Using the clrscode4e Package in IAIEX 2¢

Thomas H. Cormen
thc @cs.dartmouth.edu

February 19, 2022

1 Introduction

This document describes how to use the clrscode4e package in IKIEX 2¢ to typeset pseudocode in the
style of Introduction to Algorithms, Fourth edition, by Cormen, Leiserson, Rivest, and Stein (CLRS 4e) [1].
You use the commands' in the same way we did in writing CLRS 4e, and your output will look just like the
pseudocode in the text.

2 Setup

To get the clrscodede package, download https://mitp-content-server.mit.edu/books/content/sectbyfn/
books_pres_0/11599/clrscode4e.sty, and put it where it will be found when you run I£TgX 2¢. To use the
package, include the following line in your source file:

\RequirePackage{clrscodede}

The clrscode4e package itself includes the line

[}

\RequirePackage{graphics} % needed for \scalebox command

This line is necessary in order to get the right spacing for the == symbol that we use for equality tests.
Therefore, you will need to have the graphics package installed and available on your system.

Because comments are in dark red, and because the clrscode4de package allows for a color screen
behind pseudocode, the package also includes the line

\RequirePackage [cmyk] {xcolor}

You may change or remove the [cymk] option; we had to include it so that the book could be printed in a
four-color process.

'We use the term “command” rather than “macro” throughout this document, though “macro” would work just as well.

https://
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/11599/clrscode4e.sty

3 Typesetting names

Pseudocode in CLRS 4e uses four types of names: identifiers, procedures, constants, and fixed functions.
We provide commands \id, \proc, \const, and \ func for these names. Each of these commands takes
one argument, which is the name being typeset. These commands work both in and out of math mode. Even
when these commands are used in math mode and the name given as an argument contains a dash, the dash
is typeset as a hyphen rather than as a minus sign.

Identifiers: Use identifiers for variable names of more than one character. When a variable name is just a
single character, e.g., the identifier i in line 1 of INSERTION-SORT on page 19, we just typeset it in
math mode rather than using the \id command: is.

Do not typeset identifiers consisting of two or more characters, e.g., the variable key in line 2
of INSERTION-SORT, in this way. (See page 51 of Lamport [2].) Although IXIEX2¢ provides
the \mathit command for typesetting multiletter identifiers, use our \id command instead:
\id{key}, rather than \mathit {key} or—horrors!—Skey. Since the \id command may
be used both in and out of math mode, the source text

Line™5 uses the variable \id{key} in the test S$A[j] > \id{key}$.

will produce
Line 5 uses the variable key in the test A[j] > key.

To see how a dash turns into a hyphen, consider line 1 of ONLINE-MAXIMUM on page 150. It contains
the variable best-score. Typesetting this variable name by \id{best—-score} produces a hyphen
in the identifier, but typesetting it by \mathit {best—-score} would produce best — score, with a
minus sign—rather than a hyphen—in the identifier.

Procedures: For procedure names, use the \proc command. It typesets procedure names in small caps,
and dashes (which occur frequently in our procedure names) are typeset as hyphens. Thus, the source
\proc{Insertion-Sort} produces INSERTION-SORT. Since you can use the \proc command
both in and out of math mode, the source text

Call \proc{Insertion-Sort} with an array A and its size n, so that
the call is $\proc{Insertion-Sort} (A, n)S$S.

will produce
Call INSERTION-SORT with an array A and its size 7, so that the call is INSERTION-SORT(A4, n).

Constants: We typeset constants such as NIL, TRUE, and RED in small caps with the \const command,
e.g., \const{nil}, \const{true}, and \const{red}. The \const command typesets a
dash within a constant name as a hyphen, so that, as on page 411, \const {no-such-path} will
produce NO-SUCH-PATH.

Fixed functions: We typeset the names of fixed functions in plain old roman with the \ func command,
e.g., level and out-degree. By a “fixed function,” we mean a function that is a specific, given function.
For example, the sin function is typically typeset in roman; sin x looks right, but wouldn’t sin x look
strange? Yet, on page 56, ®(g(n)) looks right, but ®(g(n)) would look wrong, since g is a variable
that stands for any one of a number of functions.

As with the other commands for names, a dash within a function name will typeset as a hyphen, so
that \ func{out-degree} will produce out-degree rather than out — degree. Note that I&IEX 2¢
provides commands for many fixed functions, such as sin and log; Table 3.9 on page 44 of Lamport
[2] lists these “log-like” functions.

