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Neural-Network-Based Adaptive Matched Filtering
for ORS Detection
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Abstract—We have developed an adaptive matched filtering
algorithm based upon an artificial neural network (ANN) for
QRS detection. We use an ANN adaptive whitening filter to
model the lower frequencies of the ECG which are inherently
nonlinear and nonstationary. The residual signal which con-
tains mostly higher frequency QRS complex energy is then
passed through a linear matched filter to detect the location of
the QRS complex. We developed an algorithm to adaptively
update the matched filter template from the detected QRS com-
plex in the ECG signal itself so that the template can be cus-
tomized to an individual subject. This ANN whitening filter is
very effective at removing the time-varying, nonlinear noise
characteristic of ECG signals. Using this novel approach, the
detection rate for a very noisy patient record in the MIT/BIH
arrhythmia database is 99.5%, which compares favorably to
the 97.5% obtained using a linear adaptive whitening filter and
the 96.5% achieved with a bandpass filtering method.

INTRODUCTION

RS detection is the most important task in ECG sig-

nal analysis systems. After the QRS complex has been
identified, the heart rate may be calculated, the ST-seg-
ment may be examined for evidence of ischemia, or the
waveform may be classified as normal or abnormal. A
number of QRS detectors have been designed which work
well in the presence of moderate noise [1]-[3]. These de-
tectors generally include a bandpass filter with a center
frequency in the range of 10-17 Hz. After passing through
the bandpass filter the signal may be squared and averaged
over a number of samples to give an estimate of the local
energy in the passband which is then used as a detection
statistic. These techniques mainly suffer from two prob-
lems: 1) the signal passband of the QRS complex is dif-
ferent for different subjects and even for different beats of
the same subject, 2) the noise and QRS complex pass-
bands overlap. A matched filter can maximize the signal-
to-noise ratio for detection of a known signal in noise.
However, the design of an optimal matched filter requires
knowledge of both the signal and the correlation statistics
of the noise. The nonstationary nature of the signal and
noise in an ECG represents an obstacle in application of
matched filtering to QRS detection. We previously devel-
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oped a linear adaptive matched filter for detection of QRS
complexes in extreme noise [4]. This filter attempts to
adjust itself to compensate for changing signal shapes and
noise conditions. In the presence of motion artifact, its
performance is better than our previously developed QRS
detection algorithm based on bandpass filtering and local
energy estimation [2].

The ECG, however, is a nonlinear signal generated
from a nonlinear system—the human body. It is difficult
to adapt to a nonlinear signal using a linear model. In
other words, the ECG signal cannot be whitened much by
a linear adaptive filter, hence the performance of the
matched filter was not optimal. Since artificial neural net-
works are inherently nonlinear models, ANN-based fil-
tering methods are potentially useful for signals with in-
herent nonlinearity. Unlike our approach, previous
applications of ANN models in biomedical signal pro-
cessing are mostly pattern recognition oriented [5]-9].

In this study, we added a hidden layer with nonlinear
units to our previously designed linear combiner, which
is another name for a FIR linear adaptive filter. By intro-
ducing nonlinear hidden units, we are able to model much
more complicated nonlinear signals. An ANN model with
a nonlinear hidden layer is theoretically able to approxi-
mate any function that arises in the real world [10]. In
practical use, this means that an ANN model can adapt to
a nonlinear signal much better than can linear models,
although this approximation may be limited because of
restrictions on the number of units, as well as the use of
different learning strategies. In our ANN-based filter there
is a single output unit, while pattern recognition tasks
usually have more output units. For our signal modeling
application, the number of input units and hidden units
are flexible, unlike other applications where the number
of input units is fixed by the nature of the input signal,
portion of signal, or image. In our case, the number of
input units corresponds to the filter order as in the exam-
ple of the linear adaptive filter. If the order is too small,
we cannot obtain good modeling results, while if the order
is too large, the filter will not have good transient prop-
erties (i.e., we cannot model the nonstationary part
closely). However in QRS detection, we hope that the re-
sidual noise signal has more QRS information, which
means that the model should predict non-QRS portions of
the signal better than the QRS complex itself. Thus, we
use a relatively large number of input units. Choice of the
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number of hidden units is a common problem for both
recognition and filtering tasks. For a point-by-point mod-
eling task, the learning speed is important, which sug-
gests a small number of hidden units. Use of too few hid-
den units, however, restricts adaptation to complicated
nonlinearities.

THEORY

In the signal detection problem, the objective is to de-
tect the presence of a signal s(7) in the received signal x()
which is contaminated with additive noise n(s):

x(®) = s(t) + n(@). (H

For ECG beat detection, the signal s(¢) represents the QRS
complex, and the noise n(¢) represents all other compo-
nents of the ECG signal including the P and T waves,
additive instrumentation noise, and time-varying electro-
myographic noise.

Matched Filter and Whitening Filter

In general, we have some a priori knowledge of the
signal of interest such as a typical template of the QRS
complex. However, the actual shape of such a template is
different for different patients and changes with time in
the same patient. Given such prior knowledge, our ap-
proach for detecting its presence in an ongoing ECG is
based upon a matched filter. A matched filter can be re-
alized using a finite impulse response (FIR) digital filter
which has an impulse response A(z) = s(t — t,) such that
the output signal-to-noise ratio when x(¢) is applied to the
input is maximized.

