The probability of non-confluent systems

Alejandro Díaz-Caro

Gilles Dowek

Université Paris Ouest INRIA – Paris–Rocquencourt INRIA - Paris-Rocquencourt

9th International Workshop
Developments in Computational Models
Buenos Aires, August 26, 2013

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism	Probabilities
r + s non-deterministic superposition (run r or s, non-deterministically)	$p.\mathbf{r} + q.\mathbf{s}$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q)

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism

Probabilities

 $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$

$$(\mathbf{r}+\mathbf{s})\mathbf{t}$$
 may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$

 $p.\mathbf{r} + q.\mathbf{s}$ probabilistic superposition
(run \mathbf{r} with probability por \mathbf{s} with probability q)

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism

Probabilities

 $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$

$$(\mathbf{r} + \mathbf{s})\mathbf{t}$$
 may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r} + \mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $\pi(\mathbf{r} + \mathbf{s})$

$$p.\mathbf{r} + q.\mathbf{s}$$
probabilistic superposition
(run \mathbf{r} with probability p
or \mathbf{s} with probability q)

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism

Probabilities

 $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$

$$(\mathbf{r}+\mathbf{s})\mathbf{t}$$
 may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$
$$\pi(\mathbf{r}+\mathbf{s})$$

$$p.\mathbf{r} + q.\mathbf{s}$$
probabilistic superposition
(run \mathbf{r} with probability p
or \mathbf{s} with probability q)

$$(p.\mathbf{r} + q.\mathbf{s})\mathbf{t} \rightarrow p.\mathbf{r}\mathbf{t} + q.\mathbf{s}\mathbf{t}$$

 $p.q.\mathbf{r} \rightarrow pq.\mathbf{r}$
 $p.(\mathbf{r} + \mathbf{s}) \rightarrow p.\mathbf{r} + p.\mathbf{s}$
 $p.\mathbf{r} + q.\mathbf{r} \rightarrow (p+q).\mathbf{r}$

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism

r + s non-deterministic superposition (run r or s, non-deterministically)

$$(\mathbf{r}+\mathbf{s})\mathbf{t}$$
 may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$
$$\pi(\mathbf{r}+\mathbf{s})$$

- Non-deterministic projector
- Second order propositional logic
- Quantitative characterisation in LL
- ► Etc.

Probabilities

$$p.\mathbf{r} + q.\mathbf{s}$$
probabilistic superposition
(run \mathbf{r} with probability p
or \mathbf{s} with probability q)

$$(p.\mathbf{r}+q.\mathbf{s})\mathbf{t}
ightarrow p.\mathbf{r}\mathbf{t}+q.\mathbf{s}\mathbf{t} \ p.q.\mathbf{r}
ightarrow pq.\mathbf{r} \ p.(\mathbf{r}+\mathbf{s})
ightarrow p.\mathbf{r}+p.\mathbf{s} \ p.\mathbf{r}+q.\mathbf{r}
ightarrow (p+q).\mathbf{r}$$

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism

r + s non-deterministic superposition (run r or s, non-deterministically)

$$(\mathbf{r}+\mathbf{s})\mathbf{t}$$
 may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$
$$\pi(\mathbf{r}+\mathbf{s})$$

- Non-deterministic projector
- Second order propositional logic
- Quantitative characterisation in LL
- ► Etc.

Probabilities

$$p.\mathbf{r} + q.\mathbf{s}$$
probabilistic superposition
(run \mathbf{r} with probability p
or \mathbf{s} with probability q)

$$(p.\mathbf{r} + q.\mathbf{s})\mathbf{t} \rightarrow p.\mathbf{r}\mathbf{t} + q.\mathbf{s}\mathbf{t}$$

 $p.q.\mathbf{r} \rightarrow pq.\mathbf{r}$
 $p.(\mathbf{r} + \mathbf{s}) \rightarrow p.\mathbf{r} + p.\mathbf{s}$
 $p.\mathbf{r} + q.\mathbf{r} \rightarrow (p+q).\mathbf{r}$

- Vectorial characterisation
- Quantum encoding (relaxing the scalars)
- Logical side: much harder

Non-deterministic vs. Probabilistic λ -calculus

Non-determinism

$\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$

$$(r+s)t$$
 may run rt or st
Hence $(r+s)t \rightarrow rt + st$
 $\pi(r+s)$

- Non-deterministic projector
- Second order propositional logic
- Quantitative characterisation in LL
- Etc.

