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Abstract

Ensuring the safety of autonomous vehicles is one of the main challenges in their develop-
ment. This is especially difficult due to the open-ended nature of the traffic in which they
must operate after deployment. They may encounter an infinite number of situations that
must be handled safely. This presents not only a challenge for the development of the algo-
rithms that control the vehicles but also for the validation of their safety before the vehicles
can be deployed. Efficient approaches are crucial in addressing this issue, and virtual testing
using simulations is one of the main pillars for managing the effort. Focusing on safety-
critical edge cases further enables reducing the number of test scenarios required to assess
the safety of a system or to find failures during the development more quickly. In this thesis,
we propose methods for creating safety-critical test scenarios and falsification methods that
uncover failures of motion planning algorithms and are suitable for a scenario-based setting.

In the first part of the thesis, we formulate scenario generation as an optimization prob-
lem to increase the criticality of provided scenarios using a metric based on the reachable
set of the ego vehicle. The reachable set abstracts the behavior of any motion planning algo-
rithm by representing the solution space of feasible trajectories. Thus, our method enables
the generation of scenarios independently of a specific system. For solving the highly nonlin-
ear optimization problem, we propose a parameterization and evolutionary algorithms that
are combined with convex optimization to find feasible and critical scenarios efficiently. To
further reduce the computation time of the optimization, we develop a method to compute
the reachable set of road vehicles more efficiently than previous methods by exploiting pre-
computed reachability graphs. To scale the generation of scenarios without relying on real-
world traffic data, we integrate the scenario generation with an automated workflow where
we extract high-definition maps from OpenStreetMap and use a traffic simulator to create
traffic data. Our optimization algorithm then enhances the criticality of these scenarios.

In the second part, we present methods for deriving concrete scenarios from abstract
scenario specifications. We develop a constraint-based representation for scenario specifi-
cations, which is incorporated into a reachability analysis to compute the reachable set of
all traffic participants that complies with the specification. Our method to sample trajecto-
ries within this reachable set is combined with Monte-Carlo tree search to falsify provided
motion planners. We demonstrate the efficiency and scalability of our methods in several nu-
merical experiments and provide the generated scenarios in the open-source CommonRoad
benchmark suite.
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Zusammenfassung

Die Sicherheit autonomer Fahrzeuge zu gewährleisten, ist eine der größten Herausforderun-
gen bei ihrer Entwicklung aufgrund der theoretisch unendlichen Anzahl an möglichen Ver-
kehrssituationen, denen sie während ihres Betriebs ausgesetzt sein können. Diese Situationen
zuverlässig und sicher bewältigen zu können, stellt nicht nur eine Herausforderung dar für
die Algorithmen, welche die Fahrzeuge steuern, sondern insbesondere für Testverfahren im
Rahmen ihrer Validierung. Effiziente Testverfahren sind daher von entscheidender Bedeu-
tung, um der Komplexität dieser Aufgabe begegnen zu können. Hierbei ist virtuelles Testen
mithilfe von Simulationen eines der wichtigsten Werkzeuge. Dabei ermöglicht der Fokus auf
sicherheitskritische Fälle, die Anzahl der benötigten Testszenarien zur Beurteilung der Sicher-
heit eines Systems reduzieren zu können und eine schnellere Detektion von Fehlern während
der Entwicklung. In dieser Dissertation schlagen wir Methoden vor, um automatisiert sicher-
heitskritische Testszenarien zu generieren und entwickeln effiziente Falsifizierungsmethoden,
mit denen Fehler von Bewegungsplanungsalgorithmen gezielt gefunden werden können.

Im ersten Teil der Arbeit formulieren wir die Erzeugung von Testszenarien als Opti-
mierungsproblem, in welchem sicherheitskritische Szenarien mithilfe einer Kritikalitätsmetrik
basierend auf der erreichbaren Menge des Egofahrzeugs erzeugt werden. Die erreichbare
Menge abstrahiert dabei das Verhalten beliebiger Bewegungsplaner, indem sie den Lösungs-
bereich aller gültigen Trajektorien darstellt. Dadurch ermöglicht unsere Methode die Erstel-
lung von Szenarien unabhängig von einem spezifischen System. Um das daraus resultierende
nichtlineare Optimierungsproblem zu lösen, schlagen wir eine effiziente Parametrisierung
und evolutionäre Algorithmen vor, die mit konvexer Optimierung kombiniert werden. Durch
unseren Ansatz können somit effizient gültige kritische Szenarien gefunden werden. Um
die Berechnungszeit der Optimierung zu reduzieren, entwickeln wir außerdem eine Meth-
ode, mit der die erreichbare Menge von Fahrzeugen effizienter berechnet werden kann als
mit bisherigen Methoden. Hierbei nutzen wir vorberechnete Erreichbarkeitsgraphen und
entwickeln eine Methode, welche eine geringe Überapproximation der berechneten Menge
ermöglicht. Um die Generierung von Szenarien ohne reale Verkehrsdaten durchführen zu
können, integrieren wir die Szenariengenerierung in einen automatisierten Prozess, in dem
hochauflösende Karten aus OpenStreetMap extrahiert werden und eine Verkehrssimulation
verwendet wird, um Verkehrsszenarien zu erzeugen. Diese werden anschließend mit unser
zuvor vorgestellten Methode hinsichtlich ihrer Kritikalität optimiert.

Im zweiten Teil stellen wir Methoden zur Ableitung konkreter Szenarien aus abstrakten
Szenariospezifikationen und einen Algorithmus zur Falsifizierung von Bewegungsplanern vor.
Dazu entwickeln wir zunächst eine Repräsentation von Szenariospezifikationen über Randbe-
dingungen. Diese werden in eine Erreichbarkeitsanalyse eingebunden, mit der die spezifika-
tionskonforme erreichbare Menge aller Verkehrsteilnehmer des Szenarios berechnet werden
kann. Darauf aufbauend entwickeln wir eine Methode zum Sampling von Trajektorien aus
dieser erreichbaren Menge, welche in ein Monte-Carlo Baumsuchverfahren zur Falsifizierung
integriert wird. Wir untersuchen die Effizienz und Skalierbarkeit unserer Methoden anhand
mehrerer numerischen Experimente und stellen die generierten Szenarien in der Benchmark-
Datenbank CommonRoad öffentlich zugänglich zur Verfügung.
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Chapter 1

Introduction

1.1 Motivation

By 2018, many of the major car companies announced the release of fully autonomous ve-
hicles within less than four years1. Despite the investment of vast amounts of resources into
research and development, this promise is still waiting to be realized, while development
programs are canceled and timelines are shifted2. One of the major challenges, especially for
their large-scale deployment, is that these vehicles are required to safely handle an unforesee-
able number of situations. This large number is the result of the many possible behaviors of
other traffic participants, road topologies, or environmental aspects that can be encountered.
Moreover, most parameters of the real world have continuous domains, for which many test-
ing approaches targeting discrete domains are not well suited. While for driver assistance
systems with a low degree of autonomy existing approaches from the domain of functional
safety or real-world driving tests can be conducted within reasonable financial budgets and
time frames, new methods are required to validate the safety of highly autonomous systems
that do not depend on human supervision and operate within more complex environments.

Simulative testing of autonomous vehicles in virtual environments expands the possibil-
ities for their validation and enables driving mileages that greatly exceed those realizable
in real-world tests. To assess the safety of a system with sufficient confidence, hundreds of
millions of kilometers are required [11], which is intractable even when using simulations.
However, most situations a vehicle encounters in traffic are repetitive and not challenging,
hence do not provide valuable insights for its validation. Instead of focusing on the driven
distance, it is more efficient to define a catalog of scenarios that aims at representing the sit-
uations the autonomous vehicle can encounter during its operation. This idea describes the
essence of scenario-based testing [12]. Especially interesting in this context are edge cases,
which are critical in terms of safety or other relevant metrics. Placing particular emphasis on
such scenarios in the test strategy can reduce the number of simulations required to detect
failures and can increase the confidence in the robustness of the system. However, finding
safety-critical scenarios is especially challenging since they are typically rare in real-world
datasets.

In this thesis, we present methods for automatically generating safety-critical test scenar-
ios focusing on challenging motion planning algorithms. Our methods are not exclusive to
testing of fully autonomous vehicles but can be applied during the development and valida-
tion of partially automated vehicles as well. For simplicity, we only use the term autonomous

1https://www.reuters.com/article/ctech-us-bmw-autonomous-self-driving-idCAKBN16N1Y2-OCATC (last ac-
cessed: 26.02.23)
https://www.reuters.com/article/us-autoshow-detroit-ford-motor-idUSKBN1F30YZ (last accessed: 26.02.23)
https://money.cnn.com/2017/11/30/technology/gm-autonomous-cars-2019 (last accessed: 26.02.23)

2https://europe.autonews.com/automakers/ford-vw-will-shut-argo-ai-self-driving-joint-venture (last ac-
cessed: 26.02.23)
https://edition.cnn.com/2022/11/01/business/self-driving-industry-ctrp (last accessed: 26.02.23)
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https://europe.autonews.com/automakers/ford-vw-will-shut-argo-ai-self-driving-joint-venture
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vehicles from now on. Our methods address the following research questions:

• How can we create complex safety-critical test scenarios while ensuring the autonomous
vehicle does not inevitably collide with obstacles?

• How can we generate a large number and variety of safety-critical traffic scenarios
relying on virtual methods only?

• How can we ensure reactive, adversarial behavior of other traffic participants that com-
ply with abstractly specified scenarios?

To this end, we propose optimization and search algorithms to create scenarios that un-
cover failures of the autonomous vehicle.

1.2 Safety Concepts for Motion Planning of Autonomous Vehicles

The methodologies for ensuring the safety of autonomous vehicles can be divided into differ-
ent categories. Classical methods typically target at ensuring the functional safety of systems.
Related standards such as ISO 26262 [13] typically require experts to manually define the
failure modes and risks and how these are addressed in the system. While this is sufficient
for systems with a lower degree of autonomy, ensuring safety for highly automated systems
is more complex as these need to handle situations that are unforeseen at design time and
consist of more tightly integrated components [14]. A standard addressing these issues is
SOTIF [15].

Another approach is provided by formal methods, which can prove the safety of an au-
tonomous system under reasonable assumptions on the behavior of other traffic participants
considering, e.g., traffic rules or physical constraints. Formal methods then guarantee the
correctness of a model with respect to a specification using mathematically rigorous proofs.
In the case of autonomous vehicles, this transfers to guarantees for not causing a collision or
violating traffic rules. Formal methods initially were proposed for problems of discrete na-
ture, such as theorem proving or model checking but specifically for cyber-physical systems,
concepts applicable to systems operating in continuous domains are developed to guarantee
the safety of planning and control algorithms [16–18]. A comprehensive overview of such
approaches is provided in [15].

While formal methods can provide safety guarantees, they can pose limitations to the
software or hardware of the system. In contrast to formal methods, validation methods are
used to demonstrate the safety of an autonomous system through testing, however without
being able to provide strict guarantees. Depending on the level at which tests are performed,
different methods are used: While on lower levels, classical methods from software testing,
such as unit testing or fault injection [19], can be used, we focus on the system-level vali-
dation, particularly of motion planners. Specifically for autonomous vehicles, scenario-based
approaches are becoming widespread for testing because they are able to structure the com-
plexity of the environment in which the vehicles are going to be deployed. In our work, we
especially focus on methods from this field, which we review in the next section.

During the development and approval process of autonomous vehicles, likely none of
these methods is applied exclusively. Rather, approaches from all three categories are used
in parallel to complement each other since even formally safe systems will not be deployed
without a validation in simulation to rule out coding or modeling errors.
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1.3 Scenario-Based Testing of Autonomous Vehicles

In scenario-based testing, the objective is to define a scenario catalog that represents the
operational design domain (ODD) of the system under test (SUT). The ODD defines the en-
velope of the situations that the system is intended to handle safely [20]. The scenarios in
this catalog are usually structured into several abstraction levels that we review in Sec. 1.3.1
followed by a summary of formats to represent such scenarios in Sec. 1.3.2 and methods for
their parameterization in Sec. 1.3.3. To select scenarios and to evaluate the performance
of the SUT, different metrics are used for quantifying, e.g., safety or other performance in-
dicators such as passenger comfort. In Sec. 1.3.4, we review such metrics focusing on the
criticality of scenarios. We conclude this section by summarizing methods for testing and
falsifying autonomous systems in Secs. 1.3.5 and 1.3.6.

Scenario-based testing is not necessarily limited to virtual testing and can integrate real-
world test drives [21] as well. However, in this work, we focus on simulative approaches.
For a broader overview of scenario-based testing, we refer interested readers to surveys such
as [12,20,22].

1.3.1 Abstraction Levels for Scenarios

To structure the validation of autonomous vehicles, the test scenarios are typically organized
along different abstraction levels as proposed in [23, 24]. The authors propose the terms
functional, logical, and concrete scenarios with decreasing abstraction levels as depicted in
Fig. 1.1. The exact definitions and notations for the abstraction levels vary in the literature,
however, on the abstract level, the scenarios typically describe the maneuvers and relations
between the traffic participants on a semantic level, while in concrete scenarios, either the
parameters required for the execution in a simulation or the exact trajectories of the sur-
rounding traffic participants are provided [20].

Logical Scenario Concrete ScenarioFunctional Scenario

formal description

Abstract Concrete

unambiguously defined
trajectories

parameterization
of trajectories

non-formal description

maneuver-based
behavior definition executable in simulation

environment

semantic level

Figure 1.1: Abstraction levels for defining test scenarios to structure the scenario space that is visualized below.

To create scenario catalogs, there are in general two directions proposed: knowledge-
based approaches first create scenarios on the most abstract level and detail the scenarios
representations yielding concrete scenarios [25–27]. Vice-versa, data-driven approaches start
with concrete traffic scenarios obtained e.g., from data recorded in real-world traffic or sim-
ulation. These scenarios are assigned to abstract scenario representations [28,29], clustered
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using hand-crafted features [30,31] or using unsupervised learning [32,33]. The advantage
of knowledge-based approaches is that they provide a structured approach for the validation
of autonomous vehicles. Challenges arise when scaling this approach to large ODDs, e.g., for
urban driving, which requires methods for creating and identifying relevant scenarios from
a large database of abstract scenarios. The question of the relevance of scenarios can be
partly answered by data-driven methods that provide insights into probabilities as described
in Sec. 1.3.5. Furthermore, relying on expert knowledge like in knowledge-based approaches
might lead to an incomplete scenario catalog, especially when it comes to edge cases [33].
Challenges of data-driven approaches arise from the costly data acquisition and processing of
a large amount of data. Furthermore, when using unsupervised learning to cluster scenarios,
problems might emerge from a lack of interpretability of the generated clusters.

1.3.2 Scenario Representation Formats

Formats for representing scenarios of any abstraction level need to consider several aspects:
The scenario should be machine-readable for an automated generation or execution in sim-
ulations but should be interpretable by humans as well. Ideally, scenarios are defined unam-
biguously so that simulations are consistent across different simulation tools.

To formalize the representation of traffic scenarios, several file formats, and domain-
specific languages have been proposed [34–40]. One of the first scenario formats was
OpenScenario focusing on concrete scenarios while its successor OpenScenario 2.0 expands
towards more abstract scenario representations3. However, it is still not fully supported by
most of the prevalent simulators such as CARLA [41]. The domain-specific language Para-
cosm is closely integrated with a Unity-based simulator focusing on visual and simulating
interaction with other traffic participants. It comes with a tool to sample for probabilistic and
combinatorial coverage considering parameter distributions or sets [42]. Scenic, a similar
language with integrated simulation and test generation tools, focuses on scenario parame-
terizations based on probability distributions and corresponding sampling techniques [43].
The format SceML focuses on modeling abstract traffic scenarios [39] and provides an inter-
face to the simulator CARLA. For a more in-depth comparison of scenario representations, we
refer to the survey [44].

1.3.3 Scenario Parameterization

To derive concrete scenarios from abstract representations or when generating variations of
concrete scenarios, there exist many different methods for parameterizing the behavior of
the traffic. The choice of parameterization can have a major influence on the efficiency and
capabilities of the test methods that build upon the scenarios. The parameterization needs
to balance between two conflicting objectives: on the one hand, the parameterization should
provide a sufficient degree of flexibility to allow the test method to cover a large variety of
different scenarios, to avoid excluding relevant edge cases. On the other hand, the parame-
terization should not define too many decision variables for the simulation, as this increases
the complexity of the testing procedure making it less efficient. Depending on the use case of
the testing procedure, another factor to consider is the degree to which the generated scenar-
ios reflect realistic behavior of traffic participants. We divide the parameterization techniques
into the following categories:

3https://www.asam.net/standards/detail/openscenario

https://www.asam.net/standards/detail/openscenario
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• Rule-based models: Rule-based driver models are typically implemented in traffic sim-
ulation tools such as CARLA [41] or SUMO [45] to model human driving behavior.
Examples of these models are the intelligent driver model (IDM) [46], which controls
the acceleration of the vehicle, or MOBIL [47] for modeling lane-change decisions. Be-
havioral parameters of the models can be chosen as variables for deriving scenarios.
While simulations with such models are simple to create, the resulting scenarios often
do not provide a large behavioral variety due to the simplistic underlying models. As an
additional downside, the models are typically optimized towards ensuring safety and
preserving traffic flow, which prevents them from exposing safety-critical behavior that
challenges the SUT.

• Learning-based models: As reviewed in more detail in Secs. 1.3.5 and 1.3.6, another
approach is to learn traffic behavior using machine-learning techniques or by computing
probabilistic models. These models are then used to synthesize new concrete scenar-
ios. This parameterization is typically used in combination with probabilistic sampling
methods. One advantage of this approach is that the resulting scenarios tend to be
realistic and diverse in terms of behavior.

• Maneuver primitives: Maneuver primitives are used for parameterizing certain ma-
neuvers by providing short sequences of motions, e.g., lane changes described by quin-
tic polynomials. Such primitives can also be fitted to naturalistic trajectories in order
to create variations of recorded data [48]. While maneuvers of the traffic participants
can be defined explicitly, the resulting motion is limited to the shape defined by the
primitive.

• Conditional triggers: Especially domain-specific languages for traffic scenarios (cf.
Sec. 1.3.2) specify the timing of actions using conditional triggers. Parameters in this
case are usually the durations or variables of the conditions. These triggers can be
combined, e.g., with maneuver primitives to model more complex behavior.

1.3.4 Criticality Metrics

Criticality metrics assess the criticality of a traffic scenario. For the validation of autonomous
vehicles, the metrics can be used, e.g., to select test scenarios or to assess the behavior of a
SUT in terms of safety and provide more insights compared to event-based metrics, such as
accident rates or traffic rule violations. Apart from validation, these metrics are also used as
an input for driver assistance systems. Classical metrics typically estimate the remaining dis-
tance or the time until a critical event occurs, such as time-to-collision (TTC), time-headway
(THW), and similar variants [49]. These metrics require assumptions on the movement of all
traffic participants including the ego vehicle. For the TTC, the prediction assumes a constant-
velocity motion or another concrete trajectory for the future behavior. Hence, these metrics
are limited to certain behaviors and do not provide a holistic threat assessment of a traffic
scenario that covers the variety of its possible outcomes. Similar metrics that are especially
relevant for motion planning algorithms are the time-to-react (TTR) [50] and related met-
rics [51] that provide the time available for starting a collision-avoidance maneuver. One
common characteristic of the metrics mentioned so far is that each of them typically focuses
on a single type of threat. Especially for the validation of autonomous vehicles, a more holis-
tic assessment of the criticality is required. This can be achieved, e.g., by considering multiple
specialized metrics simultaneously. A method based on optimal control [52,53] uses the min-
imal system inputs for the ego vehicle for collision-free driving as an indicator of criticality.
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Thus, the considered motion of the ego vehicle is not restricted to a single trajectory. For
more detailed reviews, we refer interested readers to [49,54].

1.3.5 Test Methods

The objective of test methods typically is to simulate a SUT in concrete scenarios to evaluate
its performance using defined metrics. These approaches are typically non-reactive in the
sense that the process of selecting concrete scenarios is not informed about the concrete
model of SUT or its performance during testing. Thus, the scenario catalog does typically
not depend on the SUT but on the test strategy. Since the test scenarios are independent of
the SUT, the approaches are suitable for benchmarking the performance of different SUTs or
different versions of its software. The approaches for selecting test scenarios typically aim
at reducing the number of scenarios required to obtain a certain test result. We provide an
overview of strategies we divide into the following two categories.

Coverage-driven testing

When creating test suites of scenarios, there are different objectives that can be followed.
One objective is to use coverage-driven metrics aiming to reduce the number of scenarios to
be tested. Coverage-driven methods are typically used in knowledge-based approaches where
concrete scenarios need to be derived from logical scenarios that define parameter ranges.
For continuous parameters such as positions or velocities, the number of possible concrete
scenarios is typically infinite. However, also for parameters with discrete domains, the num-
ber of possible parameter combinations renders exhaustive testing procedures infeasible. For
example, a logical scenario defined by 8 parameters with 10 values each already has 108

possible scenario concretizations. To reduce the number of scenarios for testing, coverage-
driven testing methods aim to replace the need for exhaustive testing through the definition
of coverage measures for the scenario catalog for which fewer test cases are sufficient.

Combinatorial testing methods define test cases for a set of parameters each having a finite
number of values. K-wise testing is based on the assumption that failures result from the
combination values from critical combinations of a fixed number, i.e., k parameters. Hence,
the goal is to define a set of test cases where each k-wise combination of parameters is
represented. This principle is applied to the domain of autonomous vehicles in [55, 56].
Even when creating k-wise test suites, the number of test cases is often still uneconomically
large when applied to practical applications for autonomous vehicles [57]. Hence, ideas to
reduce the number of test cases are proposed [57, 58]. Apart from k-wise testing, other
approaches focus on the coverage of high-level behavior in a test suite [59,60].

Probabilistic Sampling Methods

Another possible objective when creating scenario databases is to obtain realistic distributions
of scenarios that reflect their occurrence in real-world driving. These scenario databases can
be used especially to derive statistical evidence about the performance of an SUT in the real
world, e.g., the probability of accidents. In this case, typically recordings of naturalistic driv-
ing data are used and the concretization of scenarios is posed as a problem of sampling from
the scenario database. One challenge with naturalistic driving databases is that they are typ-
ically imbalanced since the majority of driving data does not contain safety-critical scenarios
or other challenging edge cases as illustrated in Fig. 1.2 using the example of the time-
to-collision. Thus, performing simulations with scenarios sampled using uniform probability
distributions is inefficient. To reduce the number of simulations while preserving probabilistic
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properties, importance sampling techniques are proposed [61–63]. Sampling-based methods
can further be used to generate previously unseen, yet realistic, scenarios using Bayesian
networks [64,65]. The authors of [66] present a technique that allows sampling from prob-
abilistic distribution considering linear constraints that allow specifying behaviors of traffic
participants in logical scenarios. Other works use deep learning to learn realistic models of
traffic behavior that can be used for creating new scenarios [67, 68], or train models with a
focus on maximizing the diversity of the traffic behavior [69].

Time-to-collision tT T C
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Figure 1.2: Typical distribution of the time-to-collision tT T C among scenarios in a naturalistic dataset where
safety-critical scenarios with a tT T C close to zero are rare. Figure adapted from [70] (original figure licensed under
Creative Commons License CC BY 4.0).

1.3.6 Falsification Methods

In contrast to testing, falsification methods are informed about the performance of the SUT
and adapt the test scenarios in a closed loop with the SUT to uncover failures with respect
to its specification. Therefore, falsification is often more efficient when it comes to uncover-
ing failures in the sense that it requires less concrete scenarios to find failures compared to
test methods. Contrary to the test strategies presented above, falsification is less suitable for
supporting claims about the overall performance of an SUT, e.g., through statistical evalua-
tions. Detected failures can be used, e.g., during the development to improve the software.
However, since the resulting selected scenarios always depend on the SUT, falsification is
less suitable than test methods for benchmarking different parameterizations of an SUT or
entirely different systems.

For cyber-physical systems in general, there exists a variety of approaches to falsify a SUT
with respect to a specification typically formulated using temporal logic. Failures can be
found by formulating the falsification problem as an optimization problem, where the objec-
tive is to minimize the robustness of the solution with respect to the specification. The opti-
mization problem can be solved using probabilistic sampling methods [71], multiple-shooting
methods involving graph-search [72], hierarchical search methods combining Monte Carlo
tree search (MCTS) with continuous solvers, or reinforcement learning [73]. An extensive
overview of such algorithms can be found in [74].

When it comes to autonomous vehicles, applying such falsification methods is challeng-
ing due to the complexity introduced by the variety of the possible behaviors of the environ-
ment, where failures can be the result of interactions between multiple traffic participants.
When using optimization-based approaches, the cost functions thus exhibit local minima,
which is addressed by using dedicated solvers such as evolutionary algorithms [75–79], sim-
ulated annealing [80], Bayesian optimization [78,81], or explorative search algorithms such
as rapidly-exploring random trees (RRT) [82, 83]. These approaches typically involve cost
functions based on criticality metrics (cf. Sec. 1.3.4) or define requirements formalizing the
desired behavior of the SUT using temporal logic [76, 84,85]. In [86], rules for other traffic

https://creativecommons.org/licenses/by/4.0/
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participants are encoded using temporal logic and integrated into a reinforcement learning
algorithm to control their degree of adversariality and to ensure that collisions are not caused
by rule violations of other traffic participants. Another approach is to learn adversarial mod-
els for the traffic behavior through reinforcement learning [87,88]. Traffic behavior learned
from real data is used to generate realistic collision scenarios in [70, 89, 90]. When consid-
ering the likelihood of failures, the falsification problem is formulated as a Markow decision
process, which is referred to as adaptive stress testing [91]. The goal of this approach is to
find the most likely failure.

Another line of work aims at computing safe invariant sets for a SUT and sampling poten-
tially safety-critical scenarios from the boundary of these sets [92, 93]. Similarly, scenarios
are sampled in [94]. Most falsification methods consider the model as a black box as it is too
complex for considering it explicitly. Surrogate models are approximations of complex SUTs
with a less complex structure that can be considered explicitly to generate counterexamples.
In [95, 96] such models are learned on the fly during the falsification and are utilized to
generate counterexamples.

While approaches using a broad problem formulation might uncover unexpected failures,
they are less suited for systematic testing in a scenario-based framework and might as well
miss failures when getting trapped in local minima. Hence, other approaches are proposed
that include scenario specifications in the problem formulation, e.g., by including compliance
with specified behavior in the cost function [97]. An approach using an SMT solver to find
potential collision scenarios based on a constraint-based scenario specification is presented
in [98]. A falsification tool using scenarios described in the scenario language Scenic is
presented in [99].

1.4 Research Gaps and Contributions

In the reviewed literature, we identify two gaps that we mainly address in this work:

1. Approaches for testing autonomous vehicles mostly rely on existing scenarios and typ-
ically differ by the method for sampling the scenarios either using coverage-driven or
probabilistic methods. These sampling strategies do not take into account a specific
SUT. Identifying safety-critical scenarios independently of an SUT is not straightforward
in general; most approaches rely on using a concrete SUT, which places them rather in
the category of falsification methods. Methods for generating complex, system-agnostic
safety-critical scenarios created using a generalizable criticality metric are missing in
the literature.

2. As described in Sec. 1.3.6, falsification methods for autonomous vehicles typically re-
quire a specification of the desired behavior of the SUT. Only little focus is put on
performing falsification in a scenario-based setting, which requires integrating meth-
ods to synthesize behavior complying with a scenario specification with falsification
algorithms.

This dissertation proposes new algorithms to generate traffic scenarios for testing software
for autonomous vehicles focusing on motion-planning algorithms. The developed methods
advance the state of the art of the automated validation through the following contributions:

The method presented in Sec. 3.1 extends the initial idea to use the drivable area for the
generation of traffic scenarios [100] in order to enable the efficient optimization of complex
scenarios with multiple traffic participants. This is achieved through evolutionary optimiza-
tion algorithms and our method to prune irrelevant regions from the parameter space of the
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scenarios. Due to the utilized metric, the scenarios are generated independently of a specific
SUT since we consider all feasible trajectories that could solve the planning problem of a
scenario. Since we quantify the solution space using our metric, we are able to directly add
constraints to the optimization problem so that there is a valid solution for the scenarios we
generate. Hence, we avoid generating scenarios that do not provide meaningful insights into
the capabilities of the SUT, e.g., where a collision is inevitable. Our method generalizes to a
wide range of traffic scenarios as we demonstrate in Sec. 3.2, where we combine the scenario
optimization with the automatic extraction of high-definition maps from OpenStreetMap4

and traffic simulation to obtain a fully automated framework for generating safety-critical
test scenarios.

