
SPECIAL SECTION 
Industrial Process Control 

By James B. Rawlings 

rovicling a reasonrtlAy accessible and self-con- ' tained tutorial expositinn on mutlei prcclictivc 
control (MPC) is the pui'pose ni this article. [ t  Is 
aimed at readers with control expertlse, particu- 

larly practitioners, who wish to broaden their pcrspcctivc 
in the M I T  area of control technology. We introduce the 
concepts, provitlc a tra~neworlr in which the critical issues 
can lie exprcsscd and analyzed, and point out how MPC al- 
lows practitioners to addrcss the trade-offs that must Iw 
considered in i~npleniciiting a control tectinology. 

The MPC rcsearch literature is by ROW large, but review 
articles have appeared at regular intervals. We strould point 
tlicse oiit I)clorc narruwirlg the focus in thc interest of pre- 
sentin!: a reasonably sclf-contained tutorial for Lhr?  
notiexpert. Thc thrce MPC papers presentecl at the Cl~emi- 
cal Prnccss Control (CPC) V conference in 1996 are an  excel- 
1011t starting point [2]-[4]. Q i n  and Badgwell present 

comparisons of industrial MPC algorithms that practitio- 
ners may find particularly useful. Chen and Allgiiwer ancl 
Morari and Lec provideother rcccnt reviews [SI, [F]. Kwon 
provides a very cxtensive list of referenccs 171. Moreover, 
several excellcnt books haveappeared rcccntly [SI-[ 101. For 
those intcrestecl in the statiis of MPC for nonlinear plants, 
[ 111 would he of strong interest. Vi~ially, Allgowcr and co- 
workers have l~resentcrl a recent minicourse covering the 
area [12]. 

Models 
The essence of MPC is to optimize, ovw the ninnipiilalAe in- 
puts, forecasts nf process behavior. The forecasting is ac- 
complishetl wilh nprocess mutlel, and, thcrcfore, tlicrnatlcl 
is thc csscntial elenlent nE an MPC controller. As discussed 
subscqumtly, models arc nnt perfect forecasters, and feerl- 
back c m  overcome sotiic cftects of poor Innricls, but starL- 
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in2 with il poor prnccss morlcl is akin toclrivinga cor at night 
without licadligh~s; thc tcctlback ioay bc abit l a ~ c  to bc truly 
clfcctivc. 

Linear Models 
Historically, the models of choice i n  earlyindustrial MPCap 
plirntinns wcrc time rlnninin, i~iput/output, stcp, or itnpulsr! 
rcspnnsc inodcls [ 1314 15]. Part of thc early appeal of MPC 
for l~ractitioners i11 the process industrles was iiridoubtedly 
the eiiSe of unrlerstnnding proviclccl hy this model form. It 
has liecome inorc coinmoii Cor MPC rcscarchcrs, howcvcr, 
tn discuss linear models in state-space Form: 

Y L C X  y, = c x j  
in whichx is the Rvector of siales, y is the pvcctor of (mea- 
surable) outputs, II is the irwectorof (inariipulable) inputs, 
and is the contiriuous-time anrl j is the discrete-tirne satn- 
plc niitnber. Coriti~iuoiis-time models rnay be inore familiar 
tn ttinsc with a classical control background in iransfer 
functions, biil tliscrcte-time riiotlels are very convenient for 
digital computer iniplcincntntinn. With abuse of notation, 
wc iisc ttic same system rriatrices (A.U,C) fur either model, 
h i t  the suhsrqiicnt rlisc~~ssiori focuses on discrete time. 
Transformation from continuous-time t o  discrete-time 
inorlcls is availalileas a ondirie coni~riand in  a lalvgllage like 

Octave or Mh'l'LAR. Linear models I n  the process industries 
are, bytheir nnturc, empirical morlelsancl idcntificd from in- 
put/output clatn. The idealmodcl form for identification pur- 
poses is perhaps best Icft to the experts in identification 
theory, but asurvcy of that literature irtdicatcs no rlisadvan- 
iage to tising state-space iriodels inside thc MPC controller. 

The discussloti of MPC in statespacc form has several acl- 
vantages, IriclidiIig easy generalization 10 multivariable sys- 
tems, ease of analysis of closed-loop liroperties, and onliiie 
computation. F u r h r m o r e ,  startirig with this model form, 
thc wealth of linear systems theory-the linear quadratic [Lo 
regulator theory, Kalnian filtering tlienry, internal inortcl 
principle, etc.-is irnmecliateIy accessible for iisc in MPC. Wr! 
clanonstratc the usefulness of these tools subsequently. 

A word of caution is also hi order. Categories, traine- 
works, and viewpoints, while iiiclispensnble for clear tbink- 
ing ancl coinmutiicatlon, rnay blind us t o  othcr possibilitics. 
We should resist the easy tcniptation to tortnulate all con- 
trch issues from an I Q ,  state-spacc framework. The ten- 
dency is to focus on those issues that are easily imported 
into the dominant framework while neglecting othcr issues, 
of posslbly equal or greater import tn  practicc, which are 
difficult to analyze, awkward, anrl inconvenient. 

From a theoretical perspective, the signi1icant shift in 
proldem Iortnulation came front the MPC practitioners who 
insisted on ~nnirttaini~ig cotistraints, particularly input con- 
straints i n  the prolAem Iorinulation 

inwhicl~D,Marcthcconstrainlmatriccs and d,/rarepositivc 
vcctnrs. Thc cniwtraint region boundaries are straight lims, 
as shown in Fig. 1. At this point we are assumliig that 
x = O , r r  = O  is thcstenclystatetowl~ichwe arecontrollitigthc 
prorcss, but WP treat the niorc general case sul~seqiiently. 

Optimization over inputs subject to hard constraints 
leads immediately to nonlinear control, ancl that departure 
Irom the well-understood ancl well-tested linear control thc- 
ory provided practitioners with an important, new control 
techrioluyy arid motivated researchers to better unrler- 
stand this new framework. Certainly optimal ctintrol with 
constraints was not a uew concept iri the 1970s, but the mov- 
ing horizon implementation of these open-loop optimal con- 
trol solutions subject t o  constraints at each sample timc 
was the new twist that had riot been fully irwestigatetl. 
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Nonlinear Models 
The use ofnonljnear models in MPC is rnotivatcd bythe pos- 
sibility of improving control by improving the quality of the 
forecasting. The fundatnentals in any proccss control proh- 
lei-conservation of tnass, momentum, and energy; con- 
siderations of phase equilibria; relationships cif chemical 
klnctics a~itl properties of Final proclucts-all introduce 
nonlinearity into the process description. Determining the 
settings In which the use 01 nonlinear models lor forecasting 
dclivcrs improvcd control perlormarice is an open issue, 
For continuous processes maintained at nominal operating 
conditions and subject to sniall disturbances, tlic potential 
improvement would appear small. For processes operatcd 
over largc regions of the slate space-semibatch reactors, 
frequent product grade changes, processes subject to  large 
disturbances, for example-the advantages O C  nonlinear 
niodels appear larger. 