Foo= |ys(t0)|

2
"= VEDLD @

In this equation, the signal output y(t,) = s(r) * h(f) is
the result of convolution of the signal with the filter re-
sponse. Similarly, y,(z) = n(r) * h(r) is the noise output.

The matched filter is an optimal detector if n(s) is a
white noise random process. Unfortunately this is hardly
the case in the QRS detection problem. In particular, the
background noise includes portions of the ECG signal
such as the P and T waves, instrument noise, and electro-
myographic noise. These noise components are often cor-
related (i.e., they are colored noise) and time varying. To
apply the matched filter detection scheme, a preprocess-
ing procedure called a whitening filter is performed to re-
move the correlation components in the noise. Among
many alternative whitening filter strategies, a linear adap-
tive autoregressive (AR) modeling technique is very suit-
able for real-time processing of ECG signals. In this
model, we assume that the data sampled from the colored
noise process arising in QRS detection at time ¢ can be
predicted by a linear combination of previous ¢ data sam-
ples {y,_;|i =1, - - -, ¢}. In other words,

q
n, = Z un, + €; (3)
i=1

where {u;|i = 1, - -+, g} is called the set of AR param-
eters, and ¢, is the modeling error, which gradually ap-
proximates white noise if the model is correct. Also we
observe that the QRS complex waveform, which exists
only in a very short time duration within each period of
the ECG signal, consists of mainly higher frequency com-
ponents. Hence, by selecting the proper length g, the
whitening filter can be adjusted so that it does not predict
the QRS complex s(7). Therefore when the received signal
x(#) is applied to the whitening filter, a large prediction
error signals the presence of a desired QRS complex. In
other words, after we apply the signal x(¢) to the whiten-
ing filter, its output is

q
Y@ = x(t) - E} Uix, -y

q
=s() - Zuso e =50+t @)

where s;(7) is the distorted signal after passing through the
whitening filter. As long as the observation window length
q is kept small enough so that the higher frequency com-
ponents in s(z) are not modeled by the set of AR param-
eters {u;|i = 1, - - -, g}, the detection of s;(?) is equiv-
alent to the detection of s(7).

Adaptive Linear Whitening Filter

In order to cope with the time varying nature of the
background noise in QRS detection, we chose to use an
adaptive least mean square (LMS) algorithm [12] to com-
pute the set of AR coefficients. The LMS algorithm uses
the gradient search method which updates the filter coef-
ficients for each incoming datum x, as

U, =u + 2uex, &)

where p is the step size which controls the search step,
and

e, = x'u, (6)

is the instantaneous error of the whitening filter. To re-
duce the magnitude of random fluctuation, we also add a
momentum term which leads to the momentum-LMS al-
gorithm

Upy = U + 2pex, + ofu, —u ] )
Fig. 1 is a diagram of this adaptive whitening filter.

We reported earlier the use of a linear adaptive whiten-
ing filter to remove colored noise [6]. Due to the nonlin-
earity inherent in the background noise processes the ef-
fectiveness of such a linear model to perform QRS
complex detection may still be very limited. What is
needed is a method to accurately model the nonlinear re-
lationship that exists among the samples of the back-
ground noise processes. Motivated by this observation,
we investigated a neural-network-based nonlinear whiten-
ing filter in this study.
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Fig. 1. Block diagram of linear adaptive noise removal filter.

Neural-Network-Based Nonlinear Whitening Filter

Our approach for dealing with the inherent nonlinearity
of the ECG signal is to replace the linear adaptive
whitening filter having the structure shown in Fig. 2(a)
with a neural-network-based nonlinear adaptive filter il-
lustrated in Fig. 2(b). This structure can be derived from
the linear adaptive whitening filter by adding a nonlinear
hidden layer which consists of a number of nonlinear pro-
cessing units. We call these hidden units as they produce
only intermediate results which then are combined to form
the actual output. Each of the hidden units produces a
nonlinear intermediate result

M
where f( ) is a sigmoid function defined as

1
f@ =1 = ®

The value of T, called temperature, controls the nonlin-
earity of the function. The smaller the value of 7, the
more nonlinear the function. The w;’s are the weights
which connect the input units to the hidden units, and the
b;’s are bias terms. The output of the nonlinear whitening
filter is a linear combination of the outputs of the hidden
units:

Yo=Y —7F 10

q q M

/i ,;1 UiZ—ij = Y —~ 211 uf <j§ Wiy —; + bj)- (11

The most widely-used algorithm to update the weights in
the hidden layer is the generalized delta rule, and the
neural network so formed is called a back-propagation
network. It is an extension of the LMS algorithm for non-
linear units, since both techniques use a gradient search
based algorithm. The least-mean-square error of this filter

is
q M 2
e=F [(y, - _El u,-f<_2l Wiy T bj>> } (12)
i= j=

The hidden layer weights are updated as
Wi = wi + 2ubx, + aw] — wi_1)

i=L - .q (13)

Linear
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x(t—1) x(t=2) xt-k+1)  x(t—k)

Input data vector

(a)

Linear
output
unit
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(nonlinear units)
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(b)
Fig. 2. Adaptive filter structure. (a) Single-layer linear. (b) Multilayer
nonlinear.

where w) = (wy;, wpj, " ** , Wyy)' is the weight vector
connqcted from the input units to the jth hidden unit; §;
= yhi(1 — yh))n,a; is the error term passed back from the
upper layer; « is the step size of a momentum term. Since
the output is a linear combination of the hidden layer out-
puts, its weights u, are updated according to (7) in the
same way as the linear whitening filter. Fig. 3 is a block
diagram of the adaptive nonlinear whitening filter.

