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ABSTRACT

We describe a parametric cubic spline interpolation scheme for planar curves which
is based on an idea of Sabin for the construction of C'! bicubic parametric spline surfaces.
The method is a natural generalization of [standard] Hermite interpolation. In addition
to position and tangent, the curvature is prescribed at each knot. This ensures that the
resulting interpolating piecewise cubic curve is twice continuously differentiable and can be
constructed locally. Moreover, under appropriate assumptions, the interpolant preserves
convexity and is 6-th order accurate.

AMS (MOS) Subject Classifications: 41A15, 41A25, 53A04

Key Words: splines, curves, interpolation, geometric smoothness, accuracy

1 supported by the United States Army under Contract No. DAAG29-80-C-0041
2 sponsored by the National Science Foundation under Grant No. DMS-8351187






1. Description of the method

The [standard| cubic Hermite interpolant of a [planar| curve
ts f(t): R— IR®

matches f(¢;) and f'(¢;) at a given [increasing] sequence of knots ¢;. While very simple to
compute, this interpolant depends on the parametrization of f and is, in general, merely
C'. On the other hand, the construction of twice continuously differentiable cubic spline
interpolants usually involves the solution of a global system of equations (cf. e.g. [Bo78]).

We show in this paper that curvature continuity and high accuracy can be achieved
by a simple algorithm which is based on the geometric characterization of C2-continuity.

C?2-condition. Denote by a x b := a;by — asb; the cross product of two vectors in R2.
A planar curve f is twice continuously differentiable if the unit tangent vector f* := f'/|f'|
and the signed curvature f** := f' x f"/|f'|® are continuous.

The form of the continuity conditions suggests the definition of a geometric Hermite
interpolant p := ps to a planar curve f via the conditions

p(s) = fi, p°(5) =diy, p(1) = ki

where f, := f(t:), di := f*(¢t;) and x; := f**(¢;) and the components of p are cubic
polynomials on each of the parameter intervals [z,7 + 1|. The idea for this method is due
to Sabin [S68] who used a similar construction for C! interpolation of surfaces. Later
Manning [M73] and Bar [B74] described interpolation methods using curvature data, but
their schemes involve the solution of global nonlinear systems.

From the definition of the method it is clear that the piecewise polynomial curve
p is twice continuously differentiable. Moreover, the polynomial segments of p can be
computed individually from the corresponding data at two consecutive knots. Considering
for example pjo,1], this is best described using the Bézier form (cf. Figure 1) [B684],

3
t p(t) = > b,B,(t), 0<t<1,

v==0

with B, (t) := (3)t*(1 —¢)®~.



bo = fo

Figure 1. Bézier polygon of a cubic curve segment

By the interpolation conditions,

bo = fo, b1 =bo+ dodo
bz = f1, by =bg—61d;

and
Ko = Zdo X (bz - b1)/(3602), Ky = 2d1 X (b1 — bz)/(3512)

as one verifies from the definitions. Replacing by — by by (f1 — fo) — éodo — 61d; in the last
equations and setting a := f; — fo yields a system of quadratic equations for 6,

(do X dl)éo = (CL X dl) b (3/2)/‘61612

(do x d1)b6; = (do x a) — (3/2),4;056"' (@)

Unfortunately, this system does not always have solutions with 6, > 0 and, as is
illustrated in Figure 2, in general there is no unique positive solution. However, if the
data are “consistent”, positive solutions exist and are easily computed numerically. The
restrictions on the data will be made precise in the next section. Moreover, we will show
that, asymptotically, the scheme performs exceptionally well.
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Figure 2. Nonuniqueness of positive solutions for (Q)

Theorem. If f is a smooth curve with nonvanishing curvature and
h:=sup|fit1— fi
1

is sufficiently small, then positive solutions of the system (Q) exist and the corresponding
interpolant[s] satisfy
dist(f,ps) = O(h®).

This is an interesting improvement over linear interpolation techniques. But, two
drawbacks of the method should be noted. Even for h small, the interpolant needs not
be unique. As stated above, in this case the assertion of the Theorem is valid for any
interpolant corresponding to a solution of (Q). Moreover, the positivity of the curvature
is essential. If f**(t) = 0, for some ¢, then, as the example in section 3 shows, the
approximation order may drop to the standard rate O(h*) in a neighborhood of this point.



2. Solvability of the quadratic system

In this section we discuss the restrictions on the data f,, d; and x; which guarantee
solvability of (Q). First we note that in the “exceptional” case when dg X d; = 0 the
restriction on the curvatures is

sign(k,) = (—)"sign(d, % a).

