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can be computed. It is found that the cumulative variance out of four
dominant PCs accounts for more than 99% of total variance.

A solid reference database must be provided for satisfactory Raman
studies. With enough data, multivariate analysis can be demonstrated
via clustering. Raman spectra with similar PC scores are close to
each other. PC scores from normalized intrinsic Raman spectra can be
sketched in scatter plots. With limited datasets, Fig. 10 shows only the
preliminary PCA results, where fresh samples from mice livers, lungs,
kidneys, and glands are differentiated. Meanings of symbol and color
are shown in Table V. Scatter plots of up to four PCs are demonstrated.
The dominant PC scores are plotted, such as PC1 versus PC2, PC1
versus PC3, PC3 versus PC4, etc. Results from scatter plots testify to
the effectiveness of the proposed approach on sample characterization.

VIII. CONCLUSION

A systematic intelligent-control approach is implemented for
biomedical sample characterization. Fuzzy filtering is used for noise
filtering. Spectroscopic functions are selected to identify background
fluorescence function, and its baseline spectrum is optimized using
genetic algorithm. Via the SNV method, each set of data can be
normalized in a similar way. The PCA approach is employed for
computation of dominant PCs. Data clustering is subsequently applied
for further sample differentiation. An example for fresh sample classi-
fication is provided offline among normal mice livers, lungs, kidneys,
and glands. This approach has no technical difficulty in real-time
medical diagnosis, and it can also be extended to the decision making
of normal, benign, and abnormal samples. A thorough systematic
intelligent-control method for Raman spectroscopic sample charac-
terization has been formulated. Future Raman study direction will be
focused on real-time applications for robotic surgery.
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An Efficient Search Method for Job-Shop
Scheduling Problems

Leyuan Shi and Yunpeng Pan

Abstract—In this paper, we present an efficient search method for job-
shop scheduling problems. Our technique is based on an innovative way
of relaxing and subsequently reimposing the capacity constraints on some
critical operations. We integrate this technique into a fast tabu search algo-
rithm. Our computational results on benchmark problems show that this
approach is very effective. Upper bounds for 11 well-known test problems
are thus improved.

Note to Practitioners—Through the work presented in this paper, we
hope to move a step closer to the ultimate vision of an automated system
for generating optimal or near-optimal production schedules. The periph-
eral conditions for such a system are ripe with the increasingly widespread
adoption of enterprise information systems and plant floor tracking sys-
tems based on bar code or wireless technologies. One of the remaining ob-
stacles, however, is the fact that scheduling problems arising from many
production environments, including job-shops, are extremely difficult to
solve. Motivated by recent success of local search methods in solving the
job-shop scheduling problem, we propose a new diversification technique
based on relaxing and subsequently reimposing the capacity constraints on
some critical operations. We integrate this technique into a fast tabu search
algorithm and are able to demonstrate its effectiveness through extensive
computational experiments. In future research, we will consider other di-
versification techniques that are not restricted to critical operations

Index Terms—Local search, scheduling, tabu search (TS).

[. INTRODUCTION

Optimal production schedules can increase plant production capacity
by maximizing utilization of critical pieces of processing equipment,
shifting tasks to less busy equipment when possible, and opportunis-
tically fitting production tasks into otherwise unused time windows.
With advances in information and communication technologies and the
rapid evolution of E-Commerce, these scheduling problems become
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more and more complicated in terms of problem size and uncertainty.
This demands the development of new scheduling algorithms and tools
that would enable a firm to produce quickly and flexibly according to
customer needs and changes in market conditions.

The job-shop scheduling problem (JSP) has historically been and
still is a computationally challenging problem. Due to the intrinsic dif-
ficulty of the problem, only approximation algorithms seem to offer
some hope from a practical standpoint. Approximation algorithms aim
at high-quality solutions, which are not necessarily optimal; this allows
these algorithms to run much faster than exact algorithms, which seek
the optimum. Approximation algorithms range from heuristics based
on priority dispatching [1], [2], shifting bottleneck procedures [3], [4],
to local search methods (see the survey by Vaessens et al. [5]). In re-
cent years, local search methods have achieved remarkable success in
terms of both computation time and solution quality. Among them are
simulated annealing [6]-[8], tabu search (TS) [9]-[12], genetic algo-
rithms [13]-[15], and the guided local search for JSP [16].