[ f  the model is nonlinear, there is no atlvantngc in keeping 
the coristraints as liiicar inequalities, so wc consider the 
constraints as mcinbership iii more gencral rcgions U,X 
shown in Fig. 2. 

MPC with linear Models 
We focus on formulating MPC as an infinite h(irizon optiinal 
control strategy with a quadratic pcrfnrmance criterion. Wc 
use the following discretetime model at thc plant: 

The essence of MPC is to optilrrtlrze 
forecasts of process behavior, The 
forecasting Is accomplished with a 

y j “ c k j + p .  

The afflnc terms d ancl p serve thc: pur- 
pose of adding intcgral cmntrol. Tticy may 
IE interpreted as inodcling the effect of 
constant riisturhanccs influencing the in- 
put ancl outpiit, rcspet‘tive~y. ~ssu in iug  

process model, and, therefore, $he 
mode] is the essential element of an 

Ideritiflcation of nonlinear models riiiis the entire range 
from models based on fundamental principles with only pa- 
rameter estimation from data to completely empirical non- 
linear models with all coefficients identified from data. We 
will not stray into the issues of idcntification of nonlinear 
models, which is a large topic by itself. Thc interested 
reader tnay consult [ 161 and [ 171 and the relereiices therein 
fnr an entry point intri this litcrature. Qin and Batlgwell’s re- 
cent survey of vendor MI’C products includes those I~ased 
on several farms of polynomial nonlinear auto-rcgrcssive 
moving-average exogerious (NARMAX) niotlels and nonlin- 
ear neural nct models [IS]. Requctte provides il summary 
review of the inotlcls usecl in nonlinear MPC [ 191. 

Regardless of the niorlet [orin a w l  identification incthod, 
for tutorial purposes we reprcscnt the nonlinear model in- 
side the MPC controller also in state-space form: 

dx 
- - = C ( X , U )  
dt x i + ,  = f ( x j , r i j )  

that the state of the plant is perfectly mca- 
sured, we tlefinc MPC as the feedback law 
I I  = p(xi) that minimizes 

In which A u , h  j - i i i  Thc inatrlces Qq R, and S are  as- 
sumed to be symmetric positive definite. When the com- 
plete state of the plant is not measured, ils is almost always 
the case, the addition of a state estinintor is necessary (sec! 
tlir! “State Lstiinatlnti” scction}. 

l’lie vector y is the desired output target aridiT is the de- 
sired input target, assumed tor simpliclly to bc time invari- 
ant. In many industrlal implcmcntotions, the clesircd targets 
arc calculatecl as a steady-state econouiic optimizatioti a t  
the plant Icvcl. In these cases, thc desired targets arc nor- 
inally constant hctween plant optiinizntir~ns, which arc per- 
fortnetl nii a slower time scale than the one at which ttic 
MPC coritroller operates. In batch and semi-batch reactor 
opcration, an the other hnt l ,  a tirial time objective may he 
optimizcd instead, wtilch prnrluces a time-varying trajec- 
tory for the systcni states. Even in continuous opcratioiis, 
sotne rcr:nmmenrl timing MPC controllcrs by specifying the 
setpoint trajectory, often a first order responsr.witli adjiist- 
atiletirrieconstant. As discusserlliy~itmeadet al. [LO] 111 the 
context of generallzerl prcrlictive control (GPC), onc can 
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pose these types of tracking prolilcms within thc LQ frame- 
work by augmenting thc state of the system to dcscribe the 
evolution of the reference sigiial arid posing an I ,Q problein 
for the cumbiriecl system. 

For a time invariant eetpoinl, thr. steady-statc aspect of 
tiw control prolilein is to determinc appropriatc values of 
Q,?,x,~ , i /J  Srleally, Y , ~  = and cl,$ = U. Proccss limitatioiis and 

constraints are active at Ihc steady-state opcrating point, 
'I'his part of the prriblern Is disciissetl In the "llecerling Hori- 
2011 liegulator" scction. hi particular, we determirie the stntc 
tcedbacklawu = p[{u j )  that ininimizes (12). When there arc 
no incclualitycr)nstrairits, the fecrlliack law is thr! linear qua- 
dratic rcgulator. With the addition o[incclualitycnnstraiiitu. 
however, an analytic form for p(u j )  Inay not exist. For cases 

in which ari ai~alytic solution is iiiiavait- 

amentais in any process ahlc, the feedback law is obtainccl by re- 
peatedly solving the ope~i-loop optinial 
control prdAeni. This strategy allows us 
to  coiisider only the eIicountercrt se- 
quciicr! of measured states rather than the 
entire state space. l:or a tiirtlier disrus- 
sion, sec Mayne 1211. 

If we consider only linear constraints 

control problem-conservation of 
mass, momentum, and energy; 

rehtiaanships of che%nica%ll kinetics an 
cnirsiderations of phase equilibria; 

or, tl,e input, input velocity, a'lcl o"ll,uts [,f 

rtiev of final products -all the form 

uce lronlillearitv into the 

corlutraints, howcver, may prcvcnt the system from reach- 
ing ttic rlcsired steady state. The gual of thc target calcula- 
tion is to find ttw feasible triple(y,,r, ,ii ,)s~~cIi that y, a m h ,  
areas closr! ;is possilde toy anclii. We addrcss thr. target cal- 
culation bcl(iw. 

To simplify the analysis and for~riulaiion, wc transform 
(1 1) iising deviation varialdcs to the generic infinite horizon 
quad rat ic (1 rit er ion 

we for~niilate the rcgulator as t he  sollit ion of tiw foliowing 
infinite liorizon optiinal coritrnl problain: 

I "  iniri <P(x,) = -Cz;@z, + u',/?~+, +Ai&SAv, 
lI'~k.l,k I 2 k = O  

subject to the coristraints 

1 -  

'I'he original critcriori (11) can he recovered from (12) by 
making the M o w i n g  substitutions: 

z j t y j - c x - p ,  U l i t X , - X , ,  u j  t U j - l l s  If we denote 

in which y,, x,, antlir, iiw thesteady statcs satisfying ttic fol- 
lowing rciation: 

(I.;.~(.,),.;(.~>},,, = a r g i n i n < ~ ( x ~ ) ,  

thcn the control law is 
x ' , ~  z AX, + B ( u ~  + d)  
y,s =Cx, t p .  P('J) 

By usingdeviation variahlcs,we treat separately thesteady- 
We address the regulation protilein iri the "RecccIing h i -  

thereliy simplifying thc overall analysis of the coritroller. '''' RegulntOr" section. 
Combining the solution of the target tracking proldcm The dynamic aspect of the control prol,lan is to control 

arid the cotistraincd regulator, wc define the MPC algorithm ( y , x , u )  to  the steady-state values (yx,xT,iis) in the face of 
constraints, which arc assumed riot to be active at steady as follows: 
state, is strict of regious x,zA. 1. Obtain an cstimate of the state arid disturbances 
See [ X I ]  for a preliminary treatrrient of tlic case in wtijcli bile * ( x i f ~ J J  

the dyl,amin clclnents of tile contrr,i prol,lem, 
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2. Determine the steady-state target 3 (y ,  ,x, J J ~ ) .  

