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Proper force calibration is a critical step in atomic and lateral force microscopies !AFM/LFM". The
recently published torsional Sader method #C. P. Green et al., Rev. Sci. Instrum. 75, 1988 !2004"$
facilitates the calculation of torsional spring constants of rectangular AFM cantilevers by
eliminating the need to obtain information or make assumptions regarding the cantilever’s material
properties and thickness, both of which are difficult to measure. Complete force calibration of the
lateral signal in LFM requires measurement of the lateral signal deflection sensitivity as well. In this
article, we introduce a complete lateral force calibration procedure that employs the torsional Sader
method and does not require making contact between the tip and any sample. In this method, a
colloidal sphere is attached to a “test” cantilever of the same width, but different length and material
as the “target” cantilever of interest. The lateral signal sensitivity is calibrated by loading the
colloidal sphere laterally against a vertical sidewall. The signal sensitivity for the target cantilever
is then corrected for the tip length, total signal strength, and in-plane bending of the cantilevers. We
discuss the advantages and disadvantages of this approach in comparison with the other established
lateral force calibration techniques, and make a direct comparison with the “wedge” calibration
method. The methods agree to within 5%. The propagation of errors is explicitly considered for both
methods and the sources of disagreement discussed. Finally, we show that the lateral signal
sensitivity is substantially reduced when the laser spot is not centered on the detector. © 2006
American Institute of Physics. #DOI: 10.1063/1.2198768$

I. INTRODUCTION

Atomic and lateral force microscopies !AFM/LFM" are
well established and popular techniques not only for imaging
small-scale surface morphology but also as important tools
for studying interfacial forces with pico-Newton-scale force
resolution.1,2 As a result, there are several established ap-
proaches to force calibration. To achieve consistent results
between different laboratories, it is important to implement
the most accurate calibration method!s" that are practical for
a given experiment, and to verify their reliability. Here, we
present a new procedure that simplifies lateral force calibra-
tion in AFM, and we address the key aspects of lateral force
calibration that are important for reliability.

Figure 1 shows the arrangement of the cantilever, laser,
and position-sensitive detector !PSD" in the popular optical-
beam-deflection LFM.3–5 A focused laser beam reflects off
the back of the cantilever and onto the PSD, which consists
of four photosensitive sectors !or quadrants" which we label
A1, A2, B1, and B2. Normal or lateral forces applied to the

tip cause the cantilever to bend or twist, respectively. These
forces change the angles of reflection of the laser, causing the
laser spot on the PSD to displace in the vertical or horizontal
direction, respectively. The PSD separately measures the nor-
mal and lateral signals, Vnorm= !VA1+VA2"− !VB1+VB2" and
Vlat= !VA1+VB1"− !VA2+VB2", that vary in proportion to the
bending and twisting of the cantilever. To convert these volt-
age signals into units of force, one needs the lateral and
normal force calibration factors, ! and ", respectively, where
the corresponding forces, Flat and Fnorm, are given by

Flat = ! # $Vlat !1"

and

Fnorm = " # $Vnorm. !2"

Each $V represents the change in the respective signal due to
an applied force in the respective direction relative to any
offset !nonzero voltage" of the signal that is present when no
force is applied.

Normal force calibration is straightforward. The first
step is to measure the normal deflection sensitivity, snorm, in
units of normal signal Volts per vertical displacement of the
tip end of the cantilever. The deflection sensitivity depends
on the laser intensity, PSD sensitivity and gain, and the ge-
ometry of the optical setup, including the cantilever length
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and the distance between the cantilever and the detector. The
normal deflection sensitivity is easily obtained by measuring
the slope of a normal signal versus vertical piezo displace-
ment plot on a stiff, hard surface. A key point here is that the
vertical displacement of the tip is assumed to be equal to the
imposed vertical displacement of the piezo. This will not be
accurate if the sample is sufficiently compliant to accommo-
date a significant portion of the imposed vertical displace-
ment through contact deformation. As well, even in the case
of a stiff, hard sample, this measurement is only as accurate
as the z calibration of the piezo.

The second step is to determine the normal spring con-
stant, knorm! , measured at the tip or colloidal sphere position.
Once this is known, the complete normal force calibration
factor can be determined as,

" =
knorm!

snorm cos %
, !3"

where % is the angle of the cantilever with respect to the
sample surface. !Note that this angle may differ from the tilt
angle of the cantilever relative to the AFM x-y scan plane,
e.g., the angle for which it may be necessary to compensate
in a variable-load experiment.6" In the case of a rectangular
cantilever, the normal spring constant is given by

knorm! =
Et3w

4L!3 , !4"

where E, t, and w are its Young’s modulus, thickness, and
width, respectively. L! is the distance from the base of the
cantilever to the tip position, as opposed to the full length, L,
of the cantilever !Fig. 1".

The flexural Sader method7 yields the normal spring
constant, knorm, at the end of the cantilever based on its hy-
drodynamic damping in a fluid medium !e.g., in air".8 One
does not need to know the thickness of the cantilever or its
Young’s modulus. knorm is determined by measuring the can-
tilever’s planar dimensions !length and width" and its reso-
nance frequency and quality factor in air !or any other suit-

able fluid medium".9 The Sader method improves the
accuracy of normal force calibration in comparison with the
nominal values provided by the manufacturer. There are sev-
eral other methods available for normal force
calibration,10–12 but the Sader method has emerged as the
most convenient and accurate.

