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Motivation
Two paradigms

make qubit 0→ q1;
make qubit 1→ q2;
apply CNOT q1 q2;
if(measure q1)
then . . .

|0〉 •

|1〉

(αP1 + αP2) |ψ〉
→ αP1 |ψ〉 + αP2 |ψ〉
→ α |φ〉 + α |ϕ〉

Classical control / quantum data Quantum control

In this work we propose a paradigm in between:
“Probabilistic control” or “Weak quantum control”
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Postulates of quantum mechanics

Postulate 1: State space
The state of an isolated quantum system can be fully described by a state
vector, which is a unit vector in a complex Hilbert space∗.
∗ Hilbert space: Vector space with inner product, complete in its norm

Examples
Space Vectors

C2 |0〉 = ( 1
0 ) |1〉 = ( 0

1 ) 1√
2
|0〉+ 1√

2
|1〉 =

(
1√
2

1√
2

)
C4 = C2 ⊗ C2 |00〉 =

(
1
0
0
0

)
1√
3
|00〉+

√
2√
3
|11〉 =

 1√
3

0
0√
2√
3


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Postulates of quantum mechanics

Postulate 2: Evolution
The evolution of an isolated quantum system can be described by a
unitary matrix∗.

|ψ′〉 = U |ψ〉
∗ U unitary if U† = U−1.

Examples

H = 1√
2

(
1 1
1 −1

) H ( 1
0 ) =

(
1√
2

1√
2

)
= |+〉

H ( 0
1 ) =

(
1√
2
−1√

2

)
= |−〉

Not = ( 0 1
1 0 )

Not ( 1
0 ) = ( 0

1 )

Not ( 0
1 ) = ( 1

0 )

Z =
(

1 0
0 −1

) Z |+〉 = |−〉
Z |−〉 = |+〉
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Postulates of quantum mechanics
Postulate 3: Measurement

The quantum measurement is described by a collection of measurement
matrices∗ {Mi}i , where i is the output of the measurement.
Condition over {Mi}i :

∑
i M
†
i Mi = I

The probability of measuring i is: pi = 〈ψ|M†i Mi |ψ〉

The state after measuring i is: |ψ′〉 = Mi |ψ〉√
pi

∗ square matrices with complex coefficients 〈ψ| = |ψ〉†

Example
{M0,M1} with M1 = ( 1 0

0 0 ), M2 = ( 0 0
0 1 ).

p0 =
( √

2√
3

1√
3

)
( 1 0

0 0 )
2
( √

2√
3

1√
3

)
= 2

3
1√
p0
M0

( √
2√
3

1√
3

)
= 1√

p0

( √
2√
3

0

)
= ( 1

0 )

p1 =
( √

2√
3

1√
3

)
( 0 0

0 1 )
2
( √

2√
3

1√
3

)
= 1

3
1√
p0
M1

( √
2√
3

1√
3

)
= 1√

p1

(
0
1√
3

)
= ( 0

1 )

In general, with those {M0,M1}, the vector ( a
b ) measures 0 with

probability |a|2 and 1 with probability |b|2, and the sates after measuring
are ( 1

0 ) y ( 0
1 ) respectively.
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Postulates of quantum mechanics
Postulate 4: Composed system

The sate space of a composed system is the tensor product of the state
space of its components.
Given n systems in states |ψ1〉 , . . . , |ψn〉, the composed system is

|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉

Example

System 1: |ψ〉 =

(
1√
2

1√
2

)
System 2: |φ〉 =

(
1√
5

2√
5

)
Composed system |ψ〉 ⊗ |φ〉:

(
1√
2

1√
2

)
⊗
(

1√
5

2√
5

)
=


1√
10
2√
10
1√
10
2√
10


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Density matrices
A representation of our ignorance about the system

Definition (Density matrix)
Mixed state: A distribution set of pure states: {(pi , |ψi 〉)}i
Density matrix: ρ =

∑
i pi |ψi 〉 〈ψi |

Characterisation: ρ density matrix ⇔ tr(ρ) = 1 ∧ ρ positive

Let M = {M0,M1}, with M0 and M1 projecting to the canonical base

After measuring ( αβ ):

{
( 1

0 ) with probability |α|2

( 0
1 ) with probability |β|2

Example: Pre and post measure

{(|α|2, ( 1
0 )), (|β|2, ( 0

1 ))} ⇒ ρ= |α|2 ( 1
0 ) ( 1 0 ) + |β|2 ( 0

1 ) ( 0 1 )=
(
|α|2 0
0 |β|2

)
{(1, ( αβ ))} ⇒ ρ = ( αβ ) ( α∗ β∗ ) =

(
|α|2 αβ∗

α∗β |β|2

)
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Postulates of quantum mechanics
with density matrices

Postulate 1 (with vectors): State space
The state of an isolated quantum system can be fully described by a state
vector, which is a unit vector in a complex Hilbert space.