3. Solve thc regulation problem =-+ U j ,  

1. Letu) = U i  - tus, 

5. Repeat for j t. j + l ,  

Target Calculation 
Whcn thc number of tlie iiiputs equals the nwnher of out- 
puts, the solution to the unconstrained target problem Is 
obtajnerl iising thc steady-state gain matrix, assuming such 
a matrix exists (i.e., the  system has no integrators). Fur sys- 
tems with uncqual numbers cif inputs and outputs, inteyra- 
tors, or inequality constraints, howcvcr, the target calcula- 
tion is formulated as a mathcmatical program [22], [23j. 
When there are at least as many inputs as outputs, mulliple 
combinations of inputs may yield the desired outpiit target 
at steady state. For such systems, a mathematical program 
with a least-squares objective is formulated to determine 
the best combinatioiis of inputs. When the nurnber d uut- 
piits is greater than the number of i~iputs, situations exlst in 
which no combination of inputs satisfies the output target 
at steady state. For such cases, we formrilate a mathemati- 
cal program that determines the steadystate outpiity, f 7 
that is closest to j ;  in a least-squares sense, 

Instead of snlving separate problems to establish the tar- 
get, we prefer to solve one probtetn for both situations. 
Through the use of an exact penalty [21], we formulate the 
target tracking problem as a single quadratic prograin that 
achieves tlic output targct, i f  possihlc, aiid rclaxcs thc. proh- 
lem in ail optimal sense if ttie target is inteasjlile. We 
formulate the soft constraint 

by relaxing the constraintCxc, + p =yiisirig the slackvariable 
q. By suitably penalizingq, we guarantee that the relaxed con- 
straint is binding when It Is feaslble. We formulate the exact 
so11 constraint by ac-lrling an I , / / :  penalty to ttie objective 
[unction. Thc fl/l: penalty is simply the coml>inatioii of a ]In- 
earpenaltyq:qand nquadratic pcnaltyq‘Q,Tq, in which tliccl- 
ements of (I,, arc strictly nouucgativc and 0, is a symmetric 
positive definite matrix. By choosing the linear penalty suffi- 
ciently large, thc soft constraint i s  guaranteccl to be cxact. A 
lnwcr hound on tlie elements of qv to ensure that the orlginal 
hard constraints arc satisficd by tlic solution cannot tic cal- 
culated expllcitly wlthout knowing the solution to the original 
problem, because thc: lowcr bound dcpentls on the optimal 
Lagrangc tnultipliers far the original problem. In  theory, a 
cniiscrvativc state-dependent upper bound for these multi- 
pliers may be oljtairied by exploiting the Lipschitz continuity 
of tlic quadratic progratn [25]. In practice, however, we 
rarcly need to guarantee that the I , / [ ;  penalty is exact. 

Rather, we use approximate values for qs olminecl by com- 
putational experience. When ronstructing an exact penalty, 
the quadratic term is superfluous. The quadratic terni adds 
an extra degree of freedom for tuning, liowcver, and is  nec- 
essary t o  gunranter: uniqucness. 

Wciiow Eormulatc thc target trackirigo~~tiiriizatiun as  the 
tollowing quadratic program: 

subject to thc constraints 

I n  which R, arid Q, are assumed to be syrrmetric positive 
ilcfinitc. 

Because x, is not explicitly in the objective function, the 
question arises as  to whether the stilution to (14) is  urtiqiie. 
If €he feasible region is nonempty, the solution exists be- 
cause the quadratic progrnni is hounded hclow on the fcasi- 
ble regiori. It  Qs arid I;: are symmetric positive rletinite, ys 
and 11, are uniquely determined by the  solution of the qua- 
dratic program. Without a quadratic penalty on xs, how- 
ever, there is no guarantee that the resiiltirig solution for x, 
is unique. Nonu~iiqueriess in the steady-state value of xs 
presents potential problems for the controller because the 
origin of the regulator is not fixed at each satnIiIe time. Con- 
sider, for example, a tank in which thc level is uniiicasurcd 
(i.e., an iinobservahle integrator). The steady-statc soliition 
is to set U, = 0 (i.c., Ixdance the flows). Any level x,, within 
bounds, however, is an optimal tilternative. Tikcwise, at the 
next time instant, a different level would be a suitably opti- 
mal steady-state target. l’he residtirig closecl-loop perfor- 
mance for the  system could be erratic, because t h e  
controller may constantly adjust the level of the tank, tiever 
letting t he  system settle to a steady state. 

To avoid such situations, wc rcstrict our discussion to 
detectahle systems and recciininenri redesign if  ii system 
does not meet this assumption. For rlctectable systcins, the 
solutioii to the quadratic program is unique, assuming the 
feasible region is nonempty. The details of the pronf iire 
given in [20j. Uniqueness is also guarauteccl whcn only the 
integrators are observable. For the practitioner, this conrli- 
tion translates into the requlrernent that all levels arc nica- 
sured. ’I’tie reason we choose the stronger condition of 
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detectability is that if good control is clesirctl, then the un- 
slablc modes of the system shaiild Iw obxervalAc. Dctect- 
abllity is also reqiiircd to guarairtec the staljillly of thc 
regulator. 

