SPECIAL SECTION
Industrial Process Control

By James B. Rawlings

roviding a reasonably accessible and self-con-
tained tuterial exposition on model predictive
control (MPC) is the purpose of this article. [t is
aimed at readers with control expertise, particu-
larly practitioners, who wish to broaden their perspective
in the MPC area of control technology. We introduce the
concepts, provide a framework in which the critical issues
can he expressed and analyzed, and paint out how MPC al-
lows practitioners to address the trade-offs that must be
considered in implemanting a control technelogy,

The MPC research literature is by now large, but review
articles have appeared at regular intervals. We should point
these out hefore narrowing the focus in the interest of pre-
senting a reasonably self-contained tutorial for the
nonexpert, The three MPC papers presented at the Chemi-
cal Process Control {CPC)Y V conference in 1996 are an excel-
lent starting point [2]-[4]. Qin and Badgwell present

compatisons of industrial MPC algorithms that practitio-
ners may find particularly useful. Chen and Allgdwer and
Morari and Lee provide other recent reviews [5], [6]. Kwon
provides a very cxtensive list of references {7]. Moreaver,
several excellent hooks have appeared recently [8]-[10]. For
those interested In the status of MPC {or nonfinear plants,
[11] would De of strong interest, Finally, Allgéwer and co-
workers have presented a recent minicourse covering the
area[12].

Models

The essence of MPC is to optimize, over the manipulable in-
jputs, forecasts of process behavior. The [orecasting is ac-
complished with a process model, and, therefore, the model
is the essential element of an MPC controller. As discussed
subscquently, models arc not perfect forecasters, and feed-
hack can overcome some effects of poor mocdels, but starl-
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Figure 1. Exawmple inpur and state constraint regions defined by

{3)-(4).

Figure 2. Lxample input and state constradt regions defined by

{7)-{8).

ing with a poor process model is akin to driving a ear at night
without headlights; the fecdback may be abitlate to be truly
cffective,

Linear Models

Historically, the models of choice in early industrial MPC ap-
plications were time domain, input/output, step, or impulse
response models [13]-[15]. Part of the early appceal of MPC
for practitioners in the process industrles was undoubtediy
the ease of understanding provided by this model form. It
has become more common for MPC resecarchers, however,
to discuss linear models in state-space forn:

l::f: =Ax+Bun  x,;, =Ax;+Bu,
y=Cx y!-=ij

inwhich x is the rrvector of stales, yis the pvectoy of (mea-
surable) outputs, uis the srvector of (tnanipulable) inputs,
and { 1s the continuous-time and § is the discrete-time sam-
ple number. Continuous-time moclels may be more familiar
to those with a classical control hackground in transfer
functions, but discrete-time models are very convenient for
digital computer implementation. With abuse of notation,
we usc the same system matrices ( A, 8,00 for either model,
but the subsequent discussion focuses an discrete time.
Transtormation from continuous-time to discrete-time
maodels is availalile as a one-line command in a language like
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Octave or MATLAR, Lincar models in the process industries
are, by their nature, empirical models and identified fromin-
put/output data. The ideal medel form for identification pur-
poses is perhaps best lcft o the experts in identification
theory, but a survey of that literature indicates no disadvan-
tage to using state-space madels insicde the MPC controller.

The discussion of MPC in state-space form has several ad-
vantages, including easy generalization {6 multivariable sys-
tems, ease of analysis ol closed-loop properties, and online
computation. Furthermore, starting with this model form,
the wealth of linear systems theory—the linear quadratic (LQ)
regulator theary, Kalman filtering theory, internal model
principle, ete.—is immediately accessible for use in MPC, We
demonstrate the usefulness of these tools subsequently.

A word of caution is also in order. Categories, frame-
works, and viewpoints, while indispensable for clear think-
ing and coinmunication, may blind us to other possibilitics.
We should resist the easy temptation to formulate all con-
trol issues from an 1.Q, state-space framework. The ten-
dency i3 to focus on those issues that are easily imported
inte the dominant framework while neglecting other issues,
of possibly equal or greater import to practice, which are
difficult to analyze, awkward, and inconvenient.

F'rom & theoretical perspective, the significant shiit in
problem formulation came from the MPC practitioners who
insisted on maintaining constraints, particularly input con-
straints in the problem formulation

‘:;’:. =Ax+B  xu =Ax;+Bu M
y=0Cx yy=0x; )
Du<d Du;sd )]
Hx <h Hx, < h (GY)]

inwhich 0, / are the constraint matrices and ¢,/ are positive
vectars. The constraint region houndaries are straight lines,
as shown in Fig, 1. At this point we are assuming that
x =0,u =10 is the steady state to which we are conirolling the
process, but we treat the more general case subsequently.
Optimization over -inputs subject to hard constraints
leads immedliately to nonlinear control, and that departure
fromn the well-understood and well-tested linear control the-
ory provided practitioners with an important, new control
technology and motivated researchers to better under-
stand this new framework. Certainly optimal control with
constraints was not 4 new concept in the 1970s, but the mov-
ing horizon implementation of these open-loop optimal con-
trol solutions subject to constraints at each sample time
was the new twist that had not been fully investigated.
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Nonlinear Models

The use of nonlinear models in MPC is motivated by the pos-
sibility of improving control hy improving the quality of the
forecasting. The fundamentals in any process control prob-
lem-—conservation of mass, momentum, and energy; con-
siderations of phase equilibria; relationships of chemical
kinetics and properties of final products—all introduce
nonlinearity into the process description. Determining the
sottings in which the use of nonlinear models for forecasting
delivers improved control performance is an open issue,
For continuous processes maintained at nominal eperating
conditions and subject to small disturbances, the potential
improvement would appear small. For processes aperataed
over large regions of the state space—semibatch reactors,
frequent product grade changes, processes suhject to large
disturbances, for example—the advantages of nonlinear
models appear larger.

