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Abstract

In robotic planetary exploration missions, robots are deployed to autonomously explore
and map the large and unstructured environments of planetary surfaces. While a robot
should be able to execute a mission task mainly autonomously, for space exploration
missions, it is important to have the opportunity to observe and adapt the robotic ex-
ploration task. Operators and scientists require to supervise the robot at the available
communication time slots and understand the decisions made by the robot. For this
we propose a generalized concept for robotic exploration based on Multi-Criteria Deci-
sion Making (MCDM) to model, implement and conduct exploration tasks. Our general
formulation supports scientists by designing the autonomous exploration behavior of a
robot to reach specific missions goals. In robotic exploration tasks, robots repeatedly
decide where to move next. We define locations at the boundary to unknown areas -
exploration goals - and locations in already visited areas - re-localization goals - to be
the solution space of this decision problem. To model a certain exploration behavior,
the goal locations are evaluated by a set of criteria and conditions. The criteria and
condition values for each goal location are compared, applying a MCDM method to find
the next goal location, which best matches the defined mission goal. Thereby, we in-
troduce two novel multi-attribute utility functions and transfer the Preference Ranking
Organization Method for Enrichment Evaluation (PROMETHEE II) to solve decision
making in robotic exploration. To cope with the limited computational resources of
space rovers, we extend the PROMETHEE II algorithm to decrease the required com-
putational resources. Applying our generalized concept, we examine four exploration use
cases, deduced from the Exploration Roadmap of the International Space Exploration
Coordination Group (ISECG). In the first use case, the robot has to autonomously sur-
vey a region of interest. To tackle the trade-off between exploration efficiency and map
quality, we implement an integrated exploration, which applies active loop closing to
optimize an underlying SLAM graph. In our second use case, we implement a directed
exploration to increase the scientific output while exploring a region of interest. It incor-
porates knowledge about the probability of detecting a feature of interest, i.e., a specific
type of rock requested by the scientists. As our third use case, we implement an ex-
ploration behavior in the fashion of drive-by science, whereby the robot is directed to a
predefined point of interest, while simultaneously gathering new information about the
environment on its way. For our fourth use case, we apply the same concept to model
a multi-robot exploration task, which coordinates a heterogeneous team of two robots.
We demonstrate all four use cases on real or simulated space rover prototype hardware.
In a total of more than sixty experiments, we evaluate our methods and analyze the
implemented exploration behaviors.
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Zusammenfassung

Bei der Exploration von planetaren Oberflächen erkunden Roboter autonom fremde
Umgebungen und bauen eine Karte dieser auf. Auch wenn ein Roboter in der Lage sein
sollte, eine planetare Explorationsmission autonom durchzuführen, ist es unerlässlich,
eine Möglichkeit zur Überwachung und gegebenenfalls zur Anpassung der Exploration
zu haben. Operatoren und Wissenschaftler müssen den Roboter während der kurzen
Zeitabschnitte, in denen eine Kommunikation zum Roboter aufgebaut werden kann,
überwachen können. Wir schlagen ein allgemeines Konzept für robotische Exploration
basierend auf multikriteriellen Entscheidungsverfahren vor, um verschiedene robotische
Explorationsaufgaben zu modellieren, zu implementieren und auszuführen. Unsere all-
gemeine Formulierung ermöglicht es Wissenschaftlern, das Explorationsverhalten eines
Roboters so zu gestalten, das verschiedene zuvor definierte Missionsziele erreicht wer-
den können. Bei der robotischen Exploration entscheidet ein Roboter immer wieder-
holend, welchen Zielpunkt er als Nächstes ansteuert. Der Lösungsraum dieses Entschei-
dungsproblems beinhaltet dabei Zielpunkte an der Grenze zu bis dahin unbekannten Ge-
bieten und Zielpunkte in Gegenden, die der Roboter bereits besucht hat. Um das Explo-
rationsverhalten des Roboters zu modellieren, werden mehrere Kriterien und Konditio-
nen über die Ziele ausgewertet. Um das nächst beste Ziel zu bestimmen, werden die Kri-
terien und Konditionen für die einzelenen Ziele mithilfe eines multikriteriellen Entschei-
dungsverfahrens verglichen. Wir stellen zwei neue multikriterielle Nutzenfunktionen
vor und übertragen die bekannte Methode Preference Ranking Organization Method
for Enrichment Evaluation (PROMETHEE II) auf das Entscheidungsproblem der robo-
tischen Exploration. Die Rechenleistung eines Roboters, der für den Weltraumeinsatz
konzipiert wurde, ist begrenzt. Darum erweitern wir PROMETHEE II, um die nötige
Rechenleistung der Methode zu verringern. Wir leiten vier verschiedene Anwendungsfälle
von der Exploration Roadmap der International Space Exploration Coordination Group
(ISECG) ab und wenden unser allgemeines Konzept an, um diese Anwendungsfälle zu
modellieren und zu untersuchen. Im ersten Anwendungsfall exploriert und vermisst der
Roboter autonom eine unbekannte Region. Wir implementieren eine Explorationsstrate-
gie, bei welcher aktiv nach Schleifenschlüssen im darunter liegenden SLAM Graphen
gesucht wird, um diesen zu optimieren. Damit lösen wir den Konflikt zwischen einer
effizienten Exploration und einer guten Kartenqualität. Im zweiten Anwendungsfall im-
plementieren wir eine Explorationsstrategie, welche im ”Vorbeifahren” wissenschaftliche
Entdeckungen machen soll. Der Roboter muss eine vorgegebene Reihe von globalen
Zielen nacheinander ansteuern und während der Fahrt zu den einzelnen Zielpunkten
möglichst viele neue wissenschaftliche Informationen über die Region, welche er traver-
siert sammeln. Im dritten Anwendungsfall stellen wir eine Explorationsstrategie vor,
welche es zum Ziel hat, den wissenschaftlichen Ertrag zu erhöhen, während der Roboter
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Zusammenfassung

eine Region exploriert. Dafür berücksichtigen wir die Wahrscheinlichkeit, ein Objekt
von wissenschaftlichem Interesse an einem Ziel zu detektieren. Ein solches Objekt kann
z. B. ein bestimmter Stein sein, der von Wissenschaftlern als wissenschaftlich rele-
vant eingestuft wurde. In unserem fünften Anwendungsfall stellen wir eine Strategie
vor, um ein heterogenes Team von Robotern zu koordinieren, welche gemeinsam eine
Region explorieren. Dafür verwenden wir das gleiche allgemeine Konzept wie für die
Anwendungsfälle, in denen nur ein Roboter alleine agiert. Wir demonstrieren alle vier
Anwendungsfälle auf realen robotischen Systemen oder mithilfe einer Simulation. Ins-
gesamt führen wir mehr als 60 Experimente durch, um alle Explorationsstrategien und
unser allgemeines Konzept zu analysieren und zu validieren.
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1 Introduction

To unlock clues about our solar system, the exploration of the Moon, Mars and asteroids
are vital. As many destinations in space are inaccessible or too dangerous for humans,
planetary exploration robotics is the key for future space applications. In this thesis, we
investigate the robotic exploration problem of planetary surfaces, by which a robot has
to repeatedly answer one important question: where to move next?

1.1 Problem Statement and Objectives

Traditionally, robotic investigations are operated remotely by human operators on Earth,
which is difficult due to the delayed communication. To achieve most new scientific
insights on a mission, a future robot should mainly act autonomously. For robotic
exploration, that means deciding on its own ”where to move next?”, to gain the most new
information about the environment. The communication delay and small bandwidth,
only allow for supervision by a human operator and for sending high-level commands.
To enable supervision for robotic exploration tasks, we examine how to formulate robotic
exploration as a general Multi-Criteria Decision Making (MCDM) Problem.
The answer to the question, ”where to move next?”, depends on the mission objectives,
i.e. varies for each exploration task. According to the Exploration Roadmap of the
International Space Exploration Coordination Group (International Space Exploration
Coordination Group (ISECG) ) [3] future robotic tasks include surveys and sample
returns for science, as well as resource and environment assessment. We investigate four
exploration use cases, which we illustrate in fig. 1.1:

1. Autonomous exploration: The survey of unknown areas is a basic task for a
space rover. The goal is to build an accurate map of a Region of Interest (ROI),
as illustrated in fig. 1.1, use case 1. The challenge is to explore, i.e. map the area,
efficiently, while keeping a good map quality and an accurate self-localization. To
ensure mission success, an accurate localization is vital to create a high-quality
map, which can be used to plan further science investigations. In addition, to cope
with the limited resources of a space rover, it is required to explore the environment
efficiently.

2. Drive-by science: A common task for a space rover is to move to a point of
interest (POI) defined by an operator. In a drive-by science mission, the goal is to
maximize the information about the environment while moving towards the POI.
Instead of moving on the direct path, the robot is allowed to take a longer, but
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1 Introduction

Figure 1.1: Illustration of the four use cases we investigate in this thesis. Use cases 1-3 depict
single robot use cases with one rover and use case 4 illustrates a multi-robot ex-
ploration. In use cases 1, 3 and 4 the exploration/search of/in a Region of Interest
(ROI) is requested. In use case 2, a rover conducts exploration in a drive-by science
fashion and has to visit several points of interest (POI) in a row.

more informative route. The challenge is to guide the robot in the desired direction
while maximizing the information about the environment.

3. Autonomous search: With an increasing level of autonomy, a future robotic task
is to search for a Feature of Interest (FOI). For example, a rover has to find a certain
geologic unit in an ROI, as illustrated in fig. 1.1, use case 3. The capability to find
a FOI autonomously increases the scientific return of a space exploration mission
significantly. Additionally, to explore a ROI the robot requires the capability to
detect a FOI and to reason about its location. As the robot searches in an unknown
environment, it is confronted with similar challenges as in use case 1. However,
additionally a high search efficiency is desired.

4. Multi-robot exploration: The key to more complex and efficient science in-
vestigations is teamwork. Multiple robots exploring a ROI together, lead to a
significant increase in exploration efficiency. The challenge is to coordinate the
robots, to most benefit from their cooperation.

Yamauchi et al. [4] formulate the central question of robotic exploration, as

‘Given what you know about the world, where should you move to gain as
much new information as possible?’
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1.2 Scenario Description

This especially, describes the autonomous exploration task, we conduct in our first use
case. However, we treat robotic exploration more generally and want to solve our other
three use cases with an exploration approach as well. We reformulate the central question
to be:

‘Given what you know and what you want to know about the world, where
should you move to gain as much new valuable information as possible?’

Our formulation specifically addresses, the mission’s objectives and hence required ex-
ploration behavior to conduct a specific mission task.
In this thesis, we aim to transfer all four use cases to a robotic exploration problem

and to model it with our proposed general exploration concept based on MCDM.

1.2 Scenario Description

To motivate our approach, we depict a robotic exploration mission to the surface of Mars,
which is a compelling and accessible target for addressing the most crucial questions of
our solar system and beyond [5]. The main scientific objectives and goals defined by
the Mars Exploration Program Analysis Group (MEPAG) in the ‘Mars Science Goals,
Objectives, Investigations and Priorities’ document [6] are: (1) Determine if Mars ever
supported, or still supports, life; (2) understand the processes and history of climate
on Mars; (3) understand the origin and evolution of Mars as a geological system; (4)
prepare for human exploration. To find answers to these fundamental questions the
composition of different rock samples or the distribution of rocks can give important
clues. As illustrated in fig. 1.1 we consider two rovers that were brought together with
a lander unit to the Martian surface. Both rovers can sense the environment and build
with the retrieved sensor information a map of the environment. To localize itself within
the map, the local sensor information is used. One of the rovers is equipped with a
Scientific Camera and, the other with a robotic arm capable of taking rock samples.
The robot with the scientific camera is assigned the tasks of the first three use cases. If
a rock of interest is found in the third use case, the robot with the manipulator can be
called to take a sample. The fourth use case is conducted by both robots together.

1.3 Challenges

In this section, we describe the challenges for robotic planetary exploration in general,
and we identify the most compelling challenges for the four use cases described in the
introduction, chapter 1. Thereby, we group the challenges into mission, environmental
and system challenges.

Mission Challenges

• Communication: The huge distance between an operator on Earth and a robot in
space leads to delayed communication. Only short time slots to send a command
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or to receive a response are available. This leads to a planning and scheduling
problem. An operator has to pre-plan investigations on the recorded images hours
or a day earlier. Teleoperating or even commanding a rover from the Earth is a
slow process due to limited communication bandwidth and delay.

• Changing mission requirements: Depending on past discoveries the next mis-
sion task, e.g. one of the four use cases, for a robot is defined. On mission start,
the operator defines the objectives and adjusts the exploration behavior accord-
ingly. However, with the progressing mission, the situation and with that the
requirements and objectives might change, which requires an adaptation of the
exploration behavior. This is challenging itself but gets even more complex by
considering the limited communication.

• Conflicting objectives: At each exploration action the robot has to decide, where
to move next? To maximize the mission return, while avoiding mission failures,
careful decision making is required. To guarantee mission success, especially for
use cases 1 and 3, the robot has to re-localize itself by visiting previously sensed
areas. This directly counteracts the main objective, gaining new information about
the environment.

Environmental Challenges

• Large unstructured harsh environment: Planetary surfaces are unstructured,
large, and bear many hazards, as depicted in fig. 1.2. Deciding autonomously,
‘where to move next?’, becomes more complex the larger the area to be explored
is, as more possible goal locations exist. The task of exploring large outdoor envi-
ronments differs from the task of exploring bounded indoor environments, as shown
in fig. 1.3. Unlike in indoor scenarios, in large outdoor environments the number
of possible exploration actions grows fast with each exploration step. Whereas in
indoor environments walls build a border and restrict the exploration directions,
in outdoor environments large unbounded regions with only a few obstacles exit.
To decide on the next goal, the rover needs to consider and compare hundreds of
locations in opposite directions.

• Scientific relevance: The main goal of robotic exploration is, to maximize the
information about an a priori unknown environment. However, in some use cases,
e.g. use case 3, not any information about the environment but valuable informa-
tion, i.e a certain FOI, is of interest. Thus, to fulfill the scientific objectives of a
mission a robot has to prioritize a region to gain valuable information.

System Challenges

• Uncertainties: How far is the next goal location? Is it safe to traverse the planned
path? Is at this location really a FOI? These questions have to be considered when
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Figure 1.2: Photo-realistic simulation of a hazardous, large, and unknown martian-like land-
scape.

deciding on the next goal location. The local sensor information is the only source
of information a robot has to make its decision, on ‘where to move next?’. This
information is affected by sensor uncertainties, which propagate to the final decision
and can lead to wrong decisions.

• Limited hardware resources: Robots for space exploration are complex sys-
tems, specially designed to withstand harsh conditions on planetary surfaces. The
construction of such systems is restricted by these conditions and the fact that the
robot is transported thousands of kilometers to its destination in space. Only a
limited amount of Central Processing Unit (CPU) resources is available, which has
to be distributed among thousands of processes running on an autonomous robot.

• Supervision: Although a higher level of autonomy can increase the scientific
return of a planetary exploration mission, supervision by a human operator and
scientists are important. In space, the final decision on, e.g. where to take a probe
or where to explore is still in the hand of human scientists. Tight supervision,
including observation and if necessary interference is requested by scientists. Deci-
sive for scientists is also to understand the decision on the next exploration action
made by an autonomous robot.

• Test and Integration: The development and test of exploration approaches is
often limited by the availability of the hardware for space exploration missions.
Field tests are expensive and allow no continuous test and development cycle.

1.4 Approach

To enable a human operator to model different exploration behavior, to conduct the
tasks of the four use cases defined in the introduction, chapter 1, we present a general
exploration concept based on MCDM. With our concept, it is possible to clearly outline a
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Figure 1.3: Illustration of frontiers (yellow) and exploration goals (green) for four consecutive
exploration actions in an outdoor environment (top row) and an indoor environment
(bottom row).

mission task as MCDM problem and transfer it to an exploration problem. By applying
MCDM we offer a simple user interface for human operators to model, observe and adapt
the exploration behavior of a robot in the short communication time slots between Earth
and, for example, Mars.

In fig. 1.4, we present a general overview of the software architecture applied in this
thesis and how the exploration is anchored. The mission objectives set by the stakehold-
ers, in our case the operator and a scientist, define the exploration behavior. We achieve
the required behavior, mainly by evaluating potential goal locations by different explo-
ration criteria and constraints. An exploration criterion is any function that describes
the quality of a goal location with respect to the objectives. For example, the distance
to the goal location or the expected information at a goal location. An exploration con-
straint leads to an exclusion from the decision, of ‘where to move next?’, if it does not
hold for a goal location. For example, the operator can constrain the maximal distance
to the next goal location to avoid a long traverse through the unknown environment. We
use a state-of-the-art exploration approach: first, potential goal locations are sampled at
the frontiers between the known and the unknown space, second, the goals are evaluated
by the criteria and constraints and third, the goals are ranked. To rank the goals we
apply multi-attribute utility functions and the well known MCDM Preference ranking
organization method for enrichment evaluation II (PROMETHEE II) [7]. By applying
PROMETHEE II we complete our general concept as it allows an operator to add or
remove criteria online during an exploration process.

We apply our general concept to model the exploration behavior, required to conduct
the tasks of the four use cases:
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Figure 1.4: Overview of our architecture and integration of the robotic exploration. The stake-
holders define in a mission planning phase the objectives, parameters, and explo-
ration criteria. The exploration itself consists of the three steps: goal sampling,
goal evaluation, and goal ranking. It depends on localization and mapping and
requires a path planner to finally move towards the next goal location.

1. Autonomous exploration: We aim for a trade-off between a high exploration
efficiency, a good map quality, and an accurate localization. For this, we present
an integrated exploration approach, which actively triggers loop closures for pose
optimization. Our integrated exploration is built upon a submap-based 6D SLAM
system [8]. Loop closure constraints originate from pairwise submap matches,
which allow the optimization of an underlying SLAM graph. During exploration,
we employ the expected information gain as well as the robot’s localization un-
certainty estimates to weigh exploration actions online. To evaluate goals with
respect to loop closures, we introduce the two novel criteria loop closure impact
and loop closure likelihood.

2. Drive-by science: To conduct a drive-by science mission with an exploration
approach, we direct the robot towards the next POI, by incorporating the direc-
tion to the POI with our novel exploration criterion, which we call direction of
interest criterion. To maximize the information on the environment, we consider
the direction of interest criterion additionally to the information gained and the
cost to move towards a goal.

3. Autonomous search: We introduce an informed exploration behavior, which
incorporates the probability of detecting a predefined FOI when visiting a goal
location. We equip the robot with the capability to detect a FOI in a camera
image and store the direction towards a detected FOI in a robot-centric polar
descriptor. Our main focus is on the exploration behavior, but additionally we
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present a preliminary approach for detecting different geologic units with a multi-
spectral camera, which could be used in the future for detecting a FOI.

4. Multi-robot exploration: We present a leader-follower approach to coordinate
two robots exploring a ROI together. The leader defines the exploration direc-
tion and the follower tries to drive in the same direction while keeping a certain
distance from the leader. We achieve the following behavior by evaluating our
novel exploration criteria multi-robot alignment and multi-robot distance for the
goal locations of the follower robot. In our use case 4, the two rovers have different
capabilities. One rover has a scientific camera and is able to detect a FOI, the
other is equipped with a manipulator and can take a probe. Therefore, we choose
an approach where both robots stay close to each other to complement each other
when doing science investigations.

To cope with the limited CPU resources of a space rover, we introduce a classification
of exploration criteria. The classification is based on the required update rate of a
criterion for a goal location. In addition, we extend PROMETHEE II to reduce the
runtime of the CPU-intensive outranking method.
Further, we adapted URSim[9] a Software in the Loop Simulator to be able to test

and evaluate our exploration approach. It allows for short test and development cycles
in photo-realistic environments, as shown in fig. 1.2.

1.5 Contributions

In this section, we state the contribution we accomplished to robotic exploration of
planetary surfaces in general and on the four use cases we investigated in this thesis.

Exploration as Multi-Criteria Decision Making Problem

• We formulate the exploration problem in general as a Multi-Criteria Decision Mak-
ing problem and provide a concept on how to model different exploration behaviors
to conduct various tasks.

• Based on the MCDM method PROMETHEE II we implemented an adaptable
and flexible exploration framework, which allows an operator to model, observe
and adapt the exploration behavior of a robot online.

• We reduce the high CPU resource consumption of PROMETHEE II by first ex-
tracting a subset of goal candidates, before evaluating the exploration criteria for
all goals and pairwise comparison of all goals.

