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Abstract. Urbanization is one of the most important components of global environmental 

change, yet most of what we know about urban areas is at the local scale.  Remote sensing of 

urban expansion across large areas provides information on the spatial and temporal patterns 

of growth that are essential for understanding differences in socioeconomic and political 

factors that spur different forms of development, as well the social, environmental, and 

climatic impacts that result.  However, mapping urban expansion globally is challenging: 

urban areas have a small footprint compared to other land cover types, their features are 

small, they are heterogeneous in both material composition and configuration, and the form 

and rates of new development are often highly variable across locations.  Here we 

demonstrate a new methodology for monitoring urban land expansion at continental to global 

scales using Moderate Resolution Imaging Spectroradiometer (MODIS) data.  The new 

method focuses on resolving the spectral and temporal ambiguities between urban/non-urban 

land and stable/changed areas by: (1) spatially constraining the study extent to known 

locations of urban land; (2) integrating multi-temporal data from multiple satellite data 

sources to classify ca 2010 urban extent; and (3) mapping newly built areas (2000-2010) 

within the 2010 urban land extent using a multi-temporal composite change detection 

approach based on MODIS 250 m annual maximum enhanced vegetation index (EVI).  We 

test the method in 15 countries in East-Southeast Asia experiencing different rates and 

manifestations of urban expansion.  A two-tiered accuracy assessment shows that the 

approach characterizes urban change across a variety of socicoeconomic/political and 

ecological/climatic conditions with good accuracy (70-91% overall accuracy by country, 69-

89% by biome).  The 250 m EVI data not only improve the classification results, but are 

capable of distinguishing between change and no-change areas in urban areas.  Over 80% of 



ii 

 

the error in the change detection is related to human decision making or error propagation, 

rather than algorithm error.  As such, these methods hold great potential for routine 

monitoring of urban change, as well as provide a consistent and  up-to-date dataset on urban 

extent and expansion for a rapidly evolving region.  
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1.  INTRODUCTION   

 The demographic transformation toward an urban world has pushed urbanization – 

population growth as well as the expansion of built-up areas – to the forefront of 

environmental and development agendas.  The consequences of urbanization are largely 

contingent on the size, location, and configuration of development (Weng, 2001; Zhou et al., 

2004), with many environmental impacts exacerbated when new growth is expansive and/or 

fragmented in form (Alberti, 2005).  A meta-analysis of urban expansion indicates that local- 

to regional-scale studies are geographically biased, leaving even many large cities unstudied 

(Seto et al., 2011).  Detailed maps on regional- to global-scale changes in urban land do not 

exist; previous efforts have been sample-based (Angel et al., 2005; Schneider & Woodcock, 

2008), focused on one country (Homer et al., 2004; Wang et al., 2012), or drawn conclusions 

from datasets with substantial temporal and spatial mismatch and variability in how cities are 

defined (Seto et al., 2010).  Routine monitoring of urban expansion across large areas could 

therefore provide the spatial information on patterns of urban growth that are essential for 

understanding differences in socioeconomic and political factors that spur different forms of 

development, as well the social and environmental impacts that result (Deuskar et al., 2014).   

 Several ca 2000 global maps of urban areas have been produced in the past decade 

(Bhaduri et al., 2002; Schneider et al., 2003; CIESIN, 2004; Elvidge et al., 2007).  Although 

these maps are static depictions of urban areas largely dependent on the input data sources 

(e.g., remote sensing, nighttime lights, census data), they have shown the potential for large-

area maps of urban extent/expansion for a large number of applications, including: 

assessment of arable land (Tan et al., 2005; Avellan et al., 2012), water quality/availability 

(McDonald et al., 2011), natural resources (Lambin &,Meyfroidt, 2011), habitat loss 
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(Radeloff et al., 2005) and biodiversity (Guneralp et al., 2013); air pollution monitoring and 

associated impacts to human health (Grimm et al., 2008; Cassiani et al., 2013); and regional-

global modeling of climate (Oleson et al., 2008), hydrological (McGrane et al., 2014), and 

biogeochemical cycles (Nordbo et al., 2012; Zhao et al., 2013).  At the same time, these maps 

have proven vital for investigating socio-economic issues such as population distribution 

(Jones et al., 2013), spatial patterns of disease risk (Tatem et al., 2007; Wilhelmi et al., 2013), 

poverty (Elvidge et al., 2009), and economic growth (Chen & Nordhaus, 2011), and for 

planning and policy in developing-country cities that lack this information (Scott et al., 2013; 

Deuskar et al., 2014). 

 While remote sensing for large-area land cover change mapping has become common 

in many types of landscapes (Zhang et al., 2003; Linderman et al., 2005; Hansen et al., 

2013), mapping urban expansion globally has remained incredibly difficult: urban areas are 

rare, their features are small, they are heterogeneous in both material composition and 

configuration, and the form, rates, and spectral-temporal signatures of new land development 

are highly variable across locations (Jensen, 1999; Makov et al., 2005; Potere et al., 2009; 

Schneider et al., 2009; Schneider, 2012).  In addition, cost and data availability generally 

necessitate the use of coarse or moderate resolution data for continental scale mapping, 

thereby compounding the issue of land cover ‘mixing’ due to the large pixel size. 

 The primary objective of this work was to develop a methodology suitable for 

mapping urban land expansion at continental to global scales.  Building on our past work 

using Moderate Resolution Imaging Spectroradiometer (MODIS) data to map global urban 

extent (Schneider et al., 2003; 2009; 2010), we developed a methodology to resolve the 

spectral and temporal ambiguities between urban/non-urban land and stable/changed areas 
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by: (1) spatially constraining the study extent to known locations of urban land; (2) 

integrating multi-temporal data from multiple satellite data sources to classify ca 2010 urban 

extent; and (3) mapping newly built areas (2000-2010) within the 2010 urban land extent 

using a multi-temporal composite change detection approach based on MODIS 250 m annual 

maximum enhanced vegetation index (EVI) observations.  This method is built on one 

critical assumption: any conversion of land to urban uses is unidirectional and absolute, and 

thus, any urban expansion 2000-2010 will still be urban land in 2010.  

 We test and implement this methodology for 15 countries in East and Southeast Asia 

(Figure 1, hereafter East Asia).  In doing so, we set a second objective to generate a new 

dataset depicting recent urban land expansion across the region (Schneider et al., in review).  

The rapid economic growth and high rates of urbanization characterizing many areas in the 

region have resulted in a high demand for timely land information for researchers, land use 

managers, governing institutions and the private sector.  The East Asia region also provides a 

sound test case for method validation, as the predominance of cloud cover and complex 

urban landscapes that characterize the region require that the methods are robust to missing 

and noisy data in addition to addressing the challenges of urban change detection and large 

area mapping.   In the following sections, we outline the background, describe the methods 

and results, and finally, conclude with a discussion of lessons learned from this research.   
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2.  BACKGROUND   

 To map urban change across large areas, we draw on four areas in the remote sensing 

literature: (a) change detection methods for urban areas, (b) global monitoring of urban land, 

(c) global monitoring of change across large areas, and (d) recent change detection 

approaches that exploit multi-temporal observations.     

