60-GHz RF System Performance Optimization

Date: 2010-05-17

Authors:

Name	Affiliations	Address	Phone	email
Tian-Wei Huang	National Taiwan University	No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan(R.O.C.)	+886-2-33665084	twhuang@cc.ee.ntu.edu.tw
Liang-Hung Lu	National Taiwan University	No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan(R.O.C.)	+886-2-33663608	lhlu@cc.ee.ntu.edu.tw
Huei Wang	National Taiwan University	No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan(R.O.C.)	+886-2-33663637	hueiwang@ew.ee.ntu.edu.tw
Ruey-Beei Wu	National Taiwan University	No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan(R.O.C.)	+886-2-33663630	rbwu@ew.ee.ntu.edu.tw
Juinn-Horng Deng	Yuan Ze University	135 Yuan-Tung Road, Chung- Li, 32003, Taiwan(R.O.C.)	+886-3-463-8800	jh.deng@saturn.yzu.edu.tw
James Wang	MediaTek	No.1, Dusing Rd. 1, Hsinchu Science Park, Hsin-Chu, Taiwan 30078, R.O.C.	+886-3-567-0766	james.wang@mediatek.com
Vish Ponnampalam	Media Tek	No.1, Dusing Rd. 1, Hsinchu Science Park, Hsin-Chu, Taiwan 30078, R.O.C.	+886-3-567-0766	vish.ponnampalam@mediatek.c om
Alvin Hsu	Media Tek	No.1, Dusing Rd. 1, Hsinchu Science Park, Hsin-Chu, Taiwan 30078, R.O.C.	+886-3-567-0766	alvin.hsu@mediatek.com

Abstract

- This presentation proposes two techniques to minimize the impact of RF impairments on the performance of 60-GHz multi-gigabit system.
- An example of 60-GHz 65-nm CMOS power amplifier pre-distortion linearizer is proposed for the optimization of multi-gigabit RF system linearity.
- A 60-GHz sub-harmonic local oscillator topology is also proposed for the 65-nm CMOS phase noise optimization.

Outline

- Introduction
- 65-nm CMOS PA linearity optimization
- 65-nm CMOS phase noise optimization
- Conclusions
- References

Introduction

Modified Rapp PA Modeling [1]

 Input signal x(t) to an amplifier produces output signal y(t):

$$x(t) = A(t)\cos(2\pi f_c t + \theta(t))$$

$$y(t) = G[A(t)]\cos[2\pi f_c t + \theta(t) + \Psi(A(t))]$$

 $G(A) = g \frac{A}{\left(1 + \left(\frac{gA}{A_{sat}}\right)^{2s}\right)^{\frac{1}{2s}}}$

where

g is the small gain signal *s* is the smoothness factor A_{sat} is the saturation level

where G[A(t)] is the amplitude (gain) distortion (AM - AM) $\Psi(A) = \frac{\alpha A^{q_1}}{\left(1 + \left(\frac{A}{B}\right)^{q_2}\right)}$ $\Psi(A(t))$ is the phase distortion (AM - PM)

65nm CMOS Standard PA [1]

Submission

Tian-Wei Huang, National Taiwan University

(

65nm CMOS NTU PA AM-AM VDD 1V

$$G(A) = g \frac{A}{\left(1 + \left(\frac{gA}{A_{sat}}\right)^{2s}\right)^{\frac{1}{2s}}}$$

g is the small signal gain s is the smoothness factor A_{sat} is the saturation level

g=8.5, s=1.2 ,Asat=1.7

65nm CMOS NTU PA AM-PM VDD 1V

65nm CMOS NTU PA with Linearizer AM-AM VDD 1V

g is the small signal gain s is the smoothness factor A_{sat} is the saturation level

g=5.8, s=1.35 ,Asat=1.75

65nm CMOS NTU PA With Linearizer AM-PM VDD 1V

BER Peformance

EVM Performance

65nm CMOS NTU PA IMD3

PA simulation is using ADS and CMOS foundry model

Two tone frequency : 60GHz , 60.5GHz

Comparison of IMD3 for 65nm CMOS NTU PA Without Linearizer

PA simulation is using ADS and CMOS foundry model

Submission

Comparison of IMD3 for 65nm CMOS NTU PA With Linearizer

Two tone frequency : 60GHz , 60.5GHz

Submission

VCO Performances for LO (1/2)

- □ Circuit Schematic & Design Parameters
 - □ Based-on tuning requirement (6~8-GHz @60 GHz)
 - Design without band-switching for comparison

Device	Design Value		
<i>M</i> ₁ , <i>M</i> ₂	1 × 8 μ m / 0.06 μ m		
I _{bias}	7.5 mA		
T _d	width	4 μ m	
	length	220 μm	
	spacing	10 μ m	
	Z_0	57.7 Ω	
$C_{\rm var}$	21 ~ 46 fF		

May 2010

VCO Performances for LO (2/2)

Submission

17

Tian-Wei Huang, National Taiwan University

VCO Performances for LO/2 (1/2)

- □ Circuit Schematic & Design Parameters
 - □ Based-on tuning requirement (3~4-GHz @30 GHz)
 - Design without band-switching for comparison