To enable the efficient implementation of the scenario generation, we propose in Sec. 3.3
an approach that increases the efficiency of computing the reachable sets of vehicles in traffic
scenarios. By storing the reachability of subsets in a graph and reusing it during runtime, we
avoid repetitive set operations. Compared to previous work, our method requires significantly
less computation time.

Our method developed in Sec. 4.1 is the first to formulate the synthesis of concrete traf-
fic scenarios as a mixed-integer optimization problem. Hence, it enables checking whether
a concrete scenario can be synthesized from an abstract scenario. Our approach presented
in Sec. 4.2 enables the falsification of motion planning algorithms by finding scenario con-
cretizations synthesized from abstract scenarios. By combining reachability analysis with
search algorithms that sample within the reachable sets, we only consider the solution space
of feasible scenario parameters with respect to scenario specifications. Thus, unlike previous
work, we do not need to detect infeasible parameters by executing computationally costly
simulations. Furthermore, we show that our falsification algorithm becomes more efficient
the more complex the scenario becomes due to the shrinking solution space from which we
need to sample.

In addition to the methodological contributions, the software originating from this work
was also published as part of several open-source tools for map conversion, traffic simu-
lation using SUMO, and reachability analysis as part of the CommonRoad project5. The
scenarios generated using the presented methods contribute to the CommonRoad scenario
database [35] for benchmarking motion planning algorithms of autonomous vehicles.

4https://www.openstreetmap.org
5https://commonroad.in.tum.de

https://commonroad.in.tum.de
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1.5 Publications and Outline of the Thesis

Next, we provide an outline of the thesis and refer to the included publications. We start
in Ch. 2 by introducing the relevant preliminaries providing the background for the prob-
lem statements that are provided subsequently. We introduce in [1] the optimization-based
method for generating safety-critical test scenarios using a criticality metric based on the
drivable area. In [2], we extend the framework to automatically generate a large number of
diverse scenarios by combining automated map sourcing, traffic simulation, and the scenario
optimization. The chapter closes with our work Ch. 3 presenting a new method for com-
puting the drivable area of road vehicles efficiently [3]. In Ch. 4, we present the methods
introduced in [4] for synthesizing scenarios based on abstract scenario specifications, which
are subsequently integrated in [5] with a falsification algorithm. We conclude the thesis in
Ch. 5 and propose directions for future research building on our work.
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Chapter 2

Preliminaries and Problem Statements

In this section, we introduce the definitions required for formulating the main problems
addressed in this thesis.

2.1 Scenario Representations

We use two abstraction levels for traffic scenarios: abstract scenarios and concrete scenarios.
We consider abstract scenarios describing the behavior of the traffic participants semantically
on the spatiotemporal maneuver level using a scenario specification φs. Less formally, an
abstract scenario formalizes, e.g., a scenario verbalized by "The ego vehicle is driving behind
vehicle B, then merges to the left lane and overtakes vehicle B.". In Ch. 4, we provide a formal
definition of the format we developed to specify abstract scenarios. In a concrete scenario, the
trajectories x i(k) ∈ Rv with i ∈ [1, n] denoting the index of a traffic participant are provided
for a time horizon kf, i.e., for k ∈ [0, kf]. The state of the SUT is represented by xego(k). We
summarize the states of all traffic participants and the SUT in the stacked vector xS(k) =
[xego(k), x1(k), . . . , xn(k)]T and further denote the trajectories of a concrete scenario defined
over a time interval [0, kf] by xS([0, kf]). Hence, the motion of all traffic participant in a
scenario is unambiguously defined by xS([0, kf]). A concrete scenario is said to be derived
from an abstract scenario if it complies with the abstract specification, i.e., xS([0, kf]) |= φs.
We say that xs entails φs, denoted by xS([0, kf]) |= φs, if xs satisfies the constraints of scenario
φs. In other words, xS([0, kf]) |= φs if and only if there is no possible interpretation in which
the trajectory belongs to a scenario and the constraints of the corresponding specification φs
are not fulfilled.

In our test scenarios, we assume for the provided SUT a black-box property, i.e., that we
can only execute the system and observe its outputs for our provided inputs.

Definition 1 (System Under Test):
The system under test (SUT) is represented by a model xego(k+1) = MSUT(xS(k)) that returns
the next state of the ego vehicle based on the state of the scenario. �

This assumption is also reasonable in case we have full insights about the system but the
system model is too complex for explicitly exploiting these insights. For our test scenarios,
we consider the task of the SUT to plan a collision-free trajectory starting at an initial state
xego(0).

2.2 Reachability Analysis

In this work, we use different notions of reachable sets for the two problem statements in-
troduced in Sec. 2.3. For Problem 1, we consider the collision-free reachable set of the SUT

15
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starting from an initial state xego(0) ∈ Rv. When computing the reachable set, we consider a
vehicle model xego(k+ 1) = f (xego(k), uego(k)) with inputs uego(k) ∈ U ⊂ Rw where U denotes
the set of admissible inputs. We use the notation χ

�

k, uego([0, k]), xego(0)
�

for a state that is
reached starting from xego(0) by applying the inputs uego([0, k]).

We further introduce the operator occ : Rv → R2 returning the occupied area of a traffic
participant in a state x i(k). The road area, on which the ego vehicle is allowed to drive, is
provided byWlane ∈ R2. We use the reachable set to represent the solution space of a motion
planning algorithm starting at the initial state xego(0).

Definition 2 (Collision-Free Reachable Set):
We define the set containing all trajectories that are feasible with respect to the vehicle dy-
namics and not colliding with the occupancies of other vehicles as the reachable set.

Rdrivable(k,U , xego(0), xS([0, kf]),Wlane) =
¦

χ
�

k, uego([0, kf]), xego(0)
� �

�

∀κ ∈ [0, kf],∃uego(κ) ∈ U :

occ
�

χ
�

κ, uego([0, kf]), xego(0)
��

⊆Wlane

�
⋃

i

occ
�

x i(κ)
�

©

. (2.1)

�

To quantify the size of the reachable set, we use the drivable area, which we define using the
operator proj

pos
: Rv → R2 returning the projection of the reachable set to the position domain.

Definition 3 (Drivable Area):
We denote the projection of the reachable set to the position domain as the drivable area

D
�

k,U , xego(0), xS([0, kf]),Wlane

�

= proj
pos

�

Rdrivable
�

k,U , xego(0), xS([0, kf]),Wlane

�

�

.

�

The size of the drivable area at each time step yields the drivable area profile

A
�

k,U , xego(0), xS([0, kf]),Wlane

�

= area
�

D
�

k,U , xego(0), xS([0, kf]),Wlane

�

�

,

which we obtain using the operator area : R2→ R+ that returns the size of the drivable area.
When being provided with a scenario specification φs from which we want to derive a

concrete scenario xS([0, kf]), this specification restricts not only the solution space of the
trajectory of the ego vehicle but of the trajectories of all other traffic participants as well.
To represent the combined solution space of all traffic participants, we define the combined
reachable set of all vehicles, which is compliant with a provided scenario specification φs.
This yields the following definition we use in Problem 2, which generalizes Rdrivable.

Definition 4 (Specification-Compliant Reachable Set for Multiple Traffic Participants):
We define

Rspec(k,US,R0,φs) =
¦

χ
�

k, uS([0, k]), xS(0)
�

�

�

� xS(0) ∈R0,

∀κ ∈ [0, kf],∃uS(κ) ∈ US : χ
�

κ, uS([0,κ]), xS(0)
�

|= φs

©

(2.2)

containing all states compliant with a specification φs for the time interval [0, kf] as the
specification-compliant reachable set. �
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2.3 Problem Statements and Overview of Methods

2.3.1 Generation of Non-Reactive Test Scenarios

The first problem we address is the generation of safety-critical test scenarios. Following
a data-driven approach for defining scenarios, we consider provided concrete scenarios for
which we optimize the behavior of the traffic participants with respect to a criticality metric
C(xego(0), x i([0, kf]))) ∈ R+ that assesses the criticality considering the trajectories of all traf-
fic participants and the initial state of the SUT. The initial scenarios can be taken, e.g., from
databases with real-world data or from simulation.

To optimize the scenarios, we consider parameters p ∈ Ro parameterizing the trajectories
x i([0, kf]) of the traffic participants in a provided scenario. This yields the parameterized
trajectories x∗i ([0, kf], p).

Problem 1 (Optimization of System-Independent Traffic Scenarios):
Our goal is to determine the scenario parameters p that solve the optimization problem

argminp C(x∗ego(0, p), x∗i ([0, kf], p))

subject to ∀k,∀i,∀ j 6= i : occ(x∗i (k, p))∩ occ(x∗j (k, p)) = ; (2.3)

where we consider as a constraint that the other traffic participants do not collide with each
other.

�

One of our goals is to optimize the scenarios not considering a specific SUT but arbitrary
behavior of an SUT starting from an initial state xego(0) instead. Hence, our approach is based
on a criticality metric using the drivable area profile A(k,U , xego(0), x∗i ([0, kf], p),Wlane), which
only depends on the initial state and abstracts all possible behaviors of arbitrary SUTs for the
remaining time interval of the scenario through the reachable set. From now on, we use
the simplified notation A(k, p). Given there is a critical area profile Acrit(k), we compute the
difference between the actual profile A(k, p) and the critical profile using

C(x∗ego(0, p), x∗i ([0, kf], p)) =
kf
∑

k=0

�

A(k, p)− Acrit(k)
�2

. (2.4)

This metric is based on the assumption that the criticality of a scenario is related to the size
of the solution space of feasible trajectories for the SUT. In a small solution space, it can be
more difficult for planning algorithms to find a trajectory, e.g., when using sampling-based
motion planning algorithms that discretize the search space and might fail at identifying
narrow passages between obstacles. A small solution space can also indicate that a vehicle is
surrounded by more obstacles that need to be considered simultaneously when planning the
trajectory.

The principle of the optimization problem is illustrated in Fig. 2.1 depicting a mostly
unrestricted drivable area of the SUT before the optimization and the drivable area after the
optimization, which calls for an evasive maneuver of the SUT. A solution to the optimization
problem requires solving a multi-agent planning problem where the motions of the other
traffic participants need to be coordinated so that other traffic participants jointly affect the
drivable area. Additionally, we need to consider constraints regarding the collision avoidance
between other traffic participants to exclude unrealistic scenarios. With the criticality metric
as the objective function, we obtain a highly nonlinear problem, because the size of the
drivable area depends nonlinearly on the road geometry, the initial state, and the interaction
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with other traffic participants. To solve the optimization problem for a large number of
scenarios, we further require efficient methods for computing the drivable area. However,
this is challenging due to the non-convex shape of the reachable set and the constraints that
need to be considered.

drivable area (after optimization) original trajectory x i(t)

drivable area ego vehicle (before optimization) optimized trajectory x∗i (t, p)

Figure 2.1: In Problem 1, we want to find trajectories of other traffic participants to obtain a critical size of the
drivable area reducing the solution space for an SUT to find a feasible trajectory. This example depicts the drivable
area before and after the optimization of the scenario.

The approach we present in our work addresses the aforementioned challenges using
the following methodologies:ability analysis to compute the spe To solve the optimization
problem, we propose using evolutionary algorithms with a local correction scheme to correct
infeasible scenario candidates using efficient convex optimization. We handle the complexity
of the optimization problem through a lane-aligned parameterization of the trajectories. By
superimposing the initial trajectories of the traffic participants with a linear motion model,
we preserve the behavioral characteristics of the initial trajectories and can formulate linear
constraints for the correction using convex optimization. To increase the efficiency of the
optimization, we develop an algorithm that identifies the relevant parameter ranges where
the motion of other traffic participants interferes with the drivable area of the ego vehicle.
The parameter space is pruned to avoid exploring irrelevant scenario candidates during the
optimization. In addition, we develop a method for computing reachable sets efficiently,
which enables reducing the computation time of the optimization problem.

Abstracting the SUT using the drivable area has several advantages. The resulting scenar-
ios are independent of the SUT, which is only exposed to the scenarios after the optimization
as depicted in Fig. 2.2. At the same time, we can simultaneously consider all feasible ma-
neuvers the SUT can choose from and aim for scenarios in which a feasible solution for the
SUT exists by demanding ∀k : A(k, p) > 0. The scenarios are therefore system-agnostic and
can be used to benchmark different SUTs, i.e., entirely different systems but also different
versions or parameterizations of the same system. While there are many approaches that
consider the probability of scenarios, c.f., Sec. 1.3.5, we deliberately focus with our metric on
the physical feasibility of a scenario. We argue that in order to achieve the high confidence
level required for the homologation of autonomous vehicles, even highly unlikely scenarios
need to be handled safely.

The resulting scenarios are non-reactive in the sense that they do not adapt to the behavior
SUT. Testing using non-reactive scenarios is more efficient compared to reactive scenarios
since they do not need to be generated again for every SUT. Since the drivable area can
be computed for arbitrary road layouts and trajectories of the traffic participants, it can be
applied as a criticality metric even to complex traffic scenarios. A downside of generating
scenarios non-reactively is that they can be less efficient when searching for specific failures.
This case is addressed in the next problem statement.
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Initial Scenario
SUT

TrajectoryScenario

Criticality Metric

Criticality
Optimization xS([0, kf])

Figure 2.2: Problem 1: open-loop testing using SUT-agnostic scenarios.

2.3.2 Falsification using Reactive Scenarios

The second part of this work considers the synthesis of scenarios to falsify specific SUTs.
In contrast to Problem 1, we obtain reactive scenarios where we adapt the behavior of the
other traffic participants in a scenario in a closed loop with a SUT as shown in Fig. 2.3. Our
objective is to find a concrete scenario that uncovers a failure of the SUT MSUT(xS(k)), which
is provided to our falsification algorithm. The other input to the algorithm is the abstract
scenario specification φs, which we divide into a maneuver specification φe describing the
behavior of all traffic participants and a failure specification φf that describes the failure of
the SUT we consider in our search:

φs = φe ∧φf.

The maneuver specification φe enables embedding our method into a scenario-based ap-
proach, while the failure specification enables using falsification methods that actively search
for the failures. Since we focus on motion planning algorithms, a failure can comprise, e.g.,
a collision with another traffic participant or a violation of traffic rules. The specification
can be part of the knowledge-driven approach described in Sec. 1.3.1, in which concrete sce-
narios derived from abstract scenarios are part of the test strategy. In this work, we assume
the specification is already provided by methods described in Sec. 1.3. We summarize the
problem as follows.

Problem 2 (Falsification of a System Under Test Using Specified Traffic Scenarios):
We consider the problem of finding a concrete scenario xS([0, kf]) that complies with φs. �

xS(k)

Abstract Scenario
SUT

TrajectoryScenario

Failure Specification

Falsifier

Figure 2.3: Problem 2: Falsification of a specific SUT. The behavior of other traffic participants complies with a
specification φs.

This problem formulation requires synthesizing trajectories of the other traffic partici-
pants that comply with the specification of their behavior φe. In this case, we assume the
trajectories x i(k) to be related to the inputs ui(k) ∈ Rw through a discrete-time vehicle model
x i(k + 1) = fM (x i(k), ui(k)). While the falsification algorithm can directly control the other
traffic participants, it cannot control the SUT with the trajectory xego(k). Therefore, we use a
search strategy to find a concrete scenario in which the behavior of the other traffic partici-
pants results in a failure of the SUT defined by φf. Challenges arise from the high dimension-
ality when planning the actions of agents simultaneously. We use Monte Carlo tree search
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(MCTS), which is well-suited for search problems with high branching factors, to solve the fal-
sification problem. To reduce the branching factor we propose using specification-compliant
reachable sets Rspec(k,US,R0,φs) to adaptively constrain the search space to areas where
φs can be fulfilled. This prevents the search from exploring concrete scenarios that cannot
possibly end in a compliant scenario at a later point in time resulting in a more efficient
falsification.

To compute Rspec(k,US,R0,φs), we develop a constraint-based representation of the sce-
nario specification φs, which we integrate with reachability analysis to compute the specifi-
cation-compliant reachable set Rspec(k,US,R0,φs) of all traffic participants in a scenario. The
reachable set is updated at each sampling step during the MCTS and from the set we derive
constraints that exclude incompliant actions of other traffic participants. Fig. 2.4 illustrates
how the trajectories of three vehicles are sampled within specification-compliant reachable
sets. In our specification, we consider the scenario specification to be temporally structured
into successive scenes, which describe the spatial relations of traffic participants using sets
of predicates. The predicates hold true for the entire duration of the scene and define, e.g.,
the interval of the distance, in which a vehicle has to drive behind another vehicle. Through
several scenes, maneuvers of each traffic participant are composed. The constraint represen-
tations of all predicates are collected and used during the reachability analysis to constrain
the reachable sets.

initially computed reachable set

reachable set updated at t=3.7

ti
m

e
t

[s
]

9.7

3.7

0.0
longitudinal position [s]

t=9.7

t=0.0

t=3.7

Figure 2.4: Approach for sampling concrete scenarios using reachability analysis to continuously update sampling
constraints. For illustrational purposes, the reachable sets are only shown for the initial state and for an update
after t = 3.7. The dotted lines depict the sampled trajectories of traffic participants. (Modified from [5].)



Chapter 3

Generating Non-Reactive Safety-Critical Test Sce-
narios Using Optimization

In this chapter, we present the method for creating test scenarios that addresses the problem
described in Sec. 2.3.1. First, the optimization-based method to increase the criticality using
the drivable area is introduced in Sec. 3.1. To apply it on a larger scale, we develop a pipeline
that creates scenarios based on open-source map data and a traffic simulator in Sec. 3.2. In
Sec. 3.3, we present a method for efficiently computing the drivable area.

3.1 Generating Critical Test Scenarios for Automated Vehicles with Evo-
lutionary Algorithms

Creating safety-critical test scenarios for unkown SUT as introduced in Problem 1 is chal-
lenging because the behavior model of the SUT is not available when creating the scenarios.
However, most existing criticality metrics can only be evaluated with respect to a concrete
state of the trajectory of an SUT. Furthermore, optimizing traffic scenarios with respect to
a criticality metric is a highly nonlinear problem where optimization algorithms might get
stuck in local minima.

To address these issues, we develop an approach to optimize the trajectories of other traf-
fic participants in initially uncritical concrete traffic scenarios using evolutionary algorithms
and a criticality metric based on the drivable area. This metric abstracts arbitrary SUTs by
representing them using the solution space of all collision-free trajectories. Hence, we can
optimize the criticality without depending on a concrete SUT. A major advantage of using the
drivable area is that we can demand a non-empty drivable area to aim at finding scenarios
for which a collision-free motion plan for the ego vehicle exists. To generate realistic traffic
scenarios, it is necessary to account for additional constraints when adjusting the trajectories
of other traffic participants, such as preventing collisions between other traffic participants.
Our proposed method ensures valid scenarios by correcting invalid scenarios through solving
locally convexified problems. Furthermore, we are only interested in traffic scenarios, where
the trajectories of other traffic participants affect the drivable area of the SUT. To improve
the computation time, we develop an algorithm that prunes irrelevant parameter intervals
for which the drivable area is not affected.

We evaluate our approach in urban and highway scenarios and demonstrate that it can
handle complex scenarios with many traffic participants. Additionally, we compare the per-
formance of two evolutionary algorithms, which indicates a superior performance of particle
swarm optimization compared to differential evolution.

Contributions M. A. initiated the idea of using the drivable area to optimize the criticality
of traffic scenarios. M. K. developed the algorithms for correcting invalid scenarios during
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the optimization and for pruning the parameter intervals of the scenario parameters. M. K.
evaluated the approach and wrote the article, M. A. provided feedback and improved the
manuscript.
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Generating Critical Test Scenarios for Automated Vehicles with
Evolutionary Algorithms

Moritz Klischat and Matthias Althoff

Abstract— Virtual testing of automated vehicles using simula-
tions is essential during their development. When it comes to the
testing of motion planning algorithms, one is mainly interested
in challenging, critical scenarios for which it is hard to find
a feasible solution. However, these situations are rare under
usual traffic conditions, demanding an automatic generation of
critical test scenarios. We present an approach that automat-
ically generates critical scenarios based on a minimization of
the solution space of the vehicle under test. By formulating
a scenario parametrization and automatic determination of
relevant parameter intervals, we are able to optimize the
criticality of complex scenarios. We use evolutionary algorithms
to tackle the resulting highly nonlinear optimization problem.
Compared to our previous approach, we are now able to handle
complex situations, in particular those involving intersections.
Finally, we demonstrate our approach by generating critical
scenarios from initially uncritical scenarios.

I. INTRODUCTION

When automated vehicles are deployed in the real world,
they are subjected to an unforeseeable number of situations.
This requires extensive testing during their development to
ensure safety, especially with regards to motion planning.
To demonstrate that automated vehicles have a better perfor-
mance than humans with a 95% confidence level, they need
to be driven for 440 million km [1]. Because this cannot be
achieved through real-world testing alone, virtual tests are
a common practice, making it possible to test many aspects
faster than in real-time, see e.g., [2]–[4]. Even virtual tests,
however, can be very time-consuming since dangerous or in-
teresting situations are rare events. This motivates automatic
generation of critical test cases for automated vehicles—
in this work, we focus on test cases for motion planning.
These tests cases expose the vehicle under test to short traffic
scenarios for which a feasible motion needs to be found.

A. Related work

One straightforward approach for increasing the efficiency
of virtual testing is the extraction and classification of
relevant scenarios from large databases of recorded traffic
data as demonstrated in, e.g., [5], [6]. In [7], scenarios are
grouped by unsupervised learning to find situations where
small deviations of the environment lead to changes in
behavioral modes, e.g., when the vehicle under test is forced
to take a different path. Despite the fact that collecting data
at this scale is challenging, one is restricted to observed
situations, which are typically not critical most of the time.

All authors are with the Technische Universität München, Fakultät für In-
formatik, Lehrstuhl für Robotik, Künstliche Intelligenz und Echtzeitsysteme,
Boltzmannstraße 3, 85748, Garching, Germany. {moritz.klischat,
althoff}@in.tum.de

For generating new scenarios based on existing data, test
cases are created automatically based on observed cause-
effect relations, which are checked subsequently during test
execution in [8]. Combination and mutation of recorded data
is used in [9] to create new test cases. In [10] the authors
propose using learned behavior from recorded or simulated
traffic data to generate traffic scenarios with neural networks,
which are subsequently searched for accidents. However,
an accident does not necessarily imply that a situation is
critical; it might have been easily avoided. In return, a critical
situation might be resolved by a good driver and not be
classified as critical.

Another practice for more systematic testing is to define
scenarios on an abstract level and by deducting test cases
through the variation of parameters, see e.g., [11], [12].
However, without considering the criticality of a scenario,
the number of generated test cases quickly becomes un-
economical. Criticality is explicitly considered in [13]–[15],
where automated vehicles are tested by optimizing scenarios
towards a short Time-To-Collision or using related cost
functions. Similarly, in [16], systems are forced into faulty
behavior with respect to previously-defined specifications. In
[17] and [18], test case generation for automated vehicles
is realized using S-TaLiRo. In [19], an approach using
S-TaLiRo is applied to motion planners based on machine
learning, including simulated camera processing using deep
neural networks.

Our previous work [20] is the first approach that generates
critical scenarios with a small solution space for the vehicle
under test, which we refer to as the ego vehicle from now
on. In that work, the drivable area is used as a measure for
criticality. The drivable area denotes the solution space in
which the ego vehicle can operate safely without colliding.
This measure enables the quantification of criticality in many
more driving situations than the Time-To-Collision. How-
ever, [20] only allows the generation of simple scenarios on
straight, non-intersecting roads and only realized translation
of other traffic participants.

B. Contributions

We present an approach to generate critical scenarios for
testing motion planners in complex traffic situations. Based
on the optimization of the drivable area of the ego vehicle,
our method provides the following improvements compared
to [20]:

1) A new parametrization of scenarios is presented for
realizing more complex and diverse scenarios.



2) By using evolutionary algorithms (EA), we find better
local minima over a larger range of scenarios. This
is especially advantageous compared to the local lin-
earization used in [20] despite the highly nonlinear
optimization problem at hand.

3) To improve the optimization process and to consider
only relevant driving situations, a method to prune the
parameter space of a scenario is presented. As a result,
only parameter regions where traffic participants can
possibly interfere with the ego vehicle are considered.

4) By formulating a repair algorithm based on a linear
program, obtained scenarios do not contain collisions
among other traffic participants.

Our approach considers all feasible trajectories of the ego
vehicle unlike previous approaches that generate scenarios
based on a closed-loop simulation with the motion planner
of the ego vehicle [13]–[15]. Thus, our approach yields test
cases whose criticality is not depending on the performance
of the motion planner. This enables a more objective com-
parison of multiple motion planners and the creation of
a database with generic critical scenarios. Since we only
generate scenarios with a non-empty drivable area, we also
ensure that a collision-free trajectory exists, compared to
approaches that focus on finding accident scenarios.

II. PROBLEM STATEMENT

The subsequent formulation of the underlying optimization
problem is similar to [20], except that we consider collisions
among other traffic participants. For an illustration of the
introduced variables, we refer to Fig. 2a.

A. Traffic Participants

We define the list V of traffic participants V (i). In the
remainder of this work, the superscript �(i) refers to the i-
th traffic participant. For each traffic participant, we assume a
parametrized trajectory x(i)(t; p) ∈ Rn, where the parameter
vector p ∈ P and parameter space P ∈ R1×q are presented
in detail in Sec. III-A. We introduce the operator occ(x)
returning the occupied space of a vehicle with state x.
The occupancy set of a traffic participant is denoted by
O(i)(t, p) = occ(x(i)(t; p)). To each traffic participant we
assign a lane L(i) ∈ R2 of the road network.

B. Motion Planning Problem of the Ego Vehicle

Let us introduce the motion planning problem for the ego
vehicle as follows: By f(x(t), u(t)) we denote the right-hand
side of the state-space model of the ego vehicle so that

ẋ(t) = f(x(t), u(t)),

where x ∈ Rn is the state vector and u ∈ Rm is the input
vector. We further require the initial state x0 = x(t0), the
initial time t0, and the time horizon tf . The possibly time-
varying, allowed space on the road surface is denoted by
Wlanes(t) ⊂ R2. The occupancy of the ego vehicle has to
lie within the allowed space, while avoiding other traffic
participants ∀t ∈ [t0, tf ] : occ(x(t)) ⊆ Wlanes(t)\O(t, p).

We also require constraints g(x(t), u(t), t) ≤ 0, such as
speed limits or other traffic rules [21].

After introducing an input trajectory as u(·) (in contrast
to a value u(t) at time t) and the cost function of the
obtained solution J(x(t), u(t), t0), we can finally formulate
the motion planning problem as finding

u∗(·) = arg min
u(·)

J(x(t), u(t), t0)

subject to

ẋ(t) = f(x(t), u(t)), occ(x(t)) ⊆ Wlanes(t)\O(t, p),

g(x(t), u(t), t) ≤ 0, x(t0) = x0 .
(1)

Finally, we denote a scenario by the tuple

S(p) = (x0,O(·, p),Wlanes(·)).

C. Drivable Area

To consider not only the optimal solution of the motion
planning problem, but the space of all solutions, we require
the set of reachable states [22]. In particular, we use a so-
called anticipated reachable set, which excludes states that
will inevitably result in an accident [23] in the time interval
t ∈ [t0, tf ]. We denote a feasible trajectory as χ(t;x0, u(·)),
which meets all constraints in (1). After introducing the set
of input trajectories U , we define the anticipated reachable
set as

R(t;x0,O(·, p),Wlanes(·), tf ) =

{
χ(t;x0, u(·))

∣∣∣∣∃u(·) ∈ U ,

∀τ ∈ [t0, tf ] : occ
(
χ(τ ;x0, u(·))

)
⊆ Wlanes(τ)\O(τ, p)

}
.