The normal spring constant, knorm! , is related to knorm by

knorm! = knorm% L

L!
&3

. !5"

This adjustment for L! accounts for offset of the tip or col-
loidal sphere from the free end of the cantilever, and this
correction is non-negligible for many popular commercial
cantilevers because of the strong !cubic" dependence of the
maximum deflection of a cantilever beam on the distance
between the base of the cantilever and the position at which
load is applied, as defined in Eq. !4".13

The lateral force calibration is more challenging. One
key reason for this is that the lateral deflection sensitivity is
more difficult to determine than the normal deflection sensi-
tivity for conventional cantilevers for the following reason.
The lateral stiffness of AFM cantilevers is typically much
higher than the normal stiffness, and this makes it more dif-
ficult to measure. For example, the torsional spring constant,
&!, for a rectangular cantilever, measured at the tip or colloi-
dal sphere, is given by

&! =
Gt3w

3L!
, !6"

where G is the shear modulus of the cantilever. The lateral
spring constant, klat! , measured at the same position is related
to &! as follows:

klat! =
&!
h2 , !7"

where h is the torsional moment arm, i.e., the distance from
the line of action of the lateral force !which acts on the end
of the tip" to the twisting axis of the cantilever !Fig. 1", i.e.,
colloid radius or tip height plus the distance to the neutral
axis of the cantilever. The ratio of the normal to the lateral
spring constant is therefore

knorm!

klat!
=

3E

4G
% h

L!
&2

, !8"

where E is always greater than G,14 but h is much less than
L!, so that !h /L!"2 is very small. Consequently, knorm! /klat! can
be as low as 0.001 for a rectangular cantilever.

The total lateral stiffness of the cantilever-tip-contact
system, klat,tot, is obtained from a sum of inverses of the
lateral force constant of the cantilever, klat! , measured at the
sphere or tip position, the lateral stiffness of the tip or sphere
itself, klat,tip, and the lateral stiffness of the contact, klat,cont,

klat,tot
−1 = klat!−1 + klat,tip

−1 + klat,cont
−1 . !9"

Consequently, for a typical integrated AFM tip and sample
surface, the lateral contact stiffness, which is often compa-
rable to or less than the lateral stiffness of the cantilever15

and tip,16 significantly reduces the slope of the lateral force
versus lateral displacement plot. In other words, this slope,

FIG. 1. The optical arrangement in an atomic force microscope. A focused
laser beam is reflected off the back of the cantilever onto a four-quadrant
photosensitive detector !PSD". The amount by which the cantilever bends
and twists in response to normal and lateral forces corresponds to variations
in the top minus bottom and left minus right signals, respectively. L and w
are the length and width of the cantilever, respectively; L! is the distance
from the fixed end of the cantilever to the position near the cantilever’s free
end where the tip is attached or integrated into the cantilever beam; and h is
the distance from the tip apex to the neutral axis of the cantilever !the tip
height plus half the thickness of the cantilever".
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which can be observed quite easily at the beginning or
“sticking” portion of a friction loop, is emphatically not
equal to the lateral deflection sensitivity. An exception to this
case usually occurs for micrometer-scale colloidal spheres
for which the large contact area produces a large contact
stiffness.17 In addition, klat,tip is typically very large for a
colloidal sphere, and may be neglected in this case, as well.

While the normal deflection sensitivity is measured eas-
ily from vertical force versus displacement plots on a stiff
surface, it is generally more difficult to achieve an equivalent
configuration for the lateral case because of the higher lateral
stiffness of standard cantilevers. Also, it is necessary to con-
sider any reduction in lateral deflection sensitivity due to
lateral in-plane bending that may occur in addition to the
torsional response. As reported by Sader and Green,18 lateral
in-plane bending may be ignored for rectangular cantilevers
that satisfy the criterion

' '
klat!

kin–plane!
=

2
3!1 + ("% t

h
&2%L!

w
&2

) 1, !10"

where kin-plane! is the lateral in-plane bending spring constant
measured at the tip or sphere position, and ( is Poisson’s
ratio. Since the quotient 1 /2!1+("=G /E, Eq. !8" may be
rearranged to yield the ratio G /E, and the criterion in Eq.
!10" may be rewritten in the following way, independent of
Poisson’s ratio:

' =
klat!

knorm!
% t

w
&2

) 1, !11"

or, alternately,

' =
&

knorm
% t

hw
&2%L!

L
&2

) 1, !12"

where the full spring constants, & and knorm, may be deter-
mined by Sader’s methods. If Eq. !10", !11", or !12" is not
satisfied, lateral in-plane bending will act to reduce the lat-
eral deflection sensitivity. This effect can be significant, as
discussed below.

Several lateral force calibration methods work around
the challenge of measuring the lateral sensitivity !Table I".
The optical geometry method of Liu et al.,19 static friction
method of Cain et al.,17 and vertical lever method of Ecke et
al.20 each describe lateral force calibration procedures that
are analogous to the normal force calibration described
above. Here, we briefly review the established methods.

In the first set of methods, the lateral force calibration
factor, !, is obtained from the lateral spring constant, klat,
and lateral deflection sensitivity, slat, such that

! =
klat!

slat
. !13"

Just as snorm is the change in normal signal Volts per normal
deflection, slat is the change in lateral signal Volts for a given
lateral displacement of the tip.

In their optical geometry approach, Liu et al. calculate
the torsional spring constant based on assumed elastic !shear
modulus" and measured or assumed geometric !length,
width, thickness, and tip height" properties of the cantilever.
They determine the lateral deflection sensitivity by moving
the PSD a known amount in the lateral direction !along x in

TABLE I. Lateral force calibration methods, their corresponding references, key assumptions and measured variables, and required materials/probes.

