Proof Normalisation in a Logic Identifying Isomorphic Propositions

Alejandro Díaz-Caro

ICC (UBA-CONICET) & UNQ
Buenos Aires, Argentina

Gilles Dowek

INRIA & LSV, ENS Paris-Saclay
Paris. France

4th International Conference on Formal Structures for Computation and Deduction (FSCD'19)

June 24-30, 2019. Dortmund, Germany

Definition

$$A \equiv B \quad \Leftrightarrow \quad \boxed{} \quad \left\{ \begin{array}{l} \mathbf{prog}_1 : A \Rightarrow B \\ \mathbf{prog}_2 : B \Rightarrow A \end{array} \right\} \quad \left/ \quad \left\{ \begin{array}{l} \mathbf{prog}_2 \circ \mathbf{prog}_1 = \mathit{Id}_A \\ \mathbf{prof}_1 \circ \mathbf{prog}_2 = \mathit{Id}_B \end{array} \right\}$$

$$(A \wedge B) \equiv (B \wedge A)$$

$$\mathbf{swap}_{AB} : (A \land B) \Rightarrow (B \land A)$$
$$\mathbf{swap}_{AB} \langle x, y \rangle = \langle y, x \rangle$$

$$\mathbf{swap}_{BA}: (B \land A) \Rightarrow (A \land B)$$
$$\mathbf{swap}_{BA} \ \langle y, x \rangle = \langle x, y \rangle$$

$$\mathsf{swap}_{BA} \; \mathsf{swap}_{AB} \; \langle a, b \rangle = \langle a, b \rangle \quad \text{ y } \quad \mathsf{swap}_{AB} \; \mathsf{swap}_{BA} \; \langle b, a \rangle = \langle b, a \rangle$$

Characterization of them

Simply types with pairs

- $\blacktriangleright (A \land B) \equiv (B \land A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

Characterization of them

Simply types with pairs

- $(A \wedge B) \equiv (B \wedge A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

Characterization of them

Simply types with pairs

- $(A \wedge B) \equiv (B \wedge A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

[Bruce, Di Cosmo, Longo MSCS 2(2), 231–247, 1992]

$$\mathbf{assoc} : ((A \land B) \land C) \Rightarrow (A \land (B \land C))$$

$$\mathbf{assoc} \ \langle x, y \rangle = \langle \mathit{fst} \ x, \langle \mathit{snd} \ x, y \rangle \rangle$$

$$\mathbf{assoc'}: (A \land (B \land C)) \Rightarrow ((A \land B) \land C)$$
$$\mathbf{assoc'}\ \langle x, y \rangle = \langle \langle x, \mathit{fst}\ y \rangle, \mathit{snd}\ y \rangle$$

assoc' assoc
$$\langle \langle a, b \rangle, c \rangle = \langle \langle a, b \rangle, c \rangle$$

assoc assoc' $\langle a, \langle b, c \rangle \rangle = \langle a, \langle b, c \rangle \rangle$

Characterization of them

Simply types with pairs

- $\blacktriangleright (A \land B) \equiv (B \land A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

Characterization of them

Simply types with pairs

- $\blacktriangleright (A \land B) \equiv (B \land A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

curry :
$$((A \land B) \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$$

curry $f \times y = f \langle x, y \rangle$

uncurry :
$$(A \Rightarrow B \Rightarrow C) \Rightarrow (A \land B) \Rightarrow C$$

uncurry $g \times = g \text{ (fst } x) \text{ (snd } x)$

uncurry curry
$$f = f$$
 y curry uncurry $g = g$

Characterization of them

Simply types with pairs

- $\blacktriangleright (A \land B) \equiv (B \land A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