The essence of MPC is to optiimize
forecasts of process behavior, The
forecasting is accomplished with a
process model, and, therefore, the
model is the essential element of an

MPC controller.

Identification of nonlinear models runs the entire range
from mode!s based on fundamental principles with only pa-
rameter estimation from data to completely empirical non-
linear models with all coefficients identified from data. We
will not stray intn the issues of identification of nonlincar
models, which is a large topic by itself. The interested
reacler tnay consult [16] and [17] and the relerences therein
for an entry point into this literature, Qin and Badgwell’s re-
cent survey of vendor MPC products includes those based
on several forms of polynomial nonlinear anto-regressive
moving-average exogenous (NARMAX) models and nonlin-
ear neural net models [18], Bequette provides a summary
raview of the models used in nonlincar MPC [19).

Regardless of the model form and identification method,
for tutorial purpases we represent the nonlinear maxlel in-
side the MPC controller also in state-space form:

'df = PO

’ ey =500

y=g(x) y;=glx,) ()
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uelf u; e

0]

xed x}- e k. (8)
[f the model is nontinear, there is no advantage in keeping
the constraints as lincar inequalities, so we consider the
constraints as mombership in more general yegions 14,4
shown in Fig. 2.

MPC with Linear Models

We focus on formulating MPC as an infinite horizon optimal
control strategy with a quadratic performance criterion, Wa
use the following discrete-time model of the plant:

X = Ax+ B(u; + d) )

yi=Cx;+p. (10)

The affine terms ¢ and p serve the pur-
pose of adding integral control. They may
be interpreted as medaling the efiect of
constant disturbances influencing the in-
put and output, respectively. Assuming
that the state of the plant is perfectly mea-
sured, we define MPC as the feedback law
u 5 =p(x ;) that minimizes

¢ = %i(y}. —})'Q(y;- =)+ 8 R{u, —iT) + Au'SAa
= an

in which Au jgu ;. The matrices Q, R, and § are as-
sumed to be symmetric positive definite. When the com-
plete state of the plant is not measured, as is almost always
the case, the addition of a state estimator is necessary (sce
the “State Cstimation” section).

The vector y is the desired output target and i is the de-
sired input target, assumed for simplicily to be time invari-
ant. In many industrial implementations, the desired targets
are calculated as a steady-state economic optimization at
the plant level. [n these cases, the desired targets are nor-
mally constant between plant optimizations, which arc per-
formed on a slower time scale than the one at which the
MPC controller operates. In bateh and semi-hatch reactor
opetation, an the other hand, a final time objective may he
optimized instead, which produces a time-varying trajec-
tory for the system states. Even in continuous operations,
some recommend tuning MPC controllers by specifying the
setpeint trajectory, often a first order response with adjust-
abletime constant. As discussed by Bitrnead et al. [ 10] in the
context of generallzed predictive contrel {GPC), one can
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pose these types of tracking prohlems within the £ frame-
work by augmenting the state of the system to describe the
evolution of the reference signal and posing an [.Q problem
for the combined system.

For a time invariant setpoint, the steady-statc aspect of
thie cantrol prohlem is to determine appropriate values of
(y,,x,u) Ideally, y = ¥ and i, =u . Process limitations and

The fundamentals in any process
control problem -— conservation of
mass, momentum, and energy;
considerations of phase equilibria;
relationships of chemical kinetics and
propertiies of final products —all
introduce nonlinearity into the

process description.

constraints, howoever, may prevent the system from reach-
ing the desired steady state. The goal of the target calcula-
tion is Lo find the feasible triple (y, ., 4, such that ¥, andu,
areas close as possible to ¥ andif, We addross the target cal-
culation below.

To simplify the analysis and formulation, we transform
(11) using deviation variables to the generic infinite horizon
quadratic criterion

1=
O = 3 E 2z jHURe; + AU’,-SAU_,—.
= (12)

The ariginal criterion (11) can he recovered from (12) by
making the following substitutions:

Ty 0 —p wie XX, b eu; U
inwhich y,, x,, and n, are the steady states satisfying the fol-
lowing relation:

X, =Ax_+ Blu +d}
Y, =Cx +p.

By using cleviation variables, we treat sepatately the steady-
stale and the dynamic elements of the control problem,
therehy simpllfying the overall analysis of the controller.
The dynamic aspect of the control problem is to control
(v.x,u) to the steady-state values (v,,x,,u,) in the face of
constraints, which are assumed not to be active at steady
state, i.e., the origin is in the strict interlor of regions A", 4.
See [20] for a preliminary trestment of the case in which the
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constraints are active at the steady-state operating point,
This part of the problem is discussed in the “Receding Hori-
zon Regulator” section, In particular, we determine the state
feedbacklaw s =pQw ;) that minimizes (12), When there arc
no incquality constraints, the fecdback law is the linear qua-
dratic regulator, With the addition of inequality constraints,
however, an analytic form for p(w ;) may not exist. For cases
in which an analytic solution is unavait-
ahle, the feedback law i3 obtained by re-
peatedly selving the open-loop optimal
control problem. This strategy allows us
to consider only the encountercd se-
(uence of measured states rather than the
entire state space. lor a further discus-
sion, sec Mayne {21].

If we consider only linear constraints
on the input, input veloeity, and sutputs of
the form

bapin = Duk su
A, AN S A,
Yinsn = ka = Ymax

nax

as

we formulate the regulator as the solution of the foltowing
infinite horizon optimal control problem:

; | ‘o
min 0(x )= 2,0z, + 0, R, + ASAB,
(e, ) 25

subject to the constraints

Wy =Xx,;—X;, Uy =U; —t,
Wy, =Aw, + By, z, =Cw,
Uiy — 8, < Doy 40, — 1
—A, SAL, A,

Yoda —¥e 5 ka = Yinux ¥

¥

If we denote

{w;” (xj),u;(xj)}::u =arg min f[)(xj),
then the control law is

p(x,) =u(x )

We address the regulation problem in the "Receding Hori-
zon Regulator” section.