 

Urban change detection.  Measuring urban expansion via satellite imagery has been an 

increasingly common and effective method of extracting urban characteristics since the 

1980s (Martin et al., 1989; Ridd et al., 1990; Herold et al., 2002; Yuan et al., 2005;  Deng et 

al., 2009).  Early approaches focused on simple band ratios, image thresholding, and image 

differencing to discern broad-scale changes at the urban–rural fringe (Jensen & Toll, 1982; 

Howarth & Boasson, 1983), while more recent developments try to accommodate the high 

variability within the urban class by exploiting spatial or polarimetric dimensions in satellite 

datasets.  Spatial information has been incorporated through object-oriented approaches like 

segmentation (An et al., 2007; Bhaskaran et. al., 2011; Taubenböck et al., 2012), as well as 

by adding window-based texture features (Shaban & Dikshit, 2001) or spatial statistics 

(Ghimore et. al., 2010) into pixel-based change detection processing streams.  Recent studies 

have also explored data fusion approaches to integrate multi-resolution optical data (Jin-Song 

et al., 2009), or radar and optical data during preprocessing (i.e. signal-based, fusing raw 

data) (Amarsaikhan 2012) or classification (e.g. pixel-based, combining inputs within one 

algorithm) (Corbane et al., 2008; Griffiths et al., 2010; Zhu et al., 2012).  With the 

proliferation of very high resolution (VHR) sensor systems, multisource fusion techniques 

have demonstrated their potential to increase map accuracy in urban areas, but are limited for 
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monitoring applications because of the infrequent revisit time and high data and processing 

costs.  For similar reasons, these methods have only been applied at the scale of individual 

cities or neighborhoods (Pesaresi, 2000; Pacifici et al., 2009; Bhaskaran et al., 2011), where 

obtaining full coverage with high/very high resolution (VHR) optical data or radar images is 

feasible.   

 

Global mapping of urban areas.  Several studies have used self-consistent maps of 

individually classified cities for global-scale analysis of urban trends and typologies (Angel 

et al., 2005; Kasimu, 2005; Schneider & Woodcock, 2008; Wentz et al., 2009), although 

inconsistent methodologies and definitions of ‘urban land’ can impede cross-city analysis.  

During the last two decades, eight different teams have developed global maps that depict the 

spatial extent of urbanization ca 2000 (Gamba & Herold, 2009), while others have proposed 

methods that could be applied in the future (Zhang & Seto, 2011; Taubenböck et al., 2012).  

Unfortunately, the existing maps exhibit a great deal of variability in how urban areas are 

characterized, evident from the areal estimates of urban land given by these maps (from 

300,000 to 3 mil km
2
, Schneider et al., 2010).  The definitional problems are twofold.  First, 

any number of operational definitions of ‘urban’ are employed, ranging from functional 

definitions related to human land use (Balk et al., 2004; Zhang & Seto, 2011), administrative 

boundaries (Deichmann et al., 2001), or population size and density (Bhaduri, 2007), to 

physical ones based on land cover (Schneider et al., 2003;  Elvidge et al., 2007) or 

anthropogenic light (NGDC, 2007).  The second is whether the adopted definition is 

congruent with how the maps are produced, such that the input datasets, classification 

method, and thematic classes align with how urban areas are defined.  Nearly all recent 
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efforts exploit optical data or nighttime lights data, and all utilize either semi-automated 

classification algorithms (Schneider et al., 2003; Bartholome & Belward, 2005; ESA, 2008) 

or data fusion methods that draw on a combination of satellite imagery, census data, and GIS 

datasets (Bhaduri et al., 2002; CIESIN, 2004; Goldewijk, 2005; Elvidge et al., 2007).   

 Most critically, few of the global urban mapping efforts – including new work by the 

European Space Agency and Google Earth Engine to map ca 2010 urban land – depict 

changes in urban land over time.  The exception is the GeoCover Land Cover product for 

1990-2000 (MDA Federal, 2004).  GeoCover maps have limited coverage in the tropics, 

Europe and Central Asia, remain prohibitively expensive, and are becoming outdated for 

areas witnessing rapid changes since 2000 (Potere et al., 2009).  More recent efforts using 

nighttime lights to monitor urbanization have been effective, but may have limitations for 

mapping urban land expansion explicitly as these data have found to be a function of 

demographic, socioeconomic, and land surface variables (Zhang & Seto, 2011; Ma et al., 

2012). 

 

Change detection over large areas.  New access to Landsat and SPOT data has generated a 

boom in their use for large area applications (Wulder et al., 2012), yet several barriers to their 

widespread adoption are yet to be resolved.  Data availability is still hampered by cloud 

cover (35% on average, Ju & Roy, 2008), gaps from the scan line corrector failure of Landsat 

7 (22% per scene on average, Storey et al., 2005), and data discontinuities in the archives. In 

addition, processing these scenes for large areas remains time- and labor-intensive due to the 

small scene footprint (e.g., East Asia covers more than 1500 Landsat footprints).  Meanwhile, 

the advantage of moderate/coarse resolution data for these applications is clear: 
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comprehensive areal coverage, large image scenes, routine monitoring, archival depth, and 

perhaps most importantly, frequent data acquisition (looks every 1-2 days). Moreover, many 

of the methods developed for these coarser resolution data will become viable for the 

analysis of Landsat data as technical solutions to address data quality and availability are 

developed. 

 

Multi-temporal data to monitor change.  The legacy of using moderate/coarse resolution 

data for land cover characterization (Lambin & Strahler, 1994; Borak et al., 2000) has 

resulted in the development of a rich array of methods to exploit temporal information in 

satellite data.  Many methods that take advantage of multi-season and multi-year 

observations employ time-series spectral profiles, as the large number of data points provides 

better discrimination of signal from noise, and makes it possible to link vegetation phenology 

to the spectral trajectory (Kennedy et al., 2014).  Curve-fitting (Zhang et al., 2003; Kennedy 

et al., 2007), harmonics analysis (Cihar et al., 2001; Jakubauskas et al., 2001; Bradley et al., 

2007; Geerken, 2009), and wavelet transformation (Sakamoto et al., 2005; Martinez et al., 

2009) have all been used to monitor vegetation dynamics and extract phenological markers 

(e.g. date of greenup, senescence) in forested or agricultural landscapes.   

 Other techniques take advantage of temporal compositing, which can significantly 

reduce data volumes while retaining the temporal variability related to land cover or 

phenological states (Borak et al., 2000; Clark 2012).  While any metric may be used to 

summarize the time series, maximum value compositing of vegetation indices (VI) are most 

common, because it provides an informative measure of vegetation content while also 

reducing negatively-biased noise arising from cloud contamination (Fisher, 2006).  To 
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monitor change, the maximum VI data are then often analyzed in a time series themselves 

(Rahman et al., 2013; Setiwan et al., 2014), or used as classification features in dense time 

series of spectral data (Alcantara et al., 2012; Clark et al., 2012.  Recently, the ‘dense time 

stacks’ change detection method has been applied in urban areas where the added seasonal 

information helped to overcome spectral confusion between fallow cropland and new urban 

development (Schneider, 2012, Kontgis, in review). 

   

3.  DEFINITIONS 

3.1 Defining urban areas and urban expansion  

 An important first step in the methodology is establishing a clear conceptual 

framework for defining and delineating the urban environment.  Representations of urban 

areas derived from satellite data are most congruent with definitions based on the surface 

properties that they measure (Potere & Schneider, 2007).  Therefore, we define urban areas 

as locations “dominated by the built environment”, where dominated implies >50% coverage 

of a pixel (Schneider et al., 2009).  Spaces that perform an urban function but are not made 

up of constructed surfaces, such as parks or golf courses, are not considered urban land.  We 

also define a minimum mapping unit (MMU) of 0.56 km
2
 (3x3 250 m pixels) as the smallest 

contiguous area of built-up land reliably represented using 250-500 m MODIS inputs. 