Our nonlinear adaptive filter structure uses a single lin-
ear output unit. This is because our goal is to model the
nonlinearity of the underlying ECG signal which has a
dynamic range not limited to the range between 0 and 1
and which cannot be dynamically scaled easily. In the Ap-
pendix, we provide convergence analyses of the ANN-
based adaptive filter.

Template Selection and Filtering

A template is needed to do matched filtering. The first
step is to select a template, and the second step is to filter
it according to (11) where a whitening filter is applied to
both the input signal and the template since the back-
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Fig. 3. Block diagram of adaptive noise removal filter based on artificial
neural network.

ground noise is not white noise. In selecting the template,
our previous method used a fixed template [4]. However
generally the ongoing QRS complexes of the subject
change with time. Since a fixed template cannot respond
to changing information, this nonadaptability influences
the performance of the matched filter. Thus, we devel-
oped a neural-network-based recognition method to up-
date the template dynamically. In a preprocessing period,
we train a small neural net model using 20-30 QRS com-
plexes from the ongoing signal. The neural network model
used is a three-layer feedforward back-propagation model,
which has 70 input units to cover the QRS complex, ten
hidden units, and ten output units. After the learning pro-
cess is finished, the neural network coefficients are stored
for determining a new template during the processing. At
the beginning of the processing, four recognized normal
ORS complexes are kept in the template bank, and the
newest template is the average of these four complexes.
The template vector is

4
ORS =, -Z. ORS; (1). (14)
i=

As a result of using a matched filter to indicate the pres-
ence of the QRS complexes, the corresponding most-re-
cently-recognized QRS complex of the original signal (not
the output of the matched filter since this output is a dis-
torted version of the signal just used for detecting the
presence of the QRS complex) is sent to the neural net-
work recognition model. The model determines if the new
ORS complex is one which should be put into the template
bank. In this way, we obtain new information about the
ongoing signal while at the same time preventing abnor-
mal waveforms from entering the template bank.

The template is filtered by the adaptive whitening filter
synchronously with the filtering of the input signal. The
whitened QRS template is

q M
WORS(), = QRS0 ~ 2 u,f <j§, w; ORS(), —,; + bj>
(15)

where k = 1, - - - , L — M, L is the length of the ORS
template vector; and M is the number of input units in the
model.

Input ECG /
signal Adaptive
noise —
removal
Matched [ | QRS
/ filter detection
Adaptive ’
noise
removal
Template
update

Fig. 4. Block diagram of ANN-based adaptive matched filter for detection
of QRS complexes in an ECG signal.

Neural-Network-Based Adaptive Matched Filtering

After both the whitened signal and the whitened tem-
plate have been obtained, matched filtering is performed.
The output of the matched filter is

L
yul) = 2 WORSy,(t = i) (16)
where WQRS is the whitened template and y,(¢) is the out-
put of the whitening filter of the original signal.

Fig. 4 is the complete diagram of the neural-network-
based adaptive matched filter. The input ECG signals first
go through an adaptive whitening filter having as a key
part the neural-net-based nonlinear adaptive noise re-
moval filter. The input layer of the neural net model gets
the data vector from the ECG signal. In this case, the
input pattern is the data vector

)’(1 - 1) = {yt—q’ yt—q+l’ T, yt—l}T

and the target pattern is y,. The output of the model is the
estimation of y,. In each epoch, the input and target pat-
terns are updated by shifting the time window one step
forward, and the weights of the model are updated by the
generalized delta rule with the error propagated back-
wards. If the original signal is approximately stationary,
the weights will not change much after they have con-
verged to certain values, which approximate the local
minima on an error surface. If the original signal is non-
stationary, the weights will be updated throughout a rel-
atively large range through the data processing period.
The template bank is updated only when a new QRS com-
plex is identified and this new QRS complex is passed to
the recognition part. Otherwise this template bank re-
mains unchanged. The averaged template is filtered by the
same adaptive noise removal filter from the neural net
model synchronously with the signal filtering process. The
output of the template filter forms a matched filter which
filters the output of the data whitening filter. Finally, the
data output from the matched filter is sent to the QRS de-
tection circuit, which includes squaring, moving averag-
ing, and threshold checking as described in [2].

IMPLEMENTATION AND RESULTS
Filtering Response to Linear and Nonlinear System
Signals
First, we investigated the behavior of neural-network-
based adaptive filtering applied to signals from both linear
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and nonlinear systems. Then we compared these results
with those of linear adaptive filtering. We generated the
linear signals by filtering a set of normal distributed ran-
dom signals {x(n)} using an FIR filter H(z). The output
of this linear system is

N
y(n) = 2}0 hix(n — i) n=1,2,--- (17

Our first nonlinear system signals were formed with
o = [G®P =12 "

and our second nonlinear system signals were formed with

n=12 - (19)

(18

zy(n) = kiey(n)

We applied all three sets of signals to both linear and non-
linear adaptive filters and obtained the residual noise of
each filter in order to study the learning ability and the
performance of the filters. The smaller the residual noise,
the better is the tracking ability of the filter. We also com-
puted the autocorrelation function of the residual noise to
see the orthogonality of the residual noise; that is, to see
how “‘white’’ it was. The residual noise should approxi-
mate white noise if the filtering was performed appropri-
ately.