In this short paper, we develop a new search technique that can
dramatically improve existing local search methods mentioned above,
including the fast TS algorithm of Nowicki and Smutnicki [12]. We
present our results as follows. Section II formally defines JSP and
outlines the TS algorithm of Nowicki and Smutnicki [12]. Section III
presents a new search technique and a new TS algorithm. Section IV
gives computational results on an extensive set of test problems.
Finally, Section V contains some concluding remarks.

II. PRELIMINARIES
A. Problem Definition

The problem (JSP) is formally defined as follows. There are 1 ma-
chines M = {1,...,m} and n jobs 7 = {1,...,n} in a job-shop.
Each job j € J entails a chain of operations O; (also known as
job-routing constraints); the first operation and the last operation are
denoted by f; and [;, respectively. Each operation « must be performed
on a designated machine m(u), taking p(u ) units of time. All machines
can perform at most one operation at a time (also known as machine
capacity constraints). Let binary relation A on O = U;O; represent
the precedences between operations of the same job, and let binary rela-
tion & represent the pairs of distinct operations performed on machine
k € M. Note that &, is symmetric because (u,v) € & implies that
(vyu) € &, and so is & = UxE. In addition, let S(u) and C'(u) de-
note the start time and the completion time of operation u, respectively.
We try to find a schedule specified by start times and completion times
of operations. In particular, we are interested in nonpreemptive sched-
ules, where C'(u) = S(u) + p(u). There are two basic requirements
for any schedule: 1) the operation precedences and 2) the machine ca-
pacity constraints must be satisfied [17]. With our notation

Y{u,v) € A: S(v) > C(u)
Yk € M, (u,v) € E : S(v) > C(u)
or S(u) > C(v). (1)

A schedule that satisfies the constraints in (1) is said to be feasible. Let
S; = S(f;) and let C; = C(I;). The classic JSP assumes that Vj €
J,S; > 0, and seeks for a schedule that minimizes the makespan, i.e.,
the maximum completion time of jobs (denoted by Crnax = max; C).

The disjunctive graph G = (O, A, E) [18] is a useful tool for vi-
sualizing the problem. Node set O represents the operations, and as-
sociated with each node there is a weight equal to the processing time
p(u). 2-tuples in binary relations A and £ maps naturally to (directed)
arcs in G. These arcs are divided into two sets: the conjunctive arc
set A and the disjunctive arc set £, depending on which binary rela-
tion their corresponding 2-tuples belong to. Due to the symmetry of

binary relation £, for each arc in &, the arc of the opposite orienta-
tion is also in €. A partial selection is a subset of arcs in £ such that
at most one in each pair of arcs of opposite orientations is present; it
is called a (complete) selection (denoted by ) if exactly one arc from
each pair is present. A complete (or partial) selection is feasible if graph
(O, AUB) is acyclic. Minimizing the makespan is equivalent to finding
a selection # so as to minimize the longest path length in the graph
(O, AU #). Hence, JSP can be denoted by P(; O, A, £), where the
selection @ is the decision variable. This notation can be generalized to
P0';0,A,E"), where &' C & and the decision variable 8’ is a partial
selection; P(¢'; O, A, £") represents a subproblem of JSP that involves
only some of the disjunctive arcs in £.

Given a feasible selection ¢, the makespan Cl,.x is equal to the
length of a longest path (not necessarily unique) in (O, A U 6). A
longest path is also referred to as a critical path. For a given critical
path, it can be divided into a number of blocks: Bi,..., Bj. Each
block B; (i = 1,.... k) is a maximal subset of consecutive operations
(ai,...,b;) processed on the same machine along the critical path; op-
erations a; and b;, which satisty m(a;) = --- = m(b;) (i = 1,..., k)
and m(b;) # m(a;+1) (i = 1,...,k — 1), are called the first and the
last operations of the block, respectively. Each operation on the crit-
ical path is called a critical operation. A crucial notion in local search
is neighborhood, which loosely speaking, is a set of feasible solutions
obtained by applying small perturbations to a given feasible solution.
Commonly employed small perturbations involve modifying the pro-
cessing order of certain critical operations.

B. Fast TS Algorithm of Nowicki and Smutnicki

TS is introduced by Glover [19], and it has been applied to JSP (see
[9]-[12]). Among the many efficient TS algorithms, we choose the fast
TS algorithm of Nowicki and Smutnicki [12] to demonstrate how our
proposed technique can be applied.

