial point and an input signal is known as safety falsification. For
simplicity, we consider a specification defined by a linear inequality constraint aTx ≤ b,
a ∈ Rn, b ∈ R. However, the presented concept is easily expendable to arbitrary complex
specifications including temporal logic expressions by considering suitable robustness mea-
sures that quantify the amount of violation [125]. With our novel reachable subset approach
in Thm. 4.2.17, the initial point x∗0 resulting in the largest violation of the specification
can be determined by solving the optimization problem

x∗0 = X0 (α∗, id) with α∗ = arg max
α∈[−1,1]

aT ⊗ Ro(τj) (α, id), (4.40)
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Table 4.4: Comparison of the computation times in seconds between the new approach using
reachable subsets and the previous solution without reachable subsets for different applications.

Application
Computation Time

New Approach Previous Solution

Safety falsification (Van-der-Pol) 0.12 0.38
Safety falsification (quadrocopter) 6.39 37.8
Optimization over reachable sets 0.13 172
Motion-primitive-based control 0.06 21.4

where Ro(τj) is the reachable set of the time interval τj for which the violation of the
specification is the largest and id is the identifier vector of the SPZ that represents the
initial set X0. With the initial point from (4.40), safety falsification then reduces to the
task of finding a suitable input signal. Let us demonstrate the advantages of our novel
safety falsification approach by an example for which we compare our results with the
safety falsification toolbox S-TaLiRo [122]:

Example 4.2.20. We consider the reachability problem from Example 4.2.18 featuring
the Van-der-Pol oscillator in combination with the specification [1 2]x ≤ 6.4. As shown
in Fig. 4.12, the final reachable set Ro(tf ) violates the specification the most. Inserting
the numerical values for Ro(tf ) from Example 4.2.18 into (4.40) yields the optimization
problem

α∗ = arg max
α∈[−1,1]

aT ⊗ Ro(tf ) (α, id)
Example 4.2.18

=

arg max
α∈[−1,1]

[1 2] ⊗〈[
0.73
2.52

]
,

[
0.25 0.26 90.04 0
90.1 0.2 90.09 90.1

]
,

[
0.05 0

0 0.27

]
,

[
1 0 2 1
0 1 0 1

]
, [1 2]

〉
PZ

(α, id)

Prop. 3.1.18
= arg max

α∈[−1,1]

0.05α(1) + 0.66α(2) − 0.22α2
(1) − 0.2α(1)α(2),

(4.41)

where we omit the constant part resulting from the constant offset and the independent
generators of the SPZ since it does not change the result. The optimization problem in
(4.41) can be solved efficiently using a nonlinear programming solver. We use MATLAB’s
fmincon with the interior-point algorithm3, which yields the solution α∗ = [−0.34 1]T and
requires a computation time of 0.12 seconds. Since the reachability problem from Exam-
ple 4.2.18 does not include uncertain inputs, it is sufficient to determine a suitable initial
point to obtain a falsifying trajectory. With the value for the parameter vector α∗ we get

3https://www.mathworks.com/help/optim/ug/fmincon.html

https://www.mathworks.com/help/optim/ug/fmincon.html
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Figure 4.12: Falsifying trajectories (black) for the Van-der-Pol oscillator (left) in Example 4.2.20
and the quadrocopter benchmark (right) in Example 4.2.21, where the unsafe sets defined by the
specification are depicted in orange.

the initial point x∗0 = X0 (α∗, id) = [−1.068 1.2]T with id = [1 2] according to (4.40) and
Example 4.2.18. The corresponding falsifying trajectory is visualized in Fig. 4.12. As a
comparison, we determined a falsifying trajectory using the simulated annealing algorithm
from S-TaLiRo, which is based on Monte-Carlo sampling. Since the simulated annealing
algorithm is non-deterministic, we compute the average computation time from 10 exe-
cutions, which requires 0.38 seconds on average. Our novel falsification approach using
reachable subsets is therefore significantly faster than S-TaLiRo.

To demonstrate the scalability of our novel approach, we consider a second high-
dimensional example, which also has uncertain inputs:

Example 4.2.21. We consider the 12-dimensional quadrocopter benchmark from the 2019
ARCH competition [111, Sec. 3.3]. To increase the difficulty, we append the system
model by adding uncertain additive inputs u = [u1 u2 u3]T ∈ U = [−0.3, 0.3]m/s2 ×
[−0.3, 0.3]m/s2 × [−0.3, 0.3]m/s2 to the differential equations for the states x4, x5 and x6.
The specification for the benchmark is x3 ≤ 1.4m, which describes that the altitude of the
quadrocopter corresponding to the state x3 should stay below 1.4m during the considered
time horizon of tf = 5s. To determine a falsifying trajectory, we first solve (4.41) using
MATLAB’s fmincon with the interior-point algorithm to determine a suitable initial state.
Next, we determine a suitable input signal using the simulated annealing algorithm from
S-TaLiRo. The resulting falsifying trajectory is visualized in Fig. 4.12. The overall compu-
tation time for falsification is 6.39 seconds, where the computation of the initial point using
our novel reachable subset approach takes 0.13 seconds. As a comparison, we determine
both, the initial state and the input signal, using the simulated annealing algorithm from
S-TaLiRo. This takes 37.8 seconds and is therefore significantly slower than the reachable
subset approach. As in Example 4.2.20, we averaged the computation time for S-TaLiRo
over 10 executions since the simulated annealing algorithm is non-deterministic.

In addition to obtaining a falsifying trajectory, it would also be helpful to know which
states from the initial set result in a violation of the specification, and which states are
safe. For simplicity, let us consider the case in which only the reachable set Ro(τj) for one
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single time interval τj violates the specification aTx ≤ b. According to Thm. 4.2.17, the
states inside the set S ⊆ X0 defined as

S :=
⋃
α∈B

X0 (α, id) with B =
{
α ∈ [−1,1]

∣∣∣ aT ⊗ Ro(τj) (α, id) ≤ b
}

(4.42)

are guaranteed to fulfill the specification. Consequently, the set F := X0 \S ⊆ X0 contains
the initial states that potentially result in a violation. Since both, the initial set X0 =
〈c0, G0, [ ], E0, id〉PZ and the reachable set Ro(τj) = 〈c,G,GI , E, id〉PZ are represented by
SPZs, it holds that the set of safe states as defined in (4.42) can be represented as a CPZ:

S (4.42)
=

⋃
α∈B

X0 (α, id) =
⋃
α∈B

〈c0, G0, [ ], E0, id〉PZ (α, id)
Def. 4.2.11

=

{
c0 +

h0∑
i=1

( p0∏
k=1

α
E0(k,i)

(k)

)
G0(·,i)

∣∣∣∣ aT c+
h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
aTG(·,i)

+

q∑
j=1

βj a
TGI(·,j) ≤ b, α(k), βj ∈ [−1, 1]︸ ︷︷ ︸
aT⊗ Ro(τj) (α,id)

}
=

{
c0 +

h0∑
i=1

( p0∏
k=1

α
E0(k,i)

(k)

)
G0(·,i)

∣∣∣∣ aT c+
h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
aTG(·,i)

+

q∑
j=1

βj a
TGI(·,j) =

b+ d

2
+
b− d

2
λ, α(k), βj, λ ∈ [−1, 1]

}
=

{
c0 +

h0∑
i=1

( p0∏
k=1

α
E0(k,i)

k

)
G0(·,i)

∣∣∣∣ h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
aTG(·,i)

+

( q∑
j=1

∣∣∣aTGI(·,j)

∣∣∣− b− d
2

)
αp+1 =

b+ d

2
− aT c, α1, . . . , αp+1 ∈ [−1, 1]

}
=

〈
c0, G0,

[
E0

0

]
,

[
aTG aTGI

(
q∑
i=1

∣∣∣aTGI(·,j)

∣∣∣ 9 b−d2

)]
,
b+ d

2
9 aT c,

[
E 0
0 1

]〉
CPZ

,

(4.43)

where the support function enclosure

d ≤ −sH(−1) with H = aT ⊗Ro(τj)

is computed using Prop. 3.1.16 and we assumed for simplicity that the SPZs X0 and Ro(τj)
have identical identifier vectors. For the general case where the reachable set violates the
specification for more than one time interval, the set of safe states can be computed by
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intersection using Prop. 3.2.23. Equivalently, the set of falsifying states F can be obtained
by applying (4.43) to the inverted constraint aTx ≥ b and combining the CPZs for different
time intervals with the union according to Prop. 3.2.25. Again, the concept presented
here is easily expendable to more complex specifications. For the reachability problem and
specification in Example 4.2.20 only the final reachable setRo(tf ) violates the specification,
so that with d = 4.1 and using (4.43) we obtain the set

S =

{[
−1
1

]
+

[
0.2
0

]
α1 +

[
0

0.2

]
α2

∣∣∣∣ 0.05α1 + 0.66α2 − 0.22α2
1 − 0.2α1α2

− 0.56α3 = −0.52, α1, α2, α3 ∈ [−1, 1]

}
,

which is visualized in Fig. 4.12.

Optimization over Reachable Sets

Since reachability analysis is computational expensive, solving nonlinear optimization
problems for which a reachable set has to be computed in every evaluation of the cost
and/or constraint function is often infeasible. However, with our new reachable subset
approach it is possible to achieve major speed-ups for optimizing over reachable sets. As
an example, we consider the problem of finding the largest subset X ∗0 ⊆ X0 of the initial
set X0 such that the final reachable set Ro

X ∗0
(tf ) = reach(X ∗0 ) satisfies a linear inequality

constraint aTx ≤ b. To solve this problem, we optimize the lower bound α and the upper
bound α of the interval domain for the dependent factors:

max
−1≤α≤α≤1

volume
(
X0 ([α, α], id)

)
s.t. ∀x ∈ aT ⊗ reach

(
X0 ([α, α], id)

)
: x ≤ b, (4.44)

where id is the identifier of the SPZ representing the initial set X0. If we solve (4.44)
directly using a nonlinear programming solver, we have to execute reachability analysis for
every evaluation of the constraint function, which is computationally expensive. However,
with our novel reachable subset approach specified in Thm. 4.2.17, we can reformulate
(4.44) as

max
−1≤α≤α≤1

volume
(
X0 ([α, α], id)

)
s.t. ∀α ∈ [α, α] : aT ⊗Ro

X0
(tf ) (α, id) ≤ b, (4.45)

which avoids the execution of reachability analysis in every evaluation of the constraint
function and is therefore computationally much more efficient to solve. Let us demonstrate
this with a concrete example:

Example 4.2.22. As in Example 4.2.20, we again consider the reachability problem from
Example 4.2.18 featuring the Van-der-Pol oscillator together with the specification [1 2] x ≤
6.4. With the numerical values from Example 4.2.18, we obtain for (4.45)

max
−1≤α≤α≤1

0.42
(
α(1) − α(1)

)(
α(2) − α(2)

)
s.t. ∀α ∈ [α, α] : 6.36 + 0.05α(1) + 0.66α(2) − 0.22α2

(1) − 0.2α(1)α(2) ≤ 6.4.

(4.46)
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Figure 4.13: On the left the results for optimization over reachable sets from Example 4.2.22
are visualized, where the unsafe set defined by the specification is depicted in orange. On the
right the extracted reachable subset (dark gray) for the motion primitive from Example 4.2.23 is
shown, where the offline-computed reachable set is depicted in light gray.

Solving the optimization problem (4.46) takes 0.13 seconds, while solving the optimization
problem (4.44) takes 172 seconds, where in both cases we used MATLAB’s fmincon with
the interior-point algorithm and applied range bounding (see Sec. 2.7) to evaluate the uni-
versal quantifications. This demonstrates that by using the reachable subset approach we
can achieve significant speed-ups for optimization over reachable sets. The optimized sets
resulting from (4.46) are visualized in Fig. 4.13.

Motion-Primitive-Based Control

Maneuver automata represent an efficient method for generating motion plans that are
guaranteed to be robustly save despite disturbances [126]. For this, control laws uctr(x)
for many motion primitives are synthesized offline using for example one of the approaches
in [127–129]. Next, the reachable set of the controlled system starting from an initial set
X0 is computed for each motion primitive to guarantee robust safety despite disturbances.
The resulting motion primitives consisting of a controller and the corresponding reachable
set are then stored in a maneuver automaton that saves which motion primitives can be
connected to one another. With this offline-constructed maneuver automaton, online mo-
tion planning tasks can be solved efficiently by simply concatenating the motion primitives,
where the reachable sets are used for collision checking. To ensure that motion primitives
can be connected safely and to cover the whole state space, an initial set X0 instead of a
single initial point is used when computing the reachable sets offline. As a consequence, the
resulting reachable sets are often quite large, which makes it difficult to find a collision-free
motion plan. However, during online application we obtain a single measurement of the
system state x̂ ∈ X0. Clearly, using the smaller reachable set starting from x̂ would signif-
icantly increase the chances for finding a collision-free motion plan. While computation of
the reachable set for x̂ using a reachability algorithm is too slow to be real-time capable for
most systems, with our novel approach we can extract the reachable subset for x̂ directly
from the offline-computed reachable set, which is computationally much more efficient.
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Let us demonstrate this by an example:

Example 4.2.23. We consider the kinematic single-track model of an autonomous car
in [127, Sec. 6]:

v̇ = uctr,1(x) + u1

φ̇ = uctr,2(x) + u2

ṡx = v cos(φ)

ṡy = v sin(φ),

where the system state x = [v φ sx sy]
T consists of the velocity v, the orientation φ, and the x

and y positions of the cars reference point sx and sy. The uncertain inputs u = [u1 u2]T are
bounded by the set U = [−0.5, 0.5]m/s2 × [−0.02, 0.02]rad/s. We use the approach in [127,
Sec. 5] to synthesize a control law uctr(x) = [uctr,1(x) uctr,2(x)]T for the turn-left maneuver
described in [127, Sec. 6], and compute the reachable set for the controlled system starting
from the initial set X0 = [19.8, 20.2]m/s × [−0.02, 0.02]rad × [−0.2, 0.2]m × [−0.2, 0.2]m
for a time horizon of tf = 1s using the conservative polynomialization algorithm in Alg. 6.
For this motion primitive, extraction of the reachable subset for the measured state x̂ =
[20.1m/s 0.01rad 0.1m 0.1m]T using Thm. 4.2.17 takes only 0.06 seconds, which is fast
enough to be done online. On the other hand, calculation of the reachable set starting from
x̂ using Alg. 6 takes 21.4 seconds and is therefore by far too slow to be computed online.
The extracted reachable subset is visualized in Fig. 4.13.

Clearly, for all three applications that we considered in this section, our novel reachable
subset approach resulted in significant improvements and speed-ups. Moreover, the fact
that the presented applications belong to different research domains further demonstrates
the broad applicability of the approach.
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4.3 Inner-Approximations of Reachable Sets for

Nonlinear Continuous Systems

Outer-approximations of reachable sets can be used to verify that a system satisfies a given
specification: If the outer-approximation does not intersect any of the unsafe regions defined
by the specification, safety is guaranteed. However, if the outer-approximation intersects an
unsafe region, it is not clear if the system is really unsafe, or if the intersection only occurs
due to the over-approximation. To solve this problem, one can use inner-approximations
of reachable sets: If the inner-approximation intersects an unsafe region, it is guaranteed
that the specification is violated. Another application of inner-approximations is backward
reachability analysis since the backward reachable set can simply be calculated by com-
puting an inner-approximation of the time-inverted system. In this section4, we introduce
a novel method for computing non-convex inner-approximations of reachable sets for non-
linear continuous systems. For our approach we first compute an outer-approximation of
the reachable set using the conservative polynomialization algorithm described in Sec. 4.1
and then apply the reachable subset method introduced in Sec. 4.2 to compute an inner-
approximation.

The structure of this section is as follows: First, we summarize the state of the art for
computing inner-approximations in Sec. 4.3.1. In the main part in Sec. 4.3.2, we introduce
our novel approach for computing inner-approximations for nonlinear systems without
inputs and then show in Sec. 4.3.3 how to extend this approach to handle systems with
uncertain inputs. Afterward, we derive the computational complexity of our novel method
in Sec. 4.3.4. Finally, in Sec. 4.3.5, we consider several benchmark systems for which we
compare the performance of our new approach to other state of the art methods.

4.3.1 State of the Art

As shown in Sec. 4.1.1, the computation of outer-approximations of reachable sets for non-
linear continuous systems is a well-studied problem for which many approaches are avail-
able. The problem of calculating inner-approximations of reachable sets has been studied
far less. Efficient techniques for computing inner-approximations for linear continuous
systems exist for quite some time: The approach in [131] uses zonotopes to compute inner-
approximations for linear time-invariant systems with piecewise constant inputs. For time-
varying linear systems, the method in [132] computes inner-approximations represented by
ellipsoids. The authors in [133] compute inner-approximations for piecewise-affine systems
using linear matrix inequalities.

Only recently, methods for computing inner-approximations for nonlinear continuous
systems have been developed: In [134] a criterion on when an interval is part of the
inner-approximation is provided. Based on this criterion, an inner-approximation of the
reachable set represented by a union of intervals can be computed. However, this method
is computationally expensive for high-dimensional systems due to the curse of dimension-
ality. The same authors present another approach in [135], where they represent inner-
approximation with a single parallelotope. Since reachable sets of nonlinear systems, how-

4This section is based on [130].
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ever, usually have complex non-convex shapes, the accuracy achievable with parallelotope
inner-approximations is often quite low.

Several approaches compute inner-approximations represented by sub-zero level sets
based on the Hamilton-Jacobi framework [52]: The method in [136] calculates inner-
approximations by under-approximating the evolution function. In [53] and [137], inner-
approximations for polynomial systems are obtained by solving semi-definite programs.
Since the size of the semi-definite program grows rapidly with the system dimension, the
approaches in [53,137] are computationally expensive for high-dimensional systems.

Other approaches use the time-inverted dynamics to compute inner-approximations: The
method in [18] computes inner-approximations represented by polytopes using linear pro-
gramming. To achieve this, a set which encloses the boundary is computed first. Afterward,
a polytope outer-approximation of the reachable set is contracted until it is inclosed by
the set enclosing the boundary. In [138], this approach is extended to handle delay dif-
ferential equations. Since reachable sets of nonlinear systems are in general non-convex,
inner-approximations represented by convex polytopes as computed in [18, 138] are often
not very accurate. The approach in [116] first computes a backward-flowpipe based on
Picard iteration. This flowpipe is then used to propagate the inequality constraints that
define the initial set forward in time, which yields a non-convex inner-approximation repre-
sented by the intersection of polynomial inequality constraints. However, the intersection
of polynomial inequality constrains can result in sets that are not connected. To deter-
mine a valid inner-approximation, the method in [116] therefore requires to prove that the
resulting set is connected, which is computationally demanding.

The approach in [139] demonstrates that inner-approximations for the projection of the
reachable set onto the coordinate axes can be computed very efficiently for autonomous
nonlinear systems. In [140], the authors extend this approach to systems with uncertain
inputs. While inner-approximations of the projection are often useful for simple verification
tasks, they are in general not sufficient to answer more complex verification queries.

4.3.2 Computing Non-Convex Inner-Approximations

We now present our novel approach for computing tight non-convex inner-approximations
Ri(t) ⊆ R(t) of the exact reachable set as defined in Def. 2.3.4. For simplicity, we first con-
sider autonomous nonlinear systems defined as ẋ(t) = f(x(t)), and show later in Sec. 4.3.3
how our method can be extended to handle nonlinear systems with uncertain inputs as de-
fined in Def. 2.3.2. Different from Sec. 4.1 where we computed outer-approximations of the
time point reachable set Ro(tj) and the time interval reachable set Ro(τj) for consecutive
time intervals, here we focus on calculating an inner-approximation of the final reachable
set Ri(tf ), where tf is the final time. Our approach is based on the following theorem
from [116, Sec. III]:

Theorem 4.3.1. Given a set B ⊇ ∂R(t) that encloses the boundary ∂R(t) of the exact
reachable set, every connected set C that does not intersect B and contains some state of
the exact reachable set R(t) ⊂ Rn is an inner-approximation of the reachable set:

∀C ⊂ Rn :
(
C ∩ B = ∅

)
∧
(
C ∩ R(t) 6= ∅

)
⇒
(
C ⊆ R(t)

)
.

The theorem holds for arbitrary times t ∈ R≥0.
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Figure 4.14: Visualization of the procedure applied to calculate inner-approximations of reach-
able sets.

To compute an inner-approximation Ri(tf ) of the reachable set at time tf , we follow the
steps visualized in Fig. 4.14:

1 We first compute an outer-approximation Ro(tf ) of the reachable set with the con-
servative polynomialization algorithm in Alg. 6 using SPZs as a set representation.

2 Next, we compute a set B that encloses the boundary ∂R(tf ) of the exact reachable
set using the reachable subset approach from Sec. 4.2.

3 Afterwards, we scale the size of the setRo(tf ) to obtain a set C that does not intersect
the set B.

4 Finally, we simulate the backward flow of the system using the center of C as a
starting point to verify that C satisfies the conditions from Thm. 4.3.1, which then
proves that C is a valid inner-approximation Ri(tf ) of the reachable set at time tf .

This procedure for computing inner-approximations is inspired by [18]. Next, we describe
the steps 2, 3, and 4 in detail.

Enclosure of the Boundary

To compute a set which encloses the boundary of the exact reachable set, we require the
following well-known theorem from [141, Corollary 1]:

Theorem 4.3.2. Given a non-empty compact initial set X0 ⊂ Rn, it holds that the reach-
able set R∂X0(t) for the boundary of X0 is identical to the boundary of the reachable set
RX0(t) for X0:

R∂X0(t) = ∂RX0(t).

The theorem holds for arbitrary times t ∈ R≥0.

Based on Thm. 4.3.2, we can efficiently extract an enclosure of the boundary from the
outer-approximation of the reachable set using the reachable subset approach in Sec. 4.2:

Proposition 4.3.3. Given a SPZ X0 = 〈c,G,GI , E, id〉PZ ⊂ Rn, a parameter domain
D ⊆ [−1,1] ⊂ Rp satisfying ∂X0 = X0 (D), and an outer-approximation of the reachable
set Ro

X0
(t) calculated with the conservative polynomialization algorithm in Alg. 6, it holds

that
∂RX0(t) ⊆ Ro

X0
(t) (D, id),
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where X0 (D) denotes the evaluation function as defined in Def. 4.2.10 and Ro
X0

(t) (D, id)

denotes the extended evaluation function for SPZs as defined in Def. 4.2.11. The proposi-
tion holds for arbitrary times t ∈ R≥0.

