
Lehrstuhl für Mensch-Maschine-Kommunikation

Technische Universität München

Optimization of algorithms for large
vocabulary isolated word recognition in

embedded devices

Sergey Astrov

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. K. Diepold

Prüfer der Dissertation: 1. apl. Prof. Dr.-Ing., Dr.-Ing. habil. G. Ruske

2. Univ.-Prof. Dr.-Ing. H. Ney,

Rheinisch-Westfälische Technische Hochschule Aachen

Die Dissertation wurde am 22.08.2006 bei der Technischen Universität München

eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am

26.02.2007 angenommen.



ii



iii

Abstract

Automatic speech recognition requires high processing power and a high amount of mem-

ory. Main algorithms in speech recognition (computation of emission probabilities and

Viterbi search) are very memory and computation consuming. Modern workstations, per-

sonal computers and servers have sufficient memory and processing power, but embedded

devices are limited in these resources. Speech recognition in embedded devices should have

an acceptable trade-off in memory, processing power consumption and recognition quality.

Several memory saving approaches and fast algorithms were investigated and the following

results were achieved:

The memory consumption of acoustic models after coding is decreased by 67% (reduction

from 104 to 34 KB). The relative increase of word error rate in recognition is less than 10%.

The fast computation of emission probabilities requires three times less computations than

the baseline algorithm. The emission computation task requires only 8.2 MHz for speech

recognition with a 30-word vocabulary, the baseline algorithm requires at least 28.9 MHz

on an ARM microcontroller. The new search process on isolated word recognition tasks

with a vocabulary of 1500 words requires less than 17 MHz on an ARM processor and

160 KB of memory.

The fast computation of emission probabilities and the compact coding of acoustic model

parameters is based on a streams approach. A set of 24-dimensional vectors from acoustic

models is divided into streams: in case of 3-dimensional (3-D) streams, the first stream

contains 1st, 2nd and 3rd components (dimensions) of vectors, the second stream contains

4th, 5th and 6th components of vectors, and so on. All 3-D stream vectors within each

stream are coded by means of vector quantization. Only one shared codebook is used for

all streams instead of several codebooks for each dimension, this decreases the memory

consumption further.

Distances between feature vector and vectors from acoustic models must be computed dur-

ing the recognition. This process is performed every 15 ms and requires high amount of

computations. For acoustic models with streams these computations are accelerated. In the

first step, all possible distances are computed for all stream vectors from the codebook and

stored in memory. This is possible because the codebook has a limited number of vectors.

In the second step, the distances between feature vector and vectors from acoustic mod-

els are computed as a sum of the partial distances of stream vectors. For 3-D streams the

computation costs are reduced by 66%.

In order to accelerate the search process, a tree structure is combined with a word stem

structure. The new search algorithm takes advantages from both approaches. In a tree

structure the words starting with identical phonemes are processed together, the merged

word parts with identical phonemes are processed only once during a search iteration, thus,

the computation is accelerated. The tree structure requires less memory than the linear

structure because the phonemes in similar word parts are stored in memory only once. From

the word stem search the new algorithm takes an advantage of stems (linear sequences of

HMM states): the regular linear structures of stems are fast to process, the data for every

stem is stored compactly in memory that is why the memory cache is used efficiently.

The presented algorithms were tested. With these algorithms the large vocabulary speech

recognition becomes possible for embedded devices.



Acknowledgments

I would like to express my deepest gratitude to my supervisors, Professor Harald Höge and

Professor Günther Ruske, for giving me guidance and freedom to undertake my research.

Their experience and theoretical background were fundamentally important for my work

described in this thesis.

I wish to thank Siemens AG, in particular Professional Speech Processing department for

the appropriate working environment. I would like to thank also Siemens “Youth and

Knowledge” program that supported me, and especially the former coordinator of this pro-

gram, Eberhard Wildgrube.

Moreover, I would like to thank all former and present colleagues for creating a friendly

and stimulating atmosphere and providing fruitful ideas and support during the work. Es-

pecially, I would like to thank:

Dr. Josef G. Bauer for assistance and consultations,

Dr. Bernt Andrassy for a very friendly cooperation in writing several publica-

tions,

Dr. Petra Witschel for discussions and her help on language modeling,

Panji Setiawan and Ekaterina Timoshenko for their time during discussions and

providing helpful suggestions.

My special thanks go to my family for giving me encouragement during the writing of this

thesis.

iv



Contents

1 Introduction 1

2 Fundamentals of speech recognition for embedded devices 5

2.1 Fundamentals of statistical speech recognition . . . . . . . . . . . . . . . . 5

2.1.1 Baseline algorithms in speech recognition . . . . . . . . . . . . . . 5

2.1.2 System architecture of embedded devices . . . . . . . . . . . . . . 7

2.1.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Acoustic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Computation of probabilities . . . . . . . . . . . . . . . . . . . . . 13

2.1.6 Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.7 Search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Fundamentals of source coding . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Theoretical aspects of scalar quantization . . . . . . . . . . . . . . 22

2.2.2 Theoretical aspects of vector quantization . . . . . . . . . . . . . . 24

3 State of the art and objectives of the research 29

3.1 Computation of emission probabilities . . . . . . . . . . . . . . . . . . . . 29

3.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Baseline speech recognizer for embedded systems . . . . . . . . . . . . . . 35

3.4 Objective of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Experimental setup 39

5 Reduction of memory consumption of HMM parameters 43

5.1 Properties of HMM parameters . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Lossless coding of HMM parameters . . . . . . . . . . . . . . . . . . . . . 46

5.3 Memory reduction for Gaussian mean vectors . . . . . . . . . . . . . . . . 47

5.3.1 Streams approach for HMM . . . . . . . . . . . . . . . . . . . . . 47

v



vi CONTENTS

5.3.2 Coding approach for SDCHMM . . . . . . . . . . . . . . . . . . . 49

5.3.3 Shared codebook approach for SDCHMM . . . . . . . . . . . . . . 49

5.4 Memory reduction for Gaussian weights . . . . . . . . . . . . . . . . . . . 50

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 SDCHMM with 1-D streams . . . . . . . . . . . . . . . . . . . . . 53

5.5.2 SDCHMM with multidimensional streams . . . . . . . . . . . . . 58

5.5.3 Reduction of memory consumption by Gaussian weights . . . . . . 60

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Fast emission computation approaches 63

6.1 Fast emission computation for SDCHMM . . . . . . . . . . . . . . . . . . 63

6.2 Fast emission computation using vector quantization . . . . . . . . . . . . 65

6.3 Optimization of data placement in memory . . . . . . . . . . . . . . . . . 66

6.4 Combined methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Memory saving fast search algorithm 75

7.1 Frame dropping approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2 Theoretical aspects of the tree search . . . . . . . . . . . . . . . . . . . . . 76

7.3 Modified word stem based tree search . . . . . . . . . . . . . . . . . . . . 77

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Discussion and future work 87

8.1 Main achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Nomenclature 91

B List of abbreviations 93



List of Figures

2.1 Principal architecture of an automatic speech recognition system . . . . . . 6

2.2 Speech recognition hardware in embedded devices: the microcontroller

(µC) gets feature vectors from the DSP and has access to knowledge sources

(language and acoustic models) stored in the memory unit . . . . . . . . . 7

2.3 The left-right HMM consists of five HMM states (S1 . . . S5); the transition

from state s into state s′ occurs with probabilityAs,s′; states S1 and S2 have

initial state probabilities Π1 and Π2 respectively . . . . . . . . . . . . . . . 10

2.4 Viterbi search diagram, the best search path is shown by bold arrows . . . . 17

2.5 Clustering algorithm: the set of n vectors is broken onto N clusters ac-

cording to some clustering rule; each cluster is represented by a codebook

vector; in the figure vectors and their respective codebook vector within one

cluster are filled by the same pattern . . . . . . . . . . . . . . . . . . . . . 26

2.6 Representation of the reproduction data after coding; during decoding the

pointers (coded vectors) are substituted by their respective codebook vectors 26

5.1 Division of Gaussian mean vectors set into three streams . . . . . . . . . . 48

5.2 Generation of shared codebook for SDCHMM set in case of three streams . 50

5.3 Representation of a SDCHMM set with shared codebook in case of three

streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Occurrence diagram of Gaussian mean vectors set plotted for one dimension 54

5.5 Relative change of WER of coding approaches on 12 different tasks . . . . 57

6.1 Combination of clustering and streaming techniques for TRAIN_U HMM

set: a) dependence of the execution time on the number of precisely com-

puted clusters; b) dependence of WER on the number of precisely com-

puted clusters; c) WER/execution time characteristics . . . . . . . . . . . . 70

6.2 Combination of clustering and streaming techniques for TRAIN_BA HMM

set: a) dependence of the execution time on the number of precisely com-

puted clusters; b) dependence of WER on the number of precisely com-

puted clusters; c) WER/execution time characteristics . . . . . . . . . . . . 71

vii



viii LIST OF FIGURES

7.1 Structure of a phoneme-based lexicon tree . . . . . . . . . . . . . . . . . . 77

7.2 Structure of a word stem based lexicon tree (stem length is limited to 2

phonemes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Modified word stem based tree structure . . . . . . . . . . . . . . . . . . . 79

7.4 Dynamically consumed processing power for one utterance in case of 20k

vocabulary size. The firm line shows the required processing power for the

search without frame dropping. The impulses shows the required process-

ing power for the search with frame dropping . . . . . . . . . . . . . . . . 83



List of Tables

3.1 Minimal computational requirements in real time factor for a baseline speech

recognizer with a 30-word vocabulary . . . . . . . . . . . . . . . . . . . . 37

3.2 Memory requirements for baseline acoustic models . . . . . . . . . . . . . 37

3.3 Memory consumption and required recognition time for the baseline search

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Language databases used in experiments . . . . . . . . . . . . . . . . . . . 39

4.2 Description of test sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Properties of HMM sets used in experiments . . . . . . . . . . . . . . . . . 40

5.1 Characteristics of the Gaussian mean vectors in German TRAIN_S HMM

set: the entropy H2,d(S), the mean value µ̄d, the variances σ2
d,1 and σ2

d,2

(computed using two different approaches) are estimated for each dimen-

sion d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Comparison of different lossless coding algorithms on a HMM parameters

compression task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Recognition results with the SDCHMM with 1-D streams . . . . . . . . . . 56

5.4 Test results with multidimensional streams . . . . . . . . . . . . . . . . . . 58

5.5 Memory reduction for Gaussian weights: tests results for German TRAIN_U

and TRAIN_S HMM sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Comparison of memory requirements in bytes and WERs for CDHMMs

(baseline) and SDCHMMs with different stream sizes . . . . . . . . . . . . 62

6.1 Minimal computational requirements in real time factor for a speech recog-

nition with a 30-word vocabulary . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Differences in the recognition times for different data organizations within

HMM sets with SDII-mbl-apl task . . . . . . . . . . . . . . . . . . . . . . 67

7.1 WER for different vocabulary sizes . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Memory requirements for the search with different vocabulary sizes . . . . 81

ix



x LIST OF TABLES

7.3 Recognition time per utterance (real time factor) for different vocabulary

sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 Recognition speed measured in real time factor for one utterance from

Cities task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5 Search performance for embedded system with ARM920T core and CarKit

test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Chapter 1

Introduction

A man-machine communication in hands-free and eyes-free situations requires voice in-

put and output. User-friendly interactive applications with voice interface could be imple-

mented in cars, where the driver’s eyes and hands are busy. An SMS dictation in mobile

phones and a voice control in automobiles (e.g. route planers) become very attractive. An

application menu structure in modern embedded devices and mobile phones could be very

complex. The menu navigation through the menu hierarchy may be accelerated by giving

voice commands.

Currently speech recognition technology reached the level that meets user demands. The

speech recognition has a good accuracy but requires a high amount of memory and a high

number of computations to be performed. Most resource consuming algorithms in speech

recognition are the computation of emission probabilities and the Viterbi search. During

the computation of emission probabilities the number of computations may reach 30% of

the number of computations of the whole recognition process. More than tens of millions

expressions in the form of (a+ b)2 have to be performed every second. The Viterbi search

for a large vocabulary speech recognition may require several megabytes of memory to

store the pronunciation lexicon and several megabytes for the search space in order to store

probabilities of search paths. The Viterbi search requires a microprocessor available to per-

form hundreds of millions operations per second for a large vocabulary speech recognition

in real time.

Modern workstations and servers have several gigabytes of memory and processors run-

ning on high clock frequency (several gigahertz). Embedded systems on the other hand

have limited system resources: 4-256 megabytes of memory and processing power about

50-500 MHz clock frequency. These system resources are shared between several applica-

tions. In embedded devices several tasks may be processed simultaneously, for example,

navigation application, GSM connection, menu navigation, speech recognition, calendar,

task and contact management, etc. The speech recognition is not the main process, that is

why speech recognition applications have even less resources than listed above. The pro-

1



2 CHAPTER 1. INTRODUCTION

cessing power is also limited by the battery capacity because the decrease of CPU clock

frequency saves battery energy.

Manufactures offer today devices with low vocabulary isolated word recognizers like mo-

bile phones or PDAs with voice interface. Name dialing based on suited for this purpose

dynamic time warping (DTW) algorithm is implemented in many modern mobile phones.

The speaker-independent speech recognition in embedded devices based on hidden Markov

models (HMM) becomes attractive. Such recognizers may be used for digits dialing,

command-and-control applications, manipulations with telephone book, song title selec-

tion, formatted speech dialogs and SMS dictation. The greatest advantage of HMM-based

recognizers is that no training is required from the user.

The main technical problem of the speech recognition in embedded devices is a disbalance

between available and required system resources. A trade-off between recognition accu-

racy, required memory and processing power has to be found. This problem may be solved

by using fast algorithms and memory saving coding schemes.

Acoustic units are modeled with high accuracy in state of the art speech recognizers. These

models occupy a high amount of memory, from hundreds of kilobytes to several megabytes.

Speech recognizers in embedded devices use less precise acoustic models that occupy sev-

eral hundreds of kilobytes or less. The memory requirements may be reduced further by

using compression algorithms which should have properties and satisfy requirements listed

below:

• Compression may be performed off-line with no restrictions to the compression time.

• The decompression algorithm should be fast and performed ”on the fly”. The algo-

rithm should allow random decoding: any value should be obtained without having

to decompress the whole file or array with acoustic models.

• The compression algorithm may introduce coding errors, but the recognition perfor-

mance should not substantially degrade.

The performance of the search algorithm may be improved by using non-linear lexicon

structures, e.g. trees. In the tree lexicon equal prefixes from different words are shared, the

memory requirements and computation costs are lower than in case of a linear structure.

The fast search algorithm should have the following properties:

• The loss of recognition accuracy should be very low.

• Data structures and algorithms must be optimized for the architecture of modern mi-

crocontrollers used in embedded devices.



3

In this work the following results were achieved:

• The reduction of the memory demands for acoustic models by 66% was achieved

by coding of parameters. Coding was performed by means of vector quantization

and streaming. The set of multidimensional vectors were split into several subsets

of lower dimensions. For example, in case of 3-D streams the first 3 dimensions

of all vectors form the first subset (stream), the second group of 3 dimensions form

the second subset, and so on. Then these subsets were coded by means of vector

quantization. The novel approach is that only one shared codebook was used instead

of several independent codebooks for each stream. One shared codebook requires

less memory than all independent codebooks.

• The memory consumption of vector weights of acoustic models was reduced by 50%.

The weights were coded by means of scalar quantization, recursive coding procedure

or special mapping of values into their square root values.

• The computation of emission probabilities (distances between the feature vector and

acoustic model vectors) was accelerated 3 times by employing stream coding.

• The coding does not degrade the recognition performance, the relative increase of

word error rate is less than 10%.

• The fast word stem based tree search was developed for the large vocabulary speech

recognition. The new search requires 3 times less memory and performs 3-5 times

faster than the baseline linear search algorithm. With the frame dropping approach

(elimination of non-speech signal from the consideration by the search algorithm) the

recognition is performed 5-12 times faster than with the baseline search.

The results of this work show that large vocabulary speech recognition becomes possible in

modern embedded devices with limited system resources.

In this thesis the main technical problem of speech recognition in embedded devices is

considered in details. The objectives stated above are reached by means of new algorithms

described in the following chapters.

Chapter 2 describes fundamentals of speech recognition in embedded devices. First, the

theoretical aspects of the statistical speech recognition are presented. Then the structure of

a typical embedded device is considered. Special attention is paid to parameters that require

high amount of memory and algorithms that consume most of processing power. Funda-

mentals of coding theory that may be used to reduce memory consumption by acoustic

models are described in the second part of the chapter.



4 CHAPTER 1. INTRODUCTION

In Chapter 3 state of the art coding of lexicon structures and acoustic parameters are con-

sidered. Then the fast computation algorithms in speech recognition are discussed. The

advantages and disadvantages of existing approaches are described. Finally, objectives of

the research are formulated.

Chapter 4 describes the experimental setup. Properties of speech databases, test sets and

baseline acoustic models are considered in detail. The description of used databases and test

sets is important for comparison purposes. The recognition results of different recognizers

may be compared if they use the same database and similar test sets.

The principles of memory saving coding of HMM parameters are considered in Chapter 5.

The developed coding techniques are described in detail. The results of the lossless coding

and the Shannon’s noiseless coding theorem are used as a first estimation of achievable

compression performance. Then lossy coding approaches are considered. The coding ap-

proaches are tested on two tasks: coding of Gaussian mean vectors and coding of weights.

In Chapter 6 the reduction of computational complexity of the emission computation algo-

rithm is explored. The algorithms based on streams approach and vector quantization are

considered and tested. The combination of these algorithms may accelerate computation

further. Experiments are made for different languages and acoustic model sizes.

Chapter 7 is dedicated to fast search algorithms in speech recognition. Firstly, theoretical

aspects of the search are considered in detail. Then a tree search and a word stem based

search approach are described, the advantages and disadvantages are shown. The combi-

nation of these approaches is investigated. Special attention is paid to the frame dropping

approach which was used in experiments. The frame dropping provides the search algo-

rithm only with speech frames and drops non-speech frames. The modifications of the

search algorithms suitable for the speech recognition in embedded systems are described.

The experimental results are discussed.

In Chapter 8 the main achievements of the research are summarized. An outlook on future

work is given.



Chapter 2

Fundamentals of speech recognition for

embedded devices

Speech recognition for embedded systems concerns mainly two topics: the general statis-

tical speech recognition which is discussed in Section 2.1 and the source coding including

scalar and vector quantization (see Section 2.2).

2.1 Fundamentals of statistical speech recognition

2.1.1 Baseline algorithms in speech recognition

Automatic speech recognition is considered nowadays as a pattern recognition problem.

According to the Bayes decision rule [Duda and Hart 1973] the word sequence W =

w1, . . . , wN should be chosen to maximize the posterior probability of the observed se-

quence of acoustic vectors X = x1, . . . , xT :

W ′ = arg max
W

p(W |X) (2.1)

Using Bayes equation, the posterior probability can be written as:

p(W |X) =
p(W ) · p(X|W )

p(X)
(2.2)

Then Equation 2.1 can be rewritten as:

W ′ = arg max
W

p(W ) · p(X|W )

p(X)
(2.3)

Here the a priori probability p(X) of the acoustic vector sequence is a constant, it has no

influence on the optimization problem and may be omitted. Finally, the decision rule can

5



6 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

be rewritten as:

W ′ = arg max
W

p(W ) · p(X|W ) (2.4)

In order to solve the Equation 2.4 it is necessary to estimate the acoustic model with prob-

ability distributions p(X|W ) and the language model that provides the a-priori probabili-

ties p(W ) of the word sequence W . These probabilities are used by an automatic speech

recognition system with a typical architecture shown in Figure 2.1 (see [Ney and Ortmanns

2000]).

Figure 2.1: Principal architecture of an automatic speech recognition system

The structure of the recognizer consists of four general parts:

• The feature extraction unit performs the transformation of a speech signal to a se-

quence of feature vectors X . The feature vectors are generated periodically, every

15 ms, for example.

• The acoustic model part describes the probability to observe a sequence of acoustic

vectors X given the hypothesized word sequence W and consists of two parts: the

set of acoustic models for the smallest sub-word units (typically phonemes) and the

pronunciation lexicon that describes how the words are composed from the sub-word

units.

• The language model part covers knowledge of the language (syntax, semantics) and

provides the a priori probability of the hypothesized word sequence.



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 7

• The global search unit finds the word sequence of a maximum posterior probability

according to the decision rule, see Equation 2.4.

2.1.2 System architecture of embedded devices

The typical system architecture of embedded devices is considered by the example of a

mobile phone. Figure 2.2 presents only system units which are needed for speech recog-

nition. The feature extraction for speech recognition may be realized on a microcontroller.

Alternatively, the feature extraction may be realized on the digital signal processor (DSP),

then feature vectors have to be passed to the microcontroller for further processing.

Figure 2.2: Speech recognition hardware in embedded devices: the microcontroller (µC)
gets feature vectors from the DSP and has access to knowledge sources (language and

acoustic models) stored in the memory unit

The microcontroller performs main control functions in embedded devices. Speech recog-

nition is executed in parallel with other applications (for example, GSM, route navigation,

organizer functions), all these processes share memory and processing power. The acoustic

and language models are stored in the rewritable flash memory. The content of the flash

memory could be changed easily. Thus, it is possible to update data and software for dif-

ferent languages, mobile network providers, countries, etc.

Modern embedded devices have more system resources than desktop computers and work-

stations 10 years ago. A typical embedded system has a microprocessor running with 50-

500 MHz core clock and 4-256 MB of working memory. These system resources are still

not enough to perform large vocabulary (more than 10 000 words) speech recognition in

real time.



8 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

2.1.3 Feature extraction

A speech signal from the microphone cannot be used directly in the classifier, it should

be processed and the relevant features should be derived. The main goals of the feature

extraction are listed below:

• good separation of different acoustic units;

• reduction of feature distortions induced by recording environment, noise, signal trans-

mission channels, etc.;

• data rate reduction: feature vectors consume less memory than audio data.

In this work the feature extraction algorithm from the VSR Very Smart Recognizer R©
(VSR) is used [Varga et al 2002; Köhler 2000], see Section 3.3 for details. Firstly, the

analog signal from the microphone is digitized. For telephone applications with bandwidth

of 3.4 kHz the speech is sampled at 8 kHz and each sample is coded by 12-15 bits. A first

order high pass filter (preemphasis) is applied to the digitized audio data to amplify high

frequencies.

Assuming that the speech signal during the short period (10-30 ms) is quasi-stationary, the

signal is segmented into overlapping frames. Frames of speech are 32 ms long with 15 ms

shift. Each frame consists of N = 256 samples.

The samples of each frame are multiplied by a windoww(n). In VSR the Hamming window

is used:

w(n) = 0.54 − 0.46 cos

(

2πn

N − 1

)

(2.5)

where n = 1, 2, . . . , N is the current sample index.

The speech samples of each frame are transformed into frequency domain by means of fast

Fourier transform (FFT). From the real and imaginary parts the power spectrum is obtained.

Then the spectrum is limited to the band from 180 Hz to 3400 Hz. Outside this band the

spectrum is set to a low threshold value which is advantageous for the telephone speech.

Now a noise reduction may be applied, the additive noise may be eliminated by the spectral

subtraction algorithm [Martin 1994] or by the minumum least square amplitude estimator

[Beaugeant and Scalart 2001].

The power spectrum is filtered by the set of critical band filters — mel filters. The band-

widths of filters are linearly distributed over the band from 0 to 1000 Hz and logarithmically

above 1000 Hz.

The logarithms of the mel filtered power spectrum are calculated, then a discrete cosine

transformation is performed. In the next step the cepstral smoothing is applied. Because of



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 9

the sensitivity of the low order cepstral coefficients to overall spectral slope and the sensi-

tivity of the high-order cepstral coefficients to noise, it had become a standard technique to

weight the cepstral coefficients by a tapered window in order to minimize these sensitivities.

In the next step a channel compensation is performed. A long-term average spectrum is

subtracted from the speech signal. In [Hauenstein and Marschall 1995] the recursive adap-

tive estimation of the average spectrum is described. As a result, it is possible to use already

trained acoustic models with different transmission channels, speech databases and speak-

ers without significant loss of recognition accuracy.

The use of derivatives of feature vectors leads to improvement of the recognition rate [Furui

1986]. On the one hand the dynamics of the speech signal is considered, on the other hand

the feature vector becomes a higher time context. The discrete derivations ∆ and ∆∆ are

computed as:

∆ut = ut − ut−3 (2.6)

∆∆ut = ∆ut − ∆ut−3 = ut − 2ut−3 + ut−6 (2.7)

In such a way the vector vt consists of normalized cepstral weights, ∆- and ∆∆-spectral

coefficients:

vt =







ut

∆ut

∆∆ut






(2.8)

Two consecutive vectors vt−1 and vt are concatenated into one supervector vsup t. From the

vector vsup t the mean vector µ is subtracted. Then the linear discriminative analysis (LDA)

[Hauenstein and Marschall 1995; Haeb-Umbach et al 1993] is applied: vectors vsup t − µ

are multiplied with the LDA matrix A
⊺. In such a way the resulting feature vector x of

dimension D is computed as:

xt = (xt,1, xt,2, . . . , xt,D)⊺ = A
⊺(vsup t − µ) (2.9)

The LDA transformation has the following advantages:

• The resulting coefficients are sorted by their ability to discriminate acoustic units.