Empty feasihlc regions are a result of the inequality COIL- 

strairits ( 1 5 ~ ) .  Without the iricquality corislraiuts ( 1 5 ~ )  the 
feasible region is nonempty, thcrcby guarariteeing thc cx- 
istence of a feasible arid uniqur snlution iiririer the concli- 
t iun  o i  clctectability. For c x a ~ n p l e ,  thc. so lu t ion  
(U, ,.rq,q) = (-d,O,lY - pi) is feasible. The aclrlltion ot the 
inequality constraints ( 1 5 ~ ) ~  howcvcr, presents the possi- 
bility cif irifeasilAlity. Everi with well-dcfined constraints, 
{ I ] , , , , ,  < qlax arid y,,,,,, < y,,,,,,:,,, tlisturliances may render the lea- 
sible region empty. Since tlic cnnstrairits on thc input 
usually result from physical Iiinitrrtions such as valvc sntu- 

ration, relaxing only the output constmiuts is one possiliil- 
ity to circumvciit infeasibilities. Assuiiiiiig that ir,,,,, 5 
-cl 5 ~ i , ~ ; , ~ ,  the feasible region is always ~ioneriiply. We con- 
tenrl, howcvcr, that the outpiit constraints s l~ould riot hc rc- 
laxed in t . 1 ~  target calculalion. Rather, an infeasible 
solution, rcarlily rleter~nined diiring the initial phase in tlw 
solution of thc qrrarlratic program, should he used as at1 in- 
dicator of a proccss cxception. Whilc rclnxing the output 
constraints in the clynaiiiic regulator is common practice 
[Z(i]-[30], the oulput constraint violations arc! trxnsierit. 011 
thc other harirl, by rclaxing output constrainls iu the target 
cnlr:ulation, the conlrollcr sceks a steady-statc target that 
cnti tinunusly violates the output constraints. ’The stcnrlyvi- 
olatinn indicates that the contrnllcr is unable tn  cnmpcn- 
sate adequatcly for the tlist~url~ance and: therefore, shoi~ld 
indicate a process cxception. 

Receding Horizon Regulator 
l;ivc?n the calculated steady statc, we formulatc Ihc rcgula- 
tor as the following infinitc Iiorizim uptinial coiitrol p r o b  
Icin: 

subject to llic constraints: 

(171)) I U ~ + ~  = A w , ~  + UV,, 

We assume that Q and R arc syinnictric 
positivedefinite matrices. Wcalso assuine 
ttiat thr! trrigin (wj ,v , )=(0,O) is an cle- 
inent of the feasilk reginn W x V (where 
vu= 
~ ~ u ~ d , , , , ; ~ A ~ , - i ~ , ~ ~ A v ~ A , , - r ! , } .  If the~iair  
( A $ )  is coiistrairied stal)ilizahln and the 
pair (A,Q1”Cc) is  tletectalile, theti x = n  is 
an exlioticntially stitble fixed [mitit ot thr 
closed-loop systcm. For uristalAe state 
t ranslt ion tiia triccs, t lie optimizat ioii 
probleriz m y  lie ill-cnnrlitionctl because 
the system dynamics i t r c  propagated 

IPlllln-Ys~ cw ~Y1,,,,,-Y,1 and ~ = { ~ 1 ~ ~ 1 , 3 , 1 ,  

tliroiigh thc unstable A inntrix. To iiriljrnvo ttir! contlitioriirig 
ol ttic optimization, ntic c.nn rcparninetrize the input as 
uk = Kw, -1- r,, i r i  wtiicti K is a lincnr stnbiliziiigfeerlt)ack gain 
for (A,@ [311, [32]. The system inorlel txmjirics 

in which rA is the new input. By initially specitying a slaliiliz- 
ing, potenlially iiifcnsil,le, trajectory, we c m  improve tile 
numcriciil riinrliticiriing d t tic optimization hy prtipagating 
the system rlytinmics thrr)ugh the stable ( A  + R K )  inatrix. 

This rcpar;~metrizatioii of itipiit is highly recorrmendcrl 
i I  nnc chooses to solve thc state equatio~is explicilly and 
removc the w,? decision variahlcs in (16). I f  m e  iiistcarl 
solves for the state and input sirnultnncnusly, the conrli- 
timing issue f u r  unstahlc A largcly disappears, Iwcause 
pivoting in the Iincar algelm siilq~rol~lcms required to 
solve the opt.imizatioii providcs gnorl coiiditiutii~ig cvcii if 
A is iinstahlc. For noiilinear prohlcms, sitnulta~ieous siilii- 

tion oE state ancl input is also rct:otnmendecl if thr plant 
state trajcctory is potentially unstable or exhil~its liigh sei!- 
sitivity. ’l’ecliniques Ior iipplyi~ig the sim~iltnner~us ap- 
proach ancl p r ~ ~ l ~ c l i ~ g  a wcll-ctmrl iti oricd (1 i screte-t irric 
rcprcsentation of thc c.nntiiiuous-tirrie tliflcrcntial eqtia- 
lion inodcls are kriown as mnl t i~~les t ioo t i~~gn~cthnds  iii 111c 
optimizatinn litcrature. Bieglcr nnrl Euclr providc cxcellenI 
furthcr reiding 011 this topic [:HI, [34]. 



I3y expandlng A u , ~  and substittitirig io for vkr w e  traus- 
form (16)-(17) Into thc Collowing form: 

. -  

subject to the followitig constraints: 

The original forinulation (16)-(17) cat] be recovered froin 
(19>-@0) hy innking the folluwing substitutions into the sec- 
ond formulation: 

K'( -s + 'sl'I 

Whilc formulation (19)-(20) is theoretic:ally appealiiig, the 
solution is iatractablc in its current Eorm, because it is 
ncccssary to consider an infinite number of cleclsion vari- 
aliles. To ohtnin a coinputationally tractable formulation, 
we reformulate the  optimization in B finite-dimerisioi~al 
rlccision space. 

Several authors have considerecl this problem In various 
forms. W e  concentrate o n  the constrained linear quatlratir. 
methods proposed in the literature [31], [35]-137]. The key 
concept behind these methods is to recognlae that the in- 
cqiiatity constraints remain active only for a finite iiiiml~cr 
of sample steps along the prediction tiorizori. We rleniori- 
strate informalIy this concept as follows: if we assume that 
there exists a feasible solution to (lD), (201, then the state 
and input trnjcctorics { L U ~ , U ~ } ; = ~  apprnach the origin rxpn- 

iieritially. Furthermore, if we assume the  origin is contained 
I n  the interior of the feasible region W x V, then there exists 
a positivcly iiivariatit convex set [38] 

such that theoptimal uricoIistrairied feedback law U = Klr, is 
feasible for all future time. 'The set WK is the tetlsi hlc rcgion 
projected onto the state space by the linear control K (i.e., 
WK = {zul(w,Kiuj E W x VI). Because the state and input t r -  
jectaries approach tlicorigin cxxpnncntially, there exists a tlnite 
N "  such that Ihe slate trajecrory {wc}- 

To guarantcc that thc incqunlity constraints (ZOb) arc 
satisfied on the infinite tiorixon, N *  must Ije ctiosen sucIi 
that ulN* E U-. Since the value of N *  depencls oiix,, we need 
to account for the variable decision horizon length in the up- 
timizatinn. Wr formulatr! tticvariabic horizon length regula- 
tor as the following optiniization: 

is contained in Om, 
h-N 

sub]ect to the constraints 

Tlw r:nst to go TI is rletermii~ecl from the cliscrete-time alge- 
braic Riccati equation 

123) 

€or which many reliable solution algorithms exist. The vari- 
ablc horiznn formulation is similar to the tliial-inodc recerl- 
ing horizon r:oiitrollcr [39] f o r  nonlinear systems with the 
lincar quadratic rcgulator chosen as the stabilizirig linear 
controllcr. 

