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Motivation

Two paradigms

Classical control / quantum data Quantum control

-

In this work we propose a paradigm in between:
“Probabilistic control” or “Weak quantum control”
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Postulates of quantum mechanics

Postulate 1: State space

w The state of an isolated quantum system can be fully described by a state
\ vector, which is a unit vector in a complex Hilbert space*.

* Hilbert space: Vector space with inner product, complete in its norm
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Postulates of quantum mechanics

Postulate 2: Evolution

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

' The evolution of an isolated quantum system can be described by a
| unitary matrix*.
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Postulates of quantum mechanics
Postulate 3: Measurement

| The quantum measurement is described by a collection of measurement
matrices* {M;};, where i is the output of the measurement.

' Condition over {M;};: > MI.TM,- =1 3
i The probability of measuring i is:  p; = (¢| M,.T M; |4)) i
l L N M) 1
: The state after measuring i is: [y = NG |
square matrices with complex coefficients (] = |¢>Jr

{Mo, My} with My = (58), M2 = (§9).
V2 vz
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In general, with those {My, M1}, the vector (j) measures 0 with
probability |a|?> and 1 with probability |b|?, and the sates after measuring

are (3) y (9) respectively.
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Postulates of quantum mechanics

- _________Postulate 4: Composed system ______________
! The sate space of a composed system is the tensor product of the state
‘ space of its components.

' Given n systems in states [¢1),...,|¢,), the composed system is

1) ® [1h2) @ -+ @ )

System 1: [t)) = (‘[> System 2: [¢) = )
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Density matrices

A representation of our ignorance about the system

Definition (Density matrix)

Mixed state: A distribution set of pure states: {(p;, [¥i))}i
Density matrix: p =, p; [¢i) (i

Characterisation: p density matrix < tr(p) = 1 A p positive

Let M = {My, My}, with My and M; projecting to the canonical base
(3) with probability |a|?

After measuring (3 ):
g () {( 9) with probability |3|?

Example: Pre and post measure
(I, (5)), (18P, (9N} = p=laP (3) (10)+18P (D) (o) =13 2 )
(N = o= (3) (o o) = (1 222)
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Postulates of quantum mechanics

with density matrices

Postulate 1 (with vectors): State space

\ The state of an isolated quantum system can be fully described by a state
\ vector, which is a unit vector in a complex Hilbert space.

| The state of an isolated quantum system can be fully described by a density!
\ matrix, which is a square matrix p with trace 1 acting on a complex Hilbert !
| space.
|

' If a quantum system is in state p; with probability p;, the density matrix
, of the system is

|

! E Pipi
I i

|

Alejandro Diaz-Caro (UNQ Argentina) A lambda calculus for density matrices

7/20



Postulates of quantum mechanics

with density matrices

Postulate 2 (with vectors): Evolution

| The evolution of an isolated quantum system can be described by a
| unitary matrix.
|

' The evolution of an isolated quantum system can be described by a
| . .
' unitary matrix.
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Postulates of quantum mechanics
with density matrices

Postulate 3 (with vectors): Measurement

' The quantum measurement is described by a collection of measurement
matrices {M;};, where i is the output of the measurement.

3 Condition over {M;};: MM =1 3
i The probability of measuring i is:  p; = (¢| I\/II-TI\/I,- ) i
l L N M) ;
' The state after measuring i is: [y = A |

' The quantum measurement is described by a collection of measurement!
\ matrices {M;};, where i is the output of the measurement.

. Condition over {M;};: MM =1 !
| The probability of measuring i is: p; = tr(M}L M;p) l
! oM I
| The state after measuring i is: p = % (I") (') |
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Postulates of quantum mechanics

with density matrices

Postulate 4 (with vectors): Composed system

! The sate space of a composed system is the tensor product of the state
‘ space of its components.
' Given n systems in states [¢1),...,|1,), the composed system is

<
AN
~
&
<
N
~
&
S
S
NS

! The sate space of a composed system is the tensor product of the state
' space of its components.

' Given n systems in states p1, ..., p,, the composed system is

|
|
|

PLR P2 @R pp
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Example
[Nielsen-Chuang p371]

Experiment 1: Toss a coin

Experiment 2: Toss a coin to decide whether or not to apply Z to ( 4

S-S
~

Experiment 1

{02, (5). 072, ()}
pr=12(3) (10)+12(9) (1) = (5,
xperiment 2

{Wa{?))Wz(%)»

v

s (3)e - (5

)

o

Same density matrix does not imply same mixed state

Sk

But mixed states with same density matrices are indistinguishable
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Untyped ),

t:=x|Ax.t]tt (lambda calculus)

|p" | Ut | 7"t | t®t (the 4 postulates)

| (b, p") | letcase x = rin {t...t} (classical control over meas.)
where

» 7" = {mo,...,man_1} is @ measurement in the computational base

» b™ is a m-bits number

(Ax.t)r —1 t[r/x]
Umpn — p/n
mp" —p (i, )
PLRp2 —1p
letcase x = (b™, p") in {to, ..., tom_1} —1 tpm[p"/X]
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Types

A:=n|(mn)|A—A

axc Mx:AFt:B .
Mx:AFEx: A r-Xxt:A—B '
rFt:A—oB AFr:A B
—Pe P
MAFtr:B F=p":n
F=t:n F=t:n

TEU™:n " r|—7rmt:(m,n)m

[Ft:n Al—r:m®
MMAFt®r:n+m FE(b™ p"): (m,n)