Lateral
force
calibration
method

Relevant
references Key assumption!s"

Key measured
variable!s"

Required
materials/probes

Test probe This article and 26 Same laser intensity
distribution for test
cantilever and cantilever
with integrated tip;
accurate lateral piezo calibration.

Colloid moment arm
and lateral deflection
sensitivity; torsional
spring constant; tip
moment arm.

Colloidal test probe,
GaAs crystal,
cantilever with
integrated tip !to be
calibrated".

Wedge 24 and 25 Slopes of facets or wedge
surfaces with known
relative tilt angle;
accurate lateral piezo calibration.

Half-width and lateral
offset of friction loop
vs. load; normal
spring constant.

Wedge calibration
grating, cantilever
with colloid, or integrated tip
!to be calibrated".

Vertical
lever

20 Known loading position
of colloidal probe on
vertical test cantilever.

Lateral deflection
sensitivity; test
cantilever normal
spring constant.

Colloidal probe, rigid
vertical surface, precalibrated
test cantilever.

Optical
geometry

19 Torsional spring constant
calculated from estimated
modulus and cantilever
dimensions !this can now
be measured
experimentally using the
Sader method".26

PSD dimensions,
distance from cantilever to PSD,
probe moment arm.

Any cantilever-probe
combination.

Static
friction

17 and 30 Negligible contact
stiffness, accurate lateral
piezo calibration; spring
constant from finite
element model.

Slope of lateral signal
vs. lateral piezo displacement;
lateral spring constant.

Colloidal probe, flat
hard surface.

053701-3 Test probe method Rev. Sci. Instrum. 77, 053701 "2006!

Downloaded 25 May 2007 to 128.104.198.120. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



Fig. 1", which is converted to an equivalent lateral tip dis-
placement by using measured or assumed values for the tip
height and the PSD-cantilever distance.

For their static friction method, Cain et al. calculate the
torsional spring constant based on finite element analysis,21

but they obtain the lateral deflection sensitivity from the
static portion of a friction loop between a colloidal probe and
a hard, flat surface. Due to the large sphere diameter, the
resulting contact stiffness is much greater than the cantilever
stiffness, the effect of the contact stiffness is negligible #Eq.
!9"$, and an accurate value for the lateral deflection sensitiv-
ity is obtained.

Ecke et al. take a different approach in their vertical
lever method, obtaining deflection sensitivities for a colloidal
probe by pushing the equator of the sphere laterally against a
rigid, vertical surface. Then, they push the probe in the lat-
eral direction against a vertically oriented cantilever with a
calibrated normal spring constant. This provides both the lat-
eral deflection sensitivity and the lateral force constant.

In addition, the more recent friction force calibration
method by Stiernstedt et al. measures friction as an eccentric
axial force !i.e., parallel to the long axis of the cantilever"
and therefore uses the normal spring constant and vertical
deflection sensitivity for calibrating both normal and fric-
tional forces.22 The novel method by Choi combines the mo-
ment balance equations for a cantilever with information
from the lateral signal on a step grating to produce a calibra-
tion to separate the cantilever properties from the instrumen-
tal properties.23

In contrast to these methods, the wedge method, devel-
oped by Ogletree et al.24 and extended to colloidal probes by
Varenberg et al.,25 is a scheme for lateral force calibration
that bypasses the separate measurement of the lateral force
constant and lateral deflection sensitivity altogether. Instead,
the ratio of the normal and lateral calibration factors, S, is
determined, where

! = S # " . !14"

Thus, once " is known #e.g., via Sader’s method and Eqs. !3"
and !5"$, then ! can be determined. To obtain ! /", measure-
ments are performed by scanning the AFM tip over a wedge-
shaped sample of known geometry. When a surface is tilted
locally along the scanning direction, there are geometrically
determined components of the normal and frictional forces
between the tip and sample that will couple into the lateral
and normal force channels. S is determined by comparing the
expected normal-to-lateral force ratio to the measured
normal-to-lateral signal ratio.

Here, we demonstrate the new test probe calibration pro-
cedure, which combines the torsional Sader method26 !for
experimentally determining torsional spring constants" with
a method for measuring the lateral detector sensitivity of the
AFM, giving a full calibration from Volts to Newtons for
colloidal and integrated tips alike. The method is similar to
the vertical lever method, but uses fewer assumptions and a
simpler experimental setup, and contact between the tip and
any calibration sample is avoided, which is advantageous for
tips with sensitive end structure or functionalities.

II. RESULTS

A. Test probe method for lateral force calibration

In the new test probe method, a colloidal sphere is glued
to the tip end of a “test” cantilever of the same width and
gold coating as the cantilever to be used for experiments !the
“target” cantilever". Lateral force versus displacement mea-
surements !at the equator of the sphere" are performed
against the flat side of a freshly cleaved gallium arsenide
sample, which cleaves at a perfect 90° angle to the top !100"
plane !Fig. 2 inset". The slope of the contact region in the
resulting force plot gives the lateral deflection sensitivity,
slat,test. The lateral deflection sensitivity obtained in this way
depends on the geometry of the laser beam path, the torsional
moment arm, and the total signal on the PSD, but it is inde-
pendent of the width of the cantilever, as long as the entire
laser spot reflected off the cantilever.

