
Call-by-value non-determinism
in a linear logic type discipline

Alejandro Díaz-Caro? Giulio Manzonetto
Université Paris-Ouest & INRIA LIPN, Université Paris 13

Michele Pagani
LIPN, Université Paris 13

Symposium on Logical Foundations of Computer Science
San Diego, California, U.S.A., January 6–8, 2013

?
Supported by the DIGITEO project 2011-070D “ALAL”

Intersection types discipline [Coppo-Dezani’78]

M : α ∩ β
M enjoys both properties α and β

With this idea in mind intersection is idempotent α ∩ α = α.

Used to capture various notions of termination:
Head, Weak and Strong normalisation [Coppo-Dezani’78, Sallé’80]

Resource-aware intersection types [De Carvalho’07]
Let us change point of view:

M : α ∩ β
M will be called once as data of type α and once as data of type β

Hence α ∩ α 6= α =⇒ Multisets

Used to capture quantitative properties of programs, e.g.:
CBN λ-calculus: number of linear head-reduction steps [De Carvalho’07]
CBV λ-calculus: number of weak head-reduction steps [Ehrhard’12]

Our goal: extend Ehrhard’s system with non-determinism

2 / 16

Intersection types discipline [Coppo-Dezani’78]

M : α ∩ β
M enjoys both properties α and β

With this idea in mind intersection is idempotent α ∩ α = α.

Used to capture various notions of termination:
Head, Weak and Strong normalisation [Coppo-Dezani’78, Sallé’80]

Resource-aware intersection types [De Carvalho’07]
Let us change point of view:

M : α ∩ β
M will be called once as data of type α and once as data of type β

Hence α ∩ α 6= α =⇒ Multisets

Used to capture quantitative properties of programs, e.g.:
CBN λ-calculus: number of linear head-reduction steps [De Carvalho’07]
CBV λ-calculus: number of weak head-reduction steps [Ehrhard’12]

Our goal: extend Ehrhard’s system with non-determinism

2 / 16

Intersection types discipline [Coppo-Dezani’78]

M : α ∩ β
M enjoys both properties α and β

With this idea in mind intersection is idempotent α ∩ α = α.

Used to capture various notions of termination:
Head, Weak and Strong normalisation [Coppo-Dezani’78, Sallé’80]

Resource-aware intersection types [De Carvalho’07]
Let us change point of view:

M : α ∩ β
M will be called once as data of type α and once as data of type β

Hence α ∩ α 6= α =⇒ Multisets

Used to capture quantitative properties of programs, e.g.:
CBN λ-calculus: number of linear head-reduction steps [De Carvalho’07]
CBV λ-calculus: number of weak head-reduction steps [Ehrhard’12]

Our goal: extend Ehrhard’s system with non-determinism

2 / 16

Intersection types discipline [Coppo-Dezani’78]

M : α ∩ β
M enjoys both properties α and β

With this idea in mind intersection is idempotent α ∩ α = α.

Used to capture various notions of termination:
Head, Weak and Strong normalisation [Coppo-Dezani’78, Sallé’80]

Resource-aware intersection types [De Carvalho’07]
Let us change point of view:

M : α ∩ β
M will be called once as data of type α and once as data of type β

Hence α ∩ α 6= α =⇒ Multisets

Used to capture quantitative properties of programs, e.g.:
CBN λ-calculus: number of linear head-reduction steps [De Carvalho’07]
CBV λ-calculus: number of weak head-reduction steps [Ehrhard’12]

Our goal: extend Ehrhard’s system with non-determinism

2 / 16

May/Must-convergent non-determinism

Consider the CBV λ-calculus extended with. . .

Non-deterministic choice
M + N The machine choses either M or N

I The non-deterministic choice M + N is may-convergent:
it converges if either M or N converges

Parallel composition
M ‖ N The machine interleaves reductions in M and in N

I The parallel composition M ‖ N is must-convergent:
it converges if both M and N do

3 / 16

May/Must-convergent non-determinism

Consider the CBV λ-calculus extended with. . .