Fig. 5 shows the square of the residual noise e = n(t)?
of both filters when linear signals y(n) were presented.
You can see that the square errors of the nonlinear adap-
tive filter (solid line) and the linear adaptive filter (dashed
line) are comparable. Fig. 6 shows the autocorrelation
functions (ACF) of the residual noise from both ap-
proaches. They are both damped rapidly which means that
the residual noise has good orthogonality (both cases ap-
proximate white noise). Although the performance of the
linear and nonlinear adaptive filters are similar for this
linear signal case, we would choose the linear filter for its
simplicity, since the nonlinear filter does not provide an
advantage in this case.

Figs. 7 and 8 show the same comparison but for non-
linear signals z,(n). We can see from Fig. 7 that the re-
sidual error of the ANN-based filter (solid line) is much
smaller than that of the linear adaptive filter (dashed line),
which means that the ANN filter has better learning abil-
ity than the linear filter for these nonlinear signals. The
ACF plot of Fig. 8 shows that the ACF of residual noise
from the ANN filter damped faster than that of the linear
filter, which means that the residual noise of the ANN
filter more closely approximates white noise than does the
linear filter. We conclude that the ANN filter has better
performance for nonlinear signals since the nonlinearity
of the filter permits it to rapidly track these signals with
a better approximation to the noise.

ANN Adaptive Matched Filtering Response for Noisy
ECG Signals

We applied ECG signals from the MIT/BIH arrhythmia
database provided on compact disc (CD-ROM) [14] di-
rectly to the input of the ANN adaptive matched filter
without any preprocessing. We obtained templates using
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Fig. 5. Residual noise of ANN-based and linear adaptive filters when the
input signal is from a linear system. Solid line: ANN-based filter. Dashed
line: linear filter.
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Fig. 6. Autocorrelation function (ACF) of the residual noise in Fig. 5.

0.3

0.2 1

Square of residual noise
=
=
[
T

The number of samples

Fig. 7. Residual noise of ANN-based and linear adaptive filters when the
input signal is from a nonlinear system. Solid line: ANN-based filter.
Dashed line: linear filter.

(14). Fig. 9 shows the results of ANN adaptive matched
filtering of a very noise ECG signal section from Record
105 of the MIT/BIH database. Fig. 9(b) demonstrates that
the whitening filter removes baseline drift from the ECG
and enhances the peaks of the QRS complexes while sup-
pressing noise and P and T wave peaks. The QRS com-
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Fig. 8. Autocorrelation function (ACF) of the residual noise in Fig. 7.
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Fig. 9. Results of ANN-based adaptive matched filtering of the ECG. (a)
Original signal. (b) Output of ANN-based adaptive matched filter. (c) Out-
put of squaring function. (d) Output of moving average process.

plexes can be easily detected from the output of the ANN
adaptive matched filter, even without the additional pro-
cessing steps of squaring and applying a moving average
shown in Fig. 9(c) and (d), which are particularly impor-
tant in other approaches [2]. In this experiment, we set
the number of input units to 6, the number of hidden units
to 3, the learning step size to 0.3, and the momentum to
0.5. We also developed methods to adaptively adjust the
learning step size and to select the number of hidden units
more systematically. These methods are discussed below.

For comparison, we plotted the results of previous
methods based on a linear adaptive filter in Fig. 10 and
on a bandpass filter in Fig. 11, both with the same input
ECG. Unlike the ANN approach, further processing by
squaring and applying a moving average is needed in both
these approaches in order to reduce the false positive (FP)
and false negative (FN) error rates.

In order to test the effectiveness of the ANN filtering
more objectively, we computed the ACF of residual noise
from both ANN and linear filtering. We selected a signal
segment which does not include the QRS complex since
it is very nonstationary and already ‘‘white.”’ Fig. 13
shows ACF’s for both ANN and linear filtering. We can
see that the ACF of the residual noise from ANN filtering
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Fig. 10. Results of linear adaptive matched filtering of the ECG. (a) Orig-
inal signal. (b) Output of linear adaptive matched filter. (c) Output of
squaring function. (d) Output of moving average process.
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Fig. 11. Results of bandpass filtering of the ECG. (a) Original signal. (b)
Output of bandpass filter. (c) Output of differentiator. (d) Output of squar-
ing function. (e) Output of moving average process.
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Fig. 12. Comparison of outputs of ANN-based matched filters. (a) Using
fixed step size. (b) Using varying step size.

is damped more rapidly than that for linear filtering. This
comparison shows that ANN filtering has a better whiten-
ing effect than linear filtering.

ORS Complex Detection Based on ANN Adaptive
Matched Filtering

In most cases, a simple threshold method can be used
to detect QRS complexes after ANN matched filtering.
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Fig. 13. Autocorrelation function (ACF) of the residual noise of the non-
ORS components of the signal.

Further processing, however, can improve the detection.
We applied squaring and moving average functions based
on the methods in [2]. Fig. 9 shows the original ECG
signal along with the results of ANN matched filtering,
squaring, and moving averaging. We used a simple
threshold method, instead of the more complicated double
threshold method described in [2] since QRS complexes
are enhanced more by this ANN filtering method than by
other techniques. We also processed this particular por-
tion of the signal using linear adaptive filtering and linear
bandpass filtering. These results are plotted in Figs. 10
and 11. It is difficult to detect all QRS complexes by just
using a simple threshold method for these linear filtering
methods. Even using the more complicated double thresh-
olding methods described in [2], linear filtering methods
still have higher FP and FN rates than ANN filtering.

