[Intra-cluster response model and parameter for channel modeling at 60GHz (Part 2)]

Date: 2009-11-19

Authors:

Name	Affiliations	Address	Phone	email
Hirokazu Sawada	Tohoku University	2-1-1 Katahira, Aoba-ku, Sendai 980-8577, JAPAN	+81-22-217-6112	sawahiro@riec.tohoku.ac.jp
Shuzo Kato	NICT/ Tohoku University	3-4, Hikarino-Oka, Yokosuka, Kanagawa 239-0847 Japan		shu.kato@nict.go.jp
Katsuyoshi Sato	NICT	3-4, Hikarino-Oka, Yokosuka, Kanagawa 239-0847 Japan		satox@nict.go.jp

Abstract

- This document updates proposed intra-cluster channel models for TGad channel modeling
- On top of channel modeling presented in the last meeting in Hawaii which focused on Living room, Vertical polarization, LOS environments with variable HPBW antenna, this paper shows the rest for TGad channel modeling - intra-cluster channel modeling :
 - 1. Environments: extended to conference room,

2. Polarization: extended to circular and horizontal from vertical polarization,

3. Antenna HPBW: extended to 5, 15, 30, 60, 90 degrees,

4. LOS: extended to NLOS in Living room.

 By integrating the extracted intra-cluster parameters from the measured data shown in this paper and the inter-cluster channel modeling given by ref (Doc.09/334r4), the channel models for "conference room and living room environments" will be completed.

Progress of intra-cluster channel modeling

Environments	LOS/NLOS	Polarization	Antenna HPBW [deg]				g]	
	LOS	V	5	15	30	60	90	
		Н	5	15	30	60	90	
Conforma		С	5	15	30	60	90	
Conference		V	5	15	30	60	90	
	NLOS	Н	5	15	30	60	90	
		С	5	15	30	60	90	Working status
		V	5	15	30	60	90	Previous work
	LOS	Н	5	15	30	60	90	Doc 09/721r1
Living		С	5	15	30	60	90	Doc 09/874r1
	NLOS	V:	5	15	30	60	90	Doc 09/936r1
		Н	5	15	30	60	90	This contribution
		С	5	15	30	60	90	
		V	5	15	30	60	90	
	LOS	Н	5	15	30	60	90	
Cubicle		С	5	15	30	60	90	
	NLOS	V	5	15	30	60	90	
		Н	5	15	30	60	90	
		С	5	15	30	60	90	

$\begin{array}{c} \text{Measurement system} \\ \hline \text{Tx} & Rx \\ \hline \theta & \text{Distance, } d \\ \hline \text{Rotating table} \\ \hline \\ \hline \text{Network} \\ \hline \\ \text{Analyzer} \\ \end{array}$

Instrument: Vector network analyzerAntenna: Conical horn antenna

Measurement set up in living room

Parameter	Value		
Center frequency	62.5 GHz		
Band width	3 GHz		
Number of frequency points	801		
Frequency step	3.75 MHz		
HPBW of antenna (Gain)	5, 15, 30, 60, 90 degree		
Polarization	Vertical, Horizontal, Circular		
Calibration	Direct port connection without		
	antennas		

Conference room environment "defined by TGad"

Proposed intra-cluster channel model

- Two-side exponential decay model
- -Ray decay parameter, γ_{-} and γ_{+}
- -Ray arrival rate, λ_{-} and λ_{+} are assumed as Poisson process

Environment Pol. **HPBW** $1/\lambda$ [ns] $1/\lambda_{\perp}$ [ns] $\gamma_{\rm [ns]}$ γ_{+} [ns] 5 N/A N/A N/A N/A 15 4.76 N/A 0.902 N/A 30 0.652 1.29 1.79 1.11 V 60 0.469 0.510 0.466 0.616 90 0.795 0.672 1.26 0.690 5 8.63 N/A 0.240 N/A LoS 15 2.52 9.89 1.63 0.228 Living 30 0.645 1.03 3.63 0.699 Η 60 0.543 0.773 0.720 0.842 Room 0.494 90 0.474 0.537 0.790 5 4.72 6.07 0.557 2.31 4.38 0.993 1.44 15 0.541 0.854 30 0.623 4.88 0.968 С 0.491 60 0.427 0.691 0.733 90 0.485 0.546 0.573 0.541

Intra cluster parameters for living room (LoS)