Probabilities

$$p.\mathbf{r} + q.\mathbf{s}$$
probabilistic superposition
(run \mathbf{r} with probability p
or \mathbf{s} with probability q)

$$(p.\mathbf{r} + q.\mathbf{s})\mathbf{t} \rightarrow p.\mathbf{r}\mathbf{t} + q.\mathbf{s}\mathbf{t}$$

 $p.q.\mathbf{r} \rightarrow pq.\mathbf{r}$
 $p.(\mathbf{r} + \mathbf{s}) \rightarrow p.\mathbf{r} + p.\mathbf{s}$
 $p.\mathbf{r} + q.\mathbf{r} \rightarrow (p+q).\mathbf{r}$

- Vectorial characterisation
- Quantum encoding (relaxing the scalars)
- Logical side: much harder

Goal: To move from ND to Prob. without loosing the connections with logic

Outline

Goal: To move from Non-determinism to Probilities

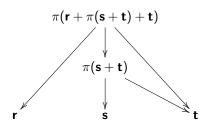
- General technique
- Application to a particular case

Outline

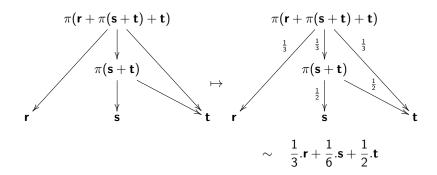
Goal: To move from Non-determinism to Probilities

- ► General technique
- ► Application to a particular case

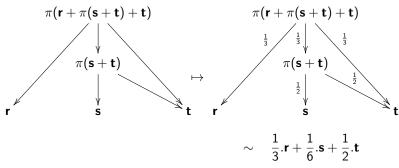
From non-determinism to probabilities



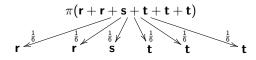
From non-determinism to probabilities



From non-determinism to probabilities



An easier way...



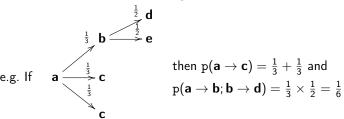
Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces

Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces

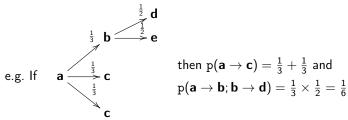
1st Define an intuitive measure on single rewrites



Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces

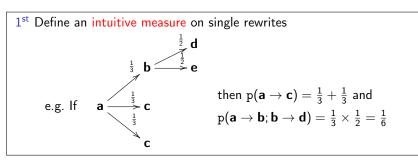
1st Define an intuitive measure on single rewrites



2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with sets of single rewrites

Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces



2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with sets of single rewrites

Strategies

 Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$

 $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$.

Strategies

 Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$

$$\rightarrow: \Lambda \times \Lambda \to \mathbb{I}$$

 $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$.

Definition (Degree)

$$ho(\mathbf{a}) = \sum_{\mathbf{b}}
ightarrow (\mathbf{a}, \mathbf{b})$$

e.g.
$$\mathbf{a} \overset{\mathbf{b}}{\smile} \mathbf{b}$$
 $\rho(\mathbf{a}) = 3$

Strategies

 Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$

$$\rightarrow$$
: $\Lambda \times \Lambda \rightarrow \mathbb{N}$

 $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$.

Definition (Degree)

$$ho(\mathsf{a}) = \sum_{\mathsf{b}} o (\mathsf{a},\mathsf{b})$$

e.g.
$$\mathbf{a} \overset{\mathbf{b}}{\smile} \mathbf{b}$$
 $\rho(\mathbf{a}) = 3$

Definition (Strategy)

$$f(\mathbf{a}) = \mathbf{b}$$
 implies $\mathbf{a} \to \mathbf{b}$

$$\Omega = \mathsf{set}\ \mathsf{of}\ \mathsf{all}\ \mathsf{the}\ \mathsf{strategies}$$

Strategies

 Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$

$$\rightarrow: \Lambda \times \Lambda \rightarrow \mathbb{N}$$

 $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$.

