TUM School of Computation, Information and Technology
Technical University of Munich

Dissertation

Automatic Assessment
of Textual Exercises

Jan Philip Bernius

TUM School of Computation, Information and Technology
Technische Universitat Minchen

Automatic Assessment of Textual Exercises

Jan Philip Bernius

Vollstandiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universitat Minchen zur Erlangung des
akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Anne Briiggemann-Klein

Prifende der Dissertation:
1. Prof. Dr. Bernd Brligge
2. Prof. Dr. Bastian Tenbergen,
State University of New York at Oswego

Die Dissertation wurde am 27.06.2022 bei der Technischen Universitat Minchen
eingereicht und durch die TUM School of Computation, Information and
Technology am 31.10.2022 angenommen.

“I think, however, that there isn’t any solution to this problem of
education other than to realize that the best teaching can be done only
when there is a direct individual relationship between a student and a
good teacher — a situation in which the student discusses the ideas,
think about the things, and talk about the things. It’s impossible to
learn very much by simply sitting in a lecture, or even by simply
doing problems that are assigned. But in our modern times we
have so many students to teach that we have to try to find

some substitute for the ideal.”
— Richard P. Feynman [Fey94]

il

Acknowledgments

First and foremost, I would like to express my deepest appreciation to Prof. Dr.
Bernd Briigge for advising me for the past four years. Bernd has inspired me since
early in my bachelor’s studies. When we first discussed a potential doctoral thesis,
he told me there is only a 1% chance of making this work. Thank you for turning
my 1% chance into 100%. I'm extremely grateful to Prof. Dr. Bastian Tenbergen
for serving as the second advisor of my doctoral studies. This endeavor would
not have been possible without my mentor Prof. Dr. Stephan Krusche. I want
to thank Stephan for the collaboration on Artemis, our large-scale teaching of
“Introduction to Software Engineering” and “Patterns in Software Engineering,”
and his feedback on all aspects of my research project.

Many thanks to Dr. Dora Dzvonyar, Dr. Jan Ole Johanflen, Dr. Mariana
Avezum, Dr. Dominic Henze, Dr. Paul Schmiedmayer, Dr. Sebastian Klepper,
Dr. Nadine von Frankenberg und Ludwigsdorff, Marko Jovanovi¢, Jonas Schulte-
Coerne, Dr. Lara Marie Reimer, Jens Klinker, Maximilian Kapsecker, and Evgeny
Volynsky for being part of my journey as a doctoral student and forming my time
at the Chair for Applied Software Engineering. I want to especially thank Helma
Schneider, Uta Weber, Monika Markl, and Ruth Demmel for keeping the chair
running and pulling every string necessary to make all crazy ideas possible. I am
grateful to Matthias Linhuber, Florian Angermeir, Vincent Picking, and Robert
Jandow for maintaining the I'T infrastructure to run Athena.

I had the pleasure of working with Gregor Ziegltrum, Anna Kovaleva, Ngoc-
Minh Tran, Clemens Zuck, Adem Khachnaoui, Can Arisan, Jonas Petry, Birtan
Giiltekin, Linus Michel, Michal Kawka, Maisa Ben Salah, Ndricim Rrapi, Argert
Boja, Valerie Bucher, and Tim Cremer on Athena as part of their Bachelor’s
or Master’s theses. I would like to recognize all tutors of the “Introduction to
Software Engineering” course in 2020 and 2021 for assessing textual exercises with
Athena and all students who submitted their solutions. I am also grateful to Prof.
Dr. Uwe Baumgarten and David Werner for volunteering to use and allowing me
to evaluate Athena as part of their exam assessment in “Networks for Monetary
Transactions.”

[am extremely grateful to Dr. Lara Marie Reimer for the last seven years and
for having a partner I can discuss work and life related topics with. I am forever
grateful to my parents for laying the foundation for my academic career. I would

not have gotten this far without their support.

v

Abstract

Engineering disciplines require problem-solving skills. Open-ended textual exer-
cises allow students to acquire these skills. Memorization alone is not sufficient to
master problem solving skills. Problem solving requires interactivity. Students can
learn from their mistakes when instructors provide individual feedback. However,
interactive learning leads to more grading, which is a manual, repetitive, and time-
consuming activity. In addition, the number of engineering students graduating
per year has steadily increased over the past decade. This increase has resulted in
large courses, which further increases the assessment workload for instructors.
This dissertation presents four publications which introduce the Athena system
to reduce the grading workload by automatically assessing textual exercise sub-
missions: Publication [BB19] presents the overall approach to collect assessment
knowledge from manual segment-based assessments. Publication [Ber+20] intro-
duces an algorithm to decompose student answers into topically-coherent segments.
Publication [BKB21] describes the architecture of the Athena system, which au-
tomates grading based on topic modeling, language models, and an assessment
knowledge repository. Publication [BKB22] evaluates the Athena system in a
large course with 34 textual exercises offered between 2019 and 2021 for up to
2,200 enrolled students. More than 47,500 interactive open-ended textual exer-
cise submissions were processed by Athena during this period. Athena suggested
automatic feedback for 45% of these submissions. Instructors accepted 92% of

Athena’s suggestions.

Zusammenfassung

Ingenieurwissenschaften erfordern Problemlosungskompetenz. Freitextaufgaben
ermoglichen es den Studierenden, diese Fahigkeiten zu erwerben. Auswendigler-
nen allein reicht nicht aus, um Problemlosungskompetenz zu erlernen. Das Losen
von Problemen erfordert Interaktivitat. Studierende konnen aus ihren Fehlern
lernen, wenn die Lehrenden individuelles Feedback geben. Interaktives Lernen
fithrt jedoch zu mehr Korrekturen, die eine manuelle, sich wiederholende und zeit-
aufwandige Tatigkeit sind. Hinzu kommt, dass die Zahl der jahrlichen Absolventen
von Ingenieurstudiengingen in den letzten zehn Jahren stetig gestiegen ist. Dieser
Anstieg hat zu grofien Kursen gefiihrt, was die Arbeitsbelastung der Lehrenden
durch Korrekturen weiter erhoht.

Diese Dissertation stellt in vier Publikationen das System Athena vor, das den
Korrekturaufwand durch automatische Bewertung der eingereichten Textaufgaben
reduziert: Publikation [BB19] stellt den Gesamtansatz zur Sammlung von Bewer-
tungswissen aus manuellen segmentbasierten Bewertungen vor. Die Publikation
[Ber+-20] stellt einen Algorithmus zur Zerlegung von Studierendenantworten in the-
matisch kohdrente Segmente vor. Publikation [BKB21] beschreibt die Architektur
des Athena Systems, das die Korrektur basierend auf Topic Modeling, Sprachmo-
dellen und bestehenden Korrekturen automatisiert. Publikation [BKB22] evaluiert
das Athena System in einem groflen Kurs mit 34 Textiibungen, der zwischen 2019
und 2021 fiir bis zu 2.200 eingeschriebene Studierende angeboten wurde. Mehr als
47.500 interaktive, offene Textiibungen wurden in diesem Zeitraum mit Athena
bearbeitet. Athena schlug fiir 45 % der Abgaben Feedback vor. Die Lehrenden
akzeptierten 92 % der Vorschlige von Athena.

vi

Publication Preface

The contribution of this dissertation is based on the following three peer-reviewed
first-author publications in international conferences and journals:

Publication [Ber+20]

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge. “To-
wards the Automation of Grading Textual Student Submissions to Open-ended
Questions.” In: 4th Furopean Conference of Software Engineering FEducation.
ECSEE ’20. Seeon, Germany: Association for Computing Machinery (ACM),
June 2020, pp. 61-70. ISBN: 9781450377522. DOIL: 10.1145/3396802. 3396805

Publication [BKB21]

Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. “A Machine Learning
Approach for Suggesting Feedback in Textual Exercises in Large Courses.” In: §th
ACM Conference on Learning @ Scale. LQS ’21. Potsdam, Germany: Association
for Computing Machinery (ACM), June 2021, pp. 173-182. 1SBN: 9781450382151.
DOI: 10.1145/3430895.3460135

Publication [BKB22]

Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. “Machine Learning
Based Feedback on Textual Student Answers in Large Courses.” In: Computers
and Education: Artificial Intelligence 3 (June 2022). 1SSN: 2666-920X. DOI: 10.
1016/j.caeai.2022.100081

The following first-author international workshop paper is included to provide
additional context:

Publication [BB19]

Jan Philip Bernius and Bernd Bruegge. “Toward the Automatic Assessment of
Text Exercises.” In: 2nd Workshop on Innovative Software Engineering Education.
ISEE '19. Stuttgart, Germany: CEUR-WS.org, February 2019, pp. 19-22. URL:
http://ceur-ws.org/Vol-2308/isee2019paper04.pdf

vil

https://doi.org/10.1145/3396802.3396805
https://doi.org/10.1145/3430895.3460135
https://doi.org/10.1016/j.caeai.2022.100081
https://doi.org/10.1016/j.caeai.2022.100081
http://ceur-ws.org/Vol-2308/isee2019paper04.pdf

Publication Preface

The following peer-reviewed first-author publications are related to the disserta-
tion, but not embedded into the dissertation:

Publication [BKB20]

Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge. “Segmenting Student
Answers to Textual Exercises Based on Topic Modeling.” 1In: 17th Workshop
on Software Engineering im Unterricht der Hochschulen. SEUH ’20. Innsbruck,
Austria: CEUR-WS.org, February 2020, pp. 72-73. URL: http://ceur-ws.org/
Vol-2531/poster03.pdf

Publication [Ber21]

Jan Philip Bernius. “Toward Computer-Aided Assessment of Textual Exercises
in Very Large Courses.” In: 52nd ACM Technical Symposium on Computer Sci-
ence Education. SIGCSE "21. Toronto, ON, Canada: Association for Computing
Machinery (ACM), March 2021, p. 1386. DOI: 10.1145/3408877.3439703

viil

http://ceur-ws.org/Vol-2531/poster03.pdf
http://ceur-ws.org/Vol-2531/poster03.pdf
https://doi.org/10.1145/3408877.3439703

Contents

Acknowledgments iv
Abstract v
Zusammenfassung vi
Publication Preface vii
Contents ix
1 Introduction 1
1.1 Textual Exercises 3
1.2 Assessment 4
1.3 Evolution of Teaching 5
2 Natural Language Processing 9
2.1 History 9
2.2 Topic segmentation 11
2.3 Language Models, Word Embeddings, and Transformers 15
3 Clustering 20
3.1 Partitioning-Based Clustering 20
3.2 Density-Based Clustering 21
3.3 Hierarchical Clustering 21
4 Research Process & Data Collection 23
4.1 Design Science 23
4.2 COUTSES . . . v v e 26
5 Toward the Automatic Assessment of Text Exercises 30
5.1 Imtroduction and Problem 32
5.2 Visionary Scenario 32
5.3 Assessment Workflow 32
5.4 Evaluation Approach 34
5.5 Discussion 34

1X

CONTENTS

5.6 Related Work
5.7 Conclusion s,
5.8 References,

6 Towards the Automation of Grading Textual Student Submis-

sions to Open-ended Questions

6.1 Introduction and Problem
6.2 Assessment Systems
6.3 Text Segmentation L.
6.4 Segmenting Student Answers.
6.5 Evaluation
6.6 Summary
6.7 References

7 A Machine Learning Approach for Suggesting Feedback in Tex-

tual Exercises in Large Courses

7.1 Introduction
7.2 Background: Language Models
7.3 Related Work
7.4 Approach: Computer-aided Feedback (CoFee)
7.5 Reference Implementation (Athene)
7.6 Evaluation
7.7 Conclusion
7.8 References

8 Machine Learning Based Feedback on Textual Student Answers

in Large Courses

8.1 Imtroduction
8.2 Methodology
8.3 Problem Investigation
8.4 Treatment Design — CoFee
8.5 Related Work
8.6 Treatment Validation
8.7 Treatment Implementation — Athena
8.8 Implementation Evaluation.
8.9 Conclusion
8.10 Future Work
8.11 Acknowledgments
8.12 References

9 Conclusion & Outlook

List of Figures
List of Tables
Acronyms

Bibliography

CONTENTS

X1

81

85

86

87

1 Introduction

Computer science and software engineering are problem-solving activities that
require creativity, collaboration, and practical application of knowledge [AK97].
However, creative activities such as modeling are hard to teach and assess, partic-
ularly in very large courses with thousands of students. The number of enrolled
students in computer science courses has increased significantly, some by a factor
of five to ten in the last 20 years. Another problem is to assess how the students
apply problem-solving activities in an exam. Much expertise is necessary to as-
sess whether the solution is complete, unambiguous, and correct and whether it
addresses the problem to be solved. Handing out a sample solution and providing
generic feedback does not help because there is often not a single correct solution.
Moreover, even if there is only one solution, the iterative aspect of moving to-
ward that solution requires individual feedback from the instructor. The job of a
good instructor is also to identify creative solutions that do not follow the sample
solution.

For very large classes, instructors also face an assessment problem. An easy way
out is multiple-choice questions because they are easy to grade, and the grading
process can easily be automated. However, multiple-choice questions are not the
answer for assessing questions that require creative thinking and often lead to
individual solutions. Further, trivial exercises do not stimulate higher cognitive
skills and do not reflect an engineer’s daily work [KS19]. The challenge is to create
textual questions to stimulate higher cognitive skills, such as problem-solving,
which are important in computer science. Software engineering students need
to learn constructive and creative capabilities. Grading these types of questions
causes a high assessment effort on the instructor’s side.

Learning methodologies such as active learning, blended learning, experiential

learning, or flipped classrooms have been created to address these problems, but

1 Introduction

their applicability to very large classrooms is limited. This dissertation presents
Computer-aided Feedback for textual exercises (CoFee), a framework to generate
and suggest automated feedback for textual exercises based on machine learn-
ing. CoFee utilizes a segment-based grading concept, which links feedback to text
segments. CoFee automates grading based on topic modeling and an assessment
knowledge repository acquired during previous assessments. A language model
builds an intermediate representation of the text segments. Hierarchical clustering
identifies groups of similar text segments to reduce the grading overhead.

The dissertation is publication-based and structured as follows: Chapter 1 pro-
vides an overview of textual exercises (1.1), assessment (1.2), and the evolution
of teaching (1.3). Chapter 2 introduces Natural Language Processing with its
history (2.1), topic segmentation and topic modeling (2.2), and language models
(2.3). Chapter 3 introduces clustering algorithms. Chapter 4 outlines the re-
search methodology used in this dissertation (4.1) and explains the courses used
for empirical evaluation (4.2). Chapter 5 contains the workshop paper “Toward
the Automatic Assessment of Text Exercises” and outlines a machine learning-
based approach to assess textual exercises automatically. Chapter 6 contains the
conference paper “Towards the Automation of Grading Textual Student Submis-
sions to Open-ended Questions,” which presents the design and implementation
of an algorithm using topic modeling for segmenting solutions into short segments
for assessment. Chapter 7 contains the conference paper “A Machine Learning
Approach for Suggesting Feedback in Textual Exercises in Large Courses,” which
introduces the reference implementation “Athena” and presents an empirical eval-
uation based on data from two courses from 2020. Chapter 8 contains the jour-
nal article “Machine Learning Based Feedback on Textual Student Answers in

)

Large Courses,” which formalizes the research process following the design science
methodology. Further, the article extends the evaluation based on an extended
dataset over three years and with more statistics. Finally, Chapter 9 summarizes

the dissertation’s contributions and provides an outlook on future work.

1 Introduction

1.1 Textual Exercises

The instructor needs to facilitate the problem-solving learning process [DKM9S].
Exercises are a proven method to train higher cognitive skills, including the acquisi-
tion of domain-specific knowledge, analysis and design methods, and the evaluation
of the results.

“Recall” or “open” questions [GLO8] focus on the respondent coming up with an
answer of their own to a posed question. “Open” questions usually provide benefits
to higher levels of Bloom’s learning objectives [KA10], namely “Analyze,” “Apply,”
and “Evaluate.” Text exercises can be differentiated into three main categories:
(1) Structural exercises focus on solving a notation-based math equation or writing
a piece of computer code. (2) Natural language exercises require respondents to
answer a question using written language. (3) Speech exercises test students based
on their comprehension of a spoken passage.

Natural language questions can be separated into fill-the-blank, short-answer
questions, definition queries, reading comprehension, or essays. The main dimen-
sion of distinguishment is the length of a response. While fill-the-blank answers
often only require a few words, which can be automatically verified against a set
of options, the difference between short-answer questions and essays is not well
defined. Siddiqi, Harrison, and Siddiqi [SHS10] define the length of a short answer
to be three to four sentences, while Sukkarieh and Stoyanchev [SS09] define an
optimal length to be under 100 words. The length of an essay is usually defined as
multiple paragraphs up to several pages [BGS15]. Another criterion that should
be considered when differentiating between short answers and essays is the focus of
each exercise: Although the content of an essay is not negligible, the main priority
of an essay lies in determining the proficiency of an examinee as a writer as well
as the linguistic skills demonstrated in answering an open-ended question with no
clear, definite right or wrong answer [JM09]. In comparison, short answer ques-
tions are graded based on the response’s content, and an examinee’s writing style
and grammatical or spelling errors are omitted. Also, short answer questions re-
quire the examinee to answer by stating clear facts and proven factual statements,

leaving out their personal opinion and vague statements or assumptions.

1 Introduction

Reading comprehension exercises and exercises, where the definition of a concept
is obtained, are not considered in this work since they often only address lower
levels of Bloom’s taxonomy and cannot be classified as “open” questions where

the examinee has to come up with an own answer.

1.2 Assessment

Concrete problem-solving strategies are taught in paradigms accepted by the pro-
fession [Kuh96]. Each paradigm provides a set of problem-solving exercises. These
are usual (textual) exercises that involve applying problem-solving techniques. Ex-
ercises help students to learn, understand and apply a paradigm.

Instructors send feedback messages to students about correct and incorrect el-
ements of their solution; students use the information from the feedback message
to improve their solution [NMO06]. Students’ overall satisfaction correlates strongly
with the quality and quantity of feedback they receive [JHG13|. Students engage
most with frequent, detailed, and timely feedback focused on their task perfor-
mance [GS05]. Feedback must arrive timely to be relevant for further learning or
to be helpful with ongoing and upcoming exercises.

Feedback in the form of a dialogue engages the students the most, as the students
can address the feedback instantly, and instructors can engage in a discussion
INMO06; Car+10; PHM11]. Furthermore, within a dialog, instructors can guide and
encourage students with their feedback and can foster a positive learner identity.

As this work’s goal is to provide students with feedback for an exercise solved
through written text, defining the type of feedback to provide is also required.
Exercise types such as multiple choice questions or programming exercises are typ-
ically assessed binary as right or wrong, thus allowing students to recognize their
mistakes immediately. The openness of a text exercise demands concrete reasoning
as to why a particular grade has been given. We consider written comments by
an instructor next to a numeric score to be an obligatory part of the feedback.
Comments allow instructors to justify their feedback and create a classroom envi-
ronment where they explain their reasoning behind an assessment instead of just

providing a score.

1 Introduction

1.3 Evolution of Teaching

In ancient Greece, from 335 B.C., the peripatetic school teaches philosophy in
discussions while walking. The peripatetic school was named after the Peripatos,
a pathway encircling the Acropolis in Athens. Aristotle’s teaching consisted of two
activities: First, conversing with his more mature pupil, allegedly lecturing while
walking. Second, giving lectures on philosophy and rhetoric to a larger audience.
[Sey82; Sey91]

The low ratio between teachers and students enables them to interact directly
during their discussions. The peripatetic school was teaching a static set of knowl-
edge defined in the doctrines laid down by Aristotle and maintained by his follow-

ers. Figure 1.1 depicts a teaching session by Aristoteles.

Figure 1.1: The School of Athens, fresco painted between 1509 and 1511 by Raffaello
Sanzio da Urbino (public domain).

1 Introduction

Figure 1.2: Lecture at the University of Bologna in the 1350s. Painting by Laurentius
de Voltolina (public domain).

Scholasticism was the medieval school of philosophy and the dominating form
of higher education between 1100 and 1700 A.D. in Europe [Mar03|. The method-
ology originated from catholic monastic schools and is not limited to teaching
philosophy or theology. A teaching unit consists of three phases: First, in lectio,
a teacher reads an authoritative text and follows up with a commentary on the
text. No questions are permitted during the lectio. Second, students reflect on
the text during meditatio. Third, during quaestio, students can ask the questions
that occurred to them during meditatio. Figure 1.2 depicts a lecture setting at
the University of Bologna from the second half of the 14" century.

Today, teaching is primarily conducted through lectures in which a cohort of

students follows a recitation of the professor in a big lecture room. On top of

1 Introduction

that, some courses offer additional sessions with smaller group sizes conducted
by teaching assistants, either doctoral students of the professor or students from
previous course editions. Richard P. Feynman, a distinguished teacher, and Nobel
Prize winner, applied the same teaching paradigm 50 years ago in 1963 at the
California Institute of Technology in his fundamental physics lectures.

“The whole group of 180 students gathered in a big lecture room twice a week to
hear these lectures and then they broke up into small groups of 15 to 20 students
in recitation sections under the guidance of a teaching assistant” [Fey94].

Student numbers rise in university courses. An extreme example is the com-
puter science program at the Technical University of Munich (TUM). The first-
year course Introduction to Software Engineering (EIST) increased by a factor of
5 within ten years. Figure 1.3 visualizes this growth in student numbers, passing
2,000 in 2021. Traditional university teaching is based on real-time communication
and requires students to be present to participate. Class interaction is getting more
difficult as more teaching staff is needed to handle the growing student numbers.
Further, new communication methods with large audiences are needed [KG17].
Equipping students with clickers to answer questions live during lectures was one

of the first interventions [May+09]. OnlineTED! is a commercial product used at

1OnlineTED: https://onlineted.de

‘ 2,200
1

2,000

1,500 |-

1,000

500

3631 | | | | | | | | | |
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 1.3: The number of registered students in the course EIST between 2010 and
2022.

https://onlineted.de

1 Introduction

the TUM School of Management, which allows students to use their Smartphones
as a clicker. Clickers are a method to force student interaction by introducing a
response system. Students click an answer to a multiple-choice question, and the
instructor can evaluate the answers and discuss the rationale behind the correct
answer [May+09]. Students that participate in discussions and ask questions dur-
ing the lecture apply their knowledge constantly and gain a deeper understanding
of the course contents [BE91].

Massive Open Online Courses (MOOCs) are open-access online courses that al-
low an unlimited number of participants. MOOCsSs require an instructional design
with scalable interactions and feedback to handle the massive number of partici-
pants. Common techniques used in MOOCs are forums, chat rooms, peer grading,
and automated feedback (primarily multiple choice). Unfortunately, the course
sizes make it infeasible to provide instructor feedback to all students.

Students are typically easier graders than professional instructors, e.g., awarding
25% more points in peer-graded practice exams than professionals. This grading
gap is especially noticeable for higher-level cognitive skills measured in Bloom’s
taxonomy. Exercises of upper levels, e.g., in “Apply” or “Analyze,” are harder to
solve and grade for students. [FP10]

Sebastian Thrun and Peter Norvig from Stanford University offered their 2011
course “Introduction to Artificial Intelligence” as a MOOC for free. More than
160, 000 students from 190 countries participate in the online course. The online
platform Udacity? was a side result of the Stanford course and is now one of the

3 is another online course plat-

most-known platforms for online courses. Coursera
form founded by Stanford professors Andrew Ng and Daphne Koller at a similar
time as Udacity [Sev12]. The MOOC platform edX* by the Massachusetts Institute
of Technology and Harvard University provides university-level online learning to
40 million worldwide users [Rod12]. edX is powered by the Open edX Learning

Management System (LMS).

2Udacity: https://udacity.com
3Coursera: www.coursera.org
tedX: www.edx.org

https://udacity.com
www.coursera.org
www.edx.org

2 Natural Language Processing

Natural Language Processing (NLP) is concerned with computers processing and
analyzing natural language. NLP is a subfield of computer science, artificial intelli-
gence, and linguistics. The goal of NLP is to understand the contents of documents
and the meaning of language in a given context. Typical NLP tasks include knowl-
edge extraction, categorization, question answering, speech recognition, language
generation, and translation. NLP emerged in the 1950s. Section 2.1 provides a
brief introduction to the history of NLP. The following sections describe the NLP
methods used by Athena.

Athena splits answers into meaningful units for granular feedback. For this
reason, Section 2.2 describes Topic Segmentation and focuses on methods and
approaches to segment text into meaningful units. Athena uses word embed-
dings from a language model to understand and compare student answers. There-
fore, Section 2.3 describes language models, word embeddings, and transformers,
namely the instantiations word2vec, ELMo, BERT, and WMT. Language models
express a probability distribution of words occurring in the same context. Word
embeddings represent the meaning of words in the form of a vector. A transformer

is a deep learning model commonly used for NLP and computer vision tasks.

2.1 History

Since the introduction of the Turing Test by Alan Turing [Tur50] in 1950, scien-
tists have been trying to develop an algorithm that could translate, generate, and
analyze text in a way identical to a human being’s natural speech. Noam Chom-
sky made the first attempt to formalize natural language leading to the Chomsky
hierarchy. The Chomsky hierarchy defines a hierarchy of types of formal grammar
[Cho56].

2 Natural Language Processing

Type-0 (“unrestricted”) grammars include all formal grammar. They generate
exactly all languages that a Turing machine can recognize. Type-1 (“context-
sensitive”) grammars describe the syntax of natural language where a word may or
may not be appropriate in a certain place depending on the context and can be rec-
ognized by linear-bounded non-deterministic Turing machines. Type-2 (“context-
free”) grammars generate languages that a non-deterministic pushdown automaton
can recognize and form the basis for the structure of most programming languages.
Type-3 (“regular”) grammars generate the regular languages. Regular expressions
defining a search schema for text are a well-known example of a very limited Chom-
sky type-3 grammar. Chomsky tried to develop a grammar that could generate
all kinds of English sentences [Cho56]. Though his work did not result in an all-
embracing grammar, his attempts contributed immensely to linguistics and further
research on teaching language to computers. The theory he invented is called the
“production rule” [CW14].

Roger Schank was among the first to attempt the processing of natural language
and introduced the conceptual dependency theory for natural language under-
standing [ST69]. Conceptual dependency theory outlines a model that represents
knowledge independent of the use of words. The model can capture different for-
mulations of sentences representing the same meaning.

Following the formalization of language and representation of knowledge, the
next challenge was machine translation [CCG81] of natural language. Jaime
Carbonell generalized Schank’s ideas and applied them to areas such as text
mining, information retrieval [Car80; Car+97], summarization, [GC98; Gol+99;
Mit+99] free-text question-answering [Nyb+02; Nyb+03; LC04a; LC04b], and re-
lated tasks.

The first application of efficient backpropagation was described in 1981 by Paul
Werbos [Wer81]. Then, David Rumelhart elaborated on and popularized backprop-
agation [RHW86a; RHWS86b] by demonstrating the experimental use of internal
representations in hidden layers.

In 2010, the advancements of cheap, powerful GPU-based computing systems
allowed to overcome the fundamental deep-learning problem of gradient descent

by being able to propagate errors over a few layers within a reasonable time.

10

2 Natural Language Processing

This computational work was not feasible in the early 1990s, given the limited
computational power of CPUs at the time. [Schl5] Since 2010, neural networks
have a widened variance of applications such as speech recognition, machine vision,

autonomous driving, and NLP.

2.2 Topic segmentation

This section discusses the literature, mainly focusing on text segmentation, in-
formation retrieval, and topic modeling. Text segmentation is one of the NLP
tasks concerned with dividing a text into meaningful units. The term changed
its meaning over time. Before 2000, text segmentation was primarily concerned
with processing scanned documents and segmenting typed or handwritten textual
contents from figures or blank spaces [EL90]. The main goal was to identify ar-
eas where optical character recognition could be applied [JB92]. After 2000, the
term became more commonly used to describe the process of subdividing strings
into meaningful units. The field subdivides into word segmentation, intent seg-
mentation, sentence segmentation, and topic segmentation. The remainder of this
section focuses on topic segmentation.

Text segmentation can be applied to various NLP tasks, including emotion
extraction [Wu+07], sentiment mining [Gao+10], text summarization [LWZ06;
CW14], topic identification [BCT02; FWAO07], and information retrieval [Hua+03].
[PT17] Information retrieval concerns finding material from an unstructured col-
lection of documents that satisfy an information need [Rij77; MRS08; JR10].

The literature defines different results of text segmentation: A segment is most
often defined as a word. Other frequent definitions of segments are characters,
topics, sentences, or lines. Less frequently, segments are defined as phrases, para-
graphs, or tags. [PT17] This dissertation defines a segment as a topically coherent
phrase. A segment can span from a clause to multiple sentences.

Segmentation approaches can be divided into linear approaches and hierarchical
approaches [Yaa97; EB08|. Linear approaches produce a linear series of segments,
where segments may not overlap each other. Hierarchical approaches provide a

hierarchical relationship of segments where segments can be broken down into

11

2 Natural Language Processing

smaller segments. Linear segmentation is more commonly used in the literature.
Hierarchical segmentation can be used in discourse retrieval. [PT17] The ap-
proach presented in Chapter 6 [Ber+20] uses a hierarchical structure of segments
to identify topically coherent segments by splitting them into clauses or merging

sentences. However, the result is a linear segmentation.

2.2.1 Lexical Cohesion

Marti Hearst was among the first to present an unsupervised method for text
segmentation with TextTiling [Hea97], which still serves as the baseline many
years later [JCN13]. TextTiling derives topic boundaries using tokenization, lexical
score determination, and depth score computation. Hearst treats text as a two-
level structure that defines several topics and subtopics. TextTiling divides a text
between 1800 and 2500 words into segments that belong to different subtopics.
[Hea97]

Lexical cohesion, introduced by Michael Halliday, can determine subtopics, as
similar vocabulary usually indicates a coherent part of the text [HHT76].

However, this approach cannot handle multiple different subtopics co-occurring
in the same part of the text. That is why Hearst separated the process into
three activities instead of directly calculating lexical chains: (1) tokenization into
terms and sentence-sized units, (2) determination of a score for each sentence-sized
unit, and (3) detection of the subtopic boundaries [Hea97]. Tokenization focuses
on preprocessing the text, such as removing stop words, reducing the words to
their lexical root, and converting everything to lowercase. Stop words are words
that do not contribute to the semantics of the text, i.e., the verb “to be” or
conjunctions. Lexical scores are determined by two different methods: blocks of
text and vocabulary introduction. Both methods compare the adjacent topics of
the potential subtopic boundary and search for a topic shift rather than the topic
itself. The “blocks of text” method compares vectors containing the number of
times a lexical item occurs within a block. The vocabulary introduction method
counts the number of first-time uses of words in the current token sequence. The
depth score identifies local minima in a series of potential topic gaps. A local

minima indicates that two adjacent blocks are only marginally related.

12

2 Natural Language Processing

2.2.2 Multi-Score Algorithm Based on Cue Phrases

Doug Beeferman introduced a multi-score algorithm that uses cue phrases instead
of lexical cohesion [BBL97]|. Based on a dataset of 188 million words from Wall
Street Journal articles and a collection of news and broadcast transcripts, the
authors identified words indicating a topic shift. The algorithm tries to learn the
most valuable clues from the text and then calculates a statistical model. Two
approaches are combined into a multi-score algorithm called short- and long-range
models of language [BBLIT].

2.2.3 Combination of Lexical Cohesion and Cue Phrases

Jeffrey Reynar combines lexical cohesion and cue phrases to a new approach
[Rey99]. To account for ambiguities in words (i.e., wild plant as in flower vs.
chemical plant as in factory), Reynar applies lexical cohesion on bigram-word fre-
quencies in his Word Frequency Algorithm. The algorithm predicts whether the
words that follow a topic boundary are generated dependent or independent of the
proceeding words.

The second algorithm, the “Maximum Entropy Model” uses seven features to
predict topic boundaries. Word frequencies, domain cues, pronouns, named en-
tities, and first uses of words as an indicator for a continuation of a topic. For
instance, they check for an occurrence of a pronoun within the first five words of

a sentence as an indicator for a coherent block. [Rey99]

2.2.4 Similarity Ranking and Divisive Clustering

Freddy Choi [Cho00] builds on top of Reynar ’s algorithm [Rey99] and adjusts the
similarity measure and location of topic boundaries. The cosine distance between
vectors of word frequency can be disproportionally increased by one additional
word occurrence. Especially given that different parts of a text are less coherent,
the cosine method is inappropriate to compare segments from different parts of a
text. Therefore, Choi proposes to convert the cosine similarity value into a rank of
similarity among neighboring segments [Cho00]. Divisive clustering determines the

topic boundaries based on the Maximum Entropy Model [Rey99]. This algorithm

13

2 Natural Language Processing

is two times more accurate and seven times faster than Hearst ’s sliding window
algorithm.

In the following year, Choi, Wiemer-Hastings, and Moore demonstrated how to
apply divisive clustering based on a Latent Semantic Analysis (LSA) from segments
[CWMO1]. LSA solves two main problems occurring with word frequency-based

cosine similarities: short passages and synonyms.

2.2.5 Topic Modeling

Blei, Ng, and Jordan [BNJO03] introduced Latent Dirichlet Allocation (LDA) in
2003. LDA is commonly used in the literature [Eis09; Mis+09; CYY16] and can
be trained on data from a single domain [Mis+11].

TopicTiling [RB12b] is an extension of Hearst ’s TextTiling algorithm that uses
LDA to assign topics to text blocks. Each block is represented by a T-dimensional
vector, where T' is the number of topics in the dataset. A coherence score is then
calculated between neighboring blocks inside a “window” with cosine similarity.
The depth scores of the smallest coherence scores, depending on the highest co-
herence scores to the left and right, indicate sub-topic boundaries.

Chen, Yao, and Yang use LDA and a K-nearest neighbor algorithm to clas-
sify short texts, which demonstrates how LDA can be applied to short text only
consisting of several words [CYY16].

Tu, Xiong, Chen, and Brinton use LDA in combination with word-embeddings
(cf. Section 2.3) to segment educational texts for online learning with a domain-
independent algorithm [Tu+18]. They train their model on a small dataset and
state that LDA can be used with a comparatively small number of topics. They
also compare different similarity measures, such as cosine similarity, depth score,
and spectrum. They additionally analyze the impact of different values of input

parameters of LDA. A similar analysis is done by Riedl and Biemann [RB12a].

2.2.6 Keyword Extraction

Juan Ramos uses Term Frequency-Inverse Document Frequency (TF-IDF) to de-

termine whether a word is significant to a user’s query when searching documents

14

2 Natural Language Processing

[Ram03]. Intuitively, a word’s frequency is linked to its importance. TF-IDF
proposes that not only the absolute frequency is relevant but also the number of
occurrences in different documents. If a word often occurs across many documents,
it is most probably not significant. The previous section describes the concept of
stop words that deal with the same problem. To determine the TF-IDF, every
document is run through the algorithm, and the two relevant frequencies are com-
puted. The significance of a word is proportional to the frequency inside of the
document but decreases if the word is found across different texts.

A thesaurus is another way to extract keywords [MWO06] and can be especially
helpful when there is only one document, and the TF-IDF approach is not suitable.
A thesaurus also provides external knowledge, which allows extracting keywords
without any training but requires additional maintenance and fails if no match is

available.

2.3 Language Models, Word Embeddings, and

Transformers

A language model estimates the probability of a piece of unseen text based on
some training data [Hie09]. Modern language models allow the representation
of words as continuous vectors (word embeddings). Those significantly improve
and simplify many NLP applications [Mik+13]. The literature discusses different
neural network architectures that estimate word vectors. The following section
examines four language models: Word2Vec, ELMo, BERt, and WMT.

Word embedding is a widely used feature learning technique in NLP. The idea
behind word embeddings is to represent words or phrases from a vocabulary as vec-
tors of real numbers. Each word is represented with a point in a vector space, and
the position of the point captures some of the word’s semantic properties [LY17].
The feature vector captures different aspects of the word; consequently, words with
the same meaning are assigned similar vector representations. These vectors can
then be used as input features for various NLP tasks, such as language modeling,

text classification, and machine translation. Word embeddings have proven to be

15

2 Natural Language Processing

an effective way to capture the meaning of words and their relationships with other
words in a language.

Also, word embeddings can capture word analogies by examining various dimen-
sions of the difference between word vectors [PSM14]. For example, the analogy
“king is to queen as man is to woman” should be encoded in the vector space by
the vector equation: king — queen = man — woman as shown in Figure 2.1. Based
on the usage of words, a distributed representation is learned that enables words
used in comparable contexts to possess analogous representations. As a result,

this technique naturally captures the meaning of the words.

A

man

o

~

= \g.woman

. ~
king ~ <5 queen

>

Figure 2.1: A simplified example of a three-dimensional vector space with tokens

“man,” “woman,” “king,” and “queen.”

2.3.1 Word2Vec

Word2Vec is a technique to embed words into a word vector. It was proposed
by Mikolov, Chen, Corrado, and Dean [Mik+13]. Word2Vec was one of the first
semantically successful algorithms presenting word vectors that can catch semantic
and syntactical relationships. For example, the word vector of Paris and Berlin
are similar since both are capitals of a country. Word2Vec representations are
learned from a simple two-layered neural network and provided state-of-the-art
word embeddings [Mik+13].