Non-deterministic choice
M + N The machine choses either M or N

I The non-deterministic choice M + N is may-convergent:
it converges if either M or N converges

Parallel composition
M ‖ N The machine interleaves reductions in M and in N

I The parallel composition M ‖ N is must-convergent:
it converges if both M and N do

3 / 16

Λ+‖: Its syntax and operational semantics

Grammar of Λ+‖ terms
Terms: M,N,P,Q ::= V | MN | M + N | M ‖N
Values: V ::= x | λx .M

Reduction semantics
βv -reduction +-reductions ‖-reductions

(λx .M)V → M[V /x]
M + N → M (M ‖ N)P → MP ‖ NP
M + N → N V (M ‖ N)→ VM ‖ VN

+ Contextual rules selecting the head redex. . .

The reduction is lazy (it does not reduce under λ-abstractions)

Convergence
M converges ⇔ M →∗ V1 ‖ · · · ‖ Vn

4 / 16

Λ+‖: Its syntax and operational semantics

Grammar of Λ+‖ terms
Terms: M,N,P,Q ::= V | MN | M + N | M ‖N
Values: V ::= x | λx .M

Reduction semantics
βv -reduction +-reductions ‖-reductions

(λx .M)V → M[V /x]
M + N → M (M ‖ N)P → MP ‖ NP
M + N → N V (M ‖ N)→ VM ‖ VN

+ Contextual rules selecting the head redex. . .

The reduction is lazy (it does not reduce under λ-abstractions)

Convergence
M converges ⇔ M →∗ V1 ‖ · · · ‖ Vn

4 / 16

Examples and remarks

Application is bilinear

(M + M ′)(N + N ′)
op
≡ MN + MN ′ + M ′N + M ′N ′

. . . but λ-abstraction is not

λx .(M + N)
op
6≡ λx .M + λx .N

Example of parallel composition and non-deterministic choice

(λx .(x ‖ x))(V + V ′) converges to either V ‖ V or V ′ ‖ V ′

(λx .(x + x))(V ‖ V ′) converges to V ‖ V ′ only

5 / 16

Examples and remarks

Application is bilinear

(M + M ′)(N + N ′)
op
≡ MN + MN ′ + M ′N + M ′N ′

. . . but λ-abstraction is not

λx .(M + N)
op
6≡ λx .M + λx .N

Example of parallel composition and non-deterministic choice

(λx .(x ‖ x))(V + V ′) converges to either V ‖ V or V ′ ‖ V ′

(λx .(x + x))(V ‖ V ′) converges to V ‖ V ′ only

5 / 16

Linear logic based type system
Translation: Intuitionistic Logic 7→ Polarized fragment of LL

ιv = ι, (α→ β)v = αc (β‖, αc = !αv , α‖ =?αc

Based on [Ehrhard’12], based on second Girard’s translation.

Intuitions from the relational semantics of LL
I The type for computations (·)c is a multiset [αv

1 , . . . , α
v
n] of value

types (representing n calls to a single value of type αv
i),

I The type of parallel compositions (·)‖ is another multiset
[αc

1, . . . , α
c
n] of types of each term in the composition,

I The type for values (·)v are either basic types or functional types,
I A functional type in this system is a pair (αc , [αc

1, . . . , α
c
n]).

Notation
First multiset layer −→ ⊗

Second multiset layer −→ `
Functional type (αc , [αc

1, . . . , α
c
n]) −→ αc (αc

1 ` · · ·` αc
n

Empty computational multiset −→ 1

6 / 16

Linear logic based type system
Translation: Intuitionistic Logic 7→ Polarized fragment of LL

ιv = ι, (α→ β)v = αc (β‖, αc = !αv , α‖ =?αc

Based on [Ehrhard’12], based on second Girard’s translation.

Intuitions from the relational semantics of LL
I The type for computations (·)c is a multiset [αv

1 , . . . , α
v
n] of value

types (representing n calls to a single value of type αv
i),

I The type of parallel compositions (·)‖ is another multiset
[αc

1, . . . , α
c
n] of types of each term in the composition,

I The type for values (·)v are either basic types or functional types,
I A functional type in this system is a pair (αc , [αc

1, . . . , α
c
n]).