By applying the projection operator for projecting to the
position domain in Euclidean space proj

xy
(x) : Rn → R2,

the drivable area becomes

D(t;x0,O(·, p),Wlanes(·)) =⋃
x∈R(t;x0,O(·,p),Wlanes(·),tf )

proj
xy

(x). (2)

To quantify the solution space over time, we introduce the
function area(X ) : R2 → R+, returning the area of a set.
We write

A(p, t) := area
(
D(t;x0,O(·, p),Wlanes(·))

)
to obtain the area profile of the drivable area over time.

D. Optimization Problem

The goal of this work is to create a scenario S(p) with a
desired area profile Aref (t) by optimizing

arg min
p

κ(S(p)), κ(S(p)) =

∫ tf

0

(
A(p, t)−Aref (t)

)2
(3)

subject to ∀t, ∀i, ∀j : O(i)(t, p) ∩ O(j)(t, p) = ∅.
(4)
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Fig. 1: Longitudinal coordinates sξ(tk; p) formulated relative to the inter-
section point I(i,j) of lanes L(i) and L(j).

The constraint in (4) ensures that no traffic participants
collide with each other. We refer to the set of parameters,
for which this constraint holds, as the feasible set. In this
work, we use for Aref (t) the drivable area computed without
any traffic participants and the scalar γ ∈ ]0, 1[ , which
quantifies the reduction of the drivable area: Aref (t) =
γ · area(D(t;x0, p, ∅,Wlanes(·))).

III. PARAMETRIZATION OF THE OPTIMIZATION PROBLEM

For the trajectories x(i)(t; p) of all traffic participants V ,
we require a parametrization that can be applied to complex
road networks and enables efficient handling of collision
constraints in (4), yet is lightweight enough for being solved
in reasonable time. To this end, we introduce the curvilinear
coordinate system C, in which a state is defined as xC =
[sξ, ṡξ, sη, ṡη]

T , where ξ denotes longitudinal and η denotes
lateral coordinates with respect to the center line of a lane
L. The operator proj

ξ
(x) : R2 → R projects the Euclidean

space to the longitudinal position domain. Furthermore, we
use discretized time tk = ∆t · k with time steps k ∈ N and
step size ∆t ∈ IR+.

A. Parametrization of Traffic Participants

For each vehicle, we assume an initial trajectory to be
given and independent dynamics in lateral and longitudinal
direction. We parametrize the longitudinal position trajectory
as

s
(i)
ξ (tk; p(i)) = ŝξ(tk) + p(i)s + tkp

(i)
v +

1

2
t2kp

(i)
a (5)

with the initial longitudinal trajectory ŝξ(tk) ∈ R and the
parameter vector

p =
[
ps, pv, pa

]
for translations ps ∈ R1×ν , initial velocity variations pv ∈
R1×ν , and acceleration variations pa ∈ R1×ν . The parameter
p is bounded by the multidimensional interval set

P = {[ps, pv, pa] | ps ∈ S, pv ∈ B, pa ∈ A}

with

S =
[
ps, ps

]
,B =

[
pv, pv

]
,A =

[
pa, pa

]
.

By � we denote the supremum and by � the infimum of
interval sets.

B. Collision Constraints

In order to solve the collision constraints in (4) efficiently,
we approximate them by a formulation as linear inequality
constraints of the form d(tk, p) ≤ ∆r with d(tk, p), ∆r ∈
Rρ, which represent a convex feasible set. We introduce
the solution candidate p̃ ∈ P , which is repaired using an
Euclidean projection of p̃ onto the convex feasible set. This
projection is trivial and can be solved by a quadratic program
[24]. The repair mechanism is used during optimization as
described in Sec. IV.

The elements of d(tk, p) are obtained by pair-wise formu-
lations of collision constraints between traffic participants.
Due to the scenario parametrization in (5), not all traffic
participants can collide, e.g., if the lanes of two vehicles
never intersect. Therefore, we first identify all pairs of traffic
participants V (i), V (j), ∀i 6= j, which can possibly collide
by checking for intersection of their lanes, L(i) ∩ L(j).

Constraints are composed of the distances between vehi-
cles along lanes. While obtaining distances between traffic
participants in the same lane is trivial, defining longitudinal
distances of merging or intersecting lanes is not obvious. To
this end, we define the intersection point of lanes of traffic
participants V (i) and V (j) as I(i,j) ∈ R2 as shown in Fig. 1,
which serves as the origin of the curvilinear coordinate
systems. Longitudinal distances in these coordinate systems
are then classically obtained as |s(i)ξ (tk; p)− s(i)ξ (tk; p)|.

Depending on p̃, two configurations of two traffic partici-
pants are possible: either V (i) is passing before (case 1©) or
behind (case 2©) V (j). In order to preserve the configuration,
which results from the parameter p̃ at hand, we distinguish
the cases by

d(i,j)(tk, p) =

{
s
(j)
ξ (tk; p)− s(i)ξ (tk; p) for case 1©
s
(i)
ξ (tk; p)− s(j)ξ (tk; p) for case 2©

.

Finally, we write the collision constraint for each tk as

d(i,j)(tk, p) ≤ (r(i) + r(j)), (6)

where r is the radius of the circle inscribing the shape of a
traffic participant, including a safety margin.

C. Pruning of the Parameter Space

Solving our optimization problem is complicated since a
traffic participant can only reduce the drivable area D if it
intersects it at some point in time. However, large regions
of possibly occupied positions {O(·, p) | p ∈ P} of traffic
participants might never intersect the drivable area D like
vehicle V (1) in Fig. 2a. To quickly converge to solutions
reducing the drivable area, we automatically want to remove
regions from the translational parameter space S which have
no influence on the drivable area, as shown in Fig. 2b for
V (1). In contrast, there exist parameters within P that can
drastically reduce the drivable area; this typically depends
largely on the traffic participant. Thus, we first identify the
best traffic participants VB which have a large influence on



the reduction of the drivable area and separate them from
the worse remaining traffic participants VW :

V = VB ∪ VW . (7)

From now on, we denote by superscripts �B and �W the
relation to traffic participants of the corresponding sets.

For identifying traffic participants with a large influence
on the drivable area, i.e., the cost function κ, we define the
criterion

λ(V (i), p̃) =
κ(S(x0,O(·, p̃),Wlanes(·)))
κ(S(x0, Ô(·, p̃),Wlanes(·))

,

Ô(i)(·, p̃) = O(·, p̃) \ O(i)(·, p̃),

which expresses the ratio of costs for the scenario with
and without the i-th traffic participant for the parameter p̃.
As shown in Algorithm 1, VB is initially empty and new
members Vb,new are selected by

Vb,new = arg min
V (i)∈VW

λ(V (i), p̃) (8)

to obtain the traffic participant with the largest impact on the
cost function.

After adding Vb,new to VB , we want to identify
the intervals SW,(i) = [ps

(i), ps
(i)] for the remaining

V (i) ∈ VW , which contain all parameters that can inter-
sect with D(·, x0,O(·, [p̃B , pW ]),Wlanes(·)). By computing
DB(·, x0,OB(·, p̃B),Wlanes(·)) considering the occupancies
OB(·, p̃B) only, we obtain a superset of the drivable area

∀pW ∈ PW : D(·, x0,O(·, [p̃B , pW ]),Wlanes(·))
⊆DB(·, x0,OB(·, p̃B),Wlanes(·)), (9)

where [p̃B , pW ] denotes the combined parameter vector
of p̃B and pW . From now on, the shortened notation
DB(·, p̃B) = DB(·, x0,OB(·, p̃B),Wlanes(·)) is used. By
restricting SW to the interval which results in an intersection
withDB(·, p̃B), we consequently guarantee that SW contains
the desired parameters only. This is formalized as

ps
(i) = min

{
p(i)s | O(i)(·, [p(i)s , p(i)v , p(i)a ]) ∩ DB(·, p̃B) 6= ∅,
∀p(i)v ∈ B(i), ∀p(i)a ∈ A(i)

}
,

ps
(i) = max

{
p(i)s | O(i)(·, [p(i)s , p(i)v , p(i)a ]) ∩ DB(·, p̃B) 6= ∅,
∀p(i)v ∈ B(i), ∀p(i)a ∈ A(i)

}
.

Since this is a challenging problem, we formulate an over-
approximative representation using an over-approximation of
DB(·, p̃B) in curvilinear coordinates, thus guaranteeing that
the entire drivable area is considered when computing SW .
For that purpose, we intersect the drivable area DB(·, p̃B)
with the corresponding lane L(i) and project it to the lon-
gitudinal position domain to obtain the over-approximative
interval of DB(·, p̃B) in curvilinear coordinates (see Fig. 2b):

d
(i)
ξ (tk) =

[
inf

{
proj
ξ

(
DB(tk, p̃

B) ∩ L(i)
)}

,

sup

{
proj
ξ

(
DB(tk, p̃

B) ∩ L(i)
)}]

.

Afterwards, we obtain the bounds of SW,(i) for the time
interval [t0, tf ] as

ps
(i) = min

tk∈[t0,tf ]

(
dξ

(i)(tk)− ŝξ(tk)

−(tk − t0)pv −
1

2
(tk − t0)2pa︸ ︷︷ ︸

minimizes ps(i)

)
, (10)

ps
(i) = max

tk∈[t0,tf ]

(
dξ

(i)
(tk)− ŝξ(tk)

−(tk − t0)pv −
1

2
(tk − t0)2pa︸ ︷︷ ︸

maximizes ps(i)

)
(11)

which directly follows from solving (5) for p(i)s .

IV. OPTIMIZATION ROUTINE

For solving the optimization problem in (3), we utilize
evolutionary algorithms. These algorithms are especially
suited for global optimization problems for which no an-
alytic gradient can be formulated [6], as is the case for
the cost function κ(S(p)). One can incorporate any EA
in our approach as shown in Algorithm 1; we exemplarily

V (2)

V (1)

D(1.6;x0,O(·, p),Wlanes(·))
x0 ego vehicle

O(1.6, p)
Wlanes(·)

(a) Initial scenario.

ξ(1)

ξ(2)

V (2) ∈ Vb

V (1) ∈ Vw

ps
(1)

ps
(1) DB(1.6;x0,OB(·, p̃B),Wlanes(·))

d
(1)
ξ (tk)

(b) Pruning parameter region S = [ps, ps].

V (1)

V (2)

D(t = 1.6;x0,O(·, p),W(·))

(c) Solution of optimization: critical scenario.

Fig. 2: Generating a critical scenario. Depicted are drivable area D and traffic participants V (i) at t = 1.6 s.



use differential evolution (DE) [25] and particle swarm
optimization (PSO) [26] and compare them.

During optimization, we perform intermediate tightening
of parameter bounds P according to Sec. III-C. For the
optimization, we define the population Q as the set consisting
of all np solution candidates pe, e ∈ {0, ..., np} for the EA.

Initially, all traffic participants are assigned to VW , and
initial bounds are computed according to Sec. III-C. Af-
ter conducting nb iterations with the respective solver, all
solution candidates pe ∈ Q which violate the constraints
in (6) are repaired by computing the closest projection
to the feasible set as described in Sec. III-B. Afterwards,
intermediate updating of parameter bounds S is performed
by first selecting the most relevant member Vb,new ∈ VW
with respect to κ(S(p)) for adding it to VB . With the updated
sets VB and VW , the parameter bounds SW are tightened in
the subsequent iteration step l using (10) and (11). Next,
elements of solution candidates pe ∈ Q, which violate
pe ∈ P , are resampled within the newly computed bounds.
This routine is repeated until either all traffic participants
are assigned to VB or the optimization algorithm converged.
For a step-by-step example that illutstrates the iterative
computation of bounds, we refer to Sec. V-A.

Algorithm 1 IterativeBoundingOptimization

Require: scenario S(p), initial solution p̃, traffic participants
V , number of traffic participants no, initial bounds P

Ensure: Critical Scenario S
1: VW ← V
2: VB ← ∅
3: Q← INITPOPULATION
4: l← 0
5: converged← false
6: while l < no and ¬converged do
7: PW ← TIGHTENPARAMETERBOUNDS(VW ,VB , p̃)

. see (10) and (11)
8: Q, converged← EA(P, Q)
9: Q← REPAIRINFEASIBLE(Q) . see Sec. III-B

10: p̃← arg minpe∈Q κ(S(pe))
11: Vb,new ← SELECTRELEVANT(VW ,VB , p̃) . see (8)
12: VB ← VB ∪ Vb,new
13: VW ← VW \Vb,new
14: l← l + 1
15: end while
16: return S(p̃)

V. RESULTS

The proposed approach is demonstrated by two initial
scenarios from the CommonRoad benchmark collection [27].
We also compare results from the two evolutionary al-
gorithms DE and PSO. Due to the lack of comparable
algorithms, no comparison to existing work is possible. For
the computation of the drivable area, we use the method
presented in [23]. Used parameters are listed in Table I. We
used different settings for the solvers in both scenarios due

to their different complexities. The settings are described in
the respective paragraphs. Computation times were measured
on a machine with an Intel i7-8650U 1.90 GHz processor.

TABLE I: Scenario Parameters

max. acceleration ego vehicle |amax| 5.0 m/s2

time step size ∆t 0.1 s

time horizon tf 3.0 s

initial velocity variation B [−3, 3] m s−1

acceleration variation A [−5, 5] m/s2

A. Scenario I: Intersection

The first scenario is a hand-crafted, unregulated urban in-
tersection that can be found in the CommonRoad benchmark
collection1 under ID DEU Ffb-1 3 T-1. The ego vehicle has
an initial velocity v0 = 7.1 m s−1 and is surrounded by 3
other vehicles. This results in 9 parameters, for which a
population of 90 individuals is used during the optimization.
We conduct 45 iterations with both solvers, while performing
parameter bounding every nb = 15 steps. The computation
time for this scenario is 22.09 minutes.

The initial configuration at t = 2.5 s is depicted in Fig. 3a.
The other vehicles almost do not restrict the drivable area D
and thus the situation is uncritical. The final result of the
particle swarm algorithm is shown in Fig. 3. To illustrate the
optimization routine, we show three intermediate solutions
at different iterations of the optimization. In the initial
configuration, the depicted position bound S for all vehicles
are large due to the large drivable area. However, after two
adaptation iterations, the bounds could be decreased due to
the smaller drivable area. After the final iteration k = 3, the
drivable area has decreased even further.

The optimized scenario shows a vehicle coming from the
left and ignoring the right of way of the ego vehicle while
breaking with a = −2 m s−1. The ego vehicle either needs
to perform an emergency braking maneuver or evade to
the right. Even though another traffic participant would be
blamed for the potential collision in this case, one is still
interested in protecting the passengers of the ego vehicle
through a safe maneuver of the motion planner. When
comparing the convergence of solvers in Fig. 4, DE and PSO
perform almost equally in the beginning; however, after 12
iterations, DE almost does not improve anymore, while the
PSO still improves substantially.

B. Scenario II: Highway scenario

The second scenario is a highway scenario taken from the
NGSIM US 101 dataset2. This scenario can be found in the
CommonRoad benchmark collection under ID USA US101-
14 1 T-1. The ego vehicle has an initial velocity of
14.85 m s−1 and is surrounded by similarly paced vehicles
in the initial configuration. In order to simplify the scenario,

1https://commonroad.in.tum.de
2http://www.fhwa.dot.gov/publications/research/

operations/07030/
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(c) Final optimized configuration at t = 2.5 s with final
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Fig. 3: Scenario I: initial configuration, intermediate result during opti-
mization, and the final configuration at t = 2.5 s. Positional bounds S
of respective iteration k are depicted in blue.

iterations

co
st

s
κ
(p
)

DE

PSO

Fig. 4: Comparison of solver convergence for scenario I.

irrelevant vehicles are removed prior to the optimization. As
a result, 13 vehicles with a total number of 39 parameters
are optimized. This scenario is especially demanding with
respect to collision constraints (4) and the high number of
parameters in total.

All three algorithms are initialized with a population
of 195 individuals and computed for 45 iterations, while
parameter bounds are adapted and the repair algorithm is
applied every 9 iterations. The computation time is 201.7
minutes. In Fig. 5, the resulting convergence of all solvers

DE

PSO

iterations

co
st

s
κ
(p
)

Fig. 5: Comparison of solver convergence for scenario II.

are compared. It shows that PSO has the highest convergence
rate and yields the best solution. In comparison, DE exhibits
premature convergence. The occasional increase of the cost
function can be attributed to the repair algorithm in line 9
of Algorithm 1.

The result of the PSO algorithm is depicted in Fig. 6.
While in the beginning the ego vehicle has enough space to
maneuver, at t = 2.6 s there is little space left due to a lane-
changing vehicle and several closely navigating vehicles. For
comparison, the initial scenario prior to the optimization,
where the vehicle has considerably more space to maneuver,
is shown. As this scenario also demonstrates, no vehicles
collide, despite the crowded driving situation.

VI. CONCLUSIONS

In this work, we present an optimization-based approach to
generate critical scenarios for complex traffic situations. Un-
like previous works, our approach can handle complex road
layouts and dynamics for a high number of involved traffic
participants. We ensure that all relevant configurations of a
scenario can be reached due to the automatic computation
of relevant parameter intervals and evolutionary algorithms.
We demonstrate that we can generate critical scenarios for
urban scenarios and many involved traffic participants. The
obtained scenarios can be used for testing arbitrary motion
planners.
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3.2 Scenario Factory: Creating Safety-Critical Traffic Scenarios for Au-
tomated Vehicles

Test scenarios for autonomous vehicles are often obtained through real-world data collec-
tion, which is not only costly but also difficult to scale to arbitrary locations. To automate the
scenario generation using virtual methods only, we develop a scenario-generation pipeline
that uses maps extracted from OpenStreetMap and enriches their level of detail. The map
extraction is combined with a traffic simulator to obtain initial scenario candidates. Since
scenarios generated by a traffic simulation are typically uncritical and do not provide behav-
iorally diverse scenarios, we finally apply our approach introduced in Sec. 3.1 for increasing
the criticality of the scenarios. The map collection of our dataset is complemented with an
anomaly detection algorithm that yields more diverse intersections that only appear rarely in
the maps.

For the first time, we evaluate the approach for optimizing the criticality of traffic scenar-
ios using the drivable area on a large dataset of initial scenario candidates. Since the dataset
is composed of maps collected from random locations worldwide and due to the outlier de-
tection, the dataset comprises a large variety of road layouts. Our evaluation shows, that our
approach is able to reduce the drivable area considerably in the majority of traffic scenarios.
Furthermore, we demonstrate that our approach is scalable and can handle a large variety of
traffic scenarios. The generated scenarios are contributed to the CommonRoad benchmark
suite.

Contributions M. A. initiated the idea for combining automatic map extraction from Open-
StreetMap with the simulation and optimization of traffic scenarios. M. K. developed the
concept for optimizing the scenarios using the drivable area, which is suitable for a large
variety of maps. E. L. developed the approach for automatically extracting and clustering
maps, which was implemented by F. H.. M. K. further developed the simulation interface
and conducted the final evaluation of the combined approach. M. K. and E. L. wrote the pa-
per together. M. A. led the research project, provided feedback, and helped to improve the
manuscript.
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Scenario Factory: Creating Safety-Critical Traffic Scenarios
for Automated Vehicles

Moritz Klischat*, Edmond Irani Liu*, Fabian Höltke, and Matthias Althoff

Abstract— The safety validation of motion planning algo-
rithms for automated vehicles requires a large amount of
data for virtual testing. Currently, this data is often collected
through real test drives, which is expensive and inefficient,
given that only a minority of traffic scenarios pose challenges
to motion planners. We present a workflow for generating a
database of challenging and safety-critical test scenarios that
is not dependent on recorded data. First, we extract a large
variety of road networks across the globe from OpenStreetMap.
Subsequently, we generate traffic scenarios for these road
networks using the traffic simulator SUMO. In the last step,
we increase the criticality of these scenarios using nonlinear
optimization. Our generated scenarios are publicly available
on the CommonRoad website.

I. INTRODUCTION

Virtual testing is an important tool for validating the
safety of automated vehicles, as it exposes potential defects
of the algorithms under test. Having a large variety of
challenging traffic scenarios is vital for effective and efficient
testing of motion planning algorithms. While carrying out
simulations using data recorded from test drives provides us
with realistic scenarios, the required data collection is often
overly expensive and time-consuming [1]. Even though the
number of publicly-available datasets has increased over the
last few years, e.g., [2]–[5], they usually feature only a small
number of maps and require much effort to record.

Our framework generates a database of safety-critical
scenarios for scenario-based testing [6] of motion planing
algorithms for automated vehicles. It consists of

1) Extracting interesting road intersections worldwide
from OpenStreetMap (OSM) [7] by using our Globe-
trotter tool (see Sec. III).

2) Generating safety-critical test scenarios by first pop-
ulating the extracted intersections with traffic partici-
pants through the traffic simulator SUMO [8].

3) Optimizing the criticality of the obtained scenarios by
using a generalizable criticality criterion (see Sec. IV).

A. Related Work

Below, we concisely review related works on approaches
towards automatically creating virtual representations of road
networks and generating critical test scenarios for automated
vehicles.

*The first two authors have contributed equally to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany.
{moritz.klischat, edmond.irani, fabian.hoeltke,

althoff}@tum.de

1) Creating road networks: Generative approaches con-
struct road networks, e.g., based on abstract specifications
[9]. Moreover, a suite of road networks with a defined cover-
age of road curvatures is generated in [10] using satisfiability
modulo theories. Road networks that lead to the failure of
lane-keeping assistants are generated procedurally in [11]
through mutating road networks using genetic algorithms.

Alternatively, road networks can also be created from
external sources. In [12]–[16], the authors extract road
networks from aerial and satellite images with the help of
computer vision techniques. These works are capable of ex-
tracting high-level geometric information of road networks;
however, lane-level information concerning motion planners
of automated vehicles is not reconstructed. Promising works
towards the reconstruction of road networks with lane-level
detail from aerial images can be seen in [17], [18]. Similarly,
while creating road networks for single lanes from OSM data
is straightforward [19], creating those with lane-level detail
is a more challenging problem [20].

2) Generating critical test scenarios: Creating test sce-
narios for automated vehicles using traffic simulators is
proposed, e.g., in [21], [22]. Realistic scenarios can be
obtained by calibrating their simulations through real-world
measurements. By using criticality metrics, safety-critical
scenarios are filtered [22]; however, these situations occur
only rarely, in the main.

To efficiently obtain critical scenarios, importance sam-
pling from large databases of recorded traffic data is pro-
posed [23]. Criticality metrics are combined with the occur-
rence rates to efficiently sample critical scenarios representa-
tive of real-world driving conditions [24]. Other approaches
use optimization to create critical scenarios based on these
metrics [25], [26]. Similarly, falsification methods can detect
scenarios that falsify a motion planner with respect to a given
safety specification [27], [28]. Parameter regions for critical
scenarios based on constraint satisfaction are computed in
[29]. In our previous work, we presented an optimization-
based method to increase the criticality of initially uncritical
traffic scenarios [30], [31] by decreasing the space of possible
solutions for the vehicle under test, called the drivable area.

B. Contributions

In contrast to previous work on generating test scenarios
through simulation, our approach is particularly efficient
since we combine the automatic extraction of road networks
from OSM with a traffic simulation followed by an increase
of its criticality. By exploiting the large variety of road
networks around the world, we create complex, yet realistic



road networks which currently no procedural map generator
is capable of producing. In contrast to existing work, our
approach does not rely on test drives nor other real-world
traffic data, thus it is able to efficiently create many traffic
scenarios at low costs. The resulting scenarios are indepen-
dent of the vehicle under test, due to our criticality metric
based on the drivable area.

II. OVERVIEW

An overview of our approach is presented in Fig. 1. In the
following subsections, we introduce each component.

Fig. 1. Our pipeline for generating safety-critical scenarios.

A. Platforms

1) CommonRoad: The CommonRoad (CR) benchmark
suite1 is an open-source framework that provides a collection
of traffic scenarios for motion planning algorithms. Scenarios
in CommonRoad consist of road networks, static obstacles,
and dynamic obstacles that represent all possible types of
traffic participants. In this work, we focus on cars, trucks,
and bicycles. Road networks in CommonRoad are described
by lanelets [32] (see Fig. 2). Lanelets are defined by their left
and right bounds, which are modeled by polylines. Further-
more, lanelets are connected through successor-predecessor
and lateral-adjacency relations and contain additional in-
formation such as the speed limit. Additionally, we define
forking points as the points on the centerlines of lanelets
where lanelets split or multiple lanelets merge.

2) OpenStreetMap: OSM is an open-source project that
provides geographic data worldwide. The main structure
of OSM data is defined by three elements: nodes, ways,
and relations. Nodes are geographic points defined by their
latitude and longitude; ways are tuples of nodes and represent
elements such as roads and boundaries of areas; relations are
groups of nodes, ways and other relations. Fig. 3a shows a
map taken from OpenStreetMap.

1https://commonroad.in.tum.de/

Fig. 2. Lanelet network representation.

3) GeoNames: GeoNames2 is a free geographic database
which covers all countries and contains over 11 million
placenames of cities from all over the world. The provided
geographical information includes global coordinates, postal
codes, population, etc.

4) SUMO: This open-source microscopic traffic-
simulation package is designed to handle large road
networks. SUMO models individual vehicles and their
interactions using models for car-following, lane-changing,
and intersection behavior.

B. Converters

Since most of the software platforms mentioned above
have individual formats and map representations, we use
different converters and interfaces to bridge these platforms.

1) OSM2CR converter: It converts OSM maps to Com-
monRoad lanelet networks. While OSM provides map data
for almost any place in the world, their level of detail is
not yet suited for automated vehicles: The motion planners
of automated vehicles and traffic simulators typically require
lane-level information. To resolve this issue, in the first step,
the topology of the lanelet network, i.e., the connections at
intersections, needs to be estimated. Next, spatial information
of individual lanes is deducted accordingly. Fig. 3b shows a
converted lanelet network via this converter.

2) CR-SUMO interface: It enables the communication
between CommonRoad and SUMO by a) converting the CR
road network to SUMO format, b) generating configuration
files for the simulation, and c) converting simulated vehicle
trajectories to the CR format. We refer the interested reader
to [33] for more details regarding this interface.

III. GLOBETROTTER

To automatically extract interesting road networks from
all over the world, we have developed the Globetrotter
tool, which takes the road network data from OSM as its
underlying input. As we want to create scenarios on distinct
road networks, we mainly focus on extracting intersections.
Below, we explain the major steps for extracting the inter-
sections from OSM.

2https://www.geonames.org/



(a)

(b)

Fig. 3. (a) Map of Encamp, Andorra taken from OSM. (b) Conversion
result into CommonRoad lanelet network via the OSM2CR converter.

A. Retrieving Candidate Regions

Clearly, there are intersections all over the globe, and they
mostly vary according to region. Given that only 29% of
the Earth’s surface is covered by land3, and that 10% of
these regions accommodate 95% of the human population4,
sampling the Earth’s surface with random coordinates is
not very efficient. Assuming that intersections mostly occur
near populated areas, we retrieve these populated candidate
regions from GeoNames. To speed up the processing in the
next steps, we can also divide the region into smaller subre-
gions if the area of the region exceeds a certain value. The
retrieved candidate (sub)regions are converted into lanelet
networks via the OSM2CR converter.

B. Extracting Intersections

We denote the n-th forking point and the tuple of all
forking points in a lanelet network as Pn and P , respectively.
For a given lanelet network, it is usually difficult to determine
beforehand the number of intersections to be extracted. For
this reason, instead of k-means-like algorithms [34], we
apply the hierarchical agglomerative clustering (HAC) algo-
rithm [35] to P . HAC only requires a distance threshold dth
to limit the distances between clusters: a higher dth entails
larger intersections. Alg. 1 describes how the intersections
are extracted from P .

