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Abstract

In the constant strive for optimal performance, database systems must be as
scalable as possible to run efficiently on modern many-core machines.

This thesis addresses the most fundamental scalability choke points: The
locking and synchronization primitives. First, we analyze different types of
locking techniques and search for an optimal lock for database systems. While
many locks are specialized for specific cases, the challenge is to find a lock
that is as versatile as database workloads while providing (near) optimal per-
formance in all scenarios. We propose a hybrid lock with pessimistic and opti-
mistic modes to enable high read scalability. The lock sends waiting threads to
a global parking lot that implements reasonable fairness, cache topology aware-
ness, and robust contention handling without sacrificing fast-path performance
or requiring additional in-place space.

The second half of the thesis demonstrates the integration of such locks into
a modern Multi-Version Concurrency Control (MVCC) database system and
focuses on the scalability of MVCC transactions in general. We discuss how to
tackle logical contention that leads to serialization aborts and show how to deal
with hybrid transactional/analytical processing (HTAP) in an MVCC system.
Handling HTAP workloads with a mix of fast writes and long-running read
transactions is an inherent challenge for MVCC. Traditional implementations
struggle to keep the number of versions down as they are too coarse-grained
to handle long-running queries. We propose a scalable garbage collection ap-
proach that prunes obsolete versions eagerly to enable high HTAP performance
even in the presence of high update rates.





Zusammenfassung

Die Skalierbarkeit eines Datenbanksystems wird im Zeitalter von immer grö-
ßer werdenden Maschinen mit vielen CPU Kernen immer ausschlaggebender
für eine optimale Leistung. Diese Dissertation beschäftigt sich deswegen zu-
nächst mit dem skalierbaren Einsatz und der Implementierung von Locks, den
grundlegenden Synchronisierungsbausteinen in einem System. Dazu analysie-
ren wir unterschiedliche Locking-Techniken auf der Suche nach dem optimalen
Lock für ein Datenbanksystem. Die Herausforderung ist aus der breiten Masse
an spezialisierten Locks, ein Lock zu finden, das genauso vielseitig einsetzbar
ist wie ein Datenbanksystem und trotzdem in möglichst allen Fällen optimal
abschneidet. Hierfür entwickeln wir ein hybrides Lock bestehend aus pessi-
mistischen und optimistischen Sperrmodi für eine hohe Skalierbarkeit. Wenn
mehrere Threads gleichzeitig auf ein Lock warten, nutzen wir einen globalen
Parkplatz, um das Warten cache-freundlich und fair zu organisieren. Der zweite
Teil der Dissertation zeigt wie derartige Locks in ein modernes Datenbanksys-
tem integriert werden können. Des Weiteren diskutieren wir, wie logische Kon-
flikte zwischen Schreibtransaktionen und gemischte transaktional-analytische
Workloads effizient in einem Multi-Version Concurrency Control (MVCC) Sys-
tem bearbeitet werden können. Gerade langlaufende Anfragen stellen in der
Gegenwart von Schreibtransaktionen eine Herausforderung für MVCC Syste-
me dar. Traditionelle Ansätze können mit der Menge an erzeugten Tupelver-
sionen nicht effizient umgehen, da sie nicht feingranular genug arbeiten. Wir
entwickeln deswegen einen skalierbaren Ansatz, der nicht mehr benötigte Ver-
sionen aggressiv direkt beim Ändern eines Tupels entfernt.
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1 I N T R O D U C T I O N

Back in 2011, the in-memory database system HyPer [42] was first published
and delivered unprecedented high transaction rates [43]. Its highly efficient
code compilation delivered excellent query performance and transaction rates
starting a new era of database systems. HyPer’s design was recently awarded
ICDE’s ten-year influential paper award1 and VLDB’s test of time award2.

Now, roughly a decade after HyPer’s first publication, its compilation tech-
niques are still highly competitive and were refined to deliver even better per-
formance [44, 45]. However, current CPU architectures with an increasing
number of cores create new challenges for database engineers. To utilize mod-
ern many-core systems effectively, a system must be as scalable as possible [13].
The first step towards scaling up HyPer was the introduction of morsel-driven
parallelism, making the query processing scalable and NUMA-aware [53].

However, the transaction processing itself was still inherently
single-threaded. Even with the addition of multi-version concurrency
control, HyPer still relied on a global lock to ensure the strict exclusiveness
of write transactions [78]. Since the single-threaded OLTP throughput was
reasonably high, one did not want to add the overhead and complexity of
synchronization to the underlying physical data structures. Nowadays, with
recent advances in lightweight synchronization, like optimistic locking, this
basic assumption has changed [59].

This thesis analyzes recent trends in efficient synchronization techniques and
shows how to integrate and apply them to database systems. After synchro-
nizing the physical data structures, we also look at other concurrency choke
points and show how to eliminate them. Here, we focus on Multi-Version
Concurrency Control (MVCC), the central concurrency control mechanism of
modern database systems. An inherent problem of MVCC is the handling of
long-running queries in the presence of write transactions. Traditional garbage
collection approaches are too coarse-grained and cannot keep the number of
tuple versions under control in such cases. Delayed or imprecise garbage col-
lection leads to very long version chains if the same tuple is updated multiple

1 http://tab.computer.org/tcde/icde_inf_paper.html
2 https://vldb.org/2021/?vldb-endowment-awards

1
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https://vldb.org/2021/?vldb-endowment-awards


2 introduction

times. We investigate how the number of versions can be kept controllable by
pruning versions immediately as soon as they become obsolete.

1.1 thesis contributions

scalable latches for database systems (Chapters 2 and 3) These
chapters intend to design a lock that is as versatile as a database system. The
lock should be scalable and robust when running on many cores and also re-
flect the current hardware trends, such as multiple L3-caches or NUMA sockets
and the rise of other architectures like ARM. Therefore, we build on the success
of optimistic locking and lock coupling and combine it with a parking lot for
waiting threads. A parking lot is a small global hash table that provides robust
contention handling for every lock without adding any in-place storage to the
lock or slowing down its fast path in the absence of contention. We further
extend the parking lot approach to implement reasonable fairness and cache
topology awareness for optimal performance.

integration into a mvcc dbms (Chapter 4) This chapter shows the inte-
gration of optimistic locking into an MVCC DBMS. We first show how physical
data structures (tables and indexes) can be synchronized optimistically. Then,
we revise the central transaction management of MVCC for scalable transaction
processing and show how to deal with conflicting concurrent transactions.

scalable garbage collection in mvcc (Chapter 5) This chapter is de-
voted to the inherent problem of MVCC with long-running transactions in the
presence of frequent updates. Traditional version garbage collectors are too
coarse-grained which leads to an increasingly high number of versions and
long version chains in the system. In this chapter, we propose a novel garbage
collection approach that prunes obsolete versions eagerly. Its seamless inte-
gration into the transaction processing keeps the garbage collection overhead
minimal and ensures good scalability.



1.2 prior publications and authorship 3

1.2 prior publications and authorship

Although I am the principal author of the research in this dissertation, I
did all of the work in collaboration with my advisors Viktor Leis, Jana Giceva,
Thomas Neumann, and Alfons Kemper. I use the first person plural in this
thesis to reflect my collaborators’ contributions.





2 S C A L A B L E A N D R O B U S T L ATC H E S

Excerpts of this chapter have been published in [6].

2.1 motivation

Efficient and scalable synchronization is one of the key requirements for sys-
tems that run on modern multi-core processors. Hence, there is also a variety
of locking techniques to protect and synchronize data structure access, e.g.,
mutexes, optimistic locks, and rw-locks. However, while it has been shown
that every lock1 type has its own area of application [13], to the best of our
knowledge there has been no work that analyzes which one is best suited
for high-performance database systems. This is a non-trivial problem since a
DBMS must support a broad range of workloads: from write-heavy transac-
tions to read-only analytics, and even hybrid workloads.

When designing our new database system Umbra [77], we started investi-
gating different locking techniques in search for an optimal lock. We quickly
discovered that it is not possible to find a lock that performs best across all
workloads and on all machines. However, we noticed that there are some re-
occurring best practices for locking and synchronization. Therefore, we first
summarize the database specific demands on locking and then address them
by analyzing and evaluating different locking techniques accordingly.

Which features and functionality should a “database-friendly” lock have?
In general, most database workloads, even OLTP transactions, mostly read
data, and thus reading should be fast and scalable. This includes table scans
but also indexes like B-Trees or tries. For indexes, efficient synchronization is
challenging as every lookup traverses the same root and upper levels have high
traffic. Such read patterns or repetitively scanning small tables lead to hotspot

1 In this thesis, we use the term “lock” instead of “latch” since we focus on low-level data
structure synchronization, not high-level concurrency control.

5
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Locking Modes (§2.3)

Space
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2.
4.

3)
Optimistic Pessimistic Hybrid Locking

Contention Handling Strategies (§2.2)

Busy-Waiting Kernel-Supported

Spinning, Local, Ticket, Backoff Mutex, Futex, ParkingLot

Figure 1: Locking dimensions – and sections

areas in databases which should be lockable with minimal overhead as they
are accessed so frequently.

Many modern in-memory database systems compile queries to efficient ma-
chine code to keep the latency as low as possible [76]. A lock should therefore
integrate well with query compilation and avoid external function calls. This
requirement makes pure OS-based locks unattractive for frequent usage during
query execution.

To protect fine-granular data like index nodes, or hash table buckets, the
lock itself should be space efficient. This does not necessarily mean minimal,
but it should also not waste unreasonable amount of space. For instance, a
std::mutex (40-80 bytes) would almost double the size required for an ART
node [58].

Last but not least, another important aspect is efficient contention handling.
While we assume that heavy contention is usually rare in a well-designed
DBMS, some workloads make it unavoidable. The lock should, thus, handle
contention gracefully without sacrificing its fast, uncondented path. While this
is a goal for most production systems, during query execution we may have
some additional demands. Imagine, for example, that the user wants to can-
cel a long-running query, but the working thread is currently sleeping while
waiting for a lock. Waiting too long can lead to an unpleasant user experience.
For this reason, it would be desirable if the lock’s API would allow one to
incorporate periodic cancellation checks while a thread is waiting.

In this chapter, we show how we have addressed all the demands identified
above, across the different dimensions of locking shown in Figure 1. More
specifically, after discussing the advantages and shortcomings of optimistic
and pessimistic locking modes, we present the design of a new hybrid lock that
combines both modes to serve the various demands of versatile database work-
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loads. Furthermore, after summarizing different contention handling strate-
gies, we show how we avoid busy-waiting in Umbra by using the lightweight
parking lot mechanism. Finally, we validate our proposed solution by compar-
ing it to other standard locking techniques across a variety of factors and evalu-
ating their performance with both micro-benchmarks and full-fledged database
workloads.

2.2 contention handling

Actual lock contention must be rare in a database system designed for scal-
ability. However, some workloads make it unavoidable and when it occurs,
we want to handle it gracefully without slowing down the fast path. Here we
present different contention handling strategies and discuss their advantages
and pitfalls.

2.2.1 Busy-Waiting/Spinning

A common approach is to busy-wait, or “spin” until a lock is free again.
While this approach itself sounds straightforward, there exist several variations
of spinning and, especially without precautions, it has several pitfalls. For in-
stance, spinning can lead to priority inversion, as spinning threads seem very
busy to a scheduler they might receive higher priority than a thread that does
useful work. Especially in the case of over-subscription, this can cause critical
problems. Additionally, heavy spinning wastes resources and energy [24] and
increases cache pollution, which is caused by additional bus traffic. Following
the MESI-protocol, every atomic write needs to invalidate all existing copies in
other cores. Ideally, a core owns a cache line exclusively and does not need to
send any invalidation messages. However, if other threads are spinning on the
same lock, they constantly request this cache line, causing contention. The neg-
ative effects are worst when the waiting thread does write-for-ownership cycles,
as those cause expensive invalidation messages [93]. For this reason, a waiting
thread should use the test-test-and-set pattern and only do the write-for-
ownership cycle when it sees that the lock is available. In other words, it only
reads the lock state in the busy loop to keep the lock’s cache line in shared
mode.
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Algorithm 1: Spinning patterns

1 bool tryLock(lock) { return lock.CAS(exp_unlocked, locked); }
2 bool isLocked(lock) { return lock.load() == locked; }
3

4 // Test−and−set pattern
5 lockTAS() {
6 while (!tryLock(lock)) { cpu_relax() }
7 }
8

9 // Test−test−and−set pattern
10 lockTTAS {
11 while (isLocked(lock)) { cpu_relax() }
12 tryLock(lock) // can still fail!
13 }

lock protected data
Cache Line

Twait
spin

ThasLock
updateload shared invalidate

Figure 2: False-sharing – Spinning can cause false-sharing with the writing thread and
unnecessary bus traffic due to invalidations

Listing 1 shows possible implementations of the test-test-and-set pattern and
the test-and-set pattern.

However, even with the test-test-and-set pattern, spinning can still lead
to cache pollution when the protected data is on the same cache line as the
lock itself (cf. Figure 2). By spinning on the lock the waiting thread Twait

constantly loads the cache line in shared mode. Whenever the lock owning
ThasLock updates the protected data, it must invalidate Twait’s copy of the cache
line. Having to send these invalidation messages, slows down ThasLock and
increases the time spent in the critical section.

To limit the described problems, there exist several backoff strategies that
add pause instructions to put the CPU into a lower power state, or call
sched_yield to encourage the scheduler to switch to another thread. However,
since the scheduler cannot guess when the thread wants to proceed, yielding
is generally not recommended as its behavior is largely unpredictable [99].
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2.2.2 Local Spinning using Queuing

The performance degradation of cache contention due to spinning becomes
worse with an increasing number of cores or NUMA sockets [93, 13]. To over-
come the problem of cache line bouncing, some spinlock implementations spin
only on thread-local copies of the lock. Examples are the MCS-lock or a read-
write mutex adaptation by Krieger et al. [71, 49]. When acquiring a lock, every
thread creates a thread-local instance of the lock structure including its lock
state and a next pointer to build a linked list of waiting threads.2 Then, it
exchanges the next pointer of the global lock, making it point to its own local
instance. If the previous next entry was nil, the lock acquisition was success-
ful. Otherwise, if the entry already pointed to another instance, the thread
enqueues itself in the waiting list by updating the next-pointer of the found in-
stance (current tail) to itself. Figure 3 sketches the system’s state when ThasLock

is holding the lock and Twait is waiting. While waiting, every thread spins on
its own local Locked flag, until its predecessor releases the lock and updates the
lock state. Besides reducing the amount of cache line bouncing, this queuing
procedure also preserves the order of threads and, thus, guarantees fairness.

2.2.3 Ticket Spinlock

A ticket spinlock is another variant of spinlocks, which guarantees fairness
without using queues. It does so by maintaining two counters: next-ticket

and now-serving. A thread gets a ticket using an atomic fetch_and_add and
waits until its ticket number matches that of now-serving. Besides giving fair-
ness, this also enables more precise backoff in case of contention by estimating
the wait time. The wait time can be estimated by multiplying the position in
the queue and the expected time spent in the critical section. Mellor-Crummey
and Scott argue that it is best to use the minimal possible time for the critical
section, as overshooting in backoff will delay all other threads in line due to
the FIFO nature [71].

2 Some rw-mutex implementations also use a doubly-linked list, as readers should be able to
release the lock in arbitrary order.
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Global lock
tail*

ThasLock

next*

Locked: 1

Twait

next*

Locked: 0

Figure 3: Queuing lock – Threads spin on local copies only.

2.2.4 Kernel-Supported Parking Lot

While some of the discussed busy-waiting strategies can reduce unnecessary
cache contention or guarantee fairness, there is still no suitable solution for
over-subscription or waste of energy. For this reason, many locks build on
kernel-level locking, such as pthread mutexes, to suspend a thread until the
lock becomes available again. As these system calls have a significant overhead,
adaptive locks like Linux’ futexes (fast user-space mutexes) only block using
the kernel when there is contention [68].

Building on the idea of futexes, WebKit proposed a more versatile form of
adaptive locking that uses a parking lot for waiting threads [88]. A parking
lot is a global hash table that maps arbitrary locks to wait queues using their
addresses as keys. Unlike Linux’ futexes, this design is portable and does not
rely on non-standard, platform-specific system calls. It also allows additional
functionality like passing a callback function that is invoked while “parking”.
In Umbra, we use this to integrate additional logic like checking for query
cancellation, or in the buffer manager to ensure that the page we are currently
waiting for has not been evicted in the meantime.

Figure 4 sketches our implementation of a parking lot. In the uncontended
case, nothing changes and a thread acquires the lock as usual by setting the
lock bit (L). However, when another thread tries to get the same lock, it will
now wait in the parking lot. Therefore, it first brings the lock in a “someone-
is-waiting” state by setting the wait bit (W). Then, it uses the lock’s address
to find a parking space in the global parking lot. If the user-defined waiting
condition is still fulfilled, the thread starts waiting on the condition variable.
When the first thread releases the lock, it sees that someone is waiting because
the wait-bit was set. It looks up the parking space in the parking lot and wakes
all parking thread(s). To avoid races during these parking operations, every
parking space is guarded by a separate mutex.
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Parking Lot

&lock

W L ...

1 1
...

lock

Parking Space

Mutex mutex

Condition Variable cv

#Waiting Threads

park(callback)

ha
sh
(&
lo
ck
)

Figure 4: Parking Lot – All waiting threads park themselves in the Parking Lot (global hash
table) until the callback-condition is fulfilled. The suitable Parking Space is deter-
mined using the lock’s address.

The parking lot itself is implemented as a fixed-sized global hash table with
512 slots. More spaces are not necessary as the maximum number of contended
locks is always smaller than the number of threads. For the unlikely case of
hash collisions, we use chaining. When we park a thread that waits for a lock
during query execution, we wake it up sporadically (every 10 ms) to check if
the query was canceled meanwhile.

Listing 2 shows the pseudo code of our park() implementation. Note that
while the implementation of the parking lot itself is fairly straightforward, the
locks using it require a careful design. One must ensure that the information
that a thread is parked is never lost; otherwise threads might remain in the
parking state forever. So every operation that changes the state of the lock
must respect the wait-bit, and wake waiting threads if necessary.

2.2.5 Hybrid Locking

While optimistic locking works best for read-only and low contention cases,
it can easily suffer from frequent restarts or even starvation in mixed work-
loads. Alternatively, pessimistic modes like exclusive or shared, which guaran-
tee that the execution of a critical section succeeds, can be used. However,
unlike optimistic locking, they also add an overhead as every lock operation
requires at least one atomic write. Table 1 summarizes their use cases based
on their strengths and weaknesses and shows that shared-locking is a more
robust solution in mixed workloads.
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Algorithm 2: Parking Lot Implementation

1 void park(void* lockAddr, Cb& callback, unsigned timeoutInMs)
2 // Park a thread until the callback's condition becomes true
3 {
4 ParkingSpace& parkingSpace = getParkingSpace(lockAddr);
5 // Lock the parking space
6 parkingSpace.mutex.lock()
7 ++parkingSpace.waiting;
8

9 // Go to sleep after confirming that we still have to block (callback())
10 if (!timeoutInMs) {
11 while (!callback())
12 parkingSpace.cv.wait();
13 } else {
14 // Sporadically call the callback, e.g., to check for query cancellation
15 while (!callback()) {
16 parkingSpace.cv.waitWithTimeout(timeoutInMs);
17 }
18 }
19

20 // Leave the parking space
21 −−parkingSpace.waiting;
22 parkingSpace.mutex.unlock()
23 }
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reader excl
63 bits 1 bit

RW-Mutex
reader excl

version

63 bits 1 bit

Hybrid-Lock

version excl
63 bits 1 bit

Optimistic-Lock

Figure 5: Hybrid-Lock – Combining optimistic and pessimistic locks

These insights are especially useful for database systems with diverse work-
loads. However, to use these findings, we must be able to lock the same data
differently depending on the current context. For instance, when we access
the pages (e.g., B-Tree nodes) in a buffer manager, we want to traverse the
read-contended top-level nodes with minimal overhead, i.e., optimistically, but
when we scan an entire leaf page, we prefer to do this pessimistically to avoid
the risk of expensive restarts. So, the same node lock must support both opti-
mistic and pessimistic locking.