Thus, it is possible to take the first 24 coefficients from the resulting vector without

the degradation of recognition rate. The decrease of the dimensionality of feature

vectors leads to a faster processing of frames.

• After LDA transform feature vectors have equal variances for all dimensions. This

is especially advantageous because the computation of emission probabilities is per-

formed faster when the state probabilities are modeled by mixtures of Gaussians with



10 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

diagonal covariance matrix where all variances (placed on the diagonal) are equal,

see Section 2.1.4 for details.

2.1.4 Acoustic modeling

A typical speaker independent speech recognizer employs the HMM approach [Rabiner

and Juang 1993]. The HMM λ(Π, A,B) is a chain of states, the states generate observa-

tion vectors xt. The transition from HMM state s into state s′ is described by transition

probabilities As,s′ with the following condition:

∑

s′

As,s′ = 1, ∀s (2.10)

The HMM is characterized also by emission probabilities Bs(xt); Bs(xt) represents the

probability of the observation xt conditioned on state s at time t. The initial state probabil-

ities are described by probabilities Πs of being in state s at start time t = 1.

In the speech recognition linear left-right HMM structures are used. Such a HMM with

S = 5 states is shown in Figure 2.3.

Figure 2.3: The left-right HMM consists of five HMM states (S1 . . . S5); the transition
from state s into state s′ occurs with probability As,s′; states S1 and S2 have initial state

probabilities Π1 and Π2 respectively

Modeling of transition probabilities

In the left-right HMM shown in Figure 2.3 from each state s only three transitions are

possible:

• into state s itself with probability As,s;

• into next state s+ 1 with probability As,s+1;

• into state s+ 2 (skip-transition) with probability As,s+2.



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 11

To simplify the estimation of transition probabilities it is supposed that for all states within

one HMM structure the following equation takes place:

As,s = A0, As,s+1 = A1, As,s+2 = A2, ∀s (2.11)

Here, all transitions of the same type (self-loop, transition into the next state or skip tran-

sition) have the same transition probabilities. Transition probabilities between states are

not explicitly trained. In VSR the penalty (logarithmically transformed probability) for a

transition to the immediate succeeding state is set to 0 while penalties for a self loop and

one state skip are set to some fixed value [Bauer 1997].

A word may be represented by a phoneme based or a whole word model [Rabiner and

Juang 1993]. In the first case the whole word models are used as a basic speech unit. The

whole word models have two disadvantages. First, to obtain reliable whole word models,

the number of word utterances in the training set needs to be sufficiently large. Each word

from the vocabulary should occur in the training set several times for each possible phonetic

context (for each combination of previous and following words). Second, the phonetic

content of the individual word is overlapped in case of a large vocabulary. The similar

phonetic units of individual words are treated independently.

A word may be represented also as a sequence of subword units. The important advantage

is that any word may be modeled by the sequence of subword units (usually phonemes),

it is not necessary to have utterances of this word in the training data. The lexicon is

flexible, new words may be added to the lexicon without new training. In a phoneme based

modeling each HMM state in a word is assigned to a phoneme or a part of a phoneme. A

phoneme may be represented as a one-segment model for silence or a three-segment model

for phonemes. A silence segment is always modeled by one HMM state. The segments

within phonemes have 2 HMM states with the same emission pdfs. In VSR the word

HMMs may have also other structures: each phoneme consists of three segments, and

each segment has only one HMM state. In this case the HMM structures have no skip-

transitions (As,s+2 = 0), in such a way a word has 2 times less transitions than in case of

2-state segments. The processing of word HMMs is accelerated with only low decrease of

the recognition accuracy.

Modeling of emission probabilities

The set of emission probabilities Bs(x) is the most memory consuming part of the HMM

description. Emission probabilities are modeled by mixtures of D-dimensional continuous

probability density functions (pdf) or by discrete probability functions. The continuous pdfs

usually assume Gaussian distributions defined by mean vectors and covariance matrices.

The emission probability of the state s is modeled by the sum of several weighted Gaussian



12 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

pdfs with Ms nodes:

Bs(x) =
Ms
∑

m=1

Cs,mp(x | s,m) (2.12)

where Cs,m denotes a weight coefficient of the pdf p(x|s,m);
∑Ms

m=1Cs,m = 1 for every

state s.

In the following emission probability of the state s is modeled by the sum of Ms Gaussian

pdfs with mean vectors µs,m and covariance matrices Σs,m. Such a distribution is defined

as:

p(x | s,m) = N(x, µs,m,Σs,m) (2.13)

N(x, µs,m,Σs,m) =
1

√

(2π)D |Σs,m|
e−

1
2
(x−µs,m)T Σ−1

s,m(x−µs,m) (2.14)

where D is the dimensionality of observation vectors x as defined in Equation 2.9, mean

vectors µs,m and covariance matrix Σs,m.

The computation of emission probabilities based on distributions described in Equations

2.13 and 2.14 is very time consuming. Often recognition systems use simplifications such

as diagonal covariance matrices and diagonal covariance matrices with equal variances. A

diagonal covariance matrix is defined as:

Σs,m = diag(σ2
s,m,1, . . . , σ

2
s,m,D) (2.15)

and a Gaussian pdf is defined as:

N(x, µs,m,Σs,m) =
1

√

(2π)D

1
∏D

d=1 σs,m,d

e
−

1
2

∑D
d=1

(xd−µs,m,d)2

σ2
s,m,d (2.16)

where xd is the d-th component of a D-dimensional feature vector x; µs,m,d is the d-th

component of a D-dimensional mean vectors µs,m.

In the diagonal covariance matrix all variances may be equal: σ2
s,m,d = σ2, in this case the

Gaussian pdf has the following form:

N(x, µs,m, σ) =
1

√

(2π)D

1

σD
e−

1
2σ2

∑D
d=1(xd−µs,m,d)2 (2.17)

The form shown in Equation 2.17 is used in VSR and will be considered in the following.

Modeling of initial state probabilities

The initial state probabilities in speech recognition are usually defined as shown in Equa-

tion 2.18:



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 13

Πs =

{

1, s = 1

0, otherwise
(2.18)

The first state has the initial state probability Π1 = 1, and the initial probabilities of the

other states are equal to zero. For the isolated word recognition task, the first (starting)

state of the left-right HMM is a silence-state. It is supposed that before the speech signal

there is a silence whose duration is not defined and can be infinitely long.

2.1.5 Computation of probabilities

The classifier in the speech recognizer has to find the probabilities Bs(x) for each feature

vector x and every HMM state s. Bs(x) represents the probability of the observation x

conditioned on state s. It is assumed that feature vectors have Gaussian distribution and

all components of the feature vectors are decorrelated. From Equations 2.12 and 2.17,

emission probabilities are computed as:

Bs(x) = p(x|s) =

Ms
∑

m=1

Cs,mN(x, µs,m, σ) (2.19)

where s denotes a state index; µs,m = (µs,m,1, µs,m,2, . . . , µs,m,D) denotes the m-th Gaus-

sian mean vector within the state s; Cs,m denotes a Gaussian weight; N(x, µs,m, σ) de-

notes a Gaussian distribution with a D × D-dimensional diagonal covariance matrix Σ =

diag(σ2, . . . , σ2).

The computation of emission probabilities requires a high number of computations such as:

exp

(

− 1

2σ2

D
∑

d=1

(xd − µs,m,d)
2

)

(2.20)

The computation of exponential functions and division by value 2σ2 are slow in processors

used in embedded devices. For example, for a small vocabulary recognition task with a

HMM set of 1200 Gaussians the computation of such expressions is performed 80 000

times per second. In a large vocabulary speech recognition with a HMM set of 20 000

Gaussians such computations are performed more than 1.3 · 106 times per second.

The probabilities may have very low values (10−3 . . . 10−10), the result of multiplications

of such low values becomes too small in order to be represented as a floating-point value.

In the following the single-precision 32 bit number in IEEE Standard for Binary Floating-

Point Arithmetic are considered [IEEE 1985]. The floating-point numbers do not model

real numbers well, even in simple cases such as representing the decimal fraction 0.1, which

cannot be exactly represented in any binary floating-point format. For the computation of

low probabilities the most serious problem may be the absorption (1 + 1 · 10−15 = 1). In



14 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

embedded devices often a fixed-point arithmetic is used which has even worse precision

than the floating-point arithmetic.

In order to solve these problems all probabilities are represented as negative log likeli-

hoods. Taking logarithms of both parts of Equation 2.19 and multiplying by −2σ2 the

Equation 2.21 is obtained:

−2σ2 lnBs(x) = −2σ2 ln p(x|s) (2.21)

Negative log likelihoods are then calculated as:

−2σ2 lnBs(x) = −2σ2 ln

(

Ms
∑

m=1

Cs,m

1

(σ
√

2π)D

D
∏

d=1

exp

(

−(xd − µs,m,d)
2

2σ2

)

)

(2.22)

This equation is difficult to calculate, the following approximation is used:

ln

(

Ms
∑

m=1

f(x)

)

≈ ln
(

max
m

f(x)
)

= max
m

(ln f(x)) , m = 1, . . . ,Ms (2.23)

Then the negative log likelihoods are computed as:

−2σ2 lnBs(x) ≈ −2σ2 ln

(

max
m

(

Cs,m

(σ
√

2π)D

D
∏

d=1

exp

(

−(xd − µs,m,d)
2

2σ2

)

))

(2.24)

And finally:

−2σ2 lnBs(x) = min
m

{

−2σ2 ln
Cs,m

(σ
√

2π)D
+

D
∑

d=1

(xd − µs,m,d)
2

}

(2.25)

−2σ2 lnBs(x) = min
m

{

−2σ2 lnCs,m +

D
∑

d=1

(xd − µs,m,d)
2 + 2σ2D ln σ

√
2π

}

(2.26)

The value 2σ2D ln σ
√

2π is always a constant, it is omitted in further considerations. In

such a way, for each state the minimum is computed:

min
m

{

−2σ2 lnCs,m +
D
∑

d=1

(xd − µs,m,d)
2

}

, m = 1, . . . ,Ms (2.27)

The distance measure between feature vector x and Gaussian with mean vector µ is a log



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 15

likelihood distance; it is calculated according to Equation 2.28 and is called emission score:

bs(x) = −2σ2 lnBs(x) = min
m

{

cs,m +

D
∑

d=1

(xd − µs,m,d)
2 + const

}

(2.28)

where cs,m = −2σ2 lnCs,m is a Gaussian penalty and bs(x) = −2σ2 lnBs(x) is an emission

score; m = 1, . . . ,Ms.

The algorithm of log likelihood computation for state s is shown below.

Emission computation algorithm for state s

1. Set bestscore = MAXPOSITIV E (highest positive value).

2. Set score = cs,m (Gaussian weight).

3. score = score+ (xd − µs,m,d)
2 (add partial distances for each dimension d).

4. If score < bestscore then continue the log likelihood computation (go to step 3 for

next dimension d), otherwise abort computations for this Gaussian m.

5. If score < bestscore then bestscore = score (update bestscore).

6. Repeat steps 2-5 Ms times for all Gaussians in state s.

7. The result of the score computation for state s is in variable bestscore.

In a baseline recognizer (see Section 3.3) the emission log-likelihoods are computed for ev-

ery state s. If multiplication requires several cycles on a microcontroller, all multiplication

operations in computation of distances (xd − µs,m,d)
2 can be substituted by table look-ups.

All values (xd − µs,m,d)
2 are precalculated for a set of discrete values (xd − µs,m,d). In the

case of VSR the values (xd−µs,m,d) are in the range of −255 ≤ (xd−µs,m,d) ≤ 255. Then

the values (xd − µs,m,d)
2 have to be computed only for 511 values and stored in the array

only once for the whole recognition process. The precomputed distances can be stored

in the flash memory during the design phase of the recognition system, or the distances

can be computed and stored in the memory every time when the speech recognition algo-

rithm is started. The appropriateness of the precalculation procedure is highly dependent

on the microprocessor, in modern microcontrollers the integer multiplication may require

less computing power than the memory look-up. Other fast log likelihood computation

algorithms will be considered in Chapter 6.



16 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

In the recognition system the emission probabilities Bs, transition probabilities As,s′ and

initial state probabilities Πs are used as negative logarithms:

bs(x) = −2σ2 lnBs(x)

as,s′ = −2σ2 lnAs,s′ (2.29)

πs = −2σ2 ln Πs

The values as and πs are stored in memory. For the computation of emission probabilities

according to Equation 2.28 Gaussian penalties cs,m are precalculated and stored in memory.

2.1.6 Language modeling

Stochastic language models are used to increase the recognition rate in large vocabulary

continuous speech recognition. Usually language models are constructed using word n-

grams. The n-gram language model is based on the assumption that the probability of

a word in a sentence (w1, . . . wN−1, wN) depends only on the n − 1 previous words. In

practice, only uni-, bi- and trigrams are used (n = 1, n = 2 and n = 3).

The language model may be built using class n-grams, where words are clustered into

several classes [Witschel 2000, 1993; Ney and Essen 1991; Kneser and Ney 1991]. In the

class-based bigrams the conditional probabilities P (wi|wi−1) are approximated as shown

in Equation 2.30 (see [Ney et al 1989]):

P (wi|wi−1) = P (wi|Ci)P (Ci|Ci−1) (2.30)

where the word wi belongs to the class Ci. The probabilities P (wi|Ci) are the relative

frequencies of words within a given class. Each probability P (Ci|Ci−1) is estimated on a

set of training sentences.

2.1.7 Search algorithm

In modern speech recognition systems a Viterbi decoding is mostly used for the global

search task [Ney et al 1992]. Viterbi search [Rabiner and Juang 1993; Viterbi 1967] is a

dynamic programming algorithm that follows the transitions within a network of HMM

states and maintains the best possible path score at each state in every frame.

The principle of the one-pass Viterbi search is shown in Figure 2.4. One dimension rep-

resents the states in the network, and the other one is the time axis. From each state only

three transitions are possible: to the state itself, to the next state and the skip transition

(see Section 2.1.4). All valid paths start from the start state and end on the final state. The

probability value conditioned on state s at time t represents the probability corresponding



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 17

Figure 2.4: Viterbi search diagram, the best search path is shown by bold arrows

to the best state sequence leading from the initial state at time 0 to state s at time t. The

search is started at time t = 0 with the path probability at the start state set to 1, and at all

other states to 0.

The single best HMM state sequence {s1, s2, . . . , sT} for the observation {x1, x2, . . . , xT}
can be found by obtaining the highest path probability αt(i):

αt(i) = max
s1,s2,...,st−1

p(s1s2 . . . st−1st = i, x1x2 . . . xt|λ) (2.31)

where αt(i) is the highest path probability along a single path at time t, which accounts for

the first t observations and ends in the state i. The best path probability can be computed

recursively:

αt+1(j) =
(

max
i
αt(i) · Ai,j

)

·Bj(xt+1) (2.32)

where Ai,j is the transition probability from state i to state j; Bj(xt+1) is the emission

probability in state j for observation xt+1 at time t+ 1. In such a way, for every time frame

each state has one best predecessor.

The track of the argument that maximizes αt+1(j) for each i and j has to be stored, this is

done via array ψt(j). After the search is done, the back tracking is performed. The best

search path is obtained with the help of the backtracking procedure by starting from the

final state and following the best predecessor for each state until the start state is reached.

The algorithm is listed below:



18 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

Viterbi search algorithm

1. Initialization

α1(i) = ΠiBi(x1) 1 ≤ i ≤ S

ψ1(i) = 0

where Πi is the initial state probability of state i.

2. Recursion

αt(j) = max
1≤i≤S

[αt−1(i)Ai,j ] · Bj(xt) 2 ≤ t ≤ T 1 ≤ j ≤ S

ψt(j) = arg max
1≤i≤S

[αt−1(i)Ai,j] 2 ≤ t ≤ T 1 ≤ j ≤ S

3. Termination

p∗ = max1≤i≤S[αT (i)]

s∗T = arg max1≤i≤S[αT (i)]

4. Path (state sequence) backtracking

s∗t = ψt+1(s
∗
t+1), t = T − 1, T − 2, . . . 1

The implementation of HMM-based speech recognition is simplified using negative loga-

rithms (log likelihoods). Thus, multiplications are substituted by additions of logarithms,

see Section 2.1.5.

Negative logarithms of probabilities are computed during the preprocessing stage which is

done once in offline mode. The following values are pre-computed and saved in memory:

• initial state scores πi = −2σ2 ln Πi;

• transition scores ai,j = −2σ2 lnAi,j;

• Gaussian weights cj,m = −2σ lnCj,m;

where i and j are state indexes. The emission scores are computed shown in Equation 2.28.

The Viterbi search algorithm with negative log likelihoods is shown below:



2.1. FUNDAMENTALS OF STATISTICAL SPEECH RECOGNITION 19

Viterbi search algorithm with negative log likelihoods

0. Preprocessing

πi = −2σ ln Πi

cj,m = −2σ lnCj,m

ai,j = −2σ lnAi,j

1. Initialization

α1(i) = −2σ ln δ1(i) = πi + bi(x1) 1 ≤ i ≤ S

ψ1(i) = 0

2. Recursion

αt(j) = −2σ lnαt(j) = min
1≤i≤S

[αt−1(i) + ai,j] + bj(xt) 2 ≤ t ≤ T 1 ≤ j ≤ S

ψt(j) = arg min
1≤i≤S

[αt−1(i) + ai,j] 2 ≤ t ≤ T 1 ≤ j ≤ S

3. Termination

P ∗ = min
1≤i≤S

[αT (i)]

s∗T = arg min
1≤i≤S

[αT (i)]

4. Path (state sequence) backtracking

s∗t = ψt+1(s
∗
t+1), t = T − 1, T − 2, . . . 1

A large vocabulary system consists of a large amount of HMM states and the needed com-

putations cannot be performed in real time. In order to solve this problem, for each frame

only the most likely states are considered [Ney et al 1992]. At time t the state with the high-

est path probability Pmax(t) is found. Then in further computations at time t+1 only states

with probabilities Pi(t) > Pmax(t)·Bprun are processed, whereBprun is a pruning threshold

or beam width. The states within the beam are considered to be active, all other states are

pruned. The beam search reduces the average computation cost of search in medium and

large vocabulary systems.



20 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

The Viterbi search in continuous speech recognition is performed by the connection of the

last HMM states of every word to the first HMM states of every word. When the lan-

guage model is available, the connections are restricted by the allowed syntax, and the

language model probabilities are used for the computation of the overall path probabili-

ties. A one-pass dynamic programming algorithm [Ney 1984] may be used for continuous

speech recognition, which is beyond the scope of this work.

2.2 Fundamentals of source coding

Source coding is a process of encoding information using fewer bits than a more obvious

representation would use through use of specific encoding schemes [Data Compression –

Wikipedia 2006]. The conversion of the quantized audio signal to WAV, MP3 or any of the

familiar audio formats is a source coding process. Not only audio signals can be coded,

but also images, video frames, etc. – anything containing information is a source, and

compressing the stream of information is source coding.

There are two major types of source coding: lossless and lossy. Lossless source coding

means that the source information symbols can be perfectly reconstructed without any error

or loss. Lossless coding is desired as it brings no distortions, but the lossless requirement

puts a serious constraints on how much the source can be compressed.

Lossy source coding allows certain amount of quality loss during the source coding pro-

cedure. In many cases lossy coding is preferred over lossless coding because of its strong

compressing ability: the loss may be so minimal or somehow ignored by the information

receiver (such as the ears when listening to music). For example, the audio format on audio

compact disc is lossless and the MP3 audio format is lossy, but usually the human ear does

not notice any difference at all when listening to MP3-coded music and an original, but the

file size can be more than ten times smaller in the MP3 case.

However, the higher the compression ratio the higher the distortion: there is a trade-off

between the source-rate and the distortion, larger source rate means smaller distortion and

vice versa. In the following the principles of source coding are described in detail.

Let S = {s1, s2, . . . , sq} be the set of q symbols that defines a source alphabet and the set

of r symbols Z = {z1, z2, . . . , zr} defines the code alphabet. Commonly, the binary code

alphabet is used (r = 2, Z = {0, 1}). The mapping of each symbol si from S to a codeword

vi = (zi1zi2...zik) of length k symbols is called the source encoding: si → vi. The source

decoding is the reverse process of such mapping.

The n-th extension of a code which maps the symbols si into the codewords vi is the code

which maps the n-block sequence of source symbols (si1, si2, . . . , sin), the n-th extension

of S, into the corresponding sequence of codewords (vi1, vi2, . . . , vin).

In order to use coding in practice, the code has to be uniquely decodable. A code is unique



2.2. FUNDAMENTALS OF SOURCE CODING 21

decodable if, and only if, the n-th extension of the code is nonsingular (all the code words

are distinct) for every finite n.

The code with shorter codewords on average is preferable for applications in embedded

systems. One of the benchmarks that measures the average effect of the different codeword

lengths is the average length of a code:

L =

n
∑

i=1

Pili (2.33)

where L is the average length of the code; Pi is the probability of the source symbol si and

li is the length of the codeword vi.

The uniquely decodable code is called a compact code if its average length is less than or

equal to the average length of all other uniquely decodable codes for the same source and

code alphabet. The lower limit on how small the average length for a particular source

and code alphabet can be obtained from the Shannon’s noiseless coding theorem [Togneri

2002].

Shannon’s noiseless coding theorem For each information source the average length L

of a compact code is related to the entropy Hr(S) by:

Hr(S) ≤ L ≤ Hr(S) + 1 (2.34)

The entropy to the base r may be derived as shown in Equation 2.35:

Hr(S) =

q
∑

i=1

Pi logr

1

Pi

=
1

log2 r

q
∑

i=1

Pi log2

1

Pi

=
H(S)

log2 r
(2.35)

where Pi is the probability of source symbol si; Hr(S) is the entropy to base r; H(S) is

the entropy to base 2. The value of H(S) is a number of bits that are required to code one

source symbol.

The average length Ln of a compact code for the n-th extension of the information source

is related to Hr(S) by:

Hr(S) ≤ Ln

n
≤ Hr(S) +

1

n
(2.36)

and thus:

lim
n→∞

Ln

n
= Hr(S) (2.37)

where Ln

n
represents the average number of code symbols per single symbol from S when

coding the n-th extension of S.

The theorem implies that Ln

n
can be decreased as close to Hr(S) as possible by increasing

n. With increasing n the number of source symbols qn grows exponentially and the coding



22 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

complexity increases in a similar way.

2.2.1 Theoretical aspects of scalar quantization

The scalar quantization (SQ) is a lossy data compression technique, its implementation in

speech recognition in embedded devices has the following restrictions: the coding should

bring the distortion as low as possible and the decoding algorithm should have low compu-

tational complexity and low memory requirements.

The scalar quantizer represents a data set X = {x1, x2, . . . , xn} by the reproduction data

set X̂ = {x̂1, x̂2, . . . , x̂n}. Each reproduction value x̂i comes from a finite set V =

{v1, v2, . . . , vN} which is called the quantizer codebook (x̂i ∈ V , 1 ≤ i ≤ n). A re-

production value x̂i = vj is stored in memory as a codeword index j which is an integer

1 ≤ j ≤ N . The code (index) occupies less memory than corresponding data value xi, in

such a way the set X is compressed.

In this work the scalar quantization is applied to code acoustic model parameters for speech

recognition. The main goal is to achieve high compression rate with an insignificant loss of

speech recognition accuracy. Unfortunately, it is hard to estimate the changes in the word

error rate from the quantization distortion which is brought by the scalar quantization of

acoustic model parameters. The decrease of the quantization distortion leads to decrease

of the word error rate, that is why the main goal of the scalar quantization for speech

recognition is to obtain lowest quantization distortion G:

G =
1

n

n
∑

i=1

g(xi, x̂i) (2.38)

where g(xi, x̂i) is a distance measure between value xi and reproduction value x̂i. In the

following the Euclidean distance g(xi, x̂i) = (xi − x̂i)
2 is considered. The distortion then

can be written as:

G =
1

n

n
∑

i=1

(xi − x̂i)
2 (2.39)

An N-level scalar quantizer is defined by selecting the following items:

• an interval [xmin, xmax] which should be large enough to contain all of the samples xi

to be quantized;

• a partition of [xmin, xmax] into N subintervals I1, I2, . . . , IN ;

• quantization levels v1, v2, . . . , vN such that vj ∈ Ij j = 1, 2, . . . , N .

The set {xmin, xmax, I1, I2, . . . , IN , v1, v2, . . . , vN} uniquely defines the scalar quantizer.

The input of the scalar quantizer is any real number from the interval [xmin, xmax], the

output is the index j of the quantization level vj (code) assigned to an interval Ij.



2.2. FUNDAMENTALS OF SOURCE CODING 23

Uniform quantizer

The uniform quantizer is the simplest quantizer which has equal subintervals Ij, the quan-

tization levels vj are the midpoints of the intervals Ij . This quantizer is designed using the

algorithm shown below:

Uniform scalar quantizer algorithm

1. Choose an interval [xmin, xmax] which contains all samples xi from the data set,

1 ≤ i ≤ n.

2. Split the interval into N subintervals Ij of equal lengths, 1 ≤ j ≤ N .

3. Form a codebook V such that quantization level vj is a midpoint of the subinterval

Ij.

