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Critical points and transitions in an electric power transmission model
for cascading failure blackouts
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Cascading failures in large-scale electric power transmission systems are an important cause of
blackouts. Analysis of North American blackout data has revealed power law~algebraic! tails in the
blackout size probability distribution which suggests a dynamical origin. With this observation as
motivation, we examine cascading failure in a simplified transmission system model as load power
demand is increased. The model represents generators, loads, the transmission line network, and the
operating limits on these components. Two types of critical points are identified and are
characterized by transmission line flow limits and generator capability limits, respectively. Results
are obtained for tree networks of a regular form and a more realistic 118-node network. It is found
that operation near critical points can produce power law tails in the blackout size probability
distribution similar to those observed. The complex nature of the solution space due to the
interaction of the two critical points is examined. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1505810#
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From the analysis of a 15-year time series of North
American electric power transmission system blackouts,
we have found that the frequency distribution of the
blackout sizes does not decrease exponentially with th
size of the blackout, but rather has a power law tail. The
existence of a power tail suggests that the North Ameri-
can power system has been operated near a critical point
To see if this is possible, here we explore the critica
points of a simple blackout model that incorporates cir-
cuit equations and a process through which outages o
lines may happen. In spite of the simplifications, this is a
complex problem. Understanding the different transition
points and the characteristic properties of the distribu-
tion function of the blackouts near these points offers a
first step in devising a dynamical model for the power
transmission systems.

I. INTRODUCTION

In spite of technological progress and great investme
to ensure a secure supply of electric energy, blackouts of
U.S. electric transmission grid are not uncommon. In the
three decades, blackouts have been happening on avera
one every 13 days.1,2 Furthermore, analyses of 15 years
North American blackout data show a probability distrib
tion of blackout sizes has a power tail.3–5 The power tails
indicate that large blackouts are much more likely than mi
be expected from Gaussian statistics. Understanding
analyzing these power tails is important because of the e
mous cost to society of large blackouts.

Detailed analysis of large blackouts has shown that t
9851054-1500/2002/12(4)/985/10/$19.00

wnloaded 06 Mar 2007 to 128.104.198.190. Redistribution subject to AIP 
ts
he
st
e of

t
nd
r-

y

involve cascading events in which a triggering failure pr
duces a sequence of secondary failures that lead to blac
of a large area of the grid.6 Cascading events and power ta
in the probability distribution function are suggestive of
complex system operating close to a critical point. It is the
fore important to explore this possibility for electric pow
systems.

General approaches from the perspective of netw
structure have been developed in studying properties
power system networks.7,8 We have proposed9–11 an electric
power transmission model to study the dynamics of bla
outs. This model~The model of Refs. 9–11 includes slo
dynamics of load increase and network upgrade as wel
fast dynamics of individual cascading blackouts. In this p
per, we assume a fixed network and only study the fast
namics of the model of Refs. 9–11! captures features of cas
cading outages and is consistent with the standard dc po
flow equations12 for a given network structure. In this pape
we analyze the critical points of this model as a function
the increasing power demand. Transition points have b
identified for other types of networks, like traffic models,13

computer networks,14 and neural networks.15

In the present calculations, we have considered t
types of networks. One type is the idealized tree netw
such as the one shown in Fig. 1. These networks are us
because their symmetry allows the use of very few free
rameters and the properties of the network can be studie
increasing its size in a self-similar manner. Although the t
network is an artificial network with more regularity than
real power network, the three lines incident on each nod
approximately the average for large power networks. We a
© 2002 American Institute of Physics
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have considered the IEEE 118-bus network13 shown in Fig. 2
to test whether the main results obtained for the ideal n
works are relevant for more realistic networks.

The paper is organized as follows. Section II describ
the model for the electric power transmission that we use
study blackouts. The solutions of this model applied to id
tree networks are discussed in Sec. III. As the power dem
increases, several transition points are identified. The st
ture of the solutions and transition regions are presente
Sec. IV. Section V discusses the effect of fluctuations in
power demand and calculates the probability distribut
function of the blackout size. Application of this model to
more realistic network is presented in Sec. VI. Finally, t
conclusions are given in Sec. VII.