4 Typesetting object attributes

In the first two editions of the book, we used square brackets for object attributes. For example, we repre-
sented the length of an array A by length[A]. Based on requests from readers, we switched to the object-like
dot-notation in the third edition and continued this notation into the fourth edition, so that we denote the
length of array A by A.length.

You might think that you could typeset A.length by $A.\id{length}$, but that would produce
A.length, which has not quite enough space after the dot. Therefore, we created a set of commands to
typeset object attributes. Each one may be used either in or out of math mode.

Most of the time, we use the \attrib command, which takes two arguments: the name of the object
and the name of the attribute. Let’s make a couple of definitions:

e An i-string is a string that you would use in an \id command, typically one or more non-Greek
letters, numerals, or dashes.

e Anx-string is a string that you would not use in an \ id command, typically because it has a subscript
or one or more Greek letters.

e As a special, and very common, case, a single non-Greek letter can count as either an i-string or an
X-string.

The \attrib command works well when the object name is an x-string and the attribute name is an i-string.
For example, to produce A.length,use \attrib{A} {length}. Here, we treat the object name, A4, as an
x-string. The attribute name, length, is of course an i-string.

If all your objects are x-strings and all your attributes are i-strings, then the \attrib command will
be all you need. We provide several other commands for other situations that arose when we produced
CLRS 4e.

The four basic attribute commands are \attribxi, \attribxx, \attribii, and \attribix.
Each takes two arguments: the object name and the attribute name. The last two letters of the command
name tell you what type of strings the arguments should be. The next-to-last letter tells you about the object
name, and the last letter tells you about the attribute name. i indicates that the argument will be treated as an
\id, in which case the command calls the \ 1d command and also puts the right amount of space between
the argument and the dot.

e You may use \attribxi precisely when you would use \attrib. In fact, \attrib is just a call
to\attribxi.

e Use \attribxx when both the object name and attribute names are x-strings. For example, you
would use \attribxx if the attribute name has a subscript, so that to produce x.c;, you would
use \attribxx{x}{c_1i}. Another situation in which you would use \attribxx is when the
attribute name is a Greek letter: to produce v.7, use \attribxx{v}{\pi}.

e If both the object name and attribute name are i-strings, then you should use \attribii. For
example, \attribii{item} {key} produces item.key, and \attribii{prev—-item} {np}
produces prev-item.np.

e [f the object name is an i-string and the attribute name is an x-string, then use \attribix. (We
never had this situation arise in CLRS 4e.) But if we had wanted to produce ifem.w, we would have
used \attribix{item} {\pi}.

For convenience, the clrscodede package also contains commands for cascading attributes, such
as x.left.size. These commands string together calls to the appropriate \attribxi and \attribxx
commands. The number of arguments they take depends on how many attributes you are stringing together.

e When you have two attributes, use \attribb, which takes an object name and two attribute names:
\attribb{x}{left}{size} produces x.left.size. This command assumes that the object name
is an x-string and both attribute names are i-strings.

e For three attributes, use \attribbb, which takes an object name (an x-string) and three attribute
names (i-strings): to produce y.p.left.size, use \attribbb{y}{p}{left}{size}.

e For four attributes, use \attribbbb, which is like \attribbb but with one additional attribute
tacked on. We never needed to use this command in CLRS 4e.

e The \attribbxxi command is for one level of cascading where the first attribute given is an
x-string. For example, \attribbxxi{x}{c_1i}{n} produces x.c;.n.

If your cascading attributes do not fit any of these descriptions, you’ll have to roll your own command
from the \attribxx and \attribxi (or \attrib) commands. For example, suppose you want to
produce x.left.key;. Because it has a subscript, key; is an x-string, and so you should not use \attribb.
Instead, use \attribxx{\attribxi{x}{left}}{\id{key_1i}}. (You could replace the call of
\attribxi byacall of \attrib.) Note that this call treats key; as an attribute of x.left, which is correct,
rather than treating /eft . key; as an attribute of x, which is not correct.

Edges of a graph can have attributes, too, and the clrscode4e package provides two commands for
attributes of edges. These commands assume that the edges are of the form (u, v), where the vertices u
and v are x-strings. They take three parameters: the two vertices that define the edge and the name of the
attribute.

e When the attribute name is an i-string, use \attribe. For example, to produce (u,v).c, use
\attribe{u}{v}{c}.

e When the attribute name is an x-string, use \attribex. For example, to produce (u,v).c’, use
\attribex{u}{v}{c’}.

5 Miscellaneous commands

The clrscode4e package contains four commands that don’t really fit anywhere else, so let’s handle them
here. All four must be used in math mode.