 The approach to monitor urban change is based on the premise that any conversion of 

land to urban cover 2000-2010 will appear as urban land in 2010.  The assumption that urban 

land development is irreversible is commonly adopted for land change studies (Carrion-

Flores & Irwin, 2004; Seto et al., 2011; Schneider, 2012; Taubenböck et al., 2012) and in 

practice holds true especially at the temporal scale of interest (e.g. decade).  Housing 
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demolition does occur within the study region, but the result is land modification or 

redevelopment rather than land conversion.  In this research, only conversion of non-urban to 

urban land is considered ‘urban expansion,’ and all areas converted to built-up surfaces are 

labeled urban expansion regardless of location near the city, or in peri-urban or rural areas.  

 

3.2 Delineat ing the study area extent  

 We constrained the East/Southeast Asia study region to known locations of urban 

land.  To do this, we synthesized all contemporary city point data available (gazetteers, city 

lists, etc., Table 1) with the 2001 MODIS map of urban extent (Schneider et al., 2009; 2010).  

Circa 2010 data were used in all cases possible to ensure all cities >100,000 – including those 

that grew from small villages to cities >100,000, 2000-2010 – were included in the study 

extent.  In cases where city points did not align with 2001 urban areas, city point locations 

were manually checked in Google Earth and adjusted as necessary.  Patches of urban land 

present in the MODIS map but lacking city points were similarly cross-checked and included 

in the dataset.  Urban patches were categorized into small, medium, and large classes based 

on their areal extent and population, and then buffered by 5, 25, and 100 km, respectively, to 

create the final study extent.  The final study extent represents 30% of the total land area in 

the region. 

 Previous work has demonstrated the value of biomes for stratifying data for 

continental-scale land cover change (Clark et al., 2012) and urban applications (Schneider et 

al., 2009).  Climate, vegetation, and ecosystem characteristics all exert controls on land cover 

and the structure of human settlements, making biome designations particularly useful for 

data processing.  Using Olson’s biome classification (Olson et al., 2001), the study region 
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was delineated into nine biomes covering temperate, tropical and arid regions (Figure 1b).  

These designations were used for classification, change detection, and accuracy assessment. 

 

4.  DATA AND METHODS FOR MONITORING URBAN EXPANSION  

4.1  Overview 

 After defining the study extent (Section 3.2), we characterize urban expansion 2000-

2010 by: (1) classifying ca 2010 urban land, and (2) locating areas of change within the ca 

2010 urban extent.   

 

4.2  Remote sensing data  

 We exploit the spectral and temporal information in two separate sources of MODIS 

data: (1) MODIS 500 m multispectral data, and (2) MODIS 250 m enhanced vegetation 

index (EVI) data (Table 2).  Specifically, we use MODIS 500 m Nadir BRDF-Adjusted 

Reflectance (NBAR) surface reflectance data (Schaaf et al., 2002) for the seven “land” bands 

(visible to mid-infrared) for 37 tiles in Asia.  NBAR data are normalized to a nadir-viewing 

angle to reduce noise resulting from varying illumination and viewing geometries (Schaaf et 

al., 2002).   

 In the NBAR data, missing data frequently occur within/near cities since bright urban 

surfaces are often mistakenly removed during cloud screening (Leinenkugel et al., 2013).  

This problem is clear in Figure 2, where city extents exhibit a high percentage of missing 

data compared to surrounding areas.  To minimize the effect of these data gaps, we 

developed an optimization algorithm that assessed missing data on a tile-by-tile basis for a 

sample of cities within each MODIS tile.  Based on these results, a contiguous cloud-free 
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season was selected for each tile (between 11 and 21 8-day observations, Figure 2e).  The 8-

day observations were then aggregated to monthly composites to reduce the temporal 

correlation and the frequency of missing values from cloud cover.  Monthly and yearly 

minima, maxima, means, and variances for each band and EVI were also estimated from the 

cloud-free season for each tile. 

 At 250 m resolution, we rely solely on EVI data, since vegetation removal has been 

shown to be an important indicator of urban land conversion (Stefanov et al., 2001; 

Schneider, 2012).  Because raw MODIS 250 m data are noisy and have a large number of 

missing observations, we temporally smoothed the data using a modified asymmetric 

Gaussian filter within an augmented version of TIMESAT (Jonsson & Elklunh, 2002), and 

then fit a curve to the data that approximates the phenological pattern to fill data gaps (Gao et 

al., 2008; Tan et al., 2011).  The result is a high-quality dataset shown to be suitable for both 

classification and direct assessment of EVI values (Tan et al., 2011).  We selected the 

MODIS EVI data for the growing season in each tile (23 observations), and then computed 

the maximum EVI from these values for each year, 2001-2010.    

 

4.3 Classificat ion o f 2010 urban extent  

 To classify 2010 urban extent, we rely on an ensemble method which uses a 

supervised decision tree as the base algorithm (C4.5, Quinlan, 1993).  Decision trees are 

widely utilized in large area mapping of land cover (Friedl et al., 2002; Hansen et al., 2005) 

and urban areas (Schneider, 2009) where complex spectral datasets require robust algorithms.  

Decision trees are constructed through the recursive partitioning of training data according to 

a statistical test applied to the training features (here, an attribute value test of a spectral 
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feature which maximizes information gain at each split).  After they are built, unlabeled 

pixels are sorted down the tree according to the decision rules and eventually terminate in a 

class assignment.  Ten trees are estimated using boosting, a technique that improves class 

discrimination by iteratively training classifiers based on different weightings of the training 

data.  Because a class label is assigned with each iteration of the boosting algorithm, together 

the ensemble of trees provides an estimate of conditional probabilities for each class at every 

pixel (McIver & Friedl, 2001).  Although the optimization approach (Section 4.2) helped 

isolate the least cloudy season for each tile, we used three years of MODIS 500 m data 

(2009-2011) for the selected season to ensure at least one quality observation for each pixel. 

 The training data were built upon the System for Terrestrial Ecosystem 

Parameterization (STEP) database, a set of  >2000 exemplars collected from Google Earth 

and Landsat data for 17 classes (Friedl et al., 2002; 2010).  The database was augmented with 

sites drawn from a stratified random sample of 250 locations within the East-Southeast Asia 

region (Figure 3a, b).  All sites were collected as 0.5-2.0 km
2
 polygons of uniform land cover 

interpreted using VHR Google Earth imagery. 

 The results of the MODIS 500 m classification were promising (Figure 4a), but 

showed confusion between urban classes and mixed vegetation classes in areas outside cities.  

To resolve this issue, we employed a data fusion methodology to integrate 250 m MODIS 

EVI data with the class probabilities from the boosted decision trees (Figure 4).  As 

demonstrated by past work (Schneider et al., 2010), urban areas may exhibit similar seasonal 

fluctuations in EVI as the surrounding vegetated classes, but achieve a distinct peak 

greenness.  In tropical and temperate regions, EVI reaches a higher maximum in vegetated 

areas outside the city, while in arid/semi-arid regions, EVI is often higher within cities due to 
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vegetation planted near buildings and roads.  We exploit these differences in growing season 

maximum in the 250 m EVI data to estimate a priori probabilities for urban land, which we 

use to adjust the conditional class probabilities from the 500 m data using Bayes’ Rule. 

