
Overload Management in Real-Time Control
Applications Using �m; k�-Firm Guarantee

Parameswaran Ramanathan, Member, IEEE

AbstractÐTasks in a real-time control application are usually periodic and they have deadline constraints by which each instance of a

task is expected to complete its computation, even in the adverse circumstances caused by component failures. Techniques to recover

from processor failures often involve a reconfiguration in which all tasks are assigned to fault-free processors. This reconfiguration may

result in processor overload where it is no longer possible to meet the deadlines of all tasks. In this paper, we discuss an overload

management technique which discards selected task instances in such a way that the performance of the control loops in the system

remain satisfactory even after a failure. The technique is based on the rationale that real-time control applications can tolerate

occasional misses of the control law updates, especially if the control law is modified to account for these missed updates. The paper

devises a scheduling policy which deterministically guarantees when and where the misses will occur. The paper also proposes a

methodology for modifying the control law to minimize the deterioration in the control system behavior as a result of these missed

control law updates.

Index TermsÐReal-time systems, fault-tolerant controllers, real-time scheduling, overload management, optimal feedback control.

æ

1 INTRODUCTION

A real-time control application is often modeled as a set
of interacting tasks where each task is responsible for

carrying out part of the control law computations. Examples
of such applications include flight-control systems, vehicle-
control systems, process-control systems, and life-support
systems. Since control law computations are usually done at
regular intervals, the tasks in a real-time control application
are usually periodic in nature. Furthermore, each instance
of a task also has a deadline constraint by which it is
expected to complete its computation. In addition, tasks in a
real-time control application have dependability constraints
which require delivery of satisfactory performance even
under adverse circumstances caused by component failures.

Many different scheduling techniques have been pro-
posed in literature to deterministically guarantee the dead-
lines of all task instances in a given application when no
faults are present. The techniques often differ in the models

of the tasks and the system they can deal with. For instance,
in [1], [2], [3], [4], [5], solutions are proposed for scheduling
preemptive tasks in uniprocessor systems. Solutions for
nonpreemptive tasks in uniprocessor systems are discussed
in [6]. For multiprocessor systems, it has been shown that

the problem of scheduling nonpreemptive tasks with
deadline constraints is NP-hard [7]. Therefore, various
heuristics have been proposed for solving this problem [8],
[9]. Some of these heuristics consider resource constraints
[9], while others mainly concentrate on precedence and

communication requirements between tasks [8].
Most of these solutions can be made resilient to faults by

combining them with techniques to recover from compo-

nent failures. Broadly speaking, these techniques rely on
one of the following two approaches [10]. One approach is
to have adequate spare capacity in the system so that the
tasks can be reassigned or reexecuted on fault-free
processors upon detection of a failure without violating
the deadline constraints of any task [11]. The main draw-
back of this approach is that the system resources are often
underutilized when no faults are present. The other
approach is to invoke an overload management technique
upon detection of a failure. For example, one can prioritize
tasks based on their importance to the application and
discard tasks which do not adversely affect the performance
delivered by the application [12]. The solution discussed in
this paper for dealing with component failures is based on
this latter approach.

During overload, the proposed solution invokes a
scheduling policy which carefully discards task instances
in order to reduce the effective utilization of the system.
Since the discarded instances will not be executing the
control law, this tends to degrade the performance of the
control loops in the application. To minimize the amount of
degradation, our solution modifies the control law imple-
mented by the tasks in the application. A methodology for
modifying the control law and a technique for selecting the
instances to be discarded are discussed in this paper. The
effectiveness of this solution is evaluated for an example
system. The evaluation shows that a considerable reduction
in the effective utilization of the system can be achieved
without much degradation in the step response of the
control loops in the application.

More specifically, the solution in this paper is based on
the �m; k�-firm guarantee model proposed in [13]. In this
model, a periodic task is said to have an �m; k�-firm
guarantee requirement if it is adequate to meet the dead-
lines of m out of any k consecutive instances of the task
where m and k are two positive integers with m � k. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999 549

. The author is with the Department of Electrical and Computer
Engineering, University of Wisconsin-Madison, Madison, WI 53706-1691.
E-mail: parmesh@ece.wisc.edu.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 109047.

1045-9219/99/$10.00 ß 1999 IEEE

main advantage of this guarantee model is that one can
represent a wide range of tolerance to deadline misses by
properly choosing the values of m and k. In particular, the
traditional hard deadline requirement can be represented as
�1; 1�-firm guarantee requirement and a soft deadline
requirement of a bound on the fraction of deadline misses
can be approximated by picking a large value for k and
choosing m such that m=k equals the desired fraction.
However, for most values of m and k, m < k, the �m; k�-firm
guarantee requirement is less stringent than the hard
deadline requirement, but more stringent than the soft
deadline requirement.

Given the m and the k values for each task in the
application, we first devise a scheduling policy to determi-
nistically provide an �m; k�-firm guarantee to each task in
the application. We then show that the control law
implemented by a periodic task can be modified to deal
with the �m; k�-firm guarantee without much loss in
effectiveness. By combining the two solutions, we can
design a computer controller for a real-time application
with much reduced cost.

The rest of this paper is organized as follows: The
motivation for the problem addressed in this paper is
discussed in Section 2 and a formal description of the
problem is presented in Section 3. A scheduling policy for
providing deterministic �m; k�-firm guarantee is discussed
in Section 4. The derivation of the optimal control law for a
task with �m; k�-firm guarantee is described in Section 5. A
numerical example to illustrate the benefit of the proposed
approach is presented in Section 6. The paper concludes
with Section 7.

2 MOTIVATION

The problem considered in this paper is best motivated by a
simple example. Consider an automobile control applica-
tion with four subsystems: cruise-control, traction-control,
brake-control, and engine control. Suppose that the control
laws for these subsystems are implemented by their
respective periodic tasks. Also suppose that these four
periodic tasks have been assigned to a two processor
system, as shown in Fig. 1. Further, suppose that as result of
a reconfiguration after a processor failure, these four tasks
must execute on the same processor and it is not possible to
guarantee the deadlines of all the four tasks after this
reconfiguration. The question then is how should the
system deal with this overload so that it can continue to
provide satisfactory level of service to all four subsystems?