As one of the local search methods, TS centers around the notion
of neighborhood. In particular, Nowicki and Smutnicki [12] employ a
very restricted neighborhood. Given a feasible selection ¢, denote an ar-
bitrary critical path in graph (O, AU6) by Bi,..., By, where B; (i =
1,..., k) are blocks. For each operation u, let mp(u), ms(u), jp(u),
and js(u) denote the machine predecessor (the operation scheduled
immediately before « on the same machine), machine successor (the
operation scheduled immediately after « on the same machine), job
predecessor (the operation immediately preceding « in the same job
routing), and job successor (the operation immediately succeeding «
in the same job routing), respectively. The neighborhood Nns is de-
fined as follows.

Definition 1: Nxs is the set of all the feasible selections obtained
in one of the three cases below (for | B;| > 2).

e If i = 1, reverse the order of mp(b;) and b;.

e If 1 < i < k, reverse the order of mp(b;) and b,; moreover,
reverse the order of ¢; and ms(a;) if ms(a;) # mp(b:).

* Otherwise, reverse the order of a; and ms(a;).

In TS terminology, the reversal of two operations as mentioned in
the above definition is called a move. Let 7 be the current solution and
let V() be the set of all possible moves. During an iteration step, the
search makes the transition from @ to the next solution by applying a
move selected from V(). Taking into account a tabu list T" of fixed
length maxt (which operates like a cyclic queue), the following two
selection rules are used, with the second one being applied only after
the first one fails.

¢ Select the most improving move among moves that either are not
in T (i.e., unforbidden) or lead to a smaller makespan than the
best thus far (i.e., profitable).
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« If V(7) contains only one move, select this move; otherwise,
select the oldest move v in 7" (also flush v out of T’ by appending
duplicates of the most recent move to 7T').

The tabu list 7" is subsequently updated by appending the inverse of the
selected move to 7T'.

The TS algorithm of Nowicki and Smutnicki (referred to as TSAB
in [12]) employs the above iteration step in a double loop structure.
The inner loop executes this iteration step until the iteration counter
exceeds the maximum value maxiter. The actual number of executions
is affected by two situations. First, whenever a better (or elite) solution
« than the incumbent is found, the iteration counter is reset. In addition,
three pieces of information are stored in an ordered list L of fixed length
maxl (similar to the tabu list), including the elite solution =, the set of
remaining moves V' (m)\v (where v is the move to be applied next), and
the current state of the tabu list 7". Second, when a cycle is detected,
the inner loop terminates immediately.

The outer loop serves the purpose of backtracking, i.e., restarting
the inner loop with proper starting values for 7, V' (7), and T. When
the inner loop is run for the first time, m is found by any heuristic of
choice, V() is the set of moves that induces the neighborhood of ,
and 7' = () (we also have L = ). Thereafter, the inner loop is restarted
with the values of 7,V (7), and T being set to the most recent ele-
ment in L, provided that L # {); otherwise, TSAB terminates. The
element in L that has just been referenced is replaced by a new one
(m,V(m) \ v, T), where v is the move to be applied next. For addi-
tional algorithmic details, we refer the reader to the original paper by
Nowicki and Smutnicki.

III. ENHANCEMENT TECHNIQUE FOR LOCAL SEARCH

A. General Approach

The enhancement technique that we propose is based on the removal
and reinsertion of the disjunctive arcs that either emanate from or end
at some selected critical operations. Given a schedule, more than one
critical paths may exist, and some critical operations may therefore be
located on different critical paths. Let S¢:p be the set of all critical
operations and let Srr C Scp be a selected set of critical operations.
Let LS(6) denote an arbitrary local search method that takes an initial
solution (or selection) # as input and produces a solution that is at least
as good as #. The enhancement technique is outlined as follows.

Algorithm: An Enhanced Local Search

Step 0.  Initially, set 6 to a feasible solution generated by any con-
structive method.

Improve 6 by calling LS. If no improvement is found,
STOP. Otherwise, let 8" denote the improved solution.
Given ¢’, set Srr to a subset of Scp.

Relax the machine capacity constraint for each opera-
tion in Sgr; i.e., remove all the disjunctive arcs Err
that involve the operations in Sgr from the disjunctive
graph (O, A, £), resulting in a disjunctive subgraph
(O, A, E\ErR) that retains all the original nodes. Apply
a modified version of LS (see later) to the disjunctive
subgraph and let the solution found be denoted by 6.
Note that 8" is a partial selection to JSP.