 To compute the prior probabilities, we defined a logistic regression model using the 

growing season maxima for the smoothed, gap-filled MODIS EVI data.  The model is 

mathematically defined using a binomial distribution and the expression 

 

        
      

      
                                                                                   1  

 

where P(ULR) is the probability that a pixel is urban, and Vi is provided by a multiple linear 

regression model.  Several trials were conducted to model the relationship between EVI and 

urban areas using different predictor variables (Table 3, models 1-5).  Based on the predictive 

power of the model, given by the area under the receiver operating characteristic (ROC) 

curve, and the hypothesis test of each variable coefficient (Table 3), the results show that 

model 3 outperformed the others.  Thus, we model Vi as:  

 

                                                                                          2  

 

where EVI2009i  and EVI2010i  are the maximum EVI observations for 2009 and 2010 for the 

ith pixel,   and   are their coefficients, and    is the intercept.  Because of the increased 

spatial resolution of the imagery, we also found that a model trained with pixels selected 

from visual interpretation of the 250 m MODIS data outperformed the model trained with the 
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STEP exemplars selected in Google Earth (Table 3, models 6-7).  

 We constructed separate logistic regression models for temperate, tropical and arid 

regions (Figure 1b).  Training data were collected for urban and non-urban sites for each 

model (Figure 3c) so greater local representation within each region could be achieved.  The 

regression coefficients were estimated within Matlab (2011a, The MathWorks, Inc., Natick, 

MA, US) for each model using an iterative maximum likelihood estimation method for 80% 

of the training data.  The remaining 20% of data were used to assess model performance 

(Table 4).  The Wald test results confirmed that the coefficients for each model were 

significant at p < 0.05 and therefore contributed to the regression.  The ROC areas were 92, 

84, and 76% for temperate, tropical, and arid biomes, respectively, indicating that these 

models are suitable for predicting the presence of urban areas. 

 In the last step of the ca 2010 urban classification, we adjusted the conditional 

probabilities from the decision trees        by the a priori probabilities from the 250 m 

MODIS data, P(ULR).  Following Bayes’ Rule, we estimate the posterior probabilities 

         as: 

 

         
              

                                       
 

 

[3] 

We compare the posterior probabilities to Google Earth VHR imagery to select an 

appropriate threshold for defining the urban class on a tile-by-tile basis.  These thresholds are 

selected at natural breaks in the data and vary by biome and by country, based on the local 

characteristics and data quality in each area.  In temperate biomes, for example, urban areas 
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are spectrally distinct from surrounding vegetation types, there is distinct seasonality within 

the time series data, and there are sufficient high-quality training data and cloud-free 

observations.  As a result, thresholds of >90% are used to define urban from non-urban areas 

in the posterior probabilities.  In arid regions, however, the difficulty in characterizing urban 

land as distinct from surrounding cover types requires low thresholds (on average, 25%), 

with variability based on location.  Finally, the lack of cloud-free imagery (and the 

classification difficulty that results) leads to the use of similarly low thresholds (on average, 

41%) to create the final maps for tropical countries.  Although the choice of threshold is 

subjective, the ability to vary these values relative to Google Earth observations is beneficial, 

since it allows us the opportunity to move away from 'one size fits all' classification methods.  

 Post-processing refinements were made to finalize the urban extent map. Spurious 

pixels were removed using a sieve filter, water bodies were masked using the MODIS 250 m 

land-water layer (Carroll et al., 2009), and problem areas were manually edited. 

 

4.4  Mapping change areas (2000-2010)  

 Capitalizing on our assumption that urban land does not become ‘undeveloped’, the 

2010 urban extent map was used to spatially constrain the change detection process.  The 

change detection method used ten years of growing season maximum EVI data (2001-2010) 

as input to a boosted decision tree algorithm (C4.5) to classify the circa 2010 urban extent as: 

(1) built-up in 2000; or (2) urbanized during the 2000‐2010 period.  The localized training 

data collected for the logistic regressions (Figure 3c) were revisited, and all urban sites were 

labeled as existent urban land, or newly developed urban land, 2000-2010 (Figure 3d).   
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 This approach relies on the observed relationship between EVI and urban areas 

previously established: any conversion from a non-urban land cover (agriculture, grassland, 

forest, etc.) to developed land is detectable through changes in vegetation content.  As the 

magnitude and direction of change in vegetation signal may vary from region to region and 

between different initial land cover types (e.g. conversions from tropical forest to densely 

built-up areas will result in large drop in EVI, whereas a conversion from bare ground may 

actually result in an increase in EVI from tree and grass planting alongside roads and 

buildings), it was necessary to construct decision trees and choose breakpoints to threshold 

the decision tree output probabilities by subregion (temperate, tropical, arid) in a similar 

procedure used for the 2010 urban extent map (Figure 5). 

 

5.  RESULTS 

5.1 Regional and local views  

 We present the change detection results in Figure 6 for a subset of metropolitan areas.  

Visually, these views are in accordance with ground-based evidence and spatial datasets 

produced at different time points and/or scales.  They also indicate that the methods capture 

new urban development that is contiguous with the urban core across a range of city sizes, as 

well as patchy growth in peri-urban areas far from the city edge.  The lack of available data 

on urban expansion at comparable scales limits our ability to cross-examine the map trends, 

but also underscores an important result: up-to-date, consistent, and spatially-explicit 

information on the extent and growth of cities is now available for the rapidly evolving 

regions of East and Southeast Asia. 
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5.2 Tier one accuracy assessment  

 We assess map accuracy using a two-tiered approach.  First, we assess the quality of 

the 2010 urban classification results, followed by an evaluation of the change detection 

methodology and urban expansion map accuracy (Section 5.3).  The tier one test sites were 

generated using Geodesic Discrete Global Grids (DGGs) (Sahr et al., 2003), a class of 

equal‐area, uniformly distributed hexagonal partitions of the Earth’s surface.  To define the 

sites, we used a DGG with a facet size of 0.132 km
2
 and a stratified random sample design 

drawn from within the study extent.  While the final maps were produced at 250 m, this site-

based analysis was designed to provide a sampling unit consistent in size with the training 

data and the 500 m grid of the coarsest resolution MODIS data.  The sites were assessed in 

Google Earth using high resolution data (≤4 meters) in a double‐blind assessment procedure 

by a team of photo-interpretation analysts.  A final review of all sites was conducted for 

quality control and to assign labels in cases where analysts disagreed. 

 The overall accuracy of the 2010 map of urban extent (tier one) is 84% (kappa = 

0.62), and is fairly consistent across countries (ranging from 79-93%, Figure 7) and biomes 

(83-100%, Figure 8).  Producer’s accuracy for the urban class is similarly high for the region 

(85%), indicating that urban areas are well captured, with few errors of omission (Tables 5, 

6).  At 64%, the user’s accuracy for the region is reasonable but suggests that map errors are 

predominantly the result of commission errors, where non-urban areas area mislabeled as 

urban land.  As a result, the total urban land area may be overestimated in some locations, 

particularly Thailand, Malaysia, and Laos, where user’s accuracies are <61%.   
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5.3 Tier two accuracy assessme nt   

 The second tier assessment is designed to quantify the accuracy and efficacy of the 

change detection methodology, as well as evaluate the accuracy of the urban expansion 

maps.  First, samples are selected in proportion to each country’s share of urban land in the 

region (note that for countries with <1% of urban land, we use a minimum of 20 sites).  