4. Quantize each sample xi (xi ∈ Ij) into the codebook entry vj .

The uniform quantizer distortion satisfies the condition:

G ≤
(

xmax − xmin

2N

)2

(2.40)

Lloyd-Max quantizer

The N-level optimal quantizer maps xi into levels (quantization values) x̂i ∈ V with min-

imum distortion G (see Equation 2.39). An optimal quantizer for the data set X should

satisfy the Lloyd-Max conditions [Lloyd 1982]:

• Scalar quantizer should be the nearest neighbour quantizer; the quantized value x̂ for

any x must be a quantization level in V which is the closest to x:

|x− x̂| = min
1≤j≤N

|x− vj | ∀x (2.41)

• Each quantization level vj must be the average of all samples quantized to this level.

This quantizer is called a Lloyd-Max quantizer. The quantizer which is not a Lloyd-Max

quantizer cannot be optimal, but there may be Lloyd-Max quantizers which are not optimal.

The Lloyd’s iterative algorithm is shown below, it designs a quantizer with low distortion.



24 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

Lloyd’s quantizer design algorithm

1. Define N + 1 threshold values yi such that

xmin = y0 ≤ y1 ≤ ... ≤ yN−1 ≤ yN = xmax

with any initial choice (for example the uniform quantizer)

2. Define the quantization levels vj

vj =
1

Nj

Nj
∑

i=1

xi : x̂i = vj and j = 1, 2, . . . , N

where Nj is the number of vectors xi that falls to the subinterval Ij. Subintervals Ij
are defined as:

Ij =

{

[yj−1, yj), j = 1, 2, . . . , N − 1

[yN−1, yN ], j = N

3. If data sample xi falls to subinterval Ij, then the sample is quantized into the average

value vj .

4. The new thresholds are formed according to

yj =
1

2
(vj + vj+1), j = 1, 2, . . . , N − 1

5. Repeat steps 2, 3 and 4 recursively until the relative decrease of distortionG becomes

less then a predefined threshold ε or after maximal number of iterations.

The design of an N-level scalar quantizer requires sufficient amount n of training data

vectors. In practice, the algorithm convergence condition is defined by the rule of thumb:

10 ·N ≤ n (2.42)

2.2.2 Theoretical aspects of vector quantization

The vector quantization (VQ) is a data reduction technique that maps a vector set into the

small set of discrete symbols (codes), these codes correspond to the reproduction vectors

which are stored in a codebook.



2.2. FUNDAMENTALS OF SOURCE CODING 25

The use of vector quantizers in lossy compression systems yields the following advantages:

VQ distortion can be below scalar quantizer distortion at the same rate; VQ decoding is fast

(simple table look-up); VQ is implementable in low rates.

On the other hand, VQ-based compression systems possess some disadvantages: VQ design

can be hard; encoding in a VQ system can be slow.

Let V be the quantization codebook of size of N vectors for a D-dimension vector quan-

tizer. The codebook V is given by:

V = {v1, v2, . . . , vN} (2.43)

where v1, v2, . . . , vN are D-dimensional codeword vectors.

The resulting D-dimensional VQ quantizes data sequence X = {x1, x2, . . . , xn} of length

n into reproduction data sequence X̂ = {x̂1, x̂2, . . . , x̂n}. Data vectors xi and reproduction

vectors x̂i are D-dimensional: xi = (xi,1, xi,2, . . . , xi,D) and x̂i = (x̂i,1, x̂i,2, . . . , x̂i,D).

During encoding each data vector xi is quantized into the closest vector x̂i ∈ V .

The main goal of the application of VQ to speech recognition is to code parameters with

less bits and in the same time without significant loss of speech recognition accuracy. Like

in case of SQ, the minimization of quantization distortion leads to the minimum of the word

error rate.

The distortionG characterizes the quantization error of the whole VQ-based coding system

on the given data:

G =
1

n

n
∑

i=1

g(xi, x̂i) (2.44)

where g(xi, x̂i) is the distance measure between data vector xi and its reproduction vector

x̂i; n is a number of data vectors.

One of the distance measures is the Euclidean distance which will be used in the following:

g(xi, x̂i) = (xi − x̂i)
2 =

D
∑

d=1

(xi,d − x̂i,d)
2 (2.45)

where d is a dimension index of vectors.

The set of all data vectors that quantized to one codebook vector vj is called cluster R(vj).

The vector quantizer assigns the reproduction vector x̂i ∈ V to each data vector xi. The

j-th cluster R(vj) for the vector quantizer consists of all xi for which x̂i = vj. In such a

way, the vector quantizer with the codebook of N vectors generates N clusters (see Figure

2.5).

Clustering is a memory saving coding technique: instead of the reproduction vectors only

the codebook and the pointers to the corresponding codebook vectors are stored in memory.

Each pointer occupies log2N bits for the codebook with N codewords. Therefore it is



26 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

only necessary to reserve n · log2N bits to store pointers for n reproduction vectors (see

Figure 2.6).

A VQ-based coding system attempts to find a vector quantizer yielding a desirable trade-off

in the compression rate and the distortion G. In an optimal vector quantizer the distortion

G in Equation 2.44 is minimized. The design of such a vector quantizer is an intractable

computational problem, because of the great variety of potential codebooks that could be

Figure 2.5: Clustering algorithm: the set of n vectors is broken onto N clusters according
to some clustering rule; each cluster is represented by a codebook vector; in the figure vec-
tors and their respective codebook vector within one cluster are filled by the same pattern

Figure 2.6: Representation of the reproduction data after coding; during decoding the
pointers (coded vectors) are substituted by their respective codebook vectors



2.2. FUNDAMENTALS OF SOURCE CODING 27

used. It is possible to make the design problem easier by attempting to find a locally optimal

quantizer instead. This is what the k-means algorithm does.

The k-means algorithm is an iterative algorithm for the vector quantizer design. The algo-

rithm starts with the quantization codebook of an arbitrary k-dimensional vector quantizer

and generates a new codebook on each iteration:

k-means VQ algorithm

1. Initialization: choose any N vectors from the training data as the initial codebook.

2. Nearest-neighbour search: for each training vector find the closest code word in the

current codebook and assign this vector to the corresponding cell (associated with the

closest codebook vector).

3. Mean-values update: update codebook vector in each cell using the mean-value of

the training vectors assigned to that cell.

4. Iteration: repeat steps 2 and 3 until the average distance falls below a preset threshold.

Although the above iterative procedure works well, it is advantageous to design an N-

vector codebook in stages [Linde et al 1980]. Firstly, the 1-vector codebook is designed.

Then using splitting technique on the codebook vectors initialize the search for a 2-vector

codebook, and continue the splitting process until the desired N-vector codebook is ob-

tained. This procedure is called the binary split algorithm:

Binary split VQ algorithm

1. Design a 1-vector codebook using k-means VQ algorithm; this is the reproduction

vector of the entire set of training vectors.

2. Double the size of the codebook by splitting each current codebook C:

v+
j = vj(1 + ǫ)

v−j = vj(1 − ǫ)

where ǫ is a splitting parameter (typically 0.01 ≤ ǫ ≤ 0.05), and j varies from 1 to

the current codebook size N .

3. Use k-means iterative algorithm to get mean vectors for the split codebook.

4. Iterate steps 2 and 3 until a codebook of size N is designed.



28 CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION FOR EMBEDDED DEVICES

During the iterative design of the codebook the mean vectors are updated in order to mini-

mize the average distortionG. The updated mean vector v̄j of the cluster of Nj data vectors

assigned to the same codebook vector vj is defined as shown below:

v̄j = arg min
vj

1

Nj

Nj
∑

i=1

g(xi, vj) (2.46)

where g(xi, vj) is the distortion measure of the quantizer.

The solution of the mean vector problem is highly dependent on the choice of the distortion

measure and can be obtained by solving the Equation 2.47:

∂G

∂v
= 0 (2.47)

For the Euclidean distance (L2 norm) the mean vector is the mean of the vector set:

v̄j =
1

Nj

Nj
∑

i=1

xi (2.48)

After computation of v̄j the mean vector is updated: vj = v̄j.

Like in case of scalar quantization, an N-level vector quantizer requires sufficient amount

n of training data vectors. In practice, the algorithm convergence condition is defined by

the rule of thumb:

10 ·N ≤ n (2.49)



Chapter 3

State of the art and objectives of the

research

3.1 Computation of emission probabilities

In the HMM based speech recognition system the emission probabilities are computed for

every state. Then these probabilities are used in Viterbi search in order to find the most

probable state sequence and the respective word or phrase.

The emission score bs(x) is computed for every HMM state s as shown in Equation 2.28

which is rewritten below:

bs(x) = min
m

{

cs,m +
D
∑

d=1

(xd − µs,m,d)
2 + const

}

(3.1)

These computations have to be performed for every time frame for all Gaussians. In order

to accelerate this time consuming process, several optimization techniques were developed.

One of them is a parameter tying approach for HMMs. The tying (using the same value

several times in a model) is often used to optimize the match between the number of param-

eters in the model and the limited amount of available acoustic training data. The objective

of tying is to provide both robust and reliably estimated models. If enough training data

is available, tying may lead to the loss of recognition performance. For example, semi-

continuous HMMs and discrete density HMMs have poorer recognition performance than

that of continuous density HMMs.

For speech recognition in embedded devices tying reduces memory consumption and com-

putation time. Tied HMM parameters require less memory, the tied parameters or the results

of their processing are usually stored in a look-up table or a codebook. In the following pro-

cessing it is only necessary to retrieve the values without new computations. Without tying

the same calculations are repeated several times, this results in a slower model evaluation.

29



30 CHAPTER 3. STATE OF THE ART AND OBJECTIVES OF THE RESEARCH

Thus, the main goal of HMM parameter tying in speech recognition in embedded systems

is to obtain such a tying structure that leads to an optimal trade-off between recognition

quality and limited system resources.

The classification of tying levels is presented in [Takahashi and Sagayama 1995]. Four

tying levels were defined:

• Tying on the model level is realized in most existing context-dependent HMMs.

The left and the right contextual environments having the same effect on the cen-

ter phoneme can share the same acoustic model.

• In the state level the states having similar feature distributions are tied across different

models. This allows to generate context-dependent models with smaller number of

HMM states. State tying is typically represented as full tying of states, several states

may be identical. This leads to reduction of complexity but also to degradation of

accuracy.

• In the distribution level similar Gaussian pdfs (with similar mean vectors and co-

variance matrices) are tied across different states. This approach is used in semi-

continuous HMMs. HMMs with tied Gaussians have increased robustness and re-

duced computational complexity [Lee et al 2000]. On the other hand, tied mixtures

HMMs (TMHMMs) introduce a high number of additional weights.

• Feature parameter tying level was proposed in [Takahashi and Sagayama 1995]. In

feature parameter tying hidden Markov models (FPTHMMs) Gaussian mean values

are merged into some representative mean values in each dimension by using the

clustering technique. The clustered mean values are tied to represent the mean vectors

of the distributions.

In [Takahashi and Sagayama 1995] it was experimentally shown that 16 representative val-

ues for feature parameter tying are enough for speech recognition without degradation of

accuracy comparing to continuous density HMM. Each Gaussian mean vector component

occupies only 4 bits as it can have only one of 16 different values. The FPTHMMs were

converted from CDHMMs using clustering.

In sub-state tying (SST) the states are only partially tied [Gu and Rose 2000]. State emis-

sion probabilities are computed in two stages, each mixture of Gaussians is represented by

the “mixture of (smaller) mixtures”. An intermediate level for tying is created, which is

positioned between the Gaussian tying of TMHMM and whole state tying which ties the

entire state mixture. The combined training and reduction (CTR) approach is combined

with SST. The CTR procedure starts with a large universal codebook of Gaussian densi-

ties. The reduction of codebook and the mixing coefficient matrix sizes is combined with



3.1. COMPUTATION OF EMISSION PROBABILITIES 31

parameter retraining. As reported in [Gu and Rose 2002], the considered approach gives

better recognition results comparing to TMHMMs and CDHMMs with the same number

of Gaussians. At the same time the total amount of memory is increased, this is a serious

disadvantage for speech recognizers for embedded systems. Another disadvantage of this

method is a complex data structure and a complex algorithm realization.

The further development of FPTHMMs is a stream distribution clustering HMM (SD-

CHMM) approach which was proposed in [Bocchieri and Mak 2001; Mak and Bocchieri

1998, 2001]. SDCHMMs allow 7 to 18-fold reduction in memory requirements and de-

crease of recognition time up to 30-60% without degradation of recognition accuracy.

In SDCHMM each HMM state is modeled by a mixture of Gaussian probability density

functions. The set of Gaussians is divided into streams. In particular case of 3-dimensional

(3-D) streams, the first stream contains the first three components (1st, 2nd and 3rd) of

all Gaussian mean vectors, the second stream contains 4th, 5th and 6th components, and

so on. All stream vectors within one stream are coded by means of vector quantization.

A small number of model parameters leads to low memory consumption and savings in

computations.

Possible values of stream vectors are limited in SDCHMMs by a codebook size, that is

why the emission computation may be faster than in the recognizer based on CDHMMs.

Firstly, all possible partial log likelihoods are computed for each stream for a current feature

vector. Then for each Gaussian it is only necessary to sum all partial log likelihoods. A

67% reduction of computation time for emission probabilities was achieved.

A small number of model parameters allows the direct training of SDCHMMs without in-

termediate CDHMMs with significantly less training data. In [Mak and Bocchieri 1998,

2001] the direct training of SDCHMM with a priori knowledge of the stream distribution

tying structure was investigated. Training uses the stream Gaussian tying structure (SGTS)

which defines how the stream distributions are clustered. The described training process

requires the information about pointers to codebook vectors for each stream. This infor-

mation can be obtained from the conversion of already trained CDHMMs to SDCHMMs,

or from speaker-independent SDCHMMs when speaker-specific SDCHMMs have to be

trained. The training of SDCHMM with a priori knowledge of the SGTS requires less

training data as the part of the information is encapsulated in SGTS. The disadvantage of

such direct training of SDCHMM is a necessity of a priori known SGTS. If this informa-

tion is not available then the intermediate CDHMM training is required. In the next step the

CDHMMs are transformed into SDCHMMs and SGTS is generated. Finally SDCHMM

direct training iterations are performed.

In [Komori et al 1995] another fast computation of emission probabilities for CDHMMs

using rough and detail models is proposed. This approach requires two HMM sets: one



32 CHAPTER 3. STATE OF THE ART AND OBJECTIVES OF THE RESEARCH

set contains rough HMMs, the second set contains the detailed HMMs. The proposed

algorithm estimates state observation probabilities using rough HMMs and then reestimates

most probable states using detailed HMMs. A reduction of computation time up to 70% is

reported. The disadvantage of this method is the necessity to keep two HMM sets (rough

and detailed) in computer memory.

In [Bocchieri 1993] a vector quantization for the fast computation of emission probabilities

is described. In this approach Gaussian models are considered to be statistically accurate

only if the input feature vector is near to the Gaussian mean vector. The Gaussian model

provides only poor approximation of the emission probability when the feature vector falls

on its distribution tail (outlier feature vector).

The traditional algorithm computes emission probabilities of all Gaussians. In the proposed

method all Gaussians are clustered into neighbourhoods. For every input feature vector

two subsets are defined. The first (small) subset consists of Gaussians whose emission

probabilities must be exactly computed. The second complementary subset consists of

Gaussians, such that the input vector falls on the tails of these Gaussians; the emission

probabilities of these Gaussians are approximated either by table look-up or by a constant.

In [Ortmanns et al 1997a; Sixtus et al 2000] the speed-up of computation of emission prob-

abilities is considered. The fast computation is based on the following approaches.

1. Parallel computation of vector distances using SIMD (single instruction, multiple

data) instructions of modern microprocessors [Kanthak et al 2000]. This leads to a

speed-up by more than a factor of two without any loss of recognition performance.

This approach is processor-dependent.

2. The preselection VQ method is similar to the VQ method proposed in [Bocchieri

1993]. All Gaussians of all states are clustered. The emission computation is divided

into two stages. In the first stage emission probabilities of cluster mean vectors are

computed. Then emission probabilities are computed exactly for Gaussians in most

closely placed clusters. Emission probabilities of other Gaussians which are placed

far from the current feature vector are approximated by a constant.

The next fast algorithm of computation of emission probabilities was investigated by Nak-

agawa and Horibe [Nakagawa and Horibe 2001], they proposed the following three ap-

proaches.

1. The first approach is similar to VQ based computation of emission probabilities [Six-

tus et al 2000], except that the emission probabilities of Gaussians in far placed clus-

ters are approximated by the emission probabilities of cluster mean vectors.



3.2. SEARCH 33

2. The likelihood computation is pruned on the way whenever the emission probabil-

ity becomes worse than a given threshold, and the emission probability is set to a

constant value.

3. In the third approach time domain skipping for stable frames is employed. If the

acoustic feature vector is similar to the feature vector from the previous time frame,

the computation of emission probabilities is skipped. The emission probabilities from

the past frame are reused.

A computation of emission probabilities using tree-structured pdfs can be considered as

the extension of fast computation of emission probabilities based on VQ [Watanabe et al

1994]. The principle of the method is that higher probabilities are computed more precisely

than lower probabilities. The method is based on a tree structure. The leaves of the tree

are pdfs, the nodes are clusters with corresponding to the cluster pdf. Each cluster consists

of clusters or pdfs. Firstly, the emission probabilities of the first level nodes are computed.

Then for the most probable nodes the computation is continued. The pdfs in not selected

nodes are approximated by cluster emission probabilities. The tree is designed using the

k-means clustering algorithm.

In [Watanabe et al 1994] a 3-level tree was investigated, the first level consists of 16 clusters

each of them connects to 16 further clusters in the second level. Totally all models contain

1500 pdfs. Trees with more than 3 levels are not suitable for embedded systems because of

coding difficulties and increasing number of cluster pdfs. Furthermore, the recognition per-

formance can degrade in case when each node “generates” less than 16 following clusters

or nodes.

3.2 Search

In state of the art speech recognition systems the Viterbi search algorithm is widely used.

This algorithm finds the most probable sequence of HMM states given a vocabulary and a

sequence of acoustic feature vectors. The Viterbi search is very efficient for the recognition

with small vocabularies. The computational complexity of the Viterbi search becomes too

high with the increase of the vocabulary size. The recognition system may not be able to

recognize the speech signal in real time. Several approaches were developed in order to

solve this problem.

One of the improvements of the Viterbi search that reduces the search space and the compu-

tation time is the beam search. The main idea of this algorithm is removing (or pruning) the

most improbable states from the consideration by the Viterbi decoder (see Section 2.1.7).

The states with the accumulated path probability lower than some pruning threshold are



34 CHAPTER 3. STATE OF THE ART AND OBJECTIVES OF THE RESEARCH

eliminated from further consideration. The pruning control can be implemented at the state

level or at the model level [Suontausta et al 2000]. In the state level pruning, the decision

of removing a state from the search space is done for each state independently of all the

other states. In the model level pruning, all the states of a phoneme model are removed

at the same time. The realization of the model level pruning is computationally cheaper

than the realization of the state level pruning. The pruning threshold may be updated every

time frame in order to keep the number of active phoneme models constant over the entire

utterance.

The representation of a phonetic lexicon as a tree structure accelerates the recognition speed

and saves the memory occupied by the lexicon [Ney et al 1992]. In a linear structure each

word is associated with a separate pronunciation form. In large vocabulary speech recog-

nition the linear lexicon is inefficient because the same phoneme sequences occur multiple

times. In case of the tree-structured lexicon the words with the same initial phoneme se-

quences share these phonemes. The shared phonemes are processed only once per frame,

thus less computations are required. During the search less memory is necessary to store

periodically updated information associated with states as well as less memory is required

to store the static lexicon structure.

The idea of the word stem based search is similar to the principle of a tree lexicon [Hauen-

stein 1993b]. In this approach each word is represented as a set of a word stem and a word

ending. First N phonemes of the words form the word stems (N = const) and the rest of

the word is the word-ending. In the structure the identical stems are merged, this makes the

word stem based structure similar to the tree structure. The important advantage of word

stems is the strictly regular structure: all word stems are of the same length, they can be

processed very fast and efficiently in embedded systems.

In the last years a transducer approach receives more attention in speech processing [FSM–

Internet site 2003; Ircing and Psutka 2003; Ljolje et al 1999; Mohri et al 2000; Mohri and

Riley 2002; Mohri et al 2002; Rojc and Kacic 2001]. The weighted finite-state transducer in

speech recognition is considered as a statically precompiled and optimized network based

on the following knowledge sources: language model, phonetic lexicon and phonetic mod-

els.

The transducers approach has several advantages. The recognition algorithm is very simple

and should only follow the transitions stored in tables. The language model is a part of the

transducer, that is why transitions between words are processed by the same algorithm as

transitions between states within words.

On the other hand, the precompiling steps usually take a high amount of memory for

LVCSR tasks. Memory requirements in case of the fully precompiled transducer network

with the language model is higher than in case of the tree structure. Full search space is

smaller than in case of the tree structure, but it is still very large in order to be implemented

as a static search space. The dynamic search space management is required for embedded



3.3. BASELINE SPEECH RECOGNIZER FOR EMBEDDED SYSTEMS 35

systems. The modification or the complete change of knowledge sources in fully precom-

piled transducer requires its re-compilation, in case of the tree structured lexicon any arbi-

trary language model may be used. See also [Kanthak et al 2002; Dolfing 2002] for detailed

comparisons of the transducers approach and the tree structured lexicon.

The search unit processes every speech frame regardless of the content of the speech sig-

nal. The processing of the silence signal with low noise may require a high amount of

memory and processing power. In some cases it can happen, that states in half of a lexicon

structure are active (not pruned) when the silence signal is processed. The frame dropping

approach may reduce the computational costs of the Viterbi search [Ahmed and Holmes

2004; Ramírez et al 2004; Surendran et al 2004; Marzinzik and Kollmeier 2002]. In this

approach a voice activity detection unit classifies each frame into speech or non-speech.

The speech frames are sent further to the Viterbi search unit, the non-speech frames are

dropped. Thus, the non-speech parts of the signal are not processed.

3.3 Baseline speech recognizer for embedded systems

In this work all research and experiments were performed using the VSR Very Smart Rec-

ognizer R© version 3.00 (VSR). VSR is a Siemens platform independent recognizer which

may be implemented in various embedded devices like mobile phones, smart devices and

PDAs because of the modest memory requirements and low processing power performance.

The recognizer has the architecture shown in Figure 2.1 (see also Section 2.1). The prepro-

cessing and feature extraction are described in Section 2.1.3.

The baseline recognizer employs a linear lexicon structure. Each word in the vocabulary

is modeled by a linear HMM. Digits are modeled by the whole word models, the amount

of states in a word HMM is proportional to the mean lengths of the word. For a general

recognition task word models are constructed as sequences of phonemes, each phoneme

is modeled by 3 states, each segment consists of 1 HMM state. The silence model has

only one state. Transitions are possible only into state itself and into the next state. In the

following VSR is explored in isolated word recognition mode, in this case silence states are

placed before and after each word.

The emission probabilities of the HMM states are modeled by the mixture of Gaussian pdfs.

Each Gaussian is defined by its 24-dimensional mean vector and the weight. The covariance

matrix is a diagonal matrix with equal elements on the diagonal, i.e. all Gaussians on all

dimensions have the same variance, this single value is specified for a whole HMM set.

The acoustic models trained for speech recognition in embedded devices have reduced

amount of parameters in order to allow recognition in real time. The phoneme based HMM

sets considered in this work have 4000 or 1200 Gaussians, the HMM set for digits recogni-

tion have 1200 Gaussians. The state level tying is used in order to get robust models with

such a low number of Gaussians. For comparison, state of the art speech recognizers used



36 CHAPTER 3. STATE OF THE ART AND OBJECTIVES OF THE RESEARCH

on workstations or designed for offline recognition may have up to 300 000 Gaussians. The

baseline recognizer uses a linear Viterbi beam search, the width of a beam is specified by a

fixed score threshold.

To benchmark the computational performance of the recognition system being realized in

an embedded device, an ARM RISC (Reduced Instruction Set Computer) microcontroller

was chosen, which is widely used in embedded systems [Astrov et al 2003; ARM 2002].

For this task the ARM Instruction Simulator (ARMulator) supplied with the ARM Devel-

oper Suite v1.2 was employed.

ARM cores come in two basic flavors, Von Neumann and Harvard, depending on the mem-

ory access architecture. Von Neumann cores (e.g. ARM7TDMI family) use a single bus

for both data and instruction accesses, while the Harvard cores (e.g. ARM9TDMI fam-

ily) have a separate data and instruction bus, thus allowing simultaneous data accesses and

instruction fetches.

Harvard cores are not normally employed in their raw state, but typically a cached variant

with a Harvard cache architecture and a Von Neumann memory interface is used. How-

ever, benchmarking raw Harvard cores using an ideal zero wait-states memory model can

be useful as an indication of the maximum achievable performance for a cached variant as-

suming 100% cache efficiency. The reference for the maximum performance was obtained

by benchmarking on ARM9TDMI uncached core using the default ARMulator model of

zero wait states 32-bit memory. Then the benchmarking on ARM920T (16 KB data and

16KB instruction cache) and on ARM940T (4KB data and 4KB instruction caches) was

repeated, for a system configured with the processor clock rate of f = 100 MHz, the bus

clock rate of fbus = 50 MHz, and a 32-bit memory with 100 ns non-sequential access time

and 20 ns sequential access time. The memory introduces 4 wait states for non-sequential

R/W and 1 wait state for sequential R/W access.