II. ELECTRIC POWER TRANSMISSION MODEL

We use a simple model to describe the electric pow
transmission network as a set of nodes interconnected
transmission lines. The network nodes represent loads~L!,
generators~G!, or combinations of load and generation. T

FIG. 1. A 94-node tree network with 12 generators~gray squares! and 82
loads~black squares!.

FIG. 2. Diagram of the IEEE 118 bus network. Generators are gray squ
and loads are the black squares.
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network nodes are characterized by the input power,Pi ,
which is positive for generators and negative for loads, a
in case of generators, the maximum power that a gener
can supply,Pi

max. Each network transmission line connec
two nodes,i and j , and is characterized by the power flo
through the line,Fi j , the maximum power flow that it can
carry, Fi j

max, and the impedance of the line,zi j . This model
allows the consideration of any interconnected network w
NN5NG1NL nodes andN1 lines, whereNG is the number
of generators andNL is the number of loads.

The ‘‘dc power flow’’ equations are used to study th
power flow through the network; they give a linear relatio
ship between the power flowing through the lines and
power input at the nodes. This approach is a standard wa
analyzing a power transmission system12 and it is equivalent
to a linearized version of the more common problem of so
ing for the voltages and currents in a circuit. The dc pow
flow equations can be written as

F5AP, ~1!

where F is a vector whoseN1 components are the powe
flows through the lines,Fi j , P is a vector whoseNN21
components are the input power of each node,Pi , except the
reference generator,P0 , andA is a constant matrix, whose
elements can be calculated in terms of the impedance of
lines. More detail on Eq.~1! is given in the Appendix and in
Ref. 12.

For a given load power demand and the grid parame
defined above, the system of equations~1! does not have a
unique solution. There are many ways of choosing a com
nation of generator powers to satisfy a given load dema
Therefore, to find the solution to this system, we chose
optimum combination of generator powers. Optimization
a real power transmission system accounts for many fact
from safe operation to economic gain. Here we use a s
dard optimization approach,16–18 and we solve the powe
flow equations, Eq.~1! while minimizing the simple cost
function:

Cost5 (
i PG

Pi~ t !2W(
j PL

Pj~ t !. ~2!

In this model, we assume that all generators run at
same cost and all loads have the same priority to be ser
However, we set up a high price for load shed by sett
W5100. The minimization of the cost function is done wi
the following constraints.

~1! Limits on the generator power: 0<Pi<Pi
max iPG;

~2! The loads must remain such and cannot generate po
Pj<0 j PL;

~3! Power flow through the lines is limited:uFi j u<Fi j
max;

~4! The total power generated and consumed must bala
( i PGøLPi50.

This optimization problem is a standard linear programm
~LP! problem.16,17 It is numerically solved using the simple
method as implemented in Ref. 19.

It is useful to introduce the quantity
es
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Mi j [
Fi j

Fi j
max. ~3!

This quantity is the fraction of overloading of the line co
necting the nodesi and j . We use the quantitiesMi j and the
power produced by each generator to describe the solutio
the optimization problem. A line withMi j ,1 still has mar-
gin to carry more power. We consider that a line is ov
loaded if the power flow through this line is within 1% o
Fi j

max.
The entire process has several sources of nonlinea

The constrained optimization used to solve Eq.~1! intro-
duces nonlinearity because the active constraint can cha
Looking at a sequence of solutions as a function of the t
power load, we see that they are piecewise linear. This is
type of nonlinearity introduced by constraints. The lines t
overload are detected by the threshold conditionMi j 51, and
the line outage is implemented by changing the structure
equations and constraints; and all of these processes are
linear.

A cascading overload may start if one or more lines
overloaded in the solution of the linear programming pro
lem. In this situation, we assume that there is a probabi
p1 , that an overloaded line will suffer an outage. When
solution is found, the overloaded lines of the solution a
tested for possible outages. If there is one or more line o
ages, we multiply the line impedance by a large number,k1 ,
and divide its correspondingFi j

max by another large number
k2 . In this way, there is practically no power flow throug
this line. This method models well the effect of a line outa
and avoids the singularity in the matrix that would res
from removing the outage line. Once the power flow throu
the lines is reduced, a new solution is then calculated. T
process can lead to multiple iterations, and the process
tinues until a solution is found with no more line outage
This cascading effect introduces another nonlinearity into
problem. The overall effect of the process is to generat
possible cascade of line outages that is consistent with
network constraints and optimization.