Dividing the lateral force constant of the target cantile-
ver by the lateral deflection sensitivity measured for the test
probe according to Eq. !13" is not sufficient for calibrating
lateral forces; one must also account for changes in the tor-
sional moment arm length and the total signal on the photo-
diode between the test and the target probes. In addition, test
cantilevers should be chosen so that the lateral in-plane
bending is negligible !i.e., 'test)1", since it reduces the lat-
eral deflection sensitivity, or in-plane bending of the test can-
tilever should be identical to the target !i.e., 'test='target". In
general, it is necessary to correct for in-plane bending of the
target probe. With torsional moment arm lengths, htarget and
htest, and total signals, Ttarget and Ttest, for the colloidal test

FIG. 2. Lateral force vs. displacement plot. The inset shows the arrangement
of the colloidal probe and GaAs sample in the test probe method. When the
sample moves horizontally by $x, it pushes against the equator of the
sphere, causing the cantilever to twist and producing the plot shown. The
slope, slat,test, of this plot is the lateral deflection sensitivity for the test probe.
In this example, approach !dashed" and retract !solid" lateral force versus
displacement plots taken at a rate of 250 ms per plot are shown for a dis-
placement range of 300 nm !i.e., 300 nm per 250 ms".
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probe and new probe, respectively, the lateral deflection sen-
sitivity of the target probe will be

slat,target = slat,test
!Ttarget/Ttest"
!htarget/htest"

!1 + 'test"
!1 + 'target"

, !15"

where the final term accounts for lateral in-plane bending of
the target cantilever relative to the test cantilever.

Equation !15" assumes that the calibration is indepen-
dent of the laser spot position along the length of the canti-
lever. This is valid if the laser spot reflects off the back of
both the test and target cantilevers at points between the tip
or colloidal sphere’s location and the free ends of the canti-
levers. This is a reasonable assumption, because, for a given
applied lateral force, the angle of twist does not change along
this portion of the cantilever. This is easily accomplished by
always positioning the laser as close to the free end of the
cantilever as possible. If the laser spot for one or both can-
tilevers instead lies between the tip or colloidal sphere’s lo-
cation and the fixed end of the cantilever, then a linear cor-
rection is required to account for this offset.

The use of the ratio of total signals also assumes that the
spatial distribution of reflected laser intensity on the PSD is
sufficiently similar for both cantilevers, even if the total in-
tensity is different. This assumption may break down if one
switches to a cantilever of significantly different width or
surface coating. To verify that Eq. !15" holds in the case of
cantilevers of identical width and reflective coating, we com-
pared the normal deflection sensitivities of the two probes in
this work, which had the same width and a gold coating, but
came from different wafers. In this case, the relevant mo-
ment arms are the lengths, Ltarget! and Ltest! , for the target and
test cantilevers, respectively. As a result we can compare the
normal deflection sensitivities for the colloidal test probe and
target probe in the following way:

snorm,target = snorm,test
!Ttarget/Ttest"
!Ltarget! /Ltest! "

. !16"

We verified this relation from the normal force versus dis-
placement plots taken on a flat Si surface using several dif-
ferent probes. As an example, using digital instruments !DI"
Nanoscope IV AFM, we compared the deflection sensitivities
for two 40-*m-wide, gold-coated cantilevers !with silicon
and silicon nitride substrates for the target and test probes,
respectively", one with an integrated tip and one with a col-
loidal sphere !the test probe". In this case, the length of the
first cantilever was Ltarget! =335 *m, and the length of the test
cantilever was Ltest! =195 *m. The normal signal deflection
sensitivities were snorm,target=8.7 mV/nm and snorm,test
=15.3 mV/nm, and the total signal intensities were Ttarget
=7.1 V and Ttest=7.2 V. From this, both sides of Eq. !16"
agree to within 1%. This shows that the laser spot intensity
distribution does not change significantly for distinct cantile-
vers of the same width and reflective coating, even if they
come from different wafers or have different substrate mate-
rials.

In the next calibration step, klat! is calculated from &, the
torsional spring constant for the full length of the cantilever,

klat! =
&

h2% L

L!
& , !17"

where & is obtained experimentally via the torsional Sader
method.26 The resonance frequency and quality factor in air
for the first torsional oscillation mode of the target cantilever
are measured separately or in situ. The factor L /L! accounts
for the fact that forces in an experiment are applied at the tip
position, not at the end of the cantilever. It is a linear depen-
dence !in contrast to the cubic dependence for the normal
force constant", because the angle of twist is linear with can-
tilever length. The static friction and optical geometry meth-
ods may be modified to use the torsional Sader method as
well.

We used a UHV350 AFM from RHK Technology !Troy,
Michigan" for the lateral calibration test. This instrument has
inertial motors that enable the user to make both coarse and
fine adjustments to the physical offset of the PSD in both the
vertical and horizontal directions. Normal and lateral signals
may be decoupled electronically, though we do not employ
this function for this calibration.

Deflection sensitivity measurements with the colloidal
probe were performed under a controlled environment !nitro-
gen flushed and pumped to 10 Torr". Lateral force versus
displacement plots were obtained by pushing a 70-*m-diam
colloidal glass sphere !attached to a silicon nitride cantilever"
against the flat cleaved !1̄10" side of a GaAs crystal, using a
300 nm lateral ramp size in the ±x direction !perpendicular
to the long axis of the cantilever". Any sample with a flat,
stiff vertical surface may be used for this calibration. The test
probe satisfied Eq. !10", with 'test(0.01, because the canti-
lever length !)200 *m" is relatively short, and its thickness
#)1 *m by scanning electron microscopy !SEM"$ is much
less than the moment arm and cantilever width. As a result,
in-plane bending is negligible, and the deflection sensitivity
measured with this probe should accurately describe the lat-
eral sensitivity of the detector.