Second, we sample across biomes, selecting sites in proportion to the distribution of urban 

land across nine biomes (Olson et al., 2001).  Once the sample distribution was established 

(Table 7), we selected sites at random from within a tightly buffered region of the city points 

using the 250 m MODIS raster grid to ensure that the sample included urban expansion sites.  

Following the same procedure as in tier one, each site was assessed in Google Earth and 

assigned one of three labels: urban land, urban expansion, or non-urban land.   

 The overall accuracy for the urban expansion maps is 75% (kappa = 0.36), slightly 

lower than the overall ca 2010 accuracy.  More developed countries (e.g. Japan, Taiwan, 

South Korea, etc) generally have higher accuracies (>80%) than other locations (Table 8) 

likely because of the low growth rates in these highly urbanized countries. Overall accuracy 

also tends to be higher in temperate and forest biomes than arid/semi-arid biomes (Table 9),  

as do the producer’s accuracies (9 to 25% above average, 11 to 21% below average, 

respectively).  This result is related to the spectral and temporal signatures of the EVI data 

used in change detection.  In arid regions, EVI signatures before and after change are quite 

similar. Land outside the city that is spectrally bright and sparsely vegetated is converted to 

new urban land, which then also appears spectrally bright with minimal vegetation.   
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5.4 Redefining urban areas: applying a minimum mapping unit  

 While the objective of these mapping efforts was to capture all cities >100,000 

persons, small cities and villages were also mapped in many areas where the 

size/composition of the settlements made them spectrally and temporally distinct (e.g., 

outside Beijing, Figure 6b).  Small patches of urban land around cities were also mapped and 

remain in the dataset even after spatial filtering.  In general, these areas – which range from 

one to nine pixels (0.06-0.56 km
2
)– are mapped less confidently because data resolution and 

point spread function effects introduce considerable uncertainty at the scale of individual 

pixels.  In this section, we examine the degree to which these small areas may contribute to 

the low accuracies described above.  We first apply a minimum mapping unit (MMU) of 0.56 

km
2
 (nine 250 m pixels), remove urban patches below this value, and then re-estimate the tier 

one and tier two accuracy measures (Table 10).  We subset the test sites to include only those 

where the class label remains unchanged between the original and the filtered maps.  

 The accuracies of both the ca 2010 urban extent and 2000-2010 expansion maps are 

modestly improved after the MMU is applied (1-2%), with only a small portion of the 

original test sample dropping (4-6%). This occurs because the tier one and tier two sampling 

techniques stratified the region based on city point locations; urban sites were mainly 

confined to cities >100,000 and rarely fell on smaller settlements.  This limits our ability to 

report on how accurately the map represents these small settlements.  The results confirm 

that the accuracy measures are not significantly affected by the inclusion of these patches and 

are representative of urban areas as defined in Section 3.1. 
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5.5 Sources of uncertainty and error in the maps  

 As expected, the tier two accuracy measures are lower than those for tier one, a result 

that is to be expected: the errors of the 2010 urban classification propagate through to the 

change detection maps, thus lowering the overall achievable accuracy from the start.  To 

evaluate the methodology and the structure of possible map errors in a more targeted manner, 

we assessed the source of uncertainty for each misclassified site in the tier two results (n = 

513).  Each site was reevaluated in Google Earth to determine the likely source of error, and 

labeled accordingly (Table 11, Figure 9).  

 The distribution of errors clearly shows the sensitivity of the tier two assessment to 

the classification results: more than one third of errors are actually due to classification errors 

from the initial map of ca 2010 urban land (issue 1, Table 11).  While obtaining a perfect 

classification of 2010 urban land is unrealistic, we can hypothesize that an error-free map of 

urban land might improve the change detection results.  After removing sites mislabeled as 

non-urban land from the tier two sample, accuracies increase 5-15% depending on location, 

indicating that the change detection method is likely more effective than the overall accuracy 

results indicate (Figure 8). 

 Twenty-four percent of errors can be traced to the density threshold used to define 

urban land (issue 2, Table 11).  In these cases, the site had some development in 2000 but 

was not sufficiently built-up to meet the definition of urban land (i.e. >50% built up). Like 

the first issue, this case traces back to the ca 2010 classification but is not a complete 

categorical error in labeling. Compounding the problem however is the fact that many of 

these same locations witnessed an increase in buildings or impervious cover over the 2000-
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2010 decade (Figure 9b).   The change detection algorithm does not recognize these areas as 

change, however, and the early 2000 time point is mislabeled as urban land.   

Another issue related to the density threshold is that linked to redevelopment and 

infill (issue 3, Table 11). As some large cities expand, they consume small villages and built-

up areas by clearing old buildings and replacing them with new, spectrally-bright 

development (Figure 9d).  Likewise, in urbanized areas that are undergoing densification, the 

spectral response may increase dramatically with new construction.  Because our definition 

of urban land included any built-up areas or settlements, these sites are technically ‘urban’ in 

2000, and remain urban land in 2010.  The spectral difference is often large, however, and 

the change detection approach characterizes these areas as urban expansion accordingly.   

An additional 19% of the tier two errors are simply related to change detection errors 

where urban land is mislabeled urban expansion or vice versa, without an obvious indication 

as to the source of spectral or temporal confusion (issue 4, Figure 9d).  Within this class of 

errors, the confusion between urban land and urban expansion occurs at a similar frequency, 

suggesting that there is no bias toward either over- or under-estimating change in the method 

itself.  

 

6.  DISCUSSION AND CONCLUSIONS  

 We present a new methodology that leverages information on the location and nature 

of urban areas and growth using multiple sources of moderate resolution remotely sensed 

data.  In doing so, we address an important challenge that has limited large-area mapping of 

urban expansion: urban features are small and there is high variability in the spectral 

responses of urban areas.  We tested the approach for a large and diverse region where urban 
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expansion is often uncoordinated and patchy, and consequently, where urban maps are most 

challenging to produce, yet most needed.  The results reveal several insights for monitoring 

urban change that are relevant to future studies: 

 

Satellite data fusion helps yield higher map accuracy in complex urban landscapes.  While 

the amounts and quality of remote sensing data are unprecedented, there is still no one 

‘perfect’ data source for the difficult task of mapping urban expansion.  We will continue to 

face limitations in areal coverage and spatial detail, as well as missing data due to cloud 

cover.  Missing or noisy observations have been shown to significantly impact final map 

accuracy even when advanced data mining algorithms are employed (Schneider, 2012).  

Many multisource data fusion approaches have been developed for remote sensing, whether 

to take advantage of multiple data types (e.g. multispectral, SAR, GIS, etc.), multiple spatial 

resolutions, or multiple remote sensing domains (e.g. spatial, temporal, etc).  For example, 

pan-sharpening – a technique to increase the resolution of multispectral data using a single 

panchromatic band with better spatial resolution – is becoming increasingly relevant not only 

because it can overcome resolution trade-offs that limit the utility of any one particular data 

source, but also because the necessary VHR data are become more freely available.  On the 

other hand, data fusion techniques like the one employed here remain a straightforward and 

valuable alternative to more complex pixel-based approaches, particularly as new methods 

and more automated approaches are adopted for remote sensing applications.  Combining 

multiple data sources is also advantageous given the heterogeneity of urban land and urban 

growth.  Depending on the built-up density, building materials, and amounts/types of 

vegetative cover, urban areas may resemble other land cover classes more so than they 
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resemble one another.  By tackling the classification problem from multiple domains, it is 

possible to isolate a large number of unique urban signatures in a relatively short amount of 

time. 