Combining the solution of the target tracking problem
and the constrained regulator, we define the MPC algorithm
as follows:

1. Obtain an cstimate of the state and disturbances
= (x;,p.d)

IEEE Control Systems Magazine 4



2. Determine the steady-state target = (y,,x, .4,).
3. Solve the regulation problem = 0.
A Letu, =v; +u,

5. Repeat for j « j+1.

Target Calculation

When the number of the inputs equals the number of cut-
puts, the solution to the unconstrained target probiem Is
abtained using the steady-state gain matrix, assuming such
a matrix exists {i.c., the system has no integrators). For sys-
tems with uncqual numbers of inputs and outputs, integra-
tors, or inequality constraints, however, the target calcula-
ton is fermulated as a mathematical program [22], [23].
When there are at least as many inputs as outputs, mulfiple
combinations of inputs may yield the desired output target
at steady state, Ior such systemns, a mathematical program
with a least-squares objective is lormulated to determine
the best combinations of inputs, When the numbey of out-
puts is greater than the number of Inputs, situations exist in
which no combination of inputs satisfies the output target
at steady state. For such cases, we farmulate a mathemati-
cal program that determines the steady-state output v, = y
that is closest to ¥ in a least-squares sense,

Instead of solving separate problems to establish the tar-
get, we prefer to solve one probtem for both situations.
Through the use of an exact penalty [24], we formulate the
target tracking problem as a single quadratic program that
achiaves the output target, if possible, and relaxes the prob-

lem in an 47 optimal sense if the target is infeasible. We
formulate the soft constraint

y-Cx,-p=n,
¥y-Cxs—p2z-n,
nz0

by relaxing the constraint Cx, + p = ¥ using the slack variable
1. By suitably penalizing ), we guarantee that the relaxed con-
straint is binding when it is feaslble, We lormulate the exact
soft constraint by adding an flﬂg penalty to the objective
function, The 2 penalty is simply the combination of a lin-
ear penalty ¢;nand a quadratic penalty ' G.n, in which the el-
ements ol g, arc strictly nonnegative and (), is a symimetric
positive definite matrix. By choosing the lincar penalty suffi-
ciently large, the soft constraint is guarantecd to be exact. A
lower hound on the elements of g, to ensure that the original
hard constraints are satisfied by the solution cannet be cal-
culated explicitly without knowing the salution to the original
problem, because the lower bound depends on the optimal
Lagrange multipliers for the original problem. In theory, a
conservative state-dependent upper bound for these multi-
plicrs may he obtained by exploiting the Lipschitz continuity
of the quadratic program [25]. In practice, however, we
rarcly need to guarantee that the 4/ penalty is exact,
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Rather, we use approximate values for ¢, ohtained by com-
putational experience, When constructing an exact penalty,
the quadratic term is superfluous, The quadratic term adds
an extra degree of freedom for tuning, however, and is nec-
cssary to guarantec uniqueness,

Wenow formrulate the target tracking optimization as the
following quadratic program:

min %(n’ QO+ (tt, ~TY Rty i)+
]|

Xyulig 1 (]4)
suhject to the constraints
-4 -B 00[x][=] Bd
C 0 I f|lu,[{zH¥-p
C 0 —f NN IES ‘)_f - (I.Bﬂ)
n 20 (15h)
ui‘l'lllll g Dui‘ S HII'IHH‘ yITNH S (:xs + p S ymax (ISC)

in which R, and (), are assumed to be symmetric positive
definitc.

Because x, is not explicitly in the objective function, the
question arises as to whether the solution to {14} is unique,
If the feasible region is nonemply, the solution exista be-
causc the quadratic program is bounded helow on the feasi-
ble region. If Q, and R, are symmetric positive definite, y,
and &, are uniquely determined by the solution of the qua-
dratic program. Without a quadratic penalty on x,, how-
ever, there is no guarantee that the resulting solution for x,
is unique. Nonuniqueness in the steady-state value of x,
presents potential problems for the controller because the
origin of the regulator is not fixed at each sample time. Con-
sider, for example, a tank in which the level is unmeasured
(i.e., an unobservahle integrator), The steady-state solution
is to set &, =0 (i.c., balance the flows). Any level x, within
bounds, however, is an optimal alternative, .ikewise, at the
next time instant, a different level would be a suitably opti-
mal steady-state target, The resulting closed-loop perios-
mance for the system could be erratic, because the
controller may constantly adjust the level of the tank, never
letting the system settle to a steacdy state.

To avoid such situations, we restrict our discussion to
detectable systems and recommend redesign if a system
does not meet this assumption, For detectable systams, tha
solution to the quadratic program is unique, assuming the
feasible region is nonempty. The details of the proof are
given in [20]. Uniqueness is also guarantecd when only the
integrators are observable. For the practitioner, this condi-
tion translates into the requirement that all levels are mea-
sured, The reason we choose the stronger condition of
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detectability is that if good control is desired, then the un-
stable modes of the system should be abservable. Detect-
abllity is also required to guaranice the stability of the
regulator.