Figure 2 shows a representative lateral force versus dis-
placement plot and the probe-sample arrangement !Fig. 2
inset". This plot resembles a typical normal force versus dis-
placement plot, including the effect of snap-in and pull-off
due to adhesion, which in this case occurs between the sides
of the colloid and the GaAs sidewall. For retracting force
plots, we measured the lateral deflection sensitivity from the
slope between the point at which the positive load is equal in
magnitude to the pull-off force and the point at which the
probe pulls off. For approaching plots, we do the same ex-
cept that the snap-in force is the reference point. With the
laser spot centered both horizontally and vertically on the
PSD, the lateral deflection sensitivity is 2.19±0.01 mV/nm.

To assess this first part of the test probe method further,
we compared it with the static friction method, using the DI
AFM. For the same 70 *m colloidal probe at zero lateral
PSD offset, the two approaches yield similar results !correct-
ing for the doubled length of the cantilever arm with the
static friction method": )64 and )68 mV/nm for the test
probe and static friction methods, respectively. Though the
result is similar for these two methods, the test probe method
improves upon the static friction approach, because the side
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of the colloid instead of its apex touches the calibration
sample. Therefore, the apex of the sphere is not subjected to
wear or chemical modification during the calibration
procedure—an important feature if the colloidal probe is also
the target probe in the LFM experiment. We note that lateral
in-plane bending may be ignored when the target probe is
also the test probe. However, this is not the case in general.

After obtaining the lateral deflection sensitivity with the
test probe, we then calculate the lateral force calibration fac-
tor, !target, for the target probe !in this case, a cantilever with
an integrated AFM tip" from Eq. !13". This cantilever of the
same width and reflective !gold" coating with an integrated
tip is then calibrated using the wedge method for compari-
son. Henceforth, we will refer to !target as the lateral force
calibration factor for the target probe obtained via the test
probe method, and !wedge is obtained via the wedge method.

B. Comparison of test probe and wedge calibration
methods

To compare !wedge with !target, we first calibrated the
target probe with the wedge method. Next, we calculated the
lateral force constant for the target cantilever, using the tor-
sional Sader method and Eq. !17". We then combined Eqs.
!13" and !15" to obtain !target via our test probe method.
From this we obtain

!target =
klat!

slat,target

=
!&target/htarget

2 "!Ltarget/Ltarget! "
slat,test!Ttarget/Ttest"!htest/htarget"!1 + 'test/1 + 'target"

=
&targetTtestLtarget

slat,testhtesthtargetTtargetLtarget!
%1 + 'target

1 + 'test
& , !18"

where Ltarget is the full length of the target cantilever, Ltarget! is
the distance from the fixed end of the cantilever to where the
tip is attached, and Ttest and Ttarget are the total signals for the
colloidal test and target cantilevers, respectively. The ratio
Ttarget /Ttest accounts for the different total signal from the test
cantilever versus the target cantilever.

The cantilever length, Ltarget, and width, wtarget, were
measured optically, htarget !tip height plus one half of the
cantilever thickness" was measured by transmission electron
microscopy !TEM", and htest !colloid radius plus one half of
the cantilever thickness" was measured by SEM.27 The val-
ues are given in Table II. For a colloidal target probe, htarget
would be R!1+cos %"+ t /2, where R is the sphere radius.25

From the Sader method, we calculated the torsional and lat-
eral spring constants for the target cantilever, &target
=2.91±0.19 nN m and klat,target! =6.00±0.41 N/m, respec-
tively. Ttarget and Ttest were approximately equal for the two
cantilevers !)6 V", which had the same width and coating
material. !All parameters and calculated values are provided
in Table II." The measurement uncertainty associated with
the test probe method is 6.8% in the case that 'target='test
!see the Appendix". If we ignore the lateral in-plane bending
!i.e., neglect ' or assume that 'target='test", the test probe
lateral calibration factor is !target=1.72±0.12 nN/mV, where
we include the standard error and account for the rate and
range dependence of the piezoelectric actuator response. If
we include the in-plane bending term in Eq. !18", the uncer-
tainty is 7.5%, and !target becomes 2.39±0.18 nN/mV,
where we have used the values 'target=0.40 and 'test=0.01,
which are specific to the cantilevers used in this experiment
!ttarget)3 *m by TEM".

For the wedge method, the lateral calibration factor,
!wedge, is obtained from Eq. !14" if the normal force calibra-

TABLE II. Measured and calculated values and their percent uncertainties.

Variable Parameter !measured" Value % Uncertainty

L Full target cantilever length 342.8±0.6 *m 0.18
L! Target probe base-to-tip distance 332.9±0.4 *m 0.12
w Target cantilever width 38.1±0.4 *m 1.1
htarget Target torsional moment arm 22.34±0.17 *m 0.76
htest Colloid test probe torsional moment arm 36.05±0.32 *m 0.89
fnorm Target normal resonance frequency 10.5±0.1 kHz 0.95
f tors Target torsional resonance frequency 163.3±0.1 kHz 0.06
Qnorm Normal quality factor in air 49.0±0.7 1.4
Qtors Torsional quality factor in air 204.4±10.5 5.1

Parameter !calculated from measurements"
S Target wedge calibration sensitivity 33.7±1.0 3.0
slat,test Colloid test lateral deflection sensitivity 2.19±0.01 mV/nm 0.5
snorm,target Target normal deflection sensitivity 1.27±0.01 mV/nm 0.53
knorm,target Target full normal spring constant 0.074±0.002 N/m 2.7
knorm,target! Target normal spring constant 0.080±0.002 N/m 2.5
&target Target torsional spring constant 2.91±0.19 nN m 6.5
klat,target Target lateral force constant 6.00±0.41 N/m 6.8
" Target normal force sensitivity factor 63.3±1.8 nN/V 2.9