1) Clustering forking points (Alg. 1, lines 2-4): Initially,
each forking point forms a cluster Cn with it being the only

3https://www.noaa.gov/
4https://ec.europa.eu/jrc/en

Algorithm 1 Extracting Intersections
Inputs: forking points P , distance threshold dth
Output: extracted intersections I

1: I ← ∅
2: . Clustering forking points
3: C ← INITIALIZE(P )
4: C ← HAC(C , dth)
5: . Creating intersections
6: for C ′ ∈ C do
7: I ← CUTLANELETS(C ′)
8: I ← POSTPROCESS(I )
9: I ← I ∪ {I}

10: end for
11: return I

member: Cn = {Pn}. We denote the tuple of clusters by
C := 〈C1, C2, . . . 〉, and the distance between two clusters
Ci, Cj with single-linkage setting [35] by di,j :

di,j = min{dist(a, b)|a ∈ Ci, b ∈ Cj},
where the operator dist(·) returns the Euclidean distance
between two given forking points. In each iteration, the two
clusters Ci, Cj with the minimum distance di,j < dth are
merged into a new cluster C ′ = Ci ∪ Cj . This process is
repeated until no more clusters can be merged. Fig. 4a-4b
show the dendrogram for clustering an exemplary lanelet
network and the clustered forking points.

2) Creating intersections (Alg. 1, lines 5-10): For each
remaining cluster C ′ ∈ C, we determine the minimum radius
rmin of a circle enclosing all forking points within the cluster.
We enlarge this radius by a user-defined margin rmgn to
span a region of interest. We cut out all lanelets from this
region, resulting in an intersection I , and additionally apply
the following steps:

1) Lanelets that are not within the region of interest are
removed.

2) Due to removed lanelets, we update the successor-
predecessor and lateral-adjacency relations.

Fig. 4c shows the extracted intersections I.

C. Selecting Interesting Intersections

Given the intersections I extracted from a lanelet network,
we only keep those that are particularly interesting or distinct
according to the following features:
• number of forking points;
• number of lanelets;
• number of crossing lanelets;
• number of predecessors and successors;
• area of lanelets;
• density of lanelets;
• angle between lanelets; and
• mean distance between forking points and their cen-

troid.
We associate the interestingness of intersections with

the dissimilarity between their features and those of other
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Fig. 4. (a) Dendrogram of the clustering result. Three clusters are generated
with dth set to 35 meters. (b) Forking points within one cluster have the
same color. rmgn is set to 15 meters. (c) Intersections extracted from the
input lanelet network.

intersections. By doing so, we turn the selection of interesting
intersections into a multivariate outlier (anomaly) detection
problem. To solve this problem, we use the isolation forest
(iForest) algorithm [36], since it is unsupervised, capable
of efficiently handling multiple dimensions of features, and
requires limited effort to hand-tune its parameters. In the
training phase, a total of k isolation trees (iTrees) are trained
with sets of randomly-selected intersections; in the detection
phase, an anomaly score s ∈ [0, 1] is assigned to each
intersection by the iTrees [36], where an intersection with
a score above a threshold sth is considered an outlier. Fig. 5
presents a collection of distinct intersections. It should be
recalled that we divide the candidate region into subregions
if it is overly large, thus rendering the adopted iForest
algorithm computationally tractable.

IV. GENERATION OF SAFETY-CRITICAL SCENARIOS

On the extracted maps, we simulate traffic participants
using our previously-introduced CR-SUMO interface next.
Since scenarios simulated with SUMO often yield uncritical,
easy-to-solve motion planning problems, we subsequently

increase their criticality using our approach [30], [31] for
reducing the solution space. We first parametrize the initially
obtained trajectories of other traffic participants in Sec. IV-
B and, following that, formulate a nonlinear optimization
problem with a criticality criterion specified in Sec. IV-D.

A. Motion Planning Problem

The system dynamics of the ego vehicle is defined by

ẋe(t) = f(xe(t), u(t)),

where xe(t) ∈ Rn is the state vector and u(t) ∈ U is the
input vector with the set of admissible inputs U ∈ Rm.

The trajectories of ntp other traffic participants are given
by xi(t; p), i ∈ {1, ..., ntp} with parameters p ∈ Rnp ,
initial time t0, and final time tf . Initial candidates for these
trajectories are obtained from SUMO; their parametrization
is explained in more detail in Sec. IV-B. The occupied space
Oi(t; p) ⊂ R2 of a traffic participant is obtained through the
occ(·) operator, i.e., Oi(t; p) = occ(xi(t; p)). We define the
motion planning problem for the ego vehicle as a classical
reach-avoid problem: given an initial state xe,0 = xe(t0),
an input trajectory u(t) has to be found to steer the ego
vehicle into a goal region while not leaving the road surface
Wlanes ∈ R2 and avoiding the space O(t; p) occupied by all
obstacles, i.e.,

∀t ∈ [t0, tf ] : occ(xe(t)) ⊆ Wlanes\O(t; p). (1)

We obtain a motion planning problem by deleting a
selected vehicle in a scenario simulated with SUMO and
storing the initial state xe,0 of this vehicle. Vehicles with
interesting maneuvers are automatically selected by using
thresholds on the velocity and acceleration profiles or by
identifying lane changes, turns or vehicles driving nearby.

B. Scenario Parametrization

In order to optimize the criticality of scenarios, we
parametrize trajectories by the parameter vector p. We de-
scribe trajectories in lane-based coordinate systems, in which
a state is defined as x = [sξ, ṡξ, sη, ṡη]

T . The subscripts ξ
and η denote the longitudinal and lateral coordinates with
respect to the centerline, respectively (see Fig. 2).

For the ntp traffic participants, we only parametrize the
longitudinal trajectory using translations ps ∈ Rntp , initial
velocity variations pv ∈ Rntp , and acceleration variations
pa ∈ Rntp , yielding p =

[
ps, pv, pa

]T
. The parametrized

longitudinal position trajectory is given by

sξ,i(t; pi) = ŝξ,i(t) + psi + pvi t+
1

2
pai t

2. (2)

From (2), the centerlines, and the dimensions of the vehi-
cle, we obtain the occupied space Oi(t, p) of each traffic
participant.



Fig. 5. Selected road intersections generated by Globetrotter (sth = 0.9).

C. Drivable Area

We denote a feasible solution to the motion planning
problem defined in Sec. IV-A as χ(t;x0, u(·)), where u(·)
refers to the entire trajectory instead of a particular value
u(t) at time t. To quantify the criticality of a scenario, we use
the solution space, which corresponds to the set of reachable
states for t ∈ [t0, tf ] without collisions:

R(t;x0,O( · ; p)) =
{
χ(t;x0, u(·))

∣∣∣

∀τ ∈ [t0, tf ] : u(τ) ∈ U ,

occ
(
χ(τ ;x0, u(·))

)
⊆ Wlanes\O(τ ; p)

}
.

By applying the projection operator proj(x) : Rn → R2,
which projects the state space to the position domain, we
obtain the drivable area

D(t;x0,O( · ; p)) =
⋃

x∈R(t;x0,O( · ;p))
proj(x). (3)

An example for the drivable area in presence of an obstacle
is depicted in Fig. 6.

drivable area D(t;x0,O( · ; p)) obstacle Oi(t)

initial state ego xe,0

feasible trajectory χ(t;x0, u(·))

Fig. 6. Example of a drivable area for the time interval [t0, tf ].

To quantify the solution space, we introduce the function
area(X ) returning the area of a set. We write

A(t; p) := area
(
D(t;x0,O( · ; p))

)

to obtain the area profile of the drivable area over time. We
compute the drivable area using our approach as in [37].

D. Optimization Problem
For increasing the criticality of the motion planning prob-

lem, we optimize the parameter vector p to obtain a desired,
critical area profile Acrit(t):

argmin
p

κ(p), κ(p) =

∫ tf

0

(
A(t; p)−Acrit(t)

)2

(4)
subject to ∀t, ∀i,∀j 6= i : Oi(t; p) ∩ Oj(t; p) = ∅.

(5)

The constraint in (5) ensures that no traffic participants
collide with each other. In this work, we use the drivable
area computed without any traffic participants and the scalar
γ ∈ ]0, 1[ which quantifies the reduction of the drivable area:
Acrit(t) = γ · area(D(t;x0, ∅)).

Since the drivable area is highly nonlinear with respect
to the trajectories of other traffic participants and possibly
subjected to local minima, we use particle swarm optimiza-
tion [38] as in our previous work [30]. Furthermore, we
implement a repair algorithm that enforces the collision
constraint (5). To that end, we formulate the collision con-
straints as linear inequality constraints and correct infeasible
solutions by computing the closest feasible solution using
linear programming. A more efficient optimization is ensured
by an a priori computation of relevant parameter intervals as
presented in [30].

V. EVALUATION

We demonstrate our approach by generating scenarios
on a large variety of road networks from various places
across the world. First, we obtain 576 road networks from
8 countries and 46 cities from Globetrotter, for each of
which we simulate multiple scenarios using our CR-SUMO
interface. After selecting interesting ego vehicles, we obtain
1402 scenarios for which we optimize the criticality. The
resulting scenarios are added to our website5.

5https://commonroad.in.tum.de/



In Fig. 7a we compare the area profiles A(t; p) of the
drivable area in the optimized scenarios against the initial
scenario obtained from SUMO: our approach is able to
significantly decrease the drivable area, and it thus increases
the criticality. Fig. 7b shows the distribution of the achieved
reduction of the critical area. For most of the optimized
scenarios, the drivable area ranges between 0.2 – 0.3 of its
initial size.

TABLE I
PARAMETERS FOR CRITICALITY OPTIMIZATION

Drivable area computation
max. acceleration ego vehicle |amax| 5.0 m/s2

time step size ∆t 0.1 s

time horizon tf 3.4 s

Constraints for optimization
initial velocity variation [−3, 3] m/s

acceleration variation [−5, 2] m/s2

0 1 2 3
time [s]

0

50

100

dr
iv

ab
le

ar
ea

[m
2
]

initial area
optimized area

(a)

0.00 0.25 0.50 0.75 1.00
relative size of the drivable area

0

100

200

300

fr
eq

ue
nc

y

(b)

Fig. 7. (a) Size of the drivable area A(t; p) over time, averaged over all
scenarios. (b) Histogram of the size of the drivable area in the optimized
scenarios relative to the initial scenarios.

Let us present some concrete examples for demonstrating
our algorithm. The first example is an intersection from
the town Pula, Croatia. In Fig. 8, we compare the drivable
area of the initial scenario obtained from SUMO with the
optimized scenario. Note that we restrict the allowed road
surface Wlanes to lanelets that the ego vehicle is allowed
to drive in. In the initial scenario, the ego vehicle could
either turn freely to the right or drive straight. However, after
the optimization, two turning vehicles and a bicycle restrict
possible maneuvers of the ego vehicle.

The second example is a four-way intersection from the
town Putte, Belgium. In the optimized scenario, the ego vehi-
cle must either respect an oncoming vehicle when turning left
or a bicycle when driving straight. As a result, the drivable
area is split into two parts, as shown in Fig. 9.

VI. CONCLUSIONS

We present an approach to automatically generate a large
number of test scenarios for automated vehicles. Our results
show that we are able to extract a large number of distinct
road networks from OpenStreetMaps, for which we simulate
traffic scenarios using the traffic simulator SUMO. Our
approach subsequently yields challenging scenarios by de-
creasing the solution space for motion planning algorithms.

The generated, publicly-available scenarios render the
virtual testing of motion-planning algorithms in challenging

initial position
ego vehicle

t = 0.0 s

t = 1.5 s

drivable areavelocity

t = 3.2 s

(a) Initial scenario from simulation. (b) Optimized, more critical scenario.

Fig. 8. Example 1: Comparison of the drivable areas at different times.

t = 0.0 s

initial position
ego vehicle

t = 1.7 s

drivable area

velocity

t = 3.3 s

(a) Initial scenario from simulation. (b) Optimized, more critical scenario.

Fig. 9. Example 2: Comparison of the drivable areas at different times.

situations easier. In the future, the explicit consideration of
traffic rules during the generation of our critical scenarios
will further improve our test cases.
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J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION dataset: An INTERnational, Adver-
sarial and Cooperative moTION dataset in interactive driving scenarios
with semantic maps,” arXiv:1910.03088, 2019.

[3] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Fer-
reira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah,
A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet,
“Lyft Level 5 AV dataset 2019,” https://level5.lyft.com/dataset/, 2019.

[4] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han,
J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao,
A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scala-
bility in perception for autonomous driving: Waymo Open dataset,”
arXiv:1912.04838, 2019.

[5] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 2118–2125.

[6] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE Access, vol. 8, pp. 87 456–87 477, 2020.

[7] M. Haklay and P. Weber, “OpenStreetMap: User-generated street
maps,” IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, 2008.

[8] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–
simulation of urban mobility: an overview,” in Proc. of Int. Conf. Adv.
Syst. Simul., 2011, pp. 63–68.

[9] C. Campos, J. M. Leitão, J. P. Pereira, A. Ribas, and A. F. Coelho,
“Procedural generation of topologic road networks for driving simu-
lation,” in Iberian Conf. Inf. Syst. Technol., 2015, pp. 1–6.

[10] B. Kim, A. Jarandikar, J. Shum, S. Shiraishi, and M. Yamaura, “The
SMT-based automatic road network generation in vehicle simulation
environment,” in Proc. of the ACM Int. Conf. Embed. Softw., 2016,
pp. 1–10.

[11] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-
driving cars with search-based procedural content generation,” in Proc.
of the 28th ACM SIGSOFT Int. Symposium on Software Testing and
Analysis, 2019, pp. 318–328.

[12] G. Máttyus, W. Luo, and R. Urtasun, “DeepRoadMapper: Extracting
road topology from aerial images,” in Proc. of the IEEE Int. Conf.
Comput. Vision, 2017, pp. 3438–3446.

[13] M. Maboudi, J. Amini, M. Hahn, and M. Saati, “Road network
extraction from VHR satellite images using context aware object
feature integration and tensor voting,” Remote Sens., vol. 8, no. 8,
2016.

[14] P. Li, Y. Zang, C. Wang, J. Li, M. Cheng, L. Luo, and Y. Yu, “Road
network extraction via deep learning and line integral convolution,” in
Proc. of the Int. Geosci. Remote Sens. Symp., 2016, pp. 1599–1602.

[15] Y. Zang, C. Wang, Y. Yu, L. Luo, K. Yang, and J. Li, “Joint enhancing
filtering for road network extraction,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 3, pp. 1511–1525, 2016.

[16] Y. Y. Chiang and C. A. Knoblock, “Automatic extraction of road
intersection position, connectivity, and orientations from raster maps,”
in Proc. of the ACM Int. Symp. Adv. Geogr. Inf. Syst., 2008, pp. 183–
192.

[17] P. Fischer, S. M. Azimi, R. Roschlaub, and T. Krauß, “Towards HD
maps from aerial imagery: Robust lane marking segmentation using
country-scale imagery,” Int. J. Geo-Inf., vol. 7, no. 12, 2018.

[18] A. Zang, Z. Li, R. Xu, and D. Doria, “Lane boundary extraction from
satellite imagery,” in Proc. of the ACM SIGSPATIAL Workshop High-
Precis. Maps Intell. Appl. Auton. Veh., 2017, pp. 1–8.

[19] A. Artunedo, J. Godoy, and J. Villagra, “Smooth path planning for
urban autonomous driving using OpenStreetMaps,” in Proc. of the
IEEE Intell. Veh. Symp., 2017, pp. 837–842.

[20] D. Krajzewicz, G. Hertkorn, and J. Ringel, “Preparation of digital
maps for traffic simulation; part 1: approach and algorithms,” in Proc.
Ind. Simul. Conf., 2005, pp. 285–290.

[21] D. Nalic, A. Eichberger, G. Hanzl, M. Fellendorf, and B. Rogic,
“Development of a co-simulation framework for systematic generation
of scenarios for testing and validation of automated driving systems,”
in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019, pp. 1895–
1901.

[22] P. Riegl, A. Gaull, and M. Beitelschmidt, “A tool chain for generating
critical traffic situations for testing vehicle safety functions,” in IEEE
Int. Conf. on Vehicular Electronics and Safety, 2019, pp. 1–6.

[23] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa,
and C. S. Pan, “Accelerated evaluation of automated vehicles safety
in lane-change scenarios based on importance sampling techniques,”
IEEE Trans. Intell. Transp. Syst., vol. 18, no. 3, pp. 595–607, 2017.

[24] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario
library generation for connected and automated vehicles, part I:
Methodology,” arXiv:1905.03419, 2020.

[25] F. Hauer, A. Pretschner, and B. Holzmüller, “Fitness functions for
testing automated and autonomous driving systems,” in Proc. of the
Int. Conf. Comput. Safety, Rel., Security, 2019, pp. 69–84.

[26] H. Beglerovic, M. Stolz, and M. Horn, “Testing of autonomous
vehicles using surrogate models and stochastic optimization,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 1129–1134.

[27] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2016, pp. 1470–1475.

[28] M. Koschi, C. Pek, S. Maierhofer, and M. Althoff, “Computationally
efficient safety falsification of adaptive cruise control systems,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019, pp. 2879–
2886.

[29] A. Nonnengart, M. Klusch, and M. Christian, “CriSGen : Constraint-
based generation of critical scenarios for autonomous vehicles,” in
Proc. of the Int. Workshop on Formal Methods for Autonomous
Systems, 2019.

[30] M. Klischat and M. Althoff, “Generating critical test scenarios for
automated vehicles with evolutionary algorithms,” in Proc. of the IEEE
Intell. Veh. Symp., 2019, pp. 2352–2358.

[31] M. Althoff and S. Lutz, “Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles,” in Proc. of the
IEEE Intell. Veh. Symp., 2018, pp. 1326–1333.

[32] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intell. Veh.
Symp., 2014, pp. 420–425.

[33] M. Klischat, O. Dragoi, M. Eissa, and M. Althoff, “Coupling SUMO
with a motion planning framework for automated vehicles,” in SUMO:
Simulating Connected Urban Mobility, 2019.

[34] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010.

[35] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative
clustering method: which algorithms implement Ward’s criterion?” J.
Classif., vol. 31, no. 3, pp. 274–295, 2014.

[36] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. of
the IEEE Int. Conf. Data Mining, 2008, pp. 413–422.

[37] M. Klischat and M. Althoff, “A multi-step approach to accelerate the
computation of reachable sets for road vehicles,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2020.

[38] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. of the Int. Symp. Micro Mach. Human Sci., 1995, pp.
39–43.



40 3 Generating Non-Reactive Safety-Critical Test Scenarios Using Optimization

3.3 A Multi-Step Approach to Accelerate the Computation of Reachable
Sets for Road Vehicles

When using the drivable area of the SUT as a criticality metric in the numerical optimization
for solving Problem 1, we require an efficient method for computing the drivable area. Later,
this enables the generation of safety-critical scenarios on a larger scale. Hence, we introduce
in this work a new method for computing the drivable area for road vehicles in dynamic traffic
scenarios that is more efficient than previous methods. By dividing the reachability analysis
into an online and an offline computation, we avoid computationally expensive operations
during runtime by exploiting invariances of the reachability analysis that allow reusing pre-
computed results: In the offline computation, we discretize the drivable area at each time step
and compute a graph representing the reachability of the discretized subsets from previous
time steps. During the online computation, subsets occupied by obstacles are removed from
the drivable area and the graph is used to propagate the reachability to subsequent time
steps. Crucial for limiting the over-approximation is our method that utilizes the reachability
edges from multiple preceding time steps at once for each propagation. This reduces the
discretization error that is added at each time step, which could sum up over time resulting
in a so-called "wrapping effect".

Our evaluation using a dataset of more than 300 scenarios from urban and highway
environments demonstrates that this method is significantly faster than a method with-
out precomputations while providing comparable accuracy. Furthermore, the evaluation
shows that the proposed multi-step propagation can significantly decrease the degree of over-
approximation.

Contributions M. K. initiated the idea and developed the concept for dividing the reacha-
bility analysis into offline and online computations and for the multi-step propagation. M. K.
conducted the evaluation and wrote the article. M. A. provided feedback and helped to im-
prove the article.
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A Multi-Step Approach to Accelerate the Computation of Reachable
Sets for Road Vehicles

Moritz Klischat and Matthias Althoff

Abstract— We propose an approach for the fast computation
of reachable sets of road vehicles while considering dynamic
obstacles. The obtained reachable sets contain all possible
behaviors of vehicles and can be used for motion planning,
verification, and criticality assessment. The proposed approach
precomputes computationally expensive parts of the reacha-
bility analysis. Further, we partition the reachable set into
cells and construct a directed graph storing which cells are
reachable from which cells at preceding time steps. Using this
approach, considering obstacles reduces to deleting nodes from
the directed graph. Although this simple idea ensures an effi-
cient computation, the discretization can introduce considerable
over-approximations. Thus, the main novelty of this paper is to
reduce the over-approximations by intersecting reachable sets
propagated from multiple points in time. We demonstrate our
approach on a large range of scenarios for automated vehicles
showing a faster computation time compared to previous
approaches while providing the same level of accuracy.

I. INTRODUCTION

Reachability analysis is considered a powerful tool to
ensure safety for safety-critical applications such as self-
driving vehicles. Although reachability analysis is a well-
researched topic with continuous improvements in terms
of scalability and/or tightness [1]–[3], most approaches do
not consider time-varying forbidden regions originating from
static or dynamic obstacles.

However, reachable sets excluding forbidden regions are
especially useful for motion planning, e.g., for restricting the
search space to safe regions [4]. Also, the size of reachable
sets can be used to assess the criticality of traffic scenarios
for generating safety-critical test cases for motion planners
[5]. Another application of reachable sets is cooperative path
planning for multiple agents [6], [7] or the computation of
the time-to-react (TTR), i.e., the last point in time to avoid
a collision [8]. Most of the above-mentioned applications
are used in real time and require a fast computation. In this
paper, we propose a novel method that computes reachable
sets excluding forbidden regions more efficiently compared
to previous work.

A. Related Work

General approaches which are based on Hamilton–Jacobi–
Bellmann (HJB) equations are proposed in [9]–[11]. How-
ever, for real-time applications this method is computation-
ally too expensive. An early work computing reachable sets
for trajectory planning of vehicles is [12]. In [13], reachable
sets are computed offline for parametrized trajectories with

All authors are with the Technische Universität München, Fakultät für
Informatik, Lehrstuhl für Robotik und Echtzeitsysteme, Boltzmannstraße 3,
85748, Garching, Germany. {moritz.klischat, althoff}@tum.de

constant inputs. During run time, parameters of the collision-
free reachable sets are selected to determine the set of safe in-
puts for the subsequent trajectory optimization. The method
in [14] approximates the reachable set of automated vehicles
using HJB equations. However, the method is restricted to
rectangular obstacles and simple road configurations.

A related topic where obstacles are considered in reacha-
bility analysis is the computation of inevitable collision states
(ICS), which eventually lead to a collision irrespective of
the chosen input [15]. Works that compute ICS in dynamic
environments using reachability analysis can be found in [9],
[16], [17].

To emphasize that we are ultimately interested in reachable
sets avoiding forbidden region projected to the road surface,
we use the term drivable area henceforth. In our previous
work [18], we also computed the drivable area, but that
approach requires recomputing similar computations, which
unnecessarily consumes computational resources.

B. Contributions

We propose a novel method for the graph-based computa-
tion of the drivable area. A similar graph-based method was
used in [19]; however, the reachability was only approxi-
mated and not based on system dynamics. Although a spatio-
temporal decomposition of the state space for reachability
analysis was used, e.g., in [20]–[22], the novelty of our work
is that

• it can limit the discretization error by considering mul-
tiple preceding time steps at every iteration;

• our algorithm can handle arbitrary obstacle shapes and
road networks;

• ICS can be considered less conservatively compared
with our previous work [18];

• we provide extensive testing and benchmarking on a
large number of traffic scenarios.

The rest of the paper is organized as follows. First, we
introduce the problem statement in Sec. II, before describing
the proposed method in Sec. III, which is divided into offline
and online computation. Finally, we evaluate our approach
in Sec. IV using multiple numerical examples and compare
it to related works.

II. DEFINITIONS AND PROBLEM STATEMENT

Let the dynamics of a model M be given by ẋ(t) =
f(x(t), u(t) with inputs u(t) ∈ U bounded by the input
set U ⊂ Rm. A solution originating from the initial state



x0 ∈ Rn is

x(t;u(·), x0) = x0 +

∫ t

t0

f(x(τ), u(τ))dτ , (1)

where x(t;u(·), x0) ∈ Rn and u(·) denotes an input trajec-
tory in contrast to points in time t. Because we often require
the projection of states to the two-dimensional position do-
main, we define the projection operator proj(x) : Rn → R2.

From the perspective of the vehicle, the possible future
occupancy of obstacles and regions outside of the road
surface are a set of forbidden states F(t) ⊂ R2 dependent
on time t. The anticipated reachable set is defined as the
set of reachable states starting from an initial state x0 while
avoiding a set of forbidden states F(t) during time interval
t ∈ [t0, th] [18]:

reach
t

(X0,U ,F(t)) := {x(t;u(·), x0) | x0 ∈ X0,

∀τ ∈ [t0, th] : u(τ) ∈ U , proj(x(τ ;u(·), x0)) /∈ F(τ)} .
(2)

The time-dependent reachable set is computed iteratively
for time increments ∆t ∈ R+. Hence, we denote a set at
time tk by a subscript k. At each point in time tk = k ·∆t
with k ∈ N, we denote the reachable set by

Rk+1 := reach
tk+1

(Rk,U ,F(t)), R0 = X0. (3)

When no exclusion of forbidden sets is considered (F(t) =
∅) we write �̂, e.g., R̂k. Since an exact solution of the
drivable area proj(Rk) cannot be computed for the general
case [23], we compute it over-approximately. Moreover, we
model road vehicles by a point-mass model Ma because it
abstracts any high-fidelity model M for a road vehicle whose
dynamics are bounded by the friction circle ẍ2ζ + ẍ2η ≤ a2max

[12]:


ẋζ(t)
ẍζ(t)
ẋη(t)
ẍη(t)


 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






xζ(t)
ẋζ(t)
xη(t)
ẋη(t)


+




0 0
1 0
0 0
0 1



(
uζ(t)
uη(t)

)

(4)

u(t) ∈ U , U =
{
u | u2ζ + u2η ≤ a2max

}
. (5)

This abstraction guarantees that the drivable area of the high-
fidelity model proj(RMk ) is always a subset of the abstracted
model proj(RMa

k ), i.e., proj(RMk ) ⊆ proj(RMa

k ).

obstacle

drivable area proj(R) F(t)x0

feasible trajectory x(t;u(·), x0)

ego vehicle

Fig. 1: The drivable area for a complete prediction horizon that represents
the set of all feasible trajectories for the ego vehicle.

III. CONCEPT OF OFFLINE AND ONLINE COMPUTATION

We divide the computation of the drivable area into two
parts: offline and online. During the offline computation,
the drivable area is computed without forbidden sets F(t),
which are only known during online execution. The result is
partitioned using a uniform grid of disjoint axis-aligned cells
in the position domain

C(i)k =
[
c(i), c(i)

]
⊂ R2,

nc⋃

i=0

C(i)k ⊇ proj(R̂k), (6)

where the index i refers to the ith cell. We define a directed
graph as a tuple G = (V,E) where nodes vk,i ∈ V

correspond to the cells C(i)k of the drivable area and edges
(vk,i, vk+1,j) ∈ E express that a trajectory from one cell to
another cell exists.

Thus, forbidden sets can be excluded during the online
computation by deleting occupied nodes and their outgoing
edges from the graph as illustrated in Fig. 2. Since only the
position domain in R2 is discretized, the number of nodes
only scales quadratically with the number of segments in
each dimension. We compensate over-approximations from
the discretization by adding edges between nodes spanning
multiple time steps, as explained in Sec. III-C.

tk tk+1

proj(R̂k) proj(R̂k+1) Graph

=̂

η

ζ

η

ζ

C(i)k
(a) Offline

F

proj(Rk)

proj(Rk+1)

=̂

η

ζ

x0

(b) Online
Fig. 2: (a) Offline computation of reachable cells Ck+1 at tk+1 which is
encoded in a graph. (b) Online: deleting nodes (represented in dark gray)
that correspond to cells which intersect with forbidden sets F(tk) or do
not have a predecessor.