1738 2]

e We denote subarrays with the “:” notation, which is produced by the \subarr command.? Thus, the
source text SA[1 \subarr i-1]$ will produce A[l:i —1].

e We use the \get s command for the assignment operator. For example, line 4 of INSERTION-SORT
onpage 19is $j \gets i — 1$,producing j =i — 1.

e We use the \isequal command to test for equality with the == symbol. For example, line 1 of
PUSH on page 255 contains the test S.top == S.size, which we get by typesetting
S\attrib{S}{top} \isequal \attrib{S}{size}s.

e Since the constant NIL appears frequently, the command \nil is equivalent to \const{nil}.

You might wonder why we bother with the \get s command when we could just typeset an equals sign
directly. The answer is that in the first two editions of Introduction to Algorithms, we used a different symbol
(a left arrow) for the assignment operator, and it made sense to use a command for that. Many readers told
us that they preferred to use an equals sign for assignment—as many programming languages use—and so
we made this change for the third edition. But it’s a good idea to continue using the \gets command so
that we can easily change our assignment operator should we desire to do so in the future.

Once we decided to use the equals sign for assignment, we could no longer use it for equality tests. We
created the \ i sequal command for equality tests, and we decided to base it on the double equals sign used
for equality tests in programming languages such as C, C++, Java, and Python. Typesetting it as == in math
mode produces ==, which is too wide for our tastes. Our \isequal command calls the \scalebox
command from the graphics package to narrow the symbol, and it puts a nice amount of space between
the equals signs: ==.

6 Pseudocode boxes

We typeset pseudocode by putting it in a codebox environment. A codebox is a section of code that
does not break across pages. Starting with CLRS 4e, we allow blocks of pseudocode to float, just like fig-
ures. To allow pseudocode blocks to float, use the f1oat ingcodebox option in the RequirePackage
command: \RequirePackage[floatingcodebox] {clrscodede}. The floatingcodebox
option requires that you have the £loat package installed and available on your system. Starting with
CLRS 4e, we also put a light tan screen behind the pseudocode. For the light tan screen, use the screen op-
tion in the RequirePackage command: \RequirePackage[screen] {clrscodede}. For float-
ing pseudocode boxes that also have the light tan screen, use both options:
\RequirePackage[screen, floatingcodebox] {clrscodede}.

The default behavior is no floating pseudocode boxes and no screen.

ZIn previous editions, we used the \twodot s command, which produced two-thirds of an ellipsis. If you use \twodot s with
the clrscodede package, IATEX 2¢ will give you a warning.

Contents of a codebox

The typical structure within a codebox is as follows. Usually, the first line is the name of a procedure, along
with a list of parameters. (Not all codeboxes include procedure names; for example, see the pseudocode
on page 504 of CLRS 4e.) After the line containing the procedure name come one or more lines of code,
usually numbered. Some of the lines may be unnumbered, being continuations of previous lines. Lines are
usually numbered starting from 1, but again there are exceptions, such as the pseudocode on page 504.

Using \Procname to name the procedure

The \Procname command specifies the name of the procedure. It takes as a parameter the procedure
name and parameters, typically all in math mode. \Procname makes its argument flush left against the
margin, and it leaves a little bit of extra space below the line. For example, here is how we typeset the
INSERTION-SORT procedure on page 19:

\begin{codebox}
\Procname{$\proc{Insertion-Sort} (A, n)$}
\1li \For $i \gets 2$ \To n

\1i \Do
$\id{key} \gets A[i]s
\1i \Comment {Insert $A[i]$ into the sorted subarray $A[1l \subarr i-1]1$.}
\1i $3 \gets 1-1$
\1li \While $3 > 0% and $A[3] > \id{key}$
\1i \Do
S$A[J+1] \gets A[]]$
Vi $3 \gets j-1$
\End

\1i SA[Jj+1] \gets \id{key}$

\End
\end{codebox}

Multiple procedures in one box

Starting with CLRS 4e, we have a way to force multiple procedures (or more generally, blocks of pseu-
docode) to occupy the same box, so that they appear together on the same page. The first proce-
dure still follows \begin{codebox} and the last procedure still precedes \end{codebox}, but use
\begin{innercodebox} before all procedures after the first, and use \end{innercodebox} after
all procedures except the last. For example, if you have two procedures that you want to keep together, type
in the following:

\begin{codebox}
[First procedure goes here]
\end{innercodebox}

\begin{innercodebox}
[Second procedure goes here]
\end{codebox}

If you have three procedures:

\begin{codebox}
[First procedure goes here]
\end{innercodebox}

\begin{innercodebox}
[Second procedure goes here]

\end{innercodebox}

\begin{innercodebox}
[Third procedure goes here]
\end{codebox}

If you are using floating pseudocode boxes, then instead of the codebox environment, you can attempt
to force a pseudocode box to the top of a page, the bottom of a page, where it appears within your source
text, or on its own page via the environments codeboxt, codeboxb, codeboxh, and codeboxp,
respecitvely. We say “attempt to force” because IXIEX 2¢ doesn’t always do quite what you expect with float
placement.