Final results
!target Colloid lateral calibration factor 1.72±0.12 nN/mV 6.8
!target The same, including in-plane bending 2.39±0.18 nN/mV 7.5
!wedge Target wedge lateral calibration factor 2.25±0.09 nN/mV 4.2
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tion factor, ", is known. This is in contrast to the test probe
method which yields a lateral calibration factor that is inde-
pendent of ". For comparison with the test probe method, S
was obtained using the UHV350 AFM for a titanium nitride-
coated silicon cantilever with an integrated tip !NT-MDT,
Moscow, Russia". Like the test probe measurement, the laser
spot was centered on the PSD. We used the silicon “TGG01”
wedge-shaped calibration grating !MikroMasch, Wilsonville,
Oregon" as the sample, which is described in Varenberg et
al.25

To complete the lateral force calibration with the wedge
method, one must calculate " according to Eqs. !3" and !5".
The flexural Sader method yields a normal spring constant
for this same target cantilever of knorm,target!
=0.074±0.002 N/m. Dividing by the normal deflection sen-
sitivity and the cosine of the angle %=22.5° between the
cantilever’s long axis and the sample surface in our instru-
ment, and accounting for the offset of the tip from the end of
the cantilever #Eqs. !3" and !5"$ yield the normal force cali-
bration factor, "=68.5±1.9 nN/V. The calculated measure-
ment uncertainty in !wedge is 4.2%, as shown in the Appen-
dix. The measured wedge lateral calibration factor !wedge
=2.25±0.09 nN/mV. The test probe result that accounts for
lateral in-plane bending agrees very well with this wedge
result, to within 5% !and they agree within the estimated
uncertainties".

C. Effect of laser spot position on deflection
sensitivity and lateral force calibration

We have observed that the lateral force sensitivity de-
pends strongly on the lateral offset of the PSD with respect
to the laser spot position. We studied this dependence and its
effect on measurement uncertainty quantitatively by using
two methods for the sake of comparison, and to take into
account the effect of piezoelectric actuator rate and range
effects. In the first method, we translated the PSD laterally
from one extreme position to the other and back, obtaining
lateral force versus displacement plots with small lateral dis-
placement scans at each PSD position. In the second method,
the PSD remained fixed, and we obtained lateral force plots
with a much larger lateral scan range and, therefore, a larger
deflection range. One example from the first method is
shown in Fig. 2. The lateral displacement range was 300 nm.
Figure 3 shows both the approach and retract portions of a
representative lateral force versus displacement plot taken at
the same scan rate as the first method, but with a lateral
displacement range of 2 *m. In this second method, the PSD
was positioned with a lateral offset of )250 *m !)19% of
the width of a PSD sector" so that the laser spot from the
untwisted cantilever was displaced to the right-hand side of
the PSD, producing a signal of −5 V !out of a total of 6 V,
thus )83% of the spot is incident on the right-hand sectors
neglecting truncation of the beam by the finite size of the
PSD sectors". The center of the hysteresis loop nearly coin-
cides with the laser passing over the center of the PSD. The
hysteresis is due to the dependence of the piezo tube scan-
ners on the applied voltage range. The lateral deflection sen-
sitivity was calculated by taking the derivative of the
smoothed force plots.

In Fig. 4, the results for both sets of measurements are
plotted versus laser spot position in both PSD voltage and
spatial displacement. Open and closed symbols refer to the
approach and retract data, respectively. Circles indicate PSD
offset data !first method", while the triangles correspond to
the large scan data !second method". The deflection sensitivi-
ties are corrected for the known dependence of the response
of our piezo scanners on scan range and scan rate, an effect
which is described in detail by Hues et al.28 Figure 4 clearly
demonstrates by both methods a strong dependence of the
lateral deflection sensitivity, slat, on the position of the laser
spot relative to the center of the PSD. We see that slat de-
creases nearly quadratically with increasing offset, a result of
the Gaussian distribution of the laser spot.

In Fig. 5, the lateral calibration factor, !, is plotted ver-
sus PSD lateral laser spot position for the two methods. The
laser spot position varies due to lateral PSD offset !method
one, circles" or change in cantilever twist angle !larger scan
sizes, method two, trieangles". For the larger scan sizes, the
unloaded !untwisted" position of the cantilever corresponds
to a lateral signal of −5 V, for a range of ±10 V !or a dis-
placement range of the colloidal sphere of )8–10 *m". The
torsional spring constant, &=2.91#10−9 N m, was deter-
mined by the torsional Sader method.26 Closed symbols are
corrected for the piezo’s rate and range dependence but not
for the effect of lateral in-plane bending. Open circles and
triangles are test probe data corrected for both piezo and
in-plane bending effects, according to Eq. !18". We also de-
termined the lateral force calibration factor’s dependence on
lateral laser spot offset for the wedge method !hatched
squares in Fig. 5, corrected for piezo effects". The plot
clearly demonstrates the dependence of both !target !methods

FIG. 3. Lateral force vs. displacement plots. Approach !dashed" and retract
!solid" plots taken for durations of 250 ms in each direction are shown for a
displacement range of 2 *m. The PSD offset=−5 V so that the middle of
the hysteresis loop coincides with the center of the PSD. The slopes of these
data are plotted in Fig. 4, and the points 1 and 2 are included for reference
in Fig. 4.
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one and two" and !wedge on the position, xC, of the laser spot
relative to the center of the PSD.