The measurements on the workstation were performed for recognition tasks with large test

sets (more than 1000 utterances), where measuring using ARMulator requires several days

for each task. The relative improvements achieved on the embedded platform may be ap-

proximately evaluated using the results obtained on the workstation. In the experiments

a two processor Pentium III-850 MHz workstation with 1 GB memory was used. The

recognition task uses only one processor, a Linux operation system was installed on the

workstation.

A typical low vocabulary command-and-control task may be realized using the baseline

recognizer with the processing power requirements listed in Table 3.1. The values are

shown for the isolated words recognition with a vocabulary of 30 words and a HMM set of

1200 Gaussians. The emission computations are thought to be performed on a DSP and not

listed here, on a microcontroller they would run in 0.08 . . . 0.12 real time factor.



3.3. BASELINE SPEECH RECOGNIZER FOR EMBEDDED SYSTEMS 37

computational requirements

computation task real time factor

ARM9TDMI ARM920T ARM940T

Viterbi search 0.083 0.091 0.135

emission computation 0.262 0.289 0.303

Table 3.1: Minimal computational requirements in real time factor for a baseline speech
recognizer with a 30-word vocabulary

parameter 4000 Gaussians 1200 Gaussians

Gaussians mean vectors 96 000 28 800

Gaussians weights 8 000 2 400

total 104 000 31 200

Table 3.2: Memory requirements for baseline acoustic models

vocabulary, words 495 1500 20 102 76 784

memory requirements (lexicon+search) 94 KB 301 KB 4.7 MB 16.2 MB

recognition speed, real time factor 0.12 0.26 2.50 -

Table 3.3: Memory consumption and required recognition time for the baseline search
algorithm

The memory consumptions by HMM sets are shown in Table 3.2. A HMM set with 4000

Gaussians requires about 104 KB of memory, a HMM set with 1200 Gaussians requires

less than 32 KB.

In Table 3.3 memory consumptions by the linear lexicon structures of different sizes and

the required search spaces for the baseline recognizer are presented. The average recog-

nition speed in real time factor is computed on the baseline workstation, the recognition

with 20 102 words vocabulary is executed 2.5 times slower than real time. The baseline

recognizer is unable to process vocabularies larger than 32 767 words, that is why no mea-

surement results are available for the vocabulary of 76 784 words.

This system performs well only for low vocabulary isolated speech recognition tasks. For

medium and large vocabulary isolated recognition tasks the emission computation and the

search algorithms have to be accelerated in order to be performed in real time. For large vo-

cabulary speech recognition the implementation of the recognizer in embedded devices re-

quires the reduction of memory consumption by acoustic model parameters, lexicon struc-

ture and search parameters.



38 CHAPTER 3. STATE OF THE ART AND OBJECTIVES OF THE RESEARCH

3.4 Objective of the research

The goal of this research is to developed highly efficient algorithms for doing real time iso-

lated large vocabulary speech recognition on today’s embedded platforms. Two algorithms

in a speech recognizer are mostly resource consuming: the computation emission probabil-

ities and the Viterbi search. These algorithms must be optimized in the baseline recognizer

for implementation in embedded devices. The following goals should be achieved:

1. Memory consumption by HMM parameters has to be reduced by 50%. HMM param-

eters for speech recognition in baseline recognizer occupy more than 100 kilobytes

of memory. The decrease of the memory consumption by a lexicon structure and

parameters of acoustic models may be achieved by applying a coding approach. In

such a way the optimal representation of the lexicon structure and acoustic models

can be reached.

2. Increase of WER caused by tying and coding of parameters of acoustic models must

be insignificant. A relative increase of WER less than 10% is acceptable, such in-

crease is almost “invisible” for users. Human could hardly notice the difference be-

tween 5% and 6% of the WER.

3. A fast emission computation algorithm has to be developed, it should be 2 times

faster than the baseline algorithm which is executed with 0.3 real time factor on the

baseline embedded device. The algorithm has to be able process coded acoustic

models directly, without decoding procedure.

4. A fast search has to be developed. The processing time for large vocabulary isolated

word recognition has to be decreased without any loss of recognition quality. A

recognition system with a vocabulary of 20 000 words has to be able to run in real

time. The search algorithm has to be able process the optimized lexicon structure.

5. Data structures and algorithms must be optimized for architecture of modern micro-

controllers used in embedded devices.



Chapter 4

Experimental setup

The main focus of this work is the speech recognition in embedded devices. Currently,

embedded recognizers are used in mobile telephones and automotive environments. In the

experiments the telephone and automobile spoken language databases with 8 kHz sam-

pling frequency are used (see Table 4.1). Best recognition performance is achieved if the

databases used for training of HMMs are collected in the same environment as the expected

environment of the speech recognition application. For detailed description of databases

see [SpeechDat-Web Site 2005; ELDA-Web Site 2005; ELRA-Web Site 2005].

In the “database” column the database names are listed. The databases MoTiV and Speech-

Dat Car [Draxler et al 1999] were recorded in vehicles. Several microphones were installed

in a car. The samples were recorded over close-talk and hands-free microphones under dif-

ferent driving conditions. In the “short name” column the short notation of databases and

languages are shown, these notations appear in description of experiments.

In Table 4.2 all used test sets are listed. The “test set” column contains the names of the test

sets. In the “database” column the short notations of speech databases are shown according

to Table 4.1. In the “vocabulary” column a type of speech (isolated or continuous) and

a vocabulary size in words is shown. For German digits recognition tasks SieTill-c_d,

SDI-1, SDI-2, SDII-c_d, SDII-mbl-c_d and SDCGE-is-c_d the vocabulary consists of 11

database language short name recording environment

VoiceMail German VM-DE fixed telephone network

SieTill German SieTill-DE fixed telephone network

SpeechDat German SD-DE fixed telephone network

SpeechDat II German SDII-DE fixed and mobile telephone network

SpeechDat Car German SDC-DE car

MoTiV (CSDC2) German MoTiV-DE car

SpeechDat II Spanish SDII-ES fixed telephone network

Table 4.1: Language databases used in experiments

39



40 CHAPTER 4. EXPERIMENTAL SETUP

test set database vocabulary speakers sentences words length

VM62 VoiceMail-DE isolated, 62 261 — 13600 8h 10m

SieTill-c_d SieTill-DE continuous, 11 356 13116 43092 11h 44m

SDI-1 SD-DE continuous, 11 87 226 1776 25m

SDI-2 SD-DE continuous, 11 73 173 1396 21m

SDII-c_d SDII-DE continuous, 11 488 1649 14862 3h 22m

SDII-mbl-c_d SDII-DE continuous, 11 185 527 5282 1h 11m

SDII-mbl-apl SDII-DE isolated, 83 1469 — 4391 4h 0m

SDCGE-is-c_d SDC-DE continuous, 11 37 877 4871 48m

MoTiV MoTiV-DE isolated, 26 230 — 2600 58m

AppW SDII-ES isolated, 32 500 — 1414 1h 21m

Spell SDII-ES continuous, 30 497 1427 9783 2h 30m

Digits SDII-ES isolated, 10 492 — 493 26m

Cities SDII-DE isolated 1387 — 1811 1h 41m

CarKit MoTiV-DE isolated 172 — 325 8m

Table 4.2: Description of test sets

words (German “two” is represented as “zwei” and “zwo”). The Spanish digits lexicon

consists of 10 words for the task Digits. The lexicon for spelling in Spanish consists of

30 spelling letters. In test sets VM62, SDII-mbl-apl, MoTiV and AppW vocabularies are

application words (command-and-control task). Tasks Cities and CarKit are tested with

different vocabulary sizes: 495, 1500, 20 102 and 76 784 words.

For the recognition tests already trained HMMs were used (see Table 4.3), the training

procedure is described in [Bauer 2001]. In “HMM ID” the names of HMM sets are shown

as they appear in experiments.

The “models” column shows the type of HMM sets. For general recognition tasks phoneme

based HMM sets are used. Such HMMs are called “generalists” because they may be used

for general recognition tasks. The “generalist” HMM sets allow the recognition of words

that have no training material: words must have only phonetic transcription in order to be

recognized, the vocabulary size can be increased without retraining.

HMM ID language models context segments Gaussians

TRAIN_S German phoneme-based nctx 118 4000

TRAIN_U German phoneme-based nctx 118 4000

TRAIN_BA German phoneme-based ctx 608 1200

TRAIN76 German whole word - 217 1257

TRAIN_V German whole word - 238 1199

TRAIN_Q Spanish phoneme-based nctx 85 4000

Table 4.3: Properties of HMM sets used in experiments



41

The second type of HMMs is a whole word models (“specialists”), these HMM sets are

trained for one special task with some low-size vocabulary, for example, digits. The vo-

cabulary is fixed and cannot be extended without new training. For example, TRAIN_V

HMM set was trained to recognize German digits only, TRAIN76 HMM set was trained to

recognize German digits and the “end” word (“Ende”).

“Nctx” in the “context” column means that phonemes are context-independent. “Ctx”

means that phonemes are context dependent, they have the influence of the previous phoneme

(left context) and the next phoneme (right context). Each phoneme HMM is modeled by

three segments, and each segment is modeled by a sum of several Gaussians. A context-

dependent HMM set has more different phonemes than a context-independent HMM set.

That is why the context-dependent HMM set has more segments and fewer Gaussian pdfs

per segment than the context-independent HMM set with the same total number of Gaus-

sians per set.

The total number of Gaussians is the main measure of the HMM set size. With the increase

of the HMM set size the recognition performance increases, but the memory requirements

becomes higher. HMM set size may reach several hundred thousands of Gaussians, but

in speech recognizers in embedded system the number of Gaussians is usually limited by

several thousands.



42 CHAPTER 4. EXPERIMENTAL SETUP



Chapter 5

Reduction of memory consumption of

HMM parameters

This chapter is dedicated to the problem of memory saving coding of HMM parameters.

The investigated coding algorithms are based on scalar and vector quantization approaches

which were explained in Sections 2.2.1 and 2.2.2.

5.1 Properties of HMM parameters

In the following the properties of HMM parameters are investigated. Each HMM state is

modeled by a sum of Gaussian distributions (see Equation 2.28). Gaussian m of state s is

represented in memory as a set of values:

(cs,m, µs,m,1, µs,m,2, . . . , µs,m,D) (5.1)

where cs,m is a Gaussian weight (penalty); µs,m,d is a component of dimension d of the

Gaussian mean vector µs,m; d is a dimension index of the Gaussian mean vector µs,m,

1 ≤ d ≤ D.

In VSR each Gaussian distribution has the following properties:

• cs,m = 0 if the state s is modeled by only one Gaussian; cs,m > 0, otherwise.

• Gaussian penalties are coded as 16-bit integers, usually 0 ≤ cs,m ≤ 4000.

• Each Gaussian mean vector component µs,m,d is a signed 8-bit integer value from

−127 to 127.

In the following considerations a set of allD-dimensional Gaussian mean vectors µs,m from

a HMM set will be often considered as a set of vectors without making a difference to which

43



44 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

state belong the mean vectors. In order to simplify the considerations all mean vectors are

reindexed and the new notation is introduced:

µ(i) = (µ(i),1, µ(i),2, . . . , µ(i),D)

where µ(i) is a reindexed Gaussian mean vector with index i, µ(i),d is a d-th component

of the mean vector µ(i). The new index is put into brackets in order to distinguish two

notations: µs,m and µ(i). As the result of reindexing, the set of mean vectors {µs,m} is

represented as {µ(i)} with totally n vectors.

In the following the set {µ(i)} is divided into D subsets. Each subset {µ(i),d} consists of n

Gaussian mean-vector components from dimension d, (1 ≤ d ≤ D).

The distribution of the scalars from dimension d can be approximated by normal distribu-

tion which is evaluated by the mean value µ̄d and variance σ2
d , these values are estimated

for each dimension d.

In [Bronstein and Semendjajew 1989] the computation of values µ̄d and σ2
d is described for

the normal distribution:

N(µ(i),d) =
1

(σd

√
2π)D

· exp

(

−(µ(i),d − µ̄d)
2

2σ2
d

)

(5.2)

The value µ̄d is estimated as shown in Equation 5.3:

µ̄d =
1

n

n
∑

i=1

µ(i),d (5.3)

The variance σd is estimated by:

σ2
d,1 =

1

n− 1

n
∑

i=1

(µ(i),d − µ̄d)
2 (5.4)

or through average error ηd (see Equation 5.6):

ηd =
∑n

i=1(µi,d−µ̄d)2√
n(n−1)

(5.5)

σ2
d,2 = π

2
η2

d (5.6)

The distribution of µd is close to normal distribution if the difference between the values

σ2
d,1 and σ2

d,2 obtained by Equations 5.4 and 5.6 is insignificant.

The entropy of Gaussian mean vector components is considered in the following. As it was

mentioned before, each mean vector component µ(i),d is an integer between −127 and 127,



5.1. PROPERTIES OF HMM PARAMETERS 45

i.e. µ(i),d is coded with the source alphabet S of q = 255 source symbols:

s1 = −127; s2 = −126; . . . s254 = 126; s255 = 127 (5.7)

For each dimension d the subsets {µ(1),d, µ(2),d, . . . , µ(n),d} are defined. For each of these

subsets the probabilitiesPj,d = P (µ(i),d = sj) of source symbols sj are computed as a num-

ber of events µ(i),d = sj divided by amount n of components in {µ(1),d, µ(2),d, . . . , µ(n),d}.

The entropy Hr,d(S) is computed as shown in Equation 5.8:

Hr;d(S) =

q
∑

j=1

Pj,d logr

1

Pj,d

(5.8)

where q denotes the base of source alphabet S = {s1, s2, . . . , sq}; Pj,d is the probability

of the source symbol sj in subset {µ(1),d, µ(2),d, . . . , µ(n),d}; r denotes the base of the code

alphabet. If r = 2 then H2,d(S) is a number of bits that are required to code one component

of a Gaussian mean vector.

The properties of Gaussian mean values are explored on the example of TRAIN_S HMM

set. Estimated mean values µ̄d of Gaussian mean vectors, variances σ2
d,1 and σ2

d,2 (obtained

by two different ways) and entropies H2,d(S) for dimension d are shown in Table 5.1. The

values estimated using the data from all of dimensions are shown in the last row of the table.

The distributions of Gaussian mean vector components µd for different dimensions are

similar, as the σ2
d values for various dimensions d are close to each other. This property is

explained by using LDA for generation of feature vectors. The first dimension is most im-

d µ̄d σ2
d,1 σ2

d,2 H2,d(S) d µ̄d σ2
d,1 σ2

d,2 H2,d(S)

1 3.4588 21.2715 22.7885 6.2716 13 0.8275 11.0441 10.8342 5.4931

2 -0.2462 19.5294 19.4272 6.2708 14 -0.2672 14.7016 14.1537 5.8820

3 3.2207 22.1543 22.4815 6.4835 15 -0.6830 11.7169 11.6118 5.5823

4 -2.3350 17.6524 17.7364 6.1618 16 -0.8590 11.7732 11.3780 5.5712

5 -0.4435 18.3374 18.3807 6.2023 17 -0.3902 8.7989 8.6228 5.1676

6 -1.4283 16.9659 17.0502 6.1105 18 -0.5025 11.1355 10.8894 5.5029

7 0.2435 15.6088 15.5777 5.9853 19 0.0823 11.0213 10.8640 5.4932

8 -0.6985 15.0703 15.0625 5.9247 20 0.1850 11.2290 10.7185 5.4962

9 -0.8405 14.3935 14.2672 5.8730 21 -0.6597 9.2380 8.9918 5.2279

10 -1.2928 13.5822 13.4359 5.7895 22 -0.1415 8.2123 7.7983 5.0470

11 -0.1713 12.0195 11.4809 5.5925 23 0.2258 10.7793 9.5925 5.3029

12 0.3678 11.2029 11.1415 5.5142 24 -0.1375 10.4194 10.2977 5.4126

ALL -0.1375 14.2419 13.5697 5.8570

Table 5.1: Characteristics of the Gaussian mean vectors in German TRAIN_S HMM set:
the entropy H2,d(S), the mean value µ̄d, the variances σ2

d,1 and σ2
d,2 (computed using two

different approaches) are estimated for each dimension d



46 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

portant, and it has the highest entropy and the highest variance [Hauenstein and Marschall

1995; Bauer 2001, 2004].

All mean vector components are coded in VSR with 8 bits. The results in H2,d(S) columns

show, that mean vector components may be lossless coded with 6 or 7 bits. The results from

Table 5.1 are obtained for German TRAIN_S HMM set. The results for other HMM sets

and for other languages are similar. Since the characteristics of all dimensions are similar, it

could be possible to apply the same coding technique with similar parameters or codebooks

in order to store the mean values compactly.

5.2 Lossless coding of HMM parameters

Many efficient lossless compression algorithms [DataCompression-Web Site 2002] were

developed: from classical algorithms such as Huffman coding [Huffman 1952; Ohm 1995],

arithmetic coding [Witten et al 1987; Pennebaker et al 1988], Lempel-Ziv algorithm [Nel-

son 1989; Ziv and Lempel 1977; Welch 1984], simpler byte pair encoding (BPE) [Shibata

et al 2000; Manber 1997] and run-length encoding (RLE) [Maniscalco 2001] to very com-

plex algorithms used in commercial compression software. The common problem of all

compression algorithms is a high processing power consumption for decompression algo-

rithm. The RLE and BPE algorithms are very simple but they are inefficient for the HMM

parameters compression task.

Different lossless compression algorithms were tested. A test data consists of 4000 Gaus-

sian mean values from German TRAIN_S HMM set. Mean value components were coded

as one byte integers. The HMM set of 4000 24-dimensional mean vectors results to a

96000-byte binary file. Table 5.2 demonstrates the results of compression tests.

The first column shows the names of the compression programs. In the second column the

lengths in bytes of compressed files are shown. The third column shows the reduction of

compression algorithm memory consumption, bytes reduction, %

no compression 96000 baseline

Shannon’s limit 70283 26.8

gzip for UNIX 72129 24.9

ice for DOS 72176 24.8

zip for UNIX 72249 24.7

lha for DOS 72712 24.3

arj for DOS 73693 23.2

rar for Windows 74133 22.8

zoo for DOS 91114 5.1

Table 5.2: Comparison of different lossless coding algorithms on a HMM parameters com-
pression task



5.3. MEMORY REDUCTION FOR GAUSSIAN MEAN VECTORS 47

memory consumption of HMM set files.

In the experiments most of the tested compression programs achieve memory reduction of

about 25% which is close to the maximum memory reduction estimation from the Shan-

non’s noiseless coding theorem (26.8%), see Section 2.2. This limit was not reached be-

cause the coded file includes also some extra information, e.g. file format, compressed file

name, etc. The 25% of reduction of memory consumption is still not enough to reach the

objective of 50% memory reduction.

Even in case of very efficient compression, the decoding can hardly be implemented as a

fast “on the fly” decompression algorithm because of its very high computational complex-

ity. The decoding of random entry is hard without complete decompression or decompres-

sion from beginning of the file. The complete decompression of the HMM set and storing in

RAM before the recognition process does not make sense for ASR in embedded devices be-

cause it would require memory for compressed HMMs as well as for decompressed HMMs.

5.3 Memory reduction for Gaussian mean vectors

5.3.1 Streams approach for HMM

To reduce memory consumption by HMM parameters the lossy coding based on VQ can

be applied, this is done in case of semi-continuous HMMs where Gaussian mean vectors

are quantized. The recognition accuracy of a recognition system based on semi-continuous

HMM approach is lower than of a system based on CDHMMs. To improve the accuracy

the VQ is applied to smaller units obtained by the streaming technique.

The set of Gaussian mean vectors in a HMM set is represented as shown below:

∥

∥

∥

∥

∥

∥

∥

∥

∥

µ(1),1 µ(1),2 . . . µ(1),D

µ(2),1 µ(2),2 . . . µ(2),D

. . . . . . . . . . . .

µ(n),1 µ(n),2 . . . µ(n),D

∥

∥

∥

∥

∥

∥

∥

∥

∥

(5.9)

where n is a number of all Gaussians in all states, D is a dimensionality of Gaussian mean

vectors, µ(i),k is the k-th component of the i-th Gaussian mean vector.

This set of Gaussian mean vectors is divided into K subsets which are called “streams”.

The first stream is a subset of the first D1 components of all n Gaussian mean vectors, the

second stream is a subset of the nextD2 components of all nGaussian mean vectors, and so

on. An example of the definition of three streams of equal dimensionality is shown below:



48 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

∥

∥

∥

∥

∥

∥

∥

∥

∥

µ(1),1 . . . µ(1),Dk

µ(2),1 . . . µ(2),Dk

. . . . . . . . .

µ(n),1 . . . µ(n),Dk

∥

∥

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

∥

∥

∥

µ(1),Dk+1 . . . µ(1),2Dk

µ(2),Dk+1 . . . µ(2),2Dk

. . . . . . . . .

µ(n),Dk+1 . . . µ(n),2Dk

∥

∥

∥

∥

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∥

∥

∥

∥

µ(1),2Dk+1 . . . µ(1),D

µ(2),2Dk+1 . . . µ(2),D

. . . . . . . . .

µ(n),2Dk+1 . . . µ(n),D

∥

∥

∥

∥

∥

∥

∥

∥

∥

(5.10)

where K = 3 is the number of streams and Dk = D/K = D/3 is the dimensionality of

each stream.

In general case, the streams could be of different dimensionalities. In the following the

special case is considered when all of the streams are of the same size. Thus, K streams of

the same dimensionality Dk = D/K are defined so that the first stream consists of first Dk

dimensions, the second stream consists of the second Dk dimensions, and so on. After that

the observation probabilities (see Equation 2.12) are calculated as shown in Equation 5.11.

Bs(x) =

Ms
∑

m=1

Cs,m

K
∏

k=1

N(xk, µs,m,k, σ) (5.11)

where N(xk, µs,m,k, σ) is a Gaussian stream probability from stream k with the diagonal

covariance matrix of dimension Dk where all elements on the main diagonal are equal to

σ2; xk = (x1, . . . , xDk
) is a stream feature vector from stream k; µs,m,k is a Gaussian stream

mean vector m of state s from stream k.

The graphical representation of streams is shown in Figure 5.1 where Gaussian mean vec-

tors and their respective stream vectors are filled by the same pattern.

Figure 5.1: Division of Gaussian mean vectors set into three streams



5.3. MEMORY REDUCTION FOR GAUSSIAN MEAN VECTORS 49

5.3.2 Coding approach for SDCHMM

Now the clustering (see Section 2.2.2) and streaming techniques can be combined together

and applied to HMM-based speech recognition. The set of stream vectors of the same

dimensionality is obtained from the Gaussian mean vectors. Then the clustering is applied

to each stream, and the codebooks for each stream are generated. All stream vectors are

substituted by codes (pointers to codewords in the codebook). This combined approach

reduces the memory consumption because codes require less bits to be stored than the

stream vectors do.

The memory consumption in bits for the source CDHMM is shown in Equation 5.12:

mem = n ·D · size (5.12)

where n is a number of Gaussians; D is a dimensionality of Gaussians; size is a size of

numerical representation of a Gaussian component in bits.

The memory requirement in bits for the coded SDCHMM is defined as the sum of the

memory for the code vectors (K ·n·log2N) and the memory for the codebooks (K ·N ·size):

mem′ = K · n · log2N +K ·N · size (5.13)

where K is a number of streams, all stream have the same dimensionality Dk = D/K;

n is a number of Gaussians in the HMM set; N is a number of codebook vectors in each

codebook; log2 N is the number of bits that are necessary to code a codebook vector; size

is a size of numerical representation of a Gaussian mean vector component in bits.

5.3.3 Shared codebook approach for SDCHMM

In the considered SDCHMMs the stream structure is very simple (see Figure 5.2) and could

be easy implemented in embedded systems. The fact that the streams are of the same size

suggests the new approach with only one shared codebook for all streams [Astrov 2002;

Varga et al 2002; Astrov et al 2003]. The shared codebook approach requires that the

stream vectors satisfy the following two conditions: the streams have to be of the same

dimensionality and the distributions of the stream vectors in all streams have to be similar.

The similarity of the distributions of the stream vectors was shown in Section 5.1.

The SDCHMMs with shared codebook is obtained as it is shown in Figure 5.3. Firstly,

Gaussian mean vectors are divided intoK streams of equal dimensionalityDk. The merged

stream is composed from all of the stream vectors of all streams. This merged stream is

clustered, and the codebook is created. Then each stream vector is substituted by a pointer

to the shared codebook.



50 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

Figure 5.2: Generation of shared codebook for SDCHMM set in case of three streams

Figure 5.3: Representation of a SDCHMM set with shared codebook in case of three
streams

5.4 Memory reduction for Gaussian weights

Besides the mean vectors, the Gaussian weights can also be compressed. In common

HMMs considered in this work, the Gaussian weights cs,m satisfy the condition 0 ≤ cs,m ≤
4000. Only 12 bits (log2 4000 ≃ 12) are needed to code the information for one weight. The



5.4. MEMORY REDUCTION FOR GAUSSIAN WEIGHTS 51

memory consumption in bytes for Gaussian weights is then estimated by Equation 5.14:

mem′
weights =

12

8
n = 1.5n (5.14)

where n is a number of Gaussians in all states.

The task is to code weights by 8-bit integers, as such coding is easy to implement in embed-

ded speech recognition systems. This problem can be solved using several coding schemes

considered in the following.