Definition (Degree)

$$ho(\mathbf{a}) = \sum_{\mathbf{b}}
ightarrow (\mathbf{a}, \mathbf{b})$$

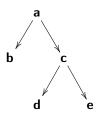
e.g.
$$\mathbf{a} \overset{\mathbf{b}}{\smile} \mathbf{b}$$
 $\rho(\mathbf{a}) = 3$

Definition (Strategy)

$$f(\mathbf{a}) = \mathbf{b}$$
 implies $\mathbf{a} \to \mathbf{b}$

 $\Omega = \text{set of all the strategies}$

e.g. Rewrite system



$$\Omega = \{f, g, h, i\}$$
, with

$$f(\mathbf{a}) = \mathbf{b}$$
 $g(\mathbf{a}) = \mathbf{b}$
 $f(\mathbf{c}) = \mathbf{d}$ $g(\mathbf{c}) = \mathbf{e}$

$$h(\mathbf{a}) = \mathbf{c}$$
 $i(\mathbf{a}) = \mathbf{c}$
 $h(\mathbf{c}) = \mathbf{d}$ $i(\mathbf{c}) = \mathbf{e}$

Boxes

Definition (Box)

 $B \subseteq \Omega$ of the form

$$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$

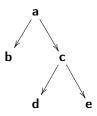
Boxes

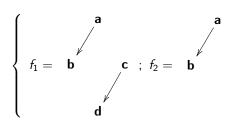
e.g. Rewrite system:

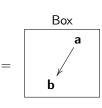
Definition (Box)

 $B \subseteq \Omega$ of the form

$$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$







$$\{f_1; f_2\} = \{f \mid f(\mathbf{a}) = \mathbf{b}\}\$$

Measure on boxes

Definition (Measure on boxes)

If
$$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$
 then
$$p(B) = \prod_{i=1}^n \frac{\rightarrow (\mathbf{a}_i, \mathbf{b}_i)}{\rho(\mathbf{a}_i)} \begin{pmatrix} \phi & \phi & \phi & \phi \\ \phi & \phi & \phi \\ \phi & \phi & \phi \end{pmatrix}$$
 ways to arrive to \mathbf{b}_i from \mathbf{a}_i nb. of rewrites from \mathbf{a}_i

Measure on boxes

Definition (Measure on boxes)

If
$$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$
 then
$$p(B) = \prod_{i=1}^n \frac{\rightarrow (\mathbf{a}_i, \mathbf{b}_i)}{\rho(\mathbf{a}_i)} \ \begin{pmatrix} \rightarrow (\mathbf{a}_i, \mathbf{b}_i) \\ \text{ways to arrive to } \mathbf{b}_i \text{ from } \mathbf{a}_i \\ \rho(\mathbf{a}_i) \\ \text{nb. of rewrites from } \mathbf{a}_i \end{pmatrix}$$

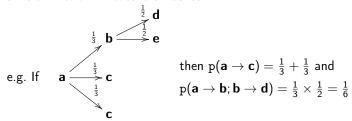
e.g. $B = \left\{ \begin{array}{ccccc} \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \\ f_1 = \mathbf{b} & \mathbf{c} & \vdots & f_2 = \mathbf{b} & \mathbf{c} \\ \mathbf{d} & \mathbf{e} & \mathbf{e} & \mathbf{f} & \mathbf{f}$

$$p(B) = \frac{\rightarrow (\mathbf{a}, \mathbf{b})}{\rho(\mathbf{a})} = \frac{1}{2}$$

Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces

1st Define an intuitive measure on boxes

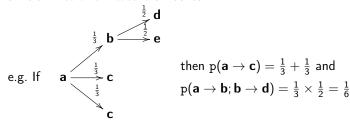


2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with boxes

Generalising the problem to abstract rewrite systems

Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces

1st Define an intuitive measure on boxes



2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with boxes

Probability function

Definition (Probability function)

Let
$$S \in \mathcal{P}(\Omega)$$
, $S \neq \emptyset$

$$P(\emptyset) = 0$$

$$P(S) = \inf \left\{ \sum_{B \in \mathcal{C}} p(B) \mid \mathcal{C} \text{ is a countable family of boxes s.t. } S \subseteq \bigcup_{B \in \mathcal{C}} B \right\}$$

Probability function

Definition (Probability function)

Let
$$S \in \mathcal{P}(\Omega)$$
, $S \neq \emptyset$

$$P(\emptyset) = 0$$

$$\mathrm{P}(S) = \inf \left\{ \sum_{B \in \mathcal{C}} \mathrm{p}(B) \mid \mathcal{C} \text{ is a countable family of boxes s.t. } S \subseteq \bigcup_{B \in \mathcal{C}} B \right\}$$

e.g.
$$S = \left\{ \begin{array}{cccc} \mathbf{a} & \mathbf{a} & \mathbf{a} \\ f_1 = & \mathbf{b} & \mathbf{c} & ; \ f_2 = & \mathbf{c} \\ \mathbf{d} & & \mathbf{e} \end{array} \right\} = \underbrace{\{f_1\}}_{B_1} \cup \underbrace{\{f_2\}}_{B_2}$$

$$\left| P(S) = p(B_1) + p(B_2) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \right|$$