For this reason, we have designed a hybrid lock that extends a pessimistic
RW-Mutex with support for optimistic locking. In theory, this would be possi-
ble by combining all fields of both locks into a single 64-bit word. However, for
a more efficient and robust implementation, we decided to keep the version in
a separate 64-bit field as shown in Figure 5.

Separating the lock from the version also allows one to reuse arbitrary, exist-
ing read-write lock implementations without changing their code as shown in
Listing 3. Unlocking requires some precautions: We must increment the ver-
sion before we release the lock to avoid races in the optimistic validation phase.
On Intel platforms one could also use a CMPXCHG16B instruction to update the
version and release the lock at the same time, but one must never release the
lock before incrementing the version. Otherwise, the optimistic reader could
miss an exclusive writer during its validation.

Reading optimistically still works like in Listing 4, with the small but deci-
sive difference that we can now fall back to shared instead of exclusive locking
when the optimistic validation fails. This makes the lock very versatile and
is the reason we use it throughout our database systems3. For graceful con-
tention handling, we back it with a ParkingLot as described in Section 2.2.4.
The additional bit required to indicate parking threads is encoded into the RW-
Mutex and—in combination with the exclusive bits—also serves the purpose
to indicate pending writers to the readers.

3 We replaced the “Versioned Latches” described in earlier work [77, 54].
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Algorithm 3: Hybrid Locking

1 class HybridLock {
2 RWMutex rwLock;
3 std::atomic<uint64_t> version;
4

5 public:
6 // Simply call rwLock
7 void lockShared() { rwLock.lockShared(); }
8 void unlockShared() { rwLock.unlockShared(); }
9 void lockExclusive() { rwLock.lockExclusive(); }

10

11 // Always increment the version before unlocking to avoid races!
12 void unlockExclusive() { ++version; rwLock.unlockExclusive(); }
13

14 bool tryReadOptimistically(Lambda& readCallback) {
15 if (rwLock.isLockedExclusive())
16 return false;
17 auto preVersion = version.load();
18 // Execute read callback
19 readCallback();
20

21 // Was locked meanwhile?
22 if (rwLock.isLockedExclusive())
23 return false;
24 // Version still the same?
25 return preVersion == version.load();
26 }
27

28 void readOptimisticIfPossible(Lambda& readCallback) {
29 if (!tryReadOptimistically(readCallback)) {
30 // Fall back to pessimistic locking
31 lockShared();
32 readCallback();
33 unlockShared();
34 }
35 }
36 };
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2.3 locking techniques

For databases we need locks with minimal overhead and maximal scala-
bility. Therefore, this section mostly focuses on optimistic locking as recent
work shows that it has superior performance and advantages compared to
pessimistic or lock-free designs [103, 59, 48]. Nevertheless, in write-heavy sce-
narios there is also a raison d’être for pessimistic locking. In Section 2.2.5,
we show how both approaches can be combined into a single hybrid lock to
handle all database workloads efficiently.

2.3.1 Optimistic Locking

The basic idea of optimistic locking is to validate that the data read in a
critical section has not changed in the meantime, i.e., one has read consistent
data. Therefore, the lock keeps a version that is incremented by every writer
when releasing the lock. To validate that a reader has read consistent data, it
must check that the version has not changed during its read. If the version
has changed or if the lock bit (also encoded in the version field) is set, the
reader must restart its read operation. Restarting can either be handled by the
application, or transparently by the lock itself using a lambda-API as shown in
Listing 4.

Optimistic locking avoids atomic writes and its cache line stays in shared
mode. Pessimistic locks must always modify the cache line and thus their
performance is bound by cache-coherency latencies [13].

Optimistic locking is particularly beneficial for frequently read data as it
avoids the expensive atomic writes required by pessimistic lock acquisitions.
Typical read hot-spots are certain shared tables, tuples, and index structures.
In tree-like index structures, the top-most nodes are highly contended as every
lookup or update must traverse them. Every index access would, thus, create
unnecessary cache line bouncing on the nodes if they are locked pessimistically.
With optimistic locking, cache invalidations are only needed when a node is
updated, which in most cases will only happen on the lower, less frequented
levels of the tree. Prior work shows how effective optimistic lock coupling is
compared to traditional pessimistic locking, or even complex lock-free imple-
mentations [55, 103].

However, there are also some downsides and limitations to optimistic lock-
ing. First, optimistic locking can fail if there is a concurrent writer, and thus
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you can only use it, when it is safe to “fail” and to restart the read operation.
This usually holds true for reading contiguous memory like tuples in tables,
but can require some additional precautions when accessing index nodes or
MVCC version chains, which might have been deleted or garbage collected [7].
For ART, we use an epoch guard to keep the memory of deleted nodes alive,
until it is safe that no optimistic reader can access them anymore, i.e., every
thread has advanced to the next epoch [59]. The deleted nodes are marked
with a special obsolete bit to notify the reader of its deletion upon version
validation.

Another challenge of optimistic reading is that all operations must be
restartable without any side effects. The user of the optimistic lock must
be aware of this and implement some sort of restart logic. For instance, in
a DBMS, this usually means that one must buffer the optimistically read
tuples and only push them into query pipelines after a successful validation.
Otherwise, the same tuples could be pushed again into the pipelines during a
restart.

Further, when there is too much write contention, optimistic locking can
also suffer from starvation. For this reason, one must include a fallback to
pessimistic locking as shown in Listing 4. If the lock does not support a shared
mode, this means that the reader has to acquire the lock exclusively which
limits its concurrency unnecessarily. For this reason, we propose the use of a
hybrid lock which can fall back to shared locking in Section 2.2.5.

Another technique that guarantees fast, successful reads without any restarts
is Read-Optimized Write EXclusion (ROWEX) [59, 5]. In contrast to optimistic
locking, readers do not require any synchronization, not even version checking,
while the writers must guarantee that all reads are consistent. In contrast to
optimistic locking, ROWEX is a more involved synchronization technique, that
can require major changes to the used algorithm or data structures as all writes
now have to appear atomic to the readers [59].

2.3.2 Speculative Locking (HTM)

A special form of optimistic locking is Intel’s hardware-supported specula-
tive locking [56, 66, 57]. Speculative locking allows multiple threads to hold
the same lock as long as their operations do not conflict [36]. In contrast
to pure version-based optimistic locking, this also allows for non-conflicting
concurrent writers within the same critical section. All conflicts are detected
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Algorithm 4: Optimistic Locking

1 void readOptimistically(Lambda& readCallback)} {
2 // Attempt to read optimistically
3 for (i in [1 : MAX−ATTEMPTS]) {
4 preVersion = getVersion();
5 if (isLocked(preVersion))
6 continue;
7 readCallback();
8 postVersion = getVersion();
9 if (preVersion == postVersion)

10 return;
11 }
12 // Fallback to pessimistic locking
13 lockPessimistic();
14 readCallback();
15 unlock();
16 }

on L1-cache line granularity (usually 64 bytes) and the addresses of the joint
read/write-set must fit into L1 cache. Additionally, the critical section should
be short to avoid interrupts or context switches and must avoid certain system
calls [38]. A major downside of hardware-based locking is the hardware itself.
Only modern Intel and ARM processors support this or a similar feature [67];
other manufactures and older or low-end processors cannot use it at the mo-
ment. Thus, when using it, the system always needs a fallback to a traditional
lock to handle aborts (e.g., conflicts, read/write-set too big, etc.) or missing
hardware support.

Intel’s Threading Building Blocks (TBB) library offers implementation of
speculative mutexes that already include suitable fallback mechanisms and
hide the complexity of using hardware transactions. To avoid false sharing
with any other data, Intel’s speculative mutexes add padding to their locks
which increases their sizes to 2 or in the case of a read-write mutex 3 cache
lines 4.

4 https://software.intel.com/en-us/node/506270

https://software.intel.com/en-us/node/506270
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Figure 6: TPC-C – Increasing the number of threads (100 warehouses)

2.4 evaluation

We evaluate the different locking approaches on an Ubuntu 18.04 machine
with two Intel Xeon E5-2660 v2 CPUs running at 2.20 GHz with 10 physical
cores (20 HT) each and a total of 256 GB DDR3. The sockets communicate
using a high-speed QPI interconnect (16 GB/s). During all experiments we
do not pin any threads to cores or NUMA sockets to allow the scheduler to
distribute them freely. Table 2 lists all evaluated locking approaches and their
concrete implementations.

2.4.1 TPC-C and TPC-H

We run TPC-C and TPC-H with lock representatives of the different locking
modes (optimistic, shared, exclusive, and hybrid) and also a kernel-based RW-
Mutex (std::shared_mutex). For the experiments, we replaced all locks in our
DBMS HyPer that are relevant for query execution (table/tuple locks and the
ART node locks) [42]. As HyPer is an in-memory DBMS, the results are not
affected by any interrupts caused by IO. To see the effects of contention and
cross-partition transactions, we do not pin any threads to warehouses in TPC-C.
Figure 6 shows that the Optimistic and Hybrid-Locks dominate the through-
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Figure 7: TPC-H – Increasing the number of threads (sf-1, no indexes)

put performance in TPC-C. This is mostly because their non-optimistic coun-
terparts experience increasing “read-read contention” on the top-level nodes
of the indexes. These read-read contention effects in the indexes were also
very visible for the TPC-H benchmark. Only after disabling all index scans in
TPC-H did the curves start to converge completely. This is because the lock ac-
quisitions during table scans are more evenly distributed which reduces cache
line contention. Also, scanning a chunk of tuples (1024 in our system [48])
amortizes the cost of acquiring a lock. Based on these findings, we always run
the Hybrid-Lock in pessimistic mode when scanning bigger chunks of data
as using optimistic mode hardly brings any benefit to justify the risk of an
expensive restart.

2.4.2 Lock Granularity

The granularity, i.e., the number of tuples protected per lock, can have a
big impact on the system’s performance. For point accesses like updates, or
key lookups, the granularity determines the maximum number of concurrent
accesses. Thus, write-heavy workloads can benefit from fine-grained locking.
However, during a full table scan, every additional lock increases the required
number of lock acquisitions and reduces its effective memory bandwidth. In
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Figure 8: Granularity – Exploring the sweet spot between lock granularity and overhead for
mixed scans and updates

this experiment, we want to find the fine line between high concurrency and
low overhead. Figure 8 shows that the Optimistic and Hybrid-Lock reach their
sweet spots at a granularity of 1000 tuples, while the pessimistic locks need
10× more tuples to amortize the costs for lock acquisitions. While this does
affect the peak performance in the read-only case, the more fine-grained lock-
ing starts to pay off when the number of writes increases. With 10% or more
writes, the Optimistic and Hybrid-Locks outperform all other configurations
while keeping their granularity at 1000 tuples.

2.4.3 Space Consumption

The space consumption of locks is important to support fine-grained concur-
rency. The smaller the area of protected data is, the more significant the lock’s
size is. Especially for cache line optimized index structures like ART [58], a
lock should not extend the required space per node significantly. In general,
user-space locks are more space efficient as they only use 1-2 atomic values.
However, some techniques like speculative locking, or some TicketSpinLock
implementations require additional padding to avoid false-sharing between
cache lines. The locks relying on the OS generally also require more memory,
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Table 2: Space consumption – in bytes, using Linux, C++17

Lock Implementation Size

Optimistic-Lock version (Fig. 5) 8

RW-Speculative tbb::speculative_spin_rw_mutex 192

RW-Spinlock tbb::spin_rw_mutex 8

RW-Local-Spinning tbb::queuing_rw_mutex 8

RW-Mutex std::shared_mutex 56

Exclusive-Spinlock atomic-flag 1-8
TicketSpinLock next-ticket + now-serving 8-128

OS-Mutex std::mutex 40

Hybrid-Lock RW-Mutex + version (Fig. 5) 16

as they are often implemented as a combination of condition variables and
locks. Their sizes can also vary depending on the underlying OS and library.
The exact sizes for the lock implementations used throughout this thesis are
listed in Table 2. For the Exclusive-Spinlock, we use a 64-bit atomic, as we
saw 2-3× better throughput in micro-benchmarks compared to a single byte
implementation.

2.4.4 Efficiency of Lock Acquisition

In this experiment, we analyze the efficiency and micro-architectural prop-
erties of lock acquisitions. Table 3 shows the normalized cycles (cyc.), instruc-
tions (instr.), instructions per cycle (IPC), and L1-misses (L1-m) per lock acqui-
sitions. An efficient lock keeps the number of instructions low, while main-
taining a high throughput. When the code allows optimal branch predictions
and caching, modern CPUs can issue up to four instructions per cycle [37].
Optimistic locking has such near-optimal IPC in the read-only case as it can
keep the cache line with the version shared between all threads. In contrast, all
pessimistic locks have a significant worse IPC, as their instructions are stalled
by atomic writes at the start and end of every critical section. In the contended
case, these operations become very expensive due to L1-cache contention and
CAS-operations have to be repeated multiple times consuming many cycles.

For uncondented exclusive locking, all locks show about the same perfor-
mance in terms of cycles although their number of instructions varies. For
instance, the Local-Spinning lock uses more instructions as it creates a local
copy for every lock acquisition, whereas normal Spinlocks only set a lock bit.
When many threads are competing for the same lock, the consumed cycles



2.4 evaluation 23

Table 3: Performance Counters – with and w/o contention

Read-Only
1 thread 40 threads

cyc. instr. IPC cyc. instr. IPC L1-m

RW-Speculative 76 117 1.55 5135 119 0.02 1.3
RW-Local-Spinning 141 126 0.90 77,584 26,864 0.35 91.0
RW-Spinlock 57 57 1.00 4,531 59 0.01 1.2
RW-Mutex 81 108 1.34 9,583 118 0.01 3.0
Optimistic 8 30 3.77 12 30 2.58 0.0
Hybrid-Lock 11 35 3.05 17 35 1.85 0.0
+ParkingLot 11 35 3.07 17 35 2.06 0.0

Write-Only
1 thread 40 threads

cyc. instr. IPC cyc. instr. IPC L1-m

RW-Speculative 74 101 1.36 67,918 12,413 0.19 48.9
RW-Local-Spinning 70 86 1.23 79,928 28,058 0.35 84.0
RW-Spinlock 60 42 0.70 52,215 9,656 0.18 38.1
RW-Mutex 95 98 1.03 29,201 5,631 0.19 27.6
Optimistic 97 20 0.21 8,636 1,663 0.19 23.7
Hybrid-Lock 69 53 0.77 4,082 1,229 0.30 12.8
+ParkingLot 82 64 0.78 421 150 0.35 2.1
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and L1-misses go up. Whereas, the ParkingLot mechanism significantly helps
to keep these effects minimal and the cache contention under control.

2.4.5 Contention Handling Strategies

Finally, although we believe that lock contention should be rare in a database
system, it is sometimes unavoidable and requires a robust solution. Ideally, a
contended exclusive lock gives the same throughput as serial execution. For
this reason, we test and compare common contention handling strategies by
“smashing” the same lock with increasing number of threads. We compare
the performance of different spinlocks (traditional, ticket-based, and local spin-
ning) to a kernel-based mutex and our hybrid parking lot implementation.
The results, in Figure 9, show that OS-supported locks achieve the best perfor-
mance. Both the std::mutex and our ParkingLot are hardly affected by increas-
ing the number of threads. The lock acquisition itself is slightly more efficient
in our ParkingLot implementation, which makes its baseline throughput supe-
rior to the full mutex. In contrast to the kernel-supported locks, the spinlocks
suffer from increasing cache line contention. Thus, we tested several tech-
niques to reduce this cache line contention. We achieved the biggest improve-
ment by switching from a test-and-set to a test-test-and-set pattern. The
cache pressure can be further reduced by adding additional pause/cpu_relax
instructions. The best result was achieved when using them in combination
with an exponential backoff based on the number of retries. For the ticket spin-
lock we can use a smarter backoff, as every thread can estimate its required
waiting time from the its ticket number as described in Section 2.2.3. The big-
ger the difference between its ticket number and the currently active number is,
the longer the wait time. Another cache contention avoidance strategy is local
spinning. Here, every thread reduces the cache line contention by spinning
only on its local copy of the lock. While this gives fairly stable performance,
creating a local copy and inserting it into the queue adds a significant overhead
to the approach.

2.5 related work

There has been intensive work on locks and synchronization over the past
decades. Most research was driven by the (operating) systems community
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and geared towards developing new or tuning existing locks [13, 93]. In the
database community, different locks were mostly analyzed considering only
index structures or high-level concurrency control [32, 59, 103, 22, 50, 82]. Op-
timistic (versioned) locks have been used to synchronize a growing number of
data structures [10, 69, 59]. Falsafi et al. [24] show how the energy efficiency
of software, in particular database systems, can be improved by interchanging
locks. Surprisingly, no one has yet investigated the performance impacts of
different locks in a holistic approach for entire database systems. In this pa-
per, we perform database-focused experiments and combine those results with
the findings of the systems community to infer best practices for locking in a
DBMS.

2.6 summary

In this chapter, we analyzed locks based on the specific demands for
databases. We showed how optimistic locking can be used to keep the
overhead and latency of locking minimal. We also showed the implementation
of a hybrid lock, which can fall back to pessimistic locking when needed.
This is particularly useful in general-purpose database systems that need to
support a broad range of workloads. Through a series of experiments and
evaluation criteria, we identified that parking lot-based contention handling
works best for database systems supporting heterogeneous workloads. In the
common, uncontended case they do not add any overhead and keep the size
of the lock minimal. If there is contention, they handle contention gracefully
by waiting in the kernel-space. Furthermore, its callback API allows one to
integrate database specific logic like query cancellation checks.



3 D E E P E R D I V E I N TO L ATC H E S :
A D D I N G FA I R N E S S A N D C A C H E
TO P O LO GY A W A R E N E S S

3.1 motivation

In the previous chapter, we have already covered the most important as-
pects when choosing a lock for a database system. We introduced a hybrid
read-write lock that is scalable for read-read contention using optimistic lock-
ing and can still fall back to pessimistic shared locking if necessary. Further,
we showed how every lock could rely on a parking lot to handle contention
robustly without spinning.

However, when asking database engineers for their preferred lock, most will
probably ask for more features: besides being fast and scalable, a lock should
be reasonably fair and work on modern many-core machines with complex
cache topologies.

Unfortunately, these properties can be somewhat conflicting in practice, mak-
ing it highly non-trivial to build a general-purpose lock like this. The previous
chapter already describes a reasonable solution in the form of hybrid locks that
handle contention using a concept called parking lot for waiting threads [6].
However, in the last chapter, we did not address the aspects of fairness or
cache awareness. In particular, fairness is increasingly important in production
and many-core systems to guarantee reasonable tail latencies and fair progress
across the system.

This chapter identifies and discusses previously untouched aspects of locks
and shows the individual requirements or costs of getting a specific property,
like fairness. Ideally, we end up finding an approach that gets us all the in-
dividual benefits of specialized locks without sacrificing performance in the
general case. Therefore, we do not reinvent the wheel nor develop anything
completely new in this chapter. We simply test and combine different locking
techniques to find the optimal lock for a modern DBMS. Our goal is to make
the lock decision easy by designing a lock that is on par with the best solu-
tion for (almost) every scenario. Therefore, we first recap the critical aspects of
locks and show how to implement them by extending the parking lot approach

27
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of the previous chapter. In Section 3.5, we evaluate the different designs based
on the identified dimensions and goals.

This chapter discusses the following demands on locks:

• Fairness/Tail Latencies: What does it cost me to be fair? And how do I
guarantee reasonable tail latencies?

• Many-Core/Socket scalability: What do I need for big machines with
complex cache topologies?

• ARM vs. x86: Can I use the same lock on different architectures?

• Contention: How should I handle contention?

• Space Consumption: How much space should I use?

3.2 dimensions and goals of locks

In this section, we introduce different aspects and classes of locks. We focus
on the parts that are relevant when synchronizing a database system.

