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Abstract—In times of stress customers can help a utility by
means of voluntary demand management programs if they are
offered the right incentives. The incentives offered can be opti-
mized if the utility can estimate the outage or substitution costs of
its customers. This paper illustrates how existing utility data can
be used to predict customer demand management behavior. More
specifically, it shows how estimated customer cost functions can
be calibrated to help in designing efficient demand management
contracts.

Index Terms—Contract design, customer cost, data calibration,
demand management, load curtailment, system security.

I. INTRODUCTION

M ANY transmission and most distribution problems can
be addressed by means of effective demand management

programs [4]. Mechanism design theory [6] has been utilized to
optimize the contracts to maximize utility benefit and to make
sure customers see a benefit by signing up (this formulation was
developed in [5]). This paper shows how a cost function satis-
fying the conditions for mechanism design can be developed
andcalibrated. Utilities around the country are using nonlinear
pricing to sell their power (anytime a utility offers different rates
based upon customer size, it is using nonlinear pricing). The
demand management contracts proposed in [5] use nonlinear
pricing to buy it back in case of emergencies. Estimated cus-
tomer cost functions plays a crucial role in designing demand
management contracts. In [1], [2] authors suggest different ways
of estimating the outage costs of customers mainly by way of
interacting with the customers. In [9], the main goal is to de-
sign priority electric service options for the customer and part
of the process is to estimate the customer outage costs by way
of surveys.

This paper proposes the use of existing utility data to esti-
mate these customer cost functions. Customer outage costs (or
substitution costs) can be modeled using a variety of general
functions. Several functions with general coefficients are pro-
posed and their coefficients are calibrated using real data ob-
tained from existing utility demand management programs. The
data available provides information on how much each customer
gets paid by providing a certain amount of relief. The main
goal of this calibration process is to find a practical cost func-
tion that accurately models the demand management behavior
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Fig. 1. Marginal benefit for a customer. Areas in this figure denote total
surplus.

of customers, and to use it to design contracts. Existing data and
the calibrated cost functions are then used to validate the formu-
lation by means of some examples.

II. CUSTOMERCOST FUNCTION CHARACTERISTICS

The first assumption made in designing a cost function is that
it costs the customer progressively more to shed more load. It
is safe to assume that the marginal benefit of the customer de-
creases with increased electricity consumption. Fig. 1 shows a
possible predicted marginal benefit of a customer from elec-
tricity consumption. The dark shaded area in Fig. 1 shows the
loss of surplus as a customer curtails its power. This loss of sur-
plus due to shedding load is the outage cost for the customer. If
the marginal benefit is assumed to be linear, as the customer
sheds power its surplus loss cost function is quadratic. This
quadratic or any other cost function needs to satisfy thesorting
(or “single crossing”)condition [6]. This condition is needed
to be able to rank the customers in order of increasing or de-
creasing marginal cost. The cost function is a function of the
amount of power curtailed and the customer type. Different
types of customers are parameterized by. This will become
more clear later on in this section. The outage cost function of
a customer is given by . If the customers are sorted from
least willing (to shed load) to most willing, the sorting condition
dictates that:

(1)
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Likewise, if the customers are sorted from most willing to least
willing, the sorting condition becomes:

(2)

Whether one sorts customers according to increasing or de-
creasing willingness is a matter of preference and is irrelevant
(we assume increasing willingness). The important issue is that
the outage cost function be nondecreasing inand . The outage
cost function needs to be nondecreasing insince it is assumed
that shedding each extra kW brings additional cost to the cus-
tomer. Since is used only to sort the customers, it can be nor-
malized to be in the interval . The cost function also
needs to be convex, i.e., the rate of change in the marginal cost
is assumed to be increasing as the customer sheds more load.
This is an economic assumption which is justified for most cus-
tomers.1 Finally since shedding zero power should
cost zero. All these conditions on the outage cost function can
be summarized as:

(3)

(4)

(5)

(6)

for all and .
In order to explain the procedure of forming an outage cost

function that fits the conditions stated above, the shape of the
customer outage cost function is assumed to be a quadratic
(other possible forms will also be addressed later). A general
quadratic form using Taylor Series for each type of customer
(different types of customers are parameterized by) is defined
as:

(7)

Using constraint (6) it can be shown that .
Since

(8)

it is observed using (5) that . Also (3) gives . Finally
using (4)

(9)

and it can be shown . Thus, it
is sufficient to express the quadratic outage cost function in the
following form:

(10)

where and ( , and
) are the coefficients of the general cost function that needs

calibrating. The term makes sure that different values
of lead to different values of (marginal cost for the

1The rate of increase of cost as a customer sheds load will also be dependent
on the presence of a curtailment notice. Curtailments made without notice usu-
ally imply higher costs for the customer.

Fig. 2. Exponentially decreasing marginal benefit for a customer.

customer). As increases the marginal cost decreases. That is,
“sorts” the customers from “least willing” to “most willing”

to shed load. This form of the cost function suggests that the
customer with the lowest has the highest marginal cost and
hence the lowest marginal benefit. This provides a good way of
modeling thewillingnessof each customer to shed load by way
of .

Following similar design process, one can also assume a
cubic outage cost function:

(11)

where the number of coefficients to be calibrated is now 3
( and all nonnegative). However, with limited utility
data bringing extra coefficients into the cost function to make
it more detailed will not provide more accuracy in estimating
the customer outage cost function. A quadratic is sufficient to
use existing data2 for the purposes of demand management
contracts. Reference [9] points out that “The welfare loss, or
outage cost, scales approximately as the square of the load
changes.” Thus, this paper models the customer outage cost
function as a quadratic.3

In order to analyze the robustness of the formulation to
changes in the form of the cost function, it was decided to
also test an exponential function to model the outage costs of
customers. A marginal benefit of the customers that decays
exponentially is shown in Fig. 2. The marginal benefit function
shown is in the form of:

(12)

where and are general coefficients. The cost of curtailing
power (shown as loss of surplus in Fig. 2) is then the integral
of equation (12) in the shown region. This yields an exponential
function for the surplus loss in the form of:

(13)

2Calibration of the customer outage cost function will be explained in the next
section.

3After a certain point the customer will not be able to shed any more load and
the marginal cost of shedding load will be zero. We focus on the quadratic part
of the cost curve only.
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The following function is sufficient to satisfy the cost func-
tion constraints (3) thru (5) ( is small enough that constraint
(6) is also satisfied):

(14)

where and are the coefficients to be calibrated (
). This function also was designed to sort the customers from

least willing to most willing to shed load since the marginal cost
of shedding load decreases asincreases.

III. CALIBRATION OF COST FUNCTION COEFFICIENTS USING

AVALIABLE DATA

The next step is to use available utility data in order to esti-
mate the coefficients of the assumed outage cost functions. The
utilities providing the data have different rates for different types
of customers. A customer that provideskW of relief for up to
a designated number of hours at a rate ofdollars per kWh re-
ceives dollars per hour of monetary credit. Hence the benefit
function for a customer under a demand management contract
is:

(15)

The assumption is that a customer who wishes to maximize its
benefit will choose to curtail kW of load, where satisfies the
first order condition of its benefit function (this can be used if
the customer benefit function is strictly concave in):

(16)

The data provided by the utilities was obtained from cus-
tomers who participated in interruptible rates program. These
customers designate a certain amount of their load for interrup-
tion and in return the utility pays them a fixed rate. Specifically
the data shows the amount of power each participating customer
is willing to shed and the amount the utility is willing to pay
them per kWh.4 The main assumption is that each customer acts
in their own best interest.

In order to illustrate how the calibration is performed, the
quadratic form of the cost function is assumed. Since the
customers want to maximize their own benefit the first order
condition (16) yields:

(17)

Assume customers in the provided data. Using the first order
condition (17) for each customer givesequations and

unknowns ( , and all the ’s). Since is normalized
to the interval , its value for the most and least willing
(able) customer to shed load needs be specified as zero and one
respectively. This yields equations and unknowns. The rate

and selection of curtailment for each customer is known
from the utility data. This method provides values for,
and estimates for customer types (s).