III. SOLUTION OF THE POWER FLOW EQUATIONS
FOR IDEAL NETWORKS

Most of the results presented in this paper are based
tree networks. Although the tree networks are artificial n
works with more regularity than a real power network, t
three lines incident on each node is approximately the a
age for large power networks. In a real power network,
generation is dispersed in a variable manner throughout
network. In order to study a more ordered case, the gen
tors in the tree networks are placed at nodes in the t
generation level. An example of a tree network with
nodes is shown in Fig. 1. For all the tree networks cons
ered, we keep the generators at the nodes indicated in Fi
As we increase the size of the network, that is the numbe
nodes, we add links to two more loads for all the loads at
edge of the network. If we call each family of added load
generation, the example in Fig. 1 has five generations
nodes. The number of nodes of a tree network as a func
of the number of generations isNN5332n22. Because of
wnloaded 06 Mar 2007 to 128.104.198.190. Redistribution subject to AIP 
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the network structure and the equal impedance of the line
is logical to have the maximum power flow of a line
generationk to decrease as 2(32k). That is, the maximum
power flow of lines in generationk11 is half of the maxi-
mum power flow of lines in generationk. Note that the gen-
erators are located in the third generation. For the calc
tions presented here, we consider tree networks with 46,
190, and 382 nodes.

Because of the symmetry and simplicity of these n
works, we can work with a single control parameter, the to
load power demand. We generate a sequence of solution
the power flow equations for increasing values of the pow
demand. To be able to reduce the parameters to a si
parameter, we take the loads to be equal to the averaged
power demand per load times a random numberr , such that
22g<r<g, where 0<g<2. This random fluctuation of the
loads allow us to explore different solutions for a give
power demand and carry out statistical analysis of these
lutions. First, we look for solution at very low power deman
and without load fluctuations so thatg51. Here, low power
means low compared with the total generation capacity
the system,PC5( j PGPj

max, and low enough to avoid any
line overload. Under these conditions the solution is re
tively simple. For all lines in the rings outside the ring
generators, the value ofMi j is the same. This is just a con
sequence of our choice of values forFi j

max and the symmetry
of the system. For a particular example withNN5382 and
PD /PC50.3, the values ofMi j for all lines are plotted in
Fig. 3. The lines outside the generator ring have line numb
greater than 12 and haveMi j 50.601. The lines in the inne
region of the network have smaller values because of
redundancy of lines in this region. In spite of the symme
of the system, an optimal solution does not have the sa
power output for all generators. Figure 4 shows the distri
tion of the power output among the generators. We can
that the power output of generator 12 is practically zero a
that generator 11 has somewhat reduced power; all the o

FIG. 3. Fraction of overload of the lines in the 382 node tree netw
operating atPD /PC50.3, well below any of the limits of the system.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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generators operate at maximum capacity. In this type of
lution, some generators are being kept as backup genera
Therefore, the LP optimization has the effect of operating
system in an inhomogeneous way, in spite of its symme
Because the power demand for all loads is the same, so i
power delivered to each load. A list of detailed paramet
used in the calculation for those networks are given in Ta
I.

In this low power demand regime, the system is anal
cally soluble. For a network withn generations of nodes an
without load power fluctuations, the power demand per lo
is PD /(332n214). Therefore, the power flow through th
lines that connect nodes of the generationk– 1 to nodes of
the generationk is

Fi j 5
2~2n2321!

2k23~332n214!
PD. ~4!

Having the power flows in all lines, the problem is esse
tially solved.

As the power demand increases, but stays small in
sense previously described, the solution is qualitatively
same. In this case, the values ofMi j increase linearly with
the power demand, as can be seen from Eq.~4!.