3.2.1 Fast Path Performance

In an ideal world, when there is no physical contention, there should hardly
be an overhead when acquiring or releasing a lock.

Hardware-supported speculative locking does not require lock acquisition
in the non-contending case at all [57, 38]. The hardware monitors the changes
made during the critical section, and as long as they do not conflict with other
concurrent changes, the lock succeeds. This only works if the hardware sup-
ports it, the critical section is short enough and unlikely to conflict, and the
working set fits into the cache [70]. If speculative locking fails for one of these
reasons, the system must fall back to “traditional” locking.

In traditional locking, the CPU must introduce memory barriers and at least
do an atomic write when acquiring or releasing the lock. A simple imple-
mentation would be setting and resetting a lock bit with a compare-exchange
instruction. More complex lock acquisitions could involve more instructions,
such as inserting itself into a list or storing some additional bookkeeping infor-
mation.
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Nevertheless, the goal should be to keep the overhead of acquiring a lock as
low as possible to encourage fine-grained locking and good scalability.

3.2.2 Reader Friendliness/Read Scalability

Previous papers show that the scalability of reads, especially in hierarchical
data structures like trees, is crucial for optimal performance [59, 55, 6]. In such
data structures, every insert or lookup operation traverses the root and likely
the same top layers nodes. For this reason, those locks should be as scalable as
possible. While in theory, read-write mutexes should not conflict when the lock
is only acquired shared, the read performance does not scale linearly in prac-
tice due to cache line ping-ponging. Every time we acquire or release a node’s
lock we also invalidate its cache line. This also holds for shared acquisitions, as
we need an atomic write to increment the reader’s count, followed by another
atomic write to decrement it again. Every time the lock is modified, its under-
lying cache line gets invalidated for the other threads. Consequently, multiple
read lock acquisitions lead to cache line ping-ponging between the threads and
severely hinder the performance and scalability [6]. On multi-socket machines,
the CPU latency for a cache miss can easily exceed 300 ns1.

Optimistic locking avoids this kind of read-lock cache contention. Every
read-write mutex can be extended by a version field to support optimistic lock-
ing [6]. During reading the node, it is now enough to validate that the version
of the lock is still unchanged after processing the critical section. The lock ver-
sion is only changed when someone updates the protected data. The top layers
of a tree, traversed by almost everyone and hardly changed, can be kept in the
caches.

3.2.3 Contention Handling

Lock contention happens whenever multiple threads fight for the same lock.
There are two main waiting strategies: blocking and spinning/busy-waiting.
Blocking locks typically use the kernel infrastructure to wait for the lock. The
scheduler can put the waiting thread to sleep until the lock is available again.
While sleeping makes the resources of a CPU core available for other threads,
this approach can also cause expensive context switches. Especially if the wait

1 https://github.com/nviennot/core-to-core-latency

https://github.com/nviennot/core-to-core-latency
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time is short, the cost of a context switch adds significant overhead to the lock
acquisition.

For this reason, many lock implementations first or entirely rely on spinning
instead of directly going to sleep. Spinning can help the throughput and the
latency of lock acquisitions. However, excessive spinning on a contended re-
source also creates various problems, such as cache line contention, priority
inversion in the scheduler, and wastes CPU resources.

For this reason, lock implementations only try to spin for a short time before
blocking in kernel space or they try to limit the damage of spinning with
different techniques. Those techniques involve a backoff mechanism to reduce
the cache pressure, or they reduce the cache contention by spinning on a local
state. Local spinning can be implemented using queue-based approaches like
the MCS lock [71]: the lock itself is only a pointer to the head of a waiting list,
and every thread links itself into the list and spins on its local list element only.

While all of those approaches can reduce the cache contention, spinning
does still block CPU resources for other threads that could do “productive”
work instead. For this reason, excessive spinning in user space can be very
harmful.

3.2.4 Locking Algorithms

Regardless of the choice of blocking or spinning for contention handling,
every lock implements an algorithm for deciding which thread will get the
lock next.

thunder lock In a thunder lock, all threads wait in the same pool for the
lock. When the lock is released, the entire pool is woken up at once and all
threads race for the lock like a thundering herd. The threads that lose the race
must enter the wait pool again.

The implementation does not need a queue: The waiting pool can be imple-
mented using a single condition variable per lock.

barging Barging locks introduce a queue to order the waiting threads. In
contrast to the thunder lock, the unlocker notifies only the first thread in the
queue. However, there are still no guarantees that this thread will get the lock,
as it must compete with newly arriving threads that have yet to enter the queue.
Those threads could be quicker and steal the lock from the woken thread. Also,
the thread that released the lock could reacquire it right away. Indeed, this is
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likely to happen since the lock is still hot in the caches and waking up is a
costly operation [26].

While barging is unfair and can lead to starvation, it significantly improves the
throughput of a lock.

handoff A handoff lock also uses a queue for the waiting threads, but in
contrast to barging, it also ensures that the first thread in the queue gets the
lock by directly handing it to the waiting thread. The lock is never physically
released during this process, so no other thread can jump in and steal the lock.
This mechanism makes a lock fair. The downside is that the throughput of
such as lock is limited by the speed of the notified thread. Especially if the
thread was sleeping and not spinning, the entire lock throughput stalls due to
the cost of waking it up. Other threads that would be ready to take the lock
right away are not allowed to jump in like in the previous locks.

adaptive By combining the two strategies, one can mitigate the individual
problems of the approaches and build a very robust lock. The default behav-
ior of a lock would be barging to enable high throughput, and we only switch
temporarily to a direct handoff when a specific threshold time is reached. This
approach would ensure eventual fairness for the lock and prevents the starva-
tion of threads.

3.2.5 Space Consumption

The required space of a lock is essential when implementing fine-grained
locking or protecting smaller parts of a data structure like tree nodes that can
hardly amortize the cost of a big-sized lock. Threads relying on spinning can
usually be tiny, requiring the bare minimum of a byte (or even a bit within a
tagged pointer). Typical spinlocks use 8 bytes for their implementation. Using
8 bytes is enough to implement entire read-write locks and can also yield bet-
ter performance as CPU instructions operating on word level are often more
efficient than those on byte level.

Blocking locks often require more space for their implementations. For in-
stance, the lock implementations of the C++ standard library require 40 bytes
for a std::mutex or 56 bytes for a std::shared_mutex on Linux. They store
more housekeeping information, like which thread is holding the lock.

This is significantly more memory than a spinlock and can be too much
when protecting a small data structure or a small part of it. When designing
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a more powerful or robust lock, a typical resort is to rely on ad-hoc allocated
space. For instance, queue-based spin locks only require 1 word of lock space
because the queue elements can be put onto a thread’s stack. For more robust
features, one can also implement something like a parking lot [6]. A parking
lot is a global hash table that uses the memory address of a lock to identify
its hash bucket. The bucket can have arbitrary size and functionality without
adding to the lock’s space consumption within the data structure. The buckets
are allocated on demand when there is contention on the lock. This approach
combines a spinlock’s low in-place space consumption with the robust con-
tention handling of a blocking mutex. Additionally, it can support timeouts or
callbacks.

3.2.6 Fairness

Fairness of locks is a vital feature to guarantee reasonable tail latencies and
to avoid the starvation of locks. Strictly speaking, fairness means that waiting
threads are served in FIFO order. The threads should get the lock in the order
of their arrival. In practice, there exist more relaxed definitions of fairness: A
lock can also be considered as “fair” if all threads can acquire a thread equally
often over a certain time [84, 2]. However, when implementing strict FIFO
fairness, there exist two general approaches: Queuing and ticket locks.

queuing lock An intuitive approach to enforce FIFO execution is using a
FIFO queue, e.g., a linked list. Every arriving thread either starts a new list
if there is none or adds itself to the end of the list of waiting threads. The
thread waits on its own (often local) instance of the list element until its prede-
cessor hands the lock over. Figure 3 shows a basic example of a queuing lock
implementation.

In general, there are different ways to implement a queue-based lock. A thread
can wait on its queue element until its predecessor releases the lock. This
approach requires additional operations during the unlock, as the unlocking
thread must visit its successor to notify him. Thus, the list must also be explicit
using next pointers [71].

Alternatively, some locks implement implicit lists by spinning on their prede-
cessors [63]. CLH lock and Hemlock are representatives for this kind of ap-
proach [12, 18, 94]. The Hemlock maintains one word per thread to avoid the
cost and lifetime issues with creating and destructing separate queue nodes
per lock acquisitions [18].
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ticket lock The alternative to queuing is using a ticket lock consisting of two
counters. Like a waiting room, a thread pulls a number from the first counter
and waits until its number is “announced” by the second counter. Therefore, it
must constantly poll the second counter creating unpleasant cache contention.
Upon unlocking, a thread increments the second counter to pass the lock to
the next waiting thread.

3.2.7 NUMA and Cache Topology Awareness

NUMA systems or modern CPUs create new challenges for the design of
locks as the core-to-core latencies increase significantly if the cores do not use
the same shared L3 cache. In Section 3.3, we see that the latencies can increase
from roughly 40 ns to over 300 ns in such cases.

For this reason, many NUMA-aware locks were created over the last
years [63, 84, 40, 17]. The basic idea is to avoid expensive inter-socket
communication by re-ordering the waiting threads accordingly.

A technique for NUMA-aware locking is lock conhorting [19]. This technique
allows to transform regular locks into NUMA-aware locks. Waiting threads
of the same socket are grouped to avoid expensive internode coherence traffic.
The cohort implementation uses a global lock and socket-local helper locks.
When a thread owns the global lock, it does not release it if there are more
waiting threads on the same socket. Instead, it hands it over to the next waiter
of the same socket. Thereby, the global lock is untouched, and there is no inter-
node communication. All threads are only waiting on the socket-local locks,
while the number of back-to-back transfers on the same socket is bounded to
avoid the starvation of other sockets.

The disadvantage of the cohort approach is that it requires up to 1600 bytes
of in-place memory to lay out the socket local locks with enough padding to
avoid false-sharing [41]. There also exist compact NUMA-aware locks that
allocate the required space ad-hoc to save in-place space [17]. Kashyap et al.
developed an adaptive NUMA-aware implementation that gracefully falls back
to blocking to avoid excessive spinning [41].

3.2.8 Overview

To summarize this section, we now look at commonly used locks and catego-
rize them according to the previously identified dimensions in Table 4. At this
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stage, we only focus on a lock’s high-level properties. Later during the evalua-
tion in Section 3.5, we will also investigate and add their concrete performance
characteristics and implications.

We analyze two types of fair locks: a spinning lock represented by the
Queuing-RW-Mutex and Parking Lot-based variations that implement strict or
eventual fairness. We describe their differences and implementation in detail
in Section 3.4.1.

For the locking algorithm, we represent thundering, barging, and adaptive locks.
Section 3.4.1 describes the implementation of the adaptive parking lot. Al-
though there is no explicit waiting pool in the RW-Spinlock, we still categorize
it as a thunder lock, as all waiting threads are constantly racing for the lock.

3.3 hardware analysis

Understanding the underlying hardware characteristics, in particular, the
memory models and hierarchies, are of great importance when designing or
analyzing scalable locks. For this reason, we briefly look at different architec-
tures and their properties. We measure and plot the core-to-core latencies of
the Intel, AMD, and an AWS (ARM) machine that we use for our evaluation in
this chapter using the publicly available core-to-core-latency tool2.

3.3.1 Intel Xeon Gold 6212U

Our first evaluation machine is a single-socket Intel Xeon Gold 6212U with
24 cores (48 Hyper-Threads). In Figure 11

3, we see that all cores share the same
L3 cache. The shared cache leads to stable core-to-core latencies, as shown in
Figure 10. Despite the latencies within the same physical core (i.e., the Hyper-
Thread latency), the measured latencies are all very close to the median of
46.9 ns.

3.3.2 AMD EPYC 7713

Figure 13 shows the cache topology of a dual-socket AMD EPYC 7713 re-
trieved by the Linux tool lstopo. In total, the processor has two sockets with

2 https://github.com/nviennot/core-to-core-latency
3 Created using lstopo

https://github.com/nviennot/core-to-core-latency
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Intel(R) Xeon(R) Gold 6212U
Core-to-core latency

Min=7.6ns Median=46.9ns Max=61.2ns

Figure 10: Intel Xeon Gold 6212U, 24 Cores – Core to core latencies (with Hyper-Threads)
Min=7.6ns Median=46.9ns Max=61.2ns

64 physical cores each, providing a total of 256 “Hyper-Threads” (SMT) for
the for the entire machine. The cores are distributed across 16 core complexes
(CCX). Whereas each CCX has its separate L3 cache. AMD states in its opti-
mization manual that it is crucial to reflect the cache topology when optimizing
an application as moving data across cache boundaries is expensive [1]. The
latencies we measured in Figure 12 show significant differences between spe-
cific cores. The plot visualizes the low latencies within a CCX (roughly 23 ns).
When leaving the shared L3 cache of a CCX, the latency rises to 105 ns in the
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Figure 11: Topology of Intel Xeon Gold 6212U – All cores share the same L3 cache

median if we remain on the same socket. Leaving the socket increases the la-
tencies further to over 300 ns. We also see an abnormality on the second socket.
One-quarter of the cores have significantly higher latencies, although lying on
the same socket. In summary, we see that communicating across different CCX
is roughly an order of magnitude more expensive than keeping the data local.

3.3.3 AWS Graviton3 (Arm Neoverse v3)

To conclude our analysis, we now look at an ARM machine, namely the AWS
Graviton3 with 64 cores: the biggest and newest currently available Graviton
instance on Amazon AWS. Figure 14 shows that the median latency of 47,2 ns is
roughly in the same ballpark as the Intel Xeon. However, there is also slightly
more variance across the cores. Note that every depicted core is an actual
physical core, as Graviton does not use the concept of hyper-threads4.

4 https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/w
hat-is-aws-graviton.html

https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/what-is-aws-graviton.html
https://docs.aws.amazon.com/whitepapers/latest/aws-graviton-performance-testing/what-is-aws-graviton.html
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AMD EPYC 7713 64-Core Processor

Figure 12: AMD EPYC 7713, 2x64 Cores – Core to core latencies:
On the first socket: Min=20.1ns Median=105.1ns Max=340.5ns
Across all cores (sockets): Min=20.1ns Median=285.9ns Max=340.5ns

3.4 extending the parking lot

The goal of a parking lot is to add robust contention handling to a lock with-
out sacrificing its fast-path performance or adding any in-place space. Our
basic parking lot implementation (cf. Section 2.2.4) already ensures robust con-
tention handling. However, it lacks several features described in the previous
section. In particular, its unfair nature can cause trouble in specific scenarios.
In this section, we improve the parking lot incrementally by adding reasonable
fairness, better read-write handling, and cache topology awareness.
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Figure 13: Topology of AMD EPYC 7713 – Every core complex (CCX) has its own L3

3.4.1 Adding Fairness

The basic parking lot is a robust solution for contention handling with-
out sacrificing any performance on the fast-path (no contention) and without
adding additional space to the lock itself. However, although its wait-notify
pattern appears reasonably fair, in practice, it is not. This unfairness has two
reasons: first, condition variables and the internally used futexes do not make
any fairness guarantees [110]. It is up to the scheduler to decide which thread
it wakes up. And second, just calling notify_one() does not ensure that the
notified thread gets the lock. It only awakens and must race for the now un-
locked/available lock. Although the unpark thread has just unlocked it, noth-
ing stops it from acquiring the lock itself again. Retaking the same lock af-
ter releasing it is called barging and is often very desirable when it comes to
throughput. The caches are still hot, and the thread can proceed with its work
without being intercepted by others.
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AWS Graviton3 @ 64 Cores (Arm Neoverse, 3rd gen)

Figure 14: AWS Graviton3, 64 Cores – Core to core latencies:
Min=30.4ns Median=47.2ns Max=58.4ns

The downsides of (un-)fairness

When a thread wakes another thread, it has the highest probability to reac-
quire the hot lock directly again, which can lead to starvation [26]. To test the
practical implications of this behavior, we run simple micro-benchmarks where
multiple threads try to acquire a lock repeatedly for a specific time. Besides the
overall throughput, we measure the time the same thread gets the lock again
and the tail latencies of the different locks. Our experiments (cf. Section 3.5.4)
show that high throughput numbers of some unfair locks can come with ex-
treme unfairness. Some workloads are almost executed serially, leading to high
tail latencies or even the starvation of threads.

The intuitive fix would be to implement a fair parking lot that uses an inter-
nal queue for waiting threads and directly hands the lock to the next waiter.
While such a FairParkingLot would guarantee fair lock handovers, the through-
put would also stagnate dramatically. Every lock handover could come with
an expensive wake operation and context switch. Especially if the critical sec-
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tion is short, the throughput collapses due to the overhead of context switches
during the handovers (cf. Section 3.5.5).

The developers of the Webkit ParkingLot came to the same results in their
benchmarks and concluded that strict fairness is too expensive [88]. However,
they and the developers of Go also noticed the issue of starvation caused by
unfairness in the presence of high contention [31]. To tackle this, both Go and
Webkit now use an appealing adaptation of the original parking lot idea that
guarantees eventual fairness and hardly sacrifices the throughput in the case
of micro contention5.

Implementing eventual fairness

Instead of implementing strict fairness, Webkit now uses a modified version
of the ParkingLot that guarantees eventual fairness. Eventual means that the
maximum time a thread must wait for a lock is bound by a certain threshold.
For Webkit, that is 1 ms times the number of other waiting threads or respec-
tively longer if the critical section takes longer.

The language Go uses a similar technique since version 1.9 [31]. From this
version, every mutex has two modes: normal and starvation. Like the parking
lot approach, the waiting threads enter a FIFO queue, and the longest waiting
thread is woken up during the unlock. In the normal mode, a thread is only
woken up without a lock handover to encourage barging for higher throughput.
If a thread fails to get the lock for more than 1 ms, it sets the lock to starvation
mode, enforcing a fair handover during the next unlock6.

We implemented an eventual fairness lock that builds on the Webkit imple-
mentation [104]. The general principle of the parking mechanism is shown
in Figure 15. When a thread must wait on a lock, it goes to the parking lot
(a global static hash table) and identifies its parking space using the lock’s
memory address. Within a parking space, the threads wait in a queue. Every
parking space tracks the nextFairTime that indicates when the next fair han-
dover should happen. This timestamp is increased by a fairness threshold (e.g.,
1 ms) after every fair handover. Unparking operations that do simple unlock-
ings (i.e., encourage unfair “barging”) instead of fair handovers, do not change
the nextFairTime. Apart from those changes, the parking lot works similarly
to the basic parking lot described in Section 2.2.4.

5 https://github.com/WebKit/WebKit/commit/24e899259cf1724af10cb1bf1b8bb740d5b69c4b
6 https://go.dev/src/sync/mutex.go?s=5772:5796

https://github.com/WebKit/WebKit/commit/24e899259cf1724af10cb1bf1b8bb740d5b69c4b
https://go.dev/src/sync/mutex.go?s=5772:5796
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The locks must also be slightly adapted to work with an eventual fair parking
lot. Listing 5 shows an exemplary implementation based on the original Webkit
code [104]. While the fast (uncontended) path remains untouched, we now
have to check how we were unparked: We could either own the lock after a
direct handover, or have to race for the lock if we are in barging mode.

The unlock operation must also be adapted as shown in Listing 6. In the
unfair parking lot, we could release the lock before notifying waiting threads
in the parking lot. This is no longer possible in a fair parking lot, as we must
wait to unlock the lock before we unpark someone to enable fair handovers. For
this reason, we hold the lock while entering the parking lot and pass an unpark
callback to the parking lot that holds the lock-specific unlock or handover logic
(Listing 7).

3.4.2 Adding Read-Write Lock Support

Our parking lot should support waiting for exclusive and shared locks. The
current approach needs to distinguish between shared and exclusive waiters.
While this is correct, it does limit the parallelism if multiple readers are waiting.
In the worst case, all waiting readers would get the lock sequentially without
any read concurrency.