In Tables I and II, we list detection rates for the three
filtering methods for Records 105 and 108 of the MIT/
BIH database, which include 2572 and 1763 beats, re-
spectively. We selected these two records because they
are more noisy than others and caused more detection er-
rors using linear filtering methods. In our experiments,
the ANN-filtering method had only 10 FP and 4 FN beats
for Record 105, which corresponds to a total failure rate
((10 + 4)/2572) X 100 = 0.5%, while the failure rate
was 3.46% for the bandpass filtering method and 2.4%
for the linear adaptive filtering method. For Record 108,
the ANN method had 25 FP and 16 FN beats or a 2.32%
failure rate, while the failure rates of bandpass filtering
and linear adaptive filtering were 12.54% and 4.42%, re-
spectively. By comparing these results, we can see the
significant improvement achieved by the ANN adaptive
matched filtering method.

Effects of Input Window Length and Number of Hidden
Units

The neural network structure used in QRS complex de-
tection is determined by the input data window length,
which specifies the number of input units, and the number
of hidden layer neurons. Obviously, whenever the num-

TABLE I
RESULTS OF EVALUATION OF THREE QRS DETECTION ALGORITHMS USING
RECORD 105 oF THE MIT/BIH DATABASE

Total Failed Failed
Filtering No. FP FN Detection Detection
Methods Beats (Beats) (Beats) Beats Rate (%)
ANN
adaptive
filtering 2572 10 4 14 0.50
Linear
adaptive
filtering 2572 40 22 62 2.40
Bandpass
filtering 2572 67 22 89 3.46
TABLE II

RESULTS OF EVALUATION OF THREE QRS DETECTION ALGORITHMS USING
RECORD 108 oF THE MIT/BIH DATABASE

Total Failed Failed
Filtering No. FP FN Detection Detection
Methods Beats (Beats) (Beats) Beats Rate (%)
ANN
adaptive
filtering 1763 25 16 41 2.32
Linear
adaptive
filtering 1763 58 20 78 4.42
Bandpass
filtering 1763 199 22 221 12.54

ber of input or hidden units increases, the number of
weights, and hence the computation complexity increases
too making it more difficult to perform real-time process-
ing. However, there are more subtle considerations than
the computation cost in determining the structure of the
neural network.

If the number of input units, or equivalently, the data
observation window length, is too small, the adaptive
whitening filter cannot capture the inherent nonlinear re-
lations between the current data sample and samples out-
side the observation window, causing poor background
noise removal. On the other hand, if the window length ¢
is too large, the correlation between successive QRS com-
plexes may be unexpectedly captured by the whitening
filter causing unwanted cancellation of the signal (i.e.,
ORS complex). We conducted an experiment which var-
ied the number of input units from 2 to 12 with the num-
ber of hidden units fixed at four. Fig. 14 shows the re-
spective detection rates versus the number of input units.
From the figure, we see that between 5 and 8 input units
seems to be appropriate for the ECG signals studied.

The number of hidden units dictates the network’s abil-
ity to perform nonlinear mapping between its input and
output. Too few hidden units cannot accurately model the
underlying nonlinear noise characteristics which cause
excessive ORS detection errors. Too many hidden units,
on the other hand, cause overfitting of the model, result-
ing in poor noise prediction. For the selection of the num-
ber of hidden units, we developed a method based on sin-
gular value decomposition (SVD) towards the output
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Fig. 14. QRS complex recognition rate as a function of the number of in-
put units. The number of hidden units is fixed at 4.

covariance matrix of the hidden layer [13]. This approach
is based on the following simple, yet important, obser-
vation. If the output of a neuron is linearly dependent on
that of another neuron in the same layer, this neuron can
be eliminated by properly adjusting the output weights of
the other neuron without affecting the following layer
neurons. For example, consider the case where the cur-
rent neuron output is x; and another neuron in the same
layer has an output x,, such that x, = ax,. Suppose that a
neuron in the next layer contains a term w;x; + wyx,.
Clearly, this term can be replaced by (aw, + wy)x,. In
other words, x; can be removed as it no longer appears in
the latter expression. The number of independent neurons
in the current hidden layer can be found by checking the
rank of the autocorrelation matrix of the output hidden
units in the current layer. This matrix will have rank de-
ficiency if at least one hidden unit’s output is linearly de-
pendent on the rest of the hidden units. Although it is not
very realistic to apply this method for every iteration in
real-time processing, we used this method in preprocess-
ing. If there are altogether K ECG signal samples in the
preprocessing stage, that means that K training sample
vectors X(n), n = 1, 2, - - -, K can be formed, and there
are N hidden units. Let y(k) be the output vector of the
hidden layer corresponding to the kth training sample
vector. Define the hidden layer output matrix ¥ as

Y =[yhy@) - - y&) (20)

which is a K X N matrix. Then an N X N sample output
correlation matrix of the current layer hidden units can be
defined by

1

1 K
y =YY =— (k).
Cr=% 2 Y0y 'K

If we perform an eigenvalue decomposition of the C,, ma-
trix, and write the result in two parts:

C,, = EAE' = E\\\E} + E,\E}

where A = diag {\,, * + +, Nov Nyt
of p larger eigenvalues, A; = diag {\,, \,, -

@1

(22)

*++, Ay} consists
WS

and N-p much smaller eigenvalues, A, = diag {\,.,
Np+2, Ay}, The E, E,, and E, matrices, respec-
tively, are the corresponding eigenvectors associated with
A, Ay, and A,. It is well known that the matrix E| A, is
the optimal approximation of the C,, matrix among all the
N X N matrices, C having rank p. Based on the initial
analysis, we then use p hidden units, instead of the orig-
inal N hidden units for later processing. A test result of
the relationship between the QRS recognition rate and the
number of hidden units is plotted in Fig. 15. From this
figure, we see that the acceptable range of p values is 3
to 5, which is consistent with what we found using the
above formula. Note that there is no improvement in terms
of detection rate when the number of hidden units is larger
than 4.