Characterization of them

Simply types with pairs

- $(A \wedge B) \equiv (B \wedge A)$
- $((A \land B) \land C) \equiv (A \land (B \land C))$
- $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$
- $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$

pairf :
$$(A \Rightarrow (B \land C)) \Rightarrow ((A \Rightarrow B) \land (A \Rightarrow C))$$

pairf $f = \text{let } g \times = fst \ (f \times) \text{ in}$
 $\text{let } h \times = snd \ (f \times) \text{ in} \ \langle g, h \rangle$

fpair pairf
$$f = f$$
 y pairf fpair $g = g$

The goal

We want to go further:

$$(A \equiv B) \Rightarrow (t : A \Leftrightarrow t : B)$$

The goal is to identify isomorphic types

The goal

We want to go further:

$$(A \equiv B) \Rightarrow (t : A \Leftrightarrow t : B)$$

The goal is to identify isomorphic types

If
$$r$$
 is a proof of $(A \Rightarrow B) \land (A \Rightarrow C)$, r is also a proof showing that $A \Rightarrow (B \land C)$ is true

$$\frac{(A \Rightarrow B) \land (A \Rightarrow C) \quad A}{B \land C}$$

The goal

We want to go further:

$$(A \equiv B) \Rightarrow (t : A \Leftrightarrow t : B)$$

The goal is to identify isomorphic types

If r is a proof of $(A \Rightarrow B) \land (A \Rightarrow C)$, r is also a proof showing that $A \Rightarrow (B \land C)$ is true

$$\frac{(A \Rightarrow B) \land (A \Rightarrow C) \quad A}{B \land C}$$

$$\langle \lambda x^A.r, \lambda x^A.s \rangle \rightleftarrows \lambda x^A.\langle r, s \rangle$$

The setting

Simply types with conjunction and implication

$$A, B, C ::= \tau \mid A \Rightarrow B \mid A \land B$$

An equivalence relation between types based on the known isomorphisms¹

1. $A \wedge B \equiv B \wedge A$	(comm)
2. $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$	(aso)
3. $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$	(curry)
4. $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$	(distrib)

¹Bruce, Di Cosmo, Longo, MSCS 2(2), 231-247, 1992

The setting

Simply types with conjunction and implication

$$A, B, C ::= \tau \mid A \Rightarrow B \mid A \land B$$

An equivalence relation between types based on the known isomorphisms¹

1.
$$A \land B \equiv B \land A$$
 (comm)
2. $A \land (B \land C) \equiv (A \land B) \land C$ (aso)
3. $(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$ (curry)
4. $A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$ (distrib)

We want

$$[A\equiv B]\frac{\Gamma\vdash r:A}{\Gamma\vdash r:B}$$

¹Bruce, Di Cosmo, Longo, MSCS 2(2), 231-247, 1992

$$\frac{\Gamma \vdash r : A \quad \Gamma \vdash s : B}{\Gamma \vdash \langle r, s \rangle : A \land B} \ (\land_i)$$

$$\frac{\Gamma \vdash r : A \quad \Gamma \vdash s : B}{\Gamma \vdash \langle r, s \rangle : A \land B} \ (\land_i)$$

$$\begin{array}{ccc} A \wedge B & \equiv & B \wedge A \\ A \wedge (B \wedge C) & \equiv & (A \wedge B) \wedge C \\ \end{array}$$
 Then
$$\begin{array}{ccc} \langle r, s \rangle & \leftrightarrows & \langle s, r \rangle \\ \langle r, \langle s, t \rangle & \leftrightarrows & \langle \langle r, s \rangle , t \rangle \end{array}$$

$$\frac{\Gamma \vdash \langle r, s \rangle : A \land B}{\Gamma \vdash \pi_1 \langle r, s \rangle : A} \ (\land_e)$$

$$\frac{\Gamma \vdash \langle r, s \rangle : A \land B}{\Gamma \vdash \pi_1 \langle r, s \rangle : A} \stackrel{(\land_e)}{=} \text{But } A \land B = B \land A ! \qquad \frac{\Gamma \vdash \langle r, s \rangle : B \land A}{\Gamma \vdash \pi_1 \langle r, s \rangle : B} \stackrel{(\land_e)}{=} \text{Moreover}$$

$$\langle r, s \rangle = \langle s, r \rangle \qquad \text{hence } \pi_1 \langle r, s \rangle = \pi_1 \langle s, r \rangle : !!$$