16

2 Natural Language Processing

2.3.2 ELMo

Embeddings from Language Models (ELMo) is a word embedding constructed as
a task-specific combination of the intermediate layer representations in a bidirec-
tional language model. ELMo maps an input sentence into a sequence of word
vectors. It models complex characteristics of word use in the language. After
publication, ELMo significantly improved the state-of-the-art in every considered
case across a range of challenging language understanding problems [Pet+18]. As
a language model, ELMo can capture both language characteristics: syntax and
semantics. Most importantly, ELMo representations provide a deep contextualized
word representation of word use and the variety of usages across linguistic contexts
[Pet+18].

In a deep language model, the higher-level Long Short-Term Memory (LSTM)
states are shown to capture context-dependent aspects of word meaning, while
lower-level states model aspects of the syntax. By constructing a representation
out of all the layers of the language model, as shown below, ELMo can capture
both language characteristics. Figure 2.2 depicts the LSTM layers predicting the
following word.

ELMo representations are characterized by three principal characteristics that
allow them to achieve state-of-the-art results in most common NLP downstream
tasks: Firstly, ELMo representations are contextual, wherein the representation of
a given word depends upon the entire context in which it is employed. Secondly,
ELMo representations are deep in nature and incorporate all layers of a deep pre-
trained neural network language model. Lastly, they rely solely on character-level
information, thus enabling the network to leverage morphological cues to generate

robust representations for out-of-vocabulary tokens unseen in training.

17

2 Natural Language Processing

0.1% |Aardvark

Possible classes:
All English words

10 % |Design

0 % |Zyzzyva

Output (
Layer

LSTM
Layer #2
LSTM
Layer #1

Embedding IllII IIIII |III|

0 0 ()

FFNN + Softmax]

Figure 2.2: ELMo predicts the most likely following word. (Adapted from [Alal8])

18

2 Natural Language Processing

2.3.3 BERT

Bidirectional Encoder Representations from Transformers (BERT) is an embed-
ding constructed by a transformer. BERT creates the word embeddings based
on the encoder of a transformer [Dev+19]. A bidirectional pre-trained model is
created by masking out some percentage of the input tokens randomly and then
predicting those tokens. The BERT language model enhanced the best results in
several NLP tasks. [Dev+19]

2.3.4 WMT-19

The Workshop on Machine Translation (WMT)! is an important venue for machine
translation and machine translation research, held annually since 2006. During
this event, different researchers share their results and advances in machine trans-
lation during the last year. The Facebook WMT-19 model is a pre-trained model
designed to translate between different languages and submitted to the WMT
shared news translation task in 2019 [Ng+19].

The base system is built using the big transformer architecture [Ng+19] spec-
ified in the FAIRSEQ?, a sequence modeling toolkit for training custom models
proposed by Facebook [Ott+19].

Furthermore, WMT-19 extends the traditional transformer architecture by im-
plementing a back translation technique, which aims to enhance the quality of
machine translation systems by using data augmentation [Ng-+19]. Specifically,
it involves training a neural machine translation system from the target to the
source language in the reverse translation direction. The system then translates
target-side monolingual data back into the source language. This approach allows
integrating previously unused monolingual data into the training corpus by extend-
ing the corpus with new synthetic source-to-target sentence pairs [Hoa+18]. By
incorporating back translation into the training process, machine translation sys-
tems can benefit from the additional training data, improving translation quality.
The WMT-19 model demonstrated the effectiveness of this approach.

'WMT - The Conference on Machine Translation: https://machinetranslate.org/wmt
2Facebook AI Research Sequence-to-Sequence Toolkit written in Python (FAIRSEQ):
https://github.com/facebookresearch/fairseq

19

https://machinetranslate.org/wmt
https://github.com/facebookresearch/fairseq

3 Clustering

Clustering, also called cluster analysis, describes the task of categorizing objects
into groups (or clusters) so that objects within each group are more similar to
each other than to objects outside of the group. Clustering is commonly used
in various fields, including statistical data analysis, pattern recognition, machine
learning, and information retrieval.

Clustering originated in anthropology research in 1932, analyzing tribal or na-
tional cultures [DK32], followed by more work in psychology in the late 1930s
[Zub38; Try39; Cat43]. Since then, the field has progressed significantly. There
is no ubiquitous definition of a cluster, as different measurement methods can de-
fine “similarity”. Therefore, many different clustering models and algorithms exist
[Est02].

In the following, we discuss clustering algorithms related to this dissertation.
Section 3.1 describes partitioning-based clustering, Section 3.2 describes density-
based clustering, and Section 3.3 describes hierarchical clustering. Chapter 7
[BKB21, Section “Reference Implementation”] and Chapter 8 [BKB22, Section
7] describe Athenas Clustering subsystem responsible for decomposing student

answer segments into clusters.

3.1 Partitioning-Based Clustering

Partitioning-based clustering approach divides the data set into disjoint partitions
and maps each data point to exactly one partition or cluster while leaving no cluster
empty. K-means is a well-known and fundamental partitioning-based clustering
approach. The goal of the k-means clustering is to group up n data points in
k clusters [Mac67]. Its basic principle is finding k central points in the data

set and assigning each point to its closest center. Finding these centers can be

20

3 Clustering

achieved by initializing the central points randomly and then iteratively optimizing
them by computing the clusters in each step and updating the central points
with the centers of the current clusters until they converge to a good enough
result. An example of such an algorithm is given by Lloyd [Llo82]. K-means is a
relatively fast clustering method; however, it requires the number of clusters to be
specified before the start of the clustering. Dynamic forming of new clusters is not
possible. Instead, Athena’s clustering determines the number of clusters based on

the solutions at run-time.

3.2 Density-Based Clustering

Another approach is density-based clustering [Kri+11; Cam+19], which defines
clusters as regions in the data set with a higher density than the rest. Points
outside dense regions can be considered outliers or noise. One of the most popular
approaches is Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) [Est496]. It pre-defines a distance threshold for connecting data points
and a minimum number of points to form a dense region. A dense region contains
more than that minimum number of points closer to each other than the defined
threshold. A cluster is defined as a dense region with all points closer than the
threshold to that region. DBSCAN has two strengths: the number of clusters is
determined dynamically at run time, and points in sparse regions are detected as
outliers. However, a disadvantage is that the constant distance threshold makes
clustering data with varying densities inaccurate. Therefore, Athena does not
use density-based clustering in its pure form but in combination with hierarchical

clustering.

3.3 Hierarchical Clustering

Hierarchical clustering puts the clusters in a hierarchical relationship. Depending
on the concrete approach, there are two possible ways to realize this: initially spec-
ifying every data point as a cluster itself and merging them to form new clusters

(agglomerative) or defining the whole data set as one cluster and dividing it to

21

3 Clustering

form smaller ones (divisive). The decision to form new clusters in either way de-
pends on a metric measuring the distance between two data points. An algorithm
that merges clusters in a fashion that chooses the clusters with the closest pair of
points (single-linkage clustering) is SLINK [Sib73], which is optimal in both time
and space. Dendrograms are helpful diagrams to analyze the results of hierarchical
clustering. Athena uses the Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) [Cam+15; MH17; MHA17] algorithm, which
clusters objects based on a density function. HDBSCAN is discussed in detail in
Chapter 8 [BKB22].

22

4 Research Process & Data Collection

This dissertation is based on the design science engineering cycle, which structures
the design, validation, implementation, and evaluation activities. Section 4.1 intro-
duces design science and presents the research goals of this dissertation. The val-
idation and evaluation activities are based on data collected in large-scale courses
at the Technical University of Munich (TUM). Section 4.2 describes these courses

with respect to their learning goals.

4.1 Design Science

Design science is a research approach focused on the development and validation
of knowledge [Sim88] and is used in several research disciplines. Design science
focuses on designing and investigating artifacts in the context of a problem domain.
Design science deals with two kinds of research problems: First, designing artifacts
to improve a problem context. Second, answering knowledge questions about
the artifact in context. The “engineering cycle” framework is a specialization of
design science for research in the domains of information systems and software
engineering. The engineering cycle consists of four phases: First, the problem
investigation identifies the stakeholders and their goals. Second, the treatment
design specifies requirements with their contribution to the goals and available
or new treatments for the problem. Third, the treatment validation investigated
the effects of the treatment on the problem and whether the effects satisfy the
requirements. Fourth, during the design implementation phase, the treatment is
implemented. In the following iteration, an implementation evaluation replaces
the problem investigation and inspects the effects of the implemented treatment
and their contributions to the stakeholder goals. [Wiel4]

This dissertation is based on Wieringa’s design science engineering cycle [Wiel4].

23

4 Research Process & Data Collection

Social Context Goals)
4 N
External Stakeholder Goals
é)
Instructor Goal:

Provide High-quality feedback to all students with little effort.

\ J
4 N
Student Goal:

Solve exercises and receive timely constructive feedback.

. J
a Y
Student Goal: Re-iterate on solutions based on feedback.

\ J
\ J
G J
(. . R)

Design Science Research Goals
a2 Y
Artifact Design Goal:
Design a system to automatically assess textual exercises.

\ J
(&)
Knowledge Goal 1: || Knowledge Goal 2: || Knowledge Goal 3:
Investigation Validation Evaluation
\ J
. S

Figure 4.1: Hierarchical goal taxonomy following the template from [Wiel4]. An arrow
indicates that a goal supports the other.

The two main stakeholders are instructors and students. An instructor can
be either a lecturer or a teaching assistant. Lecturers are university employees
such as professors, researchers, and graduate students. Teaching assistants are
experienced students with knowledge in the domain and are motivated and paid
to help in the teaching process. Some universities use the term “tutor” to refer to a
teaching assistant. Figure 4.1 depicts the hierarchical structure of Social Context
Goals and Design Science Research Goals derived from the stakeholder goals. The
design science research goals support the social context goals, which in turn are
defined by the external stakeholder goals and the problem context.

The instructor’s goal is to deliver high-quality teaching supported by many

exercises. Through individual feedback, instructors want to support students in

24

4 Research Process & Data Collection

their learning activities as much as possible. However, instructors want to minimize
their workload on assessments to have time to create and improve exercises and
course materials. Teaching assistants balance their limited working hours between
assessments, face-to-face teaching sessions, and answering questions. The student’s
goal is to understand the course content and solve the exercises. Another student
goal is to receive timely feedback to re-iterate their solutions and learn from their
mistakes as early as possible [Pop34; Pop59].

The overall research goal of the dissertation is to reduce assessment efforts on
textual exercises for instructors while providing timely feedback for students in
large courses. We decompose this research goal into an artifact design goal and
three knowledge goals.

To achieve the research goal, we explore ways of automating and supporting
the assessment process for textual exercises with the following Artifact design

goal:

Artifact Design Goal: Design a system that automatically assesses textual

exercises.

The system consists of two artifacts: An object-oriented framework! “CoFee”
and a reference implementation? called “Athena”. To understand the stakehold-
ers and the problem context, this artifact design goal is supported by the following
knowledge goals 1-3:

Knowledge Goal 1 (Investigation): Understand grading efforts and the role

of feedback in large courses.

To validate if Computer-aided Feedback for textual exercises (CoFee) is suited to
solve the assessment problem for textual exercises, we state the second knowledge

goal:

Knowledge Goal 2 (Validation): Understand the performance of CoFee and

its individual components during the assessment of textual exercises.

2“Object-Oriented Framework” is called “Conceptual Problem Framework” or “Treatment
Design” in [Wield].
2“Reference Implementation” is called “Design Implementation” in [Wiel4].

25

4 Research Process & Data Collection

(1. Course: 2. Course: 1
2019 Project Organization and Management || Introduction to Software Engineering
_ Summer semester 2019 Summer semester 2019 J
(" 3. Course: 1
Patterns in Software Engineering
L Winter semester 2019/20)
4. Course: 5. Course: j
2020 Introduction to Software Engineering Networks for Monetary Transactions
Summer semester 2020 Summer semester 2020)
6. Course:
Patterns in Software Engineering
Winter semester 2020/21
7. Course:
2021 Introduction to Software Engineering
¥ Summer semester 2021

Figure 4.2: Timeline of courses used in validation and evaluation [BKB21; BKB22].
Exercises used in the courses are categorized as O Course-work and O Ex-
amination.

Athena collects assessment knowledge in the form of exercises and feedback
pools. To evaluate the Athena system and its performance in large courses, we

state the third knowledge goal:

Knowledge Goal 3 (Evaluation): Understand the influence of Athena on

the grading process in large courses.

4.2 Courses

The validation and evaluation activities are part of the design science engineering
cycle and are based on exercises from seven courses at TUM. This section gives an
overview of the course timeline and specifies which exercises were relevant for the
evaluation. In addition, the subsections describe the courses with respect to their
learning goals and the use of textual exercises in coursework and examination.
Figure 4.2 visualizes the course timeline between the summer semester of 2019

and the summer semester of 2021.

26

4 Research Process & Data Collection

Publication Courses

[BKB21] 4. Introduction to Software Engineering (Summer term 2020)
5. Networks for Monetary Transactions (Summer term 2020)

1. Project Organization and Management (Summer term 2019)
2. Introduction to Software Engineering (Summer term 2019)
4. Introduction to Software Engineering (Summer term 2020)
7. Introduction to Software Engineering (Summer term 2020)

Table 4.1: Mapping between publications and courses used as the basis for validation
and evaluation.

Table 4.1 maps the courses to the publications which used data collected as
part of the course. Chapter 7 [BKB21] evaluates Athena based on two courses
from summer 2021. Chapter 8 [BKB22] used data from Project Organisation and
Management in Software Engineering (POM) 2019/20 as part of the treatment
validation. The evaluation in Publication [BKB22| is based on data from Intro-
duction to Software Engineering (EIST) in 2020 and 2021 and makes comparisons
to EIST before the introduction of Athena in 2019 as a control group. Data from
Patterns in Software Engineering (PSE) 2020/21 was not used in the empirical

evaluations in this dissertation.

4.2.1 Introduction to Software Engineering

The course EIST is an introductory software engineering course for computer sci-
ence bachelor’s students in their second semester. Students with computer science
as a minor can also enroll in the course. EIST was visited by around 1, 800 students
in 2020 and around 2,200 students in 2021. Figure 1.3 depicts the development
of student numbers in the course. The course covers software engineering con-
cepts, such as requirements analysis, system and object design, testing, lifecycles,
configuration management, project management, and UML modeling [Kru+20].
The students need fundamental programming experience as a prerequisite, typ-
ically acquired by courses such as Introduction to Informatics or Fundamentals
of Programming in the first semester. The instructors use constructive alignment

[Big03] to align the teaching concepts and exercises with the course objectives.

27

4 Research Process & Data Collection

The course focuses on higher cognitive processes following Bloom’s revised taxon-
omy [And+01]. Following an interactive learning approach, EIST teaches software
engineering concepts with multiple, small iterations of theory, example, exercise,
solution, and reflection [KS19].

The course involves different kinds of exercises:

1. Lecture exercises as part of the (virtual) lectures.

2. Group exercises solved in small ad hoc groups.

3. Homework exercises to be solved throughout the week individually.
4. Team exercises to be solved in a team in five 2-week periods.

5. Exam exercises to assess the student’s knowledge after the course has finished

in multiple variants.

Lecture exercises motivate the students to attend the lectures [KFA17], and
foster student participation [Kru+17]. The students were asked to submit their
solutions to all exercises but group exercises to Artemis to receive an assessment
with feedback and points. The students could gain bonus points for the final exam
when participating in the exercises. To train software engineering and problem-
solving skills, the instructors utilize programming, modeling, textual, and quiz

exercises in the course.

4.2.2 Patterns in Software Engineering

The course PSE is an advanced software engineering course with around 700 com-
puter science master’s students. It teaches the principles of patterns in software
development and the structure of pattern-based software systems. Students learn
how to apply patterns in various problem situations and learn how to handle the
patterns in concrete applications. The course covers design patterns, architectural
patterns, anti-patterns, testing patterns, and pattern-based software engineering.
To participate in the course, students need knowledge of object-oriented software
engineering, typically obtained from the EIST course and practical software engi-

neering courses.

28

4 Research Process & Data Collection

Similar to EIST, PSE follows an interactive learning approach and teaches each
pattern as a learning sprint consisting of theory, example, exercise, solution, and
reflection [KS19]. To train understanding and application of patterns, the instruc-
tors utilize programming, modeling, textual, and quiz exercises in the course.
These exercises are introduced as in-class exercises during the lecture where stu-
dents have time to solve the exercises; however, students can finish the exercises
at home. The students were asked to submit their solutions to the exercises to
Artemis, where solutions are graded, and students can earn bonus points toward

the final exam.

4.2.3 Project Organisation and Management in Software
Engineering

The course POM teaches the most important concepts of traditional and agile
software project management. Students learn to write a project plan, initiate and
manage a small project, tailor a software lifecycle, and develop strategies for merge
management, continuous integration, and continuous delivery.

They also get familiar with the most important risk management techniques,
project scheduling, planning, testing, and software project delivery. Finally, the
students apply these skills by solving simple problems in exercises and a team

project.

4.2.4 Networks for Monetary Transactions

The course Networks for Monetary Transactions aims to understand and assess
the fundamentals, architecture, and security of domestic and international pay-
ment networks and their legal frameworks. Around 500 students participated.
The instructors used Artemis to conduct an online exam during the COVID-19
pandemic. The exam consisted of 11 quiz exercises and three text exercises. Auto-
matic assessment suggestions based on Athena were enabled for one textual exam
exercise: [T-Attacks. This exercise tests the lower-level cognitive skills and asks

students to recall typical IT attack schemas.

29

5 Toward the Automatic Assessment of

Text Exercises?!

Publication [BB19] has been published as a peer-reviewed workshop paper:

Authors: Jan Philip Bernius and Bernd Bruegge

Conference: 2nd Workshop on Innovative Software Engineering Education
(ISEE '19)

Location: Stuttgart, Germany

Pages: 19-22

Year: 2019

Review: Peer Reviewed (4 Reviewers)

Acc. Rate: 67%

Summary The paper describes the concept for a hybrid assessment system to
provide timely responses to students’ homework solutions.

The system starts without any knowledge and trains its assessment model from
manual assessments on the fly. It uses sentence-based grading where one piece
of feedback is valid for multiple sentences from different submissions and may be
shared across students.

The paper is based on the hypothesis that automated assessment can provide
feedback identical to human instructors. It introduces a concept for automati-
cally assessing text exercises using machine learning techniques. Also, it describes
the plans to use this concept in a case study with 1900 students to validate the

approach’s applicability.

'This publication is embedded to provide context and to highlight the iterative research
process. Publication [BB19] is not part of the evaluation of the dissertation.

30

5 Toward the Automatic Assessment of Text Exercises

Contributions J.P. B. developed the approach, conceptualized and formalized
the scenario and workflow, outlined a potential evaluation, conducted the literature
review, and wrote and visualized the paper. B. B. provided feedback and helped

improving the manuscript.

31

CEUR-WS.org/Vol-2308/isee2019paper04.pdf

Toward the Automatic Assessment of Text Exercises

Jan Philip Bernius
Department of Informatics
Technical University of Munich
Munich, Germany
janphilip.bernius @ tum.de

Abstract—Exercises are an essential part of learning. Manual
assessment of exercises requires efforts from instructors and
can also lead to quality problems and inconsistencies between
assessments. Especially with growing student populations, this
also leads to delayed grading, and it is more and more difficult
to provide individual feedback.

The goal is to provide timely responses to homework sub-
missions in large classes. By reducing the required efforts for
assessments, instructors can invest more time in supporting
students and providing individual feedback.

This paper argues that automated assessment provides more
individual feedback for students, combined with quicker feedback
and grading cycles. We introduce a concept for automatic
assessment of text exercises using machine learning techniques.
Also, we describe our plans to use this concept in a case study
with 1900 students.

I. INTRODUCTION AND PROBLEM

Instructors face a large population of students in their
courses. Students require feedback on their exercises to reflect
on their progress [1]. The concepts of interactive learning
[2,3] helps to increase the interaction between instructors
and students but also increases the workload for instructors.
Software engineering students need to learn constructive and
creative capabilities. It is important for the instructor to facil-
itate the problem-solving learning process. Concrete problem-
solving strategies are taught in paradigms, accepted by the
profession [4]. Each paradigm provides a set of problem-
solving exercises. These are usual textual exercises that involve
the application of problem-solving techniques.

Exercises are a proven method to train higher cognitive
skills including the acquisition of domain-specific knowledge,
analysis and design methods and the evaluation of the results.
Trivial exercises, such as multiple-choice quizzes, do not
stimulate higher cognitive skills and do not reflect engineers
daily work [1].

Exercises help students to learn, understand and apply a
paradigm. A student needs feedback to reflect and improve on
their solution to the exercise. Text exercise assessment causes
time-intensive efforts with instructors, preventing them from
spending time on improving their lectures, having discussions
with their students or update exercises to incorporate technol-
ogy evolution.

Increasing student populations make it harder to keep as-
sessments fair and at equal quality. Students do not benefit
from quantitative feedback alone [5]. Qualitative feedback
helps students to improve.Splitting assessment efforts with

Bernd Bruegge
Department of Informatics
Technical University of Munich
Munich, Germany
bruegge @in.tum.de

multiple instructors can lead to inconsistencies. Providing
timely or instant feedback in a large class is hard [6]. Waiting
for feedback delays the students learning progress and hinders
interactive learning. We strive toward a system to provide
automated text assessments based on instructor feedback de-
creasing student feedback waiting times.

This paper is structured as follows: Section I introduces the
domain and outlines the problems with the current correction
process for text exercise. Our vision is described in Section II
in the form of a visionary scenario. Section III describes
the assessment workflow of a possible implementation and
VIRTUAL ONE-TO-ONE, a machine learning based mecha-
nism for providing individualized feedback for students in
large classes. Section V discusses applicability and limitations
of the system. We present related work in Section VI. Sec-
tion IV proposes our evaluation approach, and Section VII
concludes the paper.

II. VISIONARY SCENARIO

The following scenario describes how we envision to im-
prove the assessment of text exercises:

Anna and Tom are students participating in a software
engineering course. During a lecture, the instructor starts
an in-class text exercise to be completed in the assessment
system. Anna and Tom both submit a solution to the system.
The instructor starts manually assessing a set of submissions
selected by the system. The system asks the instructor to assess
Annas solution. The instructor provides a score and a comment
explaining his assessment. After receiving the assessment,
the system decides to assess Toms solution automatically
based on the assessments provided previously. Anna and Tom
get individual feedback for their solution to reflect on their
learning progress.

Tom is not satisfied with his submission after receiving
his feedback. He decides to improve his work and resubmits
a refined version of his solution. The system automatically
assesses Toms resubmission and provides a new assessment.
Tom is now satisfied with his assessment and fished the
exercise.

ITI. ASSESSMENT WORKFLOW

In a first prototypical implementation, we extend the
ArTEMIS system, already capable of assessing programming
and modelling exercises automatically [1,7], by adding semi-
automated text assessment. A student submits his solution for

ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany 19

Student 8

Submit

Submission

solution

Refine
solution

Satisfied?

Review Calculate
Assessment
assessment i | Total Score

ArTEMiS k Instructor
Automatic assessment 1
possible? Assess
no | manually
N E
automatically i :
Automatic Assessment Manual
Feedback Model 1 Feedback
Train Assessment
Model <«

Fig. 1. Automatic assessment workflow, considering manual and automatic assessment.

a text exercise to the ArTEMIS system. The activity diagram in
Fig. 1 depicts the assessment workflow. The system supports
two means of assessment: Manual assessment provided by the
instructor (Section III-A) and automatic assessment generated
by the system based on an assessment model (Section III-B).
ArTEMiS decides which assessment method is required for
each submission based on the quality of the assessment model.
Both means of assessment provide a set of Feedback Items.

The assessment of the submission is a composition of all
feedback items. The final score is the sum of all feedback
scores (see Fig. 2). Student review the assessment of their
submission. If they are not satisfied, they can submit a re-
fined solution for assessment, enabling continuous interactive
learning [1] with text exercises.

A. Manual Assessment

ArTEMIS selects text exercise submissions for manual as-
sessment by instructors if the assessment model does not allow
for a confident assessment. Instructors are used to grading
exercises using a set of rubrics. A rubric defines a set of traits
of the students’ submission, which are evaluated based on a
scale [9]. Rubrics can exist in different levels of detail, such
as only listing aspects of the assignment or defining different
scoring levels. If instructors do not define a rubric beforehand
explicitly, they build a rubric in their mind while assessing.

Instructors break down a submission into blocks and match
each block with a rubric. As illustrated in Fig. 3, instructors
define text blocks themselves as a phrase, sentence or para-
graph by selecting a piece of text as they see fit. They assess
each block quantitatively and qualitatively using a score and
a feedback comment (see Feedback in Fig. 2).

B. Automatic Assessment

ArTEMIS assesses submissions automatically, if the quality
of the assessment model allows for a confident assessment.
The assessment model is trained based on the manual assess-
ments of text blocks provided by instructors. Fig. 4 depicts
the automatic assessment process. For automatic assessment,

submissions need to be broken down to text blocks automati-
cally, first. Second, a vector representation of the text blocks
is calculated as an input value for further computations. Third,
the assessment needs to be generated for each text block.

A first, simple approach is using sentences as text blocks.
We split submissions into sentences using delimiter characters
(.:?71)or line breaks. In a later stage, we plan on applying
techniques such as topic modelling for text block calculation
if the simple approach does not provide sufficient results. All
text blocks need feedback to complete an assessment.

ATrTEMIS calculates a vector representation for each
text block. Therefore, blocks are translated into a multi-
dimensional vector space, following the word2vec algorithm

AssessmentModel ¥ SimilarityCluster
Student VectorRepresentation
Text Exercise * Submission [@— TextBlock
problemStatement solution phrase
| luti
sampleSolution submit() |0“1
participate() 0.1 Feedback
Assessment [®— score
score comment
Instructor [Manual Automatic
Feedback Feedback
provide() confidence

Fig. 2. The relevant entities in the system are depicted in a class diagram.
A student creates a submission for a text exercise. An assessment is a
composition of multiple feedback items referencing text blocks. A feedback
item can be a manual or automatic feedback item. An instructor provides
manual feedback. Automatic feedback items are a proxy [8] for manual
feedback items. A similarity cluster aggregates the vector representations of
text blocks. The assessment model consists of many similarity clusters.

ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany 20

Exercise: Strategy pattern vs. Bridge Pattern Score:2/6

Problem Statement: Explain the difference between Reviewer: Jan Philip Bernius

the bridge pattern and the strategy pattern.

Student Submission: Assessments:

. . " The bridge pattern in meant to decouple

The bridge pattern in meant to decouple an Score for £l K =
an abstraction from is implementation.

abstraction from is implementation.

Score: 2

The strategy pattern is a structural pattern Feedback: Correct

and allows providing multiple algorithms at
Score for " The strategy pattern in an structural

compile time. pattern and allows providing multiple algorithms at
compile time. "

Both patterns are structural patterns.
Score: 0

Feedback: | The strategy patterns is a
behavioral pattern. It is
used to select an algorithm
at runtime.

Fig. 3. Assessment of student submission for problem statement “Explain
the difference between the bridge pattern and the strategy pattern.” Example
question taken from an EIST exam. Instructors define text blocks to build up
their assessment. Each block is assessed with a score and a feedback text.
The total score is based on all feedback items in the assessment.

[10,11] and its doc2vec extension for sentences and para-
graphs [12]. The algorithm can employ different strategies to
calculate one-hot word vectors.

Using the resulting vector representation, we use cluster
analysis to detect clusters of submission blocks [13] from
all submissions of the same exercise. These clusters list the
different statements submitted by all students as a part of their
solutions.

Our primary assumption is that a single feedback item can
be valid for text blocks from multiple submissions. Feedback
for text blocks within the same similarity cluster can be applied
to other nodes within the same cluster. This allows the system
to provide VIRTUAL ONE-TO-ONE feedback: Real instructor
feedback is applied to equivalent text blocks in a new submis-
sion automatically. ArTEMiS chooses a previously assessed
text block located closely in the same similarity cluster, the
nearest neighbour. The instructor feedback is selected for the
new submission and ArTEMiS creates an automatic feedback
item, a proxy for the manual feedback item (see Fig. 2).

If a cluster does not contain a manual feedback item, the
system decides that an automatic assessment is not possible
and requests a manual assessment from the instructor.

IV. EVALUATION APPROACH

We plan to conduct a case study to evaluate the automated
assessment quality in the Introduction to Software Engineering
(EIST) lecture taught at the Technical University of Munich
to 1900 students. Students in the course complete weekly
homework exercises. We will use the system for text exercise
submissions and assessments in two stages.

As the first stage, we conduct a shadow test using our proto-
typical implementation. The learners submit their solution to a
text question using our system. Instructors establish a truth set
by assessing all submissions manually. Automatic assessment
is not used during this stage. The truth set will be used for
quantitative evaluation of the automatic assessment accuracy

by comparing automatic assessments with the corresponding
manual assessment.
Hypophysis 1: Automatic assessments of text exercises
following the presented concept produce results identical to
manual assessments with an accuracy greater than 85%.

In a qualitative study, we will interview the instructors to
analyze the block-based assessment concept (Sec. III-A), and
its applicability to grading and providing feedback.

Hypophysis 2: The assessment concept allows capturing
all feedback necessary for assessment of text exercises. No
information is lost compared to traditional assessment.

In the second stage, we will conduct a second study in a later
EIST lecture to evaluate the complete automatic assessment
workflow. We will evaluate how many manual assessments
are needed to generate accurate assessments and the effects
on assessment time.

Hypophysis 3: Employing automatic assessment can save
more than 50% in total required assessment time for all sub-
missions. The assessment time per submission will increase
compared to paper-based assessments.

A qualitative study with student interviews assesses the
usefulness of automated feedback for them. Further, we want
to understand students feeling toward automatic feedback.

V. DISCUSSION

We discuss applicability, limitations and implications of
automatic text assessment. Feedback generated following the
concepts introduced in this paper can only be as good as
the feedback provided by the instructor. The system supports
the assessment process by automating the repetitive process
involved in assessing text submissions.

Grading based on automatic assessment leads to ethical
problems. It is unclear whether non-native language or special
figures of speech could lead to decreased scores. Applications
in grading should be preceded by an extensive evaluation of
assessment quality. While applications in grading are out-of-
scope for this paper, we propose application in a two-phase
grading process only. We intend to apply the system as a
learning-support system. The generated feedback should help
students during their learning progress and should not be used
during a grading process.

The applicability of the described systems depends on the
variety of possible solutions. Exercises with a variable answer
space require more knowledge for assessment, increasing
the complexity. The system focuses on assessing exercises
from the lower spectrum of the revised Bloom’s Taxonomy:
Remember, Understand, Apply and Analyze [14]. Exercises
of the given categories provide a lower variability of possible
solutions and therefore limit the number of similarity clusters.
Exercises from the categories Evaluate and Create are out of
scope for this paper.

The design of the system allows for a hybrid assessment ap-
proach. A future system could combine manual and automatic
feedback to further reduce the efforts for instructors. This
could be especially useful if a certain aspect of the solution

ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany 21

Find existing

Feedback Feedback in

M Block
Split Submission >0 Calculate Vector Vector
into Text Blocks Text Block Representation Representation
~—__ ~——
B —

Text

SR
Find Similarity

®o—
@<

Similarity Cluster

Cluster of Text
Blocks

Similarity Cluster

Fig. 4. The automatic assessment process. Zoomed into the ”Assess automatically” activity in Fig. 1.

has a larger variability. A possible example is an exercise
asking for two definitions and a comparison of the terms.
The variability for the definitions is small, but the variability
for the comparison part is larger. A hybrid approach allows
instructors to focus the manual assessment on the comparison
part, as soon as the definitions can be assessed confidently.

VI. RELATED WORK

Kiefer and Pado suggest a system to simplify the grading
process presenting responses to instructors in a sorted manner
[15]. Submissions are sorted by similarity with a defined
sample solution. Terms used in both the sample solution and
the submission are highlighted. The tool supports instructors
during the grading process but does not automatically as-
sess submissions. The only criterion is the sample solution.
Instructor assessments are not considered for the following
submissions.

Wolska et al. and Basu et al. suggest a grading process
where instructors grade submissions sorted by clusters of sim-
ilar submissions for exercises in the domains of German as a
foreign language [16] and the United States Citizenship Exam
[17]. They propose clusters of entire submissions, compared
to the text block based clustering approach presented in this
paper. Basu et al. introduce grading of an entire cluster of
submissions as a single action [17].

Gradescope Inc. offers its tool Gradescope, a commercial
solution for grading assistance and “Al-assisted Grading”.
Their core product offers a rubric based grading system,
allowing instructors to define a set of scores with feedback
comments per exercise. Instructors manually select rubrics for
each submission. Changes to the scores and comments in a
rubric are applied to previously assessed submissions. The
”Al-assisted Grading” feature creates groups of submissions
(compare with similarity clusters), allowing the instructor to
select rubrics for the entire group of submissions, similar to the
approach of Basu et al. [17]. The automatic creation of groups
is limited to multiple-choice and fill-in-the-blank exercises. It
does not offer an automatic grouping of text questions.

These works focus on traditional exam assessment. The
primary objective is an accelerated grading process, rather
than providing feedback through comments. The focus of our
approach is primarily providing more qualitative feedback to
students on homework and in-class assignments.

VII. CONCLUSION

Assessments of text exercises require time-intensive efforts
from instructors today. We argue that an automated process
to generate VIRTUAL ONE-TO-ONE feedback can reduce
assessment efforts for instructors and increase the amount
of feedback for students. The system should use machine
learning techniques to detect text blocks of the same meaning
in submissions and automatically link real instructor feedback
to equivalent blocks.

REFERENCES

[11 S. Krusche and A. Seitz, “Increasing the Interactivity in Software
Engineering MOOCs - A Case Study,” in 3/th Conference on Software
Engineering Education and Training, 2019.

[2] D. Kolb, Experiential Learning: Experience As The Source Of Learning
And Development. Prentice Hall, 1984, vol. 1.

[3] S. Krusche, A. Seitz, J. Borstler, and B. Bruegge, “Interactive Learning:
Increasing Student Participation through Shorter Exercise Cycles,” in
19th Australasian Computing Education Conf. ACM, 2017, pp. 17-26.

[4] T. S. Kuhn, The Structure of Scientific Revolutions. University of
Chicago Press, 1996.

[5] P.Sadler and E. Good, “The Impact of Self- and Peer-Grading on Student
Learning,” Educational Assessment, vol. 11, no. 1, pp. 1-31, Feb. 2006.

[6] G. Jerse and M. Lokar, “Providing Better Feedback for Students Using
Projekt Tomo,” in Ist ISEE Workshop, 2018, pp. 28-31.

[71 S. Krusche and A. Seitz, “ArTEMIS - An Automatic Assessment Man-
agement System for Interactive Learning,” in 49th Technical Symposium
on Computer Science Education. ACM, 2018.

[8] B. Bruegge and A. Dutoit, Object-Oriented Software Engineering Using
UML, Patterns, and Java, 3rd ed. Prentice Hall, 2009.

[9] V. 1. A. Barbara E. Walvoord, Effective Grading: A Tool for Learning

and Assessment in College, 2nd ed. Jossey-Bass, 2009.

J. Mitchell and M. Lapata, “Vector-based Models of Semantic Compo-

sition,” in 46th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, 2008, pp. 236-244.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of

Word Representations in Vector Space,” CoRR, vol. 1301.3781, 2013.

Q. Le and T. Mikolov, “Distributed Representations of Sentences and

Documents,” in 31st International Conference on Machine Learning,

vol. 32, 2014, pp. II-1188-11-1196.

N. Bansal, A. Blum, and S. Chawla, “Correlation Clustering,” Machine

Learning, vol. 56, no. 1-3, pp. 89-113, Jul. 2004.

D. Krathwohl, “A revision of bloom’s taxonomy: An overview,” Theory

into Practice, vol. 41, no. 4, pp. 212-218, 2002.

C. Kiefer and U. Pado, “Freitextaufgaben in Online-Tests — Bewertung

und Bewertungsunterstiitzung,” HMD Praxis der Wirtschaftsinformatik,

vol. 52, no. 1, pp. 96-107, Feb. 2015.

M. Wolska, A. Horbach, and A. Palmer, “Computer-Assisted Scoring

of Short Responses: The Efficiency of a Clustering-Based Approach

in a Real-Life Task,” in Advances in Natural Language Processing.

Springer, 2014, pp. 298-310.

S. Basu, C. Jacobs, and L. Vanderwende, “Powergrading: a Clustering

Approach to Amplify Human Effort for Short Answer Grading,” Trans-

actions of the Association for Computational Linguistics, vol. 1, pp.

391402, 2013.

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany 22

6 Towards the Automation of Grading
Textual Student Submissions to

Open-ended Questions

Publication [Ber+20] has been published as a peer-reviewed conference paper:

Authors: Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and
Bernd Bruegge

Conference: 4th European Conference of Software Engineering Education
(ECSEE 20)

Location: Seeon, Germany

Pages: 61-70

Year: 2020

DOI: 10.1145/3396802.3396805

Review: Peer Reviewed (4 Reviewers)

Acc. Rate: 69%

Summary It proposes a support system for grading textual exercises using an
automatic segment-based assessment concept. The system provides suggestions
for instructors by reusing feedback from previous submissions.