Our answer to this question is based on the observation
that most control systems can tolerate a few deadline misses
in their control law computation, especially if the deadline
misses are adequately spaced. For example, let us suppose
that the cruise-control subsystem in the above example is a
time invariant system shown in Fig. 2. In this subsystem,
assume that D�z� is an optimal LQR servo controller [14]
and the control law is derived using the results later in this
paper. Fig. 3 compares the impact of missed deadlines on
the response of the system to a step change in the desired
speed from 45 mph to 55 mph. The solid line shows the
observed response when all instances of the cruise-control
task meet their deadlines. The dashed line, on the other
hand, shows the observed response when one out of every
three consecutive instances of the task miss their deadlines.
On comparing the solid and the dashed lines, we note that
the two responses are very similar. This means that one can
afford not to service one out of every three instances of this
task without a significant degradation in the performance of
the cruise-control subsystem. Since skipping one out of
every three instances results in a 33 percent reduction in
utilization of the task, it can be used to alleviate the
overload problem. This is basic idea of the approach
pursued in this paper.

An alternate approach to reduce the utilization of a
periodic task is to increase its period. Changing the
sampling period of a control system alters its dynamics.
Also, a change in the period of one task may necessitate a
change in the periods of related tasks because efficient
exchange of information between interacting tasks is often
accomplished through a careful selection of relative periods
(see discussion on Assumption A1 in Section 3). Also, in
most real-time control applications, the system must be
designed to deliver satisfactory performance in the worst-
case. Consequently, a processor is considered overloaded if

550 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Fig. 1. An example automobile-control system.

Fig. 2. An example automobile cruise-control system.

it cannot complete all the necessary computations in the
worst-case. The �m; k�-firm guarantee based approach can
be adapted to exploit the fact that the average case
utilization is much less than the worst-case utilization. A
comparison of the two approaches, namely the �m; k�-firm
based approach and the reduced sampling rate approach,
on an example system is presented in Section 6.

3 PROBLEM STATEMENT

The problem addressed in this paper can be formally stated
as follows. We consider a real-time control application
comprised of N periodic tasks, �1; �2; . . . ; �N . Each task is
assumed to be responsible for performing the control law
computations for one subsystem in the application. In
addition, we make the following assumptions about these
tasks:

A1. The tasks are preemptive and independent.

A2. All tasks are scheduled to be executed on one processor
and it is not possible to guarantee the deadlines of all
instances of the tasks.

A3. Each task �i is characterized by two integers, mi and ki,
mi � ki such that it is adequate to meet the deadlines of
mi out of any ki consecutive instances of the task.

A4. The subsystem controlled by each task �i, 1 � i � N is
linear and time-invariant.

The rationale for Assumption A1 is as follows: First, the
control law computations are usually arithmetic operations
which can be preempted without much difficulty. Second,
due to the repetitive nature of the control law computations,
the dependence between tasks in a real-time control
application is usually in the form producer-consumer
relationship in which the consumer task utilizes the most
recent output(s) from the producer task in performing its
computations. Task-pairs with such dependencies can be
treated as independent if their relative periods are carefully
chosen and the tasks exchange information through a
shared double buffer. In some cases, access to shared
buffers may have to be regulated using semaphores.

Extension for our scheme to deal with tasks interacting
through semaphores is discussed in Section 4.2. Assump-
tion A2 is made because we are only interested in the
overloaded case. If the processor is not overloaded, there
are several schemes in literature to effectively deal with the
deadline constraints. The overloaded processors can be
treated independently if the tasks are independent (see
Assumption A1) and access to shared memory from each
processor is not very expensive. The justification for the
Assumption A3 comes from the example discussed in the
previous section. Assumption A4 is often used in control
theory because most nonlinear systems can be analyzed by
linearizing them around their region of operation.

In the following two sections, we discuss our two-prong
approach to deal with the overload problem. In Section 4,
we describe a scheduling policy assuming that we need to
guarantee only mi out of any ki consecutive instances of
each task �i. Then, in Section 5, we focus on a typical task �i
and derive the optimal control law to be implemented by �i
given that it is scheduled along with other tasks using the
policy in Section 4.

4 PROVIDING DETERMINISTIC �m; k�-FIRM

GUARANTEE

Recall that we have N periodic tasks to be scheduled on a
single processor. Each task �i is characterized by its
maximum computation time Ci and its period Ti. We
assume that the relative deadline of each instance of �i is
equal to Ti and the scheduling policy must provide an
�mi; ki�-firm guarantee to �i. We use Z� to denote the set of
nonnegative integers.

Our solution is a combination of ideas from the
imprecise computation approach [15], [16] and the Rate
Monotonic Scheduling policy [3]. In the imprecise computa-
tion approach, the computation time of each instance of a
periodic task is divided into a mandatory and an optional
part. The mandatory part of every instance must complete
within its deadline and it is better to complete as much of
the optional part as possible. In contrast, in our approach,
we classify instances of �i as either mandatory or optional
such that if all the mandatory instances meet their
respective deadlines, then �i's �mi; ki�-firm guarantee
requirement is satisfied. The scheduling of the mandatory
instances of all the tasks in the application are done using
the Rate Monotonic Policy [3]. That is, the mandatory
instances of �i are assigned a higher priority than the
mandatory instances of �j if and only if Ti < Tj. The
optional instances of all tasks are assigned the lowest
priority.1

More formally, our approach for providing deterministic
�mi; ki�-firm guarantee to each task �i can be described
using the two concurrent processes, Service_Process and
Priority_Assign_Process. The Service_Process, is a sche-
duler which services the task instances in a Wait queue. It
implements the traditional fixed priority preemptive

RAMANATHAN: OVERLOAD MANAGEMENT IN REAL-TIME CONTROL APPLICATIONS USING �m; k�-FIRM GUARANTEE 551

1. Instead, we can use a server-based approach to service more optional
instances without violating the deadlines of the mandatory instances. We
do not consider a server-based approach in this paper because it will detract
us from the main theme of the paper.