$$\frac{\Gamma \vdash \langle r,s \rangle : A \land B}{\Gamma \vdash \pi_1 \langle r,s \rangle : A} \stackrel{(\land_e)}{=} \quad \text{But } A \land B = B \land A \; ! \quad \frac{\Gamma \vdash \langle r,s \rangle : B \land A}{\Gamma \vdash \pi_1 \langle r,s \rangle : B} \stackrel{(\land_e)}{=} \quad \text{Moreover} \qquad \langle r,s \rangle = \langle s,r \rangle \qquad \text{hence } \pi_1 \langle r,s \rangle = \pi_1 \langle s,r \rangle \; !!$$

$$\text{Workaround: } \frac{\text{Church-style} - \text{Projection with respect to type}}{\text{If} \quad r : A \quad \text{then} \quad \pi_A \langle r,s \rangle \rightarrow r}$$

$$\frac{\Gamma \vdash \langle r,s \rangle : A \land B}{\Gamma \vdash \pi_1 \ \langle r,s \rangle : A} \stackrel{(\land_e)}{=} \quad \text{But } A \land B = B \land A \ ! \quad \frac{\Gamma \vdash \langle r,s \rangle : B \land A}{\Gamma \vdash \pi_1 \ \langle r,s \rangle : B} \stackrel{(\land_e)}{=} \quad \text{Moreover} \quad \langle r,s \rangle = \langle s,r \rangle \quad \text{hence } \pi_1 \ \langle r,s \rangle = \pi_1 \ \langle s,r \rangle \ !! \quad \text{Workaround: } \frac{\text{Church-style} - \text{Projection with respect to type}}{\text{If} \quad r : A \quad \text{then} \quad \pi_A \ \langle r,s \rangle \rightarrow r \quad \text{Non determinism}} \quad \text{If} \quad \frac{r : A}{s : A} \quad \text{then} \quad \frac{\pi_A \ \langle r,s \rangle \rightarrow r}{\pi_A \ \langle r,s \rangle \rightarrow s}$$

What about the elimination?

$$\frac{\Gamma \vdash \langle r,s \rangle : A \land B}{\Gamma \vdash \pi_1 \langle r,s \rangle : A} \stackrel{(\land_e)}{=} \quad \text{But } A \land B = B \land A \, ! \quad \frac{\Gamma \vdash \langle r,s \rangle : B \land A}{\Gamma \vdash \pi_1 \langle r,s \rangle : B} \stackrel{(\land_e)}{=} \quad \text{Moreover} \quad \langle r,s \rangle = \langle s,r \rangle \quad \text{hence } \pi_1 \langle r,s \rangle = \pi_1 \langle s,r \rangle \, !! \\ \quad \text{Workaround: } \frac{\text{Church-style} - \text{Projection with respect to type}}{\text{If } r:A \quad \text{then } \pi_A \langle r,s \rangle \rightarrow r} \\ \quad \text{If } \frac{r:A}{s:A} \quad \text{then } \frac{\pi_A \langle r,s \rangle \rightarrow r}{\pi_A \langle r,s \rangle \rightarrow s}$$

Not a big deal both r and s are valid proofs of A

What about the elimination?

$$\frac{\Gamma \vdash r \times s : A \wedge B}{\Gamma \vdash \pi_1(r \times s) : A} \stackrel{(\land_e)}{=} \text{ But } A \wedge B = B \wedge A \text{ ! } \frac{\Gamma \vdash r \times s : B \wedge A}{\Gamma \vdash \pi_1(r \times s) : B} \stackrel{(\land_e)}{=}$$
 Moreover
$$r \times s = s \times r \quad \text{ hence } \pi_1(r \times s) = \pi_1(s \times r) \text{ !!}$$
 Workaround: Church-style – Projection with respect to type
$$\text{If } r : A \quad \text{then } \pi_A(r \times s) \rightarrow r$$