Postulate 1 (with matrices): State space
The state of an isolated quantum system can be fully described by a density
matrix, which is a square matrix ρ with trace 1 acting on a complex Hilbert
space.

If a quantum system is in state ρi with probability pi , the density matrix
of the system is ∑

i

piρi
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Postulates of quantum mechanics
with density matrices

Postulate 2 (with vectors): Evolution
The evolution of an isolated quantum system can be described by a
unitary matrix.

|ψ′〉 = U |ψ〉

Postulate 2 (with matrices): Evolution
The evolution of an isolated quantum system can be described by a
unitary matrix.

ρ′ = UρU†
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Postulates of quantum mechanics
with density matrices

Postulate 3 (with vectors): Measurement
The quantum measurement is described by a collection of measurement
matrices {Mi}i , where i is the output of the measurement.
Condition over {Mi}i :

∑
i M
†
i Mi = I

The probability of measuring i is: pi = 〈ψ|M†i Mi |ψ〉

The state after measuring i is: |ψ′〉 = Mi |ψ〉√
pi

Postulate 3 (with matrices): Measurement
The quantum measurement is described by a collection of measurement
matrices {Mi}i , where i is the output of the measurement.
Condition over {Mi}i :

∑
i M
†
i Mi = I

The probability of measuring i is: pi = tr(M†i Miρ)

The state after measuring i is: ρ′ =
MiρM

†
i

pi
(|ψ′〉 〈ψ′|)
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Postulates of quantum mechanics
with density matrices

Postulate 4 (with vectors): Composed system
The sate space of a composed system is the tensor product of the state
space of its components.
Given n systems in states |ψ1〉 , . . . , |ψn〉, the composed system is

|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉

Postulate 4 (with matrices): Composed system
The sate space of a composed system is the tensor product of the state
space of its components.
Given n systems in states ρ1, . . . , ρn, the composed system is

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn
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Example
[Nielsen-Chuang p371]

Experiment 1: Toss a coin

Experiment 2: Toss a coin to decide whether or not to apply Z to
(

1√
2

1√
2

)

Experiment 1
{(1/2, ( 1

0 )), (1/2, ( 0
1 ))}

ρ1 = 1/2 ( 1
0 ) ( 1 0 ) + 1/2 ( 0

1 ) ( 0 1 ) =
(

1/2 0
0 1/2

)
Experiment 2

{(1/2,

(
1√
2

1√
2

)
), (1/2,

(
1√
2
−1√

2

)
)}

ρ2 = 1/2

(
1√
2

1√
2

)
( 1√

2
1√
2 ) + 1/2

(
1√
2
−1√

2

)
( 1√

2
−1√

2 ) =
(

1/2 0
0 1/2

)

Same density matrix does not imply same mixed state

But mixed states with same density matrices are indistinguishable
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Untyped λρ

t := x | λx .t | tt (lambda calculus)
| ρn | Unt | πnt | t ⊗ t (the 4 postulates)
| (bm, ρn) | letcase x = r in {t . . . t} (classical control over meas.)

where
I πn = {π0, . . . , π2n−1} is a measurement in the computational base
I bm is a m-bits number

(λx .t)r −→1 t[r/x ]

Umρn −→1 ρ
′n

πmρn −→pi (im, ρni )

ρ1 ⊗ ρ2 −→1 ρ
′

letcase x = (bm, ρn) in {t0, . . . , t2m−1} −→1 tbm [ρn/x ]
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Types

A := n | (m, n) | A ( A

Γ, x : A ` x : A
ax

Γ, x : A ` t : B

Γ ` λx .t : A ( B
(i

Γ ` t : A ( B ∆ ` r : A
Γ,∆ ` tr : B

(e
Γ ` ρn : n

axρ

Γ ` t : n
Γ ` Umt : n

u Γ ` t : n
Γ ` πmt : (m, n)

m

Γ ` t : n ∆ ` r : m
Γ,∆ ` t ⊗ r : n + m

⊗
Γ ` (bm, ρn) : (m, n)

axam

∆, x : n ` t0 : A . . . ∆, x : n ` t2m−1 : A Γ ` r : (m, n)

Γ,∆ ` letcase x = r in {t0, . . . , t2m−1} : A
lc

with m ≤ n and 0 ≤ bm < 2m.
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Denotational semantics
Intuition

JπnρnK = {(p0, ρ0), . . . , (p2n−1, ρ2n−1)}
where, with probability pi the final state is ρi

LπnρnM =
∑

i piρi

In general:
JtK = {(pi , ei )}i

with ei density matrix or function from density matrices to density
matrices

LtM =
∑
i

piei

where (a.f + b.g)(x) = a.f (x) + b.g(x)

LnM = L(m, n)M = Dn LA ( BM = DDA(DB
= DA ( DB
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Example 1
Experiment 1: Toss a coin
Experiment 2: Toss a coin to decide whether or not to apply Z to

( 1
2

1
2

1
2

1
2

)

Experiment 1: π1
( 1

2
1
2

1
2

1
2

)

