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We investigate an unsuspected connection between non harmonious logical connectives, such as
Prior’s tonk, and quantum computing. We defend the idea that non harmonious connectives model the
information erasure, the non-reversibility, and the non-determinism that occur, among other places, in
quantum measurement. More concretely, we introduce a propositional logic with a non harmonious
connective � (read: “sup”, for “superposition”), prove cut elimination for this logic, and show that its
proof language forms the core of a quantum programming language.

Insufficient, harmonious, and excessive connectives In natural deduction, to prove a proposition
C, the elimination rule of a connective M requires a proof of A M B and a proof of C using, as extra
hypotheses, exactly the premises needed to prove the proposition A M B, with the introduction rules
of the connective M. This principle of inversion, or of harmony, has been introduced by Gentzen [5]
and developed, among others, by Prawitz [9] and Dummett [4] in natural deduction, by Miller and
Pimentel [6] in sequent calculus, and by Read [11–13] for the rules of equality.

For example, to prove the proposition A∧B, the introduction rule of the conjunction requires a proof
of A and a proof of B, hence, to prove a proposition C, the generalized elimination rule of the conjunction
[7,8,14] requires, a proof of A∧B and a proof of C, using, as extra hypotheses, the propositions A and B

Γ ` A∧B Γ,A,B `C
Γ `C

∧-e

This principle of inversion permits to define a cut elimination process where the proof

π1
Γ ` A

π2
Γ ` B

Γ ` A∧B
∧-i

π3

Γ,A,B `C
Γ `C

∧-e

reduces to (π1/A,π2/B)π3.
In the same way, to prove the proposition A∨B, the introduction rules of the disjunction require a

proof of A or a proof of B, hence, to prove a proposition C, the elimination rule of the disjunction requires
a proof of A∨B and two proofs of C, one using, as extra hypothesis, the proposition A and the other the
proposition B

Γ ` A
Γ ` A∨B

∨-i1
Γ ` B

Γ ` A∨B
∨-i2

Γ ` A∨B Γ,A `C Γ,B `C
Γ `C

∨-e

and a cut elimination process can be defined in a similar way.

*The full paper can be found at arXiv:2012.08994.
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We also can imagine connectives that do not verify this inversion principle, because the introduction
rules require an insufficient amount of information with respect to what the elimination rule provides,
as extra hypotheses, in the required proof of C. An example of such an insufficient connective is Prior’s
tonk [10], with the introduction and elimination rules as follows

Γ ` A
Γ ` A tonk B

tonk-i
Γ ` A tonk B Γ,B `C

Γ `C
tonk-e

where the elimination rule requires a proof of A tonk B and a proof of C, using the extra hypothesis B,
that is not required in the proof of A tonk B, with the introduction rule. For such connectives, cuts tonk-i
/ tonk-e cannot be reduced.

But, it is also possible that a connective does not verify the inversion principle because the introduc-
tion rules require an excessive amount of information. An example of such an excessive connective is the
connective � that has the introduction rule of the conjunction and the elimination rule of the disjunction

Γ ` A Γ ` B
Γ ` A�B

�-i
Γ ` A�B Γ,A `C Γ,B `C

Γ `C
�-e

In this case,cuts can be eliminated. Moreover, several cut elimination processes can be defined, exploit-
ing, in different ways, the excess of the connective. For example, the �-cut

π1
Γ ` A

π2
Γ ` B

Γ ` A�B
�-i

π3

Γ,A `C
π4

Γ,B `C
Γ `C

�-e

can be reduced to (π1/A)π3, it can be reduced to (π2/A)π4, it also can be reduced, non deterministically,
either to (π1/A)π3 or to (π2/A)π4. Finally, to keep both proofs, we can add a structural rule

Γ ` A Γ ` A
Γ ` A

parallel and reduce it to
(π1/A)π3

Γ `C
(π2/B)π4

Γ `C
Γ `C

parallel

Information loss With harmonious connectives, when a proof is built with an introduction rule, the
information contained in the proofs of the premises of this rule is preserved. For example, the information
contained in the proof π1 is present in the proof π

π1
Γ ` A

π2
Γ ` B

Γ ` A∧B
∧-i

in the sense that π1 is a subtree of π . But it is moreover accessible, in the sense that, for all π1, putting
the proof π in the right context yields a proof that reduces to π1. And the same holds for the proof π2.