“Square-root” coding

The recognizer calculates Gaussian scores (log likelihoods) according to Equation 2.28. Us-

ing the fact that the differences (xd−µs,m,d)
2 are in the power of two, the following heuristic

was investigated. To obtain 50% memory reduction it is necessary to code 16-bit values of

cs,m with 8 bit integers: 8 bits are enough to code integer value ĉs,m = int
[√
cs,m

]

. Thus,

only one integer multiplication is required to decode the Gaussian weight. A Gaussian

weight code occupies only 1 byte instead of 2 bytes. The required memory for all Gaussian

weights in bytes is then:

mem′
weights = n (5.15)

The memory reduction ratio in this case is exactly 50% for any HMM set:

ratioweights =
mem′

weights

memweights

=
n

2n
= 0.5 (5.16)

Scalar quantization

In the second approach the scalar quantization (see Section 2.2.1) is employed for coding

of Gaussian weights. A codebook of N = 256 2-byte values is used, thus, every Gaussian

weight code occupies only 1 byte.

With the codebook of N codewords the required memory in bytes is shown in Equation

5.17:

mem′
weights = n+ 2N (5.17)

where 2N is the extra memory in bytes for the codebook.

The memory reduction ratio in this case is:

ratioweights =
mem′

weights

memweights

=
n+ 2N

2n
= 0.5 +

N

n
(5.18)

For a typical case, N = 256, n = 4000, ratioweights = 0.564.



52 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

Weight difference coding

In the third approach the differences between two Gaussian weights are coded. The se-

quence of Gaussian weights cs,1, cs,2, . . . , cs,m within one state s could be coded recursively,

as it is shown in Equation 5.19:

cs,i+1 = cs,i + αs · ∆cs,i (5.19)

The next weight is calculated from the previous by adding the displacement αs ·∆cs,i. Val-

ues cs,i are coded with 16 bits and ∆cs,i with 8 bits. The integer multiplier αs is needed

because 8 bits could not be enough to code the difference cs,i−cs,i−1 . To code each state s of

HMM it is necessary to define instead of set ofmGaussian weights {cs,1, cs,2, cs,3, . . . , cs,m}
the following set: {cs,1, αs,∆cs,1, ∆cs,2, . . . ,∆cs,m−1}. Gaussian weights cs,i were 16-bit

integers before the coding. In the new coded set only cs,1 is a 16-bit integer, values αs and

differences ∆cs,i are 8-bit integers. The maximum rounding error of Gaussian weights in

current state is αs/2, and when αs = 1 the rounding error is equal to zero.

This approach is especially efficient when the differences ∆cs,i are always positive or al-

ways negative, i.e. Gaussians within one prototype are sorted in ascending or descending

order of their weights. As it will be shown in Section 6.3 the ascending order decreases

also emission computation time.

After coding, the first weight code in each state occupies 3 bytes (2 bytes for cs,1 and one

byte for αs). All other weight codes ∆cs,i in this state occupy only 1 byte. The required

memory in bytes is then:

mem′
weights = n + 2S (5.20)

where S is a number of states.

The memory reduction ratio in this case is:

ratioweights =
mem′

weights

memweights

=
n+ 2S

2n
= 0.5 +

S

n
(5.21)

For a typical case, S = 118, n = 4000, ratioweights = 0.530.

Modified weight difference coding

It is possible to decrease the memory consumption further by selecting αs equal for every

state:

αs = α (s = 1, 2, . . . , S) (5.22)



5.5. EXPERIMENTS 53

Then it is necessary to store α only once for HMMs set. The memory consumption in bytes

is then:

mem′
weights = n + S + 1 (5.23)

where n − S bytes are required to code the differences ∆cs,i; 2S bytes are required for

cs,0 components; and one byte is required for α. The memory reduction ratio in this case is:

ratioweights =
mem′

weights

memweights

=
n + S + 1

2n
= 0.5 +

S + 1

2n
(5.24)

For a typical case, S = 118, n = 4000, ratioweights = 0.515.

The recognition error rates may be slightly higher in this modification than in the weight

difference coding with different αs.

5.5 Experiments

5.5.1 SDCHMM with 1-D streams

For 1-D streams a codebook with 16 different vectors should be used in order to reach 50%

memory reduction. Each 8-bit component of Gaussian mean vectors is coded with 4 bits,

i. e. represented by a 4-bit pointer.

Each 24-dimensional Gaussian mean vector is divided into 24 streams. The first stream

consists of the first components of mean vectors, the second stream consists of only second

components, etc. After that the streams are merged leading to one large array of stream

vectors. Scalar quantization is applied and 16 codebook vectors are defined.

The distribution of the stream vectors was investigated in the following way (see also Sec-

tion 5.1): a discrete function F was defined which is the number of counts of the values

x of the stream vectors µ. Since the stream vectors are 8-bit integers the value x is in the

range −128 ≤ x ≤ 127.

In Figure 5.4 it can be observed that F (x) = 0 for −128 ≤ x ≤ −77 and 73 ≤ x ≤ 127.

This is due to the properties of the acoustic models. For the coding therefore only the values

µi = x with F (x) > 0 are considered. In this interval the set of 16 codebook vectors has to

be found.

Let xmin and xmax denote the limits of an interval in a way that:

{

F (xmin) > 0,

F (x) = 0, x < xmin

(5.25)

{

F (xmax) > 0,

F (xmax) = 0, x > xmax

(5.26)



54 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

Figure 5.4: Occurrence diagram of Gaussian mean vectors set plotted for one dimension

In particular case shown in Figure 5.4 xmin = −76, xmax = 72. The interval [xmin . . . xmax]

is split into N sub-intervals:

Ij = [yj−1...yj], j = 1, . . . ., N

xmin = y0 ≤ y1 ≤ ... ≤ yN−1 ≤ yN = xmax

(5.27)

For each cluster one codebook vector has to be found. In order to obtain clusters and

corresponding codebook vectors for the 1-byte streams the following approaches were in-

vestigated.

Uniform SQ: The interval [xmin . . . xmax] was split into N intervals Ij of the same size:

Ij =

{

[yj−1, yj), j = 1, 2, . . . , N − 1

[yN−1, yN ], j = N
(5.28)

yj − yj−1 =
xmax − xmin

N
= const (5.29)

Each stream vector from cluster Ij is mapped into a codebook vector vj :

vj = int

[

yj−1 + yj

2

]

(5.30)



5.5. EXPERIMENTS 55

In order to represent more frequent values with low distortion two scalar quantizers are de-

veloped. Intervals Ij were defined by the Lloyd-Max SQ. Two algorithms of the definition

of codebook vectors are considered.

Lloyd-Max SQ, approach A (Lloyd-a): each codebook vector vj is chosen to be the

mean values of the interval Ij (see Equation 5.31). This is most close to the standard Lloyd-

Max quantizer described in Section 2.2.1.

vj = int

[

yj−1 + yj

2

]

(5.31)

Lloyd-Max SQ, approach B (Lloyd-b): vj is a centroid of the interval Ij , it is defined

such that amounts of stream vectors in interval [yj−1, vj) and [vj , yj, ) are equal.

Tests were made with these three coding approaches “uniform”, “Lloyd-a” and “Lloyd-b”.

HMM parameters are coded using SDCHMM approach with 1-D streams and the corre-

sponding codebook. The codebook has 16 entries, thus, each stream vector is coded with 4

bits.

The memory reduction approach was tested on the following data (see Chapter 4 for detailed

description):

• speech databases: SD-DE, SDII-DE, SieTill-DE, MoTiV-DE;

• test sets: SDI-1, SDI-2, SDII-mbl-apl, SDII-mbl-c_d, MoTiV, SieTill-c_d;

• HMM sets: TRAIN_S, TRAIN_U, TRAIN_V and TRAIN76.

The tasks were defined with these databases and HMMs, the results of recognition exper-

iments are shown in Table 5.3. In the first column the task numbers are listed for further

reference. In the next column combinations of test sets and HMM sets are shown; tasks 6 to

10, which were done on the MoTiV database, were performed with and without the spectral

subtraction noise reduction from feature extraction module (”with NR” and “without NR”).

Each task was tested without any coding and with the three coding approaches “uniform”,

“Lloyd-a” and “Lloyd-b”. The memory consumption in bytes for each coding scheme is

represented in the “memory” column. Word error rates are shown in the last five columns.

The insertion, deletion and substitution rates are listed in columns “ins”, “del” and “subst”

respectively; WER is computed as a sum of all these error rates. The relative increase of

WER is shown in the last column, a positive value denotes that the WER was increased

in comparison to the recognition with the baseline HMM set, a negative value denotes the

decrease of WER.



56 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

task test set coding memory word error rate [%] increase of

and HMM scheme [bytes] subst del ins WER WER, [%]

no coding 28776 1.7 0.3 1.0 3.0

1 SDI-1 uniform 14404 1.8 0.2 1.3 3.3 7.4
TRAIN_V Lloyd-a 14404 2.2 2.5 0.3 5.0 64.8

Lloyd-b 14404 2.0 0.3 1.4 3.7 20.4

no coding 28776 1.4 0.5 0.4 2.4
2 SDI-2 uniform 14404 1.4 0.5 0.8 2.7 15.2

TRAIN_V Lloyd-a 14404 1.8 1.6 0.2 3.7 54.5
Lloyd-b 14404 1.4 0.4 0.7 2.6 5.3

no coding 96000 6.3 0 0 6.3
3 SDII-mbl-apl uniform 48016 7.4 0 0 7.4 17.4

TRAIN_S Lloyd-a 48016 7.5 0 0 7.5 19.2

Lloyd-b 48016 7.0 0 0 7.0 10.9

no coding 96000 4.8 0 0 4.8

4 SDII-mbl-apl uniform 48016 5.4 0 0 5.4 13.8
TRAIN_U Lloyd-a 48016 6.1 0 0 6.1 27.1

Lloyd-b 48016 4.9 0 0 4.9 3.3

no coding 28776 2.1 2.0 0.9 4.9
5 SDII-mbl-c_d uniform 14404 2.3 1.3 1.5 5.1 4.2

TRAIN_V Lloyd-a 14404 3.4 9.0 0.2 12.7 156.7

Lloyd-b 14404 2.3 1.5 1.4 5.1 4.2

no coding 96000 36.5 0 0 36.5

6 MoTiV uniform 48016 35.9 0 0 35.9 -1.7
TRAIN_S Lloyd-a 48016 50.3 0 0 50.3 37.7

without NR Lloyd-b 48016 34.8 0 0 34.8 -4.7

no coding 96000 21.1 0 21.1
7 MoTiV uniform 48016 21.3 0 0 21.3 0.7

TRAIN_S Lloyd-a 48016 31.8 0 0 31.8 50.8
with NR Lloyd-b 48016 20.1 0 0 20.1 -4.9

no coding 96000 37.2 0 0 37.2
8 MoTiV uniform 48016 37.0 0 0 37.0 -0.6

TRAIN_U Lloyd-a 48016 52.3 0 0 52.3 40.7

without NR Lloyd-b 48016 35.8 0 0 35.8 -3.8

no coding 96000 20.8 0 0 20.8

9 MoTiV uniform 48016 21.4 0 0 21.4 2.6
TRAIN_U Lloyd-a 48016 32.9 0 0 32.9 57.9
with NR Lloyd-b 48016 20.2 0 0 20.2 -3.1

no coding 28776 1.6 1.7 0.3 3.5
10 SieTill-c_d uniform 14404 1.7 1.3 0.4 3.4 -4.3

TRAIN_V Lloyd-a 14404 3.6 8.7 0.1 12.4 249.2
Lloyd-b 14404 2.2 1.7 0.5 4.4 23.7

no coding 30168 1.2 0.1 0 1.3
11 SDII-c_d uniform 15100 1.5 0 0 1.6 20.1

TRAIN76 Lloyd-a 15100 3.6 1.0 0 4.6 248.3

Lloyd-b 15100 1.3 0 0 1.3 0

no coding 30168 2.1 2.0 0.9 4.9

12 SDII-mbl-c_d uniform 15100 2.3 1.3 1.5 5.1 4.2
TRAIN76 Lloyd-a 15100 4.5 11.7 0.3 16.5 233.7

Lloyd-b 15100 3.3 2.0 1.5 6.7 36.0

Table 5.3: Recognition results with the SDCHMM with 1-D streams



5.5. EXPERIMENTS 57

Figure 5.5: Relative change of WER of coding approaches on 12 different tasks

The results of the tests are also shown in Figure 5.5. 50% reduction of memory consump-

tion by Gaussian mean vectors was reached on every task with every investigated coding

approach.

The “Lloyd-a” coding always leads to highest increase in word error rates. “Lloyd-b”

and “uniform” coding schemes lead to good results on most of the tasks. The “Lloyd-

b” approach has relative increase of WER more than 10% on tasks 1, 3, 10 and 12, on tasks

6, 7, 8 and 9 the recognition accuracy is increased.

The “uniform” coding on tasks 1, 10 and 12 leads to a significantly better result than “Lloyd-

b” coding, on tasks 2, 3, 4 and 11 it does not meet the target of a relative increase in word

error rates of less than 10%.

As it has been observed in tasks 6, 7, 8 and 9 the HMMs coded by “Lloyd-b” algorithm lead

to lower WERs than the baseline HMMs. The TRAIN_U and TRAIN_S HMMs are trained

using telephone speech databases, but the recognition was performed on MoTiV database

recorded in car environment. Thus the coding may bring some low improvement in case of

mismatch of training and test task environment.

None of the 1-D stream coding approaches reached the goal of relative increase of WER

less than 10% on all tasks. The increase of the codebook size to 32 or 64 codewords will

improve the recognition performance, but the memory reduction will be less than 50%. The

multidimensional streams may solve this problem, they will be considered in the following.



58 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

5.5.2 SDCHMM with multidimensional streams

In the following the memory reduction approaches described in Section 5.3.1 were ex-

perimentally investigated. Speech recognition tests were made for German and Spanish

languages, see Chapter 4 for detailed descriptions of tasks and HMM sets. The results of

experiments are shown in Table 5.4. German TRAIN_U HMM set was tested with SDII-

mbl-apl and MoTiV tasks, “NR” in MoTiV NR task denotes that the noise reduction in

preprocessing was used. AppW, Spell and Digits tasks were tested with Spanish TRAIN_Q

HMM set. SDI-1, SDI-2, SDII-mbl-c_d and SieTill-c_d tasks were tested with German

TRAIN_V HMM set.

German TRAIN_U HMM

stream codebook memory WER [%]

dim type bytes % SDII-mbl-apl MoTiV MoTiV NR

baseline 96000 100% 4.8 rel% 37.2 rel% 20.8 rel%

4 shared 25024 26.1% 6.2 +30.1 34.8 -6.5 20.7 -0.4

4 independent 30114 31.4% 6.0 +18.6 35.8 -3.8 20.8 +0.2

3 shared 32768 34.1% 4.9 +1.9 37.3 +0.4 21.1 +1.5

3 independent 38144 39.7% 5.5 +13.8 37.6 +1.2 21.2 +1.8

2 shared 48512 50.5% 4.9 +2.9 36.2 -2.6 20.7 -0.4

2 independent 54144 56.4% 4.7 -1.4 37.4 +0.5 20.8 0

1 shared 48016 50.0% 4.9 +3.3 35.8 -3.8 20.2 -3.1

Spanish TRAIN_Q HMM

stream codebook memory WER [%]

dim type bytes % AppW Spell Digits

baseline 96000 100% 0.8 rel% 31.7 rel% 1.6 rel%

4 shared 25024 26.1% 0.9 +18.2 34.2 +8.0 2.0 +25.0

4 independent 30144 31.4% 1.6 +100 35.1 +10.7 1.4 -12.5

3 shared 32768 34.1% 0.9 +18.2 33.5 +5.6 1.6 0

3 independent 38144 39.7% 1.0 +27.3 32.7 +3.1 1.6 0

2 shared 48512 50.5% 0.7 -9.1 32.8 +1.1 1.8 +12.5

2 independent 51444 56.4% 0.7 -9.1 31.7 0 1.8 +12.5

1 shared 48016 50.0% 1.1 +36.4 32.0 +0.9 1.4 -12.5

German TRAIN_V HMM

stream codebook memory WER [%]

dim type bytes % SDI-1 SDI-2 SDII-mbl-c_d SieTill-c_d

baseline 28776 100% 3.0 rel% 2.4 rel% 4.9 rel% 3.8 rel%

4 shared 8218 28.6% 3.2 +5.6 2.4 0 5.5 +11.5 4.0 +6.4

4 independent 13378 46.4% 3.1 +3.7 2.3 -3.0 5.0 +2.3 3.9 +2.4

3 shared 10360 36.0% 3.1 +1.9 2.5 +6.1 5.4 +9.2 4.0 +4.8

3 independent 15736 54.7% 3.1 +3.7 2.4 0 5.0 +2.3 3.9 +2.8

2 shared 14900 51.8% 2.9 -1.9 2.1 -12.1 4.9 -0.8 3.8 +1.2

2 independent 20532 73.2% 3.0 0 2.4 0 5.0 +2.3 3.8 -0.2

1 shared 14404 50.1% 3.7 +20.4 2.6 +5.3 5.1 +4.2 4.4 +23.7

Table 5.4: Test results with multidimensional streams



5.5. EXPERIMENTS 59

In the first column the stream dimensionalities are shown. Preliminary tests have shown

that streams of dimension more than 4 with a codebook size of 256 vectors lead to high

degradation of recognition rate. In the second column the types of codebook (shared or

independent for each stream) are shown. The codebooks have 256 vectors for 2-D, 3-D and

4-D streams, and 16 vectors for 1-D streams with “Lloyd-b” coding scheme.

In the third column the required memory to store Gaussians mean vectors with codebooks

is shown. The last columns show WERs for different recognition tasks. Values for the

baseline are obtained by doing the recognition with continuous density HMMs. The mem-

ory size is shown in bytes and in percents relative to the baseline. For the SDCHMMs the

WERs are shown as absolute values and relative differences to the baseline WER.

As can be observed in Table 5.4, the recognition results of SDCHMMs with independent

and shared codebooks are almost similar. Independent codebooks require more memory

as shared codebooks. The smaller the HMM the more memory (relatively) is required for

separate codebooks.

In case of TRAIN_V HMM set the memory consumption of SDCHMMs with 2-D streams

and independent codebooks is 41% higher than that of SDCHMMs with 2-D streams and

the shared codebook. The SDCHMMs with 2-D streams and the shared codebook occupies

less memory and has better recognition performance than the SDCHMMs with 3-D streams

and independent codebooks.

In all SDCHMMs the codebooks have 256 vectors because this leads to 1-byte indexes. The

indexes are thus easy to handle. For multidimensional streams and constant codebook size

(256 vectors) the quantization error increases with the increase of dimensionality, and thus

the higher increase of WER can be expected. In the results shown in Table 5.4 the relative

increase of WERs in 2-D streams SDCHMMs with shared codebook is less than 12.5%.

3-D streams approach leads to maximum 18.2% increase of WER. 4-D streams approach

leads to 30.1% increase of WER.

The increase of WER of feature parameter tying HMMs (1-D stream SDCHMMs) with

16 codebook vectors is higher than the WER increase of 2-D streams SDCHMMs, as the

precision of scalar quantization is less than that of vector quantization. The MoTiV, MoTiV

NR, Spell and Digits tasks are exceptions. MoTiV and MoTiV NR tasks are “mismatch”

tasks with different training and test conditions, thus higher distortions of acoustic models

may lead to a better match to the test data. The improvement of the recognition accuracy

occurs mostly on tasks with high baseline WERs.

The AppW and Digits tasks for Spanish TRAIN_Q HMM set have high relative increase

of WER, but these results are not relevant as in AppW task only 11 of 1414 words were

recognized wrongly, in Digits task only 8 of 483 words were recognized wrongly. The

wrong recognition of only one extra word in Digits task leads to increase of WER up to

12.5% relatively.



60 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

5.5.3 Reduction of memory consumption by Gaussian weights

The approaches described in Section 5.4 are tested experimentally. In Table 5.5 the test re-

sults for 4 different coding techniques for Gaussian weights are shown: SQ denotes scalar

quantization approach with codebook of 256 codewords; SQRT denotes “square root” cod-

ing approach, “deviation-1” denotes the coding technique of weight differences; “deviation-

2” denotes the modified weight differences coding approach. The tests were performed

using TRAIN_V, TRAIN_U and TRAIN_S HMM sets (see Chapter 4 for detailed descrip-

tion).

In the first column the combinations of HMM sets and test sets are shown. The experiments

with the MoTiV task were performed with and without the noise reduction from feature

extraction module (”MoTiV NR” and “MoTiV”). The “weights memory” column shows

the memory consumption in bytes by Gaussian weights (including codebook, if necessary)

and the relative memory consumption, the baseline is the HMM set without any coding.

Word error rates are shown in the last five columns. The insertion, deletion and substitution

rates are listed in columns “ins”, “del” and “subst”, respectively; WER is computed as a

sum of all these error rates. The relative increase of WER is shown in the last column, a

positive value denotes that WER was increased in comparison to the recognition with the

baseline HMM set (without coding), a negative value denotes the decrease of WER.

The coding of Gaussian penalties leads to distortion of penalty values. On some tasks

distortion leads to better recognition rate, but this is not the property of the coding. This

effect occurs due to the mismatch in train and test conditions.

In Table 5.5 it is observed that WER of HMMs with coding of weight differences (“deviation-

1” and “deviation-2” coding) is almost the same as the baseline WER (no coding). This

means that coded and then decoded Gaussian weights are very close to Gaussian weights

of the baseline HMMs.

In some cases the weight difference coding schemes may increase memory consumption.

Such case is the HMM set where each state is modeled by one Gaussian. Then the number

of states S is equal to the number of Gaussians n. Equation 5.21 gives ratioweights =

1.5 and Equation 5.24 gives ratioweights ≃ 1. In small context-dependent HMM sets for

embedded devices one state at the average may be modeled by two Gaussians. In this case

it is advisable to use other coding schemes.

The SQ approach codes weights with errors, that leads to higher difference between WER

of the coded HMM set and of the baseline HMM set. The SQRT coding scheme is recom-

mended for the implementation in embedded systems because the decoding procedure is

very simple (only one integer multiplication per Gaussian weight) and no extra memory is

required for a codebook.



5.5. EXPERIMENTS 61

coding coding weights memory error rates
scheme scheme bytes relative % subst del ins WER relative

no coding 2398 100 1.7 0.3 1.0 3.0
TRAIN_V SQ 1711 71.4 1.7 0.3 1.0 3.0 0

SQRT 1199 50.0 1.7 0.3 1.0 3.0 0
SDI-1 deviation-1 1675 69.8 1.7 0.3 1.0 3.0 0

deviation-2 1438 60.0 1.7 0.3 1.0 3.0 0
no coding 2398 100 1.4 0.5 0.4 2.4

TRAIN_V SQ 1711 71.4 1.4 0.5 0.4 2.3 -3.0
SQRT 1199 50.0 1.4 0.5 0.4 2.4 0

SDI-2 deviation-1 1675 69.8 1.4 0.5 0.4 2.4 0
deviation-2 1438 60.0 1.4 0.5 0.4 2.3 -3.0
no coding 2398 100 2.1 2.0 0.9 4.9

TRAIN_V SQ 1711 71.4 2.1 2.0 0.9 5.0 +0.4
SQRT 1199 50.0 2.1 2.0 0.9 4.9 0

SDII-mbl-c_d deviation-1 1675 69.8 2.1 2.0 0.9 5.0 +0.4
deviation-2 1438 60.0 2.1 2.0 0.9 5.0 +0.4
no coding 2398 100 10.2 1.9 0.3 12.4

TRAIN_V SQ 1711 71.4 10.2 1.9 0.3 12.4 0
SQRT 1199 50.0 10.2 1.9 0.3 12.4 -0.1

SieTill-c_d deviation-1 1675 69.8 10.2 1.9 0.3 12.4 0
deviation-2 1438 60.0 10.2 1.9 0.3 12.4 0
no coding 8000 100 4.8 0.0 0.0 4.8

TRAIN_U SQ 4512 56.4 4.9 0.0 0.0 4.9 +1.9
SQRT 4000 50.0 4.9 0.0 0.0 4.9 +1.9

SDII-mbl-apl deviation-1 4236 53.0 4.8 0.0 0.0 4.8 0
deviation-2 4119 51.5 4.8 0.0 0.0 4.8 0
no coding 8000 100 6.3 0.0 0.0 6.3

TRAIN_S SQ 4512 56.4 7.2 0.0 0.0 7.2 +14.9
SQRT 4000 50.0 6.4 0.0 0.0 6.4 +1.8

SDII-mbl-apl deviation-1 4236 53.0 6.3 0.0 0.0 6.3 0
deviation-2 4119 51.5 6.3 0.0 0.0 6.3 +0.4
no coding 8000 100 37.2 0.0 0.0 37.2

TRAIN_U SQ 4512 56.4 33.1 0.0 0.0 33.1 -11.1
SQRT 4000 50.0 36.5 0.0 0.0 36.5 -2.0

MoTiV deviation-1 4236 53.0 37.2 0.0 0.0 37.2 +0.1
deviation-2 4119 51.5 37.1 0.0 0.0 37.1 -0.2
no coding 8000 100 20.8 0.0 0.0 20.8

TRAIN_U SQ 4512 56.4 19.1 0.0 0.0 19.1 -8.5
SQRT 4000 50.0 20.7 0.0 0.0 20.7 -0.9

MoTiV NR deviation-1 4236 53.0 20.8 0.0 0.0 20.8 0
deviation-2 4119 51.5 20.9 0.0 0.0 20.9 +0.2
no coding 8000 100 36.5 0.0 0.0 36.5

TRAIN_S SQ 4512 56.4 31.8 0.0 0.0 37.8 -12.9
SQRT 4000 50.0 35.9 0.0 0.0 35.9 -1.6

MoTiV deviation-1 4118 53.0 36.5 0.0 0.0 36.5 +0.1
deviation-2 4119 51.5 36.5 0.0 0.0 36.5 0
no coding 8000 100 21.1 0.0 0.0 21.1

TRAIN_S SQ 4512 56.4 18.7 0.0 0.0 18.7 -11.3
SQRT 4000 50.0 21.0 0.0 0.0 21.0 -0.7

MoTiV NR deviation-1 4236 53.0 21.1 0.0 0.0 21.1 0
deviation-2 4119 51.5 21.1 0.0 0.0 21.1 0

Table 5.5: Memory reduction for Gaussian weights: tests results for German TRAIN_U
and TRAIN_S HMM sets



62 CHAPTER 5. REDUCTION OF MEMORY CONSUMPTION OF HMM PARAMETERS

5.6 Conclusion

Table 5.6 shows the relative change in WER and the required memory in bytes to store

parameters of the HMM sets with 4000 Gaussians (TRAIN_Q, TRAIN_S and TRAIN_U).