Notation
First multiset layer −→ ⊗

Second multiset layer −→ `
Functional type (αc , [αc

1, . . . , α
c
n]) −→ αc (αc

1 ` · · ·` αc
n

Empty computational multiset −→ 1

6 / 16

Linear logic based type system (cont.)

Grammar of Types:

parallel-types: α, β ::= α` β | τ
computational-types: τ, ρ ::= 1 | τ ⊗ ρ | τ (α

⊗ tensor product
` par

}
associative and commutative

1 neutral element of ⊗

Type environments:
Γ = x1 : τ1, . . . , xn : τn represents the map

Γ(y) =

{
τi if y = xi ,
1 otherwise.

Tensor is extended to environments pointwise (Γ⊗∆)(x) = Γ(x)⊗∆(x).

7 / 16

Linear logic based type system (cont.)

Grammar of Types:

parallel-types: α, β ::= α` β | τ
computational-types: τ, ρ ::= 1 | τ ⊗ ρ | τ (α

⊗ tensor product
` par

}
associative and commutative

1 neutral element of ⊗

Type environments:
Γ = x1 : τ1, . . . , xn : τn represents the map

Γ(y) =

{
τi if y = xi ,
1 otherwise.

Tensor is extended to environments pointwise (Γ⊗∆)(x) = Γ(x)⊗∆(x).

7 / 16

Linear logic based type system (cont.)
Type inference rules

∆ ` M : α
+`

∆ ` M + N : α

∆ ` N : α
+r

∆ ` M + N : α

+ is may-convergent, so it
is enough that one term is
typable

∆ ` M : α1 Γ ` N : α2
‖I

∆⊗ Γ ` M ‖ N : α1 ` α2

‖ is must-convergent, so both
components must be typable

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij (αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E
k ≥ 1
ni ≥ 1

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

It reflects the distribution of the parallel operator over the application

ax
x : τ ` x : τ

∆i , x : τi ` M : αi 1 ≤ i ≤ n
(I n ≥ 0

n⊗
i=1

∆i ` λx .M :
n⊗

i=1

(τi (αi)

The axiom and the intersection type for values respectively

8 / 16

Linear logic based type system (cont.)
Type inference rules

∆ ` M : α
+`

∆ ` M + N : α

∆ ` N : α
+r

∆ ` M + N : α

+ is may-convergent, so it
is enough that one term is
typable

∆ ` M : α1 Γ ` N : α2
‖I

∆⊗ Γ ` M ‖ N : α1 ` α2

‖ is must-convergent, so both
components must be typable

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij (αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E
k ≥ 1
ni ≥ 1

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

It reflects the distribution of the parallel operator over the application

ax
x : τ ` x : τ

∆i , x : τi ` M : αi 1 ≤ i ≤ n
(I n ≥ 0

n⊗
i=1

∆i ` λx .M :
n⊗

i=1

(τi (αi)

The axiom and the intersection type for values respectively

8 / 16

Linear logic based type system (cont.)
Type inference rules

∆ ` M : α
+`

∆ ` M + N : α

∆ ` N : α
+r

∆ ` M + N : α

+ is may-convergent, so it
is enough that one term is
typable

∆ ` M : α1 Γ ` N : α2
‖I

∆⊗ Γ ` M ‖ N : α1 ` α2

‖ is must-convergent, so both
components must be typable

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij (αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E
k ≥ 1
ni ≥ 1

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

It reflects the distribution of the parallel operator over the application

ax
x : τ ` x : τ

∆i , x : τi ` M : αi 1 ≤ i ≤ n
(I n ≥ 0

n⊗
i=1

∆i ` λx .M :
n⊗

i=1

(τi (αi)

The axiom and the intersection type for values respectively

8 / 16

Linear logic based type system (cont.)
Type inference rules

∆ ` M : α
+`

∆ ` M + N : α

∆ ` N : α
+r

∆ ` M + N : α

+ is may-convergent, so it
is enough that one term is
typable

∆ ` M : α1 Γ ` N : α2
‖I

∆⊗ Γ ` M ‖ N : α1 ` α2

‖ is must-convergent, so both
components must be typable

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij (αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E
k ≥ 1
ni ≥ 1