Empty feasible regions are a result of the inequality con-
straints {15¢), Without the inequality constraints (15¢) the
feasible region is nonempty, thereby guaranteeing the ex-
tstence of a feasible and unique soiution under the condi-
tion of detectability. For example, the selution
(tigx, M ={-d0,l¥—p) is feasible, The addition of the
inequality eonstraints (15¢), however, presents the possi-
bility of infeasibility. Even with welldefined constraints,
Wi < Wy @00 ¥ < Yo disturbances may rencer the fea-
sibie region cmpty. Since the constraints on the input
usually result from physical limitations such as valve satu-

The difficulty that MPC introduces
into the robusiness guestion is the
open-loop nature of the optimal
control problem and the implicit
teedback produced by the receding

hovizon implementation,

ration, relaxing only the output constraints is one possibil-
ity to circumvent infeasibilities, Assuming that i, <
-d 5 u,,, the feasible region is always nonemply. We con-
tend, however, that the cutput constraints should not he re-
laxed in the target calculation, Rather, an infeasible
solution, readily determined during the initial phase in the
solution of the quadratic program, should be used as an in-
dicator of a process exception. While relaxing the output
constraints in the dynamic regulator is common practice
[26]-[30], the cutput constraint violations are transient. On
the other hand, by relaxing output constraints in the target
calculation, the controller sceks a steady-gtate target that
continuously violates the output canstraints, The steady vi-
olation indicates that the controller is unable to compen-
sate adequately for the disturbance anc, therefore, should
indicate a process cxception.

Receding Horizon Regulator

iiven the calculated steady state, we formulate the regula-
tor as the following infinite horizon optimal control proh-
lem:

10
min D{x;)==Y wC'OCw, + 0, R, + AV SAu
{1t ) ( }) 2;;_;, ] ( & &R L) »

16)

subject to the constraints;

Juno 100

Wy =x,;—X;, Vg =i, -0, (L72)
Wy, = Awy, + By, {1713}
Lyt S D0 S0, — U, (L7
“A, SAp, £ A, (17d)

Yy sl <y -y, (17c)

We assume that Q and R are symmctric
positive definite matrices. We also assmne
that the origin {w;,p,)=(00) is an cle-
nment of the feasible region W = v (where
W= {0 | g0 25 S Cw sy oy b and W={ae,,,
S0p 2 A —u S Av <A, —u ) ) the pair
(A,B) is constrained stabilizable and the
pair (A,QWC} is dletectable, thenx; =0is
an exponentially stable fixed point of the
closed-loop system. For unstable state
transltion matrices, the optimization
problem may be fll-conditioned because
the system dynamics are propagated
through the unstable Amatrix. To improve the conditioning
of the optimization, one can reparametrize the input as
v, =K, + 1, in which K is a linear stabilizing feedhack gain
for (A,B8) [31], [32]. The system model becomes

Wy, =(A+BKw, + By, a8
in which r, is the new input. By initially specifying a stabiliz-
ing, potentially infeasible, trajectory, we can improve the
numerical conditioning ol the optimization by propagating
the system dynamics through the stable (A + BK) matrix.

This reparametrization of input is highly recommencled
il one chooses to solve the state equations explicitly and
remove the w, decision variables in (16). If one instead
solves for the state and input simultancously, the condi-
tioning issuc for unstable A largely disappears, hecause
pivoting in the linear algebra subprollems required to
solve the optimization provides good econditioning even if
Ais unstable, U'or nonlinear problems, simultaneous sclu-
tion of state and input is also recommended if the plant
statetrajectory is potentially unstable or exhibits high sen-
sitivity. Technigues for applying the simultaneous ap-
proach and producing a well-conditioned discrete-time
representation of the continvous-time differential equa-
tion models are known as multiple shooting methods in the
optimization literature. Biegler and Bock provide excellent
further reading on this topic {33], [34].
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By expanding Ap, and substituting in for v, we trans-
form (16)-(17) into the following form:

]' - 5 ,
min ®(x,) = 5 S wOw,, + v Roy + 2 Mo,
et

{’”k,u& ] (19)
subject to the following constraints:

Wy =x; Wy =Aw, + 8y, (20a)

qm‘u = DU& “ka < d;nax (2[]b)

Yanin — s = Cw.fa = Ymax = ¥s- C?.UC)

The original formulation (16)-(17} can be recovered from
(19)-(20) by making the following substitutions into the sec-
ond formulation:

X=X, '
X, it | Wy & oo | v, 1,
[A+BK 0 B
A , B
[ eeld]
c K'(R+S8)
C _0} M e—\‘ s |
[C"OC+ K'(R+ 5K -K'S]
| —SK 5 |
ReR+S pe? 6| X 0
— R+ 8, 1 K I

Uy — 8 Ui — U5
d - max § ¢ P it )
max - A" + J:nl.n 7 —ﬂ“

While formulation {19)-(20) is theoretically appealing, the
solution is intractahle in its current form, because it is
necessary to consider an infinite number of decision vari-
ables. To obtain a computationally tractable formulation,
we reformulate the optimization in a finite-dimensional
clecision spaca.

Several authors have considered this problem in various
forms. We concentrate on the constrained linear quadratic
methods proposed in the literature [317, [35]-[37]. The key
concept behind these methods is to recognize that the in-
cquality constraints remain active only for a finite number
of sample steps along the prediction horizon. We demon-
strate informally this concept as follows: if we assume that
there exists a feasible solution to {19}, (20), then the state

and input trajectories {w, 0,};_, approach the origin expe-
nentially, Furthermoie, if we assume the origin is contained
in the interior of the feasible region W x ¥, then there exists
a positively invariant convex set [38]
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0. ={wl (A+BK)YweW,, vjz0}

such that the optimal uncenstrained feedback law v = K is
feasible for all future time, The set W is the feasible region
projected onto the state space by the linear control X (i.c.,
Wy = (e, Kiw) € W x V1), Because the state and input tra-
jectories approach the origin exponcntially, there exists a finite
N" such that the state trajectory {wf*}:—fv‘ is contained in .,

To guarantec that the inccuality constraints (201) are
satisfied on the infinite horizen, A™ must be chosen such
thatw . .. Since the value of ¥ depends onx ;, we need
to account for the variable decision horizon length in the op-
timization, We formulate the variabie horjzon length regula-
tor as the following optimization;

x 1 Ilv_l R r
min  &(x ;)= [w,Qw, + 0} Roy -+ 2w, Mo, |
{twp g ¥ 2 P}
+ (L 2 ewy D
subject to the constraints
Wy =x,, Wy, =Aw, + 8o, wy €., (222)
min = ’UUJJ 7(;“}4'( s dmlxl (22b)
Yoo ~¥s = ka £ Yo Vs (22(3)

The cost to goTTis determined from the discrete-time alge-
braic Riccati equation

M =ATA+Q~(ATIB+ MR+ BB (B TIA+ M),

ey

for which many reliable soluticn algorithms exist. The vari-
able horizon formulation is similar to the dual-made reced-
ing horizon contreller [39] for nonlinear systems with the
lincar quadratic regulator chosen as the stabilizing linear
controller.