If you have a pseudocode box that is just a little too long or wide to fit on the page, you can reduce it:

\reducecodeboxtrue
\codeboxreduction{XX}
\begin{codebox}
[Pseudocode goes here]
\end{codebox}
\reducecodeboxfalse

where XX is the reduction amount. For example, to reduce the size of the pseudocode box and its contents
by 10%, so that it is 90% of its nominal size, use \codeboxreduction{0.9}.

Using \1i and \zi to start new lines

To start a new, numbered line, use the \1i command. To start a new, unnumbered line, use the \zi
command. Note that since a codebox is not like the verbat im environment, the line breaks within the
source text do not correspond to the line breaks in the typeset output.

Commands for keywords

As you can see from the source for INSERTION-SORT, the commands \For and \While produce the
keywords for and while in boldface within a codebox.

Sometimes you want to include a keyword in the main text, as I have done in several places in this
document. Use the \kw command to do so. For example, to produce the previous paragraph, I typed in the
following:

As you can see from the source for \proc{Insertion-Sort}, the commands
\verb*\For' and \verb‘\While' produce the keywords \kw{for} and
\kw{while} in boldface within a \texttt{codebox}.

The following commands simply produce their corresponding keywords, typeset in boldface: \For,
\To, \Downto, \By, \While, \If, \Return, \Error, \Spawn, \Sync, and \Parfor (which
produces the compound keyword parallel for). Although you could achieve the same effect with the \kw
command (e.g., \kw{ for} instead of \For), you will find it easier and more readable to use the above
commands in pseudocode. None of the above commands affects indentation.

The \Comment command takes as an argument the text of a comment. It produces the comment symbol
//, followed by a space, followed by the argument, all in dark red. To get the comment symbol without a
following space, use \Comment Symbol.

Loops

The INSERTION-SORT example above shows typical ways to typeset for and while loops. In these loops,
the important commands are \Do and \End. \Do increments the indentation level to start the body. Put
\Do on a line starting with \ 11, but don’t put either \11 or \z1i between the \Do command and the first
statement of the loop body. Use \11i or \zi in front of all loop-body statements after the first one. \End
simply decrements the indentation level, and you use it to end any for or while loop, or otherwise decrement
the indentation level.

In the first two editions of the book, the body of a for or while loop began with the keyword do.
Responding to requests from readers to make pseudocode more like C, C++, and Java, we eliminated this
keyword in the third edition.

As you can see from the above example, I like to place each \Do and \End on its own line. You can
format your source text any way you like, but I find that the way I format pseudocode makes it easy to match
up \Do-\End pairs.

If you want your for loop to decrease the loop variable in each iteration, use \Downto rather than
\To. If you want the stride to be a value other than 1, use the \By command. For example, line 3 of
Exercise 19.2-2 on page 526 is typeset as

\For $i \gets 1$ \To $155 \By 2

Loops that use the repeat-until structure are a bit different. We use the \Repeat and \Until com-
mands, as in the HASH-INSERT procedure on page 294:

\begin{codebox}
\Procname{$\proc{Hash-Insert} (T, k)$}
\1i $i \gets 0$

\1i \Repeat

\1i $q \gets h(k, i)$s
\1i \If $T[g] \isequal \const{nil}s
\1i \Then

ST[g]l \gets k$
\1i \Return qg
\1i \Else

$i \gets i+1$

\End

\1i \Until $i \isequal m$
\1li \Error ‘‘hash table overflow’’
\end{codebox}

Note that the \Unt il command has an implied \End.

Typesetting if statements

As you can see from the above example of HASH-INSERT, we typeset if statements with the commands
\If, \Then, \Else, and \End. In the first two editions of the book, the keyword then appeared in
pseudocode, but—again mindful of requests from our readers to make our pseudocode more like C, C++,
and Java—we eliminated the keyword then in the third edition. The \ Then command remains, however, in
order to indent the code that runs when the test in the if clause evaluates to TRUE.