This paper presents the design and a prototypical implementation of an algo-
rithm for segment-based grading. Delimiting by punctuation marks is not a viable
solution to derive segments due to students’ inconsistent use of punctuation. In-
stead, it uses topic modeling to decompose the student solutions into smaller units.
The algorithm captures the meaning of segments in keywords and applies a divide-

and-conquer strategy to combine atomic text segments between topic shifts. The

36

6 Towards the Automation of Grading Textual Student Submissions

system produces small units for assessment, generating reusable and structured
feedback templates for instructors.

The algorithm was evaluated qualitatively by comparing automatically pro-
duced segments with manually produced segments created by humans. The results
demonstrate that the system can produce topically coherent segments that can be

used in the assessment process.

Contributions J.P. B. initiated the idea of segmenting student answers using
topic modeling techniques. A. K. conducted the literature review. A. K. and J.P.
B. conceptualized and modeled the algorithm. A. K. implemented the system.
J.P. B. predominantly wrote the article with the support of A. K. J.P. B. visu-
alized the paper. B. B. provided feedback and helped improving the manuscript.
S. K. and B. B. reviewed the paper.

Conference paper The author’s version of the conference paper is reprinted in
this dissertation. The final version of record is available at:
https://dl.acm.org/doi/10.1145/3396802.3396805

37

https://dl.acm.org/doi/10.1145/3396802.3396805

Towards the Automation of Grading Textual Student
Submissions to Open-ended Questions

Jan Philip Bernius
Department of Informatics
Technical University of Munich
Munich, Germany
janphilip.bernius@tum.de

Stephan Krusche
Department of Informatics
Technical University of Munich
Munich, Germany
krusche@in.tum.de

ABSTRACT

Growing student numbers at universities worldwide pose new chal-
lenges for instructors. Providing feedback to textual exercises is
a challenge in large courses while being important for student’s
learning success. Exercise submissions and their grading are a pri-
mary and individual communication channel between instructors
and students. The pure amount of submissions makes it impossible
for a single instructor to provide regular feedback to large student
bodies. Employing tutors in the process introduces new challenges.
Feedback should be consistent and fair for all students. Addition-
ally, interactive teaching models strive for real-time feedback and
multiple submissions.

We propose a support system for grading textual exercises us-
ing an automatic segment-based assessment concept. The system
aims at providing suggestions to instructors by reusing previous
comments as well as scores. The goal is to reduce the workload for
instructors, while at the same time creating timely and consistent
feedback to the students. We present the design and a prototypical
implementation of an algorithm using topic modeling for segment-
ing the submissions into smaller blocks. Thereby, the system derives
smaller units for assessment and allowing the creation of reusable
and structured feedback.

We have evaluated the algorithm qualitatively by comparing au-
tomatically produced segments with manually produced segments
created by humans. The results show that the system can produce
topically coherent segments. The segmentation algorithm based on
topic modeling is superior to approaches purely based on syntax
and punctuation.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; - Computing methodologies — Natural language pro-
cessing.

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in European Confer-
ence on Software Engineering Education (ECSEE °20), June 1819, 2020, Seeon/Bavaria,
Germany, https://doi.org/10.1145/3396802.3396805.

Anna Kovaleva
Department of Informatics
Technical University of Munich
Munich, Germany
anna.kovaleva@tum.de

Bernd Bruegge
Department of Informatics
Technical University of Munich
Munich, Germany
bruegge@in.tum.de

KEYWORDS

Software Engineering Education, Automatic Assessment, Textual
Exercise, Assessment Support Systems

ACM Reference Format:

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge.
2020. Towards the Automation of Grading Textual Student Submissions
to Open-ended Questions. In European Conference on Software Engineering
Education (ECSEE °20), June 1819, 2020, Seeon/Bavaria, Germany. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3396802.3396805

1 INTRODUCTION

In the past, there has been a growing number of students enrolled at
universities worldwide!. Large courses have thousands of students
participating, especially when using virtual classrooms. Figure 1
shows a typical mixed classroom setup for 1.700 software engi-
neering students used in the summer semester 2019 at Technical
University of Munich (TUM).

In introductory computer science and software engineering
courses, classroom sizes with up to 1.700 students are no longer an
exception, with growth by factor five in the last ten years. The free
Stanford Massive Open Online Course (MOOC) "Intro to Artificial
Intelligence,' started in 2011, quickly reaching 160,000 students
[42]. Large lectures pose a problem for instructors when grading
textual exercises. This is partially solved in MOOCs by peer reviews
[19]. The main problem is the asynchronous assessment, which
usually requires a week, or even longer. A major disadvantage of
MOOC:s is the delay between giving the exercise and grading. To
reduce this delay, we teach interactive lectures where we include
exercises live during the lectures, grade them immediately, and
provide quick feedback to students [24]. This increases student
comprehension and deepens understanding [19, 24], "significantly
by up to 87 %" in the domain of modeling [25].

Technology to foster interaction and discussion within large
lectures does exist [19, 29], as well as a scalable exercise system for
programming and modeling exercises with automatic assessments

!United Nations, "UN Global Assessment on Higher Education Reveals Broad
Socio-Economic, Gender Disparities," https://news.un.org/en/story/2017/04/555642-
un-global-assessment-higher-education-reveals-broad-socio-economic-gender, 2017.
Peter Norvig and Sebastian Thrun, "Intro to Artificial Intelligence,' https://www.
udacity.com/course/intro-to-artificial-intelligence--cs271, 2011.

ECSEE °20, June 18-19, 2020, Seeon/Bavaria, Germany

Lecture Hall 1

B R

Lecture Recording Lecturer

500 Students

Lecture Hall 2 Lecture Hall 3 Livestream

N

Video Transmission
(Local Area Network)

250 Students

N

Video Transmission
(Local Area Network)

250 Students

Video Transmission
(Internet)

700 Students

Figure 1: Mixed on-campus and virtual classroom setup em-
ployed in the summer semester 2019 at TUM for the "Intro-
duction to Software Engineering" course.

[22, 23]. Textual exercises are commonly used in the examination,
but no automatic assessment solution is available to instructors.

Conducting open answer questions requires time-consuming
activities from instructors, including designing exercises and man-
ual assessment, due to the high variability in student answers. To
reduce efforts, instructors tend to reuse exercises from previous
years. Grading is a repeatable process, instructors look for common
mistakes or predefined solution patterns. The students learning
success benefits from detailed and personalized feedback [37]. To
enable large scale courses, the need to reuse feedback comments
arises. Individual feedback can still rely on the domain expertise of
the teacher. A single instructor cannot provide regular individual
feedback due to large student bodies with more than 1.000 students.
Ofter, tutors are employed to distribute the workload. Multiple
graders require means to create consistent feedback for learners.
This holds especially if the assessments are relevant for the final
grade, e.g. as part of a grade bonus system.

This paper focuses on the segmentation of submissions into
topically coherent parts, to enable reuse of feedback. Section 2
describes foundations on assessment systems and Section 3 summa-
rizes related work on text segmentation. We present an algorithm
in Section 4 that learns the topics of the submissions and then
splits up the answers accordingly. The Evaluation in Section 5 ana-
lyzes the quality of the algorithm’s performance, in a study with 10
participants. Section 6 summarizes the paper and outlines future
work.

2 ASSESSMENT SYSTEMS

Assessment systems are a common tool used in universities. Soft-
ware systems available to instructors vary from simple submission
of work, over grade review, towards automated systems. We first
explore interactive learning, a teaching methodology that can be
supported by assessment systems. Second, we inspect Artemis as an
example of an assessment system geared towards automatic assess-
ment. Last, we look at an approach to apply automatic assessments
on textual exercises.

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

2.1 Interactive Learning

A traditional university approach based on real-time communica-
tion demands students to be present in the lecture hall to participate.
With growing numbers of enrollments in universities, the inter-
action in classes is getting more difficult as more staff is needed,
and new ways for communication in large audiences are required
[19]. One of the first approaches to incorporate technology into the
classroom was the introduction of clickers for answering questions
[29]. Mayer et al. describe a method for forcing interaction with the
help of "response systems". The proposed system allows students
to "click" an answer to a multiple-choice question. The instructor
can evaluate the answers and a discussion on the topic can follow.
Bonwell and Eison analyze the impact of in-class discussions and
questions during lectures and exercises [6]. They found out that
through constantly applying knowledge, students gain a deeper
understanding of the content. The interactive learning approach
combines theory, typically presented in lectures, with practical
exercises [23]. Reflections based on feedback help to comprehend
knowledge. In an iterative process, frequent feedback enables stu-
dents to resubmit and learn from their mistakes [24].

2.2 Artemis

Artemis® is an automatic assessment management system devel-

oped at TUM [22]. It was built specifically to enable interactive
lectures, following the idea of interactive learning. The aim of this
system was primarily to allow students that are enrolled in soft-
ware engineering classes to participate in interactive programming
exercises. The system provides quick automatic feedback, thereby
helping the students to acquire knowledge better and, as a result,
achieve better grades in the final exam [24, 25]. During the past
years, the system constantly evolved and is now also used at other
educational institutions and in MOOCs. Programming exercises
can be submitted and assessed with the help of unit tests. Addi-
tionally, modeling exercises are supported by a UML editor and
a semi-automatized assessment component. The system provides
full support of multiple-choice quizzes, including creating, con-
ducting, and correcting them. For a deeper understanding of a
lecture’s theoretical basis, open-ended questions are more suitable
than multiple-choice questions [13]. Artemis allows us to conduct
textual exercises and submit answers, but instructors need to grade
student answers manually. This is a time-consuming process that
can lead to longer feedback loops, which decrease the students’
motivation. With a growing number of students, the number of
assessments increases, too. This results in bigger workloads for in-
structors and usually requires hiring more people. In this case, the
consistency of the assessment may decrease. While there is usually
only one sample solution, an unbound variety of students’ answers
exists. In mathematical problems or multiple-choice questions, the
correct solution is mostly unique, whereas, for open questions,
multiple interpretations are possible.

3"Artemis: Interactive Learning with Individual Feedback, https://github.com/
Islintum/Artemis, 2020.

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Student ;' Artemis \‘. Instructor
Automatic assessment 1
. ' ible? 1
Submit { Preprocess] possible? ' Assess
answer Answer i Answers J no | manually
3 N E
answer : automatically «affects» '
i Automatic Assessment Manual
Satisfied? ; Feedback Model Feedback
Review Assessment ; Calculate Model |
assessment : Total Score

Figure 2: Workflow of the automatic assessment system for textual exercises. The "Preprocessing Answers" activity (Figure 4)
includes the algorithm presented in this paper. UML activity diagram based on Bernius and Bruegge [2].

2.3 Automatic Assessment of Textual Exercises

Bernius and Bruegge describe a feedback concept built to produce
reusable and consistent feedback targeted for automatic assess-
ments of textual exercises [2]. Feedback is provided to topically
coherent text blocks, resulting in uniform and consistent feedback
across all assessments from multiple instructors. The concept aims
at reducing work for instructors and increasing consistency, reduc-
ing complaints from a peer-to-peer comparison between students.
In this approach, text blocks are manually highlightable by the
instructor, but this is not applicable to automated computations.
Splitting student answers based on delimiter characters® is not a
reliable solution, because of missing punctuation, abbreviations, the
use of bullet point answers, or long sentences. Also, a single feed-
back item is sometimes more suitable for a whole paragraph or a
single clause or bullet point, which is not covered by the syntactical
separator approach and requires manual adjustments.

Based on this concept, we developed a system to reuse instructor
feedback across students by analyzing the similarity of text blocks
[2]. The system simplifies the grading process by providing grad-
ing suggestions to instructors. Feedback suggestions are based on
similarity between answers, allowing the training of an assessment
model used to automatically assess answers as depicted in Figure 2.
Training and using this system relies on topically coherent text
blocks so that feedback is well scoped and can be shared between
many submissions.

3 TEXT SEGMENTATION

Text segmentation is considered to be one of the tasks of Natural
Language Processing (NLP). The term is used differently in litera-
ture and is not clearly defined. For example, document processing to
extract typed or handwritten text by distinguishing it from graphics
and blank spaces is referred to as text segmentation [17]. In other
cases, text segmentation is the process of extracting text from video
in order to index the recordings in a database [26]. Pak and Teh
conducted an analysis of literature on text segmentation published

4Delimiter characters such as . : ;

between 2007 and 2017 [34] and categorize different approaches
found in literature as depicted in Figure 3. The authors additionally
categorize the papers according to used documents, language, and
the goal of applying text segmentation. They identify the following
application domains for text segmentation: "emotion extraction,
sentiment mining, opinion mining, topic identification, language
detection and information retrieval" [34].

Text segmentation
Segmentation result

JAN
‘ Character ‘ ‘ ‘ ‘ ‘ ‘

Figure 3: Taxonomy for text segmentation adapted from Pak
and Teh [34]. Text segmentation types relevant for this pa-
per are highlighted in blue color.

_Supervision
A
_Supervised

H Sentence H Text block H

Unsupervised

Word Line Topic Other ‘

Information retrieval has many different applications, for ex-
ample, reducing large documents to relevant fragments based on
desired subtopics. The different desired results of text segmenta-
tion, the segment, is another interesting aspect Pak and Teh point
out. According to their analysis, a word is considered a segment
most often in literature, slightly less frequent are characters, topics,
sentences, lines. In other cases, phrases, paragraphs, or tags can be
used. We define the term "text block" in this paper as either clause,
bullet point, sentence, or paragraph.

Text segmentation can be additionally divided into linear, text
split into non-overlapping linear segments, and hierarchical, where
segments also have hierarchical relationships [9, 44]. The latter is
sometimes used for discourse retrieval. Along with most literature
on text segmentation, we only focus on linear text segmentation.

There also exists a differentiation based on the supervision of the
algorithm. Unsupervised approaches do not require any external
information to be trained, whereas supervised algorithms learn
from big datasets, such as Wikipedia, for example [21].

ECSEE °20, June 18-19, 2020, Seeon/Bavaria, Germany

3.1 Topic Modeling

Latent Dirichlet Allocation (LDA) was introduced by Blei et al. in
2003 [5]. LDA is used by many authors [7, 9, 32, 33] and proven to
be suitable when training data is from the same domain as test data
[32].

TopicTiling is an extension of Hearst’s TextTiling algorithm that
uses LDA to assign topic IDs to text blocks [15, 41]. Each block is
represented by a T-dimensional vector, where T is the number of
topics in the dataset. A coherence score is then calculated between
neighboring blocks inside of a "window” with cosine similarity.
Depth scores of the smallest coherence scores are then calculated
depending on the highest coherence score to the left and the right.
The highest depth scores indicate sub-topic boundaries.

Chen et al. use LDA and a K-nearest neighbor algorithm to clas-
sify short texts which gives evidence that LDA can also be applied
to text consisting of only several words [7].

Tu et al. use LDA and word-embeddings to segment educational
texts for online learning with a domain-independent algorithm [43].
They train their model on a small dataset and state that LDA can
be used with a comparatively small number of topics. They also
compare different similarity measures, such as cosine similarity,
depth score, spectrum. They additionally analyze the impact of
different values of input parameters of LDA. A similar analysis is
done by Riedl and Biemann [40].

3.2 Keyword Extraction

Ramos uses Term Frequency Inverse Document Frequency (TF-IDF)
to determine whether of a word is significant to a user’s query when
searching documents [38]. Intuitively, a word’s frequency is linked
to its importance. TF-IDF proposes that not only the absolute fre-
quency is relevant, but also the number of occurrences in different
documents. If a word occurs often across many documents, it is
most probably not significant. In the previous section, the concept
of stop words, which deals with the same problem, is described. The
application of TF-IDF is rather straightforward: every document is
run through and the two relevant frequencies are computed. The
significance of a word is proportional to the frequency inside of the
document but decreases if the word is found across different texts.

Another way to extract keywords is by using a thesaurus [30].
This can be especially helpful when there is only one document,
thus, the TF-IDF approach is not suitable. A thesaurus also pro-
vides external knowledge which, on one hand, allows extracting
keywords without any training but, on the other hand, requires
additional maintenance and fails if there is no match available.

An ontology, a relational representation between concepts, can
also be used to extract topics from text [11]. Embley et al. take
unstructured documents and application ontology as input. Then
they use a "keyword recognizer" to spot keywords with the help of
regular expressions, afterward, restructuring the extracted infor-
mation with the help of the ontology. They use this approach, for
example, to extract information from car advertisements. This can
be a suitable solution if the domain is known, keeping in mind that
creating an ontology requires time. However, it is not applicable if
the algorithm is to be applied to many different domains, and the
main concepts are not known in advance.

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

Matsuo and Ishizuka propose another method for keyword ex-
traction that bases on the y%-measure [28]. They first count co-
occurrences of words and word sequences. "If a term appears fre-
quently with a particular subset of terms, the term is likely to
have an important meaning” [28]. Then a co-occurrence matrix is
calculated. To improve the y?-computation "variety of sentence
length and robustness of the y?-value" are considered. To improve
the quality of the y?-measure two types of clustering are applied.
Similarity-based clustering gathers words with similar roles in a
sentence, pairwise clustering picks words from the same domain.
The words with the largest y2-value are given as the result.

Most of the previous approaches only focus on the frequencies
but cannot detect synonyms, even different forms of a verb can
decrease the quality of the algorithms. Hulth adjusts the previ-
ous approaches by introducing syntactical information, such as
part-of-speech (PoS) tagging, and data preprocessing, for exam-
ple, stemming, stop words removal [16]. They introduce a pattern
approach: based on the training set, there is evidence that most
keywords have nouns and follow a particular pattern, for example,
"adjective noun" uncountable or in the singular [16]. To calculate
the relevance of a phrase four features are used: frequency within a
single document, frequency in the whole set of documents, the po-
sition where the term appears first in a document, and the PoS-tag.
The machine learning model is then based on a set of inductive rules
that are derived with the help of "recursive partitioning (or divide-
and-conquer), which has as the goal to maximize the separation
between the classes for each rule" [16].

3.3 Dataset

Most authors use labeled and segmented, often artificially gener-
ated datasets, such as Choi’s labeled dataset for evaluating their
algorithms [8]. Often news articles or news broadcast transcripts
are used as there are clear topic boundaries that can be then com-
pared [1, 7, 20, 35, 45]. The evaluation algorithm is often based on
the approach by Beeferman et al. [1, 12, 39].

In this paper, as part of a text grading application for a university
environment, we focus on data collected from the lecture "Patterns
in Software Engineering" (PSE) at TUM in 2018/19. The dataset
consists of two exercises with 121 and 124 student submissions.
The exercises were conducted in-class and were announced as a
mock exam.

4 SEGMENTING STUDENT ANSWERS

Based on the literature, several existing approaches were applied to
the proposed problem. For testing the approaches we used a set of
students’ answers from our dataset. The exercise on the difference
between patterns and anti-patterns received answers with an aver-
age length of 3.6 sentences. Tested approaches were, TopicTiling
[41] and Bayes-seg developed by Eisenstein and Barzilay [10]. The
first is based on topic modeling with LDA. The latter uses Bayesian
probabilities and entropy to segment the texts. However, these
algorithms could deliver no or only poor results on our dataset,
most probably because of the short length and specific vocabulary
distribution, which they are not fitted for.

We abstracted the topic modeling approach and preserve the
idea that every answer is a collection of topics, and many topics

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

Segment

Answer Answers Text Block

Language
Embeddings Vector

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

Text Cluster | ©

Figure 4: A detailed view into the "Preprocess Answers" activity (Figure 2) performed by the assessment system before the

grading, depicted using a UML activity diagram.

are distributed among different answers [5]. However, instead of
calculating a topic model, we claim that a topic can be reduced to a
keyword. This way, the scarcity of the words in the answers can
be compensated for. Another strategy adapted from other works is
the "vocabulary introduction” [15]. As soon as new keywords are
introduced, a new segment begins. The presented approach differs
from thesaurus or ontology in a way that we do not know what
the keywords are going to be, and they are calculated for every
problem separately.

In the assessment system, the algorithm is one step in a prepro-
cessing phase, depicted in Figure 4. Answers are segmented into
text blocks before language embeddings and clusters are computed.

The algorithm can be separated into three phases: Text Prepro-
cessing, Keyword Extraction, and Segmentation. Figure 5 depicts
the algorithm’s flow of events, which is described in detail in the
following sections.

4.1 Text Preprocessing

Most algorithms for NLP are applied to preprocessed text-data. In
the assessment context, data is of rather low quality and cannot be
preprocessed manually. The available data contains lots of typing
mistakes, poor formatting, missing punctuation, and misspelled
words. Student submissions must not be modified, formatting be-
ing the only exception. Applying existing algorithms to our data
showed that bullet points, wrong punctuation, such as using new-
lines instead of points, can quickly reduce the quality of the out-
come. Hence, we try to cover the most common irregularities and
transform them into a format suitable for further calculations.

4.1.1 Stop Words. Removing stop words from text is a very com-
mon way to clean textual data for NLP [15, 16, 41]. We use the set
of stop words provided as part of the Natural Language Toolkit for
Python (NLTK) [4]. The English collection consists of 179 words,
like "I", "the", "what", "did", that do not contain much lexical con-
tent and can, therefore, be removed from the corpus. Although
this implementation only supports students’ submissions written
in English, the German set of 232 words is also included because
occasionally students hand in answers in the German language.
This cannot provide full support of submissions in German but can
reduce their negative effect on further processing.

4.1.2 Lemmatization. Lemmatization is the process of reducing
a word to its meaningful root. Keeping in mind, that we want to
extract keywords from a text and that the stop words are already
removed, we now have a set of words where the most significant
terms need to be found. Naturally, we use different forms of a word:
either the plural or the singular, different tenses for verbs, degrees of
comparison for adjectives, etc. Without preprocessing, the system
would consider the words "view" and "views" as two different ones.
With the help of WordNet, which is provided as part of the NLTK,
the algorithm reduces the second word to "view" [4, 31].

The result of the text preprocessing is thereby a set of lemmatized
lower-case words without any punctuation or stop words.

4.2 Keyword Extraction

The chosen approach for segmenting the students’ answers into
text blocks is partially based on keyword extraction. We generalize
the idea of topic modeling that claims that every document is a dis-
tribution over topics, and every topic is distributed over words. We
claim that every student’s submission is a collection of topics, and
statements, that are common among different answers. However,
we do not calculate a topic model. As already described, existing
approaches based on topic modeling are not suitable for our kind of
data because of rather short answers (3.6 sentences long on average)
and very different vocabulary used among different submissions.
That is why we reduce a topic to a keyword, thereby, compensating
for the data scarcity.

For keyword calculation, we adopt an approach based on word
frequency®. We tested the frequently used TF-IDF approach [38],
which proved to be inefficient in our case. The reason for it is the
specific character of the data. The TF-IDF method assumes that
words, frequent among different documents, are not significant for
keyword extraction, as they are too common. In the considered
context, the important words, definitions, for example, are present
in most of the answers. Another examined approach was an exten-
sion of the word frequency measure [16, 39]. Instead of searching
for significant words, they consider n-grams. This method did not
suit the data either. We tested the algorithm with bi- and tri-grams,
the resulting segmentation was worse than with single words. The
resulting keywords are the 10 most frequently used words in the
texts. The number was chosen empirically based on our data. Dy-
namically determining the optimal number of keywords could be
researched in the future to improve the algorithm.

4.3 Segmentation

The segmentation of the texts is split up into two steps. First, the
answers are split up into initial text blocks. Then, adjacent text
blocks are considered and merged if there are no new keywords
introduced. The result of this is a set of segments for each answer
that can be used by the rest of the system.

4.3.1 Sentence Tokenization. For identifying sentences we use a
pre-trained model of "punkt tokenizer" from the NLTK [4, 18]. How-
ever, it cannot handle bulleted lists, that is why we need to addition-
ally split the text on new lines. We also want to work with clauses
if a sentence is long. We decided not to use any algorithm for that
but search for conjunctions. We use subordinating conjunctions
and assume that they indicate a new clause. This approach is not

SSowmya Vivek, "Automated Keyword Extraction from Articles using NLP",
https://medium.com/analytics-vidhya/automated-keyword-extraction-from-
articles-using-nlp-bfd864f41b34, 2018.

ECSEE °20, June 18-19, 2020, Seeon/Bavaria, Germany

Text Preprocessing

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

Remove Convert to Remove stop
punctuation lower-case words

Merge text
blocks between
topic shifts

TextBlock

TopicShift

(
[
[
[
[
!
[
I
I
[
[
[
!
«

(
i
;
- L}

Lemmatize all Extract Keyword > Stem keywords

words keywords !
L}
i

Search for Segment
stemmed answers into
keywords text blocks

[new keyword found]

Atomic Text
Segment

Figure 5: The segmentation algorithms flow of events depicted using a UML activity diagram based on Bernius et al. [3].

complete and cannot be considered proper clause identification,
however, for this use case, we assume, it is enough. To minimize
false positives when identifying clauses, we only consider sentences
that are longer than 20 words.

4.3.2 Finding Segments. Before searching for keywords in the text
blocks, we use a stemmer from the NLTK [4], called PorterStemmer
[36]. Similarly to lemmatization, stemming is applied to avoid dif-
ferent forms of a word in a text. The latter, however, reduces a term
to a part, that in some cases may not be a correct word. An example
of this is "similarit", as the result of stemming the word "similarity".
Hence, it can be very helpful when searching for words, as you can
then find both "similarities" and "similarity".

For the definition of segments, we use the lexical cohesion ap-
proach and the vocabulary introduction method [14, 15]. The algo-
rithm iterates over all text blocks defined in a submission. We use
the original texts at this stage, not the preprocessed versions. In
every segment, stemmed keywords are sought. If two adjacent seg-
ments have the same keywords or the second text block has none,
they are merged into one block and the algorithm proceeds. As
soon as new keywords are introduced, the algorithm puts a segment
boundary before the current text block. This way the whole process
can be defined as a "divide & conquer" approach, because we first
divide the answer into initial text blocks, as small as possible, and
then merge them according to the defined boundaries.

5 EVALUATION

In order to evaluate the segmentation quality of the algorithm, we
conducted a qualitative study with 10 participants. We compare
the segmentation of the new algorithm with the existing approach
and the segmentation generated by the participants. We present
anecdotal evidence on the performance of the new algorithm.

5.1 Design

The evaluation is designed as a 15-minute interview. Participants
first get an introduction to semi-automatic text assessment, the
assessment concept [2] and segmentation. However, for reasons of
internal validity, no details of the segmentation algorithm or fur-
ther processing are given. The questionnaire consists of two parts:
segmentation tasks and questions about the subjective impressions
of the approach.

The first part requires five segmentation tasks. Participants are
given five student submissions from our dataset and asked to find

and mark topic shifts. The same task is performed by two systems,
one based on the syntactical separator approach and a second one
based on our topic modeling algorithm.

Each participant performs the task of finding and marking topic
shifts, as the system would do. These results are then quantitatively
analyzed and compared to the segmentation results of the existing
solution and the proposed algorithm. The performance measure
consists of the two criteria recall and precision [1]:

recall =

number of estimated topic shifts that are actual topic shifts

number of true topic shifts
precision =

number of estimated topic shifts that are actual topic shifts

number of estimated topic shifts

The submissions are taken from the PSE dataset and are of var-
ious format that is common among students’ answers. There are
bulleted and numbered lists, as well as text mixed with bulleted
lists, also two submissions that consist of multiple sentences and
paragraphs are included. The submissions are taken with original
grammar and punctuation.

The third part addresses the impressions of the surveyed. They
are asked to state their personal opinion on the approach and give
their judgment whether this solution can improve the instructors’
and students’ experience with textual exercises. The possible an-
swers are on a five-point scale based on Likert [27].

The study was conducted with ten students from the Department
of Informatics at TUM, who previously passed software engineer-
ing courses from our chair four of which have previous experience
working as a tutor. These students have reasonable domain knowl-
edge to determine segments. Also, they are potential tutors for
future editions of the courses.

5.2 Objectives
We define the following hypotheses for the evaluation:

H1 The designed segmentation algorithm performs better than
the syntactical separator approach measured using the per-
formance criterion recall and precision.

H2 Students understand the approach and find it intuitive.

H3 Students consider the approach an improvement of their un-
derstanding of feedback and the comprehension of a lecture’s
content.

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

H4 The segmentation algorithm produces the same segmenta-
tion as humans.

5.3 Results

Based on the computed segmentations depicted in Figure 6, we
conducted a performance evaluation using recall and precision. A
topic shift position was considered if more than 50% of the students
marked the position. Results in Table 1 show an increased recall
and precision values for the topic modeling based algorithm.

Table 1: Performance analysis of the new topic modeling
based algorithm and the previous approach based on syntac-
tical separators measured according to precision and recall

[1].

Submission Topic Modeling Syntactical Separators
Recall, % Precision, % Recall, % Precision, %

S1 100 100 100 50

S2 75 60 100 67

S3 75 100 50 50

S4 100 100 100 100

S5 67 100 30 100

Average 83.4 92 76 73.4

We analyze the number of detected topic shifts in Figure 7. We
compare the number of topic shifts found by the proposed algorithm
and the current solution to the number of topic shifts marked by the
participants. We also depict statistics for the most frequent topic
shifts, meaning positions that were present in six or more answer
sheets.

In the questionnaire, nine out of ten students agreed that the pre-
sented approach of segmenting answers is intuitive (see Figure 8),
supporting our hypothesis H2. Students also claimed that finding
topic shifts’ positions was not very easy which can probably be
linked to the unambiguity of the task. The results also depend on
the style of the assessment of a participant. Therefore, we com-
pared the average number and the number of the most frequent
segments, where one can see that these two numbers sometimes
vary. Especially, for submission S2, where the proposed system
failed to improve the result of the current system, the difference
between the two numbers is big. This can also be justified with the
fact, that some participants tended to mark more positions than
other students for most of the submissions. The data shows that
the topic modeling-based algorithm resembles human perception
better than the syntactical separation approach.

Since most of the students stated to value the assessment of tex-
tual exercises as helpful, there were downsides like general or short
feedback, as well as long correction periods. Participants agree
that the assessment process can be accelerated by applying our
approach. All of our participants considered structured feedback to
be an improvement for the students’ comprehension, eight partici-
pants agree strongly. The responses support the third hypothesis
(H3).

The topic modeling algorithm found 14 topic shifts in our sample
of five submissions. The participants derived 15 topic shifts. As
visible in Figure 6, 13 topic shifts (92%) are equally detected by the

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

S1

Differences: [S]

Antipatterns: [S]

-Have one problem [8] and two solutions [8] (one problematic [8] and one
refactored) [1-4, 7-10, S, T]

-Antipatterns are a sign of bad architecture [8] and bad coding [1-10, S, T]
Pattern: [S]

-Have one problem and one solution [1-5, 7, 9, 10, S, T]

K—Patterns are a sign of elaborated architecutre and coding

s N
S2

The main difference between patterns and antipatterns is, [8] that [6, 7]
patterns show you a good way to do something [8, 7] and antipatterns

show a bad way to do something. [1, 2, 4-10, S] Nevertheless [7] patterns
may become antipatterns in the course of changing understanding of how
good software engineering looks like. [1, 2, 5-10, S, T] One example for

that is functional decomposition, [5] which used to be a pattern and "good
practice". [1, 2, 5, 8, S, T] Over the time it turned out that it is not a goog
way to solve problems, so it became a antipattern. [1-10, S, T]

A pattern itsself is a proposed solution to a problem that occurs often and
in different situations. [1-3, 5-10, S, T]

In contrast to that a antipattern shows commonly made mistakes when
dealing with a certain problem. [2, 7-9, S, T] Nevertheless a refactored
ksolution is aswell proposed.

s N
S3

1.Patterns can evolve into Antipatterns when change occurs [1-8, 10, S, T]
2. [S] Pattern has one solution, [2, 5-8, 10, T] whereas anti pattern can
have subtypes of solution [1, 3, 4, 6, 8,10, S, T]

3. [S] Antipattern has negative consequences [8] and symptom, [2, 6-8, 10]
kwhere as patterns looks only into benefits [8] and consequences

J
(N
S4
Patterns: A way to Model code in differents ways [1-10, S, T]
kAntipattem: A way of how Not to Model code)
e N

S5

Antipatterns are used when there are common mistakes in software
management [5] and development to find these, [1-10, T] while patterns by
themselves are used to build software systems [8] in the context of frequent
change [8] by reducing complexity and isolating the change. [1-10, S, T]
Another difference is that the antipatterns have problematic solution [5, 8]

and then refactored solution, [2, 5, 6, 8-10] while patterns only have a

&solutlon.)

Figure 6: Submissions $1-S5 from our PSE data set. The sub-
missions were segmented by two algorithms, as well as ten
participants. The detected segment borders are marked in-
line with the text in square brackets: Topic Modeling Algo-
rithm [T], Syntactical Separator Approach [S], and Partici-
pants [1-10].

ECSEE °20, June 18-19, 2020, Seeon/Bavaria, Germany

Number of topic shifts detected by the algorithm

Average number of topic shifts detected by the participants of the survey
M Number of most frequent topic shifts (contained in 6 and more answers)
W Number of topic shifts detected with current solution

6
5 J d
4
2 II Il
1
0 l.
i 11 b ion 2 ion 3

Submission 4 Submission 5
Figure 7: Comparison of the number of detected topic shifts
by the current and proposed systems as well as the partici-
pants.

Number of topic shifts
@

newly proposed algorithm and a majority of the participants. Only
two topic shifts are not detected by the algorithm (false negative),
and one topic shifts detected by the algorithm in S2 has no majority
with the participants (false positive). This analysis does support the
fourth hypothesis (H4).

5.4 Discussion

We could test the performance of the proposed system and compare
it to the current solution based on the topic shifts’ positions marked
by students. Two interesting details could be discovered.

First, submission S2 was the only case where the proposed solu-
tion performed slightly worse than the existing approach. We can
explain this with the character of this submission. The student sub-
mitted a rather long answer. It consists of seven sentences whereas
the average number in our dataset is 3.6. In general, submissions
with a lot of sentences where the same information is repeated
multiple times can become a challenge. The student also gives an
example of an anti-pattern. Answers with examples can become a
problem for the proposed solution since there is an unbound set
of examples that can be provided and thus it is difficult to judge if
the keyword approach suits this case. A solution to this could be
dynamically determining the number of keywords.

Second, when reviewing the students’ segmentation, there were
several answer sheets with significantly more topic shifts than
found in other responses. This is usually because the participant
saw an "and" in a sentence and decided that there are two different
objects or verbs, hence, two different statements. One such case was
the following part of an answer: "Antipatterns are used when there
are common mistakes in software management and development
to find these". Some participants put a boundary between the words
"management” and "and". However, this kind of segmentation can
lead to problems for further processing and assigning feedback to
the text blocks. Though this part of the sentence does have two
objects and they could, for example, be correct and incorrect or the
other way around, the two resulting text blocks are both incomplete.
The first text block misses the "find these" part, the second one —
the subject of the sentence. This proves that it is possible to get
text blocks that do not make any sense without context. A possible
solution could be augmenting the parts of the sentence with the

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

subject or the object from the other part. This, however, demands a
deeper analysis of the sentence structure.

During the evaluation, we could make some interesting obser-
vations. There are two different types of text blocks that could be
treated in another way. First, phrases that express the student’s
personal opinion about the question or the lecture, like "I do not
understand this" or "oh, that’s easy", do not need to be assessed. A
possibility could be to discover them and exclude them from the
corpus to improve the quality of the data for further processing.
Incomplete sentences and clauses can also be treated differently.
Compound sentences with several clauses often contain multiple
different statements. Currently, we do not want to split them up.
A sentence like "I like apples and bananas" does have two objects,
but a text block "and bananas" does not make any sense without
context, the subject and the verb in this case. So a possible solution
could be augmenting incomplete text blocks with the correspond-
ing missing context. This could be addressed by implementing PoS

tagging.

5.5 Threats to Validity

One of the problems of the evaluation is the small size of the pop-
ulation. The validity could be improved by either increasing the
population to include more tutors with different experience levels
or by choosing a more experienced population of instructors. In ad-
dition, selected submissions for the segmentation task are a threat
to external validity since they are from a single lecture. Third, sub-
missions are chosen according to the formatting of the answer, as
we allowed different answering formats such as bullet points or full
sentences. The study therefore only provides anecdotal evidence
on the performance of the assessment algorithm.

6 SUMMARY

In this paper, we have formalized a new algorithm based on topic
modeling and text segmentation to segment student answers into
topically coherent text blocks. A prototypical implementation has
been integrated as part of the open-source Athene project® into the
automatic assessment management system Artemis. A performance
evaluation with ten students has shown that the new algorithm
performs better than an algorithm using syntactical separators such
as delimiters.

6.1 Conclusion

The presented algorithm is a small building block towards a semi-
automated assessment support system for textual exercises, as well
as the vision of fully automated assessments of textual exercises.
Producing coherent text blocks from student submissions improves
the experience for instructors, tutors, and students:

For instructors, a structured form of feedback makes it easier to
compare against grading criteria. The increasing degree of automa-
tion reduces the workload necessary to conduct textual exercises.

For tutors, the algorithm allows to automate the first step of the
grading process and removes some of the overhead related to the
segment-based assessment concept. Generated feedback sugges-
tions improve the value of each feedback element, as it can be easily

®"Athene: A library to support (semi-)automated assessment of textual exercises,’
https://github.com/Islintum/Athene, 2020.