$$\text{Non determinism} \\ \text{If } r : A \quad \text{then } \pi_A(r \times s) \rightarrow r$$

$$\text{Since } A \quad \text{then } \pi_A(r \times s) \rightarrow s$$

Not a big deal both r and s are valid proofs of A

$$(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$$

induces
 $r(s \times t) \stackrel{\leftarrow}{\hookrightarrow} rst$

$$(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$$
induces
$$r(s \times t) \stackrel{\longleftarrow}{\hookrightarrow} rst$$

$$(\lambda x^A.r) s \rightarrow r[s/x]$$

$$\underbrace{(\lambda x^{\tau \wedge \tau}.x)}_{\substack{(\tau \wedge \tau) \Rightarrow (\tau \wedge \tau) \\ \tau \Rightarrow \tau \Rightarrow (\tau \wedge \tau)}}$$

$$(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$$
induces
$$r(s \times t) \stackrel{\longleftarrow}{\longrightarrow} rst$$

$$(\lambda x^{A}.r) s \rightarrow r[s/x]$$

$$\underbrace{\left(\lambda x^{\tau \wedge \tau}.x\right)}_{\substack{(\tau \wedge \tau) \Rightarrow (\tau \wedge \tau) \\ \tau \Rightarrow \tau \Rightarrow (\tau \wedge \tau)}} r^{\tau} s^{\tau}$$

$$(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$$
induces
$$r(s \times t) \stackrel{\longleftarrow}{\hookrightarrow} rst$$

$$(\lambda x^A.r) s \rightarrow r[s/x]$$

$$\underbrace{(\lambda x^{\tau \wedge \tau}.x)}_{\stackrel{(\tau \wedge \tau) \Rightarrow (\tau \wedge \tau)}{\tau \Rightarrow \tau \Rightarrow (\tau \wedge \tau)}} r^{\tau} s^{\tau} \quad \rightleftarrows \quad (\lambda x^{\tau \wedge \tau}.x)(r^{\tau} \times s^{\tau}) \rightarrow r^{\tau} \times s^{\tau}$$

$$(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$$

induces
 $r(s \times t) \stackrel{\longleftarrow}{\hookrightarrow} rst$

If
$$s: A$$
, $(\lambda x^A.r) s \rightarrow r[s/x]$

$$\underbrace{(\lambda x^{\tau \wedge \tau}.x)}_{\substack{(\tau \wedge \tau) \Rightarrow (\tau \wedge \tau) \\ \tau \Rightarrow \tau \Rightarrow (\tau \wedge \tau)}} r^{\tau} s^{\tau} \quad \rightleftarrows \quad (\lambda x^{\tau \wedge \tau}.x)(r^{\tau} \times s^{\tau}) \rightarrow r^{\tau} \times s^{\tau}$$

$$(A \land B) \Rightarrow C \equiv A \Rightarrow B \Rightarrow C$$

induces
 $r(s \times t) \stackrel{\longleftarrow}{\hookrightarrow} rst$

If
$$s: A$$
, $(\lambda x^A.r) s \rightarrow r[s/x]$

Example

$$\underbrace{(\lambda x^{\tau \wedge \tau}.x)}_{\substack{(\tau \wedge \tau) \Rightarrow (\tau \wedge \tau) \\ \tau \Rightarrow \tau \Rightarrow (\tau \wedge \tau)}} r^{\tau} s^{\tau} \quad \rightleftarrows \quad (\lambda x^{\tau \wedge \tau}.x)(r^{\tau} \times s^{\tau}) \rightarrow r^{\tau} \times s^{\tau}$$