We use \End to terminate an if statement, whether or not it has an else clause. For an example of an if
statement without an else clause, here’s the RANDOMIZED-QUICKSORT procedure on page 192:

\begin{innercodebox}
\Procname{$\procdecl {Randomized-Quicksort} (A, p, r)$}
\1i \If $p < r$

\1i \Then
$q \gets \proc{Randomized-Partition} (A, p, r)$
\1i $\proc{Randomized-Quicksort} (A, p, g-1)$
\1i $\proc{Randomized-Quicksort} (A, g+l, r)S$
\End
\end{codebox}

(It starts with \begin{innercodebox} because it is in the same pseudocode box as RANDOMIZED-
PARTITION.) The HASH-INSERT procedure above shows how to typeset an if statement that has an else
clause. Note that \Then and \Else always follow an \1i command to start a new numbered line. As
with the \Do command, don’t put either \11i or \zi between \Then or \Else and the statement that
follows.

As you can see, I line up the \End commands under the \Then and \Else commands. I could just
as easily have chosen to line up \End under the \ If command instead. I also sometimes elect to put the
“then” or “else” code on the same source line as the \Then or \Else command, especially when that code
is one short line, such as in line 2 of the RANDOMIZED-MARKING procedure on page 808:

\begin{codebox}
\Procname{$\proc{Randomized-Marking} (b) $}
\1li \If block b resides in the cache,

\1i \Then $\attrib{b}{mark} \gets 1$
\1i \Else
\1i \If all blocks $b’$ in the cache have $\attrib{b’}{mark} = 13
\1i \Then unmark all blocks $b’$ in the cache,
setting $\attrib{b’}{mark} = 0$

\End
\1i select an unmarked block u with $\attrib{u}{mark} = 0$

uniformly at random
\1i evict block Su
\1i place block b into the cache
\1i S\attrib{b}{mark} \gets 1$

\End

\end{codebox}

Our style is to put the first line within an else clause on the same line as the keyword else, as in HASH-
INSERT. Doing so saves vertical space. There is one exception: starting in the fourth edition, when the first

line within an else clause is an if statement, we put the if statement on a new line, as in RANDOMIZED-
MARKING.

Sometimes, you need more complicated “if-ladders” than you can get from the \Then and \Else
commands. The TRANSPLANT procedure on page 324 provides an example, and it uses the \E1lseIf and
\ElseNoIf commands:

\begin{codebox}
\Procname{$\proc{Transplant} (T, u, v)$}
\1li \If $\attrib{u}{p} \isequal \const{nil}$

\1i \Then $\attrib{T}{root} \gets v$
\1li \ElseIf Su \isequal \attribb{u}{p}{left}s$
\1i \Then $\attribb{u}{p}{left} \gets v$

\1i \ElseNoIf
$\attribb{u}{p}{right} \gets v$
\End
\1li \If $v \neq \const{nil}$
\1i \Then $\attrib{v}{p} \gets \attrib{u}{p}$
\End
\end{codebox}

For an if-ladder, use \Then for the first case, \E1seNoIf for the last case, and \ElseIf followed by
\Then for all intermediate cases. You use \ElseNoIf like you use \Else in that it follows an \11i
command, you don’t follow it with \Then, and, because it terminates an if-ladder, it’s followed by \End.
I usually line up the terminating \End with \If, the \E1lseIf commands, and \E1seNoIf, butthe way
you line it up won’t change the typeset output.

The reason that we started placing the first line of an else clause on a new line when it’s an if statement
was to avoid confusion between else if (the else clause starts with an if statement) and elseif (a test within
an if-ladder). (We received a few false-positive bug reports where readers misinterpreted else if as elseif.)

Indentation levels

If you look at the RECURSIVE-MATRIX-CHAIN procedure on page 389, you’ll see that line 5 of the pseu-
docode occupies three lines on the page, and that the last two lines comprising line 5 are indented by one
level. We do so with the \Indentmore command. The \End command following the indented line
decrements the indentation level back to what it was prior to the \Indentmore. If I had wanted to indent
the line by two levels, I would have used two \Indentmore commands before the line and two \End
commands afterward. (Recall that \End simply decrements the indentation level.)