The HMMs were represented as SDCHMMs with one shared codebook. The 1-D SDCH-

MMs use the “Lloyd-b” coding scheme to obtain the codebook with 16 codewords, the

2-D and 3-D schemes use VQ with shared codebook with 256 code vectors. The Gaussian

weights were coded with the SQRT coding scheme. In case of 1-D or 2-D streams about 52

kilobytes of memory is required. In case of 3-D streams about 37 kilobytes are necessary.

The WER change is shown for HMM sets with different mean vector coding schemes. The

results obtained for TRAIN_Q, TRAIN_S and TRAIN_U HMM sets are supplemented

with WERs obtained using smaller HMM sets of 1200 Gaussians (TRAIN_V, TRAIN_76).

The coding of Gaussian weights leads to very low changes in the recognition accuracy, the

change of WER induced by coding of weights is not considered in the results shown in

this table. The 1-D streams approach results to relative increase of WER up to 36%, this

coding scheme does not satisfy the objectives of the research listed in Section 3.4. The

2-D streams lead to 2.9% increase of WER, the 12.5% increase was only observed in case

of Digits task with very low baseline WER (false recognition of one word leads to 12.5%

relative increase of WER). The 3-D approach lead to 9.2% relative increase of WER, the

18.2% increase was only observed in case of AppW task with very low baseline WER.

parameter baseline 1-D streams 2-D streams 3-D streams

Gaussians mean vectors 96000 48000 48000 32000

Gaussians weights 8000 4000 4000 4000

codebook for mean vectors - 16 512 768

total memory 104000 52016 52512 36768

relative WER change, % -4.9. . . +36.0 -12.1. . . +2.9 0. . . +9.2

Table 5.6: Comparison of memory requirements in bytes and WERs for CDHMMs (base-
line) and SDCHMMs with different stream sizes

In this chapter the memory saving coding of HMM parameters was investigated. The re-

duction of memory consumption by HMM parameters was achieved by using 2-D and 3-D

streams with shared codebook approach for Gaussian mean vectors and “SQRT” coding

of Gaussian weights. The memory consumption by coded HMM set is three times lower

than by the baseline HMM set. The WERs for coded HMM set are increased up to 10%

relatively, which meets the objectives of the research (see Section 3.4).



Chapter 6

Fast emission computation approaches

In a small vocabulary (30-100 words) speech recognizer the emission computation proce-

dure consumes most of processing power. In this chapter the problem of the fast emission

computation is considered in detail. The emission computation algorithm was described

in Section 2.1.5. Based on vector quantization and SDCHMM structure, several fast emis-

sion computation algorithms are explored. The acceleration of the emission computation is

based on the following principles:

1. The SDCHMM approach described in Chapter 5.3.1 is robust and has reduced mem-

ory requirements. The streams approach accelerates the emission computation by

reusing of computed results stored in memory.

2. The approximation and incomplete computation of emission probabilities are com-

bined and the new method is developed. This approach is considered in Section 6.2.

The approximation leads to the increase of WER. The task is to design such fast com-

putation approach that the relative WER increase is less than 10%. The combination

of the fast emission computation and SDCHMM structure is explored.

3. The special order of HMM parameters in memory explored in this work can lead to

the acceleration of emission probabilities. Such particular data structure does not re-

duce information about HMM parameters and does not reduce recognition accuracy.

Moreover, the reorganization in a special way brings more information about data

structure and this feature is used by memory reduction for Gaussian weights. This

approach is considered in Section 6.3.

6.1 Fast emission computation for SDCHMM

In SDCHMM the observation probability of the feature vector x in the state s is calculated

according to Equation 5.11 which is rewritten below:

63



64 CHAPTER 6. FAST EMISSION COMPUTATION APPROACHES

Bs(x) =

Ms
∑

m=1

Cs,m

K
∏

k=1

N(xk, µs,m,k, σ) (6.1)

The negative log likelihood (score) is computed in SDCHMM as shown in Equation 6.2

(see Equations 2.19 and 2.28 for emission computations in CDHMM).

bs(x) = min
m

{

cs,m +

K
∑

k=1

(

Dk
∑

dk=1

(xk,dk
− µs,m,k,dk

)2

)}

+ const (6.2)

where dk is the index parameter for stream k; Dk is the dimensionality of stream k; µs,m,k,dk

is a dk-th component of the stream mean vector µs,m,k.

In SDCHMMs Gaussian mean vectors are coded by the limited amount of stream vectors

from the codebook. Taking in account this feature, all stream Gaussian log likelihoods can

be precomputed once for current frame and their values can be stored in a look-up tables. In

[Aiyer et al 2000] the distance between feature stream vector and Gaussian stream vector

(Equation 6.3) is called “atom”:

Gs,m,k =

Dk
∑

dk=1

(xk,dk
− µs,m,k,dk

)2 (6.3)

In the stream k the stream mean vectors {µs,m,k,1, . . . , µs,m,k,dk
} are coded using a codebook

with N codewords, that is why stream vectors are limited by the N possible values, i.e. for

a current stream feature vector {xk,1, . . . , xk,dk
} exist only N atoms. For K streams and

N atoms per stream, the atoms fill the K × N table G. This table in [Aiyer et al 2000] is

called “atom table”. The component Gs,m,k is defined as

Gs,m,k =

Dk
∑

dk

(xk,dk
− νk,i,dk

)2, (i = 1, . . . , N, k = 1, . . . , K) (6.4)

where stream mean vector µs,m,k is represented by a codebook vector νk,i; νk,i,dk
is a dk-th

component from the stream k of the i-th codebook vector.

The negative log likelihood is computed as shown in Equation 6.5.

bs(x) = min
m

{

cs,m +

K
∑

k=1

Gs,m,k

}

+ const (6.5)

The acceleration of the emission computation using 3-D streams approach is experimen-

tally explored on the baseline embedded system with 100 MHz processor, see Section 3.3.

In the benchmark a 5 seconds long utterance and a vocabulary of 30 words were used [As-



6.2. FAST EMISSION COMPUTATION USING VECTOR QUANTIZATION 65

trov et al 2003]. Table 6.1 shows minimum computational requirement expressed in real

time factor for emission probability calculation and Viterbi search. The results are shown

for recognition using CDHMMs (baseline) and SDCHMMs with 3-D streams. The feature

extraction is not considered here, it is assumed to be implemented on DSP. The dependency

of the processor load factor on the system configuration, e.g. cache size and memory ac-

cess times, are clearly visible. ARM9TDMI with zero-wait states memory is reference for

maximum performance. ARM920T core has higher cache size than the ARM940T core,

that is why the performance of ARM920T core is better.

In the experiments CDHMM parameters are compressed using a 3-D stream based coding.

The HMM acoustic models take up only 12 kilobytes of flash memory storage. On the

ARM920T microcontroller the computation of the emission probabilities and the Viterbi

search with a vocabulary of 30 words runs with 0.17 real time factor.

computation task computational requirements, RTF

ARM9TDMI ARM920T ARM940T

Viterbi search 0.083 0.091 0.135

emission CDHMM (baseline) 0.262 0.289 0.303

emission SDCHMM 3-D 0.077 0.082 0.127

Table 6.1: Minimal computational requirements in real time factor for a speech recognition
with a 30-word vocabulary

6.2 Fast emission computation using vector quantization

The computation of log likelihoods for a given state requires processing of all Gaussians

within this state. Some of Gaussian probabilities may be approximated by the pre-computed

values or constants without loss of recognition accuracy, these probabilities does not require

exact computation. The log likelihoods are calculated precisely for a small portion of Gaus-

sians (about 5-25%) with mean vectors that are placed close to current feature vector. For

other Gaussians which are placed far away from the feature vector the log likelihoods are

approximated [Bocchieri 1993; Haeb-Umbach and Ney 1991]. The method can be consid-

ered as the combination of two HMM sets: one rough HMM set and one precise HMM

set.

Such approximation is done using the clustering approach which was described in Section

2.2.2. All Gaussian mean values in all states are broken into several clusters. For each

cluster their mean vectors are obtained.

Firstly, the log likelihoods for all cluster mean vectors are computed. Then the developed

algorithm has to define Gaussians which log likelihoods have to be calculated precisely

and Gaussians which log likelihoods have to be approximated. This can be done in several

ways:



66 CHAPTER 6. FAST EMISSION COMPUTATION APPROACHES

1. The log likelihood has to be computed exactly if the log likelihood of the cluster mean

value is less then the predefined threshold. This algorithm is very simple and can be

easily realized. The preliminary experiments have shown that for this algorithm the

threshold has to be high: in average more then a half of all Gaussian log likelihoods

have to be calculated precisely in order to have an acceptable WER. For a feature

vector x1 with a low absolute value |x1| the threshold has to be low in order to com-

pute the log likelihoods fast. On the other hand for a feature vector x2 with a high

absolute value |x2| the threshold has to be high such that log likelihoods for more

then one cluster will be computed exactly. A possible decision could be a varying

threshold that depends on the current feature vector.

2. The log likelihood has to be computed exactly for a small portion of clusters. This

approach requires a special type of sorting procedure, that finds cluster mean vectors

placed close to the current feature. This sorting is performed after or during the log

likelihood computation for cluster mean vectors.

The possible ways of log likelihood approximation are listed below:

1. Log likelihoods can be approximated by experimentally obtained constant value for

the current HMM set.

2. The more accurate approach is the approximation of log likelihoods by cluster mean

value log likelihood. This approach requires that all of the computed cluster mean

vector log likelihoods are stored in a memory array.

6.3 Optimization of data placement in memory

In emission computation algorithm shown in Section 2.1.5 the calculation times for dif-

ferent emissions are not equal. For a given state s and given feature vector the emission

computation time depends on the following factors:

• the Gaussian weights within state s;

• the feature vector and the Gaussian mean vectors;

• the “previous history”: the value of ”best score” variable. The smaller is the value of

”best score”, the less calculations will be performed. The earlier the best Gaussian is

found within the HMM state, the less computations are performed because more log

likelihoods computations will be abandoned (see Section 2.1.5 for detail description).



6.3. OPTIMIZATION OF DATA PLACEMENT IN MEMORY 67

The order of Gaussians within one state defines how fast the ”best score” will be found

but it does not influence the recognition performance. The computational time is reduced

if most often selected for ”best score” Gaussians are placed on first positions within each

state. This problem cannot be solved for all HMMs and test sets, a simple method is used

to accelerate the emission computation. The order of Gaussians within one state is set such

that firstly the scores are computed for Gaussians with lowest weights.

Three different structures of HMM parameter placement in memory were tested. The first

HMM set (baseline) was obtained after training, no sorting was made. In the second HMM

set, Gaussians are sorted in ascending order, i.e. firstly Gaussian log likelihoods with lowest

weights are computed. In the third HMM set, Gaussians are sorted in descending order of

their weights, scores are computed firstly for Gaussians with highest weights. The SDII-

mbl-apl test set was recognized with TRAIN_U and TRAIN_S HMM sets.

The recognition was performed on the workstation, see Section 3.3 for system description.

During the recognition of SDII-mbl-apl task the scores for 66 034 495 Gaussians were com-

puted for TRAIN_U HMM set. The recognition with TRAIN_S required computations of

87 163 180 Gaussian scores.

HMM set sorting distances recognition time

order absolute relative absolute relative

no sorting 28 345 512 556 23m21.230s

TRAIN_U ascending 21 192 341 694 -25.2% 20m38.270s -11.6%

descending 28 952 635 379 +2.1% 23m43.650s +1.6%

no sorting 32 551 236 063 32m46.900s

TRAIN_S ascending 28 047 106 902 -13.8% 30m31.960s -6.9%

descending 36 234 739 559 +11.3% 33m31.520s +2.3%

Table 6.2: Differences in the recognition times for different data organizations within HMM
sets with SDII-mbl-apl task

In Table 6.2 the test results are shown. The column “distances” shows how many distances

such as (xd − µs,m,d)
2 were computed. The column “recognition time” shows the user

execution time in minutes and seconds obtained by using UNIX “time” shell command, the

recognition time was measured for feature extraction, emission computation and the search

together.

The relative change of the number of distances and execution time shows the change rela-

tively to the “no sorting” baseline HMM. Negative values in Table 6.2 mean that the recog-

nition time and the number of computed distances were reduced.

As expected, the lowest recognition time was for the HMM sets with Gaussians sorted

in ascending order of their weights within one state. The highest recognition time was

measured for the HMM sets with Gaussians sorted in descending order of their weights

within one state.



68 CHAPTER 6. FAST EMISSION COMPUTATION APPROACHES

6.4 Combined methods

Three methods for reduction of the computation time (VQ-based, SDCHMMs, reorganiza-

tion of data) could be combined together. In order to explore the effect of the combination

of these techniques the VQ-SDCHMM combination was explored in detail. The reorgani-

zation of data leads to no changes in the recognition accuracy that is why this technique

was not experimentally explored in detail.

In the following the VQ-based fast emission computation procedure was combined with

the stream structure of SDCHMM. Firstly, the VQ approach was applied to the HMM set,

the clusters were defined and their cluster mean vectors were built. Then the streaming

procedure was applied to the Gaussian mean vectors and also to the cluster mean vectors.

Thus the memory consumption was reduced, this algorithm is shown below:

Fast emission computation algorithm based on VQ and SDCHMM combination

1. Clustering: obtain cluster mean vectors

2. Streaming: apply streaming procedure to the set of Gaussians and to cluster mean

vectors

3. Codebook generation: create a shared codebook using as training data Gaussian mean

vectors and mean values of stream vectors

4. Coding: build SDCHMMs, code Gaussian mean vectors and cluster mean vectors

The TRAIN_U HMM set was tested on the workstation with SDII-mbl-apl task. The test set

has 4391 utterances consisting of 941 289 frames, this is about 4 hours of speech. During

the experiments the following parameters were changed:

1. Stream dimension: 2-D and 3-D streams were tested because these coding schemes

do not heavily affect on recognition rate.

2. Number of clusters: the set of Gaussians was broken onto 64 or 256 clusters.

3. The number of clusters which log likelihoods were computed exactly was changed.

The relative number of clusters was in the range from 0 to 100%.

For each experiment WERs were obtained. The execution time was measured using emis-

sion computation program which computes only emission probabilities.



6.4. COMBINED METHODS 69

The results for TRAIN_U HMM set with 4000 Gaussians are shown in Figure 6.1. The

curves have notations CLUSTERS/DIM where CLUSTERS is the number of clus-

ters for VQ-based fast emission computation, DIM is the dimensionality of streams. For

example, “64/3” means that for fast emission computation 64 clusters were used and the

stream dimension is 3 (3-D streams).

In Figure 6.1a the computation time for the combination of the VQ-based fast emission

computation and SDCHMM is shown. The horizontal line “baseline” denotes the time nec-

essary for emission computation of HMMs without streams and VQ approaches. Curves

“baseline 2-D” and “baseline 3-D” show the time necessary for emission computation with-

out VQ-based fast emission computation using 2-D and 3-D streams approaches respec-

tively.

The axis “clusters with exactly computed log-likelihoods” (emission approximation factor)

denotes for how many clusters the emissions were computed exactly. “25%” means that the

emissions were computed for 25% of the clusters, for example, for 16 of 64 clusters or for

64 of 256.

The value “100%” means that the log likelihoods for all Gaussian mean vectors were com-

puted exactly. In this case the VQ-based fast emission computation with stream approach

needs more time than the computation without VQ approach, as extra time is required for

computation of cluster mean vectors log likelihoods.

Fast emission computation with 64 clusters requires less time than with 256 clusters since

for the same emission approximation factor less cluster mean vector likelihoods have to be

computed.

Figure 6.1b shows WER over the emission approximation factor. The vertical axis is the

WER in percents and the horizontal axis is the emission approximation factor. The hor-

izontal line “baseline” shows WER of HMMs without streams and VQ approaches. The

“baseline 2-D” and “baseline 3-D” denote WERs obtained by the recognition without VQ-

based fast emission computation approach using 2-D and 3-D streams respectively. It can

be observed that WERs are close to baseline WER in case of emission approximation fac-

tor greater than 20%. For emission approximation factors less than 10% WER increase

gets very high. In practice, emission approximation factor 10%. . . 20% should be used:

higher values lead to increase of computation costs and lower values lead to degradation of

recognition performance.

Figure 6.1c demonstrates main characteristics of VQ based fast emission computation. The

vertical axis denotes WER in percents, the horizontal axis shows computation time in sec-

onds. The “baseline” point denotes the WER/recognition time ratio without streams and VQ

approaches. The “baseline 2-D” and “baseline 3-D” points denote the ratios of recognition

without VQ-based fast emission computation using 2-D and 3-D streams respectively.



70 CHAPTER 6. FAST EMISSION COMPUTATION APPROACHES

a)

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

c
o
m

p
u
ta

ti
o
n
 t
im

e
, 
s
e
c
o
n
d
s

clusters with exactly computed log likelihoods, %

baseline 2-D

baseline 3-D

baseline

256/2

256/3

64/2

64/3

b)

5

5.5

6

6.5

7

7.5

8

0 20 40 60 80 100

W
E

R
, 
%

clusters with exactly computed log likelihoods, %

baseline

baseline 3-D

baseline 2-D

256/2
256/3
64/2
64/3

c)

5

5.5

6

6.5

7

7.5

100 200 300 400 500 600 700

W
E

R
, 
%

computation time, seconds

baseline 3-D

baseline 2-D baseline

256/2
256/3
64/2
64/3

baselines

Figure 6.1: Combination of clustering and streaming techniques for TRAIN_U HMM set:
a) dependence of the execution time on the number of precisely computed clusters; b) de-
pendence of WER on the number of precisely computed clusters; c) WER/execution time

characteristics



6.4. COMBINED METHODS 71

a)

100

200

300

400

500

600

0 20 40 60 80 100

c
o
m

p
u
ta

ti
o
n
 t
im

e
, 
s
e
c
o
n
d
s

clusters with exactly computed log likelihoods, %

baseline

baseline 2-D

baseline 3-D

256/2

64/2

256/3

64/3

b)

6

7

8

9

10

11

12

0 20 40 60 80 100

W
E

R
, 
%

clusters with exactly computed log likelihoods, %

baseline
baseline 2-D
baseline 3-D

256/2
256/3
64/2
64/3

c)

6

7

8

9

10

11

12

100 150 200 250 300

W
E

R
, 
%

computation time, seconds

baseline 3-D baseline 2-D baseline

256/2
256/3
64/2
64/3

baselines

Figure 6.2: Combination of clustering and streaming techniques for TRAIN_BA HMM
set: a) dependence of the execution time on the number of precisely computed clusters; b)
dependence of WER on the number of precisely computed clusters; c) WER/execution time

characteristics



72 CHAPTER 6. FAST EMISSION COMPUTATION APPROACHES

In Figure 6.1c the curves “64/3” and “256/3” grow if the computation time decreases, the

curves do not become less than “baseline 3-D” (3-D without VQ approach). This means

that VQ approach being applied to 3-D stream SDCHMM cannot decrease the recognition

time without degradation of WER. 2-D streams with VQ approaches (curves “64/2” and

“256/2”) show better recognition performance than 3-D streams with VQ (curves “64/3”

and “256/3”) and 3-D without VQ approach (“baseline 3-D”). 2-D streams with VQ ap-

proach leads to better recognition performance and recognition time, yet the 2-D approach

leads to higher memory consumption than the 3-D approach.

Figure 6.2 show the results for SDII-mbl-apl task with context-dependent TRAIN_BA

HMM set with 1200 Gaussians.

As it is shown in Figure 6.2a, the emission computation time baselines are small. For 2-D

stream coding VQ-based fast emission computation (curves “256/2” and “64/2”) require

more time than without VQ (“baseline 2-D”) if the emission approximation factor is higher

than 15%. For 3-D stream coding VQ-based fast emission computation (curves “256/3” and

“64/3”) require more time than without VQ (“baseline 3-D”) if the emission approximation

factor is higher than 50%.

In Figure 6.2b the dependence of WER on emission approximation factor is shown. WER

of VQ-based fast emission computation with 2-D and 3-D coding are higher than baselines

if the emission approximation factor is less than 50%.

And finally, in Figure 6.2c the main characteristics of VQ-based fast emission computation

is shown. All of the VQ approaches gives the same or even worse results as without VQ

(baselines). In the case of 1200 Gaussians HMM the VQ-based fast emission computation

is not efficient.

6.5 Conclusion

The experiments have shown that 2-D and 3-D stream coding are of high efficiency: they

lead to the reduction of emission computation time up to 66% in comparison to the baseline

system, which meets the objectives of the research (see Section 3.4).

3-D stream coding of HMMs with 1200 Gaussians is most appropriate for current applica-

tions in mobile telephones because this approach requires very low processing power and

the memory consumption is about 10 kilobytes for 1200 Gaussians.

The reorganization of Gaussians (sorting) within one HMM state allows to decrease the

computation time without any loss of recognition accuracy. This method is useful only for

HMM sets that model each HMM state with several Gaussians. The approach does not

lead to significant increase of computation time when HMM states are modeled by 1 or 2

Gaussians. The reordering is recommended for HMM recognizers as it does not degrade

the recognition accuracy.



6.5. CONCLUSION 73

VQ-based emission computation is inefficient for HMMs with 1200 Gaussians: the reduc-

tion of computation costs leads to high WER increases. VQ-based fast emission compu-

tation for HMM is considered as a promising approach for larger HMM sets, for example

with 4000, 6000, 8000 or 16 000 Gaussians. For larger HMM sets 2-D stream with VQ-

based fast emission computation could have better WER/recognition time performance than

HMM sets with 3-D stream (see Figure 6.1c). The VQ-based fast emission computation

approach with streaming will have better performance with multilingual HMMs since they

have more Gaussians than HMMs for only one language. The implementation of speech

recognizer with HMM sets of 1200 Gaussians and 3-D streams coding is possible on con-

temporary mobile phones.

Most of experiments were performed using a workstation, these experiments allow to esti-

mate the behavior of an embedded system. The workstation has high amount of working

memory (1 GB) and cache (256 KB), thus the emission computation code and the HMM

set may be completely cached. In such a way this system may be considered as an ideal

case of an embedded device. The relative computational improvements on the ARM9TDMI

microcontroller may be estimated from the relative results obtained on the workstation. In

several years the performance of embedded devices will be similar to the performance of

the used workstation that is why these experiments allow to forecast the performance of

embedded devices in the nearest future.

Taking into account the architecture of a current mobile phone platform that contains one

DSP with a fast access to only a comparatively small memory and a relatively slow micro-

controller with a fast access to a bigger memory, it would make sense to share the decoding

between these two processors according to their specifications. One solution would be to

perform on DSP temporary distance precalculations where all possible distances between a

feature vector and the codebook vectors are computed. For that DSP has access to the code-

book of SDCHMM. DSP computes and saves in memory all possible stream log likelihoods

for every feature vector stream components. These stream log likelihoods are then used by

the microcontroller, which does not have to calculate stream log likelihoods anymore, but

only needs to retrieve them from memory. Once the stream log likelihoods are not needed

they are discarded from memory.



74 CHAPTER 6. FAST EMISSION COMPUTATION APPROACHES



Chapter 7

Memory saving fast search algorithm

In the small vocabulary speech recognition the most memory consuming data block is oc-

cupied by acoustic models, the most computationally complex process is the emission com-

putation. The large vocabulary speech recognition requires more memory and processing

power for the search algorithm than in case of small vocabularies.

The baseline VSR recognizer was designed for small and medium vocabulary sizes. The

goal of the research is to develop such search algorithm that is able to perform large vo-

cabulary (20 000 words and more) isolated words search in real time on a baseline embed-

ded system (100 MHz ARM processor). The large vocabulary isolated words recognition

in VSR with vocabulary of 20 000 words and linear search requires 4.7 MB memory for

search space and performs on the workstation 2.5 times slower than real time.

One of the approaches that reduces memory for vocabulary is a tree search. The tree search

with its processing of equal word parts of different words only once per frame decreases

also the required processing power for large vocabulary recognition tasks [Haeb-Umbach

and Ney 1991; Ortmanns et al 1997b].