A. Offline Reachability Analysis

The offline computation consists of two steps:
1) Propagation of the reachable set R̂k to obtain R̂k+1.
2) Discretization of the reachable set R̂k+1 to D̂k+1 and

construction of the graph.
1) Propagation: Since the vehicle model in (4) is lin-

ear, the superposition principle can be applied: The reach-
able set R̂k is obtained by adding the homogeneous solu-
tion x(tk;u=0, x0 6=0) resulting from the initial state x0
and the inhomogeneous solution x(tk;u 6=0, x0=0). Since



U is a constant set, the set of inhomogeneous solutions
reachtk(0,U , ∅) can be computed offline for an initial state
located at the origin 0. For further derivation let us introduce
the Minkowski sum of a singelton a and a set Y as a⊕Y :=
{a+ y | y ∈ Y}. During online execution, the reachable sets
for an arbitrary initial state x0 are obtained as

reach
tk

(x0,U , ∅)
︸ ︷︷ ︸

R̂k

= reach
tk

(x0,0, ∅)
︸ ︷︷ ︸
x(tk;0,x0) : online

⊕ reach
tk

(0,U , ∅)
︸ ︷︷ ︸
R̂ori

k : offline

. (7)

Since no forbidden set is excluded during the offline com-
putation, the propagation step

R̂ori
k+1 = reach

tk+1

(R̂ori
k ,U , ∅) (8)

can be computed with standard tools for reachability analy-
sis; a non-exhaustive list is given by Flow* [24], SpaceEx
[25], C2E2 [26], JuliaReach [27], and CORA [28].

2) Discretization of R̂k+1 and Construction of the Graph:
For creating the graph G, we first partition the reachable
set R̂ori

k+1 into disjoint subsets B(j)k+1 using the cells in the
position domain (6) to compute the Cartesian product

∀i ∈ I : B(i)k = C(i) × [ẋ
(i)
k,ζ , ẋ

(i)
k,ζ ]× [ẋ

(i)
k,η, ẋ

(i)
k,η],

I =
{
i | R̂ori

k+1 ∩ C(i) 6= ∅
}
. (9)

The intervals [ẋ
(i)
k,ζ , ẋ

(i)
k,ζ ] and [ẋ

(i)
k,η, ẋ

(i)
k,η] bound the velocities

of the reachable set R̂ori
k+1 for the ith cell. To obtain a

discretized representation of a reachable set, we introduce
the discretization operator:

D̂ori
k = discr(R̂orik ) =

nb⋃

i=0

B(i)k ⊇ R̂k, (10)

which analogously yields Dk = discr(Rk). An edge
(vk,i, vk+1,j) is added to G if

reach
tk+1

(B(i)k ,U , ∅) ∩ B(j)k+1 6= ∅. (11)

For efficient implementation, we represent the edges by
adjacency matrices P k+1

k ∈ Rqk×qk+1 with qk being the
number of cells at the respective time. Each element pji of
P k+1
k is a Boolean value

pji =

{
1 if reachtk+1

(B(i)k ,U , ∅) ∩ B(j)k+1 6= ∅
0 otherwise.

(12)

The adjacency matrices P k+1
k are the main result of the

offline computation and can be stored compactly as sparse
matrices.

B. Online Computations

The objective of the online computation is to exclude
forbidden sets Fk from the drivable area. Therefore, at
every iteration step the drivable area is propagated and cells
intersecting with Fk are excluded.

Algorithm 1 Offline Reachability Analysis

Require: input set U
1: for k = 0 to n do
2: R̂0

k+1 ← reachtk+1
(R̂0

k,U)

3: D̂k+1 ← discr(R̂0
k+1) . see (10)

4: {vi, vj} ← REACHABLECELLS(D̂k, D̂k+1)
. see (11)

5: P k+1
k ← CONSTRUCTGRAPH({(B(i)k ,B(j)k+1)})
. see (12)

6: end for
7: return P k+1

k ,Dk

1) Propagation: To propagate the drivable area using the
adjacency matrices P k+1

k , we introduce the Boolean vector
rk ∈ {0, 1}q that denotes for each cell whether it is part of
the drivable area:

r
(i)
k =

{
1 if

(
x(tk; 0, x0)⊕ C(i)k

)
∩ proj(Dk) 6= ∅

0 otherwise.
(13)

Using (12), we write the graph-based propagation as

r̂k+1 = P k+1
k rk . (14)

2) Discretization of Obstacles: To exclude Fk+1 from
the Boolean representation r̂k+1, we discretize Fk+1. As
commonly done in motion planning, we consider the shape
of the ego vehicle by dilating the occupied space of ob-
stacles with a disk of radius ρ that under-approximates the
shape of the ego vehicle [29]. The under-approximation is
required to consistently over-approximate the drivable area
when excluding Fk+1. The resulting occupied space Fk+1 is
represented analogously to rk by the occupancy vector ok+1

with elements

o
(i)
k+1 =

{
1 if x(tk; 0, x0)⊕ C(i)k+1 ⊆ Fk+1

0 otherwise
. (15)

Fk+1 is typically not connected and thus, occupancies from
multiple obstacles need to be discretized individually. For
efficiency, the discretization of an obstacle is only conducted
if it intersects with the bounding box of the drivable area.
From (13) and (15) follows that the exclusion of the occupied
states is equivalent to

rk+1 = r̂k+1 ∧ ¬ok+1

with logical operators ¬ and ∧ being performed element-
wise. Thus, we can write the propagation of the reachable
set and exclusion of forbidden sets as

Dk+1 = discr
(

reach
tk+1

(Dk,U , ∅)
)
\ discr(F(tk+1)),

D0 = x0, (16)

which using (14) simplifies to

rk+1 =
(
P k+1
k rtk

)
∧ ¬ok+1 . (17)



k = 1

k = 2

k = 3

Dk

Rk

F1

d = 0 d = 1

xη xη

Fig. 3: One-dimensional example for the intersection of multiple propagated
sets to reduce the discretization error of D3. For d = 0, only cells at
subsequent time steps are connected in the graph; for d = 1, edges from
k = 1 to k = 3 are also considered and only those cells with an edge to
k = 1 are reachable at k = 3. The undiscretized drivable area R is shown
for comparison.

C. Compensating Discretization Errors with Multiple Prop-
agations

When propagating the drivable area proj(Dk), the dis-
cretization accumulates as shown in Fig. 3. After multi-
ple time steps, these errors quickly lead to an undesir-
ably over-approximated drivable area. Furthermore, we over-
approximate the velocities so that we only have to discretize
the position domain.

To counteract the discretization errors, we add edges
between cells of the drivable area that span multiple time
steps. Using these edges, drivable areas from multiple pre-
ceding points in time are propagated up to time tk+1 and
the resulting sets are intersected. Since the edges spanning
multiple time steps are also computed offline using the same
principle as in Sec. III-A, the discretization error is only
added once, instead of aggregating the discretization errors
from every intermediate time step as illustrated in Fig. 3.

Let us first formalize the multi-step approach using the
set-based representation. We define the refined reachable set
resulting from propagations from d points in time tl, l ∈
{k − d, ..., k} to time step tk+1 as

D
d

k+1 :=
( k⋂

l=k−d
discr

(
reach
tk+1

(Dl,U , ∅)
))
\ discr(F(tk+1)),

D0 = x0. (18)

Since D
0

k+1 is always among the intersected sets in (18),
D
d

k+1 ⊆ Dk+1 is true for any d > 0 showing that
multiple propagations obviously provide tighter results. The
propagation steps discr(reachtk+1

(D
0

l ,U , ∅))) can also be
computed offline and represented by propagation matrices
P k+1
l using the same approach as in Sec. III-A. Thus, we can

write the multi-step online propagation from (18) in matrix
notation as

rdk+1 =
( k∧

l=k−d
P k+1
l rl

)
∧ ¬ok+1 . (19)

Since (19) can be implemented efficiently, the runtime is
mainly dominated by the discretization of obstacles; even

multiple propagations do not impact run time considerably,
as shown in Sec. IV.

D. Exclusion of Inevitable Collision States

By utilizing the graph, we can efficiently exclude ICS
from the previously computed drivable area. Even though
the principle was formulated before in [18], it becomes
especially effective when combined with our approach that
uses a fine discretization of the whole drivable area. When
no path in the graph G from a cell C(i)k to a cell at the
final time step exists, all states in C(i)k eventually lead to
a collision. Thus, we exclude these cells from the drivable
area by iterating backward from the final set rdh and deleting
nodes with no reachable set at a preceding time step. Using
the propagation matrices and the multi-step propagation as
in (19), this is computed at each time step as

rdk−1 =
( k+d∧

l=k

P lk−1
T
rl

)
∧ ¬ok−1, rh = rdh, (20)

where the transpose of the propagation matrix follows from
its definition in (12). The complete forward-backward algo-
rithm of the online reachability analysis is summarized in
Algorithm 2.

Algorithm 2 Online Reachability Analysis

Require: graph represented by propagation matrices P k+1
k ,

forbidden set F(t), number of time steps h, and number
d of considered time steps for propagation

1: for k = 0 to h do
2: x(tk; , 0, x0)← HOMOGENEOUSSOLUTION(x0)
3: ok+1 ← OCCUPANCYGRID(Fk+1, Ck+1,
x(tk; , 0, x0)) . see (15)

4: rdk+1 ← PROPAGATE(P k+1
k , {rk−d, ..., rk}, ok+1)

. see (19)
5: end for
6: rh ← rdh
7: for k = h to 1 do
8: rdk−1 ← EXCULDEICS(P kk−1, r

d
k) . see (20)

9: end for
10: return {rdk | k ∈ {0, . . . , h}}

IV. EVALUATION

We evaluate our approach using recorded traffic from the
CommonRoad benchmark suite1 [30] and use [31] to create
obstacles representing road boundaries to detect leaving the
road. Further, we compare our results with those of [18]
using identical parameters for all scenarios as listed in
Table I. Both methods are implemented in Python using C++
for computationally expensive operations. The computation
times were measured on a laptop with an Intel i7-8650U
1.90 GHz processor and 16 GB of RAM.

1https://commonroad.in.tum.de/



TABLE I: Parameters used in the evaluation.
Parameter Value

maximal acceleration amax 5.0 m/s2

cell size dxζ , dxη 0.5 m

number of time steps d {0, 1, 7}
time step ∆t 0.1s

radius ρ 1.25m

A. Computation Time

To compare the online computation time with the
polytope-based approach in [18], we compute the drivable
area for 339 scenarios from the CommonRoad benchmark
suite. In this comparison, d = 7 time steps are propagated
simultaneously. Fig. 4 shows the median and the ranges
of the computation times over the number of computed
time steps. The proposed algorithm requires 0.037 s for 34
time steps as the median computation time, compared with
0.170 s with the polytope-based approach. In particular, for
longer time horizons and larger drivable areas, our method
outperforms the polytope-based approach. The maximum
computation time is also lower with 0.25 s compared with
0.34 s.

co
m

pu
ta

tio
n

tim
e
[l
o
g
(s
)]

time step k

presented method
polytope-basedbounds

Fig. 4: Median computation times and min/max computation times depend-
ing on time steps k compared to polytope-based computation [18].

B. Scenario A

To illustrate the accuracy of our approach, we present
results for two out of the considered 339 scenarios. The
first scenario is an intersection from the NGSIM Lankershim
Dataset2 which can be found under ID USA Lanker-1 1 T-
1 in the CommonRoad benchmark suite. In Fig. 5, the
evolution of the drivable area is depicted at different points in
time and for a different number of additionally considered
time steps d (see (19)). Thus, it shows that incorporating
multiple time steps during the propagation has a noticeable
effect even for d = 1, which is especially evident in the upper
right region that is cut off by other vehicles. Comparing
the results in Fig. 6 with those obtained by the algorithm
from [18], it suggests that our computed area is slightly less
over-approximative, which results from the box constraint
for the input set U over-approximating the friction circle in
[18]; in contrast, we directly use the friction circle in (5).
Nevertheless, there are regions where our approach is more

2https://www.fhwa.dot.gov/publications/research/operations/07029/

over-approximative, which indicates that our method over-
approximates the velocity in these regions more.

(a)

d = 0

d = 1

d = 7

(b)
Fig. 5: Scenario A: Effect of multiple propagations for different numbers
of involved preceding time steps d at (a) t = 2.4 s and (b) t = 3.4 s.

C. Scenario B

The second scenario is a highway scenario from the US
101 database3, which can be found under ID USA US101-
27 1 T-1 in CommonRoad. The ego vehicle has an initial
velocity of 13.88 m/s. As in Scenario A, the effect of d is
shown in Fig. 7 and the comparison to [18] is shown in
Fig. 8. At t = 2.4 s a smaller over-approximation can be
observed due to the constraint of the friction circle that is
only considered by our method. In contrast, the drivable area
from our approach is larger at t = 3.4 s in the upper right
region since we tend to over-approximate the velocity.

D. Discussion

Online computation can be divided into discretization (15)
and propagation (17). The discretization is the dominating
part, which contributes 56 % of the overall run-time on
average. In the worst case, when every obstacle needs to be
discretized once every time step due to an intersection with
the bounding box of the drivable area (see Sec. III-B.2),
the complexity for the discretization is linear with respect
to the number of obstacles no. In contrast, the computation
time for the propagation in (19) does not depend on the
number of obstacles, but only linearly on the number of
nodes, the number of edges for every node and the number
of considered time steps d.

3https://www.fhwa.dot.gov/publications/research/operations/07030/



(a)

presented method

polytope-based

(b)
Fig. 6: Scenario A: Comparison of the approach with d = 7 to results from
[18] at (a) t = 2.4 s and (b) t = 3.4 s.

d = 0

d = 1

d = 7

(a)

(b)
Fig. 7: Scenario B: Effect of multiple propagations for different numbers of
involved preceding time steps d at (a) t = 2.4 s and (b) t = 3.4 s.

The limiting factor for our approach is the required
memory for storing the offline computed matrices P k+1

k in
Sec. III-A. However, for 34 time steps the resulting file still
has a reasonable size of 173 MB and takes 134 minutes to
compute using the tool CORA [28].

V. CONCLUSIONS

We present a method for the fast computation of driv-
able areas considering dynamic obstacles. In hundreds of
scenarios, we show that our method results in a faster
computation time compared with our previous approach
while providing a comparable accuracy due to our multi-
step approach. Compared to related work [12]–[14], our

presented method

polytope-based

(a)

(b)
Fig. 8: Scenario B: Comparison of the approach with d = 7 to results from
[18] at (a) t = 2.4 s and (b) t = 3.4 s.

method can compute the drivable area more efficiently and
is also able to handle more complex traffic situations and
road layouts. The resulting graph from our method can be
used subsequently by a trajectory planner for extracting a
driving corridor efficiently or finding an initial solution with
graph-based methods.
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Chapter 4

Falsification Using Concrete Scenarios Synthesized
from Abstractly Specified Scenarios

In this chapter, we propose methods for synthesizing concrete scenarios from abstract sce-
nario specifications, which we combine with falsification methods that provide a solution to
Problem 2. This chapter is structured into two parts: first, we present a format to represent
scenarios abstractly and enable synthesizing concrete scenarios. In the second part, we pro-
pose a falsification algorithm that utilizes MCTS and the scenario representation format and
a scenario synthesis based on reachability analysis.

4.1 Synthesizing Traffic Scenarios from Formal Specifications for Test-
ing Automated Vehicles

Efficient methods for synthesizing concrete scenarios from abstract scenario specifications
are an important step stone toward the automated and scalable testing and falsification of
autonomous vehicles when using a scenario-based approach. Especially for complex specifi-
cations that involve multiple traffic participants, finding a concrete scenario that realizes the
specification can be challenging. Furthermore, for existing scenario representations and con-
cretization approaches it is not always possible to assess whether a scenario concretization is
feasible.

In this work, we first propose a scenario format that enables the spatiotemporal speci-
fication for the behavior of all traffic participants. The scenario is divided into successive
scenes, where for each scene the spatial relations between traffic participants and their as-
sociated lanes are defined on a semantic level. Based on this scenario format, we propose
a constraint-based representation that we integrate with a mixed-integer optimization prob-
lem to synthesize concrete trajectories of the traffic participants. We show how the behavior
of traffic participants at intersections, in lane-changing or overtaking scenarios can be co-
ordinated jointly. Additionally, the mixed-integer representation can be used to check the
executability of an abstract scenario, i.e., whether there exists any concrete scenario that
complies with the specification.

We evaluate our method using specifications for merging lanes and a more complex inter-
section scenario with multiple traffic participants each. To assess how reliable our method can
synthesize concrete scenarios, we develop an algorithm to generate more than 600 variations
of abstract scenarios and measure the rate of feasible scenarios and the required computa-
tion times. The evaluation demonstrates that our approach can synthesize for the majority of
scenarios with computation times between 0.21 and 2.29 s on average. The constraint-based
representation provides the basis for our subsequent work on falsification.
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Synthesizing Traffic Scenarios from Formal Specifications for Testing
Automated Vehicles

Moritz Klischat and Matthias Althoff

Abstract— Virtual testing plays an important role in the
validation and verification of automated vehicles. State-of-the-
art approaches first generate a huge amount of test scenarios
through simulations or test drives, which are later filtered
to obtain relevant scenarios for a given set of specifications.
However, only few works exist on synthesizing scenarios directly
from specifications. In this work, we present an optimization-
based approach to synthesize scenarios only from formal
specifications and a given map. To concretize the specifications,
we formulate predicates, which are subsequently converted to a
mixed-integer quadratic optimization problem. We demonstrate
how our method can generate scenarios for maps featuring
merging lanes and intersections given a variety of specifications.

I. INTRODUCTION

Proving the safety of automated vehicles is still a major
challenge due to the variety of situations that can be possibly
encountered in the real world. To cope with this variety, vir-
tual testing is essential in the development phase. Especially
in industry, virtual testing is oftentimes still based on data
recorded from real test drives or variations of it1. Not only is
this expensive and time-consuming, but also the availability
of large datasets to suppliers or public research institutions
is limited.

In scenario-based testing, automated vehicles are virtually
subjected to short sequences of traffic data, i.e., scenarios,
which are representative of real-world traffic. For the verifi-
cation of automated vehicles, test engineers are additionally
interested in 1) using scenarios to test the software against
selected requirements and 2) a large variety of traffic scenar-
ios where some are only rarely found in datasets recorded
from real test drives.

Requirements can include formal specifications of a sce-
nario, i.e., the behavior of surrounding vehicles. These
specifications can also be utilized to set a large variety of
scenarios in order to create a diverse test suite. In this paper,
we present an optimization-based algorithm that synthesizes
concrete scenarios that fulfill a given formal specification.

A. Related Work

A commonly-used method to generate test scenarios is the
parametrization of scenarios and combinations of all possible
values within defined parameter ranges1. In particular, for
complex scenarios with many parameters, the exploding

All authors are with the Technische Universität München, Fakultät für In-
formatik, Lehrstuhl für Robotik, Künstliche Intelligenz und Echtzeitsysteme,
Boltzmannstraße 3, 85748, Garching, Germany. {moritz.klischat,
althoff}@in.tum.de

1https://waymo.com/safety

number of parameter combinations quickly results in an
unmanageable computational effort. At the same time, many
parameter combinations might be unrealizable.

Approaches focusing on parameterizing and modifying
trajectories from real traffic data are presented, e.g., in [1],
[2]. The derived variations of a given scenario still resemble
the high-level characteristics of the original data. While
these approaches consider only one scenario at a time, the
stochastic properties of the traffic behavior from an entire
database of scenarios can be considered when sampling new
scenarios from a Bayesian network whose parameters are
learned from that database [3]. This method has been further
extended from highways to complex intersections in [4].
With the application of importance sampling, scenarios with
interesting, rarely occurring behavior can be generated more
efficiently [5], [6].

In verification, software components are typically tested
against their functional requirements in scenarios defined by
formal specifications. Works on falsification aim at falsifying
planning algorithms of automated vehicles against a given
logic formula, e.g., formulated in signal temporal logic (STL)
[7], [8]. However, these works do not answer the question
of how to ensure that the behavior of surrounding vehicles
conforms to assumptions the test specification is based on.

While the above approaches for scenario generation can
be used to easily generate a large number of scenarios, they
cannot explicitly consider specifications for the scenarios.
Instead, classification techniques, e.g. [9], [10], would have
to be applied subsequently to find scenarios that conform
with a desired specification. This process is proposed in
[11], [12]. However, these data-driven approaches require
large amounts of data to find scenarios that conform with
a specification. In particular, for rarely occurring specifica-
tions, the required amount of scenarios, and correspondingly
the computational effort, increases disproportionately [11].
A more efficient approach is to generate scenarios directly
from specifications. The resulting amount of scenarios scales
only linearly with respect to the number of specifications.

In [13], specifications of scenarios are first derived from
police reports on crashes using natural language processing
from which waypoints connected by trajectory planners are
generated. While this is demonstrated for scenarios with two
vehicles, it remains unclear how the motion of more vehicles
could be coordinated reliably. In the context of search-
based scenario generation [14], the implicit conformance
with a specification can be obtained through dedicated cost
functions [15]. With these functions, the search is directed
to regions in the space of scenario parameters where the



specification is fulfilled.
Another representation of specifications is given by on-

tologies, which can also be generated automatically [16].
Highway scenario descriptions conforming with such ontolo-
gies are generated in [17] and combinatorial test generation
from ontologies focusing on road infrastructure is proposed
in [18].

A formal representation of specifications is provided by
temporal logic. In [19], [20], control problems for linear sys-
tems subjected to linear temporal logic (LTL) specifications
are solved using mixed-integer formulations.

Lately, two scenario description languages and respective
scenario generators have been developed, which focus on
a realistic visualization of the environment for vision-based
algorithms [21], [22]. Another high-level description of traf-
fic scenarios is presented in [9]; so-called traffic patterns
describe the traffic flow at intersections, and an algorithm to
match scenarios to the patterns is presented.

For the formalization of specifications with a focus on mo-
tion planning, a specification language based on constraints
is proposed [23]. Valid parameter ranges that satisfy the
specifications can be obtained using SAT solvers [24].

In summary, existing works do not provide methods to
efficiently generate concrete scenarios from complex speci-
fications in terms of the road network or the coordination of
motion of surrounding vehicles.

B. Overview and Contributions

In this work, we present an optimization-based method
to synthesize traffic scenarios that conform to a scenario
specification. Our specification language is formally defined
in Section II: We extend a high-level description similar to
[9] by a detailed formal description of spatio-temporal rela-
tions of vehicles. The main part of our work is subsequently
presented in Section III, where we use for the first time
a framework based on mixed-integer quadratic optimization
(MIQP) that enables the generation of concrete trajectories
satisfying a scenario specification. To consider the specifica-
tion in the optimization, we formulate them as mixed-integer
convex constraints. In Section IV, we demonstrate how our
approach can be used to efficiently generate diverse traffic
scenarios by applying it to a large set of specifications. The
following are the main contributions of our work:
• We present a general scenario specification suited for

complex road network topologies.
• Our approach is the first based on MIQP for synthe-

sizing concrete traffic scenarios that explicitly consider
formal specifications.

• By including a feasibility check for specifications, our
scenarios are guaranteed to be executable.

The advantage of our optimization-based scenario synthe-
sis is that it does not rely on recorded or simulated data
and we can generate scenarios based on a road network
and an abstract specification only. Furthermore, it opens the
possibility of incorporating additional objectives, such as
criticality measures, into the cost function to obtain scenarios
with desired properties.

II. SCENARIO SPECIFICATION

In this work, we use discretized time tk = k∆t with time
steps ∆t and k as the time index. To simplify the notation,
we denote the time-step sequence (k, k+ 1, ..., k) by Jk, kK.
We generate traffic scenarios, which are defined by vehicles
Vi following trajectories xi(k) ∈ Rn, k ∈ J0, hK, where i ∈
{1, . . . , nveh} refers to the index of the vehicle, and h ∈ N
represents the considered time horizon.

Subsequently, we introduce a two-level scenario speci-
fication consisting of route patterns and scene sequences.
The route patterns are defined in Section II-A and scene
sequences in Section II-C.

A. Route Patterns

Before introducing the route patterns, let us define road
networks consisting of lanelets [25].

Definition 1 (Lanelet): A lanelet Lid with an identifier id
is composed of right and left borders defined by polylines
and attributes describing its spatial relations to other lanelets:
successors, predecessors, adjacent right, and adjacent left.�

merging intersecting
diverging

adjacent

Fig. 1: Example of relations between lanelets.

A lanelet is said to be adjacent right to a lanelet L, when its
left lanelet border intersects with L across its entire length.
Compared to the original work [25], we additionally use
the relations merging, diverging, and intersecting. Merging
(diverging) lanelets share the same successors (predecessors).
Intersecting lanelets comprise all pairs of lanelets where the
borders intersect and no adjacency or merging relation can
be found. Fig. 1 shows an example of these relations.

To further structure the lanelet network, we introduce
lanelet sections Cic combining lanelets that are coupled lat-
erally through the relations adjacent left and adjacent right,
as illustrated in Fig. 2. The ID of such a section is denoted by
ic ∈ N. For convenience, we denote the IDs of the lanelets
by tuples id = (ic, il), where il ∈ N enumerates the lanelets
of a section in the lateral direction from right to left. Using
lanelet sections, we define routes in the lanelet network.

Definition 2 (Route): A route Rκ with route index κ is
defined as a tuple of connected lanelet sections. �

For instance, the route of vehicle Vi in Fig. 2 is given
by R0 = (C0, C1). The trajectory of each vehicle Vi can
be mapped to a route. For this mapping, we introduce the
operator route(Vi), which maps a vehicle to a route Rκ.
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(0,1)

route(Vi) = (C0, C1)

route(Vj) = (C2, C1)

(1,1)

dj

origins

Fig. 2: Example of lanelet sections and lane-based coordinate systems..

Definition 3 (Route Pattern): A route pattern of a scenario
is the union of the routes of all vehicles in the scenario:

Troute =

nveh⋃

i=1

route(Vi). �

With these patterns, a scenario can be described on an
abstract level. Fig. 3 shows an example of two different route
patterns for the same intersection.

(a) (b)
Fig. 3: Examples of two route patterns at an intersection, vehicles are colored
based on their assigned routes.

B. Lane-based Coordinate Systems

Henceforth, we consider trajectories in lane-based coor-
dinate systems that are aligned to a reference path. The
reference path is represented by a polyline and constructed
for each route Rκ ∈ Troute by concatenating the center lines
of consecutive lanelets from each section of the route. Since
every vehicle is assigned to a route, every vehicle is also
assigned to a lane-based coordinate system. The longitudinal
state of a vehicle Vi in the coordinate system of route(Vi)
is given by xs,i = [si, ṡi, s̈i], where si is the longitudinal
position, and the lateral state is given by xd,i = [di, ḋi, d̈i]
with di being the lateral position (see Fig. 2). We define a
projection operator loni(x) to project a Cartesian coordinate
to a longitudinal position of route(Vi).

For two vehicles Vi and Vj , our specification can involve
the longitudinal distance between these vehicles from pos-
sibly different coordinate systems. As in our previous work
[26], we couple the coordinates si and sj of a pair of vehicles
by computing a common reference point xref,ij at the first
intersection of their reference paths. We introduce auxiliary
coordinates s̃i = si−loni(xref,ij) and s̃j = sj−lonj(xref,ij)
relative to the reference point. Using these coordinates, we
define the operator dist(Vi, Vj) := s̃j − s̃i for computing the
longitudinal distance between Vi and Vj . As shown in Fig. 4,
this distance is also defined for vehicles before their lanelets
merge.

Vi

Vj
sj

si
xref,ijs̃i < 0

s̃j < 0

(a) Before merging.

Vi Vj

sj

si

xref,ij

s̃i < 0 s̃j > 0

(b) After merging.
Fig. 4: Coupling of lane-based coordinate systems of two vehicles Vi, Vj
using xref,ij for computing the distance dist(Vi, Vj) = s̃j − s̃i.