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

It reflects the distribution of the parallel operator over the application

ax
x : τ ` x : τ

∆i , x : τi ` M : αi 1 ≤ i ≤ n
(I n ≥ 0

n⊗
i=1

∆i ` λx .M :
n⊗

i=1

(τi (αi)

The axiom and the intersection type for values respectively

8 / 16

Examples

∆ = x : (τ1 (α1)⊗ (τ2 (α2) Γ = y : τ1, y ′ : τ2

∆ ` x : (τ1 (α1)⊗ (τ2 (α2) Γ ` y ‖ y ′ : τ1 ` τ2
(E

∆⊗ Γ ` x(y ‖ y ′) : α1 ` α2

x(y ‖ y ′)→ xy ‖ xy ′

∆′ = x ′ : (τ1 (α3)⊗ (τ2 (α4)

∆⊗∆′ ` x ‖ x ′ : ((τ1 (α1)⊗ (τ2 (α2)) ` ((τ1 (α3)⊗ (τ2 (α4))
Γ ` y ‖ y ′ : τ1 ` τ2 Γ ` y ‖ y ′ : τ1 ` τ2

(E
∆⊗∆′ ⊗ Γ⊗ Γ ` (x ‖ x ′)(y ‖ y ′) : α1 ` α2 ` α3 ` α4

(x ‖ x ′)(y ‖ y ′)→∗ xy ‖ xy ′ ‖ x ′y ‖ x ′y ′

9 / 16

Examples

∆ = x : (τ1 (α1)⊗ (τ2 (α2) Γ = y : τ1, y ′ : τ2

∆ ` x : (τ1 (α1)⊗ (τ2 (α2) Γ ` y ‖ y ′ : τ1 ` τ2
(E

∆⊗ Γ ` x(y ‖ y ′) : α1 ` α2

x(y ‖ y ′)→ xy ‖ xy ′

∆′ = x ′ : (τ1 (α3)⊗ (τ2 (α4)

∆⊗∆′ ` x ‖ x ′ : ((τ1 (α1)⊗ (τ2 (α2)) ` ((τ1 (α3)⊗ (τ2 (α4))
Γ ` y ‖ y ′ : τ1 ` τ2 Γ ` y ‖ y ′ : τ1 ` τ2

(E
∆⊗∆′ ⊗ Γ⊗ Γ ` (x ‖ x ′)(y ‖ y ′) : α1 ` α2 ` α3 ` α4

(x ‖ x ′)(y ‖ y ′)→∗ xy ‖ xy ′ ‖ x ′y ‖ x ′y ′

9 / 16

Measuring derivation trees
π = ax

S
|π| = 0

π =
π1 · · · πn

(I
S

|π| =
∑n

i=1 |πi |

π =
π1 π2

‖I
S

|π| = |π1|+ |π2|

π =
π0 π1 . . . πk

(E ni ≥ 1
S

|π| =
∑k

i=0 |πi |+ (
∑k

i=1 2ni)− 1

π =
π′

+`
S

or π =
π′

+r
S

|π| = |π′|+ 1

Only(E , +` and +r type redexes
[
βv and ‖ redexes are typed by (E
+ redexes by +` and +r

]
Each +` and +r counts for 1 because a +-red. does not create new rules
in the derivation typing the contractum

(E counts the number of “active” connectives in the principal premise

10 / 16

Measuring derivation trees (cont.)

∆ ` M :
ķ

i=1

ni⊗
j=1

(τij (αij) Γi ` N :
ni̧

j=1

τij 1 ≤ i ≤ k

(E

∆⊗
k⊗

i=1

Γi ` MN :
ķ

i=1

ni̧

j=1

αij

k∑
i=1

ni︸ ︷︷ ︸
(’s

+
k∑

i=1

(ni − 1)︸ ︷︷ ︸
⊗’s

+ (k − 1)︸ ︷︷ ︸
`’s

= (
k∑

i=1

2ni)− 1

The ‖-reduction creates two new (E rules in the derivation typing the
contractum

The measure decreases because the sum of their weights is less than the
weight of the eliminated rule

11 / 16

Properties of the type system
Our system enjoys a quantitative version of standard properties.

