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Abstract—An Amplified DNS DDoS (ADD) attack involves
tens of thousands of DNS resolvers that send huge volumes
of amplified DNS responses to a single victim host, quickly
flooding the victim’s network bandwidth. Because ADD attacks
are distributed, it is difficult for individual DNS resolvers to
detect them based on local DNS query rates alone. Even if
a victim detects an ADD attack, it cannot stop the attacker
from flooding its network bandwidth. To address this problem,
we present a novel mitigation system called “Distributed Rate
Sharing based Amplified DNS-DDoS Attack Mitigation” (DRS-
ADAM). DRS-ADAM facilitates DNS query rate sharing between
DNS resolvers that are involved in an attack to detect and
completely stop an ADD attack. Each DNS resolver quickly builds
the global DNS query rate for potential victims by accumulating
the shared rate values, and uses that global rate to make
mitigation decisions locally. DRS-ADAM can be easily deployed
through a small software update on resolvers and victim hosts,
and does not require any additional server component. Our
simulation results show that DRS-ADAM can contain the peak
attack rates close to a victim’s acceptable threshold values (which
are far smaller than their sustainable bandwidth) at all times,
regardless of the number of resolvers involved in ADD attacks.
ADD attacks can be fully mitigated within a few seconds.

Index Terms—DDoS attack, DNS amplification attack, dis-
tributed detection system.

I. INTRODUCTION

DNS amplification-based distributed denial of service

(DDoS) attacks aim to overwhelm a victim’s network band-

width to make its system resources unavailable. Such attacks

amplify huge volumes of DNS responses through tens of

thousands of open recursive DNS resolvers. DNS response

amplification is achieved by sending a query that typically

returns a large TXT record or zone file [1]. For example, an

“ANY” query corresponding to 64 bytes of request can return

a 3,223 bytes response, resulting in about 50x amplification.

Attackers ensure that amplified responses (UDP packets) reach

the victim by spoofing the victim’s source IP address. We refer

to such attacks as “amplified DNS DDoS” (ADD) attacks.

Successful ADD attacks can severely interrupt normal host

machine operations (e.g., a web server) by depleting its band-

width, CPU, or memory, or forcing it to shut down. Because

millions of open recursive DNS resolvers around the world are

available and highly accessible and the amplification can be

performed easily [2], ADD attacks are now a major, popular

cyber threat. Because they are distributed, ADD attacks are

difficult to detect and stop. Spoofed DNS queries are sent

to numerous DNS resolvers, which, from each resolver’s

perspective, makes the incoming DNS query rate very small.

It is difficult for a resolver to detect an ADD attack based

solely on its own DNS query rates.

The response rate limit (RRL) feature available on a popular

DNS software called BIND [3] scrutinizes the local query rates

to limit the amount of response traffic going to a potential

victim host. ADD attacks can still successfully bypass RRL

since it relies only on local query rates to detect the attack

and uses rate-limit to mitigate it; we describe this situation

in Section IV-C4. As proposed by [4], a firewall application

managed by a victim host could potentially detect an ADD

attack based on the incoming traffic, but the victim and its

firewall cannot stop the attack traffic from flooding its network

bandwidth.

In this paper, we propose a novel mitigation system for

ADD attacks called “Distributed Rate Sharing based Amplified

DNS-DDoS Attack Mitigation” (DRS-ADAM), which allows

each DNS resolver to detect and stop ADD traffic locally. DNS

resolvers involved in a potential ADD attack share information

about incoming DNS query rates with each other, allowing

each resolver to accumulate the rates and gain greater insight

into the global state of the DNS responses sent out to a victim.

Our simulation results show that DRS-ADAM can contain

attacks close to the threshold values at all times regardless

of the number of resolvers involved in attacks or the total

attack sizes. Even in partial deployment scenarios (e.g., 50%

of DNS resolvers involved in an ADD attack are equipped

with DRS-ADAM), DRS-ADAM can perform close to the

theoretically best-possible DNS resolver-oriented (local or

distributed) detection. We also used DRS-ADAM to simulate

possible manipulating scenarios, including a scenario in which

an attacker impersonates a victim to stop DNS resolvers from

sending legitimate DNS responses to that victim. We showed

that DRS-ADAM can sufficiently mitigate such attacks.

II. MOTIVATIONS

ADD attack duration typically varies from 1 to 16 hours, and

DDoSed financial services firms lose an average of $40,000
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per hour [5]. ADD attacks increased over 132.43 percent

between the second quarter of 2014 and the second quarter

of 2015 [6]. Financial losses related to ADD attacks are often

discussed with respect to how the victim hosts are affected,

and do not discuss the losses that affect network operators that

manage DNS resolvers. In this section, we explain the high

level economical, monetary incentives for network operators,

e.g., Internet service providers (ISPs), to deploy DRS-ADAM

on their DNS resolvers, and become part of the global ADD

attack detection operations.

A recent report [7] indicates that millions of home routers

could be exposing ISPs and their users to become part of

an ADD attack. Since the bandwidth is not free, network

operators that get exposed to any kind of DDoS attack have to

also pay for the bandwidth that are being abused by a DDoS

attack. Rapidly growing volume and frequency of different

types of DDoS attacks are significantly impacting the costs

network operators have to pay for the bandwidth that is being

consumed.