Towards the Automation of Grading Textual Student Submissions to Open-ended Questions

| found the task intuitive.

| could easily find sensible boundaries.

The presented approach can make the assessment process faster for
tutors.

Structured feedback contributes more to a student's comprehension.
40%

= Strongly disagree = Disagree

ECSEE 20, June 18-19, 2020, Seeon/Bavaria, Germany

1 8 -

: 2]
> I

20% 0% 20% 40% 60% 80% 100%

Neither agree or disagree Agree = Strongly agree

Figure 8: Participants response on their subjective impression of the approach ranked on a five-point scale based on Likert

[27]. (n = 10)

reused for multiple students, even by other tutors. Suggestions re-
duce the workload, as a partial assessment is already pre-filled. A
semi-automated system should encourage tutors to create extensive
and high-quality explanations.

For students, feedback will be more concise. A direct link be-
tween a segment of their submission and feedback helps students
to understand the feedback and their mistakes. They profit from
improvements for tutors, which we envision to lead to quicker and
more extensive feedback.

6.2 Future Work

The result of the algorithm’s application can be improved in two
areas: keywords and text blocks using statistical models, topic mod-
els, or decision trees. Additionally, a thesaurus could be used to
recognize synonyms.

The effect of the algorithm on the assessment system can be
evaluated in two aspects: The usability for tutors when grading
text blocks and the impact of the segmentation on the quality of
feedback suggestions.

REFERENCES

[1] Doug Beeferman, Adam L. Berger, and John D. Lafferty. 1997. Text Segmentation
Using Exponential Models. CoRR (1997). http://arxiv.org/abs/cmp-1g/9706016
Jan Philip Bernius and Bernd Bruegge. 2019. Toward the Automatic Assessment
of Text Exercises. In 2nd Workshop on Innovative Software Engineering Education
(ISEE). Stuttgart, Germany, 19-22.

[3] Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge. 2020. Segmenting Stu-
dent Answers to Textual Exercises Based on Topic Modeling. In 17th Workshop
Software Engineering im Unterricht der Hochschulen (SEUH). Innsbruck, Austria,
72-73.

[4] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O'Reilly Media, Inc.

[5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. The Journal of Machine Learning Research 3 (2003), 993-1022.

[6] Charles C. Bonwell and James A. Eison. 1991. Active Learning: Creating Excitement
in the Classroom. ERIC Clearinghouse on Higher Education.

[7] Qiuxing Chen, Lixiu Yao, and Jie Yang. 2016. Short text classification based on
LDA topic model. In 2016 International Conference on Audio, Language and Image
Processing (ICALIP). IEEE, 749-753. https://doi.org/10.1109/icalip.2016.7846525

[8] Freddy Y. Y. Choi. 2000. Advances in Domain Independent Linear Text Seg-
mentation. In Proceedings of the 1st North American Chapter of the Association
for Computational Linguistics Conference (Seattle, Washington) (NAACL 2000).
Association for Computational Linguistics, USA, 26-33.

[9] Jacob Eisenstein. 2009. Hierarchical Text Segmentation from Multi-Scale Lexical
Cohesion. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, Boulder, Colorado, 353-
361. https://www.aclweb.org/anthology/N09-1040

[2

[10] Jacob Eisenstein and Regina Barzilay. 2008. Bayesian Unsupervised Topic Seg-

mentation. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (Honolulu, Hawaii) (EMNLP "08). Association for Computa-

tional Linguistics, USA, 334-343.

David W. Embley, Douglas M. Campbell, Randy D. Smith, and Stephen W. Liddle.

1998. Ontology-based Extraction and Structuring of Information from Data-rich

Unstructured Documents. In Proceedings of the seventh international conference

on Information and knowledge management - CIKM '98. ACM Press, 52-59. https:

//doi.org/10.1145/288627.288641

Pavlina Fragkou, Vassilios Petridis, and Athanasios Kehagias. 2004. A Dy-

namic Programming Algorithm for Linear Text Segmentation. Journal of In-

telligent Information Systems 23, 2 (2004), 179-197. https://doi.org/10.1023/b:

jiis.0000039534.65423.00

Arthur C. Graesser, Peter Wiemer-Hastings, Katja Wiemer-Hastings, Derek Har-

ter, Tutoring Research Group Tutoring Research Group, and Natalie Person.

2000. Using Latent Semantic Analysis to Evaluate the Contributions of Stu-

dents in AutoTutor. Interactive Learning Environments 8, 2 (2000), 129-147.

https://doi.org/10.1076/1049-4820(200008)8:2;1-b;ft129

Michael A. K. Halliday and Ruqaiya Hasan. 1976. Cohesion in English. Longman,

London.

[15] Marti A. Hearst. 1997. TextTiling: Segmenting Text into Multi-Paragraph Subtopic

Passages. Computational Linguistics 23, 1 (1997), 33-64.

Anette Hulth. 2003. Improved Automatic Keyword Extraction Given More Lin-

guistic Knowledge. In Proceedings of the 2003 conference on Empirical methods in

natural language processing -. Association for Computational Linguistics, 216-223.

https://doi.org/10.3115/1119355.1119383

[17] Anil K. Jain and Sushil Bhattacharjee. 1992. Text segmentation using gabor filters
for automatic document processing. Machine Vision and Applications 5, 3 (1992),
169-184. https://doi.org/10.1007/bf02626996

[18] Tibor Kiss and Jan Strunk. 2006. Unsupervised Multilingual Sentence Boundary
Detection. Computational Linguistics 32, 4 (2006), 485-525. https://doi.org/10.
1162/coli.2006.32.4.485

[19] Jan Knobloch and Enrico Gigantiello. 2017. AMATI: Another Massive Audience

Teaching Instrument. In 15th Workshop Software Engineering im Unterricht der

Hochschulen (SEUH). Hannover, Germany, 63-68.

Takafumi Koshinaka, Ken ichi Iso, and Akitoshi Okumura. 2005. An HMM-based

text segmentation method using variational Bayes approach and its application

to LVCSR for broadcast news. In Proceedings. (ICASSP '05). IEEE International

Conference on Acoustics, Speech, and Signal Processing, 2005., Vol. 1. IEEE, 485-488.

https://doi.org/10.1109/icassp.2005.1415156

[21] Omri Koshorek, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Berant.
2018. Text Segmentation as a Supervised Learning Task. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), Vol. 2. Association
for Computational Linguistics, 469-473. https://doi.org/10.18653/v1/n18-2075

[22] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. In 49th ACM Technical Symposium
on Computer Science Education. ACM, 284-289. https://doi.org/10.1145/3159450.
3159602

[23] Stephan Krusche and Andreas Seitz. 2019. Increasing the Interactivity in Software

Engineering MOOCs - A Case Study. In 31th Conference on Software Engineering

Education and Training (CSEE&T).

Stephan Krusche, Andreas Seitz, Jirgen Borstler, and Bernd Bruegge. 2017.

Interactive Learning: Increasing Student Participation Through Shorter Exer-

cise Cycles. In 19th Australasian Computing Education Conference. ACM, 17-26.

https://doi.org/10.1145/3013499.3013513

[11

[12

[13

[14

(16

[20

[24

ECSEE °20, June 18-19, 2020, Seeon/Bavaria, Germany

[25

26

[27

Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An Interactive Learning Method to Engage Students in Modeling.
In Proceedings of the 42nd International Conference on Software Engineering -
Software Engineering Education and Training (ICSE-SEET 20). Seoul, South Korea.
Rainer Lienhart and Wolfgang Effelsberg. 2000. Automatic text segmentation
and text recognition for video indexing. Multimedia Systems 8, 1 (2000), 69-81.
https://doi.org/10.1007/s005300050006

Rensis Likert. 1932. A Technique for the Measurement of Attitudes. Archives of
Psychology 22, 140 (1932), 1-55.

Yutaka Matsuo and Mitsuru Ishizuka. 2003. Keyword Extraction from a Single
Document using Word Co-occurrence Statistical Information. International
Journal on Artificial Intelligence Tools 13, 01 (2003), 157-169. https://doi.org/10.
1142/50218213004001466

Richard E. Mayer, Andrew Stull, Krista DeLeeuw, Kevin Almeroth, Bruce Bimber,
Dorothy Chun, Monica Bulger, Julie Campbell, Allan Knight, and Hangjin Zhang.
2009. Clickers in college classrooms: Fostering learning with questioning methods
in large lecture classes. Contemporary Educational Psychology 34, 1 (2009), 51-57.
https://doi.org/10.1016/j.cedpsych.2008.04.002

Olena Medelyan and Ian H. Witten. 2006. Thesaurus Based Automatic Keyphrase
Indexing. In Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Li-
braries (Chapel Hill, NC, USA) (JCDL °06). Association for Computing Machinery,
New York, NY, USA, 296-297. https://doi.org/10.1145/1141753.1141819

George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39-41. hitps://doi.org/10.1145/219717.219748

Hemant Misra, Francois Yvon, Olivier Cappé, and Joemon Jose. 2011. Text seg-
mentation: A topic modeling perspective. Information Processing & Management
47, 4 (2011), 528-544. https://doi.org/10.1016/j.ipm.2010.11.008

Hemant Misra, Francois Yvon, Joemon M. Jose, and Olivier Cappe. 2009. Text
Segmentation via Topic Modeling: An Analytical Study. In Proceeding of the 18th
ACM conference on Information and knowledge management - CIKM '09 (Hong
Kong, China). ACM Press, 1553-1556. https://doi.org/10.1145/1645953.1646170
Irina Pak and Phoey Lee Teh. 2017. Text Segmentation Techniques: A Critical
Review. In Innovative Computing, Optimization and Its Applications: Modelling
and Simulations. Springer International Publishing, 167-181. https://doi.org/10.
1007/978-3-319-66984-7_10

(35]

[36]

(37]

(38]

(39]

(42

[43

[44]

[45]

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd Bruegge

Jay M. Ponte and W. Bruce Croft. 1997. Text segmentation by topic. In Research
and Advanced Technology for Digital Libraries. Springer Berlin Heidelberg, 113-
125.

Martin F. Porter. 1980. An algorithm for suffix stripping. Program: electronic
library and information systems 14, 3 (1980), 130-137.

Ann Poulos and Mary Jane Mahony. 2008. Effectiveness of feedback: the students’
perspective. Assessment & Evaluation in Higher Education 33, 2 (2008), 143-154.
https://doi.org/10.1080/02602930601127869

Juan Enrique Ramos. 2003. Using TF-IDF to Determine Word Relevance in
Document Queries. In Ist instructional Conference on Machine Learning.

Jeffrey C. Reynar. 1999. Statistical Models for Topic Segmentation. In Proceedings
of the 37th annual meeting of the Association for Computational Linguistics on
Computational Linguistics -. Association for Computational Linguistics, 357-364.
https://doi.org/10.3115/1034678.1034735

Martin Riedl and Chris Biemann. 2012. Sweeping through the Topic Space: Bad
Luck? Roll Again!. In Proceedings of the Joint Workshop on Unsupervised and Semi-
Supervised Learning in NLP (Avignon, France) (ROBUS-UNSUP ’12). Association
for Computational Linguistics, USA, 19-27.

Martin Riedl and Chris Biemann. 2012. TopicTiling: A Text Segmentation Algo-
rithm Based on LDA. In Proceedings of ACL 2012 Student Research Workshop (Jeju
Island, Korea) (ACL ’12). Association for Computational Linguistics, USA, 37-42.

C. Osvaldo Rodriguez. 2012. MOOCs and the Al-Stanford like Courses: Two Suc-
cessful and Distinct Course Formats for Massive Open Online Courses. European
Journal of Open, Distance and E-Learning (2012).

Yuwei Tu, Ying Xiong, Weiyu Chen, and Christopher Brinton. 2018. A Domain-
Independent Text Segmentation Method for Educational Course Content. IEEE
International Conference on Data Mining Workshops (2018). https://doi.org/10.
1109/icdmw.2018.00053

Yaakov Yaari. 1997. Segmentation of Expository Texts by Hierarchical Agglomer-
ative Clustering. CoRR (1997). arXiv:9709015 [cmp-lg]

Jon P. Yamron, Ira Carp, Larry Gillick, Steve Lowe, and Paul van Mulbregt. 1998.
A hidden Markov model approach to text segmentation and event tracking. In
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP '98 (Cat. No.98CH36181), Vol. 1. IEEE, IEEE, 333-336.
https://doi.org/10.1109/icassp.1998.674435

7 A Machine Learning Approach for
Suggesting Feedback in Textual

Exercises in Large Courses

Publication [BKB21] has been published as a peer-reviewed conference paper:

Authors: Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge
Conference: 8th ACM Conference on Learning @ Scale (L@S ’21)
Location: Potsdam, Germany

Pages: 173-182

Year: 2021

DOI: 10.1145/3430895.3460135

Review: Peer Reviewed (4 Reviewers)

Acc. Rate: 30%

Summary This paper formalizes CoFee, a machine learning approach designed
to suggest Computer-aided Feedback for textual exercises. CoFee applies clustering
to group the text segments by similarity so that the same feedback can be applied
to all segments within the same cluster.

Athena! is the reference implementation of the CoFee design. Athena offers a
service for learning management systems to identify clusters of similar text seg-
ments within student submissions.

An empirical evaluation of Athena reviewed 17 textual exercises in two large
courses at the Technical University of Munich with 2,300 registered students and

53 instructors. Athena suggested feedback for 26% of the submissions. The instruc-

In the publication [BKB21] we refer to Athena as Athene. Both names can be considered
Synonyms.

48

7 A Machine Learning Approach for Suggesting Feedback in Textual Exercises

tors accepted 85% of these suggestions, and 5% were extended with an instructor

comment before releasing them to the students.

Contributions J.P. B. conceptualized and formalized the CoFee framework,
as well as the design, architecture and implementation of Athena. J.P. B. and
S.K. developed the study design, J.P. B. analyzed the data and evaluated the
results. J.P. B. wrote and visualized the paper. B. B. provided feedback and
helped improving the manuscript. S. K. and B. B. reviewed the paper.

Conference paper The author’s version of the conference paper is reprinted in

this dissertation. The final version of record is available at:
https://dl.acm.org/doi/10.1145/3430895.3460135

49

https://dl.acm.org/doi/10.1145/3430895.3460135

A Machine Learning Approach for Suggesting Feedback in
Textual Exercises in Large Courses

Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge
Department of Informatics
Technical University of Munich
Munich, Germany
janphilip.bernius @tum.de, krusche @in.tum.de, bernd.bruegge @tum.de

ABSTRACT

Open-ended textual exercises facilitate the comprehension of
problem-solving skills. Students can learn from their mistakes
when teachers provide individual feedback. However, courses
with hundreds of students cause a heavy workload for teachers:
providing individual feedback is mostly a manual, repetitive,
and time-consuming activity.

This paper presents CoFee, a machine learning approach de-
signed to suggest computer-aided feedback in open-ended
textual exercises. The approach uses topic modeling to split
student answers into text segments and language embeddings
to transform these segments. It then applies clustering to group
the text segments by similarity so that the same feedback can
be applied to all segments within the same cluster.

We implemented this approach in a reference implementa-
tion called Athene and integrated it into Artemis. We used
Athene to review 17 textual exercises in two large courses
at the Technical University of Munich with 2,300 registered
students and 53 teachers. On average, Athene suggested feed-
back for 26% of the submissions. Accordingly, 85% of these
suggestions were accepted by the teachers, 5% were extended
with a comment and then accepted, and 10% were changed.

Author Keywords

Software Engineering, Education, Interactive Learning,
Automatic Assessment, Grading, Assessment Support System,
Learning, Feedback

CCS Concepts

*Social and professional topics — Software engineering
education; *Computing methodologies — Natural language
processing;

© Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge 2021. This is the
author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the Proceedings of the
Eighth ACM Conference on Learning @ Scale (L@S ’21), June 22-25, 2021,
Potsdam, Germany, https://doi.org/10.1145/3430895.3460135.

INTRODUCTION

The rise in student numbers in universities has led to an in-
crease in course management efforts, and made it challenging
to provide high-quality individual feedback to students [19].
Recent approaches, such as online platforms and live stream-
ing, allow teachers!' to cope and interact with a large amount
of students on an individual level, regardless of the respective
course size.

In particular, large university courses with hundreds of stu-
dents rely on teaching assistants to provide feedback on ex-
ercises, e.g., multiple-choice quizzes and textual exercises.
Multiple-choice quizzes are easy to assess, and tools are
broadly available in learning management systems (LMSs)
and for paper-based assessment. However, mastery of these
quizzes does not require problem-solving skills because they
typically target only lower cognitive skills, in particular, knowl-
edge recall and comprehension. Most quiz types include prede-
fined options and do not reflect work practices in industry. It is
difficult to create quizzes that stimulate higher cognitive skills,
such as problem-solving, which are important in computer
science [1, 32].

Open-ended textual exercises allow instructors to teach
problem-solving skills and allow students to improve their
knowledge. These exercises do not have a single correct solu-
tion, but rather allow answers within a particular solution space
which can be characterized by words and phrases. The search-
light theory of scientific knowledge [27] states that students
increase their knowledge through observations, especially ob-
servations that prove their assumptions wrong. Students profit
from having an individual feedback relationship with their
teachers [10]. Individual feedback and formative assessments
are essential elements in learning [11, 12]. Feedback on open-
ended exercises allows students to try out problem-solving and
to experience failure. Students need guidance in the form of
feedback in their learning activities to prevent misconceptions
[13].

IFor this paper, we define teachers as both instructors and teaching
assistants (see Figure 1). Instructors are employees of the university
such as professors, lecturers, and doctoral candidates. Teaching
assistants are experienced students who have passed the same course
previously with a good grade and who are motivated to help in the
teaching process. Some universities also use the term “tutor” to refer
to a teaching assistant.

R —

Student

- X

Teacher

System ;

Instructor

Teaching
Assistant
Figure 1. Use case diagram of the Athene and Artemis system. Students
and teachers interact with the system. Teachers are instructors, employ-

ees of the university, or teaching assistants, who are previous students
hired to assist in teaching.

However, textual exercises lead to greater variability because
students need to formulate individual answers to problems.
This results in high manual effort when reviewing students’
answers. Assuring consistent feedback is difficult with a large
number of teaching assistants. In this paper, we present an ap-
proach for computer-aided feedback for textual exercises that
addresses these challenges. We implemented the approach in
an open-source reference implementation, used it in multiple
exercises, and evaluated its effects on the learning experience
of students. In particular, we investigated the following re-
search questions (RQ):

RQ1 Coverage: How much feedback can be automatically
suggested?

RQ2 Accuracy: How accurate is the suggested feedback?

RQ3 Quality: How do students perceive the quality of the
automatically suggested feedback?

The paper is organized as follows: Section 2 describes the
background of this work which consists of machine learning
concepts, in particular language models. In Section 3, we show
similar approaches and relate them to the approach presented
in this paper. Section 4 presents the approach computer-aided
feedback for textual exercises (CoFee) based on supervised
learning to deal with the greater variability in the student
answers. Language embeddings and clustering are used to pro-
vide individual feedback based on similarity. Section 5 shows
the open-source reference implementation Athene® which is
integrated into the open-source LMS Artemis®. Section 6 de-
scribes the courses in which the approach was used, shows
the study design of the empirical evaluation with respect to
Bloom’s revised taxonomy [2], presents results and limitations,
and discusses the findings. Section 7 concludes the paper with
its main contributions and future work.

BACKGROUND: LANGUAGE MODELS
Assessing text submissions automatically requires comparing
segments of those submissions and identifying similar pieces

2 Athene: https://github.com/lslintum/Athene
3 Artemis: https://github.com/lslintum/Artemis

of text. Therefore, we need a measurable abstraction of a texts
meaning as an intermediate representation. This paper relies
on existing approaches and techniques from the domain of
natural language processing (NLP), most notably language
models and word embeddings, to convert a piece of text into
a comparable format. Student answers can contain unknown
words, incorrect use of grammar and punctuation, and false
statements.

Word embedding is a feature learning technique in NLP, where
words or phrases from the vocabulary are mapped to vectors of
real numbers (each word is associated with a point in a vector
space) [21]. The feature vector represents different aspects of
the word and consequently, words that have the same mean-
ing are assigned similar vector representations. Additionally,
word embeddings are capable of capturing word analogies
by examining various dimensions of the differences between
word vectors [24]. For example, the analogy “king is to queen
as man is to woman” should be encoded in the vector space
by the vector equation king — queen = man — woman.

The distributed representation is learned based on the usage
of the words. This allows words that are used in similar con-
texts to have similar representations, naturally capturing their
meaning. ELMo [26] is a word embedding constructed as a
task-specific combination of the intermediate layer represen-
tations in a bidirectional language model (biLM). It models
complex characteristics of words-use in the language dictated
by the syntax and semantics. It also captures how these uses
vary across linguistic contexts, which is important for address-
ing polysemy in natural languages.

In a deep language model (LM), the higher-level long short
term memory (LSTM) states are shown to capture context-
dependent aspects of word meaning while lower-level states
model aspects of the syntax. By constructing a representation
out of all the layers of the LM, ELMo is able to capture both
characteristics of the language. ELMo representations have
three main characteristics that allow them to achieve state-
of-the-art results in most common NLP downstream tasks.
First, ELMo representations are contextual: the representa-
tion for each word depends on the entire context in which it
is used. They are also deep: the word representations com-
bine all layers of a deep, pre-trained language model neural
network. Finally, ELMo representations are purely charac-
ter based, allowing the network to use morphological clues
to form robust representations for out-of-vocabulary tokens,
unseen in training.

RELATED WORK

Automated essay scoring (AES) computes scores on written
solutions based on previous submissions. AES systems require
a perfect solution to be available up front [23, 31]. They pri-
marily consider the distance to a perfect solution to determine
the grade. Feedback is not the focus. Manual clustering and
shared grading are concepts used in research [25] and com-
mercial tools (i.e., Gradescope). Managing clusters is hard at
scale, communicating the exact differences between clusters
between many graders.

Atenea is a computer-assisted assessment system for scoring
short answers in computer science [25] and is integrated into
a web-based application. Atenea uses a database of questions
with a correct sample solution for each, either written by a
teacher or taken from a highly graded student’s answer. When
a student accesses Atenea, a random question from this pool is
asked and compared to the given sample solution by utilizing
a hybrid for syntax as well as semantic similarity. The system
works by combining latent semantic analysis (LSA) and a mod-
ified bilingual evaluation understudy (BLEU) algorithm, with
the hypothesis that syntax and semantics complement each
other naturally. The combination of both NLP tools always
performs better (with a higher hit rate) than their individual
parts, with the authors believing that combinations of syntacti-
cal and semantical analysis can lead to even greater results for
automatic text assessment.

Atenea compares student answers to a set of predefined an-
swers. The grade is determined by its similarity to these
predefined answers. This approach is limited to exercises with
a narrow answer space where possible answers are known
beforehand. A high variability in answers requires a large set
of predefined answers, which limits the applicability of the
system. The focus of the Atenea system is grading, whereas
Athene is primarily focused on individual feedback. Athene
does not require a predefined solution but collects knowledge
on correct and incorrect solutions during the manual assess-
ment. The evaluation of the Atenea authors focuses on a
comparison of NLP techniques in the grading context and is
based on a dataset. We evaluate Athene by using it in multiple
courses and measuring its performance.

Powergrading is an automatic assessment approach [3]. In-
stead of solely focusing on providing a numerical score or a
right or wrong grade, Powergrading tries to justify a certain
given grade by providing feedback in the form of a comment
as to why an answer is right or wrong, similar to how a teacher
would do it in a classroom setting. Basu et al. propose a sys-
tem, that clusters similar answers to a question so that teachers
can “divide and conquer” the correction process by assigning
a whole cluster with the same score and comment, therefore
reducing the correction time significantly. Clustering answers
to a question should happen based on a distance function,
which is composed of different features and tries to learn a
similarity metric between two students’ answers automatically.
Some of the implemented and used features that are weighted
in developing this distance function used for clustering are,
e.g., the difference in length between two answers, the term
frequency-inverse document frequency (TF-IDF)* similarity
of words, or the LSA vectorial score based on the entirety of
Wikipedia as a training text corpus. The authors have tested
their implementation with test data from the United States
Citizenship Exam in 2012 with 697 examinees and concluded
that around 97% of all submissions can be grouped into similar
clusters so that teachers would only have to provide feedback
for a single cluster and would still be able to reach and correct
multiple submissions at once, therefore reducing assessment
time significantly [3].

4TE-IDF: An information extraction statistic which indicates how
significant a word is to a document [28].

Powergrading is focused on short-answer grading, where a
typical answer does not exceed two sentences. Athene is not
limited to a certain answer length and uses segmentation to
work with multiple sentences or paragraphs. Similar to Power-
grading, Athene groups segments into clusters. Both systems
assume hierarchical cluster structures. Powergrading allows
teachers to grade clusters rather than submissions, whereas
Athene will use the cluster structure to suggest feedback for
following assessments.

Gradescope is a system geared toward the assessment of
handwritten homework and exam exercises [30] by scanning
paper-based work. Teachers review the submissions online.
Gradescope allows the teacher to dynamically create grading
rubrics at the assessment time. For the assessment, teachers
can group similar submissions manually for shared grading or
relay on suggested groups.’

Athene follows a similar idea by sharing feedback with groups
of answers; however, Athene groups individual segments,
whereas Gradescope groups entire submissions. Gradescope
allows the grader to grade multiple submissions as one, similar
to Powergrading, whereas Athene shares individual feedback
elements across multiple submissions. Athene requires teach-
ers to inspect every submission and supports by suggesting
feedback items. Neither system requires a training dataset
of previously assessed answers. For exercises with a limited
answer spectrum, Gradescope does allow the grader to assess
several submissions efficiently as it reduces the number of so-
lutions to grade. However, for exercises with high variability
in answers (e.g., when asking for examples), this approach is
more limited as more groups with less elements need to be
reviewed.

APPROACH: COMPUTER-AIDED FEEDBACK (COFEE)
CoFee uses supervised machine learning to learn correct an-
swers and related feedback. Figure 2 shows the main workflow
how CoFee can automatically propose computer-aided feed-
back to students’ answers. CoFee learns which answers to
an exercise are correct and which are incorrect. For further
submissions, the learning platform can automatically generate
suggestions for similar answers or even evaluate the answers
fully automatically. In doing so, the learning platform uses the
knowledge of previous assessments by lecturers. The more
students participate in an exercise, the more knowledge is
generated and the better feedback the learning platform can
suggest.

Figure 3 shows the details of the activity “preprocess answers”
shown in Figure 2 and represents the basis for the three ob-
jectives mentioned above. The system analyzes incoming text
(responses) using NLP, divides them into text segments, and
uses them to create text clusters with similar text segments
from different responses. This is done using a combination of
segmentations and linguistic embeddings, in particular deeply
contextualized word representations (ELMo). This allows for
an understanding students’ responses and for the generation
of individualized feedback. In this way, a learning platform
can automatically reuse manual feedback for contributions

Shttps ://gradescope.com

feedback

Student CoFee Teacher
Automatic
assessment
K possible?
Submit | Preprocess Feedback
Answer Text Cluster)
answer | answers suggestion]
N
' Manually
[yes] «affects» review
] feedback
- : _suggestions)
Automgtlcally «influences» Assessment ,
review [&--------------q
knowledge
answer
w Manual review|
Automatic Learn from manual
Review Feedback |& I feedback review J

Figure 2. Workflow of automatic assessment of submissions to textual exercises based on the manual feedback of teachers. CoFee analyzes manual
assessments and generates knowledge for the suggestion of computer-aided (automatic) feedback (UML activity diagram).

Segmentation

ment
Remove) Extract Seg er
Answer Lemmatize answers into Text segment
stop words keywords
text segments

Compute
HDBSCAN
clustering

Text Segment ||
Cluster

Calculate
distance matrix

Figure 3. Detailed overview of the machine learning activities as part of the “preprocess answers” activity in Figure 2. These are used to extract text
segments and build text clusters for scoring and similarity analysis (UML activity diagram).

from different students. This can reduce the workload for
teachers and increase the consistency and quality of feedback
to improve students’ understanding.

The goal is to increase the quality and quantity of the feedback
provided to students while decreasing the overall assessment
time. CoFee integrates into existing learning platforms that
need to provide an interface for students to submit their textual
answers. We utilize a segment-based feedback concept [5],
requiring assessors to provide feedback and score in relation
to a segment of student’s answer, resulting in relatable and
reusable feedback elements.

CoFee trains its assessment model with every feedback ele-
ment and thereby becomes more accurate with every new feed-
back element. After the assessment process, the system can
detect conflicting assessments in both comments and scores.
Therefore, CoFee computes the similarity among feedback
comments. We claim that the distance between two text seg-
ments should be proportional to the distance between the feed-
back comments. If this relation is violated, CoFee prompts the
teacher to review the pair of submissions and allows them to
update the assessment as needed. The learning platform may
only release the feedback to students after the teachers have
the chance to resolve inconsistencies.

Compared to existing work, our system segments and clusters
student solutions automatically. By training the system during
the assessment process, we do away with the need for a refer-
ence dataset before the assessment. Furthermore, by training
with highly and lowly scored solutions, we maintain a dataset
to provide helpful feedback comments to support the learning
process. Dynamically collecting the dataset during assessment
keeps the system independent of any domain and allows for
use of the system with new exercises to incorporate the latest
knowledge into teaching.

REFERENCE IMPLEMENTATION (ATHENE)

We implemented CoFee in a reference implementation called
Athene [4] that is integrated into the learning platform Artemis
[15]. After the exercise deadline, Artemis sends the students’
answers to Athene for processing. Athene will preprocess
the answers before the assessment begins and will identify
segments suitable for the same feedback. Figure 3 depicts the
preprocessing activities. This represents the basis for the three
objectives mentioned above. The system analyzes incoming
student answers using NLP, divides them into text segments,
and uses them to create text clusters with similar text segments
from different responses. Figure 4 depicts the top-level design
of the system which consists of three steps: segmentation,
language embedding and clustering.

First, Athene analyzes the answers to identify segments [6, 7].
Therefore, Athene identifies common topics described in the
answers from all students. A topic is represented by a keyword.
To identify the important topics for an exercise, Athene counts
the occurrences of lemmatized words across all students and
selects the 10 most common words [7]. Within each student
answer, Athene will break down all submissions into clauses.
Adjacent clauses that share the same topic, represented by the
use of a keyword and absence of a new keyword, are merged
to form a segment. If a new keyword appears an a following
clause, we identify a topic shift and start a new segment. This
results in a set of topically coherent segments.

Second, Athene uses an ELMo model to convert each segment
to vector form. ELMo vectors have 1,024 dimensions rep-
resenting the information extracted from the segment. The
vector representation allows for a comparison of segments and
for the identification of similarities. Athene uses a pre-trained
ELMo model [26] based on a dataset consisting of 5.5B tokens
from Wikipedia and news articles.®

Third, Athene employs the Hierarchical Density-Based Spatial
Clustering (HDBSCAN) clustering algorithm [22] to identify
classes of similar text segments. Within a cluster, Athene
shares manually created feedback as suggestions. The hier-
archical clustering algorithm allows for a determination of
the required number of clusters dynamically. Further, the hi-
erarchical structure is used to dynamically narrow or widen
the search radius depending on the availability of feedback.
Narrow clusters provide more accurate feedback on the one
side; however, they also limit the possible coverage. Larger
clusters increase the possibility to find existing feedback to
compose a suggestion; however, they also increase the risk of
false feedback.

During the manual assessment, Athene sorts submissions so
that it priorities submissions with the highest effect on auto-
mated grading. Submissions with several segments in clusters
without feedback are prioritized, maximizing the possible cov-
erage for automatic feedback suggestions. For each segment,
Athene searches their respective clusters for existing feedback
and suggests the closest feedback. Furthermore, credit points
associated with feedback are used to prioritize based on the
clusters’ credit average. Athene’s automatic feedback sugges-
tions are displayed to teachers within Artemis as part of the
review interface [5], as depicted in Figure 5. Teachers can
add additional feedback to unreviewed parts of the student
solution. They can either approve of the feedback suggestions
or update them as they see fit.

EVALUATION

After several teachers used Athene in initial experiments in
smaller courses with around 500 students, they found anecdo-
tal evidence that the system improves the quantity and quality
of feedback. The next step was to evaluate the approach in
multiple exercises in the course Introduction to Software Engi-
neering (SEI) with 1,800 students and 49 teaching assistants
and in a second course Networks for Monetary Transactions.
In this section, we describe the two courses and the study

6 AllenNLP — ELMo: https://allennlp.org/elmo

«subsystem» {l

Athene

«component»

Segmentation {l

«subsystem»
«component» g

Artemis
Language
Embedding ELMo

«component»

Clustering

HDBSCAN

Figure 4. Top-level design of Athene, which is decomposed into three
subsystems for segmentation, language embedding, and clustering and
offers an API to be used in existing LMS (UML component diagram).

eoe athene.example
Assessment 41 of 1,800

mew!. .

| Feedback m Score

How is that realised? Add a better +0.5P
| explanation for full points.

So are used when multiple versions of algorithm are
required and when the behavior of class is to be changed
dynamically during run time.

Figure 5. Example of the teacher interface: Athene presents a feedback
suggestion for the first text segment with a feedback comment and a
score.

design of the evaluation. We show the results of the usage of
Athene and discuss the findings, implications, and limitations.

Courses

The course SE1 is an introductory software engineering course,
with around 1,800 registered students who are mainly com-
puter science bachelor’s students in their second semester. Stu-
dents with computer science as a minor can also enroll in the
course. The course covers software engineering concepts, such
as requirements analysis, system and object design, testing,
lifecycles, configuration management, and project manage-
ment and covers UML modeling [19]. To participate in the
course, students need to have fundamental programming expe-
rience (e.g., CS1). The instructors use constructive alignment
[8] to align the teaching concepts and exercises with the course
objectives. For each lecture, they define learning goals based
on six cognitive processes in Bloom’s revised taxonomy [2].
The course focuses on higher cognitive processes: students
apply the concepts in concrete exercises.

Following an interactive learning approach, SE1 teaches soft-
ware engineering concepts with multiple, small iterations of
theory, example, exercise, solution and reflection [16]. It
utilizes exercises to foster student participation [17] and to
motivate the students to attend the lectures [18]. The course
involves different kinds of exercises:

1. Lecture exercises as part of the (virtual) lectures

2. Group exercises solved in small ad hoc groups

3. Homework exercises to be solved throughout the week
individually

4. Team exercises to be solved in a team in five 2-week periods
5. Exam exercises to assess the students’ knowledge after the
course has finished in multiple variants

Students were asked to submit their solutions to all exercises
but group exercises to Artemis to receive an assessment with
feedback and points. The students could gain bonus points
for the final exam when participating in the exercises. To
train software engineering and problem-solving skills, the
instructors utilize programming, modeling, textual, and quiz
exercises in the course. Automatic assessment suggestions
based on Athene have been enabled for 11 textual homework
exercises and six textual exam exercises.

The course Networks for Monetary Transactions has the learn-
ing goals to understand and assess the fundamentals, archi-
tecture, and security of domestic and international payment
networks and their legal frameworks. Around 500 students
participated. The teachers used Artemis to conduct an online
exam during the COVID-19 pandemic. The exam consisted
of 11 quiz exercises and three text exercises. Automatic as-
sessment suggestions based on Athene were enabled for one
textual exam exercise: IT-Attacks.

Bloom created the taxonomy of educational objectives, defin-
ing six categories: Knowledge, Comprehension, Application,
Analysis, Synthesis, and Evaluation [9]. The revised taxonomy
shifts the focus from static educational objectives toward a
classification of cognitive processes students encounter when
solving exercises [2]. The exercises conducted as part of the
evaluation can be classified to train the cognitive processes
Remember, Understand, but Apply, and Analyze (see Figure 6).

Table 1 lists the textual exercises and includes the cognitive
process (as a category) that receives the most training in terms
of the revised taxonomy. Some exercises such as HO9EQ2
and HIOEO] facilitate understanding by asking student to
explain concepts. HI0EOI, e.g., states: “Name and explain
similarities and differences between the Unified Process and
Scrum in your own words”. Other exercises such as Exam 3
focus on the application of knowledge. Students need to apply
their requirements elicitation skills in order to create use case
descriptions based on a given problem statement.

Study Design

Figure 7 shows the study design of the evaluation that was
instantiated for each exercise in which Athene was used for
grading. The teacher defines the exercise in Artemis with a
problem statement, grading criteria, example solutions, and a
due date. The students can insert their solution in plain text
on Artemis. After the due date, Artemis sends all student
answers to Athene to preprocess the answers as described in
the Approach section. The teachers can start reviewing the
student answers as soon as Athene completes the preparation
and stores the text clusters. For every student answer, the
teachers create a review consisting of multiple feedback items.
During the review phase, the teachers used a chat room to
discuss the grading criteria as needed.

Every review can either be computer-aided, if at least one feed-
back item is suggested by the system, or manual. Furthermore,

«abstract»

CognitiveProcess

D—
ProceduralKnowledge

Create
Evaluate

1 Analyze |

{ Apply |

I
StaticKnowledge

l Understand |

I Remember |

Figure 6. Exercises in the evaluation assess different cognitive processes.
This taxonomy, based on the revised Bloom’s taxonomy [2], depicts the
hierarchy of skills. Exercises test static knowledge by testing the remember
and understand skills but also apply and analyze, e.g., by identifying design
issues from a system.