In a certain order, reimpose the machine capacity con-
straint on each operation in Srr, one at a time. Suppose
that an operation o € Srr needs to be processed on ma-
chine m (o) and that k operations have already been se-
quenced on machine m (o). While preserving the prece-
dences between the existing operations on machine m (o),
insert o into one of the £ + 1 positions (before, between,
or after those k operations) such that the increase in the

Step 1.

Step 2.
Step 3.

Step 4.

makespan is minimal. (See [12] for more details on the
insertion.)
Step 5.  Let 8" be the new solution. Set & to 8" and go to 1.
Step 3 calls for a modified version of LS for optimizing the pro-
cessing orders on machines after the disjunctive arcs in £ is removed
from the disjunctive graph. Note that the operations in Srr still par-
ticipate in the problem except that they do not occupy machines and
therefore can be regarded as “delays”. Hence, the minimum makespan
of the sequencing problem on the disjunctive subgraph (O, A, E\Err)
is a lower bound on the minimum makespan of the original problem.
To apply the enhancement technique to TS, we modify the algorithm
of Nowicki and Smutnicki to deal with “delays”, which is described
next.

B. Implementation of the Algorithm of Nowicki and Smutnicki

We implement the TS algorithm proposed by Nowicki and Smutnicki
[12] with a couple of modifications. We shall refer to our algorithm as
TS and the one by Nowicki and Smutnicki as TSAB. Our algorithm
TS uses the same neighborhood structure, tabu tenure (tabu list size),
criteria for selecting the next move among unforbidden (U), forbidden
but profitable (FP), forbidden and nonprofitable (FN) moves, and
backtracking scheme. Unlike TSAB in [12], the cycle detection in
TS utilizes a hash table; a cycle is declared and a backtracking
subsequently occurs after any particular makespan value repeats itself
for more than 1000 times. In our algorithm, the cycle detection
mechanism is reset only during backtracking, whereas in TSAB,
it is reset either when a backtracking occurs or when a makespan
better than the currently best is found. By using the hash table,
TS achieves comparable solution quality as TSAB but requires less
computation time. Furthermore, TS explicitly handles “delays” (i.e.,
delay operations) as required by our proposed enhancement technique.

Delay operations can be treated in a natural fashion. Suppose that an
operation u is the only delay operation (more than one delay operations
are handled similarly). Recall that the TS algorithm solves problem
P(8; 0, A, £) (Section II-A). Now, we need to solve P(6'; O, A, &),
where £’ is obtained by removing all the arcs in € that either emanate
from or end at w. We may regard v as being performed on a distinct
fictive machine, and clearly, no sequencing decisions need to be made
for . Note that the resulting problem can be viewed as another instance
of JSP with one more machine. Therefore, any local search method
LS can be easily modified to account for delay operations. Varying the
choice of LS yields various enhanced local search methods.

With regard to our TS algorithm, if « happens to be on the critical
path, it must be in a block containing only a single operation (just «
itself). By the definition of the neighborhood Nns, such a block will
not contribute a neighbor. Based on this observation, the TS algorithm
is modified accordingly. Note that TS behaves the same way as TSAB
when there are no delay operations.

The parameter setting of TS is specified as follows. The tabu tenure
maxt is set to 8§ and the backtracking depth maxl is set to 5. The
maximum iteration limit maxifer is set to 3000 initially and if the cur-
rently best makespan is improved during the run. The maxiter is set to
3000 — 500 (maxl — 1) during backtracking, where [ is the number of
recorded elite solutions.

C. A New TS Algorithm

Now we apply our general approach described in Section III-A to TS
to obtain a new TS algorithm, which is referred to as TSEn. After some
experiments, we find that the following configuration works well.

* The initial solution is generated using INSA, which is an insertion
heuristic described in [12].
 In Step 1, TS is applied.
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Fig. 1. Breakdown of connectivity property. (2) Crmax = 4. (b) Cinax = 4.75.
(©) Cimax = 4.75. (d) Conax = 4.75.(e) C*__ = 3.5. () C.. = 3.5.
e In Step 2, Skr = {ai,b; |i = 1,...,k}, which contains the

first and the last operations of blocks. Note that @, and bj are
included in Spy for diversification purposes, although they are
not involved in the definition of A'xg when their respective block
sizes are greater than 2.
In Step 3, TS is applied after the operations in S are labeled
as “delays”.
In Step 4, the machine capacity constraint is reimposed on each
operation in Sy in ascending order of earliest start times as im-
plied by ¢'.

