RepBun: Load-Balanced, Shuffle-Free Cluster
Caching for Structured Data

Minchen Yu*, Yinghao Yuf, Yunchuan Zheng*, Baichen Yang!, Wei Wang*
Hong Kong University of Science and Technology
*{myuaj, yzhengbj, weiwa} @cse.ust.hk, T{yyuau, byangak } @connect.ust.hk

Abstract—Cluster caching systems increasingly store structured
data objects in the columnar format. However, these systems
routinely face the imbalanced load that significantly impairs
the I/0O performance. Existing load-balancing solutions, while
effective for reading unstructured data objects, fall short in
handling columnar data. Unlike unstructured data that can only
be read through a full-object scan, columnar data supports direct
query of specific columns with two distinct access patterns: (1)
columns have the heavily skewed popularity, and (2) hot columns
are likely accessed together in a query job. Based on these two
access patterns, we propose an effective load-balancing solution
for structured data. Our solution, which we call RepBun, groups
hot columns into a bundle. It then copies multiple replicas of
the column bundle and stores them uniformly across servers.
We show that RepBun achieves improved load balancing with
reduced memory overhead, while avoiding data shuffling between
cache servers. We implemented RepBun atop Alluxio, a popular
in-memory distributed storage, and evaluate its performance
through EC2 deployment against the TPC-H benchmark work-
load. Experimental results show that RepBun outperforms the
existing load-balancing solutions with significantly shorter read
latency and faster query completion.

I. INTRODUCTION

Cluster caching systems are widely deployed in front of the
cloud storage to provide low-latency data access at memory
speed [1]-[6]. However, the routinely observed data popularity
skew in cluster caches results in imbalanced load across cache
servers, creating hot spots with excessive I/O latency [7], [8].

Existing load-balancing solutions employ three techniques
to mitigate hot spots: (1) selective replication which copies
multiple replicas of hot data objects [9]-[11], (2) erasure
coding which creates parity chunks of data objects [7], and (3)
selective partition which splits hot objects into multiple small
partitions so as to spread their load across servers [8]. These
solutions are proven effective for caching unstructured data
objects which are simply dumped as data blobs that mandate
a full-object scan for data access (e.g., text files in HDFS).

Compared to unstructured data blobs, structured data ob-
jects are increasingly stored in cluster caches. These objects
have clear semantics of data schema and are usually stored
as columnar tables (e.g., Parquet [12] and Apache Arrow [3])
that can be efficiently queried by analytics frameworks such
as Spark SQL [13], Hive [14], and Presto [15]. Unlike
unstructured data that require full-object scans, columnar
data supports direct query of specific columns using SQL
(e.g., SparkSQL querying Parquet files). Our characterization
study against the TPC benchmark suites [16]-[18] shows that

columns of a table typically have heavily skewed popularity
(Sec. II-D). That is, a small number of hot columns contribute
a large fraction of the data access. In addition, hot columns are
likely queried together by an analytic job, indicating a strong
co-access pattern.

These two distinct access patterns from unstructured data
render existing load-balancing solutions inefficient in handling
columnar data. In particular, selective replication falls short
with high memory overhead as copying the entire hot object
also replicates the cold columns, which is unnecessary; creat-
ing parity chunks using erasure code precludes direct access
to columns, forcing an inefficient full-table scan; selective
partition may retain hot columns in one partition, failing to
spread their load to mitigate hot spots.

Moreover, the two access patterns of columnar data suggest
an unpleasant tradeoff between load balancing and communi-
cation overhead. One one hand, to improve load balancing, hot
columns should be distributed uniformly across servers. On the
other hand, as hot columns are often queried together, caching
them across servers results in heavy data shuffling (e.g., join
two columns on two servers), which, in turn, delays query
completion in spite of the improved load balancing.

In this paper, we address this unpleasant tradeoff with a
simple, yet effective solution called selective bundling and
replication. Our key idea is to bundle the hot columns of
each structured object with strong co-access patterns and copy
multiple replicas of the bundle across servers. For a query job
whose working columns can be fully served by the bundle,
we randomly choose a replica and use it to serve the query.
Otherwise, we serve it using the original object containing all
columns. This solution offers three benefits. First, it spreads
the load of hot columns into multiple bundle replicas, leading
to improved load balancing. Second, it significantly reduces
the memory overhead as only a small amount of hot columns
are copied. Third, it avoids data shuffling as queries are always
served using the local data.

Critical to our solution is to judiciously determine which
columns should be grouped into a bundle and how many repli-
cas should a bundle be copied. This requires the knowledge of
column co-access patterns, which cannot be directly obtained
from cluster caching systems like Alluxio [2], [4]. As low-
level storage, cluster caches are agnostic to the high-level
query semantics and can only track the access count of each
column. We address this challenge with a simple, yet effective
algorithm that accurately infers the co-access patterns between

columns based on their individual popularity. Based on this
information, we formulate and solve a stochastic optimization
problem that minimizes load variance across servers, under the
constraint of a given memory budget.

We have implemented our solution, termed RepBun, atop
Alluxio using Parquet [12] as the columnar storage substrate.
We evaluated RepBun against the TPC-H benchmark in a 21-
node EC2 cluster. Experimental results show that compared
with selective replication, RepBun achieves better load bal-
ancing and reduces the mean and tail read latency by up to
30% and 36%, respectively. When deployed with Spark SQL,
RepBun leads to faster query completion, accelerating 40% of
SQL queries in the TPC-H benchmark by over 15%.

II. BACKGROUND AND MOTIVATION

In this section, we briefly survey the existing load-balancing
solutions for cluster caches, and motivate the need to have a
new approach for handling structured data through a charac-
terization study on their access patterns.