While t he  problem (21)-(22) is formulated on afiiiitc tiori- 
zoii, the solution cannot bcohtaincd, in gencral, in real time 
since the  problem Is n tnixecl-inleger proprain. Rather than 
try to solve (2I)-(22) tlircctly, wc arlrlrcss the problem of de- 

termining N* from B variety of semi-implicit scliernes while 
maintaining the quaclratic programming structure in  the 
subsequent optimizations. 

Gilbert ancl Tan [38] show that there exists a iinitr! num- 
ber t* such thatC7,. is equivalent to thc maximal U,, in which 
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They &.U present an algorith~ii for deteriniiiingi’ that is for- 
mulated efficicntly as a finite number of linear programs. 
Thcirmethotl 11rnvides an easyctieckwlietlicr, for afixeclN, 
thc snlution to (21)-(22) is feasihlc (i,e.,zo,v E U-). The check 
consists of determi niug whether state and inpiit trajjcctories 
generated by unconstralnecl control law up = Kw,) from the 
initial condition io<br are feasible with respect to incqunlity 
coustraints for I* time steps i n  blic luture. If the check fails, 
thcii the iiptiinization 121)-(22) needs to be resolved with i l  

longer control horixon N’> 1V siricew% e Om,. ‘ h e  process is 
repcatcrl until L Y ~ ~ ,  E [I-, 

When the set ot initial conrlitions (q,) is compact, 
Chrriielewslti aut1 Manousiouttiakis [36] present. a inct l i r~rl  
for calcu~ating an upper 1)ound i on IV* iisirig 1)outirling ar- 
gumerits on tlic optimal cost tiinctioii {I;. Given n sct 

T’ = {x’ ,... 3x”‘) of initial coriclitions, tIic optimal cost ~rmc-  
tion o*(x) is a convex furiction clefiiicd on the convex t i u ~  
(CO) of P. An uppcr hnund &(x) on thc optimal cost W”(x) 
forx F c4lJ) is olXaincrl by the correspnnrliny convex coni- 
Iinatiuns of optiinal cost frinctloris O ” ( x i )  for  x *  t !F. The 
upper lmund o n d  is oMaiticrl tly recognizing tlint t ~ i c  state 
trajcctoryluj only remains outside d0- for a h i t e  nurr11)er 
of stages. A lower bound q on tlic cost of WJQW can be sen- 
eratetl for x j  F 0- (see [3F] fnr cxplicit detalls). It  then fol- 

I I 1 output (solution I)  output (Solution 2) I 

Sire 1 I 

I 

Duratlon 

Inws that N’ 5 * ( x ) / q .  Further refinement of thc upper 
bound ran he obtained by iricluclirig thc terininal stage pen- 
alty I I in  tlic analysis. 

Finally, an efficient ~olution of tlic quadratic program gen- 
erated tly thc MPC regulaior is discussed i n  [40] arid [41]. 

Fea s ibilif y 
In the implementation ot MPC, process conditions srisc 
whcrc there is 1 1 0  soluiioti to tRr. optimizatio~i probleni 
(21) tli;it satisfies the constraints (22). Rnthcr than rleclar- 
ing such sitlintinns process exceptions, wc sometimes pre- 
Fer a solution that cnforces some 01 the incquality 
coiistrai~its wliilc! relaxing others to retain feasibility. Of- 
tcii the input constraints represerit physical limitations 
such as valve saliiratian that caririot lie violated. 0ut.put 
cnnstraints, however, frcquciitly d o  riot represent hard 
physical bounds. Ihlher, t h y  often represent desircrl 
rangcs ot operations that can bc violated if necessary. To 
avoid infeasibilities, wc rclax tlic nutpiit ctmstrairits hy 
treating them AS “soft” constraints. 

Various authors have considered torriiiilatiiig output 
constraints as soft constraints to ilvnitl potential infeasibili- 
ties [x]-[xI]. WO [ocus on the /,//; cxact soft ctinstraint 
strategy first advncatcrl hyrle Oliveirr! and Rieglcr [ZX]. The 
attmctivr! fcature t i t  the fnrniulation is tiiat the qua- 
dratic programmiiig structure is retaincd and the resulting 
solution Is exact if a Icasihle solution exists, 

Multiobjective Nature 
of In feaslbiiir‘f y Problems 
In inaiiy plants, the sitiiultancous miriiirlization of thc size 
ilnd duration of thc statjc cciristrairit violations is ntit a con- 
flicting objective. Thc optiinal way to liaridle infeasibility is 
siiiiply tu minirriizr: lint11 size ancl duration; regulator per- 
formance [nay then lie optimized, subject to  the “oilti- 
inally” rclnxctl state constraints. IJnfortuuately, not all 
infeasil,ili ties arc as easily resolved. I n  somc cascs, such as 
ni,rinilrrirnuin-l,hasc! plants, B rediictiori in sizr. of violation 
can orilybe obtaiiicrl at the cost of a largc iiicrcase in drira- 
tion of violation, nnd vice versa. Ttic optiniizatioii of coil- 
streint violations then liecoines a multiolijective problcm. 
111 Fig. 3 we show two different controllers’ resulutiim of an 
intcasiliility probleni. 

The twostate, s ingIc , input / s iug lsout~~~i~  (SISO) system 
ioodcl is 

with coristraiiits and initial condition 
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Solution (I) corresponds to ;1 coil- 
trollcr ntininiizing the duration o€ coil- 
straint violation, which leads to a largc 
pcak violation, arid solution (2) c o r m  
sponds to a controller minimizing the 
peak constraint violation, which leads 
to a long duration of violaticin. This b e  
havior is a system propcrty caused by 
t h e  unstable zero ancl cannot  be 
avoided by clever cotitroller design. 
For a given systcni and horiznn N ,  the 
Pareto optitnal sizeltluration curves 
can be plotted for tillfcrcnt initial can- 
ditions, as in Fig. 4. The riser must tticn 
decide where in Lhc sizciduration 
plane the plant slioulrl operate at times 
of infeasibility. Desired operation [nay 
lie nn the Piireto rqitimal curve, because points I~elow this 
curve cannot he attairied and points above it are inferior, in 
the sense that they correspond to larger sizes and/or durn- 
tious than arc rcquirctl. 