For this reason, we adapt the QueueElements so that they can store a shared
or exclusive number of waiters as displayed in Figure 16. When a new reader
arrives, it can join a shared Queue-Element by incrementing the counter and
waiting on the same condition variable. When the waiting readers are un-
parked, the lock state can be set atomically to the exact number of waiting
readers. This reduces the number of atomic writes, as the lock can be handed
over to all readers using a single store instruction.

Regarding the scheduling or rather enqueuing of new readers in the parking
lot, there are different options. The fairest option would be that a reader is
only allowed to join a shared queue element when it is at the end of the queue,
i.e., a reader is not allowed to skip the line and join earlier readers.

The other option would be to allow skipping the line and group all waiting
readers in a single element. As shown in Figure 16, a new reader can find
this element efficiently in the queue as we directly point to it in an additional
sharedWaiter pointer.

Previous work showed that the latter approach yields better performance
and scalability [9]. It also makes memory management more straightforward,
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Algorithm 5: Lock() implementation of eventual fair lock

1 // Based on Webkit's implementation [104]
2 void lock()
3 {
4 unsigned spinCount = 0;
5 for (;;) {
6 auto value = data.load(memory_order::relaxed);
7 if (!isLocked(value)) {
8 // Try to get the lock
9 if (data.compareExchange(value, value | exclusiveMask)) {

10 return;
11 }
12 }
13

14 // If no one is waiting: we spin some time first
15 if (!isMarkedAsWaiting(value) && ++spinCount < 40) {
16 yield();
17 continue;
18 }
19

20 if (!isLocked(value)) {
21 continue;
22 }
23

24 // Make sure that the parking bit is set
25 if (!isMarkedAsWaiting(value)) {
26 if (!data.compareExchange(value, value | waitMask)) {
27 continue;
28 }
29 value |= waitMask;
30 }
31

32 // As long as the lock is locked and marked as parking, we park
33 assert(isLocked(value) && isMarkedAsWaiting(value));
34 auto parkResult = ParkingLot::compareAndPark(&data, value);
35 if (parkResult.wasUnparked) {
36 switch (parkResult.token) {
37 case DirectHandoff:
38 // The lock never released and directly handed to us
39 assert(isLockedExclusive(data.load()));
40 return;
41 case Barging:
42 // Someone unparked us without handing us the lock.
43 // We now have to race for the lock
44 // but may lose to barging threads.
45 break;
46 }
47 }
48 }
49 }
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Figure 15: Eventual Fair Parking Lot – When parking, every thread adds itself to the queue
in the Parking Space belonging to the lock’s address. In contrast to the basic
parking lot, we now manage the waiting threads in a queue and store the time
when we want to become fair.
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Algorithm 6: Unlock() implementation of eventual fair lock

1 bool unlock() {
2 auto value = data.load();
3 assert(isLockedExclusive(value));
4

5 // Fast path
6 if (!isMarkedAsWaiting(value)) {
7 if (data.compareExchange(value, 0, std::memory_order::release)) {
8 return;
9 }

10 }
11 // Slow path: We must unpark someone
12 // We pass the lock specific unparkCallback (Listing 7) to the parking lot
13 ParkingLot::unparkOne(
14 &data,
15 [&](UnparkResult result) { return unparkCallback(result); });
16 }

as we need to keep at most two instances of shared queue elements: One for
newly arriving and one for departing readers. Thus, we can keep them pre-
allocated within the Parking Space.

3.4.3 Adding Cache Topology Awareness

The topology of modern CPUs brings new challenges when designing scal-
able systems. To further increase the number of cores, chip manufacturers
spread them across multiple NUMA sockets or CPU core complexes (CCX). In
Section 3.3, we already saw how much the cache latency increases when the
communication crosses a socket boundary or leaves a CCX in AMD’s Epyc.
The difference in latency can be over 300 ns in the architectures we analyzed.

Thus, when designing locks, it is critical for optimal performance to keep the
underlying CPU architecture and cache topology in mind to minimize cache
traffic [40].

Cache traffic does not only arise when we access a lock but also when we
process the data protected by the lock. For instance, in a B Tree, when getting
the lock for a node, we are also likely to access or change the content of the
node. Ideally, the lock and the node’s content are still in the cache of the
thread that gets the lock. By making a lock topology-aware, we can increase
the likelihood of that happening [40].
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Algorithm 7: Unlock or handover callback

1 // Extending Webkit's implementation to support read−write locks [104]
2 Token unparkCallback(UnparkResult& result)
3 {
4 // This callback is only called when we hold the lock
5 // and decide whether to unlock (allow barging) or handover the lock
6 // Thus, we own the lock at the moment, and the parking bit should be set
7 auto curValue = data.load();
8 assert(isLocked(curValue) && isMarkedAsWaiting(curValue));
9

10 if (result.didUnparkThread && result.timeToBeFair) {
11 // It's time to be fair: We hand the lock over to the waiter(s)
12 uint64_t newValue = 0;
13 if (result.exclusive) {
14 // Prepare exclusive handover
15 newValue = exclusiveMask;
16 } else {
17 // Prepare shared handover to numWaiters readers
18 newValue = result.numWaiters;
19 }
20 // Should we keep the parking bit?
21 if (result.mayHaveMoreThreads) {
22 newValue |= waitMask;
23 }
24 // Prevent pending writers from starvation
25 if (result.moreExclusiveWaiters) {
26 assert(result.mayHaveMoreThreads);
27 newValue |= exclusiveMask;
28 }
29

30 if (curValue == newValue) {
31 // NO−OP: lock does not have to be changed for this handover
32 return DirectHandoff;
33 }
34 data.store(newValue, memory_order::release);
35 return DirectHandoff;
36 }
37

38 // Unlock to allow barging
39 uint64_t newValue = result.mayHaveMoreThreads ? waitMask : 0;
40 data.store(newValue, memory_order::release);
41 return Barging;
42 }
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numExclusiveWaiters: 2
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RW-QueueElement

exclusive: true
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exclusive: true
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Figure 16: EventualFairParkingLot: Read-Write – We now distinguish between readers
and writers. Readers can wait on the same queue element for better read concur-
rency. Using an additional sharedWaiter pointer, readers can directly join the
shared RW-QueueElement without iterating over the list.

When we recap the topologies we saw in Section 3.3, we remember that
NUMA nodes and AMD’s CCX use separate L3 caches. As soon as we leave a
shared L3 cache, the latencies increase drastically. For this reason, we extend
our Parking lot to use a queue per L3 node instead of having a single global
queue per lock as shown in Figure 17. When we unlock or hand over a lock,
we prefer to keep it within our current L3 node. If no other thread is waiting
on our node, we move on to the next one. To avoid starvation of sockets, we
apply the same fairness pattern as for the normal queue: When our fairness
threshold time is reached, we also move on to the next socket.

The advantage of the parking lot approach over existing NUMA-aware
solutions is that we can include the topology awareness dynamically
into every system [63, 17, 19, 41]. We do not have to make our in-place
lock any bigger or know the system’s architecture at compile time.
We can identify the system’s architecture once at startup time when
we construct the global static parking lot. In Linux, the cores that
share the same L3 cache can be identified by reading the contents of
/sys/devices/system/cpu/cpu[X]/cache/index3/shared_cpu_list.
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Topology-Aware ParkingSpace
...

unsigned curPreferredNode

N1 lock head* tail*

padding
...

NN lock head* tail*

QueueElement QueueElement

QueueElement

Figure 17: Cache Topology Awareness – Instead of maintaining a single global waiting
list, we can also make our lock cache topology aware by grouping threads from the
same L3 cache or NUMA node. The cache topology of a system (i.e., the number of
required nodes) can be determined dynamically when the parking lot is constructed.

3.5 evaluation

In this section, we evaluate the performance of our extended parking
lot implementation (Section 3.4). We compare it to blocking locks from
the C++ standard library (std::mutex and std::shared_mutex), a fair
(tbb::queuing_rw_mutex) and an unfair spinlock (tbb::spin_rw_mutex) from
the Intel TBB library, and our basic parking lot implementation as described
in Section 2.2.4.

We run all experiments on Ubuntu 22.04 using GCC 12. We use three dif-
ferent processor architectures as described in Section 3.3: two x86 machines: a
single-socket Intel Xeon and a dual-socket AMD Epyc, and an AWS Graviton
3 representing ARM v8.

3.5.1 Fast path

First, we look at the raw performance counters of the locks to prove our
philosophy of extending the capabilities of a lock with a parking lot without
hurting its fast path. Table 5 shows that our parking lot uses the fewest instruc-
tions if there is no contention. Under contention, when 48 threads repeatedly
acquire the same lock, using a parking lot still uses the least number of in-
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Table 5: Performance counters normalized per lock acquisition – On Intel Xeon
6212U

Fast path (1 thread)

cycles instructions IPC

EventualFairParkingLot 63.25 33 0.52

UnfairParkLock 64.25 36 0.56

tbb::spin_rw_mutex 57.78 48 0.83

tbb::queuing_rw_mutex 67.03 99 1.48

std::mutex 55.67 73 1.31

std::shared_mutex 95.47 107 1.12

Contention (48 threads)

cycles instructions IPC

EventualFairParkingLot 5164.58 1343.62 0.26

UnfairParkLock 10786.66 1526.04 0.14

tbb::spin_rw_mutex 178751.99 21220.55 0.12

tbb::queuing_rw_mutex 150231.02 51179.31 0.34

std::mutex 19982.61 2156.43 0.11

std::shared_mutex 43695.15 4495.22 0.10

structions. While the spinning locks “burn” an increasingly high number of
cycles.

3.5.2 Contention Handling

In this experiment, we want to focus on micro contention and how the lock
deals with it. We let an increasing number of threads compete for the same lock.
The critical section itself is super short: increment a global variable. Ideally, the
performance stays as close to the single-threaded performance as possible.

In Figure 18, we see that the locks built on top of blocking futexes dominate
this experiment, while the spin locks are highly affected by cache contention.
At a certain point, all locks roughly plateau. Only the UnfairParkLock gets over-
taken by the EventualFairParkingLot at a high level of contention. We assume
that the thundering nature of the unfair lock causes this behavior: All threads
wait on the same condition variable and are released as a “thundering herd”.
In contrast, the eventual fair parking lot uses a barging queue, where only one
thread at a time is notified. For more details on the different locking algo-
rithms, see Section 3.2.4. While the thundering might increase the throughput
under low contention, the barging locks are seemingly more robust.
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Figure 18: Micro Contention – On Intel Xeon 6212U

3.5.3 Comparison with ARM

In Figure 19, we repeat the contention experiment of the previous
Section 3.5.2 on an ARM machine. We use an AWS-hosted Graviton 3 with
64 cores as described in Section 3.3.3. Despite the different memory models,
the locks behave similarly under contention. One difference is that the
throughput on the Graviton 3 already stabilizes at four threads. On the Xeon
machine, some locks performed better under light contention (less than 12

threads) before they reached a plateau. Also, the std::mutex that was almost
on par with the parking lots on x86 now falls behind in ARM. In summary, a
parking lot approach is a robust approach for our ARM representative.

3.5.4 Fairness

In this section, we analyze the fairness of the locks. We use the relaxed
definition of fairness, which claims that a lock is fair if the number of lock
acquisitions per thread is uniform over a given time.

To quantify the fairness of the different locks, we use Jain’s fairness in-
dex [39]:
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Figure 19: Micro Contention – On AWS Graviton3 (ARM)

(∑n
i=1 xi)

2

n ·∑n
i=1 xi

2 (1)

Whereas n is the number of threads and xi is the number of times thread ti

got the lock. A lock can score 1.0 in the best-case (fair) or 1/n in the worst-case
(maximal unfair).

In Figure 20, we show how the fairness of locks varies when increasing the
number of threads or the length of a critical section. We ran and measured ev-
ery setup for five seconds. We see that the fair and our eventual fair lock stay
perfectly fair in all cases. The unfair locks, however, and in particular the block-
ing mutexes, become extremely unfair when the length of the critical section
increases. When looking at the distribution of lock acquisitions in Figure 21,
one sees that most threads do not get the lock at all, i.e., they starve. In fact,
only one or two threads make up for the entire throughput of lock acquisitions.
The fair locks do not suffer starvation which is reflected by the compact boxes
in the plot. The starvation issue of the blocking mutexes is an artifact of their
barging nature (cf. Section 3.2.4).
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Figure 20: Fairness of locks in different scenarios – Some locks become very unfair with
increasing numbers of threads or longer critical sections (Intel Xeon 6212U)
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Figure 21: Lock Acquisitions per thread – Using different numbers of threads and increas-
ingly long critical sections. With unfair and blocking locks more and more threads
suffer from starvation (Intel Xeon 6212U)
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Figure 22: Finding an optimal fairness threshold – When setting the fairness threshold
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throughput at the cost of fairness (score is printed next to every point).
(Intel Xeon 6212U)
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3.5.5 Tradeoff: Throughput vs Fairness

In this section, we want to find the optimal setting for the fairness threshold
time. When a thread is parked for longer than this time, the unlocking thread
hands the lock directly over to the waiting thread. When the threshold time still
needs to be reached, it notifies the waiting thread but does not hand over the
lock to the waiter. The thread unlocks the lock and makes it available to grab
for the thread that reaches the lock first. This so-called “barging” allows higher
throughput as another thread that is more “ready” could take the lock first. A
potential context switch of the notified thread does not stall the progress of
the lock. Setting the threshold time allows trading fairness for throughput to a
certain degree.

To figure out the optimal setting, we vary the length of the critical section and
track both the resulting throughput and the fairness. We run the experiment
with different fairness threshold times ranging from 0 (i.e., every unlocking is
a fair handover) to a very high value that never does handovers (simulating
a purely barging lock). In Figure 22, we see that the throughput is very poor
when we are (too) fair, and the critical section is short. Also, in the case of short
critical sections, even unfair locks are reasonably fair. Vice versa, with longer
critical sections, the overhead of fair handovers diminishes, and the barging
locks become noticeably unfair.

Based on this experiment, we find an optimal threshold setting of 1 ms. At
this point, the throughput begins to plateau, and the fairness starts to drop.
This result confirms the 1 ms setting used by WebKit and Go [88].

We plot the throughput versus the achieved fairness score in Figure 23 to
put the different fairness settings into perspective. Almost all locks achieve
the same throughput, but the fairness score on the y-axis varies a lot. The
blocking mutexes from the standard library are highly unfair in this setup. The
EventualFairLock is—using the optimal setting as identified above—perfectly
fair and almost on par with the throughput of the slightly less fair spin locks
without creating the typical spinning problems like CPU burning or priority
inversion in the scheduler.

3.5.6 Topology Awareness

In this experiment, we want to analyze the performance benefits of cache
topology awareness as described in Section 3.4.3. We run those experiments
on the dual-socket AMD Epyc machine with 16 CCX, i.e., 16 separate L3 caches.



56 deeper dive into latches: adding fairness and cache topology awareness

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000

throughput

F
a

ir
n

e
s
s
 S

c
o

re
 (

1
 =

 p
e

rf
e

c
tly

 f
a

ir
)

 EventualFairParkingLot

 std::mutex

 std::shared_mutex

 tbb::queueing_rw_mutex

 tbb::spin_rw_mutex

 UnfairParkLock

Figure 23: Fairness vs. Throughput – We compare different fairness settings of our lock
with different fairness scores and throughputs of others.
Critical section length = 100 microseconds (Intel Xeon 6212U, 48 Threads)



3.5 evaluation 57

8
0

 K
B

  C
ritic

a
l S

e
c
tio

n
8

0
0

 K
B

  C
ritic

a
l S

e
c
tio

n
8

 M
B

  C
ritic

a
l S

e
c
tio

n

2 16 32 64 128 192 256

200k

400k

600k

0

20k

40k

60k

80k

2.5k

5k

7.5k

threads

th
ro

u
g

h
p

u
t

 Cache-Aware PL

 Cache-Oblivious PL

 std::mutex

 std::shared_mutex

 tbb::queuing_rw_mutex

 tbb::spin_rw_mutex

 Unfair PL

Figure 24: Topology Awareness – Measuring the effects of topology awareness when pro-
cessing critical sections on a dual-socket machine with 16 CCXs (separate L3
Caches) (AMD Epyc 7713).



58 deeper dive into latches: adding fairness and cache topology awareness

In Figure 24, we plot the throughput for increasing threads and different criti-
cal section sizes. A lock protects a vector of contiguous 64-bit integers. During
a critical section, a thread increments all integers. The number of tuples ranges
from 10k (80 KB) to 1 million (8 MB). For reference, Umbra’s default (and min-
imal) page size is 64 KB [77].

All used locks, except for our cache-aware parking lot, are cache-oblivious.
For reference, we also include the numbers of our parking lot where the cache-
awareness is disabled (i.e., we only use a single global waiting list instead
of one per L3 node). We see that the performance of the cache-oblivious locks
degrades when adding more threads of other CCX with separate L3 caches. We
see another drop in performance when adding threads from the second socket
(step from 64 to 128 threads). After this point, we have saturated all physical
cores and use SMT (AMD’s “hyper-threads”’). The performance plateaus, as
the core-to-core latencies do not get significantly worse (cf. Section 3.3.2).

In contrast, to the cache-oblivious locks, our cache-aware parking lot can
maintain a significantly better throughput. Shipping the lock ownership to
threads on the same L3 cache node avoids expensive cache misses as the lock
and the protected data are likely still cached. For a big critical section size
of 8 MB, the tbb::spin_rw_mutex outperforms our lock as we cannot keep the
lock on the same L3 node that long anymore due to fairness reasons. When
looking at the fairness score of the spin lock we see a drop to only 0.27 in
this scenario, while the parking lot stays almost perfectly fair. This unfairness
introduces cache-friendly access patterns by accident. The spinlock also saves
the cost of context switches which occur in the blocking locks now that the
critical sections are long enough to increase the likelihood of a waiting thread
starting sleeping.

3.5.7 Summary

We identified different dimensions and goals for locks in Section 3.2.8. So
far, we have only summarized the high-level properties of the different locks.
Now that we have tested the locks in various experiments, we can extend the
previous table by practical performance implications. Table 6 summarizes our
concrete results and highlights the strengths and weaknesses of every lock.

We saw that fairness is vital to keep the tail latencies low. However, strict
fairness in combination with blocking contention handling introduces a hefty
performance penalty due to expensive context switches. To avoid this overhead,
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we relax the fairness in the parking lot to eventual fairness. We still get the
benefits of low tail latencies without risking the starvation of any threads while
keeping the high throughput of fast unfair locks. A spinning fair lock, like a
Queuing-RW-Mutex, is no viable alternative for a database system due to the
inherent problems of spinlocks when it comes to contention.

With the parking lot approach, we can make underlying locks fair without
adding any in-place space. Also, the fast path in the lock acquisition is not
affected when backing a lock up with a parking lot.

Another benefit of a parking lot is that we can organize the waiting threads in
a cache-friendly way for better performance. During the startup of the database
system, when we construct the global parking lot, we can dynamically identify
the underlying cache topology of the machine and construct our parking spaces
accordingly. Having a separate waiting queue for every L3 cache node resulted
in superior performance in our experiments due to the reduced cache misses.
When a lock is kept on the same L3 cache node, the lock and the protected data
itself are very likely still in the cache for the following thread. The eventual
fairness implementation naturally guarantees that no L3 cache node starves.

In summary, we conclude that our eventual fair parking lot implementation
meets all the goals we identified in Section 3.2 and thus is an attractive option
for a database system.

3.6 related work

Despite the importance of scalability and concurrency for a system, there is
surprisingly little research on latches in database systems [6]. The database
community focuses mainly on the synchronization of index structures or high-
level concurrency control [32, 59, 103, 22, 50, 82].

In contrast, the system’s community studied locks extensively over the past
decades and also made advances in reflecting modern architectures [13, 93, 80].

Over the last years, there were several proposals for making locks NUMA-
aware [63, 84, 40, 17]. However, those locks do not integrate perfectly into
database systems, as they were predominantly designed for use in kernel space
and rely on spinning or use a lot of in-place memory [19]. There are also adap-
tive NUMA-aware locks that fall back to blocking, but they require additional
ad-hoc memory allocations [41].
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Our eventual fair parking lot generalizes the concept of NUMA awareness
to L3 cache awareness. It also supports arbitrary cache topologies like AMD’s
CCX groups.