FIG. 4. Fraction of the power produced by the 12 generators in the 382
tree network operating atPD /PC50.3, well below any of the limits of the
system.
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IV. TRANSITION POINTS FOR AN IDEAL NETWORK

As the power demand continues to increase, the mo
has several transition points. These transitions represe
change in the character of the solutions. These transitions
be characterized by two complementary measures of
blackout size. One of these measures is the load shed
situations in which the power demand cannot be met by
generators, either because of insufficient capacity or beca
of a transmission line outage, the only way of finding a s
lution is by shedding load and partially or totally blackin
out some nodes. In this case, the power demand is not
and the power served is lower than the demand. In w
follows, we use the load shed divided by the power dema
PS /PD , as a measure of blackout size. The other measur
blackout size is the number of line outages in the final so
tion.

The different transitions are caused by different limits
the power system. The limits can be grouped in two type

~1! Limits set by the available power generation. It is cle
that the system cannot supply more power thanPC , the
total maximum installed generator capacity.

~2! Limits set by the transmission capacity of the grid. Ea
line has a maximum power flow that it can carry,Fi j

max.
This maximum sets the limit for each line and, as a
sult, limits the total capacity of the network.

An example with two of these limits is shown in Fig. 5
For a tree network with 382 nodes~12 generators and 37
loads!, we increase load power demand by increasing
loads at the same rate. In this example, the load dem
increase is continuous, and we have not included rand
fluctuation in the load demands (g51). As the power de-
mand reaches the total generator capacity,PD /PC51, and
load shedding begins. As the demand continues to incre
all power abovePC is shed. The nodes in the outermost rin
of the network are progressively blacked out. Wh
PD /PC51.45, the power flow in some lines reaches the l
power flow limit, and some line outages are produced. Th
line outages disconnect parts of the network from the g
erators and more nodes are blacked out. These black
further increase the load power shed.

Why is there a second transition even after the to
power served is kept constant and is therefore independe
the level of demand? The reason is that the individual lo
increase, and the power shed is not uniform over all loa
Therefore, even if the total power served is constant,
power delivered to some of the loads is increased as the

de
.00
TABLE I. Values of the parameters used for the tree networks. All lines have impedancez51.

NN PL PG

Fmax

n50
Fmax

n51
Fmax

n52
Fmax

n53
Fmax

n54
Fmax

n55
Fmax

n56

46.000 274 2623.9 15620 7748.7 3812.9 1844.9
94.000 274 2623.9 15620 7748.7 3812.9 1844.9 860.97
190.00 274 2623.9 15620 7748.7 3812.9 1844.9 860.97 368.99
384.00 274 2623.9 15620 7748.7 3812.9 1844.9 860.97 368.99 123
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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demand increases while others are blacked out. That incr
in power demand to those loads leads to overloaded l
connected to them and possible line outages. The sec
transition point occurs at the same value of the power
mand. This transition occurs even in the absence of the
critical point because it depends on the power of individ
loads and the maximum power flow that the lines connec
them can carry. These results come from studying a sequ
of cases under the same conditions but without random
fluctuations. The important point is that the first transiti
point is a function of the total power demand, while t
second transition point depends on the local value of
loads near the lines that are closer to overload. Furtherm
we have chosen the network parameters in such a way
most lines reach their limit for the same value of the pow
demand. In a general, inhomogeneous network, that is
the case, and the second transition breaks into multiple t
sitions.

For the calculation shown in Fig. 5, we have used
power demand as the control parameter, and we have do
scan starting with all load nodes having the same po
loads and no fluctuations. We can look in more detail at
solutions in the region between the two transition thresho
In this region, the solutions are well behaved and hav
continuous character as a function of the power dema
Because there is power shedding, theMi j of some lines is
now lower than the others because some loads are at n
zero power. This example is shown in Fig. 6 for a case w
PD /PC51.04. Because the system is working at full cap
ity, all generators deliver their maximum power. As t
power demand continues to increase, the system reache
second threshold atPD /PC51.45. At this value of the powe
demand, several lines reach their maximum loading ofMi j

FIG. 5. Normalized power shed and number of line outages for a
network with 382 nodes as a function of power demand.
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51, as shown in Fig 7. To identify this transition point, it
useful to introduceMmax[max

ij
Mij . Then, the second trans

tion in Fig. 5 is given byMmax51. Above this threshold,
there are multiple outages, the power shed is large, and
value ofMi j in the few operating lines is low. An example o
this erratic distribution of values ofMi j is shown in Fig. 8
for PD /PC51.73.