• We show how a simple classification of exploration criteria helps to reduce the
runtime of an exploration behavior evaluating several criteria. Our classifica-
tion divides the criteria in the three categories: robot-, map-, and environment-
dependent, which is an indicator of how often a criterion value has to be recom-
puted for an existing goal location.
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Autonomous Exploration - Integrated Exploration

• We present an integrated exploration approach, which applies active loop closing
in order to re-localize the robot, which improves its localization uncertainty. We
define re-localization goals, at which it is likely to actively trigger a loop closure
in the 6D graph SLAM system proposed by [8]. To decide whether the robot shall
explore or revisit locations, we apply the current localization uncertainty estimate.

• We introduce two novel criteria, the loop closure likelihood and the loop closure
impact, evaluating the likelihood and the impact of a potential loop closure.

Drive-by Science - Directed Exploration

• We introduce the concept of directed exploration. By directing the robot into
certain directions we enable an operator to use an exploration behavior to move
towards a POI.

• We describe the new exploration criterion Direction of Interest (DOI), which eval-
uates if a goal is lying in the DOI defined by an operator. Combined with the
information gain criterion, this allows us to conduct a drive-by science mission.

Autonomous Search - Informed Exploration

• We introduce an informed exploration behavior, which enables the robot to effi-
ciently find a FOI in a ROI. Instead of exploring the whole ROI the robot tries
to detect a FOI in far range and prioritizes the direction, where the probability of
finding the FOI is highest.

• We define the novel feature of interest criterion, which evaluates the probability of
finding a FOI. We store the detection results in a polar descriptor, which is centered
at the robot and describes the probability of finding a FOI in the direction of a
goal location. Thereby, we consider the increasing distance error due to the stereo
distance calculations.

Multi-robot Exploration

• We present a leader-follower concept to coordinate two heterogeneous robots. The
leader robot determines the exploration direction and the follower robot tries to
move into the same direction while computing its own local optimal exploration
goal. The approach is solely based on adding additional exploration criteria to the
set of criteria of the follower robot and can be modelled with the same general
exploration concept applied for the single robot use cases.

Evaluation & Demonstrations

• We conducted in total more than 60 experiments to evaluate our different explo-
ration behavior. Each use case presented in the introduction is demonstrated at
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least once on real space rover prototype hardware or in a high-fidelity Software in
the Loop Simulator.

• Applying our integrated exploration, we could improve the mean localization er-
ror about 0.3m compared to the localization error occurring when applying an
information gain based greedy exploration without active loop closing.

• We successfully conducted a drive-by science mission, where the robot visited three
POI in a predefined order, applying our directed exploration behavior.

• We demonstrated the informed exploration and achieved a speed up of a factor of
approximately 1.6 compared with an information gain based greedy exploration to
find a FOI in an ROI.

• We demonstrated our multi-robot coordination approach in simulation, as well
as on two real space rover prototypes. We show the intended leader’s follower-
behavior and analyze its advantages and disadvantages.

• We proved that we could reduce the runtime with our extension to PROMETHEE
II and our criteria classification approximately about 70%.

1.6 Publications

We published most contributions and methods described in this thesis already at interna-
tional conferences. We cite the publications in the respective sections. In the following,
we state a list of publications that contain key aspects of this thesis and publications
that are related to this thesis.

First author publications on the key aspects of this thesis:

• H. Lehner, M. J. Schuster, T. Bodenmüller, and S. Kriegel. Exploration with active
loop closing: A trade-off between exploration efficiency and map quality. In IROS,
pages 6191–6198, 2017.

• H. Lehner, M. J. Schuster, T. Bodenmüller, and R. Triebel. Exploration of Large
Outdoor Environments Using Multi-Criteria Decision Making. In ICRA, 2021.

First author publications on secondary aspects of this thesis:

• M. Sewtz, H. Lehner, Y. Fanger, J. Eberle, M. Wudenka, M. G. Müller, T. Bo-
denmüller, and M. Schuster. URSim - A Versatile Robot Simulator for Extra-
Terrestrial Exploration, March 2022.
The first authorship of the publication is shared between the first three authors.
The author of this thesis contributed to the general concept of the simulation, as
well as the robot integration and especially to the integration of the Lightweight
Rover Unit (LRU).
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• H. Kaufmann. Shadow-based matching for robust absolute localization during
lunar landings. In IEEE Aerospace Conference, March 2014.

Co-author publications related to this thesis:

• M. J. Schuster, M. G. Müller, S. G. Brunner, H. Lehner, P. Lehner, R. Sakagami,
A. Dömel, L. Meyer, B. Vodermayer, R. Giubilato, M. Vayugundla, J. Reill, F. Stei-
dle, I. von Bargen, K. Bussmann, R. Belder, P. Lutz, W. Stürzl, M. Smı́\vsek,
M. Moritz, S. Stoneman, A. F. Prince, B. Rebele, M. Durner, E. Staudinger,
S. Zhang, R. Pöhlmann, E. Bischoff, C. Braun, S. Schröder, E. Dietz, S. Frohmann,
A. Börner, H.-W. Hübers, B. Foing, R. Triebel, A. O. Albu-Schäffer, and A. Wedler.
The arches space-analogue demonstration mission: Towards heterogeneous teams
of autonomous robots for collaborative scientific sampling in planetary exploration.
IEEE Robotics and Automation Letters, 5(4):5315–5322, October 2020.

• M. J. Schuster, B. Rebele, M. G. Müller, S. G. Brunner, A. Dömel, B. Vodermayer,
R. Giubilato, M. Vayugundla, H. Lehner, P. Lehner, F. Steidle, L. Meyer, K. Buss-
mann, J. Reill, W. Stürzl, I. von Bargen, R. Sakagami, M. Smisek, M. Durner,
E. Staudinger, R. Pöhlmann, S. Zhang, C. Braun, E. Dietz, S. Frohmann, S. Schröder,
A. Börner, H.-W. Hübers, R. Triebel, B. Foing, A. O. Albu-Schäffer, and A. Wedler.
The arches moon-analogue demonstration mission: Towards teams of autonomous
robots for collaborative scientific sampling in lunar environments. In European
Lunar Symposium (ELS), 2020.

• M. J. Schuster, M. G. Müller, S. G. Brunner, H. Lehner, P. Lehner, A. Dömel,
M. Vayugundla, F. Steidle, P. Lutz, R. Sakagami, et al. Towards heterogeneous
robotic teams for collaborative scientific sampling in lunar and planetary environ-
ments. 2019.

• A. Wedler, M. Wilde, A. Dömel, M. G. Müller, J. Reill, M. Schuster, W. Stürzl,
R. Triebel, H. Gmeiner, B. Vodermayer, K. Bussmann, M. Vayugundla, S. Brun-
ner, H. Lehner, P. Lehner, A. Börner, R. Krenn, A. Dammann, U.-C. Fiebig,
E. Staudinger, F. Wenzhöfer, S. Flögel, S. Sommer, T. Asfour, M. Flad, S. Hohmann,
M. Brandauer, and A. O. Albu-Schäffer. From single autonomous robots toward
cooperative robotic interactions for future planetary exploration missions. In 69th
International Astronautical Congress (IAC), Preceedings of the 69th International
Astronautical Congress (IAC). International Astronautical Federation (IAF), Oc-
tober 2018.

• M. J. Schuster, S. G. Brunner, K. Bussmann, S. Büttner, A. Dömel, M. Hellerer,
H. Lehner, P. Lehner, O. Porges, J. Reill, S. Riedel, M. Vayugundla, B. Vodermayer,
T. Bodenmüller, C. Brand, W. Friedl, I. Grixa, H. Hirschmüller, M. Kaßecker, Z.-
C. Márton, C. Nissler, F. Ruess, M. Suppa, and A. Wedler. Towards Autonomous
Planetary Exploration: The Lightweight Rover Unit (LRU), its Success in the
SpaceBotCamp Challenge, and Beyond. 2017.
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• A. Wedler, M. Vayugundla, H. Lehner, P. Lehner, M. J. Schuster, S. G. Brun-
ner, W. Stürzl, A. Dömel, H. Gmeiner, B. Vodermayer, B. Rebele, I. L. Grixa,
K. Bussmann, J. Reill, B. Willberg, A. Maier, P. Meusel, F. Steidle, M. Smisek,
M. Hellerer, M. Knapmeyer, F. Sohl, A. Heffels, L. Witte, C. Lange, R. Rosta,
N. Toth, S. Völk, A. Kimpe, P. Kyr, and M. Wilde. First results of the robex
analogue mission campaign: Robotic deployment of seismic networks for future
lunar missions. In 68th International Astronautical Congress (IAC), volume 68
of 68th International Astronautical Congress (IAC). International Astronautical
Federation (IAF), September 2017.

1.7 Outline

We describe our approach to planetary robotic exploration in seven chapters. In chap-
ter 1 we introduce the topic, state the problem and state our approach and contributions.
In chapter 2, we describe relevant concepts and methods to comprehend the thesis, as
well as the related work. We explain our general exploration concept based on MCDM
in chapter 3 and describe our approach for the four use cases in chapter 4. In chapter 5
and chapter 6 we state the implementation of our concept and methods and describe
the experiments we conducted to evaluate our method. We summarize and conclude the
thesis in chapter 7.

Chapter 2 - Exploration of Planetary Surfaces: In this chapter, we describe
concepts and methods applied in this thesis and summarize the related work. It gives
an introduction to the topics of autonomous exploration, mapping, navigation, and
decision theory. We discuss the related work on autonomous single and multi-robot
exploration as well as on visual search and opportunistic science.

Chapter 3 - Exploration as Multi-Criteria Decision Making Problem: we
formulate the exploration problem as MCDM problem in general and specifically for
planetary exploration missions. We identify the MCDM problem within the robotic
exploration task and transfer the processes of one exploration action to it. We state,
how we generate exploration goal locations, and how to rank the goal locations with a
multi-attribute utility function or PROMETHEE II.

Chapter 4 - Modeling Planetary Exploration Missions: we model the
exploration behavior for the four use cases introduced in section 1.1. In this chapter,
we describe in detail the implementation of criteria used to model the required
exploration behavior.

Chapter 5 - Implementation & Integration: we state the implementation of our
exploration framework on the robotic system. We describe the real space rover
prototype Hardware LRU used for the experiments and depict the software stack
running on the system, which is required for the exploration. In addition, we present
the Software in the Loop (SiL) Simulator URSim, which is used to conduct
experiments in simulation.
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Chapter 6 - Experimental Evaluation: we present and discuss the results of the
experiments we conducted to evaluate our integrated exploration and our autonomous
search, as well as the run time reduction on the decision making we achieved applying
our criteria classification and extension to PROMETHEE II. Further, we depict the
demonstration accomplished to show a drive-by science mission and multi-robot
exploration.

Chapter 7 - Conclusion: we conclude by summarizing the thesis, and present
challenges for future work.
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2 Exploration of Planetary Surfaces

2.1 Concepts and Methods

In this chapter, we introduce the main concepts and terms used throughout the thesis.
First, we give an introduction to the main concepts of multi-criteria decision making,
which general concept we transfer to robotic exploration in this thesis. Second, we
state the general problem of robotic exploration and the general concept of exploration
underlying our four use cases. Third, we describe the mapping on which our work is
based on. The concept of multi-criteria decision making, robotic exploration and the
described online 3D Mapping System are applied for each use case. Subsequently, we
state the related work and pin down our own work to the literature. Thereby we present
related work with respect to each use case.

2.1.1 Multi-Criteria Decision Making

Making decisions is an important and critical component for autonomous robots. In
robotic exploration, a robot is repeatedly confronted with the question, ‘where to move
next?’. At each exploration step, a robot has to choose the best action from hundreds of
possible exploration actions. In this section, we state the basic definition of MCDM and
common terms. How we formulate robotic exploration as MCDM problem, is detailed
in chapter 3.

Making decisions is part of our daily lives. Facing a decision problem, one has to choose
from a set of alternatives, the best solution. We are often confronted with complex de-
cisions, with numerous alternatives and consequences difficult to grasp. Such complex
decisions are often MCDM problems. According to Hwang et al. [24] a MCDM prob-
lem is present if, at least two conflicting criteria with incomparable units are present,
multiple objectives exit and the goal is to decide for the best alternative or an opti-
mal alternative. In fig. 2.1 we illustrate the main stages of MCDM after Belton and
Steward [25]. After first, identifying the problem second, the problem is structured,
to capture the complexity and to clarify the issue. Further, the objectives are defined
in the problem structuring stage. Third, the criteria, preferences, and alternatives are
identified and defined in the model building stage. Fourth, the model is applied, which
leads to a ranking of the alternatives and a solution. For critical decisions, often a sen-
sitivity and robustness analysis is applied to be sure the correct decision was made. To
check the sensitivity of a solution, the model is updated several times and applied with
varying preferences and criteria. The MCDM as described by Belton and Steward [25]
is designed to help humans or a group of humans to solve a single decision problem. In
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Figure 2.1: Main stages of a MCDM adapted from Belton and Steward [25]. After identifying
the problem on hand, a decision maker structures the problem by most importantly
defining the objectives and alternatives. Only then, the model for decision making
is build. Next, the model is applied to find a solution to the problem. The results
can be used for example to refine the model.

chapter 3 we transfer MCDM to robotic exploration and explain how human operators
benefit from the usage of MCDM.
For clarification, we state the most common terms of MCDM:

Objectives: describe the final state, which is desired. The main objective in turn can
be expressed by several sub objectives. All objectives should be measurable.

Alternatives: are the different solutions to the decision problem. They are the
potential subjects or actions the decision maker could choose. Each alternative
excludes all other alternatives, such that the decision maker has to decide on one of the
alternatives.

Criteria: are used to evaluate the alternatives, to find the alternative that best fits to
approach the defined objectives.

Preferences: express the preference for one alternative over another to fulfill the
objectives. An alternative is strictly preferred over another alternative if it dominates
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the other alternatives for all objectives. Indifference expresses if choosing one
alternative or another is irrelevant.

Many MCDM methods existing in literature were collected by Hwang et al. [24] in a
survey. They can be classified into the two categories, Multi-Objective Decision Making
(MODM) and Multi-Attribute Decision Making (MADM) [25]. For a MODM problem,
the alternatives are not predetermined, the goal is to find the optimal solution to a
decision problem. By contrast, with MADM one alternative from a discrete number of
known alternatives is selected. Thereby, the solution is often a compromise, which best
fits the preferences of the decision maker. In this thesis, we consider the decision ‘where
to move next?’ of robotic exploration as MADM problem, as the goal locations represent
a discrete number of alternatives. MADM methods have the advantage that the involved
criteria can have different scales and measurement units, e.g. meter, seconds, energy,
or even grades. Only, in the second step, the criteria are expressed in preference values
which can be compared. MADM is further classified into value function approaches and
outranking approaches.

The value function approaches calculate for each alternative an overall utility, by
aggregating the criteria values. The alternative with the highest utility is the best
alternative. Popular value function approaches are for example the Multi-Attribute-
Utility/Value Theory (MAUT/MAVT) [26] and the Analytic Hierarchy/Network Pro-
cess (AHP/ANP) [27]. The advantage of these methods is that they are very easy to
understand and to model. However, setting up correct utility functions for each sin-
gle criterion requires large datasets and a lot of time. Further, the preferences have to
be very clear, which is often not the case. Outranking methods are based on a pair-
wise comparison of alternatives and have no underlying aggregate value function. It
is possible to model weak preference and indifference, as well as to include redundant
criteria information. Widely used outranking methods are for example ELimination Et
Choice Translating REality (ÉLECTRE) [28], Preference ranking organization method
for enrichment evaluation (PROMETHEE) [7] and Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) [24]. The preference for outranking approaches
doesn’t have to be distinct, which allows for conflicting criteria. The result of an out-
ranking method is a ranking of alternatives, which can be used to analyze the decision
and the effect of the preferences on the solution.

In this thesis, we apply and extend the outranking method PROMETHEE II [7]
for decision making in robotic exploration. We detail the method, our extension, and
application for exploration in section 3.3.2.

2.1.2 Autonomous Exploration

In their seminal work, Yamauchi et al. [4] describe the robotic exploration problem
with: ‘Given what you know about the world, where should you move to gain as much
new information as possible?’

An autonomous exploration rover has to answer this question repeatedly at each ex-
ploration action until the exploration mission is finished. In fig. 2.2 we illustrate the au-
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tonomous exploration process and the single processes of one exploration action. First,
potential goal locations, to which the robot could move, are sampled based on the cur-
rent knowledge about the world, i.e. the current map. Throughout this thesis, these
locations depict 3D locations in the global map frame and are named goals or goal lo-
cations. Second, the goals are evaluated with exploration criteria. Which criteria are
applied depends on the mission task and the desired exploration behavior. Third, the
goals are ranked by calculating the utility of reaching a goal based on the evaluated
criteria. Finally, the robot moves to the goal with the highest utility value. The explo-
ration mission ends if the defined end condition is reached. This could be a certain time
budget or the full exploration of a ROI.

Figure 2.2: Overview of robotic exploration: In one exploration step, first, goal locations are
sampled on the basis of the current map of the environment. Second, the goal
locations are evaluated with exploration criteria. Third, the goal locations are
ranked according to their utility. The robot moves to the goal with the highest
utility and continues the exploration until an end condition is reached.

Goal Sampling

Any 3D location in the area to be explored is a potential goal location. We express
exploration goals as vectors g ∈ SE(3) of potential robot poses. However, usually a
set of goals is sampled as it is not possible to evaluate and compare all possible goal
locations. This, is even more important with the limited processing power of space rover
hardware. We apply in this thesis the frontier strategy introduced by Yamauchi et al. [4],
which is widely used. Goal locations are computed at the frontiers between known and
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Figure 2.3: Illustration of a frontier (yellow line) between unknown (dark grey) and known
(light grey) space in a 2d occupancy grid map with obstacles (black).

unknown space as illustrated in figure 2.3. In section 4.1 we describe the goal sampling
method, we apply in this thesis, in detail.

Goal Evaluation

In the second step, the set of goals is evaluated by computing exploration criteria. In
this thesis, criteria are functions c : SE(3) → R, that map an exploration goal to a scalar
value, where higher values denote a higher preference for the particular goal regarding
the respective criterion. Which criteria are applied depends on the mission task and
the desired exploration behavior. Throughout this thesis, we describe eight exploration
criteria, we apply to model the exploration behavior required to conduct the four use
cases.

Goal Ranking

In the third processing step of one exploration step, the decision on, ‘where to move
next?’ is made. To rank the goals, it is common to use a utility function to correlate
the single criterion values for each goal. In the following, we describe two widely used
utility functions, which we used for comparison to analyse our own the utility functions
and the MCDM method PROMETHEE II, which we investigate in this thesis. We
reimplemented the utility function of Stachniss et al. [1] and the utility function of
Gonzalez et al. [2]. Both functions use the distance from the robot to a goal as a cost
criterion and apply the Information Gain (IG) to judge how much new information can
be retrieved at a goal. Stachniss et al. [19] propose to use the difference between the
information gain cIG(g) and the weighted distance ccost(g) to a goal in order to calculate
the overall utility u(g) of moving to a goal. The goal with the highest utility value is
chosen to be the best and thus the next goal the robot moves to.

u1(g) = cIG(g)− wcost · ccost(g) (2.1)
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Gonzalez et al. [2] propose to multiply the information gain cIG with the exponential
function of the distance ccost to calculate the utility u2(g) of reaching a goal.

u2(g) = cIG(g) · e(−wcost·ccost(g)) (2.2)

Both utility functions, use a constant to weight the cost of the motion against the
expected information gain, thus a similar exploration behavior is achieved with both
function. As the function of Stachniss et al. [19] is more easy to parametrize, we use
the presented utility function u1(g), as baseline and compare it with our integrated and
informed exploration behavior in chapter 6.

2.1.3 Online 3D Mapping

At each exploration action, the next exploration action is computed from the currently
known information about the environment, usually stored in a map. An exploration
approach and especially its implementation depends to some extent on the underlying
mapping system and the available map representations. In this section we describe the
6D global localization and mapping system of Schuster et al. [8, 20] which we apply
for Simultaneous Localization and Mapping (SLAM). It is based on the creation of
local submaps and employs submap matches as loop closure constraints for global graph
optimization. For details, please refer to the publications of Schuster et al. and Brand
et al. [8, 20, 17].