We next construct soft output inequality constraints by 
introducing the slack variablc E,# into the optimization. We 
reformulate the variablc horizon regulator with soft coii- 
strairits as  the followlng optimization: 

~ m l ~ w ~ i ~ .  

subject to the constraints 

We assume Zisasyinmetrlc positivedefinitematrixaiitl2 is 
il vector with positive elernents chosen such that output 
constraints can be inacle exact if  desired. 

As a second example, consider the third-order nonmini- 
tnum phase system 

for which the output displays invcrsc rcsponsc. Thc con- 
troller tuningparanielers are fJ = C'C, R = 1, and N = 20. The 
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input is iinconstrained, the output is constrained bctwccn 
* I ,  and we perform slrnulatioris from the initial contlitioti 
xn = [15 1.5 15J'. Fig. 5shows thcpossible trade-ofIs that can 
be achieved by adjusting the quadratic soft-constraint pcn- 
alty,Z. We also see that open-loop predictions and nominal 
closed-loop respcinses are in close agreemerit frir ail choices 
O F  tuning parameter. 

State Estimation 
We now turn torcconstruction of thestatr!fromr)utput mea- 
surements. [n the model of (IO), the nomero disturbances d 
ancl p a r e  cmployctl Lo give offset-free control in the tiice of 
nonzero disturbances. 'The origlnal industrial MPC formula- 
tions [GI'C, quadratic dynamic matrix control [QDMC), 
idcntification command (IUCOM)] were designed for otfsct- 
free control by using an integrating outgut clisturbancc 
model. The integrating output disturbance mtrdel Is a stan- 
dard device in LQ cleslgn [42], [43]. Similarly, to track !ion- 
zero targets or desirccl lrajcctorics that  asyn~ptotically 
approach nonzero values, one augments the plant model 
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dynnmirs with integrators. The disturlmnccs may be mod- 
eled at the input, output, o~ some combination. Ttiesc dis- 
turbance models a re  not  used in the regirlator; thc 
disturbances are obviously uncontrollai~le and are required 
nnlyin thestate estiniator. The effects of therlisturbancees- 
timntes is t o  shift the steady-state target of the regulator. 
Ritnicad et al. 1 IO] provitlc a nice discussion of the distur- 
Iiancc models popular i n  GPC. Lee et al. 1441 discuss the 
equivalencc between the original i ntlustrial MPC algorit hrns 
and different tlisturhance model choiccs. Shinskey [45] pro- 
vides a gotid discussion OF the  tlisatlvatitnges of outliut rlis- 
t u r l n u c e  models ,  in the original DMC formulation, 
coniparccl to irlput disturhnnce models. 

We se,t d L O  and for simplicity foc.us on the oiitput distur- 
hance model. We augment the state of ttic system so the es- 
tiinator produccs cstimates of bot11 stntc, i, arid rnodclcd 
disturbatice, with the standard Knlmnn filtering eqiia- 
tions. The distiirtjance may be moclclctl hy passirig white 
nohe,  Sa, through ~ I J  integrator, or by passing white iioisc 
througli somc othcr stable h e a r  system (filter) ancl thcn 
through an Integrator. 'The r l i s t u r l i a ~ c ~ ~ l ~ a p i n ~ :  filter en- 
ables the designer to attenuate disturbances with selcctcd 
frequericy content. Bitinead et al. [ 101 provide il tutorial dis- 
cussion of these issucs in the uricoristrai~~cd predictive con- 
trol context. 

I11 tlic simplest case, the statc estimator model takcs the  
form 

y - = c Y j + p i +  J v i  (2 9) 

Concentralion {Mj 

in wtiichroi,k j , ~ ,  are ttie noises driving the process, intc- 
grated clistiirhanr:c, anrl output measiireincnt, respectively. 
As shown in Fig. fi, we specify Q ,  =diag(Qt, ,Qe),Xv, which 
are the covarianccs of the  zero mean, norinally distributed 
noise terms. The nptinial state estimate for this model Is 
given bythe classic Kalrnan filtcr equations [46].As In stan- 
dard I Q G  design, one can tune thc cstimiitor by choosing thc 
relative magnitudes of the noises drivingthestate, integrated 
disturhsncc, and measured nutput. Practitioners certainly 
wuirlrl prefer tuning parameters more closely tied to 
closerl-loop performance objectives, arid more guidance on 
MPC tuning, in general, remains a valid research objective. 

Assembling the wlnponents of the prcvinus sections 
produces the structurr! showri in Fig. 6. 

l'his striictiire is certainly riot the simplest that accomts 
Inr output feeclljack, iinnzero setpoirits and rtlsturhances, 
and offset-free control, nor is it the  structure louncl in the 
dnminant comrnercial vcndnr products. It is presentctl here 
mainlyas aprotorypc to display areasonably[Icxiblr!lneans 
of lianrllirig thesc critical issues. Something similar to this 
structure has been iinplcinenterl by Industrial practitioners 
with success. however [47]. 

MPC with Nonlinear Models 

What Is Desirable and What Is Possible 
From tlic practical side, industrial iniplemerltatioii of MPC 
ith nonlincar models has alrcarly been reported, sn it is 
cerrainly pmsiblc?. Uequettc reviews Imth the iIiclustrial and 
academic prcclictive control Ilteraliirc up to 1990 [ 191. A 
nice early industrial application is rcportcrl by Garcia, in 
which he uses repcatcrl local linearization of a nonlincar 
model to control a winitlatch polyineriziltinn reactor [18]. 
Qiri and Badgwcll provide an excellent sumrriary of the 
cmergirrg vendor products for nonlinear MPC [ 181. Control- 
Icr olijectives also vary wirlrty. In Iiatch opcr;itioiis, oiitput 
trajectories are often cousklereci known, or rlctcrmirierl at a 
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higher level, and the controller's objective is to track t h e  
specified dynainic trajectory. in continuous operations, 
steady-state targets inay lie corisiclered known, and the con- 
troller is to find Ihc optimal trajectory to the steady state. 
Soinetinies the state Lnrgcts ctiaiigc abruptly and the con- 
troller's objective is t o  perform thc grade transition 
smot)thly. Sorrietlmes a reference output trajectory is pro- 
vided for coritiriuous operations, aiirl, as in hatch npcra- 
tions, the coiitroller sccks to follow the  given output 
trajectory. 