When the second threshold atPD /PC51.45 is crossed,
the solution does not appear to be continuous in the po
demand. We have done the calculation forp151. That is, all
overloaded lines suffer outages. In this case the problem
principle deterministic, but the solutions behave erratica
above this threshold. This behavior can be better seen
plotting Mi j in a two-dimensional plot as a function of powe
demand and line number. This plot is shown in Fig. 9~for the

e

FIG. 6. Fraction of overload of the lines in the 382 node tree netw
operating atPD /PC51.04, just above the maximum generator power lim
but below the limits of any of the lines.

FIG. 7. Fraction of overload of the lines in the 382 node tree netw
operating atPD /PC51.45, just at the limit of a set of transmission lines
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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same case as Fig. 5!. There is a uniform pattern of solution
below the second threshold, and a complex pattern of s
tions above the second threshold. In the region above
second threshold the solutions are not really discontinu
with the power demand. If we look at Fig. 9 with increas
resolution, we see a sequence of bands of solutions. W
each band the solutions are continuous with the power
mand. However, every time that a new line hits its limit, t
solution changes. Small variations in the power dema
cause new lines to reach their limits and that causes the
parent erratic behavior of the solutions.

FIG. 8. Fraction of overload of the lines in the 382 node tree netw
operating atPD /PC51.73, above the limit of the transmission lines.

FIG. 9. Two-dimensional plot of the fraction of overload of the lines in t
382 node tree network as a function of line and power demand.
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The symmetry of the network results in a peculiar b
havior of the thresholds. As the power demand continue
increase above the values shown in Fig. 5, it reaches a p
at which all the loads on the outermost ring of the system
blacked out. At this point the system behaves as a tree
work with 192 nodes, and an ordered solution is found. N
all lines have power flow below their maximum possib
value, and the solutions behave like the ones in the reg
1<PD /PC<1.45. This situation continues until another s
of lines becomes overloaded and the system transition
erratic solutions. In Fig. 10, we show a plot like the one
Fig. 9, but extending to larger values of power demand.
can see alternating bands of erratic and organized soluti
Therefore, there are many possible transition points depe
ing on the two conditions listed above and the symmetry
the network.

The properties of the transitions forMmax51 depend on
the value ofp1 , the probability that an overloaded line wi
suffer an outage. Ifp150, there are no line outages, th
Mmax51 transition point no longer exists, and the load sh
is a continuous function of the power demand. However,
p151, all overloaded lines suffer outages. As we have
ready indicated, this is the value ofp1 used in the calculation
shown in Fig. 9 and the transition is characterized by a d
continuous jump in the load shed. In Fig. 11, we show e
amples of transitions for different values ofp1 . For values of
p1 in the interval~0, 1!, for instance forp150.1, we have an
intermediate situation with the jump in the load shed at
transition point being smaller than in the case withp151.

In these calculations, we have chosen the parameter
that the power generation limit is reached for lower pow
demands than the line limits. The reason for this choice is
get a clear separation between the different transitions. H
ever, in general, the transitions are not organized in any
ticular way, and the way that they occur depends on a m

k

FIG. 10. The same plot as Fig. 9, but for an extended range of po
demands.
license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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tiplicity of parameters. The separation between the transi
points may disappear when the load values fluctuate as
cussed in the next section.

There are several possible numerical implementation
the optimization algorithm to solve the power transmiss
model. The solutions in the ordered bands are found to
independent of the solver used and so are the trans
points. However, the solutions in the erratic bands may
pend on the numerical method. This possibility is not surp
ing because the solution depends on the order that the
straints are applied, and there is irreversibility in t
cascading process.

V. EFFECT OF LOAD FLUCTUATIONS NEAR THE
TRANSITION POINTS

To understand the statistical properties of the solution
the power transmission problem near the transitions, i
interesting to introduce fluctuations in the values of the lo
around an averaged value given by the power demand
load. The load fluctuations are controlled by the parameteg
as described in Sec. III. We no longer necessarily apply
random fluctuations to each node independently of the
ers. We group nodes by regions and vary equally all
nodes in a given region. The reason for this grouping is
simulate weather effects that normally are not limited to
single power distribution center, but rather affect to a wh
region of the country. For a given value ofg, the standard
deviation of the fluctuation induced in the total power d
mand iss5(g21)/(2ANF)PD . HereNF is the number of
independent regions in the network. When we operate
value of PD /PC close to the generator limit, the load fluc
tuations may reach the generator limit. Furthermore, ifs is
large enough, the fluctuations may hit both the genera
limit and some of the transition points associated w
Mmax51. In this situation, it is interesting to analyze th
properties of the solutions whenPD /PC,1, and we vary the
parameterg.