Submap Generation

We perform dense stereo matching with the Semi Global Matching (SGM) [21] along
the robot trajectories, estimated with a key-frame based Extended Kalman Filter (EKF)
as local reference filter [22], and integrate the depth data in a submap. A submap is
defined by its origin, which matches a local reference frame withing the local reference
filter, and by its associated 3D data structure. The 3D data is stored as a colored 3D
point cloud and 3D probabilistic voxel map. The 3D point cloud additionally stores
a binary obstacle classification that is also used for obstacle avoidance. For the 3D
probabilistic voxel map the open-source OctoMap library [23] is employed. It holds the
information about occupied, free and unknown space, which we use to compute the
expected information gain for our exploration criterion cIG, detailed in section 4.2.
A new submap is created on two events: first, if the accumulated driven distance since

the last submap was created reaches a defined maximum value, or second, each time
the positional uncertainty of the robot grows above a defined threshold. In fig. 2.4 we
visualize the global map, which is generated by merging the 3D data structures of all
submaps. By projecting the obstacle and known points to a grid in the plane, a 2D
occupancy grid-map representation, of the global map is created. Each map cell can
have the state, free, unknown, or occupied. Free and occupied cells are already observed
by the robot’s sensor and thus known. A free cell is traversable, whereas an occupied
cell contains an insurmountable obstacle for the robot. We apply the 2D occupancy
grid-map for fast frontier computation in our thesis. For most planetary exploration
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Figure 2.4: Impressions of the underlying mapping system. Top: Height-colored probabilistic
voxel-grid map. Bottom left: 2D occupancy grid-map. Bottom right: 3D height
colored point cloud. In each map, the underlying SLAM graph is depicted. The
blue ellipsoids represent the positional uncertainty at the submap origin. Yellow
edges represent loop closures between submaps.

scenarios, it is sufficient to use this 2D abstraction. Only overhanging rocks or caves
can not be represented correctly however, we believe the exploration of caves should be
regarded separately from general surface exploration. However, to calculate the IG we
utilize the 3D probabilistic voxel-grid map, we show in fig. 2.4 top row.

Submap Matching

In fig. 2.4 we show in each map the corresponding SLAM graph. The submap origins
represent the nodes in the underlying sparse, undirected graph. The blue edges connect-
ing these nodes originate from constraints between consecutive submaps, and the yellow
edges result from loop closure constraints. These loop closure constraints are generated
by pairwise matching between submaps and computation of the relative transformation
between the submap origins together with uncertainty estimation. As the matching is
based on the 3D geometry structure, more precisely the obstacle points, of the submaps,
first submaps which are not sufficiently informative for matching are filtered out. A
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submap has to contain a minimum number of 3D points and well distributed obstacle
points. To find pairs of submaps for matching, the maps are sorted by their origins and
overlapping 2d bounding boxes in the xy-plane. In addition, the overlap is used to rank
the pair of submaps, as it is an indicator for the probability of a successful match. To
match a pair of submaps, first, an initial alignment is computed by 3D feature matching.
As proposed by Schuster et al. [20] we use the obstacle points as key points. Based on
the current SLAM estimates, the most reasonable model is selected and refined with an
Iterative Closest Point (ICP) algorithm. Finally, an uncertainty estimate is computed
for the resulting 6D relative transformation between the two matching submaps and sent
to the graph SLAM. The computed transformation is used as an additional constraint
for global optimization.

Multi-robot Mapping

In our fourth use case, we describe a multi-robot exploration. For this, we apply the
decentralized multi-robot setup introduced by Schuster [8]. The above described local-
ization and online 3D mapping are executed on board of all robots in a decentralized or
distributed way. This ensures, at each time, an up-to-date pose estimate and map on
all robots within the multi-robot team. A connection between the robots is made in the
SLAM graph, by submap matches, robot detections, or landmark detections, which are
also shared between the robots. Besides, the robot pose estimates, the 3D submaps are
exchanged, and the latter is integrated into the own maps. In this thesis, additional ex-
ploration goals are exchanged between the robots in order to coordinate a team of robots
during exploration. Our multi-robot coordination is described in detail in section 4.5.
For more details on the multi-robot setup itself, please refer to Schuster [8].

2.2 Related Work

In this section, we present the related literature to our work on robotic planetary ex-
ploration and work out the existing gaps in the literature on the challenges of robotic
exploration of extra-terrestrial surfaces.

Most authors [2, 29, 30, 1, 31] treat one single robotic exploration task. Usually,
the mission’s task is defined subconsciously and a utility function, specially designed to
evaluate the goal locations, for the mission task, is set up. With such an approach, it
is not possible to conduct different mission tasks and an operator has only very limited
options to influence the implemented behavior.

Especially, for planetary exploration, we believe it is essential to contemplate robotic
exploration as MCDM problem. Basilico and Amigoni [32] first introduced MCDM for
robotic exploration. They applied it for Search and Rescue (SaR) scenarios, which have
similar challenges as a planetary exploration scenario. To compute global utilities for
varying exploration behavior, they apply the Choquet fuzzy integral. Similar to our
approach, Taillandier and Stinckwich [33] utilize PROMETHEE II. The advantage of
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PROMETHEE II, is that the difference of the criterion values is used to estimate the
global utility, instead of the criterion values themselves. It allows estimating criteria
with non-linear importance. Further, the difference in criterion values is transferred to a
preference degree, which allows building a global utility from criteria with different units
and characteristics. The application of MCDM methods for decision making, especially
outranking methods, has the disadvantage of a long processing time, which is not copped
by the work of Basilico and Amigoni [32] and Taillandier and Stinckwich [33]. Both,
Basilico and Amigoni [32] and Taillandier and Stinckwich [33] apply MCDM methods
only for the goal ranking step of exploration, however, they do not apply MCDM as a
procedure to structure and formulate an exploration problem. We think this is important
to really benefit from MCDM and to model different exploration behaviors to solve
various missions tasks.

2.2.1 Autonomous Exploration

In use case 1, a robot has to explore an ROI. This depicts the basic exploration problem,
which has the objective to create a complete map of a prior unknown region. A large
number of exploration approaches exist, which can be classified into classical strategies
and integrated strategies. Classical exploration strategies [4, 2, 1, 29, 30, 34] try to solve
solely the area coverage problem, i.e. exploring the environment as fast as possible.
Integrated exploration strategies[35, 36, 37, 38, 39, 40, 41, 42, 19], aim for an efficient
exploration and simultaneously for a good map quality and an accurate localization.
Considering the map quality and localization uncertainty is especially important for
exploring large regions and missions, where a high level of safety is required, as a mission
failure leads to a huge amount of costs.

The localization uncertainty and map quality can be improved, by decreasing the
uncertainty accumulated by the robot movement [37, 36, 38] or by reducing the un-
certainty [41, 31, 36, 35, 39], e.g. by actively seeking for loop closure events for re-
localization. To evaluate the potential of generating a loop closure, when visiting a goal
location, most authors only evaluate the likelihood of such an event [1, 41, 36]. Only
Carrillo et al. [35] and we [10] consider additionally to the likelihood of a loop closure,
the impact of a loop closure. Caririllo et al. [35] introduce a utility function based on
the difference between the Shannon and the Re‘nyi entropy of the current distribution
of over maps. Although Carrillo et al. [35] achieve a high map quality, their approach
has only a low exploration efficiency and the computation of the Renyi entropy leads to
high computational costs.

Most strategies are designed for and tested in indoor environments[36, 35, 37, 38, 19,
41]. There exist only a few publications on exploration of outdoor environments [30, 29]
and to the authors knowledge none was evaluated and tested in a large outdoor en-
vironment with a real robot. Almost all, approaches are only tested with simple 2D
simulations [36, 38, 39, 29, 41].
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The survey of Garaffa et al. [43] investigates the current literature on learning meth-
ods for robotic exploration. They especially survey reinforcement learning, by which
robots automatically learn skills from environment interaction. Most approaches for
single robot exploration are end-to-end methods, e.g. [44, 45, 46, 47, 48], which act as
a black box, as they directly return robot control actions [43]. The few existing two
stage approaches [49, 50, 51] first, decide on the next goal location applying reinforce-
ment learning and second, compute a path to the goal with common path planning
techniques. This still means the decision process on where to move next? is a complete
black box for a human operator. For space exploration missions, scientists and human
operators are adamant that a persistent possibility of supervising a robot exists. Fur-
ther, space exploration differs strongly from the domains where reinforcement learning
is already successfully applied. An agent has to act from the beginning autonomously
and a safe exploration is required, there is no time for learning in the real world. All
methods reviewed by Garaffa et al. [43], perform the training phase through simulation.
As the existing data of planetary surfaces is very limited and no exact models of the
environment to be expected exists, this is especially for planetary exploration missions
currently an invincible challenge. Garaffa et al. [43] come to the conclusion, that the
small performance improvements of reinforcement learning methods for single robot ex-
ploration, do not justify their application over classical exploration methods, due to their
high computational costs and long training periods. We share this opinion, especially
for planetary exploration, considering the lack of training data and the requirement to
understand the decision a robot made and to supervise a robot by human operators.

2.2.2 Drive-by Science

Our second use case represents a drive-by science mission, often also called science on
the fly or opportunistic science. The main goal is to move to a defined POI, at which
new science investigations are planned. The idea is to use the time during the traverse to
increase the scientific information gained while moving towards the POI [52]. Some au-
thors, even propose to interrupt the traverse for science investigation, as an opportunity
arises. In the small space exploration community, only a few approaches to drive-by sci-
ence were published. However, among these, no real exploration strategy can be found,
but only informative path planning methods. It can be distinguished between methods
planning a path based on prior knowledge [53, 54], e.g. from satellite data, and methods
adapting a path continuously [55, 52, 56], while traversing the environment based on
the newly gained information. The disadvantage of considering drive-by science as path
planning problem, is that it requires prior knowledge and the re-planning often requires
complex computations. We suggest to use an exploration approach, to set up a mission
in a drive-by science fashion.

2.2.3 Object Search

In use case 3, the robot has to find a FOI in an unknown ROI, which is similar to the
robotic task of object search. The object search problem is a common robotic task,
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service robots have to search and fetch household items, search and rescue robots have
to identify hazards or locate victims and industrial robots have to fetch, for example,
tools or materials. Recently, the object search problem got more attention in the robotic
community, whereby the context of the object search differs and thus the methods. A
bunch of work exists where the environment is known in advance[57, 58, 59, 60, 61, 62,
63, 64, 65, 63, 66, 67, 68, 69], only a few authors consider the search task in a-priori
unknown environments [70, 71, 72, 73, 74, 32, 75, 76].

As in our use case, a robot has to find a defined FOI in a prior unknown environment,
we examine the literature on object search in unknown environments in the following
in detail. We distinguish between direct search methods and informed search methods.
Direct search [77, 73, 78, 32, 76]assumes that the target object lies with equal probability
at any location and selects viewpoints based on the environment geometry until the
object is found, thus it is similar to the area coverage problem, respectively the classical
exploration problem [77].

Informed search methods [72, 70, 71, 76, 74, 75, 79] incorporate search knowledge to
reason about an object’s location. Rasouli et al. [79, 75] utilize visual saliency to guide
the search. They build a saliency map during the search and update the probability
of detecting the object at a location based on this map [79, 75]. To build the saliency
map they explore visual clues in the current images. Shubina and Tsotsos [76] and
Cipolleschi et al. [74] integrate hints about the target object location as a probability
distribution. Additionally, Ciopolleschi et al. [74] use these hints to prioritize areas and
to coordinate multiple robots. Areas with a high probability of detecting the object are
explored by several robots, whereas areas with less probability of detecting the object
are neglected or only explored by one robot. Aydemir et al. [72] and Joho et al. [70, 71]
present approaches that make use of indirect search knowledge. The approach of Joho
et al. [70] is based on spatial relations, gained from usual object arrangements, e.g. milk
is in a fridge, and object attributes, e.g. avocado is a fruit, to find a product in an
a-priori unknown supermarket. They use a maximum entropy model, which models the
conditional distribution over possible locations of the target object given all observations
made so far. The parameters of the model are learned by maximizing the data likelihood
using a gradient ascent. In a follow up work Joho et al. [71] compare their strategy with
a reactive search strategy, which uses only local information to decide where to search
next, instead of all observations made so far. They learn a decision tree from optimal
search paths, which include positive and negative decisions. The decisions are again
derived from object co-occurrences. One drawback of Joho et al.’s work is that they
rely on RFID tags to detect a target object. Thus, the target object has not to be in
the field of view of the visual sensor but only has to be in a certain range around the
robot. This simplifies the search and makes the approach impractical for applications
other than supermarkets. Aydemir et al. [72] present an active visual search method,
which utilizes uncertain semantics of the environment and a probabilistic model of the
search environment to prioritize the search. The robot is equipped with general world
knowledge about indoor spaces to be able to exploit spatial semantic relations. In detail,
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they use place-object relations, e.g. a mug is likely to be found in a kitchen. Their robot
is able to reason about the category of a room and to connect these to the target object.
They propagate the probability of detecting an object in a certain room to the 3D voxel
space of the room, which is then used for detailed view planning. The described informed
search method, are all designed for use cases in human structured indoor environments,
and can’t be applied for finding features of interest in a planetary exploration scenario.
In a space exploration scenario, a FOI is usually not detectable by a visual saliency
algorithm, as it does not stand out in the camera image. Also, spatial relations can
not be defined for features on planetary surfaces. Only hints about the location of a
FOI could be given by a human scientist, in order to prioritize regions. Nevertheless,
we believe it is important to incorporate the probability of finding a FOI in the decision
‘where to move next?’ to increase the mission return.

2.2.4 Multi-robot Exploration

In use case four, two robots collaborate to efficiently explore a ROI. Using a team
of robots increases the performance and robustness significantly. Several coordination
strategies for a team of robots were proposed over the last years. A common state of
the art approach is to assign frontiers to the robots [4, 80, 81, 82, 83]. In their seminal
work Yamauchi et al. [4] sequentially compute a cost-utility function for each robot and
frontier to assign the frontiers. Burgard et al. [81] propose to use the Hungarian Method
to improve the assignment of the frontiers. Bautin et al. [82] propose to first rank the
goal locations, by determining how many robots are closer to a goal than the currently
considered robot.

Another, common approach for coordination, is to split the environment into small
parts, which are assigned to the robots [84, 85, 86]. For instance, Kemna et al. [85] and
Nieto-Granda et al. [86] use a dynamic Voronoi partitioning method and Solanas and
Garcia [84] the K-means clustering algorithm to divide the environment.

Reactive behavior based coordination approaches were proposed by Julia et al. [87],
Lau [88], Arkin and Diaz [89] and Rooker and Birk [90]. Different behaviors are combined
to compute the desired heading vector for a robot. For example, Lau [88] apply the three
behavior, avoid obstacles, go to frontier and avoid other robots. The coordination of the
robots is implemented by the behavior avoid other robots. Julia et al. [91] additionally
apply the behaviors, improve imprecise landmarks and go to unexplored zones. To
guarantee consistent communication between a team of robots, Arkin and Diaz [89], as
well as Rooker and Birk [90] implement a behavior, that limits the distance, that robots,
in a team, can separate from each other. Rooker and Birk [90] additionally suggest to
change the behavior, from exploring to meet with each other, to avoid deadlocks. These
deadlocks, happen when a robot can not move towards a frontier without violating the
distance constraint to other robots. The behavior based coordination strategies only
implement weak coordination, which depends on the structure of the environment [87]
and performs only well in simple environments with few obstacles.
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In our scenario (see section 1.2), we consider a team of two heterogeneous robots.
Enhanced tasks, as autonomous science investigations, require a local collaboration be-
tween the robots. For example, in our case, one rover is equipped with a scientific camera
to detect a FOI and the other has a manipulator to take samples. Our setup is similar
to the one of Manjanna et al. [92], who measure the chlorophyll distribution of water,
using an explorer detecting suitable locations and a sampler measuring the chlorophyll.
Andre and Bettstetter [93] investigate local collaborations for physical interactions, e.g.
clearing a block path with combined strength. They, especially, treat the question, when
to collaborate and with whom to collaborate [93]. Although, we do not explicitly con-
sider local collaboration in this thesis, but solely the co-exploration of a ROI, we keep
our heterogeneous team in mind and present a coordination approach, where the robots
keep close to each other, to quickly react on a request for support by another robot.
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3 Exploration as Multi-Criteria Decision
Making Problem

In this chapter, we present our general exploration concept based on MCDM. We show
the MCDM problem within the robotic exploration task and, explain how an exploration
behavior can be modelled by a human operator, especially for planetary exploration
missions. Further, we describe two MCDM methods to rank goal locations.

3.1 Identification of the MCDM Problem in the Exploration
Process

In robotic exploration, a robot has to repeatedly answer the central question,‘where to
move next?’. We show that this decision problem is a MCDM problem, by expressing
the main characteristics of MCDM (see section 2.1.1) in the sense of exploration:

(1) At least two criteria - To successfully conduct the challenging task of exploring
large unknown environments, a robot has to consider its next action carefully. An
efficient exploration requires at least two criteria. It is state of the art, to consider the
distance from the robot to the goal and the information that is gained when moving to
the goal. As the localization error accumulates over time with no Global Positioning
System (GPS) system available, it is further common to consider if a robot could
re-localize itself at a goal. In this thesis, we even apply five criteria at the same time to
model an exploration behavior to conduct use case 3.

(2) Multiple objectives and conflicting criteria - The exploration tasks induced
by a planetary exploration mission, all include multiple objectives. For example, in use
case 1, we aim for an efficient exploration, an accurate localization and a good map
quality. As the robot usually has to interrupt the exploration process to re-localize
itself, the exploration efficiency, localization accuracy, and map quality represent
conflicting objectives.

(3) Incomparable Units - The attributes formulated to describe the criteria, e.g.
the path length to a goal, the expected information gain, or the re-localization
probability, all have different units and can’t be compared directly.

(4) Design/Selection - The main objective of robotic exploration is to decide
‘where to move next?’ Thus, the robot has to select a next action to best fulfill the
objectives of an exploration task.
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To structure a decision problem with a MCDM method, the problem is commonly
described by objectives, alternatives, criteria, and preferences. In fig. 3.1 we highlight
the transfer of common terms from MCDM to robotic exploration.

Figure 3.1: We transfer the common terms of a MCDM to the terms of robotic exploration.
The mission objectives, exploration criteria and operator preferences directly map
to the objectives, criteria and preferences of a MCDM. The alternative solution of
a MCDM correspond to the sampled goal locations.

The main objective describes the final state to be reached. It can be expressed by
several sub-objectives, which should be measurable. For planetary exploration the main
objective arises from the mission task itself, e.g. for use case 1, the main objective is to
explore a ROI. Depending on the main objective, we can derive different sub-objectives,
e.g. mapping a large area and reducing the localization uncertainty. The exploration cri-
teria used to evaluate the potential goal locations can be directly transferred to MCDM.
To reach the objectives, the goal locations are evaluated by these criteria. The pref-
erences depict the preference of one alternative over another regarding the criteria, i.e.
fulling the respective objective. In exploration the human operator can set the prefer-
ence to influence the decision making. It influences which goal location, an autonomous
robot prefers over another.

3.2 General Formulation of Robotic Exploration as MCDM

In fig. 3.2 we illustrate how we transfer the stages of MCDM, stated in section 2.1.1,
to robotic exploration of planetary surfaces. The blue processes are conducted by the
operator and scientists on Earth before the mission starts. The orange processes run
online onboard a robot on e.g. Mars. The communication between the operator on earth
and the robot is limited to short communication time slots, which is highlighted by the
doted errors.

Problem formulation and structuring: Starting from the high level mission task,
the problem is structured by the scientist and the operator by identifying the
challenges, requirements, and mission sub-objectives. Further, potential uncertainties
are recognized, and the decision space is defined. To structure and model a mission
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Figure 3.2: MCDM procedure for an autonomous exploration mission. Blue processes are con-
ducted by the operator and scientists on Earth. Orange processes run online on-
board a robot on e.g Mars. Solid connections between the processes represent a
short communication time and doted connections a delayed communication in the
short available communication time slots. The x-axis depicts the time and mis-
sion progress. Before the exploration task is executed the operator structures the
problem and design the model. During task execution the model is repeatedly
implemented on the robot, applied and an exploration action is executed, until
mission success. After each exploration action the robot reports the progress and
the operator can update the model if required.

task we suggest first building a hierarchical goal system, as illustrated in figure 3.3. It
shows the coherence between the main objective, sub-objectives, and exploration
criteria. The goal system, should further state if a criterion should be maximized or
minimized and its unit.

Model design and model implementation: In MCDM the second stage is the
model building stage, which includes the identification of alternatives and their
computation. This is not applicable for robotic exploration, as not one single decision,
but repeatedly, for each consecutive exploration action a decision has to be made.
Therefore, we split the model building stage into two stages, model design on Earth
and model implementation on the robot. In the model design stage, we define the
sampling method for goal locations, develop the criteria to evaluate them, and
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postulate their preferences. In the model implementation stage, the goal locations are
computed on the basis of the current map of the robot. As the preferences, criteria,
and also the goal locations highly depend on the mission objectives, the model has to
be designed and implemented for each use case.