In order to illustrate the calibration method described above,
a sample of 10 customers are taken from the data provided by
a utility. Customers willing to shed less than 500 kW get paid
$3.25 per designated kW for a nominal hour of interruption and

4Utilities also specify time limits for the duration of the interruption and have
a limit on the number of interruptions per year.

TABLE I
UTILITY DATA: AMOUNT OF CUSTOMERLOAD DESIGNATED FORCURTAILMENT

TABLE II
CALIBRATION RESULTS FOR THE10 CUSTOMEREXAMPLE

the customers that shed load above 500 kW get $3.00 per desig-
nated kW. The amount of load each customer agreed to curtail
is shown in Table I. The described method is applied to find the
coefficients of the cost function and the estimates of customer
types ( s). The results are shown in Table II. These results give
us a cost function that is calibrated for these customers. This
function can be used to design demand management contracts.

IV. USING CALIBRATED COST FUNCTIONS FORCONTRACT

DESIGN

After the cost function is calibrated, mechanism design can
be applied to design the demand management contracts. The
factors that affect the contract design procedure are summa-
rized in Fig. 3. In reference [5] and in Section II a general
formulation was developed wherewas a continuous variable
with a given probability distribution in the interval . This
chapter develops the formulation wherecan take discrete
values, each with a presumed probability. This allows the
design of customer-specific contracts.

Assume number of customers, each with an assumed
quadratic outage cost function:

(18)

for . The object of the mechanism design for-
mulation is to determine the optimal amount of payment for
each customer who agrees to curtailkW in order to maximize
utility benefit. Let the monetary payment bedollars per kWh.
The monetary benefit for each customer becomes:

(19)
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Fig. 3. A summary of the contract design procedure.

The benefit to the utility5 of not delivering power to a spe-
cific customer under conditions of system stress isdollars
per kWh. Under these conditions the utility benefit function is:

(20)

Since the objective is to maximize the expected benefit for the
utility:

(21)

subject to,

(22)

for , and

(23)

for . Constraint (22) is theindividual rationality
constraintwhich encourages voluntary customer participation
by keeping customer benefit positive. Constraint (23) is the
incentive compatibility constraintwhich makes sure the cus-
tomers do not try to take the adjacent contracts, by offering
them extra money to voluntarily take the contract designed
specifically for them.

The cost function is designed to sort the customers in de-
creasing marginal cost order, i.e., the customer defined by the
lowest value of (customer 1) will have the highest cost to
shed load. Since the utility wants to pay as little as possible,
it should be clear that the individual rationality constraint binds
for customer 1 (if the individual rationality constraint does not
bind for customer 1, we can shift all the payments by the same

5When the system is under stress it is not beneficial for the utility to deliver
power to certain locations. It may be quite costly, or worse yet, the utility may
face forced outages.

amount until it does. This does not affect the incentive compat-
ibility constraints since the shifting is done to both sides of the
equation),

(24)

Since the utility wants to pay the customers as little as possible,
the incentive compatibility constraints bind for .
If they did not bind, the utility can lower the payments until
it does. Using the binding individual rationality and incentive
compatibility constraints, the incentive for each customer can
be expressed in terms of the curtailed load () and the customer
type ( ):

...

Hence it follows that for ,

(25)

After substituting the incentive function [equation (25)] into
equation (21) the optimal is given by:

(26)

for . As pointed out in the “Mechanism Design”
chapter, one needs to check for the monotonicity of. Once

the monotonicity condition is satisfied. This analysis
was done in [6] for the continuous case, and the constraints for
the discrete case are developed in the appendix of this thesis.

The contracts are governed by customer type and customer
location. Customer cost function calibration helps identify the
types. The locational value of power can be calculated using
sensitivity methods [7], or optimal power flow routines [3], [8].

V. NUMERICAL EXAMPLES

Initially we compare the proposed contracts to the existing
contracts, then a comparison is made between the proposed con-
tracts designed with different kinds of cost functions.