Subject reduction
Let π = ∆ ` M : α

I If M → N without +-red. then ∃π′ = ∆ ` N : α

I If M → N1 and M → N2 with +-red.
then ∃π′ = ∆ ` N1 : α or π′ = ∆ ` N2 : α

In both cases, |π′| = |π| − 1

Subject expansion
If M → N and π = ∆ ` N : α
then ∃π′ = ∆ ` M : α s.t. |π′| = |π|+ 1

Characterization of convergence
Let M closed. M typable ⇔ M converges

Can we say anything more quantitative?

12 / 16

Properties of the type system
Our system enjoys a quantitative version of standard properties.

Subject reduction
Let π = ∆ ` M : α

I If M → N without +-red. then ∃π′ = ∆ ` N : α

I If M → N1 and M → N2 with +-red.
then ∃π′ = ∆ ` N1 : α or π′ = ∆ ` N2 : α

In both cases, |π′| = |π| − 1

Subject expansion
If M → N and π = ∆ ` N : α
then ∃π′ = ∆ ` M : α s.t. |π′| = |π|+ 1

Characterization of convergence
Let M closed. M typable ⇔ M converges

Can we say anything more quantitative?

12 / 16

Properties of the type system
Our system enjoys a quantitative version of standard properties.

Subject reduction
Let π = ∆ ` M : α

I If M → N without +-red. then ∃π′ = ∆ ` N : α

I If M → N1 and M → N2 with +-red.
then ∃π′ = ∆ ` N1 : α or π′ = ∆ ` N2 : α

In both cases, |π′| = |π| − 1

Subject expansion
If M → N and π = ∆ ` N : α
then ∃π′ = ∆ ` M : α s.t. |π′| = |π|+ 1

Characterization of convergence
Let M closed. M typable ⇔ M converges

Can we say anything more quantitative?
12 / 16

Combinatorial proof of normalization

Measure
Let M be a closed term. If π is a derivation of

` M : α,

then |π| gives a bound on the number of steps M converges.

More precisely. . .

Exact bound
Let M be a closed term. If π is a derivation of

` M : 1` · · ·` 1,

then M reaches its normal form in exactly |π| steps

13 / 16

Properties of the underlying relational model

Let M, N and ~P be closed terms.

Definitions
I A closed term M is interpreted by JMK = {α | ` M : α}
I M v N iff ∀~P

[
M~P converges ⇒ N~P converges

]

As a corollary of the Convergence Theorem we get:

Adequacy
JMK ⊆ JNK implies M v N

14 / 16

Lack of full abstraction

Lack of full abstraction
M v N does not imply JMK ⊆ JNK

CBV λ-calculus admits the creation of an ogre

Y? = ∆?∆? where ∆? = λxy .xx .

Remark: The ogre Y? is a top of v:

Y?V ~V ′ → (λy .Y?)V ~V ′ → Y?~V ′ → · · · → Y?.

All types of Y? have shape α =
⊗n

i=0(1 (αi).

Counterexample (independent from + and ‖)
Let I = λx .x , then

I v Y?, while JIK 6⊆ JY?K

since (1 (1) ((1 (1) ∈ JIK− JY?K

15 / 16

Lack of full abstraction

Lack of full abstraction
M v N does not imply JMK ⊆ JNK

CBV λ-calculus admits the creation of an ogre

Y? = ∆?∆? where ∆? = λxy .xx .

Remark: The ogre Y? is a top of v:

Y?V ~V ′ → (λy .Y?)V ~V ′ → Y?~V ′ → · · · → Y?.

All types of Y? have shape α =
⊗n

i=0(1 (αi).

Counterexample (independent from + and ‖)
Let I = λx .x , then

I v Y?, while JIK 6⊆ JY?K

since (1 (1) ((1 (1) ∈ JIK− JY?K

15 / 16

Summarising

I We introduced a call-by-value non-deterministic λ-calculus with a
type system ensuring convergence

I The type system gives a bound of the length of the lazy cbv
reduction sequences (exact when the typing is minimal)

I We show an adequate (but not fully abstract) model capturing the
type system

16 / 16

	Title
	Motivation
	The calculus
	Type system
	Properties
	Summarising

