The probability of non-confluent systems ## Alejandro Díaz-Caro Gilles Dowek Université Paris Ouest INRIA – Paris–Rocquencourt INRIA - Paris-Rocquencourt 9th International Workshop Developments in Computational Models Buenos Aires, August 26, 2013 Non-deterministic vs. Probabilistic λ -calculus | Non-determinism | Probabilities | |---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------| | r + s non-deterministic superposition (run r or s, non-deterministically) | $p.\mathbf{r} + q.\mathbf{s}$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q) | Non-deterministic vs. Probabilistic λ -calculus ## Non-determinism #### **Probabilities** $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$ $$(\mathbf{r}+\mathbf{s})\mathbf{t}$$ may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $p.\mathbf{r} + q.\mathbf{s}$ probabilistic superposition (run \mathbf{r} with probability por \mathbf{s} with probability q) Non-deterministic vs. Probabilistic λ -calculus #### Non-determinism #### **Probabilities** $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$ $$(\mathbf{r} + \mathbf{s})\mathbf{t}$$ may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r} + \mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $\pi(\mathbf{r} + \mathbf{s})$ $$p.\mathbf{r} + q.\mathbf{s}$$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q) Non-deterministic vs. Probabilistic λ -calculus #### Non-determinism ## **Probabilities** $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$ $$(\mathbf{r}+\mathbf{s})\mathbf{t}$$ may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $$\pi(\mathbf{r}+\mathbf{s})$$ $$p.\mathbf{r} + q.\mathbf{s}$$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q) $$(p.\mathbf{r} + q.\mathbf{s})\mathbf{t} \rightarrow p.\mathbf{r}\mathbf{t} + q.\mathbf{s}\mathbf{t}$$ $p.q.\mathbf{r} \rightarrow pq.\mathbf{r}$ $p.(\mathbf{r} + \mathbf{s}) \rightarrow p.\mathbf{r} + p.\mathbf{s}$ $p.\mathbf{r} + q.\mathbf{r} \rightarrow (p+q).\mathbf{r}$ #### Non-deterministic vs. Probabilistic λ -calculus #### Non-determinism # r + s non-deterministic superposition (run r or s, non-deterministically) $$(\mathbf{r}+\mathbf{s})\mathbf{t}$$ may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $$\pi(\mathbf{r}+\mathbf{s})$$ - Non-deterministic projector - Second order propositional logic - Quantitative characterisation in LL - ► Etc. #### **Probabilities** $$p.\mathbf{r} + q.\mathbf{s}$$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q) $$(p.\mathbf{r}+q.\mathbf{s})\mathbf{t} ightarrow p.\mathbf{r}\mathbf{t}+q.\mathbf{s}\mathbf{t} \ p.q.\mathbf{r} ightarrow pq.\mathbf{r} \ p.(\mathbf{r}+\mathbf{s}) ightarrow p.\mathbf{r}+p.\mathbf{s} \ p.\mathbf{r}+q.\mathbf{r} ightarrow (p+q).\mathbf{r}$$ #### Non-deterministic vs. Probabilistic λ -calculus #### Non-determinism # r + s non-deterministic superposition (run r or s, non-deterministically) $$(\mathbf{r}+\mathbf{s})\mathbf{t}$$ may run $\mathbf{r}\mathbf{t}$ or $\mathbf{s}\mathbf{t}$ Hence $(\mathbf{r}+\mathbf{s})\mathbf{t} \to \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $$\pi(\mathbf{r}+\mathbf{s})$$ - Non-deterministic projector - Second order propositional logic - Quantitative characterisation in LL - ► Etc. #### **Probabilities** $$p.\mathbf{r} + q.\mathbf{s}$$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q) $$(p.\mathbf{r} + q.\mathbf{s})\mathbf{t} \rightarrow p.\mathbf{r}\mathbf{t} + q.\mathbf{s}\mathbf{t}$$ $p.q.\mathbf{r} \rightarrow pq.\mathbf{r}$ $p.(\mathbf{r} + \mathbf{s}) \rightarrow p.\mathbf{r} + p.\mathbf{s}$ $p.