A. Cluster Caching and Load Imbalance

Data-intensive clouds are increasingly bottlenecked on the
storage 1/0, and hence rely on cluster caching systems to meet
the I/O performance demands [2]-[6], [19]. By deploying a
cluster of cache servers in front of the cloud storage, 1/O-
intensive jobs can access data at memory speed, leading
to significant performance improvement. In this paper, we
primarily focus on the compute-collocated cluster caches,
in which the cache storage is deployed in collocation with
the compute node for improved memory locality—a common
practice in production environments according to our contacts
in Alluxio [4].

However, cluster caching systems routinely face severe load
imbalance. Prior study shows that the popularity of data ob-
jects in production clusters follows a Zipf-like distribution [1],
[71-19], [20], [21]. Meaning, a small number of hot objects
account for a large number of access requests. Such heavy
popularity skew creates hot spots among cache servers, which
not only delays data access that substantially impairs the I/O
performance, but also necessitates over-provisioning in order
to accommodate the peak demands [7], [8].

B. Existing Load-Balancing Solutions

Existing load-balancing solutions for cluster caches can be
broadly categorized into three approaches: selective replica-
tion, erasure coding, and selective partition.

Selective replication mitigates hot spots by copying multiple
replicas of data objects based on their popularity [9]-[11].
That is, the more popular an object is, the more replicas
it is copied. These replicas are stored uniformly in cache
servers in order to spread the load of hot objects. Although
replication improves load balancing, it results in the high
memory overhead, given that hot objects are usually large in
size [7], [8]. Therefore, selective replication usually does not
lead to the optimal caching performance [7], [8].

TABLE I: Statistics of the three TPC benchmark suites.

Benchmark Table # SQL Query #
TPC-DS [17] 24 99
TPC-H [16] 8 22
TPC-xBB [18] | 19 30

Erasure coding comes as an improved solution over repli-
cation with reduced memory overhead [7]. In a nutshell, a
(k,r) coding scheme splits an object into k data chunks and
computes 7 parity chunks. Any k of the k + r chunks are
sufficient to decode the original object. This allows the data
read to be performed on £ servers in parallel, leading to more
balanced load across the cluster [7].

Selective partition is an alternative approach that adaptively
splits data objects based on their size and popularity [8], where
large, hot objects are divided into multiple small partitions, and
the load of their access requests is evenly spread to multiple
servers. Compared with replication and erasure coding, it
results in better load balancing at no expense of high memory
overhead and coding complexity [8].

All three load-balancing approaches assume a full-object
scan for data access. However, this is not the case for reading
structured data in cluster caches, as explained below.

C. Structured and Unstructured Data Objects

In cluster caches, data are usually stored in two forms:
structured objects and unstructured objects. The former or-
ganize data records in multiple fields (columns) each having
a clear semantics, known as the data schema. Structured
objects are usually stored as columnar tables for analytical
workloads, where columns can be directly retrieved using
SQL-like queries. In contrast, unstructured objects have no
data schema. They are simply dumped as data blobs (e.g., text
files in HDFS) that require a full-object scan for data access.

Compared with unstructured objects, structured data are
increasingly stored in production clusters, as they can be more
conveniently and efficiently processed by analytics jobs. For
example, Apache Parquet [12] is a popular columnar storage
format for structured data that are widely supported in many
analytics frameworks such as Spark SQL [13] and Hive [14].
In Parquet, a columnar table is horizontally divided into
multiple partitions called row groups. A row group consists
of a column chunk for each column in the table. A column
chunk stores the compressed data of the column and is highly
efficient in storage. To read a Parquet table, the framework
schedules multiple parallel query tasks, each handling a row
group (partition). A task only retrieves the required columns,
without performing a full-partition scan, which significantly
improves the read performance.

D. Characterizing the Access Patterns of Structured Data

As the full-table scan is usually avoided for reading struc-
tured data, we expect the uneven popularities across columns.
To validate this, we characterize the column access patterns of

0.8}
5 06y TPC-H
0.4 TPC-xBB
0.2 —— TPC-DS
% 20 40 60 80 100

Column access counts in three benchmarks

Fig. 1: CDF of column access counts for the three benchmarks.

I 1
10
‘A m 50 4..

7

10 7

13 10
16 20 4
13
19 10 2
22 0 16
1 4 7 10 13 16 19 22 1 4 7 10 13 16 0

(a) store_sales in TPC-DS. (b) store_sales in TPC-xBB.

Fig. 2: Heat map of column co-access count in two repre-
sentative tables. Columns are sorted in a descending order
of popularity. Grid (i,5) illustrates the co-access count of
columns ¢ and j, where dark color indicates a high count.

the structured data in the standard TPC benchmark suites. We
run three representative query workloads provided by TPC-
DS [17], TPC-H [16], and TPC-xBB [18] in Spark SQL.
Table I summarizes the number of source tables and standard
queries included in the three benchmark suites. For each
benchmark, we generate 1 GB columnar data in a source table
and store it in Parquet files.! We execute all standard queries
in sequence and measure the access count of each column in
a source table. Our characterization highlights the following
two distinct access patterns for columnar data.

P1: Heavily skewed column popularity. In all three bench-
marks, we observe the significant popularity skew among
columns. Fig. 1 depicts the distribution of the column access
counts measured in the three benchmarks. While the majority
of the columns are cold and are rarely accessed, a small
number of hot columns have very high access counts. Notably,
in the TPC-DS benchmark, the hottest column is requested in
89 out of the 99 queries. In comparison, over 80% of columns
are accessed less than 10 times.

P2: Strong co-access pattern between hot columns. Our
characterization also suggests that hot columns have a high
chance to be accessed together in a query job. To illustrate this,
we refer to Fig. 2 which depicts the heat map of the co-access
count of two columns in two representative tables. In a heat
map, columns are sorted in descending order of popularity,
and grid (4, j) illustrates the times that the i hottest column
and the j hottest column are both requested by a query. As
a special case, gird (7,¢) is simply the access count of column

'Our observations do not depend on the input data size, as the data access
pattern in each source table does not change with the size of the table.