Athene stores intermediate versions of all feedback items to
evaluate how teachers work with feedback suggestions.

After the teachers completed the review, we retrieved the clas-
sification of the reviews from the Artemis database using SQL
queries. Two researchers verified the correctness of the queries.
We collected the statistics on the feedback items from Athene.
We inserted the measurements in a spreadsheet for further
analysis and graphing. Two researchers reviewed the results
for consistency and plausibility and took several samples to
check individual feedback entries.

Results

The presentation of the results is based on the research ques-
tions stated at the beginning of the paper on the coverage,
accuracy and quality of the approach.

Review Coverage

First, we classify the reviews into two categories: manual and
computer-aided. A review is considered computer-aided, if at
least one feedback item was suggested by Athene. Figure 8
depicts the classification of the reviews. On average, 26%
of all reviews were computer-aided. The system performed
best in exercise Exam 1, with 70% computer-aided reviews.
Exercises Exam 4 and Exam 6 have the least coverage, with
2% and 8% computer-aided reviews, respectively. However,
Athene was disabled for exercise Exam 4 after a few assess-
ments.

Finding 1: Coverage: Athene can cover up to 70% of reviews
with feedback suggestions without previous training data or a
predefined solution.

Exercise Title Category
HO4EO1 Coupling and Cohesion Understand
HOAE0? ISAnalysis M(_)dels & Analyze
ystem Design
HO4EO03 Design Goal Trade-offs Apply
HOSE02 gen'tralized vs Decentralized Understand
esigns
Specification & Implementation
HOGEO3 IrIn)heritance b Apply
HO6E04 Inheritance vs. Delegation Understand
HO7E03 MVC & Observer Pattern Understand
Advantages and Disadvantages
HO9EO01 Understand
of Scrum
HO9EO02 Unified Process and Scrum Understand
HI10EO1 Problems using Git Understand
HI10EO02 %/[erge COI.lﬂl(:tS & Understand
est Practices
Exam 1 Requirements Apply
Exam 2 Visionary Scenarios Apply
Exam 3 Use Cases Apply
Exam4 Access Control Apply
Exam 5 Design Goal Trade-offs Apply
Exam 6 Centralized vs. Decentralized Apply
Control
Exam 7 IT-Attacks Remember

Table 1. Homework and exam textual exercises and their categorization
following Bloom’s revised taxonomy [2] used in the evaluation.

Feedback Accuracy

Second, we classified feedback items based on the interme-
diate versions collected during the review process. Feedback
items can be classified as follows:

1. A feedback suggestion that remains unchanged is classified
as automatic.

2. For changed suggestions, Athene computes the Levenshtein
distance [20] between feedback comments. Athene clas-
sifies a changed feedback as a typo fix for a Levenshtein
distance > 0.9.

3. Athene uses the longest common substring length and the
Jaro—Winkler distance [33] to recognize feedback sugges-
tions with a manual extended comment.

4. Feedback not classified in these metrics is considered as
changed.

We analyzed the teachers’ assessment work for two homework
and seven exam exercises. The results depicted in Figure 9
show that on average, 85% of computer-aided feedback com-
ment suggestions remained unchanged in their final assess-
ment or only had minor modifications, such as corrections to
typing mistakes. Furthermore, 5% of suggested comments
were extended with additional feedback at the end of the sug-
gestion to provide more details for the student. The remaining
10% of comments were changed. In these cases, the comment
was either rewritten from scratch or was heavily revised.

Finding 2: Accuracy: On average, 85% of the feedback
suggestions are accurate and can be published to students
without modification.

Researcher Teacher Student

Submit answer

Define exercise

Run Athene system

Review
feedback suggestions

[Accept] [Discard]

_<

Rate feedback

Collect assessments
Classify feedback
Evaluate results

Figure 7. Research approach depicted with the involved actors and flow
of events (UML activity diagram).

Perceived Quality

Third, we asked students to rate their received feedback on a
5-star scale. The students rated a total of 396 reviews out of
10, 240 total reviews done by the teachers. Artemis presents
the rating input underneath the feedback and asks, “How useful
is the feedback for you?” Figure 10 depicts the distribution by
star rating. In the study, 85% of the ratings were either 1-star
or 5-star ratings. Students with computer-aided feedback were
more likely to give a 5-star rating (72%) when compared to
students who received manual feedback (62%). On the same
page, computer-aided feedback received 1-star ratings less
often (14%) than manual feedback (25%). Students giving
a 5-star rating on average (92% and 89%, respectively) had
better scores than students giving 1-star ratings (69% and 66%,
respectively).

Finding 3: Quality: The computer-aided feedback in Athene
has at least the same quality as manual feedback.

Limitations

This section discusses threats to the trustworthiness of the
presented results, and whether the results are biased based
on the researchers’ subjective point of view. We distinguish

| mManual mComputer-aided |

HO4E01 (n=1125) |EERB 17%
HO4EO02 (n=1032) |2 28%
HO4E03 (n=1103) [KJEA 20%
HO5E02 (n=1013) [EX&8 13%
HO6E04 (n=1027) L& 36%
HO7E03 (n=933) [EAEA 19%
HO9EO1 (n=1006) I&2) 33%
HO9EO02 (n=959) 54 35%
H10EO01 (n=1029) |CEEA 32%
H10EO2 (n=1013) &2 24%
Exam 1 (n=446) [ENER 70%
Exam 2 (n=411) [GEB 24%
Exam 3 (n=425) R0Z 50%
Exam 4 (n=461) LA 2%
Exam 5 (n=414) KY&A 18%
Exam 6 (n= 405) 92% 8%
Exam 7 (n=477) W43 25%

0% 25% 50% 75% 100%

Figure 8. Exercises with their assessment ratios. Computer-aided reviews
received automated grading suggestions which were reviewed by a teacher.
On average, 26 % reviews were computer-aided.

between three aspects of validity: internal validity, external
validity, and construct validity [29].

Internal Validity: The accuracy of the feedback suggestions is
measured by the acceptance of the teacher. A second review
from a control teacher would allow for a more accurate mea-
surement of accuracy. The teacher might be biased to confirm
a feedback suggestion as it requires less effort than providing a
new comment. We noticed that most teachers took the review
of the automatic feedback suggestions seriously, but we can-
not guarantee that some of the 49 involved teaching assistants
failed to fully review the automatic feedback suggestions.

Two of the authors of this paper have been involved in teach-
ing the course SE1 and might have influenced the empirical
evaluation. However, we tried to clearly separate the research
and instructor perspective. Two additional instructors have
been involved in the course SE1 who are not authors of this
paper, and the third author of the paper reviewed the results
carefully without being involved in the course. In addition,
we observed similar results in the second course, which was
taught by an independent instructor who was not involved in
the research.

External Validity: Most analyzed exercises have been in the
domain of software engineering and computer science in the
same university. While we believe that the approach is gen-
eralizable for other domains, we have not shown this in this
study.

oExtended

[=Automatic mTypo

mChanged |

HO9E02 (n=960)

H10E02 (n=1014)

Exam 1 (n=446)

Exam 2 (n=411)

Exam 3 (n=425)

Exam 4 (n=461)

Exam 5 (n=414)

Exam 6 (n=405)

Exam 7 (n=477)

50% 60% 70% 80% 90% 100%

Figure 9. On average, 85% of computer-aided feedback comments re-
mained unchanged (green) or only included minor typo fixes (blue). Fur-
thermore, 5% were extended (yellow), and 10% were changed (red).

Construct Validity: The validity of the ratings might be af-
fected by the wording of the question and by the score that the
students received. Students with a higher score are typically
more satisfied and less likely to complain about the quality of
the feedback. Therefore, a good rating does not necessarily
mean that the feedback had a good quality. Another limitation
could be the fact that students like the approach of getting
feedback. The ratings measure the perceived quality which is
subjective. We can only infer the quality based on the ratings.
Therefore, we consider Finding 3 on the quality of the ratings
as anecdotal evidence.

Discussion

The review coverage of Athene is higher for exercises that do
not ask for examples, but rather require students to work based
on a given example. In the exercises Exam 1 and Exam 3,
students were asked to extract requirements or use cases from
a given problem statement. In those exercises, the coverage
was above the average with 70% and 50%, respectively. These
questions still require students to apply problem-solving skills,
but limit the variability of the answers. This leads to more
similar answers and more reusable feedback.

Exercises asking for examples, such as the SE1 homework ex-
ercises, have lower review coverage of between 17% and 36%.
This may be due to the increased variability of answers with
different examples. As Athene tries to find similar text seg-
ments, it is more difficult to find a group with shared segments
as students can describe all possible examples. Therefore, it is
less likely to find reusable feedback among students.

Athene reuses reviews from teachers. The quality of the feed-
back suggestions depends on the quality of the manual feed-
back provided during the teacher reviews. If teachers provide
incorrect manual feedback, Athene will not be able to pro-

mmm Manual Feedback mmm Computer-aided Feedback

-8B Score —8—-Q Score
100% T 91% 92%
85%
O,
750 | 69% 89%
720/0 740/0

66%
50% +

25% +

5% 6% 6% 8%

0% -

* %k ok k 282,89 282,881

Figure 10. All ratings for SE1 homework (HXX) exercises by star rating.
In this figure, ratings are grouped by the assessment type Manual (n =
325) or Computer-aided (n = 71). The average score in percent is depicted
per rating and assessment type. In the study, 396 out of 10,240 reviews
were rated by students.

vide correct feedback suggestions. In the example of SEI,
the teachers who review the submission consist primarily of
teaching assistants, who have limited experience in grading or
providing feedback.

Nevertheless, the approach can improve the review process
as it allows instructors to handle larger amounts of reviews or
to inspect examples. Other systems presented in the Related
Work section suggest comparing answers only with a sample
solution provided by an instructor [25], thus reducing the vari-
ability in the solution space, which might limit the creativity
of the students. However, creativity is an important aspect in
software engineering education [14].

CONCLUSION
This paper presents three main contributions:

1. The machine-learning based approach CoFee was pre-
sented to suggest feedback for textual exercises. The ap-
proach is based on segmentation and similarity-based clus-
tering. It reuses feedback on segments within the same
cluster and learns which aspects of student answers are
correct during the assessment.

2. Athene, a reference implementation of CoFee, using the
ELMo language model and the HDBSCAN clustering algo-
rithm was presented. Athene is integrated into Artemis and
published as open-source software under the MIT license.”

3. An empirical evaluation of Athene in two courses with
2,300 students and 53 teachers in 17 textual exercises was
conducted. The results of the quantitative evaluation in
these exercises show that Athene can suggest up to 70%
of the feedback with an average accuracy of 85%. Ratings
provide first indications that the quality improves when
compared to purely manual assessments.

The evaluation also shows that these numbers depend on the
type of the textual exercise and on the variability of the pos-
sible solutions. A higher variance in correct solutions leads

7 Athene: https://github.com/1slintum/Athene

to less coverage because of fewer similarities in the student
answers.

Athene does not require training data before the reviewing
process to learn correct answers and feedback suggestions.
Instead, it collects knowledge during the assessment. This
incremental process allows instructors to change or introduce
new exercises as needed, preventing students from submitting
solutions from previous years. However, when reusing past
exercises, Athene could profit from additional knowledge cap-
tured in these reviews. Future work needs to evaluate whether
training data from the same exercise in previous years can
improve the coverage or accuracy of feedback suggestions.

REFERENCES
[1] Carlos Alario-Hoyos, Carlos Kloos, Iria Estévez-Ayres,
Carmen Fernandez-Panadero, Jorge Blasco, Sergio
Pastrana, and J Villena-Roman. 2016. Interactive
activities: the key to learning programming with
MOOCs. European Stakeholder Summit on Experiences
and Best Practices in and Around MOOCs 319 (2016).

Lorin W. Anderson, David R. Krathwohl, Peter W.
Airasian, Kathleen A. Cruikshank, Richard E. Mayer,
Paul R. Pintrich, James Raths, and Merlin C. Wittrock.
2001. A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives. Longmans Green.

[2

—

[3] Sumit Basu, Chuck Jacobs, and Lucy Vanderwende.
2013. Powergrading: a clustering approach to amplify
human effort for short answer grading. Transactions of
the Association for Computational Linguistics 1 (2013),
391-402.

Jan Philip Bernius. 2021. Toward Computer-Aided
Assessment of Textual Exercises in Very Large Courses.
In 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE °21). 1386.

Jan Philip Bernius and Bernd Bruegge. 2019. Toward
the Automatic Assessment of Text Exercises. In 2nd
Workshop on Innovative Software Engineering
Education. Stuttgart, Germany, 19-22.

=

[5

—_

[6

—_

Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge.
2020a. Segmenting Student Answers to Textual
Exercises Based on Topic Modeling. In 17th Workshop
Software Engineering im Unterricht der Hochschulen
(SEUH). Stuttgart, Germany, 72—73.

Jan Philip Bernius, Anna Kovaleva, Stephan Krusche,
and Bernd Bruegge. 2020b. Towards the Automation of
Grading Textual Student Submissions to Open-ended
Questions. In European Conference on Software
Engineering Education. ACM, 61-70.

[7

—

[8

—

John Biggs. 2003. Aligning teaching and assessing to
course objectives. Teaching and learning in higher
education: New trends and innovations 2 (2003), 13-17.

[9] Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst,
Walker H. Hill, and David R. Krathwohl. 1956.
Taxonomy of educational objectives. The classification

of educational goals. Handbook 1: Cognitive domain.
Longmans Green.

[10] Richard P. Feynman. 1994. Six Easy Pieces.

[11] Richard Higgins, Peter Hartley, and Alan Skelton. 2002.

The conscientious consumer: Reconsidering the role of
assessment feedback in student learning. Studies in
higher education 27, 1 (2002), 53-64.

[12] Alastair Irons. 2007. Enhancing learning through
Sformative assessment and feedback. Routledge.

[13] Paul Kirschner, John Sweller, and Richard Clark. 2006.
Why minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,

problem-based, experiential, and inquiry-based teaching.

Educational psychologist 41, 2 (2006), 75-86.

[14] Stephan Krusche, Bernd Bruegge, Irina Camilleri, Kirill
Krinkin, Andreas Seitz, and Cecil Wobker. 2017a.
Chaordic Learning: A Case Study. In 39th International
Conference on Software Engineering: Software
Engineering Education and Training. IEEE, 87-96.

[15] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS:
An Automatic Assessment Management System for
Interactive Learning. In 49th ACM Technical Symposium
on Computer Science Education (SIGCSE). 284-289.

[16] Stephan Krusche and Andreas Seitz. 2019. Increasing
the Interactivity in Software Engineering MOOCs - A
Case Study. In 52nd Hawaii International Conference
on System Sciences. 1-10.

[17] Stephan Krusche, Andreas Seitz, Jiirgen Borstler, and
Bernd Bruegge. 2017b. Interactive learning: Increasing
student participation through shorter exercise cycles. In
19th Australasian Computing Education Conference.
ACM, 17-26.

[18] Stephan Krusche, Nadine von Frankenberg, and Sami
Afifi. 2017c. Experiences of a Software Engineering
Course based on Interactive Learning. In Tagungsband
des 15. Workshops Software Engineering im Unterricht
der Hochschulen (SEUH). CEUR, 32-40.

[19] Stephan Krusche, Nadine von Frankenberg, Lara Marie
Reimer, and Bernd Bruegge. 2020. An interactive
learning method to engage students in modeling. In
International Conference on Software Engineering:
Software Engineering Education and Training. 12-22.

[20] Vladimir I. Levenshtein. 1966. Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals. Soviet
Physics-Doklady 10, 8 (1966), 707-710.

[21] Yang Li and Tao Yang. 2018. Word Embedding for
Understanding Natural Language: A Survey. Springer
International Publishing, Cham, 83-104.

[22] Leland Mclnnes and John Healy. 2017. Accelerated
Hierarchical Density Based Clustering. In International
Conference on Data Mining Workshops. 33—42.

[23] Tom Mitchell, Terry Russell, Peter Broomhead, and
Nicola Aldridge. 2002. Towards robust computerised
marking of free-text responses. (2002).

[24] Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, Doha, Qatar, 1532-1543.

[25] Diana Perez, Alfio Gliozzo, Carlo Strapparava, Enrique
Alfonseca, Pilar Rodriguez, and Bernardo Magnini.
2005. Automatic Assessment of Students’ Free-Text
Answers Underpinned by the Combination of a
BLEU-Inspired Algorithm and Latent Semantic
Analysis. 358-363.

[26] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word
Representations. In Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies.
2227-2237.

[27] Karl Raimund Popper. 1972. Objective Knowledge.

[28] Juan Ramos. 2003. Using TF-IDF to Determine Word
Relevance in Document Queries. In Ist instructional
conference on machine learning, Vol. 242. Piscataway,
NI, 133-142.

[29] Per Runeson, Martin Host, Austen Rainer, and Bjorn
Regnell. 2012. Case Study Research in Software
Engineering. John Wiley & Sons, Inc.

[30] Arjun Singh, Sergey Karayev, Kevin Gutowski, and
Pieter Abbeel. 2017. Gradescope: A Fast, Flexible, and
Fair System for Scalable Assessment of Handwritten
Work. In 4th Conference on Learning @ Scale. ACM,
81-88.

[31] Jana Sukkarieh, Stephen G Pulman, and Nicholas
Raikes. 2003. Automarking: using computational
linguistics to score short, free-text responses. (2003).

[32] Reed Williams and Thomas Haladyna. 1982. Logical
Operations for Generating Intended Questions (LOGIQ):
A typology for higher level test items. A technology for
test-item writing (1982), 161-186.

[33] William E. Winkler. 1990. String Comparator Metrics
and Enhanced Decision Rules in the Fellegi-Sunter
Model of Record Linkage. In Section on Survey
Research. 354-359.

8 Machine Learning Based Feedback on
Textual Student Answers in Large

Courses

Publication [BKB22] has been published as a peer-reviewed journal article:

Authors: Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge
Journal: Computers and Education: Artificial Intelligence

ISSN: 2666-920X

Publisher: Elsevier BV

Volume: 3

Year: 2022

DOI: 10.1016/j.caeai.2022.100081

Review: Peer Reviewed (2 Reviewers)

Summary The paper formalizes the research methodology of the dissertation us-
ing the Wieringa design science process. The problem investigation of large courses
resulted in the treatment design of the Computer-aided Feedback for textual exer-
cises (CoFee) framework. The treatment validation of CoFee was conducted in a
small laboratory experiment in 2019, which demonstrated that the grading over-
head could be reduced by 85%. This treatment validation already confirmed the
feasibility of automating the grading process for problem-solving exercises.

The treatment was implemented in the Athena reference implementation The
top-level design of Athena consists of four components Segmentation, Language

Embedding, Clustering, and Feedback Engine, which are described in detail in the
paper.

60

8 Machine Learning Based Feedback on Textual Student Answers in Large Courses

The Athena implementation was then evaluated in two design cycles using a set
of three courses with up to 2, 200 enrolled students per course. Data were collected
from 34 exercises offered in each of the courses. Athena suggested feedback for
45% of the submissions. 92% (Positive Predictive Value) of these suggestions were

precise and, therefore, accepted by the instructors.

Contributions J.P. B. conceptualized and formalized the architecture and dy-
namic behavior of CoFee. J.P. B. and S. K. formulated the problem investigation.
J.P. B. derived the knowledge goals according to Wieringa’s design science method
and conducted the literature review. J.P. B. developed Athenas system design
and implemented Athena together with the people mentioned in the articles Ac-
knowledgments section. J.P. B. developed the implementation evaluations study
design, collected the data, performed the statistical analysis, and described the
findings and results. J.P. B. wrote and visualized the paper. B. B. provided
feedback and helped improving the manuscript. S. K. and B. B. reviewed the

paper.

61

Computers and Education: Artificial Intelligence 3 (2022) 100081

Contents lists available at ScienceDirect

Computers and Education: Artificial Intelligence

€
ARTIFICIAL
INTELLIGENCE

ELSEVIER journal homepage: www.sciencedirect.com/journal/computers-and-education-artificial-intelligence

Machine learning based feedback on textual student answers in
large courses

Jan Philip Bernius , Stephan Krusche, Bernd Bruegge

Department of Informatics, Technical University of Munich, Boltzmannstrafe 3, 85748, Garching Near Munich, Germany

ARTICLE INFO

Keywords:

Software engineering
Education

Interactive learning
Automatic assessment
Grading

Assessment support system
Learning

Feedback

ABSTRACT

Many engineering disciplines require problem-solving skills, which cannot be learned by memorization alone.
Open-ended textual exercises allow students to acquire these skills. Students can learn from their mistakes when
instructors provide individual feedback. However, grading these exercises is often a manual, repetitive, and time-
consuming activity. The number of computer science students graduating per year has steadily increased over the
last decade. This rise has led to large courses that cause a heavy workload for instructors, especially if they
provide individual feedback to students. This article presents CoFee, a framework to generate and suggest
computer-aided feedback for textual exercises based on machine learning. CoFee utilizes a segment-based
grading concept, which links feedback to text segments. CoFee automates grading based on topic modeling
and an assessment knowledge repository acquired during previous assessments. A language model builds an
intermediate representation of the text segments. Hierarchical clustering identifies groups of similar text seg-
ments to reduce the grading overhead. We first demonstrated the CoFee framework in a small laboratory
experiment in 2019, which showed that the grading overhead could be reduced by 85%. This experiment
confirmed the feasibility of automating the grading process for problem-solving exercises. We then evaluated
CoFee in a large course at the Technical University of Munich from 2019 to 2021, with up to 2, 200 enrolled
students per course. We collected data from 34 exercises offered in each of these courses. On average, CoFee
suggested feedback for 45% of the submissions. 92% (Positive Predictive Value) of these suggestions were precise
and, therefore, accepted by the instructors.

1. Introduction

instructor cannot handle feedback and grading for large classes alone. In
particular, large university courses with hundreds of students rely on

Student numbers in computer science schools and departments are
rising. Analyzing statistics and reports released by popular computer
science departments reveals how the number of conferred degrees has
steadily increased since 2010. Fig. 1 depicts the development of degrees
conferred by eight renowned universities' in the area of computer sci-
ence. As a result, introductory courses need to handle more and more
students every year. This rise in student numbers has increased course
management efforts and made it challenging to provide high-quality

teaching assistants to provide feedback on exercises. Online platforms,
live streaming, and chat systems allow instructors to interact with a
large number of students on an individual level, regardless of the
respective course size.

Exercises allow students in lecture-based courses to apply and
practice relevant skills. Exercises stimulate learning in six different
cognitive processes, e.g., as classified in Bloom’s revised taxonomy
(Anderson et al., 2001). Software engineering is a problem-solving

individual feedback to students (Krusche et al., 2020). A single discipline that cannot be learned by memorization alone.

Abbreviations: CoFee, Computer-aided Feedback for textual exercises; ELMo, Embeddings from Language Models; HDBSCAN, Hierarchical Density-Based Spatial
Clustering of Applications with Noise; ISE, Introduction to Software Engineering; LSA, Latent Semantic Analysis; NLP, Natural Language Processing; POM, Project
Organization and Management; PPV, Positive Predictive Value; TF-IDF, Term Frequency-Inverse Document Frequency; TNR, True Negative Rate; TPR, True Positive
Rate; TUM, Technical University of Munich.

* Corresponding author.

E-mail addresses: janphilip.bernius@tum.de (J.P. Bernius), krusche@in.tum.de (S. Krusche), bernd.bruegge@tum.de (B. Bruegge).

! The universities were selected based on the Times Higher Education Ranking by Subject in 2022 and the availability of data. https://timeshighereducation.com/wo
rld-university-rankings/2022/subject-ranking/computer-science.

https://doi.org/10.1016/j.caeai.2022.100081
Received 6 March 2022; Received in revised form 24 May 2022; Accepted 24 May 2022

Available online 3 June 2022
2666-920X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

J.P. Bernius et al.

—a— Technical University of Munich —— Stanford University
—— Massachusetts Institute of Technology —— ETH Zurich
University of California, Berkeley =~ —— National University of Singapore

—— Princeton University —e— University of California, Log Angeles
RUS Total
6,000
1,200
1,000 5,000
800 4,000
600
3,000
400
2,000
200
1,000

2014 2015 2016 2017 2018 2019 2020

Fig. 1. The number of computer science degrees (bachelor’s and master’s)
conferred per year by renowned universities in the area has steadily increased
over the last decade. Data was collected from statistics published by the uni-
versities. The left y-axis represents the number of degrees per university. The
right y-axis represents the Total number of degrees across all universities.

Multiple-choice quizzes are easy to assess, and automated tools are
broadly available in learning management systems and paper-based
assessments. However, mastery of these quizzes does not require
problem-solving skills because they typically target only lower cognitive
skills, particularly knowledge recall and comprehension. It is difficult to
create quizzes that stimulate higher cognitive skills, such as
problem-solving, essential in computer science (Alario-Hoyos et al.,
2016; Williams & Haladyna, 1982).

Open-ended textual exercises enable instructors to teach problem-
solving skills and allow students to improve their knowledge. These
exercises do not have a single correct solution but rather allow answers
within a particular solution space that words and phrases can charac-
terize. Students profit from individual feedback relationships with their
instructors (Feynman, 1994). Individual feedback and formative as-
sessments are essential elements in learning (Higgins et al., 2002; Irons,
2007). Feedback on open-ended exercises allows students to try out
problem-solving and experience failure. Students need guidance in the
form of feedback in their learning activities to prevent misconceptions
(Kirschner et al., 2006).

However, textual exercises lead to a wide answer spectrum because
students need to formulate individual answers to problems, which re-
sults in an increased manual effort when reviewing students’ answers. In
addition, assuring consistent feedback is difficult with a large number of
teaching assistants. This article describes a machine learning-based
system as the solution to this problem.

This article is organized following the design and engineering cycle
(Wieringa, 2014). Section 2 formulates the design science research goals,
the artifact design goal, and knowledge goals, which we use to derive
knowledge questions throughout the article. Section 3 describes grading
efforts in large courses and the role of feedback in the learning process.
Section 4 introduces the computer-aided feedback for textual exercises
(CoFee) framework with its problem domain and dynamic behavior.
Section 5 describes background literature and compares related work to
CoFee. Section 6 validates the concepts of CoFee in a laboratory
experiment. Section 7 describes the reference implementation Athena in
the context of Artemis. Section 8 describes the course “Introduction to
Software Engineering” in which the approach was used, shows the
quasi-experimental study design of the empirical evaluation, presents
results and limitations, and discusses the findings. Section 9 concludes
the article with its main contributions, and Section 10 outlines future

Computers and Education: Artificial Intelligence 3 (2022) 100081

work.
2. Methodology

This research focuses on two main stakeholders: instructors, espe-
cially those responsible for large lecture courses, and students. For this
paper, we define instructors as both lecturers and teaching assistants.
Lecturers are university employees such as professors, researchers, and
doctoral candidates. Teaching assistants are experienced students who
have previously passed the same course with a good grade and are
motivated to help in the teaching process. Some universities also use the
term “tutor” to refer to a teaching assistant.

Lecturers have an interest in delivering high-quality teaching sup-
ported by many exercises. Through individual feedback, lecturers want
to support students in their learning activities as much as possible.
However, lecturers want to minimize their workload on assessments to
have time to create and improve exercises and course materials.
Teaching assistants need to balance their limited working hours between
assessments, face-to-face teaching sessions, and answering questions.
Students want to understand the course content, solve the exercises, and
receive timely feedback. They want to re-iterate their solution based on
feedback to fail early and learn from the mistakes on the way (Popper,
1934, 1959).

We focus on automating the assessment of textual exercises to meet
the conflicting goals of producing high-quality feedback and saving
time.

Research Goal: Reduce assessment efforts on textual exercises for
instructors while scaling feedback for large courses.

Following Wieringa’s design science methodology (Johanfen, 2019;
Wieringa, 2014), we break down this research goal into a goal hierarchy
shown in Fig. 2. The design science research goals support the social context
goals, which in turn are defined by the external stakeholder goals and the
problem context. To achieve the research goal, we explore ways of
automating and supporting the assessment process for textual exercises.
Therefore, we conclude this with the following Artifact design goal:

Artifact Design Goal: Design a system that automatically assesses
textual exercises.

Section 4 describes the CoFee framework to generate computer-
aided feedback for textual exercises. Section 7 describes a reference
implementation for CoFee, the Athena software system. Athena collects
assessment knowledge in the form of exercise and feedback pools. We
summarize this effort to understand the stakeholders and the problem
context with the following knowledge goal:

Knowledge Goal 1 (Investigation): Understand grading efforts
and the role of feedback in large courses.

Next, we want to validate if the proposed treatment, CoFee, is suited
to solve the assessment problem for textual exercises. We address this
with the second knowledge goal:

Knowledge Goal 2 (Validation): Understand the performance of
CoFee and its individual components during the assessment of textual
exercises.

Last, we want to evaluate the implemented artifact, the Athena
system, and analyze its performance in large courses. Therefore, we
conclude with the third knowledge goal:

Knowledge Goal 3 (Evaluation): Understand the influence of
Athena on the grading process.

3. Problem investigation
3.1. Feedback in the learning process

There is clear evidence that guidance is essential to facilitate learning
and prevent misconceptions (Kirschner et al., 2006). Therefore, it is
important to involve students in learning activities, even in large cour-
ses. Examples and exercises play a central role in the early phases of
cognitive skill acquisition (VanLehn, 1996). Carefully developed

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

Social Context Goals

r

External Stakeholder Goals

\

Instructor Goal:
Provide High-quality feedback to all students with little effort.

Student Goal: Re-iterate on solutions based on feedback.

Student Goal:
Solve exercises and receive timely constructive feedback.
_ _J

.

rDesign Science Research Goals

Artifact Design Goal:
Design a system to automatically assess textual exercises.

Knowledge Goal 1:
Investigation

Knowledge Goal 2:
Validation

Knowledge Goal 3:
Evaluation

.

S

Fig. 2. Hierarchical goal taxonomy following the template from Wieringa (2014). An arrow indicates that a goal supports the other.

examples increase the learning outcome (Sweller & Cooper, 1985;
Trafton & Reiser, 1993). Providing individual feedback is essential in
learning to improve students’ skills (Higgins et al., 2002). Feedback
helps students to understand their learning progress and helps in the
learning process through reflection. In the current teaching paradigm,
students take “the active role of ... seeking, interpreting and using
feedback as part of their learning process” (Jensen et al., 2021). Good
feedback incentivizes students to invest time in an exercise and rethink
their solution. Participation in exercises with feedback has a positive
effect on academic performance (Forster et al., 2018).

3.2. Interactive learning

Interactive learning is a scalable and adaptive teaching philosophy
based on “constructive alignment” that puts the interaction with a stu-
dent into the core of the educational activities (Krusche, Seitz, et al.,
2017). It integrates aspects of team-based learning and creativity to
stimulate problem-solving skills and soft skills.

Interactive learning decreases the cycle time between teaching a
concept and practicing it during the lecture in multiple short iterations:
Instructors teach and exercise small chunks of content in short cycles
and provide immediate feedback so that students can reflect on the
content and increase their knowledge incrementally. Interactive
learning expects active participation of students and use of computers
(laptops, tablets, or smartphones) in classrooms. Fig. 3 shows the iter-
ative process of interactive learning, where each iteration consists of five
phases that are performed several times during each lecture:

1. Theory: The instructor introduces a new concept and describes the
theory behind it. Students listen and try to understand it.

2. Example: The instructor provides an example so that students can
refer the theory to a concrete situation.

3. Practice: The instructor asks the students to apply the concept in a
short exercise adapted to the individual student’s existing knowledge
and skills. The students submit their solutions to the exercise.

4. Feedback: The instructor provides immediate feedback to the stu-
dent submissions using an automatic assessment system.

Alternatively, the instructor can show multiple exemplary solutions
and discuss their strengths and weaknesses.

5. Reflection: The instructor facilitates a discussion about the theory
and the exercise to reflect on the first experience with the new
concept.

3.3. Artemis

Artemis (Krusche & Seitz, 2018) is a teaching platform that supports
interactive learning and is scalable to large courses with immediate and
individual feedback. It is open-source” and used by multiple universities
and courses.

Artemis includes several functionalities to implement interactive
learning. In the following section, we present and discuss the essential
features. Instructors can create different exercises: programming,
modeling, quiz, text, and file upload. Artemis offers different assessment
modes: automatic, semi-automatic, and manual. It automatically as-
sesses programming and quiz exercises and provides a semi-automatic
assessment approach based on machine learning for modeling and text
exercises.

Artemis allows students to work collaboratively on the solution to
the given tasks in team exercises. Instructors can incorporate live
streams, recordings, and slides of lectures and embed exercises directly
into them using lecture units. Students can ask questions and receive
answers in a chat-based communication with emojis and references next
to exercises and lectures. In addition, Artemis offers an exam mode for
online exams. The exam mode includes additional functionalities, such
as exercise variants, plagiarism checks, and offline support.

3.4. Assessment
Assessment is a time-intensive (Chen et al., 2018; Cheng, 2017),

manual, and repetitive job. Efforts vary based on the size of the accepted
answer space: Lower cognitive processes are easier to assess (e.g.,

2 Artemis: https://github.com/Islintum/Artemis.

J.P. Bernius et al.

remember) compared to higher processes (e.g., evaluate). That means if
an answer asks to state a term, the assessment is simple as the answer
either matches the solution or not. For complex exercises, students are
free in their answers and, e.g., explain a concept based on an example. In
this instance, assessment is difficult and time-consuming as graders need
to analyze the example and solve the exercise in the students’ context
themselves. In software engineering, many solutions can be acceptable
for a problem. Acceptable answers might change as paradigms shift, and
new engineering principles become the norm.

To address Knowledge Goal 1 (Investigation), we extrapolate the
assessment efforts required for large courses following the interactive
learning model to answer two knowledge questions (KQs):

Knowledge Question 1: How many assessments do large courses
need?

In the following, we calculate the required assessments for a course
featuring three lecture exercises and four homework exercises every
week. The course format is based our course “Introduction to Software
Engineering” (ISE) (cf. Subsection 8.1). We assume 2000 participating
students for one semester of 13 weeks:

H#exercises = (3+4)-13 =91 (€D)

#assessments = F#exercises-#students = 91-2,000 = 182,000 2

We conclude that an interactive course sets 91 exercises over the
course of the semester. Therefore, instructors need to complete 182,000
assessments in a large course with 2,000 students (KQ 1).

Knowledge Question 2: How much time do instructors spend on
manual assessments of exercises?

Given an average assessment time of 5 min per student solution, we
extrapolate the assessment total assessment time:

X Assessment Time = #assessments-5 min 4

= 15,166.6h = 1, 166.6h/Week (5)

We conclude that the large course requires 15,167 h of assessment
work which translates to 1,167 h every week (KQ 2). Data from ISE in
2021 shows that out of a total of 89 exercises, 24 were textual exercises
(27%). We, therefore, estimate that instructors need to spend 315 h on
assessments every week for textual exercises alone.

4. Treatment design — CoFee

To address the artifact design goal stated in Section 2, we derive an
artifact design problem, which we define by following the template
proposed by Wieringa (2014): We highlight artifacts, requirements, and
stakeholder goals.

We investigate how to provide students with feedback on their ex-
ercise solutions automatically. We present the CoFee approach, which
captures knowledge during the assessment process and provides in-
structors with feedback suggestions. CoFee allows instructors to assess
exercises faster and offer consistent feedback to students in large cour-
ses. We summarize this as follows:

Artifact Design Problem: How to implement a system (artifact)
that generates feedback on textual exercise solutions (requirement) so
that instructors can give better feedback in shorter cycles (stakeholder
goal)?

This section introduces the proposed treatment computer-aided
feedback for textual exercises. We describe the architecture and dy-
namic behavior of the treatment CoFee.

4.1. Architecture

Fig. 4 depicts the analysis object model (Bruegge & Dutoit, 2009) of
the problem domain: A Course consists of many Exercises. Students can
participate in an exercise by submitting their solutions. A Submission

Computers and Education: Artificial Intelligence 3 (2022) 100081

Q

ﬂ
|

Example

Student
| Theory l

Fig. 3. Interactive learning puts the individual student into the core of the
learning activity and follows an iterative process that is conducted multiple
times in lectures.

Reflection

,

can be decomposed into many Segments. Each of them encapsulates one
core idea of the answer. Segments can receive Feedback via a comment
and a score. We model the automatic generation of feedback and
instructor grading as a metaphorical factory, following the factory
method pattern (Gamma et al., 1994). Following the metaphorical
application of design patterns, the instructor is an expensive feedback
source. To cautiously and efficiently use this expensive subject, we
introduce the Automatic feedback engine as a proxy object to filter
which feedback requests it needs to forward to the real subject, the
Instructor.

4.2. Dynamic behavior

Fig. 5 presents an overview of the workflow. CoFee first segments a
submitted answer by splitting the answer into topically-coherent seg-
ments. These segments are annotated with one or more feedbacks as
they cover a single core idea. Next, CoFee groups the segments into
clusters by the similarity of their ideas. Based on the cluster classifica-
tion, CoFee suggests gradings based on the assessment knowledge from
the feedback pool. If enough assessment knowledge has been collected
for a specific segment, then automatic feedback can be suggested.
Otherwise, an instructor is required to complete the grading. Finally,
CoFee presents a partial grading to allow the instructors to benefit from
the knowledge generated. Instructors accept, change, or discard existing
feedback suggestions and provide new feedback. All feedback is sub-
mitted to the feedback pool for reuse in future grading sessions.