Rcprcscnting or approximatirig a nonlinear model's dy- 
namic rcspoiiscwith some lorin of h e a r  dynamics Is a recur- 
ring theme in rniicli of the litcraturc. Ttic motivation is  clearly 
to obtain a more easily solved online optimization. One issue 
that seems relatively neglected, however, Is that ol>tairijng 
rhese updated liiicarizctl moclcls requires knowledge of the 
state, which tnny bc cithcr thccurrciit state nr the desired tar- 
get steady statc. Thc most popular tcchniquc for mtimating 
the state in the early litcraturc is tn miniic the linear casc, 
solve the state equations iri  an open-loop fashion, and de- 
scribe thc clikrence between measured output arid model 
forecast as an integrating disturbance. 'I'his niethod works 
well in the linear case where the iuoclel dynamics are in& 
pcnclent of thc state. It is  unlikely that intcgrating the statc 
eqiiatiotis in open loop is a gciieral approach for applications 
requiring uonlinear models. As the current niodel state devi- 
ates frnni thc plant due to opcii-loop integration of inorlel er- 
rors, the current model's lincarization lose. anycnuncctinn to 
the true dynamics. Bequette concludes that the nrosl impor; 
tant issue in itnplcinentitig nonliticnr MPC is ohtaining good 
stntc cstiniatcs [ 191, and more attentioil is being focused on 
thestate estimation part of thenonlincar control prohlcm. It is 
interesting CO notc that Qin and Badgwell report that two re- 
cent nonlincar MPC vcndor products provide state estimation 
functionality in thc form of thc extended Kalman filter (EKP3 as  
well as the standard MPC rcgulation functionality [ 181. 

'I'he industrial riorilinear MPC implernentatlons are  
largely without any established closed-loop properties, 
even nominal closed-loop properties. A lack of siipporting 
theory should not arid does not, according to hlstorical re- 
curd, discourage experinierits in practice with promising 
new technologies. Uiit if noriliriear MI'C is to become w i d e  
spread iri the harsh erivirunment of applications, it must 
eventually become reasonably reliable, predictable, effi- 
cient, and robust against online failure. 

From the theoretical side, it would lie desiralde to solve 
in rcnl time inlinite horizon nonlinear optiinal control ]>rob- 
lcms of the type 

m 

(30) 

subject to the constraints 

Noriliriear MPC hnsetl(iii this optiiiial control probiem would 
linvc thc strongest provable closed-loop properties. 'l'tie con- 
comitant thcorctical and computational clifiiculties assrrt:i- 
atcd with this npl'iinal control problem, either offline, but 
cspecially online, are well known and formidithlc 131. Thc cur- 
rent vicw nf prohlcin (30) is: ikicsiroble, but notpossibie. In the 
ncxt twoscctions, wcevincc!nncviewpoiiit ofthecrirreritsta- 
tiis of hinging these two sides closer together. 

State Feedback 
As an attempt toapproxiniatcly solvr! (30), iL is iiatural to try 
to extcnd to the noillincar case the ideas of the linear reced- 
ing horizon regulator. In  the h e a r  case, we clefirie a regioii 
iu state space, W ,  witti t h e  fcrllowing propertics: 

W c X ,  K W c U  
x E W = ? ( A  + BK)x  E W 

which tclls 11s that in  W thc  state cntistraiiits are satisficcl, 
thc input cnnstraiiits arc! sotisfictl iiiidcr the unconstraimd, 
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linear tecrlback lawn = Kx,  ancl once a state enters W ,  it rc- 
inains in Wuiirler this control law. Wc can coinpiilc the cost 
I U ~ I ~ [ U I ~ X  E W ; i t i s ( l / ~ ) ~ ’ I [ ~ i i i w l ~ i c h ~ i s g i v c n I i r ( 2 3 ) .  lor 
the linear caw, the Gillxrl and T a n  algorlthin pmviclcs in 
marly cases thc largest sct W with these propertics, 4. 

Ingredients of the Open-Loop, Optimal 
Con f rol Problem 
In the simplest cxterision to the nonlinear case, cotlsidcr a 
region W with thr analogoiis properties 

w c x .  KLVCU 
x c W 3 f ( x , K x )  E W. 

‘The esscntial tliftcrence is !hat we must, undcr the noiilin- 
ear niotlcl, eiisiirc that the state remains in W with the liu- 
pi i r  rnntrcil law. A9;iin, lor this s in i l i lPst  vcrsicin. wc 
rleterminc the Iinqar control law Ily corisitlcriny the 
linearization of f ai lhc setpoint: 

17c ar (?sr 
JX dl 1 JX 

A = -(O,O), U = - -(OjI), C = - ( O ) .  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

I I 

370 
A z 365 
P 2 360 

E 355 

U 
P 
5 350 

345 

%40 
0.25 -03 035 0.4 6.46 0.5 0.65 0,6 0.65 0.7 0.75 

I I Concentration {MI 

k‘or ~ h c  norili~iear caw, we cannot cnsily corripute Ihc largest 
rcgion with these propcrtics, h t  wc can tincl ;1 finite-sizccl re- 
gion with thesc properties. Chcn wid AllgBwcr, 1licrdoi,e, i-clcr 
to [his :q)proach with riurilincar system as “quasi-infinite hn- 
rizoii” [49]. The main assuiii1itiori rcqiiirccl is that c’s partial 
dcrivativcs are Lipschitz continuous [SO] to lxruiid the size of 
thc nonlinear cffects and that the liriearixctl system is control- 
lable. Most chcmical proccsses satisfy thcsr? ;~ssumptions, 
and with IhclnwecariconstructreRioii1/Vasshuwri in Fig. 7. 

I.cto arid Xrcprcserit the quadratic appmximation of the 
stage cost function nt the origin 

Considcr the qiratlratic function, V ,  and lcvcl sets of tliis 
function, ql 

V ( x )  = (1 /2)X’l Ix, WL = {xi V(r) 5 a )  

fnrri a pusitive scalar. IJefinc e ( x )  tn be thcdifferericc hctween 
the statr. prqiagation uncler thr. ~ioulineai- niodd ancl liriearized 
model, e ( x )  = ~ ( x , K ~ ) - ( A + R K ) r a i i r l ~ . , ( x ) ,  l o  he ttic tliffer- 
FnceinVat these twostates, q(x) = V(f(x,Kx)) -V((A+RK)x). 
We can show that ncar the setpoint (origin) 

which bounds the eifcct of the nonlinearity. Wc call, thercfore, 
Rntl ana such that thc finite horizon coIitro1 law with tenniual 
coiistraiiit ancl approxirrintc cost to go penalty is sialiilizlilg 

srihjcct to Ihc ctinstraints 

We ctioosc a such that 

It has also tieeii estal>lishetl [lint glol~al optiinality in 133) is 
riot rcquired fnr closed-loop stability [19], [ S O ] .  Calculation 
of h c  Wcj reginn in (34) rcniairis a cMleripe, particularly 
whcn the targct calculation nncl stiitc estimation and rlistur- 
hnncc models arc added 10 the Iirnhleni as ricscribetl ear- 
lier. IJnrler those circumstances, &, which depends on the 
currerit steady targct, ctiangcs at each sample. [ t  inay he 
possiblc that soinc c i f  this computation can be perforinecl 
otlliiie, but resolving illis ~ W i ~ l ~ J l i l i l l i U l l ~ l  issiic reoiains arc-  
search ctiallenge. 