1. We observe the hot spots mostly concentrated in the top
left corner of the heat map, indicating high co-access counts
between popular columns.

The two distinct access patterns of structured data pose new
challenges to load balancing cluster caches, as we shall see in
the next section.

III. CHALLENGES

In this section, we show that existing load-balancing solu-
tions fall short in handling the structured data. We also show
through experiments that simply achieving load balancing
without accounting for the frequent co-accesses of columns
may result in significant communication overhead caused by
data shuffling, leading to even slower I/O.

A. Inefficiency of Existing Solutions

Selective replication copies multiple replicas of hot ob-
jects [9]-[11]. Applying it to the structured data means that
the entire table gets copied. This, however, is highly inefficient
as the majority of columns are cold in the table (see PI in
Sec. II-D), and copying those columns only adds memory
overhead without improving load balancing. In fact, we have
implemented selective replication as a baseline and confirmed
its inefficiency through experimental evaluations (see Sec. VI).

Erasure coding creates parity chunks and requires reading
the amount of data no less than the original object to decode
it [7], i.e., any k of k + r chunks (see Sec. II-B). Should
erasure coding be applied to the structured data, we would
not be able to directly retrieve columns but have to wait for
the entire table to be decoded. This not requires reading a large
amount of data but also incurs the decoding overhead, which
can be expensive for large objects even using an optimized
implementation [8].

Selective partition splits hot objects into multiple small par-
titions. Applying it to the columnar data, we could vertically
divide a table into multiple column groups. To achieve better
load balancing, column groups should have approximately
equal load. This requires hot columns to be evenly distributed
across the groups. However, because hot columns are often
queried together (see P2 in Sec. II-D), doing so results in
heavy data shuffling. As we show next, this would substantially
impair the read performance.

B. Load Balancing vs. Data Shuffling

For the compute-collocated cluster caches storing columnar
data, simply improving load balancing at the expense of in-
creased communication may result in even worse performance.
We illustrate this problem through two simple experiments.

Query slowdown caused by data shuffling. In the first
experiment, we evaluate how the data shuffling can delay a
query job in various network conditions. We deploy Spark
SQL atop Alluxio in a 2-node Amazon EC2 [22] cluster. Each
node is a c5.4x1large instance with 16 CPU cores and 32 GB
memory. We run the TPC-H benchmark workload, where we
generate 10 GB source data in Parquet format and execute all

1 —
LIRS
0.8f ‘m"‘
L .

é 0.6 ..' a- 5 GbpS
O'4£."‘ 3 Gbps
0.2 —=— 1 Gbps

% 0.2 0.4 0.6 0.8 1

Slowdown

Fig. 3: Distribution of query slowdown caused by data shuf-
fling in various bandwidth configurations.

80

ColRep(5 Gbps)
B ColRep(1 Gbps)
B Default

20

ColRep
B Default

[=)]
o
o

»

N
o

Load variance
B
o
Mean latency (s)

N

=

20 30
Request rate

o

o

Request rate

(a) Load variance (b) Mean read latency

Fig. 4: Comparison of default Alluxio and column-wise repli-
cation in terms of load variance and read latency.

the 22 queries in the benchmark, one after another. We evaluate
the query performance in two cases, with and without data
shuffle. In the shuffle case, we place all 10 GB source data in
one server, causing data shuffling between two nodes during
query execution.” In the non-shuffle case, we copy the source
data to two servers so that the query jobs can be executed
locally without communication.

We configure various network bandwidth in the shuffle case
and compare the end-to-end completion time of each query
with that in the non-shuffle case. In particular, we measure
the slowdown as the normalized query completion delay due
to shuffling, i.e.,

Lg — Ln

Ly 7
where Lg and Ly respectively denote the query completion
time in the shuffle and non-shuffle cases.

Fig. 3 depicts the distributions of query slowdown in various
network settings. We see that data shuffling is expensive
even in a good network condition with 5 Gbps bandwidth,
in which 20% of queries are delayed by over 20%. The
slowdown becomes more salient as the bandwidth contention
increases: when the available bandwidth drops to 1 Gbps, data
shuffling slows down 55% of TPC-H queries by more than
20%. While production clusters typically have much higher
network bandwidth (i.e., 40-100 Gbps), they usually serve
hundreds of queries at the same time, leaving each query
even less bandwidth than that in our experiments. We therefore
expect an even more significant slowdown caused by shuffling
in production environments.

Slowdown =

Load balancing at the expense of data shuffling. In our
second experiment, we show that load balancing should not

2We disabled passive caching in Spark and Alluxio to enforce remote read.

be achieved without accounting for the shuffle overhead—
failing to do so may result in even slower I/O. Specifically,
we consider selective replication at the granularity of columns
which copies multiple replicas of hot columns (more details in
Sec. VI-A). This approach improves load balancing but incurs
shuffled data when hot columns are queried together as they
are uniformly cached across servers.

We have implemented this column-wise replication scheme
in Alluxio and evaluated its performance in a 20-node EC2
cluster. Each node is an m5. x1arge instance with 4 CPU cores
and 16 GB memory. We generate 20 GB columnar data using
the TPC-H benchmark and cache them in Alluxio as Parquet
files. We submit the read requests following Poisson arrivals
at low (20 reqs per min) and high (30 reqs per min) rates. A
read request retrieves multiple columns of data following the
column access pattern of the TPC-H queries.

We evaluate column-wise replication (ColRep) against Al-
luxio’s default load-balancing strategy (Default) with 1 Gbps
and 5 Gbps network bandwidth. Fig. 4a compares the load
variance across servers under the two strategies at low and
high request rates, where a smaller variance indicates better
load balancing. As expected, column-wise replication leads to
more balanced load and is robust to the high request rate.
Note that we do not differentiate between 1 Gbps and 5 Gbps
bandwidth in the figure as the network has no impact on load
balancing.