Applying the model: Finally, the model is applied, i.e. the criteria are evaluated for
each goal location and a ranking is built with a MCDM method. The solution to the
decision problem is the goal with the highest rank.

Execution of an exploration action: Now, the robot approaches the chosen goal
location, by planning a path through the environment and following it until the goal
location is reached.

Reporting: After execution of the chosen exploration action, the mission progress is
checked. We sent a report on the last exploration action and the mission progress to
the operator on earth. The operator can analyze the past exploration actions and
update the model if required. The robot updates the criteria and preferences in the
model design stage, immediately after receiving it and applies the updated model for
the decision on the next exploration action.

Figure 3.3: General illustration of a goal system to structure an exploration problem. The main
goal is subdivided in to several subgoals. Each subgoal is described by measurable
criteria.

3.3 MCDM Methods for Robotic Exploration

In this section, we introduce two MCDM methods, we suggest for ranking the goal
locations, which is part of applying the model in the MCDM procedure. First, we in-
troduce in section 3.3.1 two Multi-Attribute Decision Making (MADM) utility functions
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especially designed for use case 1, which implement an integrated exploration behavior.
Second, we describe in section 3.3.2 the outranking approach Preference ranking orga-
nization method for enrichment evaluation II (PROMETHEE II) and our extension, to
save computation time. PROMETHEE II can be applied in general for any of the use
cases or even any exploration problem to rank goal locations.

3.3.1 Multi-Attribute Utility Functions for an Integrated Exploration

In this section, we describe two novel utility functions, which we first published in Lehner
et al. [10]. The utility functions implement an integrated exploration behavior, which
balances the exploration efficiency with the map quality and localization accuracy, as
required for use case 1.
The Combined Active Loop Closing and Exploration (CALE) approach, tries to find

the optimal goal, which maximizes the exploration efficiency as well as the re-localization
performance simultaneously. All evaluation criteria are incorporated in a single utility
function.
The Separated Active Loop Closing and Exploration (SALE) approach, first decides

based on the current localization uncertainty of the robot, if the robot should explore
or re-localize itself. Based on this decision, either goals to explore or to re-localize are
sampled and evaluated, due to their exploration performance or their re-localization
performance.
In this section, we describe the utility function for ranking goal location in general.

Details on, where goal locations for exploration and re-localization are sampled are de-
scribed in chapter 4. The same holds for the exploration criteria applied to evaluate the
goals, a detailed description, can be found in section 4.2.

SALE allows only one type of action, exploration or re-localization, to be considered
at a time. The robot first decides if it can explore unknown environment or if it requires
to re-localize itself. The decision to explore or to re-localize is made based on the norm
of the current covariance |cov(pr)| of the robot pose pr. If the covariance of the pose is
larger as the threshold ι the robot has to interrupt the exploration in favor of re-localizing
itself. Depending on this decision, the set of goal locations either includes exploration
goals or re-localization goals, and the utility for an efficient exploration eq. (3.2) or the
utility for the re-localization performance eq. (3.3), is computed.

u(g) =

{
uex(g) if ι ≥ |cov(pr)|
ure(g) if ι < |cov(pr)|

(3.1)

To find the goal, which has the greatest exploration performance, we apply the utility
function introduced by Stachniss et al. [1] (see section 2.1.2, eq. (2.1)).

uex(g) = cIG(g)− wcost · ccost(g) (3.2)

It balances the information gain cIG with the cost ccost of moving to a goal. Details
on the calculation of the information gain criterion (see section 4.2.2) and cost criterion
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3 Exploration as Multi-Criteria Decision Making Problem

(see section 4.2.1) are given in the next chapter, where we explain how to model the
exploration behavior for each single use case. To find the goal having the greatest re-
localization performance, we consider two criteria, which evaluate the likelihood cll of a
re-localization and its impact cli.

ure(g) = ((β · cll(g)) + (1− β) · cli(g))− wcost · ccost(g) (3.3)

The weight β balances the likelihood and the impact of re-localization. Similar to the
utility function for and efficient exploration eq. (3.2) we subtract the weighted cost
criterion ccost to limit the distance the robot has to drive to a goal. For details on the
calculation of the loop closure likelihood criterion and the loop closure impact criterion
please refer to section 4.2.3 and 4.2.4.

We use a simple additive weighting approach to calculate the re-localization utility
ure(g), based on a linear combination of cll and cli, which is a well known method for
ranking alternatives based on multiple attributes. Alternatively, it would be possible to
multiply the two criteria to avoid the assumption that there is an fixed trade off between
the two criteria, which can be expressed with linear preference.

CALE searches for the optimal goal which satisfies all four criteria. We define the
utility of reaching a goal u(g) as:

u(g) = (α · u′re(g) + (1− α) · u′ex(g))− ccost(g)

with α = |cov(pr)|/ι
(3.4)

where u′re and u′ex are similar to ure and uex without considering the costs ccost, as it is
subtracted from the sum of u′re and u′ex, i.e.:

u′re(g) = (β · cll(g)) + (1− β) · cli(g) (3.5)

u′ex(g) = cIG(g) (3.6)

Depending on the ratio of the norm of the currently estimated covariance of the robot
pose |cov(pr)| and the threshold ι, either exploration actions or loop closing actions, are
weighted higher.

CALE distinguishes itself by searching for goals that are suitable for both, exploration
and re-localization. This can speed up or slow the exploration process, depending on
the parameters. It has the advantage that we do not need to define a fixed threshold, at
which the robot is forced to interrupt the exploration process immediately.
The advantage of SALE is, that it is easier to understand the behavior of the robot,

which simplifies the choice of the exploration parameters for human operators during
mission planning. In addition, the exploration is only interrupted if it is really necessary.
CALE usually starts earlier to revisit known areas, if the opportunity to drive to a
close re-localization goal is given. With SALE, it might happen that the robot has to
drive back long distances to reach a re-localization goal worth visiting. This is further
evaluated and discussed in section 6.1.
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3.3 MCDM Methods for Robotic Exploration

3.3.2 Multi-Criteria Decision Making with Promethee II

The presented utility functions are especially designed for an integrated exploration be-
havior required to conduct use case 1. It is not possible to apply the same utility functions
to find a solution for the other use cases. In this section, we describe the well-known
MCDM method PROMETHEE II [7], which we suggested in our publication Lehner et
al. [11] as a general decision making method for robotic exploration. The outranking
method is based on pair wise comparison of goal locations and has no underlying value
aggregation function. Any exploration behavior can be modeled with PROMETHEE II,
only by adding or removing criteria and adapting the preferences. Further, we describe
our extension to PROMETHEE II to save run time, which is important for planetary
exploration applications with limited CPU resources.

Brief Introduction to PROMETHEE II

PROMETHEE II is an outranking method, based on pairwise comparison of alternatives,
i.e. in our case the goal locations. Let G = {g1,g2, ...,gn} be a set of goal locations with
the goal locations being a vector g ∈ SE(3) of potential robot poses. The exploration
criteria to rate and compare the goal locations in the set G are stored in the set of criteria
C = {c1, c2, ..., cm}. Higher values of these real-valued functions c : SE(3) → R denote
a higher preference for the particular goal location regarding the respective criterion.

First, all goal locations g ∈ G are compared pairwise for each criterion ck ∈ C. Hence,
let

dk(gi,gj) = ck(gi)− ck(gj) ∀k = 1, . . . ,m (3.7)

denote the difference between two goal locations gi and gj with respect to criterion ck.

Second, the difference dk(gi,gj) is mapped to the unicriterion preference degree ap-
plying a preference function Pk : R → [0, 1] defined for each criterion ck.

πk(gi,gj) =

{
0 if dk(gi,gj) < 0

Pk(dk(gi,gj)) else
(3.8)

The preference functions are modeled before the exploration starts in the model design
stage (see fig. 3.2). We describe the most common preference functions in detail in the
next section 3.3.2. Summing up the weighted unicriterion

π(gi,gj) =
m∑
k=1

πk(gi,gj) · wk (3.9)

with the weights wk ∈ [0, 1] and
∑m

k=1wk = 1 leads to the multi-criteria preference
degree π(gi,gj).

Based on the preference values, the positive and negative multi-criteria net-flows can
be calculated. They describe the advantages and disadvantages of one goal location to
another. The positive net-flow ϕ+ is the normalized sum of the preference values for the

35



3 Exploration as Multi-Criteria Decision Making Problem

pair comparisons π(gi,gj). It indicates how a goal location is outranking all other goal
locations.

ϕ+(gi) =
1

n− 1

∑
x∈G\gi

π(gi,x) =
m∑
k=1

ϕ+
k (gi)wk (3.10)

The negative net-flow ϕ− aggregates the opposing pairs π(gj ,gi):

ϕ−(gi) =
1

n− 1

∑
x∈G\gi

π(x,gi) =
m∑
k=1

ϕ−
k (gi)wk (3.11)

The value shows how a goal location is dominated by the other goal locations. A value
of 1 indicates that the goal location is dominated by all other goal locations. The best
goal location has a high positive net-flow value and a low negative net-flow value.
The above defined multi-criteria net-flows ϕ+ and ϕ− can also be disaggregated, which

results in the positive ϕ+
k and respectively negative unicriterion net-flow ϕ−

k :

ϕ+
k (gi) =

1

n− 1

∑
x∈G\gi

πk(gi,x). (3.12)

ϕ−
k (gi) =

1

n− 1

∑
x∈G\gi

πk(x,gi). (3.13)

To build a complete ranking of the goal locations the multi-criteria net-flow ϕ(g) is
computed by

ϕ(gi) = ϕ+(gi)− ϕ−(gi) =

m∑
k=1

ϕk(gi)wk (3.14)

with the unicriterion net-flow

ϕk(gi) = ϕ+
k (gi)− ϕ−

k (gi) with ϕk(gi) ∈ [−1, 1]. (3.15)

To illustrate the meaning of the net-flow let us consider two goal locations gi and gj :

• if ϕ+(gi) ≥ ϕ+(gj) and ϕ−(gi) ≤ ϕ−(gj): goal location gi outranks goal location
gj ,

• if ϕ+(gi) = ϕ+(gj) and ϕ−(gi) = ϕ−(gj): goal location gi is indifferent from goal
location gj ,

• otherwise goal location gi and goal location gj are incomparable.

The final decision, the solution to the problem, is the goal location with the highest
rank g⋆

g⋆ = argmax
g∈G

ϕ(g). (3.16)

The possibility to separate the multi-criteria net-flow in unicriterion net-flows for a single
criterion gives the operator relevant information to understand the decision, which can
be useful to adapt the criteria, their preference functions, and weights.
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3.3 MCDM Methods for Robotic Exploration

Developing Criteria

In the model design stage (see fig. 3.2) the criteria to evaluate the goal locations are
developed. In this section, we describe how a criterion and its corresponding preference
function are set up for PROMETHEE II. A preference function Pk(dk(gi,gj)), indicates
how the difference d(gi,gj) between two goal locations for one criterion ck is mapped to
a preference degree between gi and gj .

Figure 3.4: General description of a preference function. With q being the indifference value
and r being the preference value.

In fig. 3.4 we illustrate the general structure of a preference function. The y-axis plots
the preference value Pk(dk(gi,gj)) ∈ [0, 1] and the x-axis plots the difference dk(gi,gj)
between the criterion values of two goal location. A preference value of Pk(dk(gi,gj)) = 0
implies indifference. For example, it doesn’t matter to the decision maker, if the distance
between the robot and a goal location is 3m or 3.1m. The difference does not lead to
a preference for the goal location closer to the robot. Strict preference is indicated by
a preference value of Pk(dk(gi,gj)) = 1. For example, consider a goal location at 3m
distance and a goal location that is 20m away from the robot. The difference of 17m is
quite large and the robot should strictly prefer the closer goal location. A value between
0 < Pk(dk(gi,gj)) < 1 leads to a weak preference, with an increasing difference and thus
increasing preference. To summarize:

• P (gi, gj) = 0 : indifference between gi and gj .
• P (gi, gj) ≈ 0 : weak preference of gi over gj .
• P (gi, gj) ≈ 1 : strong preference of gi over gj .
• P (gi, gj) = 1 : strict preference of gi over gj

The indifference value q marks the point until indifference between two goals is ob-
tained, and the preference value r marks the point at which strict preference applies.
In other words, q is an indifference threshold indicating the largest deviation, which is
considered as negligible by the operator, while r is the preference threshold, stating the
smallest deviation, which is considered as sufficient to generate a full preference of one
goal over another by the operator.
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3 Exploration as Multi-Criteria Decision Making Problem

Preference function Definition and description

Linear function

P (d(gi,gj)) =


0 if d(gi,gj) ≤ 0

dk(gi,gj)
r if 0 ≤ d(gi,gj) ≤ r

1 if d(gi,gj) > 1

With increasing difference d(gi,gj) the prefer-
ence increases linearly until reaching the prefer-
ence value r. Difference values larger than the
preference value r lead to an strict preference of
gi over gj .

Linear function with indifference

P (d(gi,gj)) =


0 if d(gi,gj) ≤ q

d(gi,gj)−q
r−q if q < d(gi,gj) ≤ r

1 if d(gi,gj) > r

Similar to the linear preference function this
preference function defines the weak preference
range as linear function. However, the operator
defines additionally an indifference range for dif-
ferences smaller than the indifference value r.

Step function

P (d(gi,gj)) =


0 if d(gi,gj) ≤ r

1
2 if q < d(gi,gj) ≤ r

1 if d(gi,gj) > r

With the step function the operator can define
an indifference, weak preference and strict pref-
erence range. The weak preference range is de-
fined as a single step with equal preference value
which is usually set to P (d(gi,gj)) = 0.5.

Gaussian function

P (d(gi,gj)) =

 0 if d ≤ 0

1− e−
d(gi,gj)

2

2·σ2 if d(gi,gj) > 0

The preference function, based on the Gaussian
normal distribution, is monotonically increasing
until the turning point σ. No strict preference
is defined. To define the turning point σ it is
common to use 50% between the difference of
the best and worst criterion value.

Table 3.1: Table presenting the most common preference functions for PROMETHEE II.
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For criteria which can be measured and expressed by a quantitative number the linear
preference with or without indifference is a good choice. To choose q and r we suggest
first calculating the best criterion value and the worst criterion value for a goal location.
If this is not possible, as there is no upper limit for the criterion value, the operator has
to choose the preference and indifference threshold based on his experience. Starting
from these corner cases, q and r can be refined empirically. For this, the operator can
apply the decision making several times, while varying the preference and indifference
values q and p and performing an sensitivity analysis, to detect if the chosen values would
change the result and another goal has the highest multicriteria preference degree.

In table 3.1 we summarize the most common preference functions used for PROMETHEE
II. It is not a complete list, an operator may define any function that best fits a criterion.

Reduction of Goals for PROMETHEE II

The main disadvantage of using an outranking method like PROMETHEE II is the re-
quired processing power. This is especially critical for planetary exploration missions,
where the CPU resources are limited, and all methods have to run online onboard the
robot. The pair wise comparison of hundreds of goal locations for several criteria is
CPU-intensive as, the time complexity of PROMETHEE II is O(mn2).

We suggest reducing the number of goal locations to be compared, to improve the
run time. In Lehner et al. [11] we first introduced an extension to PROMETHEE II,
by which first a subset of goal locations is extracted, before second the multi-criteria
preference degree is exclusively calculated for the goal locations in the subset. The goal
locations in the subset are selected upon the unicriterion net-flow ϕk(·) of one criterion.
For this, we derive a threshold τ for the unicriterion net-flow ϕk(·) of this criterion.
All goal locations with a unicriterion net-flow larger than the threshold ϕk(·) > τ are
included in the subset and all goal locations with a unicriterion net-flow lower than the
threshold ϕk(·) < τ are excluded, i.e. neglected during the further decision process. For
the goal locations in the subset the remaining criteria are computed and compared to
find the best goal location with the highest multi-criteria preference degree among them.

The idea behind calculating the threshold τ is, that a goal location, with a very low
unicriterion net-flow value for a single, but strongly weighted criterion has no chance to
be the best goal location, nevertheless how large its unicriterion preference values are
for the other criteria. To find the threshold τ we compute the unicriterion net-flow value
for the criterion cm, which has the strongest weight among all criteria wm = wmax

m >
wm∀wk ∈ W \wm, for all goal locations. Let’s assume two goal locations ga and gb with
the following properties: Goal location ga has the highest unicriterion net-flow value

ϕm(ga) = ϕmax
m > ϕk(gj) ∀gj ∈ G \ ga , (3.17)

for the criterion cm and the smallest possible value ϕk(ga) = −1 for all other criteria.
Alternative gb has the highest possible value ϕk(gb) = 1 for all other criteria k ̸= m. We
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aim for the minimum unicriterion net-flow value ϕm(gb)) for goal location gb, which is
required to hold:

ϕ(gb) > ϕ(ga) (3.18)

For this we substitute eq. (3.14) for the unicriterion values for goal location ga and gb
3.14.

m−1∑
k=1

1 · wk + wmϕm(aj) >
m−1∑
k=1

−1 · wk + wmϕmax
m . (3.19)

and solve for the minimum value ϕm(gb) for the threshold criterion cm to find the
threshold τ :

τ =
1

wm

(
m−1∑
k=1

(−wk) + wm · ϕmax
m −

m−1∑
k=1

wk

)
(3.20)

The relation ϕ(·) > ϕ(ga) holds for goal locations with a higher unicriterion net-flow
value ϕm(·) > τ than τ , one of those goals is the goal with the highest multi-criteria
preference value. For all goal locations with ϕm(·) < τ it holds ϕ(·) < ϕ(ga) thus, they
can be neglected in the further processing.

To calculate the threshold τ , we suggest computing τ based upon the criterion with
the strongest weight wm. Further, a dominant goal location with a high unicriterion
net-flow value should exist for the criterion, in order to prune many goal locations. To
relax this assumption, it would also be possible to combine several criteria and calculate
the threshold based on two or more criteria. However, although using more criteria for
the threshold calculation could prune more goals, the processing time to calculate the
threshold itself increases.

Our method guarantees that the best goal location is among the selected subset, how-
ever, as PROMETHEE II is an outranking method, i.e. each goal comparison influences
the ranking, it is possible that the exclusion of goal locations from the final decision
making can lead to changes in the final ranking. As this only happens when the differ-
ence between the multi-criteria preference degree of two goal locations is very small, i.e.
the goal locations are equivalent, we assume this as neglect able.

3.4 Summary and Discussion

In this chapter, we detailed our general concept of robotic exploration based on MCDM.
In contrast to Basilico and Amigoni [32], who first introduced MCDM for exploration,
we not only use a MCDM method for decision making, but transfer the whole proce-
dure of MCDM to robotic exploration. We present a complete concept for modelling
exploration tasks, especially for planetary exploration. Our approach considers the short
communication time slots available to send commands or receive data from the robot in
space. To create a ranking among the goals, we presented two different decision making
methods. First, we presented the utility functions CALE and SALE, first introduced in
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Lehner et al. [10]. Second, we described how we utilize PROMETHEE II.
The utility functions are specially designed to model an integrated exploration, as re-
quired to conduct use case 1. Both find a trade-off between exploration efficiency, map
quality and localization accuracy. Disadvantages of these utility functions are their com-
plexity and non-flexibility. A human operator, might have difficulties parametrizing the
functions and understanding the found solution. In contrast to PROMETHEE II the
utility functions can not be applied for the other use cases. With PROMETHEE II any
criterion can be added to the decision process to model the desired exploration behav-
ior to conduct any use case. Although Taillandier and Stinckwich [33] proposed to use
PROMETHEE II, they similar to Basilico and Amigoni [32] lack the general formula-
tion of robotic exploration as MCDM. Further, Taillandier and Stinckwich [33] do not
consider the high resources required for the pair-wise comparison, which we solve by
extending PROMETHEE II with our subset extraction method.
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In this chapter, we model the four robotic exploration use cases: (1) autonomous ex-
ploration (section 4.2), (2) drive by science (section 4.3), (3) autonomous search (sec-
tion 4.4), (4) multi-robot exploration (section 4.5). We model each use case using the
general MCDM exploration concept introduced in section 3.2. First, we structure the
problem, second, we conduct the model design stage and identify alternatives and de-
velop criteria for each use case. In section 4.1, we detail how we sample goal locations,
which corresponds to the model implementation stage. Further, we present a classifi-
cation of exploration criteria in section 4.6, after describing the use cases. Finally, we
conclude the chapter by summarizing and discussing our approach.