Other possible choices:

$$\lambda x^{A \wedge B}.t \quad \leftrightarrows \quad \lambda y^{A}.\lambda z^{B}.t[y \times z/x]$$
$$\lambda x^{A}.\lambda y^{B}.t \quad \leftrightarrows \quad \lambda z^{A \wedge B}.t[\pi_{A}(z)/x,\pi_{B}(z)/y]$$

$$A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$$
induces

$$\lambda x^A.r \times s \leftrightarrows (\lambda x^A.r) \times (\lambda x^A.s)$$

$$A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$$
 induces

$$\lambda x^A.r \times s \leftrightarrows (\lambda x^A.r) \times (\lambda x^A.s)$$
 and $\lambda x^A.\pi_B(r) \leftrightarrows \pi_{A\Rightarrow B}(\lambda x^A.r)$

$$A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$$

induces

$$\lambda x^A.r \times s \leftrightarrows (\lambda x^A.r) \times (\lambda x^A.s)$$
 and $\lambda x^A.\pi_B(r) \leftrightarrows \pi_{A\Rightarrow B}(\lambda x^A.r)$

$$\frac{\vdash \lambda x^{A \land B}.x : (A \land B) \Rightarrow (A \land B)}{\vdash \lambda x^{A \land B}.x : ((A \land B) \Rightarrow A) \land ((A \land B) \Rightarrow B)} \stackrel{(=)}{\vdash \pi_{(A \land B) \Rightarrow A}(\lambda x^{A \land B}.x) : (A \land B) \Rightarrow A} \stackrel{(\land_{e})}{\vdash (\land_{e})}$$

$$\pi_{(A \wedge B) \Rightarrow A}(\lambda x^{A \wedge B}.x) \stackrel{\leftarrow}{\hookrightarrow} \lambda x^{A \wedge B}.\pi_A(x)$$

Other possibilities

$$A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$$

$$\lambda x^{A}.r \times s \iff (\lambda x^{A}.r) \times (\lambda x^{A}.s) \qquad \Rightarrow_{i}, \land_{i} \iff \land_{i}, \Rightarrow_{i} \\ \lambda x^{A}.\pi_{B}(r) \iff \pi_{A \Rightarrow B}(\lambda x^{A}.r) \qquad \Rightarrow_{i}, \land_{e} \iff \land_{e}, \Rightarrow_{i}$$

Other possibilities

$$A \Rightarrow (B \land C) \equiv (A \Rightarrow B) \land (A \Rightarrow C)$$

$$\lambda x^{A}.r \times s \iff (\lambda x^{A}.r) \times (\lambda x^{A}.s) \qquad \Rightarrow_{i}, \land_{i} \iff \land_{i}, \Rightarrow_{i} \\ \lambda x^{A}.\pi_{B}(r) \iff \pi_{A \Rightarrow B}(\lambda x^{A}.r) \qquad \Rightarrow_{i}, \land_{e} \iff \land_{e}, \Rightarrow_{i}$$

$$(r \times s)t \iff rt \times st \qquad \Rightarrow_{e}, \land_{i} \iff \land_{i}, \Rightarrow_{e} \\ \pi_{A \Rightarrow B}(r)s \iff \pi_{B}(rs)^{*} \qquad \Rightarrow_{e}, \land_{e} \iff \land_{e}, \Rightarrow_{e}$$

$$^{*} \text{if } r : A \Rightarrow (B \land C)$$

Counterexample

$$\delta = \lambda x. \pi_{\tau \Rightarrow \tau}(x) \pi_{\tau}(x)$$
$$\delta' = \delta((zy) \times y)$$
$$\Omega = \delta((zy) \times \delta')$$

Counterexample

$$\delta = \lambda x. \pi_{\tau \Rightarrow \tau}(x) \pi_{\tau}(x)$$

$$\delta' = \delta((zy) \times y)$$

$$\Omega = \delta((zy) \times \delta')$$

$$\Omega \to_{\rightleftharpoons}^* \pi_{\tau \Rightarrow \tau}((z \times (\delta(zy)))y)\delta'$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))y\delta'$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))(y \times \delta')$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))(\delta' \times y)$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))\delta'y$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau}((z \times (\delta(zy)))\delta')y$$