There are other methods for determining the number of
hidden units reported in the literature. For example,
Siestma and Dow [15] have also demonstrated a manual
pruning of a neural network by exploiting redundancy
among the outputs of neurons. Rummelhart [16] has also
proposed to use an additional cost function to force
weights with small magnitudes to converge to zero so that
they can be removed. This approach has since be refined
by Weigend, Huberman, and Rumelhart [17], Chauvin
[18], Lang and Hinton [19], Hanson and Pratt [20], and
others.

Using Variant Step Size Based on Signal Energy

In adaptive filtering, the step size is important for ad-
aptation speed. In most neural network applications, a
fixed step size is used for updating the weights, as p in
(13). In those applications, all input patterns are prepared
and normalized in advance, so that a fixed step size can
be used with reasonable learning speed. In real-time fil-
tering, however, the signal vector is sent in for every sam-
pling interval, as in the case of ECG signal processing
where input signal energy is different from vector to vec-
tor. As we know from the convergence analysis of ANN
filtering in the Appendix, there are different upper bounds
for hidden-layer and output-layer step sizes, while there
is only one upper bound of step size in the linear adaptive
filtering case. Here we discuss how to use variant step
size instead of fixed step size for ANN filtering. Because
of different upper bound values for output and hidden layer
step sizes, we consider these two cases separately and use
two step sizes, uo(n) for the output layer and u,(n) for the
hidden layer.

Output Layer Step Size py(n)
From (A11) in the Appendix, we get the upper bound
condition for

a+1

po(n) <
h max
where N, .« is the largest eigenvalue of the autocorrela-
tion matrix R, of the output of the hidden layer. And an
upper bound on A\, is
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Fig. 15. QRS complex recognition rate as a function of the number of hid-
den units. The number of input units is fixed at 6.

N
Mumn < 2 N = trace Ry = Myu(0)  (23)

where v,,(0) is the hidden layer output signal power.
Thus, we may replace the fixed step size u by
T+ T4+ o
=W
¥in(0) 3 )’/2“'
i=1

po(n) = (24)

where T is a positive value. We selected T = 0.1-0.5 for
our experiment.

Hidden Layer Step Size py; (n)

From (A28), we obtain an upper bound for the i th hid-
den layer step size

a+ 1

—_— j =1,2, "
ujkllj)\xmax

Pohi (n) < s N

where, i; is the upper layer weight connected to the ith
hidden layer, k,; is the tangent of the sigmoid function,
which is a parameter of the segment linearized sigmoid
function t00, A mgx 18 the largest eigenvalue of the auto-
correlation matrix R,, of the input signal. This condition

is more complicated than that of the output layer, since

more parameters are involved. However, we can still

compute variant step sizes based on these known param-
eters. Replacing A, ., by input signal energy, we can get
a similar form of the hidden layer step size to that of (24):

TMM+ae  T0l+a

A - M-1

ujkl[j’}/xx(o) n

ujk”j '20 xi_,-
i=

p () = @5)

Fig. 12(a) and (b) are the ANN matched filtering results
for an ECG signal with fixed and variant step size respec-
tively. In this example, we chose T to be 0.2 and « to be
0.3. The figure shows that the filter with variant step size
has better noise removal ability than the one with a fixed
step size. It also shows that QRS complexes from the vari-

ant step size method are sharper than those of the fixed
step-size method.

DiscussIiON

In this paper, we present an artificial-neural-network-
based adaptive matched filter for QRS detection of very
noisy ECG signals. There are several distinct features of
this method.

1) We used the multilayer perceptron neural network
structure for an adaptive whitening filter. Our ex-
periments show that this nonlinear adaptive filter can
model the inherently nonlinear ECG signal better
than linear filtering techniques.

2) The QRS template used for matched filtering is up-
dated by an ANN recognition algorithm, which pro-
vides better adaptation to signal changes than other
matched filter techniques.

3) The number of hidden units is determined by our
newly developed eigenvalue decomposition method.
This method saves computation time and removes
the redundancy introduced by having unnecessary
hidden units.

4) The learning step size is varied with the incoming
signal energy to improve the adaptability of the fil-
ter.

Using an ANN for signal filtering is a relatively new
concept in signal recognition applications. This QRS de-
tection application for very noisy ECG signals shows the
potential of this nonlinear filtering approach, especiaily
for inherently nonlinear biomedical signals. The potential
lies in the nonlinear modeling of biomedical signals by
ANN approaches, which is also one of our future research
directions. There are many other structures of ANN’s. We
chose a multilayer perceptron with a back-propagation
learning algorithm because it is most similar to the trans-
versal adaptive filter with the LMS (least mean square)
learning algorithm whose characteristics have been stud-
ied most thoroughly. The ANN-based nonlinear adaptive
filters, however, are quite different from linear filters in
many ways. We did analyses of ANN-based adaptive fil-
ters and list them in the Appendix. However, in order to
grasp more details of these filters, we need more powerful
analytical tools and methods. In any event, it is clear that
combinations of recognition and filtering by ANN models
will lead to new ways of biomedical signal processing.