While the problem (21)-(22) is formulated en a finite hori-
zon, the solution cannot be ohtained, in gencral, in realtime
since the problem is a mixed-integer program. Rather than
try to solve (21)-(22} directly, we address the prohblem of de-
termining N from a variety of semi-implicit schemes while
maintaining the quadratic programming structure in the
subsequent optinizations.

Gilbert and Tan [38] show that there exisls a finite num-
ber ¢ suchthat @, is equivalent to the maximal .., in which

O, =Jwt (A+BK)w ey, forj=0,. .t} 20
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They also present an algorithm for dletermining #* that is for-
mulated efficiontly as a finite number of linear programs.
Their method provides an easy check whether, for afixed &,
the solution to (21)-(22) is feasible (i.e. w0y € O}, The cheek
consists of determining whether state and input trajectories
generated by unconstrained control law vy, = K, from the
initial condition w, are feasible with respect to incquality
constraints for £ time steps in the future. If the check fails,
then the optimization (21)-(22) needs to be resalved with a
longer control horizon A’ > N sincewy ¢ Q... The process is
repecated until wy. 0,

When the set of initial conditions {w} is compact,
Chmielewski and Manousiouthakis [36] present a method
far caleulating an upper bound N on &° using hounding ar-
guments on the optimal cost Lunction 4. Given a st
T={x', ... x™ of initial conditions, the optimal cost fune-
tlon @' (x) Is a convex function defincd on the convex hull
{ca) of P An upper bound ®(x) on the optimal cost @ {x)
forx e co(?)is obtaincd by the corresponding convex com-
binations of optimal cost functions & (x /) for x/ € P. The
upper bound on N' is obtained by recognizing that the state
trajectory w; only remains outside of €, for a finite number
of stages. A lower bound ¢ on the cost of w/,Qiv , can be gen-
erated for x ; ¢ 0., (see [36] for cxplicit detalls), It then fol-

Outp_ui {Solution 1)

0L Tl T
| .
~1 Lol '_;77,_;_'_-'___'_"

5 20 .0 5 10 15 20

0 5

Figure 3. Two contrellers’ vesolition of output infeasibility:
oeiput versas time, Solntion (1) minimizes duration of constraing
vinlaiion: Sofution (2) minimizes peak size of constraing viokation,

Sizs

Duratlon

Figure 4. Poreto optimal curves for size versus duration of
constraint vielarion as a funciion of initial condition x,,.
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lows that &' < @(x)/q. Further refinement of the upper
bound can be obtained by including the terminal stage pon-
alty Ll in the analysis.

Finally, an efficient solution of the quadratic program gen-
erated by the MPC regulator is discussed in [40] and [41].

Feasibility

In the implementation of MPC, vrocess conditions arise
wiore there is no solution to the optimization problem
(21) that satisfies the constraints (22). Rather than declar-
ing such situations process exceptions, we sometinies pre-
fer a solution that enforces some of the incquality
coenstraints while relaxing others to retain feasibility. Of-
ten the input constraints represent physica! limitations
such as valve saluration that cannot be violated, Qutput
constraints, however, frequontly do not represent hard
physical bounds. Rather, they often represent desired
ranges of operations that can be violated if necessary. To
avoid infeasibilities, we relax the output constraints by
treating them as “soft” constraints.

Various authors have considered formulating output
constraints as soft constraints to avoid potential infeasibili-
ties [26]-[30]. We focus on the /A2 cxact soft constraint
strategy first advocated by de Oliveira and Biegler [28]. The
attractive feature of the {4 lormulation is that the qua-
dratic programming struchitre is retained and the resulting
solution is exact il a leasible solution exists,

Multiobjective Nature
of Infeasibility Problems
In many plants, the simultaneous minimization of the size
and duration of the state constraint violations is not a con-
flicting objective. The optimal way to handle infeasibility is
simply to minimize hoth size and duration; regulator per-
formance may then he optimized, subject to the “opti-
mally” rclaxed state constraints. Unfortunately, not all
infeasibilities arc as casily resolved. In some cases, such as
nonminimum-phase plants, a reduction in size of violation
can only be obtained at the cost of a large Increase in dura-
tion of violation, and vice versa. The optimization of con-
straint vinlations then hecomes a multiohjective problem.
In Fig, 3 we show two different controllers’ resalution of an
infcasibility problem.

The two-state, single-input/single-output (813()) system

modcl is
16 064 1
Xyl = 1 a ka 'k 0 t

yk = [_1 2]xR
with constraints and initial condition

sl x =[5 147



Solution {1) corresponds to a con-

troller minimizing the duration of con-
straint violation, which leads to a large
peak violation, and solution (2) corre-
sponds to a controller minimizing the
peak constraint violation, which leads
to a long duraticn of violation, This be-
havior is a system property caused by
the unstable zero and cannot be
avoided by clever controller design.