The situation is different with an excessive connective: the excess of information, required by the
introduction rule, and not returned by the elimination rule in the form of an extra hypothesis, in the
required proof of C, is lost. For example, the information contained in the proofs π1 and π2 is present in
the proof

π1
Γ ` A

π2
Γ ` B

Γ ` A�B
�-i
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but its accessibility depends on the way we decide to reduce the cut

π1
Γ ` A

π2
Γ ` B

Γ ` A�B
�-i

π3

Γ,A `C
π4

Γ,B `C
Γ `C

�-e

If we reduce it systematically to (π1/A)π3, then the information contained in π1 is accessible, but that
contained in π2 is not. If we reduce it systematically to (π2/A)π4, then the information contained in π2 is
accessible, but not that contained in π1. If we reduce it not deterministically to (π1/A)π3 or to (π2/A)π4,
then the information contained in both π1 and π2 is accessible but non deterministically. If we reduce it
with parallel, then the information contained in both π1 and π2 is inaccessible.

So, while harmonious connectives, that verify the inversion principle, model information preserva-
tion, reversibility, and determinism, these excessive connectives, that do not verify the inversion prin-
ciple, model information erasure, non-reversibility, and non-determinism. Such information erasure,
non-reversibility, and non-determinism, occur, for example, in quantum physics, where the measurement
of the superposition of two states does not yield both states back.

Quantum physics and quantum languages Several programming languages have been designed to
express quantum algorithms. Among them, Lineal [1] is an untyped λ -calculus extended with linear
combinations of terms, expressing superpositions, and Lambda-S [3] is a typed version of the first-
order fragment of Lineal, extended with a measurement operator π and a rule reducing π(t + u) non
deterministically to t or to u.

The superposition t + u can be considered as the pair (t,u). Hence, it should have the type A∧A.
In other words, it is a proof-term of the proposition A∧A. In System I [2], various type-isomorphisms
have been introduced, in particular the commutativity isomorphism A∧B ≡ B∧A, hence t + u ≡ u+ t.
In such a system, where A∧B and B∧A are identical, it is not possible to define the two elimination
rules, as the two usual projections rules π1 and π2 of the λ -calculus. They were replaced with a single
projection parametrized with a proposition A: πA, such that if t : A and u : B then πA(t +u) reduces to t
and πB(t +u) to u. When A = B, hence t and u both have type A, the proof-term πA(t +u) reduces, non
deterministically, to t or to u. Thus, this modified elimination rule behaves like a measurement operator.

These works on Lambda-S and System I brought to light the fact that the pair superposition / mea-
surement, in a quantum programming language, behaves like a pair introduction / elimination, for some
connective, in a proof language, as the succession of a superposition and a measurement yields a term
that can be reduced. In System I, the assumption was made that this connective was a commutative
conjunction, with a modified elimination rule, leading to a non deterministic reduction.

But, as the measurement of the superposition of two states does not yield both states back, this
connective should probably be excessive. Moreover, as, to build the superposition a.|0〉+b.|1〉, we need
both |0〉 and |1〉 and the measurement, in the basis |0〉, |1〉, yields either |0〉 or |1〉, this connective should
have the introduction rule of the conjunction, and the elimination rule of the disjunction, that is that it
should be the connective �.

Outline of the paper In this paper, we present a propositional logic with the connective �, a language
of proof-terms, the �-calculus (read: “the sup-calculus”), for this logic, and we prove a cut elimination
theorem. We then extend this calculus, introducing scalars to quantify the propensity of a proof to reduce
to another and show that its proof language forms the core of a quantum programming language.
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