CoFee learns which answers to an exercise are considered correct in
the learning context. For further submissions, the learning platform
automatically generates suggestions for similar answers or even auto-
matically evaluates the answers. In doing so, the learning platform uses
the knowledge of previous assessments from lecturers. The more stu-
dents participate in an exercise, the more knowledge is generated and
the better feedback the learning platform can suggest.

This addresses the external stakeholder goals stated in Section 2. The
instructor’s goal is to provide high-quality feedback to all students while
decreasing the overall assessment time. The student’s goal is to receive
timely feedback. CoFee integrates into existing learning platforms that
need to provide an interface for students to submit their textual answers.
We utilize a segment-based feedback concept (Bernius & Bruegge,
2019), requiring assessors to provide feedback and score about a
segment of a student’s answer, resulting in relatable and reusable
feedback elements.

CoFee trains its assessment model with every feedback element and
becomes more accurate with every new feedback element. After the
assessment process, the system can detect conflicting assessments in
both comments and scores. Therefore, CoFee computes the similarity
among feedback comments. We claim that the similarity between two
segments should be proportional to the similarity between the feedback
comments. If this relation is violated, CoFee prompts the instructor to

J.P. Bernius et al. Computers and Education: Artificial Intelligence 3 (2022) 100081

Course . Exercise
year problemStatement
Submission
gradingCriteria
*| date
* Exercise Pool t
*| create() solution
Assessment add(Exercise) reuse() .
Knowledge < - submit()
participate()
/\ % review()
Feedback Pool N
! Student decompose()
; add(Feedback)
' *
l ? X Feedback 0..1 Segment
“USeS» | Feedback Factor
! Yl .. «Creates»----------- > comment coreldea
E provideFeedback() credits text
E 4 A compare(Segment)
Automatic Feedback Instructor Automatic Feedback Instructor Feedback
Engine
provideFeedback() suggest() provide()
provideFeedback()
accept()
change()
discard()

Fig. 4. Analysis Object Model of the CoFee framework. The model describes the system from the stakeholder’s point of view and illustrates the concepts visible to the
stakeholder (Bruegge & Dutoit, 2009) (UML Class Diagram).

Student CoFee Instructor
Automatic
assessment
: Manane)
possible? Manually
. Submit Submission Cluster Text Segment Feedback review
solution Segments Cluster suggestion feedback
A suggestions
Improve Compute ff: .
answer Language «anects»
Embeddings - \
AUtom_atlca"y «influences»| Assessment ! Instructor
review [&C-----------1
knowledge
Satisfied? Segment submission 9 Feedback
Submissions
Automatic Learn from
Review ' < feedback instructor feedback)
Feedback
feedback l

Fig. 5. Workflow of automatic assessment of submissions to textual exercises based on the manual feedback of instructors. CoFee analyzes manual assessments and
generates knowledge for the suggestion of computer-aided (automatic) feedback (UML activity diagram).

review the pair of submissions and allows them to update the assessment the assessment process, we do away with a reference dataset before the
as needed. The learning platform may only release the feedback to assessment. Furthermore, by training with correct and incorrect solu-
students after the instructors have resolved inconsistencies. tions, we maintain a dataset to provide helpful feedback comments to
support the learning process. Finally, dynamically collecting the dataset
5. Related work during assessment keeps the system independent of any domain and
allows for using the system with new exercises to incorporate the latest

This section compares CoFee to alternative treatments from related knowledge into teaching.

work in the literature. Compared to existing work, CoFee segments and
clusters student solutions automatically. By training the system during

J.P. Bernius et al.
5.1. Assessment systems

Automated essay scoring computes scores on written solutions based
on previous submissions. Automated essay scoring systems require a
perfect solution to be available upfront (Mitchell et al., 2002; Pulman &
Sukkarieh, 2005; Sukkarieh et al., 2003). They primarily consider the
similarity to a perfect solution to determine the grade. Giving feedback
is not the focus of automated essay scoring systems. Manual clustering
and shared grading are concepts used in research (Pérez et al., 2005) and
commercial tools (i.e., Gradescope). Managing clusters is hard at scale,
especially communicating the exact differences between clusters among
many graders.

5.1.1. Atenea

Atenea is a computer-assisted assessment system for scoring short
answers in computer science (Pérez et al., 2005). Atenea maintains a
database of short-answer-questions with corresponding sample solu-
tions. Sample solutions are either written by an instructor or reused from
a highly graded student answer. Atenea combines latent semantic
analysis (LSA) and a modified bilingual evaluation understudy algo-
rithm hypothesizing that syntax and semantics complement each other
naturally. Combining these two natural language processing (NLP) tools
always performs better (with a higher hit rate). Furthermore, Pérez et al.
(2005) argue that syntactical and semantical analysis combinations lead
to greater automatic text assessment results.

Atenea compares student answers to a set of predefined answers. It
determines a grade based on the similarity to these predefined answers.
This approach is limited to exercises with a narrow answer space where
possible answers are known beforehand. High variability in answers
limits Ateneas applicability and requires a large set of sample solutions.
The focus of the Atenea system is grading, whereas Athena primarily
focuses on individual feedback. Athena does not require a sample so-
lution but collects knowledge on correct and incorrect solutions during
the manual assessment. The evaluation of Atenea focuses on comparing
NLP techniques in the context of grading using a dataset. We evaluate
Athena by using it in multiple courses and measuring its performance.

Atenea compares student answers to a set of predefined answers. Its
similarity to these predefined answers determines the grade. This
approach is limited to exercises with a narrow answer space where
possible answers are known beforehand. High variability in answers
requires a large set of predefined answers, limiting the system’s appli-
cability. The focus of the Atenea system is grading, whereas Athena is
primarily focused on individual feedback. Athena does not require a
predefined solution but collects knowledge on correct and incorrect
solutions during the manual assessment. The evaluation of the Atenea
authors focuses on a comparison of NLP techniques in the grading
context and is based on a dataset. We evaluate Athena by using it in
multiple courses and measuring its performance.

5.1.2. Powergrading

Powergrading is an automatic assessment approach for textual ex-
ercises (Basu et al., 2013) that provides feedback in the form of a nu-
merical score and a comment explaining why an answer is correct or
incorrect, similar to the comment of a human. In addition, Basu et al.
(2013) propose a system that clusters similar answers to a question so
that instructors can “divide and conquer” the correction process by
assessing a whole cluster with the same score and comment, therefore
reducing the correction time significantly. Clustering answers to a
question should happen based on a distance function composed of
different features and automatically tries to learn a similarity metric
between two students’ answers. Some of the implemented and used
features that are weighted in developing this distance function used for

Computers and Education: Artificial Intelligence 3 (2022) 100081

clustering are, e.g., the difference in length between two answers, the
term frequency-inverse document frequency (TF-IDF)® similarity of
words, or the LSA vectorial score based on the entirety of Wikipedia as a
training text corpus. The authors have tested their implementation with
test data from the United States Citizenship Exam in 2012 with 697
examinees. They concluded that around 97% of all submissions can be
grouped into similar clusters so that instructors would only have to
provide feedback for a single cluster and would still be able to reach and
correct multiple submissions at once, therefore reducing assessment
time significantly (Basu et al., 2013).

Powergrading is focused on short-answer grading, where a typical
answer does not exceed two sentences. Athena is not limited to a certain
answer length and uses segmentation to work with multiple sentences or
paragraphs. Similar to Powergrading, Athena groups segments into
clusters. Both systems assume hierarchical cluster structures. Power-
grading allows instructors to grade clusters rather than submissions,
whereas Athena will use the cluster structure to suggest feedback for the
following assessments.

5.1.3. Gradescope

Gradescope® is a system geared toward assessing handwritten
homework and exam exercises (Singh et al., 2017) by scanning
paper-based work. Instructors grade the submissions online. Gradescope
allows the instructor to create grading rubrics at the assessment time
dynamically. Instructors can group similar submissions manually for
shared grading or rely on suggested groups for the assessment.

Athena also provides sharing feedback with groups of answers;
however, Athena groups individual segments, whereas Gradescope
groups entire submissions. Gradescope allows the grader to grade mul-
tiple submissions as one, similar to Powergrading, whereas Athena
shares individual feedback elements across multiple submissions.
Athena requires instructors to inspect every submission and supports
instructors by suggesting feedback items. Neither system requires a
training dataset of previously assessed answers. For exercises with a
limited answer spectrum, Gradescope does allow the grader to assess
several submissions efficiently as it reduces the number of solutions to
grade. However, this approach is more limited for exercises with high
variability in answers (e.g., when asking for examples) as more groups
with fewer elements need to be graded.

5.2. Language models

Automatically assessing text submissions requires comparing seg-
ments of those submissions and identifying similar pieces of text.
Therefore, we need a measurable abstraction of a text’s meaning as an
intermediate representation. This paper relies on existing approaches
and techniques from the domain of NLP, most notably language models
and word embeddings, to convert a piece of text into a comparable
format. Student answers can contain unknown words, incorrect
grammar and punctuation, and false statements.

Word embedding is a feature learning technique in NLP, where
words or phrases from the vocabulary are mapped to vectors of real
numbers (each word is associated with a point in a vector space) (Li &
Yang, 2018). The feature vector represents different aspects of the word,
and consequently, words with the same meaning are assigned similar
vector representations. Additionally, word embeddings can capture
word analogies by examining various dimensions of the differences
between word vectors (Pennington et al., 2014). For example, the
analogy “king is to queen as man is to woman” should be encoded in the
vector space by the vector equation king — queen = man — woman.

The distributed representation is learned based on the usage of the

8 TF-IDF: An information extraction statistic that indicates how significant a
word is to a document (Ramos, 2003).
4 Gradescope: https://gradescope.com.

J.P. Bernius et al.

e
034 R0 TAAMS 9029615 4B S8 (st)

Time is especially reserved for this pi

atures to the existing

(i i

iterations it can be participated as long as the
resources are available

Computers and Education: Artificial Intelligence 3 (2022) 100081

ser)

Lspecify astrict
to deal with

2 /
DTG5 Seacesctbinie)

[ropm——

In every step you adapt to cu

Adaptive development d ;
circumstances, for example 5

sequence of procedures i oraer
change.

pr———]

w
Essentially, | change code that alrea) S01ecaateI16934251 68 70e07cd3 366811308 (Chuster |

nd worked previously.
3 You break down the entire project into smaller

chunks, and you build from there.

n s
R
e ik O Iedizbascovnl 625000608 Chster 124)

Initerative development the.
defined beforehand.

Iterative Deve
something.

nt basically means redoing |

Fig. 6. 760 text segments clustered by hand into 75 clusters.

words. This allows words used in similar contexts to have similar rep-
resentations, naturally capturing their meaning. Embeddings from
Language Models (ELMo) (Peters et al., 2018) is a word embedding
constructed as a task-specific combination of the intermediate layer
representations in a bidirectional language model. It models complex
characteristics of words-use in the language dictated by the syntax and
semantics. It also captures how these uses vary across linguistic contexts,
which is important for addressing polysemy in natural languages.

In a deep language model, the higher-level long short term memory
states are shown to capture context-dependent aspects of word meaning
while lower-level states model aspects of the syntax. By constructing a
representation out of all the layers of the language model, ELMo can
capture both language characteristics. ELMo representations have three
main characteristics to achieve state-of-the-art results in most common
NLP downstream tasks. First, ELMo representations are contextual: the
representation for each word depends on the entire context in which it is
used. They are also deep: the word representations combine all layers of
a deep, pre-trained language model neural network. Finally, ELMo
representations are purely character-based, allowing the network to use
morphological clues to form robust representations for out-of-
vocabulary tokens, unseen in training.

6. Treatment validation

We validate the treatment using a laboratory experiment to study the
feasibility of CoFee. The treatment validation answers two knowledge
questions that address the effects of the treatment artifacts:

Knowledge Question 3: Do groups of similar segments occur which
can receive the same feedback?

Knowledge Question 4: What portion of solutions can CoFee
assess?

Answering Knowledge Questions 3 and 4 addresses Knowledge Goal 2.

6.1. Exercise

We collected a dataset by running a textual exercise in the “Project
Organization and Management” (POM) course at Technical University
of Munich (TUM) using the Artemis platform. In the exercise “iterative
vs. incremental vs. adaptive,” students were asked to differentiate the
terms iterative development, incremental development, and adaptive devel-
opment using examples. 130 students participated in the exercise.

6.2. Study design

We manually evaluated all submissions by segmenting the answers
and separating all segments by their core idea. The 130 student sub-
missions resulted in 762 text blocks. We printed all segments on paper
cards and manually clustered them into groups by similarity in several
iterations. Fig. 6 shows the paper cards with classifications marked using
sticky notes. In the first iteration, we roughly sorted them into three
clusters. We then continued to subdivide each cluster in the following
iterations. The similarity refinement increased with every iteration over
the whole data set. We repeated the process until we reached a satis-
factory assignment into 75 clusters.

6.3. Results and findings

We identified that 95% of all segments could be assigned to clusters.
We found a total of 66 clusters in the dataset. The average cluster has 11
elements with a minimum of two and a maximum of 49; the median
cluster size was four. 717 out of the 762 segments can be assigned to a
cluster (94%).

Finding 1 (Clusters): Clustering of segments for shared grading is
possible. The majority of segments (94%) can be clustered.

The experiment results show that student solutions can be split into

J.P. Bernius et al.

segments and grouped by similarity. Furthermore, the data suggests that
94% of segments can be part of a grading cluster.

Finding 2 (Grading Potential): Grading efforts can be reduced by
85% through automatic grading of clusters.

The overlap between student answers can reduce grading to one
segment per cluster and unclustered segments. In this instance, the
grading can be reduced to 85%:

(717 — 66) /762 = 85.4% 7

The unclustered portion of 6% is not suitable for the concept of
shared grading. Therefore, the overall grading effort is reduced from 762
segments to 111 segments, which is 15% of the original grading effort:

(66 +45)/762 = 14.5% ®)

With these findings, we conclude that CoFee is a suitable treatment
for the artifact design goal, and we proceed with the treatment
implementation.

7. Treatment implementation — Athena

We implemented CoFee in a reference implementation called
Athena® (Bernius et al., 2021) integrated into the learning platform
Artemis (Krusche & Seitz, 2018). After the exercise deadline, Artemis
sends the students’ answers to Athena for processing. Athena will pre-
process the answers before the assessment begins and identify segments
suitable for the same feedback. Fig. 7 depicts the preprocessing activ-
ities: The system analyzes incoming student answers using NLP, divides
them into text segments, and uses them to create text clusters with
similar text segments from different answers. This is done using a
combination of segmentation and linguistic embeddings, particularly
deeply contextualized word representations (i.e., ELMo). This allows for
an understanding of students’ responses and the generation of individ-
ualized feedback. In this way, a learning platform can automatically
reuse manual feedback for contributions from different students. Auto-
matic individualized feedback suggestions can reduce the workload for
instructors and increase the consistency and quality of feedback to
improve students’ understanding. Fig. 8 depicts the top-level design of
the system, which consists of three steps: segmentation, language
embedding, and clustering.

First, Athena analyzes the answers (incoming text) to identify seg-
ments (Bernius et al., 2020). Therefore, Athena identifies common topics
described in the answers from all students. A keyword represents a topic.
To identify the important topics for an exercise, Athena counts the oc-
currences of lemmatized words across all students and selects the ten
most common words (Bernius et al., 2020). Next, Athena will break
down every student’s answer into clauses. Adjacent clauses that share
the same topic, represented by a keyword and the absence of a new
keyword, are merged to form a segment. If a new keyword appears in the
following clause, we identify a topic shift and start a new segment. The
result is a set of topically coherent segments.

Second, Athena uses an ELMo model to convert each segment to
vector form. ELMo vectors have 1,024 dimensions representing the in-
formation extracted from the segment. The vector representation allows
for a comparison of segments and identifying similarities. Athena uses a
pre-trained ELMo model (Peters et al., 2018) based on a dataset con-
sisting of 5.5B tokens from Wikipedia and news articles.’

Third, Athena employs the Hierarchical Density-Based Spatial Clus-
tering of Applications with Noise (HDBSCAN) clustering algorithm
(McInnes & Healy, 2017) to identify classes of similar text segments.
Within a cluster, Athena shares manually created feedback as sugges-
tions. The hierarchical clustering algorithm allows to determine the
number of clusters dynamically. Further, the hierarchical structure can

5 Athena: https://github.com/Islintum/Athena.
6 AllenNLP - ELMo: https://allennlp.org/elmo.

Computers and Education: Artificial Intelligence 3 (2022) 100081

dynamically narrow or widen the search radius depending on the
availability of feedback. Narrow clusters provide more accurate feed-
back on the one side; but also limit the possible coverage. Larger clusters
increase the possibility of finding existing feedback to compose a sug-
gestion; however, they also increase the risk of false feedback.

During the manual assessment, Athena uses a prioritized assessment
order. Submissions with several segments in clusters without feedback
are prioritized, maximizing the possible coverage for automatic feed-
back suggestions. Athena searches their respective clusters for each
segment for existing feedback and suggests the closest feedback.
Furthermore, credit points associated with feedback are prioritized
based on the clusters’ credit average. Athena’s automatic feedback
suggestions are displayed to instructors within Artemis as part of the
assessment interface (Bernius & Bruegge, 2019), as depicted in Fig. 9.
Instructors can add additional feedback to unassessed parts of the stu-
dent solution. They can either approve the feedback suggestions or up-
date them as they see fit.

8. Implementation evaluation

This evaluation compares the quantity and quality of feedback in the
course ISE with and without the Athena system. We analyze feedback in
three instances of ISE: In 2019, text exercises on Artemis were intro-
duced during the course. The Artemis platform served as the submission
and feedback platform for students. All feedback was composed manu-
ally and published through Artemis. In 2020, the course introduced the
Athena system as part of Artemis. Students continued to use Artemis to
submit their feedback. Instructors receive feedback suggestions from
Athena when reviewing student answers. Instructors need to check the
feedback suggestions, add additional feedback where needed, and can
also update feedback suggestions as needed. In 2021, the course
continued its use of the Athena system. As part of this experiment, tutors
needed to manually review exercises during the first half of the course.
The Athena system was enabled for the second half, and tutors had to
work with the suggested feedback.

We compare the feedback for exercises using the Athena system
(treatment) with feedback composed manually (control group). We
compare the quantity of feedback, the quality of feedback comments, the
student satisfaction, and the assessment efforts before and after intro-
ducing the Athena system, the introduced intervention.

In this section, we describe the course ISE and the study design of the
evaluation. The evaluation consists of two parts. The first part analyzes
the feedback generated by the system Athena. We analyze how many
assessments receive feedback from Athena by inspecting exercises from
2020 to 2021 where the system was used. This can be summarized in the
following knowledge question:

Knowledge Question 5: What portion of grading can be supported
by Athena?

Further, we study the quality of the feedback suggestions. Therefore,
we study how instructors interact with the suggested feedback. Finally,
as instructors can overwrite the feedback suggestions, we analyze how
much feedback is published to the students. We summarize this as
follows:

Knowledge Question 6: How accurate is Athena feedback?

The second part of the evaluation compares Athena feedback to
instructor feedback. Therefore, we first ask students to rate their feed-
back and compare how Athena feedback performs compared to
instructor feedback.

Knowledge Question 7: How do students perceive Athena
feedback?

Second, we analyze student complaints on their feedback to study if
Athena feedback has a higher quality and attracts fewer complaints than
instructor feedback.

Knowledge Question 8: Does Athena feedback reduce the number
of student complaints on their feedback?

J.P. Bernius et al. Computers and Education: Artificial Intelligence 3 (2022) 100081

Segment Submissions

. Remove . Extract Segmef“
‘9 Submission Lemmatize Answers into Text Segment
Stop Words Keywords
Text Segments

Cluster Segments

Text Segment Compute Calculate
HDBSCAN . .
Cluster . Distance Matrix
clustering

Compute Language Embeddings
P —

Vector ELMo

Fig. 7. Overview of the machine learning activities making up the “Segment Submissions”, “Compute Language Embeddings”, and “Cluster Segments™ activities in

Fig. 5. These are used to extract text segments and build text clusters for scoring and similarity analysis (UML activity diagram).

«subsystem»
Athena E

Segmentation
Service

«component» E :]

Segmentation

«subsystem» E
Vectorization Artemis

Service

Feedback
Suggestion

«component» «component» Service
«component»

Language E Feedback E _[]_O)_[]_ Assessment
Embedding Engine

ELMo)

Clustering
Service

Similarity
Service

«component» E C:

Clustering

HDBSCAN

Fig. 8. Top-level design of the Athena system. Athena is composed of four components: Segmentation, Language Embedding, and Clustering implement the machine
learning activities depicted in Fig. 7. The Feedback Engine acts as the facade to Artemis and offers an API that the Assessment component uses to receive feedback

suggestions.

([Yo) athena.example

Assessment 41 of 1,800

The strategy pattern enable switching between multiple
e ot .

Feedback Score

How is that realised? Add a better +0.5P
explanation for full points.

So are used when multiple versions of algorithm are
required and when the behavior of class is to be changed
dynamically during run time.

Fig. 9. Example of the instructor interface: Athena presents a feedback suggestion for the first text segment with a feedback comment and a score.

J.P. Bernius et al.

Third, we inspect if the semi-automatic assessment concept in-
fluences the quantity of feedback provided to students.

Knowledge Question 9: Does Athena generate more feedback than
instructors?

8.1. Course

The course ISE is an introductory software engineering course, with
around 2,000 registered students who are mainly computer science
bachelor’s students in their second semester. Students with computer
science as a minor can also enroll in the course. The course covers
software engineering concepts, such as requirements analysis, system
and object design, testing, lifecycles, configuration management, project
management, and UML modeling (Krusche et al., 2020). Before starting
the course, students need fundamental programming experience (e.g.,
Introduction to Computer Science or Fundamentals of Programming).

Table 1

Computers and Education: Artificial Intelligence 3 (2022) 100081

The instructors use constructive alignment (Biggs, 2003) to align the
teaching concepts and exercises with the course objectives. For each
lecture, they define learning goals based on six cognitive processes in
Bloom’s revised taxonomy (Anderson et al., 2001). The course focuses
on higher cognitive processes: Students apply the concepts in concrete
exercises.

Following an interactive learning approach, ISE teaches software
engineering concepts with multiple small iterations of theory, example,
exercise, solution, and reflection (Krusche & Seitz, 2019). Therefore, it
utilizes exercises to foster student participation (Krusche, Seitz, et al.,
2017) and motivate the students to attend the lectures (Krusche, von
Frankenberg, & Afifi, 2017). The course involves different kinds of
exercises:

1. Lecture exercises as part of the lectures
2. Group exercises solved in small ad hoc groups

ISE exercises over the years with their Feed back Factory (cf. Fig. 4) used each year: Instructor Feedback

(D), Athena Feedback (A), or Exercise not used (—).

Z
>

Exercise

2019 2020 2021

Text Exercise Tutorial
Different Models in SE
Group vs. Team

Purpose of Modeling
Model & View & System

R © 0 J o O b w DN -

0 As-Is Scenario for Bumpers
Coupling & Cohesion

Design Goal Trade-offs

Inheritance vs. Delegation

MVC & Observer Pattern

Spiral Model and Scrum

Problems using Git

Strategy vs. Bridge Pattern

m=fa i I R« I« R« i « R a nii < B« B au i ac i « - N a sl < - J < o e n i a u S a sl au i« s i« i o sl a e sl a o)
=
»

Model Refactoring

Change in Software Development

Bumpers Nonfunctional Requirements
Difference Aggregation & Composition
Visionary Scenario for Bumpers

Analysis Models & System Design

Design Goals in Closed Architectures
Create a Formalized Scenario

Closed vs. Open Architecture

Centralised vs. Decentralised Designs
Specification & Implementation Inheritance
Advantages and Disadvantages of Scrum

Unified Process and Scrum

Merge Conflicts & Best Practices

I —
I I -
- - I
I I I
I — —
I —_ —_
I I I
I I I
I I I
I I I
I A I
I A I
I — —
I A I
- - I
I — —
I A I
I A A
I I I
I A A
I A I
I A -
- - A
I A A
I A A
I — —
- - I

10

J.P. Bernius et al.

3. Homework exercises to be solved throughout the week individually

. Team exercises to be solved in a team in five 2-week periods

5. Exam exercises to assess the students’ knowledge after the course
has finished in multiple variants

N

Students were asked to submit their solutions to all but group exer-
cises to Artemis to receive an assessment with feedback and points. The
students could gain bonus points for the final exam when participating
in the exercises. The instructors utilize programming, modeling, tex-
tual, and quiz exercises in the course to train software engineering and
problem-solving skills. Table 1 lists all homework exercises conducted in
the course and marks whether Athena Feedback was employed in
2019-2021.

8.2. Study design

Fig. 10 shows the study design of the evaluation that was instantiated
for each exercise in which Athena was used for grading. The instructor
defines the exercise in Artemis with a problem statement, grading
criteria, example solutions, and a due date. The students can insert their
solutions in plain text on Artemis. After the due date, Artemis sends all
student answers to Athena to preprocess the answers as described in
Section 7. The instructors can review the student answers as soon as
Athena completes the preparation and stores the text clusters. The in-
structors create a review for every student’s answer consisting of mul-
tiple feedback items. The instructors used a chat room during the review
phase to discuss the grading criteria as needed.

Every review can either be classified into one of two categories:

Researcher

Run Athena

Instructor

Define exercise

Computers and Education: Artificial Intelligence 3 (2022) 100081

Instructor and Athena feedback. A review is considered to receive
Athena feedback if at least one feedback item was suggested by Athena.
Reviews without feedback suggestions receive Instructor feedback.
Furthermore, Athena stores intermediate versions of all feedback items
to evaluate how instructors work with feedback suggestions.

After the instructors completed the review, we retrieved the classi-
fication of the reviews from the Artemis database using SQL queries.
Two researchers verified the correctness of the queries. We collected the
statistics on the feedback items from Athena. We inserted the mea-
surements in a spreadsheet for further analysis and graphing. Two re-
searchers reviewed the results for consistency and plausibility and took
several samples to check individual feedback entries.

8.3. Results: Athena Feedback

In the implementation evaluation, we answer five knowledge ques-
tions that address the influence of Athena on the grading process. These
knowledge questions address knowledge goal 3 stated in Section 2.

First, we classify the reviews into two two categories. Fig. 11 and
Fig. 12 depict the classification of the reviews. On average, 45%
(Homework 25.2%, Exams 53.9%) of all reviews received Athena
Feedback. In exercise E.19, the system performed best with 75% Athena
feedback. Exercises E.04 and E.14 have the least coverage, with 6%
Athena feedback.

Finding 3 (Coverage): Coverage Athena can cover up to 75% of
reviews with feedback suggestions without previous training data or a
predefined solution.

Second, we further analyze the reviews classified to receive Athena

Student

Submit answer

Rate feedback

Collect ments

Classify feedback

Evaluate results

®

Fig. 10. Research approach depicted with the involved actors and flow of events (UML activity diagram).

11

J.P. Bernius et al.

| olnstructor Feedback oAthena Feedback |

i 2020 | 82.6% | 17.4%
N
= 2020 70.9% | 29.1%
<
T 2020 793% | 20.7%
~
= 2020 866% |13.4%
o 2021 78.0% | 22.0%
T 2020 62.4% | 37.6%
o 2021 815% | 18.5%
N
T

2020 | 80.3% | 19.7%
§ 2020 | 66.8% | 33.2%
N
N 2020 64.3% | 35.7%
o
S 2021 825% | 17.5%
5 2021 68.1% | 31.9%
T 2020 64.2% | 35.8%
o 2021 75.8% | 242%
&
T 2020 75.6% | 24.4%

0% 25% 50% 75% 100%

Fig. 11. Homework exercises with their assessment ratios. Athena feedback
reviews received automated suggestions which were reviewed by instructors.
On average, 25% of all homework assessments were computer-aided.

feedback above. Therefore, we inspect all feedback that is part of these
reviews.

We formulate this data as a binary classification to evaluate Athena’s
performance. Feedback suggestions generated by Athena are Positive,
and the absence of feedback for a given segment is Negative. We compare
initial suggested feedback with the final feedback from the instructor (cf.
Subsection 4.2) to classify both positive and negative suggestions as
either correct (True) or incorrect (False). This leads to the following four
classifications:

TP is a True Positive classification, in which Athena generated feed-
back on a segment that instructors published to students unmodified
or slightly modified, e.g., with an extension.

TN is a True Negative classification, in which Athena did not provide
feedback to a segment. The instructor did not see any need to
providing feedback, either.

FP is a False Positive classification, in which Athena generated false
feedback, and because of that, the instructor had to change the
feedback.

FN is a False Negative classification, in which Athena did not suggest
any feedback; however, feedback was needed for this segment.
Therefore, the instructors had to intervene and compose their own
feedback manually.

Following this classification, we can describe the performance of
Athena following both the sensitivity and specificity values, as well as
the accuracy (Witten et al., 2011):

The recall describes how much feedback has been correctly generated
by the Athena system; this metric is also known as the sensitivity or the
true positive rate (TPR).

12

Computers and Education: Artificial Intelligence 3 (2022) 100081

olinstructor Feedback o Athena Feedback |
EO1 24.7% | 75.3%
E.02 74.4% | 25.6%
- EO03 32.7% | 67.3%
% E04 94.4% 5.6%
E05 85.2% | 14.8%
E.06 88.5% 11.5%
§ E08 69.7% | 30.3%
S E09 31.5% | 68.5%
E14 94.4% 5.6%
E15 39.1% | 60.9%
E16 48.8% | 51.2%
é EA7 51.8% | 48.2%
™ 18 [365% | 63.5%
E19 24.6% | 75.4%
E20 36.8% | 63.2%
E21 41.8% | 58.2%
B
§ E22 408% | 59.2%
® E24 79.6% | 20.4%
0% 20% 40% 60% 80% 100%

Fig. 12. Exam exercises with their assessment ratios. Athena feedback reviews
received automated suggestions which were reviewed by instructors. On
average, 54% of all exam assessments were computer-aided.

TP

TPR = ————
TP + TN

©)
The specificity describes the number of segments for which in-

structors did not provide feedback and were left without feedback by

Athena; this metric is also known as the true negative rate (TNR).

N

INR = ——
N TN + FP

(10)

The precision describes the proportion of suggested feedback by
Athena published to students by instructors; this metric is also known as
the positive predictive value (PPV).

TP

PPV = ——
TP + FP

an
The accuracy summarizes how much feedback was suggested and
how many segments stayed without feedback correctly.

TP + TN

TP+ TN + FP+TF 12)

Accuracy =

Table 2 summarizes the binary classification results, which are
visualized in Fig. 13.

Finding 4 (Precision): Athena augments instructor feedback pre-
cisely in most cases (PPV = 92%).

The precision of 92% confirms our previous findings (Bernius et al.,
2021). This means that Athena Feedback successfully augments
instructor feedback, rarely suggests incorrect feedback, and is appro-
priate and respects the context within the solutions. In addition, we

J.P. Bernius et al.

Table 2

Computers and Education: Artificial Intelligence 3 (2022) 100081

Results of the binary classification (lest) and analysis (right).

Exercise Year TP TN FP FN| TPR TNR PPV Accuracy F-score

H.20 2021 208 792 0 283(20.8% 100.0% 100.0% 77.9% 56.8%

H.21 2020 534 1727 66 1704(23.6% 96.3% 89.0% 56.1% 57.3%

H.22 2020 437 1108 41 887|28.3% 96.4% 91.4% 62.5% 63.2%

H.23 2021 198 678 13 369|22.6% 98.1% 93.8% 69.6% 57.6%

H24 2020 525 868 35 1279(37.7% 96.1% 93.8% 51.5% 72.3%

2021 416 959 49 1097|30.3% 95.1% 89.5% 54.5% 64.3%
H.95 2020 265 722 23 444|268% 96.9% 92.0% 67.9% 61.9%
2021 291 1007 39 582(22.4% 96.3% 88.2% 67.6% 55.6%
Overall 2874 7861 266 6645(26.6% 96.9% 92.2% 63.5% 61.1%
OTrue Positive (Avg. 17%) 0OTrue Negative (Avg. 47%) Instructor Feedback —Athena Feedback
mFalse Positive (Avg. 1%) #OFalse Negative (Avg. 35% @ Score -O-Q@ Score
100% - 94%
H.20 (2021) [16% | 62% | 22% 87% 84%
H.21(2020) [18% | 43% 2% 42% . 91%
H.22 (2020) [18% | 45% 2% 36% 5o
H.23 (2021) |16% | 54% 1% 29% s | 682% 60% 7
H.24(2020) [19% | 32% 1% 47%
H.24 (2021) |17% | 38% 2% 44% 250, |
H.25(2020) [18% | 50% 2% 31% 25%150/ 5% 6% 6% 8% 8%
H.25 (2021) [15% | 52% 2% 30% 0% — 1
* *k *kk *kkk kkkkk

Fig. 13. Visualization of Binary Classification (Table 2) in percent.

conclude that Athena does not generate extra efforts through manual
interventions required from instructors.

Finding 5 (Specificity): Athena does not generate unneeded feed-
back (TNR = 97%).

The specificity of 97% further confirms this, as Athena is good at
identifying segments that do not need feedback. Therefore, there is no
extra work in removing unnecessary or incorrect feedback.

Finding 6 (Accuracy): Up to 78% of the segments were correctly
graded by Athena (Accuracy = 60%).

The accuracy of 60% also supports Finding 3. Future work is needed
to improve Athena’s coverage, both for the portion of submissions and
segments covered in each solution. At the current stage, Athena can help
support instructors by contributing partial assessments. However, more
work is needed to fulfill the vision of autonomous grading and reach
feasible efforts when offering continuous feedback.

8.4. Results: Quality of Athena Feedback compared to instructor feedback

We measured the feedback quality in two ways. First, we asked
students to rate their feedback on a 5-star scale. Out of 15,868 total
reviews done by the instructors, the students rated 530 reviews. Artemis
asks students, “How useful is the feedback for you?” displayed underneath
their feedback and presents the 5-star scale input. Fig. 14 depicts the
distribution by star rating. In the study, 82% of the ratings were either 1-
star or 5-star. Students with computer-aided feedback were more likely
to give a 5-star rating (72%) when compared to students who received
manual feedback (57%). On the same page, computer-aided feedback
received 1-star ratings less often (15%) than manual feedback (25%). On
average, students giving a 5-star rating (94% and 91%, respectively) had

13

Fig. 14. All ratings for ISE homework exercises by star rating. In this figure,
ratings are grouped by Instructor Feedback (n = 428) or Athena Feedback (n =
102). The average score in percent is depicted per rating and assessment type.
In the study, 530 out of 15, 868 reviews were rated by students.

better scores than students giving 1-star ratings (70% and 62%,
respectively).

Finding 7 (Perceived Quality): The computer-aided feedback in
Athena has at least the same quality as manual feedback.

The second measure of feedback quality is students’ complaints — or
the absence or complaints. Students can complain about their feedback,
either requesting a re-evaluation of their solution from a second
instructor or requesting more detailed feedback from the same
instructor. As re-evaluations are time-intense, students are limited to
three complaints in the course; however, legitimate complaints are not
counted against this limit. This policy reduces minor or unjustified
complaints as submitting a complaint is deemed expensive.

Table 3 outlines the number of submissions for all exercises with
Athena feedback and the percentage of complaints. We tested the hy-
pothesis that gradings created using feedback suggestions from Athena
lead to fewer complaints than instructor feedback. A Welch Two Sample
t-test is not suited because the measurements are not normally distrib-
uted. Therefore, we employ the Brunner-Munzel Test (Brunner &
Munzel, 2000; Neubert & Brunner, 2007), a non parametric statistical
test for stochastic equality of two samples. The Brunner-Munzel Test is a
generalization of the Mann-Whitney U test (Mann & Whitney, 1947;
Wilcoxon, 1945) and is suggested as a modern replacement for

J.P. Bernius et al.

Table 3

Student complaints on ISE 2019-2021 distinguishing Athena feedback and
instructor feedback. Athena feedback produces significantly fewer complaints
than instructor feedback.

Exercise 2019 2020 2021

% # % # %
Sub. Compl. Sub. Compl. Sub. Compl.