* We use the following (greedy) stopping criterion: Stop if the cur-

rently best makespan is not improved during an iteration.

The proposed procedure TSEn embodies the idea of strategic oscil-
lation suggested by Glover and Laguna [19]. The procedure alternates
optimization phases between the solution space of the original problem
and those of the relaxed problems (infeasible solutions). This provides
an effective diversification mechanism, which helps the search explore
regions of the solution space that may be difficult to reach with local
search.

Before discussing detailed computational experiments, we show the
working of the proposed enhancement scheme through a simple ex-
ample (the construction is similar to the one given in [9]). As illustrated
in Fig. 1, we have a problem instance with three jobs (j = 1, 2, 3), each
of which requires two successive operations (0,1 and 0;2) on machines
1 and 2, respectively. All the operations take 1 unit of time except the
second operations of Job 1 (i.e., 012) and Job 2 (i.e., 022), which take
0.5 and 0.75 unit of time, respectively. Fig. 1(a) shows an initial so-
lution. Fig. 1(b)—(d) are the only solutions reachable from Fig. 1(a)
by the TS algorithm. Therefore, neither of the two optimal solutions
shown in Fig. 1(e) and (f) can be reached from the given initial solu-
tion. This failure to attain optimality by TS is caused by the fact that the
definition of the neighborhood N'ns does not satisfy the connectivity
property, which has been acknowledged in [12].

The breakdown of the connectivity property as with the neighbor-
hood structure As is undesirable but often inevitable. Without con-
nectivity, the quality of the best solution that a local search method is
able to find is likely to be sensitive to the initial solution. On the other
hand, effective local search methods for JSP such as TS favors small
neighborhoods, since having fewer solutions in a neighborhood allows
the methods to run faster; however, it is generally more difficult to retain
connectivity with smaller neighborhoods. What Fig. 1 shows is an ex-
ample of the entrapment of local search methods by local optima when
the connectivity property no longer holds. Our proposed enhancement
technique tries to remedy the situation.

Fig. 2 shows how the enhancement technique helps guide the search
out of the local optimum as depicted by Fig. 1(a). According to the
enhanced algorithm TSEn, operations o011, 031, and o032 in this local
optimum are labeled as delay operations on fictive machines A 3, /4,
and M5, respectively. Fig. 2(a) corresponds to the partial selection 6.
Since operations 011, 031, and o3z are already in ascending order of
earliest start times, one at a time the machine capacity constraints are

M1 [o21 M1 [Toli [ 021
M2 012 022 M2 012 022
M3 [Toii M4 [ 031
M4 [ o3i M5 032 |
M5 032
(@ (b)
M1 [ o031 oli 021 M1 [ 031 [ ol [ 021"
M2 012 022 M2 032 o012 022
M5 032
(© (d)

Fig. 2. Result of applying TSEn. (a) Crnax = 2.25, (b) Cmax = 2.75, (¢)
Crax = 3.75,(d) Crnax = 3.75.

TABLE 1
SUMMARY OF COMPUTATIONAL RESULTS BY MRTS AND TSEn
FOR 242 INSTANCES

Problem No. outperform™ Mean RG (%)

Tie MRTS TSEn MRTS TSEn
FT6,10,20 3 0 0 0.00 0.00
LA1-40 34 3 3 0.23 0.23
ABZ5-9 2 0 3 1.40 1.26
ORBI-10 5 1 4 0.49 0.27
SWV1-20 7 3 10 2.39 1.79
YNI1-4 1 0 3 1.29 0.83
TD1-80 38 25 17 1.18 1.25
DMU1-80 14 18 48 1.93 1.22

* number of times that one algorithm outperforms the other

reimposed on them in such a way that causes the smallest increase in
the makespan in each step (see Fig. 2(b)—(d)). Starting from the solution
depicted in Fig. 2(d), TS finds the optimal solution in Fig. 1(f) in two
iterations.

