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Context. In most software, 3D polygonal meshes have vertices whose coordinates are represented with
fixed-precision floating-point numbers, say doubles. Unfortunately, actions, such as rotations and intersec-
tions, create vertices whose coordinates cannot be exactly represented with doubles. A natural problem is
thus to round the coordinates to doubles, without creating self-intersections between the faces and with-
out changing the geometry too much; the faces can however be subdivided. This problem is of interest
in academic and industrial contexts because many 3D digital models contain self intersections (45% of the
10 thousands triangle meshes in the famous Thingiverse data base) and many applications require models
without self intersections.

Problem. Given a set of interior-disjoint triangles in 3D whose vertices have arbitrary coordinates, we
want to compute a set of interior-disjoint triangles, whose geometry is close to that of the input and such
that the output vertices have coordinates of fixed precision, typically integers or fixed-precision floating-point
numbers (eg. int, float, double). For simplicity, people aim at rounding the coordinates on a regular grid
such as the grid of integers. This problem is well resolved for segments in 2D (see [3,4] and references therein)
but, until recently, the only known algorithm for triangles in 3D solved a variant problem in which vertices
are rounded on a grid whose granularity, 1/n, depends on the combinatorial size n of the input [2].

Goal. We recently presented an algorithm that solves the problem in 3D on the integer grid [1]. This
solution is not yet known to be practical because its worst-case complexity O(n19) is very bad but we
conjecture a good complexity of O(n

√
n) in practice on non-pathological data.

The goal of this Master thesis, which could lead to a Ph.D. thesis, is to investigate and eventually develop
a practical and efficient solution for this problem. The approach will be to implement a simplified version of
our algorithm in [1] and, in parallel, to work at improving its efficiency, both in theory and in practice.
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