Fig. 4b compares the mean read latency of the two strategies
measured in 1 Gbps and 5 Gbps network. Note that in
Alluxio, data locality is by default respected, in that a read
request is always scheduled onto the server containing the
requested data. As no data is shuffled over the network, the
mean read latency of Default remains unchanged in the two
bandwidth configurations, which we do not differentiate in
the figure. However, this is no longer the case for column-
wise replication. In Fig. 4b, despite the much improved load
balancing, the frequent data shuffling results in > 1.5x longer
mean read latency than Default with 1 Gbps bandwidth. In
fact, even with 5 Gbps network, column-wise replication still
performs worse than Default at a low request rate.

IV. SELECTIVE BUNDLING AND REPLICATION

In this section, we present our solution, which we call
selective bundling and replication (RepBun), that achieves
load balancing for structured data without the shuffle overhead.
We start with an overview of our key idea followed by a
detailed design of the solution.

A. Solution Overview

In a nutshell, given a structured data object stored as a
columnar table, RepBun identifies the hot columns with strong
co-access patterns and groups them into a bundle for selective
replication. That is, it copies multiple bundle replicas based
on its popularity and stores them uniformly in cache servers.
Upon receiving a query job, RepBun checks if the requested
columns can be fully covered by a bundle replica. If so, it
randomly chooses a replica and uses it to serve the query

request. Otherwise, it redirects the query to the original table.
In either case, data shuffle is avoided as a query request is
always served using the locally cached columns.

Compared with the existing solutions, RepBun achieves
three performance benefits. First, by copying the bundle repli-
cas of hot columns, RepBun spreads the load of the read
requests evenly to multiple servers, effectively mitigating the
hot spots in the cluster. Second, unlike selective partition [8]
and column-wise replication (see Sec. III-B), RepBun meets
the memory locality requirements of the query jobs, obviating
the need for data shuffling. Third, compared with full-table
replication, RepBun significantly reduces the memory over-
head as it only copies a small number of hot columns.

B. Algorithm Design

Key to realizing the benefits of RepBun is to judiciously
determine (1) which columns should be grouped into a bundle,
and (2) how many replicas should a bundle be copied. Given
the strong co-access patterns between hot columns (P2 in
Sec. II-D), we choose to bundle the fop-k hottest columns
for replication. To compute the optimal k£ and the number of
replicas, we formulate an optimization problem and show that
it can be efficiently solved using binary search.

Problem formulation. We assume that there are m tables
persisted in a cluster of IV cache servers, where table ¢ contains
n; columns {c},c?,...,c"}. For column ¢/, let s} and p]
respectively denote its size’ and popularity. The expected load
of column ¢! is measured by] = pls]. Without loss of
generality, we assume columns are sorted in descending order
of load, i.e., I > 17 > --- > [for all table i.

In RepBun, we group the hottest k; columns of table ¢ into
a bundle and copy r; bundle replicas that are stored uniformly
in the cluster. This incurs additional memory overhead which
is measured by the amount of cache space used to hold all

bundle replicas, i.e.,
o=3" Yk s, (1)

Since data shuffle is avoided in RepBun, achieving load
balancing is sufficient to optimize the caching performance.
Therefore, our goal is to minimize the load variance across
servers by determining k; and r; for each table i, under
the constraint that the incurred memory overhead o must be
contained within a given budget B. Formally, let X be a ran-
dom variable denoting the total load on any particular server
in RepBun. We solve the following optimization problem to
minimize the load variance:

min Var(X),
thord @)
s.t. o< B.

Equalizing the load contribution. Recall that in RepBun,
the replicas of column bundles and the original table objects
are stored uniformly in cache servers. Therefore, to attain the
minimum load variance, each replica and table should ideally

3We normalize the size of all columns to 1, i.e., Y 1", E;Zl sl =1.

contribute an equal amount of load. This can be achieved by
configuring the number of replicas of a bundle in proportion
to its load contribution.

Formally, for table ¢, let b; be the load of the query requests
that are served using the bundle replicas. In RepBun, these
queries only retrieve columns among the hottest k; and can
be fully served using a bundle replica without referring to
table ¢ (see Sec. IV-A). We configure a global scale factor «
and copy r; replicas of the column bundle, where

T, = |_0ébi-| . (3)

This results in a uniform load contribution across bundle
replicas, i.e., b;/r; =~ a~ L.

In RepBun, bundle replicas are used to serve only a fraction
of the query requests. The remainder of the requests are
redirected to the original object containing the entire table 1,
as their working columns cannot be fully covered by a bundle
replica (see Sec. IV-A). Let ¢; be the load of those query
requests. Both ¢; and b; constitute the entire query loads of
table 1, i.e.,

titbi=3 1. 4)

To minimize the load variance, the table object should con-
tribute an equal amount of load as a bundle replica, i.e.,

ti:bi/Ti%Otil. (5)

Key insight. We see from Egs. (4) and (5) that b; =~
> y - a~!. Since the load served by a column bundle (b;)
critically depends on how that bundle is constructed (k;), we
can establish the connection between the scale factor o and
k;. This suggests that to solve the load-balancing problem
(2), it is sufficient to configure the optimal scale factor «,
with which both k; and r; can be determined accordingly. In
the following, we tackle problem (2) in two steps. We first
establish the connection between b; and k;. We then configure
the optimal scale factor through a binary search.