In this chapter the problems of the reduction of computation time and memory savings

in the search algorithms for large vocabulary speech recognition are explored. First, the

theoretical aspects of search are considered. Then a tree and a word stem based lexicon

structures are described. Based on these structures the new modification of word stem

based search is proposed.

The implementation of the word stem based tree search for large vocabulary speaker inde-

pendent isolated word recognition for embedded systems is described in details. This fast

search algorithm combines the effectiveness of the tree structure for large vocabularies and

the fast Viterbi search within the regular structures of word stems. The algorithm is proved

to be very fast for workstation and embedded platform realizations. In order to decrease

the processing power, the word stem based tree search is combined with a frame dropping

approach. The recognition speed was increased by a factor of 5 without frame dropping

and by a factor of 10 with frame dropping in comparison to linear Viterbi search for iso-

75



76 CHAPTER 7. MEMORY SAVING FAST SEARCH ALGORITHM

lated word recognition task with a vocabulary of 20 000 words. Thus, the large vocabulary

isolated word recognition becomes possible for embedded systems.

7.1 Frame dropping approach

A speech signal consists of speech parts and parts during which the speaker is silent. A

method to further reduce the computational complexity of the search algorithm is to only

send speech parts to the recognizer and drop the non-speech parts. The recognizer processes

every 15 ms a frame of 32 ms of the speech signal. A voice activity detection (VAD)

classifies each frame into speech or non-speech [Astrov and Andrassy 2003].

The VAD employed here consists of a multilayer perceptron neural network. The neural

network has three layers: input, hidden and output layer. As input 12 cepstral coefficients

plus one energy value are taken. The current frame as well as the three past frames and

the three future frames are considered leading to 91 input values altogether. As output the

network has one node which was trained to represent the non-speech probability of the

current frame. A threshold of 0.5 was chosen for this output node to classify into speech

and non-speech.

Furthermore a hang before of 2 frames and a hangover of 7 frames were applied. Like that

seven frames of the signal are sent to the recognizer after the VAD detects the beginning

of a non-speech section. The two frames before the VAD detect the beginning of a speech

section are likewise sent to the recognizer. Thus a clipping of unvoiced speech parts at

the beginning and end of an utterance should be avoided. This configuration leads to no

degradation of the recognition performance in the experiments shown in this chapter.

7.2 Theoretical aspects of the tree search

In large vocabulary recognition task many words begin with the same initial phoneme se-

quences. Therefore the pronunciation lexicon is arranged as a tree [Ney et al 1998; Ney and

Ortmanns 1999]. Each node of the tree stands for a phoneme such that a node sequence

from the tree root to a tree leaf represents a word of the vocabulary. The leaves mark the

end of a word, and some of them may be located in the tree interior, since some words form

the beginning part of another word.

The general idea of a lexicon tree search is that the words starting with identical phonemes

are processed together. A lexicon tree is shown in Figure 7.1. Three phonemes of words

“einem” and “einer” are identical (“ai”, “n”, “e”), these phonemes build the subset of words

“Ei”, “ein” and “eine”. Such processing of phonemes which happens only once for several

words reduces number of computations. For identical phoneme groups the acoustical scores

are computed only once per search iteration. In such a way the search space for German



7.3. MODIFIED WORD STEM BASED TREE SEARCH 77

si                 silence

   ai n e r si     einer

          m si     einem

        si         ein

        e si       eine

        s si       eins

        f a x si   einfach

   n eu l i ch si  neulich

        si         neu

        n si       neun

     ah si         nah

        m si       nahm

        t si       Naht

        

Figure 7.1: Structure of a phoneme-based lexicon tree

language with lexicon of 12 000 words can be reduces by 2.6 times [Haeb-Umbach and

Ney 1991; Ortmanns et al 1997b]. During the search, the first several states of each word

are active most of the time. Thus, using the tree structure allows to reduce the number

of computations by 5-6 times [Haeb-Umbach and Ney 1991; Ney et al 1992] for a large

vocabulary (12 000 words).

7.3 Modified word stem based tree search

The software implementation of the tree search which is described in Section 7.2 could

be realized as a graph that branched after each phoneme with the following alternatives

[Hauenstein 1993a,b]:

• is the end of a word reached?

• is there several alternatives for branching?

• is the the end of a short word reached in the branching position?

For the commonly used tree search the tree is built up by a structure of linked lists. When

the branching point is reached, several memory access operations and address computations

are required. In case of large vocabularies these operations lead to “wait states” when the

data is not cached. In embedded systems the cache memory is several tens of kilobytes,

the cache size is not sufficient to accelerate the memory access. In [Deligne et al 2001] the

minimized graph search only leads to a modest increase in decoding speed, as the RISC



78 CHAPTER 7. MEMORY SAVING FAST SEARCH ALGORITHM

Figure 7.2: Structure of a word stem based lexicon tree (stem length is limited to 2
phonemes)

hardware which uses a deeply pipelined ALU cannot function at high efficiency because of

the irregularities in minimized graph structure.

A solution for this problem is a word stem based lexicon structure which was proposed

in [Hauenstein 1993a,b]. The structure of word stem based tree is shown in Figure 7.2.

Instead of using a lexicon, that is fully branched after each phoneme (tree-based lexicon),

an approach of fixed length word stems is chosen. Each word consists of a fixed length

word stem and a word-ending. In Figure 7.2 a word stem size is set to 2 phonemes. All

words with shared word stems are treated in common as long as the active states are within

the word stem. After reaching the end of the stem the search algorithm branches into all

word endings regardless whether they have more phonemes in common or not. Despite of

having a third phoneme in common the words “einer” and “einem” are treated as different

word-endings. This leads to a very simple and regular algorithm.

In the following the new organization of a lexicon is proposed. The structure uses the com-

bination of the tree approach with the idea of the word stems. Such lexicon representations

has advantages of the tree (higher savings of memory and computational costs) and advan-

tages of the word stems (compact placement of states within linear blocks in memory, fast

processing of regular structures).

In the new structure word-endings and word stems are considered as linear units of various

length and treated by one algorithm. A word stem now denotes a set of sequentially placed

states, the processing of such regular linear structure is fast. The data within a word stem is

placed compactly in the memory, this leads to a better cache use.

The new fast tree search algorithm codes the tree with word stems as presented in Figure

7.3. The word stems (shown as rectangles) are built on a state level, in Figure 7.3 they are



7.4. EXPERIMENTS 79

si                 silence

   ai n e r si     einer

          m si     einem

        si         ein

        e si       eine

        s si       eins

        f a x si   einfach

   n eu l i ch si  neulich

        si         neu

        n si       neun

     ah si         nah

        m si       nahm

        t si       Naht

        

Figure 7.3: Modified word stem based tree structure

shown on a phoneme level for a simple representation and understanding. In this structure

the branching is only possible at the end of a word stem. The end of a word stem is not

always the end of a word.

The search starts at the tree top of the structure, the initial probability of the first state in

the top stem is set to 1. The Viterbi search iteration is performed for each feature vector.

Within the word stem the search is executed similar to the linear search algorithm. When

the state probability is less than the pruning threshold, this state is pruned. When the state

probability becomes greater or equal to pruning threshold it is processed in the following

Viterbi iterations (the state is activated). During the search the iterations are performed

only for active word stems. The word stem is pruned when it has no active states. In

the following the pruning threshold defines the maximum difference between current path

log likelihood and the best path log likelihood. The pruning thresholds 2000 and 800 are

considered: the value 2000 is used to get very accurate results and the value 800 is used for

faster computations with low degradation of WER.

After reaching the end of the stem the search branches into the successor word stems, they

are activated. The search path reaches the word end when the word stem has no successors

(it is the last stem of the word) and its last state is active. The word hypothesis is chosen as

the recognition result when it has highest path probability during some predefined minimum

stable time.

7.4 Experiments

In this section the recognition accuracy and computation performance of the search algo-

rithms are shown. The memory requirements and processing power of the word stem based



80 CHAPTER 7. MEMORY SAVING FAST SEARCH ALGORITHM

search algorithms and the baseline linear search algorithm are compared. The algorithms

were tested on Cities and CarKit isolated word recognition tasks. The recognition experi-

ments with TRAIN_BA HMMs were performed for different vocabulary sizes: 495, 1500,

20 102 (20k) and 76 784 (77k) words. The results of the experiments were obtained on a

Pentium III 850 MHz workstation running Linux in order to explore the recognition ac-

curacy and to compare the performance with the baseline recognizer. The additional tests

on an ARM platform were made in order to estimate the required system resources for

embedded systems.

Estimation of recognition accuracy

In the following the word error rate (WER) using the n-best search is investigated. The

search algorithm proposes up to n best hypotheses. This type of the recognition could be

used in SMS dictation in mobile phones or in speech controlled navigation systems, e. g.

where user after the speech input may precisely select the result from the proposed list via

touch-screen or keyboard.

The recognition accuracy is the same for the baseline recognizer with linear lexicon and

with new word stem based tree structure. The usage of frame dropping does not reduce the

recognition accuracy.

WER [%]

N-best 495 1500 20k 77k

Cities, pruning=800

n=1 13.3 18.6 42.3 59.2

n=5 4.5 6.8 19.5 32.0

n=20 3.5 4.5 9.8 18.2

CarKit, pruning=2000

n=1 23.9 32.0 55.6 70.2

n=5 7.3 10.9 33.0 45.5

n=20 4.0 7.1 18.5 28.9

CarKit, pruning=800

n=1 25.2 34.0 58.0 70.2

n=5 14.3 17.2 38.9 50.8

n=20 12.0 15.9 27.8 38.8

Table 7.1: WER for different vocabulary sizes

In Table 7.1 the recognition results are the same for the baseline and modified word stem

based tree search algorithms. WER is shown for different vocabulary sizes (495, 1500,

20k and 77k). WER increases with increasing vocabulary sizes. Cities task was tested

with pruning threshold 800, in the case of CarKit test set two pruning thresholds (2000 and

800) were tested. The threshold 2000 leads to better recognition results but requires more

processing power.



7.4. EXPERIMENTS 81

The n-best recognition rate is shown for n = 1, n = 5 and n = 20 hypotheses. The n-best

search with n = 20 hypotheses is used to estimate highest possible recognition accuracy.

Selecting n = 5 will give the results close to the real applications, n = 1 provides the

results when no correction or selection from n-best list is possible.

In the experiments TRAIN_BA HMMs set for embedded systems with only 1200 Gaus-

sians is used. With TRAIN_BA HMM set the recognition accuracy without n-best lists

(n = 1) is unacceptable for real applications. With n = 5 the recognition with 495 and

1500 words vocabularies may be applied in practice in low noise conditions (task Cities).

Large vocabulary recognition tasks (20k and 77k) would require more precise modeling

with higher number of Gaussians.

Reduction of memory requirements

The lexicon structure and the search space use compact coding of parameters in such a way

that one 32-bit word contains two or three variables in order to reduce the memory usage.

Such placement is advantageous for embedded devices as less memory is required. The

arrays are placed compactly and the cache memory is used more efficiently.

In Table 7.2 the memory requirements are shown for different vocabulary sizes: 495, 1500,

20k and 77k words. The shown amount of memory includes memory for lexicon structure

and the full search space for isolated word recognition (without pruning). The word stem

based tree search algorithm requires 1.8-2.4 times less memory than the baseline search

with a linear vocabulary structure.

As can be observed, a medium vocabulary (495 and 1500 words) isolated words recognizer

require less than 160 KB of memory for the search and could thus be implemented in

most contemporary mobile phones. A large vocabulary isolated word recognition require

less than 7 MB of memory for the search and could be realized in embedded devices (for

example, PDAs or car navigation systems).

algorithm memory requirements

495 1500 20k 77k

linear search (baseline) 94 KB 301 KB 4.7 MB 16.2 MB

word stem based tree search 53 KB 157 KB 2.1 MB 6.8 MB

Table 7.2: Memory requirements for the search with different vocabulary sizes

Reduction of computation costs on workstation

In this set of experiments the performance of the search algorithms on a workstation (Pen-

tium III, 850 MHz) is estimated for Cities task with pruning threshold 800. First, the lexi-

con structure (linear or word stem based tree) and feature vectors are read into the memory.



82 CHAPTER 7. MEMORY SAVING FAST SEARCH ALGORITHM

recognition time (RTF)

algorithm 495 1500 20k 77k

baseline 0.12 0.26 2.50 -

baseline-FD 0.15 0.20 1.02 -

word stem based tree search 0.07 0.09 0.47 1.04

word stem based tree search-FD 0.03 0.05 0.21 0.46

Table 7.3: Recognition time per utterance (real time factor) for different vocabulary sizes

Then the algorithm computes log likelihoods and performs the search for each utterance.

This test was made with and without frame dropping. The execution time was measured

for the whole recognition process (feature extraction, emission computation and search)

using Unix ”time” shell command (user CPU time). These measurements were repeated 5

times and the mean values were obtained, the results are represented as real time factors and

shown in Table 7.3. The baseline linear search algorithm uses signed 16-bit integer indexes

and able to process vocabularies with 32 768 words or less, that is why the recognition time

for the baseline algorithm could not be measured for 77k vocabulary.

The developed fast search algorithms are faster than the baseline recognition algorithm in

all tests. The frame dropping increases the recognition speed (see lines “baseline-FD” and

“word stem based tree search-FD”). For the baseline algorithm with a 495-word vocab-

ulary the frame dropping increases the recognition time because of the yet unoptimized

frame dropping algorithm realization. As shown in Table 7.3 the frame dropping in general

accelerates the search procedure by 2-2.5 times.

Estimation of computation costs on embedded devices

The performance of the fast search algorithm is explored on three ARM RISC processor

cores: ARM9TDMI, ARM920T and ARM940T (see Section 3.3). The first experiment is

performed with TRAIN_BA HMM set, the pruning threshold is set to 800. The feature

extraction and emission computation times are not considered: the program reads from

files the vocabulary structure and the precomputed log likelihoods (emission scores) for

one utterance from Cities task with 255 frames (3.825 s including pauses before and after

the speech part). Then the number of core clocks only for the tree search procedure is

counted. From the number of core clocks the real time factor is computed, see Table 7.4.

Without frame dropping only recognition with 495 and 1500 word vocabularies is possible

in real time on the reference embedded system. With vocabulary of 20k words the real

time recognition becomes possible only with frame dropping. For the real time recognition

with 77k words vocabulary the system running 2 times faster than the reference platform is

required (both processor clock frequency and memory access rates have to be accelerated).

The search on ARM920T processor runs faster than on the ARM940T because of the higher

amount of cache memory, but both processors require more time than ARM9TDMI core



7.4. EXPERIMENTS 83

vocabulary RTF

size ARM9TDMI ARM920T ARM940T

pruning=800, without frame dropping

495 0.168 0.245 0.308

1500 0.399 0.718 0.796

20k 2.734 6.003 5.825

77k 5.867 15.539 15.486

pruning=800, with frame dropping

495 0.03. 0.054 0.070

1500 0.063 0.149 0.166

20k 0.448 0.981 0.955

77k 0.822 2.169 2.173

Table 7.4: Recognition speed measured in real time factor for one utterance from Cities
task

with an ideal zero wait-states memory model. ARM9TDMI may perform search with frame

dropping and 77k vocabulary in real time, this shows that the memory access time and

cache memory size are the most critical parameters for the large vocabulary isolated word

recognition on embedded devices.

The dynamically consumed processing power for ARM9TDMI core is shown in the follow-

ing experiment. For each frame of the utterance the required amount of core clocks were

computed for isolated word recognition with fast search algorithm. The results are shown

in Figure 7.4 for the vocabulary size of 20k words. The dynamically consumed processing

0

100

200

300

400

0 0.5 1 1.5 2

m
ill

io
n

s
 c

o
re

 c
lo

c
k
s
 p

e
r 

s
e

c
o

n
d

time [s]

Figure 7.4: Dynamically consumed processing power for one utterance in case of 20k
vocabulary size. The firm line shows the required processing power for the search without
frame dropping. The impulses shows the required processing power for the search with

frame dropping



84 CHAPTER 7. MEMORY SAVING FAST SEARCH ALGORITHM

power without frame dropping is drawn with the line, the results with frame dropping are

drawn with impulses.

The processing of the first frame includes the initialization of the search space, that is why

the impulses in the beginning of the graphs are observed. In the test utterance that shown in

Figure 7.4, the frame dropping algorithm decided, that the utterance had no speech signal

in a short interval between 1 s and 1.5 s. During this period nothing was sent to the search

algorithm, and search iterations were not performed. This explains the gap in the graph

between 1 s and 1.5 s.

Since the recognizer has a frame buffer, each frame need not be processed in real time.

The search in recognition of this utterance without frame dropping is performed with 0.715

real time factor, with frame dropping the processing speed is accelerated to 0.117 real time

factor. As observed, the frame dropping reduces the required processing power.

The next experiment shows the needed processing power for search in embedded systems

using ten utterances from CarKit test set, TRAIN_BA HMM set, pruning thresholds 800

and 2000, no frame dropping. In this test the search time was measured (feature extraction

and emission computation were not considered). In Table 7.5 the required processing power

in real time factor is shown.

The required processing power depends on the utterance: if the utterance is noisy and could

not be well recognized or has many hypotheses, then the search path is wide and the proces-

sor load is high. In Table 7.5 the processing power for misrecognized utterances is shown in

bold font style. As observed, the misrecognized utterances require more processing power

than utterances recognized correctly.

As can be seen from the table, the recognition with 20k word vocabulary may be performed

in real time, some delay in the obtaining of the recognition results may be observed (for

real time factors greater than 1). The more accurate recognition with the pruning score

2000 cannot be executed with acceptable delays with vocabularies greater than 10k words.

vocab- required processing power for utterance

ulary / real time factor

pruning 1 2 3 4 5 6 7 8 9 10 avg.

495/800 0.03 0.03 0.02 0.03 0.07 0.05 0.05 0.06 0.05 0.07 0.05

495/2000 0.09 0.10 0.06 0.09 0.26 0.17 0.16 0.13 0.16 0.18 0.15

1500/800 0.07 0.08 0.03 0.07 0.19 0.13 0.13 0.17 0.13 0.18 0.12

1500/2000 0.28 0.29 0.19 0.27 0.84 0.47 0.52 0.42 0.50 0.57 0.45

20k/800 0.50 0.50 0.28 0.53 1.85 0.98 1.23 1.52 1.02 1.48 0.99

20k/2000 3.60 3.29 2.08 3.40 13.27 6.26 8.09 6.49 7.20 7.66 6.13

77k/800 0.96 0.96 0.68 1.05 4.11 2.01 2.66 3.28 2.02 3.07 2.08

77k/2000 9.16 7.47 5.20 8.64 39.41 16.53 24.07 19.17 20.72 22.27 17.26

Table 7.5: Search performance for embedded system with ARM920T core and CarKit test
set



7.5. CONCLUSION 85

7.5 Conclusion

The new modification of the word stem based search for large vocabulary isolated word

recognition is developed. The considered algorithm uses less memory and processes faster

than the baseline search algorithm with linear lexicon structures. In combination with frame

dropping the new algorithm allows the realization of medium and large vocabulary isolated

word recognition in embedded systems.

The medium vocabulary speech recognition is possible on most of modern embedded sys-

tems. The isolated word recognition with vocabulary of 1500 words requires 160 KB of

memory for the search. The recognition may be processed with 0.17 real time factor for

the search with frame dropping and with 0.13 real time factor for emission computation on

an ARM processor. The n-best recognition of city names with n = 5 has 6.8% word error

rate.

The real time isolated speech recognition may require the whole processing power of em-

bedded system. The large vocabulary isolated word recognition (20k words) requires 2.1

MB of memory to store the lexicon structure and the search space. The large vocabulary

recognition task may be processed in real time with frame dropping on the reference ARM

embedded device. The n-best recognition of city names with N = 5 has 19.5% word error

rate. The recognition accuracy have to be improved by employing more detailed HMM sets

with higher number of Gaussians, e. g. 7500.

The increase of pruning thresholds will reduce error rates, but it will increase the required

computation costs. New microcontrollers with higher computation power will be able to

perform large vocabulary isolated speech recognition in real time more accurate. The most

critical parameters of the embedded system are the memory access time and the cache size.



86 CHAPTER 7. MEMORY SAVING FAST SEARCH ALGORITHM



Chapter 8

Discussion and future work

8.1 Main achievements

Currently small and medium vocabulary isolated word recognition with very low consump-

tion of system resources and very large vocabulary isolated word recognition (more than

50 000 words) are the main challenges in speech recognition for embedded devices. Voice

control of navigation systems in vehicles, name dialing and isolated dictation of short mes-

sages in embedded devices becomes very attractive. A requirement of a high amount of

system resources in embedded systems is a serious problem of speech recognizers. In this

thesis several approaches were investigated in order to find a trade-off between the accuracy

of the speech recognition in noisy environment, memory and processing power consump-

tion.

The baseline speech recognizer (see Section 3.3) considered as the reference recognizer in

this work has the following features. It uses continuous density HMMs with 1200 or 4000

Gaussians. Each entry in the lexicon is represented as a linear sequence of HMM states.

The baseline embedded system has the ARM920T microcontroller with 100 MHz core

clock rate and 50 MHz bus rate, the sequential memory access time is 20 ns and non-

sequential access time is 100 ns. The system has 16 KB instructions cache and 16 KB

data cache. An HMM set with 4000 Gaussians requires 104 KB of memory, an HMM set

with 1200 Gaussians requires about 32 KB. The 30-word recognition task with German

TRAIN_BA HMM set (1200 Gaussians) can run on the baseline system in real time, but it

consumes about half of the processor resources: the feature extraction runs with 0.08-0.12

real time factor, the emission computation and Viterbi search run with 0.289 and 0.091 real

time factors.

The large vocabulary isolated word recognition task with 20 000 words lexicon cannot be

executed in real time on such embedded system. The recognition runs 2.5 times slower

than real time even on the workstation with a Pentium-III 850 MHz processor. The lexicon

87



88 CHAPTER 8. DISCUSSION AND FUTURE WORK

structure and the search space are the main memory consumers in the large vocabulary

isolated word recognition system, they require together 4.7 MB.

The main objective of the research was the development of the algorithms that allow speech

recognition to be executed in real time on the reference embedded system. The goals are

listed below, see also Section 3.4 for details. The memory consumption by HMM param-

eters has to be reduced by 50%, the emission computation has to be accelerated by the

factor of 2, the relative increase of WER must be less than 10%. For the large vocabulary

isolated words recognition task with 20 000 words lexicon the search has to be accelerated,

the recognition has to be performed in real time, the memory consumption by the lexicon

structure has to be reduced by 50%. The achievements are listed below.

For a typical HMM set of 1200 Gaussians the 3-D streams approach accelerates the emis-

sion computation 3.5 times. On the reference embedded device the emission computation

is performed with real time factor 0.082 instead of 0.289 for the baseline recognizer. The

memory requirements for acoustic models is reduced by the factor of 3, an HMM set with

4000 Gaussians requires now only 37 KB of memory instead of 104 KB, an HMM set

with 1200 Gaussians requires about 10 KB instead of 29 KB. The distortions introduced by

coding algorithms are very low and the relative increase of WER is less than 9.2%.

The reduction of the memory consumption for HMM parameters by 66% have been achieved

by coding of Gaussian mean vectors and weights. Memory demands for Gaussian mean

vectors were reduced by applying the SDCHMM approach. For further improvements in-

stead of several independent codebooks only one shared codebook was used. The recogni-

tion rates of SDCHMMs with independent and shared codebooks are similar.

• 2-D stream coding with the shared codebook has 50% compression rate with only

2.9% relative decrease of the recognition accuracy.

• 3-D stream coding with the shared codebook has 66% compression rate with less

than 9.2% relative decrease of the recognition accuracy.

Thus, 2-D and 3-D streams have a good trade-off between the recognition accuracy and

the memory consumption, these schemes are most appropriate for the coding of HMM

parameters in speech recognition systems in embedded devices.

The streams approach accelerates the computation of emission probabilities. With the 2-D

and 3-D streams approaches the computation is performed 2 and 3 times faster, respectively.

The combination of streams approach with VQ-based computation of emission probabilities

may increase the computation speed further. This approach is advantageous for SDCHMMs

with 2-D streams, in this case they outperform SDCHMMs with 3-D streams without VQ

in emission computation speed and acoustic modeling accuracy.



8.1. MAIN ACHIEVEMENTS 89

Weights of Gaussian pdfs were coded using new coding approaches:

• The standard scalar quantization technique was investigated. The reached compres-

sion rate is slightly more than 50% for any size of HMM sets: coded weights occupy

only 50% of memory in comparison to the weights from the baseline HMM set, extra

512 bytes are necessary to store a codebook. This coding has the highest distortion

in all considered coding schemes.

• The recursive weight difference coding technique encodes Gaussian weights very

precisely, the coding distortion is very low, in many cases it is possible to encode

weights without any loss of information. This coding scheme may achieve a 50%

compression rate in case of large context-independent HMM sets (more than 4000

Gaussians) where each HMM state is modeled by at least 10 Gaussians. The com-

pression rate decreases when HMM states are modeled by one or two Gaussians, in

this case the coding approach is inefficient.

• The square root coding stores integer parts of the square roots of the Gaussian weights.

This scheme is most advantageous for speech recognition in embedded devices. The

algorithm is very simple and fast, the decoding of each Gaussian weight requires

only one integer multiplication. The algorithm has the lowest compression rate, the

memory consumption of Gaussian weights is reduced by exactly 50% for any size of

HMM sets.