The lateral deflection sensitivity decreases and the lateral
calibration factor increases with the increased lateral offset
of the laser spot. With uncertainties in !target and !wedge of
6.8% and 4.2%, respectively, at all offsets for our instrument,
the absolute uncertainty in ! grows as the PSD offset in-
creases. Similar behavior is observed for the normal deflec-
tion sensitivity versus vertical laser spot offset. Thus, our
conclusions regarding the lateral sensitivity and calibration
apply equally to normal forces.

III. DISCUSSION

The test probe method appears to be a reliable means of
performing lateral force calibration for AFM. If in-plane
bending of the target probe is ignored, the results for the test
probe and wedge methods differ by )25% !where we have
considered the effect of cantilever tilt on the normal force
calibration in the wedge method". When we consider the
in-plane bending, the values for the test probe and wedge
method differ by only 5%, and their error bars overlap. In

principle, any calibration technique that calculates separately
the spring constant and deflection sensitivity, such as the
static friction method !for colloidal probes", will remain
valid only if lateral in-plane bending is accounted for !or is
negligible". The wedge method works around this limitation
by direct measurement of lateral and normal force calibration
factors, thereby avoiding separate measurement of the lateral
spring constant and deflection sensitivity.

The test probe method is similar to Ecke’s vertical lever
method. However, the challenging step of performing force
plots against a calibrated cantilever is no longer necessary.
By eliminating the second step in Ecke’s method, which lim-
its the calibration to cantilevers with colloidal spheres, it is
possible to calibrate cantilevers with any type of tip by using
the deflection sensitivity measured from the colloidal test
probe’s lateral force versus displacement plots as described
above.

The precision of any method depends on the uncertainty
in each measured parameter used to calculate the calibration
factor, leaving room for improvement, e.g., if the cantilever
and tip or colloidal sphere dimensions can be measured more
precisely. Clearly, the accuracy in force calibration suffers
substantially whenever the manufacturer values for cantile-
ver dimensions are used in lieu of direct measurement. Based
on the calculations presented in the Appendix, the most sig-

FIG. 4. Lateral deflection sensitivity vs. lateral laser spot position for small
!circles" and large !triangles" scan sizes. For the unloaded !untwisted"
position, the lateral signal is −5 V !for a ±10 V range", corresponding to
83% of the total laser intensity incident on the right-hand PSD sectors.
The upper abscissa indicates the approximate spatial displacement of the
PSD !)250 *m for the unloaded position" relative to the laser spot position.
Open and closed data correspond to approach and retract force plots, respec-
tively. The total signal is approximately constant for the range of values
shown. Error bars corresponding to the measurement uncertainty are smaller
than the data points. The parabolic fits !to the retract data" indicate good
agreement with behavior predicted by a Gaussian distribution. For reference,
points 1 and 2 correspond to the slopes of the circled points 1 and 2 on the
approach and retract plots in Fig. 3.

FIG. 5. Lateral calibration factor, !, vs. laser spot position, xC, relative to
the center of the photodiode, showing a clear dependence of lateral calibra-
tion factor on xC. Closed circles and open triangles are test probe data !with
6.8% error bars" calculated from the deflection sensitivity for small and
large scan sizes, respectively, without accounting for lateral in-plane bend-
ing of either the test or target cantilever. Open circles and open triangles are
test probe results accounting for in-plane bending !7.5% error bars".
Hatched square data points are the wedge calibration results with the normal
force calibration correction for cantilever angle with respect to the sample
surface !4.2% error bars". All data are corrected for the effect of rate and
range on piezo response. Agreement is found between the test probe and
wedge methods only if lateral in-plane bending is included.
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nificant contribution to uncertainty in !target arises from the
parameter, htarget, and due to the strong dependence on the
width of the cantilever !!target+w4". Though w is also a sig-
nificant source of error in the wedge method, !wedge depends
much more weakly on w !!wedge+w2". Efforts to improve the
precision of the width measurement enhance the accuracy of
the calibration. Note that another error source will arise if the
cantilever deviates from a perfectly rectangular shape.

We also found that the absolute uncertainty increases
significantly versus laser spot position relative to the center
of the PSD, and it is therefore important to center the laser
spot on the PSD during an experiment and related calibra-
tion. In summary, to optimize the precision in force calibra-
tion it is important to center the laser spot on the photodiode
both vertically and horizontally, and also to account for piezo
calibration errors which depend on the scan range and scan
rate.

While the uncertainty associated with the wedge method
is less than the uncertainty in the new test probe lateral force
calibration method presented here, in general, the choice of
lateral calibration method is not only a question of accuracy,
but it depends on the limitations imposed by the experiment.
The test probe method should be used when it is important to
avoid contact between the probe!s" in the experiment and
any surface other than the sample!s" under investigation.
This is crucial in cases where the integrated tip or colloidal
sphere has a particular coating that must be preserved. The
test probe method may also be used to calculate the lateral
force calibration factor at any time for any cantilever of
width and reflective coating similar to the test probe. After an
experiment is completed and dismantled, it remains possible
to calibrate forces with the test probe method with minimal
uncertainty.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the
National Science Foundation and from the Army Research
Office. In addition, R.J.C. wishes to thank Emre Tepedelen-
lioğlu and Erin Flater for helpful discussions and comments
on this work.