Step-1: Quantifying the load served by bundles. We stress
that the query load served by a column bundle cannot be
obtained by simply adding the load of its constituent columns,
ie., b; # 2521 I]. Consider a simple example: a query that
requests both the hottest and the coldest columns is served by
the original table, and its access to the hottest column should
not be included in b;. In fact, exactly quantifying b; requires
the full knowledge of the co-access patterns between columns,
which is, however, unavailable to cluster caching systems such
as Alluxio. As low-level storage, these systems are agnostic
to the high-level query semantics, and can only track the load
of read requests per-column, i.e., [].

We sidestep this limitation with an indirect approach that
infers the load of bundle replicas b; based on the per-column
load information /. We consider a simple query model.
Suppose that in a time window, the caching system has
logged ¢; queries accessing the columns of table i, with
column ¢! having popularity p]. We assume that column ¢
is uniformly requested by all g; queries. Meaning, each query
has probability p! /¢; to request column ¢/, and each column is

requested independently. In this simple query model, we derive
b;, the expected load of query requests that can be fully served
using a bundle consisting of the hottest k; columns.

Lemma 1: Assuming each column is requested indepen-
dently and uniformly by ¢; queries, we have

l?-I
bv::Z] 1lfH/k+1(1Z:;i)- (6)

Proof: Consider a particular query g. Let X, be a
binary indicator where X, = 1 if query ¢ only requests
the hottest k; columns in table ¢ and can be served by the
column bundle, and X, = 0 otherwise. We have Pr(Xq =

1) = I[Ln (1— %) Let @ be the total number of
queries served by the column bundle We have E(Q) =
“B(X,) = gl k+4,(1 . Let D be the load
contribution of a query that is servgd by the column bundle.
We have E(D) = Zf) ’;f i = ZJill
Given that) and D are 1ndependent we compute the
expected load contributed by the column bundle:

~ BQED) = S5 W T (1- 2.

|
While Eq. (6) is derived assuming a simplified query model,
our evaluations against the TPC benchmark workloads show
that it closely approximates the actual load of requests served
by column bundles (more in Sec. VI-E). We therefore use
Eq. (6) to estimate b; based on the per-column load that can
be easily tracked in cluster caches.
Combining Eqgs. (4), (5) and (6), we establish the relation-
ship between k; and o, i.e.,

= B(QD)

o7

H _
S-S (12) =a @)

Eq. (7) suggests that solving the load-balancing problem (2)
boils down to finding the optimal scale factor . Once it is
determined, we can compute both the number of columns
included in a bundle (k;) and the number of replicas the bundle
is copied (r; in Eq. (3)).

Step-2: Configuring the optimal scale factor. Intuitively,
configuring a large scale factor results in more bundle replicas,
leading to an increased memory overhead. On the other hand,
the more replicas are copied, the better load balancing can
be achieved. Based on this intuition, we should configure
the largest scale factor provided that the memory overhead
remains within a given budget. We next show that this intuition
indeed holds in problem (2) with the following two theorems.
Theorem 1: The memory overhead grows as scale factor «
increases.
Proof: By Eqgs. (1) and (3), we rewrite the memory

overhead as
omay L b Zj:l S5+

To prove the statement, we show that both b; and k; increase
with . By Egs. (4) and (5), we have b; ~ Z;“ L U —at,

and b; increases with «. To show that k; also increases with
«, we refer to Eq. (6), from which we see that b; increases
with k;. Therefore, as « increases, b; grows, so does k;. H
Theorem 2: Assuming independent query access to each
table, the load variance decreases as scale factor « increases.
Proof: Let X be the load on any particular server, and L;
be the load of the read quests accessing columns in table ¢,
including both the contributions of the column replicas and the
full table. We have X =)", L; and Var(X) =). Var(L;)
assuming independent query accesses to each table.

Let A; be a binary indicator where A; = 1 if there is a
bundle replica of table ¢ cached in this particular server, and
A; = 0 otherwise. Let B; be similarly defined to indicate if
the full-table object is stored in the server. Both A; and B;
are random variables following the Bernoulli distribution with
parameters 3 and %, respectively, where N is the number of
cache servers. We rewrite L; as

L_A“+B%

and derive its variance as

Var(Li) = (5?5 (1= 5) + ()5 (1 - 3) = &R ®)
Summing up the variances of all L; and plugging (4), we have
Var(X) = Y, Var(L;) ~ 22l
This suggests that Var(X) decreases with larger a. []

Theorems 1 and 2 suggest that to solve the optimization
problem (2), it suffices to configure the largest scale factor
without exceeding the memory budget, i.e., maximizing «
subject to o < B. As the memory overhead increases with
«, we apply binary search to find the largest «. We show in
our evaluations that the optimal scale factor can be efficiently
configured in sub-seconds (see Sec. VI-E).

V. IMPLEMENTATION

We have implemented RepBun atop Alluxio [4]. While our
implementation assumes Parquet [12] as the columnar storage
layer, it can be easily extended to support other columnar data
formats such as Apache Arrow [3].

Architecture overview. Fig. 5 depicts the architecture
overview of our implementation. RepBun consists of two
components: a master and multiple clients. The master
keeps track of the per-column popularity, configures the op-
timal scale factor, and makes the bundling and replication
decisions using the algorithms described in Sec. I'V. It informs
each cache server for local enforcement of column bundling,
which then copies the bundle replicas uniformly across the
cluster. RepBun runs multiple clients, which interact with
the query applications (e.g., Spark SQL) through Alluxio API.
As illustrated in the figure, a client inquires the master for a
list of locations of the requested columns. It then contacts the
corresponding cache servers for local reads. We next elaborate
on a few implementation details.

Tracking the per-column popularity. As low-level caching
storage for general data objects, Alluxio is agnostic to the

—>» Data flow

----» Control flow

@ Application
———»| RepBun Client

Fig. 5: Architecture overview of RepBun.