• γ_{-} , γ_{+} are inversely proportional to HPBW $\times N/A$:Non-cluster

Intra cluster parameters for living room (NLoS)

Environment	Pol.	HPBW	γ_ [ns]	γ_+ [ns]	$1/\lambda_{-}$ [ns]	$1/\lambda_{+}$ [ns]
	V	5	4.84	7.69	0.541	1.21
		15	2.48	1.11	0.633	1.57
		30	0.981	2.64	1.46	0.949
		60	1.45	0.626	0.834	0.573
		90	1.47	0.623	0.730	0.542
NLoS Living Room	Н	5	7.94	3.57	3.41	0.541
		15	3.30	1.06	0.633	1.26
		30	2.66	2.14	0.424	0.984
		60	0.855	0.596	0.580	0.738
		90	0.722	0.732	0.828	0.851
	С	5	7.18	4.13	0.361	0.832
		15	2.78	2.55	0.633	0.627
		30	0.891	1.78	0.722	1.28
		60	0.884	0.625	1.21	0.655
		90	0.867	0.670	1.43	0.706

Intra cluster parameters for conference room (LoS)

Environment	Pol.	HPBW	γ_ [ns]	γ_+ [ns]	$1/\lambda_{-}$ [ns]	$1/\lambda_{+}$ [ns]
	V	5	N/A	N/A	N/A	N/A
		15	2.39	N/A	0.615	N/A
		30	0.613	4.11	1.65	1.35
		60	N/A	N/A	N/A	N/A
		90	N/A	N/A	N/A	N/A
	Н	5	N/A	9.91	N/A	2.99
LoS Conference		15	1.68	N/A	2.99	N/A
		30	0.510	0.779	2.70	1.92
		60	N/A	N/A	N/A	N/A
		90	N/A	N/A	N/A	N/A
	С	5	N/A	2.75	N/A	0.739
		15	0.682	0.632	1.28	0.924
		30	0.569	0.831	2.02	1.73
		60	N/A	N/A	N/A	N/A
		90	N/A	N/A	N/A	N/A

X/A: Reflection waves are as low as noise level

November, 2009

Intra cluster parameter for conference room (NLoS)

Environment	Pol.	HPBW	γ_ [ns]	γ_+ [ns]	$1/\lambda_{-}$ [ns]	$1/\lambda_{+}$ [ns]
	V	5	13.1	0.891	0.341	1.75
		15	2.39	1.31	0.615	0.841
		30	0.795	0.693	1.25	0.271
		60	N/A	N/A	N/A	N/A
		90	N/A	N/A	N/A	N/A
	Н	5	N/A	0.788	N/A	0.642
NLoS Conference		15	1.68	0.896	2.99	1.68
		30	0.798	0.853	2.44	1.82
		60	N/A	N/A	N/A	N/A
		90	N/A	N/A	N/A	N/A
	С	5	N/A	1.00	N/A	1.23
		15	0.686	0.640	1.18	1.26
		30	0.967	0.567	0.861	1.77
		60	N/A	N/A	N/A	N/A
		90	N/A	N/A	N/A	N/A

X/A: Reflection waves are as low as noise level

Summary

- Proposed channel model was updated with variable HPBW antenna in living and conference room environments for TGad channel modeling
- By integrating the intra-cluster(Doc.09/334r4) and presented intra-cluster models, the channel models for "conference room and living room environments" will be completed

Investigation for human mobility (blockage) and reflection

Two preliminary measurement results are introduced for human mobility

•Fading by human mobility (blockage)

Reflection by human body

Human mobility fading

Antenna height: 1.0 m

Measurement set up in living room

Parameter	Value		
Frequency (CW)	62.5 GHz		
HPBW of antenna (Gain)	30 degree		
Polarization	Vertical		
Calibration	Direct port connection without		
	antennas		

Patterns of human moving/still positions

Route :1~5 Human Speed: Walking

🔵 : Human body

Measurement result (Pattern1)

Measurement result (Pattern 2 and 3)

•Fading duration and depth depends on a blocking position between Tx and Rx

Submission

Submission

Reflection measurement of human body

Reflection power in frequency domain

Human body make reflection wave, not only absorption effect
Reflection level became 10dB smaller than metal wall

Summary of human mobility fading and human reflection measurements

Duration, decay and rising time modeling will be required for MAC design for beam switching timing

Reflection waves from human body may have an impact on propagation characteristics, however, how to model is a future work