4.1 Sampling Goal Locations

In this section, we describe our methods to sample goals. Let g ∈ G be the set of goal
locations, with each goal location being a vector g ∈ SE(3) of a potential robot pose.
We sample exploration goals gex and re-localization goals gre. At exploration goals a
robot can gain new information about the environment. Re-localization goals represent
locations a robot visited before, thus a re-localization can be performed.

Exploration Goals

To sample exploration goals, we apply a frontier-based algorithm [4]. The exploration
goals are placed at so called frontiers, which build the boundary between unknown and
known space, as illustrated in fig. 4.1. Let’s consider a 2D occupancy grid map, for which
each map cell can have the state free, occupied, or unknown. Cells with the state free or
occupied are known to the robot, i.e. have already been observed by the robot’s sensors.
A free cell is traversable by the robot, whereas an occupied cell indicates an obstacle.
To detect frontiers, we first identify all frontier cells, then, in a second step, group the
frontier cells and, third, post-process the generated frontiers. To efficiently detect the
frontier cells we apply an approach similar to the Naive Active Area (NAA) method
introduced by [94]. This approach only detects frontier cells in the so called active area,
which is defined by the scans taken by the robot since the last frontier update. In our
case, the active area at time A(t) is defined by the submaps the robot traversed since the
last exploration step t−1. The active area A(t) is then the bounding box around these
submaps. The cells outside the active area are assumed to have the same status as at the
previous exploration step t−1. Thus, frontier cells outside the active area can be added to
the current set of frontiers cells Fc(t) without updating them. The cells in the active area
A(t) are re-evaluated and the newly detected frontier cells are added to the unordered
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set of frontier cells Fc(t), too. Following this, we group and sort the frontier cells to
build sorted and connected frontier lines. We loop through the set of unordered frontier
cells Fc(t) until we find a start cell. A start cell is defined as frontier cell, having exact
one frontier cell as neighbor. Beginning at the start cell we repeatably find the nearest
neighbor until another start cell, i.e. the end of the frontier is reached. This procedure is
conducted until all frontier cells in the unordered set Fc(t) are processed. Each detected
frontier fr is finally added to the current set of frontiers F (t). Finally, we refine the
frontiers in a post-processing step and place explorations goals gex at the middle of each
frontier fr ∈ F (t). In scenarios with few obstacles, frontiers can occur that are too long
to be observed from a single point of view. We recursively split long frontiers until no
single frontier is longer than 5m. We determined this limit from our sensor’s observation
range and its decreasing quality of measurements for larger distances.

The NAA approach does not account for changes in the map outside the active area.
However, this could happen when a loop closure is conducted, by which the map is
optimized. We recognize loop closures and apply a naive frontier detection over the
whole map at the next exploration step, to also update the frontier cells outside the
active area.

Figure 4.1: 2D occupancy grid-map showing the frontier between known and unknown space,
with sampled exploration goals along the frontiers. One exploration goal is calcu-
lated for each frontier, however long frontiers are split in smaller frontiers to sample
more exploration goals. The pink line illustrates the current path of the robot (de-
picted with the robot transformation tree) to the chosen exploration goal (larger
goal with dark red color).
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Re-localization Goals

In our underlying mapping and localization system, re-localization is based on the opti-
mization of the SLAM graph by a loop closure constraint. As described in section 2.1.3,
we perform a pairwise matching between submaps to generate loop closure constraints.
To generate a loop closure, the robot has to traverse areas already sensed. By visiting
a previously generated submap, a new submap overlapping with this existing submap
is generated. By matching the new and the old submap, a loop closure can be created.
The pairwise matching between submaps is based on the 3D geometric structure, more
precisely the obstacle points. To achieve a high overlap between the obstacle points of
the existing submap and the submap to be created at the re-localization goal, we sample
the re-localization goals in the middle of the bounding box of the obstacle points of the
existing submap, as illustrated in fig. 4.2.

Figure 4.2: Illustration of the placement of the re-localization goals. We place re-localization
goals (blue circles) in the center of the bounding box of the obstacle points (grey
rectangle).

4.2 Use Case 1 - Autonomous Exploration

In use case 1, a robot has to explore a prior unknown ROI, as illustrated in fig. 4.3. The
objective of the mission task is to build a map of the environment of the ROI, which
can be used to plan further science investigations. For this, a complete map with high
quality is required. Further, it is important to keep the resource consumption within
the limited mission budget.
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Figure 4.3: Illustration of use case 1 - autonomous exploration. The goal of an autonomous
exploration mission is to survey the environment. For this the robot explores a
predefined ROI. The mission is finished if the area within the ROI is mapped.

Figure 4.4: Goal system for use case 1 - autonomous exploration. The main goal is to explore
the ROI, which can be subdivided in the three subgoals, mapping a large are, while
reducing the resource consumption and the localization uncertainty. To evaluate
each goal g for the subgoals, we apply the criteria cIG, ccost, cll and cli

From the requirements and the main objective, we derive the objectives for a single
exploration action, illustrated in fig. 4.4. At each action, the robot should map a large
prior unknown area, try to limit the necessary resources, and to reduce the localization
uncertainty. In order to gain new information, the robot has to move towards unknown
areas, therefore, we sample exploration goals, as described in section 4.1. To reduce
the localization uncertainty, the robot has to re-localize itself, which is only possible in
regions already visited. Thus, we additionally sample re-localization goals.
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We model an integrated exploration behavior by applying four criteria to achieve the
sub-objectives. To measure the new information which can be gained by an exploration
action, we evaluate the information gain criterion cIG (section 4.2.2). To keep the
resources at each step low, we consider the distance from the current robot position to a
goal location, with the cost criterion ccost (section 4.2.1). For re-localization, we actively
trigger loop closure to optimize the underlying SLAM graph of our mapping system (see
section 2.1.3). We apply the two criteria loop closure likelihood cll and loop closure
impact cli to evaluate the re-localization performance at a goal. In the following, we
detail the implementation of the four criteria.

4.2.1 Cost Criterion

The cost criterion ccost(g) describes the costs required to move to a goal location starting
from the current robot position. We define the costs as the length len of the shortest
traversable path from the current robot position pr to the goal g [11].

ccost(g) = lenmin(g,pr) (4.1)

To calculate a discrete approximation of the shortest path we apply a wavefront plan-
ner [95], using the wavefront expansion algorithm. We used the simple wavefront planner,
as it gives the shortest path between two points and it is easy to implement. To estimate
the costs of moving to a goal the estimation with wavefront planner is sufficient. Starting
at the current robot position the nearest neighbors (8 neighborhood)in a circle around
the robot are analysed. If a neighbor cell is traversable, the path costs are increased by
one. At each step, the circle is expanded and the more distant neighbors are analyzed.
For our application, it is not necessary to find a path to the goal, only the length of the
path is of interest. We benefit from this fact and expand the wave until the last goal is
reached. Thus, by only expanding the wavefront once, we can calculate the path length
for all goals as shown in fig. 4.5.

4.2.2 Information Gain Criterion

The most important criterion for an efficient exploration is the information gain cIG. It
is a measure of how much new information a robot gains at a goal location.
We estimate the information gain from the probabilistic 3D voxel map provided by

the underlying mapping system (see section 2.1.3). Let χ ∈ X (g) be a voxel in X in the
neighborhood of a goal g ∈ G. Then, the IG is the sum of the differences between the
current entropy H(χ) and the expected entropy E[H ′(χ)] at each voxel χ ∈ X (g). We
calculate the current entropy H(χ) and the expected entropy E[H ′(χ)] according to [96].

cIG(g) = IG =
∑

χ∈X (g)

H(χ)− E[H ′(χ)] (4.2)

For a more reliable information gain we take into account that the probability of ob-
servability Qo(χ) decreases with an increasing distance from the stereo camera sensor,

47



4 Modeling Planetary Exploration Missions

Figure 4.5: Illustration of the result of the wavefront expansion algorithm. Starting at the
robot position (marked red) the wave is circularly expanded through the known
space (light gray) until all goals (green) at the frontiers (yellow) to the unknown
space (dark gray) are reached. Obstacles are marked black.

as described in our publication Lehner et al. [10]. The probability observability Qo(χ)
is defined as

Qo(χ) =
∏

χ′∈Xray(χ)

p(χ′) (4.3)

with Xray(χ) being the set of voxel, which intersect the casted ray and being nearer to the
origin than χ and p(χ) as the posterior of χ. Applying the probability of observability
Qo(χ), we extend eq. (4.2) to [10]

cIG(g) = IG =
∑

χ∈X (g)

H(χ)−Qo(χ) · E[H ′(χ)] (4.4)

For the estimation, we simulate a horizontal 360-degree sensor swipe with a fixed
angular resolution and a 40 degree vertical FoV [10] in our experiments (section 6.1).
Only the measurements in a range of 4m are included, as the stereo uncertainty grows
at farther distances, as shown by Brand and Schuster [97].

4.2.3 Loop Closure Likelihood Criterion

In our integrated exploration approach, a robot can re-localize itself by generating loop
closures. The loop closure likelihood criterion cll evaluates how likely it is, that a loop
closure is generated when visiting a goal location. We define the loop closure likelihood
cll as a heuristic measure

cll(g) = p(L(g,gζ)) (4.5)

with p(L(g,gζ)) being the probability, that a loop closure L, between the new goal
location g and a goal visited in the past gζ at exploration step ζ, happens.
The implementation of the heuristic depends on how loop closures are computed in the

underlying mapping framework. Our work is based on the 6D Graph SLAM introduced
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4.2 Use Case 1 - Autonomous Exploration

by Schuster et al. [8], briefly described in section 2.1.3. Loop closure constraints are
generated by pairwise matching of submaps. In turn, the matching is based on the 3D
geometric structure of the submaps, whereas the obstacle points are employed as 3D
features. Thus, a successful submap match requires two overlapping submaps with a
large number of feature points, which are equally distributed. The heuristic of the loop
closure likelihood describes in our case the matching quality of the existing submap at
a goal location. We consider the distribution of feature points D and the number of
obstacle points no in the existing submap. We compute the distribution D by applying
a nearest neighbor analysis, which provides a numerical value describing the extent to
which a set of points is clustered or uniformly spaced. To compute D we first calculate
for each obstacle point in a submap the distance to its nearest neighbour, i.e. the closest
obstacle point. Then D is defined as follows

D =
dn

0.5
√

no/as
+D (4.6)

where dn is the mean value of the computed nearest neighbour distances and as is the
area of the submap. Then the loop closure likelihood criterion is computed by the ratio
between the number of obstacle points no in a submap and the total number of points
n in a submap, to account for the number of obstacle points and the distribution of the
obstacle points D [10].

cll(g) =
no

n
+D (4.7)

A uniform distribution of feature points and a large number of feature points compared
to all points, increase the loop closure likelihood.

4.2.4 Loop Closure Impact Criterion

The loop closure likelihood is a measure of the success of an intended loop closure
but does not consider the effect of the constraint on the SLAM graph. Usually, re-
localization requires the robot to revisit goal locations visited earlier. As this interrupts
the exploration of the ROI we believe it is essential to take the reward of the loop closure
constraint into account. In our publication Lehner et al. [10] we first introduced, the
novel criterion loop closure impact. We define it as the difference between the current
uncertainty sg and the expected uncertainty E(sg(L)) after optimization when closing
the loop L.

cli(g) = sg − E(sg(L)) = s2(pr)− s2(gi) (4.8)

With sg being the uncertainty of the submap at the current robot position s2(pr) and
E(sg(L)) being the uncertainty at the submap goal location s2(g)

The loop closure impact cli increases with increasing difference between the current
uncertainty sg and the expected uncertainty E(sg(l)). That, usually inclines that the
existing submap is quite old, thus farther away from the current robot position.
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4.3 Use Case 2 - Drive-by Science

Use case 2, illustrated in fig. 4.6, depicts the common task of driving to a predefined POI.
Instead of driving directly to the POI, often drive-by science or opportunistic science
methods are applied, which try to increase the information about the environment, while
moving to the POI. That means, the robot is allowed to depart from the planned path
to sense a large part of the environment on its way.

Figure 4.6: In the drive-by science mission, the robot has to visit several POI in sequential
order. The mission is finished, after reaching the last POI. In this example three
POI are defined.

Figure 4.7: Goal system for use case 2 - drive-by science. Additionally, to the subgoals, map-
ping a large area, while reducing the resource consumption, we define the subgoal,
moving towards a predefined global goal (POI). We evaluate the latter, with the
direction of interest criterion cdoi.

We propose to apply a robotic exploration in order to conduct a mission in the fashion
of a drive-by science. In fig. 4.7 we present the goal system, which depicts a directed
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4.4 Use Case 3 - Autonomous Search

exploration behavior, required to conduct a drive-by science missions with robotic ex-
ploration. Starting from the main objective, reaching the next POI, we define three
sub-objectives. To reach the POI, the robot has to move in the direction of the POI
at each exploration action. To gain the most information about the environment while
moving to the POI the robot should map a large part of the environment at each explo-
ration step. Further, it is important to keep the resources within the mission budget,
e.g. limiting the distance the robot has to drive.

We only sample exploration goals and no re-localization goals, as revisiting re-localization
goals contradicts the main objective of moving to a POI. Other than in use case 1, the
map created during the traverse is not necessarily used to plan further science investiga-
tion. To approach the objectives, we apply the three criteria, information gain criterion
cIG, cost criterion ccost, and direction of interest criterion cdoi.

With the information gain criterion cIG, the goal locations are evaluated for their
potential of mapping a large unknown part of the environment. The cost criterion
evaluates the distance to the goal locations and is thus a measure for the required
energy, i.e. resources. The direction of interest criterion cdoi evaluates if a goal location
is lying into the direction of the POI. In the following, we describe the novel direction
of interest criterion cdoi in detail. For the information gain criterion cIG and the cost
criterion ccost please refer to section 4.2.2 and section 4.2.1.

4.3.1 Direction of Interest Criterion

To direct the robot toward the POI, we present the novel exploration criterion direction
of interest cdoi, which we first introduced in our publication Lehner et al. [11]. It can be
used to direct the robot into any predefined direction, which we call direction of interest
(DOI), while exploring. The direction of interest criterion cdoi(g) is defined as the angle
between the directional vector vdoi pointing into the current DOI and the directional
vector vg pointing from the current robot position pr to the goal g [11]:

cdoi(g) = cos−1

(
vdoi ◦ vg

|vdoi| · |vg|

)
(4.9)

4.4 Use Case 3 - Autonomous Search

In use case 3, a robot has to search in a prior unknown ROI for a Feature of Interest
(FOI), as illustrated in fig. 4.8.

To find the FOI in the ROI we could apply the exploration behavior modelled for use
case 1 (see section 4.2). However, in contrast to an exploration of a ROI, as in use case
1, the main objective is not to build a complete map, but to find a FOI. Eventually,
the robot would find the FOI while building a complete map of the ROI. However, this
approach is not efficient, in the worst case the robot detects the FOI with its last sensor
swipe.

In fig. 4.9 we present the goal system, which structures the exploration problem of use
case 3. Except for the new sub-objective, finding a FOI, the goal system is similar to
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Figure 4.8: The goal of an autonomous search mission is to find a FOI in a ROI. The robot
explores the ROI until one instance of the FOI is detected.

the one of use case 1. We sample goal locations for exploration and for re-localization.
The exploration goals, induce new information about the environment, which increases
the probability of detecting a FOI. As the search for a FOI in a large ROI can require
a long time, it might be necessary for the robot to re-localize itself, thus we also sample
re-localization goals. To approach all sub-objectives, we evaluate the information gain
criterion cIG, the cost criterion ccost, the loop closure likelihood criterion cll, the loop
closure impact criterion cli, and the novel feature of interest criterion cfoi. We call
the modeled exploration behavior informed exploration. The robot is equipped with a
detector and the knowledge of how to detect a FOI.

In the following, we state, which geologic features are of interest (section 4.4.1), how
we detect these (section 4.4.2) and, how we evaluate the potential of detecting a FOI
with our feature of interest criterion cfoi (section 4.4.3).

4.4.1 Features of Interest

To motivate our approach, we describe in this section, which features are of interest
at Mars and which conclusion scientists can draw from these. NASA’s Perseverance is
exploring the Jezero Crater since the beginning of 2021. Its main tasks are to study
geology and astrobiology, collect samples and prepare for humans to enter Mars. To
reveal the geologic history of the Jezero Crater, Persevereance detects and analyses
geologic features of interest. A FOI could be an individual rock of a certain type, a
novel geologic feature, outcrops, or the contact area between different geologic units. In
fig. 4.10 we show the rocks ”Máaz” and ”Rochette” which were selected by scientists to
be of high interest. The enscarpments, short scaprs, shown in figure 4.10 are outcrops
that are of importance, as older rock layers are exposed. Further, they present a contact
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Figure 4.9: Goal system for use case 3 - autonomous search. We add the subgoal find feature of
interest to the express the search task and introduce the criterion feature of interest
cfoi. It is a measure for the probability of detecting a FOI when moving to a goal
g.

zone between two geologic units, where one unit is underlying another. An investigation
of the erosion process of the overlying unit, helps to understand the evolution of the
landscape.

4.4.2 Detection of Features of Interest

To detect a FOI we perform a full 360° camera swipe before computing the next goal
location. On each image captured, we apply an image detector to identify a FOI. For
the identification, any appropriate image detector could be used.

In our publication, Schuster et al. [15], we present preliminary tests on using a scientific
camera, the Science Cam shown in fig. 4.11, to detect specific geologic features. The
author of this thesis elaborated on this part in the publication. The concept of the Science
Cam, is similar to the PanCam of the ExoMarsRover, presented in [98]. Our Science
Cam consists of two wide-angle cameras (LWAC, RWAC) in a stereo setup with spectral
filter wheels, one narrow-angle camera, and one thermal camera. The filter wheels for
the LWAC and RWAC are each comprised of three color filters (100 nm bandwidth)
and six narrow band (10nm bandwidth) geology filters (Geo1-Geo12 ), across a range of
440− 660 nm for LWAC and 720− 1000 nm range for RWAC. To detect and distinguish
different rock types from the moon analogue site on Mt. Etna we combined images
captured with different filters. As the detection of a FOI is beyond the scope of this
thesis, we only present preliminary results of a science product in fig. 4.12. We combined
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Figure 4.10: Feature of interest (FOI) in a robotic mars Mission. Top right: a rock called
Rochette, analysed by NASAs Perseverence. Top left: a rock called Máaz, which
was analysed by the SuperCam of Perseverence. Middle right: Landscape image
showing an interesting outcrop. Middle left: A mineral vein of scientific interest
detected by Curiosity. Bottom: Several enscarpments in the Jezero Crater. Image
Credit: NASA/JPL-Caltech.

several filters found empirically to create the science product:

RGB = (Geo4,
Geo1 − Blue

Geo1 + Blue
,
Geo6 − Geo1

Geo6 + Geo1
) (4.10)

As highlighted by figure fig. 4.12 the rocks can be discriminated in the science product,
but look similar in the visible range.

4.4.3 Feature of Interest Criterion

Let us imagine a robot has the task to find a lava bomb as shown in fig. 4.12. To enable
an autonomous search for a lava bomb, we include the results of the feature detection
in the decision process on ‘where to move next?’. To evaluate the probability of finding
a FOI, when moving towards a goal location, we introduce our novel feature of interest
criterion cfoi.
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Figure 4.11: Left: ScienceCam with LWAC (Manta G-145B NIR), RWAC (Manta G-145B
NIR), narrow-angle camera (Manta G-505C) and thermal camera (Xenics Serval-
640); Right: Left filter wheel with spectral bandpass filters. Image Credit: Schus-
ter et al. [15].

Figure 4.12: Left: RGB image of vulcanic rocks from Mt. Etna. Right: generated science
product. In the science product the lava bomb and the black scoria basalt can be
distinguished cleary. Image credit: Schuster et al. [15].

It describes the probability of detecting a FOI in a certain direction. We compute,
a polar interest descriptor, which encapsulates this probability for each possible move-
ment direction from the robot’s current position. The computation of the polar interest
descriptor includes four steps: First, we apply a FOI image detector on each image cap-
tured during the sensor swipe. We suggest using an image detector, which returns the
probability for each pixel of containing a FOI. Second, we reconstruct the 3D points of
the ‘pixels of interest’ and transform them into a spherical coordinate system. Third,
we construct a polar histogram storing the probability of detecting a FOI in bins, which
describe the possible movement directions.

For each pixel px with a probability higher than 80% of showing a FOI we reconstruct
the Cartesian 3D coordinates Pc(X,Y, Z) in the camera frame using a synchronized
stereo image pair. For our local mapping, described in section 2.1.3, we only include the
3D points in 4m range from the camera sensor. To be able to detect features of interest
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in the far range we include all points in a range of 20m. As the reconstruction error
from stereo pairs increases with increasing distance [99], we include the uncertainty of
the 3D reconstructed point in our calculations of the polar interest descriptor.