\mathbf{r} + q.\mathbf{r} \rightarrow (p+q).\mathbf{r}$ - Vectorial characterisation - Quantum encoding (relaxing the scalars) - Logical side: much harder #### Non-deterministic vs. Probabilistic λ -calculus #### Non-determinism # $\begin{array}{c} r+s \\ \text{non-deterministic superposition} \\ \text{(run } r \text{ or } s, \text{ non-deterministically)} \end{array}$ $$(r+s)t$$ may run rt or st Hence $(r+s)t \rightarrow rt + st$ $\pi(r+s)$ - Non-deterministic projector - Second order propositional logic - Quantitative characterisation in LL - Etc. #### **Probabilities** $$p.\mathbf{r} + q.\mathbf{s}$$ probabilistic superposition (run \mathbf{r} with probability p or \mathbf{s} with probability q) $$(p.\mathbf{r} + q.\mathbf{s})\mathbf{t} \rightarrow p.\mathbf{r}\mathbf{t} + q.\mathbf{s}\mathbf{t}$$ $p.q.\mathbf{r} \rightarrow pq.\mathbf{r}$ $p.(\mathbf{r} + \mathbf{s}) \rightarrow p.\mathbf{r} + p.\mathbf{s}$ $p.\mathbf{r} + q.\mathbf{r} \rightarrow (p+q).\mathbf{r}$ - Vectorial characterisation - Quantum encoding (relaxing the scalars) - Logical side: much harder Goal: To move from ND to Prob. without loosing the connections with logic ## **Outline** Goal: To move from Non-determinism to Probilities - General technique - Application to a particular case ## **Outline** Goal: To move from Non-determinism to Probilities - ► General technique - ► Application to a particular case #### From non-determinism to probabilities #### From non-determinism to probabilities #### From non-determinism to probabilities An easier way... Generalising the problem to abstract rewrite systems Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces Generalising the problem to abstract rewrite systems # Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces 1st Define an intuitive measure on single rewrites Generalising the problem to abstract rewrite systems # Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces 1st Define an intuitive measure on single rewrites 2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with sets of single rewrites Generalising the problem to abstract rewrite systems # Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces 2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with sets of single rewrites **Strategies** Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$ $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$. #### **Strategies** Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$ $$\rightarrow: \Lambda \times \Lambda \to \mathbb{I}$$ $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$. ## Definition (Degree) $$ho(\mathbf{a}) = \sum_{\mathbf{b}} ightarrow (\mathbf{a}, \mathbf{b})$$ e.g. $$\mathbf{a} \overset{\mathbf{b}}{\smile} \mathbf{b}$$ $\rho(\mathbf{a}) = 3$ #### **Strategies** Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$ $$\rightarrow$$: $\Lambda \times \Lambda \rightarrow \mathbb{N}$ $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$. ## Definition (Degree) $$ho(\mathsf{a}) = \sum_{\mathsf{b}} o (\mathsf{a},\mathsf{b})$$ e.g. $$\mathbf{a} \overset{\mathbf{b}}{\smile} \mathbf{b}$$ $\rho(\mathbf{a}) = 3$ ## Definition (Strategy) $$f(\mathbf{a}) = \mathbf{b}$$ implies $\mathbf{a} \to \mathbf{b}$ $$\Omega = \mathsf{set}\ \mathsf{of}\ \mathsf{all}\ \mathsf{the}\ \mathsf{strategies}$$ #### **Strategies** Λ : set of objects \rightarrow : $\Lambda \times \Lambda \rightarrow \mathbb{N}$ $$\rightarrow: \Lambda \times \Lambda \rightarrow \mathbb{N}$$ $\mathbf{a} \to \mathbf{b}$ notation for $\to (\mathbf{a}, \mathbf{b}) \neq 0$. ## Definition (Degree) $$ho(\mathbf{a}) = \sum_{\mathbf{b}} ightarrow (\mathbf{a}, \mathbf{b})$$ e.g. $$\mathbf{a} \overset{\mathbf{b}}{\smile} \mathbf{b}$$ $\rho(\mathbf{a}) = 3$ ## Definition (Strategy) $$f(\mathbf{a}) = \mathbf{b}$$ implies $\mathbf{a} \to \mathbf{b}$ $\Omega = \text{set of all the strategies}$ e.g. Rewrite system $$\Omega = \{f, g, h, i\}$$, with $$f(\mathbf{a}) = \mathbf{b}$$ $g(\mathbf{a}) = \mathbf{b}$ $f(\mathbf{c}) = \mathbf{d}$ $g(\mathbf{c}) = \mathbf{e}$ $$h(\mathbf{a}) = \mathbf{c}$$ $i(\mathbf{a}) = \mathbf{c}$ $h(\mathbf{c}) = \mathbf{d}$ $i(\mathbf{c}) = \mathbf{e}$ **Boxes** ## Definition (Box) $B \subseteq \Omega$ of the form $$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$ **Boxes** #### e.g. Rewrite system: ## Definition (Box) $B \subseteq \Omega$ of the form $$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$ $$\{f_1; f_2\} = \{f \mid f(\mathbf{a}) = \mathbf{b}\}\$$ #### Measure on boxes ## Definition (Measure on boxes) If $$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$ then $$p(B) = \prod_{i=1}^n \frac{\rightarrow (\mathbf{a}_i, \mathbf{b}_i)}{\rho(\mathbf{a}_i)} \begin{pmatrix} \phi & \phi & \phi & \phi \\ \phi & \phi & \phi \\ \phi & \phi & \phi \end{pmatrix}$$ ways to arrive to \mathbf{b}_i from \mathbf{a}_i nb. of rewrites from \mathbf{a}_i #### Measure on boxes ## Definition (Measure on boxes) If $$B = \{f \mid f(\mathbf{a}_1) = \mathbf{b}_1, \dots, f(\mathbf{a}_n) = \mathbf{b}_n\}$$ then $$p(B) = \prod_{i=1}^n \frac{\rightarrow (\mathbf{a}_i, \mathbf{b}_i)}{\rho(\mathbf{a}_i)} \ \begin{pmatrix} \rightarrow (\mathbf{a}_i, \mathbf{b}_i) \\ \text{ways to arrive to } \mathbf{b}_i \text{ from } \mathbf{a}_i \\ \rho(\mathbf{a}_i) \\ \text{nb. of rewrites from } \mathbf{a}_i \end{pmatrix}$$ e.g. $B = \left\{ \begin{array}{ccccc} \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \\ f_1 = \mathbf{b} & \mathbf{c} & \vdots & f_2 = \mathbf{b} & \mathbf{c} \\ \mathbf{d} & \mathbf{e} & \mathbf{e} & \mathbf{f} \mathbf{f}$ $$p(B) = \frac{\rightarrow (\mathbf{a}, \mathbf{b})}{\rho(\mathbf{a})} = \frac{1}{2}$$ Generalising the problem to abstract rewrite systems # Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces 1st Define an intuitive measure on boxes 2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with boxes Generalising the problem to abstract rewrite systems # Idea: to define a variant of a Lebesgue measure for sets of real numbers, on the space of traces 1st Define an intuitive measure on boxes 2nd Generalise it to arbitrary sets of rewrites taking the minimal cover with boxes #### **Probability function** ## Definition (Probability function) Let $$S \in \mathcal{P}(\Omega)$$, $S \neq \emptyset$ $$P(\emptyset) = 0$$ $$P(S) = \inf \left\{ \sum_{B \in \mathcal{C}} p(B) \mid \mathcal{C} \text{ is a countable family of boxes s.t. } S \subseteq \bigcup_{B \in \mathcal{C}} B \right\}$$ #### **Probability function** ## Definition (Probability function) Let $$S \in \mathcal{P}(\Omega)$$, $S \neq \emptyset$ $$P(\emptyset) = 0$$ $$\mathrm{P}(S) = \inf \left\{ \sum_{B \in \mathcal{C}} \mathrm{p}(B) \mid \mathcal{C} \text{ is a countable family of boxes s.t. } S \subseteq \bigcup_{B \in \mathcal{C}} B \right\}$$ e.g. $$S = \left\{ \begin{array}{cccc} \mathbf{a} & \mathbf{a} & \mathbf{a} \\ f_1 = & \mathbf{b} & \mathbf{c} & ; \ f_2 = & \mathbf{c} \\ \mathbf{d} & & \mathbf{e} \end{array} \right\} = \underbrace{\{f_1\}}_{B_1} \cup \underbrace{\{f_2\}}_{B_2}$$ $$\left| P(S) = p(B_1) + p(B_2) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \right|$$ Lebesgue measure and probability space ## Definition (Lebesgue measurable) A is Lebesgue measurable if $\forall S \in \mathcal{P}(\Omega)$ $$\mathtt{P}(S) = \mathtt{P}(S \cap A) + \mathtt{P}(S \cap A^{\sim})$$ $A = \{A \subseteq \Omega \mid A \text{ is Lebesgue measurable}\}$ Lebesgue measure and probability space ## Definition (Lebesgue measurable) A is Lebesgue measurable if $\forall S \in \mathcal{P}(\Omega)$ $$P(S) = P(S \cap A) + P(S \cap A^{\sim})$$ $A = \{A \subseteq \Omega \mid A \text{ is Lebesgue measurable}\}$ #### Theorem (Ω, \mathcal{A}, P) is a probability space - $\triangleright \Omega$ is the set of all possible strategies - A is the set of events - ▶ P is the probability function #### Proof. We show that it satisfies the Kolmogorov axioms. ## **Outline** Goal: To move from Non-determinism to Probilities - ► General technique - ► Application to a particular case The calculus λ_+ $$A, B, C ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X.A$$ $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A.\mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \mathbf{r} + \mathbf{s} \mid \pi_A(\mathbf{r}) \mid \Lambda X.\mathbf{r} \mid \mathbf{r} \{A\}$$ Beta + extra rewrite rules. E.g. $(\mathbf{r} + \mathbf{s})\mathbf{t} \rightarrow \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ The calculus λ_+ $$A, B, C ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X.A$$ $\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A.\mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \mathbf{r} + \mathbf{s} \mid \pi_A(\mathbf{r}) \mid \Lambda X.\mathbf{r} \mid \mathbf{r} \{A\}$ Beta + extra rewrite rules. E.g. $(\mathbf{r} + \mathbf{s})\mathbf{t} \rightarrow \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $\mathbf{r} : A \qquad \pi_A(\mathbf{r} + \mathbf{s}) \rightarrow \mathbf{r}$ The calculus λ_+ $$A, B, C ::= X \mid A \Rightarrow B \mid A \land B \mid \forall X.A$$ $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A.\mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \mathbf{r} + \mathbf{s} \mid \pi_A(\mathbf{r}) \mid \Lambda X.\mathbf{r} \mid \mathbf{r} \{A\}$$ Beta + extra rewrite rules. E.g. $(\mathbf{r} + \mathbf{s})\mathbf{t} \rightarrow \mathbf{r}\mathbf{t} + \mathbf{s}\mathbf{t}$ $$\mathbf{r} : A \qquad \pi_A(\mathbf{r} + \mathbf{s}) \rightarrow \mathbf{r}$$ Non-determinism: If $$\mathbf{r}: A \quad \mathbf{s}: A$$ $$\mathbf{r} = \mathbf{r}$$ The calculus λ_{+}^{p} ## Definition (ARS λ_{+}^{\downarrow}) - ▶ Closed normal terms of λ_+ are objects of λ_+^{\downarrow} - ▶ If $\mathbf{r}_1, \dots, \mathbf{r}_n$ are objects, then $\mathbf{r}_1 + \dots + \mathbf{r}_n$ too The rewrite rules have multiplicities: e.g. $\pi_A(\mathbf{r}+\mathbf{r}) \to \mathbf{r}$ with multiplicity 2 The calculus λ_+^p ## Definition (ARS λ_+^{\downarrow}) - ▶ Closed normal terms of λ_+ are objects of λ_+^{\downarrow} - ▶ If $\mathbf{r}_1, \dots, \mathbf{r}_n$ are objects, then $\mathbf{r}_1 + \dots + \mathbf{r}_n$ too The rewrite rules have multiplicities: e.g. $\pi_A(\mathbf{r}+\mathbf{r}) \to \mathbf{r}$ with multiplicity 2 #### Theorem $$(\Omega, \mathcal{A}, P)$$: probability space over λ_{+}^{\downarrow} $B_{\mathbf{r}_{i}} = \{ f \mid f(\pi_{A}(\sum_{i=1}^{n} m_{j}.\mathbf{r}_{j})) = \mathbf{r}_{i} \}$: a box $$P(B_{r_i}) = \frac{m_i}{\sum_{j=1}^n m_j}$$ The calculus λ_+^p ## Definition (ARS λ_+^{\downarrow}) - ▶ Closed normal terms of λ_+ are objects of λ_+^{\downarrow} - ▶ If $\mathbf{r}_1, \dots, \mathbf{r}_n$ are objects, then $\mathbf{r}_1 + \dots + \mathbf{r}_n$ too The rewrite rules have multiplicities: e.g. $\pi_A(\mathbf{r}+\mathbf{r}) \to \mathbf{r}$ with multiplicity 2 #### **Theorem** $$(\Omega, \mathcal{A}, P)$$: probability space over λ_{+}^{\downarrow} $B_{\mathbf{r}_{i}} = \{ f \mid f(\pi_{A}(\sum_{j=1}^{n} m_{j}.