   

Reduce confusion by limiting the study space.  Urban areas account for a very small amount 

of total global land area, and land cover change within/near these areas occurs infrequently.  

While the exact patterns and extents of urban areas are not well-known globally, their central 

locations are captured in a variety of public/private databases, including point datasets, city 

lists, and even online mapping engines.  Using very liberal buffers (up to 100 km) applied to 

a synthesis of these datasets (Table 1), we harnessed this information to eliminate 50% of the 

land extent from the image processing stream, in turn reducing the overall image processing 

time substantially.  This approach allowed these data to be exploited without using them 

explicitly during image processing, thereby limiting the propagation of errors into the final 

results.  Basing the change detection methodology on the same premise of constraining the 

area for classification and change detection, we were able to work ‘backwards’ from 2010 to 

map expansion for the 2000-2010 period.    

 The emerging digital landscape is providing vast new data sources on urban processes 

that could be incorporated into mapping methodologies.  Data from location-based social 

networks (e.g. Foursquare) or geo-located internet/social media posts (e.g. Twitter, 

Facebook, FlickR) are increasingly being exploited to monitor and map disease outbreaks 

(Signorini et al., 2011) and natural disasters (Gao et al., 2011; Yates & Paquette, 2011).  

While the quality and reliability of crowd-sourced and volunteered geographic information 
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must be considered, these datasets provide opportunities for innovation in using humans as 

sensors. 

 

Definitions of urban land and urban expansion are a critical component of any urban 

mapping methodology.  Perhaps more than any other land cover type, urban area mapping is 

complicated not only by the juxtaposition of human constructed and natural elements, but 

also by a lack of consensus on how to define urban areas.  In addition to satellite information, 

definitions may include census/population density information, economic indicators, 

functional boundaries (e.g. a commuter-shed), or administrative boundaries.  Definitions 

based on physical land surface properties are a logical choice for applications using optical 

remote sensing data, simply because spectral and temporal properties of urban surfaces can 

be aligned to radiometric values in the imagery.   

 Past efforts have shown how varying urban definitions can lead to vastly different 

maps of cities and settlements (Potere et al., 2007).  Our results here indicate that the 

definition of urban remains problematic, despite the use of consistent, high quality optical 

remote sensing data and a clearly established conceptual framework on urban areas.  

Specifically, the accuracy assessment results revealed that the majority of errors in the 

change detection could be traced back to definitional issues.  This is likely the result of 

differences in labeling techniques between analysts as training data were compiled, as it can 

be difficult to visually and objectively estimate a 50% density threshold.  However, this 

result does have two positive implications.  First, it may be less problematic to mislabel an 

area that moves from 10 to 40% built up land as urban expansion, than it is to mislabel a 

barren area as urban expansion.  Since more than a third of all error is related to definitions 



25 

 

instead of categorical error, the map quality may be better than reported.  Second, the fact 

that these more subtle changes in land cover are being detected shows that the method may 

have potential to map land modifications (e.g. redevelopment, increases in density) in 

addition to land conversions. 

 Urban growth has increased in scope, scale, and complexity in recent decades, and 

has become one of the most important challenges of the 21
st 

century.  Looking forward, this 

research provides a tested methodology to map urban land expansion at continental to global 

scales using MODIS data, which can be extended to map other regions as well.  Since the 

change detection component of this work is mostly scale-independent, this framework could 

be extended to map urban areas with more spatially-detailed data as well.  The rise of big 

data and social media, along with advances in data mining and processing capacities also 

present opportunities to expand this framework.  Potential extensions to differentiate between 

different built-up densities (e.g. urban core vs. low density urban) and track urban 

redevelopment are also promising.  The high rates of urbanization characterizing many parts 

of East Asia have resulted in increased demand for timely land information for researchers, 

land use managers, governing institutions and the private sector.  To this end, this work 

provides an up-to-date, consistent, and spatially-explicit dataset on urban extent and 

expansion for this rapidly evolving region.   
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Figure 1.  Maps of the East Asia region illustrating (a) the study area extent defined by known locations of 

urban land, and (b) Olson’s biome designation, used to delineate areas of similar ecoclimatic characteristics for 

data processing. 
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Figure 2.  The distribution of missing data observations in the MODIS 500 m NBAR data for (a) the East Asia 

study region, and for (b) northeastern China, (c) southeastern China, and (d) central Indonesia.  Note the small 

number of cloud-free observations in cities and tropical/subtropical areas.  Panel (e) illustrates the results of the 
optimization algorithm used to select the cloud-free time of year for each tile. 
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Figure 3.  Global (a) and local views (b-d) of the three training datasets compiled for this research.  To classify 

ca 2010 urban land using the MODIS 500 m data, we rely on a global distribution of >2000 training sites (Friedl 

et al., 2010) (a, b).  This database was updated and augmented with an additional 400+ training sites in East and 

Southeast Asia.  To create the a priori urban probability surface using MODIS 250 m data, we collected 

training data on a tile-by-tile basis for urban and non-urban areas (c).  We then adapted (c) to represent stable 

urban land and urban expansion, 2000-2010 (d), for use in the change detection approach. 
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Figure 4.  The data fusion approach used to map c 2010 urban extent for Bangkok, Thailand, illustrating (a) the 

urban class probability from the MODIS 500 m supervised decision tree classification; (b) the a priori surface 

for urban land developed from the MODIS 250 m enhanced vegetation index data; and (c) the final map of 
urban extent from the fusion of the (a) and (b) using Bayes’ Rule.  
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Figure 5.  An illustration of the steps used to characterize urban expansion for the greater Shanghai, China, 

region: (a) the final map of ca 2010 urban land is used to mask the area of interest; (b) a multi-date composite 

change detection method is used to generate the probability of urban expansion; and (c) the final map of urban 

land and urban expansion, after the urban expansion probabilities have been thresholded based on visual 

interpretation of the probability map (b) in Google Earth.   
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Figure 6.  Urban land and urban expansion 2000-2010 in East Asia for regions spanning several countries and 

biomes: (a) Cambodia - tropical dry forest; (b) China - xeric/shrubland; (c) China – temperate mixed forest; (d) 

China – temperate mixed forest; (e) Indonesia – tropical moist forest (f) Taiwan – tropical moist forest. 
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Figure 7.  The overall accuracy results for the tier one and tier two assessments by country. 
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Figure 8.  The overall accuracy results for the tier one and tier two assessments by biome. 
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Figure 9.  A sample of the types of issues associated with mislabeled sites in the tier two accuracy assessment 

of urban land and urban expansion (see Table 11 for full description and frequency of occurrence).  The 

locations of the sites from top to bottom are: Dashiqiao, China; Yining City, China; Ibaraki, Japan; Langfang, 

China; Fuzhou, China; and Luoyang, China. 
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Table 1.  Datasets used to define the study extent in East Asia for satellite image processing. 

Dataset Producer Description Location Website or citation 

    
 

MODIS 500 m 

map of global 
urban extent 

University of Wisconsin-

Madison 

Map of 88,578 urban patches 

>1 km2 used to verify, 
geolocate, and update city 
points. 
 