Fig. 3. Impact of �m; k�-firm guarantee model on the cruise-control
system.

scheduling policy [3]. Such a policy is based on two simple
rules. First, the server never idles if an instance is awaiting
service. Second, the server always executes the highest
priority instance that is waiting for service. To meet the
second requirement, the server preempts the service of a
lower priority instance if a higher priority instance is placed
in the wait queue while the lower priority instance is being
serviced.

The Priority_Assign_Process, on the other hand,
assigns priorities to the activated instances and places
them in a Wait queue. The novelty of the scheduling
policy is in this process. As shown in Fig. 4, the basic
idea is to selectively classify the instances of a task as
either mandatory or optional. The mandatory instances are
assigned a priority in such a way that their deadlines are
guaranteed. The optional instances are assigned the
lowest priority and are not guaranteed to meet their
respective deadlines. The classification of instances of �i
as mandatory or optional is based on the values mi and
ki. More specifically, instances of �i are activated at
times aTi, for a � 0; 1; 2; An instance activated at time
aTi is classified as mandatory if

a � ami

ki

� �
� ki
mi

� �
and as optional, otherwise. We show later in this section
that in this approach at least mi out of any ki consecutive
instances are classified as mandatory. Thus, if all the
mandatory instances of �i meet their deadlines, then
�mi; ki�-firm guarantee requirement of �i is met even if
none of the optional instances meet their respective dead-
lines.

Note that this classification of instances is not
necessarily optimal in terms of meeting the �mi; ki�-firm
guarantees of each task �i in the application. For a
dynamic-priority scheduling algorithm, the problem of
optimal classification of instances is NP-hard [17]. Since
the proposed approach relies on a static-priority sche-
duling algorithm, this NP-hardness result does not
directly apply. The problem of optimally classifying
the instances in the context of static-priority scheduling
is still open. Also note that other solutions for meeting
the �m; k�-firm guarantee requirements have been pro-
posed in literature [18], [19]. These solutions dynamically
decide which instance of a task will miss its deadline to
better schedule aperiodic tasks. Although such a
dynamic determination is better from scheduling point
of view, especially for aperiodic tasks, it is not suitable
for providing guarantees on the behavior of the control
loop. Therefore, in this paper, we assume that the
instances have been statically classified as mandatory or
optional as described above.

To guarantee the deadlines of mandatory instances of �i,
the priority assignment is based on the rate monotonic
policy [3]. That is, since T1 � T2 � � � � � TN , the mandatory
instances of �i are assigned the ith highest priority level. In
the description of the Priority_Assign_Process, the priority
levels are numbered 1; 2; . . . ; N � 1, with 1 as highest
priority, followed by 2, 3, and so on until N � 1. Priority
level N � 1 is used for the optional instances.

Example. Consider a real-time control application with
three periodic tasks �1, �2, and �3 with

C1 � 1 T1 � 3 m1 � 1 k1 � 1;
C2 � 2 T2 � 4 m2 � 2 k2 � 3; and
C3 � 3 T3 � 12 m3 � 3 k3 � 5:

Note that, since the total utilization 1
3� 2

4� 3
12 > 1, no

scheduling policy can guarantee the deadlines of all
instances. However, by using Algorithm Sched_mkfirm

one can satisfy the 11, 23, and 35 guarantee requirements
of �1, �2, and �3, respectively. Priority_Assign_Process

classifies all instances of �1 as mandatory because it has
an 11 guarantee requirement which is equivalent to a
hard deadline requirement. For �2, one out of every three
instances are classified as optional, starting with the
instance activated at time 8. For �3, instances with
activation times 0; 12; 36; 60; 72; 96; . . . are classified as
mandatory, whereas those with activation times
24; 48; 84; 108; . . . are classified as optionals. For example,
consider the instances activated at times 24 and 36. Since
24 � 2� 12 and 2 6� 2�3

5

� �
5
3

� �
, the instance activated at

time 24 is classified as optional, whereas the instance
activated at time 36 is classified as mandatory because
36 � 3� 12 and 3 � 3�3

5

� �
5
3

� �
. The resulting schedule of

mandatory instances is a repetition of the subschedule
shown in Fig. 5. In particular, observe that among the
first five instances from �3, the ones activated at 0, 12,
and 36 complete their execution prior to their respective
deadlines in the schedule shown in Fig. 5. The instances

552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Fig. 4. Servicing tasks with �m; k�-firm guarantee requirements.

activated at 24 and 48 are not guaranteed to receive

service. They may receive service at the idle times in the

schedule of Fig. 5.

4.1 Schedulability Analysis

In this subsection, we formally prove that if all mandatory

instances of �i meet their deadlines, then the �m; k�-firm

guarantee requirement of �i is satisfied. We also derive

sufficient conditions on the sets of periodic tasks whose

respective �m; k�-firm guarantee requirement can be satis-

fied by Algorithm Sched_mkfirm. These two results are

respectively proven in Theorems 1 and 3. Lemmas 1-3 are

needed in the proof of Theorem 1, whereas Lemma 4 and

Theorem 2 are used in the proof of Theorem 3.

Lemma 1. For each task �i, the instance activated at time aTi,

a 2 Z�, is classified as mandatory if and only if there exists a

nonnegative integer l such that a � l � kimi

j k
.

Proof. (If part) Suppose the instance of �i activated at time

aTi is classified as mandatory. Then, from Algorithm

Sched_mkfirm,

a � ami

ki

� �
� ki
mi

� �
:

Therefore, there exists a nonnegative integer l � a�mi

ki

l m
such that a � l � kimi

j k
.

(Only if part) Consider an instance of �i activated at
time aTi and suppose that there exists a nonnegative
integer l such that

a � l � ki
mi

� �
:

Therefore, l�kimi
ÿ 1 < a � l�ki

mi
. Since mi � ki, by rearranging

the terms we get, a�mi

ki
� l < a�mi

ki
� 1. Since l is an integer,

the above relation implies that

l � a �mi

ki

� �
:

That is,

a � ami

ki

� �
� ki
mi

� �
:

ut

Lemma 2. For each 1 � i � N , the Priority_Assign_Process

classifies at least mi out of the first ki instances of �i as

mandatory.