FIG. 11. Normalized power shed for a tree network with 382 nodes a
function of load power demand. Results for three different values of
probability for overloaded lines to outage are plotted.
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We have done a sequence of calculations withg51.9
andPD /PC varying between 0.3 and 1.5 for the tree netwo
with 382 nodes. For each set of parameters, we have con
ered 60 000 cases by random variation of the loads. T
number of cases has allowed accumulating enough stati
to calculate the probability distribution function~PDF! of the
amount of load shed. Load power shed is one measur
blackout size.

In Fig. 12, we have plotted the PDF of the load pow
shed normalized to the power demand for three values
PD /PC . Well below the critical point, the PDF is peaked
low values of the power shed and has a tail falling off as
22 power of the load shed. This type of PDF is a con
quence of the network structure we have considered. It
be shown analytically that a single line failure leads to
blackout PDF decaying asP22. High above the critical
point, it has a highly peaked form with mean value at hi
values of the power shed. As the power demand reache
the critical point, the PDF develops a power tail with a dec
index close to21. This is indicative that some of these tra
sitions have the properties of critical transitions.20,21 For the
parameters used in Fig. 12, the level of fluctuations is h
enough to reach the critical value for a power demand
30% below the generator limit. We have included a proba
ity of a random line failurep051024. Because of the finite
size of the system, there is an exponential cutoff in the P
To positively identify the power tail region, it is important t
consider large networks and do finite size scaling of the
sults. In Fig. 13, we compare the PDF close to the criti
point for a 46-node tree network with the 382-node tree n
work. We can see that the algebraic region of the tail expa
as the network size increases.

Similar behavior has also been observed in a simple a
lytic model of cascading failure and in a power transmiss
system model that represents cascading failure becaus
hidden failures of the protection system.22

a
eFIG. 12. PDF of the normalized load shed for a tree 382-node tree netw
for different levels of the power demand.
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VI. ANALYSIS OF A MORE REALISTIC NETWORK

The properties described in the previous sections for
ideal tree networks also apply to more realistic networ
However, it is more difficult to make a proper identificatio
of the transition points in more realistic networks because
the variations in line limits and line flows. Moreover, fo
more realistic networks, the total power demand is no lon
a unique parameter to vary in order to produce the crit
points, and a proper parameter representation requires a
tidimensional space.

We have used one of the standard networks for po
system studies, the IEEE 118 bus network,14 as an example
of a more realistic network. The values of the paramet
used in these calculations are given in Ref. 14. Figure

FIG. 13. Comparison of the PDFs of the normalized load shed 46-node
382-node tree networks.

FIG. 14. Normalized power shed and number of outaged lines for the IE
118 bus network as a function of power demand.
wnloaded 06 Mar 2007 to 128.104.198.190. Redistribution subject to AIP 
e
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f
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r

rs
4

shows a power demand scan for the IEEE 118-bus netw
similar to the scan for the ideal network in Fig. 5. In partic
lar, Fig. 14 shows the load shed and the number of l
outages as a function of the power demand. There is a cri
point caused by the maximum generator power slightly
low PD /PC51.0. However, theMmax51 critical points are
spread over a large range of power demand, even be
PD /PC51.0.

In Fig. 15, we have plottedMi j in a two-dimensional
plot as a function of power demand and line number. Fig
15 is the analog to Fig. 9, and we can see that Fig. 15 sh
more structure than Fig. 9. That should be expected bec
the fraction of overloads for each line have different valu
and they reach the limit for very different levels of pow
demand. However, there is a continuous dependence o
solutions with power demand forPD /PC,1.1, except for a
narrow band with one line outage. WhenPD /PC51.1, there
are many transitions associated withMmax51. In this region,
the solutions lie in narrow bands that change in an err
way because different lines reaching their power flow limi
Thus, we observe the same qualitative behavior of the s
tions as for the ideal networks. However, the limits asso
ated with the line limits are now spread over a range
values of the power demand, and the associated jumps in
loads shed are individually smaller than in Fig. 11, in whi
many of these limits happen at the same power dem
level.