Global http://www.sage.wisc.edu 

GRUMP city 
points 

Center for International Earth 
Science Information Network 
(CIESIN), Columbia 
University, International Food 

Policy Research Institute 
(IFPRI), World Bank, Centro 
Internacional de Agricultura 
Tropical (CIAT) 
 

Point dataset of 67,935 cities, 
towns and settlements. 

Global http://sedac.ciesin.columbia.edu 

Urban 
agglomerations 
with >750,000 
inhabitants, 

2011 
 

United Nations Department of 
Economic and Social Affairs 
Population Division 

Point dataset of 633 cities 
>750,000 persons. 

Global  http://esa.un.org/unup/GIS-
Files/gis_1.htm 

Universe of 
cities  

Angel, Lincoln Institute of 
Land Policy 

Point dataset of 3,943 cities 
>100,000 persons. 

Global Angel, S. (2012). Planet of 
Cities.  Cambridge, 
Massachusetts, Lincoln Institute 
of Land Policy. 
 

Chinese city 

point data 

Chinese Academy of Sciences  Point dataset of 664 cities. China Chinese Academy of Sciences 

(2011). Beijing, China.  
 

Google Earth 
populated 
places 

Google Earth Pro v7.1. Layers: 
populated places  

City point location used to 
verify, geolocate, and update 
city points. 

Global http://www.google.com/earth 
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Table 2.  Remote sensing and training datasets used to map c 2010 urban extent and 2000-2010 urban expansion. 

 

 

 

 
 

 

 
 
 

 

 

 

 

 
Dataset Description Source Location Time period Spatial unit 

 
            

Classification 

c2010 

MCD43A4, 
MCD43A2 

MODIS nadir 
BRDF-adjusted 
reflectance 
(NBAR) and 
quality product 8-
day composites 
 

MODIS Land 
Team, Boston 
University 

Global Monthly 
composites,  
2009-2011 

500 m pixel 

 STEP                      

land cover 
database 

Training exemplar 

database used with 
NBAR data 

Boston University, 

University of 
Wisconsin-
Madison 
 

Global  c 2010 500 m –                 

2 km 
polygon 

 MOD09Q1G EVI MODIS Enhanced 
Vegetation Index 
(EVI) 8-day 

composites 
 

NASA Goddard 
Space Flight 
Center 

East Asia Annual growing 
season maximum, 
2009-2010 

250 m pixel 

 Urban,                  
non-urban training 

data 

Training set 
database used with 

EVI data 

University of 
Wisconsin-

Madison 
 

East Asia  c 2010 250 m pixel 

 MOD44W MODIS land-water 
mask 
 

United States 
Geological Survey 
 

East Asia  c 2010 250 m pixel 

Change 

detection 

2000-2010 

MOD09Q1G EVI MODIS Enhanced 
Vegetation Index 
(EVI) 8-day 
composites 
 

NASA Goddard 
Space Flight 
Center 

East Asia Annual growing 
season maximum, 
2001-2010 

250 m pixel 

 Urban and          
urban expansion 
training data 

Training set 
database used with 
EVI data 

University of 
Wisconsin-
Madison 

East Asia  2000-2010 250 m pixel 

       

Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS), Bidirectional reflectance distribution function (BRDF), System 

for Terrestrial Ecosystem Parameterization (STEP), Enhanced Vegetation Index (EVI). 
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Table 3.  A comparison of results from the logistic regression models used to estimate an urban / non-urban 

probability surface with MODIS 250 m enhanced vegetation index (EVI) data.  Models were tested with (a) 

different explanatory variables, and (b) different methods of training data collection. 

 

 

 

Sample size  

(n) 

Number of 

predictors 

 (xi) 

Number of 

significant 

predictors  

 α = 0.05 

 (xi) 

Area under 

ROC curve 

     

a. Predictor variables     

1 Growing season, all 8-day observations (2010) 1237 23 9 96.0 

2 Growing season maximum (2009) 1237 1 1 94.6 

3 Growing season maximum (2010) 1237 1 1 93.5 

4 Growing season maximum (2009, 2010) 1237 2 2 98.6 

5 Growing season maximum (2001, 2009, 2010) 1237 3 2 97.5 
      

b. Method of training data collection (using model 3)     

6 STEP database (Google Earth imagery) 3611 1 1 79.7 

7 250m pixels (MODIS imagery) 1237 1 1 93.5 
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Table 4.  Logistic regression model results used to develop an urban probability surface for temperate, tropical, and 

arid regions based on biome designation. 

 

 

 

 

 
 

 

 

 

  

  Coefficient 

Standard 

error t p-value 

AUC 

(%) 

            

Temperate biomes
a       

 

92  

Intercept 6.30 0.08 74.31 0.00 
 MaxEVI2009 -6.95 0.34 -20.44 0.00   

MaxEVI2010 -10.47 0.36 -29.35 0.00   

      Tropical biomes
b         84 

Intercept -1.88 0.10 -18.71 0.00   

MaxEVI2009 5.72 0.41 13.81 0.00   

MaxEVI2010 5.83 0.44 13.23 0.00   

            

Arid biomes
c         76 

Intercept 1.71 0.12 13.72 0.00   

MaxEVI2009 -3.50 1.09 -3.20 0.00   

MaxEVI2010 -3.99 1.10 -3.63 0.00   

            

 
a Temperate biomes include h26v04, h27v04, h27v05, h27v06, h27v07, h28v04, h28v05, h28v06, h28v07, h29v05, 

h29v06. 

b Tropical biomes include tiles h28v07, h29v07, h30v07, h27v08, h28v08, h29v08, h30v08, h27v09, h28v09, h29v09, 

h30v09, h31v09, h32v09. 

c Arid biomes include tiles h23v04, h24v04, h25v04, h23v05, h24v05, h25v05, h26v05, h25v06. 
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Table 5.  Tier one accuracy (urban vs. non-urban land) by country, including user’s and  

producer’s accuracies for the urban class. 

 

  Tier one accuracy (%)   Test sites (#) 

Country Overall Producer's User's    Total Urban 

             

             

Myanmar 93 100 68   95 15 

North Korea 93 88 64   67 8 

South Korea 91 71 81   215 41 

Laos 90 100 60   21 4 

Cambodia 89 89 89   18 9 

Thailand 87 73 58   324 51 

Japan 86 91 74   563 185 

Philippines 86 94 62   227 48 

Indonesia 85 84 66   529 132 

Singapore 85 89 80   20 9 

Vietnam 85 77 68   209 53 

China 83 85 62   4034 1042 

Taiwan 80   0   5 0 

Malaysia 79 97 60   201 63 

 

REGION 84 85 64   6528 1660 

      

 
 

Note: Cells left blank indicate there were no expansion sites drawn in the sample. 
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Table 6.  Tier one accuracy (urban vs. non-urban land) by biome, including user’s and  

producer’s accuracies for the urban class. 

 

  Tier one accuracy (%)   Test sites (#) 

Biome Overall Producer's User's    Total Urban 

             

Temperate Conifer 100 100 100   16 2 

Tropical Conifer 100 100 100   6 3 

Mangrove 90 91 72   97 22 

Temperate Grass 89 87 70   135 30 

Flooded Grassland 89 92 69   53 12 

Montane Grassland 87 92 57   76 13 

Xeric Shrubland 86 83 74   81 24 

Tropical Moist 85 89 61   2390 534 

Tropical Dry 85 65 67   221 54 

Temperate Mixed 83 84 65   3453 965 

 

REGION 84 85 64   6528 1659 
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Table 7.  The tier two sample design showing the number of sites in each strata (bold), and the share of urban land falling into each category (in parentheses). 