Ax:nktg:A ... Ax:nbtm1:A Tkr:(mn)
I, Atk letcase x =rin {tg,...,tom_1} : A

aXam

le

with m < nand 0 < b™ < 2™,
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Denotational semantics

Intuition
[[Trnpn]] = {(p07 pO)a °© 00y (P2"—17 P2"—1)}
where, with probability p; the final state is p;
(w"p") = > ; pipi
In general:

[t] = {(pi, &)}

with €; density matrix or function from density matrices to density
matrices
(t) = Z piei
i

where (a.f + b.g)(x) = a.f(x) + b.g(x)

() = ((m,n)) =Ds (A —o B) = Dp,—~p, =Da—Ds
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Example 1

Experiment 1: Toss a coin
Experiment 2: Toss a coin to decide whether or not to apply Z to (

[T
Nl Nl
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Example 1

Experiment 1: Toss a coin

Experiment 2: Toss a coin to decide whether or not to apply Z to (

)

[T
Nl Nl

Experiment 1: 7! (

Nl M=
[N

Experiment 2: letcase x = 7! (

[NIEENIT
[N

)

[N
[N

)7

[SIEYNIEN

Nl= Nl=

N~—
——
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Example 1

Experiment 1: Toss a coin

[T
Nl Nl

Experiment 2: Toss a coin to decide whether or not to apply Z to (

)

Nl M=
[N

Experiment 1: 7! (

I (

Experiment 2: letcase x = 7! (

NI Nl
NI Nl
N—
=
~
—
N
—
o
oo
~
~
—
N
—
oo
=)
~
~
—

[NIEANIT
[N
N———
=
—~

NI NI
ICRNIT
N——
5
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[N
NI= NI
N——
N
N
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NI= NI
(ST
———
N
/N
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N—
——

[letcase x = 7* (
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Example 1

Experiment 1: Toss a coin

Experiment 2: Toss a coin to decide whether or not to apply Z to (

[T
Nl Nl

Experiment 1: 7! (

Nl M=
[N

3
—
/
NI Nl

Experiment 2: letcase x = 7! (

[NIEANIT
[N
N———
=
—~

[letcase x = 7* (
2 2

1= Mol
1= ol
N——
=}
=
—
[TETSIT
[N
N—
N
[NTEYNT
[T

(letcase x = ! (

(TN
[STSENTT

)
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Example 2

w Measure a given p and then toss a coin to decide whether to return the
\ resulting state of the measurement, or the output of a tossing a new coin.

[N
[N

= (letcase y = 7! (
in {\x.letcase z = 7* (

)

(letcase z = 7lp in {z, z})

[N
[N

) in {z,z}, Ax.x}
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Example 2
A possible trace (confluence of trees to be proven following [DC-Martinez LSFA’17])

t,
o I

=
) in {z,z}, Ax.x}) (letcase z = 7'p in {z,z})

n

(letcase y = 7! ( ) in {\x.letcase z = 7! (

ol Nl
ol ol
Nl Nl
Nl Nl

n

o) rt—
rilo il
I I
. (9 ~ v fl(go) ~
7 (58) 1 (59) 7 (89) 1(89)
Al Al 1 1
to(50) t(50) t0(89) t1(§9)
A ! iR b
letcase y = s in {y, y} (39) letcase y = s in {y,y} (39
el\{/ \\/‘w e:’/ %w
l h l b (Il = (G (53 G.(39))]
Lo Lo -
(89) (89) (58) (89 (nr) = (§9)
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A, taking advantage of density matrices

ti=x|Ax.t]tt
[p" | Ut | 7"t | t®t

(lambda calculus)
(the 4 postulates)

| (B™ n™) | letcase x — ¢ inS+
X ! 71 L

n
| Zp;t,- | letcase® x = rin {t...

=il

—t}—felassteat-comtrotover meas:)

t} (probabilistic control)

(Ax.t)r — t[r/x]
Umpn_>p/”
L Pi J y Pi

pL®p2—p

m n A
letcase x = (b™ o™} in{tor—
letcase” x = ™ p" in {to, ...

Alejandro Diaz-Caro (UNQ Argentina)

A lambda calculus for density matrices

Tty f = tom|p ] X]

ctm1} = Y pitilpf/x]

18 /20



Example 2 again

\ Measure a given p and then toss a coin to decide whether to return the‘
\ resulting state of the measurement, or the output of a tossing a new coin. |

t = (letcase® y = 7 (

[N
[T
~——~

in {\x.letcase® z = 7! (

)

(letcase® z = w'pin {z,z})

[N
Nl M=

) in {z,z}, Ax.x}

~
*
/~
O i
®iw O
N—
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Summarising

v

i classical control/quantum data (data = density matrices)

v

A;: probabilistic control/quantum data
Same denotational semantics

v

Future works

» Comparison between \,/\?, and Selinger-Valiron's \q
(with Agustin Borgna (UBA))

» Implementation of a simulator in Haskell
(with Alan Rodas and Pablo E. Martinez Lépez (UNQ))

v

Polymorphic extension and proofs of SN and confluence
(with Lucas Romero (UBA))

v

Studding a fixed point operator
(with Malena Ivnisky and Hernan Melgratti (UBA))

Alejandro Diaz-Caro (UNQ Argentina) A lambda calculus for density matrices 20 / 20



	Density matrices and quantum mechanics
	Postulates of quantum mechanics
	Density matrices
	Postulates of quantum mechanics with density matrices

	
	Untyped
	Typed language
	Denotational semantics

	
	Taking advantage of density matrices

	Conclusions