Proof. Since the outer-approximation of the reachable set Ro
X0

(t) is calculated with the
conservative polynomialization algorithm using SPZs, we can apply the reachable subset
approach introduced in Sec. 4.2. According to Thm. 4.2.17, it therefore holds that

∀α ∈ [−1,1] : R X0 (α)(t) ⊆ Ro
X0

(t) (α, id). (4.47)

With ∂X0 = X0 (D) we then obtain

∂RX0(t)
Thm. 4.3.2

= R∂X0(t) =
⋃
α∈D

R X0 (α)(t)
(4.47)

⊆
⋃
α∈D

Ro
X0

(t) (α, id) = Ro
X0

(t) (D, id),

which concludes the proof.

Using Prop. 4.3.3, a set B that encloses the boundary can simply be obtained as
B = Ro

X0
(tf ) (D, id). It remains to show how to compute Ro

X0
(tf ) (D, id) in detail.

For simplicity, we assume that the initial set X0 is an interval and discuss later how to
handle initial sets represented by other set representations. An interval X0 = [l, u] ⊂ Rn

can be equivalently represented by the SPZ

X0 =
〈
0.5(l + u), diag(0.5(u− l)), [ ], In, uniqueID(n)︸ ︷︷ ︸

id

〉
PZ

according to Prop. 3.1.10. Consequently, the factor domain D that corresponds to the
boundary ∂X0 of the initial set is

D = ∂[−1,1] =
n⋃
i=1

(
{α ∈ [−1,1] | α(i) = 1}︸ ︷︷ ︸

Fi,1

∪{α ∈ [−1,1] | α(i) = −1}︸ ︷︷ ︸
Fi,2

)
, (4.48)

which corresponds to the facets of the factor hypercube [−1,1]. Inserting (4.48) into the
result from Prop. 4.3.3 finally yields

B = Ro
X0

(tf ) (D, id)
(4.48)
=

n⋃
i=1

(
Ro
X0

(tf ) (Fi,1, id) ∪ Ro
X0

(tf ) (Fi,2, id)
)

=
n⋃
i=1

(
Ro
X0

(tf )
(
1, id(i)

)︸ ︷︷ ︸
PZi

∪ Ro
X0

(tf )
(
− 1, id(i)

)︸ ︷︷ ︸
PZn+i

)
=

2n⋃
k=1

PZk,
(4.49)

where the SPZs PZk are computed using the implementation of the extended evaluation
function in Prop. 4.2.19. According to (4.49), the boundary enclosure B can therefore be
represented as the union of 2n SPZs. For initial sets represented as zonotopes, the factor
domain D belonging to the boundary ∂X0 can be determined by converting the zonotope
to a polytope as described in [24, Thm. 2.1] followed by a selection of faces from the factor
hypercube [−1,1] that correspond to facets of the polytope. Initial sets represented as
polytopes can be converted to SPZs using Alg. 4, where again D can be determined by
selecting the faces of the factor hypercube [−1,1] that correspond to facets of the polytope.
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Computation of the Inner-Approximation

To find a suitable set C that satisfies Thm. 4.3.1, we scale the previously computed
outer-approximation Ro

X0
(tf ) = 〈c,G,GI , E, id〉PZ by optimizing the lower bound α ∈ Rp

and upper bound α ∈ Rp for the domain of dependent factors α ∈ [α, α] of the SPZ:

max
−1≤α≤α≤1

volume
(
W ([α, α])

)
s.t. W ([α, α]) ∩ B = ∅, (4.50)

where as a heuristic we scale the SPZW = 〈c,G, [ ], E, id〉PZ obtained by removing the in-
dependent generators from Ro

X0
(tf ) for computational reasons. With the optimized bounds

α and α from (4.50), a suitable set C can then be calculated as C = W ([α, α]). However,
solving the optimization problem in (4.50) exactly is computationally expensive. Instead,
we therefore compute a feasible and close to optimal solution using Alg. 7. The tight-
ness of the inner-approximation obtained from Alg. 7 for several numerical examples is
demonstrated later in Sec. 4.3.5. Alg. 7 iterates over the 2n SPZs PZk from the boundary
enclosure B in (4.49) and adapts in each iteration α, α such that the intersection between
W ([α, α]) and PZk is empty as required by (4.50). Next, we explain the single steps
of Alg. 7 in detail. According to Lemma 3.1.33, computation of the intersection between
the two SPZs W = 〈c,G, [ ], E, id〉PZ and PZk = 〈ĉ, Ĝ, ĜI , Ê, îd〉PZ results in a nonlinear
constraint

f(y) = c− ĉ+
h∑
i=1

( p∏
k=1

y
E(k,i)

(k)

)
G(·,i)−

ĥ∑
i=1

( p̂∏
k=1

y
Ê(k,i)

(p+k)

)
Ĝ(·,i)−

q̂∑
j=1

y(p+p̂+j)ĜI(·,j) = 0 (4.51)

on the dependent factors α ∈ Rp of the SPZW , where the vector y = [α α̂ β̂]T concatenates

α with the dependent factors α̂ and the independent factors β̂ of the SPZ PZk. The values
of α that satisfy the constraint f(y) = 0 correspond to points that intersect the set PZk
which encloses a part of the boundary. For computational reasons, we first compute in
Line 5 of Alg. 7 an interval enclosure I of all values α that satisfy f(y) = 0 by applying a

contractor as introduced in Sec. 2.8 to the domain y = [α α̂ β̂]T ∈ [α, α]× [−1,1]× [−1,1].
Afterward, we remove the interval I from the domain [α, α] in Line 6 of Alg. 7, so that
the set W ([α, α]) corresponding to the updated factor domain [α, α] does not intersect
the set PZk anymore. Since the set B enclosing the boundary of the exact reachable set is
identical to the union of the sets PZk, k = 1, . . . , 2n, it holds that Ro

X0
(tf ) ([α, α]) does

not intersect B if it does not intersect any of the sets PZk:(
W ([α, α]) ∩ B︸︷︷︸

=
⋃2n
k=1 PZk

= ∅
)
⇔
(
∀k ∈ {1, . . . , 2n} : W ([α, α]) ∩ PZk = ∅

)
.

Finally, in lines 8-11, we compute the set C = W ([α, α]) by calculating the evaluation
function W ([α, α]) according to (4.39) using the getSubset operation for SPZ as specified
in Prop. 3.1.43.
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Algorithm 7 Compute feasible solution for (4.50)

Require: Set B =
⋃2n
k=1PZk enclosing the boundary, outer-approximation of the

reachable set Ro
X0

(tf ) = 〈c,G,GI , E, id〉PZ .
Ensure: Set C satisfying Thm. 4.3.1.

1: α← −1, α← 1

2: W ← 〈c,G, [ ], GI , E, id〉PZ
3: for k ← 1 to 2n do

4: f(y) = 0← constraint from W ([α, α]) ∩ PZk (see (4.51))

5: I × Î × Â ← contract(f(y), [α, α]× [−1,1]× [−1,1]) (see Sec. 2.8)

6: [α, α]← [α, α] \ I (see Prop. 4.3.4)

7: end for

8: C ← W
9: for i← 1 to p do

10: C ← getSubset
(
C, i, [α(i), α(i)]

)
(see Prop. 3.1.43)

11: end for

It remains to show how we implement the set difference for intervals [α, α] \ I in Line 6
of Alg. 7:

Proposition 4.3.4. (Set Difference Interval) Given two intervals I1 = [l1, u1] ⊂ Rn and
I2 = [l2, u2] ⊂ Rn with I2 ⊆ I1, an inner-approximation of the set difference can be
computed as I1 \ I2 ⊇ [l, u] with

∀i ∈ {1, . . . , n} : [l(i), u(i)] =


[l1(i), u1(i)], i 6= i∗

[l1(i), l2(i)), (i = i∗) ∧ (∆l(i) ≥ ∆u(i))

(u2(i), u1(i)], otherwise

, (4.52)

where
i∗ = arg max

i∈{1,...,n}
max

(
l2(i) − l1(i)︸ ︷︷ ︸

∆l(i)

, u1(i) − u2(i)︸ ︷︷ ︸
∆u(i)

)
.

The half-open intervals [l1(i), l2(i)) and (u2(i), u1(i)] can be implemented by subtracting and
adding a small offset. The computational complexity with respect to the dimension n is
O(n).

Proof. Since the set difference is defined as I1 \ I2 = {s | s ∈ I1 ∧ s 6∈ I2} according to
(2.9), it holds that((

[l, u] ⊆ I1

)
∧
(
[l, u] ∩ I2 = ∅

))
⇔
(
[l, u] ⊆ I1 \ I2

)
.

We therefore have to show that [l, u] ⊆ I1 and [l, u] ∩ I2 = ∅. For multi-dimensional
intervals we have(

[l, u] ⊆ [l1, u1]
)
⇔
(
∀i ∈ {1, . . . , n} : [l(i), u(i)] ⊆ [l1(i), u1(i)]

)
(4.53)
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and (
[l, u] ∩ [l2, u2] = ∅

)
⇔
(
∃i ∈ {1, . . . , n} : [l(i), u(i)] ∩ [l2(i), u2(i)] = ∅

)
. (4.54)

With [l, u] defined as in (4.52), it holds that [l(i), u(i)] = [l1(i), u1(i)] for all dimensions
i ∈ {1, . . . , n} \ i∗. Moreover, for dimension i∗ we have [l1(i∗), l2(i∗)) ⊆ [l1(i∗), u1(i∗)] and
(u2(i∗), u1(i∗)] ⊆ [l1(i∗), u1(i∗)] since [l2, u2] ⊆ [l1, u1], so that [l, u] ⊆ I1 holds according
to (4.53). For dimension i∗ we furthermore have [l1(i∗), l2(i∗)) ∩ [l2(i∗), u2(i∗)] = ∅ and
(u2(i∗), u1(i∗)] ∩ [l2(i∗), u2(i∗)] = ∅, so that [l, u] ∩ I2 = ∅ holds according to (4.54).

Complexity: Computation of the vectors ∆l = l2 − l1 and ∆u = u1 − u2 requires 2n
subtractions and therefore has complexity O(n). Moreover, finding the index i∗ requires
2n comparisons of scalar numbers, which has complexity O(n). The overall complexity is
therefore O(n) +O(n) = O(n).

We demonstrate the computation of the set difference for intervals by an example:

Example 4.3.5. For the intervals I1 = [0, 6]× [0, 4] and I2 = [1, 3]× [2, 3] we obtain with
Prop. 4.3.4

I1 \ I2 ⊇
[ [

3
0

]
,

[
6
4

] ]
.

The sets I1, I2, and I1 \ I2 are visualized in Fig. 4.15.

Verification of Correctness

After computing the set C using Alg. 7, it remains to verify that C is a valid inner-
approximation of the reachable set. For this, we introduce the time-inverted dynamics

ẋ(t) = −f(x(t)). (4.55)

Using (4.55), we formulate the following theorem:

Theorem 4.3.6. Let ξ(tf , x0) denote the solution to (4.55) at the final time tf for the
initial point x(0) = x0. If the SPZ C = 〈c,G, [ ], E, id〉PZ computed with Alg. 7 satisfies

ξ(tf , c) ∈ X0,

it holds that C is a valid inner-approximation of the reachable set C ⊆ RX0(tf ).

Proof. According to Thm. 4.3.1, a set C is a valid inner-approximation of the reachable set
if C is connected, the intersection C ∩B = ∅ is empty, and the intersection C ∩RX0(tf ) 6= ∅
is not empty. Since C is represented as a SPZ and all SPZs are connected, it holds that C is
connected. Moreover, since Alg. 7 computes a set which corresponds to a feasible solution
for the optimization problem in (4.50), C∩B = ∅ holds. Finally, if condition ξ(tf , c) ∈ X0 is
satisfied, it holds that the constant offset c of the SPZ C is contained in the exact reachable
set c ∈ RX0(tf ), which proves that C ∩ RX0(tf ) 6= ∅.

For formal correctness, validated integration methods [142] have to be used for the
simulation of the time-inverted dynamics.
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Figure 4.15: Visualization of the set difference calculated with Prop. 4.3.4 for the intervals from
Example 4.3.5.

Let us finally demonstrate the computation of an inner-approximation with an example:

Example 4.3.7. We consider the system

ẋ1 = 0.5x2 + 5

ẋ2 = x1

(
0.5− x1(0.05 + 0.005x2)

)
+ 5

together with the initial set

X0 = [−1, 1]× [−1, 1] =

〈[
0
0

]
,

[
1 0
0 1

]
, [ ],

[
1 0
0 1

]
, [1 2]

〉
PZ

and a time horizon of tf = 1s. Computation of an outer-approximation for the reachable
set with the conservative polynomialization algorithm in Alg. 6 yields the SPZ

Ro
X0

(tf ) =

〈[
6.39
5.60

]
,

[
1.06 0.50 90.02 90.01
0.08 0.92 90.07 90.06

]
,

[
0.05 0

0 0.04

]
,

[
1 0 2 1
0 1 0 1

]
, [1 2]

〉
PZ

=

{[
6.39
5.60

]
+

[
1.06
0.08

]
α1 +

[
0.50
0.92

]
α2 −

[
0.02
0.07

]
α2

1 −
[
0.01
0.06

]
α1α2

+

[
0.05

0

]
β1 +

[
0

0.04

]
β2

∣∣∣∣ α1, α2, β1, β2 ∈ [−1, 1]

}
.

According to (4.48), the factor domain D corresponding to the boundary ∂X0 of the initial
set is

D =
{

[α1 α2]T
∣∣ α1 = 1, α2 ∈ [−1, 1]

}︸ ︷︷ ︸
F1,1

∪
{

[α1 α2]T
∣∣ α1 = −1, α2 ∈ [−1, 1]

}︸ ︷︷ ︸
F1,2

∪

{
[α1 α2]T

∣∣ α1 ∈ [−1, 1], α2 = 1
}︸ ︷︷ ︸

F2,1

∪
{

[α1 α2]T
∣∣ α1 ∈ [−1, 1], α2 = −1

}︸ ︷︷ ︸
F2,2

.

With the domain D from above, a set B =
⋃2n
k=1PZk that encloses the boundary ∂RX0

of the reachable set can be computed with the reachable subset approach. Exemplary, we
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obtain for PZ2 the SPZ

PZ2 = Ro
X0

(tf ) (F2,1, [1 2]) = Ro
X0

(tf ) (1, 2)

=

{[
6.39
5.60

]
+

[
1.06
0.08

]
α1 +

[
0.50
0.92

]
α2 −

[
0.02
0.07

]
α2

1 −
[
0.01
0.06

]
α1α2

+

[
0.05

0

]
β1 +

[
0

0.04

]
β2

∣∣∣∣ α2 = 1, α1, β1, β2 ∈ [−1, 1]

}

=

{[
6.89
6.52

]
+

[
1.05
0.02

]
α1 −

[
0.02
0.07

]
α2

1 +

[
0.05

0

]
β1 +

[
0

0.04

]
β2

∣∣∣∣ α1, β1, β2 ∈ [−1, 1]

}
.

After computing the set B enclosing the boundary, we apply Alg. 7 to calculate a set C
that does not intersect B. Execution of Alg. 7 using the parallel linearization approach for
contraction (see Sec. 2.8) yields the following values for the four iterations of the loop in
lines 3-7 of Alg. 7:

Iteration 1: I =

[ [
0.84
−1

]
,

[
1
1

] ]
, [α, α] =

[ [
−1
−1

]
,

[
0.84

1

] ]
Iteration 2: I =

[ [
−1
0.85

]
,

[
0.84

1

] ]
, [α, α] =

[ [
−1
−1

]
,

[
0.84
0.85

] ]
Iteration 3: I =

[ [
−1
−1

]
,

[
−0.84
0.85

] ]
, [α, α] =

[ [
−0.84
−1

]
,

[
0.84
0.85

] ]
Iteration 4: I =

[ [
−0.84
−1

]
,

[
0.84
−0.84

] ]
, [α, α] =

[ [
−0.84
−0.84

]
,

[
0.84
0.85

] ]
,

which results in the set

C = getSubset
(
getSubset

(
W , 1, [−0.84, 0.84]

)
, 2, [−0.84, 0.85]

)

=

{[
6.39
5.60

]
+

[
1.06
0.08

]
α1 +

[
0.50
0.92

]
α2 −

[
0.02
0.07

]
α2

1 −
[
0.01
0.06

]
α1α2

∣∣∣∣
α1 ∈ [−0.84, 0.84], α2 ∈ [−0.84, 0.85]

}

=

{[
6.40
5.60

]
+

[
0.89
0.07

]
α̂1 +

[
0.42
0.78

]
α̂2 −

[
0.01
0.05

]
α̂2

1 −
[
0.01
0.04

]
α̂1α̂2

∣∣∣∣ α̂1, α̂2 ∈ [−1, 1]

}
.

Finally, verification with simulation of the time-inverted dynamics according to Thm. 4.3.6
proves that Ri

X0
(tf ) = C is a valid inner-approximation of the reachable set. The resulting

sets from this example are visualized in Fig. 4.16.
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Figure 4.16: Visualization of the results from Example 4.3.7, where the outer-approximation
RoX0

(tf ) (red), the boundary of the exact reachable set ∂RoX0
(tf ) (black), and the set PZ2 (blue)

are shown on the left, the boundary enclosure B (blue) is depicted in the middle, and the resulting
inner-approximation RiX0

(tf ) = C (green) is shown on the right.

4.3.3 Extension to Uncertain Inputs

We now extend the approach presented in Sec. 4.3.2 to nonlinear systems with uncertain
inputs ẋ(t) = f(x(t), u(t)) as defined in Def. 2.3.2. The extension to systems with inputs
is based on the following theorem:

Theorem 4.3.8. Given a nonlinear system ẋ(t) = f(x(t), u(t)), an initial set X0 ⊂ Rn,
and a set of uncertain inputs U ⊂ Rm, the reachable set due to constant inputs RX0,const(t)
is a subset of the reachable set due to time-varying inputs RX0(t):

RX0,const(t) :=
{
ξ(t, x0, u(·))

∣∣ x0 ∈ X0, u(0) ∈ U , ∂u(t)/∂t = 0
}

⊆
{
ξ(t, x0, u(·))

∣∣ x0 ∈ X0, ∀τ ∈ [0, t] : u(τ) ∈ U
}

= RX0(t),

where ξ(t, x0, u(·)) denotes the solution to ẋ(t) = f(x(t), u(t)) for an initial state x(0) = x0

and the input trajectory u(·). The theorem holds for all times t ∈ R≥0.

Proof. Since time-varying inputs include constant inputs, the reachable set due to time-
varying inputs contains the reachable set due to constant inputs.

According to Thm. 4.3.8, we can compute an inner-approximation Ri
X0

(tf ) of the reach-
able set due to time-varying inputs by calculating an inner-approximation of the reachable
set due to constant inputs Ri

X0
(tf ) ⊆ RX0,const(tf ) ⊆ RX0(tf ). With the extended system

dynamics [
ẋ(t)
u̇(t)

]
=

[
f(x(t), u(t))

0

]
, (4.56)

any nonlinear system ẋ(t) = f(x(t), u(t)) with constant inputs can be equivalently rep-
resented as an autonomous system without inputs. Consequently, we first calculate an
inner-approximation of the reachable set Ri

X̂0
(tf ) for the autonomous system in (4.56)

starting from the initial set X̂0 = X0 × U using the approach presented in Sec. 4.3.2.
An inner-approximation of the reachable set due to time-varying inputs Ri

X0
(tf ) is then

obtained by projecting Ri
X̂0

(tf ) to the original state space:

Ri
X0

(tf ) = [In 0]⊗Ri
X̂0

(tf ),
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where we compute the linear map using Prop. 3.1.18. Especially for long time horizons tf ,
the inner-approximation of the reachable set due to time-varying inputs with the reachable
set due to constant inputs might become quite inaccurate. One simple extension to improve
the accuracy is to instead use the reachable set due to piecewise constant inputs as an
inner-approximation. It seems that a straightforward approach to realize this would be to
successively apply the method described above for all time intervals with constant inputs.
However, the final reachable set after the first time interval, which we would use as the
initial set for the second time interval, is a SPZ. Since for SPZs it is yet unclear how
to compute the boundary, it would therefore not be possible to apply the approach from
Sec. 4.3.2 for the remaining time intervals. To solve this issue, we instead realize piecewise
constant inputs by using a different extended system dynamics for each time interval with
constant inputs

∀t ∈ [(i− 1) · tf/M, i · tf/M ] :


ẋ(t)
u̇1(t)

...
u̇M(t)

 =


f(x(t), ui(t))

0
...
0


together with the initial set X̂0 = X0 × U × . . . × U , where M ∈ N is the number of time
intervals with constant inputs. Since in this case the extended initial set X̂0 already contains
the inputs u1(t), . . . , uM(t) ∈ Rm for all time intervals, we can simply apply the approach
in Sec. 4.3.2 to compute an inner-approximation of the reachable set. The extension to
uncertain inputs presented here can equivalently be used to compute inner-approximations
of reachable sets for nonlinear systems with uncertain parameter.

4.3.4 Computational Complexity

We now derive the computational complexity of our novel approach for calculating inner-
approximations with respect to the system dimension n. Computation of an outer-
approximation of the reachable set using the conservative polynomialization algorithm
in Alg. 6 using SPZs has complexity O(n5) according to Sec. 4.1.4. For the remainder
of this section, let p, h, and q denote the number of dependent factors, the number of
dependent generators, and the number of independent generators of the SPZ representing
the outer-approximation.

Calculating an enclosure B of the boundary using the reachable subset approach requires
according to (4.49) the calculation of 2n extended evaluation functions Ro

X0
(tf )

(
1, id(i)

)
and Ro

X0
(tf )

(
− 1, id(i)

)
using Prop. 4.2.19. Computation of each extended evaluation

function has complexity O(nw+n2 log(n)) according to Prop. 4.2.19, where w is the length
of the parameter vector. In our case the parameter vectors 1 and −1 are both scalars,
so that w = 1. Consequently, the calculation of B has complexity 2n · O(n2 log(n)) =
O(n3 log(n)).

Next, we consider the calculation of an inner-approximation C using Alg. 7. The first
for-loop in lines 3-7 of Alg. 7 has complexity 2n · (O(contract) + O(p)) since the loop
consists of 2n iterations, the contraction in Line 5 has complexity O(contract), and the
set difference for the p-dimensional intervals in Line 6 has complexity O(p) according to
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Table 4.5: Computational complexity for calculating inner-approximations of reachable sets with
respect to the dimension n ∈ N for the different contractors presented in Sec. 2.8.

Forward-backward Extremal functions Parallel linearization

O(n5) O(n5) O(n5.5)

Prop. 4.3.4. The complexity for different contractors is specified in Tab. 2.5, where in
our case the n constraints f(y) = 0 defined by the function f(y) in (4.51) used for the
contraction have p + p̂ + q̂ variables and each subfunction f(i)(y) consists of e = 2ph +

h + 2p̂ĥ + ĥ + 2q̂ + 1 elementary operations, with p̂ ≤ p, ĥ ≤ h, and q̂ ≤ q denoting
the number of dependent factors, the number of dependent generators, and the number
of independent generators of the SPZs PZk obtained from Ro

X0
(tf ) using the reachable

subset approach. The second for-loop in lines 9-11 of Alg. 7 consists of p iterations, where
in each iteration the getSubset operation for SPZs is executed once. Since getSubset has
complexity O(n3 log(n)) according to Prop. 3.1.43, the overall complexity of the for-loop
is p · O(n3 log(n)) = O(pn3 log(n)).