Device	Design Value	
<i>M</i> ₁ , <i>M</i> ₂	1 × 12 μm / 0.06 μm	
I _{bias}	5.4 mA	
L _d	L	0.21 nH
	Q	32
C _{var}	62 ~ 100 fF	

May 2010

VCO Performances for LO/2 (2/2)

Tian-Wei Huang, National Taiwan University

VCO Performances for LO/4 (1/2)

- **D** Circuit Schematic & Design Parameters
 - □ Based-on tuning requirement (1.5~2-GHz @15 GHz)
 - Design without band-switching for comparison

Device	Design Value	
<i>M</i> ₁ , <i>M</i> ₂	1 × 9 μm/0.06 μm	
I _{bias}	2.9 mA	
L _d	L	0.88 nH
	Q	17.5
C _{var}	60 ~ 100 fF	

<u>May 2010</u> doc.: IEEE 802.11-10/0497r0 VCO Performances for LO/4 (2/2)

Comparison

□ Performance Comparison among LO, LO/2, LO/4

- □ Phase-noise degradation: 6-dB/octave
- Phase-noise performances can be further improved via bandswitching design to cover the wide tuning range

Mode	LO	LO/2	LO/4
Technology	65-nm 1P6M CMOS		
Frequency	60 GHz	30 GHz	15 GHz
Tuning Range	9 GHz	5 GHz	2 GHz
FTR	15 %	20 %	13.3 %
PN @1 MHz	-79 ~ -91 dBc/Hz	-88 ~ -109 dBc/Hz	-97 ~ -108 dBc/Hz
PN degradation	0 dB	6 dB	12 dB
Core Power	4.5 ~ 8.5 dBm	5.8 ~ 7.6 dBm	7.8 ~ 9.2 dBm
DC Power	9 mW	6.48 mW	3.48 mW

FOM Calculations

- □ FOM Comparison among LO, LO/2, LO/4 (VCO only)
 - **FOM = PN-20log**($f_o / \Delta f$)-20log(FTR/10)+10log($P_{DC}/1$ mW)-1.5log₂(f_o / LO)
 - **PN** degradations are included.
 - □ 1.5 dB conversion loss is assumed for each multiplication by 2.
 - □ Based on simple *LC*-tank VCO, the one with LO/2 case yields the highest FOM.
 - **\Box** The LO case with wide tuning ranges \rightarrow PN degradations
 - Low inductor Q for LO/4 case → Colpitts structure or other available high-Q inductors

Mode	LO	LO/2	LO/4
FOM	-174.56 dBc/Hz	-184.42 dBc/Hz	-180.59 dBc/Hz

Recent Published VCO Phase Noise

A 0.6 V, 4.32 mW, 68 GHz Low Phase-Noise VCO With Intrinsic-Tuned Technique in 0.13 μ m CMOS

Hsien-Ku Chen, Hsien-Jui Chen, Da-Chiang Chang, Ying-Zong Juang, and Shey-Shi Lu, Senior Member, IEEE

ISSCC 2009 / SESSION 29 / mm-WAVE CIRCUITS / 29

29.7 A 59GHz Push-Push VCO with 13.9GHz Tuning Range Using Loop-Ground Transmission Line for a Full-Band 60GHz Transceiver

Phase Noise Model [1]

 Phase noise may be reasonably modeled by a two pole – one zero model

$$PSD(f) = PSD(0) \left[\frac{1 + (f / f_z)^2}{1 + (f / f_p)^2} \right]$$

- Case 1:
 - PSD(0) = -92 dBc/Hz
 - Pole frequency $f_{\rho} = 1$ MHz
 - Zero frequency $f_z = 100 \text{ MHz}$
 - PSD(infinity) = -130 dBc/Hz

- Case 2:
 - PSD(0) = -85 dBc/Hz
 - Pole frequency $f_p = 1 \text{ MHz}$
 - Zero frequency $f_z = 100 \text{ MHz}$
 - PSD(infinity) = -130 dBc/Hz

BER Peformance

EVM Performance

Conclusions

- 65nm CMOS PA linearizer can boost 60-GHz linear power 2-3dB under the same linearity requirement and DC power consumption.
- The modified Rapp PA model has a difficulty to model the corresponding IM3 plot with 3:1 asymptotic behavior.
- The divided-by-2 local oscillator frequency in 65nm CMOS 60-GHz RF system has better phase noise performance than the fundamental local oscillator frequency.

References

- [1] 11-09-1213-01-00ad-60ghz-impairments-modeling.ppt
- [2] Jeng-Han Tsai, Hong-Yeh Chang, Pei-Si Wu, Yi-Lin Lee, Tian-Wei Huang, and Huei Wang, " Design and Analysis of a 44-GHz MMIC Low-loss Built-in Linearizer for High-Linearity Medium Power Amplifiers," IEEE Trans. Microwave Theory Tech. Vol. 54, No. 6, pp. 2478-2496, June 2006
- [3] S. Cripps, "The Intercept Point Deception," IEEE Microwave Magazine, pp. 44-50, Feb. 2007