Another aspect we cover in this chapter is the fairness of locks. Various pro-
posals exist for fair locks in academia [49, 101, 4, 64]. Filip Pizlo was seemingly
the first who implemented a relaxed version of fairness using an eventual fair
parking lot [105]. The language Go adopted this concept to solve the problem
of mutex starvation [31]. Our implementation builds upon the ideas of the
original Webkit parking lot and extends it to support read-write mutexes and
cache awareness.

3.7 conclusion

Locks and synchronization are very complex topics: The various workloads,
machines, and cache topologies make it almost impossible to find the one lock
to “rule them all”.

However, in this chapter, we analyzed different locks and setups and identi-
fied a clear recommendation when building a lock for a general-purpose appli-
cation like a database system.

The essential requirement for a database lock is that it should be small and
fast enough to enable fine-grained concurrency for all data structures. We con-
clude that a 64-bit atomic integer is enough to implement a read-write lock
that can protect all data structures we have in a DBMS. When protecting hi-
erarchical data structures like trees, we recommend using an additional 64-bit
field storing the lock’s version to enable fast optimistic lock coupling without
suffering from read-read contention. Our experiments showed that this setup
is already optimal in the case of no contention.

With lock contention, new challenges arise. The first question is whether
to spin or use a blocking approach. In this case, our experiments conclude
that excessive spinning in user space is inherently dangerous and leads to
problems such as heavy cache pollution, priority inversion in the scheduler,
and waste of resources. We recommend relying on a kernel-supported blocking
mechanism. Since the blocking locks of the standard library are very space-
consuming and often slightly slower in the fast path, we recommend using a
central infrastructure like a parking lot to add robust contention handling to
every lock without additional in-place storage.
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In the previous chapter, we already showed how a basic parking lot imple-
mentation works. We further extended the capabilities of a parking lot in this
chapter and integrated appropriate fairness guarantees and cache topology
awareness. Adding these features without a global parking lot would hardly
be possible without hurting the uncontested fast path or increasing the local
space consumption.

Our results indicate that the performance and versatility of a parking lot-
based lock are ideal for a modern database system.



4 A P P LY I N G O P T I M I S T I C LO C K I N G
I N A N M V C C DATA B A S E S Y S T E M

Excerpts of this chapter have been published in [48].

4.1 motivation

After analyzing the different locks in the previous sections, we saw the supe-
rior performance of optimistic locking. We now show how optimistic locking
can be applied to speed up an MVCC database system. As a baseline for our
implementation, we use the MVCC database system HyPer [42, 78]. However,
the techniques apply to any database system or tree-like index structure.

In this chapter, we revisit and rework the key components of a database
system to make the entire system more scalable. First, we show how the ta-
bles can be synchronized optimistically allowing fast scans with hardly any
overhead and efficient concurrent updates (Section 4.2). Second, we introduce
optimistic index scans for optimal performance (Section 4.3). Then, after syn-
chronizing the physical data storages of the database, we focus on the central
MVCC logic, namely the transaction housekeeping. In Section 4.4, we adapt
the management of MVCC transactions in HyPer to make it more scalable.

After enabling concurrent transactions, we suddenly are also more likely
to run into serialization aborts caused by conflicting concurrent transactions.
Therefore, we describe and discuss different strategies to handle high rates
of aborts, i.e., logical contention in a transactional workload. We will briefly
evaluate all changes in Section 4.6.

4.2 optimistic synchronization of tables
scans and tuple accesses

To show how we can best apply optimistic locking to tables, we first revisit
the principle of MVCC and its implementation. MVCC is a well-known con-

63
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Figure 25: Adding optimistic locking to MVCC in HyPer

currency control technique used by many popular systems such as PostgreSQL
or Oracle [109]. Figure 25 shows a table layout with MVCC. Every tuple can
have a chain of versions stored in the VersionVector. If no version exists, the
version pointer is null. Otherwise, transactions must retrieve the latest visible
version1.

In the following, we want to introduce an MVCC-specific optimization tech-
nique that was first introduced in HyPer [78]. The original purpose of this
optimization is to optimize the read performance of scans. However, it is also
an excellent fit to combine it with optimistic locking.

For faster scans, the tuples are grouped in blocks. For every block, the system
maintains a summary, i.e., a range of the potentially versioned tuples2. In
Block 1, there is no versioned tuple, which is indicated by an empty interval
([0, 0)]). The version interval is encoded at the beginning of a block and allows
the readers to process the entire block at full speed without checking for any
versions. In Block 2, the first versioned tuple is at offset 1, and the last is at
offset 3. Hence, the interval is [1, 4). Only for those tuples that are within this
interval, a reader must check for versions.

1 The version of a tuple is visible to a reader when it was committed before the read transaction
has started, i.e., its timestamp is smaller or equal to the start timestamp of the transaction

2 A versioned tuple is a tuple with multiple versions. In contrast, an unversioned tuple exists in
a single version that is visible to all transactions.
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For optimal read performance, it is essential to keep the number of ver-
sions as low as possible. A version should be garbage collected as soon as
it is no longer required. Garbage collection can either happen on a tuple- or
transaction-level [106]. HyPer, for instance, implements the latter approach
and removes all versions of a transaction once its commit timestamp is smaller
than the start timestamp of all active transactions. Thus, the number of ac-
tive versions highly depends on the transaction characteristics. Long-running
transactions like complex OLAP queries generally lead to more active versions.

The ratio of versioned tuples can be estimated by considering the time of
the longest-running transaction and the update rate. Assuming the slowest
transaction takes 1 s and the database is updated at a rate of 10,000 TX/s.3

Until such a long-running query was completed, about 10,000 versions would
accumulate. Thus, at most, 10,000 tuples are versioned at the same time. If the
entire state contains 10 million tuples, that would translate to a ratio of 0.01 %
of versioned data. Neumann et al. show that a ratio like this almost has no
impact on scan performance [78]. They also argue that realistic scenarios have
significantly lower update ratios.

We have prototyped this approach by implementing it in HyPer. Throughout
the remainder of the chapter, we will refer to this implementation as HyPer-
Parallel. However, the described optimizations and techniques apply to every
system that uses MVCC. In fact, most MMDBs use MVCC and thus could
benefit from this approach.

For optimistic locking, we extend MVCC by adding a VersionLock to protect
each block. A VersionLock consists of a 64-bit version counter that encodes the
lock state of the block in its highest bit.

When a reader processes a block, it retrieves its version in the beginning
and validates it at the end to ensure that it has read a consistent state. If
a concurrent writer has altered the block, the reader must process the block
again. In cases when the block is already locked, the reader waits until it is
released again. Using C++ templates and lambdas, this can be implemented
by wrapping the existent scan code of a block into a lambda and pass it as a
template argument to the VersionLock as shown in Listing 8. This optimistic
latching comes at almost no additional cost for the reader since it only needs
to check the version counter twice for every block, i.e., every 1024 tuples.

However, since we only latch optimistically, we can still experience race con-
ditions when following the version chains. A version could be garbage col-

3 The numbers are taken from the update-heavy AIM workload that we discuss in [48].
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Algorithm 8: Passing existing scan code as a lambda to VersionLock

1 <template typename Callback>
2 void readOperation(const Callback& scanBlock) {
3 restart:
4 uint64_t vStart = getVersion();
5 if (isLocked(vStart))
6 // Block is currently locked by a writer.
7 goto restart;
8 scanBlock();
9 uint64_t vEnd = getVersion();

10 if (vStart != vEnd) {
11 // A concurrent writer has altered the block.
12 goto restart;
13 }
14 }

lected while a reader tries to dereference its pointer. Therefore, we protect the
access of a version chain by setting a lock bit in the head pointer of the version
chain. In Figure 25, subscriber 00008 is currently modified and thus its version
chain is locked.

If the head pointer points to a version chain, we set its lock bit in a single
store instruction. This is cheap compared to following the version chain, which
results in random memory accesses. The cost of acquiring the lock while ac-
cessing a versioned tuple is hidden by the memory latencies that occur while
loading the version. Fortunately, as shown above, the percentage of versioned
tuples is negligibly small and thus, locking tuples only happens in rare cases.

4.3 optimistic synchronization of index
structures

Besides the raw storage layer of a table (in our case, a column store), the in-
dex structures need to be synchronized. We synchronized HyPer’s primary
index structure, the Adaptive Radix Trie (ART), using optimistic lock cou-
pling [58, 59]. This technique synchronizes concurrent inserts, deletions, and
lookups optimistically. Like the blocks in the table, every node gets a version
lock. When the version of a node was modified, the operation restarts from the
root. Again, we need some precautions regarding memory accesses since we
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only lock optimistically. Thus, we cannot release memory immediately when
removing a node, as it might still, be used by concurrent operations. We use
epoch-based memory management that keeps nodes intact as long as other
operations might access them. Nodes are marked as obsolete and are only
deleted when all active operations left the current epoch.

While point lookups such as inserts, key lookups, and deletes can be synchro-
nized efficiently using (optimistic) lock coupling [59], range scans need some
more precautions and considerations. In a range scan, we traverse the tree un-
til we find the first qualifying element on the left side. Then we “produce” all
matching elements to our query pipeline. With pessimistic lock-coupling, we
can guarantee that all produced output tuples are valid. When we only lock
the nodes optimistically, we must buffer the elements first, as we might have
read inconsistent data. Only when the optimistic validation has succeeded can
we produce all output tuples. When the validation fails, we must discard all
read elements and restart the scan. To avoid starvation, we perform range
lookups in chunks of up to 1024 tuples as shown in Figure 26 and Listing 9.
Each scan chunk stops when it finds the last qualifying element or when the
output buffer is full. In the latter case, the iterator stores the key of the last
read element for the next call.

A valid alternative would be to use hybrid locks (cf. Section 2.2.5): especially
for B Trees with larger nodes as HyPer’s ART. Traversing to the leaves can
be done efficiently using optimistic lock coupling. Only when reaching and
reading the leaf nodes would the system acquire the node’s lock shared. At
this point, read-read contention is unlikely or can be neglected compared to
the cost of scanning an entire page. Query processing itself would also become
easier as all read tuples can be directly pushed into the data pipelines without
having to deal with restarts. When the tuples were read pessimistically, one
can safely push them into query pipelines. With optimistic locking, one must
buffer them first, as the read data might become invalid and should not end
up in the query pipelines, as reverting this is generally not possible.

4.4 scalable transaction management

Finally, we revisit the design of transaction management in MVCC. In gen-
eral, transactions can be categorized into two lists: one for the active, currently
running transactions, and one for the committed transactions. A committed
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Algorithm 9: Optimistic range scans in trees

1 struct FindStart {
2 byte* startKey
3 uint64_t keyLength
4 bool& needRestart
5 CopyHelper& copy
6 };
7

8 void FindStart::findStart(node, parent, pVersion, level) {
9 if (node−>isLeaf())

10 if (node−>key>=startKey))
11 copy.leaf2Results(node)
12 return
13

14 // Lock coupling
15 v = node−>readLock(needRestart)
16 if (needRestart)
17 return
18 parent−>unlockRead(pVersion, needRestart)
19 if (needRestart)
20 return
21

22 // Extract (copy!) all matching (child,key) pairs
23 startLevel = (keyLength > level) ? key[level] : 0

24 childrenKeys=node−>getChildrenKeyPairs(startLevel,v,needRestart)
25 if (needRestart)
26 return
27

28 // Recurse
29 foreach ( (child,key) in childrenKeys) {
30 if (key == startKey)
31 findStart(child, node, v, level + 1)
32 else
33 copy.recursively2Results(child)
34 if (needRestart)
35 return
36 }
37 // Validate read data (version)
38 node−>unlockRead(v, needRestart);
39 }
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level N level N ... level N level N

(2) find start* ... (3) find end*

level 1level 1 level 1

root

startKey aaaXXX
endKey aaaYYY
resultSize 64-bit
resultArray <TIDS>

*recurse down and copy values of matching keys to result array

Start range End range

(1) lookup
common prefix

Figure 26: Optimistic Range Scans – When the validation of a node fails, the scan is
restarted. To avoid frequent restarts, the maximum number of retrieved results
is limited to 1024. If there are more matching tuples, the scan has to be resumed
with the last matching key as the new startKey.
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Active Transactions (Thread 3)

TransactionId StartTs Actions
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Figure 27: Using thread local lists to manage and garbage collect transactions

transaction can be discarded when its versions are no longer required by any
active transaction, i.e., there is no active transaction that had started before the
transaction was committed.

Synchronizing linked lists requires the use of global locks, which do not scale
well for a large number of concurrent transactions. Thus, every thread manages
lists of active and committed transactions in our implementation. Figure 27

shows an example of these lists.

To decide which of the committed transactions can be garbage collected, we
need to know the smallest start timestamp of all active transactions. We solve
this by maintaining a global array that contains the minimal start timestamp
for each thread. We can garbage collect all transactions that were committed
before the oldest transaction started.

More components that need synchronization are the two 64-bit MVCC coun-
ters: One starts from 0 to assign commit-timestamps, and one starts from 263.
By starting from 263, we guarantee that temporary, uncommitted versions are
not visible to any active transaction that starts at the latest commit timestamp.
In our current implementation, we made these counters atomic. A global
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counter may be a bottleneck under high throughput. However, in workloads
such as Huawei-AIM, transactions are expensive enough such that there is no
significant contention on the global counter. Using a global counter for trans-
action management is a common practice even in high-performance key-value
stores [87].

For better performance, we only access the counters lazily, i.e., right before
we start to write a new version. Read-only transactions will never update the
counters. In future work, we plan to implement more sophisticated techniques
to handle the MVCC timestamps [62, 109].

4.5 handling logical contention and data
skew

The performance of MMDBs can collapse when multiple transactions con-
tend on the same data [75]. To ensure consistency, transactions are executed
(almost) serially using locks and aborts. This leads to idling cores and poor
performance. Competing threads constantly invalidate cached data. In par-
ticular, optimistic concurrency control systems like MVCC are vulnerable to
contention since conflicting transactions are aborted [62]. The changes made
by aborted transactions have to be rolled back, which further increases the level
of contention on the data.

One way to avoid physical contention is to assign threads exclusively to dis-
joint data partitions. Thereby, threads do not interfere with each other, and
there is no physical contention on the data. This approach is used by both
Flink and the hand-crafted C++ implementation of the Huawei-AIM workload.
For this workload, this is a reasonable solution since the data is perfectly par-
titionable, and there are only single-row updates. In general, however, parti-
tioning has two significant drawbacks: Finding a good partitioning can be dif-
ficult, and executing cross-partition transactions introduces a significant over-
head [75].

Like many MMDBs, HyPer follows the more general-purpose approach of
not partitioning data. Thereby, it supports workloads that cannot be easily par-
titioned. The managed state is globally consistent and not only per partition.
This allows for multi-row transactions, which are limited or impossible in par-
titioned systems. With MVCC and optimistic locking, multi-row transactions
can benefit performance due to caching effects.
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A drawback of non-partitioning MMDBs is their vulnerability to skewed
workloads. In contrast to partitioned (streaming) systems, threads do not ex-
clusively own parts of the table. Thus, they all compete for the same con-
tended data and locks. This can lead to several aborts due to serialization
errors and dramatically decreased performance. Without regulation, the per-
formance might drop below the single-threaded throughput due to the high
number of aborts.

A common approach to tackle contention is to back off the number of active
threads for a random duration, i.e., send them to sleep. The maximum backoff
time should be chosen adaptively to the workload. We implemented a backoff
strategy similar to the Cicada system that uses hill climbing to determine the
optimal backoff time depending on change in throughput [62].

4.6 performance evaluation

This section evaluates the performance of integrating optimistic locking into
HyPer. We keep this evaluation brief as we already evaluated optimistic lock-
ing in database workloads in Section 2.4. Additionally, we already studied the
OLTP throughput of HyPerParallel extensively in our comparison with dedi-
cated streaming systems and would like to point the reader to this paper [48].

This section will focus on two new aspects. First, we analyze the handling
of conflicting transactions. And second, now that we have discussed the im-
plementation of optimistic range scans in Section 4.3, we run TPC-H with (pri-
mary key) indexes enabled to see its effect compared to pessimistic locks.

We ran the experiments on an Ubuntu 17.04 machine with an Intel Xeon E5-
2660 v2 CPU (2.20 GHz, 3.00 GHz maximum turbo boost) and 256 GB DDR3

RAM. The machine has two NUMA sockets with 10 physical cores (20 hyper-
threads) each, resulting in 20 physical cores (40 hyper-threads). The sockets
communicate using a high-speed QPI interconnect (16 GB/s).

4.6.1 Read Scalability of Optimistic Locking

After analyzing the write scalability, we now look at the read performance of
optimistic locking compared to pessimistic locking in Figure 28. We compare
optimistic locking to a spinlock (tbb::spin_rw_mutex) and an OS-supported
std::shared_mutex. Therefore, we replace all table and index locks in HyPer
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Figure 28: TPC-H SF10 – The scalability of the pessimistic latches suffers from read-read
contention in the used index structures

with the respective lock implementation. We run TPC-H scale factor 10 with an
increasing number of analytical threads. Optimistic locking scales almost per-
fectly, while the other locks suffer from “read-read contention” in the primary
key indexes. As optimistic locking never does atomic writes during reading, it
does not create any cache contention during reading.

4.6.2 Handling of Skew and Serialization Conflicts

In this experiment, we study the effect of skew on the event processing per-
formance of the different systems. Therefore, we use the Huawei-AIM work-
load, which maintains call statistics of users [8]. It maintains a table of 10

million users with up to 546 aggregates (columns) per user. Every call event
updates the stats of a single user. Thus, there is only a conflict if two transac-
tions try to update the same customer concurrently.

When following a uniform distribution, there should hardly be any conflicts.
However, we presume that, in reality, the events are skewed (i.e., there will
be people that make significantly more calls than others). Therefore, we test
the skew handling capabilities of our system with events following different
Zipfian distributions.
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Figure 29: Skew handling in HyPer – Throughput of skew handling techniques using 10
threads with increasing skew

Figure 29 shows the throughput for different skew handling techniques with
increasing skew relative to their performance under a uniformly distributed
workload. With NoSkewHandling, HyPerParallel becomes vulnerable to seri-
alizability issues. If two transactions try to update the same subscriber concur-
rently, only one can succeed, and the other one gets aborted by the optimistic
concurrency control. With increasing skew, this leads to an increasing number
of aborts due to conflicts. Our experiments reached this point at a Zipf factor
of 1.0. Without skew handling, the throughput is almost halved. The perfor-
mance drops significantly at the highest skew level (Zipf factor of 1.25) due to
the high number of aborts. On average, each transaction has to be executed
three times until it succeeds.

To reduce the high number of aborts, we have added a random backoff to the
event processing (cf. RandomBackoff in Section 4.5). The maximum backoff
time is adapted based on the current throughput. For a Zipf factor of 1.25,
this approach reduces the number of aborts by a factor of four and increases
the throughput by more than 15×. This suggests that the number of aborts
significantly impacts the throughput.
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For a deeper investigation of this hypothesis, we designed a third contention
handler (NonConflictingAssignment) that guarantees execution without any
logical conflicts that would require aborts. A conflict can only occur when two
transactions try to update the same record. By using a fixed (modulo-based)
assignment from subscribers to threads, we ensure that we will never end up
in a situation where two or more threads try to update the same subscriber.
Note that there still might be physical contention on the indexes and locks
since we do not partition the underlying data. For instance, if a thread updates
Subscriber 1 and another thread updates Subscriber 2, there is no logical (seri-
alization) conflict. However, both threads might compete for the same latches
as the subscribers reside in the same physical block (cf. Section 4.2). The
results verify our hypothesis that aborting transactions is expensive: NonCon-
flictingAssignment achieves a speedup of 136% for the highest contention level.
Physical contention, such as latching or accessing index structures, turns out
not to be an issue and instead leads to beneficial caching effects.