C. Scene Specification

To further specify the behavior of vehicles, we introduce
predicates. We focus on essential predicates that can already
express a large variety of traffic scenarios. Nevertheless, any
other predicate that can be formulated as a mixed-integer
convex constraint in the MIQP, as in Section III, can be
modeled as well. The predicates are introduced as follows:

Definition 4 (onLanelet): Let a set of lanelets L(ic, Jil, ilK)
be defined by the section ID ic and a sequence of lateral IDs
Jil, ilK. Computing the longitudinal bounds of all lanelets
in L(ic, Jil, ilK) in the coordinate system of a vehicle Vi
yields the interval [sL(ic,Jil,ilK), sL(ic,Jil,ilK)] and the lateral
bounds at a longitudinal position si within that interval are
determined as [dL(ic,Jil,ilK)(si), dL(ic,Jil,ilK)(si)]. Then the
predicate onLanelet is defined as

onLanelet(Vi, ic, Jil, ilK)⇐⇒
sL(ic,Jil,ilK) ≤ si ≤ sL(ic,Jil,ilK)

dL(ic,Jil,ilK)(si) ≤ di ≤ dL(ic,Jil,ilK)(si).�

Note, that our definition of onLanelet(Vi, ic, Jil, ilK) con-
siders the center of the vehicle and not the whole occupancy
of the vehicle. By specifying multiple lanelets, we make lane
changes possible.

Definition 5 (isBehind): If Vi and Vj are specified to move
on the same lanelet or on merging, diverging, or succeeding
lanelets, we define that vehicle Vi is behind vehicle Vj with
a safety margin r ∈ R+ through the predicate

isBehind(Vi, Vj)⇐⇒ dist(Vi, Vj) > r. (1)
�

For a vehicle, which is specified to move on a lanelet
Li intersecting with another lanelet Lj , we use additional
predicates to specify the crossing behavior. For formulating
these predicates, the conflicting area of both vehicles needs
to be defined first. To maximize the flexibility for generating
scenarios, we aim at computing a small conflicting area.
Hence, we use the intersecting area of both lanelets to avoid
collisions. When traffic rules should be considered, one could
alternatively use stop lines at intersections.

To determine the intersecting area of two lanelets Li
and Lj in lane-based coordinates, we first compute the
intersecting points ξz(Li, Lj) ∈ R2 with z ∈ {1, . . . , 4}
of the lanelet borders through a sweep-line algorithm [27].
After computing the longitudinal coordinates sξ,z(Li, Lj) of



each point ξz(Li, Lj), we can determine the longitudinal
interval [scai,j , s

ca
i,j ] that bounds all sξ,z(Li, Lj) as illustrated

in Fig. 5. Using this interval, we divide the lanelet Li into
three sections and introduce the corresponding predicates
below. These predicates are also illustrated in Fig. 5.

Definition 6 (Conflict Area Predicates): The position of a
vehicle Vi on a lanelet intersecting with the lanelet of another
vehicle Vj is evaluated by the predicates

beforeCA(Vi, Vj)⇐⇒ si < scai,j − r,
inCA(Vi, Vj)⇐⇒ scai,j − r ≤ si ≤ scai,j + r,

behindCA(Vi, Vj)⇐⇒ si > scai,j + r

using a safety margin r > li/2 with li being the length of
Vi. �

behindCAbeforeCA inCA

scai,j

scai,j

ξz(Li, Lj)

Vi
Vj

sξ,z(Li, Lj)
r

rLi

Lj

Fig. 5: Construction of longitudinal bounds [scai,j , s
ca
i,j ] of the conflict

area for vehicle Vi crossing the lanelet of Vj . Furthermore, the intervals
corresponding to each intersection predicate of Vi are shown.

To further structure the specification, we divide the set of
predicates into scenes as illustrated for an example shown in
Fig. 6.

Definition 7 (Scene Sequence): We define a scene Sl by
the tuple (Pl, kl), which encodes the set Pl of predicates
that hold true starting at the switching time kl ∈ J0, hK until
the switching time of the subsequent scene Sl+1. Thus the
complete scenario is specified by the sequence of nsc scenes

Tsc = (S0, . . . , Sl, . . . , Snsc
). �

S0 S2

isBehind(V2, V0)
onLanelet(V0, 0, 1)
onLanelet(V1, 0, 0)
onLanelet(V2, 0, 1)

S0 with k0 = 0 S1 with k1 = 10 S2 with k2 = 25

(0,0) 1

2 2 0
0

2

1 1

(0,1)
0

isBehind(V0, V1)
onLanelet(V0, 0, 0)
onLanelet(V1, 0, 0)
onLanelet(V2, 0, 1)

P0: isBehind(V0, V1)
isBehind(V2, V0)
onLanelet(V0, 0, (0, 1))
onLanelet(V1, 0, 0)
onLanelet(V2, 0, 1)

P1: P2:

(0,0)
(0,1)

(0,0)
(0,1)

Fig. 6: Example of a lane-change maneuver defined by three scenes.

Instead of specifying the exact switching times, it is more
convenient to set lower and upper bounds for the duration
δl of each scene, i.e., hmin ≤ δl ≤ hmax, hmax ∈ N,
∀l ∈ J0, nscK. This also reduces the number of specifications,
because scenarios with the same predicates Pl, but different

switching times xl can be described by the same speci-
fication. The exact duration is determined in the scenario
synthesis presented in the next section.

Our definition of a scene can be considered as a formalized
version of the frequently-used definition in [28]. When
creating the specification, collision-free scenarios can be
specified by respecting simple rules. For instance, collisions
on intersections are avoided when the specification satisfies

∀i, j, l : i 6= j∧¬(inCA(Vi, Vj) ∈ Pl∧inCA(Vj , Vi) ∈ Pl)
∨ ¬(inCA(Vi, Vj) ∧ inCA(Vj , Vi)). (2)

Test cases for automated vehicles can be formulated using
our specification by including an ego vehicle in the specifi-
cation and finally deleting it from the synthesized scenario.

III. SYNTHESIS OF TRAJECTORIES THROUGH
OPTIMIZATION

To synthesize concrete trajectories that comply with a
given scenario template, we formulate a mixed logical dy-
namical (MLD) system and generate a combined MIQP
whose solution yields the trajectories for all vehicles. As
commonly done in motion planning for road vehicles, we
solve the longitudinal and lateral planning problems sepa-
rately [29].

Similar approaches are proposed for the control of general
MLD systems [30], cooperative planning of trajectories [31]–
[33] or for trajectory planning of lane changes for single
vehicles [34]. Unlike in previous work, our optimization
problem combines planning of longitudinal and lateral mo-
tion for multiple vehicles while handling intersections.

A. Representation of Switching Times
Initially, the switching times kl of each scene are unknown

and need to be determined as part of the optimization prob-
lem. To facilitate formulating the optimization problem, we
encode each kl through a binary vector βl ∈ {0, 1}h, ∀l ∈
J0, nscK that switches at kl

βl(k) =

{
0, k < kl
1, k ≥ kl .

The temporal order of scenes is ensured through the linear
constraints

β0(0) = 1 (3)
∀k ∈ J1, hK,∀l ∈ J0, nsc − 1K : βl(k) ≤ βl+1(k).

For constraining the duration δl of each scene, we need to
determine whether a scene is active, i.e., whether kl ≤ k <
kl+1. For convenience, we denote this by auxiliary binary
variables αl ∈ {0, 1}h (see Fig. 7 for an example):

∀k ∈ J0, hK : αl(k) =

{
βl(k)− βl+1(k), 0 ≤ l < nsc

βl(k), l = nsc .

Hence, the durations are bounded through

∀k ∈ J0, hK : hmin ≤
h∑

k=0

αl(k) ≤ hmax. (4)



β2(k) 0 0 0 10 10
β1(k) 0 1 1 11 10
β0(k) 1 1 1 11 11

0 0 0 10 1α2(k) 0
α1(k) 0 1 1 01 00
α0(k) 1 0 0 00 01

k1 = 2k0 = 0 k2 = 5

Fig. 7: Example for binary variables βl(k) and αl(k) with three scenes.

B. System Dynamics

We now define the linear system dynamics for the longitu-
dinal (denoted by subset s) and lateral motions (denoted by
subset d) of all vehicles using the state matrices As, Ad ∈
Rp,p and the input matrices Bs, Bd ∈ Rp,q by

xs(k + 1) = Asxs(k) +Bsus(k). (5)

The lateral motion is defined by

xd(k + 1) = Adxd(k) +Bdud(k). (6)

The state vector xs comprises the concatenated states of all
vehicles xs = [xTs,1, . . . , x

T
s,nveh

]T and the input vector is
given by the jerk of all vehicles to obtain continuous accel-
eration: us = [

...
s 1, . . . ,

...
snveh

]T and ud = [
...
d1, . . . ,

...
dnveh

]T .
In combination with the binary variables βl(k) we obtain an
MLD system.

C. Converting Predicates to Mixed-Integer Constraints

To consider the specification Tsc in the MIQP motion plan-
ning problem, it needs to be written as mixed-integer linear
inequality constraints. The formulation of such constraints
from predicates for temporal logic has been shown, e.g., for
STL [35], [36].

Since our predicates are intentionally formulated as linear
inequality constraints, see Definitions 4 to 6, we make use
of the big-M method [37] to only activate them during
their corresponding scene, i.e., when αl(k) = 1. In this
well-known method for mixed-integer programming, a term
involving a vector M ∈ Rm+ , which has sufficiently large
values and is of correct dimensions, is added to a linear
inequality constraint to control its activation. In our case,
adding the binary term M(1 − αl(k)) to a constraint as in
(7), ensures that a constraint is always fulfilled if αl(k) = 0.

We convert each predicate of each scene Sl, l ∈
{0, . . . , nsc} separately and finally combine all constraints
to two inequalities in the required big-M form

g
l
(xs, k) > cl(k)−M(1− αl(k)) (7)

gl(xs, k) < cl(k) +M(1− αl(k))

for lower and upper bounds cl(k), cl(k) ∈ Rnpred using linear
functions g

l
(xs, k), gl(xs, k).

To give an example, we can directly write (1) of
isBehind(Vi, Vj) as a constraint using the big-M method:

s̃j(k)− s̃i(k)︸ ︷︷ ︸
g
l
(xs,k)

> r︸︷︷︸
cl(k)

−M(1− αl(k)). (8)

D. Longitudinal Optimization Problem

We solve an optimization problem for a user-defined
convex cost function Js(xs, us, w), which can incorporate
terms for desired properties, such as efficiency or criticality.
An example is given later for the evaluation in Section IV.
By introducing weights w ∈ Rρ for selected terms, we can
utilize the cost functions for parameterizing the scenarios
in order to obtain variations of the scenario. The complete
optimization problem is given by

arg min
xs(0),us

h∑

k=0

Js(xs(k), us(k), w) (9)

subjected to dynamic constraints, ∀k ∈ J0, hK :

xs(k + 1) = Asxs(k) +Bsus(k) (10)
us,min ≤ us(k) ≤ us,max

xs,min ≤ xs(k) ≤ xs,max,

predicate constraints, ∀l ∈ {0, . . . , nst}, ∀k ∈ J0, hK :

g
l
(xs, k) < c(k) +M(1− αl(k)) (11)

gl(xs, k) > c(k)−M(1− αl(k)),

and logical constraints from (3) and (4):

β0(0) = 1 (12)
∀k ∈ J0, hK,∀l ∈ J0, nsc − 1K : βl(k) ≤ βl+1(k),

∀k ∈ J0, hK : hmin ≤
h∑

k=0

αl(k) ≤ hmax.

E. Lateral Motion

After solving the longitudinal motion problem, we can
compute the lateral trajectory of each vehicle. Since the
switching times can be obtained from the previously com-
puted βl(k), the active predicates at every time k are known.
Hence, only a quadratic program without binary variables
needs to be solved. At the longitudinal positions s(k), the
lateral lanelet bounds [dL(s(k)), dL(s(k))] specified through
onLanelet are extracted. Furthermore, the lateral reference
path dref(k) ∈ R is computed. The trajectory is obtained by
solving

arg min
ud(·)

h∑

k=0

Jd(xd(k), ud(k), dref(k), w) (13)

subjected to dynamic constraints, ∀k ∈ J0, hK :

xd(k + 1) = Adxd(k) +Bdud(k)

ud,min(k) ≤ u(k) ≤ ud,max(k)

xd,min(k) ≤ xd(k) ≤ xd,max(k)

and lane constraints, ∀k ∈ J0, hK:

dL(s(k)) ≤ xd(k) ≤ dL(s(k)).



F. Feasibility Checking

Formulating the scenario synthesis as an MIQP problem
enables us to check the satisfiability of a specification by the
given system dynamics through checking the feasibility of
the MIQP problem. For more insights into the cause of a
possible infeasibility, the feasibility check can be performed
in two steps:

1) The logical checking of the specifications Tsc detects
a contradiction in the specifications in each scene:
We introduce the feasible set Dpred ⊂ R

∑
l npred,l ×

{0, 1}hnsc , denoting the mixed-integer set fulfilling
predicate constraints (11) and binary constraints (12)
of the longitudinal problem (9). An empty set Dpred

implies the contradiction of at least two specifications.
2) The satisfiability of the specification by the given

system dynamics can be checked by additionally con-
sidering the dynamic constraints in (10) for the MIQP
feasibility check. This problem can be solved by a
branch and bound algorithm and the decidability of this
problem has been proven already in [19] for general
MLD systems.

IV. EVALUATION

In this section, we demonstrate our approach by means of
two maps: Map A features two merging lanes on a highway
and map B shows an urban T-intersection. To test our
approach with a large variety of specifications, we generate
them through an exhaustive search, as described in Sec-
tion IV-A. For the system matrices As and Ad, we use triple
integrators for each vehicle and as cost functions we choose
Js(xs(k), us(k), w) = xs(k)TQsxs(k)+us(k)TRsus(k) and
Jd(xd(k), ud(k), w) = xd(k)TQdxd(k) + ud(k)TRdud(k)
to obtain efficient motions. Table I lists the chosen parame-
ters of our algorithm.

Our code is written in Python, and the optimization prob-
lems are solved using the solver Gurobi2. The computation
times are measured on a system with an Intel i7-8650U
1.90 GHz processor. We uploaded all generated scenarios
to our website3 with IDs ZAM Zip and ZAM Tjunction.
A selection of scenarios can also be found in the video
attachment at https://mediatum.ub.tum.de/1537464.

TABLE I: Parameters of our algorithm used for both the maps.

Parameter Value

∆t [s] 0.25
th [s] map A: 8.5, map B: 15.0
thmin

[s] 1.5
as,min [m/s2] −7.0
as,max [m/s2] 3.0
|amax| [m/s2] −7.0
Qs, Qd diag([5, 1, 1])
Rs, Rd 0.5

2http://www.gurobi.com
3https://commonroad.in.tum.de/scenarios

A. Generation of Specifications

To generate a large number of specifications, we use
a simple exhaustive search. A more distinct automation
of formulating specifications is a subject of future work,
and the utilized approach satisfies mainly the purpose of
evaluating our synthesis approach. To generate specifications
of the scenes, we manually define an initial scene, which
is subsequently evolved through an exhaustive tree search,
until a defined number of scenes is reached. For map A,
we evolve a given scene to the next scene by letting up to
two vehicles either change to the adjacent lanelet or to the
succeeding lanelet. When switching lanes or merging into
one lane, we add nodes in the search tree for each possible
order of vehicles in the target lane. For map B, we let one
vehicle switch to the following intersection predicate in the
order

(
beforeCA(Vi, Vj), inCA(Vi, Vj), behindCA(Vi, Vj)

)
.

To avoid collisions in the conflict area, we additionally
disregard all the specifications that violate the condition in
(2). Furthermore, we only consider specifications, wherein at
least three vehicles cross the intersection.

B. Map A: Merging Lanes

The highway map features a road with merging lanes as
depicted in Fig. 8. According to our definition, this map
contains one route and accordingly one lane-based coordinate
system. As depicted in Table II, the initial scene S0 consists
of two vehicles driving behind each other on each lane.
Using the previously introduced approach for generating
four scenes, we obtain 120 specifications in total for which
we subsequently synthesize scenarios using our presented
approach.

TABLE II: Specification of a scene sequence for Map A.

Vehicle Vi

Scene Predicates V0, V1 V2 V3

S0
onLanelet(Vi, ic, il) V0,1,1 V1,1,1 V2,1,0 V3,1,0
isBehind(Vi, Vj) V0, V1 - V2, V3 -

S1
onLanelet(Vi, ic, il) V0,1,{0,1} V1,1,1 V2,1,0 V3,1,0
isBehind(Vi, Vj) V0,V1 - V2, V3 V3, V0

S2
onLanelet(Vi, ic, il) V0,0,0 V1,1,1 V2,1,0 V3,0,0
isBehind(Vi, Vj) - V1, V3 V2, V3 -

S3
onLanelet(Vi, ic, il) V0,0,0 V1,0,1 V2,0,0 V3,0,0
isBehind(Vi, Vj) V0, V1 V1, V3 V2, V1 V3, V0

Out of all specifications, 71 scenarios can be generated,
taking on average 0.21 s. For the remaining specifications,
the satisfiability checking failed. These specifications mainly
contained overtaking maneuvers, which could not be com-
pleted in the prescribed time horizon th. In Table II we show
an exemplary specification and Fig. 8 depicts three frames
of the synthesized scenario.

C. Map B: Intersection

We use a T-intersection (Map B) to demonstrate
intersection-related predicates. To obtain complex scenarios,
we generate specifications for three routes that each intersect
with the two other routes, as depicted in Fig. 9. In the



(1,0) (1,1) (0,0) (0,1)

(ic, il): lanelet IDs

V1

V2 V3

V0

(a) t = 0.5 s, scene S1

V1V2 V3 V0

(b) t = 5.75 s, scene S2

V1V2 V3 V0

(c) t = 8.5 s, scene S3

Fig. 8: Synthesized scenario for Map A at different times t.

initial configuration S0, we place two vehicles on the lanelets
approaching the intersection. By generating specifications as
described in Section IV-A with six scenes, we obtain in
total 557 different specifications Tsc. Our algorithm could
generate scenarios for all the specifications. In Table III we
show an example of a specification and the resulting scenario
is depicted in Fig. 10. The computation takes on average
2.29 s.

(0, 0)

(1, 1)

(5, 0)

(2, 1)

(3, 0)

(4, 0)

reference paths

conflicting intervals

lanelet IDs(ic, il)

Fig. 9: Map B: reference paths of each route and conflicting intervals used
in the experiments. Only lanelet IDs used in the specifications are shown.

V. CONCLUSIONS AND FUTURE WORK

We presented a method for synthesizing traffic scenarios
from specifications. Using this approach, scenarios can be
generated efficiently instead of searching large databases for
scenarios with matching specifications. By tailoring dedi-
cated specifications, one could generate scenarios in which
vehicles obey or disregard certain traffic rules. Our method
can be further extended to a reactive environment for testing
of automated vehicles, where the specification-conforming
motion of surrounding vehicles is adapted to the action of
the ego vehicle. Future work also includes the automatic
generation of specifications and the design of dedicated cost
functions for the creation of critical scenarios.
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TABLE III: Specification of a scene sequence for Map B.

Vehicle Vi

Predicates V0 V1 V2 V3 V4 V5

S0
onLanelet(Vi, ic, il) V0,3,0 V1,3,0 V2,0,0 V3,0,0 V4,5,0 V5,5,0
isBehind(Vi, Vj) V0, V1 - V2, V3 - V4, V5 -

S1

onLanelet(Vi, ic, il) V0,3,0 V1,3,0 V2,0,0 V3,0,0 V4,5,0 V5,2,1
isBehind(Vi, Vj) V0, V1 - V2, V3 - V4, V5 -
conflict area predicate - - - - - before

S2

onLanelet(Vi, ic, il) V0,1,1 V1,1,1 V2,0,0 V3,4,0 V4,5,0 V5,2,1
isBehind(Vi, Vj) V0, V1 - V2, V3 - V4, V5 -
conflict area predicate - before before - in

S3

onLanelet(Vi, ic, il) V0,1,1 V1,1,1 V2,0,0 V3,4,0 V4,2,1 V5,2,1
isBehind(Vi, Vj) V0, V1 - V2, V3 - V4, V5 -
conflict area predicate before in - before before behind

S4

onLanelet(Vi, ic, il) V0,1,1 V1,1,1 V2,0,0 V3,4,0 V4,2,1 V5,2,1
isBehind(Vi, Vj) V0, V1 - V2, V3 - V4, V5 -
conflict area predicate before in - in before behind

S5

onLanelet(Vi, ic, il) V0,1,1 V1,1,1 V2,4,0 V3,4,0 V4,2,1 V5,2,1
isBehind(Vi, Vj) V0, V1 V2, V3 - V4, V5 -
conflict area predicate before behind before behind before behind
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60 4 Falsification Using Concrete Scenarios Synthesized from Abstractly Specified Scenarios

4.2 Falsifying Motion Plans of Autonomous Vehicles with Abstractly Spec-
ified Traffic Scenarios

To solve Problem 2, we integrate a method to integrate the synthesis of scenarios from ab-
stract specifications with search algorithms that find a concrete scenario falsifying a provided
SUT. For search algorithms it can become challenging to identify feasible solutions from the
solution space of an abstract scenario that involves multiple traffic participants and/or com-
plex behavior specifications. To guide the search to feasible solutions and enable a faster falsi-
fication, we propose a method that computes the solution space of an abstract scenario using
reachability analysis and subsequently prunes irrelevant scenarios from the search space.

To compute the reachable sets, we combine reachability analysis with an over-approxi-
mative bounding operation balancing accuracy with efficiency to tackle the computational
complexity that arises from the curse of dimensionality. From the reachable sets, we com-
pute input constraints for the traffic participants of the scenario that are used to restrict the
action space of each node during the MCTS. Thus, we are able to ensure that the search stays
within the space of specification-compliant scenarios. Since we can also specify the failure
of interest in the scenario specification, the scenario constraints also ensure that the MCTS
selects only actions that can potentially result in failures at future time steps.

We evaluate the performance and efficiency of our approach using a motion planning
algorithm as an SUT and several abstractly defined scenarios. We show that the approach is
able to find failures in most cases and that the reachability-based action constraints increase
the success rate significantly. Furthermore, the approach results in tighter action constraints
the more complex the scenario specification becomes, which makes the MCTS more efficient.

Contributions M. K. initiated the idea to use reachability analysis for computing the solu-
tion space of abstract traffic scenarios and developed the method for using the reachability
analysis to guide a search-based falsification algorithm. M. A. led the research project and
provided feedback to improve the manuscript.
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Falsifying Motion Plans of Autonomous Vehicles
with Abstractly Specified Traffic Scenarios

Moritz Klischat and Matthias Althoff, Member, IEEE

Abstract—Verifying the safety of autonomous vehicles is one of
the major challenges towards their deployment on public roads
due to the vast number of possible situations that can occur in
traffic. Scenario-based testing has been proposed to reduce the
number of required tests using catalogs of abstractly defined
scenarios. However, when specifying test scenarios abstractly,
there is still an infinite number of possible concrete scenarios
that can be derived from a specification. Available computational
resources can thus be easily exceeded when using inefficient
strategies for deriving concrete scenarios. In this work, we
propose a novel method that synthesizes concrete scenarios
complying with abstract scenario specifications. We compute the
set of compliant trajectories for surrounding traffic participants
and only sample trajectories within those sets. Our synthesis
integrates a falsification algorithm that searches for specified
failures of the vehicle under test. Compared to existing work,
we can efficiently find scenario concretizations, especially for
complex maneuver specifications. By directly considering failure
specifications during the scenario synthesis, we avoid executing
irrelevant simulations that cannot possibly result in failures. Our
approach is demonstrated in several scenarios using Monte Carlo
tree search as a search algorithm.

Index Terms—Falsification, motion planning, reachability ana-
lysis, automated vehicles, scenario-based testing, Monte Carlo
tree search

I. INTRODUCTION

AUTONOMOUS vehicles are expected to safely handle
a vast number of situations in the real world. To test

the safety of such systems in sufficiently many situations,
scenario-based testing is proposed to define representative
scenarios [1]. These scenarios are typically structured into
several abstraction levels. On the most abstract level, the
semantics of the maneuvers of other traffic participants are
defined, while concrete scenarios on the lowest level define the
exact motion of each traffic participant as illustrated in Fig. 1.
Thus, abstractly defined maneuvers serve as a specification
for concrete scenarios to which further specifications such as
traffic rules or the expected behavior of the autonomous vehi-
cle can be added. When deriving concrete scenarios complying
with the specifications, existing approaches often depend either
on restrictive behavior models for other traffic participants or
use sampling methods for which it becomes challenging or
inefficient to obtain specification-compliant motions once the
scenario specifications become more complex.

In contrast, we propose a scenario synthesis method that
generates scenarios complying with spatio-temporal specifica-
tions of multiple traffic participants using reachability analysis.
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Figure 1. A scenario specification abstractly describes the scenario and a
failure of the ego vehicle, e.g., using a predicate Behind([a, b]) that specifies
the allowed interval of the distance between two vehicles. Our approach
efficiently finds concrete failures by computing the set of specification-
compliant trajectories and using search algorithms that sample trajectories
from this set.

We first obtain the solution space of all trajectories complying
with the specification and subsequently synthesize trajectories
within this solution space. Because we can also formulate
in the specification the failures we are interested in, we
only obtain relevant scenarios that can possibly result in
these failures. Our synthesis approach integrates with search
algorithms and enables testing in a closed loop with the system
under test (SUT) to adapt to its behavior for falsifying given
traffic rules. Because we can compute the solution space, we
are able to guide the scenario sampling process towards hardly
reachable edge cases, that existing sampling methods might
miss or require many rejections of samples.

A. Literature Review

Recent surveys provide a comprehensive overview of the
safety validation of autonomous systems in general [2] and
of autonomous vehicles, specifically [1], [3]. In the following
review, we focus on the most recent and relevant research with
respect to our approach.

1) Data-driven Scenario Classification and Sampling: A
standard approach is to create test scenarios from real-world
data that are subsequently classified into abstract scenario
representations, see e.g., [4]–[10]. However, even for large
datasets, it is not ensured that they contain the abstract
scenarios of interest or enough variations of the same abstract
scenario. Unseen scenarios can be sampled from probabilistic
models that are learned from a database [11]–[13]. Importance
sampling is proposed to increase the efficiency of sampling
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methods and to focus on rarely occurring behavior, is pro-
posed [14], [15]. Using extreme value theory, the collision
frequency of an automated vehicle is estimated based on the
distribution of a criticality measure evaluated on a dataset [16].

Other works parameterize trajectories from real traffic data
and derive variations of the original scenarios [17], [18].
Another line of work focuses on generating diverse variations
of scenarios using machine learning [19]–[21].

2) Falsification-based Scenario Generation: When verify-
ing software components, they are typically evaluated against
their functional requirements provided as formal specifica-
tions. Falsification algorithms aim at falsifying the SUT
against these specifications, often formulated using temporal
logic [22], [23]. In contrast to the previously reviewed methods
for generating scenarios, falsification methods adapt the sce-
nario in a closed loop incorporating the behavior of the SUT to
find failures. While falsification algorithms have already been
applied to highly nonlinear or hybrid systems [24], a specific
challenge for autonomous vehicles is the complex behavior of
the environment, see, e.g., [25]–[27].

Extensions to falsification problems incorporate the like-
lihood of scenarios and frame the problem as a Markov
decision process to find the most likely failures [28], [29].
Similarly, adversarial trajectories of the surrounding traffic
participants are generated using learning methods [30]–[32],
optimization [33]–[36], or search methods [37], [38]. Apart
from temporal logic, falsification methods often use criticality
measures as heuristics to guide the search towards failures. An
extensive overview of criticality metrics is provided in [39],
[40].

3) Specification-compliant Scenario Generation: While the
approaches reviewed so far can generate a large number of sce-
narios, they often do not explicitly consider specified behavior
of other traffic participants or objects of the environment.
To specify traffic scenarios, domain-specific languages have
been developed [41]–[43]. The languages Scenic and Paracosm
are integrated with testing frameworks capable of executing
scenarios formulated using these languages [43], [44]. Another
domain-specific language is OpenScenario 2.01. Ontologies
are proposed in [45], [46] for describing scenarios.