Figure 4.13: The polar histogram with its bins centered at the camera frame, that the azimuth
θ and distance ρ can directly be plotted to the histogram.

As stated by Hirschmüller [99] the error in Z is proportional to Z2 if X = 0 and
Y = 0. Whereas, the error on X and Y are linearly dependent on Z. As the largest
error in 3D reconstruction is on the depth component, i.e. the distance lc between the
point Pc to the camera sensor,

lc =
√

X2 + Y 2 + Z2 (4.11)

we are interested in the error on lc. Following Hirschmüller [99], the error in the distance
can be approximated with:

δlc ≈ δp · Z · lc
f · t

√
2 (4.12)

To easily read out the direction to the features of interest, we transform the 3D
cartesian points Pc(X,Y, Z) to spherical coordinates P ∗

c (ρ, θ, φ) with:

ρ = lc =
√
X2 + Y 2 + Z2 (4.13a)

φ = arctan

√
X2 + Y 2

Z2
(4.13b)

θ =


arctan X

Y ifX ≥ 0

arctan X
Y + π ifX ≤ 0

π
2 else

(4.13c)
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Where θ is the azimuth, φ is the polar angle and ρ is the radial distance. To fill the
polar histogram we only take into account the azimuth θ of the spherical coordinates and
the distance ρ, including its estimated error δρ. We consider the distance, as it greatly
influences the quality of the feature detection. For each bin, we sum up the probability
for each point within the bin, of showing a FOI. Thereby, we reduce the probability of
being a FOI by multiplying it with the distance error. To take the error of the estimated
distance to the points into account, we reduce the probability of a point showing a
feature of interest by multiplying it with the error δρ. In fig. 4.13 we illustrate, how we
evaluate the goal locations with the feature of interest criterion cfoi(g). We calculate
the directional vector vg pointing from the current robot position to the goal location
g and transform it into the camera frame. The value of the feature of interest criterion
cfoi can then directly be read out from the polar histogram.

cfoi(g) = p(bin(vg)) (4.14)

4.5 Use Case 4 - Multi-robot Exploration

Use case 4, illustrated in fig. 4.14, represents a multi-robot exploration of a ROI. We
present a leader-follower coordination strategy for two robots, applying the similar gen-
eral exploration concept based on MCDM we introduced in chapter 3, and we applied
to model the exploration behavior to conduct use case 1, 2 and 3.

Figure 4.14: The goal of an autonomous exploration mission is to survey the environment.
Two robots exploring together a ROI can increase the exploration efficiency sig-
nificantly.

In our leader-follower approach, the leader robot determines the exploration direction
and the follower robot tries to move in the same direction. In our use case 4, the two
robots have different capabilities. One rover has a scientific camera and is able to detect
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Figure 4.15: Goal system of the follower robot in use case 4 - multi-robot exploration.

a FOI, the other, is equipped with a manipulator and can take a probe. Therefore, we
choose an approach, where both robots stay close to each other, to complement each
other at science investigations.

Our leader-follower coordination is solely based on the exchange of the current goal
location of each robot. The leader, as well as the follower, compute their own local
exploration goals. The goal system of the leader is similar to the goal system for a single
robot exploring an ROI, as presented in use case 1 (see fig. 4.4).

The goal system of the follower robot, presented in fig. 4.15, includes the additional
sub-objective follow leader. To follow the leader, we introduce two new criteria, multi-
robot distance cD and multi-robot alignment cA, which we detail in the next section.

4.5.1 Multi-robot Alignment Criterion

The multi-robot alignment criterion cA implements a ‘following’ behavior. To move in
the same direction as the leader robot, the follower robot receives the current position
and the next exploration goal location of the leader. The multi-robot alignment criterion
cA describes the difference between the movement direction vl of the leader and the
directional vector vf of the current position of the follower robot and a potential goal
location gf of the follower.

cA(g) = arccos

(
vl · vf

|vl|vf |

)
(4.15)
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4.5.2 Multi-robot Distance Criterion

In order to maximize the new information gained and to ensure that the robots don’t
interfere with each other, we apply the multi-robot distance criterion cD, which evaluates
the distance between the leader and follower robot. For this, the operator has to define
a minimal, maximal, and optimal distance between the goal locations of the two robots.
With the function fD(), shown in figure 4.16, we transfer the distance between the goal
location of the leader gl and a potential location of the follower gf to the multi-robot
distance criterion cD(g).

cD(g) = fD(d(gf , gl)) (4.16)

Figure 4.16: To transfer the distance between the leader and the follower robot a function is
set up by the defining the minimal, maximal and optimal distance between them.
Distances below the minimal and above the maximal distance get a score of 0 and
the optimal distance a score of 1. In between we use a linear function to rate the
distance between the robots.

4.6 Criteria Classification

To conduct the four use cases, we developed several criteria, to model the required
exploration behavior, section 4.2-section 4.5. Each goal location has to be evaluated for
each criterion. For example, for use case 3 - autonomous search, five criteria have to be
evaluated. This evaluation, is a CPU-intensive task, for example, especially performing
the ray cast to calculate the information gain from the 3D structure of the environment
requires a large amount of resources. As CPU resources on space robots are often very
limited, we suggested in our publication, Lehner et al. [11], a simple, but very effective
criteria classification. The idea is, that it is not necessary to recalculate, for example,
the information gain, for each goal at each exploration action. The information gain,
at a goal only changes when the map at the goal location is modified. This is the case
when the area is sensed by the robot or the map is optimized by a loop closure event.
Both cases, rarely happen when exploring large regions. We found that the exploration
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criteria can be classified in three general classes, which reflect how often a criterion has
to be recomputed for a goal location.

• Robot-dependent: A criterion value changes when the robot moves through
the environment. Thus, robot-dependent criteria have to be recomputed after each
robot movement, i.e. at each exploration step. The following criteria applied in
this thesis are robot-dependent:

1. cost ccost

2. direction of interest cdoi

3. loop closure impact cli

4. multi-robot alignment cA

5. multi-robot distance cD

• Map-dependent: A criterion value only has to be recomputed, when the map
at the goal location is modified. At each exploration action, the robot only senses
a small part of the environment, thus most parts of the map do not change. After
a first estimation of a map-dependent criteria, the values have to be re-computed
only for a few goal locations at each exploration actions. The following criteria
applied in this thesis are map-dependent:

1. information gain cIG

2. loop closure likelihood cll

• Environment-dependent: A criterion value, for a goal location never has to
be re-computed, assuming the environment is not changing. For example, the
scientific interest of a goal location remains the same unless the mission objectives
change. Nevertheless, we relax the assumption that the environment-dependent
criteria values never change for a goal location, by allowing an update of the
criteria values on certain events, e.g. on the request of the operator. In this
thesis, we present the feature of interest criterion cfoi, which we classify as an
environment-dependent criterion. However, we describe the criterion with a polar
descriptor and finally evaluate the scientific interest in the direction between the
current robot position and a goal location. On the one hand, the classification
of the environment and the description with the polar descriptor can be classified
as environment-dependent. On the other hand, the polar descriptor is computed
relative to the robot center and thus, the orientation of the polar descriptor has
to be updated with the robot movement.

4.7 Dissucssion and Summary

In this chapter, we presented the realization of four relevant use cases for robotic plan-
etary exploration missions. For each use case, we modelled an exploration behavior,
utilizing our general concept for robotic exploration based on MCDM. In the following,
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we discuss the exploration behaviors for each use case with respect to the related work,
stated in section 2.2.

• Use case 1 - integrated exploration for an autonomous exploration: We
presented an integrated exploration strategy, which applies active loop closing
for re-localization during the exploration process, similar to [36, 41, 35]. For re-
localization we, additionally to exploration goals, sample revisting goals. These
revisting goals are placed at existing submaps, considering the loop closure gen-
eration approach of our underlying 3D global mapping system. Instead of solely,
evaluating the likelihood of a loop closure event, when visiting a revisting goal,
e.g. as [1, 41, 36], we introduce our novel criterion loop closure impact, which
evaluates the impact of a potential loop closure on the graph optimization. This is
important, as revisiting means interrupting the exploration process, consequently,
the impact of such an event is important.

• Use case 2 - directed exploration to set up a drive-by science mission:
We model a directed exploration behavior, which allows applying robotic explo-
ration in the fashion of drive-by science. Our main goal is to direct the robot
towards a predefined POI. As we apply an exploration approach, we can apply
the information gain criterion cIG in order to increase the information gain, while
moving towards the POI. However, compared to the drive-by science approaches
utilizing informative path planning [53, 54], we are not able to maximize the in-
formation gain during the traverse of the environment. We require no a-priori
knowledge of the environment, can react quickly to the changing structure in the
environment and have low computational costs compared to methods, which apply
continuos re-planning [55, 52, 56]. To allow for science investigation on the way,
we could additionally apply our feature of interest criterion cfoi, we introduced for
use case 3.

• Use case 3 - informed exploration to search for a FOI: We consider
the object search problem, as an exploration problem and model an informed
exploration behavior to find a FOI in an unknown ROI. Our strategy can be
classified as an informed search method with respect to the related work (see
section 2.2.3). To detect a FOI we equip the robot with an object detector. We
present preliminary results on detecting and distinguishing different types of rocks,
with a Scientific Camera with several multi-sprectral filters. At each exploration
step, we perform a camera swipe and try to detect a FOI. The detection results
are stored in a polar histogram, describing the probability of finding a FOI in a
certain direction. Unlike, Shubina and Tsotsos [76], who save the probability of
finding an object in a probabilistic map over the whole area, we decided against
a global representation. Our reactive approach requires less memory. For space
exploration missions it is not possible to apply enhanced reasoning, by considering
object co-occurrences, as for example Aydemir et al. [72] utilize.
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• Use case 4 - leader follower multi-robot coordination: We coordinate
two heterogeneous robots co-exploring a ROI. The coordination is solely imple-
mented by evaluating two additional criteria for the goal locations of the follower
robot. Our approach is best compared with the existing reactive behavior based
approaches [87, 100, 89, 90], although our method is not reactive. However, we
similarly apply careful decision making at each exploration step. Similar to [92],
we consider that our robots have different capabilities and have to collaborate
for potential science investigations. In our leader-follower coordination strategy,
the leader explores freely the ROI by applying the integrated exploration strat-
egy presented for use case 1. The follower also applies the integrated exploration
strategy but additionally is requested to hold an optimal distance to the leader
and to move in the same direction as the leader. To achieve this coordination,
the robots exchange the exploration goals and the follower evaluates the criteria
multi-robot alignment cA and multi-robot distance cD. Other, than [92], our fol-
lower robot also explores the environment and thus contributes to the map of the
environment. Behavior based coordination strategies, where found to work only in
simple environments [87]. Although, planetary surfaces induce several challenges,
the structure of the environment is compared to an indoor environment simpler.

Criterion Description Class Use case

cost ccost
Cost to pay
to reach a goal

robot-dependent Use case 1-4

information gain cIG

New information that
can be gained at
a goal location

map-dependent Use case 1-4

loop closure likelihood cll

Likelihood that a
loop closure event
is successful

map-dependent Use case 1,3,4

loop closure impact cli

Impact of the loop
closure constraint on
the map optimization

robot-dependent Use case 1,3,4

direction of interest cdoi

Directs the robot
into a predefined
direction

robot-dependent Use case 2

feature of interest cfoi

Probability that
a FOI lies
in the direction to
a goal location

environment-
dependent

Use case 3

Table 4.1: Table summarizing the identified exploration criteria for a robotic space exploration
mission.
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To model the exploration behaviors to conduct our use cases, we applied several cri-
teria, summarized in table 4.1. As the evaluation of the criteria is computationally
expensive, e.g. especially for the information gain, we introduced a novel criteria clas-
sification, which states, how often a criterion has to be recomputed for a goal location.
Whereas robot-dependent criteria have to be recomputed at each exploration step for
all goal locations, map-dependent criteria have to be recomputed occasionally on map
change and environment-dependent criteria never have to be re-evaluated.
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5 Implementation & Integration

In this chapter we describe, the implementation of our general exploration approach
onboard a space rover prototype. Further, we introduce the robot hardware platform
and three different simulation environments, we applied for our experiments.

5.1 Robot Hardware

We demonstrate our general exploration concept and its application by conducting real-
world experiments with the two lightweight rover units, LRU and LRU2, shown in fig. 5.1.

(a) LRU2 (b) LRU1

Figure 5.1: Real space rover prototypes, LRU2 (left) and LRU (right). Both rovers have four
individually controlled and powered wheels. The Pan/tilt camera head consists
of two cameras in a stereo setup and a third RGB camera. LRU is additionally
equipped with scientific cameras. LRU2 has a manipulator and a carrier on its
back.

Both rovers have four individually controlled and powered wheels, which allows nav-
igating through the rough terrain of planetary surfaces. Each rover is equipped with a
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stereo camera system, with a baseline of 9cm and a Xsens MTi-10 IMU. Dense stereo
matching is performed on a Spartan 6 LX75 Field Programmable Gate Array (FPGA).
All other computations are done on an Intel Core i7-3749QM CPU (2.70 GHz).

LRU is equipped with a scientific camera consisting of two wide-angle cameras (LWAC,
RWAC) in a stereo setup with spectral filter wheels, one narrow-angle camera, and one
thermal camera. The filter wheels for the LWAC and RWAC are each comprised of three
color filters (100 nm bandwidth) and six narrow band (10nm bandwidth) geology filters
(Geo1-Geo12 ), across a range of 440 − 660 nm for LWAC and 720 − 1000 nm range for
RWAC. LRU2 is equipped with a robotic arm, the jaco2 manipulator of Kinova, with
a special docking interface developed at Deutsches Zentrum für Luft- und Raumfahrt
(DLR). The docking interface allows attaching different tools, e.g. a robotic hand to
grab stones or a shovel to take a sand probe. Further, LRU2 can carry payload boxes
on its back, which can hold scientific instruments or can serve as sample return box.

5.2 Exploration Framework

In fig. 5.2 we show an overview of our software architecture. The exploration module
depends on a 6D Localization and mapping [8], a local obstacle detection and mapping
module [97], a feature detection module, as well as on a path planning module. For
details on the global mapping components, please refer to section 2.1.3.

The exploration module consists of five separate nodes, which communicate by apply-
ing the Robot Operating System (ROS). To decide, where to move next?, the exploration
client implements a service to request the next best goal. The frontier exploration node,
implements our frontier based goal sampling method for exploration goals. The exploita-
tion node implements the sampling of re-localization goals at the existing submaps. The
exploration client node, stores the exploration goals and re-localization goals in the so
called alternative manager, which also handles the update of goal locations. To evaluate
the goal locations several criteria and conditions are implemented. Each criterion or
condition is derived from the corresponding parent classes. Criteria like the information
gain and feature of interest require complex and are implemented in separate nodes.
The computed criteria values can be requested via service calls. To rank the goals our
framework implements several decision maker, the outranking method PROMETHEE
II described in section 3.3.2 and the multi attribute utility functions SALE and CALE
detailed in section 3.3.1, as well as the state of the art utility functions introduced by
Gonzales and Latombe [2] and Stachniss et al. [1] and the utility function based on the
nearest frontier method introduced by Yamauchi et al. [4].

To start and observe an exploration mission, we apply the mission planning software
RAFCON [102],by which tasks are described in hierarchical state machines.

To define an exploration behavior to conduct an exploration task, similar to our use
cases, the parameters defining the criteria are defined in a configuration file. We provide
a GUI to observe the exploration process and adapt the criteria parameters if necessary.
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5.3 Robot Simulation

Figure 5.2: Overview of our exploration framework. In this thesis we investigated and developed
the exploration components (green), we additionally utilized the mission control
software RAFCON to operate and start our robotic exploration. Our exploration
component is based on the mapping and navigation pipeline (blue) introduced by
Brand et al. [20] and Schuster et al. [101, 8]. To explore, repeatedly a goal request
is sent to a service, which computes the next best goal location.

5.3 Robot Simulation

To develop and test our methods for robotic planetary exploration, we applied one simple
2D simulation and two different high-fidelity Software in the Loop (SiL).

Simple exploration simulation

To test and evaluate our multi-robot coordination approach (see section 4.5), we im-
plemented a simple 2D simulator. A black and white image, as illustrated in fig. 5.5,
whereby black represents obstacles and white represents free space, are used as environ-
ment representation. The map, is revealed when the robot moves through the environ-
ment, in a circle around the robot. As we do not simulate the real robot sensors, only
the distance criterion ccost, the direction of interest criterion cdoi, multi-robot criteria
cA, cD can be computed as on the system. In our simple simulation we approximate the
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information gain, by counting the number of unknown grid cells around a goal location.

(a) Input map (b) Map during the exploration process

Figure 5.3: Example of a 2D input map of our simple 2D simulator for testing the coordination
of multiple robots. Black cells illustrate obstacles, white cells known space and the
green-grey cells represent unknown space. On the left, we show the input map,
which is consecutively revealed during exploration, as shown on the right.

Software in the loop Simulator

To test our exploration methods together with the complete navigation and mapping
pipeline in conditions close to a real mission we apply the two high-fidelity SiL simulators
Rover Simulation Toolkit [103] and URSim [9]. With both simulators, we simulate the
complete sensor setup of LRU and provide similar interfaces to the real robotic system,
as highlighted in fig. 5.4. This allows us to run our complete mapping, navigation, and
exploration stack as on the real system.
The Rover Simulation Toolkit introduced by Hellerer et al. [103], is especially developed
for the simulation of planetary rovers and written in Modelica. To simulate a rover, an
interactive 3D visualization applying the DLR visualization library [104] is created. To
test the navigation, mapping and exploration pipeline of the LRU, Schuster et al. [105]
extend the simulation by integrating the vision sensors and providing the renderings
of these with a predefined frame rate. The main focus of the simulation is on the
simulation of the locomotion subsystems of a rover, in order to support the design of new
planetary rovers. However, the simulator does not provide a photo-realistic rendering of
the environment as shown in fig. 5.5a, which is of importance for testing vision based
navigation pipelines.
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In our publication, Sewtz et al. [9], we present URSim, a complete Software-in-the-
Loop (SiL) simulator. It is based on the Unreal Engine 4 (UE4), which offers physics
support and state-of-the-art photo-realistic rendering. Different robotic systems can
be integrated through our generic robot class. We provide several visual and physical
sensors, which can be easily attached to a robot as invisible robot components. URSim
is customizable through the modern and adaptable system architecture. This allows the
integration of different interprocess communication frameworks. Currently, the Robot
Operating System (ROS) and links and nodes are provided. In fig. 5.5b, we show our
LRU in a simulated Martian environment, next to a lander.

Figure 5.4: The real LRU and the two high-fideltiy simulators URSim and the Rover Simulation
Toolkit are interchangeable. The SiL simulators provide the same interfaces and
inter process communication as applied on the real system. This allows us to run
the complete perception and navigation and mapping pipeline as on the system
with the simulators. Figure adapted from Sewtz et al. [9]

.
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(a) Input map (b) Map during the exploration process

Figure 5.5: (a) Simulated outdoor environment employing the simulation based on the Rover
Simulation Toolkit [103]. (b) Photo-realistic rendering of the LRU in a Martian
landscape in URSim.
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In this chapter, we present an evaluation of our contributions to methods for planetary
robotic exploration. In a series of experiments, conducted on the robotic system and
applying the exploration framework described in section 5.1, we demonstrate the four
use cases presented in this thesis, in either simulation or real-world experiments. With
our evaluations, we aim to cover the mission, environmental and system challenges for
planetary robotic exploration we identified in section 1.3. First, we present the evalua-
tions for use case 1, which applies an integrated exploration (section 6.1). Second, we
demonstrate use case 2, by setting up a drive-by science mission applying our directed
exploration approach (section 6.2). Third, we apply our informed exploration to find a
feature of interest as described in use case 3 and compare the time until the feature of
interest is found with a greedy exploration method (section 6.3). Fourth, we extend our
experiments to our multi-robot setup with two heterogeneous robots and analyze the
coordination behavior induced by our leader-follower method (section 6.4). In addition,
we analyze the processing and runtime of our general MCDM based exploration concept
(section 6.6). We conclude our experimental evaluation with a summary and a discussion
of our findings regarding the challenges of robotic exploration (section 6.7).

Figure 6.1: Criteria hierarchy applied for the FE method, which we use for comparison. To
measure the achievement of the two exploration sub-goals, the information gain
criterion cIG and the cost criterion ccost are applied.

In all our experiments, the environment is completely unknown to the robot and the
robot acts completely autonomously after the mission started. All computations are
done online on the system.