H.11 1036 1125 1277
Instructor 1036 0.00% 930 0.86% 1277 1.17%
Athena / / 195 0.00% / /

H.12 943 1032 1122
Instructor 943 0.42% 744 1.88% 1122 2.76%
Athena / / 288 1.74% / /

H.14 998 1103 1228
Instructor 998 1.40% 877 2.96% 1228 2.36%
Athena / / 226 2.21% / /

H.17 890 1013 1112
Instructor 890 1.01% 881 1.70% 1112 2.79%
Athena / / 132 0.76% / /

H.18 943 1027 1165
Instructor 943 0.32% 662 1.06% 927 3.13%
Athena / / 365 0.55% 238 0.00%

H.19 950 1060 1164
Instructor 950 0.53% 1060 5.85% 1164 1.63%

H.20 832 933 1068
Instructor 832 1.68% 753 2.39% 881 2.95%
Athena / / 180 1.11% 187 0.00%

H.21 910 1006 1176
Instructor 910 3.63% 677 7.68% 1176 8.08%
Athena / / 329 3.65% / /

H.22 877 959 /
Instructor 877 1.94% 624 2.72% / /
Athena / / 335 3.58% / /

H.23 / / 1126
Instructor / / / / 945 3.17%
Athena / / / / 181 0.00%

H.24 898 1029 1151
Instructor 898 2.23% 700 1.57% 823 4.01%
Athena / / 329 1.82% 328 0.00%

H.25 882 1013 1118
Instructor 882 3.74% 767 2.22% 872 4.47%
Athena / / 246 1.63% 246 0.00%

nonparametric tests (Karch, 2021). We use the brunnermunzel R pack-
age7 to compute the test. The Brunner-Munzel Test, based on the
complaint rates, results in a test statistic value of t = 3.8146. The p —
value of the test is 0.000466, which is less than the significance level a =
0.01. We can conclude that the Athena-feedback’s complaint rate is
significantly lower than the Instructor-feedback’s complaint rate.

Finding 8 (Quality): Feedback generated from Athena leads to
fewer student complaints.

Third, we compare the ratio between segments with and without
feedback. We inspect all exercises from 2019 to 2021 and separate the
measurements between Athena feedback and instructor feedback.

Finding 9 (Feedback Quantity): No evidence suggests that Athena
leads to more feedback.

8.5. Limitations

This section discusses threats to the results’ trustworthiness and
whether the results are biased based on the researchers’ subjective point
of view. We distinguish between three aspects of validity: internal val-
idity, external validity, and construct validity (Runeson et al., 2012).

7 brunnermunzel R package: https://github.com/toshi-ara/brunnermunzel.

14

Computers and Education: Artificial Intelligence 3 (2022) 100081

8.5.1. Internal validity

The accuracy of the feedback suggestions is measured by the
acceptance of the instructor. A second review from a control instructor
would allow for a more accurate measurement of accuracy. The
instructor might be biased toward confirming a feedback suggestion,
requiring less effort than providing a new comment. We noticed that
most instructors took the review of the automatic feedback suggestions
seriously, but we cannot guarantee that some of the 68 involved
teaching assistants failed to review the automatic feedback suggestions
thoroughly.

Two authors of this article have been involved in teaching the course
ISE and might have influenced the empirical evaluation. However, we
tried to separate the research and instructor perspectives. Further, two
additional instructors have been involved in the course ISE who are not
authors of this paper, and the third author reviewed the results carefully
without being involved in the course. In addition, we observed similar
results in a second course, which was taught by an independent
instructor who was not involved in the research (Bernius et al., 2021).

8.5.2. External validity

Most analyzed exercises have been in the domain of software engi-
neering and computer science in the same university. While we believe
that the approach is generalizable for other domains, we have not shown
this in this study.

8.5.3. Construct validity

The validity of the ratings might be affected by the question’s
wording and the score that the students received. Students with a higher
score are typically more satisfied and less likely to complain about the
quality of the feedback. Therefore, a good rating does not necessarily
mean that the feedback was of good quality. Another limitation could be
that students like the approach of getting feedback. The ratings measure
the perceived quality, which is subjective. We can only infer the quality
based on the ratings. Therefore, we consider Finding 7 on the quality of
the ratings as anecdotal evidence.

8.6. Discussion

The suggestion coverage of Athena is higher for exercises that do not
ask students to come up with their own examples but rather require
students to work based on a given problem context. In the exam exer-
cises E.01, E.03, E.09, E.15 - E.22, students were asked to extract re-
quirements or use cases from a problem statement. In those exercises,
the coverage was mostly above the average, ranging from 48% to 75%.
These questions still require students to apply problem-solving skills but
limit the variability of the answers. This leads to more similar answers
and more reusable feedback.

Exercises asking for examples, such as the ISE homework exercises,
have lower Athena suggestion coverage between 13% and 38%. This
may be due to the increased variability of answers where students
develop their own examples. As Athena tries to find similar text seg-
ments, it is more difficult to find a group with shared segments as stu-
dents choose examples from different problem contexts. Therefore,
students are less likely to produce similar answers, and Athena cannot
learn to reuse feedback among students.

Athena reuses reviews from instructors. Therefore, the quality of the
feedback suggestions depends on the manual feedback provided during
the instructor reviews. If instructors provide incorrect manual feedback,
Athena will not be able to provide correct feedback suggestions. In the
example of ISE, the instructors who review the submission consist pri-
marily of teaching assistants who have limited experience in grading or
providing feedback.

Nevertheless, the approach can improve the review process as it al-
lows instructors to handle larger amounts of reviews or to inspect ex-
amples. Other systems presented in Section 5 suggest comparing
answers only with a sample solution provided by an instructor (Pérez

J.P. Bernius et al.

et al., 2005), thus reducing the variability in the solution space, which
might limit the students’ creativity. However, creativity is an important
aspect of software engineering education (Krusche, Bruegge, et al.,
2017).

The use of Athena reduces the workload for instructors and, thereby,
enables instructors to better support students individually. All students
receive personal attention in the form of Virtual One-To-One (Bernius &
Bruegge, 2019) feedback. The efficiency gain in the frequent solution
cases results in more time to address specific solutions and take care of
problems. Individual feedback is better than presenting a sample solu-
tion in a lecture format (Higgins et al., 2002), especially in software
engineering, where many creative solutions can co-exist. Individual
discussions for different solutions are needed so students and instructors
can learn about the benefits, consequences, and trade-offs of new
solutions.

9. Conclusion

We have presented an approach that reduces assessment efforts of
textual exercises for instructors while scaling feedback for large courses.

The main contributions are: First, a formalization of the assessment
effort for a large-scale course using the interactive learning teaching
method.

Second, the machine learning-based framework “CoFee” outlines
how to capture assessment knowledge and automatically suggest feed-
back. The framework employs segment-based grading and reuses feed-
back based on segment similarity. We confirmed the frameworks’
validity in a laboratory experiment and found that CoFee can reduce the
instructors grading effort by 85%.

Third, the reference implementation “Athena” demonstrates how
to design and build a system that automatically assesses textual exercises
(Artifact Design Goal). Athena uses the ELMo language model to capture
core ideas of segments and HDBSCAN clustering to identify groups of
similar segments. Athena is open-source software published under the
MIT license and integrated into the Artemis system.

Fourth, the implementation evaluation describes the usage of
Athena in a large-scale software engineering course with up to 2,200
students and up to 68 instructors. The evaluation analyzed the generated
feedback and compared feedback given to the students with and without
Athena. The findings suggest that Athena can provide feedback for up to
75% of student answers. The feedback suggested is 92% precise and 60%
accurate. Athena does not lead to more feedback; however, students
perceive the feedback quality as identical, and fewer students complain
about Athena grading than manual grading. The evaluation further
shows that the accuracy of Athena feedback depends on the type of
textual exercise and the variability of possible answers. A higher vari-
ance within correct solutions leads to less coverage because of fewer
similarities in the student answers.

The article outlines how segment-based structured grading in CoFee
allows for collecting and reusing knowledge generated during the
manual assessment. Machine learning can support instructors with their
assessment work. Working with automated feedback suggestions re-
duces the assessment efforts and helps instructors deliver consistent
feedback and reduce student complaints. Athena does not require
training data before grading to learn correct answers and feedback
suggestions. Instead, it collects knowledge during the assessment. This
incremental process allows instructors to change or introduce new ex-
ercises as needed, preventing students from submitting solutions from
previous years.

10. Future work

Training based on assessments of past exercises allows Athena to
profit from additional knowledge captured in these reviews. However,
future work needs to evaluate whether training data from the same
exercise in previous years can improve the coverage or accuracy of

15

Computers and Education: Artificial Intelligence 3 (2022) 100081

feedback suggestions.

In addition, the presented research can be extended in four ways:
First, additional intermediate representations of text segments can be
explored. Athena uses ELMo to capture core ideas within text segments.
Further research is needed to explore the accuracy of other types of
models, e.g., transformers such as the Bidirectional Encoder Represen-
tations from Transformers (BERT) model (Devlin et al., 2019) or the
Sparsely Gated Mixture-of-Expert (Jacobs et al., 1991; Lepikhin et al.,
2021) based Facebook WMT model (Tran et al., 2021).

Second, by migrating away from a language-dependent language
model, CoFee can improve on the current limitation to English answers.
Transformer-based models could enable language-independent grading
by converting a segment to a language-independent intermediate rep-
resentation, employing techniques currently used for machine trans-
lations. Following this approach would allow CoFee to create a
language-independent assessment knowledge and associate feedback
to answers independent of the used language. Language-independent
grading can allow international students to answer in their preferred
language. Instructors can thereby assess work in a foreign language they
do not speak themselves.

Third, language models can be fine-tuned by incorporating domain-
specific contexts from course materials, such as textbooks, slides, or
lecture notes. Customized language models allow CoFee to improve the
assessment of exercises requiring a special problem domain knowledge.
Transfer Learning could be applied to fine-tune a general-purpose neural
network for this specific task (Dai & Le, 2015; Howard & Ruder, 2018).
Mayfield and Black (2020) suggest that the relevant world knowledge is
already present in pre-trained BERT models.

Forth, another possibility is to combine CoFee’s content-based
grading with language grading as available in essay scoring systems
(cf. Subsection 5.1). The resulting system considers other aspects of the
work (e.g., grammar, writing style, and language use) and could extend
CoFee’s applicability beyond short-answer exercises.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This article is based on previously published papers (Bernius &
Bruegge, 2019; Bernius et al., 2020, 2021).

The authors would like to thank Gregor Ziegltrum, Anna Kovaleva,
Ngoc-Minh Tran, Clemens Zuck, Adem Khachnaoui, Can Arisan, Jonas
Petry, Birtan Giiltekin, Linus Michel, Michal Kawka, Maisa Ben Salah,
Ndricim Rrapi, Argert Boja, Valerie Bucher, and Tim Cremer for their
contributions to Athena as part of their Bachelor or Master theses.

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

References

Alario-Hoyos, C., Kloos, C., Estévez-Ayres, 1., Fernandez-Panadero, C., Blasco, J.,
Pastrana, S., & Villena-Roman, J. (2016). Interactive activities: The key to learning
programming with MOOCs. In European stakeholder summit on experiences and best
practices in and around MOOCs (pp. 319-328).

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E.,
Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching,
and assessing: A revision of Bloom’s taxonomy of educational objectives. Longmans
Green.

Basu, S., Jacobs, C., & Vanderwende, L. (2013). Powergrading: A clustering approach to
amplify human effort for short answer grading. Transactions of the Association for
Computational Linguistics, 1, 391-402. https://doi.org/10.1162/tacl_a_ 00236

Bernius, J. P., & Bruegge, B. (2019). Toward the automatic assessment of text exercises.
In 2nd workshop on innovative software engineering education ISEE '19. URL: http://c
eur-ws.org/Vol-2308/isee2019paper04.pdf.

J.P. Bernius et al.

Bernius, J. P., Kovaleva, A., Krusche, S., & Bruegge, B. (2020). Towards the automation
of grading textual student submissions to open-ended questions. In 4th European
Conference of software engineering education ECSEE '20 https://doi.org/10.1145/
3396802.3396805

Bernius, J. P., Krusche, S., & Bruegge, B. (2021). A machine learning approach for
suggesting feedback in textual exercises in large courses. In 8th ACM Conference on
learning @ scale L@S '21 https://doi.org/10.1145/3430895.3460135

Biggs, J. (2003). Aligning teaching and assessing to course objectives. Teaching and
learning in higher education: New Trends and Innovations, 2, 13-17.

Bruegge, B., & Dutoit, A. H. (2009). Object oriented software engineering using UML,
patterns, and java. Prentice Hall.

Brunner, E., & Munzel, U. (2000). The nonparametric behrens-Fisher problem:
Asymptotic theory and a small-sample approximation. Biometrical Journal, 42,
17-25. https://doi.org/10.1002/(sici)1521-4036(200001)42:1<17::aid-
bimj17>3.0.co;2-u

Chen, X., Breslow, L., & DeBoer, J. (2018). Analyzing productive learning behaviors for
students using immediate corrective feedback in a blended learning environment.
Computers & Education, 117, 59-74. https://doi.org/10.1016/].
compedu.2017.09.013

Cheng, G. (2017). The impact of online automated feedback on students’ reflective
journal writing in an efl course. The Internet and Higher Education, 34, 18-27. https://
doi.org/10.1016/j.iheduc.2017.04.002

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In advances in neural
information processing systems, 28Curran Associates, Inc.. URL: https://proceedings.
neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. In 2019 conference of the
North American chapter of the association for computational linguistics: Human language
technologies, 1 pp. 4171-4186). Association for Computational Linguistics. https://
doi.org/10.18653/v1/N19-1423 (Long and Short Papers).

Feynman, R. P. (1994). Six easy pieces. Basic Books.

Forster, M., Weiser, C., & Maur, A. (2018). How feedback provided by voluntary
electronic quizzes affects learning outcomes of university students in large classes.
Computers & Education, 121, 100-114. https://doi.org/10.1016/j.
compedu.2018.02.012

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Addison-Wesley.

Higgins, R., Hartley, P., & Skelton, A. (2002). The conscientious consumer:
Reconsidering the role of assessment feedback in student learning. Studies in Higher
Education, 27, 53-64. https://doi.org/10.1080/03075070120099368

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text
classification. In 56th annual meeting of the association for computational linguistics, 1
pp. 328-339). Association for Computational Linguistics volume. https://doi.org/
10.18653/v1/P18-1031. Long Papers.

Irons, A. (2007). Enhancing learning through formative assessment and feedback. Routledge.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of
local experts. Neural Computation, 3, 79-87. https://doi.org/10.1162/
neco.1991.3.1.79

Jensen, L. X., Bearman, M., & Boud, D. (2021). Understanding feedback in online
learning — a critical review and metaphor analysis. Computers & Education, 173,
Article 104271. https://doi.org/10.1016/j.compedu.2021.104271

JohanBen, J. O. (2019). Continuous user Understanding in software evolution. Dissertation
Technische Universitdat Miinchen Miinchen. URL: http://d-nb.info/1201482682/34.

Karch, J. D. (2021). Psychologists should use brunner-munzel’s instead of mann-
whitney’s u test as the default nonparametric procedure. Advances in Methods and
Practices in Psychological Science, 4, Article 251524592199960. https://doi.org/
10.1177/2515245921999602

Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction
does not work: An analysis of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching. Educational Psychologist, 41, 75-86.
https://doi.org/10.1207/515326985ep4102_1

Krusche, S., Bruegge, B., Camilleri, I., Krinkin, K., Seitz, A., & Wobker, C. (2017).
Chaordic learning: A case study. In 39th international Conference on software

ngineering: Software engineering Education and training ICSE-SEET '17 (pp. 87-96).
IEEE. https://doi.org/10.1109/ICSE-SEET.2017.21.

Krusche, S., & Seitz, A. (2018). ArTEMiS: An automatic assessment management system
for interactive learning. In 49th ACM technical symposium on computer science
education (SIGCSE) (pp. 284-289).

Krusche, S., & Seitz, A. (2019). Increasing the interactivity in software engineering moocs
- a case study. In 52nd Hawaii international conference on system sciences (pp. 1-10).

Krusche, S., Seitz, A., Borstler, J., & Bruegge, B. (2017). Interactive learning: Increasing
student participation through shorter exercise cycles. In 19th Australasian computing
education conference (pp. 17-26). ACM.

Krusche, S., von Frankenberg, N., & Afifi, S. (2017). Experiences of a software
engineering course based on interactive learning. In Tagungsband des 15. Workshops
Software Engineering im Unterricht der Hochschulen (SEUH) (pp. 32-40). CEUR.

Krusche, S., von Frankenberg, N., Reimer, L. M., & Bruegge, B. (2020). An interactive
learning method to engage students in modeling. In International conference on
software engineering: Software engineering education and training (pp. 12-22).

Computers and Education: Artificial Intelligence 3 (2022) 100081

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., &
Chen, Z. (2021). GShard: Scaling giant models with conditional computation and
automatic sharding. In International conference on learning representations. URL:
https://openreview.net/forum?id=qrwe7XHTmYb.

Li, Y., & Yang, T. (2018). Word embedding for understanding natural language: A survey.
In S. Srinivasan (Ed.), Guide to big data applications (pp. 83-104). Cham: Springer.
https://doi.org/10.1007/978-3-319-53817-4 4.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics, 18,
50-60. https://doi.org/10.1214/aoms/1177730491

Mayfield, E., & Black, A. W. (2020). Should you fine-tune BERT for automated essay
scoring?. In 15th workshop on innovative use of NLP for building educational applications
(pp. 151-162). Association for Computational Linguistics. https://doi.org/
10.18653/v1/2020.bea-1.15.

Mclnnes, L., & Healy, J. (2017). Accelerated hierarchical density based clustering. In
International conference on data mining workshops (pp. 33-42). https://doi.org/
10.1109/ICDMW.2017.12

Mitchell, T., Russell, T., Broomhead, P., & Aldridge, N. (2002). Towards robust
computerised marking of free-text responses. In 6th international computer assisted
assessment (CAA) conference. UK: Loughborough University.

Neubert, K., & Brunner, E. (2007). A studentized permutation test for the non-parametric
behrens-Fisher problem. Computational Statistics & Data Analysis, 51, 5192-5204.
https://doi.org/10.1016/j.csda.2006.05.024

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word
representation. In Conference on empirical methods in natural language processing (pp.
1532-1543). Association for Computational Linguistics. https://doi.org/10.3115/
vl/D14-1162.

Pérez, D., Gliozzo, A. M., Strapparava, C., Alfonseca, E., Rodriguez, P., & Magnini, B.
(2005). Automatic assessment of students’ free-text answers underpinned by the
combination of a bleu-inspired algorithm and latent semantic analysis. In 18th
international Florida Artificial intelligence research society conference (pp. 358-363).
AAAI Press. URL: http://www.aaai.org/Library/FLAIRS/2005/flairs05-059.php.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep contextualized word representations. In Conference of the North
American chapter of the association for computational linguistics: Human language
technologies (pp. 2227-2237). Association for Computational Linguistics. https://doi.
org/10.18653/v1/N18-1202.

Popper, K. R. (1934). Logik der Forschung — Zur Erkenntnistheorie der modernen
Naturwissenschaft. Springer.

Popper, K. R. (1959). The logic of scientific discovery. Hutchinson.

Pulman, S. G., & Sukkarieh, J. Z. (2005). Automatic short answer marking. In 2nd
Workshop on building educational applications using NLP EdAppsNLP 05 (pp. 9-16).
Association for Computational Linguistics. https://doi.org/10.5555/
1609829.1609831.

Ramos, J. (2003). Using TF-IDF to determine word relevance in document queries. In Ist
instructional conference on machine learning, 242 pp. 1-4).

Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study research in software
engineering. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118181034
Singh, A., Karayev, S., Gutowski, K., & Abbeel, P. (2017). Gradescope: A fast, flexible,
and fair system for scalable assessment of handwritten work. In 4th Conference on

learning @ scale L@S 17 (pp. 81-88). ACM. https://doi.org/10.1145/
3051457.3051466.

Sukkarieh, J., Pulman, S. G., & Raikes, N. (2003). Auto-marking: Using computational
linguistics to score short, free-text responses. In 29th Annual Conference of the
international Association for educational assessment IAEA (pp. 1-15).

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2, 59-89. https://doi.
org/10.1207/51532690xci0201_3

Trafton, J. G., & Reiser, B. J. (1993). Studying examples and solving problems: Contributions
to skill acquisition. Washington, DC, USA: Technical Report Naval HCI Research Lab.

Tran, C., Bhosale, S., Cross, J., Koehn, P., Edunov, S., & Fan, A. (2021). Facebook AI's
WMT21 news translation task submission. In 6th conference on machine translation
(pp. 205-215). Association for Computational Linguistics. URL: https://aclantholog
y.org/2021.wmt-1.19.

VanLehn, K. (1996). Cognitive skill acquisition. Annual Review of Psychology, 47,
513-539. https://doi.org/10.1146/annurev.psych.47.1.513

Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering. Springer. https://doi.org/10.1007/978-3-662-43839-8

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometric Bulletin, 1,
80-83. https://doi.org/10.2307/3001968

Williams, R., & Haladyna, T. (1982). Logical operations for generating intended
questions (logiq): A typology for higher level test items. In G. H. Roid, &

T. M. Haladyna (Eds.), Toward a technology of test-item writing (pp. 161-187). New
York: Academic Press.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools

and techniques. Elsevier.

16

9 Conclusion & Outlook

This dissertation presented an approach to automate the assessment of textual
exercises, thereby reducing the assessment efforts for instructors of large classes.
The four main scientific contributions of this dissertation are:

A formalization and the design of the Computer-aided Feedback for textual ex-
ercises (CoFee) framework [BB19; BKB21; BKB22] outlines how to capture assess-
ment knowledge and automatically suggests feedback based on machine learning.
The framework employs segment-based grading and reuses feedback based on seg-
ment similarity. CoFee can identify similar segments which should receive similar
feedback based on a three-fold process consisting of segmentation of answers, in-
termediate representations based on language embeddings, and clustering. The
treatment validation confirmed the frameworks’ validity in a laboratory experi-
ment and found that CoFee can reduce the instructors grading effort by 85%.

The algorithm for automatic segmentation based on topic modeling [Ber+20)]
identifies relevant topics discussed within the scope of an exercise and represents
topics using keywords. The segmentation algorithm is based on a divide-and-
conquer approach to decompose student answers into topically coherent segments.
Phrases and sentences are merged until a topic shift occurs. The evaluation con-
firms that segments produced by the algorithm are better suited for assessment
than sentences split by interpunctuation.

The reference implementation of the CoFee design is called “Athena” [BKB21;
BKB22| and demonstrates how to design and build a system that automatically
assesses textual exercises. Athena uses the segmentation algorithm [Ber+20] to de-
compose answers, the ELMo language model to capture core ideas of segments, and
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-

SCAN) clustering to identify groups of similar segments. Athena is open-source

78

9 Conclusion & Outlook

software published under the MIT license and integrated into the Artemis learning
management system.

The empirical evaluations [BKB21; BKB22] describe the usage of Athena in sev-
eral large-scale software engineering courses at the Technical University of Munich
(TUM) between 2019 and 2021. Up to 2,200 students and up to 68 instructors
participated in the courses. The evaluation analyzed the generated feedback and
compared feedback given to the students with and without Athena. The findings
suggest that Athena can provide feedback for up to 75% of student answers. The
feedback suggested is 92% precise and 60% accurate. Athena does not lead to
more feedback. However, students perceive the feedback quality as identical, and
fewer students complain about Athena grading than manual grading. The evalua-
tion further shows that the accuracy of Athena’s feedback depends on the type of
textual exercise and the variability of possible answers. A higher variance within
correct solutions leads to less coverage because of fewer similarities in the student
answers.

The contributions are published in four publications in an international work-
shop [BB19], two international conferences [Ber+20; BKB21], and an international
journal [BKB22].

CoFee models a closed feedback loop with continuous feedback for students solv-
ing an exercise. Athena does not implement this closed feedback loop, which would
allow students to submit their solutions multiple times, including intermediate so-
lutions. Allowing multiple submissions for every exercise will significantly increase
the grading workload. In the future, Athena can help reduce the grading workload
down to new knowledge submitted in a new iteration and automate the grading
of common or repeated mistakes.

The nature of the hybrid grading process depends on a human grader to review
and complete the feedback suggestions from Athena. In the future, Athena should
enable real-time evaluations of submitted answers by removing humans from the
grading loop. Furthermore, humans should only be involved in grading if the

trained assessment knowledge is insufficient to provide confident feedback.

79

9 Conclusion & Outlook

Fast-changing paradigms in computer science make it hard to keep materials and
exercises up to date. Therefore, Athena should support evolving curriculum design
by offering automated grading based on partial knowledge and incremental training
of the assessment knowledge. Examples of evolving exercises are new problem
statements to apply concepts or new interpretations of concepts and trade-offs.

Another challenge is to evaluate CoFee and Athena in a different domain. The
Athena system was built independently from specific domains and should support
exercises from all domains. However, evaluations of Athena focused on exercises
related to computer science. Therefore, future evaluations on the precision and

accuracy of Athena in other domains are needed.

80

List of Figures

1.1

1.2

1.3

2.1

2.2

4.1

4.2

5.1

5.2

5.3

The School of Athens, fresco painted between 1509 and 1511 by

Raffaello Sanzio da Urbino (public domain). 5
Lecture at the University of Bologna in the 1350s. Painting by
Laurentius de Voltolina (public domain). 6
The number of registered students in the course Introduction to
Software Engineering (EIST) between 2010 and 2022. 7
A simplified example of a three-dimensional vector space with to-
kens “man,” “woman,” “king,” and “queen.” 16
Embeddings from Language Models (ELMo) predicts the most likely
following word. (Adapted from [Alal8]) 18

Hierarchical goal taxonomy following the template from [Wield].

An arrow indicates that a goal supports the other. 24
Timeline of courses used in validation and evaluation [BKB21; BKB22].
Exercises used in the courses are categorized as O Course-work and

O Examination. 0L 26

Automatic assessment workflow, considering manual and automatic
assessment. 33
The relevant entities in the system are depicted in a class diagram.
A student creates a submission for a text exercise. An assessment
is a composition of multiple feedback items referencing text blocks.
A feedback item can be a manual or automatic feedback item. An
instructor provides manual feedback. Automatic feedback items
are a proxy [BD09] for manual feedback items. A similarity cluster
aggregates the vector representations of text blocks. The assessment
model consists of many similarity clusters. 33
Assessment of student submission for problem statement “Explain
the difference between the bridge pattern and the strategy pattern.”
Example question taken from an EIST exam. Instructors define text
blocks to build up their assessment. Each block is assessed with a
score and a feedback text. The total score is based on all feedback
items in the assessment.o 34

81

5.4

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

7.1

7.2

7.3

7.4

LIST OF FIGURES

The automatic assessment process. Zoomed into the “Assess auto-
matically” activity in Figure 5.1 35

Mixed on-campus and virtual classroom setup employed in the sum-

mer semester 2019 at TUM for the “Introduction to Software Engi-
Neering” COUTSE. o v v v v i et e e e e 39
Workflow of the automatic assessment system for textual exercises.

The “Preprocessing Answers” activity (Figure 6.4) includes the al-
gorithm presented in this paper. UML activity diagram based on
Bernius and Bruegge [BB19].o 40
Taxonomy for text segmentation adapted from Pak and Teh [PT17]. 40
A detailed view into the “Preprocess Answers” activity (Figure 6.2)
performed by the assessment system before the grading, depicted
using a UML activity diagram. 42
The segmentation algorithms flow of events depicted using a UML
activity diagram based on Bernius, Kovaleva, and Bruegge [BKB20]. 43
Submissions S1-S5 from our Patterns in Software Engineering (PSE)

data set. The submissions were segmented by two algorithms, as

well as ten participants. The detected segment borders are marked
inline with the text in square brackets: Topic Modeling Algorithm [T],

Syntactical Separator Approach [S], and Participants [1-10]. 44
Comparison of the number of detected topic shifts by the current
and proposed systems as well as the participants. 45
Participants response on their subjective impression of the approach
ranked on a five-point scale based on Likert [Lik32]. (n=10). . .. 46

Use case diagram of the Athene and Artemis system. Students
and teachers interact with the system. Teachers are instructors,
employees of the university, or teaching assistants, who are previous
students hired to assist in teaching. o1
Workflow of automatic assessment of submissions to textual exer-
cises based on the manual feedback of teachers. CoFee analyzes
manual assessments and generates knowledge for the suggestion of
computer-aided (automatic) feedback (UML activity diagram). . . . 53
Detailed overview of the machine learning activities as part of the
“preprocess answers” activity in Figure 7.2. These are used to ex-
tract text segments and build text clusters for scoring and similarity
analysis (UML activity diagram). 53
Top-level design of Athene, which is decomposed into three sub-
systems for segmentation, language embedding, and clustering and
offers an API to be used in existing LMS (UML component diagram). 54

82

7.5

7.6

7.7

7.8

7.9

7.10

8.1

8.2

8.3

8.4

8.5

LIST OF FIGURES

Example of the teacher interface: Athene presents a feedback sug-
gestion for the first text segment with a feedback comment and a

Exercises in the evaluation assess different cognitive processes. This
taxonomy, based on the revised Bloom’s taxonomy [And+01], de-
picts the hierarchy of skills. Exercises test static knowledge by test-
ing the remember and understand skills but also apply and analyze,
e.g., by identifying design issues from a system.
Research approach depicted with the involved actors and flow of
events (UML activity diagram).
Exercises with their assessment ratios. Computer-aided reviews re-
ceived automated grading suggestions which were reviewed by a
teacher. On average, 26% reviews were computer-aided.
On average, 85% of computer-aided feedback comments remained
unchanged (green) or only included minor typo fixes (blue). Fur-
thermore, 5% were extended (yellow), and 10% were changed (red).
All ratings for EIST homework (HXX) exercises by star rating. In
this figure, ratings are grouped by the assessment type Manual (n =
325) or Computer-aided (n = 71). The average score in percent is
depicted per rating and assessment type. In the study, 396 out of
10, 240 reviews were rated by students.

The number of computer science degrees (bachelor’s and master’s)
conferred per year by renowned universities in the area has steadily
increased over the last decade. Data was collected from statistics
published by the universities. The left y-axis represents the number
of degrees per university. The right y-axis represents the Total
number of degrees across all universities.
Hierarchical goal taxonomy following the template from Wieringa
[Wield]. An arrow indicates that a goal supports the other..
Interactive learning puts the individual student into the core of the
learning activity and follows an iterative process that is conducted
multiple times in lectures.
Analysis Object Model of the CoFee framework. The model de-
scribes the system from the stakeholder’s point of view and illus-
trates the concepts visible to the stakeholder [BD09]. (UML Class
Diagram)
Workflow of automatic assessment of submissions to textual exer-
cises based on the manual feedback of instructors. CoFee analyzes
manual assessments and generates knowledge for the suggestion of
computer-aided (automatic) feedback (UML activity diagram). . . .

83

57

66

LIST OF FIGURES

8.6 760 text segments clustered by hand into 75 clusters.

8.7 Overview of the machine learning activities making up the “Seg-
ment Submissions”, “Compute Language Embeddings”, and “Clus-
ter Segments” activities in Figure 8.5. These are used to extract text
segments and build text clusters for scoring and similarity analysis
(UML activity diagram).

8.8 Top-level design of the Athena system. Athena is composed of four
components: Segmentation, Language Embedding, and Clustering
implement the machine learning activities depicted in Figure 8.7.
The Feedback Engine acts as the facade to Artemis and offers an
API that the Assessment component uses to receive feedback sug-
gestions.

8.9 Example of the instructor interface: Athena presents a feedback
suggestion for the first text segment with a feedback comment and
A SCOTE. « o o v v e e e e

8.10 Research approach depicted with the involved actors and flow of
events (UML activity diagram)

8.11 Homework exercises with their assessment ratios. Computer-aided
assessments received automated suggestions which were reviewed
by instructors. On average, 25% of all homework assessments were
computer-aided.

8.12 Exam exercises with their assessment ratios. Computer-aided as-
sessments received automated suggestions which were reviewed by
instructors. On average, 54% of all exam assessments were computer-
aided.

8.13 Visualization of Binary Classification (Table 8.2) in percent.

8.14 All ratings for EIST homework exercises by star rating. In this
figure, ratings are grouped by Instructor Feedback (n = 428) or
Athena Feedback (n = 102). The average score in percent is de-
picted per rating and assessment type. In the study, 530 out of
15,868 reviews were rated by students.00

84

70

List of Tables

4.1

6.1

7.1

8.1

8.2
8.3

Mapping between publications and courses used as the basis for
validation and evaluation. 0oL

Performance analysis of the new topic modeling based algorithm
and the previous approach based on syntactical separators measured
according to precision and recall [BBL97].

Homework and exam textual exercises and their categorization fol-
lowing Bloom’s revised taxonomy [And+01] used in the evaluation.

Introduction to Software Engineering (EIST) exercises over the years
with their FeedbackFactory (cf. Figure 8.4) used each year: Instruc-
tor Feedback (I), Athena Feedback (A), or Exercise not used (-). . .
Results of the binary classification (left) and analysis (right).
Student complaints on EIST 2019-2021 distinguishing Athena feed-
back and instructor feedback. Athena feedback produces signifi-
cantly fewer complaints than instructor feedback.

85

Acronyms

CoFee
DBSCAN
EIST
ELMo

HDBSCAN

ISE
LDA
LMS
LSA
LSTM
MOOC
NLP
POM

PPV
PSE

TEF-IDF
TNR
TPR
TUM

WMT

Computer-aided Feedback for textual exercises.

Density-Based Spatial Clustering of Applications
with Noise.

Introduction to Software Engineering.
Embeddings from Language Models.

Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise.

Introduction to Software Engineering.

Latent Dirichlet Allocation.
Learning Management System.
Latent Semantic Analysis.
Long Short-Term Memory.

Massive Open Online Course.

Natural Language Processing.

Project Organisation and Management in Software
Engineering.

Positive Predictive Value.

Patterns in Software Engineering.

Term Frequency-Inverse Document Frequency.

True Negative Rate.

True Positive Rate.

Technical University of Munich.

Workshop on Machine Translation.

86

Bibliography

[Alal8]

[AK97]

[And+-01]

[BBLY7]

[Ber21]

[BB19]

[BKB20]

Jay Alammar. The Illustrated BERT, ELMo, and co. (How NLP
Cracked Transfer Learning). Licensed under CC BY-NC-SA 2.0. De-
cember 2018. URL: https://jalammar.github.io/illustrated-
bert/ (visited on 20.5.2022).

Vicki H. Allan and Mary Veronica Kolesar. “Teaching Computer Sci-
ence: A Problem Solving Approach That Works.” In: SIGCUE Out-
look 25.1-2 (January 1997), pp. 2-10. 1SSN: 0163-5735. DO1: 10.1145/
274375.274376.

Lorin W. Anderson, David R. Krathwohl, Peter W. Airasian, Kath-
leen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths,
and Merlin C. Wittrock. A Tazonomy for Learning, Teaching, and As-

sessing: A Revision of Bloom’s Taxonomy of Educational Objectives.
Longmans Green, 2001. 1SBN: 9780801319037.

Doug Beeferman, Adam Berger, and John Lafferty. “Text Segmen-
tation Using Exponential Models.” In: 2nd Conference on Empiri-
cal Methods in Natural Language Processing. 1997. URL: https://
aclanthology.org/W97-0304.

Jan Philip Bernius. “Toward Computer-Aided Assessment of Textual
Exercises in Very Large Courses.” In: 52nd ACM Technical Sympo-
sium on Computer Science Fducation. SIGCSE '21. Toronto, ON,
Canada: Association for Computing Machinery (ACM), March 2021,
p. 1386. DOI: 10.1145/3408877 .3439703.

Jan Philip Bernius and Bernd Bruegge. “Toward the Automatic As-
sessment of Text Exercises.” In: 2nd Workshop on Innovative Soft-
ware Engineering Education. ISEE "19. Stuttgart, Germany: CEUR-
WS.org, February 2019, pp. 19-22. URL: http://ceur-ws.org/Vol-
2308/isee2019paper04.pdf.

Jan Philip Bernius, Anna Kovaleva, and Bernd Bruegge. “Segment-
ing Student Answers to Textual Exercises Based on Topic Model-
ing.” In: 17th Workshop on Software Engineering im Unterricht der
Hochschulen. SEUH 20. Innsbruck, Austria: CEUR-WS.org, Febru-
ary 2020, pp. 72-73. URL: http://ceur -ws . org/ Vol - 2531/
poster03.pdf.

87

https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/
https://doi.org/10.1145/274375.274376
https://doi.org/10.1145/274375.274376
https://aclanthology.org/W97-0304
https://aclanthology.org/W97-0304
https://doi.org/10.1145/3408877.3439703
http://ceur-ws.org/Vol-2308/isee2019paper04.pdf
http://ceur-ws.org/Vol-2308/isee2019paper04.pdf
http://ceur-ws.org/Vol-2531/poster03.pdf
http://ceur-ws.org/Vol-2531/poster03.pdf

Bibliography

[Ber+20)] Jan Philip Bernius, Anna Kovaleva, Stephan Krusche, and Bernd
Bruegge. “Towards the Automation of Grading Textual Student Sub-
missions to Open-ended Questions.” In: 4th European Conference of
Software Engineering Education. ECSEE ’20. Seeon, Germany: As-
sociation for Computing Machinery (ACM), June 2020, pp. 61-70.
ISBN: 9781450377522. DOI: 10.1145/3396802.3396805.

[BKB21] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. “A Ma-
chine Learning Approach for Suggesting Feedback in Textual Ex-
ercises in Large Courses.” In: 8th ACM Conference on Learning @
Scale. L@QS "21. Potsdam, Germany: Association for Computing Ma-
chinery (ACM), June 2021, pp. 173-182. 1sBN: 9781450382151. DOT:
10.1145/3430895.3460135.

[BKB22] Jan Philip Bernius, Stephan Krusche, and Bernd Bruegge. “Machine
Learning Based Feedback on Textual Student Answers in Large Courses.”
In: Computers and Education: Artificial Intelligence 3 (June 2022).
ISSN: 2666-920X. DOI: 10.1016/j.caeai.2022.100081.