When the load scan is done allowing fluctuation of t
loads, we can calculate the probability distribution functi
of blackouts for different values of the mean load demand
this case, the PDF at low values of the power demand

nd

E

FIG. 15. Two-dimensional plot of the fraction of overload of the lines in t
IEEE 118 bus network as a function of line and power demand.
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close to a Gaussian function, because a single line fai
does not induce large blackouts. As was the case in the i
networks, we observe in Fig. 16 the appearance of a po
tail in the proximity of the critical points. Because the ne
work has only 118 nodes, the decay index is difficult to d
termine, as we discussed in relation to the comparison sh
in Fig. 13.

VII. CONCLUSIONS

The power transmission model discussed in this pa
has two types of transitions in its cascading failure blacko
as the load power demand is increased. The first type
transition is because of the limit on total generator capac
The second type of transition is due to the power flow lim
of the network lines. If we characterize the blackouts by
amount of load power shed, we can see that at the first t
sition point the power shed starts increasing with the po
demand. Its value is continuous at this point, but its deri
tive is discontinuous. Therefore, it has the characteri
properties of a second order transition.

The second type of transition is characterized by a s
den jump in the power shed. Both the value and the der
tive of the power shed as a function of the power demand
discontinuous at these transition points. These transiti
caused by limitations in the transmission lines, are simila
a first-order transition. They can lead to solutions of the s
tem that appear to be erratic as the power demand chan
There are many narrow bands of solutions and the edg
each band corresponds to a line limit.

Some of these transition points have the character
properties of a critical transition. That is, when the lo
power demand is close to a critical value, the probabi

FIG. 16. PDF of the normalized load shed for the IEEE 118 bus network
different levels of power demand.
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distribution function of the blackout size has an algebr
tail, and, at the critical loading, the risk for blackouts i
creases sharply.

The general results found for ideal, homogeneous t
networks have also been reproduced in the more real
inhomogeneous case of the IEEE 118-bus network. Th
calculations confirm the robustness of the results.

Analyses of 15 years of North American blackout da
show a probability distribution of blackout size that has
power tail3,4,23 similar to the power tails found in this pape
near the critical transitions. This analysis suggests that
North American power system may be operated close
these critical transitions. Such operation may be the res
of competing forces, such as the secular increase of
power demand and the upgrading of the power system
response to this demand leading to a complex dynam
behavior. These competing forces may lead to a comp
dynamics evolution of the power system. This possibility
under investigation.9–11
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APPENDIX: THE dc POWER FLOW MODEL

In the dc power flow model, the bus~node! voltages are
60 Hz phasors specified by complex number magnitude
phase. Uniform voltage magnitudes normalized to 1 are
sumed so that the voltage magnitude is 1 and the volt
phase isu i , where u i is the voltage angle at busi . The
reference bus has voltage angle zero. Then ann-dimensional
vectorQ of voltage angles can be defined including the ze
angle of the reference bus.

The transmission lines are characterized by transmis
line susceptance,bi j . Since transmission line resistance
neglected,bi j 51/zi j where zi j is the line inductance. The
Nl3Nl matrix B is defined by

Bii 5 (
node j connected to nodei

bi j ,

Bi j 52bi j .

~A1!

The transmission line susceptance accounts for sus
tance of the transmission line as well as the susceptanc
transformers in the line.

r
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From standard ac circuit equations10 and after lineariza-
tion we have the following relation between the power inp
at the nodes and the voltage angle

P5BQ. ~A2!

Here,P is the vector defined in Sec. II. The matrixB must
be singular (B has rankNN21) because of the constrain
(k50

NG Pk50. Inverting Eq.~A2!, allowing for the constraint
and using the zero angle of the reference bus, we obtain
voltage phase in terms of the power generator of each n
Q5XP.

The flow on the line connecting busi to bus j is Fi j

5bi j (u i2u j ). Therefore, combining all these relation w
obtain Eq.~1!.
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