To show you \ Indentmore, here is the source code for RECURSIVE-MATRIX-CHAIN:

10

\begin{codebox}
\Procname{$\proc{Recursive-Matrix—Chain} (p, i, J)$}
\1i \If $i \isequal 3J$
\1i \Then \Return 0

\End
\1i $m[i,J] \gets \infty$
\1li \For $k \gets i$ \To $7j-15S

\1i \Do
Sq \gets \proc{Recursive-Matrix—-Chain} (p, i, k)S$

\Indentmore
\zi $\mbox{} + \proc{Recursive-Matrix-Chain} (p, k+1, 3j)S
\zi S\mbox{} + p_{i-1} p_k p_3j$

\End
\1li \If $q < m[i,3]$
\1i \Then $m[i, j] \gets gS$

\End

\End

\1li \Return S$m[i, j]$
\end{codebox}

(The empty \mbox { } commands are there so that I&IEX 2¢ will treat the operator “+” as a binary operator,
rather than a unary one. A unary “+” or “~" has less space to the right of the operator than a binary one.)

Upon seeing the \end{codebox} command, the codebox environment checks that the indentation
level is back to where it was when it started, namely an indentation level of 0. If it is not, you will get a
warning message like the following:

Warning: Indentation ends at level 1 in codebox on page 1.

This message would indicate that there is one missing \End command. On the other hand, you might have
one too many \End commands, in which case you would get

Warning: Indentation ends at level -1 in codebox on page 1.

Whenever the indentation level is nonzero upon hitting an \end{codebox} command, you’ll get a warn-
ing telling you what the indentation level was.

If you are really picky, you can get a situation where you have two procedures in the same codebox, one
of the procedures has 10 or more lines, but the other procedure has fewer than 10 lines. You’d like the ones
digits in the line numbers to vertically align in the two procedures, but the macros for typesetting pseudocode
push the line numbers to the left. The result is that the for the shorter procedure, the ones digits line up with
the tens digits in the longer procedure. This situation arose in a few places, such as on page 372, where a
codebox contains the procedures EXTENDED-BOTTOM-UP-CUT-ROD, with 10 lines, and PRINT-CUT-
ROD-SOLUTION, with only four lines. The solution is to insert the command \indentlinenumbers
just before the closing \end{codebox} (or, if appropriate, \end{innercodebox}) of the shorter
procedure.

Tabs

I find that it is best to set the tab stops in the text editor to every 4 characters when typing in and displaying
pseudocode source with the c1rscode4e package. I use emacs, and to get the tabs set up the way I want
them, my tex-mode . el file includes the line (setq tab-width 4).

11

A codebox environment has a tabbing environment within it. Each tab stop gives one level of
indentation. We designed the indentation so that the body of an else clause starts at just the right indentation.
With one big exception, you won’t need to be concerned with tabs. The primary exception is when you want
to include a comment at the end of a line of pseudocode, and especially when you want to include comments
after several lines and you want the comments to vertically align.

If you used the clrscode package from the second edition of the book, you might notice different
tabbing behavior when you port your pseudocode to the clrscodede package. Where the clrscode
package used two tab stops for each level of loop indentation, the c1rscode4e package uses just one tab
stop. We made this change in the c1rscode4e package because the third edition eliminated the keyword
then and left-aligns else with its corresponding if.

Note that the tabbing environment within a codebox has nothing to do with tabs that you enter in your
source code; when you press the TAB key, that’s the same as pressing the space bar in the eyes of IATEX 2¢.

Instead of typing \> for a tab within a codebox environment, you can type \tab. Even better, if you
want to go to a specific tab stop, you can use the \tabto command. For example, to go to the seventh
tab stop, type \tabto{7}. You will find the \tabto command useful for vertically aligning comments.
Unfortunately, you will probably have to experiment with the argument to \tabto to get the positioning
just where you want it.

As an example, here is the PARTITION procedure on page 184:

\begin{codebox}
\Procname{$\procdecl{Partition} (A, p, r)$}
\1i $x \gets A[r]$ \tabto{7} \Comment{the pivot}
\1li $i \gets p-1$ \tabto{7} \Comment{highest index into the low side}
\1li \For $j \gets p$ \To $r-1$ \tabto{7}
\Comment {process each element other than the pivot}
\1i \Do
\If $A[j] \leg x$ \tabto{7}
\Comment {does this element belong on the low side?}
\1i \Then
$i \gets i+1$ \tabto{8}
\Comment {index of a new slot in the low side}
\1i exchange $A[i]$ with $A[j]$S \tabto{8}
\Comment {put this element there}
\End
\End
\1li exchange S$A[i+1]$ with S$A[r]$ \tabto{7}
\Comment {pivot goes just to the right of the low side}
\1li \Return $i+1$ \tabto{7} \Comment{new index of the pivot}
\end{codebox}

Line 6 has \tabto {8} instead of \tabto{ 7} because this line is just a little too long to use \tabto{7}.
Because lines 5 and 6 are both within the “then” part of the if statement in line 4, it looks good for their
comments to be vertically aligned, and so line 5 also has \tabto{7}.