Lebesgue measure and probability space

Definition (Lebesgue measurable)

A is Lebesgue measurable if $\forall S \in \mathcal{P}(\Omega)$

$$\mathtt{P}(S) = \mathtt{P}(S \cap A) + \mathtt{P}(S \cap A^{\sim})$$

 $A = \{A \subseteq \Omega \mid A \text{ is Lebesgue measurable}\}$

Lebesgue measure and probability space

Definition (Lebesgue measurable)

A is Lebesgue measurable if $\forall S \in \mathcal{P}(\Omega)$

$$P(S) = P(S \cap A) + P(S \cap A^{\sim})$$

 $A = \{A \subseteq \Omega \mid A \text{ is Lebesgue measurable}\}$

Theorem

 (Ω, \mathcal{A}, P) is a probability space

- $\triangleright \Omega$ is the set of all possible strategies
- A is the set of events
- ▶ P is the probability function

Proof.

We show that it satisfies the Kolmogorov axioms.

Outline

Goal: To move from Non-determinism to Probilities

- ► General technique
- ► Application to a particular case

The calculus λ_+

$$A, B, C ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X.A$$

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A.\mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \mathbf{r} + \mathbf{s} \mid \pi_A(\mathbf{r}) \mid \Lambda X.\mathbf{r} \mid \mathbf{r} \{A\}$$
Beta + extra rewrite rules. E.g. $(\mathbf{r} + \mathbf{s})\mathbf{t} \rightarrow \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$

The calculus λ_+

$$A, B, C ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X.A$$
 $\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A.\mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \mathbf{r} + \mathbf{s} \mid \pi_A(\mathbf{r}) \mid \Lambda X.\mathbf{r} \mid \mathbf{r} \{A\}$
Beta + extra rewrite rules. E.g. $(\mathbf{r} + \mathbf{s})\mathbf{t} \rightarrow \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$
 $\mathbf{r} : A \qquad \pi_A(\mathbf{r} + \mathbf{s}) \rightarrow \mathbf{r}$

The calculus λ_+

$$A, B, C ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X.A$$

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A.\mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \mathbf{r} + \mathbf{s} \mid \pi_A(\mathbf{r}) \mid \Lambda X.\mathbf{r} \mid \mathbf{r} \{A\}$$
Beta + extra rewrite rules. E.g. $(\mathbf{r} + \mathbf{s})\mathbf{t} \rightarrow \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$

$$\mathbf{r} : A \qquad \pi_A(\mathbf{r} + \mathbf{s}) \rightarrow \mathbf{r}$$

Non-determinism:

If
$$\mathbf{r}: A \quad \mathbf{s}: A$$

$$\mathbf{r} = \mathbf{r}$$

The calculus λ_{+}^{p}

Definition (ARS λ_{+}^{\downarrow})

- ▶ Closed normal terms of λ_+ are objects of λ_+^{\downarrow}
- ▶ If $\mathbf{r}_1, \dots, \mathbf{r}_n$ are objects, then $\mathbf{r}_1 + \dots + \mathbf{r}_n$ too

The rewrite rules have multiplicities: e.g. $\pi_A(\mathbf{r}+\mathbf{r}) \to \mathbf{r}$ with multiplicity 2

The calculus λ_+^p

Definition (ARS λ_+^{\downarrow})

- ▶ Closed normal terms of λ_+ are objects of λ_+^{\downarrow}
- ▶ If $\mathbf{r}_1, \dots, \mathbf{r}_n$ are objects, then $\mathbf{r}_1 + \dots + \mathbf{r}_n$ too

The rewrite rules have multiplicities: e.g. $\pi_A(\mathbf{r}+\mathbf{r}) \to \mathbf{r}$ with multiplicity 2

Theorem

$$(\Omega, \mathcal{A}, P)$$
: probability space over λ_{+}^{\downarrow}
 $B_{\mathbf{r}_{i}} = \{ f \mid f(\pi_{A}(\sum_{i=1}^{n} m_{j}.\mathbf{r}_{j})) = \mathbf{r}_{i} \}$: a box

$$P(B_{r_i}) = \frac{m_i}{\sum_{j=1}^n m_j}$$

The calculus λ_+^p

Definition (ARS λ_+^{\downarrow})

- ▶ Closed normal terms of λ_+ are objects of λ_+^{\downarrow}
- ▶ If $\mathbf{r}_1, \dots, \mathbf{r}_n$ are objects, then $\mathbf{r}_1 + \dots + \mathbf{r}_n$ too