Now, throughout the following, assume that do x d; # 0. In this case, the system (Q)
can be simplified by introducing the new parameters p defined by

a X dyq . do X a (1)
don1, 1_—.QldOXdl. |

bo =: po

With J

X —
a 1 z/dy
do X d]
denoting the intersection of the tangents through fo and f; (cf. Figure 1), the parameters
p are the weights in writing b1, b5 as convex combinations of fy, f; and ¢,

¢=fo+

by = fo+oolc = fo), bz=fi+ei(c— fi) (2)
Defining
3 ko (@ x d;)? 3 k1 (do x a)?
Ry:= 2 _rolexdy) s, Ri=1 1 (do x 2) > (3)
2 (don)(donl) 2 (G,Xdl)(d())(dl)
and substituting (1) into (Q) we obtain the equivalent system
20 =1- Ryo}
: (@)
e1 =1~ Rogo.

As is illustrated in Figure 3, depending on R, this system can have 0, 1, 2 or 3 positive
solutions g which correspond to positive 6 if

dOXdl, axdl, do X a

are of the same sign. For data corresponding to a curve with nonvanishing curvature, the
coefficients R; are positive. Hence, in this case, a simple condition for solvability of (Q’)
is that

(1—Rp)-(1—Ry)>0. (4)

If the data f; and d; are prescribed, this condition can always be satisfied by selecting
appropriate values for k; which can be viewed as shape parameters. The condition also
guarantees that the interpolant preserves convexity. For, if R; > 0, then there exists a
solution of (Q) with 0 < p; < 1. By (2) and the definition of ¢ this implies convexity or
concavity of the Bézier polygon.
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Figure 3. Number of positive solutions for (Q’)

3. Asymptotic behavior

In this section we analyze the system (Q’) as the distance of the interpolation points
fi tends to zero and prove the Theorem. We assume throughout that the curve f is smooth

with |k| > ¢ > 0. Parametrizing f by arclength s,

7o =0 = [<a]



We consider the system (Q') for the data corresponding to the points fo = f(—h) and
f1 = f(h). Assuming without loss that #(0) = 0 and expanding 8 to second order at s = 0,

0(8) = 016 -+ 0282 + O(SS),

we determine the principal part of the system (Q’) as A — 0. From the definitions we see

that .
= [zt = [3] o0

o = oo h) = o) + 009 ©
di = :Hih} + O(h?)

and obtain the expansions

do x dy = sin[0(h) — 8(=h)] = 20,h+ O(h®)

do xa = /h sin[0(c) — 0(—h)]do = 20,h* — (4/3)0,h° + O(h*) (6)
—h

h
axd = / sin[0(h) — 0(0)]do = 20,h* + (4/3)02h° + O(RY).
~h
For the coefficients R in the system (Q') this gives
Ro(h) = Ri(~h) = (3/4) + (01| 7'O(r?). (7)

While this shows that (Q’) is solvable for small h, the system becomes singular in the limit,
i.e. for R = (3/4,3/4) the system has a triple root

e =(2/3, 2/3)

(cf. Figure 3). This somewhat complicates the proof of the Theorem which is based on an
asymptotic expansion of the solutions p;.

Lemma. For any solution g of (Q’) an expansion of the form
0, = (2/3) + (=)"¢(h) + O(h?) (8)

is valid with e(h) = O(h).



Proof. We substitute 1 — R;p; for go in the second equation of (Q') and replace g,
by (2/3) — €. This yields

Qe k) =1~ Ro(h)(1 — R1(h)((2/3) — €)*)* = ((2/3) — ¢) = 0.
Since 2(0,0) = 0 we conclude [H77] that any solution branch has an expansion of the form
€(h) = eoh™(1 + o(1))

with some rational exponent « determined from the Newton polygon of ). For the proof of
the Lemma it is sufficient to show that o > 1 since then (8) holds for 7 = 1 and substituting
this expansion into the first equation of (Q’) gives

oo =1 ((3/4) + O(r*))((2/3) — e(h) + O(h*))*

which establishes (8) also in case 1 = 0. We now turn to the computation of «, i.e. a
discussion of the Newton diagram for 1. To this end, Figure 4 displays the indices of the
Taylor coefficients ‘

Q,,; := 0:93,0(0,0)

which are zero (circle), nonzero (asterisk) and which depend on the Taylor coefficients 8
of k (dot). It is easily verified from (7) that

N30 = 27/4
0, =0, i+j5<2.

However, the explicit form of the higher order coefficients depends in a complicated manner
on the coefficients 8,. For example, with the aid of MACSYMA,

8640%0,4 — 2160010205 + 128003 + 288010
13563

{lo,3 =

and, while nonzero in general, this coefficient will vanish for certain combinations of the
6;. Fortunately, these details are irrelevant. Newton’s polygon bounds the convex hull of
the indices (¢, 7) for which Q;; # 0 and, for each branch, a equals the absolute value of
one of the slopes of the polygon segments which connect the smallest nonzero indices on
the axis. The polygon corresponding to a maximal number of nonzero {1; ; is shown in
Figure 4. In any case, since {130 # 0, it is clear from the Figure that o must be at least
one.