Despite the superior performance of NonConflictingAssignment, we would
recommend implementing it along with a RandomBackoff mechanism. This
gives the system more flexibility for other workloads that might not allow Non-
ConflictingAssignment. For instance, in cases where there are more complex
transactions that update multiple rows. The performance of NonConflictingAs-
signment is not affected by adding RandomBackoff since RandomBackoff only
“backs off” when there is a conflict.

4.7 summary

This chapter showed how optimistic locking could be integrated into an
MVCC database system. We covered the different scalability choke points
when transforming HyPer into a scalable OLTP system. We showed how table
scans, tuple accesses, and index scans could be optimistically synchronized.
Then, we redesigned the transaction management of HyPer to make it scalable
for concurrent transactions.

Those steps are crucial when making an MVCC database system ready for
high real-time update rates without sacrificing the read-only performance. All
physical data structures are now prepared for mixed read and write accesses.
However, running full HTAP workloads still poses new challenges to the sys-
tem because of the inherent problems of MVCC with mixed workloads that
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contain relatively long-running transactions. The next chapter focuses on this
challenge, mainly on handling MVCC versions efficiently in the presence of
long-running queries.



5 S C A L A B L E G A R B A G E C O L L E C T I O N
F O R I N - M E M O R Y M V C C S Y S T E M S

Excerpts of this chapter have been published in [7].

To support Hybrid Transaction and Analytical Processing (HTAP), database
systems generally rely on Multi-Version Concurrency Control (MVCC). While
MVCC elegantly enables lightweight isolation of readers and writers, it also
generates outdated tuple versions, which, eventually, have to be reclaimed.
Surprisingly, we have found that in HTAP workloads, this reclamation of old
versions, i.e., garbage collection, often becomes the performance bottleneck.

It turns out that in the presence of long-running queries, state-of-the-art
garbage collectors are too coarse-grained. As a consequence, the number of
versions grows quickly slowing down the entire system. Moreover, the stan-
dard background cleaning approach makes the system vulnerable to sudden
spikes in workloads.

In this chapter, we propose a novel garbage collection (GC) approach that
prunes obsolete versions eagerly. Its seamless integration into the transac-
tion processing keeps the GC overhead minimal and ensures good scalability.
We show that our approach handles mixed workloads well and also speeds
up pure OLTP workloads like TPC-C compared to existing state-of-the-art ap-
proaches.

5.1 motivation

Multi-Version Concurrency Control (MVCC) is the most common concurrency
control mechanism in database systems. Depending on the implementation,
it guarantees snapshot isolation or full serializability if complemented with
precision locking [78]. MVCC has become the default for many commercial
systems such as MemSQL [72], MySQL [74], Microsoft SQL Server [96], Heka-
ton [51], NuoDB [79], PostgreSQL [89], SAP HANA [25], and Oracle [81] and
state-of-the-art research systems like HyPer [42] and Peloton [86].

The core idea of MVCC is simple yet powerful: whenever a tuple is updated,
its previous version is kept alive by the system. Thereby, transactions can work

77
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Figure 30: MVCC’s vicious cycle of garbage – Old versions cannot be garbage collected
as long as there are long-running transactions that have to retrieve them

on a consistent snapshot of the data without blocking others. In contrast to
other concurrency control protocols, readers can access older snapshots of the
tuple, while writers are creating new versions. Although multi-versioning itself
is non-blocking and scalable, it has inherent problems in mixed workloads.
If there are many updates in the presence of long-running transactions, the
number of active versions grows quickly. No version can be discarded as long
as it might be needed by an active transaction.

For this reason, long-running transactions can lead to a “vicious cycle” as de-
picted in Figure Figure 30. During the lifetime of a transaction, newly-added
versions cannot be garbage collected. The number of active versions accu-
mulates and leads to long version chains. With increasing chain lengths, it
becomes more expensive to retrieve the required versions. Version retrievals
slow down long-running transactions further, which amplifies the effects even
more. Write transactions are initially hardly affected by longer version chains
as they do not have to traverse the entire chain. They only add new versions
to the beginning of the chain. Thereby, the gap between fast write transactions
and slow read transactions increases, quickly producing more and more ver-
sions. At some point, the write performance is also affected by the increasing
contention on the version chains as the insertion of new versions is blocked
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Figure 31: Practical Impacts – The system’s performance drops within minutes in a mixed
workload using a standard garbage collection strategy

while the chain is latched for GC. The system also loses processing time for
transactions when the threads clean the versions in the foreground.

In Figure Figure 31 we visualize the practical implications of the described
“vicious cycle” by monitoring an MVCC system in the mixed CH benchmark1.
The OLTP thread continuously runs short-lived TPC-C style transactions, while
the OLAP thread issues analytical queries. We see that the read performance
collapses within seconds, while the writes are slowed down by long periods
of GC. With higher write volumes or more concurrent readers, the negative ef-
fects would be even more pronounced. However, even low-volume workloads
can run into this problem as soon as GC is blocked by a very long-running
transaction (e.g., by an interactive user transaction).

1 Section 5.2.2 describes this experiment in more detail.
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The fact that GC is a major practical problem, causing increased memory
usage, contention, and CPU spikes, has been observed by others [30, 61]. Nev-
ertheless, in comparison with the number of papers on MVCC protocols and
implementations, there is little research on GC. Except for of SAP HANA [52]
and Hekaton [51], most research papers discuss GC only cursorily.

In this chapter, we show that the garbage collector is a crucial component of
an MVCC system. Its implementation can have a huge impact on the system’s
overall performance as it affects the management of transactions. Thus, it
is important for all classes of workloads—not only mixed, “garbage-heavy”
workloads [48, 47]. Our experimental results emphasize the importance of GC
in modern many-core database systems.

As a solution, we propose Steam—a lean and lock-free GC design that out-
performs previous implementations. Steam prunes every version chain eagerly
whenever it traverses one. It removes all versions that are not required by any
active transaction but would be missed by the standard high watermark ap-
proach used by most systems.

The remainder of this chapter is organized as follows. Section Section 5.2
introduces basic version management and garbage collection in MVCC systems
and challenges regarding mixed workloads and scalability. We then provide an
in-depth survey of existing GCs and design decisions in Section Section 5.4. In
Section Section 5.3, we propose our scalable and robust garbage collector Steam
that decreases the vulnerability to long-running transactions. We present our
experimental evaluation of Steam in comparison to different state-of-the-art
GC implementations in Section Section 5.5. Lastly, we conclude with related
work on HTAP workloads and garbage collection in Section Section 5.6.

5.2 versioning in mvcc

MVCC is a concurrency control protocol that “backs up” old versions of tu-
ples, whenever tuples are modified. For every tuple, a transaction can retrieve
the version that was valid when the transaction started. Thereby, all transac-
tions can observe a consistent snapshot of the table.

The versions of a tuple are managed in an ordered chain of version records.
Every version record contains the old version of the tuple and a timestamp
indicating its visibility. Under snapshot isolation, a version is visible to a trans-
action if it was committed before its start. Hence, the timestamp equals the
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Figure 32: Long version chain – Containing many unnecessary versions that are not GC’ed
by traditional approaches

transaction’s commit timestamp or a high temporary number, if it is still in-
flight [78].

MVCC can maintain multiple versions (snapshots) of a tuple, whereas every
update adds a new version record to the chain. The chain is ordered by the
timestamp to facilitate the retrieval of visible versions.

Figure Figure 32 shows a version chain for a tuple that was updated multiple
times. Since Transaction B and C started before v4 was committed, they have to
traverse the chain (to the very end in this case) to retrieve the visible version v1.

5.2.1 Identifying Obsolete Versions

Before discussing efficient garbage collection, we revisit when it is safe to
remove a version. In general, a version must be preserved as long as an active
transaction requires it to observe a consistent snapshot of the database. Es-
sentially this means, that all versions that are visible to an active transaction
must be kept. It does not matter whether the versions will be actually re-
trieved since the database system generally cannot predict the accessed tuples
of a transaction—especially in the case of interactive user queries. Therefore,
it always has to keep the visible versions as long as they could be accessed in
future.

The set of visible versions is determined by the currently active transactions.
When a version is no longer needed by any active transaction, it can be re-
moved safely. Future transactions will not need them because they will already
work on newer snapshots of the database. Hence, the required lifetime of every
version only depends on the currently active transactions.
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In the best case, a garbage collector can identify and remove all unneces-
sary versions. Looking at Figure 32: version record v1 must not be garbage
collected because it is required by Transactions B and C. All the preceding
version records could be garbage collected safely and the length of the chain
could be reduced significantly from 1000 to only 1 version. However, tradi-
tional garbage collectors only keep track of the start timestamp of the oldest
active transaction. Thereby, they only get a crude estimation of the reclaimable
version records. Essentially, only the versions that were committed before the
start of the oldest active transaction are identified as obsolete. This leads to
several “missed” versions in the case of multiple updates and long-running
transactions. To overcome this problem, we propose a more fine-grained ap-
proach in Section 5.3.3 that prunes the unnecessary in-between versions.

5.2.2 Practical Impacts of GC

Figure 31 demonstrates the practical weaknesses of a standard GC. For this
experiment, we ran the mixed CH benchmark which combines the transac-
tional TPC-C and analytical TPC-H workload [11]. One OLAP and OLTP
thread are enough to overstrain the capabilities of a traditional high watermark
GC. Having only one warehouse, the isolated query execution times are reason-
ably fast (5-500 ms). However, compared to the duration of a write (0.02 ms),
some of the queries are already long-running enough to run into the “vicious
cycle”. By adding more threads and/or warehouses the effects would be even
worse.

The query throughput drops significantly after some seconds and queries
start to last seconds (instead of milliseconds as before). These long-running
queries show up in the topmost plot as the increasing periods of 0 queries/s.
As long as the query is running, the number of version records stack up. This
leads to the “shark fin” appearance in the number of version records. Only
when the reader is completed, the writer starts to clean up the version records.
For these periods of GC, it cannot achieve any additional write progress. Over
time, the effects get worse and the amplitude of the number of version records
increases while the read and write performance drops to almost 0. The query
latencies increase significantly by the additional version retrieval work while
the write processing suffers from the additional contention caused by the GC.
In this setup—with only one write thread—the back pressure on the GC thread
is already too high and the number of versions grows constantly. Especially
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the effects on the read performance are tremendous if the GC thread cannot
catch up with the write thread(s). At some point, the entire system would run
out of memory.

In summary, traditional garbage collectors have several fundamental limita-
tions: (1) scalability due to global synchronization, (2) vulnerability to long-
living transactions caused by its (3) inaccuracy in garbage identification. The
general high watermark approach cannot clean in-between versions long ver-
sion chains.

5.3 steam garbage collection

Garbage collection of versions is inherently important in an MVCC system
as it keeps the memory footprint low and reduces the number of expensive
version retrievals. In this section, we propose an efficient and robust solution
for garbage collection in MVCC systems. We target three main areas: scalabil-
ity (→ 5.3.2), long-running transactions (→ 5.3.3), and memory-efficient design
(→ 5.3.4).

5.3.1 Basic Design

Steam builds on HyPer’s MVCC implementation and extends it to become
more robust and scalable [78]. To keep track of the active and committed
transactions, HyPer uses two linked lists as sketched in Figure 33.

While HANA and Hekaton use different data structures (a reference-counted
list and a map), the high-level properties are the same. All implementations im-
plicitly keep the transactions ordered and adding or removing of a transaction
can be done in constant time. To start a new transaction, the system appends
it to the active transactions list. When an active transaction commits, the system
moves it to the committed transactions list to preserve the versions it created.
Completed read-only transactions, that did not create any tuple versions, are
discarded directly.

By appending new or committed transactions to the lists, the transaction
lists are implicitly ordered by their timestamps. This ordering allows one to
retrieve the minimum startTs efficiently by looking at the first element of the
active transactions list. The versions of a committed transaction with commitId ≤
min(startTs) can be reclaimed safely. Since the committed transaction list is also
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Figure 33: Transaction lists – Ordered for fast GC

ordered, the system can reclaim all transactions until it hits a transaction that
was committed after the oldest active transaction.

5.3.2 Scalable Synchronization

While the previously described basic design offers constant access times for
GC operations, its scalability is limited by the global transaction lists: Both
lists need to be protected by a global mutex. For scalability reasons, we aim
to avoid data structures that introduce global contention. Hekaton avoids a
global mutex by using a latch-free transaction map for this problem. Steam,
in contrast, follows the paradigm that it is best to use algorithms that do not
require synchronization at all [22]. For GC, we exploit the domain-specific
fact that the correctness is not affected by keeping versions slightly longer than
necessary—the versions can still be reclaimed in the “next round” [30]. Steam’s
implementation does not require any synchronized communication at all. In-
stead of using global lists, every thread in Steam manages a disjoint subset of
transactions. A thread only shares the information about its thread-local mini-
mum globally by exposing it using an atomic 64-bit integer. This thread-local
startTs can be read by other threads to determine the global minimum.

The local minimum always corresponds to the first active transaction. If
there is no active transaction, it is set to the highest possible value (264 − 1).
In Figure 34 the local minimums are 4, 3, and, 12. To determine the global
minimum for GC, every thread scans the local minimums of the other threads.
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Figure 34: Thread-local design – Each thread manages a subset of the transactions

Although this design does not require any latching, the global minimum can
still be determined in O(#threads). Updating the thread-local minimum does
not introduce any write contention either since every thread updates only its
own minStartTs.

Managing all transactions in thread-local data structures reduces contention.
On the downside, this can lead to problems when a thread becomes inactive
due to a lack of work. Since every thread cleans its obsolete versions during
transaction processing, GC can be delayed if the thread becomes idle. To avoid
this problem, the scheduler periodically checks if threads have become inactive
and triggers GC if necessary.

5.3.3 Eager Pruning of Obsolete Versions

During initial testing, we noticed significant performance degradations in
mixed workloads. Slow OLAP queries block the collection of garbage because
the global minimum is not advanced as long as a long-running query is active.
Depending on the complexity of the analytical query, this can pause GC for a
long time. With concurrent update transactions, the number of versions goes
up quickly over the lifetime of a query. This can easily lead to the vicious cycle
as described in Section 5.1. In practice, this effect can be amplified further by
skewed updates which leads to even longer version chains.
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Figure 32 shows how the versions of a tuple can form a long chain in which
the majority of versions is useless for the active transactions. The useless ver-
sions slow down the long-running transactions when they have to traverse
the entire chain to retrieve the required versions in the end. For this reason,
we designed Eager Pruning of Obsolete Versions (EPO) that removes all versions
that are not required by any active transaction. To identify obsolete versions,
every thread periodically retrieves the start timestamps of the currently ac-
tive transactions and stores them in a sorted list. The active timestamps are
fetched efficiently without additional synchronization as described later in Sec-
tion 5.3.3. Throughout the transaction processing, the thread identifies and
removes all versions that are not required by any of the currently active trans-
actions. Whenever a thread touches a version chain, it applies the following
algorithm to prune all obsolete versions:

input : active timestamps A (sorted)
output : pruned version chain

1 vcurrent ← getFirstVersion(chain)
2 for ai in A do
3 vvisible ← getNextVisibleVersion(ai, vcurrent)
4 // prune obsolete in-between versions
5 for v in (vcurrent, vvisible) do
77 if attrs(v) ̸⊂ attrs(vvisible) then
8 merge(v, vvisible)
9 end
10 chain.remove(v)
11 end
12 vcurrent ← vvisible
13 end

Algorithm 1: Prune obsolete versions

We only store the changed attributes in the version record to save memory.
For this reason, we have to check whether all of v’s attributes are covered by
vvisible. If there are additional attributes, we merge them into the final version.
Systems that store the entire tuple would not need this check and could discard
the in-between versions directly.

Figure 35 shows the pruning of a version chain for one active transaction
started at timestamp 20. It shows the relatively-simple case when all attributes
are covered by vvisible and the more complex case, when the in-between ver-
sions contain additional attributes. In this case, we add the missing versions to
the final version. When an attribute is updated multiple times, we overwrite it
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Figure 35: Prunable version chain – Example for an active transaction with id 20

when we find an older version of it while approaching the visible version vvisble.
In our example, A50 is overwritten by A25. After the pruning, vcurrent is set to
the current value of vvisible and vvisible is advanced to the version that is visible
to the next older (smaller) active id. As we only have one active transaction in
our example, we can stop at this point.

Since the version chain and the active timestamps are sorted and duplicate-
free, every version is only touched once by the algorithm.

Short-Lived Transactions

EPO is designed for mixed workloads in which some transactions (mostly
OLAP queries) are significantly slower than others. If all transactions are
equally fast, it does not help as the commit timestamps hardly diverge from
the id of the oldest active transaction.
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Table 7: Comparison with HANA’s Interval GC

HANA Steam

Dedicated GC thread scans Every thread scans
all committed versions the accessed version chains
lazily every 10 s eagerly
causing additional version and
latching

“piggybacking” the costs while the
chain is locked anyway

A standard GC using a global minimum already works perfectly fine here.
Thus, creating a set of active transactions will hardly pay off, as the number
of reducible version chains is small. Ideally, we can avoid the overhead of
retrieving the current set of transaction timestamps.

However, in general, the characteristics of a workload cannot be known by
the database system and change over time. So instead of turning EPO off,
we reduce its overhead without compromising its effectiveness in mixed work-
loads.

The only measurable overhead of the approach is the creation of the sorted
list of currently active transactions. The creation of the list only adds a few
cycles to the processing of every transaction (for a system using 10 worker
threads that are 10 load instructions2 and sorting them) but it is still noticeable
in high volume micro-benchmarks.

To reduce this overhead, every thread reuses its lists of active transactions if
it is still reasonably up-to-date. Thereby, the costs are amortized over multiple
short-lived transactions and the overhead becomes negligible. For transactions
running for more than 1 ms the costs of fetching the active transaction times-
tamps become insignificantly small. The quality of EPO is not affected as the
set of long-running transactions changes significantly less frequently than the
active transactions lists are updated.

During micro-benchmarks with cheap key-value update transactions, we no-
ticed that the update period can be set to as low as 5 ms without causing any
measurable overhead. This update period is still significantly smaller than the
lifetime of even “short long-running” transactions.

HANA’s Interval-Based GC

HANA’s interval GC builds on a similar technique to shorten unnecessary
long version chains, yet it differs in important aspects, which are summarized

2 We only schedule as many concurrent transactions as we have threads.
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Table 8: Data Layout of Version Records

Update Delete Insert Bytes

Common Header
Type ✓ ✓ ✓ 1
Version ✓ ✓ ✓ 4
RelationId ✓ ✓ ✓ 2

Additional Fields
Next Pointer ✓ ✓ – 4
TupleId ✓ ✓ – 4
NumTuples – – ✓ 4
AttributeMask ✓ – – 4

Payload
BeforeImages ✓ – – var
Tuple Ids – – ✓ 8×t
Total Bytes 19+var 15 11+8×t

in Table 7. The biggest difference is how the version chains are accessed for
pruning. In Steam, the pruning happens during every update of a tuple, i.e.,
whenever the version chain is extended by a new version. Thereby, a chain will
never grow to more versions than the current number of active transactions and
will never contain obsolete versions.

In HANA, in contrast, the pruning is done by a dedicated background thread
which is triggered only every 10 seconds. When HANA’s GC thread is trig-
gered, it scans the set of versions that were committed after the start of the
oldest active transaction. For each of these versions, it checks if it is obsolete
within its corresponding version chain using a merge-based algorithm similar
to ours. This causes additional chain accesses, whereas Steam can “piggyback”
this work on normal processing. Since HANA calls the interval-based GC
only periodically, the version chains are not pruned and grow until the GC is
invoked again.

5.3.4 Layout of Version Records

The design a version record should be space and computationally efficient.
All operations that involve versions (insert, update, delete, lookup, and roll-
back) should work as efficiently as possible. Additionally, the layout should
be in favor of GC itself, especially our algorithm for pruning intermediate ver-
sions.
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Table 8 shows the basic layout of a version record. It has a Type (Insert/Up-
date/Delete) and visibility information encoded in the Version. At commit time,
the Version is set to the commit timestamp, which makes the version visible to
all future transactions. To guarantee atomic commits, the Version includes a
lock bit, which is used when a transaction commits multiple versions at the
same time.