The rewrite rules have multiplicities: e.g. $\pi_A(\mathbf{r}+\mathbf{r}) \to \mathbf{r}$ with multiplicity 2

Theorem

$$(\Omega, \mathcal{A}, P)$$
: probability space over λ_{+}^{\downarrow}
 $B_{\mathbf{r}_{i}} = \{ f \mid f(\pi_{A}(\sum_{j=1}^{n} m_{j}.\mathbf{r}_{j})) = \mathbf{r}_{i} \}$: a box

$$P(B_{r_i}) = \frac{m_i}{\sum_{j=1}^n m_j}$$

Definition (Probabilistic calculus λ_+^p)

Replace rule "If
$$\mathbf{r}: A$$
, then $\pi_A(\mathbf{r}+\mathbf{s}) \to \mathbf{r}$ " by $\pi_A(\sum_{i=1}^n m_i.\mathbf{r}_i+\mathbf{s}) \to \mathbf{r}_i$ with probability $\frac{m_i}{\sum_{i=1}^n m_i}m_i$

$$\lambda^p_+ \leftarrow \mathsf{Alg}$$

Algebraic calculi (Probabilistic version)

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with} \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$

$$\lambda^p_+ \leftarrow \mathsf{Alg}$$

Algebraic calculi (Probabilistic version)

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$

Definition (From Alg to λ_{+}^{p})

$$\llbracket \sum_{i=1}^n \frac{n_i}{d_i}.\mathbf{r}_i \rrbracket = \pi_A(\sum_{i=1}^n m_i.\llbracket \mathbf{r}_i \rrbracket) \quad \text{ where } \left\{ \begin{array}{l} \mathbf{r}_i : A \\ n_i, d_i \in \mathbb{N}^* \\ m_i = n_i(\prod\limits_{k=1 \atop k \neq i}^n d_k) \end{array} \right. \text{ for } i = 1, \dots, n$$

$$\lambda^p_+ \leftarrow \mathsf{Alg}$$

Algebraic calculi (Probabilistic version)

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$

Definition (From Alg to λ_+^p)

$$\llbracket \sum_{i=1}^{n} \frac{n_{i}}{d_{i}}.\mathbf{r}_{i} \rrbracket = \pi_{A} \left(\sum_{i=1}^{n} m_{i}.\llbracket \mathbf{r}_{i} \rrbracket \right) \quad \text{where} \quad \begin{cases} \mathbf{r}_{i} : A \\ n_{i}, d_{i} \in \mathbb{N}^{*} \\ m_{i} = n_{i} \left(\prod_{k=1}^{n} d_{k} \right) \end{cases} \quad \text{for } i = 1, \dots, n$$

Theorem (Alg to λ_+^p)

If
$$\mathbf{r} \to^* \sum_{i=1}^n p_i.\mathbf{t}_i$$
 in Alg and $\llbracket \mathbf{t}_i \rrbracket \to^* \mathbf{s}_i$,
then $\llbracket \mathbf{r} \rrbracket \to^* \mathbf{s}_i$ with probability p_i in λ_+^p .

 $\lambda_+^p \to \mathbf{Alg}$ Algebraic calculi (Probabilistic version)

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$

Definition (From λ_{+}^{p} to Alg)

If
$$\pi_A(\mathbf{t}) \to \mathbf{s}_i$$
 with probability p_i , for $i = 1, \dots, n$, $(\pi_A(\mathbf{t})) = \sum_{i=1}^n p_i . (\mathbf{s}_i)$

Remark: if t normal, no translation

$$\lambda_{+}^{p} \to \mathsf{Alg}$$

Algebraic calculi (Probabilistic version)

$$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$

Definition (From λ_{+}^{p} to Alg)

If
$$\pi_A(\mathbf{t}) \to \mathbf{s}_i$$
 with probability p_i , for $i = 1, \dots, n$, $(\pi_A(\mathbf{t})) = \sum_{i=1}^n p_i . (\mathbf{s}_i)$

Remark: if t normal, no translation

Theorem $(\lambda_+^p \text{ to Alg})$

- If $r \rightarrow s$, with probability 1, then $(r) \rightarrow (s)$
- ▶ If $\mathbf{r} \to \mathbf{s}_i$ with probability p_i , for i = 1, ..., n, then $(|\mathbf{r}|) = \sum_{i=1}^n p_i . (|\mathbf{s}_i|)$.

Sumarising

- We provide a general technique to transform a non-deterministic calculus into a probabilistic one
- We have a way to transform λ_+ into λ_+^p
- ▶ We get a simpler calculus, encoding an algebraic calculus, without losing the connections with logic