 

a. Stratify by country 

 
Cambodia China Indonesia Japan Laos Malaysia Mongolia Myanmar N. Korea Philippines Singapore S. Korea Taiwan Thailand Vietnam 

No. sites 
(%) 

20  
(0.13) 

1324 
(66.19) 

148  
(7.32) 

243 
(12.13) 

20     
(0.08) 

67 
 (3.37) 

20                 
(0.2) 

20  
(0.67) 

20                 
(0.3) 

36  
(1.81) 

20               
(0.29) 

40                          
(1.99) 

28                
(1.42) 

39                  
(1.97) 

43             
(2.13) 

 
 

               
b. Stratify by biome 

 
Cambodia China Indonesia Japan Laos Malaysia Mongolia Myanmar N. Korea Philippines Singapore S. Korea Taiwan Thailand Vietnam 

Tropical 
moist 

8                  
(0.4) 

267  
(0.2) 

145  
(0.99) 

2  
(0.01) 

17  
(0.83) 

67  
(0.99) 

- 
16  

(0.82) 
- 

36  
(0.99) 

20  
(1) 

- 
28  
(1) 

24  
(0.62) 

24  
(0.56) 

Tropical 
dry 

12  
(0.6) 

- 
1  

(0) 
- 

3 
 (0.17) 

- - 
2  

(0.08) 
- - - - - 

6 
 (0.15) 

13  
(0.3) 

Tropical 
conifer 

- - - - - - - - - 
0  

(0.01) 
- - - - - 

Temperate 
mixed 

- 
901 

 (0.68) 
- 

231  
(0.95) 

- - - - 
20 
 (1) 

- - 
40 
 (1) 

- - - 

Temperate 
conifer 

- 
15  

(0.01) 
- 

10  
(0.04) 

- - - - - - - - - - - 

Temperate 
grass 

- 
62 

 (0.05) 
- - - - 

20 
 (1) 

- - - - - - - - 

Flooded 
grass 

- 
15 

 (0.01) 
- - - - - - - - - - - - - 

Montane 
grass 

- 
45  

(0.03) 
- - - - - - - - - - - - - 

Xeric shrub - 
19 

(0.01) 
- - - - - - - - - - - - - 

Mangrove - - 
1 

 (0.01) 
- - 

0 
 (0.01) 

- 
2 

 (0.1) 
- - - - - 

9 
 (0.23) 

6  
(0.14) 
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Table 8.  Tier two accuracy (urban vs. urban expansion) by country, including user’s and  

producer’s accuracies for the urban expansion class. 

 

  Tier two accuracy (%)   Test sites (#) 

Country Overall Producer's User's    Total Expansion 

             

Japan 91 100 17 

 

243 5 

North Korea 90 0 
  

   20 0 

Taiwan 86 71 50 
 

28 3 

Mongolia 85 0   20 0 

South Korea 82 71 59 
 

40 10 

Laos 80 75 86 
 

20 7 

Singapore 80 75 86 
 

20 2 

Indonesia 79 36 36 
 

148 11 

Malaysia 79 8 100 

 

67 1 

Philippines 78 100 33 
 

36 5 

Cambodia 75 71 71 
 

20 7 

Myanmar 75 33 50 
 

20 2 

Thailand 74 33 20 
 

39 5 

China 71 64 51 
 

1324 166 

Vietnam 70 53 80 
 

43 15 

       

REGION 75 61 50   2086 419 

       

 
Note: Cells left blank indicate there were no expansion sites drawn in the sample. 
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Table 9.  Tier two accuracy (urban vs. urban expansion) by biome, including user’s and 

producer’s accuracies for the urban expansion class. 

  
  Tier two accuracy (%)   Test sites (#) 

Biome Overall Producer's User's    Total Expansion 

             

Mangrove 89 72 91   18 2 

Temperate Conifer 80 86 75   25 8 

Temperate Grassland 78 43 33   82 9 

Tropical Moist 76 46 45   654 99 

Temperate Mixed 75 70 51   1192 273 

Xeric Shrubland 74 40 67   19 3 

Flooded Grassland 73 50 100   15 1 

Montane Grassland 73 50 64   45 11 

Tropical Dry 69 73 62   36 13 

      
 

REGION 75 61 50   2086 419 
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Table 10.  Confusion matrices for the tier one (a, b) and tier two assessments (c, d) before and after applying a 0.56 

km2 (3x3 pixel) minimum mapping unit (MMU). 

 

  a.      All mapped built-up areas (n = 6528)     b.      Minimum mapping unit applied (n = 6240) 

                        

    Non-urban Urban   k = 0.62     Non-urban Urban   
 k = 
0.64 

T
ie

r
 1

 

Non-urban 4075 794   84   Non-urban 3878 744   84 

Urban 243 1416   85   Urban 217 1401   87 

 
                       

 
   94 64   84%     95 65   85% 

 
                       

                        

  c.      All mapped built-up areas (n = 2086)     d.      Minimum mapping unit applied (n = 1956) 

                        

T
ie

r
 2

 

  Non-urban Urban Expansion k = 0.36     Non-urban Urban Expansion k = 0.39 

Non-urbana --- 172 46     Non-urbana --- 135 42   

Urban --- 1359 162 89   Urban --- 1291 156 89 

Expansion --- 133 211 61   Expansion --- 123 207 63 

 
                       

 
     82 50 75%       83 51 77% 

                        

                        

  a  Note that the tier two validation assesses only two classes, urban land and urban expansion.       
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Table 11.  The potential sources of error in the misclassified test sites of the tier two accuracy assessment. 

 

    Issue Occurrence (%) Description, examples 
Ground truth label 

2000 » 2010
a
 

Map label 
2000 » 2010

a
 

No.            

test sites 

 

1 Classification error 35 Urban commission error where land without built 
surfaces is labeled urban land in 2010 (e.g. confusion 
between urban areas and extraction activities, riparian 
areas, bare soil, agriculture, etc.). 
 

Non-urban » Non-urban Urban » Urban 165  

2 Low density urban 24 Area has some built-up areas c2000, but does not meet 
the >50% threshold to be considered urban. Because the 
area is labeled as urban c2000, it may result in either a 

change omission if the area increases to >50% built-up 
density by 2010 (a) or an urban commission if it 
remains >50% built-up (b). 
 
 

Nonurban » Urban Urban » Urban 71  
 

    
Nonurban »  Nonurban 

 
Urban » Urban 
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3 Redevelopment 

and/or increasing 

built-up density 

20 New development occurs in existent urban area, e.g. 
settlement is cleared and rebuilt (a), or there is an 
increase in buildings/impervious cover (b), leading to 
change in spectral brightness.  No change in label 

occurs.  
 

Urban » Urban Non-urban » Urban 105  

       

        

4 Change 

 detection error 

19 Urban land and urban expansion are confused by 
classifier. 

Urban » Urban Non-urban » Urban 57  

       
Non-urban » Urban 

 

 
Urban » Urban 

 
41 

 

 
a The labels in the table correspond to the class structure as follows: Non-urban land includes all non-urban -> non-urban areas;  Stable urban land includes all urban -> urban areas; and Urban 

expansion 2000-2010 includes non-urban -> urban areas. 

 

 