When a transaction is rolled back, it uses the RelationId and TupleId to identify
and restore the tuples in the relation. The fields are also used during GC
to identify the tuple that owns the version chain. The version chain itself is
implemented as a linked list using the Next Pointer field. The Next Pointer
either points to the next version record in the chain or NULL if there is none.

For all types of version records except for deletes, we need some additional
fields or variations. For deletes, it is enough to store the timestamp when a
tuple has become invisible due to its deletion.

For inserts, we adapt the data layout by reinterpreting the attributes TupleId
and Next Pointer to maintain a list of inserted tuple ids. This allows us to han-
dle bulk-inserts more efficiently because we can use a single version record
for all inserted tuples of the same relation. Sharing insert version records de-
creases the memory footprint (previously every inserted tuple required an own
version record) and improves the commit latency. We can now commit multi-
ple versions atomically by updating only a single Version. This optimization
is possible since new tuples can only be inserted into previously empty slots.
Thus, we can reuse the Next Pointer field to maintain a list of inserted Tuple Ids.
For MVCC, we only need the information when the inserted tuple becomes
visible. The tuple id list can be further compressed for bulk-inserts by storing
ranges of subsequent tuples.

Update version records require the most fields as they contain the tuple’s
previous version (Before Images). To save space, we only store the versions
of the changed attributes instead of a full copy of the tuple. Therefore, the
version record needs to explicitly indicate which attributes it contains. For
all relations with less than 64 attributes, we therefore use a 64-bit Attribute
Mask, where every changed attribute is marked by a bit. When the relation has
more columns, we indicate the changed attributes using a list of the ids of all
changed attributes.

While the Attribute Mask saves space compared to the list, it also allows us
to perform the check if a version record is covered by another (cf. Algorithm
line 7) using a single bitwise or-operation. If the bit-wise or of the attribute
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masks of vx and vy equals the attribute mask of vx, all attributes of vy are
covered by vx.

5.4 garbage collection survey

Our survey compares the GC implementations of modern in-memory MVCC
systems with our novel approach Steam, which we describe in detail in Sec-
tion 5.3.

Steam is a highly scalable garbage collector that builds on HyPer’s transac-
tion and version management [78]. Long version chains are avoided by pruning
them precisely based on the currently active transactions. This is done using
an interval-based algorithm similar to that in HANA, except that the version
pruning does not happen in the background but is actively done in the fore-
ground by piggy-backing it onto transaction processing [52]. A chain is pruned
eagerly whenever it would grow due to an update or insert. This makes the
costs of pruning negligibly small as the chain is already latched and accessed
anyway by the corresponding update operation.

Hekaton also cleans versions during regular transaction processing [51]. In
contrast to Steam, it cleans only those obsolete versions that are traversed dur-
ing scans, whereas Steam already removes obsolete versions before a reader
might have to traverse them. Essentially, Steam prunes a version chain when-
ever it would grow due to the insertion of a new version—limiting the length
of a chain to the number of active transactions. Additionally, Hekaton only
reclaims versions based on a more coarse-grained high watermark criterion,
while Steam cleans all obsolete versions of a chain.

On a high-level, Steam can be seen as a practical combination and extension
of various existing techniques found in HANA, Hekaton, and HyPer. As will
show experimentally, seemingly-minor differences have a dramatic impact on
performance, scalability, and reliability. In the remainder of the section, we dis-
cuss different design decisions in more details and summarize them in Table 9.

tracking level Database systems use different granularities to track
versions for garbage collection. The most fine-grained approach is GC on a
tuple-level. The GC identifies obsolete versions by scanning over individual
tuples. Commonly this is implemented using a background vacuum process
that is called periodically. However, it is also possible to find and clean the
versions in the foreground during regular transaction processing. For instance,



92 scalable garbage collection for in-memory mvcc systems

Ta
bl

e
9:

G
ar

ba
ge

C
ol

le
ct

io
n

O
ve

rv
ie

w
–

C
at

eg
or

iz
in

g
di

ffe
re

nt
G

C
im

pl
em

en
ta

tio
ns

of
m

ai
n-

m
em

or
y

da
ta

ba
se

sy
st

em
s

Tr
ac

ki
ng

Le
ve

l
Fr

eq
ue

nc
y

(P
re

ci
si

on
)

V
er

si
on

St
or

ag
e

Id
en

ti
fic

at
io

n
R

em
ov

al

BO
H

M
[2

3
]

Tx
n

Ba
tc

h
Ba

tc
h

(w
a
t
e
r
m
a
r
k

)
W

ri
te

Se
t

(F
u
l
l
-
N
2
O

)
Ep

oc
h

G
ua

rd
(F
G

)
In

te
rs

pe
rs

ed
D

eu
te

ro
no

m
y

[6
0
]

Ep
oc

h
T

hr
es

ho
ld

(w
a
t
e
r
m
a
r
k

)
H

as
h

Ta
bl

e
(F
u
l
l
-
N
2
O

)1
Ep

oc
h

G
ua

rd
(F
G

)
In

te
rs

pe
rs

ed
ER

M
IA

[4
6
]

Ep
oc

h
Th

re
sh

ol
d

(w
a
t
e
r
m
a
r
k

)
Lo

gs
(F
u
l
l
-
N
2
O

)
Ep

oc
h

G
ua

rd
(F
G

)
In

te
rs

pe
rs

ed
H

A
N

A
[5

2
]

Tu
pl

e/
Tx

n/
Ta

bl
e

1
/1

0
s

(w
a
t
e
r
m
a
r
k
/
e
x
a
c
t

)
H

as
h

Ta
bl

e
(F
u
l
l
-
N
2
O

)2
Sn

ap
sh

ot
Tr

ac
ke

r
(B
G

)
Ba

ck
gr

ou
nd

H
ek

at
on

[1
5

,1
6

,5
1
]

Tr
an

sa
ct

io
n

1
m

in
(w
a
t
e
r
m
a
r
k

)3
R

el
at

io
n

(F
u
l
l
-
O
2
N

)
T

xn
M

ap
(B
G

)
O

n-
th

e-
fly

+I
nt

er
.4

H
yP

er
[7

8
]

Tr
an

sa
ct

io
n

C
om

m
it

(w
a
t
e
r
m
a
r
k

)
U

nd
o

Lo
g

(D
e
l
t
a
-
N
2
O

)
G

lo
ba

lT
xn

Li
st

(F
G

)
In

te
rs

pe
rs

ed
Pe

lo
to

n
[8

6
]

Ep
oc

h
T

hr
es

ho
ld

(w
a
t
e
r
m
a
r
k

)
H

as
h

Ta
bl

e
(F
u
l
l
-
N
2
O

)
G

lo
ba

lT
xn

Li
st

(F
G

)
Ba

ck
gr

ou
nd

St
ea

m
Tu

pl
e/

T
xn

Ve
rs

io
n

A
cc

es
s

(e
x
a
c
t

)
U

nd
o

Lo
g

(D
e
l
t
a
-
N
2
O

)
Lo

ca
lT

xn
Li

st
s

(F
G

)
O

n-
cr

ea
ti

on
+I

nt
er

.
1

T
he

ve
rs

io
n

re
co

rd
s

in
th

e
ha

sh
ta

bl
e

on
ly

co
nt

ai
n

a
lo

gi
ca

lv
er

si
on

of
fs

et
w

hi
le

th
e

ac
tu

al
da

ta
is

st
or

ed
in

a
se

pa
ra

te
ve

rs
io

n
m

an
ag

er
.

2
H

A
N

A
ke

ep
s

th
e

ol
de

st
ve

rs
io

n
in

-p
la

ce
.

3
D

ef
au

lt
va

lu
e:

H
ek

at
on

ch
an

ge
s

th
e

G
C

fr
eq

ue
nc

y
ac

co
rd

in
g

to
th

e
w

or
kl

oa
d.

4
G

C
w

or
k

is
as

si
gn

ed
(“

di
st

ri
bu

te
d”

)
by

th
e

ba
ck

gr
ou

nd
th

re
ad

.



5.4 garbage collection survey 93

Hekaton’s worker threads clean up all obsolete versions they see during
query processing. Since this approach only cleans the traversed versions,
Hekaton still needs an additional background thread to find the remaining
versions [16].

Alternatively, the system can collect versions based on transactions. All ver-
sions created by the same transaction share the same commit timestamp. Thus,
multiple obsolete versions can be identified and cleaned at once. While this
makes memory management and version management easier, it might de-
lay the reclamation of individual versions compared to the more fine-grained
tuple-level approach.

Epoch-based systems go a step further by grouping multiple transactions into
one epoch. An epoch is advanced based on a threshold criterion like the
amount of allocated memory or the number of versions. BOHM also uses
epochs, but since it executes transactions in batches, it also tracks GC on a
batch level.

The coarsest granularity is to reclaim versions per table. This makes sense
when it is certain that a given set of transactions will never access a table.
Only then the system can remove all of the table’s versions without having
to wait for the completion of these transactions. Since this only works for
special workloads with a fixed set of given operations, e.g., stored procedures
or prepared statements, this approach is rarely used. HANA is the only system
we are aware of that applies this approach as an extension to its tuple and
transaction-level GC [52]. In general, the database system cannot predict with
certainty which tables will be accessed during the lifetime of a transaction.

frequency and precision Frequency and precision indicate how quickly
and thoroughly a GC identifies and cleans obsolete versions. If a GC is not
triggered regularly or does not work precisely, it keeps versions longer than
necessary. The epoch-based systems control GC by advancing their global
epoch based on a certain threshold count or memory limit. Thus, the frequency
highly depends on the threshold setting.

Systems building on a background thread for GC, trigger the background
thread periodically. Thus, the frequency of GC depends on how often the back-
ground thread is called. Since HANA and Hekaton use the background thread
to refresh their high watermark, garbage collection decisions are made based
on outdated information if the GC is called too infrequently. In the worst case,



94 scalable garbage collection for in-memory mvcc systems

GC is stalled until the next invocation of the background thread. Systems like
Hekaton, change the interval adaptively based on the current load [51].

BOHM’s organizes and executes its transactions in batches. GC is done at the
end of a batch to ensure that all of its transactions have finished executing.
Only versions of previously executed batches, except for the latest state of a
tuple, can be GC’ed safely.

Besides the frequency of GC, its thoroughness is mostly determined by the
way a GC identifies versions as removable. Timestamp-based identification
is not as thorough as an interval-based approach. The timestamp approach
is more approximate because it only removes versions whose strictly chrono-
logical timestamps have fallen behind the high watermark which is set by the
minimum start timestamp of the currently active transactions. Since the high
watermark is bound to the oldest active transaction, long-running transactions
can block the entire GC progress as long as they are active. In these cases, an
interval-based GC can still make progress by excising obsolete versions from
the middle of chains. In general, an interval-based GC only keeps required
versions and thereby cleans the database exactly.

version storage Most systems store the version records in global data struc-
tures like hash tables. This allows the system to reclaim every single version
independently. The downside is that the standard case, where all versions of
an entire transaction fall behind the watermark, becomes more complex, as
the versions have to be identified in the global storage. Depending on the
implementation, this can require a periodical background vacuum process.

For this reason, HyPer and Steam store their versions directly within the trans-
action, namely the Undo Log. When a transaction falls behind the high water-
mark, all of its versions can be reclaimed together as their memory is owned
by the transaction object. Nevertheless, single versions can still be pruned (un-
linked) from version chains. Only the reclamation of their memory is delayed
until the owning transaction object is released. In general, using the trans-
action’s undo log as version storage is also appealing since the undo log is
needed for rollbacks anyway. Using an undo log entry as a version record is
straightforward as the stored-before images contain all information to restore
the previous version of a tuple.

For space reasons, we only store the delta, i.e., the changed attributes, in the ver-
sion records. If a system stores the entire tuple, updating wide tables or tables
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with var-size attributes like strings or BLOBs can lead to several unnecessary
copy operations [106].

Hekaton’s version management is special in the sense that it does not use a
contiguous table space with in-place tuples. The versions of a tuple are only
accessible from indexes. For this reason, Hekaton does not distinguish between
a version record and a tuple. Additionally, it is the only of the considered
system that orders the records from oldest-to-newest (O2N). This order forces
transactions to traverse the entire chain to find the latest version which makes
the system’s performance highly dependent on its ability to prune old versions
quickly [106]. O2N-ordering also makes the detection of write-write conflicts
more expensive as the transactions have to traverse the entire chain to detect
the existence of a conflicting version. The same holds for rollbacks which
also need to traverse entire chains to revert and remove previously installed
versions.

identification If commit timestamps are assigned monotonically, they can
be used to identify obsolete versions. All versions committed before the start
of the oldest active transaction can be reclaimed safely. The start timestamp
of the oldest active transaction can be determined in constant time when the
active transactions are managed in an ordered data structure like a global txn
list, or a txn map.

Since pure timestamp-based approaches miss in-between versions as discussed
in Section 5.2.1, systems like HANA and Steam complement it with a more
fine-grained interval-based approach. While this approach keeps the lengths
of version chains minimal, it is also more complex to implement it. The sys-
tems have to keep track of all active transactions and perform interval-based
intersections for every version chain. HANA does this by tracking all transac-
tions that started at the same time using a reference-counted list (“Global STS
Tracker” [52]). In Section 5.3.3, we propose a more scalable alternative imple-
mentation using local txn lists.

For a more coarse-grained garbage collection, it is also possible to control the
lifetimes of versions in epochs. This essentially approximates the more exact
timestamp-based watermark used by the other systems. Nevertheless, epoch-
based memory management is an appealing technique in database systems
as it can be used to control the reclamation of all kinds of objects—not only
versions. When a transaction starts, it registers itself in the current epoch by
entering the epoch. This causes the epoch guard to postpone all memory deallo-
cations/version removals made by the transaction until all other threads have
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left this epoch and thus will not access them anymore. While managing the
versions in epochs limits the precision of the GC, it allows a system to execute
transactions without having monotonically increasing transaction timestamps.
For instance, in timestamp ordering-based MVCC systems like Deuteronomy
or BOHM versions might be created or accessed in a different order than their
logical timestamps suggest [23, 60].

Independent of the chosen data structure, the identification which versions
are obsolete can either be done periodically by a background (BG) thread or
actively in the foreground (FG).

removal In HANA, the entire GC work is done by a dedicated background
thread which is triggered periodically. Hekaton cleans all versions on-the-fly
during transaction processing. Whenever a thread traverses an obsolete ver-
sion, it removes it from the chain. Note, that this only works for O2N, when
the obsolete (old) versions are stored in the beginning and thus are always tra-
versed by the transactions. To clean infrequently-visited tuples as well, Heka-
ton runs a background thread that scans the entire database for versions that
were missed so far. The background thread then assigns the removal of those
versions to the worker threads which intersperse the GC work with their regu-
lar transaction processing.

A common pattern in epoch-based systems is to add committed versions along
with the current epoch information to a free list. When a transaction requires
a new version, it checks whether it can reclaim an old version from the free
list based on the current epoch. Thereby, version removal essentially happens
interspersed with normal transaction processing. However, the epoch guard
should periodically release more than the newly required versions. Otherwise,
the overall number of versions can only go up over time as all reused versions
eventually end up in the free-list again. Deuteronomy addresses this by limit-
ing the maximum number of versions. When the hard limit is reached, no more
version creations are permitted and the threads are co-opted into performing
GC until the number of versions is under control again [60].

HyPer and Steam also perform the entire GC work in the foreground by in-
terspersing the GC tasks between the execution of transactions. If there are
obsolete versions, the worker threads reclaim them directly after every com-
mit. Thereby, GC becomes a natural part of the transaction processing without
the need for an additional background thread. This makes the system self-
regulating and robust to peaks at the cost of a slightly increased commit latency.
Steam, additionally, prunes obsolete versions on-creation whenever it inserts a
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new version into a chain. Thereby, Steam ensures that the “polluters” are re-
sponsible for the removal of garbage, which relieves the (potentially already
slow) readers.

5.5 evaluation

In this section, we experimentally evaluate the different GC designs dis-
cussed in Section 5.4. To compare their performance, we implemented and
integrated these GC approaches into HyPer [78]. For a fair apples-to-apples
comparison, we only change the GC while the other components such as the
storage layer or the query engine stay the same.

To distinguish our implementations from the original systems we put their
names into quotes, e.g., ‘Hekaton’. In our evaluation, we do not include BOHM
of our survey in Section 5.4 as its GC is specifically designed for executing
transactions in batches, in which concurrency control and the actual transaction
execution are strictly separated into two phases [23]. Epoch-based GC—as
used by BOHM—is represented by ‘Deuteronomy’ and ‘Ermia’.

We monitor the systems’ performance and capabilities by running the CH
benchmark for several minutes. The CH benchmark is a challenging stress test
for GCs because its short-lived OLTP transactions face long-living queries [11,
29, 90]. To better understand the general characteristics of the different systems
we run some additional experiments. We analyze the scalability and overhead
of each approach using the TPC-C benchmark. TPC-C is a pure OLTP bench-
mark without long-running transactions that could lead to the “vicious cycle of
garbage”. To evaluate different workload characteristics, we run the updates
along with varying percentages of concurrent reads. We also explore the ef-
fects of skewed updates as they can be particularly challenging for garbage
collectors by leading to potentially long version chains. Finally, we evaluate
the effectiveness of EPO in keeping version chains short in isolation.

Table 10 summarizes the key features of our different GC implementations.
All systems order the chains from N2O. The high watermark is either defined
as the start timestamp of the oldest active transaction or epoch. All versions
that were committed before that point in time are obsolete, as all active transac-
tions already work on more recent snapshots of the data. Additionally, ‘Hana’
and Steam use a more exact form of GC that prunes intermediate versions in
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Table 10: Configuration and Setup

Watermark Exact Frequ. Find/Clean

‘Deuter.’ Epoch (∞) – 100 txs FG
‘Ermia’ Epoch (3) – 1 tx FG
‘Hana’ Txn Lazy 1 ms BG

‘Hekaton’ Txn – 1 ms BG⇒FG
Steam Txn Eager cont. FG

chains (cf. Section 5.3.3 for details). While ‘Deuteronomy’ increases its epoch-
ids monotonically, ‘Ermia’ uses a three-phase epoch-guard3.

Another important implementation detail is the frequency of garbage collec-
tion. For the epoch-based systems, this is the minimal number of committed
transactions before the global epoch is advanced and for ‘Hana’ and ‘Hekaton’
this is the time when the background GC thread is invoked. It turns out that
the default settings of the systems are not always suitable, so we hand-tuned
them to the optimal values. In Section 5.5.4 we show how big the effect of a
poorly chosen GC frequency is. Since Steam runs GC continuously whenever
a version chain is accessed, there is no need to find and set an optimal interval.

In ‘Hana’, the GC work is done solely by the background thread (BG).
‘Hekaton’ uses the background thread only to refresh the global minimum
and to identify obsolete versions. When it finds obsolete versions, it assigns
the task of removing them to the worker threads. The other systems
intersperse the entire GC work (identification and removal) with their normal
transaction processing. Steam additionally prunes version chains eagerly
whenever it accesses a version chain.

We evaluate the different approaches on an Ubuntu 18.10 machine with an
Intel Xeon E5-2660 v2 CPU (2.20 GHz, 3.00 GHz maximum turbo boost) and
256 GB DDR3 RAM. The machine has two NUMA sockets with 10 physical
cores (20 “Hyper-Threads”) each, resulting in a total of 20 physical cores (40

“Hyper-Threads”). The sockets communicate using a high-speed QPI intercon-
nect (16 GB/s).
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Figure 36: Performance over time – CH benchmark with 1 OLAP and 1 OLTP thread.
(Mean values shown in italics)

5.5.1 Garbage Collection Over Time

In this experiment, we put critical stress on the GC by running the mixed
CH benchmark. This tests the vulnerability of every approach to long-running
transactions and the “vicious cycle” of garbage.