APPENDIX

Convergence Characteristics of the Output Layer
Weights

We first analyze the equation for updating the output
layer weights as follows:

u(n + 1) = u(n) + 2pe)y,(n) + afum) — un — 1)].
(A1)

We define the correlation matrix of the hidden layer out-
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put as
Ry = E{y(n — Dy"(n — 1}
and its orthonormal factorization form
Ry, = QhAQhT

where A = diag [N, M2, * * * 5 Ay] is a diagonal eigen-
value matrix of Ry, with 0 < Ny < Ay < -+ < Ny
Matrix @, is the orthonormal matrix (i.e., Q,Q7 = I),
and its column vectors are corresponding eigenvectors of
eigenvalue A;;. We define a rotated weight error vector as
[12][21]

(A2)

c(n) = Qrfu(n) — ug (A3)

where u, is the optimum value of the output layer weight
vector. Substituting (A3) into (A1), we get
cn+ 1) =0+ a)mn) — acn — 1) + 2uy,(n)eyn)

— 2u(n) FF n(n)e(n) (A4)

where y,(n) = Q,fyh(n) is the rotated hidden output vector
and ey(n) is the error after the weight vector has con-
verged to uy. Taking the expectation of (A4) and using
the orthogonality principle E {§,(n)ey(n)} = 0, we have
E{cn + )} + QuA — (« + DD E{c(n)}
+aE{cn — 1} =0 (AS)

which is the second-order difference equation of E {¢(n)}.
In order to make the system stable, the roots of the fol-
lowing corresponding second-order equation of r; must be
within the unit circle.

P+ Quhy—a—Dri+a=0
i=1,2,--,N (A6)

For the value to be real, the discriminate B of (A5) must
be nonnegative. That is,

B = Quhy — a — 1)° — 4o = 0. (A7)
By solving this inequality, we get the conditions for y that
(1 - Ja) (1 + Va)
s 0 = —.

2Ny 2N

If0 < a < 1,then0 < p < 2 /Ny, and the roots of (A5)
are

(A8)

o+ 1-2uNg £ VB
r = 5 i=1,2+,N.

(A9)

For stability, let |r;] < 1 and the following four condi-
tions result:

a+1—-2uhy +VB<2 (A10a)
a+ 1 —=2uhy — VB <2 (A10b)
a+1—2u\; — VB> =2 (A10c)
o+ 1 —2u\y + VB > —2. (A10d)

If o > 0, (Al10a) is ensured. If p > 0and 0 < o < 1,
(A10b) is automatically satisfied. By rearranging (A10c).
we get an upper bound of u:
o+ 1

)\hi

w < (AlD)
Inequality in (A11) provides a relationship between p and
a. If & = 0, we get the well known upper bound of u for
the LMS algorithm, where ), is the maximum eigenvalue
of the correlation matrix. We know that « should be less
than 1, so the upper bound here will always be less than
that of the conventional LMS algorithm (i.e., p < 2 /X;).
With the condition in (A11), (A10d) is also satisfied.

If the roots of (A6) are complex, which means B < 0,
the solution can be written as

_oz-i—l—2;L)\;,,-ij\/4oz—(oz-&—1-—2;1)\;1[)2
r = 2
i=1,2, -+ ,N.

(A12)

If |r;| < 1, the solution will be stable [22]. By rearranging
(A12), this condition can be satisfied by the previous as-
sumption (i.e., a < 1).

Convergence Characteristics of the Hidden Layer
Weights

The hidden layer weight updating function is
wi(n + 1) = w;(n) + 2pe(n)u;(n)y,(n)
“ (1 = yy(m)x(n)

+ a[win) — win — D] (AI3)

In this case, it is much more difficult to pursue an analysis
as above because of the nonlinear sigmoid function in-
volved in the weight updating equation. By examining the
nature of the sigmoid function, we find that we can use a
group of linear functions to approximate it. Therefore,
some useful linear analysis algorithms and the results we
derived above can be applied to analyze the characteris-
tics of the hidden layer weight updating equation.

Let us first examine the product term y; (1) (1 — y4; (1))
in (A1), which we express here as g(x) = f(x)[1 — f(x)]
and f(x) = 1/(1 + e™"). We notice that g(x) is near 0
when |x| > 6 as shown in Fig. 16. In this case, (A13)
can be simplified to

win + 1) = win) + alw,(n) — w,(n — D] (Al4)

Following similar procedures to those above, we define a
rotated difference term between the optimal weight vector
and the actual weight vector as

e(n) = Q7 w;(n) — wpl. (A15)
By substituting (A15) into (A14), we get
cn+ 1) — (ax+ Den) + ac(n — 1) =0 (A16)

which is a second-order difference equation purely con-
trolled by «. The corresponding characteristic function of
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Fig. 16. A plot of function g(x) = f(x)(1 — f(x)) where f(x) = 1/ -
e ™). When |x| > 6, g(x) is near zero.