A. Example 1: Comparison of Proposed Contracts with the
Existing Contracts

The first example consists of 10 customers selected from
utility-provided data. These customers are currently on a de-
mand management program that pays them a fixed rate of $3.25
per available kWh for curtailment. After applying the proposed
cost function calibration and designing new contracts using
mechanism design, there is an increase in both total amount of
available relief and total profit by the utility (see Table III). The
utility benefit is maximized after the contracts are designed
using mechanism design, and in this Similar derivations can be
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TABLE III
COMPARISON OFCONTRACTS WITH 10 CUSTOMERS, VALUE OF POWER

EQUAL AT EACH CUSTOMER LOCATION (QUADRATIC OUTAGE COST

FUNCTION ASSUMPTION)

TABLE IV
COMPARISON OFCONTRACTS WITH 15 CUSTOMERS, VALUE OF POWER

EQUAL AT EACH CUSTOMER LOCATION (QUADRATIC OUTAGE COST

FUNCTION ASSUMPTION)

TABLE V
COMPARISON OFCONTRACTS WITH 15 CUSTOMERS, VALUE OF POWER NOT

EQUAL AT EACH CUSTOMER LOCATION (QUADRATIC OUTAGE COST

FUNCTION ASSUMPTION)

used to come up with the contracts using exponential customer
cost functions.example there is an increase in available relief.
Table IV shows another case where a sample of 15 customers
is taken from the utility-provided data. This time total relief is
less than the total under the existing contracts even though the
total benefit is increased. Existing contracts are paying these
customers $3.25 per kWh if the customer is signed up for relief
under 500 kW, and $3.00 per kWh for relief above 500 kW.

Mechanism design generally deals with tradeoffs and the de-
sign of contracts of products that have a unique value to a prin-
cipal. Such is not the case for electric power. The value of a
contract depends on the location of the customer. In order to do
this, we have extended mechanism design to permit the incor-
poration of locational attributes. This is done by a parameter
as shown in previous sections. In order to demonstrate how lo-
cational value can help increase both the total available relief
and the total benefit for the utility, the locational value for 5
of the customers, who are more willing to curtail power than
the others, are increased. Since the formulation takes advantage
of locational attributes of the customers the proposed contracts
yield both increased total available relief and total utility benefit
(see Table V).

Total available relief is very sensitive to changes in locational
value. The same is true for total utility benefit, but when mech-
anism design is used to design the contracts, the utility benefit

TABLE VI
COMPARISON OFCONTRACTS DESIGNED WITH DIFFERENT COST

FUNCTION ASSUMPTIONS

Fig. 4. Existing contracts (dashed line) vs. proposed contracts (solid line).

always increases6 in comparison to existing contracts. There is
no such guarantee for the total available relief. However, when
location is incorporated into the contract design process, it pro-
vides a tool which lets the utility get demand management con-
tracts at critical locations. More valuable contracts are offered
at high impact locations in the grid. System problems can now
be solved more efficiently by having demand management con-
tracts at the right locations.

VI. EXAMPLE 2: QUADRATIC VS. EXPONENTIAL COST

FUNCTION CONTRACTS

Another study was performed where the contracts designed
with a quadratic cost function assumption was compared to the
contracts designed with an exponential cost function assump-
tion. This example was worked out in order to test the robust-
ness of the formulation and to see its sensitivity to the shape
of the cost function. The contracts designed using an exponen-
tial cost function for the customer outage cost function show the
most monetary benefit for the utility (if the exponential assump-
tion is correct). Furthermore this is achieved by using the least
amount of available relief (see Table VI). Hence, if the behavior
of customers is indeed according to an exponential outage cost
function, the benefit to a utility will be greater. This example was
done to show the ability of the mechanism to work with different

6Mechanism design is formulated to maximize utility benefit.
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cost functions. However, our previous analysis and the current
literature on the subject both support the idea of a quadratic cost
function. The range of the contracts in this example is depicted
in Fig. 4.

VII. CONCLUSION

Available data on current demand management contracts can
be used to calibrate the customer cost function and help design
better demand management contracts. The key to having effi-
cient demand management contracts is having a good estimate
of the customer outage cost function. If the estimated cost func-
tion is correct utilities can optimize the amount of compensation
they offer in return for curtailment. The developed formulation
maximizes total utility benefit and makes sure the available re-
lief is coming from the right locations.
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