\mathbf{r}_{j})) = \mathbf{r}_{i} \}$: a box $$P(B_{r_i}) = \frac{m_i}{\sum_{j=1}^n m_j}$$ ## Definition (Probabilistic calculus λ_+^p) Replace rule "If $$\mathbf{r}: A$$, then $\pi_A(\mathbf{r}+\mathbf{s}) \to \mathbf{r}$ " by $\pi_A(\sum_{i=1}^n m_i.\mathbf{r}_i+\mathbf{s}) \to \mathbf{r}_i$ with probability $\frac{m_i}{\sum_{i=1}^n m_i}m_i$ $$\lambda^p_+ \leftarrow \mathsf{Alg}$$ Algebraic calculi (Probabilistic version) $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with} \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$ $$\lambda^p_+ \leftarrow \mathsf{Alg}$$ Algebraic calculi (Probabilistic version) $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$ ## Definition (From Alg to λ_{+}^{p}) $$\llbracket \sum_{i=1}^n \frac{n_i}{d_i}.\mathbf{r}_i \rrbracket = \pi_A(\sum_{i=1}^n m_i.\llbracket \mathbf{r}_i \rrbracket) \quad \text{ where } \left\{ \begin{array}{l} \mathbf{r}_i : A \\ n_i, d_i \in \mathbb{N}^* \\ m_i = n_i(\prod\limits_{k=1 \atop k \neq i}^n d_k) \end{array} \right. \text{ for } i = 1, \dots, n$$ $$\lambda^p_+ \leftarrow \mathsf{Alg}$$ Algebraic calculi (Probabilistic version) $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$ ## Definition (From Alg to λ_+^p) $$\llbracket \sum_{i=1}^{n} \frac{n_{i}}{d_{i}}.\mathbf{r}_{i} \rrbracket = \pi_{A} \left(\sum_{i=1}^{n} m_{i}.\llbracket \mathbf{r}_{i} \rrbracket \right) \quad \text{where} \quad \begin{cases} \mathbf{r}_{i} : A \\ n_{i}, d_{i} \in \mathbb{N}^{*} \\ m_{i} = n_{i} \left(\prod_{k=1}^{n} d_{k} \right) \end{cases} \quad \text{for } i = 1, \dots, n$$ ## Theorem (Alg to λ_+^p) If $$\mathbf{r} \to^* \sum_{i=1}^n p_i.\mathbf{t}_i$$ in Alg and $\llbracket \mathbf{t}_i \rrbracket \to^* \mathbf{s}_i$, then $\llbracket \mathbf{r} \rrbracket \to^* \mathbf{s}_i$ with probability p_i in λ_+^p . $\lambda_+^p \to \mathbf{Alg}$ Algebraic calculi (Probabilistic version) $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$ ## Definition (From λ_{+}^{p} to Alg) If $$\pi_A(\mathbf{t}) \to \mathbf{s}_i$$ with probability p_i , for $i = 1, \dots, n$, $(\pi_A(\mathbf{t})) = \sum_{i=1}^n p_i . (\mathbf{s}_i)$ Remark: if t normal, no translation $$\lambda_{+}^{p} \to \mathsf{Alg}$$ Algebraic calculi (Probabilistic version) $$\mathbf{r}, \mathbf{s}, \mathbf{t} ::= x^A \mid \lambda x^A \cdot \mathbf{r} \mid \mathbf{r} \mathbf{s} \mid \Lambda X \cdot \mathbf{r} \mid \mathbf{r} \{A\} \mid \sum_{i=1}^n p_i \cdot \mathbf{r}_i \quad \text{with } \begin{cases} n > 0, \\ p_i \in \mathbb{Q}(0, 1] \text{ and } \\ \sum_{i=1}^n p_i = 1 \end{cases}$$ ## Definition (From λ_{+}^{p} to Alg) If $$\pi_A(\mathbf{t}) \to \mathbf{s}_i$$ with probability p_i , for $i = 1, \dots, n$, $(\pi_A(\mathbf{t})) = \sum_{i=1}^n p_i . (\mathbf{s}_i)$ Remark: if t normal, no translation ## Theorem $(\lambda_+^p \text{ to Alg})$ - If $r \rightarrow s$, with probability 1, then $(r) \rightarrow (s)$ - ▶ If $\mathbf{r} \to \mathbf{s}_i$ with probability p_i , for i = 1, ..., n, then $(|\mathbf{r}|) = \sum_{i=1}^n p_i . (|\mathbf{s}_i|)$. ## **Sumarising** - We provide a general technique to transform a non-deterministic calculus into a probabilistic one - We have a way to transform λ_+ into λ_+^p - ▶ We get a simpler calculus, encoding an algebraic calculus, without losing the connections with logic