Proof. From Lemma 1, instances of �i are classified as

mandatory if and only if their activation times are of the

form

l � ki
mi

� �
Ti

for some l 2 Z�. Among the first ki instances of �i, at least

the instances whose activation times are in the set

l � ki
mi

� �
Ti : 0 � l � mi ÿ 1

� �
are classified as mandatory. Since ki � mi, there are

exactly mi elements in this set. Hence, the lemma. tu

Lemma 3. For each 1 � i � N , the Priority_Assign_Process

classifies the instance of �i activated at time �aTi � kiTi�,
a 2 Z�, as mandatory if and only if the instance of �i activated

at time aTi is also classified as mandatory.

Proof. (If case) If the instance activated at time �aTi � kiTi� is

classified as mandatory, then, from Lemma 1, there exists

an l 2 Z� such that

l � ki
mi

� �
� a� ki:

Since a� ki � ki, we know that l � mi. Also,

�lÿmi�ki
mi

� �
� l � ki

mi

� �
ÿ ki � a:

That is, there exists a nonnegative integer l0 � lÿmi such

that

RAMANATHAN: OVERLOAD MANAGEMENT IN REAL-TIME CONTROL APPLICATIONS USING �m; k�-FIRM GUARANTEE 553

Fig. 5. Schedule of mandatory instances of the tasks in Example 1.

l0ki
mi

� �
� a:

Therefore, the instance activated at time aTi is also
classified as mandatory.

(Only if case) If the instance activated at time aTi is
classified as mandatory, then there exists a l 2 Z� such
that

l � ki
mi

� �
� a:

Thus,

�l�mi�ki
mi

� �
� l � ki

mi

� �
� ki � a� ki:

That is, there exists a nonnegative integer l0 � l�mi such

that l0ki
mi

j k
� a� ki. Therefore, the instance activated at

time aTi � kiTi is also classified as mandatory. Hence, the

lemma. tu

Theorem 1. If all mandatory instances from �i meet their
deadlines, then the �mi; ki�-firm guarantee requirement of �i is
satisfied.

Proof. From Lemma 2, the theorem holds for the first ki
instances. From Lemma 3, it follows that the classifica-
tion of mandatory instances is periodic with period ki.
Thus, in any window of ki consecutive instances of �i, at
least mi instances are classified as mandatory. If all these
mandatory instances meet their respective deadlines,
then at least mi instances among any ki consecutive
instances of �i will meet their deadlines. Hence, the
theorem. tu

In the rest of this section, we derive sufficient conditions
under which all mandatory instances from �i are guaran-
teed to meet their deadlines.

Definition 1. The response time of a task instance is its service
completion time minus its activation time.

Definition 2. A critical instant for a task is defined to be an
instant at which a mandatory instance of the task will have the
largest response time.

Note that this definition is slightly different from that in
[3] because we are only interested in deterministic
guarantee of the deadlines of the mandatory instances.

Lemma 4. In Algorithm Sched_mkfirm, the number of
mandatory instances of �i in the interval �aTi; aTi � b�,
a 2 Z�, b � 0, is maximum for a � 0 for any given b.

Proof. In the interval �aTi; aTi � b�, a 2 Z�, b � 0, Prior-
ity_Assign_Process classifies the instances with activa-
tion times

l � ki
mi

� �
: l 2 Z�; aTi � l � ki

mi

� �
Ti < aTi � b

� �
as mandatory (see Lemma 1). Therefore, the number of
mandatory instances in the interval �0; b� for any given b
is

l � ki
mi

� �
: l 2 Z�; 0 � l � ki

mi

� �
Ti < b

� ����� ����:
Hence, the lemma follows if

l � ki
mi

� �
: l 2 Z�; 0 � l � ki

mi

� �
Ti < b

� ����� ����
� l � ki

mi

� �
: l 2 Z�; aTi � l � ki

mi

� �
Ti < aTi � b

� ����� ����;
where j � j denotes the cardinality of the corresponding

set.
The lemma follows because

l � ki
mi

� �
: l 2 Z�; aTi � l � ki

mi

� �
Ti < aTi � b

� ����� ����
� lki

mi

� �
: l 2 Z�; mia

ki

� �
� l � �a� b�mikib c � 1

� ����� ����
� �a� b�mi

ki

� �
ÿ mia

ki

� �
� 2

� mia

ki
� bmi

ki

� �
ÿ mia

ki

� �
� 2

� bmi

ki

� �
� mia

ki

� �
ÿ mia

ki

� �
� 2

� bmi

ki

� �
� 2

� l � ki
mi

� �
: l 2 Z�; 0 � l � ki

mi

� �
< b

� ����� ����:
ut

Theorem 2. In Algorithm Sched_mkfirm, time 0 is a critical

instant for task �i, 1 � i � N .

Proof At time 0, an instance of every task in the application

is activated. Furthermore, all these instances are classi-

fied as mandatory by Priority_Assign_Process. Among

these instances, the one from �i is assigned priority i and

will therefore be serviced before all instances from �j,

j > i. The response time of this instance from �i is

therefore not determined by the instances from the tasks

�j, j > i.
Consider a task �j, j < i. From Lemma 4, we know

that among intervals of the form �aTj; aTj � Ti�, a 2 Z�,
the maximum number of mandatory instances of �j occur
in the interval �0; Ti�. Since this observation is true for any
j < i, the maximum number of mandatory instances
from other tasks which have to be serviced in any
interval of length Ti will occur in the interval �0; Ti�.
Therefore, among all instances of �i, the one activated at
time 0 will have the largest response time. In other
words, time 0 is a critical instant for task �i. tu

Theorem 3. Given �1; . . . ; �N such that T1 < T2 < � � � < TN . Let

554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Rij � l � ki
mi

� �
Tj : l � ki

mi

� �
Tj < Ti; l 2 Z�

� �
Ri �

[iÿ1

j�1

Rij

nj�t� � mj

kj

t

Tj

� �� �
Wi�t� � Ci �

Xiÿ1

j�1

nj�t� � Cj:

If mint2Ri
Wi�t�=t � 1 for all 1 � i � N , then Algorithm

Sched_mkfirm meets the �mi; ki�-firm guarantee requirement
of each task �i.