For a given system and horizen N, the
Pareto optimal size/duration curves

0 8 107 18 20 . ¢ - & 10 15 .20
: : - Samples © ° S . o Samples

can be plotted for dilferent initial con-

ditions, as in Fig. 4. The user must then  Figure 5. Least-squares soft constraint solution. Z=1,10, 50 und 100. Sofid lines:
decide where in the size/duration clesed-loop; dashed lines: open-loop predictions ar time O, dotted Hie! output upper

plane the plant should operate at times ~ consfrais.
of infeasibility. Desired operation may
lie on the Pareto optimal curve, because points below this
curve cannot be attained and points above it are inferior, in
the sense that they correspondl to larger sizes and/or dura-
tions than arc required,

We next construct soft output inequality constraints by
introducing the slack variable £, into the optimization, We

reformulate the variable horizon regulator with soft con-
straints as the following optimization:

1%
min _ ®(x ) ==Y {w,Quw, + v, Rv, + 2,Mo
[tg g ) (J’) ZE]{ wQuwy it 1MUYy,

ey e, + 2 e, |+ (L] DuwpTwy
subject to the constraints

Wy =X Wy = Ay + Buy, wy €0,
({'n[n s ka _ka S qnnx
(ymin '_ys) €y = Cwle

ka £ (ymilx _y.c) tEg
g, 20,

We assume £ is asymmetelc positive definite matrix and z is
a vector with positive elements chosen such that output
constraints can be made exact if desired.

As a second example, consider the third-order nonmini-
mum phase system

2 -145 035 1

A=[t 0o o B=lo
0 1 0 0 5
C=[-102 (26)

for which the output displays inversc response, The con-
troller tuning parameters are ) =C'C, R =1, and § = 20. The

Xy = AX Buy
i : R
Rogidator.——4—l, Pani |-t >
XK - - E
i » Estimator €
'-‘_'&U_‘} . N s 'Tl
e | K= A Buera
e, P = Prt
- Targat. - _ o N e o
S Galeulation |~ 5 . . Y - K Prtug
(QsFs) E pk I R

Figure 6. MPC controller consisting of receding horizon
regitlator, state extimator, and wareet coleulaior.

input is unconstrained, the output is constrained between
11, and we perform simulations {rom the initial condition
x5 =[5 15 157 Fig. 5 shows the pessible trade-offs that can
he achieved hy adjusting the quadratic solt-constraint pen-
alty, Z. We also see that open-loop predictions and nominal
closed-loopresponses arein close agreement for all choices
of tuning parameter.

State Fstimation

We now turn to reconstruction of the state from output mea-
surements. [n the model of (10), the nonzeroe disturbances ¢
and p are employed Lo give offset-frac contral in the face of
nonzero disturbances. The original industrial MPC formula-
tions [GIPC, quadralic dynamic matriz confrol (QDMC),
iclentification command (IDCOM) ] were designed for oifsct-
free control by using an integrating cutput disturbance
madel. The integrating output disturbance model is a stan-
dard device in LQ design [42], [43]. Similarly, to track nen-
zero targets or desired lrajectories that asymptotically
approach nonzero values, one augments the plant model

46 IEEE Control Systems Magazine June 2006



W
(2 Tx<a

|

=] .

980 S SIS
T8 -1 05 0 .06 1 15 2 26 3 35

Goncentration (M}

Figure 7. Repion W level sets of (1] 22XV 1x, and the effect o
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dynamics with integrators. The disturbances may be moel-
eled at the input, output, or some comhination. These «lis-
turbance models are not used in the regulator; the
disturbances are obviously uncontrollable and are required
onlyinthe state estimator, The effects of the disturbance es-
timates is to shift the steady-state target of the regulator,
Bitmead et al. [10] provide a nice discussion of the distur-
hance madels popttar in GPC. Lee et al. {44] discuss the
equivalence hetween the original ingdustrial MPC algorithms
and different disturbance model choices, Shinskey [45] pro-
vides a good discussion of the disadvantages of output dis-
turbance models, in the original DMC formulation,
compared to input disturhance models,

We set o =0 and for simplicity focus on the output distur-
bance model. We augment the state of the system so the es-
timator produces estimates of both statc, %, and modeled
disturbance, p, with the standard Kalman filtering equa-
tions. The disturbance may be modcled by passing while
noise, §,, through an integrator, or by passing white noisc
through somc other stable linear system (filter) and then
through an integrator. The disturbance-shaping filter en-
ables the designer to attenuate disturbances with selccted
frequency content. Bitmead et al. [ 10] provide a tuterial dis-
cussion of these issues in the unconstrained predictive con-
trol context.

In the simplest case, the state estimator model takes the
form

Kp =sAx;+8u+a,

(27

Py =pi+E; (28)

Y= epit vy

(29)
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Figure 8. W regions surrounding the locus of steady-stare
operating points. Selid line: steady states; dashed nes: W regions.

in which n};-,ij, v, are the noises driving the process, inte-
grated disturhance, and output measurement, respectively.
As shown in Fig. 6, we specify ém =diag(Q,,,0,), R,, which
are the covariances of the zero mean, normally distributed
noise terms. The optimal state estimate for this model is
given by the classic Kalman filter equations [46]. As In stan-
dard 1.OG design, one can tune the estimator by choosing the
relative magnitucdes of the notses driving the state, integrated
disturhance, and measured output. Practitioners certainly
would prefer tuning parameters more closely tied to
closeddoop performance objectives, and more guidance on
MPC tuning, in general, rernains a valid research objective.

Assembling the components of the previous sections
produces the structure shown in Fig, 6.

This structure is certainly not the simplest that accounts
for output feedback, nonzero setpoints and disturbances,
and offset-free centrol, nor is it the structure found in the
dominant commerclal vendor products. It is presented here
mainly as aprototype ta display a reasonably flexibloe means
of handiing these critical issues. Something similar to this
structure has been implemented by industrial practitioners
with success, however [47).