&
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Figure 4. Newton’s polygon for {2

With the aid of the Lemma we can now give the

Proof of the Theorem. We first obtain bounds on the derivatives of the interpolant
p. We claim that

P = o] + ot | ©)
and that
p®(t)] = O(hY), i=1,2,3. (10)

It is sufficient to prove the corresponding assertions for the Bézier coefficients of the deriva-
tives of p which are given by

p'/3 : bodo, a—bodo— 61, 61d;
PP /6 : a—260do — b1dy, 261dy + bodo —a
P /6 : 360do + 361dy — 2a.
From (1), (6) and (8) we see that
60 = (2/3)h + eh — (4/9)(01/02)R* + O(R®)
61 = (2/3)h — eh + (4/9)(8,/02)h* + O(h®).
Using these expansions, the assertions (9) and (10) are easily verified. Setting

€:=¢ch — (4/9)(0,/05)h*

8



it follows from (5) that

(2/3)h + ¢

bodo = [-—(2/3)01}12

}+O(h3), brdy = {(2

Therefore all Bézier coefficients of p’ are of the form

[(Z/S)h} +0(h?)

0

which proves (9) and (10) for ¢ = 1. Comparing (11) with the expansion for a in (5) yields
the remaining cases in (10).

We now estimate the error by choosing an appropriate parametrization. To this end
we write

By (9) and since

rie = 5| +ow
the functions z and X are invertible on [z(0),z(1)] = [X(—h), X(h)], i.e. there exist

functions z7! and X! with

This provides the parametrizations

I B P

with z := yz~1, Z := Y X! which we use to compare the two curves. By the chain rule,

!
2 =L = coth
m/

" x’y"wy’z" yr 2\ 3/2
VA s ”*(“:I;*,‘)“:‘gw = K 1“‘1" ':;,‘ 5

and the corresponding formulas hold for the derivatives of Z. Therefore, the functions z
and Z, together with their first and second derivatives, match at &g := z(0) = X(—h) and
€1 :=z(1) = X(h). Since &; — & = a = 2h + O(h®), it follows that

e ax, [2(6) ~ Z(9)] = O(r?)



if the 6-th derivative of z is bounded, independently of h. But, since y and z are cubic
polynomials, z(®) is a sum of terms

y ) HZ(]") / (xl)wiju

where 7, 5, < 3. The boundedness of these expressions follows from (9) and (10).

&

The Theorem does not extend to curves with singular points as is shown by the
following

Example. For the curve f defined by

denote, as before, by p the interpolant corresponding to the data at f(—h) and f(kh). This
curve is strictly convex, but the curvature x(t) = 3t? vanishes at ¢t = 0. We claim that

p1/2)= | | + o) (12

with v # 0. This proves that the approximation can be at most fourth order accurate
since both s and p are symmetric with respect to the line {(z,y) : z = 0}.

To verify (12), we calculate the Bézier coefficients of p from (Q’) using (3), (5) and
(6). Using the abbreviation ¢ = r for ¢ = (1 + O(h®))r we obtain
do X dl = 2h3,
do X z = ZXdl = 2h4,
Ro - Rl = 9/4,
2

00 = 01 = s5(\/1'0—1)

This implies that the Bézier coefficients for p satisfy

bo = p(-—h) = '/_Oh [ZTS?EEW" ) [’:‘*74}

B zxdy . [ ~h 2 28 [ 1 ] [ -mh
by = bo—f‘Qo_X—*do = [h4/4}+§(\/1_6—1)§7a§ ___th =: [ )

- T1h - h ]
e 3] e L]
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Since . 5
P(l/Z) = g(bo+b3)+ é’(bl —|~b2),
(12) follows with

255 (2m),

OO |

7=

and -y is nonzero since 7, is irrational.

4. Examples

In this section we discuss a few examples which illustrate the performance of the
method. Figure 5 shows the interpolant for a circle with radius 1. Already for four
knots, the deviation in curvature is less than one percent. Moreover, as the number n of
interpolation points is increased, the error decays at the predicted rate O(n~°) as is shown
in the table below.

number
. error rate
of points
4 14E-2
8 21E-4 | -6.07

16 .32E-6 | —-6.02
32 49E-8 | -6.01

In the second example the data are

fi = (cos(427/5), sin(4i7/5))
d; = (—sin(4i7/5), cos(4i7/5))
Ky 2

and this yields the periodic curve in Figure 6.

11



Figure 5. Interpolation of a circle

Figure 6. Interpolation of a pentagon
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pline

Figure 7.

Our final example (Figure 7) illustrates the interpolation of inflection points showing
that the shape of the data is preserved.
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