$$\rightleftharpoons^* \pi_{\tau \Rightarrow \tau}((z \times (\delta(zy)))y)$$

Counterexample

$$\delta = \lambda x. \pi_{\tau \Rightarrow \tau}(x) \pi_{\tau}(x)$$

$$\delta' = \delta((zy) \times y)$$

$$\Omega = \delta((zy) \times \delta')$$

$$\Omega \to_{\rightleftharpoons}^* \pi_{\tau \Rightarrow \tau}((z \times (\delta(zy)))y)\delta'$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))y\delta'$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))(y \times \delta')$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))(\delta' \times y)$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau \Rightarrow \tau}(z \times (\delta(zy)))\delta'y$$

$$\rightleftharpoons \pi_{\tau \Rightarrow \tau}((z \times (\delta(zy)))\delta')y$$

$$\rightleftharpoons^* \pi_{\tau \Rightarrow \tau}((z\delta') \times \Omega)y$$

$$\pi_{A\Rightarrow B}(r)s \rightleftharpoons \pi_B(rs)$$
 Problematic rule

We had too many rules

Working set: System I

$$r imes s
ightharpoonup s imes r$$
 (comm)
 $(r imes s) imes t
ightharpoonup r imes (s imes t)$ (asso)
 $\lambda x^A.(r imes s)
ightleftharpoonup \lambda x^A.r imes \lambda x^A.s$ (dist $_{\lambda}$)
 $(r imes s) t
ightharpoonup r t imes s t$ (dist $_{app}$)
 $rst
ightharpoonup r(s imes t)$ (curry)

We had too many rules

Working set: System I

$$r imes s
ightleftharpoons s imes r imes (comm) \ (r imes s) imes t
ightleftharpoons r imes (s imes t) \ (asso) \ \lambda x^A.(r imes s)
ightleftharpoons \lambda x^A.s imes (dist_{app}) \ (r imes s) t
ightleftharpoons r t imes r (s imes t) \ (curry)$$

Theorem (Strong normalization)

System I is strongly normalizing

Proof. highlights

No neutral terms: $(r \times s)t \rightleftharpoons rt \times st$

We use elimination contexts: $K := [] \mid Kr \mid \pi_A(K)$

A term r is reductible if $\forall K$ such that $K[t] : \tau$, $K[t] \in SN$.

Progression and consistency

No progression:

Let
$$s: B$$
, $\underbrace{(\lambda x^A.\lambda y^B.r)}_{\substack{A\Rightarrow B\Rightarrow C\\ B\Rightarrow A\Rightarrow C}} s$ is in normal form

Progression and consistency

No progression:

Let
$$s: B$$
, $\underbrace{(\lambda x^A.\lambda y^B.r)}_{\substack{A\Rightarrow B\Rightarrow C\\ B\Rightarrow A\Rightarrow C}} s$ is in normal form

Theorem (Consistency of System I)

There is no closed normal term of type τ .

Progression and consistency

No progression:

Let
$$s: B$$
, $\underbrace{(\lambda x^A \cdot \lambda y^B \cdot r)}_{\substack{A \Rightarrow B \Rightarrow C \\ B \Rightarrow A \Rightarrow C}} s$ is in normal form

Theorem (Consistency of System I)

There is no closed normal term of type τ .

Future work (in progress) η -expansion and surjective pairing

$$(\lambda x^{A}.\lambda y^{B}.r)s \to_{\eta} \lambda z^{A}.(\lambda x^{A}.\lambda y^{B}.r)sz$$

$$\rightleftharpoons^{*} \lambda z^{A}.(\lambda x^{A}.\lambda y^{B}.r)zs$$

$$\to \lambda z^{A}.((\lambda y^{B}.r[z/x])s)$$

Summarizing

What have we done?

We defined System I, where isomorphic propositions have the same proofs

Summarizing

What have we done?

We defined System I, where isomorphic propositions have the same proofs

Why?

If $A \equiv B$, a **proof** of A should be indistinguishable of a proof of B

 $\frac{A \quad B}{A \land B}$ and $\frac{B \quad A}{B \land A}$ are the same!

If $A \equiv B$, a **function** defined over A can used directly as B

If f(a, b) is valid, it should also be f(a, b) or even f(a, b)