The maximum value that the argument to the \tabto may take is 12. IXIEX 2¢ does not allow more
tab stops than that. If you really need a tab stop to the right of the 12th tab stop, you can use \tabto{12}
followed by one or more nonbreaking spaces (7).

If you use the \tabto command on an \ElseNoIf line, you will get one less tab than you expect.
The MODULAR-EXPONENTIATION procedure on page 935 is a good example. We add an extra \tab

12

command after \tabto {12} on line 6 to actually get to the 12th tab stop. This source also shows how we
use nonbreaking spaces after the last tab stop to push comments farther to the right:

\begin{codebox}
\Procname{$\proc{Modular—-Exponentiation} (a, b, n)$}
\1li \If $b \isequal 0$

\1i \Then \Return 1
\1li \ElseIf $b \bmod 2 \isequal 0$
\1i \Then

$d \gets \proc{Modular—-Exponentiation} (a, b/2, n)$
\tabto{12}~ " "\Comment {b is even}
\1i \Return $(d \cdot d) \bmod n$
\1i \ElseNoIf
$d \gets \proc{Modular-Exponentiation} (a, b-1, n)$
\tabto{12}\tab{1l} "~ ~"\Comment {b is odd}
\1i \Return $(a \cdot d) \bmod n$
\End
\end{codebox}

Sometimes, text in a comment spans two lines of pseudocode. For example, look at the TREE-DELETE
procedure on page 325. The comment on line 8 continues onto line 9, and the comment on line 11 continues
onto line 12. In each case, there is an indentation within the comment. Use the command \tabincomment
to get that indentation. For example, here are lines 8 and 9 of TREE-DELETE:

\1i S\attrib{y}{right} \gets \attrib{z}{right}$
\tabto{9} \Comment{z’s right child becomes}
\1i S\attribb{y}{right}{p} \gets y$

\tabto{9} \Comment{\tabincomment{}Sy’s right child}

Referencing line numbers

The source files for CLRS 4e contain no absolute references to line numbers. We use only symbolic ref-
erences. The codebox environment is set up to allow you to place \ label commands on lines of pseu-
docode and then reference these labels. The references will resolve to the line numbers. Our convention is
that any label for a line number begins with \ 11 :, but you can name the labels any way that you like.

For example, here’s how we really wrote the INSERTION-SORT procedure on page 19:

13

\begin{codebox}
\Procname{$\procdecl{Insertion-Sort} (A, n)$}
\1li \For $i \gets 2$ \To n
\label{li:ins-sort—for}

\1i \Do $\id{key} \gets A[i]S$ \label{li:ins-sort-pick}
\label{li:ins-sort—-for-body-begin}
\1i \Comment {Insert $A[i]$ into the sorted subarray S$A[l \subarr i-1]1$.}
\1i $3 \gets i-1$ \label{li:ins-sort-find-begin}
\1i \While $3 > 0$ and $A[j] > \id{key}$
\label{li:ins-sort-while}
\1i \Do
SA[j+1] \gets A[J]S \label{li:ins-sort-while-begin}
\1i $3 \gets j-1$ \label{li:ins-sort—-find-end}
\label{li:ins-sort-while—end}
\End
\1i SA[Jj+1] \gets \id{key}$ \label{li:ins-sort-ins}
\label{li:ins—-sort—-for-body-end}
\End
\end{codebox}

Note that any line may have multiple labels. As an example of referencing these labels, here’s the beginning
of the first item under “Pseudocode conventions” on pages 21-22:

\item Indentation indicates block structure. For example, the body of
the \kw{for} loop that begins on line \ref{li:ins-sort-for} consists
of lines
\ref{li:ins-sort-for-body-begin}--\ref{li:ins-sort-for-body—-end}, and
the body of the \kw{while} loop that begins on
line“\ref{li:ins-sort-while} contains lines
\ref{li:ins-sort—-while-begin}-—-\ref{li:ins-sort-while—-end} but not
line " \ref{li:ins-sort-for-body-end}.