Finally, for verification of correctness we have to perform one validated simulation. Since
all reachability algorithms can equivalently be used for validated simulation, we could again
use the conservative polynomialization algorithm for this, so that verification using vali-
dated simulation does not increase the overall computational complexity of our approach.
Specialized validated simulation techniques, however, are usually computationally much
more efficient.

Summarizing the computational complexities for the single parts yields an overall com-
plexity of

O(n5)︸ ︷︷ ︸
RoX0

(tf )

+O(n3 log(n))︸ ︷︷ ︸
B

+ 2n · O(contract) +O(np) +O(pn3 log(n))︸ ︷︷ ︸
Alg. 7

,

which is O(n5) + n · O(contract) using Assumption 3.1.3. The overall complexities for
different contractors are listed in Tab. 4.5. The extension to uncertain inputs described
in Sec. 4.3.3 increases the dimension of the system to n+m, which according to Assump-
tion 4.1.3 does not increase the computational complexity. Our approach for computing
inner-approximations consequently only has polynomial complexity with respect to the
system dimension and is therefore well suited for high-dimensional systems.

4.3.5 Numerical Examples

We now demonstrate the performance of our novel method for computing inner-
approximations of reachable sets on several benchmark systems. To evaluate the precision
of the computed inner-approximation, we use the minimum width ratio γmin from [116,
Sec. VI] defined as

γmin = min
v∈V

|γi(v)|
|γo(v)|
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Figure 4.17: The precision of the computed inner-approximations for the Brusselator system
in (4.57) over time is shown on the left, where the results for the method in [139] are taken
from [139, Fig. 2]. The resulting inner-approximation and outer-approximation of the reachable
set at the final time tf = 3s computed with our approach are visualized on the right.

with

γi(v) = max
x∈RiX0

(tf )
vTx+ max

x∈RiX0
(tf )
−vTx, γo(v) = max

x∈RoX0
(tf )

vTx+ max
x∈RoX0

(tf )
−vTx,

where we select the n axis-aligned unit-vectors as the set of vectors V ⊂ Rn (see [116,
Sec. VI]). For a ratio of γmin = 1, the inner-approximation along the vectors v ∈ V is iden-
tical to the outer-approximation, whereas for a ratio of γmin = 0, the inner-approximation
is empty. Since γmin cannot be computed exactly for general SPZs, we compute a tight
under-approximation instead. Moreover, for all benchmarks we apply the nonlinear pro-
gramming approach in (2.23) in combination with the parallel linearization contractor
described in Sec. 2.8 for contraction.

Comparison with other Approaches

We first compare our novel approach with the method in [139], which computes inner-
approximations for the projection of the reachable set onto the coordinate axes. For the
comparison, we use the Brusselator system

ẋ1 = 1 + x2
1x2 − 2.5x1

ẋ2 = 1.5x1 − x2
1x2

(4.57)

from [143, Example 3.4.1] together with the initial set X0 = [0.9, 1]× [0, 0.1]. The precision
of the computed inner-approximation expressed by the minimum width ratio γmin over
time is shown in Fig. 4.17. It is clearly visible that the results for our approach are
much tighter, even though we compute a full inner-approximation and not just an inner-
approximation of the projection. Fig. 4.17 additionally visualizes the inner-approximation
and outer-approximation from our approach at the final time to provide an impression of
the achieved accuracy.

Next, we compare our approach with the method in [116], which computes non-convex
inner-approximations represented as polynomial level sets. For the comparison we use the
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Table 4.6: Dimension n, time horizon tf , and reference to the dynamic equations for the bench-
marks used for the comparison in Tab. 4.7.

Benchmark Dimension Time Horizon Reference

Brusselator 2 3 [143, Example 3.4.1]
Jet engine 2 4 [143, Example 3.3.9]
Rössler 3 1.5 [143, Example 3.4.3]
Lotka-Volterra 4 1 [143, Example 5.2.3]
Biological system 7 0.2 [143, Example 5.2.4]

Table 4.7: Computation time in seconds and precision γmin of the calculated inner-
approximations for the benchmarks in Tab. 4.6, where we compare our approach with the method
in [116]. The results for the method in [116] are taken from [116, Tab. 1], where the computation
times for the method in [116] are measured on the machine used by the authors of [116].

Benchmark
Our Approach Approach in [116]

time γmin time γmin

Brusselator 64 0.87 55 0.7
Jet engine 48 0.82 56 0.8
Rössler 32 0.73 165 0.5
Lotka-Volterra 238 0.32 297 0.4
Biological system 82 0.89 632 0.25

benchmarks from [116, Sec. VI], which are listed in Tab. 4.6. For our approach we focused
on initial sets given as intervals, whereas in [116] initial sets are simplices or ellipsoids. We
therefore use interval enclosures of the simplices given in [116, Sec. VI] as initial sets and
compare our approach with the results from the method in [116] for initial sets given as
simplices (see [116, Tab. 1]). The results in Tab. 4.7 demonstrate that for most benchmarks
our novel approach is both faster and more precise than the method in [116], even though
we use larger initial sets. Especially for high-dimensional systems, our approach exhibits
superior performance.

Uncertain Inputs

So far we only considered examples of autonomous systems. To demonstrate the perfor-
mance of our approach for systems with inputs, we extend the electromechanical oscillator
from [18, Example 3] with an uncertain input u ∈ R bounded by the set U = [−0.2, 0.2]:

ẋ1 = x2 + (x2 − 2.8)u

ẋ2 = 0.2− 0.7 sin(x1)− 0.05x2.
(4.58)
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Figure 4.18: Inner-approximation of the final reachable set for the electromechanical oscillator
in (4.58) calculated using constant inputs (left) and using piecewise constant inputs with different
numbers of constant segments M (right).

Table 4.8: Computation time in seconds and precision γmin of the inner-approximation RiX0
(tf )

for the electromechanical oscillator in (4.58) calculated using piecewise constant inputs with
different numbers of constant segments M .

Number of Segments Computation Time Precision γmin

M = 1 46 0.78
M = 2 127 0.82
M = 3 311 0.83

Moreover, we consider the initial set X0 = [−0.1, 0.1] × [2.9, 3.1] and the time horizon
tf = 0.9s. We first compute an inner-approximation of the reachable set with the method
described in Sec. 4.3.3 using constant inputs. The results are visualized on the left side
of Fig. 4.18. Next, we use piecewise constant inputs to compute an inner-approximation,
where we investigate the effect of changing the number constant segments M . The results
shown in Fig. 4.18 and in Tab. 4.8 clearly demonstrate that increasing M improves the
precision of the computed inner-approximation. However, increasing M also prolongs the
computation time as shown in Tab. 4.8.
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4.4 Reachability Analysis for Hybrid Systems with

Nonlinear Guard Sets

So far we considered reachability analysis for systems with purely continuous dynamics
only. In the real world, however, most cyber-physical systems exhibit mixed continuous
and discrete dynamics due to the interplay between physics and digital control. Such
hybrid systems can be modeled by hybrid automata. In this section5, we introduce a novel
method for computing a tight outer-approximation of the reachable set for the very general
case of hybrid systems with nonlinear guard sets. Again we use SPZs to represent reachable
sets since they are well suited for handling both, the continuous dynamics and the discrete
transitions of a hybrid automaton.

The structure of this section is as follows: We first summarize the current state of
the art for reachability analysis of hybrid systems in Sec. 4.4.1. Next, in Sec. 4.4.2, we
explain the basic procedure that we apply to compute outer-approximations of reachable
sets for hybrid systems. In the main part in Sec. 4.4.3 we then present our novel approach
for handling the discrete transitions in hybrid system reachability analysis. Finally, the
computational complexity is derived in Sec. 4.4.5 and we demonstrate the performance of
our novel approach on several benchmark systems in Sec. 4.4.6.

4.4.1 State of the Art

Reachability analysis for hybrid systems consists of two parts: 1) Computing the reachable
set for the continuous dynamics and 2) handling the discrete transitions of the hybrid
automaton, which requires to compute intersections between the reachable set and the
guard sets. As demonstrated in Sec. 4.1.1, there exist many sophisticated approaches
for calculating outer-approximations of reachable sets for continuous systems, so that the
main challenge in reachability analysis for hybrid systems is to calculate the intersections
between the reachable set and the guard sets.

For guards sets represented by polyhedra or hyperplanes, several methods for intersec-
tion computation have been developed. A straightforward approach is to compute the
intersection between the reachable set and the guard sets geometrically: The method in [7]
calculates the intersection between reachable sets represented by support functions and
the guard sets by solving several convex minimization problems. To avoid an explosion in
computation time, the sets resulting from partial intersections are often unified by convex
hulls [7, 145]. Since the computation of convex hulls is computationally demanding, many
approaches unify partial intersections by simpler sets or completely avoid the unification:
In [31], the union of the partial intersections is enclosed by bundles of parallelotopes. The
work in [146] shows how the intersection between multiple zonotopes and a hyperplane can
be efficiently enclosed by a template polyhedron. The tool HyLAA [50] reduces the over-
approximation resulting from the unification by applying a backtracking scheme that splits
previously computed reachable sets. For guard sets represented by hyperplanes one can
apply the method in [113], which avoids the need for unification completely by scaling the
system dynamics in such a way that only the reachable set for one time interval intersects

5This section is based on [144].
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the guard set. For high-dimensional systems not only unification, but also the geometric
computation of intersections is computationally expensive. The technique in [147] avoids
both, unification and geometric intersection computation, by directly mapping the reach-
able set onto the hyperplane that represents the guard set. Hybrid systems with guards sets
represented by polyhedra or hyperplanes are also supported by many reachability tools:
Geometric intersection computation is applied by the tools Flow* [44], HyDRA [148], Hy-
LAA [50], JuliaReach [110], and SpaceEx [145]. Moreover, CORA [1] implements the
methods [31], [146], and [147].

Currently, only few approaches exist for a more general class of hybrid systems which
model guard sets as nonlinear level sets. For some simple cases, nonlinear guard sets can
be enclosed by multiple polytopes, which makes it possible to apply the methods in [7]
and [31]. The approach in [43] uses the constraints imposed by the guard intersection
to contract the set of initial states, which then yields a Taylor model that encloses the
intersection with the guard set. Another strategy is to determine the time interval in
which the reachable set intersects the guard set followed by using the whole reachable
set for the time interval as an over-approximation of the intersection with the guard.
While this technique works well for validated integration methods that enclose only a
single trajectory rather than a set of trajectories [142], it is often too conservative for
reachability analysis. To compute tight enclosures of reachable sets, the approach in [39]
uses a technique similar to [142], but additionally creates partitions in time until a user-
defined precision is achieved; however, propagating the reachable sets for all partitions is
computationally expensive. For this reason, [149] improves the approach in [39] by unifying
the resulting sets from all partitions with an enclosing interval. Since interval enclosures
result in large over-approximation errors, the approach in [114] unifies parallel sets with
an enclosing zonotope instead. However, since [114] requires the computation of zonotope
vertices, the approach has exponential complexity with respect to the system dimension. A
tool that explicitly supports nonlinear guard sets is Ariadne [106], which uses the method
in [150] that is based on the determination of hitting times to calculate the intersections
with guard sets.

4.4.2 Reachability Analysis for Hybrid Systems

We now describe the basic procedure that we apply to compute tight outer-approximations
for reachable sets of hybrid systems modeled by hybrid automata as defined in Def. 2.3.3. In
particular, we consider the very general case of hybrid automata with nonlinear continuous
dynamics ẋ(t) = fk(x(t), u(t)), k = 1, . . . , p, nonlinear reset functions ri(x), i = 1, . . . , q,
invariant sets Yk, k = 1, . . . , p represented by nonlinear level sets Yk = 〈yk(x),≤〉LS =
{x | yk(x) ≤ 0}, and guard sets Gi, i = 1, . . . , q represented by degenerate nonlinear level
sets Gi = 〈gi(x),=〉LS = {x | gi(x) = 0}, where fk : Rn × Rm → Rn, ri : Rn → Rn,
yk : Rn → Rok , and gi : Rn → R are Lipschitz continuous functions. To compute an
outer-approximation Ro([0, tf ]) of the reachable set for the time horizon t ∈ [0, tf ], we
apply the procedure visualized in Fig. 4.19:

1 Given an initial discrete state σ0 ∈ {1, . . . , p} and an initial set X0 ⊆ Yσ0 , we first
compute an outer-approximation of the reachable set for the continuous dynamics
ẋ(t) = fσ0(x(t), u(t)) with the conservative polynomialization algorithm in Alg. 6
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Figure 4.19: Visualization of the procedure applied to calculate outer-approximations of reach-
able sets for hybrid systems.

using SPZs until the reachable set is completely located outside the current invariant
set Yσ0 or the final time tf is reached. In addition, we determine the time intervals
τj for which the corresponding reachable set Ro(τj) intersects the guard set Gi of a
transition Ti = 〈Gi, ri(x), σ0, di〉T . Our approach also works when only the reachable
set within an invariant is propagated, which in some cases significantly reduces the
conservatism, but is computationally more expensive.

2 To obtain a rough over-approximation of the guard intersection using computationally
cheap methods, we first enclose each reachable set intersecting the guard set with an
interval I. Afterward, we contract the resulting intervals so that they tightly enclose
the intersection with the guard set.

3 Next, to avoid the computationally expensive parallel propagation of reachable sets,

we enclose the union of the contracted intervals Î by a single interval I. We intro-
duce an upper bound µ for the number of intervals that are unified to reduce the
conservatism. For the example shown in Fig. 4.19, a value of µ = 2 is used.

4 We tightly enclose the intersection of the guard set with the previously-obtained

interval I by a SPZ PZ.

5 Afterward, we apply the reset function ri(x) to the previously obtained SPZ PZ.

6 Due to the upper bound µ, we might obtain parallel sets, which we unify by a single
set C to avoid propagating several sets in parallel. The reason for using the upper
bound µ in Step 3 followed by the unification of parallel sets in Step 6 is that the
unification in Step 6 significantly increases the representation size of the resulting
set if many parallel sets are unified. With the early partial unification in Step 3, we
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avoid this issue. Finally, we repeat the described procedure for the target mode di of
the transition Ti using C as the new initial set.

For the case that the reachable set intersects several guard sets, we compute the inter-
section separately for each guard set using the presented approach. If the computation
of the contracted intervals in Step 2 is adapted appropriately, this does not lead to large
over-approximations. While we here use the conservative polynomialization algorithm
to compute reachable sets for the continuous dynamics of the single modes, the above
procedure for hybrid system reachability analysis can be combined with arbitrary other
reachability algorithms for continuous systems due to its modular design.

4.4.3 Discrete Transitions

We now describe the single steps of the procedure in Sec. 4.4.2 in detail. Let us begin with
the detection of intersections between the reachable set and the invariant or guard sets as
required in Step 1.

Intersection Detection

Our approach for detecting intersections between the reachable set and the invariant set
is based on the following proposition:

Proposition 4.4.1. Given a set S ⊂ Rn and a level set LS = 〈w(x),≤〉LS ⊂ Rn with
w : Rn → Ro, it holds that(

∃i ∈ {1, . . . , o} : l(i) > 0
)
⇒
(
S ∩ LS = ∅

)
,

where the lower bound l ∈ Ro and the upper bound u ∈ Ro are determined by range bounding

[l, u] = bound(w(x),S)

as defined in Def. 2.7.1.

Proof. According to the definition of the range bounding operation in Def. 2.7.1 we have

(
l(i) > 0

) Def. 2.7.1

⇔
(

min
x∈S

w(i)(x) > 0
)
⇔
(
∀x ∈ S : w(i)(x) > 0

)
,

so that the intersection

LS ∩ S
Def. 2.2.9

=
{
x ∈ S

∣∣ w(1)(x) ≤ 0 ∧ . . . ∧ w(i)(x) ≤ 0︸ ︷︷ ︸
∀x∈S: w(i)(x)>0

∧ . . . ∧ w(o)(x) ≤ 0
}

= ∅

results in the empty set.
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Similarly, our method for detecting intersections between the reachable set and the guard
sets is based on the following result:

Proposition 4.4.2. Given a set S ⊂ Rn and a level set LS = 〈w(x),=〉LS ⊂ Rn with
w : Rn → R, it holds that (

S ∩ LS 6= ∅
)
⇒
(
l ≤ 0 ≤ u

)
,

where the lower bound l ∈ R and the upper bound u ∈ R are determined by range bounding

[l, u] = bound(w(x),S)

as defined in Def. 2.7.1.

Proof. Since the intersection between LS and S is

LS ∩ S
Def. 2.2.9

=
{
x ∈ S

∣∣ w(x) = 0
}
, (4.59)

we have(
S ∩LS 6= ∅

) (4.59)

⇒
(
∃x ∈ S : w(x) = 0

)
⇒
(

min
x∈S

w(x) ≤ 0 ≤ max
x∈S

w(x)

)
⇒
(
l ≤ 0 ≤ u

)
,

where we exploited that [minx∈S w(x),maxx∈S w(x)] ⊆ [l, u] holds according to the defini-
tion of range bounding in Def. 2.7.1.

To check if the reachable set Ro(tj) at time tj is located outside of the current invariant
set Yσ0 = 〈yσ0(x),≤〉LS, we first apply range bounding to compute

[l, u] = bound(yσ0(x),Ro(tj)),

and then use Prop. 4.4.1 to test if Ro(tj) ∩ Yσ0 = ∅. Moreover, to determine the time
intervals τj in which the reachable set Ro(τj) intersects the guard set Gi = 〈gi(x),=〉LS, we
iterate over all time intervals τj and use range bounding to compute

[l, u] = bound
(
gi(x),Ro(τj)

)
in order to test if Ro(τj)∩Gi 6= ∅ using Prop. 4.4.2. The conservatism of intersection detec-
tion solely depends on the range bounding technique used (see Sec. 2.7). The simplest and
fastest method is to enclose the reachable set by an interval as described in Sec. 3.1.4 and
then use interval arithmetic for range bounding. A more accurate but also computational
demanding approach is to convert the SPZ representing the reachable set to a Taylor model
according to Prop. 3.1.13 followed by using Taylor models for range bounding.

Interval Contraction

Next, in Step 2 of the procedure in Sec. 4.4.2 we enclose the time interval reachable sets
Ro(τj) that intersect the guard set Gi with intervals

Ij = interval(Ro(τj))

using the interval operation for SPZs as defined in Sec. 3.1.4. To reduce the conservatism,
we reduce the size of the interval enclosure by applying a contractor as defined in Def. 2.8.1
to the constraint gi(x) = 0 that defines the guard set Gi = 〈gi(x),=〉LS:

Îj = contract(gi(x), Ij).
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Interval Unification

In Step 3 of the procedure in Sec. 4.4.2 we unite the contracted intervals Îj using the
following proposition:

Proposition 4.4.3. (Union Interval) Given two intervals I1 = [l1, u1] ⊂ Rn and I2 =
[l2, u2] ⊂ Rn, their union can be enclosed by the interval

I1 ∪ I2 ⊆


min(l1(1), l2,(1))

...
min(l1(n), l2,(n))

 ,
max(u1(1), u2,(1))

...
max(u1(n), u2,(n))




︸ ︷︷ ︸
I

.

The computational complexity with respect to the dimension n is O(n).

Proof. Since it holds for all dimensions i ∈ {1, . . . , n} that

[l1(i), u1(i)] ⊆ [min(l1(i), l2,(i)),max(u1(i), u2,(i))]

and
[l2(i), u2(i)] ⊆ [min(l1(i), l2,(i)),max(u1(i), u2,(i))],

we have I1 = [l1(1), u1(1)]×. . .×[l1(n), u1(n)] ⊆ I and I2 = [l2(1), u2(1)]×. . .×[l2(n), u2(n)] ⊆ I,
which proves that I1 ∪ I2 ⊆ I.

Complexity: To construct the interval I we have to perform 2n comparisons of scalar
numbers, which has complexity O(2n) = O(n).

As a heuristic, we unite the contracted intervals for consecutive time intervals τj until
the upper bound µ is reached.

Guard Set Intersection

We now describe Step 4 of the procedure from Sec. 4.4.2. Our approach for calculating
guard intersections is based on the novel finding that the intersection of an interval with
a specific type of polynomial level set can be represented as a Taylor model, which can be
converted to a SPZ using Prop. 3.1.13. We demonstrate this with an example:

Example 4.4.4. The intersection between the interval I = [−1, 1]× [0, 2] and the polyno-
mial level set

LS =
{
x ∈ R2

∣∣∣ x(2) = 2x2
(1)

}
can be equivalently represented by the Taylor model T (x) defined as

I ∩ LS =
{
T (x)

∣∣ x ∈ I}, T (x) =

〈[
x(1)

2x2
(1)

]
, ∅, [−1, 1]× [0, 2]

〉
TM

,

which can be converted to the SPZ

PZ =

{[
1
0

]
α1 +

[
0
2

]
α2

1

∣∣∣∣ α1 ∈ [−1, 1]

}
using Prop. 3.1.13. The resulting sets are visualized on the left side of Fig. 4.20.
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Figure 4.20: Visualization of the results from Example 4.4.4 (left) and Example 4.4.6 (right),
where the level sets LS are depicted in blue, the intervals I are depicted in black, and the SPZs
PZ enclosing the intersection are depicted in red.

This is generalized in the following theorem:

Theorem 4.4.5. Given an interval I = [l, u] ⊂ Rn and a level set

LS =
{
x ∈ Rn

∣∣ x(k) = pk(x)
}
, k ∈ {1, . . . , n}

defined by a polynomial function pk : Rn → R, their intersection I ∩ LS can be tightly
enclosed by the Taylor model T (x) defined as

I ∩ LS ⊆
{
T (x)

∣∣ x ∈ I}, T (x) =

〈
[
x(1) . . . x(k−1)

]T
pk(x)[

x(k+1) . . . x(n)

]T


︸ ︷︷ ︸
h(x)

, ∅, I

〉
TM

.

If the polynomial function pk(x) defining the level set LS satisfies

min
x∈I

pk(x) ≥ l(k) and max
x∈I

pk(x) ≤ u(k), (4.60)

the Taylor model T (x) exactly represents the intersection I ∩LS; otherwise, T (x) encloses
the intersection I ∩ LS.