For convenience, we abbreviate the exploration behaviors applied for the single robot
use cases 1-3 in this chapter. We abbreviate the integrated exploration applied for use
case 1 with integrated exploration (IE), the directed exploration applied for use case 2
with directed exploration (DE), and the informed exploration applied for use case 3 with
informed exploration (IFE). For comparison, we performed several experiments with the
nearest frontier exploration approach, abbreviated with FE, evaluating the cost and
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information gain criterion, as depicted in the criteria hierarchy in fig. 6.1, and applying
the utility function described by Stachniss [1], stated in section 2.1.2 for decision making.

The preference functions introduced with PROMETHEE II mostly depend on cri-
terion characteristics and are to the greatest extent independent of the experimental
setup. As the environment for all experiments, applying PROMETHEE II, represents
a large unstructured outdoor environment, the preference function, stated in table 6.1,
are similar for all single robot experiments. Only the preference function applied for
the multi-robot experiments differ between simulation and real-world experiments and
are stated in the corresponding section 6.4. The values are defined empirically and by
analyzing the minimum and maximum values of the criteria.

Criterion Preference function

Type Parameter

cost ccost linear q = 5, r = 30

information gain cIG linear q = 0.1, r = 0.8

loop closure likelihood cll linear q = 0.2 ,r = 0.8

loop closure impact cli linear q = 0.2, r = 0.8

direction of interest cdoi Gaussian σ = 0.6

feature of interest cfoi linear q = 0.2, r = 0.8

Table 6.1: Preference functions used in our simulation and real-world experiments

6.1 Use Case 1 - Integrated Exploration

For use case 1, we evaluate the integrated exploration (IE) with active loop closing, which
we introduced in section 4.2. We perform experiments with IE applying our novel multi
attribute utility function CALE and SALE to assess their exploration, mapping, and
localization performance compared with FE. We published the content and the results
of this section first in our conference paper [10].

Experimental Setup

We conducted experiments in simulation with the Rover Simulation Toolkit[103] ( sec-
tion 5.3) and in two different real-world scenarios:

• Simulation: unstructured rough outdoor environment [106] containing a steep
ramp, a deep ridge, and several rocks. The ROI, visualized in the top down view
displayed in fig. 6.2a, has a size of 10m× 15m.
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• Indoor : laboratory environment with two large rocks of approximately 11m× 6m
size displayed in fig. 6.2b. A ceiling-mounted Vicon tracking system 1 with 14
Bonita cameras provides ground truth pose data.

• Outdoor : test area outside the laboratory, containing several large boulders and
other human structured obstacles with a challenging reflective glass front presented
in fig. 6.2c. The exploration area has a size of 15m× 20m.

(a) Simulation environment (b) Indoor environment (c) Outdoor environment

Figure 6.2: Experiment environments for use case 1: The start position is marked with a blue
circle. (a) Simulation environment with a ROI(blue rectangle) containing a steep
ramp, hillside, large rocks and a deep ridge. (b) Indoor environment with two large
rocks and a straight wall. (c) Outdoor environment with large rocks and the large
glass front of our mobile robotics laboratory.

The task of the robot is for all experiment scenarios, to explore at least 95% of the
defined ROI, before returning to its start position. For this, we did not impose a time
limit. However, we aborted the exploration thrice manually, as the robot was not able
to navigate autonomously through the environment due to a poor localization accuracy.
This happened twice when applying the FE method and once while performing the
outdoor experiments. In simulation, we performed ten, indoor five and outdoor one
experiment, in each case, with all three methods.
Table 6.2 lists the parameters we used for the experiments. The high distance weight

wcost inhibits the robot from driving long distances during the exploration. The thresh-
old ι is higher for CALE, than for SALE, as CALE is always attracted to try for loop
closures, therefore usually prevents a poor localization accuracy prior to SALE. The
indoor environment is limited by our tracking system and much smaller than the simu-
lation and outdoor environment. Only small local pose estimation error are accumulated
during the exploration and hence, we used a lower covariance threshold ι for active loop
closing.
To prevent the robot from getting stuck in trying to improve its localization, we allow

only n consecutive loop closing actions, i.e. moving to a revisting goal, using CALE as
well as SALE. Although we have a high success rate when actively creating loop closures,

1https://www.vicon.com/software/tracker/
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Simulation Real-world Experiments

Experiments Indoor Outdoor

ι β wcost ι β wcost ι β wcost

FE - - 0.7 - - 0.7 - - 0.7

CALE 0.5 0.5 0.7 0.25 0.3 0.7 0.6 0.5 0.7

SALE 0.3 - 0.7 0.15 - 0.7 0.4 - 0.7

Table 6.2: Parameters used in our simulation and real-world experiments to demonstrate use
case 1. With ι being the threshold, which balances the exploration and re-localization
process for CALE and SALE, β being a weight for the loop closure likelihood cll and
loop closure impact criterion cli and wcost being the weight for the cost criterion
ccost (for details see section 3.3.1).

we set n = 2. As the matching is running online but as a slower background process,
the effect of loop closures does not necessarily occur immediately.

Results

For each method, we present and discuss the results for their exploration, localization
and mapping performance. We report the 3D localization error, the mean driven distance
and the number of loop closures, for our simulation and real-world indoor experiments
in table 6.3. In the simulation experiments, a mean absolute error of 0.68m and 0.69m
with a maximum error of 1.28m and 1.32m occurred applying CALE and SALE . Ap-
plying FE the mean absolute error is with 1.02m significantly higher compared to CALE
and SALE. Further, the plot presented in fig. 6.3 shows a continuously increasing er-
ror using FE. In contrast the plot displays several error drops using CALE and SALE,
which results from a global optimization of the SLAM graph after a loop closure was
detected. The poor localization accuracy with FE even lead twice to an abortion of the
exploration, as the robot was not able to navigate autonomously through the environ-
ment. To improve the localization accuracy a loop closure is required. Using CALE and
SALE twice as many loop closures as with FE are recorded (table 6.3) and thus a better
localization performance could be achieved.

However, the exploration efficiency using CALE and SALE is worse than applying FE.
To explore the ROI of the simulation environment, the robot had to drive approximately
73.39mm with CALE, 81.80mm with SALE and 52.01mm with FE (table 6.3). In
the smaller indoor setup SALE and FE achieve a similar driven distance, while the
mean driven distance applying CALE is significantly higher. SALE only raley directs
the robot towards already visited areas in the indoor environment, as the local filter
estimates already achieve a high localization accuracy. In fig. 6.4 the higher number of
actions conducted with CALE and SALE confirm the increased effort indicated by the
driven distance. About 6-8 explore actions are required with each method to explore the
environment. CALE and SALE additionally conduct 2-5 re-localization actions.
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6.1 Use Case 1 - Integrated Exploration

Simulation Experiments FE CALE SALE

mean absolute error [m] 1.02 0.68 0.69

mean standard deviation [m] 0.68 0,41 0,51

mean max error [m] 2.43 1.28 1.32

mean driven distance [m] 52.01 73.39 81.80

mean numbers of loop closures 5.86 13.86 10.43

Real-world Indoor Experiments FE CALE SALE

mean absolute error [m] 0.27 0.23 0.22

mean standard deviation [m] 0.12 0.1 0.2

mean maximal error [m] 0.53 0.44 0.42

mean driven distance [m] 39.4 55.65 42.45

mean numbers of loop closures 4.8 22.8 11.2

Table 6.3: Comparison of the localization performance in our simulation (average values from
10 test runs per method) and real-world indoor experiments (average values from 5
test runs per method).
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Figure 6.3: 3D translational error over the driven distance for two experiments showing the
characteristic behavior of the three methods: FE (blue), CALE (red), SALE
(green).
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Figure 6.4: Mean number of actions (with standard deviation) required by each method to
fulfill the exploration task.

(a) SALE (b) CALE (c) FE

(d) SALE (e) CALE (f) FE

Figure 6.5: Examples of resulting 2D occupancy grid maps and SLAM graph characteristics for
each exploration method for the simulation environment (a)-(c) and the indoor en-
vironment (d)-(f). The yellow edges of the graph represent loop closure connections.
The blue ellipsoids represent the localization uncertainty at each submap.
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6.2 Use Case 2 - Drive-by Science

Figure 6.6: Resulting 3D (right) and 2D (left) occupancy grid map and SLAM graph of the
outdoor experiment for use case 1.

We evaluate the mapping quality by visual inspection of the resulting 2D occupancy
grid maps. A statistical quality assessment is difficult, as already small errors in the
yaw angle lead to large differences between the ground truth map and the created map.
To check if the map is intrinsically correct, we inspect the characteristic elements in the
environment such as straight walls and large rocks. In fig. 6.5, we present exemplary
maps from our 30 simulated experiments fig. 6.5a-fig. 6.5c and our 15 indoor experi-
ments fig. 6.5d-fig. 6.5f. The 2D occupancy grid maps resulting from the experiments
applying CALE and SALE are intrinsically correct for the simulation and the indoor
environment. In contrast, the 2D occupancy grid maps created during experiments
applying FE, as shown in fig. 6.5c and fig. 6.5f, show a distorted deep ridge in the
simulation environment as well as a distorted straight wall for the indoor environment,
which indicates a drift of the yaw angle. The error ellipsoids of the SLAM graph are sig-
nificantly smaller for CALE and SALE and a larger number of loop closure is displayed.
To demonstrate our method in a large outdoor environment, we conducted one experi-
ment in the outdoor environment shown in fig. 6.2. In fig. 6.6 we show the resulting 3D
voxel grid-map and the 2D occupancy grid-map with the SLAM graph (blue lines and
ellipses) and the visited goal locations (rose pins). The highly reflective glass front of
the building caused errors in the stereo matching and visual odometry, leading to visible
noise in our localization and map estimates.

6.2 Use Case 2 - Drive-by Science

In this section, we demonstrate use case 2 by applying our directed exploration (DE)
to set up a drive-by Science mission as described in section 4.3. We show how robotic
exploration can be used to approach a predefined global goal location while achieving a
high amount of new information during the travel.
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Experimental Setup

We performed one experiment with our simulation URSim (section 5.3) in a Martian
Landscape. Fig. 6.7 shows the Martian Landscape in URSim from a top down view
with three POIs and the start position of the robot. The task of the robot is to visit

(a) scenario in simulation

(b) final 2d occupancy gridmap

Figure 6.7: (a) Topdown view of the martian landscape level with marked POIs the robot has
to visit in the given order. (b) Topdown view on the final 2D occupancy grid-map
with the trajectory the robot followed (blue).

all POIs in the given order. A POI is reached if the robot is within the vicinity of
2m of the POI. In order to force the robot to move in the direction of the next POI,
we apply the direction of interest criterion. The direction of interest always points to
the current POI and is switched to point to the next POI when reaching the current
POI. The weight of the direction of interest criterion automatically increases, while the
weights for the cost and information gain criterion decrease, with progressing mission
time. This ensures, that the robot is able to visit all POI with its limited resources in a
real mission. We start each experiment with the following criteria weights: wdoi = 0.1,
wcost = 0.5, wIG = 0.4.
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6.2 Use Case 2 - Drive-by Science

(a) 2D occupancy grid map after exploration action 3

(b) 2D occupancy grid after exploration action 4

(c) Colormaps

Figure 6.8: Occupancy grid maps at exploration action three (a) and four(b) with candidate
exploration goals (red) and the chosen goal location (dark red). (c) colormaps
for the exploration action three and four showing the unicriterion values for the
evaluated criteria for each goal location.
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Results

In fig. 6.7b we show the final 2D occupancy grid map with the exploration actions
conducted until the last POI is reached. Although the weight on the direction of interest
criterion is small, the robot moved directly from the beginning straight towards the
first POI. From other experiments with the FE method, we experienced that the robot
moves straight towards the unknown space, by only applying the cost and information
gain criterion. The direction of interest criterion, regardless of the weight, forces the
robot only to move towards the predefined direction. To highlight the effect of the
direction of interest criterion, we show in fig. 6.8 the resulting criteria values for all
candidate exploration goals for the third and fourth exploration action in a colormap
plot, as well as the corresponding 2D occupancy grid maps. The goals plotted in the
colormap are sorted by the final multi criteria preference degree. For both actions it is
clearly visible that the direction of interest criterion is determining. The goal with the
highest multi criteria preference degree has the highest score for the direction of interest
criterion.

6.3 Use Case 3 - Informed Exploration

In this section, we evaluate our informed exploration (IFE) introduced in section 4.4,
which we apply to demonstrate use case 3. Instead of solely exploring a ROI, as in use
case 1, the goal is to find a predefined feature of interest (FOI) in a ROI. With our
experiments we aim to show that we can increase the scientific return of a mission by
considering search knowledge when deciding where to move next.

Experimental setup

We conducted our experiments in the Martian Landscape in URSim. In fig. 6.9 we show
an impression of the Martian landscape level of URSim. In the top down view (fig. 6.9b),
the ROI with a size of 304m2 (19m × 16m) is highlighted with a blue rectangle. The
feature of interest is located at the bottom right corner of the ROI and marked with a
red circle.

We assume a scientist defined a certain type of rock as geologic FOI. To be able to
identify geologic features of interest, the robot is equipped with an additional semantic
camera sensor provided by URSim. In fig. 6.10 we show an example output of the
semantic camera sensor and the corresponding color and depth sensor image. The rock
of interest is colored blue in the semantically annotated image. The semantic camera
sensor simulates the detection output of a real feature detection algorithm, as described
in section 4.4.2.

In our experiments, the task of the robot is to find an instance of the geologic FOI
in the ROI as fast as possible. The FOI is considered as detected, if the FOI is located
within 4m range of the stereo sensor of the robotic system. As described in section 4.4
and depicted in the criteria hierarchy, see fig. 4.9, the subgoals of use case 3, are to find
a FOI as fast as possible, as well as mapping a large area while keeping the resource
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(a) Scenario impression (b) Topdown view

Figure 6.9: URSim Mars Landscape Experiment setup: (a) Impression of the Martian land-
scape in URSim. (b) Top down view of the landscape used for the directed explo-
ration experiments. The blue rectangle highlights the ROI (19m × 16m), which
contains one feature of interest, marked with a red circle.

consumption low and maintaining an accurate localization. For our experiments, only
ground truth data for the robot’s self-localization could be provided by URSim. With
that, we had to skip the subgoal of reducing the localization uncertainty and removed the
two criteria, loop closure likelihood, and loop closure impact, from the set of criteria. We
conducted three experiments applying IFE with the criteria hierarchy shown in fig. 6.11.
For comparison, we further conducted three experiments applying FE, which criteria
hierarchy is stated in fig. 6.1.

Criteria weights

Method ccost cIG cinterest

IFE 0.3 0.1 0.6

FE 0.4 0.6 -

Table 6.4: Experiments use case 3: Weights for the criteria applied with IFE and FE in the
experiments.

Table 6.4 states the parameters for both IFE and FE, which we applied for the experi-
ments. The parameters were found empirically and defined by a human expert. For both
IFE and FE one exploration action comprises, deciding where to move next, moving to
the next goal location and performing a 360 sensor swipe at the goal location. However,
IFE incorporates the knowledge gained by the sensor swipe with the procedure described
in section 4.4.2.
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(a) Color (b) Depth (c) Semantic

Figure 6.10: Example output of the virtual visual sensors of URSim.

Figure 6.11: Criteria hierarchy of IFE used for the experiments.

Results

For each method, we present and discuss the results for their search efficiency. In table 6.5
we summarize the results of the search efficiency. Applying IFE the FOI is found after
five exploration actions, which took at most 638 sec. Using FE it took up between eight
and nine exploration actions and a maximum of 1036 sec to find the FOI. The mean area
explored with IFE is 165m2, whereas the mean explored area applying FE is 247.7m2.
This indicates that the IFE method has a great benefit over a classical exploration
when the goal is to find a FOI. The time to find the FOI is reduced by a third using
IFE compared with FE. In fig. 6.12 we show the trajectory the robot followed together

IFE FE

run 1 run 2 run3 run 1 run 2 run 3

Actions 5 5 5 9 8 8

Time 638 529 467 1036 837 703

Area 173 172 150 298 215 230

Table 6.5: Experiments use case 3: Number of conducted exploration actions and time required
to find the FOI and area mapped for each experiment run applying IFE and FE.
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with the goal locations the robot visited until the FOI is found. At each experiment
run applying IFE, the robot detects the FOI with the semantic camera sensor, while
scanning the area after the second exploration action is conducted. From then on, the
robot moves straight towards the FOI until it is found after finishing the fifth exploration
action. To highlight the behavior of the robot using IFE we show the output of the third
exploration action of our second experiment in fig. 6.13. We aligned the polar histogram
to visibly match the sensor swipe for illustration. The second detection of a FOI depicted
in the polar histogram, between 135− 180, results from a small FOI outside of the ROI.
The colormap plot of the unicriterion values, shows that the determining criterion for
the choice of the next goal is the feature of interest criterion.

(a) Run 1 (b) Run 2

(c) Run 3

Figure 6.12: Resulting 2D occupancy grid maps and robot trajectory with marked goal loca-
tions from the three experiment runs applying IFE. The rock of interest is high-
lighted with a red circle.
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Figure 6.13: Illustration of one decision, where to move next, applying the directed exploration.
The occupancy grid map shown on the right, depicts the exploration goals. Goals
marked red are candidate exploration goals within the ROI, green goals are outside
of the ROI and not considered by the robot. The pink line is the path to the
chosen goal 80. The colormap (bottom left) shows the unicriterion preference
values for each goal for the three evaluated criteria. The goals are sorted by the
final multicriteria preference degree descending from the left to the right.
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6.4 Use Case 4 - Multi-robot Exploration

In this section, we demonstrate use case 4 introduced in section 4.5, which outlines
the coordination of two heterogeneous robots. We want to show that it is possible to
apply our general exploration concept, even to coordinate a team of robots, and want
to highlight the advantages of the leader-follower coordination for space exploration.

Experimental Setup

We conducted a series of experiments with the basic simulation described in section 5.3
and demonstrate the approach once on our real LRU and LRU2, described in section 5.1,
in an outdoor scenario.

We performed experiments in three different maps in simulation, which we show
in fig. 6.15a-fig. 6.15c. All maps have a size of 100m2 (10m × 10m) and are bounded
by obstacles. Map 1 (fig. 6.15a) contains no obstacles, map 2(fig. 6.15b) contains three
obstacles and map 3(fig. 6.15c) contains several obstacles dividing the area. We com-
pare the leader-follower method, abbreviated with L-F in the following, introduced in
section 4.5 with a simple coordination approach, which only considers goals that have
at least 5m distance to the goal of the other robot. In detail, using the simple approach
further denoted with sC, similar to the L-F method the robots exchange their current
exploration goals. First, each robot evaluates if a goal is too close to the goal towards
the other robot is currently moving. All goals fulfilling this condition are evaluated by
the information gain and cost criterion. The distance condition to goals of other robots
prevents the robots from moving to the same location, which improves the newly gained
information and forestalls the robots from colliding.

Figure 6.14: Impression of the real world outdoor scencario with LRU (right) and LRU2 (left).

In fig. 6.14 we give an impression of the experimental setup of our real world experi-
ment. In the experiment LRU, with its ScienceCam, is the leader robot and LRU2 the
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follower robot. In table 6.6 we state the parameters for both robots for the simulation
as well as the real world experiments.

Leader-follower coordination Simple coordination

Leader (LRU) Follower (LRU2) Leader Follower

Simulation

Cost 0.6 0.3 0.6 0.6

Information gain 0.4 0.1 0.4 0.4

Multirobot distance - 0.2 - -

Multirobot alignment - 0.4 - -

Real World

Cost 0.6 0.2 - -

Information gain 0.4 0.3 - -

Multirobot distance - 0.2 - -

Multirobot alignment - 0.3 - -

Table 6.6: Table stating the criteria parameters used for the experiments.

Results

We present and discuss the results regarding the L-F coordination strategy and give
an impression of the real world experiment. The basic simulation allows several robots
to explore a map simultaneously. However, only the exploration goals are exchanged
between the robots and not the map as described in section 2.1.3. By this limitation, only
the high-level coordination behavior can be analyzed with the conducted experiments.