Jπ1
( 1

2
1
2

1
2

1
2

)
K = {( 1

2 , (
1 0
0 0 )), ( 1

2 , (
0 0
0 1 ))}

Experiment 2: letcase x = π1
( 1

2
1
2

1
2

1
2

)
in {

( 1
2

1
2

1
2

1
2

)
,Z
( 1

2
1
2

1
2

1
2

)
}

Jletcase x = π1
( 1

2
1
2

1
2

1
2

)
in {

( 1
2

1
2

1
2

1
2

)
,Z
( 1

2
1
2

1
2

1
2

)
}K

= {( 1
2 ,
( 1

2
1
2

1
2

1
2

)
), ( 1

2 ,
( 1

2 −
1
2

− 1
2

1
2

)
)}

Lletcase x = π1
( 1

2
1
2

1
2

1
2

)
in {

( 1
2

1
2

1
2

1
2

)
,Z
( 1

2
1
2

1
2

1
2

)
}M =

( 1
2 0
0 1

2

)
= Lπ1

( 1
2

1
2

1
2

1
2

)
M
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Example 2

Measure a given ρ and then toss a coin to decide whether to return the
resulting state of the measurement, or the output of a tossing a new coin.

t = (letcase y = π1
( 1

2
1
2

1
2

1
2

)
in {λx .letcase z = π1

( 1
2

1
2

1
2

1
2

)
in {z , z}, λx .x}

)

(letcase z = π1ρ in {z , z})
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Example 2
A possible trace (confluence of trees to be proven following [DC-Martínez LSFA’17])

(letcase y = π1
( 1

2
1
2

1
2

1
2

)
in {

to︷ ︸︸ ︷
λx .letcase z = π1

( 1
2

1
2

1
2

1
2

)
︸ ︷︷ ︸

s

in {z , z},
t1︷︸︸︷

λx .x})

︸ ︷︷ ︸
r1

(letcase z = π1ρ in {z , z})︸ ︷︷ ︸
r2

r1r2

r1l0 r1l1

r1 ( 1 0
0 0 ) r1 ( 0 0

0 1 )

r0
1 ( 1 0

0 0 ) r1
1 ( 1 0

0 0 )

t0 ( 1 0
0 0 )

letcase y = s in {y , y}

t1 ( 1 0
0 0 )

r0
1 ( 0 0

0 1 )

t0 ( 0 0
0 1 )

letcase y = s in {y , y}

r1
1 ( 0 0

0 1 )

t1 ( 0 0
0 1 )

l0

( 1 0
0 0 )

l1

( 0 0
0 1 )

( 1 0
0 0 )

l0

( 1 0
0 0 )

l1

( 0 0
0 1 )

( 0 0
0 1 )

Let ρ =

(
3/4

√
3/4√

3/4 1/4

)

Jr1r2K = {( 5
8 , (

1 0
0 0 )), ( 3

8 , (
0 0
0 1 ))

Lr1r2M =
( 5

8 0
0 3

8

)

3
4

1

12

1

1

1
2

1

1 2

1

1

1
2

1

1
4

1

1 2

1

1

12

1

1

1
2

1

1
2

1
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λ◦ρ : taking advantage of density matrices

t := x | λx .t | tt (lambda calculus)
| ρn | Unt | πnt | t ⊗ t (the 4 postulates)
| (bm, ρn) | letcase x = r in {t . . . t} (classical control over meas.)

|
n∑

i=1

pi ti | letcase◦ x = r in {t . . . t} (probabilistic control)

(λx .t)r → t[r/x ]

Umρn → ρ′
n

πmρn −→pi (im, ρni )

ρ1 ⊗ ρ2 → ρ′

letcase x = (bm, ρn) in {t0, . . . , t2m−1} → tbm [ρn/x ]

letcase◦ x = πmρn in {t0, . . . , t2m−1} →
∑
i

pi ti [ρ
n
i /x ]
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Example 2 again

Measure a given ρ and then toss a coin to decide whether to return the
resulting state of the measurement, or the output of a tossing a new coin.

t = (letcase◦ y = π1
( 1

2
1
2

1
2

1
2

)
in {λx .letcase◦ z = π1

( 1
2

1
2

1
2

1
2

)
in {z , z}, λx .x}

)

(letcase◦ z = π1ρ in {z , z})

t →∗
( 5

8 0
0 3

8

)
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Summarising
I λρ: classical control/quantum data (data = density matrices)
I λ◦ρ : probabilistic control/quantum data
I Same denotational semantics

Future works

I Comparison between λρ/λ◦ρ, and Selinger-Valiron’s λq
(with Agustín Borgna (UBA))

I Implementation of a simulator in Haskell
(with Alan Rodas and Pablo E. Martínez López (UNQ))

I Polymorphic extension and proofs of SN and confluence
(with Lucas Romero (UBA))

I Studding a fixed point operator
(with Malena Ivnisky and Hernán Melgratti (UBA))
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