
A categorical construction for the computational definition
of vector spaces
Alejandro Díaz-Caro1,2 and Octavio Malherbe3

1Instituto de Ciencias de la Computación (CONICET-Universidad de Buenos Aires), Buenos Aires, Argentina

2Universidad Nacional de Quilmes, Bernal, BA, Argentina

3Universidad de la República, Montevideo, Uruguay

This is an extended abstract of a full paper
submitted to a journal for review. The full
draft can be found at

http://arxiv.org/abs/1905.01305

Algebraic lambda calculi aim to embed
to the lambda calculus, the notion of vec-
tor spaces over programs. This way a lin-
ear combination α.v + β.w of programs v
and w, for some scalars α and β, is also
a program [2]. This kind of construction
has two independent origins. The Alge-
braic Lambda Calculus (ALC for short) [8]
has been introduced as a fragment of the
Di�erential LambdaCalculus [6], which is it-
self originated from Linear Logic [7]. ALC
can be seen as the Di�erential Lambda
Calculus without a di�erential operator. In
the ALC the notion of vector spaces is em-
bedded in the calculus with an equational
theory, so the axioms of vector spaces,
such as α.v + β.v = (α + β).v are seen as
equalities between programs. On the other
hand, the Linear Algebraic Lambda Calculus
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(Lineal for short) [1] was meant for quan-
tum computation. The aim of Lineal is to
provide a computational de�nition of vec-
tor space and bilinear functions, and so,
it de�nes the axioms of vector spaces as
rewrite rules, providing a con�uent calcu-
lus (so obtaining a canonical representa-
tion of vectors). This way, an equality such
as −v + v + 3.w − 2.w = w is described com-
putationally step by step as

(−1).v + v + 3.w + (−2).w

−→ 0.v + 3.w + (−2).w

−→ 0.v + 1.w

−→ 0 + 1.w

−→ 1.w

−→ w

Rules like α.v + β.v −→ (α + β).v say that
these expressions are not the same but one
reduces to the other, and so, a computa-
tional step has been performed. The back-
bone of this computation can be described
as having an element α.v + β.v without
properties, which is decomposed into its
constituents parts α, β, and v, and recon-
structed in another way. Otherwise, if we
consider α.v + β.v being just a vector, as in
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the ALC, then it would be equal to (α+ β).v

and the computation needed to arrive from
the former to the latter would be ignored.
The main idea in the present paper is to
study the construction of Lineal from a
categorical point of view, with an adjunc-
tion between a Cartesian closed category,
which will threat the elements as not hav-
ing properties, and an additive symmet-
ric monoidal closed category, where the
underlying properties will allow to do the
needed algebraic manipulation. A concrete
example is an adjunction between the cat-
egory Set of sets and the category Vec of
vector spaces. This way, a functor from Set

to Vec will allow to do the needed manip-
ulation, while a forgetful functor from Vec

to Set will return the result of the compu-
tation.

The calculus Lambda-S∗ [4] is a �rst-
order typed fragment of Lineal. The type
system has been designed as a quantum
lambda calculus, where the main goal was
to study the non-cloning restrictions. In
quantum computing a known vector, such
as a basis vector from the base consid-
ered for the measurements, can be dupli-
cated freely (normally the duplication pro-
cess is just a preparation of a new qubit in
the same known basis state), while an un-
known vector cannot. For this reason, a
linear-logic like type system has been put
in place. In linear logic we would write A
the types of terms that cannot be dupli-
cated while !A types duplicable terms. In
Lambda-S∗ instead A are the types of the
terms that represent basis vectors, while

S(A) are linear combinations of those (the
span of A). Hence, A means that we can
duplicate, while S(A) means that we can-
not duplicate. So the S is not the same as
the bang “!”, but somehow the opposite.
This can be explained by the fact that linear
logic is focused on the possibility of dupli-
cation, while here we focus on the possi-
bility of superposition, which implies the
impossibility of duplication.
In [4] a �rst denotational semantics (in

environment style) is given where the type
B is interpreted as {|0〉 , |1〉} while S(B) is
interpreted as Span({|0〉 , |1〉}) = C2, and, in
general, a type A is interpreted as a ba-
sis while S(A) is the vector space gener-
ated by such a basis. In [5] we went further
and gave a preliminary concrete categori-
cal interpretation of Lambda-S1 where S is
a functor of an adjunction between the cat-
egory Set and the category Vec. Explicitly,
when we evaluate S we obtain formal �nite
linear combinations of elements of a set
with complex numbers as coe�cients and
the other functor of the adjunction, U , al-
lows us to forget the vectorial structure. In
this paper, we de�ne the abstract categor-
ical semantics of Lambda-S∗, so we focus
on the computational de�nition of vector
spaces.
The main structural feature of our model

is that it is expressive enough to describe
the bridge between the propertyless ele-
ments such as α.v+β.v, without any equa-
tional theory, and the result of its alge-

1Lambda-S is the same as Lambda-S∗, but extended
with a measurement operator.
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braic manipulation into (α + β).v, explic-
itly controlling its interaction. In the lit-
erature, intuitionistic linear (as in linear-
logic) models are obtained by a monoidal
comonad determined by a monoidal ad-
junction (S,m) a (U, n), i.e. the bang ! is in-
terpreted by the comonad SU (see [3]). In
a di�erent way, a crucial ingredient of our
model is to consider the monad US for the
interpretation of S determined by a similar
monoidal adjunction. This implies that on
the one hand we have tight control of the
Cartesian structure of the model (i.e. du-
plication, etc) and on the other hand the
world of superpositions lives in some sense
inside the classical world, i.e. determined
externally by classical rules until we decide
to explore it. This is given by the following
composition of maps:

USB× USB U(SB⊗ SB)

US(B× B)

n

Um

that allows us to operate in a monoidal
structure explicitly allowing the algebraic
manipulation and then to return to the
Cartesian product.
This is di�erent from linear logic, where

the ! stops any algebraic manipulation,
i.e. (!B)⊗(!B) is a product inside a monoidal
category.
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