Fig. 6.15 shows the trajectories of the two robots for each map for the L-F, as well as
the sC approach. The trajectory of the leader robot is colored blue, the trajectory of the
follower robot is colored red. For simplification, we use the same notations and colors
for sC, although the terms leader and follower have no meaning using sC. In fig. 6.15g
and fig. 6.15h the expected behavior when applying L-F is visible. The robots explore
the map in a compact way and stay always close to each other. The follower is mostly
able to keep the optimal distance to the leader robot and always moves in the same
direction. In contrast, in map 3 the follower was not able to keep the optimal distance.
Both robots head in the same direction, however, due to obstacles blocking the path,
the follower can’t stay close to the leader. In fig. 6.15d-fig. 6.15f we present the resulting
trajectories for each map applying sC. As the map is not shared between the robots,
the robots often cross their paths and explore the same area using sC. Looking at the
results of map 3, the robots are distributed over the map due to the obstacles in map3.
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(a) Map 1 (b) Map 2 (c) Map 3

(d) sC trajectories map1 (e) sC trajectories map2 (f) sC trajectories map3

(g) L-F trajectories map1 (h) L-F trjaectories map2 (i) L-F trajectories map 3

(j) Legend

Figure 6.15: Top row: maps used for the experiments with the basic simulator. Middle rows:
robot trajectories of the exploration experiments using sC and L-F. Bottom row:
Legend for the trajectory plots.
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The results indicate, that L-F is working properly in large areas, with few obstacles.
The robots explore the map together in a compact way and are able to react fast to a
request of the other robot.

On the real robotic systems, we were able to demonstrate the complete multi-robot
approach, with a shared map, shared transformations, and shared exploration goals. The
four occupancy grid maps shown by fig. 6.17 depict four stages of the exploration of an
ROI, with fig. 6.16d showing the final map. Right at the beginning of the experiment,
we manually moved the pantilt of LRU2 to look in the direction of LRU in order to
establish a connection between both robots. The yellow lines on the map represent the
transformation between the two map frames. During the experiments, unexpected issues
with the stereo processing pipeline occurred, and the obstacle detection failed on LRU.
Although we could demonstrate the algorithm runs on real prototype space rovers, the
conducted experiment data is not sufficient to study the F-L coordination approach.

Figure 6.16: Common 2D occupancy grid map of LRU and LRU2 created during the real-world
outdoor experiment. The exploration goals shown are the goals of LRU. Yellow
lines indicate a connection between the robots SLAM graphs.
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6.5 Multi-robot Exploration Field Tests at Mt. Etna

We had the chance to test our early work on exploration on the Moon-analogue test site
on Mt. Etna, Sicily, Italy, has part of the Helmholtz Alliance Robotic Exploration of
Extreme Environments (ROBEX) [18].

In our publication Lehner et al. [12] we showed how a lander with a robot on board
can precicly land at a predefined spot on planetary bodies that show hard shadows,
like the Earth Moon. Our algorithm is called Binary Shadow Matching, and matches
pre.rendered shadows with the real shadows acquired during landing with a camera.
From the correspondences we are able to triangulate accurately the position of the the
lander.

On the moon-analogue test site on Mt. Etna, Schuster et al. [8] conducted a collab-
orative multi-robot exploration experiment applying parts of our exploration methods
first described in Lehner et al. [10]. In the experiment our two lightweight rovers collab-
oratively explored a ROI of 25m x 20m on the test site on Mt. Etna, as illustrated in
fig. 6.18.

Figure 6.17: (a) Arial overview of the moon-analogue test site with the ROBEX camp. The
ROI is manually drawn and overlayed by the explored map (green). Image Credit:
Schuster et al. [8]. (b) Illustration of the two light weight rovers LRU and LRU2
exploring collaboratively at the moon-analogue test site on Mt. Etna, Sicily, Italy.

To coordinate the two rovers, the simple coordination strategy denoted as sC in the
experimental evaluation of the fourth use case (section 6.4) was used. Each robot eval-
uated the exploration goal locations by applying our cost ccost and information gain
criterion cIG as detailed in section 4.2. Similar to our multi-robot experiment setup
both rovers sent each other the next best exploration. The exploration goals of the
respectively other rover are then included in the goal selection process to constrain the
distance between both rovers. For this, Schuster et al. [8] used a minimum distance
between the robots of at least 7m. Each rover computes its own path in its own local
cost map and applies a local obstacle avoidance. The rovers collaboratively explored an
area of 650m2 while driving combined 394m [8]. In fig. 6.18 we show the resulting 3D
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voxel map generated by Schuster et al. [8]. Due to empty batteries the rovers were not
able to explore the complete ROI and had to be moved to the starting point by manually
selecting waypoints.

Figure 6.18: 3D probabilistic voxel map build during our preliminary multi-robot exploration
tests on Mt. Etna. Image credit Schuster et al. [8]

6.6 Runtime

In this section, we present the computation time of our MCDM exploration, especially for
the usage of PROMETHEE II and analyze the effect of our extension to PROMETHEE
II to reduce the runtime. Further, we show how the criteria classification can be used
in general to reduce the computation time. We published the content and the results of
this section first in our conference paper [11].

Experimental Setup

We conduct five experiments with the Rover Simulation Toolkit [103] (section 5.3) in the
similar rough outdoor environment, which we already applied for the experiments for
use case 1. However, we don’t restrain the environment by setting an ROI, but explore
the complete 40m× 40m area of the environment. For details please refer to section 4.2
and fig. 6.2a.

The task of the robot is to explore the area within 10min. In table 6.7 we state the
criteria and their weights used for the experiments. We compare the runtime of the basic
PROMETHEE II with our extended PROMETHEE II process, by running the decision
making in turn with and without our extension at each exploration action. Using our
extension, a subset of candidate goals is extracted based on the cost criterion ccost
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ccost cdoi cli cll cIG

0.55 0.2 0.05 0.05 0.15

0.2 0.6 - - 0.2

0.4 0.4 - - 0.2

0.3 0.4 0.05 0.05 0.2

0.3 0.1 0.2 0.3 0.1

Table 6.7: Table stating the criteria parameters used for the experiments to evaluate the runtime
of the decision process.

Results

In fig. 6.19 we show a comparison of the mean computation time for the three processing
steps: criteria calculation, unicriterion net flow calculation, and multi-criteria net flow
calculation for an exploration experiment with and without our extensions. The stated
computation time is the mean over one exploration experiment stopped after 10min. The
subset extraction can speed up the decision process by up to 30 %. The extraction of the
candidate subset mainly affects the unicriterion calculation, but also the computation
time of the criteria is reduced. In total, the plot shows, that the subset extraction can
speed up the decision process by up to 30 %.

Figure 6.19: Run time statistics showing the effect of our PROMETHEE II extensions & cri-
teria classification: mean processing times for each step calculated from one ex-
ploration run that lasted 10min. The processing times of the cost criteria and
direction of interest criterion, as well as the time to extract the candidate subset
are below 1ms and thus not visible in the plot.

The found time reduction matches with the number of goals in the subset, which we
present in fig. 6.20. The subset contains about 70%(+-4,3%) of all goals, independent
of the total number of goals. Most computationally expensive is the criteria evaluation.
As shown in fig. 6.19 the computation of the robot-dependent criteria (cost and DOI)
is much faster than the evaluation of the map-depended criteria (information gain and
loop closure likelihood). That is, why the criteria classification can speed up the whole
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(a) Color

(b) Depth

Figure 6.20: Comparison of the processing times (lines) of the whole decision process with and
without our extensions, in an experiment applying our criteria classification (top)
and our subset extraction (bottom). Note, using the criteria classification, the
number of goals (bars) sampled at a frontier were increased compared to the
exploration applying the subset extraction.

decision process by up to 60 %. In fig. 6.20 we can show that other than the subset
extraction, the effect of the criteria classification on the runtime increases with progress-
ing exploration, as more goals have to be evaluated. Applying the criteria classification
only the robot-dependent criteria have to be recomputed at each exploration action, the
map and environment-dependent criteria only have to be recomputed for new goals or
goals where the map changed. As the criteria classification mainly decreases the criteria
evaluation time and the subset extraction reduces the time for the net flow calculation,
both can be combined to reach a reduction of the mean processing time of decisions by
approx. 70%.

6.7 Summary and Discussion

In this section, we summarize and discuss the results of our experimental evaluation, as
well as the application of our general exploration concept based on MCDM. Further, we
map our findings to the challenges identified in section 1.3 to emphasize our contributions
to robotic exploration of planetary surfaces.
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• Use case 1 - autonomous exploration (section 6.1)
We evaluated the exploration, localization, and mapping performance of our IE
in simulation and a real-world indoor and outdoor scenario. By comparing IE
with FE we could show the advantages of IE over FE. Applying IE twice as many
loop closures occurred compared to FE. This led to a significantly lower mean
absolute error using CALE and SALE and a decrease of 1m of the maximum
detected error compared to FE. Applying FE the localization performance was in
two cases so poor, that the exploration process couldn’t be finished. We compared
the mapping performance visually and could show that the final 2D occupancy
grids maps generated by CALE and SALE are all intrinsically correct, whereas the
2D occupancy grid maps created by FE have a significant error in the yaw angle.
We evaluated the exploration performance by analyzing the number of exploration
actions and driven distance of the robot until the task is finished. It requires 2-5
exploration actions more using CALE and SALE compared to FE, as additionally
to the exploration actions re-localization actions are performed. However, the loss
of exploration efficiency is exceeded by the increased localization and mapping
performance.

• Use case 2 - drive-by science (section 6.2)
We demonstrated a drive-by science mission by applying DE. With our exper-
iments, we could show that it is possible to direct a robot towards predefined
POI’s, while maximizing the information gain. The benefit of using an exploration
approach is, that the robot can optimize the global plan at each exploration action,
to properly react on the detected environment. In our experiment, the robot was
able to visit three POI’s in given order.

• Use case 3 - informed exploration (section 6.3)
We presented and discussed the results for the search efficiency of applying IFE to
find a FOI. With IFE only 5 exploration actions and at most 638 sec to find the
FOI in an unknown area of approximately 300m2 were required. Applying IFE
the robot had to explore only half of the ROI, whereas using FE more than 80 %
of the area had to be explored until the FOI was found.

• Use case 4 - multi-robot exploration (section 6.4)
We demonstrated, how two heterogeneous robots can be coordinated by apply-
ing the same general exploration concept we applied for the three single robot
use cases. The in section 4.5 introduced L-F concept was successfully applied in
two environments with a small number of obstacles. The follower robot was able
to move in the same direction as the leader while keeping an optimal distance.
Avoiding large distances between the robots is beneficial, to consistently share the
common map and to swiftly react to requests, in order to support each other. In
our real-world experiment, we were able to prove that the algorithm is running on
two real prototype space rovers.
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• Runtime (section 6.6)
An advanced decision making, which incorporates several criteria and, the com-
parison of a large number of goals, requires high computational resources. In our
experiments we could show that our extension to PROMETHEE II and our cri-
teria classification can reduce the processing time by approximately 70 %. In the
large outdoor environment planetary surfaces represent, hundreds of exploration
goals have to be compared. By reducing the computation time of the decision
process, we enabled the application of advanced decision making methods such as
PROMETHEE II for robotic planetary exploration missions.

With our demonstrations, experiments, and evaluation we directly or indirectly cover
the challenges of robotic exploration of planetary surfaces identified in section 1.3. Our
general exploration concept based on MCDM is able to cover the induced mission chal-
lenges. As we impressively show with the demonstration of our four different use cases,
the concept can be used to cope with the changing mission requirements. With the
possibility to model the different use cases solely by adding and removing criteria and,
adapting their weights, an operator is able to set up a mission despite the limited com-
munication between the operator and the robot. Our concept further allows an operator
to supervise the exploration process. The decisions of the robot are reasonable and
special MCDM tools2 are available to visualize the decisions of the robot. We directly
tackle the environmental challenges with the integrated exploration and the informed
exploration. The integrated exploration with the active loop closing is the qualification
to explore large unknown environments. Without keeping an accurate localization and
a good map quality the mission success is not guaranteed in large environments. By
incorporating search knowledge in our informed exploration, we could show how to find
a FOI, i.e. prioritizing areas which are more interesting. This is important as it is not
possible to explore the whole area, due to its size and limited resources. With our general
exploration concept and our implemented exploration behaviors we indirectly tackle the
system challenge for uncertainties. The underlying Mapping and Navigation pipeline
copes the sensor uncertainties. Our information gain calculation uses a probabilistic
procedure and by applying our novel loop closure likelihood and loop closure impact
criterion, we consider the localization uncertainty of the robot. Partly, we directly cover
the challenge of limited resources, by reducing the runtime of our decision making pro-
cess significantly. Indirectly, our exploration tries to save energy by considering the
cost criterion and favoring goals close by. Further, the informed exploration is able to
detect aFOI faster, which also saves resources. Our whole concept of applying MCDM
for exploration, also presents a solution for the challenge of conflicting objectives. The
clear mapping from mission objectives/goals to exploration criteria, as presented in our
criteria hierarchies, allows an operator to formulate his/her preferences. A large number
of criteria of various types and with different units can be evaluated to find the goal
which best fits all objectives. With our integrated exploration, we especially tackled the

2e.g. http://en.promethee-gaia.net/visual-promethee.html
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trade-off between the conflicting objectives of exploration efficiency, map quality, and
localization accuracy.
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7 Conclusion

In this chapter, we conclude our thesis by summarizing the main aspects and identifying
future work.

7.1 Summary and Conclusion

In this thesis, we proposed a generalized concept for robotic exploration based on Multi-
Criteria Decision Making, which enables an operator to model various exploration mis-
sion scenarios. In space exploration the robot is confronted with challenges induced
by the hazardous and large environment of planetary surfaces, challenges arising from
a limited resource budget and challenges originating from the mission itself. Due to
the extreme distance between the Earth and target planets the communication between
robot and operator is limited to short time slots. To maximize the scientific return of
space exploration missions it is on the one hand important to increase the level of au-
tonomy of a robot and on the other hand to never loose the possibility to supervise the
robot by human operators and scientists.

Our generalized concept based on MCDM, gives the operator the possibility to model
and adapt an exploration mission solely by adding and removing criteria. The explo-
ration process can be observed in the short communication time slots and on need be
adapted. To decide ‘where to move next?’, we apply amongst others the outranking
method PROMETHEE II, which is originally designed to help humans structuring de-
cision problems, thus gives results that are reasonable for a human operator.

In this thesis we present four use cases, deduced from the Explortion Roadmap of the
ISECG. We model all use cases with our generalized exploration concept, by specifying
the mission objectives and mapping the corresponding criteria to them, in order to
evaluate the potential goal locations. In our experimental evaluations we demonstrate
each use case on real space rover prototype hardware or in a high fidelity Software in
the Loop Simulator.

In our first use case the task is to explore an ROI efficiently, while keeping an accurate
localization and good map quality. Without an accurate localization and a correct map,
mission success is not guranteed. We present an integrated exploration, which tackles the
trade-off between exploration efficiency and map quality, which is based on active loop
closing. To evaluate if a loop closure can be triggered by moving to a goal, we describe
the novel criteria loop closure likelihood and loop closure impact. Our evaluations show,
that the map quality and localization accuracy could be significantly improved with our
integrated exploration compared to a solely information gain based greedy exploration
approach.
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In our second use, we model an exploration in a drive-by science fashion. The robot
has to autonomously move towards several POIs, while maximizing the information
about the unknown environment. We present a directed exploration and introduce the
novel criterion direction of interest. The criterion can be used to direct a robot towards
a certain direction within an autonomous exploration. The operator sets the direction
of interest and the robot evaluates, if a goal is lying within the given direction. We
successfully demonstrate a drive-by science mission, where the robot visited three POIs
in a given order, while exploring, i.e maximizing the information about the environment.

In our third use case, we directly maximize the scientific return of a mission. For
this we introduce an informed exploration approach, which extends the main concept of
exploration as formulated by Yaumauchi et al. [4] to:

‘Given what you know about the world and what you would like to know,
where should you move to gain valuable information?’

We equip the robot with the capabilities to detect geologic features of interest and
incorporate the probability of detecting a feature of interest in a certain direction into
the exploration process. Our novel feature of interest criterion measures, if a feature
of interest is present in the direction where the goal is located. In our experimental
evaluations we achieved a speed up to a factor of approximately 1.6 compared to an
information gain based greedy exploration to find a feature of interest in an ROI.

In our fourth use case, we present a simple multi-robot coordination approach ap-
plying the same general exploration concept and purely by adding new criteria to the
exploration process. Although, our coordination method can’t keep up with some ad-
vanced methods of recent publications, e.g. [92, 86], we believe our method benefits
from using our general exploration framework, which allows to install coordination be-
tween robots in the short time slots available for an operator on Earth. We implement a
leader-follower coordination, by which one robot acts as leader and is followed by another
robot. For space exploration mission in large environments it is important that a team
of robots stays close to each other in order to quickly react on a request for support.
We demonstrate our multi-robot exploration on real-space rover prototype hardware
and analyze our coordination approach in simulation. In large environments with few
obstacles we could show the intended leader-follower behavior. To explore a large un-
structured environment, a robot has to compare hundreds of potential goal locations,
which is even more challenging on the limited CPU resources of space rover hardware. To
keep the processing resources in limited bounds we suggest to classify the criteria in the
following three classes: robot-dependent, map-dependent and environment-dependent.
Categorizing the criteria has the advantage, that it is clear which criteria have to be
updated at each exploration step and which have to be updated only form time to time.
Robot-dependent criteria change when the robot moves and have to be updated at each
exploration step. Map-dependent criteria only change when the map where the goal is
located is swiped again by the sensor. Whereas, we assume that environment-dependent
criteria never change in our static space scenario. As the criteria, which computations
are most time consuming can be classified as map-dependent, e.g. information and loop

98



7.2 Future Work

closure likelihood, we could reduce the run time of the criteria evaluation about 30 %.
To further speed up the decision process, we extended the PROMETHEE II algorithm.
By first subtracting a subset of potential goal candidates, based on the comparison of
only one criterion for each goal, we are able to reduce the runtime further. In total,
we are able to reduce the runtime about approximately 70%. With that we can process
hundreds of goals in a reasonable time.

In this thesis, we present a general concept for planetary exploration and develop three
different single robot exploration methods and one multi-robot exploration coordination
method and also demonstrate four relevant planetary exploration use cases with them.
We believe, that considering robotic exploration as a general MCDM problem is an
opening for more autonomy in robotic space exploration. It offers a simple interface for
a human operator to model and adapt the exploration behavior to full fill challenging
tasks. We have already shown four different tasks, however other applications can be
easily modeled with the provided set of criteria. Section 3 is meant to be a guidance on
how to model different robotic exploration tasks as MCDM problems.

7.2 Future Work

This thesis is both an approach towards enhanced autonomy for space exploration mis-
sions and an improved interface to human operators. Although, we indirectly consider
sensor uncertainties within our exploration and the underlying SLAM system, an in-
teresting investigation is the direct consideration of uncertainties in the criteria values.
The sensor uncertainties propagate to the criteria values, which could lead to a wrong
decision on the next best goal location, which in worst case could endanger the robot.
Space exploration scenarios are challenging in many ways. To be applicable in such

critical scenarios it is important to investigate guarantees and policies for exploration.
Additionally, to providing an interface to monitor and understand the exploration process
as we have suggested in this thesis, a human operator should be able to set and rely on
performance bounds, which for example consider the limited resource budget. In this
thesis, we have used an exploration approach, which only plans for the next exploration
action. However, to further increase the exploration efficiency, it would be worth to
investigate algorithms, which plan several steps ahead. However, planning ahead also
requires, an fast and accurate prediction of future robot states, which is currently a lack
in robotic exploration research. A further interesting topic for future investigations is the
coordination of multiple robots. In this thesis, we have presented a simple coordination
as an advanced coordination approach was out of scope of this thesis. However, a
team of heterogeneous robots could achieve much more complex tasks by combining
their capabilities, than a single robot. In general, the exploration of large areas would
be much faster with several robots. To increase the scientific return significantly, for
example a flying system could be integrated as scout in the team. To fully benefit from
the various capabilities of several robots in a team, a highly advanced coordination and
communication strategy is required.
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[73] M. Kulich, T. Juchelka, and L. Přeučil. Comparison of exploration strategies for
multirobot search. 2015.

[74] R. Cipolleschi, M. Giusto, A. Q. Li, and F. Amigoni. Semantically-informed co-
ordinated multirobot exploration of relevant areas in search and rescue settings.
In Mobile Robots (ECMR), 2013 European Conference on, pages 216–221. IEEE,
2013.

[75] A. Rasouli and J. Tsotsos. Visual saliency improves autonomous visual search. In
Computer and Robot Vision (CRV), 2014 Canadian Conference on, pages 111–118,
2014.

[76] K. Shubina and J. K. Tsotsos. Visual search for an object in a 3d environment
using a mobile robot. Computer Vision and Image Understanding, 114(5):535–547,
2010.

[77] M. Kulich, L. Preucil, and J. J. M. Bront. Single robot search for a stationary
object in an unknown environment. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 5830–5835. IEEE, 2014.

[78] M. Kulich, J. J. Miranda-Bront, and L. Přeučil. A meta-heuristic based goal-
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