[Big03] John Biggs. “Aligning teaching and assessing to course objectives.”
In: Teaching and learning in higher education: New trends and inno-
vations 2 (2003), pp. 13-17.

[BNJO3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirich-
let Allocation.” In: Journal of Machine Learning Research 3 (2003),
pp. 993-1022. URL: http://jmlr.org/papers/v3/bleiO3a.html.

[BE9]] Charles C Bonwell and James A Eison. Active Learning: Creating
FExcitement in the Classrom. ASHE-ERIC Higher Education Reports.
Washington, DC, USA: School of Education & Human Development,
The George Washington University, January 1991. 1SBN: 1-878380-
08-7.

[BCTO02] Thorsten Brants, Francine Chen, and Ioannis Tsochantaridis. “Topic-
based document segmentation with probabilistic latent semantic anal-
ysis.” In: 11th international conference on Information and knowl-
edge management. CIKM ’02. Association for Computing Machinery
(ACM), 2002. DOI: 10.1145/584792.584829.

[BD09] Bernd Bruegge and Allen H Dutoit. Object Oriented Software Engi-
neering Using UML, Patterns, and Java. Prentice Hall, 2009.

[BGS15] Steven Burrows, Iryna Gurevych, and Benno Stein. “The eras and
trends of automatic short answer grading.” In: International Journal
of Artificial Intelligence in Education 25.1 (2015), pp. 60-117.

88

https://doi.org/10.1145/3396802.3396805
https://doi.org/10.1145/3430895.3460135
https://doi.org/10.1016/j.caeai.2022.100081
http://jmlr.org/papers/v3/blei03a.html
https://doi.org/10.1145/584792.584829

Bibliography

[CW14] Erik Cambria and Bebo White. “Jumping NLP Curves: A Review of
Natural Language Processing Research [Review Article].” In: IEEE
Computational Intelligence Magazine 9.2 (2014), pp. 48-57. DOI: 10.
1109/MCI.2014.2307227.

[Cam+19] Ricardo J. G. B. Campello, Peer Kroger, Jorg Sander, and Arthur
Zimek. “Density-based clustering.” In: WIRFEs Data Mining and Knowl-
edge Discovery 10.2 (October 2019). DOL: 10.1002/widm. 1343.

[Cam+15] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jorg
Sander. “Hierarchical Density Estimates for Data Clustering, Visu-
alization, and Outlier Detection.” In: ACM Transactions on Knowl-
edge Discovery from Data 10.1 (July 2015), pp. 1-51. DOI: 10.1145/
2733381.

[Car80)] Jaime G. Carbonell. “DELTA-MIN: A Search-Control Method for
Information-Gathering Problems.” In: 1st Annual National Confer-
ence on Artificial Intelligence. Stanford University, CA, USA: AAAI
Press/MIT Press, August 1980, pp. 124-127. URL: http://www .
aaai.org/Library/AAAI/1980/aaai80-036.php.

[CCG81] Jaime G. Carbonell, Richard E. Cullingford, and Anatole V. Ger-
shman. “Steps Toward Knowledge-Based Machine Translation.” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-3.4 (1981), pp. 376-392. DOI: 10.1109/TPAMI.1981.4767124.

[Car+97] Jaime G. Carbonell, Yiming Yang, Robert E. Frederking, Ralf D.
Brown, Yibing Geng, and Danny Lee. “Translingual Information Re-
trieval: A Comparative Evaluation.” In: 15th International Joint Con-

ference on Artificial Intelligence. IJCAI 97. Nagoya, Japan: Morgan
Kaufmann, August 1997, pp. 708-715.

[Car+10] David Carless, Diane Salter, Min Yang, and Joy Lam. “Developing
sustainable feedback practices.” In: Studies in Higher Education 36.4
(November 2010), pp. 395-407. DOI: 10.1080/03075071003642449.

[Cat43] Raymond B. Cattell. “The description of personality: basic traits re-
solved into clusters.” In: Journal of Abnormal and Social Psychology
38.4 (October 1943), pp. 476-506. DOIL: 10.1037/h0054116.

[CYY16] Qiuxing Chen, Lixiu Yao, and Jie Yang. “Short text classification
based on LDA topic model.” In: 2016 International Conference on
Audio, Language and Image Processing. ICALIP. IEEE, July 2016.
DOI: 10.1109/icalip.2016.7846525.

89

https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/10.1109/MCI.2014.2307227
https://doi.org/10.1002/widm.1343
https://doi.org/10.1145/2733381
https://doi.org/10.1145/2733381
http://www.aaai.org/Library/AAAI/1980/aaai80-036.php
http://www.aaai.org/Library/AAAI/1980/aaai80-036.php
https://doi.org/10.1109/TPAMI.1981.4767124
https://doi.org/10.1080/03075071003642449
https://doi.org/10.1037/h0054116
https://doi.org/10.1109/icalip.2016.7846525

[Cho00]

[CWMO]

[Chob6]

[DKMO8]

[Dev+19]

IDK32]

[Eis09)]

[EB0S]

Bibliography

Freddy Y. Y. Choi. “Advances in domain independent linear text
segmentation.” In: Ist Meeting of the North American Chapter of
the Association for Computational Linguistics. 2000. URL: https :
//aclanthology.org/A00-2004.

Freddy Y. Y. Choi, Peter Wiemer-Hastings, and Johanna Moore. “La-
tent Semantic Analysis for Text Segmentation.” In: 2001 Conference
on Empirical Methods in Natural Language Processing. 2001. URL:
https://aclanthology.org/W01-0514.

Noam Chomsky. “Three models for the description of language.” In:
IRE Transactions on Information Theory 2.3 (1956), pp. 113-124.
DOI: 10.1109/TIT.1956.1056813.

Fadi P. Deek, Howard Kimmel, and James A. McHugh. “Pedagogical
Changes in the Delivery of the First-Course in Computer Science:
Problem Solving, Then Programming.” In: Journal of Engineering
Education 87.3 (July 1998), pp. 313-320. DOI: 10.1002/j .2168~
9830.1998.tb00359.x.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding.” In: 019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL). Vol. 1 (Long Papers). Minneapolis,
Minnesota: Association for Computational Linguistics (ACL), June
2019, pp. 4171-4186. DOI: 10.18653/v1/N19-1423.

H. E. Driver and A. L. Kroeber. “Quantitative Expression of Cultural
Relationships.” In: American Archaeology and Ethnology 31.4 (1932),
pp- 211-256.

Jacob Eisenstein. “Hierarchical Text Segmentation from Multi-Scale
Lexical Cohesion.” In: Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of the Association for
Computational Linguistics. Boulder, Colorado: Association for Com-
putational Linguistics (ACL), June 2009, pp. 353-361. URL: https:
//aclanthology.org/N09-1040.

Jacob Eisenstein and Regina Barzilay. “Bayesian Unsupervised Topic
Segmentation.” In: 2008 Conference on Empirical Methods in Natu-
ral Language Processing. Honolulu, Hawaii: Association for Compu-
tational Linguistics (ACL), October 2008, pp. 334-343. URL: https:
//aclanthology.org/D08-1035.

90

https://aclanthology.org/A00-2004
https://aclanthology.org/A00-2004
https://aclanthology.org/W01-0514
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x
https://doi.org/10.1002/j.2168-9830.1998.tb00359.x
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N09-1040
https://aclanthology.org/N09-1040
https://aclanthology.org/D08-1035
https://aclanthology.org/D08-1035

[EL90)

[Est+96]

[Est02]

[Fey94]

[FWAO7]

[FP10]

[Gao+10]

[GS05]

(GCO8]

Bibliography

David G. Elliman and Tan T Lancaster. “A review of segmentation
and contextual analysis techniques for text recognition.” In: Pattern
Recognition 23.3-4 (January 1990), pp. 337-346. DOI: 10.1016/0031-
3203(90)90021-c.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. “A
Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise.” In: 2nd International Conference on Knowl-
edge Discovery and Data Mining. KDD’96. Portland, Oregon: AAAI
Press, 1996, pp. 226-231. URL: http://www.aaai.org/Papers/KDD/
1996/KDD96-037 . pdf.

Vladimir Estivill-Castro. “Why so many clustering algorithms.” In:
ACM SIGKDD Ezxplorations Newsletter 4.1 (June 2002), pp. 65-75.
DOI: 10.1145/568574.568575.

Richard P. Feynman. Six Fasy Pieces. Basic Books, July 1994. 1SBN:
978-0-2014-0825-6.

Dominik Flejter, Karol Wieloch, and Witold Abramowicz. “Unsu-
pervised Methods of Topical Text Segmentation for Polish.” In: An-
nual Meeting of the Association for Computational Linguistics 2007 -
Workshop on Balto-Slavonic Natural Language Processing: Informa-
tion Extraction and Enabling Technologies. ACL ’07. Prague, Czech
Republic: Association for Computational Linguistics (ACL), 2007,
pp.- 51-58.

Scott Freeman and John W. Parks. “How Accurate Is Peer Grading?”
In: CBE—Life Sciences Education 9.4 (December 2010), pp. 482—-488.
DOI: 10.1187/cbe.10-03-0017.

Yang Gao, Li Zhou, Yong Zhang, Chunxiao Xing, Yigang Sun, and
Xianzhong Zhu. “Sentiment classification for stock news.” In: 5th
International Conference on Pervasive Computing and Applications.
IEEE, December 2010. DOI: 10.1109/icpca.2010.5704082.

Graham Gibbs and Claire Simpson. “Conditions Under Which As-
sessment Supports Students’ Learning.” In: Learning and Teaching
in Higher Education 1 (2005), pp. 3-31. URL: http://eprints.
glos.ac.uk/id/eprint/3609.

Jade Goldstein and Jaime Carbonell. “Summarization: (1) Using MMR
for Diversity- Based Reranking and (2) Evaluating Summaries.” In:
TIPSTER Text Program Phase I1I Workshop. Baltimore, Maryland,
USA: Association for Computational Linguistics (ACL), October 1998,

91

https://doi.org/10.1016/0031-3203(90)90021-c
https://doi.org/10.1016/0031-3203(90)90021-c
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
http://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://doi.org/10.1145/568574.568575
https://doi.org/10.1187/cbe.10-03-0017
https://doi.org/10.1109/icpca.2010.5704082
http://eprints.glos.ac.uk/id/eprint/3609
http://eprints.glos.ac.uk/id/eprint/3609

[Gol+99]

(GLOS]

[HHT76]

[Hea94]

[Hea97]

[Hie09)]

[Hoa+18]

[Hua+03]

[JB92]

Bibliography

pp. 181-195. por: 10 .3115/1119089 . 1119120. URL: https: //
aclanthology.org/X98-1025.

Jade Goldstein, Mark Kantrowitz, Vibhu Mittal, and Jaime Car-
bonell. “Summarizing Text Documents: Sentence Selection and Eval-
uation Metrics.” In: 22nd Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. SIGIR
’99. Berkeley, California, USA: Association for Computing Machinery
(ACM), 1999, pp. 121-128. 1sBN: 1581130961. DOI: 10.1145/312624.
312665.

Victor Gonzalez-Barbone and Martin Llamas-Nistal. “eAssessment
of open questions: An educator’s perspective.” In: 2008 38th Annual
Frontiers in Education Conference. IEEE. 2008, F2B-1.

Michael Alexander Kirkwood Halliday and Ruqaiya Hasan. Cohesion
in English. London, England: Longman, May 1976. 1SBN: 97805825504 14.

Marti A. Hearst. “Multi-Paragraph Segmentation Expository Text.”
In: 32nd Annual Meeting of the Association for Computational Lin-
guistics. Las Cruces, New Mexico, USA: Association for Computa-
tional Linguistics (ACL), June 1994, pp. 9-16. bO1: 10.3115/981732.
981734.

Marti A. Hearst. “Text Tiling: Segmenting Text into Multi-paragraph
Subtopic Passages.” In: Computational Linguistics 23.1 (1997), pp. 33—
64. URL: https://aclanthology.org/J97-1003.

Djoerd Hiemstra. “Language Models.” In: Encyclopedia of Database
Systems. Springer US, 2009, pp. 1591-1594. po1: 10.1007/978-0-
387-39940-9_923.

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor
Cohn. “Iterative Back-Translation for Neural Machine Translation.”
In: 2nd Workshop on Neural Machine Translation and Generation.
Melbourne, Australia: Association for Computational Linguistics (ACL),
July 2018, pp. 18-24. por1: 10.18653/v1/W18-2703.

Xiangji Huang, Fuchun Peng, Dale Schuurmans, Nick Cercone, and
Stephen E. Robertson. In: Information Retrieval 6.3/4 (2003), pp. 333—
362. DOI: 10.1023/a:1026028229881.

Anil K. Jain and Sushil Bhattacharjee. “Text segmentation using
gabor filters for automatic document processing.” In: Machine Vi-
sion and Applications 5.3 (June 1992), pp. 169-184. pO1: 10.1007/
bf02626996.

92

https://doi.org/10.3115/1119089.1119120
https://aclanthology.org/X98-1025
https://aclanthology.org/X98-1025
https://doi.org/10.1145/312624.312665
https://doi.org/10.1145/312624.312665
https://doi.org/10.3115/981732.981734
https://doi.org/10.3115/981732.981734
https://aclanthology.org/J97-1003
https://doi.org/10.1007/978-0-387-39940-9_923
https://doi.org/10.1007/978-0-387-39940-9_923
https://doi.org/10.18653/v1/W18-2703
https://doi.org/10.1023/a:1026028229881
https://doi.org/10.1007/bf02626996
https://doi.org/10.1007/bf02626996

Bibliography

[JR10] Bernard J. Jansen and Soo Young Rieh. “The seventeen theoretical
constructs of information searching and information retrieval.” In:

Journal of the American Society for Information Science and Tech-
nology 61.8 (2010), pp. 1517-1534. DOT: 10.1002/asi.21358.

[JHG13] Tansy Jessop, Yassein El Hakim, and Graham Gibbs. “The whole
is greater than the sum of its parts: a large-scale study of students’
learning in response to different programme assessment patterns.”
In: Assessment & FEvaluation in Higher Education 39.1 (April 2013),
pp. 73-88. DOI: 10.1080/02602938.2013.792108.

[JMO09] Sally Jordan and Tom Mitchell. “e-Assessment for learning? The po-
tential of short-answer free-text questions with tailored feedback.” In:
British Journal of Educational Technology 40.2 (2009), pp. 371-385.

[JCN13] S. Joty, G. Carenini, and R. T. Ng. “Topic Segmentation and Labeling
in Asynchronous Conversations.” In: Journal of Artificial Intelligence
Research 47 (July 2013), pp. 521-573. DOI: 10.1613/jair.3940.

[KG17] Jan Knobloch and Enrico Gigantiello. “AMATI: Another Massive Au-
dience Teaching Instrument.” In: 15. Workshop on Software Engi-
neering im Unterricht der Hochschulen. SEUH ’17. Hannover, Ger-
many: CEUR-WS.org, February 2017, pp. 63-68. URL: http://ceur-
ws.org/Vol-1790/paper07 .pdf.

[KA10] DAVID R. Krahtwohl and LORIN W. Anderson. “Merlin C. Wittrock
and the Revision of Bloom’s Taxonomy.” In: Fducational Psychologist
45.1 (2010), pp. 64-65. DOI: 10.1080/00461520903433562.

[Kri4-11] Hans-Peter Kriegel, Peer Kroger, Jorg Sander, and Arthur Zimek.
“Density-based clustering.” In: WIRFEs Data Mining and Knowledge
Discovery 1.3 (April 2011), pp. 231-240. DOI: 10.1002/widm. 30.

[KFA17] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. “Experi-
ences of a Software Engineering Course based on Interactive Learn-
ing.” In: 15. Workshop Software Engineering im Unterricht der Hochschulen.
SEUH ’17. CEUR, 2017, pp. 32-40.

[Kru+20] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and
Bernd Bruegge. “An interactive learning method to engage students
in modeling.” In: International Conference on Software Engineering:
Software Engineering Education and Training. 2020, pp. 12-22.

93

https://doi.org/10.1002/asi.21358
https://doi.org/10.1080/02602938.2013.792108
https://doi.org/10.1613/jair.3940
http://ceur-ws.org/Vol-1790/paper07.pdf
http://ceur-ws.org/Vol-1790/paper07.pdf
https://doi.org/10.1080/00461520903433562
https://doi.org/10.1002/widm.30

[KS19]

[Kru+17]

[Kuh96]

[LY17]

[Lik32]

[LC04a]

[LCO4b)

[LWZ06)

[Llo82]

[Mac67]

Bibliography

Stephan Krusche and Andreas Seitz. “Increasing the Interactivity in
Software Engineering MOOCs - A Case Study.” In: 52nd Hawaii
International Conference on System Sciences, HICSS 2019, Grand
Wailea, Maui, Hawaii, USA, January 8-11, 2019. ScholarSpace, 2019,
pp. 1-10. URL: https://hdl.handle.net/10125/60197.

Stephan Krusche, Andreas Seitz, Jiirgen Borstler, and Bernd Bruegge.
“Interactive learning: Increasing student participation through shorter

exercise cycles.” In: 19th Australasian Computing Education Confer-
ence. ACM. 2017, pp. 17-26.

Thomas S. Kuhn. The Structure of Scientific Revolutions. University
of Chicago Press, 1996. 1SBN: 0226458083.

Yang Li and Tao Yang. “Word Embedding for Understanding Natural
Language: A Survey.” In: Studies in Big Data. Springer International
Publishing, May 2017, pp. 83-104. DOI1: 10.1007/978-3-319-53817~
4_4.

Rensis Likert. “A Technique for the Measurement of Attitudes.” In:
Archives of Psychology 22.140 (1932), pp. 1-55.

Lucian Vlad Lita and Jaime Carbonell. “Instance-Based Question An-
swering: A Data-Driven Approach.” In: 2004 Conference on Empirical
Methods in Natural Language Processing. EMNLP-2004. Barcelona,
Spain: Association for Computational Linguistics (ACL), July 2004,
pp. 396-403. URL: https://aclanthology.org/W04-3251.

Lucian Vlad Lita and Jaime Carbonell. “Unsupervised Question An-
swering Data Acquisition from Local Corpora.” In: 15th ACM In-
ternational Conference on Information and Knowledge Management.
CIKM ’04. Washington, D.C., USA: Association for Computing Ma-
chinery (ACM), 2004, pp. 607-614. 1SBN: 1581138741. DO1: 10.1145/
1031171.1031283.

Chuanhan Liu, Yongcheng Wang, and Fei Zheng. “Automatic Text
Summarization for Dialogue Style.” In: 2006 IEEFE International Con-
ference on Information Acquisition. IEEE, 2006. DOI: 10.1109/icia.
2006.306009.

Stuart P. Lloyd. “Least squares quantization in PCM.” In: IFEE
Transactions on Information Theory 28.2 (March 1982), pp. 129-
137. DOI: 10.1109/tit.1982.1056489.

James B. MacQueen. “Classification and analysis of multivariate ob-
servations.” In: 5th Berkeley Symposium on Mathematical Statistics
and Probability. Vol. 1: Statistics. 1967, pp. 281-297.

94

https://hdl.handle.net/10125/60197
https://doi.org/10.1007/978-3-319-53817-4_4
https://doi.org/10.1007/978-3-319-53817-4_4
https://aclanthology.org/W04-3251
https://doi.org/10.1145/1031171.1031283
https://doi.org/10.1145/1031171.1031283
https://doi.org/10.1109/icia.2006.306009
https://doi.org/10.1109/icia.2006.306009
https://doi.org/10.1109/tit.1982.1056489

[MRS08]

[Mar03]

[May+09]

[MH17]

[MHA17]

IMWO6]

[Mik+13]

[Mis+11]

[Mis—+09]

Bibliography

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze.
Introduction to Information Retrieval. Cambridge University Press,
July 2008. Do1: 10.1017/cbo9780511809071.

Steven P. Marrone. “Medieval philosophy in context.” In: The Cam-
bridge Companion to Medieval Philosophy. Cambridge University Press,
August 2003, pp. 10-50. DOI: 10.1017/¢cc010521806038.002.

Richard E. Mayer, Andrew Stull, Krista DeLeeuw, Kevin Almeroth,
Bruce Bimber, Dorothy Chun, Monica Bulger, Julie Campbell, Allan
Knight, and Hangjin Zhang. “Clickers in college classrooms: Foster-
ing learning with questioning methods in large lecture classes.” In:
Contemporary Educational Psychology 34.1 (January 2009), pp. 51—
57. DOI: 10.1016/j.cedpsych.2008.04.002.

Leland McInnes and John Healy. “Accelerated Hierarchical Density
Based Clustering.” In: 2017 IEEE International Conference on Data
Mining Workshops. ICDMW ’17. IEEE, November 2017. DOI: 10.
1109/icdmw.2017.12.

Leland McInnes, John Healy, and Steve Astels. “hdbscan: Hierarchi-
cal density based clustering.” In: The Journal of Open Source Soft-
ware 2.11 (March 2017), p. 205. DOI: 10.21105/joss.00205.

Olena Medelyan and Tan H. Witten. “Thesaurus based automatic
keyphrase indexing.” In: 6th ACM/IEEE-CS joint conference on Digi-
tal libraries. JCDL ’06. Association for Computing Machinery (ACM),
2006. pOI: 10.1145/1141753.1141819.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
Estimation of Word Representations in Vector Space.” In: st Inter-
national Conference on Learning Representations. Workshop Track.
ICLR ’13. Scottsdale, Arizona, USA, May 2013. DOI: 10 . 48550/
arXiv.1301.3781.

Hemant Misra, Francois Yvon, Olivier Cappé, and Joemon Jose. “Text
segmentation: A topic modeling perspective.” In: Information Pro-
cessing & Management 47.4 (July 2011), pp. 528-544. DOI: 10.1016/
j.ipm.2010.11.008.

Hemant Misra, Francois Yvon, Joemon M. Jose, and Olivier Cappe.
“Text Segmentation via Topic Modeling: An Analytical Study.” In:
18th ACM Conference on Information and Knowledge Management.
CIKM ’09. Hong Kong, China: Association for Computing Machinery
(ACM), 2009, pp. 1553-1556. 1SBN: 9781605585123. DOI: 10.1145/
1645953.1646170.

95

https://doi.org/10.1017/cbo9780511809071
https://doi.org/10.1017/ccol0521806038.002
https://doi.org/10.1016/j.cedpsych.2008.04.002
https://doi.org/10.1109/icdmw.2017.12
https://doi.org/10.1109/icdmw.2017.12
https://doi.org/10.21105/joss.00205
https://doi.org/10.1145/1141753.1141819
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1016/j.ipm.2010.11.008
https://doi.org/10.1016/j.ipm.2010.11.008
https://doi.org/10.1145/1645953.1646170
https://doi.org/10.1145/1645953.1646170

Bibliography

[Mit+99] Vibhu O. Mittal, Mark Kantrowitz, Jade Goldstein, and Jaime G.
Carbonell. “Selecting Text Spans for Document Summaries: Heuris-
tics and Metrics.” In: 16th National Conference on Artificial Intel-
ligence and 11th Conference on Innovative Applications of Artificial
Intelligence. Orlando, Florida, USA: AAAI Press / The MIT Press,
July 1999, pp. 467-473. URL: http://www.aaai.org/Library/AAAI/
1999/a2ai99-067 . php.

[Ng+19] Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott, Michael Auli, and
Sergey Edunov. “Facebook FAIR’s WMT19 News Translation Task
Submission.” In: 4th Conference on Machine Translation. Vol. 2: Shared
Task Papers. Florence, Italy: Association for Computational Linguis-
tics (ACL), August 2019, pp. 314-319. por: 10.18653/v1/W19-5333.

[INMO6] David J. Nicol and Debra Macfarlane-Dick. “Formative assessment
and self-regulated learning: a model and seven principles of good feed-
back practice.” In: Studies in Higher Education 31.2 (April 2006),
pp- 199-218. por: 10.1080/03075070600572090.

[Nyb+02] Eric Nyberg et al. “The JAVELIN Question-Answering System at
TREC 2002.” In: 11th Text REtrieval Conference. TREC ’02. Gaithers-
burg, Maryland, USA: National Institute of Standards and Technol-
ogy (NIST), November 2002. URL: http://trec.nist.gov/pubs/
trecll/papers/cmu. javelin.pdf.

[Nyb403] Eric Nyberg et al. “The JAVELIN Question-Answering System at
TREC 2003: A Multi-Strategh Approach with Dynamic Planning.”
In: 12th Text REtrieval Conference. TREC ’03. Gaithersburg, Mary-
land, USA: National Institute of Standards and Technology (NIST),
November 2003. URL: http://trec.nist . gov/pubs/trecl2/
papers/cmu. javelin.qa.pdf.

[Ott+19] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross,
Nathan Ng, David Grangier, and Michael Auli. “fairseq: A Fast, Ex-
tensible Toolkit for Sequence Modeling.” In: 2019 Conference of the
North American Chapter of the Association for Computational Lin-
guistics (Demonstrations). NAACL. Minneapolis, Minnesota: Asso-
ciation for Computational Linguistics (ACL), June 2019, pp. 48-53.
DOI: 10.18653/v1/N19-4009.

[PT17] Irina Pak and Phoey Lee Teh. “Text Segmentation Techniques: A
Critical Review.” In: Innovative Computing, Optimization and Its Ap-
plications. Ed. by Ivan Zelinka, Pandian Vasant, Vo Hoang Duy, and
Tran Trong Dao. Springer International Publishing, November 2017,
pp. 167-181. poI: 10.1007/978-3-319-66984-7_10.

96

http://www.aaai.org/Library/AAAI/1999/aaai99-067.php
http://www.aaai.org/Library/AAAI/1999/aaai99-067.php
https://doi.org/10.18653/v1/W19-5333
https://doi.org/10.1080/03075070600572090
http://trec.nist.gov/pubs/trec11/papers/cmu.javelin.pdf
http://trec.nist.gov/pubs/trec11/papers/cmu.javelin.pdf
http://trec.nist.gov/pubs/trec12/papers/cmu.javelin.qa.pdf
http://trec.nist.gov/pubs/trec12/papers/cmu.javelin.qa.pdf
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.1007/978-3-319-66984-7_10

[PSM14]

[Pet+18]

[Pop34]

[Poph9]

[PHM11]

[Ram03]

[Rey99]

[RB12a]

[RB12b]

Bibliography

Jeffrey Pennington, Richard Socher, and Christopher Manning. “GloVe:
Global Vectors for Word Representation.” In: 2014 Conference on
Empirical Methods in Natural Language Processing. EMNLP. Doha,
Qatar: Association for Computational Linguistics (ACL), October
2014, pp. 1532-1543. por: 10.3115/v1/D14-1162. URL: https:
//aclanthology.org/D14-1162.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. “Deep Contextualized
Word Representations.” In: 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL). Vol. 1 (Long Papers). Association
for Computational Linguistics (ACL), 2018. DOI: 10.18653/v1/n18-
1202.

Karl Raimund Popper. Logik der Forschung — Zur Erkenntnistheorie
der modernen Naturwissenschaft. Springer, 1934. 1SBN: 978-3-7091-
2021-7.

Karl Raimund Popper. The Logic of Scientific Discovery. Hutchinson,
1959. 1sBN: 978-0-0911-1720-7.

Margaret Price, Karen Handley, and Jill Millar. “Feedback: focusing
attention on engagement.” In: Studies in Higher Education 36.8 (De-
cember 2011), pp. 879-896. DOI: 10.1080/03075079.2010.483513.

Juan Ramos. “Using TF-IDF to Determine Word Relevance in Docu-
ment Queries.” In: 1st Instructional Conference on Machine Learning.

ICML ’03. 2003.

Jeffrey C. Reynar. “Statistical Models for Topic Segmentation.” In:
37th Annual Meeting of the Association for Computational Linguis-
tics. College Park, Maryland, USA: Association for Computational
Linguistics (ACL), June 1999, pp. 357-364. DOI: 10.3115/1034678.
1034735.

Martin Riedl and Chris Biemann. “Sweeping through the Topic Space:
Bad luck? Roll again!” In: PJoint Workshop on Unsupervised and
Semi-Supervised Learning in NLP. Avignon, France: Association for
Computational Linguistics (ACL), April 2012, pp. 19-27. URL: https:
//aclanthology.org/W12-0703.

Martin Riedl and Chris Biemann. “TopicTiling: A Text Segmentation
Algorithm based on LDA.” In: ACL 2012 Student Research Work-
shop. Jeju Island, Korea: Association for Computational Linguistics

97

https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.1080/03075079.2010.483513
https://doi.org/10.3115/1034678.1034735
https://doi.org/10.3115/1034678.1034735
https://aclanthology.org/W12-0703
https://aclanthology.org/W12-0703

Bibliography

(ACL), July 2012, pp. 37-42. URL: https://aclanthology . org/
W12-3307.

[Rij77] Cornelis Joost van Rijsbergen. “A Theoretical Basis for the Use of Co-
Occurrence Data in Information Retrieval.” In: Journal of Documen-
tation 33.2 (February 1977), pp. 106-119. DOI: 10.1108/eb026637.

[Rod12] C. Osvaldo Rodriguez. “MOOCs and the Al-Stanford Like Courses:
Two Successful and Distinct Course Formats for Massive Open Online
Courses.” In: European Journal of Open, Distance and E-Learning
2012/I1 (July 2012). URL: https://o0ld.eurodl. org/materials/
contrib/2012/Rodriguez.pdf.

[RHWS86a] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning Internal Representations by Error Propagation.” In: Par-
allel Distributed Processing. Ed. by James L. McClelland and David
E. Rumelhart. Cambridge: MIT Press, 1986, pp. 318-362. 1SBN: 0-
262-18120-7.

[RHWS86b] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning representations by back-propagating errors.” In: Nature
323.6088 (October 1986), pp. 533-536. DOI: 10.1038/323533a0.

[ST69] Roger C. Schank and Larry Tesler. “A Conceptual Dependency Parser
for Natural Language.” In: International Conference on Computa-
tional Linguistics. COLING. Sanga Saby, Sweden: Association for
Computational Linguistics (ACL), September 1969. URL: https://
aclanthology.org/C69-0201.

[Sch15] Jirgen Schmidhuber. “Deep learning in neural networks: An overview.”
In: Neural Networks 61 (January 2015), pp. 85-117. por: 10.1016/
j.neunet.2014.09.003.

[Sev12] Charles Severance. “Teaching the World: Daphne Koller and Cours-
era.” In: Computer 45.8 (August 2012), pp. 8-9. DOI: 10.1109/mc.
2012.278.

[Sey82] Oskar Seyftert. Lexikon der klassischen Altertumskunde: Kulturgeschichte

der Griechen und Romer. Mythologie und Religion, Litteratur, Kunst
und Altertimer des Staats- und Privatlebens. Leibzig, Germany: Ver-
lag des Bibliographischen Instituts, 1882. URL: https://hdl.handle.
net/2027/hvd.32044081356115.

[Sey91] Oskar Seyffert. A Dictionary of Classical Antiquities: Mythology, Re-
ligion, Literature & Art. London, UK: Swan Sonnenschein and Co.,
1891. URL: https://hdl.handle.net/2027/gri.ark:/13960/
£85370762m.

98

https://aclanthology.org/W12-3307
https://aclanthology.org/W12-3307
https://doi.org/10.1108/eb026637
https://old.eurodl.org/materials/contrib/2012/Rodriguez.pdf
https://old.eurodl.org/materials/contrib/2012/Rodriguez.pdf
https://doi.org/10.1038/323533a0
https://aclanthology.org/C69-0201
https://aclanthology.org/C69-0201
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/mc.2012.278
https://doi.org/10.1109/mc.2012.278
https://hdl.handle.net/2027/hvd.32044081356115
https://hdl.handle.net/2027/hvd.32044081356115
https://hdl.handle.net/2027/gri.ark:/13960/t85j0762m
https://hdl.handle.net/2027/gri.ark:/13960/t85j0762m

[Sib73)]

[SHS10]

[Sim88]

SS00]

[Try39]

[Tu+18]

[Tur50]

[Wer81]

[Wiel4]

[Wu+07]

[Yaa97]

Bibliography

Robin Sibson. “SLINK: An optimally efficient algorithm for the single-
link cluster method.” In: The Computer Journal 16.1 (January 1973),
pp. 30-34. pDOI: 10.1093/comjnl/16.1.30.

Raheel Siddiqi, Christopher J Harrison, and Rosheena Siddiqgi. “Im-
proving teaching and learning through automated short-answer mark-

ing.” In: IEEE Transactions on Learning Technologies 3.3 (2010),
pp- 237-249.

Herbert A. Simon. “The Science of Design: Creating the Artificial.”
In: Design Issues 4.1/2 (1988), p. 67. DOI: 10.2307/1511391.

Jana 7 Sukkarieh and Svetlana Stoyanchev. “Automating Model Build-
ing in c-rater.” In: 2009 Workshop on Applied Textual Inference. As-
sociation for Computational Linguistics (ACL), 2009, pp. 61-69.

Robert Choate Tryon. Cluster analysis. Edwards Brothers, Inc., 1939.
URL: https://hdl.handle.net/2027/mdp.39015005016475.

Yuwei Tu, Ying Xiong, Weiyu Chen, and Christopher Brinton. “A
Domain-Independent Text Segmentation Method for Educational Course
Content.” In: 2018 IEEE International Conference on Data Mining
Workshops. ICDMW. IEEE, November 2018. DOI: 10.1109/icdmw.
2018.00053.

Alan Mathison Turing. “Computing Machinery and Intelligence.” In:
Mind LIX.236 (October 1950), pp. 433-460. pOI: 10.1093/mind/
1ix.236.433.

Paul J. Werbos. “Applications of Advances in Nonlinear Sensitiv-
ity Analysis.” In: 10th IFIP Conference. New York City, USA, 1981,
pp. 762-770.

Roel J. Wieringa. Design Science Methodology for Information Sys-
tems and Software Engineering. Springer, 2014. 1ISBN: 978-3-662-43838-
1. por: 10.1007/978-3-662-43839-8.

Yun Wu, Yan Zhang, Si-ming Luo, and Xiao-jie Wang. “Compre-
hensive Information Based Semantic Orientation Identification.” In:
2007 International Conference on Natural Language Processing and
Knowledge Engineering. IEEE, August 2007. DOI: 10.1109/nlpke.
2007 .4368043.

Yaakov Yaari. “Segmentation of Expository Texts by Hierarchical

Agglomerative Clustering.” In: International Conference Recent Ad-
vances in NLP. RANLP ’97. Tzigov Chark, Bulgaria, September 1997.

99

https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.2307/1511391
https://hdl.handle.net/2027/mdp.39015005016475
https://doi.org/10.1109/icdmw.2018.00053
https://doi.org/10.1109/icdmw.2018.00053
https://doi.org/10.1093/mind/lix.236.433
https://doi.org/10.1093/mind/lix.236.433
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1109/nlpke.2007.4368043
https://doi.org/10.1109/nlpke.2007.4368043

Bibliography

[Zub38] Joseph Zubin. “A technique for measuring like-mindedness.” In: Jour-
nal of Abnormal and Social Psychology 33.4 (October 1938), pp. 508
516. DOI: 10.1037/h0055441.

100

https://doi.org/10.1037/h0055441

	Acknowledgments
	Abstract
	Zusammenfassung
	Publication Preface
	Contents
	1 Introduction
	1.1 Textual Exercises
	1.2 Assessment
	1.3 Evolution of Teaching

	2 Natural Language Processing
	2.1 History
	2.2 Topic segmentation
	2.3 Language Models, Word Embeddings, and Transformers

	3 Clustering
	3.1 Partitioning-Based Clustering
	3.2 Density-Based Clustering
	3.3 Hierarchical Clustering

	4 Research Process & Data Collection
	4.1 Design Science
	4.2 Courses

	5 Toward the Automatic Assessment of Text Exercises
	5.1 Introduction and Problem
	5.2 Visionary Scenario
	5.3 Assessment Workflow
	5.4 Evaluation Approach
	5.5 Discussion
	5.6 Related Work
	5.7 Conclusion
	5.8 References

	6 Towards the Automation of Grading Textual Student Submissions to Open-ended Questions
	6.1 Introduction and Problem
	6.2 Assessment Systems
	6.3 Text Segmentation
	6.4 Segmenting Student Answers
	6.5 Evaluation
	6.6 Summary
	6.7 References

	7 A Machine Learning Approach for Suggesting Feedback in Textual Exercises in Large Courses
	7.1 Introduction
	7.2 Background: Language Models
	7.3 Related Work
	7.4 Approach: Computer-aided Feedback (CoFee)
	7.5 Reference Implementation (Athene)
	7.6 Evaluation
	7.7 Conclusion
	7.8 References

	8 Machine Learning Based Feedback on Textual Student Answers in Large Courses
	8.1 Introduction
	8.2 Methodology
	8.3 Problem Investigation
	8.4 Treatment Design – CoFee
	8.5 Related Work
	8.6 Treatment Validation
	8.7 Treatment Implementation – Athena
	8.8 Implementation Evaluation
	8.9 Conclusion
	8.10 Future Work
	8.11 Acknowledgments
	8.12 References

	9 Conclusion & Outlook
	List of Figures
	List of Tables
	Acronyms
	Bibliography