IV. COMPUTATIONAL RESULTS

We coded the new TS algorithm (TSEn) in Visual C++ on a Pentium
111733 MHz PC. For comparison purposes, we also coded a multirestart
TS algorithm (MRTS) that restarts TS with different initial solutions.
In this multirestart algorithm, the initial solution for the first run of TS
is generated using INSA (the insertion heuristic as mentioned before),
and initial solutions for subsequent runs are generated in turn using ten
of the most effective priority dispatching heuristics in the literature (see
[20], [21]) and then their randomized versions. These ten dispatching
heuristics are applied in the same order as they are listed in [20]. For
each test problem, the time limit for MRTS is set to the same amount
of time as what is required for TSEn to terminate.

The test problems that we used are 242 well-known benchmark
problems for JSP contributed by Fisher and Thompson [1] and
Lawrence [2], among other authors (see [22] for a complete list).
These problems are FT6, FT10, and FT20, LA1-40, ORBI1-10,
SWV1-20, YN1-4, TD1-80, and DMU1-80. For TD instances, the
best known upper bounds (UBy,es¢ ) and the best known lower bounds
(LBpest) are taken from [23]. For the remaining instances, UBrpest
and LBy, are taken from [22] and updated with the improved results
from [24]. 111 of the 242 instances have previously been solved
to optimality, and for those unsolved instances, the mean relative
deviation between the best known upper bound and the best lower
bound is 7.72%. To evaluate the quality of our solutions, we compare
their associated makespans (UB) with the upper bounds and compute
the relative gaps, i.e., RG = (UB — UBpest ) /UBpest.

We applied MRTS and TSEn to the test problems. In Table I, the
three columns under the title “No. outperform” show the numbers of
instances in each problem set for which both algorithms obtained the
same objective value, for which MRTS outperformed TSEn, and for
which TSEn outperformed MRTS, respectively. In the same table, the
mean relative gap is also reported for each problem set. (Detailed re-
sults for all the 242 problems are available online at [25].) These results
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TABLE II
IMPROVED UPPER BOUNDS FOR DMU INSTANCES

Problem n m  UBpeyy MRTS TSEn
UB RG CPU
(%) (sec.)
DMU6 20 20 3269 3332 3254 046 365
DMUIO 20 20 3001 3000 2994 -0.23 78
DMUIl 30 15 3491 3533 3484 -0.20 138
DMU20 30 20 3788 3792 3757 -0.82 540
DMU27 40 20 4883 4873 4871 025 644
DMU42 20 15 3574 3467 3544 -0.84 216
DMU48 20 20 3918 3968 3894  -0.61 338
DMU56 30 20 5234 5394 5177 -1.09 1270
DMUS58 30 20 5038 5118 4937 -2.00 748
DMU64 40 15 5580 5732 5553  -048 696
DMU72 50 15 6790 7220 6761 -043 1215

indicate that the proposed enhanced TS algorithm TSEn and MRTS
yield the same solution quality on problem sets FT and LA, which are
two relatively easy sets of problems. TSEn outperforms MRTS on all
the other problem sets exception TD, where TSEn is slightly worse than
MRTS. Overall, TSEn is superior to MRTS. Furthermore, TSEn is able
to improve the best known upper bounds (UB1e: ) for 11 instances in
problem set DMU, which contains a larger number of difficult instances
than any other problem set. By contrast, MRTS is only able to improve
UBkest for 3 DMU instances, all of which happen to be among those 11
instances. For those 11 DMU instances, Table II reports the improved
upper bound values and the CPU times (in seconds) required by TSEn
to reach these values, as well as the objective values attained by MRTS.
Table II also indicates that TSEn produces better results than MRTS for
the 11 instances, with the exception of DMU42 (on this particular oc-
casion, MRTS gives a much better solution).

V. CONCLUSION

In this short paper, we developed an easy-to-implement enhancement
technique for local search methods. Our idea is illustrated by applying
the technique to a TS algorithm proposed by Nowicki and Smutnicki
[12]. However, our method can be applied to other local search methods
as well. Extensive numerical results have shown that the proposed tech-
nique, despite its simplicity, is an effective way of realizing the tradeoff
between CPU time and solution quality.

Local search methods seem to bear some hope for solving large
instances of the JSP. These methods can approach a good solution
quickly while having some ability to escape the entrapment by local
optima. However, additional techniques such as the one proposed here
are needed to help further remedy the myopic nature of local search.
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