MPC with Nonlinear Models

What Is Desirable and What Is Possible
From the practical side, industrial implementation of MPC
ith nonlinear models has already heen reported, so it is
certainly passibie. Bequette reviews hoth the industrial anel
academic predictive control literature up to 1990 [19]. A
nice early industrial application is reported by Garcia, in
which he uses repeated local linearization of a nonlincar
mxlel to control a semibateh polymerization reactor [18].
Qin and Badgwell provide an exceilent summary of the
cmerging vendor products for nonlinear MPC [18]. Control-
ler objectives also vary widely, In hatch operations, output
trajectories are often considered known, or determined at a
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higher level, and the cantroller's objective is to track the
specified dynamic trajectory. In continuous operations,
steady-statc targets may be considered known, and the con-
troller 1s to find the optimal trajectory to the steady state.
Sometimes the state targets change abruptly and the con-
troller's ohjective is to perform the grade transition
smoothly. Sometimes a reference output trajectory is pro-
vided for continuous operations, and, as in bhatch opera-
tions, the controller secks te follow the given output
trajectory.

Representing or approximating a nonlinear model’s dy-
namic response with some form of linear dynamics is a recur-
ring theme in much of the litcraturc. The motivation is clearly
to obtain a more easily solved online optimization. One issue
that seams relatively neglected, however, is that obtaining
these updated linearized moclels requires knowledge of the
state, which may be cithor the current state or the desired tar-
get steady state. The most popular technique for estimating
the state in the early litcrature is to mimic the lincar case,
solve the state equations in an open-loop fashion, and de-
scribe the difference between measured output and model
forecast as an integrating disturbance. This method works
well in the linear case where the model dynamics are inde-
pendent of the state. It is unlikely that integrating the state
equations in open loop is a general approach for applications
requiring nonlinear models, As the current model state devi-
ates from the plant <ue to open-loop integration of maodel er-
rors, the carrent model's lincarization leses any connection to
the truc dynamics, Bequette concludes that the most impor-
tant issue in implementing nonlincar MPC is obtaining good
state estimates [19], and more attention is being focused on
the state estimation part of the nonlinear control problem. H is
interesting to note that (Jin and Badgwell veport that two re-
cent nonlinear MPC vendor products provide state estimation
functionality in the form of the extended Kabman filter (EKI) as
well as the standard MPC regulation functionality [18].

The industrial nenlinear MPC implementations are
largely without any established closed-loop properties,
even nominal closed-loop properties. A lack of supporting
theory should not and does not, according to historical re-
cord, discourage experiments in practice with promising
new technologies. But if nonlinear MPC is to hecome wide-
spread in the harsh environment of applications, it must
eventually become reasonably reliable, predictable, effi-
cient, and robust against online failure.

From the theoretical side, it would bhe desirable to solve
in real time infinite horizon nonlinear optimal control prob-
lems of the type

min Dlx =3 I{x,.u,)
{x g} ’ Z‘., 30

subject to the constraints

Xy = F(Xgtty), X =X 3L
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u,eld, x,ed.

(32)
Nonlinear MPC based on this optimal control problem would
havethe strongest provabie closed-loop properties. 'I'ne con-
comitant theotrctical and computational difficulties associ-
ated with this optimal control problem, either offline, but
especially online, are wellknown and fermidable [3]. The cur-
rent view of preblem (30} is: desirable, but not possible. Inthe
next two scetions, we evince one viewpaint of the current sta-
tus of bringing these two sides closer together.

State Feedback

As an attempt te approximately solve (30), it is natural to try
to extend to the nonlincar case theideas of the linear reced-
ing horizon regulator. In the linear case, we define a region
in state space, W, with the following properties:

WcXx, KWwcl
xeW{A+BK)x e W

which tells us that in W the state constraints are satisficd,
theinput constraints ave satisficd under the unconstrained,
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linear fecdback law i = Kx, and once a state enters W, it re-
mains in Wunder this control law. We can compute the cost
o gu fory € Wi ilis(l /2’1y iu whichTTis givenin (23), l'or
the lineur casc, the Gilbert and Tan algorithm provides in
many cases the largest set W with these propertics, O,

Ingredients of the Open-Loop, Optimal
Control Problem

In the simplest extension to the nonlinear case, consider a
region W with the analogous properties

Wek, KWcif
xeW=FHx KeW

The essential clifference is that we must, under the nonlin-
ear model, ensure that the state remains in ¥V with the lin-
ear rontral law. Again, for this simplest vorsion, we
determine the linear control law by considering the
linearization of f at the setpoint;

a=%own, 8= wom, c-=
dx St

dy
= ().
7x()
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For the nonlinear case, we cannot casily compute the largest
rogion with these propertics, but we can find a finite-sized re-
gion with thesc properties, Chen and Allgbwer, thierelore, refer
to this approach with nondinear systems as “guasi-infinite ho-
rizon” [49]. The main agsumption required is that f's partial
derivatives are Lipschitz continuous [50] to bound the size of
the nonlinear effects and that the nearizod system is control-
lable, Most chemical processes satisly these assumptions,
and with them we can construct region Was shownin Fig. 7,

LetQ and Rrepresent the quadratic approximation of the
s{age cost function at the crigin

Q=L.Q0Mn, RK=L,00).
Congider the quadratic function, ¥, and level sets of this
function, W,
Vix)=(1/Dx"1x, W, ={xIV(x)<sa)

for o a pusitive scalar, Define e{x ) ta be the difference hetween
the state propagation under the nontinear mode] and linearized
model, e(x) = F{x Kx) — (A + BK)x and ¢, (x), to be the differ-
onceinV at these two states, e, (x) = V{(f(x Kx¥) -W{A+BK)x).
We can show that ncar the setpoint {origin)

leCo)] < e, ley () < ]!

which hounds the effect of the nonlinearity. We can, thercfore,
find an ¢ such that the finite horizan control law with terminal
constraint and approximate cost to go penalty is stabilizing

Mo
minN](I)(xj) = E L0x, 00,0+ (L Dy Ty

1. i

33
subject to the constraints

Xy = Fxptty), g =%

upelf, x,el, xyeW,.