Proof. The idea of the proof is to replace variable x(k) with the function pk(x) that defines
the level set. If condition (4.60) is fulfilled, the intersection I ∩ LS can be equivalently
expressed as

I ∩ LS =
{
x ∈ I

∣∣ x(k) = pk(x)
} (4.60)

=



[
x(1) . . . x(k−1)

]T
pk(x)[

x(k+1) . . . x(n)

]T

∣∣∣∣∣∣∣ x ∈ I

 =
{
T (x)

∣∣ x ∈ I}.
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If condition (4.60) is not fulfilled, the calculated Taylor model encloses the intersection
I ∩ LS since {

pk(x)
∣∣ x ∈ I} ⊇ [l(k), u(k)]

and I = [l, u].

Let us demonstrate the over-approximation error for the case that condition (4.60) is
not fulfilled with an example:

Example 4.4.6. The intersection between the interval I = [−1, 1]× [−1, 1] and the poly-
nomial level set

LS =
{
x ∈ R2

∣∣∣ x(1) = −2x3
(2)

}
can be enclosed by the Taylor model T (x) defined as

I ∩ LS =
{
T (x)

∣∣ x ∈ I}, T (x) =

〈[
−2x3

(2)

x(2)

]
, ∅, [−1, 1]× [−1, 1]

〉
TM

according to Thm. 4.4.5, which can be converted to the SPZ

PZ =

{[
1
0

]
α1 −

[
0
2

]
α3

1

∣∣∣∣ α1 ∈ [−1, 1]

}
using Prop. 3.1.13. Since we have

min
x(2)∈[−1,1]

−2x3
(2) = −2 6≥ −1 and max

x(2)∈[−1,1]
−2x3

(2) = 2 6≤ 1

condition (4.60) is violated, so that T (x) and PZ represent an enclosure instead of the
exact intersection. This is visualized on the right side of Fig. 4.20. For this example the
over-approximation error can be avoided by properly contracting the interval I prior to the
computation of the intersection, which motivates the contraction in Step 2 of the procedure
in Sec. 4.4.2

Based on Thm. 4.4.5, we now show how the intersection between a level set LS =
〈w(x),=〉LS defined by a non-polynomial function w : Rn → R and an interval I can be
tightly enclosed with a Taylor model. We distinguish the case where the equality constraint
w(x) = 0 is symbolically solvable for one variable x(k) from the case where it is not. The
constraint w(x) = 0 is symbolically solvable for the variable x(k) if the set {x | w(x) = 0}
can be equivalently represented as{

x
∣∣ x(k) = ŵ(x)

}
with

∂ŵ(x)

∂x(k)

= 0, (4.61)

where ∂ŵ(x)/∂x(k) = 0 implies that ŵ(x) does not depend on x(k) for all x. We demonstrate
this with an example:

Example 4.4.7. The guard set

LS =
{
x ∈ R2

∣∣∣ x(2)x(1) + sin(x(1))︸ ︷︷ ︸
w(x)

= 0
}
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can be equivalently represented as

LS =

{
x ∈ R2

∣∣∣∣ x(2) = −
sin(x(1))

x(1)︸ ︷︷ ︸
ŵ(x)

}

since the constraint w(x) = 0 is symbolically solvable for x(2).

We first consider the case where the equality constraint is symbolically solvable for one
variable:

Proposition 4.4.8. Given an interval I ⊂ Rn, a level set LS = 〈w(x),=〉LS ⊂ Rn with
w : Rn → R which can be equivalently represented as LS =

{
x
∣∣ x(k) = ŵ(x)

}
with

∂ŵ(x)/∂x(k) = 0, and the Taylor order κ ∈ N, the intersection I ∩ LS can be tightly
enclosed by the Taylor model T (x) defined as

I ∩ LS ⊆
{
T (x)

∣∣ x ∈ I}, T (x) =

〈
[
x(1) . . . x(k−1)

]T
pk(x)[

x(k+1) . . . x(n)

]T
 ,
0

l
0

 ,
0
u
0

 , I〉
TM

,

where the polynomial function pk(x) represents the polynomial part of the Taylor series
expansion of the function ŵ(x)

ŵ(x) ∈
κ∑
i=0

(
(x− x∗)T∇

)i
ŵ(x∗)

i!︸ ︷︷ ︸
pk(x)

⊕L(x) (4.62)

at the expansion point x∗ = center(I). The lower bound l ∈ R and upper bound u ∈ R
enclose the Lagrange remainder L(x) given as

∀x ∈ I : L(x) =

{(
(x− x∗)T∇

)κ+1
ŵ(x̂)

(κ+ 1)!

∣∣∣∣ x̂ = x∗+λ(x−x∗), λ ∈ [0, 1]

}
⊆ [l, u] (4.63)

by an interval [l, u].

Proof. With the Taylor series expansion of ŵ(x) in (4.62) the intersection between I and
the LS can be formulated as

I ∩ LS =
{
x ∈ I

∣∣ x(k) = ŵ(x)
} (4.62)

⊆
{
x ∈ I

∣∣ x(k) ∈ pk(x)⊕ [l, u]
}

=



[
x(1) . . . x(k−1)

]T
x(k)[

x(k+1) . . . x(n)

]T

∣∣∣∣∣∣∣ x ∈ I, x(k) ∈ pk(x)⊕ [l, u]



=



[
x(1) . . . x(k−1)

]T
pk(x)[

x(k+1) . . . x(n)

]T
+

0
s
0


∣∣∣∣∣∣∣ x ∈ I, s ∈ [l, u]

 Def. 2.2.8
=

{
T (x)

∣∣ x ∈ I},
which results in the Taylor model T (x).
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If the equality constraint is solvable for multiple variables we choose the variable that
results in the tightest enclosure of the intersection I ∩G. We demonstrate the computation
of the intersection according to Prop. 4.4.8 with an example:

Example 4.4.9. We consider the level set

LS =
{
x ∈ R2

∣∣∣ ex(1) + 0.2x2
(1) − x(2) − 1 = 0

}
=
{
x ∈ R2

∣∣∣ x(2) = ex(1) + 0.2x2
(1) − 1︸ ︷︷ ︸

ŵ(x)

}
and the interval I = [−2,−1]× [−0.5, 0]. Computation of a Taylor model that encloses the
intersection I ∩ LS according to Prop. 4.4.8 using a Taylor series of order κ = 2 yields

T (x) =

〈[
x(1)

−0.1911 + 0.5579x(1) + 0.3116x2
(1)

]
,

[ [
0

−0.0077

]
,

[
0

0.0077

] ]
, I
〉
TM

,

which can be equivalently represented by the SPZ

PZ =

{[
−1.5
−0.3269

]
+

[
0.5

−0.1884

]
α1 +

[
0

0.0779

]
α2

1 +

[
0

0.0077

]
β1

∣∣∣∣ α1, β1 ∈ [−1, 1]

}
using Prop. 3.1.13. The resulting sets are visualized on the left side of Fig. 4.21.

Next, we consider the case where the equality constraint is not symbolically solvable for
one variable:

Proposition 4.4.10. Given an interval I ⊂ Rn, a level set LS = 〈w(x),=〉LS ⊂ Rn with
w : Rn → R, and the Taylor order κ ∈ N, the intersection I ∩ LS can be tightly enclosed
by the Taylor model T (x) defined as

I ∩ LS ⊆
{
T (x)

∣∣ x ∈ I}, T (x) =

〈
[
x(1) . . . x(k−1)

]T
pk(x)[

x(k+1) . . . x(n)

]T
 ,
0

l
0

 ,
0
u
0

 , I〉
TM

,

where the polynomial function pk(x) is obtained by splitting the function

1

a(k)

(
− w(x∗) + aTx∗ −

n∑
i=1
i 6=k

a(i)x(i) −
κ∑
i=2

(
(x− x∗)T∇

)i
w(x∗)

i!

)
:= pk(x) + p̂(x) (4.64)

with

a =
∂w(x)

∂x

∣∣∣∣
x∗
, x∗ = center(I),

∂pk(x)

∂x(k)

= 0

into one part p̂(x) containing the variable x(k) and one part pk(x) that does not contain
the variable x(k). The lower bound l ∈ R and upper bound u ∈ R enclose p̂(x) and the
Lagrange remainder L(x)

∀x ∈ I : p̂(x)⊕ (−1)

a(k)

{(
(x− x∗)T∇

)κ+1
w(x̂)

(κ+ 1)!

∣∣∣∣ x̂ = x∗ + λ(x− x∗), λ ∈ [0, 1]

}
︸ ︷︷ ︸

L(x)

⊆ [l, u]

(4.65)
with an interval [l, u].
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Proof. Using a Taylor series expansion with order κ

w(x) ∈
κ∑
i=0

(
(x− x∗)T∇

)i
w(x∗)

i!
⊕ L(x) =

w(x∗)− aTx∗ + a(k)x(k) +
n∑
i=1
i 6=k

a(i)x(i) +
κ∑
i=2

(
(x− x∗)T∇

)i
w(x∗)

i!
⊕ L(x)

of the function w(x) at the expansion point x∗, the equality constraint w(x) = 0 can be
solved for

∀x ∈ I : x(k) ∈

1

a(k)

(
− w(x∗) + aTx∗ −

n∑
i=1
i 6=k

a(i)x(i) −
κ∑
i=2

(
(x− x∗)T∇

)i
w(x∗)

i!

)
⊕ (−1)

a(k)

L(x)

(4.64)
= pk(x) + p̂(x)⊕ (−1)

a(k)

L(x)
(4.65)

⊆ pk(x)⊕ [l, u],

(4.66)

so that the intersection between the interval I and the level set LS can be formulated as

I ∩ LS =
{
x ∈ I

∣∣ w(x) = 0
} (4.66)

⊆
{
x ∈ I

∣∣ x(k) ∈ pk(x)⊕ [l, u]
}

=



[
x(1) . . . x(k−1)

]T
x(k)[

x(k+1) . . . x(n)

]T

∣∣∣∣∣∣∣ x ∈ I, x(k) ∈ pk(x)⊕ [l, u]



=



[
x(1) . . . x(k−1)

]T
pk(x)[

x(k+1) . . . x(n)

]T
+

0
s
0


∣∣∣∣∣∣∣ x ∈ I, s ∈ [l, u]

 Def. 2.2.8
=

{
T (x)

∣∣ x ∈ I},
which results in the Taylor model T (x).

We select the variable x(k) for which the constraint is solved such that we achieve the
tightest enclosure of I ∩ LS, where we have to ensure that ∂w(x)/∂x(k)|x∗ 6= 0 to avoid
divisions by zero. If ∂w(x)/∂x(k)|x∗ = 0 for all variables x(k), k = 1, . . . , n, we use a
different expansion point x∗ for the Taylor series. In rare cases the computed Taylor model
becomes very large due to the obtained over-approximation. To increase the robustness of
our approach, we substitute each dimension of the calculated Taylor model for which the
width of the interval remainder of the Taylor model is larger than the width of the domain
I by I.
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Figure 4.21: Visualization of the results from Example 4.4.9 (left) and Example 4.4.11 (right),
where the level sets LS are depicted in blue, the intervals I are depicted in black, and the SPZs
PZ enclosing the intersection are depicted in red.

We demonstrate the computation of the intersection for the case where the equality
constraint is not solvable for one variable with an example:

Example 4.4.11. We consider the level set

LS =
{
x ∈ R2

∣∣∣ 0.2
(

sin(x(1))x(2) + cos(x(2))x(1)

)
− x(2) − 1 = 0

}
and the interval I = [−3,−2] × [−1.3,−1]. Computation of a Taylor model enclosing the
intersection according to Prop. 4.4.10 using a Taylor series of order κ = 2 yields

T (x) =

〈[
x(1)

−0.9481− 0.0496x(1) − 0.0437x2
(1)

]
,

[ [
0

−0.0072

]
,

[
0

0.0087

] ]
, I
〉
TM

,

which can be equivalently represented by the SPZ

PZ =

{[
−2.5
−1.0964

]
+

[
0.5

0.0844

]
α1 +

[
0

−0.0109

]
α2

1 +

[
0

0.0079

]
β1

∣∣∣∣ α1, β1 ∈ [−1, 1]

}
using Prop. 3.1.13. The resulting sets are visualized on the right side of Fig. 4.21.

Based on Prop. 4.4.8 and Prop. 4.4.10 we can tightly enclose the intersection between
the united intervals I from Step 3 of the procedure in Sec. 4.4.2 and the guard set Gi by a
Taylor model, which we convert to a SPZ PZ using Prop. 3.1.13. What remains is to show
how we compute an interval enclosure of the Lagrange remainder L(x) in (4.63) and (4.65)
with an interval. We consider Taylor order κ = 2 for simplicity, which is often sufficient to
achieve a tight enclosure. For the Lagrange remainder in (4.63) we obtain

∀x ∈ I : L(x)
(4.63)
=

{(
(x− x∗)T∇

)3
ŵ(x̂)

3!

∣∣∣∣ x̂ = x∗ + λ(x− x∗), λ ∈ [0, 1]

}

⊆ 1

6

{(
(x− x∗)T∇

)3
ŵ(x̂)

∣∣∣ x, x̂ ∈ I} (2.10)

⊆ 1

6
poly

(
D, I ⊕ (−x∗)

)
= [l, u],

(4.67)
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where
D = bound

(
∇3ŵ(x), I

)
is computed using range bounding as introduced in Sec. 2.7. The Lagrange remainder in
(4.65) can be enclosed in a similar way, where we substitute the function ŵ(x) with the
function w(x).

Reset Function

In Step 5 of the procedure described in Sec. 4.4.2, we apply the reset function ri(x) to the
SPZs PZ that enclose the intersection with the guard set. This corresponds to calculating
the set

M =
{
ri(x)

∣∣ x ∈ PZ}. (4.68)

Since the set M as defined in (4.68) cannot be calculated exactly, we compute a tight
enclosure instead. For this, we first abstract the reset function ri(x) by a Taylor series
expansion of order κr

ri(j)(x) ∈
κr∑
k=0

(
(x− x∗)T∇

)k
ri(j)(x

∗)

k!
⊕ Lr(j)(x), j = 1, . . . , n, (4.69)

around the expansion point x∗ = center(PZ), where center returns the constant offset
of a SPZ and

Lr(j)(x) =

{(
(x− x∗)T∇

)κr+1
ri(j)(x̂)

(κr + 1)!

∣∣∣∣ x̂ = x∗ + λ(x− x∗), λ ∈ [0, 1]

}
(4.70)

is the Lagrange remainder. We focus at this point on the case with Taylor order κr = 2 for
simplicity since the extension to higher orders is straightforward. For Taylor order κr = 2,
the Taylor series expansion in (4.69) becomes

ri(j)(x) ∈ ri(j)(x∗) +
∂ri(j)(x)

∂x

∣∣∣∣
x∗︸ ︷︷ ︸

A(j,·)

(x− x∗)

+
1

2
(x− x∗)T

∂2ri(j)(x)

∂x2

∣∣∣∣
x∗︸ ︷︷ ︸

Qj

(x− x∗)⊕ Lr(j)(x), j = 1, . . . , n.

(4.71)

Using (4.71) and the following enclosure of the Lagrange remainder

∀x ∈PZ : Lr(x) = Lr(1)(x)× . . .× Lr(n)(x)
(4.70)
=

{
s

∣∣∣∣ s(j) =

(
(x− x∗)T∇

)3
ri(j)(x̂)

3!
, x̂ = x∗ + λ(x− x∗), λ ∈ [0, 1]

} PZ ⊆Ir
⊆

1

6

{
s
∣∣∣ s(j) =

(
(x− x∗)T∇

)3
r(j)(x̂), x, x̂ ∈ Ir

} (2.10)

⊆ 1

6
poly

(
Dr, Ir ⊕ (−x∗)

)
(4.72)
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with
Ir = interval(PZ), Dr = bound

(
∇3ri(x), Ir

)
,

we calculate a tight enclosure of the set M in (4.68) as

M =
{
ri(x)

∣∣ x ∈ PZ}
(4.71)

⊆

ri(x∗) + A(x− x∗) +
1

2

(x− x∗)TQ1(x− x∗)
...

(x− x∗)TQn(x− x∗)

⊕ Lr(x)

∣∣∣∣∣∣∣ x ∈ PZ


(4.72)

⊆ ri(x
∗)⊕

(
A⊗ (PZ ⊕ (−x∗))

)
�

1

2
sq
(
Q,PZ ⊕ (−x∗)

)
⊕ 1

6
poly

(
Dr, Ir ⊕ (−x∗)

)
with Q = {Q1, . . . , Qn}, where the linear map is computed using Prop. 3.1.18, the
quadratic map is computed using Prop. 3.1.31, the exact addition � is computed us-
ing Prop. 3.1.20, Minkowski sums are calculated using Prop. 3.1.19, the interval enclosure
Ir = interval(PZ) is calculated as described in Sec. 3.1.4, and Dr = bound(∇3ri(x), Ir)
is calculated using range bounding as described in Sec. 2.7.

Unification

Finally, in the last step of the procedure in Sec. 4.4.2, we unite parallel sets Mj, j =
1, . . . , µ. For this, we compute the linear combination on SPZs using Prop. 3.1.26. As for
the conversion from V-representation to Z-representation in Alg. 4, we use a hierarchical
approach to unite all sets since this minimizes the representation size of the resulting SPZ
C:

C = comb
(
. . . comb

(
comb(M1,M2), comb(M3,M4)

)
. . .

)
.

If the desired zonotope order is exceeded during unification, one can additionally reduce
the representation size using the reduce operation in Prop. 3.1.39.

4.4.4 Preventing Endless Loops for Identity Resets

One problem with the procedure for reachability analysis of hybrid systems introduced in
Sec. 4.4.2 is that it can potentially result in endless loops before reaching the final time.
Especially for hybrid automata with identity reset functions r(x) = x this issue occurs quite
often due to the missing translation by the reset function. In this section, we introduce
a solution to prevent these endless loops. Let us first demonstrate the problem on the
example of a hybrid automaton with two modes H = 〈F,Y,T〉HA, where

H =
〈(
f1(x(t), u(t)), f2(x(t), u(t))

)
, (Y1,Y2), (T1,T2)

〉
HA

with transitions

T1 = 〈G, r(x), 1, 2〉T , T2 = 〈G, r(x), 2, 1〉T , r(x) = x
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1 5 6

X0

G

M C

g(x) ≤ 0 g(x) ≥ 0

Figure 4.22: Visualization of the steps 1, 5, and 6 from the procedure in Sec. 4.4.2 for a system
with identity resets, where the flow of the system is depicted with black arrows.

and invariant and guard sets

Y1 = {x | g(x) ≤ 0}, Y2 = {x | g(x) ≥ 0}, G = {x | g(x) = 0}.
Applying the procedure in Sec. 4.4.2 with µ = 1 to compute the reachable set for an initial
set X0 and an initial mode σ0 = 1 results in the situation visualized in Fig. 4.22: Since
the reachable set intersects the guard set G of transition T1, we compute a SPZ PZ that
encloses the intersection between the reachable set and the guard set. Due to the identity
reset and µ = 1, the initial set C =M = PZ for continuous reachability analysis in mode
2 is identical to PZ. Now, due to the over-approximation in PZ and in the reachable set
enclosure, we have that the first time interval reachable set Ro(τ1) for mode 2 will again
intersect the guard set G, so that the system takes the transition T2 back to mode 1. This
process will continue in an endless loop of jumps between mode 1 and mode 2 since the
algorithm is not able to make any progress in time.

From Fig. 4.22 we can deduce that the flow of the system in mode 2 defined by the
differential equation ẋ(t) = f2(x(t), u(t)) actually points from mode 1 to mode 2, so that
it is impossible to get back from mode 2 to mode 1. To formalize this observation, we take
the total derivative of the function g(x) that defines the guard set with respect to time,
which yields

dg(x(t))

dt
=
∂g(x(t))

∂x
· ∂x(t)

∂t
=
∂g(x(t))

∂x
· f2(x(t), u(t)), (4.73)

where we inserted the system dynamics ∂x(t)/∂t = ẋ(t) = f2(x(t), u(t)). Clearly, it holds
that it is impossible that the system gets from mode 2 back to mode 1 if the total derivative
is greater than 0 for all inputs u(t) ∈ U and all points inside the initial set C for mode 2:

min
x(t)∈C
u(t)∈U

dg(x(t))

dt

(4.73)
= min

x(t)∈C
u(t)∈U

∂g(x(t))

∂x
· f2(x(t), u(t))︸ ︷︷ ︸
h(z)

> 0, (4.74)

where z = [x(t)T u(t)T ]T . To prevent endless loops, we can then simply use range bounding
to efficiently check if the criterion in (4.74) is satisfied or not:

(l > 0)⇒
(

min
x(t)∈C
u(t)∈U

dg(x(t))

dt
> 0

)
, [l, u] = bound(h(z), C × U).

For this we can either enclose the SPZ C × U with an interval as described in Sec. 3.1.4 or
convert it to a Taylor model using Prop. 3.1.12 before we apply one of the range bounding
techniques in Sec. 2.7.
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Figure 4.23: Visualization of Example 4.4.12, where the flow function is depicted by black
arrows, the guard set G is shown in blue, and the SPZ PZ is shown in red.

Let us finally demonstrate our approach for preventing endless loops with an example:

Example 4.4.12. We consider the flow function[
ẋ(1)

ẋ(2)

]
=

[
sin(3x(2))
0.5x(1)x(2)

]
︸ ︷︷ ︸

f(x,u)

,

the guard set
G =

{
x ∈ R2

∣∣ 4x2
(1) − 16x(1) − 1 + 10 x(2)︸ ︷︷ ︸

g(x)

= 0
}
,

and the SPZ

PZ =

{[
2

1.7

]
+

[
0.5
0

]
α1 −

[
0

0.1

]
α2

1

∣∣∣∣ α1 ∈ [−1, 1]

}
,

which are visualized in Fig. 4.23. For the total derivative with respect to time we obtain
according to (4.73)

dg(x)

dt
=
∂g(x)

∂x
· f(x, u) =

[
(8x(1) − 16) 10

] [ sin(3x(2))
0.5x(1)x(2)

]
= (8x(1) − 16) sin(3x(2)) + 5 x(1)x(2).

Using Taylor models for range bounding yields

bound
(
(8x(1) − 16) sin(3x(2)) + 5 x(1)x(2),PZ

)
= [15.9, 17.1] > 0,

which proves that the guard set can only be crossed in one direction.
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4.4.5 Computational Complexity

We now derive the computational complexity of our novel approach with respect to the
system dimension n. For this, we require the following assumption:

Assumption 4.4.13. Given a hybrid automaton with

• invariant sets Yk = 〈yk(x),≤〉LS with yk : Rn → Rok , k = 1, . . . , p,

• guard sets Gi = 〈gi(x),=〉LS with gi : Rn → R, i = 1, . . . , q,

• reset functions ri : Rn → Rn, i = 1, . . . , q,

where e ∈ N0 denotes the maximum number of elementary operations required for the
evaluation of gi(x) and one subfunction yk(j)(x), j = 1, . . . , ok or ri(j)(x), j = 1, . . . , n, we
assume for the derivation of the computational complexity that

e = cen, ∀k ∈ {1, . . . , p} : ok = con

with constants ce, co ∈ R≥0. In addition, we assume that taking the derivative of yk(j)(x),
gi(x), and ri(j)(x) only changes the number of required elementary operations by a constant
factor.