APPENDIX

From Eq. !18" for the lateral calibration factor calculated
with the test probe method, we have

!target =
&TtestLtarget

slat,testhtesthtargetTtargetLtarget!
. !A1"

According to the torsional Sader method, the torsional spring
constant, &, is given by

& = 0.1592,w4LQtors-tors
2 .i,tors!-tors" , !A2"

where , is the fluid density of the environment !1.18 kg/m3

for air", Qtors and -tors are the quality factor and frequency of

the fundamental torsional resonance, respectively, and
.i,tors!-tors" is the imaginary part of the torsional hydrody-
namic function, which can be obtained from a table or a
numeric function.

Using standard error analysis and denoting the uncer-
tainty in any physical quantity P as /P.29 The uncertainty in
the test probe lateral force calibration factor, /!test, is given
by

/!target = !target*%4/wtarget

wtarget
&2

+ %/Qtors

Qtors
&2

+ %2/f tors

f tors
&2

+ %/.i,tors

.i,tors
&2

+ %2/Ltarget

Ltarget
&2

+ %/Ltarget!

Ltarget!
&2

+ %/htest

htest
&2

+ %/htarget

htarget
&2

+ %/slat,test

slat,test
&2

+ %/Ttest

Ttest
&2

+ %/Ttarget

Ttarget
&2+1/2

, !A3"

where

%/slat,test

slat,test
&2

= %/Vlat

Vlat
&2

+ %/Vlat,piezo

Vlat,piezo
&2

. !A4"

Vlat and Vlat,piezo are the lateral PSD signal and voltage ap-
plied to the lateral piezo, respectively.

The lateral force calibration factor from the wedge cali-
bration method is given by

!wedge = S # " . !A5"

Since S and " are independent measurements, the uncer-
tainty, /!wedge, may be written

/!wedge = !wedge*%/S

S
&2

+ %/"

"
&2+1/2

, !A6"

where

%/"

"
&2

= %/knorm!

knorm!
&2

+ %/snorm

snorm
&2

. !A7"

Using the flexural Sader method,

knorm = 0.1906,w2LQnorm-norm
2 .i,norm!-norm" , !A8"

and !A6" becomes

/!wedge = !wedge*%/S

S
&2

+ %2/w

w
&2

+ %4/L

L
&2

+ %3/L!

L!
&2

+ %/Qnorm

Qnorm
&2

+ %2/fnorm

fnorm
&2

+ %/.i,norm

.i,norm
&2

+ %/snorm

snorm
&2+1/2

. !A9"

Note that the wedge calibration uses one fewer parameter !no
dependence on h" than the test probe method, and it depends
much more weakly on w, which is a large source of error in
both methods. While w is the most significant source of error
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in the test probe method, L is equally significant in the wedge
method.

In the wedge method, the sensitivity factor, S, depends
on the slopes, u1 and u2, of the lateral versus normal signal
plots for the two inclined planes; and S depends on the dif-
ference, d12, between the slopes of the friction loop offset
versus normal signal plots. S is written in terms of the angles
01 and 02, and the slopes u1, u2, and d12 in the following
way:

S!u1,u2,d12"

=
!u1/u2"sin!201" − sin!202"

d12 cos!202" + ,d12
2 − #u1 sin!201" − u2 sin!202"$2

.

!A10"

Using the standard method of calculating error propagation,
we calculate the partial derivatives of S with respect to each
independent variable:29

#S!u1,u2,d12"
#u1

=
!1/u2"sin!201"

d12 cos!202" + ,d12
2 − #u1 sin!201" − u2 sin!202"$2

+
#!u1/u2"sin!201" − sin!202"$#u1 sin!201" − u2 sin!202"$sin!201"

-d12 cos!202" + ,d12
2 − #u1 sin!201" − u2 sin!202"$2.2V,d12

2 − #u1 sin!201" − u2 sin!202"$2
, !A11"

#S!u1,u2,d12"
#u2

=
!− u1/u2

2"sin!201"
d12 cos!202" + ,d12

2 − #u1 sin!201" − u2 sin!202"$2

+
− #!u1/u2"sin!201" − sin!202"$#u1 sin!201" − u2 sin!202"$sin!202"

-d12 cos!202" + ,d12
2 − #u1 sin!201" − u2 sin!202"$2.2,d12

2 − #u1 sin!201" − u2 sin!202"$2
, !A12"

#S!u1,u2,d12"
#d12

=
− #!u1/u2"sin!201" − sin!202"$

-d12 cos!202" + ,d12
2 − #u1 sin!201" − u2 sin!202"$2.2/cos!202" +

d12

,d12
2 − #u1 sin!201" − u2 sin!202"$20 .

!A13"

The uncertainty /S is given by

!/S"2 = % #S

#u1
/u1&2

+ % #S

#u2
/u2&2

+ 2% #S

#d12
/d12&2

, !A14"

where the factor of 2 in the last term arises because d12 is a
difference between the slopes of two offset versus load plots.
In general, /S will depend on the friction coefficient, *, of
the calibration grating and will increase with increasing * at
a rate that depends on the uncertainty in the measured width

and offset slopes. Figure 6 shows the dependence of the per-
cent uncertainty in S !/S /S" on *, u1, u2, and d12. As *
increases, the percent uncertainty in u1, u2, and d12 becomes
increasingly important to the calibration, and the percent un-
certainty in S grows to unreasonable large values.

In the current experiment, both the friction coefficient
and the percent uncertainties are small enough that /S re-
mains reasonable at )3%. Table II lists the percent uncer-
tainties in each of the measured and calculated parameters
for both calibration methods based on the equations given
above.
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