The CH benchmark combines TPC-C write transactions with queries in-
spired by the TPC-H benchmark. This creates a demanding mix of short-
lived write transactions and long-running queries. The gap between short-
lived writes and long OLAP queries increases over time as the data set grows
with the number of processed transactions4. This makes our workload partic-
ularly challenging for fast systems like Steam that maintain a high write rate
throughout the entire experiment. For comparison, it would take ‘Ermia’ 8356

3 used code from https://github.com/ermia-db/ermia
4 Every delivery transaction “delivers” 10 orders. Having 45% new-orders and only 4% delivery

transactions, approximately 11% of the new orders remain undelivered.

https://github.com/ermia-db/ermia
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seconds and thereby about 13× as long as Steam to process the same number
of transactions reaching the same level of GC complexity.

To account for the data growth, we normalize the query performance by
plotting the number of scanned tuples instead of the raw query throughput,
following Funke et al.’s suggestion [29] to normalize the query performance
using the increasing cardinalities of the relations. The increasing data size is
also the reason why the used memory increases over time independently of
the number of used/GC’ed versions.

Figure 36 shows the read, write, version record, and memory statistics over
10 minutes. Pruning all versions eagerly that are not required by any active
transaction using EPO proves to be an effective addition to Steam. Rather sur-
prisingly the main improvements can be seen in the write throughput (roughly
3× compared to the second-best solution) while the read performance stays
about the same. This is due to the fact that the main consumer of long version
chains are not long-running queries but GC.

During GC we always have to traverse the entire chain to remove the oldest
(obsolete) versions, whereas queries just have to retrieve the version that was
valid when they started. For this reason, GC benefits most from short chains
leaving more time for actual transaction processing. The increased speed of GC
becomes visual when looking at the shapes of the version record curves: while
the number of version records goes down gradually in all systems at the end of
a long-running query, it drops almost immediately and very sharply when us-
ing EPO. This happens because hardly any GC has to be done anymore: most
version records are already pruned eagerly from the chains and the remain-
ing version records can be identified very quickly as the owning chains have a
maximum length of 2, i.e., the number of active transactions. We analyze and
compare those GC performance stats in details in the later Section 5.5.7.

As a side-effect, due to the highly improved write performance, the overall
used memory increases faster than without using EPO. This can be accounted
to the nature of the CH benchmark as described above: the data set grows
with every processed transaction. What this means, in turn, is that reads also
get more expensive as they have to scan more data (cf. memory plot). The
increased query response times lead to bigger gaps between the short-lived
writes and the long-lived queries, which is why the number of version records
is a little bit higher with EPO. However, the average number of active ver-
sion records only goes up by 42%, whereas the number of writes (which can
be directly translated to the number of produced version records) increases
significantly by 354%.
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Figure 37: TPC-C – Performance for increasing number of OLTP threads (100 warehouses)

The epoch-based systems ‘Deuteronomy’ and ‘Ermia’ conceptually follow
the same approach as the basic version of Steam using a watermark only. For
this reason, the performance looks quite similar. There is only a slight set-
back compared to the basic version of Steam, which is probably caused by
the epochs being a little bit too coarse-grained for a mixed workload and that
maintaining the global epoch introduces a small overhead.

‘Hana’ runs into more problems because it does the GC work exclusively
in its background thread. With increasing gaps between the quick writers
and the slow readers, the number of versions becomes too big and the single
background thread becomes overwhelmed by the work.

‘Hekaton’ cleans the versions in the foreground, but it offloads the GC con-
trol, i.e., maintaining the high watermark and assignment of GC work, to the
background thread. This detached workflow increases the GC latency to a
point, where it gets out of control and the number of versions grows quickly.

5.5.2 TPC-C

While the previous experiment analyzed a mixed workload, we now want to
show that the design and choice of a GC is also critical in pure OLTP workloads
without any long-running transactions. Since we only interchange the GC, we
can directly compare the overhead and scalability of the different approaches.

The TPC-C numbers in Figure 37 show that the foreground-based systems
‘Ermia’, ‘Deuteronomy’, and Steam scale best. ‘Hana’ falls slightly behind be-
cause it uses a centralized “Global Snapshot Tracker” that requires a global mu-
tex.
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Figure 38: CH benchmark – Performance for increasing number of OLAP threads using 1
OLTP thread

While ‘Hekaton’ is superior to ‘Hana’, it is still limited by the use of its back-
ground thread which coordinates the GC. The background thread periodically
retrieves the global minimum from the global transaction map and populates
it to the threads. Additionally, it collects obsolete versions and assigns them
to the work queues of the threads. While this allows the workers to remove
the garbage cooperatively, there is still the single-threaded phase of identifying
the garbage and “distributing” it. Furthermore, there is a small but constant
synchronization overhead caused by the global transaction map. Although it
is implemented latch-free, it still falls behind the thread-local implementations
of Steam and the epoch-based solutions. This aligns well with recent findings
that synchronous communication should be avoided and using latch-free data
structures can even have worse performance than traditional locking [22, 103].

These results indicate that GC has a big impact on the system’s performance
in every kind of high-volume workload and not only in mixed workloads. For
efficient GC global data structures and synchronous communication have to be
avoided. In Section 5.5.5 we will see even bigger impacts on the system’s scal-
ability when running “cheap” key-value update transactions instead of TPC-C.
When the transaction rate becomes very high, the maintenance of a global
epoch starts to become a notable bottleneck.
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5.5.3 Scalability in Mixed Workloads

In this section, we take another look at the CH benchmark. This time, we
focus on the scalability by varying the number of read threads. In contrast
to the previous time-bound experiment, now, every system processes a fixed
number of 1 million TPC-C transactions. This makes the throughput numbers
more comparable, as the query response times increase with every processed
transaction due to growing data [29].

Figure 38 shows that the throughput of the single OLTP thread is highly af-
fected by concurrent OLAP threads. This can be accounted to effects caused by
the vicious cycle of garbage. As seen in Section 5.5.1, the versions accumulate
quickly over time slowing down the readers. When the read transactions get
slower, the version records have to be retained longer which amplifies this ef-
fect further. Additionally, the GC work and the slow readers create increased
contention on the tuple latches as they require more time to retrieve a version.
Hence, it is crucial to keep the number of version records as low as possible.

Steam’s EPO reduces the number of versions effectively by pruning the
version chains eagerly. This makes its GC and write performance superior
to the other systems which struggle because their GC is too coarse-grained
(epochs/high watermark). Even ‘Hana’ which also uses precise cleaning
cannot keep up with Steam since its background pruning is not as effective as
Steam’s eager pruning (cf .Section 5.3.3 for a detailed comparison). At higher
numbers of active read transactions, Steam’s write performance degrades
slightly because of the increasing likelihood that more versions have to be
kept in the chains. Ideally, all transactions started at the same time and Steam
only needs to keep one version per chain. This can be achieved by batching
the start of readers in groups (similar to a group commit). Having fewer start
timestamps improves the performance and effectiveness of EPO. Therefore,
the performance could be improved slightly by artificially delaying some
queries so that all queries share the same start timestamp. An evaluation of
this idea showed gains of a few percents—at the cost of increased query
latencies.

5.5.4 Garbage Collection Frequency

In Steam, GC happens continuously: Version chains are pruned whenever
they are updated. Thus, the frequency is implicitly given and self-regulated by
the workload. For the other systems, the frequency has to be explicitly set by
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Figure 39: GC Frequency – Varying a) the period when the GC thread is triggered or b) the
count of committed transactions before an epoch might be advanced (TPC-C, 20
OLTP threads)

a parameter which is either a time period in which the background GC thread
is triggered (a) or a threshold that has to be reached before the global epoch is
advanced (b).

The optimal period depends on the workload and the performance of the
system. A faster system with high update rates generates more versions and
has to be cleaned more frequently. To determine the optimal setting for the use
with HyPer, we run TPC-C with different GC frequencies. Figure 39 shows the
throughput when varying the trigger frequency from 1 ms to 60 s and epoch
thresholds from 1 to 100k processed transactions.

For all systems, we see the best results when we trigger the GC as frequently
as possible. For the background-thread approaches, we achieved the best re-
sults by setting the period to 1 ms. The period time cannot be decreased further,
as the processing time of the GC thread would exceed its invocation intervals.

For the epoch-based systems, it is also best to set the epoch threshold as low
as possible. This means that the system tries to advance the global epoch after
every single committed transaction. However, refreshing the global epoch is
not for free as this requires entering a critical section and/or scanning of other
thread-local epochs. While the three-phase epoch-guard of ‘Ermia’ handles this
case very efficiently, refreshing the global epoch in ‘Deuteronomy’ which uses
infinite epochs is more expensive. For this reason, the best threshold setting for
‘Deuteronomy’ is slightly higher at 100. This gives the best tradeoff between
fast (immediate) GC and the overhead for refreshing the global epoch.
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OLTP threads)

This experiment shows that the choice GC frequency can have a tremendous
effect on the system’s performance. There is a difference of more than 500×
only by changing the frequency parameter. In practice, this could create criti-
cal instability if the system does not adjust this setting timely. This indicates
that the frequency should be chosen based on the workload, i.e., the number
of produced garbage (transactions) and not a fixed time interval. Otherwise,
the back pressure on the GC can easily become too high. Even in the worst
measured configuration, the epoch-based systems that control GC based on
the number of processed transactions outperform the best time-interval-based
GC. In Steam, we take this concept even a step further by pruning the chains
eagerly whenever a new version is added.

5.5.5 Skew

When all updates are distributed evenly, every version chain tends to be
equally short. However, in the real world, we often have skewed workloads.
When certain tuples are updated more often their version chains get longer
making GC more expensive. To measure the effectiveness of the GCs in skewed
scenarios, we run key-value updates on a table using different Zipfian distri-
butions. Figure 40 shows the throughput for theta values from 0.0 (no skew)
to 1.0 (significant skew).

Steam is robust to skew because it deeply integrates GC into the transac-
tion processing. Version chains that would become long can be pruned while,
or rather before they grow (during an update). Other systems delay GC for
longer: in particular, the time-based systems ‘Hana’ and ‘Hekaton’ which trig-
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Figure 41: Varying read-write ratios – Mixing table scans and key-value update transac-
tions (20 threads)

ger GC only periodically, can be affected most. In the worst case, when only
one tuple is updated all the time, the length of its version chain grows to the
current number of updates per GC interval. At a throughput of 10,000 txn/s
that would generate a chain of 10,000 versions assuming a GC interval of 1 s
(default for HANA). In our experimental results, this effect is mostly dimin-
ished because we decreased the GC to 1 ms, but we can still see the systems
falling behind Steam.

Unfortunately, the results for ‘Hana’ and to some degree ‘Deuteronomy’ are
not very meaningful for increased skew as their performance is mostly domi-
nated by their limited scalability. The results for a theta value of 0.0 indicate
an overhead in high-volume workloads. This can be accounted to the use
of a global mutex for the snapshot tracker (‘Hana’) and a relatively expen-
sive refreshing of the global epoch counter in ‘Deuteronomy’. By contrast, the
three-phase epoch manager of ‘Ermia’ scales significantly better.

5.5.6 Varying Read-Write Ratios

In this experiment, we analyze how effective each approach is for differ-
ent read/write setups. We run two kinds of transactions: write transactions
updating tuples and read-only transactions doing full table scans, whereas all
transactions operate on the same table. We vary the ratio of reads and writes by
increasing the percentage of read operations every thread performs. Figure 41

shows the number of read operations for a decreasing number of writes.

The read performance increases as expected when the workload mix shifts
towards being read-only, whereas Steam performs best in all setups. Especially
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in the read-only case, Steam’s minimal overhead is clearly visible: A read-only
thread never retrieves the set of active transaction ids (including the global
minimum). This is only done when it has recently committed versions (i.e.,
its committed transaction list is not empty), or lazily during its first update
operation. In the read-only case, every thread only has to signal its currently
active transaction by adding it to its thread-local list. By contrast, all other
systems require at least a basic form of synchronization, i.e., entering an epoch,
or registering the transaction in a globally shared transaction map/tracker.

In the more write-heavy cases, EPO helps Steam to control the number of
versions speeding up the readers. For high numbers of writes (<10% reads),
‘Ermia’ falls behind the other systems. While its three-phase epoch guard
showed very good scalability in the other experiments, it seems to be too
coarse-grained now. The more fine-grained infinite epochs of ‘Deuteronomy’
perform significantly better in these cases.

5.5.7 Eager Pruning of Obsolete Versions

To avoid long version chains in mixed workloads, we implemented EPO
(cf. Section 5.3.3) to prune the chains eagerly whenever a new version is in-
serted. EPO removes all versions as soon as they are not required by any
active transaction anymore.

Table 11 shows that this reduces the number of traversed versions signifi-
cantly in the CH benchmark. Steam processes the given set of transactions 5×
faster using EPO. Without the optimization, the GC cannot keep the number
of versions down effectively since the high watermark approach is too coarse-
grained. The version chains grow quickly hitting a maximum length of 30287.
When the optimization is enabled, the maximum length goes down to two ver-
sions. The “optimized” chain only keeps the most recent version of the writer
and an older version that is visible to the reader.

Rather surprisingly, or even paradoxically, the more thorough and
fine-granular we clean our system, the less time we spend cleaning. Using
EPO, the system spends less than 100 ms in total on GC, while it requires
1.5 s using the standard watermark approach. This performance difference
becomes clear when we look at the number of traversed versions: it is reduced
from 1.2 billion to only 4.2 million. Since EPO keeps version chains short at all
time, it is always cheap to identify and reclaim obsolete versions. In particular,
when an entire transaction falls behind the “watermark” and we finalize its
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Table 11: Effect of using EPO – CH benchmark with 1 read thread and 1 write thread
running 300k transactions in total

Standard
Watermark

EPO
Exact

Version Removal (GC)
Traversed Versions 1,197m 4.2m
Avg. Chain Length (max) 287.43 (30287) 1.07 (2)

Table Scans (Queries)
Traversed Versions 120m 37m
Avg. Chain Length (max) 1.00 (141) 1.00 (2)

Breakdown Time [%] Time [%]
Fetch Active Txn-Ids <1 ms 0.01 <1 ms 0.01

Prune Chains (EPO) – – 8.4 ms 0.07

Finalize Entire Txns 1.5 s 4.47 81 ms 0.68

Version Retrieval (Scan) 4.2 s 12.26 1.1 s 8.79

Queries/s 4.8 5.1
Transactions/s 6554 30,580

versions, most of its versions are already removed from the chains by EPO
(thus, GC of them is a no-op) or belong to very short chains which makes
unlinking them from the chain fairly cheap.

We also see that maintaining the set of active transaction ids does not add
any overhead. For the watermark-approach, all thread-local minimums have to
be fetched anyway. The additional sorting step required by EPO is negligible
cheap since at most #-threads integers are sorted.

Faster GC is very beneficial for transaction processing in general, as slow,
interspersed GC work can stall the processing of writes. Thus, faster GC gives
the worker threads more time to process transactions.

The average length of version chains is significantly higher during version re-
moval than it is during table scans. This happens because some tuples (counter
and warehouse statistics) are updated frequently, but are never read by any
query [11]. The readers mainly access parts of the tables that are updated
evenly. Thus, the positive effect of EPO is not as big for queries as it is for the
writes. The maximum chain length during a table scan is “only” 141 without
the optimization. With the optimization, the scans have to retrieve 3.24× fewer
versions. This is reflected by a slightly improved query performance. The
benefit would be significantly higher if the readers would need to access the
frequently updated tuples with lengths of more than 30,000.
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5.6 related work

In recent years, the performance of systems in mixed workloads (HTAP) was
studied extensively [108, 50, 98, 106, 83, 3]. Several systems were developed
focusing on scalability in high volume OLTP workloads [85, 91, 34, 62, 46]. A
reoccurring topic is to optimize the concurrency control protocol, e.g., by tun-
ing the validation phase or reordering transaction [20, 33, 92, 102]. Although
most of the papers mention the use and importance of an efficient garbage
collector, the implementation is either described only briefly or not mentioned
at all. Recent work on GC is mostly related to large data systems in which the
challenges and tasks are very different and not comparable to version recla-
mation in MVCC systems [107, 65]. In summary, most components of MVCC
systems are well-understood, studied, and optimized but there is little research
on efficient GC — despite its big impacts on performance.

Handling of long-living transactions is an inherent problem of MVCC sys-
tems studied by others. Lee et al. [52] describe practical solutions to this prob-
lem such as: (1) flushing old versions to disk if main memory is exceeded, (2)
aborting long-running transactions (user gets an error), and (3) closing transac-
tions as soon as possible (e.g., after query results are materialized). However,
these solutions are not applicable to high volume workloads. One proposal
for such workloads is to create virtual memory snapshots (forks) for read-only
queries [73, 95]. However, this strongly affects the overall scalability of the
system as it requires a shared mutex per column.

Modern and fast OLTP systems like TicToc or Silo often use a single-version
approach instead of MVCC [109, 100, 21, 97]. A single-version system only
maintains the latest version of a tuple and thus there is no need for garbage
collection. This makes them particularly fast in OLTP workloads. However, by
default, they are not designed to handle OLAP or mixed workloads as they
would have to maintain a large read set. Since this is can easily lead to aborts,
Silo also allows creating snapshots of the data by storing old tuple versions.
Due to the costs of snapshots creation, snapshots are only taken periodically,
i.e., every second, which results in slightly stale data [100].

Systems that apply Serialization Graph Testing (SGT) instead of timestamps
have to keep a transaction and its items until its existence does not influence
any other or future transactions [21, 35].
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5.7 summary

In this chapter, we showed the importance of garbage collection for
in-memory MVCC systems on modern many-core systems. We find that
GC should be based on thread-local data structures and asynchronous
communication for optimal performance. Further, it is crucial for HTAP
workloads of short-lived writes and long-running reads to keep the number
of active versions as low as possible. With traditional high watermark-based
approaches, a single long-running transaction blocks GC progress during its
lifetime.

Our novel, scalable GC Steam speeds up transaction processing and garbage
removal by pruning all obsolete versions eagerly whenever a new version is
added. Thereby, Steam effectively limits the length of chains to the number
of active transactions. Besides HTAP workloads, our experimental results indi-
cate that Steam benefits all kind of workloads from write-only to read-only. Its
seamless integration into transaction processing enables superior performance
compared to other state-to-the-art GC approaches which detach GC from trans-
action processing.

Due to its effectiveness, this approach was already successfully adopted by
new systems [14, 28, 27].



6 C O N C L U S I O N

The main goal of this dissertation was to improve the scalability and con-
currency of modern database systems. We first analyzed locks and synchro-
nization in depth to find an optimal synchronization approach for a database
system.

We showed the superior performance of optimistic locking, especially in
hierarchical index structures. To support optimistic and pessimistic shared
locking, we introduced a hybrid read-write lock that could protect all physical
data structures used in a DBMS efficiently.

On top of the hybrid lock, we assembled a versatile parking lot for waiting
threads that adds reasonable fairness, contention handling, and cache topology
awareness to every lock. The appealing idea of a parking lot is that it adds all
of these features without sacrificing any “fast path” performance or requiring
any additional in-place space for the locks. Its versatility and performance
characteristics make a hybrid lock backed by a parking lot ideal for a general-
purpose DBMS.

In the second part of this thesis, we focussed on the scalability of concurrent
transactions in an MVCC database system. Running transactions in parallel
brings new challenges, such as frequent aborts under high contention. We dis-
cussed different backoff and partitioning strategies to handle or avoid those
aborts in Section 4.5. After that, we focussed on an even more fundamen-
tal problem of MVCC: the handling of transactions in the presence of long-
running queries. This scenario stresses traditional version garbage collectors
and can lead to long version chains. We proposed a scalable new garbage
collection strategy to tackle this problem. Instead of garbage-collecting old ver-
sions only after the completion of a long-running transaction, we now prune
versions eagerly whenever we update a tuple. This approach keeps the lengths
of the version chains to their required minimum. The seamless integration of
garbage collection into transaction processing enables superior performance
and scales naturally with the workload.
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