It is easy to see that Assumption 4.4.13 does not always hold. If, for example, yk(j)(x),
gi(x), or ri(j)(x) is a non-sparse quadratic function, we have e = 0.5(n2 + n), so that
Assumption 4.4.13 is violated. In practice, however, Assumption 4.4.13 is satisfied for
most hybrid systems. In addition to the above assumption, we consider Taylor order κ = 2
for computation of the enclosing Taylor models and Taylor order κr = 2 for enclosing the
nonlinear mapping defined by the reset function. Moreover, we use interval arithmetic
for range bounding. Since the number of time intervals for reachability analysis as well
as the upper bound for the number of parallel intervals µ do not depend on the system
dimension, we have to perform all computations on a constant number of parallel sets.
For the derivation of the computational complexity it is therefore sufficient to consider the
computations on a single set only.

Let us now derive the computational complexity for the single steps of the procedure in
Sec. 4.4.2. For computing an outer-approximation of the reachable for the continuous dy-
namics in Step 1, we use the conservative polynomialization algorithm in Alg. 6, which has
complexity O(n5) according to Sec. 4.1.4. To detect when the reachable set is fully located
outside the invariant set and to select the time intervals in which the reachable set inter-
sects the guard set, we first enclose all time point reachable sets Ro(tj) and time interval
reachable sets Ro(τj) with intervals as described in Sec. 3.1.4. According to Tab. 3.3, com-
puting an interval enclosure of a SPZ has complexity O(n3) if interval arithmetic is used
for range bounding. In addition, the complexity of intersection detection using Prop. 4.4.1
and Prop. 4.4.2 is ok · O(bound) +O(bound) = ok · O(bound), which is ok · O(e) according
to Tab. 2.4 if interval arithmetic is used for range bounding.

In Step 2, we can reuse the interval enclosures computed in Step 1, so that the compu-
tational complexity is identical to the complexity of contraction O(contract), where the
complexity for different contractors is summarized in Tab. 2.5.
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Computing the union of two n-dimensional intervals using Prop. 4.4.3 as done in Step 3
has complexity O(n) according to Prop. 4.4.3.

In Step 4, we first compute a Taylor model that encloses the intersection with the
guard set using Prop. 4.4.8 or Prop. 4.4.10 followed by a conversion of the Taylor
model to a SPZ using Prop. 3.1.13. For both, Prop. 4.4.8 and Prop. 4.4.10, the part
dominating the computational complexity is the enclosure of the Lagrange remainder
L(x) ⊆ 1/6 poly(D, I ⊕ (−x∗)) with D = bound(∇3ŵ(x), I) according to (4.67). Since
∇3ŵ(x) consists of n3 scalar functions, construction of D has complexity O(en3) according
to Tab. 2.4 if interval arithmetic is used for range bounding. In addition, computation of
the cubic map 1/6 poly(D, I ⊕ (−x∗)) as defined in (2.10) using interval arithmetic has
complexity O(n3). Finally, the conversion of the resulting Taylor model to a SPZs has
complexity O(1) according to Prop. 3.1.13.

During Step 5, we enclose the set M resulting from the nonlinear mapping of the reset
function byM⊆ ri(x

∗)⊕(A⊗(PZ⊕(−x∗)))�1/2 sq(Q,PZ⊕(−x∗))⊕1/6 poly(Dr, Ir⊕
(−x∗)) with Ir = interval(PZ) and Dr = bound(∇3ri(x), Ir). Computation of the linear
map A ⊗ (PZ ⊕ (−x∗)) has complexity O(n3) according to Prop. 3.1.18, computation
of the quadratic map sq(Q,PZ ⊕ (−x∗)) has complexity O(n3(n + log(n))) = O(n4)
according to Prop. 3.1.31, the exact addition � has complexity O(n2 log(n)) according
to Prop. 3.1.20, the Minkowski sums have complexity O(n) according to Prop. 3.1.19,
and the interval enclosure interval(PZ) has complexity O(n3) according to Tab. 3.3
if interval arithmetic is used for range bounding. Moreover, since ∇3ri(x) consists of
n4 scalar functions, construction of Dr has complexity O(en4) according to Tab. 2.4 if
interval arithmetic is used for range bounding. In addition, computation of the cubic
map 1/6 poly(Dr, Ir⊕ (−x∗)) as defined in (2.10) using interval arithmetic has complexity
O(n4).

Finally, in Step 6, we unite parallel sets with the linear combination for SPZs using
Prop. 3.1.26, which has complexity O(n2) according to Prop. 3.1.26. Adding the complex-
ities for the single steps yields an overall complexity of

O(n5) +O(n3) + ok · O(e)︸ ︷︷ ︸
Step 1

+O(contract)︸ ︷︷ ︸
Step 2

+O(n)︸ ︷︷ ︸
Step 3

+O(en3) +O(n3) +O(1)︸ ︷︷ ︸
Step 4

+O(n3) +O(n4) +O(n2 log(n)) +O(n) +O(n3) +O(en4) +O(n4)︸ ︷︷ ︸
Step 5

+O(n2)︸ ︷︷ ︸
Step 6

,

which is O(n5) +O(contract) using Assumption 4.4.13. Under consideration of Assump-
tion 4.4.13, the most expensive contractor has complexity O(contract) = O(n4.5) accord-
ing to Tab. 2.5, so that contraction does not increase the computational complexity. In
addition, also the check for preventing endless loops described in Sec. 4.4.4 has a com-
plexity of less than O(n5) and therefore does not increase the computational complexity
either. Consequently, we obtain an overall complexity of O(n5), which is dominated by the
complexity of reachability analysis for the continuous dynamics and the enclosure of the
Lagrange remainder for the Taylor series of the reset function.
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Figure 4.24: Comparison of the reachable set for the artificial hybrid system calculated with
our approach and the approach in [39], where the initial set is depicted in white with a black
border and the guard set is depicted in blue. The results for the approach from [39] are taken
from [39, Fig. 3].

4.4.6 Numerical Examples

Finally, we demonstrate the performance of our novel approach on several benchmark sys-
tems. For all benchmarks we use interval arithmetic for intersection detection in Step 1 of
the procedure in Sec. 4.4.2 and apply the forward-backward contractor for the contraction
in Step 2. Moreover, we use a Taylor order of κ = 2 for computation of the guard intersec-
tion and a Taylor order of κr = 1 for computation of the reset mapping. Unless explicitly
stated otherwise, we do not use an upper bound µ for the maximum number of intervals
that are united in Step 3.

Artificial Hybrid System

First, we consider the 2-dimensional artificial hybrid system from [39, Sec. 6.1]. The
system has one nonlinear guard set

G =
{
x ∈ R2

∣∣ cos(x(1))− 0.1x(2) − 0.7 = 0
}

(4.75)

and an uncertain reset function

r(x) =

[
−x(1)

ν x(2)

]
, ν ∈ [−2.05,−2].

To implement the uncertain reset function, we introduce an auxiliary state x(3) ∈
[−2.05,−2] with dynamics ẋ(3) = 0. We compare our novel method with the approach
from [39]. Since the equality constraint that defines the guard set in (4.75) is symbolically
solvable for one variable, we calculate the intersection with the guard set according to
Prop. 4.4.8. The visualization of the reachable set in Fig. 4.24 shows that the reachable
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Figure 4.25: Reachable set for the spacecraft rendezvous benchmark (gray), where the initial
set is depicted in white with a black border, the guard set is depicted in blue, the line-of-sight
cone is depicted in purple, and the unsafe set defined by the velocity constraint is depicted in
orange.

set computed with our method is much tighter. In addition, the computation time for our
method is only 0.87 seconds, while the computation time for the approach in [39] is 26
seconds on their machine.

Spacecraft Rendezvous

Next, we again examine the spacecraft docking maneuver, which we already consid-
ered previously in Sec. 4.1.5. This time, however, we use the original formulation of the
benchmark in [151], which contains a nonlinear guard set

G =
{

[sx sy vx vy]
T ∈ R4

∣∣∣ s2
x + s2

y − (100m)2 = 0
}
, (4.76)

where the four system states are the planar positions sx, sy and corresponding veloci-
ties vx, vy of the spacecraft. Unlike in the previously considered version of the bench-
mark, we now also only have the two discrete modes approaching and rendezvous at-
tempt. The system starts in mode approaching from the initial set sx ∈ [−925,−875]m,
sy ∈ [−425,−375]m, vx = 0m/min, and vy = 0m/min. If the spacecraft is at a distance of
100m from the space station, the system transitions into mode rendezvous attempt where
a different controller is applied. This transition is modeled by the guard set G in (4.76).
As in Sec. 4.1.5, the specifications for the benchmark are that in mode rendezvous attempt
the spacecraft stays inside the line-of-sight cone and the absolute velocity stays below
3.3m/min. The considered time horizon is tf = 200min.

We compare our method to the approach in [31], which is implemented in CORA [1]. To
handle discrete transitions, this approach first computes the intersection geometrically and
then encloses the union of all partial intersections with bundles of parallelotopes. Since [31]
is only applicable for guard sets represented by polytopes or hyperplanes, we enclose the
nonlinear guard set in (4.76) with 10 equally sized polytopes. Because the equality con-
straint defining the guard set in (4.76) is not symbolically solvable for one variable, we
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Figure 4.26: Comparison of the reachable set for a transcriptional regulator network with N = 6
genes (left) and N = 12 genes (right) calculated with our approach and the approach in [114].
The results for the approach in [114] are taken from [114, Fig. 11].

calculate the intersection with the guard set according to Prop. 4.4.10. Fig. 4.25 visualizes
the results from our approach. The reachable sets computed with our approach and the
approach in [31] both have similar accuracy and both satisfy the specifications. However,
computing the guard intersection with the approach in [31] takes 4.96 seconds, whereas the
computation of the guard intersection with our approach only takes 0.93 seconds. More-
over, for high-dimensional systems the computation time for enclosing nonlinear guards by
polytopes might already be very large.

Transcriptional Regulator Network

The last benchmark is a transcriptional regulator network with N genes and system
dimension n = 2N [114, Sec. VIII.D] that we already examined in Sec. 4.1.5. In contrast
to the purely continuous version considered previously, we now use the version with the
artificial guard set

G =

{
x ∈ R2N

∣∣∣∣ 2N∑
i=1

(x(i) − 5)5 − 752 = 0

}
(4.77)

in [114, Sec. VIII.D]. We investigate the cases with N = 6 and N = 12 genes, which
correspond to n = 12 and n = 24 system states, respectively. For the calculation of the
reachable set with our novel approach, we use an upper bound of µ = 5 for the case with
N = 6 genes as well as an upper bound µ = 7 for the case with N = 12 genes. Since the
equality constraint that defines the guard set in (4.77) is not symbolically solvable for one
variable, we calculate the intersection with the guard set according to Prop. 4.4.10.

We compare our method with the approach from [114]. The visualization of the results
in Fig. 4.26 shows that the reachable set computed with our approach is much tighter for
the case with N = 6 genes. In addition, the computation time for our approach is only
9.2 seconds, while the computation time for the approach in [114] is 130 seconds on their
machine (see [114, Tab. IV]). For the case with N = 12 genes, the approach from [114]
is not applicable due to a memory overflow (see [114, Tab. IV]). However, with our novel
approach we can calculate the reachable set in only 35.6 seconds (see Fig. 4.26).
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4.5 Summary

In this chapter we introduced novel approaches for reachability analysis of nonlinear con-
tinuous and hybrid systems, all of which use sparse polynomial zonotopes to represent
reachable sets. Moreover, all approaches we presented only have polynomial complexity
with respect to the system dimension and are therefore well suited for the verification of
high-dimensional cyber-physical systems.

For computing outer-approximations of reachable sets for nonlinear continuous sys-
tems using the conservative polynomialization algorithm, significant improvements can
be achieved with sparse polynomial zonotopes. In particular, sparse polynomial zonotopes
store sets very compactly, they preserve dependencies, and they are closed under all set
operations required for the conservative polynomialization algorithm. Consequently, with
sparse polynomial zonotopes one can improve both, the computation time and the accuracy
of the algorithm, compared to zonotopes and the non-sparse representation of polynomial
zonotopes in [47], as we demonstrated on several numerical examples.

In addition, by utilizing dependency preservation of sparse polynomial zonotopes, we
proved that reachability analysis using the conservative polynomialization algorithm pre-
serves dependencies between the initial states and the reachable states. Based on this
fundamental result, we presented a novel method for the efficient extraction of reachable
subsets. As we demonstrated on multiple numerical examples, this novel reachable subset
approach results in significant speed-ups for many applications, such as safety falsification,
optimization over reachable sets, and motion-primitive-based control.

While outer-approximations of reachable sets are mainly used to verify that specifications
are satisfied, inner-approximation are useful to prove that specifications are violated. Based
on the conservative polynomialization algorithm and our reachable subset approach, we
introduced a novel method for computing non-convex inner-approximations of reachable
sets for nonlinear continuous systems. Since we extract inner-approximations directly from
precomputed outer-approximations of reachable sets, our method is computationally very
efficient, as we showed with several numerical examples.

For reachability analysis of hybrid systems, the main challenge is to handle the discrete
transitions between different modes, since this requires the computation of intersections
between the reachable set and the guard sets. We developed a novel approach for the very
general case of hybrid systems with guard sets represented by nonlinear level sets, which
tightly encloses these intersections by sparse polynomial zonotopes. Since our approach
unifies reachable sets before computing the intersections, the computational demanding
propagation of parallel sets can be avoided. Moreover, we additionally presented a novel
strategy for preventing endless loops during reachability analysis, which is a common prob-
lem for many reachability algorithms for hybrid system. Performance evaluation on mul-
tiple benchmarks demonstrated that our novel approach achieves very good results with
regard to accuracy and computation time compared to other state of the art methods.
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Selected Applications

While in Sec. 4 we showed in detail how the advantageous properties of SPZs can be
exploited to improve reachability analysis of nonlinear continuous and hybrid systems, we
have so far not considered any applications for CPZs and the Z-representation of polytopes.
For this reason, we present in this section several applications for these two novel set
representations.

5.1 Applications for Constrained Polynomial

Zonotopes

We begin with applications for CPZs, where we consider set-based observers and program
verification using inductive invariants in particular.

5.1.1 Set-Based Observers

For many systems it is not possible to measure all system states. In order to control
such systems one therefore often uses an observer that estimates the values for the non-
measurable states. While estimates are sufficient for systems that are not safety-critical,
for safety-critical systems one requires a set-based observer which returns a set that is
guaranteed to contain the actual system state rather than an estimate. In this section, we
introduce a novel set-based observer for nonlinear discrete-time systems, which is based on
CPZs.

Let us first briefly review the current state of the art. Most approaches for set-based
observers consider linear discrete-time systems. These observers can be extended to han-
dle nonlinear systems by applying conservative linearization [152, Sec. II.D]. Set-based
observers can be grouped into three main categories: intersection-based observers, set-
propagation observers, and interval observers. Intersection-based observers [26,32,36,153]
consist of a prediction step and a correction step, where in the prediction step reachabil-
ity analysis is used to compute the set of possible states based on an uncertain system
model. Next, in the correction step, this set is intersected with a strip defined by the cur-
rent uncertain measurement. Set-propagation observers [27,154], on the other hand, avoid
intersections by combining the concept of a Luenberger observer [155] with reachability
analysis. Finally, interval observers [156–158] enclose the set of possible states with an
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interval, where two different observers are used to estimate the upper bound and the lower
bound of the interval. A comparison of different set-based observers is provided in [159].

The novel observer we introduce here is an intersection-based observer. CPZs are well
suited for this kind of observers since they are closed under polynomial maps and intersec-
tions, so that both, the propagation and the correction step can be calculated with high
accuracy. We consider general nonlinear discrete-time systems defined as

xj+1 = f(xj, u)

yj = h(xj) + v,
(5.1)

where xj ∈ Rn and yj ∈ Ra are the vectors of system states and system outputs at time
step j ∈ N0, u ∈ U ⊂ Rm is the vector of uncertain inputs, and v ∈ V ⊂ Ra is the
vector of measurement errors. While many observers explicitly distinguish between known
inputs and uncertain inputs, we here consider the case with uncertain inputs only for
simplicity since including known inputs is straightforward. Both, the dynamic function
f : Rn × Rm → Rn and the measurement function h : Rn → Ra in (5.1) are Lipschitz
continuous. Moreover, we consider the case where the set of uncertain inputs is a zonotope
U = 〈cz, Gz〉Z and the set of measurement errors is a symmetric interval centered at the
origin V = [−d, d]. Given the system in (5.1), an initial set X0 containing the initial state
x0 ∈ X0, and a sequence of measurements ŷj, the goal of a set-based observer is to compute
a sequence of sets Xj that is consistent with the system dynamics and the measurements
and as tight as possible. To achieve this, intersection-based observers compute in each time
step j the set

Xj+1 =
{
f(xj, u)

∣∣ xj ∈ Xj, u ∈ U} ∩ {x ∈ Rn
∣∣ ŷj+1 − h(x) ∈ V

}
, (5.2)

where the nonlinear map {f(xj, u) | xj ∈ Xj, u ∈ U} corresponds to the prediction step
and the intersection with {x ∈ Rn | ŷj+1 − h(x) ∈ V} corresponds to the correction step.
Since for general nonlinear systems it is not possible to compute the set in (5.2) exactly,
we compute a tight enclosure instead using CPZs.

Let us first consider the prediction step, where we use zj = [xTj u
T ]T to concisely formu-

late the system dynamics as xj+1 = f(zj). Enclosing the dynamic function with a Taylor
series expansion of order 2 at the expansion point z∗ = [cT cTz ] with c ∈ Rn representing
the constant offset of the CPZ Xj yields

f(i)(zj) ∈ f(i)(z
∗) +

∂f(i)(zj)

∂zj

∣∣∣∣
z∗︸ ︷︷ ︸

A(i,·)

(zj − z∗)

+
1

2
(zj − z∗)T

∂2f(i)(zj)

∂z2
j

∣∣∣∣
z∗︸ ︷︷ ︸

Qi

(zj − z∗)⊕ L(i)(zj), i = 1, . . . , n,

(5.3)
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where the Lagrange remainder L(zj) = L(1)(zj)× . . .× L(n)(zj) is enclosed by

∀zj ∈ Zj : L(zj) =

{
s

∣∣∣∣ s(i) =

(
(zj − z∗)T∇

)3
f(i)(ẑ)

3!
, ẑ = z∗ + λ(zj − z∗), λ ∈ [0, 1]

} Zj⊆I
⊆

1

6

{
s
∣∣∣ s(i) =

(
(zj − z∗)T∇

)3
f(i)(ẑ), zj, ẑ ∈ I

} (2.10)

⊆ 1

6
poly

(
D, I ⊕ (−z∗)

)
(5.4)

with

Zj = Xj × U , I = interval(Zj), D = bound
(
∇3f(zj), I

)
.

Using (5.3) and (5.4), we can calculate a tight enclosure of the nonlinear map from the
prediction step as follows:{

f(xj, u)
∣∣ xj ∈ Xj, u ∈ U} =

{
f(zj)

∣∣ zj ∈ Zj} =

(5.3)

⊆

f(z∗) + A(zj − z∗) +
1

2

(zj − z∗)TQ1(zj − z∗)
...

(zj − z∗)TQn(zj − z∗)

⊕ L(zj)

∣∣∣∣∣∣∣ zj ∈ Zj


(5.4)

⊆ f(z∗)⊕
(
A⊗ (Zj ⊕ (−z∗))

)
�

1

2
sq
(
Q,Zj ⊕ (−z∗)

)
⊕ 1

6
poly

(
D, I ⊕ (−z∗)

)
(5.5)

with Q = {Q1, . . . , Qn}. The Cartesian product Zj = Xj × U is computed using
Prop. 3.2.19, where we first convert the zonotope U to a CPZ as described in Sec. 3.2.3.
Moreover, the linear map A⊗ (Zj ⊕ (−z∗)) is computed using Prop. 3.2.16, the quadratic
map sq(Q,Zj ⊕ (−z∗)) is computed using Prop. 3.2.22, the exact addition � is computed
using Prop. 3.2.18, Minkowski sums are calculated using Prop. 3.2.17, the interval enclosure
I = interval(Zj) is calculated as described in Sec. 3.2.4, and D = bound(∇3f(zj), I) is
calculated using range bounding as described in Sec. 2.7.

Next, we consider the correction step. Since the set of measurement errors V is an
interval, we can equivalently represent the set {x ∈ Rn | ŷj+1 − h(x) ∈ V} as a level set:

{
x ∈ Rn

∣∣ ŷj+1 − h(x) ∈ V
} V=[−d,d]

=
{
x ∈ Rn

∣∣ − d ≤ ŷj+1 − h(x) ≤ d
}

=

{
x ∈ Rn

∣∣ (ŷj+1 − h(x)− d ≤ 0) ∧ (−ŷj+1 + h(x)− d ≤ 0)
}

Def. 2.2.9

=

〈[
ŷj+1 − h(x)− d
−ŷj+1 + h(x)− d

]
,≤
〉
LS

.

