Human Body Blockage - Guidelines for TGad MAC development

Date: 2009-11-17

Authors:

Name	Affiliations	Address	Phone	email
Martin Jacob	Technische	Schleinitzstr. 22	+4953139124	jacob@ifn.ing.tu-bs.de
	Universität	D-38092	51	
	Braunschweig	Braunschweig		
Christian Mbianke	Technische	Schleinitzstr. 22		christian_mbianke@yaho
	Universität	D-38092		o.fr
	Braunschweig	Braunschweig		
Thomas Kürner	Technische	Schleinitzstr. 22	+4953139124	t.kuerner@ tu-bs.de
	Universität	D-38092	16	
	Braunschweig	Braunschweig		

Abstract

This contribution presents results from a TUBS measurement campaign investigating the influence of moving humans on the 60 GHz channel. Together with the results from [1] and [2] this will be the base for guidelines concerning TGad beamforming algorithm and MAC layer development. These guidelines could be included to the channel model document [3].

Human induced shadowing events

- Statistics about human induced shadowing effects should be included in the channel model document
- Important quantities for beamforming and MAC development:
 - How fast does the channel change?
 - How often does shadowing events occur?
 - How long is the shadowing event
 - What is the amplitude of a shadowing event?
- These questions will be answered based on measurement results at TUBS and from [1]

Dynamic Measurements

- Living room scenario
- Single Person moving
- 2 different Tx positions
- 3 different walking paths
- Single Frequency: 67 GHz
- 20 dBi Horn Antennas

Definitions

- The following parameters of a shadowing event have been statistically analyzed
 - Decay time t_1 (for a given threshold)
 - Rising time t_2 (for a given threshold)
 - Duration **t**_d
 - Mean Attenuation A_{mean} for the window $(t_d/3 < t < 2/3 t_d)$
 - Max. Attenuation A_{max}

• For all parameters fitted distributions are given, validated by Kolmogorov–Smirnov test

Decay and Rising Time

• Decay time

Threshold	Mean Value	Standard deviation
1 dB	16 ms	14 ms
3 dB	39 ms	20 ms
5 dB	61 ms	26 ms
20 dB	230 ms	92 ms

• Rising time

Threshold	Mean Value	Standard deviation
1 dB	14 ms	11 ms
3 dB	40 ms	23 ms
5 dB	65 ms	45 ms
20 dB	220 ms	100 ms

Attenuation

- Mean and max. attenuation fitted by gaussian distribution (parameters : see figures)
- Measured A_{mean} values lie between -18 dB and -6 dB
- Measured A_{max} values lie between -36 dB and -18 dB

Duration

• Parameter t_d fitted by Weibull distribution

- Mean value: 560 ms
- Standard deviation: 100ms
- Measured t_d values lie between 370 ms and 820 ms

Conclusion

- Full parameter set to model shadowing events compiled
- Rising Time
 - Mean value: 16 ms, 39 ms, 61 ms, 230 ms (1 dB, 3 dB, 5 dB, 20 dB threshold) (TUBS)
 - Can be short (,,worst case": <30ms) [1]

• Attenuation

- Mean value: 13.4 dB, Max. value 26 dB (TUBS)
- Mean value >15 dB for directive antennas (horn, 22.4 dBi) [1]
- Mean value <15 dB for 3 dBi patch antennas [1]

• Inter-arrival time between two successive shadowing events

- Not investigated @ TUBS
- Spreads from 2 s up to 20 minutes depending on human activity [1]

• Duration

- Mean Value: 550 ms for 0 dB threshold (TUBS)
- 300 to 450 ms for 10 dB threshold [1]
- 100 to 300 ms for 20 dB threshold [1]

• Further investigation will be carried out based on dynamic channel simulations [2]

Guidelines for Beamforming development

The investigations show that human movement can lead to a drop of signal level and hence SNR up to more than 20 dB. The time between two successive shadowing events is widespread and ranges from 2 s to 20 min.

The investigations have also shown that the drop of signal level happens in the order of *tens of milliseconds*. In average the signal decreases by 20 dB in 230 ms, whereas it takes 16 (61) ms for a drop of 1 (5) dB. In 90% of the cases the signal decrease took at least 4 ms for a 1 dB, 27 ms for a 5 dB and 101 ms for a 20 dB threshold.

In case a shadowing event happens, beamforming should be applied to find alternative transmission paths. This has to happen faster than the stated time values to assure QoS.

Appendix - Distribution functions

• Gaussian:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)}$$

• Log-Normal

$$f_X(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, \ x > 0$$

• Weibull

$$f(x;\lambda,k) = \begin{cases} \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k} & x \ge 0\\ 0 & x < 0 \end{cases}$$

References

- [1] *M. Jacob, T. Kürner:* Influence of moving people on the 60 GHz channel –a literature study, IEEE 802.11-09/0744r0, July 2009
- [2] *M. Jacob et al.:* Modeling the human induced 60 GHz channel dynamics, IEEE 802.11-09/1170r0, November 2009
- [3] A. Maltsev et al.: Channel Models for 60 GHZ WLAN Systems, IEEE802.11-09/0334r3, July 2009