Parquet semantics and provides no native support for obtaining
the per-column access information. We address this problem
by directly retrieving the metadata of Parquet files using tools
provided by Parquet-format [23]. This allows RepBun to
obtain the file offset of each column in a table, which can
then be used to differentiate accesses to different columns,
enabling RepBun to track the per-column popularity.

Working with row groups. In Parquet, a table is horizontally
divided into multiple row groups, each having a column chunk
for every column. RepBun supports working at the level of
row groups. That is, it bundles the hot column chunks in a row
group and copies multiple bundle replicas. Doing so offers two
benefits over working with the entire table. First, as each row
group is handled by a separate query task (e.g., Spark SQL),
the increased read parallelism leads to improved I/O perfor-
mance. Second, even in the same table, row groups may have
uneven popularities as the query jobs would filter out those
groups containing no record that satisfies the given predicates
(known as predicate pushdown [13]). RepBun ignores those
cold row groups but copies hot column chunks in hot groups
only, leading to reduced memory overhead.

Handling temporal popularity shift. In production environ-
ments, data access patterns may change over time. Therefore,
RepBun periodically performs load balancing to handle the
popularity shift. Similar to the prior work [8], [9], RepBun
makes new bundling and replication decisions every 12 hours
based on the collected per-column load information in the past
24 hours. This is sufficient to maintain load balancing as data
popularity is usually stable in a short period of time, e.g.,
days [8], [9]. Since bundling and replication are only needed
once per 12 hours, the overhead of periodic load balancing is
negligible (more in Sec.VI-E).

VI. EVALUATION

We evaluate RepBun through EC2 deployment against both
the table read requests in the TPC-H [16] benchmark and
real Spark SQL queries. We summarize the highlights of our
evaluations as follows:

o Compared with selective replication, RepBun achieves
better load balancing using 50% less memory space;
when configured with the same memory budgets, RepBun
reduces the average read latency by 30% and the tail by
36% (Sec. VI-B).

o RepBun is resilient to intensive stragglers, improving the
tail latency by up to 38% over the replication strategy
(Sec. VI-C).

o When deployed together with Spark SQL, RepBun ac-
celerates 40% of SQL queries in TPC-H benchmark by
over 15% (Sec. VI-D).

« RepBun configures the optimal scale factor « in sub-
seconds and completes bundling and replication for 50
GB data in less than 90 seconds (Sec. VI-E).

A. Methodology

Cluster settings. We deploy RepBun in a 21-node Amazon
EC2 cluster with 1 Gbps network. Each node is an m5. xlarge
instance with 4 CPU cores and 16 GB memory. We use 20
nodes as the cache servers and one as the master.

Workloads. We use the TPC-H benchmark and generate 20
GB columnar data in Parquet format. We configure Poisson ar-
rivals of the synthesized read requests, each retrieving multiple
columns of data in a table following the co-access patterns
of the TPC-H queries. We configure the arrival rate of 20-
40 requests per minute (rpm). We use this synthesized read
requests to evaluate the I/O performance of our solution. We
also use the real Spark SQL queries to evaluate how the
improved I/O leads to faster query completion when RepBun
is deployed with Spark SQL.

Memory budget for replication. We normalize the memory
budget for replication by the amount of cache space used to
hold the original data. Unless otherwise specified, we set the
budget to be 0.5, meaning, the data amount of bundle replicas
should be no more than 50% of the size of the original data.

Metrics. We use the mean and tail (95" percentile) read
latencies as the primary performance metrics. In addition, we
measure the degree of load imbalance by the load variance
among cache servers. In each server, the load is measured by
the total amount of data reads.

Baselines. We benchmark RepBun against three baselines.

(1) Alluxio’s default load-balancing strategy (Default) di-
vides data objects into partitions of a fixed size, where
partitions are placed on servers in a round-robin manner,
irrespective of their popularity. In the experiments, we employ
the default setting with the partition size of 512 MB.

(2) Table-wise selective replication (TabRep) copies multi-
ple replicas of hot tables. For a fair comparison, we determine
the number of replicas of a table by configuring the optimal
scale factor a within a given replication budget (Step-2 in
Sec. IV-B). This ensures an equal load contribution of the
original table and its replicas, and uniformly caching them in
the cluster improves load balancing.

(3) Column-wise selective replication (ColRep) copies mul-
tiple replicas of hot columns based on their popularity. Similar
to TabRep, the number of replicas of a column is determined
by configuring the optimal «. Replicas of columns are uni-
formly cached in the cluster for improved load balancing.

B. Load Balancing and Read Performance

We evaluate RepBun against the three baselines using the
read requests synthesized from the TPC-H benchmark under
two replication budgets: 0.5 (low) and 2 (high).

H Default ColRep

s RepBun

80

Load variance

Load variance

20 30 40
Request rate

(a) Load variance w/ B = 0.5

20 30 40
Request rate

(b) Load variance w/ B = 2

oo
©

o
o

20 30 40
Request rate

(c) Mean latency w/ B = 0.5

20 30 40
Request rate

(d) Mean latency w/ B = 2

Mean latency (s)
N

Mean latency (s)
N

w24 w24

> >

216 i 216 i

[[

= 8 T 8

3 0 3 0

= 20 30 40 = 20 30 40

Request rate

(e) Tail latency (95™) w/ B = 0.5

Request rate

(f) Tail latency (95™) w/ B = 2

Fig. 6: Load variance and read latency (mean and 95"
percentile) of the four load-balancing solutions with low
(B = 0.5) and high (B = 2) replication budgets.

Load balancing. Figs. 6a and 6b compare the load variance
of the four solutions with low and high budgets for repli-
cation, respectively. In general, higher request rate leads to
more severe load imbalance. RepBun consistently outperforms
TabRep and Default with more balanced load, yet falls behind
ColRep which copies replicas at the finest granularity (i.e.,
columns). However, as we show next, ColRep results in heavy
data shuffle, leading to even longer read latency.