(5.6)

The intersection required in the correction step can therefore simply be implemented by
applying Prop. 3.2.24. By combining the prediction step in (5.5) and the correction step
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Figure 5.1: Visualization of the airplane tracking benchmark from Example 5.1.1.

in (5.6), we finally obtain for (5.2):

Xj+1 ⊆
(
f(z∗)⊕

(
A⊗ (Zj ⊕ (−z∗))

)
�

1

2
sq
(
Q,Zj ⊕ (−z∗)

)
⊕ 1

6
poly

(
D, I ⊕ (−z∗)

))
∩
〈[

ŷj+1 − h(x)− d
−ŷj+1 + h(x)− d

]
,≤
〉
LS

.
(5.7)

According to Tab. 3.9, many of the set operations on CPZs required for the observer in
(5.7) increase the representation size. To keep the computation time small, we therefore
additionally have to perform constraint reduction and order reduction using Prop. 3.2.29
and Prop. 3.2.31 in each time step. It is also straightforward to extend the observer
in (5.7) to nonlinear continuous-time systems, since we can simply use the conservative
polynomialization algorithm in Alg. 6 for the prediction step. Let us finally demonstrate
our CPZ-based observer with an example:

Example 5.1.1. We consider the system visualized in Fig. 5.1, which consists of a radar
dish that aims to determine the position of an airplane. Since the radar dish automatically
adjusts its pose to follow the signal it receives from the airplane, it is sufficient to consider
the two-dimensional plane spanned by the radar dish and the airplane. We model the
dynamic behavior of the airplane as

vj+1 = vj + ∆t u1

φj+1 = φj + ∆t u2

sx,j+1 = sx,j + ∆t vj cos(φj)

sy,j+1 = sy,j + ∆t vj sin(φj),

(5.8)

where the system state xj = [vj φj sx,j sy,j]
T consists of the airplane velocity vj, the

airplane orientation φj, and the x and y positions of the airplane’s center of mass sx,j
and sy,j. The uncertain inputs u = [u1 u2]T are bounded by the set U = [−0.5, 0.5]m/s2 ×
[−0.02, 0.02]rad/s. The radar dish cannot measure the position of the airplane directly, but
instead measures the distance rj and the bearing θj. For the measurement function, we
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Figure 5.2: Bounds for the system states of the airplane from Example 5.1.1 over time computed
with the CPZ-based observer in (5.7).

therefore obtain

rj =
√
s2
x,j + s2

y,j + v1

θj = tan−1

(
sy,j
sx,j

)
+ v2,

where yj = [rj θj]
T is the vector of system outputs. The measurement error v = [v1 v2]T is

bounded by the set V = [−0.1, 0.1]m × [−0.05, 0.05]rad. Moreover, we consider the initial
set X0 = [19, 21]m/s× [0, 0.2]rad× [490, 510]m× [190, 210]m and we run the observer with
a sampling rate of ∆t = 0.1s. To obtain a sequence of measurements ŷj, we simulate the
dynamic system in (5.8) for a random initial state using randomly sampled disturbances
u and measurement errors v. The results shown in Fig. 5.2 demonstrate that our CPZ-
based observer successfully reduces the initial uncertainty for most system states. The
computation time for a time horizon of 4 seconds is only 3.346 seconds, so that the observer
actually runs in real-time.
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5.1.2 Program Verification using Inductive Invariants

Up to now we focused on the verification of the physical behavior of cyber-physical systems.
However, nowadays this kind of systems are often controlled by large and complicated
computer programs. To guarantee safety, it is therefore crucial to also verify the correctness
of the software. One common approach that is often used for verification of computer
programs are inductive invariants. Given a program and a set of possible initial values
for the program inputs, an inductive invariant is a set containing all possible values that
the program variables may take during program execution. The limits on the variables
defined by the inductive invariant can for example be used to prove safety, verify that the
program does not run into singular points like, e.g., division by zero, or deduce bounds for
the maximum occurring rounding errors. In this section we demonstrate that CPZs are
well suited for the computation of tight inductive invariants.

Let us first provide an overview of the current state of the art. A common technique
to obtain an inductive invariant is to compute the reachable set of the computer program
with set-based propagation [29,34,48], where [29] uses zonotopes, [34] uses zonotopes with
polytopic domains, and [48] uses quadratic zonotopes to represent the invariant. Other
approaches compute inductive invariants represented as polynomial level sets through op-
timization [56,57,160], where [56] applies Sum-of-Squares techniques, [57] uses polynomial
optimization problems, and [160] exploits a Gröbner basis to reduce invariant computa-
tion to a constraint satisfaction problem. Yet another method is to compute inductive
invariants represented by polynomial level sets based on counterexamples [161–163].

With CPZs, we can compute tight inductive invariants using set-based propagation. As
an example we consider the following MATLAB function:

function [x,y] = program(x,y)

for i = 1:3

if y >= x^2

x = x - 0.5*y;

y = 1.2*y;

else

x = x*y;

y = -0.8*y^2;

end

end

end

(5.9)

The inputs x and y to the function are bounded by x ∈ [0, 1] and y ∈ [0, 1]. To compute an
inductive invariant for the function in (5.9), we require the set operations linear map for
the assignments x = x - 0.5*y and y = 1.2*y, quadratic map for the assignments x =

x*y and y = -0.8*y^2, intersection for evaluating the condition of the if-statement, and
union to unite the sets for the two branches of the if-else-statement as well as the sets for
the 3 iterations of the for-loop. Since CPZs are closed under all these operations, we can
compute the exact inductive invariant of the function in (5.9). For this, let us denote the
set at the end of the i-th iteration of the for-loop by X (i), where X (0) = [0, 1] × [0, 1] is
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Figure 5.3: Visualization of the final set X (3) (left) and the inductive invariant INV (right) for
the computer program in (5.9), where the input set is shown in white with a black border.

the input set. Then the values that satisfy the condition y >= x^2 of the if-statement are
given by the set X (i) ∩ LS1 and the values that take the else-branch are given by the set
X (i) ∩ LS2, where the level sets LS1 and LS2 are defined as

LS1 = 〈x2
(1) − x(2),≤〉LS, LS2 = 〈−x2

(1) + x(2),≤〉LS.

Consequently, the set X (i+1) resulting from the propagation of the set X (i) through the
body of the for-loop can be computed as

X (i+1) =
(
A⊗ (X (i) ∩ LS1)

)
∪ sq(Q,X (i) ∩ LS2) (5.10)

with

A =

[
1 −0.5
0 1.2

]
, Q = {Q1, Q2}, Q1 =

[
0 0
1 0

]
, Q2 =

[
0 0
0 −0.8

]
,

where the intersections with the level sets are calculated using Prop. 3.2.24, the linear map
is calculated using Prop. 3.2.16, the quadratic map is calculated using Prop. 3.2.22, and
the union is calculated using Prop. 3.2.25. After repeating the set-propagation in (5.10)
for all 3 iterations of the for-loop, the inductive invariant can be computed as

INV = X (0) ∪ X (1) ∪ X (2) ∪ X (3).

The overall computation of the inductive invariant using CPZs takes 5.56 seconds and
the results are visualized in Fig. 5.3. The CPZ-based approach presented here can be
easily extended to programs with infinite loops by using the containment check for CPZs
described in Sec. 3.2.6.
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5.2 Applications for the Z-Representation of

Polytopes

For the Z-representation of polytopes, we discuss the applications range bounding on poly-
topic domains and generalized barycentric coordinates in detail.

5.2.1 Range Bounding on Polytopic Domains

In this section we demonstrate how the Z-representation of polytopes can be utilized to
improve the results for range bounding on polytopic domains. Given a function f : Rn → R
and a domain D ⊂ Rn, the range bounding operation as defined in Def. 2.7.1 aims to
determine tight bounds of the function values on the domain:

bound(f(x),D) ⊇
[
min
x∈D

f(x), max
x∈D

f(x)

]
. (5.11)

Clearly, in order to use interval arithmetic for range bounding, it is required that the
domain D is an interval. If this is not the case one can enclose D by an interval, which
however potentially results in very conservative bounds due to the over-approximation.
Similarly, for affine arithmetic it is required that the domain D is an affine object, which is
equivalent to a zonotope. For range bounding using Taylor models, D has to be represented
as a Taylor model.

In this section, we consider the range bounding problem bound(f(x),P), where the
domain P = 〈c,G,E〉Z is a polytope in Z-representation. Using the definition of the
Z-representation in Def. 3.3.1

P = 〈c,G,E〉Z
Def. 3.3.1

=

{
c+

h∑
i=1

( mi∏
k=1

αE(i,k)

)
G(·,i)

∣∣∣∣ αE(i,k)
∈ [−1, 1]

}
, (5.12)

we have

max
x∈P

f(x)
(5.12)
= max

α∈[−1,1]
f

(
c+

h∑
i=1

( mi∏
k=1

αE(i,k)

)
G(·,i)

)
︸ ︷︷ ︸

f̂(α)

,

where α = [α1 . . . αp]
T . Since the same relation holds for the minimum, we obtain

bound(f(x),P) = bound
(
f̂(α), [−1,1]

)
(5.13)

according to (5.11). Using the Z-representation of polytopes, any range bounding prob-
lem bound(f(x),P) with a polytopic domain P can consequently be reformulated as an

equivalent range bounding problem bound(f̂(α), [−1,1]) with an interval domain [−1,1].
The reformulation therefore avoids the enclosure of the polytopic domain with an interval
or an affine object, and consequently often results in significantly tighter bounds as we
demonstrate with an example:
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Example 5.2.1. We consider the range bounding problem bound(f(x),P) for the function

f(x) = x(1)

(
3− x(1)

)
+ x(2)

(
2− x(2)

)
− 3.25 + 4 cos(x(1)) sin(x(2))

and the polytope in Z-representation

P =

〈[
0
−0.5

]
,

[
1 0 1
−0.5 1.5 −0.5

]
,

(
1, 2,

[
1
2

])〉
Z

=

{[
0
−0.5

]
+

[
1
−0.5

]
α(1) +

[
0

1.5

]
α(2) +

[
1
−0.5

]
α(1) α(2)

∣∣∣∣ α ∈ [−1,1]

}
,

which are visualized in Fig. 5.4. According to (5.13), this can be equivalently formulated as

the range bounding problem bound(f̂(α), [−1,1]) with

f̂(α) = α2
(2)

(
1.5α(1) − 1.25α2

(1) − 2.25
)
− α2

(1)

(
2.5α(2) + 1.25

)
+ α(2)

(
3α(1) + 4.5

)
+

1.5α(1) − 4.5 + 4 cos(α(1) + α(1)α(2)) sin(−0.5− 0.5α(1) + 1.5α(2) − 0.5α(1)α(2)).

To use interval arithmetic for the original range bounding problem bound(f(x),P), we first
have to enclose the polytope P by the interval P ⊆ I = [−2, 2]× [−2, 2]. Consequently, we
obtain the quite conservative bounds bound(f(x), I) = [−25.25, 18.75]. On the other hand,

for the equivalent range bounding problem bound(f̂(α), [−1,1]) we can apply interval arith-

metic directly, so that we obtain the tighter bounds bound(f̂(α), [−1,1]) = [−26.25, 9.75].

By using Taylor models for range bounding, we even obtain bound(f̂(α), [−1,1]) =
[−14.888, 1.410], which is very close to the exact result [−14.887, 1.409].

If Taylor models are used for range bounding one can also simply convert the poly-
tope P in Z-representation to a Taylor model using Prop. 3.3.12 and Prop. 3.1.13. This
will give an identical result compared to using the reformulated range bounding problem
bound(f̂(α), [−1,1]) and is often easier to implement.

5.2.2 Generalized Barycentric Coordinates

Barycentric coordinates are originally defined for simplices, where the coordinates express
each point inside a simplex as a linear combination of the simplex vertices. Generalized
barycentric coordinates extend this concept to general polytopes: Given a polytope P =
〈[v1 . . . vs]〉V ⊂ Rn and a point x ∈ P inside the polytope, the generalized barycentric
coordinates θi(x), i = 1, . . . , s of the point must satisfy

x =
s∑
i=1

θi(x) vi,
s∑
i=1

θi(x) = 1, ∀i ∈ {1, . . . , s} : θi(x) ≥ 0. (5.14)

For polytopes with more than n + 1 vertices, the generalized barycentric coordinates are
not unique. One exemplary application for barycentric coordinates is control theory, where
optimal controllers for the polytope vertices are constructed offline and barycentric coordi-
nates are used during online application to obtain the controller for the measured state by
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Figure 5.4: Visualization of the function f(x) (left) and the polytope P (red, right) from Ex-
ample 5.2.1, where the figure on the right additionally shows isolines of the function f(x).

interpolation [127, 164, 165]. Given a point x ∈ P , its generalized barycentric coordinates
can be determined with linear programming. However, since for the above-mentioned con-
trol applications linear programming is often still too slow for real-time applicability, the
approach in [124] derives a closed-form expression for generalized barycentric coordinates.

In this section we show that a closed-form expression for generalized barycentric coordi-
nates θi(α) with respect to the factors α of the Z-representation is obtained automatically
during the conversion of a polytope in V-representation to Z-representation using Alg. 4.
The Z-representation of the polytope can therefore be equivalently represented as

P =
〈
[v1 . . . vs]

〉
V

=

{ s∑
i=1

θi(α) vi

∣∣∣∣ α ∈ [−1,1]

}
, (5.15)

where the functions θi(α) satisfy

∀α ∈ [−1,1] :
s∑
i=1

θi(α) = 1 and ∀α ∈ [−1,1] : θ1(α), . . . , θs(α) ≥ 0.

For the conversion from V-representation to Z-representation, Alg. 4 first represents all
polytope vertices in Z-representation and then successively unites all vertices using the con-
vex hull. To prove that the resulting Z-representation of the polytope can be equivalently
represented with generalized barycentric coordinates as in (5.15), we use mathematical
induction:

Base case: Initially, all polytopes Pj = 〈vj, [ ], ∅〉Z with j = 1, . . . , s considered by Alg. 4
represent a single polytope vertex vj and can therefore be equivalently represented as in
(5.15) with a single generalized barycentric coordinate θ(α) = 1:

Pj =
{
vj
}

=
{
θ(α) vj

∣∣ α ∈ [−1,1]
}
.
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Induction hypothesis: We assume that we have two polytopes P1 and P2 that can be
equivalently represented with generalized barycentric coordinates as in (5.15):

P1 =
〈
[v1,1 . . . v1,s1 ]

〉
V

=

{ s1∑
i=1

θ1,i(α1) v1,i

∣∣∣∣ α1 ∈ [−1,1]

}
P2 =

〈
[v2,1 . . . v2,s2 ]

〉
V

=

{ s2∑
i=1

θ2,i(α2) v2,i

∣∣∣∣ α2 ∈ [−1,1]

}
,

(5.16)

where the functions θ1,i(α1) and θ2,i(α2) satisfy

∀α1 ∈ [−1,1] :

s1∑
i=1

θ1,i(α1) = 1, ∀α1 ∈ [−1,1] : θ1,1(α1), . . . , θ1,s1(α1) ≥ 0

∀α2 ∈ [−1,1] :

s2∑
i=1

θ2,i(α2) = 1, ∀α2 ∈ [−1,1] : θ2,1(α2), . . . , θ2,s2(α2) ≥ 0.

(5.17)

Induction step: Finally, we show that unification of the two polytopes P1 and P2 from
the induction hypothesis using the convex hull as done by Alg. 4 results in a polytope that
can be equivalently represented with generalized barycentric coordinates as in (5.15):

conv(P1,P2) = comb(P1,P2)
(2.11)
=

{
1

2
(1 + λ)︸ ︷︷ ︸
θ̂1(λ)

p1 +
1

2
(1− λ)︸ ︷︷ ︸
θ̂2(λ)

p2

∣∣∣∣ p1 ∈ P1, p2 ∈ P2, λ ∈ [−1, 1]

}
(5.16)
=

{
θ̂1(λ)

( s1∑
i=1

θ1,i(α1) v1,i

)
+ θ̂2(λ)

( s2∑
i=1

θ2,i(α2) v2,i

) ∣∣∣∣ α1, α2 ∈ [−1,1], λ ∈ [−1, 1]

}
=

{ s1+s2∑
i=1

θi(α) vi

∣∣∣∣ α ∈ [−1,1]

}
,

where α = [αT1 αT2 λ]T and

θi(α) =

{
θ̂1(λ) θ1,i(α1), i ≤ s1

θ̂2(λ) θ2,i−s1(α2), otherwise
, vi =

{
v1,i, i ≤ s1

v2,i−s1 , otherwise
. (5.18)

We exploited that the convex hull and the linear combination are identical since P1 and
P2 are both convex sets. The resulting functions θi(α) are valid generalized barycentric
coordinates since they satisfy

∀α ∈ [−1,1] :

s1+s2∑
i=1

θi(α)
(5.18)
= θ̂1(λ)

( s1∑
i=1

θ1,i(α1)

)
︸ ︷︷ ︸

(5.17)
= 1

+ θ̂2(λ)

( s2∑
i=1

θ2,i(α2)

)
︸ ︷︷ ︸

(5.17)
= 1
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= θ̂1(λ) + θ̂2(λ) =
1

2
(1 + λ) +

1

2
(1− λ) = 1

and

∀α ∈ [−1,1], ∀i ∈ {1, . . . , s1} : θi(α)
(5.18)
= θ̂1(λ) θ1,i(α1) = 0.5(1 + λ)︸ ︷︷ ︸

≥0

θ1,i(α1)︸ ︷︷ ︸
(5.17)

≥ 0

≥ 0,

∀α ∈ [−1,1], ∀i ∈ {1, . . . , s2} : θs1+i(α)
(5.18)
= θ̂2(λ) θ2,i(α2) = 0.5(1− λ)︸ ︷︷ ︸

≥0

θ2,i(α2)︸ ︷︷ ︸
(5.17)

≥ 0

≥ 0,

which concludes the proof.
Let us demonstrate generalized barycentric coordinates for the Z-representation with an

example:

Example 5.2.2. We consider the polytope

P =

〈[[
2
0

] [
−2
2

] [
0
−2

] ]〉
V

in V-representation. With the approach described in this section, P can be equivalently
represented as

P =

{
1

4

(
1 + α(1)

)(
1 + α(2)

)
︸ ︷︷ ︸

θ1(α)

[
2
0

]
+

1

4

(
1− α(1)

)(
1 + α(2)

)
︸ ︷︷ ︸

θ2(α)

[
−2
2

]

+
1

2

(
1− α(2)

)
︸ ︷︷ ︸

θ3(α)

[
0
−2

] ∣∣∣∣ α ∈ [−1,1]

}
,

where we constructed the closed-form expressions for the generalized barycentric coordinates
θ1(α), θ2(α), and θ3(α) during conversion of P to Z-representation using Alg. 4.
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5.3 Summary

In this chapter we presented selected applications for constrained polynomial zonotopes
and the Z-representation of polytopes, all of which are closely related to formal verification
and safe control of cyber-physical systems.

Since constrained polynomial zonotopes are closed under polynomial maps and intersec-
tions, they are an excellent fit for set-based observers that rely on intersection computation
since both, the prediction and the correction step, can be calculated with high accuracy.
Using constrained polynomial zonotopes we therefore presented a novel set-based observer
for nonlinear discrete-time systems with nonlinear measurement functions. As we demon-
strated with a numerical example, our observer successfully reduces the uncertainty on the
system state and is fast enough to run in real-time.

Constrained polynomial zonotopes are also well suited for the verification of computer
programs using inductive invariants. In particular, due to the advantageous properties
of constrained polynomial zonotopes, nonlinear assignments, intersections with conditions
of if-statements, and the unification of sets from different loop-iterations can often be
computed exactly. As we showed for an exemplary program, one consequently often obtains
the exact invariant or a very tight enclosure.

With the Z-representation of polytopes, any range bounding problem with a polytopic
domain can be transformed to an equivalent range bounding problem with an interval do-
main. Since this transformation circumvents the need to enclose the domain by an interval,
one often obtains significantly tighter bounds, as we demonstrated for an exemplary range
bounding problem.

The Z-representation of polytopes also has a natural connection to generalized barycen-
tric coordinates, which are, among other things, very useful for many control applications.
In particular, closed-form expressions for the generalized barycentric coordinates with re-
spect to the factors of the Z-representation are obtained automatically during conversion
from V-representation to Z-representation.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we introduced the novel set representations sparse polynomial zonotopes,
constrained polynomial zonotopes, and the Z-representation of polytopes as extensions to
polynomial zonotopes. Moreover, we developed new approaches for reachability analysis
of nonlinear continuous and hybrid systems and presented several additional applications
for our novel set representations.

Extensions of Polynomial Zonotopes

We first introduced a novel sparse representation of polynomial zonotopes, which repre-
sents polynomial zonotopes much more compact than the previous non-sparse representa-
tion. Sparse polynomial zonotopes can represent non-convex sets and are closed under the
set operations linear map, Minkowski sum, Cartesian product, convex hull and quadratic
map, for all of which we derived closed-form expressions. Moreover, we showed how any
interval, zonotope, bounded polytope and Taylor model can be equivalently represented as
a sparse polynomial zonotope, which further substantiates the relevance of this novel set
representation. In addition, sparse polynomial zonotopes preserve dependencies, which is
advantageous for many applications.

Next, we presented constrained polynomial zonotopes, which extend sparse polynomial
zonotopes by adding polynomial equality constraints for the dependent factors. This re-
sults in a set representation that is closed under all relevant set representations including
intersection and union. Furthermore, in addition to the set representations that can be
represented as sparse polynomial zonotopes, constrained polynomial zonotopes can also
represent ellipsoids. For both, sparse polynomial zonotopes and constrained polynomial
zonotopes, all relevant set operations only have polynomial complexity with respect to
the dimension and we presented efficient techniques for reducing the representation size.
Overall, these novel set representations are therefore well suited to handle the complexity
and nonlinearity of high-dimensional cyber-physical systems.

As a third set representation, we finally introduced the Z-representation of polytopes,
which stores polynomial zonotopes that represent polytopes very compactly. An analysis
of the representation size showed that for polytopes that are similar to zonotopes, the Z-
representation is more compact than the V-representation and the H-representation. Again
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we derived closed-form expressions for set operations on the Z-representation and provided
algorithms for the conversion between V-representation and Z-representation.

Reachability Analysis

One major application for the novel set representations presented in this thesis, and in
particular sparse polynomial zonotopes, is reachability analysis. We first demonstrated the
benefits of sparse polynomial zonotopes with respect to accuracy and computation time
for reachability analysis of nonlinear continuous systems using the conservative polyno-
mialization approach. Moreover, we proved that with sparse polynomial zonotopes the
relations between initial states and reachable states are preserved, which results in sig-
nificant speed-ups for many applications, such as safety falsification, optimization over
reachable sets, and safe control. We then exploited this dependency preservation to in-
troduce a novel method for computing tight non-convex inner-approximations of reachable
sets for nonlinear continuous systems, which can, for example, be used to disprove specifi-
cations. Finally, we presented a novel approach for reachability analysis of hybrid systems
with nonlinear guard sets. Again, we used sparse polynomial zonotopes to represent the
reachable sets since they are well suited for handling both, the continuous dynamics as
well as the discrete transitions of a hybrid system. Due to the computational efficiency of
sparse polynomial zonotopes, all reachability algorithms presented in this thesis only have
polynomial complexity with respect to the system dimension and are therefore well-suited
for the verification of high-dimensional systems.

Selected Applications

Despite reachability analysis, our novel set representations can also be used for many
other applications. For constrained polynomial zonotopes, we discussed set-based observers
and program verification using inductive invariants in detail. Set-based observers require
the evaluation of nonlinear maps in the prediction step and the computation of intersec-
tions with level sets in the correction step. Both operations can be tightly enclosed by
constrained polynomial zonotopes. Similarly, for the computation of inductive invariants,
one requires nonlinear maps for nonlinear assignments, intersections for the conditions of
if-statements, and unions to unify sets from different paths and loop-iterations. Again,
with constrained polynomial zonotopes it is straightforward to handle all of these opera-
tions. For the Z-representation of polytopes, we examined range bounding on polytopic
domains and generalized barycentric coordinates, two problems that have high relevance
for many applications.
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6.2 Future Directions

Finally, we provide an outlook about possible future extensions of the research presented
in this thesis.