Proof. Consider the first instance of a typical task �i. It has a
deadline of Ti. Set Rij contains the activation times of �j's
mandatory instances which are less than Ti. In Algorithm
Sched_mkfirm, if Tj < Ti, then mandatory instances of �j
have higher priority than mandatory instances of �i.
Therefore, set Ri contains activation times, less than Ti, of
mandatory instances with priority higher than the first
instance of �i. From Lemma 1 and some algebra, the term
nj�t� is the number of mandatory instances of �j whose
activation times are less than t. Wi�t� is the sum of the
computation time of the first instance of �i and the
computation times of all mandatory instances with
higher priority than �i whose activation time is less than
t. Therefore, if Wi�t�=t < 1, then the first instance of �i
will be completed by time t.

Hence, if mint2Ri
Wi�t�=t � 1, then the first instance of

�i will complete prior to its deadline. Since the first
instance was activated at time 0 and 0 is a critical instant
for �i, the �mi; ki�-firm guarantee requirement of �i is
satisfied by Algorithm Sched_mkfirm. The theorem
follows if this result holds for all i. tu

Note that the proof of the above theorem is very similar
to that of Theorem 2 in [2], where Lehoczky et al. derive the
exact characterization of the Rate Monotonic Scheduling
algorithm.

4.2 Extensions

We first relax Assumption A1 and consider tasks which
interact with each other through shared resources regulated
by semaphores. In this case, one can use techniques such as
the Priority Ceiling Protocol [20] to bound the amount of
priority inversion experienced by a mandatory instance. Let
Bi denote the maximum amount of time a mandatory
instance from �i can be blocked by an instance from a lower
priority task �j. To account for this blocking time, Wi�t� in
Theorem 3 can be defined as Wi�t� � Ci �Bi �

Piÿ1
j�1 nj�t� �

Cj and the �mi; ki�-firm guarantee requirement of each task
�i is satisfied if mint2Ri

Wi�t�=t � 1 for all 1 � i � N .
If the application contains aperiodic tasks in addition to

periodic tasks, then one can extend the proposed approach
using various solutions proposed in literature. For example,
one can use a sporadic server to service the aperiodic tasks
while treating the periodic tasks as described in this paper.
By treating the sporadic server as a periodic task with (1, 1)-
firm guarantee, the schedulability test of Theorem 3 can still

be used to verify that all mandatory instances of periodic
tasks meet their deadlines.

5 OPTIMAL CONTROL LAW UNDER �m; k�-FIRM

GUARANTEE

Recall that each task is responsible for performing the
control law computations of one subsystem in the real-time
control application. Also, from Assumption A4, we know

the subsystem is linear and time-invariant. The customary
assumption in control systems design is that the control law
is updated at regular intervals. This assumption, however,
is not true in this case because the optional instances of the

periodic task are not guaranteed to complete in Algorithm
Sched_mkfirm. When an instance does not complete, the
control input to the subsystem retains its previous value,

which may not necessarily be optimal. As a result, there is a
deterioration in the performance of the subsystem. To
minimize the amount of deterioration, we modify the
control law implemented by the periodic task in order to

compensate for the missed updates by the optional
instances.

To describe the methodology for modifying the control
law, we focus on a typical periodic task �i in the application.

We assume that the subsystem controlled by �i can be
modeled as

x�t� 1� � Ax�t� �Bu�t�
y�t� � Cx�t� for all t 2 Z�

�5:1�

where x�t�, y�t�, and u�t� are the state, output, and the
control input to the subsystem at time t � Ti, and A, B, and C
are constant matrices of appropriate dimensions. We

further assume that the objective of the control law is to
minimize the error between subsystem output y�t� and a
desired output r. As in the previous section, we assume that
�i has been provided with an �mi; ki�-firm guarantee using

Algorithm Sched_mkfirm. Since the discussion below
focuses on only one task, we drop the subscript i in the
rest of this section.

Furthermore, for ease of presentation, we assume that

m � k=2. If we do not make this assumption, some of the
expressions derived in this section will be more compli-
cated, which in turn makes it difficult to understand the
basic idea of the proposed approach. Moreover, this

assumption is likely to hold in most situations, because it
is unlikely that a control system will be able to deliver
satisfactory performance after more than 50 percent of the

control law updates have been deleted.2 In the special case
when m � k=2, we can prove the following useful lemma
about Algorithm Sched_mkfirm.

Lemma 5. If m � k=2, then no two consecutive instances of �

will be classified as optionals by Algorithm Sched_mkfirm.

Proof. Follows easily from Lemma 1. tu

Lemma 5 means that there are no two consecutive misses

of control law updates by task � .

RAMANATHAN: OVERLOAD MANAGEMENT IN REAL-TIME CONTROL APPLICATIONS USING �m; k�-FIRM GUARANTEE 555

2. Unless the control system was initially excessively over designed.

In addition to missed control law updates due to
optional instances, we must also account for one sample
controller delay. The delay occurs because a mandatory
instance may execute anywhere within its corresponding
period. Specifically, the worst-case one sample controller
delay occurs when a mandatory instance samples the inputs
as soon as it is activated, but completes only just prior to its
deadline. Derivation of optimal control law with controller
delays was addressed by Mita in [21]. Mita, however, did
not account for missed control law updates due to
optionals. In this section, we adapt the results in [21] to
deal with missed control law updates.