(A16) is

rP—(@+Dri+a=0 i=12---,N (Al7)

Its discriminate
B=(+ 1’ —4a=(1 - af?

is always larger than 0. Thus the function has only real
roots, which are

a+1+VB a+1t(-q
2 N 2

i=1,2,N

v =

and

rn = 1, rp = o. (AIS)
Here we use the assumption that « < 1. We can see that
this assumption is also the only condition to make |r;| <

1. The solution to the difference equation is
C,-(n) = Dl + Dza" (Alg)
and

lim ¢;(n) = D,.

n—o

(A20)

This equation means that all the weights will converge to
a constant value eventually instead of zero. This is equiv-
alent to a local minima problem in which the weights do
not converge to optimal values but converge to some other
values. This situation can happen if the linear summation
output of the hidden units keeps falling down to very non-
linear part of the sigmoid function. This partially explains
why normalization of the input data is necessary.

The analysis from (A14) to (A20) reveals a very inter-
esting difference between linear and nonlinear processes.
In the linear adaptive filters, there are more straightfor-
ward constraints for convergence; for example, an inap-
propriate scaled input vector can cause the filter to di-
verge. In this nonlinear adaptive filter, however, the
nonlinear function constrains the inappropriately scaled

input vector. But the tradeoff is that the weights can de-
viate from the optimal set or can even be trapped into
local minima. We can define this case as another kind of
divergence for the nonlinear adaptive filter, although the
values of weights and output do not become bizarre like
the divergence that occurs in linear filters.

When |x| < 6, a segment linearization method is de-
veloped to approximate the sigmoid function by a group
of linear functions. We expand the sigmoid function by
the zero and first order polynomial function:

f@) = flxg) + fx)x = ko + kyx
i=1,2,---,L (A21)

where f'(x) is the first derivative of f (x) and L is the num-
ber of linear segments. We select xo; = 0, +1, +2, £3,
+4, £5, respectively.

ky, = [0.04, 0.09, 0.18, 0.33, 0.47, 0.5, 0.53, 0.67,
0.81, 0.91, 0.96]

and
k, = [0.007, 0.018, 0.045, 0.11, 0.2, 0.25, 0.2,

0.11, 0.045, 0.018, 0.007]

Therefore the sigmoid function can be linearized as

1

fo = 1+e™*
0 x < —6
kOl + k“x —-6=<x=< —4.5
ko + kppx 45 <x< -35

_ 0 12 . (A22)

kOL + lex 45 <x < 6
1 6 <x

Fig. 17 provides an overlay which shows that the segment
linearized function is a very good approximation of the
original sigmoid function. By substituting the segment
linearized function for the original sigmoid function, we
rederive the back propagation learning algorithm. The
output of the filter is

N
yn) = 2 mf 0] %) + o

M =

P . T ~
uj(k()[] + k”}wj : x,,) + Uy

j=1

M=

N
, . T . .
ujk()[j + jzl u}-k”jo X, + dy

j =

1=1,2,---,L (A23)
The error between the desired output and the actual output
is e(n) = d(n) — y(n), and its square is

e = [dn) — ym)I*. (A24)
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Fig. 17. A piecewise linear approximation of the sigmoid function. Solid
line: sigmoid function. Dashed line: piecewise linear approximation.

The partial derivative of the error square with respect to
w; is
de

dy .
o= 2e(n) B = —2e(n)i,k;x,

ow; )

(A25)

So the gradient descent algorithm for updating the weight
vector w; of the hidden layer becomes

wi(n + 1) = wi(n) + 2ue(n)i;k ;x(n)

+ afw;(n) — wi(n — D].  (A26)

Comparing (A26) with the original weight updating func-
tion of (A13), the nonlinear part y,;(n) (1 — y,;(n)) is re-
placed by a tangent value of f(x) at that segment. Com-
parison of (A26) with (Al), the output layer weight
updating function, shows that they are very similar; both
are second-order linear difference equations of weight
vectors. The only difference is that in (A26), the two value
i;, which is the weight connected to jth hidden unit from
the upper layer and k;; are multiplied by the updating
term. If we let i = uii;kyj;, (A26) becomes

wi(n + 1) = wj(n) + 2jie(n)x(n)

+ a [w;n) — win — D] (A27)

which has the same form as (Al). Thus all the analyses
in the last section can be applied to (A27) by replacing u
by fi. Let us study the upper bound condition of (A23)
under the new step size ji. The upper bound of the hidden
layer step size ji is

A<a+1=>ﬁk <oz+l
PR TN
a+ 1

= pu< . (A28)
ujk”j)\x,-

If we assume that the upper layer weight connected to ith
hidden unit has little change (this is the case when the
process is near convergence), the upper bound of p is
changed with the different tangent of the sigmoid func-
tion. In the nonlinear portion of the sigmoid function, the

value of k,; is very small. The upper bound of x then gets
larger. While in the near linear part of the sigmoid func-
tion, the value of k; is relatively larger, and the upper
bound of y is smaller.

We know that the local minima in the error surface are
introduced by the combination of nonlinear functions, for
example, the weighted summation of the sigmoid func-
tions. Preceding analysis of the difference equation for
every nonlinear portion of the sigmoid function showed
that weights can be trapped to some nonoptimal values.
The condition in (A28) gives us a possible way to improve
this problem. We can use a larger step size for smaller
tangent values, (i.e., the more nonlinear portions of the
sigmoid function). This larger step size can help the pro-
cess ‘‘jump’’ out of the possible local minima.
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