Extensions of Polynomial Zonotopes

Since many operations on sparse polynomial zonotopes and constrained polynomial zono-
topes increase the representation size, good order reduction methods are crucial for their
effective use. As we demonstrated by several numerical examples, the reduction tech-
niques that we introduced in this thesis work quite well. However, there is still room
for improvement. Especially for sparse polynomial zonotopes an order reduction method
that compensates the removed generators by prolonging the remaining dependent gen-
erator instead of introducing new independent generators would be very advantageous,
since computations on the dependent generators are exact, while computations on the
independent generators are over-approximative. Another major improvement for sparse
polynomial zonotopes and constrained polynomial zonotopes would be the development
of a more efficient containment check, since the containment checks that we presented
in Sec. 3.1.6 and Sec. 3.2.6 have exponential complexity and are therefore restricted to
low-dimensional sets. One promising way to achieve this would be the derivation of a
closed-form expression for converting a sparse polynomial zonotope or a constrained poly-
nomial zonotope to a polynomial level set, since for level sets containment checks are cheap
and straightforward to implement. For the Z-representation of polytopes, a major focus
of future research should be the minimization of the representation size when converting
from polytope V-representation to Z-representation. Potential strategies for achieving this
could be to either represent the polytope as a union of zonotopes since zonotopes can be
compactly represented in Z-representation, or to exploit dependencies during unification
of the vertices using the convex hull.

Reachability Analysis

All common reachability tools and algorithms including the ones presented here in Chap-
ter 4 have the disadvantage that the tightness of the computed reachable set heavily de-
pends on the correct tuning of user-defined parameters, such as time step size and zonotope
order. Since the tuning usually has to be done by experts, this currently prevents the broad
use of reachability analysis in industry. A major focus of future research on reachability
analysis should therefore be the fully automated tuning of these parameters. While there
already exists some recent work in this direction [166, 167], none of these approaches can
provide any guarantees on the tightness of the computed reachable set. The overall goal
should be the development of an algorithm that takes a maximum allowed distance between
the exact reachable set and the computed enclosure as an input and then automatically
tunes the parameters in such a way that this maximum allowed distance is met. Clearly, a
requirement for this is a reachability algorithm that actually converges to the exact reach-
able set if the parameters are refined accordingly. While this is quite easy to achieve when
splitting the reachable set is explicitly considered [168], it is much harder if computation-
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ally expensive splits should be avoided. A first step toward a fully automated reachability
algorithm with tightness guarantees would therefore be to either prove convergence for an
existing algorithm, such as the conservative polynomialization algorithm in Sec. 4.1.2, or
to develop a new algorithm that converges without splitting. With reachability algorithms
that are able to compute inner-approximations and outer-approximations of reachable sets
with arbitrary precision, one could even go one step further and build an automated verifier
which automatically increases the precision until the specifications can either be proven
or disproven. While this is straightforward for simple specifications defined by forbidden
sets, it is much more challenging for temporal logic specifications, where it is not yet clear
if these verification problems are even decidable.

Selected Applications

While we only discussed a few specific applications for constrained polynomial zonotopes
and the Z-representation in Chapter 5, there of course exist many more, especially for con-
strained polynomial zonotopes: A topic of increasing interest is the verification of artificial
intelligence, where it is often necessary to propagate sets through large neural networks.
If the network consists of neurons with ReLU activation functions, this requires the set
operations intersection and union. On the other hand, if sigmoid or hyperbolic tangent
activation functions are used, one obtains strongly nonlinear maps. Since constrained poly-
nomial zonotopes are closed under intersection as well as union and can enclose the sets
resulting from nonlinear maps tightly using a Taylor series expansion, they seem to be well
suited for neural network verification. While in Sec. 4.4 we presented an approach based on
sparse polynomial zonotopes for hybrid system reachability analysis for computational rea-
sons, in the future, constrained polynomial zonotopes could potentially be used to handle
discrete transitions in hybrid systems without any over-approximation. For each discrete
transition we first compute the intersection of the guard set with all time interval reachable
sets intersecting the guard and then unite the sets for all time intervals. Since constrained
polynomial zonotopes are closed under intersection and union, we can compute the exact
set. Yet another application for constrained polynomial zonotopes is the verification of
temporal logic specifications since the reachset temporal logic approach in [169] requires a
set representation that is closed under intersection and for which one can efficiently check
if a set is contained in a union of sets. Finally, due to their expressiveness, constrained
polynomial zonotopes are advantageous for all algorithms where a mixture of different set
representations has to be handled. The intersection of a zonotope and an ellipsoid, for
example, can be easily computed using constrained polynomial zonotopes.
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Appendix A

High-Order Polynomial Maps

We now show that every higher order polynomial map as defined in (2.10) can be computed
using a sequence of quadratic maps:

Proposition A.1. (Polynomial Map) Given sets S1, . . . ,So ⊂ Rn and a set of coefficients

A = {a(i)
j1,...,jo

∈ R | i ∈ {1, . . . , w}, j1, . . . , jo ∈ {1, . . . , n}}, the polynomial map of order
o ∈ N≥2 defined by the multiplication of the sets S1, . . . ,So and A is

poly(A,S1, . . . ,So) = sq(M1,S1,Y1)� . . .� sq(Mn,S1,Yn),

with

∀j1, . . . , jo−2 ∈ {1, . . ., n} :

Yj1 = sq(M1,S2,Yj1,1)� . . .� sq(Mn,S2,Yj1,n),

Yj1,j2 = sq(M1,S3,Yj1,j2,1)� . . .� sq(Mn,S3,Yj1,j2,n),

...

Yj1,...,jo−3 = sq(M1,So−2,Yj1,...,jo−3,1)� . . .� sq(Mn,So−2,Yj1,...,jo−3,n),

Yj1,...,jo−2 = sq(Qj1,...,jo−2 ,So−1,So),

where

∀i ∈ {1, . . . , n}, ∀j1, . . . , jo−2 ∈ {1, . . . , n} :

Mi = {Mi,1, . . . ,Mi,n}, Qj1,...,jo−2 =
{
Q

(1)
j1,...,jo−2

, . . . , Q
(n)
j1,...,jo−2

}
,

Q
(i)
j1,...,jo−2

=

a
(i)
j1,...,jo−2,1,1

. . . a
(i)
j1,...,jo−2,1,n

...
. . .

...

a
(i)
j1,...,jo−2,n,1

. . . a
(i)
j1,...,jo−2,n,n

 ,
and Mi,j ∈ Rn×n denotes an all-zero matrix where the j-th entry in the i-th row is identical
to 1.
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Proof. The definition of the polynomial map in (2.10) can be equivalently formulated as

poly(A,S1, . . . ,So)
(2.10)
=

{
x

∣∣∣∣ x(i) =
n∑

j1=1

. . .

n∑
jo=1

a
(i)
j1,...,jo

· s1(j1) · . . . · so(jo),

s1 ∈ S1, . . . , so ∈ So, i = 1, . . . , w

}

=

{
x

∣∣∣∣ s1 ∈ S1, . . . , so ∈ So, i = 1, . . . , w,

x(i) =
n∑

j1=1

s1(j1) ·
( n∑
j2=1

s2(j2) · . . . ·
( n∑
jo−1=1

n∑
jo=1

a
(i)
j1,...,jo

· so−1(jo−1) · so(jo)
)

︸ ︷︷ ︸
yj1,...,jo−2(i)

. . .

)

︸ ︷︷ ︸
yj1(i)

}

=

{
x

∣∣∣∣ x(i) =
n∑

j1=1

s1(j1) · yj1(i), s1 ∈ S1, . . . , so ∈ So, i = 1, . . . , w,

yj1(i) =
n∑

j2=1

s2(j2) · yj1,j2(i)︸ ︷︷ ︸
yj1∈ Yj1

, . . . , yj1,...,jo−3(i) =
n∑

jo−2=1

so−2(jo−2) · yj1,...,jo−2(i)︸ ︷︷ ︸
yj1,...,jo−3

∈ Yj1,...,jo−3

,

yj1,...,jo−2(i) =
n∑

jo−1=1

n∑
jo=1

a
(i)
j1,...,jo

· so−1(jo−1) · so(jo)︸ ︷︷ ︸
yj1,...,jo−2(i) ∈ Yj1,...,jo−2

=sq(Qj1,...,jo−2
,So−1,So)

}

= sq(M1,S1,Y1)� . . .� sq(Mn,S1,Yn),

so that the polynomial map can be computed as a sequence of quadratic maps and exact
additions.

When computing the polynomial map using Prop. A.1, it is crucial that the imple-
mentation of the quadratic map for the corresponding set representation preserves the
dependencies between different sets, since otherwise one potentially obtains very large
over-approximations.



Appendix B

Proof for the Union of Constrained
Polynomial Zonotopes

In this appendix, we prove Prop. 3.2.25 for computing the union of two CPZs. As a
prerequisite for the proof, we introduce the constrDom operation:

Definition B.1. Given a constraint defined by the constraint generator matrix A ∈ Rm×q,
the constraint vector b ∈ Rm, and the constraint exponent matrix R ∈ Np×q

0 , constrDom

returns the set of values satisfying the constraint:

constrDom(A, b,R) =

{
α

∣∣∣∣ q∑
i=1

( p∏
k=1

α
R(k,i)

k

)
A(·,i) = b, αk ∈ [−1, 1]

}
,

where α = [α1 . . . αp]
T .

Using Def. B.1, it is straightforward to see that the following identity holds:〈
c,G,E,

[
A1 0
0 A2

]
,

[
b1

b2

]
,
[
R1 R2

]〉
CPZ

=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ q1∑
i=1

( p∏
k=1

α
R1(k,i)

k

)
A1(·,i) = b1, α ∈ D

}
,

(B.1)

where D = constrDom(A2, b2, R2) and α = [α1 . . . αp]
T . As another prerequisite, we

introduce the following lemma:

Lemma B.2. Given a constant offset c ∈ Rn, a generator matrix G ∈ Rn×h, an exponent
matrix E ∈ Np×h

0 , and two domains D1,D2 ⊆ [−1,1] ⊂ Rp, it holds that{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ α ∈ (D1 ∪ D2)

}
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ α ∈ D1

}
︸ ︷︷ ︸

CPZ1

∪
{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ α ∈ D2

}
︸ ︷︷ ︸

CPZ2

,

where α = [α1 . . . αp]
T .
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Proof. Using the definition of CPZs in Def. 3.2.1 and the definition of the union in (2.8)
we obtain {

c+
h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ α ∈ (D1 ∪ D2)

}
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ α ∈ D1 ∨ α ∈ D2

}
Def. 3.2.1

=

{x | x ∈ CPZ1 ∨ x ∈ CPZ2}
(2.8)
= CPZ1 ∪ CPZ2,

which concludes the proof.

Before we begin with the proof, let us first recap the result from Prop. 3.2.25. According
to Prop. 3.2.25, the union of two CPZs CPZ1 = 〈c1, G1, E1, A1, b1, R1〉CPZ ⊂ Rn and
CPZ2 = 〈c2, G2, E2, A2, b2, R2〉CPZ ⊂ Rn is

CPZ1 ∪ CPZ2 =

〈
0.5(c1 + c2)︸ ︷︷ ︸

c

,
[
0.5(c1 − c2) G1 G2

]︸ ︷︷ ︸
G

,


1 0 0
0 0 0
0 E1 0
0 0 E2


︸ ︷︷ ︸

E

,


Â 0 0 0 0
0 A 0 0 0
0 0 A1 0 −0.5 b1

0 0 0 A2 0.5 b2


︸ ︷︷ ︸

A

,


b̂

b
0.5 b1

0.5 b2


︸ ︷︷ ︸

b

,

R̂ R


0 0 1
0 0 0
R1 0 0
0 R2 0




︸ ︷︷ ︸
R

〉
CPZ

,

(B.2)

where

Â = 1, b̂ = 1, R̂ =


1
1
0
0

 , H =


[
2 . . . 2

]
0

. . .

0
[
2 . . . 2

]
2Ip2 . . . 2Ip2

 ,
A =

[
1 −1 1

2p1
1 − 1

2p1
1 − 1

2p2
1 − 1

2p2
1 − 1

4p1p2
1 1

4p1p2
1
]
, b = 0,

R =




1 0 0 1 0 1
0 1 0 0 0 0
0 0 2Ip1 2Ip1 0 0
0 0 0 0 2Ip2 2Ip2


0

0
H

 1
0
H


 .

The outline of the proof is as follows: We first show in Sec. B.1 that the constraints in
(B.2) restrict the values for the factors αk to the domain D = D1 ∪ D2 corresponding to
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the union of two domains D1 and D2. Afterward, in Sec. B.2, we apply Lemma B.2 to
express the resulting CPZ 〈c,G,E,A, b, R〉CPZ in (B.2) as 〈c,G,E,A, b, R〉CPZ = S1 ∪ S2,
where S1,S2 represent the sets corresponding to the domains D1,D2, respectively. Finally,
we show in Sec. B.3 that S1 = CPZ1 and S2 = CPZ2 holds, which concludes the proof.

B.1 Domain defined by the Constraints

First, we show that the constraints in (B.2) restrict the values for the factors αk to the

domain D = D1 ∪ D2. The matrices Â, R̂ and the vector b̂ in (B.2) define the constraint

α1α2 = 1. (B.3)

The only solutions for (B.3) within the domain α1 ∈ [−1, 1], α2 ∈ [−1, 1] are the two points
α1 = 1, α2 = 1 and α1 = −1, α2 = −1. The constraint (B.3) therefore restricts the values
for the factors αk to the domain

D̂ = constrDom(Â, b̂, R̂)

= 1× 1× [−1, 1]× . . .× [−1, 1]︸ ︷︷ ︸
D̂1

∪−1×−1× [−1, 1]× . . .× [−1, 1]︸ ︷︷ ︸
D̂2

. (B.4)

The matrices A,R and the vector b in (B.2) define the constraint

q∑
i=1

( p1+p2+2∏
k=1

α
R(k,i)

k

)
A(·,i) = α1 − α2 +

1

2
f1(α)− 1

2
α1f1(α)− 1

2
f2(α)

− 1

2
α1f2(α)− 1

4
f1(α)f2(α) +

1

4
α1f1(α)f2(α) =

=

(
1 + α1 +

1

2
f1(α)(1− α1)

)(
1− 1

2
f2(α)

)
− α2 − 1︸ ︷︷ ︸

g(α)

= 0 = b,

(B.5)

where

f1(α) =
1

p1

p1+2∑
k=3

α2
(k), f2(α) =

1

p2

p1+p2+2∑
k=p1+3

α2
(k), (B.6)

with q denoting the number of columns of matrix A and α = [α1 . . . αp1+p2+2]T . Let
D = constrDom(A, b,R) be the restricted domain for the factor values corresponding to
the constraint g(α) = 0 in (B.5). Then the factor domain D for the combination of the

constraints defined by Â, b̂, R̂ and A, b,R is

D = constrDom

([
Â 0
0 A

]
,

[
b̂

b

]
,
[
R̂ R

])

= constrDom(Â, b̂, R̂) ∩ constrDom(A, b,R) = D̂ ∩ D (B.4)
= (D̂1 ∩ D)︸ ︷︷ ︸

D1

∪ (D̂2 ∩ D)︸ ︷︷ ︸
D2

.

(B.7)
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To compute the domain D1 = D̂1 ∩ D in (B.7) we insert the values α1 = 1, α2 = 1 from

D̂1 into g(α) = 0. This yields f2(α) = 0 according to (B.5), which is only satisfiable for

αp1+3 = 0, . . . , αp1+p2+2 = 0. Moreover, inserting the values α1 = −1, α2 = −1 from D̂2

into g(α) = 0 yields according to (B.5)

f1(α)

(
1− 1

2
f2(α)︸ ︷︷ ︸
∈[0,1]

)
︸ ︷︷ ︸

∈[0.5,1]

= 0, (B.8)

which is only satisfiable for f1(α) = 0. Since the constraint f1(α) = 0 is only satisfiable
for α3 = 0, . . . , αp1+2 = 0 according to (B.6), the constraint g(α) = 0 is consequently also
only satisfiable for α3 = 0, . . . , αp1+2 = 0. In summary, the domain for the combination of
the constraint α1α2 = 1 in (B.3) and the constraint g(α) = 0 in (B.5) is therefore

D = constrDom

([
Â 0
0 A

]
︸ ︷︷ ︸

AU

,

[
b̂

b

]
︸︷︷︸
bU

,
[
R̂ R

]
︸ ︷︷ ︸

RU

)
(B.7)
= (D̂1 ∩ D)︸ ︷︷ ︸

D1

∪ (D̂2 ∩ D)︸ ︷︷ ︸
D2

=
{ [

1 1 α3 . . . αp1+2 0
]T | α3, . . . , αp1+2 ∈ [−1, 1]

}︸ ︷︷ ︸
D1

∪

{ [
−1 −1 0 αp1+3 . . . αp1+p2+2

]T | αp1+3, . . . , αp1+p2+2 ∈ [−1, 1]
}︸ ︷︷ ︸

D2

,

(B.9)

which enables us to apply Lemma B.2 in the next section.

B.2 Reformulation as Union of Sets

We now prove that the resulting CPZ 〈c,G,E,A, b, R〉CPZ in (B.2) defines the union of
two sets S1 and S2. Using the domain D as defined in (B.9) and introducing

AL =

[
A1 0 −0.5 b1

0 A2 0.5 b2

]
, bL =

[
0.5 b1

0.5 b2

]
, RL =


0 0 1
0 0 0
R1 0 0
0 R2 0

 , (B.10)

the resulting CPZ 〈c,G,E,A, b, R〉CPZ in (B.2) can be equivalently represented as

〈
c,G,E,


Â 0 0 0 0
0 A 0 0 0
0 0 A1 0 −0.5 b1

0 0 0 A2 0.5 b2


︸ ︷︷ ︸

A

,


b̂

b
0.5 b1

0.5 b2


︸ ︷︷ ︸

b

,

R̂ R


0 0 1
0 0 0
R1 0 0
0 R2 0




︸ ︷︷ ︸
R

〉
CPZ

(B.9),(B.10)
=

〈
c,G,E,

[
AU 0
0 AL

]
,

[
bU
bL

]
,
[
RU RL

]〉
CPZ
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(B.1),(B.9)
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ qL∑
i=1

( p∏
k=1

α
RL(k,i)

k

)
AL(·,i) = bL, α ∈ D

}
(B.11)

Lemma B.2,

D=D1∪D2=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ qL∑
i=1

( p∏
k=1

α
RL(k,i)

k

)
AL(·,i) = bL, α ∈ D1

}
︸ ︷︷ ︸

S1

∪
{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ qL∑
i=1

( p∏
k=1

α
RL(k,i)

k

)
AL(·,i) = bL, α ∈ D2

}
︸ ︷︷ ︸

S2

,

where p = p1 + p2 + 2, qL = q1 + q2 + 1, and α = [α1 . . . αp]
T .

B.3 Equivalence of Sets

It remains to show that S1 = CPZ1 and S2 = CPZ2. Inserting the definition of the domain
D1 in (B.9) into the definition of the set S1 in (B.11) yields

S1
(B.11)

=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ qL∑
i=1

( p∏
k=1

α
RL(k,i)

k

)
AL(·,i) = bL, α ∈ D1

}
(B.9)
=

{
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

k

)
G(·,i)

∣∣∣∣ qL∑
i=1

( p∏
k=1

α
RL(k,i)

k

)
AL(·,i) = bL, α1, α2 = 1,

α3, . . . , αp1+2 ∈ [−1, 1], αp1+3, . . . , αp1+p2+2 = 0

}
(B.2),(B.10)

=

{
0.5(c1 + c2) + 0.5(c1 − c2)α1︸ ︷︷ ︸

α1=1
= c1

+

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

2+k

)
G1(·,i) +

h2∑
i=1

( p2∏
k=1

α
E2(k,i)

2+p1+k

)
︸ ︷︷ ︸

=0

G2(·,i)

∣∣∣∣
q1∑
i=1

( p1∏
k=1

α
R1(k,i)

2+k

)
A1(·,i) = 0.5b1 + 0.5b1α1︸ ︷︷ ︸

α1=1
= b1

,

q2∑
i=1

( p2∏
k=1

α
R2(k,i)

2+p1+k

)
︸ ︷︷ ︸

=0

A2(·,i) = 0.5b2 − 0.5b2α1︸ ︷︷ ︸
α1=1

= 0

,

α1, α2 = 1, α3, . . . , αp1+2 ∈ [−1, 1], αp1+3, . . . , αp1+p2+2 = 0

}
=
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{
c1 +

h1∑
i=1

( p1∏
k=1

α
E1(k,i)

2+k

)
G1(·,i)

∣∣∣∣ q1∑
i=1

( p1∏
k=1

α
R1(k,i)

2+k

)
A1(·,i) = b1, α3, . . . , αp1+2 ∈ [−1, 1]

}
︸ ︷︷ ︸

=CPZ1

.

The proof that S2 = CPZ2 is similar to the proof for S1 and therefore omitted at this
point.



Appendix C

Dependency Preservation for Sparse
Polynomial Zonotopes

To prove the correctness of the reachable subset approach presented in Sec. 4.2, we need to
show that the implementations of the linear map, the Minkowski sum with a zonotope, the
Cartesian product with a zonotope, the quadratic map, order reduction, and restructuring
on SPZs as specified in Sec. 3.1 are dependency-preserving. While we already demonstrated
in Prop. 4.2.13 that the Minkowski sum with a zonotope is dependency-preserving, we now
provide the proofs for the remaining set operations. We begin with the linear map:

Proposition C.1. (Dependency Preservation Linear Map) Given a SPZ PZ = 〈c,G,GI ,
E, id〉PZ ⊂ Rn and a matrix M ∈ Rw×n, it holds that the implementation of the linear map
M ⊗ PZ in Prop. 3.1.18 is dependency-preserving.

Proof. According to the definition of dependency preservation in Def. 4.2.4, we have to
show that

∀α ∈ [−1,1] : M ⊗ PZ (α) ⊆ M ⊗ PZ (α). (C.1)

Inserting the evaluation function for SPZs as defined in Def. 4.2.10 and the implementation
of the linear map in Prop. 3.1.18 into (C.1) yields

∀α ∈ [−1,1] : M ⊗ PZ (α)

Def. 4.2.10
= M

(
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i)

)
⊕
(
M ⊗

{ q∑
j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

})

(2.1)
= Mc+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
MG(·,i) ⊕

{ q∑
j=1

βjMGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

}

Def. 4.2.10
= 〈Mc,MG,MGI , E, id〉PZ (α)

Prop. 3.1.18
= M ⊗ PZ (α),

which is identical to (C.1) and therefore concludes the proof.
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Next, we consider the Cartesian product:

Proposition C.2. (Dependency Preservation Cartesian Product) Given a SPZ PZ =
〈c,G,GI , E, id〉PZ ⊂ Rn and a zonotope Z = 〈cz, Gz〉Z ⊂ Rn, it holds that the implemen-
tation of the Cartesian product PZ × Z in Prop. 3.1.22 is dependency-preserving.