Read latency. Figs. 6¢c-6f depict the mean and tail (95™)
latencies of the four solutions with low and high replication
budget. RepBun consistently results in the shortest latency
and achieves even more prominent speedup over the three
baselines as the request rate increases. In particular, compared
with TabRep (ColRep), RepBun improves the mean and tail
latencies by up to 30% (55%) and 36% (60%), respectively.
Even at high budget (e.g., B = 2) where TabRep achieves
comparable latencies as RepBun, the latter uses 50% less
cache space than the former. We attribute the performance
advantage of RepBun to its capability of improving load
balancing without data shuffling and high memory overhead.

C. Resilience to Stragglers

Replication-based caching solutions are usually resilient to
stragglers [7], [9], i.e., servers that run much slower than
others. We therefore compare RepBun with the other two
replication baselines. Specifically, we manually inject strag-
glers by sleeping an I/O thread with probability 0.05 and
delaying the read completion by a factor randomly drawn
from the distribution profiled in the Microsoft Bing cluster
trace [24]. Fig. 7 shows the box plots of read latencies of
RepBun, TabRep and ColRep, where the request rate is 40 per

median
slzr T e mean
9
c 8
3
3 -] =]
0 ColRep TabRep RepBun

Fig. 7: Comparison of read latencies of ColRep, TabRep, and
RepBun with injected stragglers. The request rate is 40 per
minute. Boxes depict the 25", 50", and 75" percentiles, and
whiskers depict the 5" and 95" percentiles.

1
0.8
w 0.6}
[a)]
O 04¢F

TabRep
0.2 —e— RepBun
0,

0 10 20 30 40 50
Query Speedup (%)
Fig. 8: Distribution of SQL query speedup over Default.

minutes. RepBun outperforms TabRep and ColRep, reducing
the tail latency by up to 38% and 51%, respectively.

D. End-to-end Query Performance

Our previous experiments mainly focus on evaluating the
I/O performance using synthesized read requests from the
TPC-H benchmark. We next evaluate how the improved 1/O
leads to faster completion of SQL queries. We deployed
Spark SQL in the same cluster and run all TPC-H queries
in sequence. For each query, we measure its completion time
in RepBun and TabRep and calculate the query speedup of the
two solutions over Default. Here, the speedup is defined as:

Speedup = L=Epetaule 5 100%,)

Lpefault

where L and Lpefayis denote the end-to-end query completion
time under the concerned solution (i.e., RepBun and TabRep)
and Default, respectively.

Fig. 8 depicts the distributions of query speedup of RepBun
and TabRep over Default. While both solutions leads to faster
query completion, the speedup of RepBun is more salient: 40%
of TPC-H queries are accelerated by over 15%.

E. System Overhead and Load Estimation

After showing the performance advantage of RepBun over
the other solutions, we turn to its overhead and load estimation.

Configuration overhead. We start to show that RepBun can
quickly configure the optimal scale factor ae. We measure the
time to find the optimal « using binary search (see Sec. IV-B)
with 1-10k data objects. Fig. 9 depicts the mean configuration
time in three trials, where the error bar measures the variance.
We see that even with 10k objects, the optimal scale factor
can be quickly configured in 400 ms.

Replication overhead. We next evaluate the overhead of
creating bundle replicas. Fig. 10 shows the mean completion
time for replication under various memory budgets in three

N
o
o

o
o
T

Conf. time (ms)
= N w
o o
S o

o

4 5 6 7 8 9 10
Data Object # (k)

=
NE
w

Fig. 9: The configuration time for finding the optimal scale
factor o with various numbers of data objects.

100
80r
60
401
20

Comp. time (s)

Y0 20 30 20 50
Replication budget (GB)

Fig. 10: The completion time for bundle replication under

various budgets.

trials, where the error bar measures the variance. With more
data to copy, the replication time grows linearly. Nevertheless,
RepBun can still finish copying 50 GB replicas in less than 90
seconds. Since copying bundle replicas is only needed every
12 hours (see Sec. V), its overhead is less of a concern.

Accuracy of load estimation. Recall that in our algorithm (see
Sec. IV-B), we use Lemma 1 to estimate the load of column
bundles. To evaluate how accurate such load estimation is,
we compare it with the actual load of requests served by
bundle replicas, which we obtained by manually logging the
co-accessed columns for each query. Fig. 11 compares our
estimation and the actual load of requests that can be served
by a bundle consisting of the hottest £ columns in lineitem, a
representative table in TPC-H. Our estimation closely approx-
imates the actual load, leading to almost identical decisions
for the number of columns a bundle should contain and the
number of replicas a bundle should copy. In Fig. 12, we further
compare the performance of two RepBun implementations
that make the bundling and replication decisions based on the
actual load and the estimation. Both implementations achieve
the similar performance in load balancing and read latency,
suggesting that our load estimation is fairly accurate.

VII. RELATED WORK

Structured data have clear semantics of schema and are
widely used in both the traditional web applications (e.g.,
sale transactions) and big data analytics. While structured
data are usually organized as rows for traditional transac-
tional workloads [25]-[27], they are more commonly stored
in columnar formats such as Parquet [12] and Arrow [3]
for analytics workloads. Popular data analytics frameworks,
such as Spark [13], Hive [14], and Impala [28], are highly
optimized for columnar storage with significantly improved
I/0 performance [10], [29], [30]. RepBun focuses on columnar
data for analytical workloads.

e 0.8} Actual load ”,/”
—— i i -
9. 0.6 Estimation b
’
g 0.4t 7
Z 0.2t e
07 e 7 10 13 16

of the hottest columns grouped into a bundle (k;)

Fig. 11: Comparison of our estimation and the actual load
of requests that can be served by a bundle consisting of the
hottest k columns in table lineitem.