We present a brief example to  illustratc these ideas. Con- 
sider the simple inode1 prcscntcd by Herison and Seborg 
[Eil] foracoritinuouslystirrecl tank rcactor(C5TR) urirlergo- 
ing reaction A -> B at an iinstable steady stntc: 

k = koexp(-G/RT).  

Fig. 8 displays the W rcgimis computed by solving (34) 

For the steady-statc operating polnt 
along the locus of steady-state opcratiiig p o i ~ l t ~ .  

the closecl-loop behavior of the states with MPC control law 
(33) is shown it1 Figs. 9-10. Thc inatiipiilated v;iriahlc: is 
shown in Pig. 11. 

FiZ, 12 displays a phase-portrait ot the two states con- 
verging to the setpoint and thc tcrniitial region W. 

F utu re Deve I o pm ents 
Although this article is intended as n tutorial, brief corisltler- 
ation of arcas of future devclopmcnt inay prove uscful. The 
tlicory tor riominat MPC with linear models and constraints 
is reasonaldy Mature in that nomirial prupertics arc estab- 
lishctl, anrl efficient computational procetlurcs are avail- 
nhlc. The role of constraints is reasonably well untierstoorl. 
Applications i n  the process iiidustries are ubiquitous. 

MPC with Nonlinear Models 
III  MPC for nonlinear models, the territory Is mucti less ex- 
plored. ’l’hc nonconvexity of the optimal control prohlctns 
presents thcoretical and computational difflculties. Y’hc rc- 
search crwercd in this tutorial on quasi-infinite tiorizoiis 
and suhogtitnal MPC prnvirle one avenue for future devel- 
opmcnt [52], [49]. Contractive MPC [53]-[55] ant1 exact 
linearization MI’C [57], [SRI are two other alternatives that 
show prornise. Mayne ct al. [59] arid De Nicnlao et al. [ C O ]  
provirlc recent reviews of this field for further reading. It Is 
expected, as i n  the case of linear MPC of the 1970s and 
198Os, that these theoretical hurcllcs wlll not impede practi- 
tioners from evaluating nordinear MPC. 

Intlecd, as surnrnarized by (linand Bad~wel1,vcntlors are 
actively developing new nonliizear MI’C products [I&],  and 
manyncw Industrial applications are appearing [ 611. Avari- 
cty of different nonlinear model forins arc being pursued, in- 
cluding NAliMAX antl ncural network models. 

Robustness 
Rohustriess to various types of unccrtainty anrl inoclel errm 
is, of course, an active research a rm in MPC as well as in 
othcr areas of automatic control. Thc dif!iculty that MPC in- 

trorluccs into the robustness question Is the open-loop ria- 
tiire of the optiinal cnntrol problcin antl the iinplicit feetl- 
back prorlticed by the receding horizon iniplcinentation. 
Several robust versions of M1’C bavc been intrnrluccd that 
address this issue [ G a l ,  [27], [MI. Lee anrl Yu [64] define a 
dynamic prograinmirig problcm for the worst-case cost. 
Daclgwell [li5] appelkds i i  set of robustness constraints to 
the opcn-loop problem, which etisiires robustness for a Ii- 
nitc sct of plants. Kotharc et al. (661 adrlrcss the  teedbackis- 
sur! by optimizalionovcr the state feetlhackgairi rather than 
tlic open-loop control seqiierice subjccl to cunstraints. 

The rapid developinent nl time domain worst-case can- 
trnller deslpn problcms as dyrianiic games (see [S7] for an 
cxccllent simimilry) has led to further proposals for rohrist 
MI’C cxploitingttiis conncct.ion to Hm theory [ G B ] ,  iG9], [ G O ] .  
At thin early juricturc, d i n e  computation of many uf the ro- 
bust MPC coritrol laws appears to he a inajor tiurrlle for 
practical application. 

Moving Horizon €s;timafJon 
’Thc use of optlrnization subject to ;1 dynamic model is tlw 
i~iitlerpini~ing for inuch of state estimation L1ieory.Amoving 
horlzon approximation to a full infinitc horizon state estimn- 
tion problcm has been propnscd by several rcscarchers 
[70]-[72]. Thc theoretical 11ropcrties of this fraincwork are 
only now emerging [73 ] ,  [74]. Again, attention should be fn- 
cused on whac key issues of practice that arc out of reach 
with previous approaches can bc. addressed in this fratne- 
work. Because inovlng horizon cstiinatiori with lincar mod- 
els produccs siniple, positive clcfiiiite quadratic programs, 
online implcincntatiori is possiblc today for many prnccss 
applications. The iise of constraints OIL states or state dis- 
turbances prcsents intriguing opportimities, but it is not 
clear what applications benefit from usfng t he  cxtrrt physi- 
cal knowledge in the form of constraints. Nonlincnr, hin(1a- 
ment;il models cnuplcrl with moving horizon s ta te  
estimation may start to play a larger role in  proccss opera- 
tions. State estimation tor tititneasiired product properties 
hasccl on furidainentnl, nonlinear ~norlels may tiavernore im- 
pact in the short tcrin than clr~sed-loop regulation with 
these models. State estimation using crnplrical, nonlinear 
morlels is ntready being used in commercial process inoni- 
toring software. Morcovcr, state estimation is a wlde-rarig- 
ing techriique for acltlressirig inany issues uf pi’ocess 
operations beslcles feedback control, such as proccss tnooi- 
toring, fault detection, antl diagnosis. 

MPC for Hybrid Systems 
Essentiallyall processes containdiscrete as well as continu- 
ous componcnts: otiloff valves, switches, logical overrides, 
and so fortti. Slupphaug aiicl Foss [75], [7G] and Reniporad 
and Morari [77]-[79] have corisideretl applicaLion of MPC in 
this environment. This prol~lern class is rich with possiblli- 
tles; for examplr!, the rank ordering rather than softening of 
output constraints to hatidle infeasibility. Some ot the in- 
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triyuingqucstinns at thisearlyjuncture are: how far can this 
framework be pished, arc iniplementation Imttlenccks cx- 
pected from the system modeling or onlinr! computations, 
what beiicfits can he  obtarncd coniparecl to traditional 
hcuristics, and what ncw problem tyjws can be tackled? 
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