We choose o such that

max {V{f{x Kx))~-V{)+ 1/ Dx'(Q + K RK)x} <0
acWy (34)

It has alsa been established that glohal optimality in (33} is
not required for closed-loo)y stability [419], [50]. Caleulation
of the W, region in (34) remains a challenge, particularly
when the target calculation and state estimation and distur-
hance models are added to the problem as described ear-
lier. Undler those circumstances, W), which depends on the
current steady target, changes at each sample. [t may be
possible that some of this computation can be performed
ofliine, but resolving (his compulalional issue remains a re-
search challenge.
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We present a brief example to illustrate these ideas. Con-
sicler the simple madel prescnted by Henson and Seborg
[61] for a continuously stirred tank reactar {CSTR) undergo-
ing reaction A — B at an unstable steady state:

ac, ¢
—A = (C, —C-RC
cg?“ V( g A)( A!;) A
q =
" T_f)+_._.. LR + TL_T
dt V( f pC, A VpCp( )

& = kyexp(~E/RT).

Fig. 8 displays the W regions computed by solving (34)
alomg the locus of steady-state operating points.
For the steady-statc operating polnt
T, =350K, €, =05M, T,=300K,
the closed-loop: hehavior of the states with MP'C control law
(33) is shown in Figs. 910, The manipulated variable is
shown in Fig, 11.

Fig, 12 displays a phase-pertrait of the two states con-
verging to the setpoint and the terminal region W.

Future Developments

Although this article is intended as a tutorial, brief consider-
ation of areas of future development may prove useful. The
theory for nominat MPC with linear maodels and constraints
is reasonably mature in that nominal properties arc estal»
lished, and efficient computational procedures are avail-
able. The role of constraints is reasonably well understood.
Applications in the process industries are ubiquitous.

MPC with Nonlinear Models

In MPC for nonlinear models, the territory (s tiuch less ex-
ptored. ‘The nonconvexity of the optimal contrel problems
presents theoretical and computational difficulties. The re-
search covered in this tutorial on quasiHnfinite horizons
and suboptimal MPC provide one avenue for future devel-
opment [52], [49]. Contractive MPC [53]-[55] and exact
lincarization MPC [57], [58] are two other alternatives that
show promise. Mayne ot al, [59] and De Nicolao ¢t al. [60]
provide recent reviews of this field for further reading. It is
expected, as in the case of linear MPC of the 1970s and
1980s, that these theoretical hurdles will not impede practi-
tioners from evaluating nonlinear MPC.

Indecd, as summarized by Qinand Badgwell, vendors are
actively developing new nonlinear MPC products [18], anl
many new industrial applications are appearing [61]. A vari-
ety of different nonlinear model forms arc being pursued, in-
cluding NARMAX and neural network models.

Robustness

Robustness to various types of uncertainty and model error
is, of course, an active research arca in MPPC as well as in
other areas of automatic contrel. The difficulty that MPC in-
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troduces into the rebustness question is the open-loop na-
ture of the optimal control problem and the implicit feed-
back produced by the receding horizon implementation,
Several robust versions of MPC have been intraoduccd that
address this issue [62], [27], [63]. Lee and Yu [64] define a
dynamic programming problem for the worst-case cost.
Badgwell [65] appends a set of robustness constraints to
the open-loop problem, which ensures robustness for a fi-
nite sct of plants. Kothare et al. [66] adclress the feedbackis-
sue hy optimization over the state feedback gain rather than
the open-loop centrol sequence subject to consiraints,
The rapid development of time domain worst-case caon-
traller design problems as dynamic games (see [67] for an
excellent summary) has led to further propasals for robust
MPC exploiting this connection to f1, theory [68], [62], [60].

At this early juncture, online computation of many of the ro-
bust MPC control laws appears to he a major hurdle for
practical application.

Moving Horizon Estimation

The use of aptimization subject to a dynamic madel is the
mclerpinning for much of state estimation theory. A moving
hotizon approximation to a full infinite horizon state estima-
tion problem has been proposcd by several researchers
[70]-[72]. The theareticad properties of this framework are
only now emerging [73], [74]. Again, attention should be fo-
cused on what key issues of practice that are out of reach
with previous approaches can be addressed in this frame-
work. Because moving horizon estimation with lincar mod-
els produces simple, positive definite quadratic programs,
online implementation is possible today for many process
applications. The use of constraints on states or state dis-
turbances presents intriguing opportunities, hut it is not
clear what applications benefit from using the extra physi-
cal knowledge in the form of constraints. Nonlincar, funda-
mental models eoupled with moving hotizon state
estimation may start to play a larger role in process opera-
tions. State estimation for unmeasured product properties
based on fundamental, nonlinear models may have more im-
pact in the short term than closed-loop regulation with
these models, State estimation using empirical, nonlinear
models is already heing used in commercial process moni-
toring software. Morcover, state estimation is a wide-rang-
ing technigue for addressing many issues of process
operations besides feedback control, such as process moni-
toring, fault detection, and diagnosis,

MPC for Hybrid Systems

Lssentially all processes contain discrete as well as continu-
ous camponents: on/off valves, switches, logical overrides,
and so forth. Slupphaug and Foss [75], [76) and Bemporad
and Morari [77]-[79] have considered application of MPC in
this environment. This problem class is vich with possibili-
tes: for example, the rank ordering rather than softening of
output constraints to handle infeasibility. Some of the in-
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triguing questions at this early juncture are: how far can this
frainework be pushed, are implementation bottlenecks ex-
pected from the system modeling or online computations,
what benefits can he obtained compared te traditicnal
heuristics, and what new problem types can be tackled?
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