Conformance to a scenario specification can be considered
in search-based methods through dedicated cost functions [33],
[47]. With these heuristics, the search is directed to regions
in the space of scenario parameters where the specification
is fulfilled. However, this approach does not provide any
guarantees for complying with the specification. Traffic rules
for the surrounding agents are encoded using temporal logic in
[48] and incorporated in the reward of a reinforcement learning
problem for falsifying the SUT. A work that proposes efficient
sampling of trajectories from Gaussian distributions complying
with linear constraints is proposed in [49]. Valid instantiations
compliant with a domain-specific language and considering
vehicle dynamics can be obtained using a dedicated SMT
solver [50]. In previous work, we generated specification-
compliant scenarios using mixed-integer optimization [51].

1http://www.asam.net

4) Coverage-focused Scenario Generation: The continuous
domains of many scenario parameters entail infinitely many
scenarios. Even after discretizing the uncountable parameter
space, efficient testing strategies are crucial due to the combi-
natorial explosion of discretized parameter values. Therefore,
coverage criteria are incorporated into the scenario genera-
tion: In [52], [53] methods to achieve coverage of high-level
scenarios are proposed, whereas [54]–[57] consider a low-
level combinatorial coverage of parameter values by utilizing
the k-wise combination of values within provided parameter
intervals.

B. Contributions
In summary, there exist methods for concretizing abstractly

defined scenarios and falsification procedures for autonomous
vehicles. However, little focus has been on methods enabling
both jointly, i.e., the efficient closed-loop falsification for
complex abstract scenarios. However, this is crucial when
utilizing such methods at scale.

We address this research gap by presenting a method
for synthesizing concrete trajectories for multiple adversarial
traffic participants reacting to the SUT while complying with
an abstract scenario specification.

Our method provides the following features:
1) Finding falsifying scenario concretizations complying

with specifications that define semantic and temporal
relations for multiple traffic participants.

2) More efficient sampling compared to rejection-sampling
techniques by only considering the solution space of
feasible scenario parameters with respect to scenario
specifications and vehicle dynamics through the com-
bination of search algorithms with reachability analysis.

3) As a consequence of 2), our scenario synthesis algo-
rithm becomes the more efficient the more complex the
scenario becomes due to the shrinking solution space.

C. Organization
This paper is organized as follows: We introduce the pre-

liminaries for the scenario representation in Section II and
the problem definition in Section III. The abstract scenario
representation is defined in Section IV from which we derive
constraints for the reachability analysis in Section V. The
reachable sets are used to obtain input constraints for the
scenario sampling strategy. In Section VI, we show how the
scenario synthesis can be integrated with falsification algo-
rithms using Monte Carlo tree search as a scenario sampling
strategy. The approach is evaluated in Section VII, and we
finish with the conclusions in Section VIII.

II. PRELIMINARIES

In this work, we use discretized time tk = k∆t, where
∆t is the time step and k is the time index. We generate
traffic scenarios, which are defined by traffic participants
Vi following trajectories xi(k) ∈ Rn, k ∈ [0, kf ], where
i ∈ {1, . . . , np} is the index of the traffic participant, and
kf ∈ N denotes the considered time horizon. The index ego
identifies the ego vehicle. To denote a trajectory in the time
interval [k0, kf ], we use the notation xi([k0, k]).
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A. Road Representation

We model roads by a network of lanelets [58].

Definition 1 (Lanelet):
A lanelet Ll with index l is composed of a left and right
border defined by polylines and attributes describing its spatial
relations to other lanelets: successors, predecessors, adja-
cent right, and adjacent left.

A lanelet is said to be adjacent right to a lanelet Ll, when
its left lanelet border intersects with Ll across its entire length.
The relation adjacent left is defined analogously. To further
structure the lanelet network, we introduce lanelet sections
Cc combining lanelets coupled laterally through the relations
adjacent left and adjacent right as illustrated in Fig. 2. We
define routes R% with route index % as a tuple of connected
lanelet sections ordered in the longitudinal direction. The
trajectory of each traffic participant Vi is assigned to a route.
For this mapping, we introduce the operator route(Vi), which
maps a traffic participant to a route R%.

B. Curvilinear Coordinate Systems

We use curvilinear coordinate systems defined by a refer-
ence path, which is constructed for a route R% by concatenat-
ing the center lines of consecutive lanelets from each section
of the route. The longitudinal state of a traffic participant Vi in
the coordinate system of route(Vi) is given by xξ,i = [si, ṡi]

T ,
where si ∈ R is the longitudinal position, and the lateral
state is given by xη,i = [di, ḋi]

T with di ∈ R being the
lateral position (see Fig. 2). Together, they define the state
of a traffic participant xi = [xξ,i, xη,i]

T . Subsequently, we
denote variables related to the longitudinal direction by the
subscript ξ and correspondingly variables related to the lateral
direction by the subscript η.

Vi Vj

sjsi

di

C0 C1

C
2

route(Vi) = (C0, C1)

route(Vj) = (C2, C1)

dj

origins

Figure 2. Example of lanelet sections C and curvilinear coordinate systems.

C. Vehicle Dynamics and Reachable Sets

Let us assume a scenario specification φs, which we will
define in more detail in Section IV. We say a scenario state
xS(k) = [x1(k), . . . , xi(k), . . . , xnp

(k)]T ∈ X S is compliant
with φs if the states of all traffic participants fulfill the scenario
specification at time tk, written as xS(k) |= φs. We use the
projection operator projxi : X S → Xi to extract the set of state
variables corresponding to the i-th traffic participant from the
combined state space X S. We define the set operator box(X )
returning the tightest interval enclosing a set X .

We further introduce the vector uS(k) =
[u1(k), . . . , ui(k), . . . , unp

(k)]T ∈ US as the scenario

input with ui = [uξ,i, uη,i]
T consisting of inputs, which are

bounded by intervals uξ,i ∈ Uξ, Uξ = [umin,ξ, umax,ξ] ⊂ R in
the longitudinal direction and correspondingly in the lateral
direction. To permit efficient computations, we synthesize the
trajectories using decoupled, linear system dynamics in the
longitudinal and lateral direction: s̈i = uξ,i and d̈i = uη,i. The
coupling of both dynamics is achieved later in the synthesis
through additional constraints of uη,i(k) that account for the
friction circle u2

ξ,i(k) + u2
η,i(k) ≤ a2

max. As a consequence of
the introduced discrete time, we have discretized dynamics

xξ,i(k + 1) =

[
1 ∆t
0 1

]

︸ ︷︷ ︸
A

xξ,i(k) +

[
1
2∆t2

∆t

]

︸ ︷︷ ︸
b

uξ,i(k) (1)

for each traffic participant in the longitudinal direction and
likewise in the lateral direction. For the SUT, we assume a
black-box model.

Definition 2 (System Under Test):
The system under test (SUT) is represented by a black-box
model that returns the state of the ego vehicle Vego based on
the current state of the scenario: xego(k) = MSUT(xS(k)) .

Let us further define χ
(
k, uS([0, k]), xS(0)

)
, which denotes

the scenario state of all traffic participants at time k resulting
from the initial state xS(0) and the input trajectory uS([0, k]).
Finally, we define reachable sets, which later help us finding
compliant trajectories:

Definition 3 (Compliant Reachable Set):
Starting from an initial set R0 ⊂ X S, we define

R(k, φs,US,R0) =
{
χ
(
k, uS([0, k]), xS(0)

) ∣∣∣ xS(0) ∈ R0,

∀κ ∈ [0, kf ] : uS(κ) ∈ US, χ
(
κ, uS([0, κ]), xS(0)

)
|= φs

}

as the compliant reachable set, which contains all states at the
k-th time step that comply with a specification φs for the time
interval [0, kf ] and consider the system dynamics.

To simplify the notation, we will only write R(k) in the
remaining paper. Furthermore, we will need to compute R(k)
over-approximatively, which we denote by R(k) ⊇ R(k). In
Table I we also summarize all the subsequently introduced
notations for reachable sets. For computing the reachable set,
we later require the one-step reachable set that is computed
using the Minkowski sum ⊕ defined as A ⊕ B :=

{
a + b

∣∣
∀a ∈ A,∀b ∈ B

}
.

Definition 4 (One-Step Reachable Set):
When only considering system dynamics provided by A, b,
and the reachable set Rξ,i(k), the one-step reachable set at
the subsequent time step k + 1 is obtained using a set-based
evaluation of (1):

→
reach

(
Rξ,i(k)

)
:= ARξ,i(k)⊕ bUξ. (2)

D. Monte Carlo Tree Search

As a search algorithm for solving the falsification problem,
we use Monte Carlo tree search, which is widely used as
a policy for Markov decision processes but also for solving
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deterministic games with a high branching factor resulting
from a large space of possible actions like in our case [59].
Previous works used it for falsification of cyber-physical
systems [60]. Another advantage is that Monte Carlo tree
search does not require a search heuristic because it uses
playouts to estimate action values. For defining the game, we
introduce general states σ ∈ S and actions α ∈ A′(σ) ⊆ A
which are not limited to the state space X S and input space
US but additionally include high-level scenario parameters as
explained later in Section VI. In our case, the action space
A′(σ) will be constrained depending on the state. The actions
α result in transitions S × A → S. Once the search reaches
a terminal state σT ∈ ST ⊆ S it is evaluated using a reward
function R : ST → R+. During the search, a search tree
is grown where nodes represent states σ and edges represent
actions α. The aim is to find a sequence of actions that yield
a desired terminal state. During the search, the state-action
values are estimated using a heuristic Q(σ, α) explained in
Appendix A. Starting at the root node, each iteration in Monte
Carlo tree search comprises four main steps [59] illustrated in
Fig. 3:

1) Selection: Starting from the root node, the search tree
is traversed by successively choosing actions based on
the tree policy πT(σ,A′(σ)) = argmaxα∈A′(σ)Q(σ, α)
until encountering a node without child nodes, i.e., a
leaf node σL.

2) Expansion: The leaf node is expanded, i.e., new nodes
are added to the tree for each action α ∈ A′(σL) and
one of them is selected randomly.

3) Playout: Starting from the obtained node, a playout
policy πP(σ,A′(σ)) : S × P (A) → A′(σ), with P ()
being the power set, successively selects actions until
reaching a terminal state σT.

4) Backpropagation: The reward R(σT) of the playout is
saved for each node along the path selected in step 1) as
the average reward of a node is used to compute Q(σ, α)
in subsequent iterations.

1© 2© 3© 4©

R(σT)

πP(σ,A)

πT(σ,A′(σ))

R(σT)

Figure 3. Main steps of an iteration in Monte Carlo tree search.

III. PROBLEM STATEMENT AND SOLUTION CONCEPT

A. Problem Statement

We are provided with a black-box model MSUT(xS(k)) of
the SUT and a scenario specification

φs = φe ∧ φf

comprising a maneuver specification φe describing the be-
havior of all traffic participants and a failure specification
φf describing, e.g., a collision or a traffic rule violation. We

consider the problem of finding a concrete scenario repre-
sented by a trajectory xS([0, kf ]) that complies with φs, i.e.,
xS([0, kf ]) |= φs.

B. Solution Concept

Our solution concept is depicted in Fig. 4: The derivation
of concrete scenarios is divided into two steps: At each
time step, a scenario synthesizer first translates the speci-
fication into input bounds for the other traffic participants
to ensure specification-compliant trajectories considering their
dynamical models and the previous scenario state xS(k − 1).
To achieve this, we compute for all traffic participants the
reachable sets compliant with the specification and determine
input bounds based on these sets. A scenario sampling strategy
subsequently selects the inputs for the other traffic participants
and updates the scenario state xS(k). The SUT updates its state
based on xS(k) and the loop is closed to obtain a reactive
behavior of the environment.

The objective of the synthesizer is to provide wide input
bounds for allowing the sampler to generate a large variety of
scenarios, including unusual edge cases that trigger failures of
the SUT. Yet, the bounds should be chosen such that we avoid
generating trajectories that result in incompliant scenarios at
a later point in time, which wastes computational resources
by rejecting those. The scenario sampling strategy can be an
arbitrary algorithm that is capable of generating values from
a bounded interval, which comprises, e.g., samplers using
probabilistic distributions obtained from naturalistic driving
data or in our case, search algorithms, such as Monte Carlo
tree search. In Fig. 5 we depict an example for the longitudinal

Constraint Synthesizer

Scenario Sampling Strategy

input bounds

Scenario Specification

scenario state xS(k)

System Under Test

ego state xego(k)

k = k + 1

Section IV

Section VI

Section VII

Section V

Figure 4. Illustration of the solution concept.

reachable sets of three traffic participants and a concrete
scenario that is sampled for demonstration purposes randomly
within the sets.

IV. SCENARIO SPECIFICATION

We formalize the specification φs using an intentionally
simple specification format so that it can be expressed using
domain-specific languages reviewed in Section I-A3.

Definition 5 (Scene):
A scene Sq with scene index q is defined by the lower
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reachable set updated at t=3.7
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t
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Figure 5. Example for concrete trajectories for an overtaking scenario. We
first compute the reachable sets of each traffic participant which we plot
projected to the t-s plane. The sets are continuously updated by the constraint
synthesizer after each sampling step, for which we show an example at t=3.7.
Snapshots of the scenario sampled within the reachable set are shown above.

and upper bounds of its duration [δq, δq] ⊂ R+ and a set
of predicates Pq that hold true ∀tk ∈ [τq, τq + δq], where
δq ∈ [δq, δq] and the initial time τq of the scene follows from
τq =

∑q−1
%=1 δ%.

Definition 6 (Scenario Specification):
A scenario specification φs defines semantic relations between
traffic participants using a sequence of consecutive scenes
(S1, . . . , Sq, . . . , Sm).

At k = 0, R(0) provides the set of possible initial states.
The predicates specify properties of traffic participants or
relations between a pair of traffic participants or other scenario
elements, such as lanelets. Fig. 6 depicts the example of a
simple overtaking maneuver that is specified by three scenes
using predicates that we define next.

S0 with τ0 = 0 S1 with τ1 = 10 S2 with τ2 = 25

L0 1

2 2 0

0

2

1 1

L1

0

Behind(V0, V1)
InLanelets(V0, L0)
. . .

Behind(V0, V1)
InLanelets(V0, {L0, L1})
. . .

Behind(V0, V1)
InLanelets(V0, L1)
. . .

Figure 6. An example of a lane-change maneuver defined by three scenes.

As shown later, our approach requires the predicates to be
formulated using linear inequality constraints of the form a ≤
νj − νi ≤ b, with a, b ∈ R and a state variable ν ∈ {s, d, ṡ, ḋ}
yielding convex solution spaces for each traffic participant. For
this work, we use the predicates defined next.

Definition 7 (InLanelets):
Let a set of lanelets L be given, which are either laterally or
longitudinally adjacent. The longitudinal bounds of all lanelets
in L in the coordinate system of the considered vehicle Vi
with position [si, di]

T are denoted as [sL, sL] and the lateral
bounds at a longitudinal position si are within the interval
[dL(si), dL(si)]. Then the predicate is defined as

InLanelets(Vi,L)⇐⇒ sL ≤ si ≤ sL ∧
dL(si) ≤ di ≤ dL(si).

To further specify the position within the lanelet, the fol-
lowing two predicates are introduced:

Definition 8 (LonPosition):
The longitudinal position of a traffic participant is constrained
by

LongitudinalPosition(Vi, [a, b])⇐⇒ a ≤ si ≤ b.
Definition 9 (LatPosition):
The lateral position of a traffic participant is constrained by

LateralPosition(Vi, [a, b])⇐⇒ a ≤ di ≤ b.
To define speed limits or to model traffic situations such as

congestions, we specify the velocity range.

Definition 10 (VelocityRange):
The velocity of a traffic participant is constrained by

VelocityRange(Vi, [a, b])⇐⇒ a ≤ ṡi ≤ b.
For two traffic participants Vi and Vj , our specification can

include the longitudinal distance between these traffic parti-
cipants from possibly different coordinate systems for which
we use an operator dist(si, sj) that returns the longitudinal
distance between Vi and Vj . Using the following predicates,
relations between traffic participants are specified.

Definition 11 (Behind):
If Vi and Vj are specified to move on the same lanelet or on
merging, forking, or succeeding lanelets, we define that vehicle
Vi is behind vehicle Vj within a specified distance through the
predicate

Behind(Vi, Vj , [a, b])⇐⇒ a ≤ dist(Vi, Vj) ≤ b.
Definition 12 (DrivesFaster):
The velocity difference between two traffic participants is
defined by

DrivesFaster(Vi, Vj , [a, b])⇐⇒ a ≤ ṡi − ṡj ≤ b.
With these predicates, one can model further high-level

predicates relevant for, e.g., traffic rules [61]. For in-
stance, the predicate OnAccessRamp can be expressed using
InLanelets(Vi, {LAR}), where LAR is a lanelet modeling
an access ramp.

V. CONSTRAINT SYNTHESIZER USING REACHABILITY
ANALYSIS

For obtaining input bounds for all traffic participants, we
require the consistent reachable sets complying with φs. Be-
cause we formulated the predicates using convex constraints
and use decoupled linear system dynamics in longitudinal and
lateral direction (1), we can represent reachable sets at every
time step and for each traffic participant independently for both
directions using a two-dimensional convex polytope Rξ,i(k)
and Rη,i(k) ⊂ R2, respectively (cf. Fig. 7). Hence, the longi-
tudinal reachable set of all traffic participants Rξ(k) ⊂ X S is
represented by the Cartesian product of the sets of all traffic
participants: Rξ(k) = Rξ,0(k)×· · ·×Rξ,i(k)×· · ·×Rξ,np

(k)
and similarly for the lateral direction. We choose polytopes
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because they are closed under the set operations we require,
namely, intersection, Minkowski sum, and linear maps.

The reachability analysis we present in this section com-
putes these sets iteratively starting from the initial time step
k = 0 using the one-step propagation (2), followed by
constraining after each time step the obtained reachable set in
order to comply with the specification φs. Since φs generally
considers not only the states xS(k) at the current time step k,
but also at future points in time [k+1, kf ], we face the problem
that those reachable sets are not yet known. To resolve this
conflict, we present a forward-backward approach, which first
propagates reachable sets forward in time considering only
compliance within [0, k], and subsequently, we backpropagate
the reachable sets starting at the final time kf to incorporate
specifications from the time interval [k+1, kf ].

In contrast to previous work [62], we simultaneously con-
sider specifications for reachable sets of a set of traffic partici-
pants, and subsequently, we directly sample a variety of trajec-
tories within the reachable sets instead of solving an optimal
control problem [63]. The algorithm of our reachability-based
constraint synthesizer integrated with the scenario sampling
strategy is summarized in Algorithm 3, which we explain in
the remainder of this section.

A. Considering Scene Predicates as Constraints
Let us assume that the reachable sets Rξ,i(k) with i ∈

[1, np] comply with the predicates ∀κ ∈ [0, k]. After the one-
step propagation

R̃ξ,i(k+1) =
→

reach
(
Rξ,i(k)

)

we obtain reachable sets R̃ξ,i(k+1) that do not yet consider
the predicates Pq at time k+1 and which we therefore con-
strain as shown next. Since we formulated the predicates in
Pq using linear inequalities, which we summarize as KxS ≤ δ
with K ∈ Rn×z and δ ∈ Rn, Pq defines a polyhedron
Iq ⊆ X S for each scene so that complying with all predicates
in Pq at time k+1 is ensured by computing the intersection

Rξ(k+1) = R̃ξ(k+1) ∩ Iq. (3)

However, since this operation needs to be performed in the
combined state space X S of all traffic participants, the com-
putation time becomes unmanageable for complex scenarios
due to the unfavorable complexity of polytope intersections
with respect to the number of dimensions [64]. To avoid this
issue, we compute the intersection over-approximately and
separately for each traffic participant by tightening the bounds
of the set

Rξ,i(k+1) = R̃ξ,i(k+1) ∩ bound(R̃ξ(k+1), Iq, i) (4)

using the interval obtained by the operator
bound(R̃ξ(k), Iq, i), which yields the over-approximation
Rξ,i(k+1) ⊇ Rξ,i(k+1). The bound() operator is defined by
the optimization problems

bound(R̃ξ(k), Iq, i) :=
[
minxξ,i, maxxξ,i

]
(5)

subject to xS ≤ xS ≤ xS (⇔ xS∈ box(R̃ξ(k)))

KxS ≤ δ (⇔ xS ∈ Iq).

The optimization problems in (5) can be solved using linear
programming. As a trade-off for the increased efficiency, the
over-approximative intersection can later result in sampling
infeasible trajectories, decreasing the efficiency of the scenario
sampling process, as explained in Section VI-B.

Because of the repeated bound tightening, we choose the
vertex representation for polytopes because compared to the
halfspace representation, where redundant constraints need to
be eliminated, the intersections directly result in a decrease
of the representation size, i.e., the number of vertices, and
can still be computed efficiently in the two-dimensional state
space. For the same reason, we do not use other set representa-
tions, such as constrained zonotopes [65], where a reduction of
the representation size is computationally more expensive [66]
for this low-dimensional setting.

B. Scene Durations

For each scene Sq , only the bounds [δq, δq] of its duration
are provided, but we require to know the active scene at each
time step to apply the corresponding constraints. Hence, in
Algorithm 3, l. 2–6, we start by selecting the durations δq .
When selecting δq , we need to consider that for a transition
to the subsequent scene Sq+1, the predicates Pq+1 need to be
fulfilled, which we check using the condition

bound(Rξ(k), Iq+1, i) 6= ∅. (6)

Thus, we first need to determine the admissible duration
interval [δ∗q , δ

∗
q ] ⊆ [δq, δq] in which (6) holds. As summarized

in Algorithm 1, we obtain [δ∗q , δ
∗
q ] as follows: We propagate

Rξ(k) while checking condition (6) until the transition is
not possible anymore or δq is reached. The admissible range
[δ∗q , δ

∗
q ] is provided to the scenario sampling strategy, which

selects δq ∈ [δ∗q , δ
∗
q ]. This is continued successively for each

scene yielding the reachable sets Rξ,i for the time interval
[0, kf ].

C. Backpropagation

To directly sample trajectories within the reachabe sets (cf.
Algorithm 3, l. 12–27), we require consistency with future time
steps to avoid sampling states xξ,i(k) for which no compliant
succeeding state exists in the interval [k+1, kf ]. However, after
the forward propagation, consistency is not ensured due to
the bound tightening (4) after each propagation step, which
removes inconsistent subsets of Rξ(k) over-approximatively.
We improve the consistency of preceding time steps by remov-
ing inconsistent states using backward reachability analysis:
By computing backward in time the set of all states from
which it is possible to reach a set Rξ(k) [67], we are able
to remove states from which Rξ(k) is unreachable. A similar
principle was previously used to refine the cyclic invariant sets
of oscillating systems [68] or the collision-free reachable sets
of autonomous vehicles [69]. The backward reachable set

R∗ξ,i(k) = A−1(Rξ,i(k+1)⊕ (−1)bUξ) (7)

follows from solving (2) for Rξ,i(k) [70]. Inverting A is
always possible because the time discretization of the con-
tinuous system dynamics involves a matrix exponential to
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Algorithm 1 ScenePropagation: propagate reachable sets of a
scene and determine admissible scene duration.
Input: Reachable set Rξ,i(τq) of np traffic participants, scene

specifications Sq with duration interval [δq, δq] and Sq+1.
Output: Admissible scene duration interval [δ∗q , δ

∗
q ], Reach-

able sets Rξ,i(κ) with κ ∈ [τq, δ
∗
q ].

1: δ∗q ← ∅
2: δ

∗
q ← ∅

3: k ← τq
4: while Rξ(k) 6= ∅ ∧ k ≤ τq + δq do
5: for i = 1 to np do
6: R̃ξ,i(k+1)← →

reach
(
Rξ,i(k)

)

7: end for
8: Rξ(k)← TIGHTENBOUNDS(R̃ξ(k), Sq) . cf.

Section V-A
9: if k − τq ≥ δq then

10: feasible← CHECKTRANSITION(Rξ([τq, k])) . (6)
11: if feasible then
12: if δ∗q = ∅ then
13: δ∗q = k − τq
14: end if
15: else if δ∗q 6= ∅ then
16: δ

∗
q = k − τq

17: break
18: end if
19: end if
20: k ← k+1
21: end while
22: return [δ∗q , δ

∗
q ],Rξ([τq, δ∗q ])

compute A, which is always invertible [71, Ch. 7.2, Thm.
2]. Since the backpropagated sets R∗ξ,i(k) contain states that
are not forward reachable from Rξ,i(k−1), we intersect the
backpropagated set with Rξ,i(k), which yields the updated
sets

xRξ,i(k),∀i ∈ [1, np]:
xRξ,i(k) =

x
reach

(
Rξ,i(k),

xRξ,i(k+1)
)

:= Rξ,i(k) ∩R∗ξ,i(k)

= Rξ,i(k) ∩A−1
(xRξ,i(k+1)⊕ (−1)bUξ

)
. (8)

After iterating backward from the final time step kf , the
updated sets are tighter. The forward-backward propagation is
illustrated for an example in Fig. 7 including the intermediately
computed sets.

D. Obtaining Input Constraints

To sample concrete trajectories for all traffic participants,
we iteratively sample states xξ,i(k+1) within the subsequent
reachable set Rξ,i(k+1) given the state xξ,i(k) sampled at
the previous time step. Instead of directly sampling from
Rξ,i(k0+1), we translate this state constraint to an interval
constraint [uξ,i(k), uξ,i(k)] ⊆ [umin,ξ, umax,ξ] for uξ,i(k),
since the interval representation can be processed more natu-
rally by sampling methods.
Due to the piece-wise constant inputs and discretized system
dynamics, the set reachable from xξ,i(k) after one time step
is a line segment parametrized by the scalar input uξ,i(k) as

2©

t0 t1 t2

R̃ξ,1(k)

R̃ξ,2(k)

xRξ,1(k)
xRξ,2(k)

R∗ξ,1(k)

R∗ξ,2(k)

t0 t1 t2

∆x

∆x

ṡi

si

t0 t1 t2

x
reach

(
Rξ,i(1),

xRξ,i(2)
)

3©

1©

t1

t1

→
reach

(
Rξ,i(1)

)

not forward consistent

Figure 7. Main steps of the reachability analysis. 1©: Forward propagation
of reachable sets for two vehicles V1 and V2 yields sets R̃ξ(k), which
are not compliant. 2©: Tightening the bounds at t2 using the predicate
Behind(V1, V2, [∆x,∞]). 3©: Backpropagation until t0 yielding

xRξ(k),
where we remove states that are not forward consistent. For illustrative
purposes, we did not tighten bounds at time steps t0 and t1.

illustrated in Fig. 8. Using the endpoint xR
ξ,i = [sR, ṡR]T of

the line segment and the velocity ṡi(k), we compute the lower
bound uξ,i(k) as

uξ,i(k) =
(
ṡR − ṡi(k)

)
/∆t. (9)

The upper bound uξ,i(k) is computed correspondingly using
xR
ξ,i.

xξ,i(k) Rξ,i(k + 1)

xR
ξ,i

xR
ξ,i

Axξ,i(k)

Rξ,i(k + 2)

bumax,ξ

buξ,i(k)

bumin,ξ

ṡi

si

Figure 8. Obtaining input constraints for the time step tk given the previously
sampled state xξ,i(k) using the vertices of Rξ,i(k + 1).

E. Updating Reachable Sets

After a new state xξ,j(k0) ∈ Rξ,j(k0) was sampled starting
at the time k of the current sample, we also update future
reachable sets Rξ,j([k0, kf ]) iteratively using the following
repropagation based on the same principle as the backprop-
agation. Due to the over-approximative bound() operator,
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the propagation of
yRξ,i(k) is in general not enclosed by

Rξ,i(k+1). Thus, we compute the intersection:
yRξ,i(k + 1) =

y
reach

(yRξ,i(k),Rξ,i(k+1)
)

:=Rξ,i(k+1) ∩
(
A

yRξ,i(k)⊕ bU
)
. (10)

The update procedure is summarized in Algorithm 2. In the
algorithm, we use the operator Scene(k) returning the active
scene at time k. After performing the forward propagation,
we backpropagate the reachable sets to obtain a forward
consistent set for the next iteration. By repeating the sampling
of inputs iteratively for every traffic participant and time step,
we obtain longitudinal trajectories for all traffic participants
as we demonstrate in the example in Fig. 5.