Proof. According to the definition of dependency preservation in Def. 4.2.4, we have to
show that

∀α ∈ [−1,1] : PZ (α)×Z ⊆ PZ × Z (α). (C.2)

Inserting the evaluation function for SPZs as defined in Def. 4.2.10 and the implementation
of the Cartesian product in Prop. 3.1.22 into (C.2) yields

∀α ∈ [−1,1] : PZ (α)×Z Def. 4.2.10
=

(
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕ 〈0, GI〉Z

)
×Z

(2.4)
=

[
c+

∑h
i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

0

]
⊕
{ q∑

j=1

βj

[
GI(·,j)

0

] ∣∣∣∣ βj ∈ [−1, 1]

}

⊕
{ l∑

j=1

βq+j

[
0

Gz(·,j)

] ∣∣∣∣ βq+j ∈ [−1, 1]

}

Def. 4.2.10
=

〈[
c
0

]
,

[
G
0

]
,

[
GI 0
0 Gz

]
, E, id

〉
PZ

(α)
Prop. 3.1.22

= PZ × Z (α),

which is identical to (C.2) and therefore concludes the proof.

For the quadratic map we focus on the case sq(Q,PZ) with a single SPZ PZ only
since the general case involving two different SPZs is not required for the conservative
polynomialization algorithm:

Proposition C.3. (Dependency Preservation Quadratic Map) Given a SPZ PZ =
〈c,G,GI , E, id〉PZ ⊂ Rn and a discrete set of matrices Q = {Q1, . . . , Qw} with Qi ∈ Rn×n,
i = 1, . . . , w, it holds that the implementation of the quadratic map sq(Q,PZ) in
Prop. 3.1.31 is dependency-preserving.

Proof. According to the definition of dependency preservation in Def. 4.2.4, we have to
show that

∀α ∈ [−1,1] : sq
(
Q, PZ (α)

)
⊆ sq(Q,PZ) (α). (C.3)

Inserting the evaluation function for SPZs as defined in Def. 4.2.10 and the implementation
of the quadratic map in Prop. 3.1.31 into (C.3) yields

∀α ∈ [−1,1] : sq
(
Q, PZ (α)

)
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Def. 4.2.10
= sq

(
Q, c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕

{ q∑
j=1

βjGI(·,j)

∣∣∣∣ βj ∈ [−1, 1]

})

(2.6)
=


(∑h

i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)T
Q1 c

...(∑h
i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)T
Qw c

+


cTQ1

(∑h
i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)
...

cTQw

(∑h
i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)


+


(∑h

i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)T
Q1

(∑h
i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)
...(∑h

i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)T
Qw

(∑h
i=1

(∏p
k=1 α

E(k,i)

(k)

)
G(·,i)

)
⊕

{
x

∣∣∣∣ x(i) = cTQi c+

(
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i)

)T
Qi

( q∑
j=1

βjGI(·,j)

)
+ (C.4)

( q∑
j=1

βjGI(·,j)

)T
Qi

(
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i)

)
+

( q∑
j=1

βjGI(·,j)

)T
Qi

( q∑
j=1

βjGI(·,j)

)
, βj ∈ [−1, 1], i = 1, . . . , w

}
︸ ︷︷ ︸

Prop. 3.1.31
⊆ 〈cz ,Gz〉Z

⊆
h2+2h∑
i=1

( p∏
k=1

α
qE(k,i)

(k)

)
qG(·,i) ⊕ 〈cz, Gz〉Z

Def. 4.2.10
= 〈cz, qG,Gz, qE, id〉PZ (α)

Prop. 3.1.31
= sq(Q,PZ) (α),

where the zonotope 〈cz, Gz〉Z is computed according to (3.25) and the matrices qG and qE
are defined as

qG =
[
Ĝ1 Ĝ2 G1 . . . Gh

]
, qE =

[
E E E1 . . . Eh

]
with

∀j ∈{1, . . . , h} :

Ej = E + E(·,j) · 1, Gj =

G
T
(·,j)Q1G

...
GT

(·,j)QwG

 , Ĝ1 =

c
TQT

1G
...

cTQT
wG

 , Ĝ2 =

c
TQ1G

...
cTQwG

 .
Since (C.4) is identical to (C.3), it holds that the implementation of the quadratic map on
SPZs in Prop. 3.1.31 is dependency-preserving.
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For order reduction of SPZs we focus on the case where Girard’s method is used for
zonotope order reduction for simplicity since considering other zonotope order reduction
methods is straightforward. Moreover, we require the following result about order reduction
of zonotopes:

Lemma C.4. Given two zonotopes, Z1 = 〈c1, G1〉Z ⊂ Rn, Z2 = 〈c2, G2〉Z ⊂ Rn, and a
desired zonotope order ρd ≥ 1, it holds that

Z1 ⊕ reduce(Z2, ρd) ⊆ reduce(Z1 ⊕Z2, ρd)

if Girard’s method is used for zonotope order reduction.

Proof. From the description of zonotope order reduction using Girard’s method in Sec. 2.6,
we obtain

Z1 ⊕ reduce(Z2, ρd)
(2.19)
= Z1 ⊕

〈
c2,

[
G2(·,K) diag

(∑
i∈H

|G2(·,i)|
)]〉

Z

=

〈
c1 + c2,

[
G1 G2(·,K) diag

(∑
i∈H

|G2(·,i)|
)]〉

Z

H⊆H2

K2⊆K
⊆

〈
c1 + c2,

[
G1(·,K1) G2(·,K2) diag

(∑
i∈H1

|G1(·,i)|+
∑
i∈H2

|G2(·,i)|
)]〉

Z

(2.19)
= reduce(Z1 ⊕Z2, ρd),

(C.5)

where the transformation in line 3 results in an enclosure since all generators that are
selected for reduction in the case reduce(Z2, ρd) are selected for reduction in the case
reudce(Z1 ⊕Z2, ρd), too. The sets

K = {o1(1), . . . , o1(b)}, H = {o1(b+1), . . . , o1(l1)}, K1 = {o2(1), . . . , o2(b)} ∩ {1, . . . , l1},

H1 = {o2(b+1), . . . , o2(l1+l2)} ∩ {1, . . . , l1}, K2 = {o2(1) − l1, . . . , o2(b) − l1} ∩ {1, . . . , l2},

H2 = {o2(b+1) − l1, . . . , o2(l1+l2) − l1} ∩ {1, . . . , l2}

with b = bn(ρ−1)c denoting the number of generators that are not reduced are determined
from the sorted generators

||G2(·,o1(1))||1 − ||G2(·,o1(1))||∞ ≥ . . . ≥ ||G2(·,o1(l1))||1 − ||G2(·,o1(l1))||∞

||G(·,o2(1))||1 − ||G(·,o2(1))||∞ ≥ . . . ≥ ||G(·,o2(l1+l2))||1 − ||G(·,o2(l1+l2))||∞,

where G = [G1 G2] and o1 ∈ Nl2 , o2 ∈ Nl1+l2 store the indices of the sorted generators. It
remains to show that H ⊆ H2 and K2 ⊆ K as used in (C.5) holds. Since the number of
generator that are not reduced is identical for both cases reduce(Z2, ρd) and reduce(Z1⊕
Z2, ρd), it holds that |K| = |K1 ∪ K2| = b. Consequently, because the matrix G contains
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all generators in G2 plus the generators in G1 which potentially have a larger norm than
the generators in G2, we have

||G(·,o2(b))||1 − ||G(·,o2(b))||∞ ≥ ||G2(·,o1(b))||1 − ||G2(·,o1(b))||∞,

so that K2 ⊆ K. Since K2 ∪H2 = K∪H = {1, . . . , l2}, it therefore holds that H ⊆ H2.

Using Lemma C.4, we now prove that order reduction of SPZs is dependency-preserving:

Proposition C.5. (Dependency Preservation Order Reduction) Given a SPZ PZ =
〈c,G,GI , E, id〉PZ ⊂ Rn and a desired zonotope order ρd ≥ 1, it holds that the imple-
mentation of reduce(PZ, ρd) in Prop. 3.1.39 is dependency-preserving if Girard’s method
is used for zonotope order reduction.

Proof. According to the definition of dependency preservation in Def. 4.2.4, we have to
show that

∀α ∈ [−1,1] : reduce( PZ (α), ρd) ⊆ reduce(PZ, ρd) (α, id),

where we use the extended definition of the evaluation function in Def. 4.2.11 since the
reduce operation potentially decreases the number of dependent factors due to the removal
of dependent factors that do not occur anymore after reduction. For the proof, we require
the sets of indices H1, H2, H1, H2, K, and K defined by the sorted generators

||GI(·,o1(1))||2 ≥ . . . ≥ ||GI(·,o1(b))||2︸ ︷︷ ︸
GI(·,i), i∈H1

≥ ||GI(·,o1(b+1))||2 ≥ . . . ≥ ||GI(·,o1(q))||2︸ ︷︷ ︸
GI(·,i), i∈H1

||G(·,o2(1))||2 ≥ . . . ≥ ||G(·,o2(b))||2︸ ︷︷ ︸
G(·,i), i∈K and GI(·,i), i∈H2

≥ ||G(·,o2(b+1))||2 ≥ . . . ≥ ||G(·,o2(h+q))||2︸ ︷︷ ︸
G(·,i), i∈K and GI(·,i), i∈H2

,
(C.6)

where G = [G GI ], b = bn(ρd− 1)c denotes the number of generators that are not reduced,
and o1 ∈ Nq, o2 ∈ Nh+q store the indices of the sorted generators. For reduce( PZ (α), ρd)
we then obtain

∀α ∈ [−1,1] : reduce( PZ (α), ρd)
Def. 4.2.10

=

reduce

(〈
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i), [ ], GI , [ ], [ ]

〉
PZ

, ρd

)
Prop. 3.1.39

⊆

〈
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i), [ ], [GI(·,H1) Gz,1], [ ], [ ]

〉
PZ

Prop. 3.1.39
= (C.7)

c+
h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕ 〈0, GI(·,H1)〉Z ⊕ reduce

(
〈0, GI(·,H1)〉Z , 1

)︸ ︷︷ ︸
〈0,Gz,1〉Z

⊆
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∑
i∈K

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕ zonotope

(〈
c,G(·,K), [ ], E(·,K), id

〉
PZ

)︸ ︷︷ ︸
Z

⊕ 〈0, GI(·,H1)〉Z ⊕ reduce
(
〈0, GI(·,H1)〉Z , 1

)
,

where we exploited for the transformation in the last line that K ∪ K = {1, . . . , h}
holds according to (C.6). Next, we apply Lemma C.4 to obtain a relation between
reduce( PZ (α), ρd) and reduce(PZ, ρd) (α, id). For this, we first have to show that all

independent generators that are reduced in the case reduce( PZ (α), ρd) are also reduced
in the case reduce(PZ, ρd) (α, id), which corresponds to the relation H1 ⊆ H2. Since the

matrix G contains all generators in GI plus the generators in G which potentially have a
larger Euclidean norm than the generators in GI , we have

||G(·,o2(b))||2 ≥ ||GI(·,o1(b))||2,

which proves that H2 ⊆ H1 according to (C.6). Because H1 ∪H1 = H2 ∪H2 = {1, . . . , q},
we then have that H2 ⊆ H1 implies H1 ⊆ H2. Moreover, H1 ⊆ H2 and H2 ⊆ H1 implies
that there exist a set M satisfying H2 = H1 ∪M and H1 = H2 ∪M, so that we obtain
for (C.7)

∀α ∈ [−1,1] : reduce( PZ (α), ρd)
(C.7)
=

∑
i∈K

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕Z ⊕ 〈0, GI(·,H1)〉Z ⊕ reduce

(
〈0, GI(·,H1)〉Z , 1

) H1=H2∪M=

∑
i∈K

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕Z ⊕ 〈0, GI(·,H2)〉Z ⊕ 〈0, GI(·,M)〉Z (C.8)

⊕ reduce
(
〈0, GI(·,H1)〉Z , 1

) Lemma C.4

⊆

∑
i∈K

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕ 〈0, GI(·,H2)〉Z ⊕ reduce

(
〈0, GI(·,H1)〉Z ⊕ 〈0, GI(·,M)〉Z︸ ︷︷ ︸

H2=H1∪M= 〈0,GI(·,H2)〉Z

⊕Z, 1
)
.

Finally, using the definitions of the evaluation function and the extended evaluation func-
tion for SPZs in Def. 4.2.10 and Def. 4.2.11, we can show that (C.8) is identical to
reduce(PZ, ρd) (α, id):

∀α ∈ [−1,1] : reduce( PZ (α), ρd)
(C.8)
=
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∑
i∈K

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i) ⊕ 〈0, GI(·,H2)〉Z︸ ︷︷ ︸

〈0,G(·,K),GI(·,H2),E(·,K),id〉PZ (α)

⊕ reduce
(
〈0, GI(·,H2)〉Z ⊕Z, 1

)︸ ︷︷ ︸
〈cz,2,Gz,2〉Z

Def. 4.2.10
=

〈
cz,2, G(·,K), [GI(·,H2) Gz,2], E(·,K), id

〉
PZ

(α)
Def. 4.2.11

=

〈
cz,2, G(·,K), [GI(·,H2) Gz,2], E(N ,K), id(N )

〉
PZ

(α, id)
Prop. 3.1.39

= reduce(PZ, ρd) (α, id),

where the set N that removes all-zero rows from the exponent matrix is defined as in
(3.33).

Finally, we consider the restructure operation:

Proposition C.6. (Dependency Preservation Restructuring) Given a SPZ PZ =
〈c,G,GI , E, id〉PZ ⊂ Rn and an upper bound for the number of dependent factors pd ≥ n,
it holds that the implementation of restructure(PZ, pd) in Prop. 3.1.41 is dependency-
preserving.

Proof. According to the definition of dependency preservation in Def. 4.2.4, we have to
show that

∀α ∈ [−1,1] : restructure( PZ (α), pd)

⊆ restructure(PZ, pd)
(
α, id

)
,

(C.9)

where we have to use the extended definition of the evaluation function in Def. 4.2.4 since
the restructure operation increases the number of dependent factors. The restructure

operation on SPZs as specified in Prop. 3.1.41 is computed with the case distinction

restructure(PZ, pd) =

{
PZ1, p ≤ pd − n
PZ2, otherwise

, (C.10)

which depends on the desired number of dependent factors pd. Since the SPZ
PZ (α) in (C.9) has no dependent factors (p = 0), we obtain according to (C.10)
restructure( PZ (α), pd) = PZ1 (α). For restructure(PZ, pd)

(
α, id

)
in (C.9), how-

ever, both cases in (C.10) can occur. We first consider the case p ≤ pd − n in (C.10), so
that we obtain for (C.9)

∀α ∈ [−1,1] : restructure( PZ (α), pd)

Def. 4.2.10
= restructure

(〈
c+

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i), [ ], GI , [ ], [ ]

〉
PZ

, pd

)
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Prop. 3.1.41
=

〈
cz +

h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i), Gz, [ ], In, uniqueID(n)

〉
PZ

= cz +
h∑
i=1

( p∏
k=1

α
E(k,i)

(k)

)
G(·,i)︸ ︷︷ ︸

〈cz ,G,[ ],E,id〉PZ (α)

⊕
{ n∑

i=1

Gz(·,i)qα(i)

∣∣∣∣ qα ∈ [−1,1]

}
(C.11)

Def. 4.2.11
=

〈
cz, [G Gz], [ ],

[
E 0
0 In

]
, [id uniqueID(n)]

〉
PZ

(
α, id

)
Prop. 3.1.41

= restructure(PZ1, pd)
(
α, id

) p≤pd−n
= restructure(PZ, pd)

(
α, id

)
,

where 〈cz, Gz〉Z = reduce(〈c,GI〉Z , 1). Next, we consider the case p > pd − n in (C.10),
for which dependent factors are removed from PZ1 to satisfy the upper bound pd. Conse-
quently, we obtain for (C.9)

∀α ∈ [−1,1] : restructure( PZ (α), pd)

(C.11)
=

〈
cz, [G Gz], [ ],

[
E 0
0 In

]
, [id uniqueID(n)]

〉
PZ

(
α, id

)
︸ ︷︷ ︸

〈cz ,G1,[ ],E1,id1〉PZ (α,id)

Def. 4.2.11
=

{
cz +

h+n∑
i=1

( p∏
k=1

α
E1(k,i)

(k)

)( p+n∏
k=p+1

qα
E1(k,i)

k

)
G1(·,i)

∣∣∣∣ qαk ∈ [−1, 1]

}

⊆
{∑

i∈H

( ∏
k∈M

α
E1(k,i)

(k)

)(∏
k∈F

qα
E1(k,i)

k

)
G1(·,i)

∣∣∣∣ qαk ∈ [−1, 1]

}
⊕ zonotope

(
〈cz, G1(·,H), [ ], E1(·,H), id1〉PZ

)︸ ︷︷ ︸
〈cz ,Gz〉Z

Def. 4.2.11
=

〈
cz, G1(·,H), Gz, E1(N ,H), id1(N )

〉
PZ

(
α, id

)
Prop. 3.1.41

= restructure(PZ2, pd)
(
α, id

) p>pd−n
= restructure(PZ, pd)

(
α, id

)
,

where
M = {1, . . . , p} ∩ N , F = {p+ 1, . . . , p+ n} ∩ N ,

and the sets of indices N , H, and H are defined as in Prop. 3.1.41.



Bibliography

[1] M. Althoff. An introduction to CORA 2015. In Proc. of the International Workshop
on Applied Verification for Continuous and Hybrid Systems, pages 120–151, 2015.
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[161] P. Garg, C. Löding, P. Madhusudan, and D. Neider. ICE: A robust framework for
learning invariants. In Proc. of the International Conference on Computer Aided
Verification, pages 69–87, 2014.

[162] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks. Counterexample-guided ap-
proach to finding numerical invariants. In Proc. of the Joint Meeting on Foundations
of Software Engineering, pages 605–615, 2017.

[163] A. Izycheva, E. Darulova, and H. Seidl. Counterexample- and simulation-guided
floating-point loop invariant synthesis. In Proc. of the International Static Analysis
Symposium, pages 156–177, 2020.

[164] H. Chaofan, Y. Lingyu, W. Zhenchao, S. Bin, and Z. Jing. Linear parameter-varying
attitude controller design for a reusable launch vehicle during reentry. In Proc. of
the Chinese Guidance, Navigation and Control Conference, pages 2723–2728, 2014.

[165] Dengying and Zhoujie. LPV H-infinity controller design for a wind power generator.
In Proc. of the International Conference on Robotics, Automation and Mechatronics,
pages 873–878, 2008.

[166] M. Wetzlinger, N. Kochdumper, and M. Althoff. Adaptive parameter tuning for
reachability analysis of linear systems. In Proc. of the International Conference on
Decision and Control, pages 5145–5152, 2020.

[167] M. Wetzlinger, A. Kulmburg, and M. Althoff. Adaptive parameter tuning for reach-
ability analysis of nonlinear systems. In Proc. of the International Conference on
Hybrid Systems: Computation and Control, 2021, Article 16.

[168] M. Rungger and M. Zamani. Accurate reachability analysis of uncertain nonlinear
systems. In Proc. of the International Conference on Hybrid Systems: Computation
and Control, pages 61–70, 2018.

[169] H. Roehm, J. Oehlerking, T. Heinz, and M. Althoff. STL model checking of contin-
uous and hybrid systems. In Proc. of the International Symposium on Automated
Technology for Verification and Analysis, pages 412–427, 2016.


	Abstract
	Zusammenfassung
	Notations
	Computing Platform and Implementation
	1 Introduction
	1.1 Motivation
	1.2 State of the Art
	1.3 Outline of the Thesis

	2 Background and Preliminaries
	2.1 Set Operations
	2.2 Set Representations
	2.3 Dynamic Systems and Reachable Sets
	2.4 Standard Operations
	2.5 Auxiliary Operations
	2.6 Zonotope Order Reduction
	2.7 Range Bounding
	2.8 Contractors

	3 Extensions of Polynomial Zonotopes
	3.1 Sparse Polynomial Zonotopes
	3.1.1 Definition
	3.1.2 Preliminaries
	3.1.3 Conversion from other Set Representations
	3.1.4 Enclosure by other Set Representations
	3.1.5 Basic Set Operations
	3.1.6 Intersection and Containment Checks
	3.1.7 Auxiliary Set Operations

	3.2 Constrained Polynomial Zonotopes
	3.2.1 Definition
	3.2.2 Preliminaries
	3.2.3 Conversion from other Set Representations
	3.2.4 Enclosure by other Set Representations
	3.2.5 Basic Set Operations
	3.2.6 Intersection and Containment Checks
	3.2.7 Auxiliary Set Operations

	3.3 Z-Representation of Polytopes
	3.3.1 Definition
	3.3.2 Conversion from and to other Set Representations
	3.3.3 Basic Set Operations
	3.3.4 Polytope Test
	3.3.5 Representation Size Comparison

	3.4 Summary

	4 Reachability Analysis
	4.1 Outer-Approximations of Reachable Sets for Nonlinear Continuous Systems
	4.1.1 State of the Art
	4.1.2 Conservative Polynomialization Algorithm
	4.1.3 Advantages of using Sparse Polynomial Zonotopes
	4.1.4 Computational Complexity
	4.1.5 Numerical Examples

	4.2 Reachable Subsets
	4.2.1 State of the Art
	4.2.2 Dependency-Preserving Set Representations
	4.2.3 Extraction of Reachable Subsets
	4.2.4 Computational Complexity
	4.2.5 Numerical Examples

	4.3 Inner-Approximations of Reachable Sets for Nonlinear Continuous Systems
	4.3.1 State of the Art
	4.3.2 Computing Non-Convex Inner-Approximations
	4.3.3 Extension to Uncertain Inputs
	4.3.4 Computational Complexity
	4.3.5 Numerical Examples

	4.4 Reachability Analysis for Hybrid Systems with Nonlinear Guard Sets
	4.4.1 State of the Art
	4.4.2 Reachability Analysis for Hybrid Systems
	4.4.3 Discrete Transitions
	4.4.4 Preventing Endless Loops for Identity Resets
	4.4.5 Computational Complexity
	4.4.6 Numerical Examples

	4.5 Summary

	5 Selected Applications
	5.1 Applications for Constrained Polynomial Zonotopes
	5.1.1 Set-Based Observers
	5.1.2 Program Verification using Inductive Invariants

	5.2 Applications for the Z-Representation of Polytopes
	5.2.1 Range Bounding on Polytopic Domains
	5.2.2 Generalized Barycentric Coordinates

	5.3 Summary

	6 Conclusion and Future Directions
	6.1 Conclusion
	6.2 Future Directions

	Appendices
	A High-Order Polynomial Maps
	B Proof for the Union of Constrained Polynomial Zonotopes
	B.1 Domain defined by the Constraints
	B.2 Reformulation as Union of Sets
	B.3 Equivalence of Sets

	C Dependency Preservation for Sparse Polynomial Zonotopes
	Bibliography