First, define M� to be the set of all mandatory instances of
� . From Lemma 1, M� � l�k

m

� �
: l 2 Z�

� 	
. Since control law

updates are guaranteed to be performed only by the
mandatory instances, we assume based on the results in
[21] that the optimal control law has the form

u�t� 1� � ÿHtx�t� ÿMtu�t� � z�t� if t 2M�

u�t� otherwise

�
z�t� 1� � z�t� �Kt�rÿ y�t�� if t 2M�

z�t� otherwise;

� �5:2�

where Ht, Mt, and Kt are matrices of appropriate dimen-
sions. Observe that the control input u�t� 1� depends only
on the samples from time t, thereby accounting for the
controller delay. Also note that z�t� is an integrator of the
error between the desired output r and system output y.
This integrator is included to deal with a possible nonzero
value of r. Furthermore, note that the integrator also
operates on a one sample delay because it is also
implemented by the periodic task. In effect, this means that
an error between r and y manifests in u with at least two
sample delay.

Let bx�t� � x�t� u�t� v�t�� �0. Incorporating (5.2) in (5.1),
the subsystem behavior can be modeled as

bx�t� 1� �

A B 0
0 0 I
W1;t W2;t W3;t

24 35bx�t�
� 0 0 Kt� �0r if t 2M�

A B 0
0 0 I
0 I 0

24 35bx�t� otherwise;

8>>>>>>>>><>>>>>>>>>:
�5:3�

where

W1;t � ÿHt�Aÿ I� ÿKtC;

W2;t � ÿHtB�Mt;

W3;t � ÿMt � I;
and

v�t� � u�t� 1�
is an additional state variable representing the next value of
control input estimated from the current inputs. In the
above equation and in the rest of this paper, I stands for the
identity matrix. The dimension of the matrix is not explicitly
specified so as to not complicate the notation. We assume
that the dimensions are clear from the context.

If the system governed by (5.3) is stable,3 then in steady-

state,

�x
�u
�v

24 35 � A B 0
0 0 I
W1;t W2;t W3;t

24 35 � �x
�u
�v

24 35� 0
0
Kt

24 35r: �5:4�

Introduce variables dx�t� � x�t� ÿ �x, du�t� � u�t� ÿ �u,

dv�t� � v�t� ÿ �v, and cdx�t� � dx�t� du�t� dv�t�� �0. From

(5.3) and (5.4) we get

cdx�t� � A B 0
0 0 I
0 0 0

24 35cdx�t� � 0
0
I

24 35w�t�; �5:5�

where

w�t� �
W1;t W2;t W3;t� �cdx�t� if t 2M�

0 I 0� �cdx�t� otherwise:

8<: �5:6�

Derivation of optimal control law involves finding w�t�
for all t 2 Z�. Since w�t� � du�tÿ 1� � w�tÿ 1� when

t 2M� , we need to determine w�t� for only t 2M� . We

therefore focus on the behavior of the system only on

t 2M� . Let t� 1 be the smallest element larger than t in M� ,

i.e., let

t� 1 � t� 1 t� 1 2M�

t� 2 otherwise:

�
Also define

At �
� if t� 1 2M�

�2 otherwise and

�
Bt �

	 if t� 1 2M�

�	�	 otherwise and

�
where

� �
A B 0
0 0 I
0 0 0

24 35
and

	 �
0
0
I

24 35:
Then,

cdx�t� 1� � At � cdx�t� � Bt � w�t� for all t 2M�: �5:7�
Equation (5.7) corresponds to a linear time-varying system

whose optimal control law can be determined if the

performance index is a traditional LQR objective

J �
Xh
t�1

cdx0�t� �Q � cdx�t� � w0�t� �R � w�t�; �5:8�

556 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

3. One can formally state the conditions for stability based on the
matrices A, B, and C, and the values of m and k. Due to restrictions on the
length of this paper, we assume here that the system is stable.

where h is the time horizon of the optimization and Q and R

are constant matrices of appropriate dimensions. In

particular, from [14], we know that the optimal control

law has the form

w�t� � ÿFt � cdx�t� for all t 2M�; �5:9�
where Ft is the solution of the Riccati equation

Ft � �B0t � St � Bt �R�ÿ1B0tStAt; �5:10�
and where St is obtained from the following recursive

equation.

Sh � Q
Stÿ1 � A0t�St ÿ StBt�B0t � St � Bt �R�ÿ1B0tSt�At

�Q; 1 � t < h:

Since the system in (5.7) is time varying, the solution of

the Riccati equation does not converge to a unique value.

However, note that from Priority_Assign_Process, t 2M�

implies t� k 2M� . Hence, At � At�k and Bt � Bt�k and the

system in (5.7) is periodic with period k. As a result, the

solution of the Riccati is also periodic with period k [22].

That is, if the time horizon h is large

Ft � Ft�k for all t 2M�

Therefore, from the following m values of Ft,

t 2 l�k
m

� �
: 0 � l < m

� 	
, we can easily compute Ft for any

t 2M� .
The solution in (5.10) must match (5.9) for t 2M� .

Matching the two and with some algebra

Mt � Ft � Bt � I
Ht Kt� � � FtA2

t FtAtBt � FtBt � I
� �

Et;
�5:11�

where

Et � At ÿ I Bt
C 0

� �ÿ1

:

In summary, the optimal control law which minimizes

the performance index in (5.8) is given by (5.2), where Ht,

Mt, and Kt are as shown above in (5.11). Note that in the

special case, when all the instances of the periodic task are

guaranteed to meet their deadlines, this result degenerates

to the optimal control law in [21].