Actual load B Estimation

§30 \"';4
© - [}
= 20 c

[
timm PR B :eum PR N
s | L B 5o . I l

20 30 40 S 20 30 40

Request rate Request rate

(a) Load variance (b) Mean latency

Fig. 12: Performance comparison of two implementations that
make the bundling and replication decisions based on the
actual load and the estimation.

Load balancing. In addition to replication, partition, and
erasure coding (Sec. II-B), in-network caching is another
technique for load-balancing storage clusters [31]-[33]. By
caching hot objects in the memory of network devices (e.g.,
programmable switches [33]), the read requests can be di-
rectly served in network without reaching the storage nodes.
However, it requires expensive hardwares (e.g. programmable
switches with high-speed cache) and is only effective for small
data objects due to the limited cache space of network devices.

Reducing data shuffle. Querying multiple tables from dif-
ferent servers incurs heavy communication overhead due to
data shuffle. Existing solutions employ graph-based partition
to reduce shuffle operations [27], [34]-[36]. RepBun mainly
focuses on data analytics queries accessing columns in a single
table and is hence orthogonal to these works.

VIII. CONCLUSION

In this paper, we have presented RepBun, a load-balanced,
shuffle-free cluster caching for structured data in columnar
format. RepBun groups hot columns of a table into a bun-
dle and creates multiple replicas of that bundle based on
its popularity. We have proposed an efficient algorithm that
judiciously determines which columns should be grouped into
a bundle and how many replicas a bundle should be copied.
We have implemented RepBun atop Alluxio with Parquet as
the columnar storage layer. Extensive evaluations show that
RepBun leads to improved load balancing and faster query
completion, significantly outperforming the existing solutions.

ACKNOWLEDGEMENTS

This research was supported by RGC ECS (contract number
26213818). Minchen Yu and Yunchuan Zheng were supported
in part by the Huawei PhD Fellowship Scheme.

[1]

[2]

[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]
[13]

[14]
[15]
[16]
[17]
(18]
[31]

REFERENCES

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab et al., “Scaling Memcache
at Facebook,” in Proc. USENIX NSDI, 2013.

H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proc. ACM SoCC, 2014.

Apache Arrow. [Online]. Available: https://arrow.apache.org

Alluxio. [Online]. Available: https://www.alluxio.io/

J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The RAMCloud storage system,” ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 7:1-7:55, Aug. 2015.

Redis. [Online]. Available: https://redis.io

K. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and K. Ramchandran,
“EC-Cache: Load-balanced, low-latency cluster caching with online
erasure coding,” in Proc. USENIX OSDI, 2016.

Y. Yu, R. Huang, W. Wang, J. Zhang, and K. B. Letaief, “SP-Cache:
Load-balanced, redundancy-free cluster caching with selective partition,”
in Proc. IEEE/ACM International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC18), 2018.

G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Sto-
ica, D. Harlan, and E. Harris, “Scarlett: Coping with skewed content
popularity in mapreduce clusters,” in Proc. ACM EuroSys, 2011.

Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory object caching
framework with adaptive load balancing,” in Proc. ACM EuroSys, 2015.
Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the
impact of load imbalance in the memory caching tier,” in Proc. ACM
SoCC, 2013.

Apache Parquet. [Online]. Available: https://parquet.apache.org/

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: Relational data processing in spark,” in Proc. ACM SIGMOD,
2015.

Apache Hive. [Online]. Available: https://hive.apache.org/

Presto. [Online]. Available: http://prestodb.github.io/

TPC-H. [Online]. Available: http://www.tpc.org/tpch/

TPC-DS. [Online]. Available: http://www.tpc.org/tpcds/

TPCx-BB. [Online]. Available: http://www.tpc.org/tpcx-bb/

B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky, “Small cache,
big effect: provable load balancing for randomly partitioned cluster
services,” in Proc. ACM SoCC, 2011.

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[32]

[33]

[34]

[35]

(36]

Memcached. [Online]. Available: https://memcached.org/

G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “PACMan: Coordinated memory caching for
parallel jobs,” in Proc. USENIX NSDI, 2012.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. ACM
SIGMETRICS, 2012.

Amazon EC2. [Online]. Available: https://aws.amazon.com/ec2/
Apache Parquet Format. [Online]. Available: https://github.com/apache/
parquet-format

G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in map-reduce clusters
using mantri,” in Proc. USENIX OSDI, 2010.

A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel OLTP systems,” in Proc. ACM
SIGMOD, 2012.

R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker, “E-store: fine-grained elastic partitioning
for distributed transaction processing systems,” in Proc. VLDB Endow.,
2014.

C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” in Proc. VLDB
Endow., 2010.

Apache Impala. [Online]. Available: https://impala.apache.org

D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: how different are they really?” in Proc. ACM SIGMOD, 2008.
H. Plattner, “The impact of columnar in-memory databases on enterprise
systems: Implications of eliminating transaction-maintained aggregates,”
in Proc. VLDB Endow., 2014.

X. Jin, X. Li, H. Zhang, R. SoulAr, J. Lee, N. Foster, C. Kim, and
I. Stoica, “NetCache: Balancing key-value stores with fast in-network
caching,” in Proc. ACM SOSP, 2017.

Z.Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Stoica,
“DistCache: Provable load balancing for large-scale storage systems with
distributed caching,” in Proc. USENIX FAST, 2019.

K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller, “SWORD:
Workload-aware data placement and replica selection for cloud data
management systems,” VLDB, vol. 23, no. 6, pp. 845-870, Dec. 2014.
Y. Nam, M. Kim, and D. Han, “A graph-based database partitioning
method for parallel OLAP query processing,” in Proc. IEEE ICDE, 2018.
E. Zamanian, C. Binnig, and A. Salama, “Locality-aware partitioning in
parallel database systems,” in Proc. ACM SIGMOD, 2015.