Algorithm 2 UpdateReachSets: Adapt reachable sets to a
newly sampled state.

Input: Sampled state xξ,j(k0) ∈ xRξ,j(k0), reachable sets
xRξ([k0, kf ]) of np traffic participants.

Output: Updated reachable sets
xRξ(κ).

1: R̃ξ,j(k0)← {xξ,j(k0)}
2: Rξ(k0)← TIGHTENBOUNDS(R̃ξ(k0),Scene(k0)) . cf.

Section V-A
3:

yRξ([k0, kf ])←REPROPAGATE(Rξ([k0, kf ]))
4:

xRξ([k0, kf ])← BACKPROPAGATE(
yRξ([k0, kf ]))

5: return
xRξ([k0, kf ])

6: function REPROPAGATE(Rξ([k0, kf ]))
7:

yRξ,i(k0)← Rξ(k0)
8: for k = k0 to kf−1 do
9: for i = 1 to np do

10:
yRξ,i(k+1)← y

reach
(yRξ,i(k),Rξ,i(k+1)

)
. cf. (10)

11:
yRξ(k + 1) ← TIGHTENBOUNDS(

yRξ(k +
1),Scene(k + 1)) . cf. Section V-A

12: end for
13: end for
14: return

yRξ,i([k0, kf ])
15: end function

16: function BACKPROPAGATE(
yRξ([k0, kf ]))

17:
xRξ(kf)←

yRξ(kf)
18: for k = kf−1 to k0 do
19: for i = 1 to np do
20:

xRξ,i(k)← x
reach

(
Rξ,i(k),

xRξ,i(k+1)
)

. cf. (8)
21:

xRξ(k)← TIGHTENBOUNDS(
xRξ(k),Scene(k)) .

cf. Section V-A
22: end for
23: end for
24: return

xRξ,i([k0, kf ])
25: end function

F. Lateral Trajectories

After the longitudinal trajectories, the lateral trajectories
can be sampled using the same approach but with con-
straints for the lateral position bounds at each position
[di(si(k)), di(si(k))], e.g., derived from the InLanelets()

constraint introduced in Definition 7. However, the reach-
able sets need to be tightened less frequently because the
constraints are usually static, i.e., they do not depend on
lateral positions of other traffic participants. Therefore, we
use optimal control algorithms to plan the lateral trajectory
fulfilling the scene constraints Pq as in our previous work [51].

Table I
OVERVIEW OF NOTATIONS USED FOR REACHABLE SETS.

Set Description

Rk Consistent reachable set.
Rk Over-approximative reachable set.
R̃k Propagated reachable set before applying constraints.
R∗k Backward reachable set.
xRk Forward-backward propagated reachable set.
yRk Repropagated reachable set.

VI. FALSIFICATION USING MONTE-CARLO TREE SEARCH

Algorithm 3 summarizes sampling of a concrete scenario.
In l. 4, 9, and 18, the algorithm requires the SCENAR-
IOSAMPLINGSTRATEGY([α, α]) to select concrete parameters
within the intervals [α, α], where the variable α is one of
δq, xξ,i(0), uξ,i(k), and uη,i(k). Subsequently, we use Monte
Carlo tree search as a scenario sampling strategy in a closed
loop with a SUT to find concrete scenarios complying with φ.

A. Scenario Sampling Using Monte-Carlo Tree Search

We denote calls to SCENARIOSAMPLINGSTRATEGY([α, α])
as sampling requests, which we use to build the search tree
for the Monte Carlo tree search on the fly while executing
Algorithm 3. Hence, each sample request provides the
constrained action space as intervals A′(σ) = [α, α] and
the states σ represent the state in the algorithm after
applying the action. Due to the order of the requests in
the algorithm, the nodes are structured hierarchically with
the actions of the falsifier being selected in the order:
δq ∀q∈[1,m]−−−−−−→xξ,i(0) ∀i∈[1,np]−−−−−−→uξ,i(k) ∀k∈[0,kf ], i∈[1,np]−−−−−−−−−−−→uη,i(k).
Since the action bounds are computed individually through
reachability analysis for each state, we reduce the branching
factor of the search tree and do not rely on a fine discretization
to synthesize complex scenarios with possibly tight passages
in the feasible action space. To deal with the continuous
actions space, we use progressive widening [72], where the
number of child nodes added during the expansion step
depends on the number of visits of the parent node.

For the Q-function in the tree policy πT(σ,A′(σ)), we use
continuous rapid action value estimates (Appendix A) [73]
that take into account rewards of previously visited subtrees
weighted by the similarity of their state-actions pairs. As the
playout policy πP(σ), we use a uniform random sampler which
is a standard approach [59] and ensures unbiased exploration
of the solution space of the abstract scenario.

B. Reward Function

In Algorithm 3, we treat the SUT like any other traffic
participant, only the selection of inputs uξ,ego is handled by the
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Algorithm 3 Iterative sampling scheme for a specification-compliant scenario.
Input: Scenario specification φs for np traffic participants, a function SCENARIOSAMPLINGSTRATEGY( ), initial reachable

sets Rξ(0), time horizon kf , and system under test MSUT(xS(k)).
Output: Compliant time horizon kcon, trajectories xS([0, kcon]) for all traffic participants.

. Obtain scene durations and initialize reachable sets over the whole time horizon:
1: τ1 ← 0
2: for q = 1 to m do
3: [δ∗q , δ

∗
q ],Rξ([τq, δ∗q ]) ← SCENEPROPAGATION(Rξ(τq), Sq) . cf. Algorithm 1

4: δq ← SCENARIOSAMPLINGSTRATEGY([δ∗q , δ
∗
q ]) . cf. Section VI-A

5: τq+1 ← τq + δq
6: end for
7:

xRξ([0, kf ])← BACKPROPAGATE(Rξ([0, kf ])) . cf. Algorithm 2, l. 16
. Determine initial states:

8: for i = 1 to np do
9: xξ,i(0)← SCENARIOSAMPLINGSTRATEGY(

xRξ,i(0)) . cf. Section VI-A
10:

xRξ([0, kf ])←UPDATEREACHSETS(xξ,i(0),
xRξ([0, kf ])) . cf. Algorithm 2

11: end for
. Determine longitudinal trajectories:

12: for k = 0 to kf−1 do
13: for i = 1 to np do
14: if i = ego then
15: uξ,ego(k)← MSUT(xS(k))
16: else
17: [uξ,i(k), uξ,i(k)]← INPUTBOUNDS(xξ,i(k),

xRξ,i(k+1)) . cf. Section V-D
18: uξ,i(k)← SCENARIOSAMPLINGSTRATEGY([uξ,i(k), uξ,i(k)]) . cf. Section VI-A
19: xξ,i(k+1)← VEHICLEDYNAMICS(xξ,i(k), uξ,i(k)) . cf. Eq. (1)
20: end if
21:

xRξ([k, kf ])←UPDATEREACHSETS(xξ,i(k),
xRξ([k, kf ])) . cf. Algorithm 2

22: if
xRξ(k+1) = ∅ then

23: kcon ← k
24: return kcon, xS([0, k]) . Return early if incompliant with φs, cf. Section VI-B
25: end if
26: end for
27: end for
28: xη([0, kf ])←COMPUTELATERALTRAJECTORIES(xξ([0, kf ])) . cf. Section V-F
29: return kf , xS([0, kf ])

SUT instead of the Monte Carlo tree search. However, when
generating scenarios in a closed loop with a black-box SUT,
it is not ensured that its behavior always complies with the
scenario specification. For instance, when we are interested in
scenarios where the SUT overtakes a leading vehicle, the SUT
might continue following the leader depending on the behavior
of other traffic participants. Thus, one main objective of the
search problem is to find scenario concretizations that induce
the specified behavior of the SUT. To this end, we check in
Algorithm 3, l. 24 for undesired early terminations caused
by incompliant inputs of the SUT that result in empty reach-
able sets Rξ. Additionally, incompliant trajectories can result
from over-approximations of the bound tightening in (4). To
guide the search towards compliant concretizations, we reward
specification-compliant behavior of the SUT by including the
number of compliant time steps kcon(σ) normalized by the
scenario duration kf in the reward R(σ) for the Monte Carlo
tree search. In addition, a metric Rc(σ) ∈ R+ assessing the
criticality of the concretized scenario is included to guide the

search towards safety-critical scenarios

R(σ) =
kcon(σ)

kf
+ wcRc(σ) (11)

using a weight wc ∈ R+ for balancing the criticality with
specification compliance.

VII. NUMERICAL EXPERIMENTS

We demonstrate the usefulness of our method by applying
it to a SUT comprising a motion planning and a prediction
module in several traffic scenarios. Parameters for all methods
are listed in Table II.

A. System Under Test

We use a motion planner based on Werling et al. [74]
that samples trajectory candidates using polynomials for the
longitudinal and lateral motion with respect to a curvilinear
coordinate system and selects the best collision-free candidate
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using a cost function. Each sample is associated with a target
velocity and a lateral target position within a sampling interval
relative to the initial position of the planning cycle. For each
scenario, we set a target lane through a desired lateral position
dD ∈ R. Planning is repeated cyclically after durations of
hr ∈ R+.

Predictions of other traffic participants required for collision
avoidance are provided by a prediction module for a horizon
hp ≥ hr starting at the initial time t0 of the planning cycle.
The predictions are computed assuming a constant velocity
model in the lateral direction and for the longitudinal direction,
position intervals are used as a prediction based on assumed
bounds of the longitudinal acceleration uξ,i ∈ [u∗ξ,min, u

∗
ξ,max]

and considering ṡξ,i ∈ [0, vmax].

B. Reward Function

As the criticality metric in the reward function we use a
metric based on time-to-collision tttc, since we evaluate our
approach on highway scenarios: Rc(σ) = max(1− tttc(σ)

kf∆t
, 0)

where 1 denotes the most critical value.

Table II
PARAMETERS USED IN THE EXPERIMENTS.

Motion Planner (SUT)

planning horizon hp 3.5 s
replanning cycle hr 0.175 s
lateral sampling interval [−3, 3] m
velocity sampling interval [0, 25] m/s
min. lateral discretization ∆d 0.66 m

Constraint Synthesizer

step size ∆t 0.35 s
time horizon tf 10 s

Monte Carlo Tree Search

criticality weight wc 1.5
acceleration bounds (prediction) [u∗ξ,min, u

∗
ξ,max] [−1.0, 1.0]

C. Scenario Specifications

We evaluate our approach in total using seven different
highway scenarios comprising lane changes, evasive maneu-
vers, and onramp scenarios. For an overview of all scenar-
ios, see Appendix B. Additionally, we provide the sampled
scenarios on commonroad.in.tum.de under the scenario IDs
ZAM Ramp 2-X. Next, we explain two scenarios in more
detail.

1) Scenario A - Onramp scenario: In the first scenario, a
vehicle merges from the onramp between the ego vehicle and
a leading vehicle. We encode in the scenario specification φs

that we are interested in failures, in which the SUT crashes
into the leading vehicle after it has merged instead of braking
or evading to the left lane. Fig. 9 visualizes the four scenes
of this specification.

2) Scenario B - SUT evading a merging cut-in vehicle: In
this scenario, the ego vehicle is keeping its lane and, when
in the second scene, a vehicle is merging in its lane from the
left and forces the ego vehicle to swerve to the left lane to
avoid a collision. We are interested in failure cases where the

Behind([0, 30])

Behind([30, 50])

Behind([10, 50])

Behind([10, 35])

Behind([15, 100])Behind([0, 30])

Behind([10, 100])

ego vehicle

Behind([−∞, 10])failure

Figure 9. Specified scenes visualized for scenario A. Velocity and lane
constraints are not shown explicitly.

SUT crashes into the leading vehicle in the left lane. The four
scenes of the specification are visualized in Fig. 10.

Behind([−∞, 10])

Behind([20, 60]) ego vehicle

Behind([10, 50])

Behind([5, 30])

Behind([5, 30])

Behind([10, 50])

failure

Figure 10. Specified scenes for scenario B. Velocity and lane constraints are
not shown explicitly.

D. Evaluation

To account for the random nature of Monte Carlo tree
search, we repeat all experiments with 18 different random
seeds. The runtime of the experiments is measured on an
AMD EPYC 7742 CPU with 2.25 GHz with one core assigned
to each experiment. The code is implemented primarily in
Python and geometric operations of the reachability analysis
are implemented in C++.

We only count experiments as successful falsifications if
these are found within 45 minutes of computation time. In
Table III, we summarize the number of successful falsifications
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out of the 18 repetitions for different values of the exploration
weight c used in (12). Furthermore, the average computation
times for finding a failure are listed, and we provide the
cumulative number of time steps that were simulated during
the playouts. The reachability analysis and the Monte Carlo
tree search require on average 47 % and the SUT 53 % of the
total computation time. Upon manually inspecting the failures
of the SUT, we observe that they are primarily caused by
incorrect predictions and an insufficient number of trajectory
candidates that the motion planner can choose from. To
give examples of falsifying scenarios, we show in Fig. 11
the trajectories of the SUT and the other traffic participants
sampled during the search of scenario A and scenario B.

E. Ablation Study

We perform an ablation study to evaluate the effect of
the reachability-based constraint synthesizer. We compare the
previously presented results to a baseline falsifier that does not
perform backward reachability analysis in the constraint syn-
thesis and hence, does not exclude actions that will inevitably
result in incompliant behavior at succeeding time steps. We
show the number of successful falsifications in Table IV of
the baseline approach next to the results from Table III for
c = 1.5. The results show that with the constraint synthesis, the
falsifier finds failures more reliably than the baseline approach
for all scenarios. In fact, the baseline approach finds failures
only in a minority of the experiments. This indicates that
the backward reachability analysis significantly affects the
sampling efficiency, since otherwise, the sampled scenarios
quickly become incompliant due to earlier actions.

Table III
RESULTS OF THE FALSIFICATION EXPERIMENTS: Monte Carlo tree search

with different exploration weights c.

Scenario c Falsifications Simulation steps Mean time
(18 trials) Mean Std. dev. [min]

A
1.2 13 2993 3777 26.0
1.5 16 1056 804 24.3
1.8 12 1551 1382 28.3

B
1.2 17 596 872 34.7
1.5 17 667 722 38.0
1.8 18 655 734 22.7

C
1.2 18 56 43 4.9
1.5 18 57 49 4.5
1.8 18 54 41 4.6

D
1.2 5 1932 1244 32.0
1.5 7 1278 1240 29.5
1.8 7 2026 2451 32.7

E
1.2 12 3272 3402 28.9
1.5 15 5671 3556 30.9
1.8 17 7568 4068 39.8

F
1.2 9 1238 1110 36.4
1.5 9 998 1029 36.2
1.8 12 1379 1664 36.2

G
1.2 18 1056 2044 15.6
1.5 18 892 732 7.6
1.8 18 991 692 9.1
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Figure 11. Falsifying trajectories in the longitudinal and lateral direction of
the SUT (red) and the other traffic participants. Colors match Figs. 9 and 10.

Table IV
COMPARING THE FALSIFICATION RESULTS FROM 18 TRIALS TO A BASLINE

WITHOUT BACKWARD REACHABILITY ANALYSIS FOR c = 1.5.

Scenario A B C D E F G

presented approach 16 17 18 7 15 9 18
baseline 2 5 0 0 3 4 1

F. Efficiency Analysis

Next, we analyze how the computation time of the scenario
synthesis relates to the difficulty of the scenario specification.
To quantify the difficulty of a scenario specification, we use the
length lu = uξ,i(k)− uξ,i(k) of the input interval (9), which
is computed by our scenario synthesis. Thus, lu represents the
size of the feasible action space, and we assume that a small
action space indicates that it is more challenging to fulfill the
scenario specification.

To analyze lu on many scenario specifications, we randomly
change the scenarios from our previous evaluation by scaling
the intervals of the predicate behind using randomly sampled
factors γ ∈ [0.7, 1.3]. This way we create 20 random variations
of each scenario specification. For each of these specifications,
we run our scenario synthesizer for 200 simulation steps and
measure lu and the computation time for each step. The
averaged values for each run are plotted in Fig. 12. The linear
regression shows that the computation time for our approach
decreases for smaller values of lu, i.e., becomes smaller for
challenging scenario specifications. This can be explained by
the geometrical operations of the reachability analysis that
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become faster when the number of vertices of the polytopes
decreases.

2 3 4
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Figure 12. Relation between the computation time per simulation step and
the length of lu: the computation time decreases for challenging scenarios for
smaller lu.

VIII. CONCLUSIONS

We have presented an approach to synthesize concrete sce-
nario instances from abstractly specified scenarios for testing
autonomous vehicles. By computing reachable sets, which
are compliant with the specification, we are subsequently
able to efficiently sample a large variety of trajectories for
other traffic participants. In contrast to other approaches that
might require dedicated simulator implementation or driver
models to execute the scenarios, our approach only requires
knowledge about the physical bounds of the traffic partici-
pants. Therefore, even unusual behavior can be synthesized
and we demonstrate how this synthesizer can be used for
finding failures using search-based methods. We provide the
code of our implementation under https://github.com/mo-kli/
FalsificationTrafficScenarios. In the future, our scenario syn-
thesizer may be combined, e.g., with existing adversarial
learning-based techniques [30]–[32] to guide their learning
process towards specified scenarios.

APPENDIX

A. Continuous Rapid Action Value Estimates

To estimate the Q-value of a state-action pair, we use
continuous rapid action value estimates [73] that improve
the confidence in the estimate Q(σ, α) for nodes with a
low number of visits, which is factored in by the weight
β(σ, α) ∈ [0, 1] and in turn depends on the number of visits:

Q(σ, α) =
(
β(σ, α)QcRAVE(σ, α)

+ (1− β(σ, α)) QUCT(σ, α)
)
.

For a state σ and action α the continuous rapid action value
estimate is computed as defined in [73, Eq. 7],:

QcRAVE(σ, α) =

1
∑
σi∈S

∑
αi(σi)

e
− logN(σi,αi)

{
d(σ,σi)

2

wσ
+
d(α,αi)

2

wα

}

·
∑

σi∈S

∑

αi(σi)

R(σi, αi) e
− logN(σi,αi)

{
d(σ,σi)

2

wσ
+
d(α,αi)

2

wα

}

Table V
DESCRIPTIONS OF SCENARIOS.

Scenario np Description

A 3 A vehicle merges from the onramp between SUT and
a leading vehicle and subsequently, the SUT crashes
into the merged vehicle from behind.

B 4 Like scenario A but with a third vehicle driving in
the lane left to the SUT.

C 4 The SUT merges from the onramp between two
vehicles and subsequently the trailing vehicle crashes
into the SUT from behind. A third vehicle drives in
parallel to the SUT on the leftmost lane.

D 3 The SUT merges from the onramp between two
vehicles and subsequently crashes into the leading
vehicle.

E 4 The SUT changes from the leftmost lane to the
middle lane while another vehicle changes from the
rightmost lane to the middle lane. A third vehicle
drives in front of the SUT.

F 3 The SUT drives on the middle lane when a vehicle
changes from the leftmost lane to the middle lane in
front of the SUT. The SUT evades to the leftmost
lane where it crashes into a vehicle driving in front.

G 4 The SUT drives in the middle lane and two vehicles
change to the middle lane from the left and right
lane, respectively.

iterating over all states σi ∈ S using rewards R(σ) and weights
wσ for states and wα for actions. N(σi, αi) is the number
of times when αi was selected from node σi. The upper
confidence bounds applied to trees (UCT) is computed as

QUCT(σ, α) =

∑N(σ,α)
j=1 Rj(σ, α)

N(σ, α)
+ c

√
log(N(σ))

N(σ, α)
, (12)

where N(σ) is the total number of visits of node σand c ∈ R+

is the exploration weight.

B. Scenario Descriptions

Due to space limitations, the scenario specifications used for
the experiments are summarized in Table V. The files with the
complete formal specifications are provided in the repository
github.com/mo-kli/FalsificationTrafficScenarios.
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Chapter 5

Conclusions and Future Work

In this chapter, we conclude the results of the dissertation and relate our work to approaches
proposed in the literature that emerged during the writing of this thesis. Finally, we give an
outlook on promising directions for future research arising from our work.

5.1 Conclusions

In this thesis, we have proposed new methods for testing and falsifying motion planning algo-
rithms for autonomous vehicles that can be used at different stages during their development
phase. We divide the methodology in this thesis into two main chapters. In Ch. 3, we focus
on the problem of generating safety-critical traffic scenarios out of non-critical scenarios. To
achieve this, we develop an approach to optimize the trajectories of other traffic participants
in a provided scenario with respect to a criticality metric. We propose using the drivable area
of the SUT as a metric that allows optimizing scenarios independently of a specific system
because it abstracts system behavior through computing the set of all feasible trajectories
from a given initial state. Based on the drivable area, we further develop methods to prune
irrelevant regions from the parameter space, which is applicable to arbitrary road layouts. We
show that our method can be applied automatically to a variety of scenario types in highway
and urban environments in Sec. 3.2.

Our method is integrated into a framework presented in Sec. 3.2 that automates the gen-
eration of scenarios starting with open-source maps from OpenStreetMap that are extracted
and enhanced for their use in traffic simulators and as input for motion planning algorithms.
Using the traffic simulator SUMO, the maps are populated with traffic participants and used
as input for the optimization method that optimizes the motion of the traffic participants
to increase a criticality metric of the scenario. Through this completely automated pipeline
based on open-source resources and simulation software, we enable the efficient and scalable
generation of test scenarios for use in research and industry. The evaluation on more than
1000 optimized scenarios shows that our optimization method is able to reduce the drivable
area to 20−30% of its original size, hence resulting in a considerably decreased solution space
in which an SUT would be able to plan a collision-free trajectory. Since the optimization of
scenarios is independent of a specific SUT, the resulting scenarios can be used to benchmark
motion planning algorithms. Hence, the scenarios are published as part of the open-source
CommonRoad [35] benchmark suite.

To reduce the time required for generating scenarios, we develop a method for comput-
ing the reachable sets more efficiently than previous methods. We exploit invariance prop-
erties of the reachable set regarding translations and the initial velocity and pre-compute
the reachability between subsets of the reachable set to discretize the problem. This enables
the graph-based computation of the reachable set during runtime. Combined with our new
methods to reduce the over-approximation of the resulting sets, we find in Sec. 3.3 that our
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method reduces the time for computing the reachable set by 80%. In addition, we can con-
sider additional nonlinear constraints, like the friction circle, that were not considered by
previous methods. Beyond the generation of scenarios, these advancements are beneficial
for applications with real-time requirements such as motion planning.

In the second part of this thesis, we develop in Ch. 4 a method that enables using falsifica-
tion in a scenario-based approach. To achieve this, we first propose in Sec. 4.1 a constraint-
based representation of abstract scenario specifications from which scenarios can be syn-
thesized efficiently using optimization- or sampling-based methods. We then develop an
over-approximative algorithm for computing the reachable set of multiple traffic participants
that complies with a scenario specification. We propose an approach for sampling trajectories
within these sets, which we combine with MCTS for finding specification-compliant scenarios
that falsify motion planning algorithms. By constraining the action space within the MCTS
using the reachable sets, our methods improve the performance and efficiency when solv-
ing this complex search problem. Since the reachable sets at all times only contain states
from which failure states can possibly be reached, we further improve the efficiency of the
falsification. In Sec. 4.2, we evaluate the method on several abstract scenarios and show im-
proved performance of the falsification compared to a MCTS baseline approach without our
reachability-based method. Our method is able to falsify the SUT in 79% of all falsification
trials compared to 12% achieved by the baseline approach. Furthermore, we can show that
for more complex scenarios with smaller feasible solution spaces for generating trajectories
of other traffic participants, the computation time of our method is decreased, meaning that
our approach becomes more efficient for complex scenarios.

5.2 Related Work

During the writing of this thesis, other authors proposed related methods for SUT-agnostic
optimization of traffic scenarios using metrics using similar concepts like the drivable area.
After the publication of our work [1], similar approaches were proposed using metrics that
assess and optimize the criticality of traffic scenarios using metrics very similar to the driv-
able area [101,102]. Another advantage of our work when using the drivable area is that the
potential collisions in the generated scenarios are avoidable as long as the drivable area is not
empty. An approach that aims at finding avoidable collisions of motion planners is presented
in [103], where different parameterizations of the same planner are used to evaluate whether
there is a system realization that can avoid a collision. While being under-approximative com-
pared to our over-approximative drivable area, this metric might not result in false negatives,
i.e., scenarios for which a collision is not avoidable for the SUT even though the drivable
area is not vanishing. Instead, it can miss many scenarios where a collision could be avoided
by using entirely different algorithms instead of just different parameterizations of the same
algorithm.

5.3 Future Work

In our work on the optimization-based generation of test scenarios in Ch. 3, traffic rules
beyond simple rules such as collision avoidance or off-road driving were not explicitly con-
sidered yet. Future research could be carried out from here, adding metrics that consider
more complex rules formulated in temporal logic [104]. Temporal-logic rules can be com-
bined with our drivable-area-based criticality metric when used as additional constraints in
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the reachability analysis like in [105] to consider the traffic rules in the criticality metric.
First steps in this direction were already explored in a student thesis [107]. Similarly, for
traffic rules applying to other traffic participants, new research can focus on scenarios where
other the traffic participants (almost) violate certain rules.

Further research can be conducted on the drivable-area-based criticality metric to exploit
more information from the reachable set that is currently not considered for the criticality.
One goal could be to consider not only the size of the drivable area but to additionally analyze
the required acceleration to reach each part of the drivable area. The motivation behind this
would be to distinguish, e.g., between scenarios in which the ego vehicle is simply blocked
by other traffic participants and unable to move and scenarios in which the drivable area is
small but large inputs are required to avoid collisions. Information about the acceleration
or velocity differences could be extracted from the reachability analysis as well and would
provide additional insights. Suitable extensions of the criticality metric could be further
backed by experimental evaluations, e.g., through user studies on perceived criticality by
vehicle passengers or studies on the correlation of the criticality metrics with the performance
of motion planning algorithms. The results of the studies could indicate which metric is best
suited for predicting the accident rate in a large scenario dataset.

Instead of using our scenarios for testing, they might be used to train motion planning
algorithms that include machine-learning components. Since the datasets used for training
contain in general naturalistic traffic data, they are biased toward uncritical and repetitive
scenarios. Augmenting those datasets with edge cases generated by our methods could make
training more efficient and the resulting models more reliable in safety-critical situations.
For this application, additional focus could be placed on realistic behavior when generating
scenarios.

Another aspect that could be considered during the scenario generation is the visibility of
other road users, which might be hidden by buildings or other obstacles. Undetected obsta-
cles can pose a severe risk that needs to be addressed properly by motion planning algorithms,
e.g., in situations with bad oversight. Such critical configurations could be considered when
optimizing the motion of other traffic participants and the drivable area of the SUT could be
used to ensure that certain traffic participants remain hidden for extended periods of time.
Alternatively, the ratio of locations of the drivable area at which other traffic participants are
hidden versus locations at which they are visible could be used as an additional term of the
criticality metric.

Our falsification method based on reachability analysis holds further potential when in-
tegrated with large databases of abstract scenarios and methods to automatically generate
abstract scenarios. In that case, the falsification could not only be carried out within single
scenarios but the search space could be extended to more a more abstract level to consider,
e.g., different maneuver options of other vehicles in the specifications. Similarly, other sce-
nario information such as the road topology or additional properties like weather or road
friction could be considered.

Additional improvements can be gained from heuristics based on machine learning mod-
els that could be integrated with our MCTS or other approaches similar to those in [70,
87–90]. Currently, we use random sampling in the playouts of the MCTS and the learning-
based models can be trained to expose potentially safety-critical behavior which could further
increase the efficiency of the falsification. Beyond criticality, probabilistic models of other
agents’ behavior could be utilized for the sampling. In that case, our falsification methods
could be applied to the problem formulation referred to as stress testing [106] as well. In turn,
a combination with our approach would enable explicitly considering scenario specifications
which is not yet addressed in these approaches.
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