Setting line numbers

On rare occasions, we needed to start line numbers somewhere other than 1. Use the setlinenumber
command to set the next line number. For example, in Exercise 22.2-2 on page 619, we want the line
number to be the same as a line number within the DAG-SHORTEST-PATHS procedure on page 617. Here’s
the source for the exercise:

Suppose that you change line”\ref{li:dag-sp-loop-begin} of
\proc{Dag-Shortest-Paths} to read

\begin{codeboxnoscreenh}%

\setlinenumber{li:dag-sp—-loop-begin}

\1li \For the first $\card{V}-1$ vertices, taken in topologically
sorted order

\end{codeboxnoscreenh}

Show that the procedure remains correct.

(The codeboxnoscreenh environment produces a codebox without the color screen behind it and
without floating it.)

14

The DAG-SHORTEST-PATHS procedure is

\begin{codebox}

\Procname{$\proc{Dag-Shortest-Paths} (G, w, s)$}

\1i topologically sort the vertices of $GS \label{li:dag-sp-topo-sort}
\1i $\proc{Initialize-Single—-Source} (G, s)$ \label{li:dag-sp—-init}

\1li \For each vertex $u \in \attrib{G}{V}$, taken in topologically sorted order
\label{li:dag-sp—-loop—-begin}

\1i \Do

\For each vertex $v \in \attrib{G}{Adj}[u]l$

\label{li:dag-sp-inner-begin}

\1i \Do $\proc{Relax} (u, v, w)S$ \label{li:dag-sp—-loop-end}

\End
\End
\end{codebox}

Even more rarely (just once, in fact), we needed to set a line number to be some other line number plus
an offset. That was in the two lines of pseudocode on page 484, where the first line number had to be one
greater than the number of the last line of LEFT-ROTATE on page 336. Use the setlinenumberplus
command:

\begin{codeboxh}

\setlinenumberplus{li:left-rot-parent} {1}

\1i $\attrib{y}{size} \gets \attrib{x}{size}$

\1li $\attrib{x}{size} \gets \attribb{x}{left}{size}
+ \attribb{x}{right}{size} + 1

\end{codeboxh}

(The codeboxh environment produces a codebox with the color screen behind it but without floating it.)
Here, the last line of LEFT-ROTATE has \1label{li:left-rot—-parent}.

Indenting long argument lists in procedure calls

You might find that you have to call a procedure with an argument list so long that the call requires more than
one line. When this situation arises, it often looks best to align the second and subsequent lines of arguments
with the first argument. The only place we did so was in the SUM-ARRAYS’ procedure in Problem 27-1 on
page 783.

To get this style of alignment, use the \Startalign and \Stopalign commands, in concert with
the \> command of I&TEX 2. The \Startalign command takes an argument that is the text string that
you wish to align just to the right of. Start each line that you want to indent with \>. Use the \Stopalign
command to restore indentation to its state from before the \Startalign command.

The source code for SUM-ARRAYS’ shows how to use these commands:

15

\begin{codebox}

\Procname{$\proc{Sum-Arrays}{$’$} (A, B, C, n)$}

\1li $\id{grain-size} \gets\ \ ?$ \tabto{6} \Comment{to be determined}
\1i $r \gets \ceil{n / \id{grain-size}}s

\1li \For $k \gets 0$ \To $r-1$

\1i \Do \Spawn $\proc{Add-Subarray} (A, B, C, k \cdot \id{grain-size}+1,$
\Startalign{\Spawn $\proc{Add-Subarray} ($}
\ > S\min\set{ (k+1) \cdot\id{grain—-size}, n})$
\Stopalign
\End
\1i \Sync

\end{innercodebox}

The second line of arguments in the call to ADD-SUBARRAY starts right under the first parameter, A, in the
call. (And, once again, we use \end{innercodebox} because the procedure ADD-SUBARRAY follows
SUM-ARRAYS’ in the same codebox.)

7 Reporting bugs

If you find errors in the c1rscode4e package, please send me email (thc @cs.dartmouth.edu). It would be
best if your message included everything I would require to elicit the error myself.
The clrscodede. sty file contains the following disclaimer:

% Written for general distribution by Thomas H. Cormen, February 2022.

o

The author grants permission for anyone to use this macro package and
to distribute it unchanged without further restriction. If you choose
to modify this package, you must indicate that you have modified it
prior to your distributing it. I don’t want to get bug reports about
changes that *youx have made!

o o oP

o

I have enough trouble keeping up with my own bugs; I don’t want to hear about bugs that others have
introduced in the package!

8 Revision history

e 19 February 2022. Initial revision of document and code.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, fourth edition. The MIT Press, 2022.

[2] Leslie Lamport. BTgX: A Document Preparation System User’s Guide and Reference Manual. Addison-
Wesley, 1993.

16