In experiments the change of WER is minimal for all coding schemes, the recognition re-

sults are similar for all weight coding schemes. Thus, it is advantageous to encode Gaussian

weights by the square root coding technique because it has lower computational cost and

better compression rate than other coding schemes.

The search procedure for large vocabulary isolated word recognition (20 102 words) was

accelerated, it is executed now with 0, 981 real time factor. The acceleration was achieved

by using a new modified word stem based tree structure and a frame dropping algorithm.

Lexicon structure and search space occupy now 2.1 MB instead of 4.7 MB for the baseline

system. Thus, large vocabulary isolated word recognition becomes possible in embedded

devices.

The isolated word recognition task with 76 784 words vocabulary is able to run in real time

on systems with at least 2 times higher performance than the baseline embedded system.

Current embedded devices with more powerful processors, faster memory access and higher

cache size may perform such recognition in real time.



90 CHAPTER 8. DISCUSSION AND FUTURE WORK

8.2 Future work

The prediction known as Moore’s Law [Moore 1965] states that transistor density on inte-

grated circuits doubles about every two years. Thus, in 5 years embedded devices will have

approximately 10 times more resources than they have now (50-500 MHz processors and

4-256 MB of working memory).

With an increasing amount of system resources other, more complicated speech recognition

tasks may be realized. The large vocabulary continuous speech recognition in embedded

devices will set new goals. The continuous search requires at least 10 times more memory

and computational power because of processing several paths in parallel. New algorithms

have to be developed to realize large vocabulary continuous speech recognition in real time.

The continuous speech recognition will require implementation of language models, bi-

grams or trigrams. For large vocabularies the language models will require several mega-

bytes of memory in order to store their parameters, efficient memory compression algo-

rithms for language models have to be developed. More accurate tri-grams will complicate

the search procedure, new approaches for implementation of language models in the search

will be needed.

Current HMM sets designed for recognizers on embedded devices have poor recognition

accuracy for large vocabulary recognition tasks. The improvement may be achieved by

increasing the number of Gaussians in the HMM set, but this will increase memory con-

sumption by HMM parameters and slow down the computation of emission probabilities,

thus, new solutions will be required.

Other input channels available in embedded devices may be employed in parallel to spoken

speech in order to improve recognition accuracy. The lip-reading algorithm will require

additional features extracted from the sequence of images obtained by a digital camera in a

modern mobile phone.

The speech recognition in embedded devices became possible not long ago, it has a high

potential of further improvements, implementation fields and research activities. The de-

velopment is driven by the increasing power of computers and embedded devices and also

telephone and Internet applications using voice services. In the future a man-machine voice

communication will become customary in everyday situations and will simplify human life.



Appendix A

Nomenclature

A LDA matrix

As,s′ transition probability from state s to state s′

as,s′ transition penalty from state s to state s′

Bs emission probability of state s

bs emission penalty of state s

Ci word class in class-based language model

Cs,m weight of emission probability of state s and pdf m

cs,m weight penalty of state s and Gaussian m

D dimensionality of feature vector; dimensionality of data vector

Dk dimensionality of stream k

d dimension index

d(x, µ) distance between feature vector x and Gaussian mean vector µ

G quantizer distortion

Gs,m,k atom, distance between feature stream vector

and Gaussian stream vector

g(x, x̂) distance measure between value x and reproduction value x̂

Hr(S) entropy

H meta-atom

In quantization subinterval

i index variable

j index variable

K number of streams

k stream index

L average length of a code

li length of a codeword Xi

m mixture index

N number of recognized words; number of entries in a codebook

91



92 APPENDIX A. NOMENCLATURE

N(x, µ,Σ) Gaussian pdf

n frame number; number of vectors in data set;

number of Gaussians in HMM set

q base of source alphabet

r base of code alphabet

S number of states; source alphabet

s state index

T number of frames

t time; frame number

V codebook; quantizer codebook

v vector; codebook vector (codeword); quantization level

W sequence of recognized words

w recognized word

w(n) Hamming window

X sequence of feature vectors or data; code word; data set

x data value; data vector; feature vector

[xmin, xmax] quantization interval

X̂ reproduction data set

x̂ reproduction value; reproduction vector

y interval border in scalar quantization (threshold)

α displacement multiplication coefficient

αt(i) best path score at time t that ends in the state i

λ(π, a, b) hidden Markov model

µ Gaussian mean vector

η average error

π initial state probability vector

Σ covariance matrix

σ variance

ψ back tracking array for Viterbi search



Appendix B

List of abbreviations

ALU arithmetic logical unit

ASR automatic speech recognition

BPE byte pair encoding

CPU central processing unit

DTW dynamic time warping

DSP digital signal processor

FFT fast Fourier transform

GSM Global System for Mobile Communications

HMM hidden Markov model

CDHMM continuous density HMM

FPTHMM feature parameter tying HMM

SDCHMM stream (subspace) distribution clustering HMM

TMHMM tied mixtures HMM

Hz hertz

kHz kilohertz

MHz megahertz

LDA linear discriminative analysis

LVCSR large vocabulary continuous speech recognition

LVISR large vocabulary isolated speech recognition

OOV out-of-vocabulary

PDA personal digital assistant

pdf probability density function

RISC reduced instruction set computer

RLE run-length encoding

RTF real time factor

SGTS stream (subspace) Gaussian tying structure

SIMD single instruction, multiple data

93



94 APPENDIX B. LIST OF ABBREVIATIONS

SMS short message service

SQ scalar quantization

SST sub-state tying

VAD voice activity detection

VQ vector quantization

WER word error rate

µC microcontroller



Bibliography

[Ahmed and Holmes 2004] Ahmed, Beena ; Holmes, W. H.: A Voice Activity Detector

Using the Chi-Square Test. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP) vol. I, 2004, pp. 625–628

[Aiyer et al 2000] Aiyer, A. ; Gales, M.J.F. ; Picheny, M.A.: Rapid likelihood calculation

of subspace clustered Gaussian components. In: Proc. IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP) vol. III, 2000, pp. 1519–1523

[ARM 2002] ARM: Benchmarking with ARMulator, Application Note 93. March 2002.

– ARM DAI 0093A, c©ARM Ltd.

[Astrov 2002] Astrov, Sergey: Memory space reduction for Hidden Markov Models

in low-resource speech recognition systems. In: Proc. Int. Conf. on Spoken Language

Processing (ICSLP), 2002, pp. 1585–1588

[Astrov and Andrassy 2003] Astrov, Sergey ; Andrassy, Bernt: Large Vocabulary

Speaker Independent Isolated Word Recognition for Embedded Systems. In: Proc. Eu-

ropean Conference on Speech Communication and Technology (Eurospeech), 2003

[Astrov et al 2003] Astrov, Sergey ; Bauer, Josef G. ; Stan, Sorel: High Performance

Speaker and Vocabulary Independent ASR Technology for Mobile Phones. In: Proc.

IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) vol. II, 2003,

pp. 281–284

[Bauer 1997] Bauer, Josef G.: Enhanced Control and Estimation of Parameters for a

Telephone Based Isolated Digit Recognizer. In: Proc. IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP), 1997, pp. 1531–1534

[Bauer 2001] Bauer, Josef G.: Diskriminative Methoden zur automatischen Spracherken-

nung für Telefon–Anwendungen, Lehrstuhl für Mensch–Maschine–Kommunikation der

Technischen Universität München, Dissertation, 2001

[Bauer 2004] Bauer, Josef G.: Personal Communication. 2004

95



96 BIBLIOGRAPHY

[Beaugeant and Scalart 2001] Beaugeant, Christophe ; Scalart, Pascal: Speech Enhance-

ment Using a Minimum Least Square Amplitude Estimator. In: 7th Int. Workshop on

Acoustic Echo and Noise Control, 2001

[Bocchieri 1993] Bocchieri, Enrico: Vector Quantization for the Efficient Computation

of Continuous Density Likelihoods. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and

Signal Processing (ICASSP) vol. II, 1993, pp. 692–695

[Bocchieri and Mak 2001] Bocchieri, Enrico ; Mak, Brian Kan-Wing: Subspace Distri-

bution Clustering Hidden Markov Model. In: IEEE Transactions on Speech and Audio

Processing 9 (2001), Nr. 3, pp. 264–275

[Bronstein and Semendjajew 1989] Bronstein, I.N. ; Semendjajew, K.A.: Taschenbuch

der Mathematik. Thun und Frankfurt/Main : Verlag Harri Deutsch, 1989

[Data Compression – Wikipedia 2006] Data Compression, Wikipedia. 2006. –

http://en.wikipedia.org/wiki/Data_compression

[DataCompression-Web Site 2002] Nelson, Mark: DataCompression.info. 2002. –

http://datacompression.info

[Deligne et al 2001] Deligne, Sabine ; Eide, Ellen ; Gopinath, Ramesh ; Kanevsky, Dim-

itri ; Maison, Benoit ; Olsen, Peder ; Printz, Harry ; Sedivy, Jan: Low-Resource Speech

Recognition of 500-Word Vocabularies. In: Proc. European Conference on Speech Com-

munication and Technology (Eurospeech) vol. III, 2001, pp. 1833–1836

[Dolfing 2002] Dolfing, Hans J.: A Comparison of Prefix Tree and Finite-State Trans-

ducer Search Space Modelings for Large-Vocabulary Speech Recognition. In: Proc. Int.

Conf. on Spoken Language Processing (ICSLP), 2002, pp. 1305–1308

[Draxler et al 1999] Draxler, Christoph ; Grudszus, Robert ; Euler, Stephan ; Bengler,

Klaus: First Experiences of the German SpeechDat-Car Database Collection in Mobile

Environments. In: Proc. European Conference on Speech Communication and Technol-

ogy (Eurospeech) vol. 2, 1999, pp. 919–922

[Duda and Hart 1973] Duda, Richard O. ; Hart, Peter E.: Pattern Classification and

Scene Analysis. New York, Chichester, Brisbane, Toronto, Singapore : John Wiley &

Sons, 1973

[ELDA-Web Site 2005] ELDA Web Site. 2005. – http://www.elda.org

[ELRA-Web Site 2005] ELRA Web Site. 2005. – http://www.elra.info

[FSM–Internet site 2003] General-Purpose Finite-State Machine Software Tools. 2003.

– http://www.research.att.com/sw/tools/fsm



BIBLIOGRAPHY 97

[Furui 1986] Furui, Sadaoki: Speaker-Independent Isolated Word Recognition Using

Dynamic Features of Speech Spectrum. In: IEEE Transactions on Acoustics, Speech and

Signal Processing 34 (1986), Nr. 1, pp. 52–59

[Gu and Rose 2000] Gu, Liang ; Rose, Kenneth: Sub-State Tying in Tied Mixture Hidden

Markov Models. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP) vol. II, 2000, pp. 1013–1016

[Gu and Rose 2002] Gu, Liang ; Rose, Kenneth: Substate Tying With Combined Param-

eter Training and Reduction in Tied-Mixture HMM Design. In: IEEE-T-SAA 10 (2002),

Nr. 3, pp. 137–145

[Haeb-Umbach et al 1993] Haeb-Umbach, R. ; Geller, D. ; Ney, H.: Improvements in

Connected Digit Recognition using Linear Discriminant Analysis and Mixture Densities.

In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) vol. II,

1993, pp. 239–242

[Haeb-Umbach and Ney 1991] Haeb-Umbach, Reinhold ; Ney, Hermann: A Look-

Ahead Search Technique for Large Vocabulary Continuous Speech Recognition. In:

Proc. European Conference on Speech Communication and Technology (Eurospeech)

vol. II, 1991, pp. 495–498

[Hauenstein 1993a] Hauenstein, Alfred: Architecture of a 10000 Word Real Time Speech

Recognizer. In: Proc. European Conference on Speech Communication and Technology

(Eurospeech) vol. 3, 1993, pp. 1829–1832

[Hauenstein 1993b] Hauenstein, Alfred: Optimierung von Algorithmen und Entwurf

eines Prozessors für die automatische Spracherkennung, Lehrstuhl für Integrierte Schal-

tungen der Technischen Universität München, Dissertation, 1993

[Hauenstein and Marschall 1995] Hauenstein, Alfred ; Marschall, Erwin: Methods for

Improved Speech Recognition over Telephone Lines. In: Proc. IEEE Int. Conf. on Acous-

tics, Speech, and Signal Processing (ICASSP) vol. 1, 1995, pp. 425–428

[Huffman 1952] Huffman, D. A.: A method for the construction of maximum redun-

dancy codes. In: Proc. IRE vol. 40, 1952, pp. 1098–1101

[IEEE 1985] : IEEE Standard 754-1985. IEEE Standard for Binary Floating-Point Arith-

metic. 1985

[Ircing and Psutka 2003] Ircing, Pavel ; Psutka, Josef: Fitting Class-Based Language

Models into Weighted Finite-State Transducer Framework. In: Proc. European Confer-

ence on Speech Communication and Technology (Eurospeech), 2003, pp. 1873–1876



98 BIBLIOGRAPHY

[Kanthak et al 2000] Kanthak, S. ; Schütz, K. ; Ney, Hermann: Using SIMD Instructions

for Fast Likelihood Calculation in LVCSR. In: Proc. IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP), 2000, pp. 1531–1534

[Kanthak et al 2002] Kanthak, Stephan ; Ney, Hermann ; Riley, Mihael ; Mohri, Mehryar:

A Comparison of Two LVCSR Search Optimization Techniques. In: Proc. Int. Conf. on

Spoken Language Processing (ICSLP), 2002, pp. 1309–1312

[Kneser and Ney 1991] Kneser, Reinhard ; Ney, Hermann: Forming Word Classes by

Statistical Clustering for Statistical Language Modelling. In: First Quantitative Linguis-

tics Conference, QUALICO, 1991, pp. 221–226

[Köhler 2000] Köhler, Joachim: Erstellung einer statistisch modellierten multilingualen

Lautbibliothek für die Spracherkennung. Aachen : Shaker Verlag, 2000

[Komori et al 1995] Komori, Yasuhiro ; Yamada, Masayuki ; Tamamoto, Hiroki ; Ohora,

Yasunori: An Efficient Output Probability Computation for Continuous HMM Using

Rough and Detail Models. In: Proc. European Conference on Speech Communication

and Technology (Eurospeech) vol. II, 1995, pp. 1087–1090

[Lee et al 2000] Lee, Akinobu ; Kawahara, Tatsuya ; Takeda, Kazuya ; Shikano, Kiy-

ohiro: A New Phonetic Tied-Mixture Model for Efficient Decoding. In: Proc. IEEE Int.

Conf. on Acoustics, Speech, and Signal Processing (ICASSP) vol. III, 2000, pp. 1269–

1272

[Linde et al 1980] Linde, Y. ; Buzo, A. ; Gray, R. M.: An algorithm for vector quantiza-

tion design. 28 (1980), Nr. 1, pp. 84–95

[Ljolje et al 1999] Ljolje, Andrej ; Riley, Michael D. ; Hindle, Donald M.: The AT&T

Large Vocabulary Conversational Speech Recognition System. In: Proc. European Con-

ference on Speech Communication and Technology (Eurospeech), 1999, pp. 807–810

[Lloyd 1982] Lloyd, Stuart P.: Least Squares Quantization in PCM. In: IEEE Transac-

tions on Information Theory vol. IT-28, March 1982, pp. 129–137

[Mak and Bocchieri 1998] Mak, Brian ; Bocchieri, Enrico: Training of Subspace Dis-

tribution Clustering Hidden Markov Model. In: Proc. IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP) vol. II, 1998, pp. 673–676

[Mak and Bocchieri 2001] Mak, Brian Kan-Wing ; Bocchieri, Enrico: Direct Training

of Subspace Distribution Clustering Hidden Markov Model. In: IEEE Transactions on

Speech and Audio Processing 9 (2001), Nr. 4, pp. 378–387



BIBLIOGRAPHY 99

[Manber 1997] Manber, Udi: A Text Compression Scheme that Allows Fast Searching

Directly in the Compressed File. In: ACM Transactions on Information Systems vol. 15,

April 1997, pp. 124–136

[Maniscalco 2001] Maniscalco, Michael A.: A Second Modified Run

Length Encoding Scheme for Blocksort Transformed Data. (2001). –

http://www.geocities.com/m99datacompression/papers/rle2.html

[Martin 1994] Martin, Rainer: Spectral Subtraction Based on Minimum Statistics. In:

EUSIPCO, 1994, pp. 1182–1185

[Marzinzik and Kollmeier 2002] Marzinzik, M. ; Kollmeier, B.: Speech pause detection

for noise spectrum estimation by tracking power envelope dynamics. In: IEEE Transac-

tions on Speech and Audio Processing 10 (2002), Nr. 2, pp. 109–118

[Mohri et al 2000] Mohri, Mehryar ; Pereira, Fernando ; Riley, Michael: Weighted Finite-

State Transducers in Speech Recognition. In: ISCA ITRW Automatic Speech Recogni-

tion: Challenges for the Millenium, 2000, pp. 97–106

[Mohri et al 2002] Mohri, Mehryar ; Pereira, Fernando ; Riley, Michael: Weighted

Finite-State Transducers in Speech Recognition. In: Computer Speech and Language 16

(2002), Nr. 1, pp. 69–88

[Mohri and Riley 2002] Mohri, Mehryar ; Riley, Michael: An Efficient Algorithm for the

N-Best-String Problem. In: Proc. Int. Conf. on Spoken Language Processing (ICSLP),

2002, pp. 1313–1316

[Moore 1965] Moore, Gordon E.: Cramming more components onto integrated circuits.

38 (1965), Nr. 8, pp. 109–118

[Nakagawa and Horibe 2001] Nakagawa, Seiichi ; Horibe, Yukihisa: A Fast Calcula-

tion Method in LVCSRs by Time-Skipping and Clustering of Probability Density Dis-

tributions. In: Proc. European Conference on Speech Communication and Technology

(Eurospeech) vol. II, 2001, pp. 855–858

[Nelson 1989] Nelson, Mark: LZW Data Compression. In: Dr. Dobb’s Journal (1989),

October

[Ney et al 1992] Ney, H. ; Haeb-Umbach, R. ; Tran, B.-H. ; Oerder, M.: Improvements

in Beam Search for 10000–Word Continuous Speech Recognition. In: Proc. IEEE Int.

Conf. on Acoustics, Speech, and Signal Processing (ICASSP) vol. I, 1992, pp. 9–12

[Ney 1984] Ney, Hermann: The Use of a One–Stage Dynamic Programming Algorithm

for Connected Word Recognition. In: IEEE Trans. on Acoustics, Speech, and Signal

Processing 32 (1984), Nr. 2, pp. 263–271



100 BIBLIOGRAPHY

[Ney and Essen 1991] Ney, Hermann ; Essen, Ute: On Smoothing Techniques for

Bigram-Based Natural Language Modelling. In: Proc. IEEE Int. Conf. on Acoustics,

Speech, and Signal Processing (ICASSP), 1991, pp. 825–828

[Ney et al 1989] Ney, Hermann ; Mergel, Dieter ; Noll, Andreas ; Paeseler, Annedore:

Continuous Speech Recognition Using a Stochastic Language Model. In: ICASSP

(1989), pp. 719–722

[Ney and Ortmanns 1999] Ney, Hermann ; Ortmanns, Stefan: Dynamic Programming

Search for Continuous Speech Recognition. In: IEEE Signal Processing Magazine 16

(1999), Nr. 5, pp. 64–83

[Ney and Ortmanns 2000] Ney, Hermann ; Ortmanns, Stefan: Progress in Dynamic

Programming Search for LVCSR. In: In Proceedings of the IEEE 88 (2000), Nr. 8

[Ney et al 1998] Ney, Hermann ; Welling, Lutz ; Ortmanns, Stefan ; Beulen, Klaus ;

Wessel, Frank: The RWTH Large Vocabulary Continuous Speech Recognition System.

In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP) vol. III,

1998, pp. 853–856

[Ohm 1995] Ohm, Jens-Rainer: Digitale Bildcodierung: Repräsentation, Kompression,

und Übertragung von Bildsignalen. Berlin and Heidelberg : Springer Verlag, 1995

[Ortmanns et al 1997a] Ortmanns, S. ; Ney, H. ; Firzlaff, T.: Fast Likelihood Compu-

tation Methods for Continuous Mixture Densities in Large Vocabulary Speech Recogni-

tion. In: Proc. European Conference on Speech Communication and Technology (Eu-

rospeech) vol. 4, 1997, pp. 143–146

[Ortmanns et al 1997b] Ortmanns, Stefan ; Eiden, Andreas ; Ney, Hermann ; Coenen,

Norbert: Look-Ahead Techniques for Fast Beam Search. In: Proc. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing (ICASSP), 1997, pp. 1783–11786

[Pennebaker et al 1988] Pennebaker, W. B. ; Mitchell, J. L. ; Langdon, G. G. ; Arps,

R. B.: An overview of the basic principles of the Q-coder adaptive binary arithmetic

coder. In: IBM J. Res. Develop. 32 (1988), pp. 717–752

[Rabiner and Juang 1993] Rabiner, L. ; Juang, B.H.: Fundamentals of Speech Recogni-

tion. Prentice Hall, Englewood Cliffs, NJ, 1993 (Signal Processing Series)

[Ramírez et al 2004] Ramírez, J. ; Segura, J. C. ; Benítez, C. ; Torre, A. de la ; Rubio, A.:

A New Voice Activity Detector Using Subband Order-Statistics Filters for Robust Speech

Recognition. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing

(ICASSP) vol. I, 2004, pp. 849–852



BIBLIOGRAPHY 101

[Rojc and Kacic 2001] Rojc, Matej ; Kacic, Zdravko: Representation of Large Lexica Us-

ing Finite-State Transducers for the Multilingual Text-to-Speech Synthesis Systems. In:

Proc. European Conference on Speech Communication and Technology (Eurospeech),

2001, pp. 2251–2254

[Shibata et al 2000] Shibata, Yusuke ; Kida, Takuya ; Fukamachi, Shuichi ; Takeda,

Masayuki ; Shinohara, Ayumi ; Shinohara, Takeshi ; Arikawa, Setsuo: Speeding Up

Pattern Matching by Text Compression. In: CIAC 2000, 2000, pp. 306–315

[Sixtus et al 2000] Sixtus, Achim ; Molau, Sirko ; Kanthak, Stephan ; Schlüter, Ralf ;

Ney, Herman: Recent improvements of the RWTH large vocabulary speech recognition

system on spontaneous speech. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and

Signal Processing (ICASSP) vol. III, 2000, pp. 1671–1674

[SpeechDat-Web Site 2005] SpeechDat Web Site. 2005. – http://www.speechdat.org

[Suontausta et al 2000] Suontausta, Janne ; Häkkinen, Juha ; Viikki, Olli: Fast Decoding

in Large Vocabulary Name Dialing. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and

Signal Processing (ICASSP) vol. III, 2000, pp. 1535–1538

[Surendran et al 2004] Surendran, Arun C. ; Sukittanon, Somsak ; Platt, John: Logistic

Discriminative Speech Detectors Using Posterior SNR. In: Proc. IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing (ICASSP) vol. V, 2004, pp. 625–628

[Takahashi and Sagayama 1995] Takahashi, Satoshi ; Sagayama, Shigeki: Four–Level

Tied–Structure for Efficient Representation of Acoustic Modeling. In: Proc. IEEE Int.

Conf. on Acoustics, Speech, and Signal Processing (ICASSP) vol. I, 1995, pp. 520–523

[Togneri 2002] Togneri, Roberto: Lecture Notes: Information Theory and Coding. 2002.

– http://www.ee.uwa.edu.au/ roberto/teach/itc314/

[Varga et al 2002] Varga, Imre ; Aalburg, Stefanie ; Andrassy, Bernt ; Astrov, Sergey ;

Bauer, Josef G. ; Beaugeant, Christophe ; Geißler, Christian ; Höge, Harald: ASR in

Mobile Phones — an Industrial Approach. In: IEEE Transactions on Speech and Audio

Processing 10 (2002), Nr. 8, pp. 562–569

[Viterbi 1967] Viterbi, A.: Error Bounds for Convolutional Codes and an Asymptotically

Optimum Decoding Algorithm. In: IEEE Trans. on Information Theory 13 (1967),

pp. 260–269

[Watanabe et al 1994] Watanabe, Takao ; Shinoda, Koichi ; Takagi, Keizaburo ; Yamada,

Eiko: Speech Recognition Using Tree-Structured Probability Density Function. In: Proc.

Int. Conf. on Spoken Language Processing (ICSLP) vol. I, 1994, pp. 223–226



102 BIBLIOGRAPHY

[Welch 1984] Welch, Terry: A Technique for High-Performance Data Compression. In:

Computer (1984), June

[Witschel 1993] Witschel, Petra: Constructing Linguistic Oriented Language Models

for Large Vocabulary Speech Recognition. In: Proc. European Conference on Speech

Communication and Technology (Eurospeech), 1993, pp. 1199–1202

[Witschel 2000] Witschel, Petra: Optimierte stochastiche Sprachmodellierung auf lin-

guistischen Klassen, Fakultät für Mathematik und Informatik der Ludwig-Maximilllians-

Universität München, Dissertation, 2000

[Witten et al 1987] Witten, I. H. ; Neal, R. M. ; Cleary, J. G.: Arithmetic coding for data

compression. In: Comm. ACM 30 (1987), pp. 520–540

[Ziv and Lempel 1977] Ziv, J. ; Lempel, A.: A Universal Algorithm for Sequential Data

Compression. In: IEEE-T-IT (1977), May