6 NUMERICAL EXAMPLE

In this section, we present a numerical example to illustrate

the derivation of the optimal control law under �m; k�-firm

guarantee. Consider the cruise-control system in Fig. 2. The

discretized state-variable representation of the combined

system including throttle, fuel dynamics, and vehicle

dynamics at sampling rate of 1 second is

x�t� 1� �
0:869 ÿ0:041 0:000

1:000 0:000 0:000

0:000 1:000 0:000

264
375 � x�t� � 1:0

0:0

0:0

264
375 � u�t�

y�t� 1� � 0:110 0:062 0:0004� � � x�t�:
If all instances of the periodic task controlling this

subsystem are guaranteed to meet their deadlines, then the

optimal control law which minimizes the performance

index in (5.8) is

u�t� 1� � ÿ ÿ2:226 ÿ0:226 ÿ0:002� � � x�t�
ÿ ÿ1:673� �u�t� � z�t�

z�t� 1� � z�t� � 4:472�rÿ y�t��:
This solution was obtained by solving the Riccati equation

in (5.10) with m � k � 1 and computing H, M, and K using

(5.11). Note that, in this case, the Riccati equation will

converge to a unique F if the time horizon is reasonably

large. Also, the optimal control law in this case corresponds

exactly to optimal control law based directly on the results

in [21]. The cruise-control task can use this control law

when the system is not overloaded. With this control law,

the response of the cruise-control system to a step change in

the desired speed from 45 mph to 55 mph is shown as a

solid line with � in Fig. 6. Observe that the system converges

to steady-state fairly rapidly.
Now suppose that the cruise-control task is scheduled by

Algorithm Sched_mkfirm with 35 guarantee. In this case,

M� � 0; 1; 3; 5; 6; 8; . . .f g and the solution of the Riccati

equation in (5.10) gives

F0 � ÿ0:288 0:014 0:000 ÿ0:352 ÿ0:429� �
F1 � ÿ0:237 0:012 0:000 ÿ0:290 ÿ0:786� �
F3 � ÿ0:288 0:014 0:000 ÿ0:352 ÿ0:952� �:

Substituting the above values for F0, F1, and F3 in (5.11) we

get

H0 � ÿ1:781 ÿ0:152 ÿ0:001� �;
H1 � ÿ2:076 ÿ0:138 ÿ0:001� �;
H3 � ÿ2:304 ÿ0:163 ÿ0:0014� �;
M0 � ÿ1:429� �;M1 � ÿ1:786� �;M3 � ÿ1:952� �;
K0 � 3:371� �; K1 � 3:385� �; and K3 � 3:891� �:

Therefore, from (5.2), the optimal control law under �3; 5�-
firm guarantee is

u�t� 1� �

ÿH0x�t� ÿM0u�t� � z�t� if tmod 5 � 0
ÿH1x�t� ÿM1u�t� � z�t� if tmod 5 � 1
u�t� if tmod 5 � 2
ÿH3x�t� ÿM3u�t� � z�t� if tmod 5 � 3
u�t� if tmod 5 � 4;

8>>>><>>>>:
where

RAMANATHAN: OVERLOAD MANAGEMENT IN REAL-TIME CONTROL APPLICATIONS USING �m; k�-FIRM GUARANTEE 557

z�t� 1� �

z�t� �K0�rÿ y�t�� if tmod 5 � 0
z�t� �K1�rÿ y�t�� if tmod 5 � 1
z�t� if tmod 5 � 2
z�t� �K3�rÿ y�t�� if tmod 5 � 3
z�t� if tmod 5 � 4:

8>>>><>>>>:
With the above control law, the response of the cruise-
control system to a step change in the desired speed from
45 mph to 55 mph is shown as a dashed line with � in Fig. 6.
Observe that the system behavior is very close to the
behavior obtained when all deadlines are guaranteed, even
though the effective utilization has been reduced to
70 percent. This reduction in effective utilization helps
alleviate the overload problem.

To evaluate the benefit of modifying the control law, the
figure also contains the response of the cruise-control
system to the step change in the desired speed from
45 mph to 55 mph when Algorithm Sched_mkfirm

provides �3; 5�-firm guarantee to the task, but the control
law is kept the same as for the hard deadline guarantee.
Note that the response is substantially worse in this case.
This demonstrates the need for modifying the control law
when the system provides only a �m; k�-firm guarantee.

6.1 Comparison to an Approach with Increasing
Sampling Period

As stated earlier in 3, another way of reducing the effective
utilization of a periodic task during overload is to increase
its period so that the system can guarantee the deadlines of
all its instances. For example, to reduce the utilization of the
cruise-control task to 70 percent, we can change sampling
period to 5=3 seconds instead of the 1 second used above.
This also tends to degrade the performance of the system.
However, one can modify the optimal control law to
account for the reduced sampling rate with 11 guarantee.

Fig. 7 compares the step response of the cruise-control
system for our approach with �3; 5�-firm guarantee and the
approach with equivalently reduced sampling rate. Note
that the response with �3; 5�-firm guarantee is slightly
better. This is not always true, but the responses are
comparable. However, as noted earlier, using �m; k�-firm

guarantee method is better because: 1) changing the
sampling rate alters the dynamics of the subsystem, 2)
changing the sampling rate in one subsystem may
necessitate a change in the sampling rate of other related
subsystems in the application, and 3) since optional
instances may get service in the �m; k�-firm guarantee
approach, the system has a much better response on the
average.

7 CONCLUSIONS

In this paper, we proposed a technique for management of
processor overload in real-time control applications. The
technique selectively discards task instances to reduce the
effective utilization of each task. If no further action is
taken, the missed control updates due to the discarded
instances will cause substantial degradation in the perfor-
mance of the control system. To minimize the degradation,
the paper also proposes a methodology for modifying the
control law implemented by the task to account for the
updates scheduled to be performed by the discarded
instances. The combined scheme alleviates the overload
problem without any significant degradation in the perfor-
mance of the system.

In this paper, we essentially ignored the optional
instances of the periodic tasks. Better scheduling policies
can be used to service more of the optional instances
without violating the deadlines of mandatory instances. We
can also utilize the optional instances to improve the
performance of the system in the average case. If some
optional instances are serviced, we must account for them
in deriving the optimal control law for the mandatory and
the completed optional instances. Research work on
addressing these issues is in progress.

ACKNOWLEDGMENTS

The author would like to thank Profs. R. Barmish and C.
DeMarco for their insightful criticisms on the ideas in this
paper. This work is supported in part by the U.S. National

558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 6, JUNE 1999

Fig. 6. Evaluation of the effectiveness of the proposed approach. Fig. 7. Comparison for proposed approach and reducing sampling rate
approach.

Science Foundation under Grant MIP-9526761. A shorter
version of this paper appeared in the Proceedings of the Fault-
Tolerant Computing Symposium, pp. 132-141, 1997.

REFERENCES

[1] H. Chetto and M. Chetto, ªSome Results of the Earliest Deadline
Scheduling Algorithm,º IEEE Trans. Software Eng., vol. 15, no. 10,
pp. 1,261±1,269, Oct. 1989.

[2] J. Lehoczky, L. Sha, and Y. Ding, ªThe Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,º
Proc. Real-Time Systems Symp., pp. 166±171, Dec. 1989.

[3] C.L. Liu and J.W. Layland, ªScheduling Algorithms for Multi-
Programming in a Hard Real-Time Environment,º J. ACM, vol. 20,
pp. 46±61, Jan. 1973.

[4] B. Sprunt, L. Sha, and J. Lehoczky, ªAperiodic Task Scheduling for
Hard Real-Time Systems,º Real-Time Systems, vol. 1, pp. 27±60,
June 1989.

[5] J. Xu and D.L. Parnas, ªScheduling Processes with Release Times,
Deadlines, Precedence and Exclusion Relations,º IEEE Trans.
Software Eng., vol. 16, no. 3, pp. 360±369, Mar. 1990.

[6] K. Jeffay, D.F. Stanat, and C.U. Martel, ªOn Non-Preemptive
Scheduling of Periodic and Sporadic Tasks,º Proc. Real-Time
Systems Symp., pp. 129±139, Dec. 1991.

[7] M.R. Garey and D.S. Johnson, Computer and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: Freeman, 1979.

[8] K. Ramamritham, ªAllocation and Scheduling of Complex
Periodic Tasks,º Proc. Distributed Computing Systems, pp. 108±
115, May 1990.

[9] W. Zhao, K. Ramamritham, and J.A. Stankovic, ªScheduling Tasks
with Resource Requirements in Hard Real-Time Systems,º IEEE
Trans. Software Eng., vol. 13, no. 5, pp. 564±577, May 1987.

[10] Fault-Tolerant Computer System Design, D.K. Pradhan, ed. Prentice
Hall, 1996.

[11] R.M. Kieckhafer, C.J. Walter, A.M. Finn, and P.M. Thambidurai,
ªThe MAFT Architecture for Distributed Fault Tolerance,º IEEE
Trans. Computers, vol. 37, no. 4, pp. 398±405, Apr. 1988.

[12] A.L. Hopkins, T.B. Smith, and J.H. Lala, ªFTMPÐA Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft,º Proc. IEEE,
vol. 66, Oct. 1978.

[13] M. Hamdaoui and P. Ramanathan, ªA Dynamic Priority Assign-
ment Technique for Streams with �m; k�-Firm Deadlines,º IEEE
Trans. Computers, vol. 44, no. 12, pp. 1,443±1,451, Dec. 1995.

[14] G.F. Franklin, J.D. Powell, and M.L. Workman, Digital Control of
Dynamic Systems, second ed. Addison-Wesley, 1990.

[15] J.Y. Chung, J.W.S. Liu, and K.-J. Lin, ªScheduling Periodic Jobs
that Allow Imprecise Results,º IEEE Trans. Computers, vol. 39,
no. 9, pp. 1,156±1,174, Sept. 1990.

[16] J.W.S. Liu, K.-J. Lin, W.-K. Shih, A.C. Yu, J.-Y. Chung, and W.
Zhao, ªAlgorithms for Scheduling Imprecise Computations,º
Computer, vol. 24, no. 5, pp. 58±68, May 1991.

[17] G. Koren and D. Shasha, ªSkip-Over: Algorithms and Complexity
for Overloaded Systems that Allow Skips,º Proc. Real-Time Systems
Symp., pp. 110±117, Dec. 1995.

[18] G. Bernat and A. Burns, ªCombining �n;m�-Hard Deadlines and
Dual Priority Scheduling,º Proc. Real-Time Systems Symp., pp. 46±
57, Dec. 1997.

[19] M. Caccamo and G. Buttazzo, ªExploiting Skips in Periodic Tasks
for Enhancing Aperiodic Responsiveness,º Proc. Real-Time Systems
Symp., pp. 330±339, Dec. 1997.

[20] L. Sha, R. Rajkumar, and J.P. Lehoczky, ªPriority Inheritance
Protocols: An Approach to Real-Time Synchronization,º IEEE
Trans. Computers, vol. 39, no. 9, pp. 1,175±1,185, Sept. 1990.

[21] T. Mita, ªOptimal Digital Feedback Control Systems Counting
Computation Time of Control Laws,º IEEE Trans. Automatic
Control, vol. 30, pp. 542±548, June 1985.

[22] S. Bittanti, P. Colaneri, and D. DeNicolao, ªThe Periodic Riccati
Equation,º The Riccati Equation, S. Bittanti, A.J. Laub, and J.C.
Willems, eds., chapter 6, pp. 127±162. Springer-Verlag, 1991.

Parameswaran Ramanathan (M'89) received
the BTech degree from the Indian Institute of
Technology, Bombay, India, in 1984, and the
MSE and PhD degrees from the University of
Michigan, Ann Arbor, in 1986 and 1989, respec-
tively. He is an associate professor in the
Department of Electrical and Computer Engi-
neering and in the Department of Computer
Sciences at the University of Wisconsin, Madi-
son. From 1984 to 1989, he was a research

assistant in the Department of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor. He was an assistant
professor in the Department of Electrical and Computer Engineering at
the University of Wisconsin, Madison, from 1989 to 1995. From 1997-
1998, he spent his sabbatical leave from the university at AT&T Labs,
Whippany, New Jersey, and at Bellcore, Morristown, New Jersey. His
research interests include the areas of real-time systems, high-speed
networks, fault-tolerant computing, distributed systems, and parallel
algorithms.

RAMANATHAN: OVERLOAD MANAGEMENT IN REAL-TIME CONTROL APPLICATIONS USING �m; k�-FIRM GUARANTEE 559