A quick analysis can demonstrate such costs for network

operators. Hypothetically, let us assume that it costs about

$0.50 per Gb for an ISP (these rough figures are interpolated

from [8]) to provide the promised bandwidth to their cus-

tomers. Then, for an average ADD attack that abuses about

10 Gbps [9] and lasts about 60 minutes, it will roughly incur

$18, 000 extra dollars for an ADD attack. If we assume, there

are more than 100 ADD attacks being performed globally

every month [10], it could potentially increase the overall

network cost by $1, 800, 000 per month; such cost would be

shared by the network operators. With the deployment of DRS-

ADAM, however, network operators can stop ADD attacks at

their early stages (before reaching the peak attack rate), and

save such costs. We will revisit this cost-saving motivation

for network operators in section V-B, and demonstrate the

economic benefits for network operators in terms of early

attack detection, cost avoidance, and deployment costs.

ADD attacks exploit hundreds to thousands of DNS re-

solvers to maintain a relatively low query rate at each DNS

resolver. This low rate makes it difficult for DNS resolvers to

distinguish between legitimate traffic and ADD attack traffic,

as their characteristics will be similar at the local level. Many

existing solutions [4], [11], [12], [13] propose to detect attacks

at the victim host level and then drop packets. When we

consider large real-world ADD attacks that can peak around

300 Gbps [14], dropping packets at the victim host level is

not a viable solution because it will not prevent capacity from

being consumed.

In contrast, DRS-ADAM detects and stops the attack at its

origin, i.e., at the DNS resolver level. DNS resolvers involved

in an attack share DNS query rate information with each other,

building an accumulated query rate and making mitigation

decisions locally. DRS-ADAM design was motivated by ques-

tions like “Is it possible to detect and stop ADD attacks in

a timely manner by facilitating DNS query sharing between

DNS resolvers?,” “Can ADD attacks be mitigated or stopped

before they reach victim’s sustainable bandwidth?,” and “How

Fig. 1: Architecture of DRS-ADAM.

much network overhead would DNS query rate sharing incur

on resolvers?” In Section V, we answer these questions with

respect to the simulation results.

One might consider a solution where the victim directly

requests individual DNS resolvers to stop sending response

packets once it witnesses a few mismatching DNS queries.

But without a robust authentication mechanism in place (e.g.

PKI)—which can be expensive—resolvers would not be able

to verify the identify of the victim. This kind of solution could

potentially be abused by adversaries to perform another type

of DoS attack—sending fake “stop” requests to resolvers, and

stopping legitimate DNS responses from reaching the victim.

III. DRS-ADAM DESIGN

We describe DRS-ADAM and the protocols used between

DNS resolvers and between DNS resolvers and victim.

A. Design goals

Four design goals informed DRS-ADAM development. (1)

Our first design goal was to develop a solution that is capable

of containing ADD attacks under victim-specified, acceptable

bandwidth threshold values at all times, and completely stop-

ping ADD attacks eventually regardless of the number of

resolvers involved in an attack. (2) Our next design goal was

to develop a software-based solution that uses existing DNS

resolvers to achieve high deployability and scalability. We

wanted to avoid introducing new, dedicated intrusion detection

system servers or other hardware infrastructure. Roughly 27

million DNS resolvers are connected to the Internet world-

wide; introducing new, dedicated IDS servers would incur

unmanageable costs and be difficult to scale. (3) Our third

design goal was to develop a solution that works purely on

UDP. Most DNS services are provided and consumed over

UDP, which consumes minimum memory/overhead and does

not respond to congestion. These characteristics allow fast

ADD detection. (4) Our last goal was to avoid expensive

authentication techniques that use public-key infrastructure

(PKI) for authenticating DNS resolvers or victim hosts.

B. Architecture overview

The three main components that make DRS-ADAM work

are DNS resolvers, local anomaly detectors (LADs) running
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inside DNS resolvers, and a UDP-based DNS query rate shar-

ing protocol. Figure 1 represents the DRS-ADAM architecture

depicting UDP-based communications between DNS resolvers

and between a victim’s firewall and DNS resolvers.

A firewall protecting a victim maintains a predefined list of

known DNS resolver IP addresses called the “known-list” that

keeps track of the DNS resolvers with which the victim sent a

DNS query. A small piece of code running on the firewall mon-

itors incoming DNS response messages and checks the source

IP address against the addresses stored in the known-list. Note,

if a firewall is not present, the victim itself can install the code

and monitor incoming DNS responses. If an unknown source

IP address is detected, the firewall adds that address to the

“unknown-list,” which keeps track of unknown DNS resolvers

that are potentially involved in an ADD attack. Section III-C

describes in detail the protocol used by the victim’s firewall

and resolvers to optimally share the unknown-list. The query

rate sharing protocol the resolvers use is described in Section

III-D. The local anomaly detectors running inside the resolvers

continuously compute accumulated shared query rates to make

mitigation decisions locally.

In the initial presentation of the DRS-ADAM we made two

simplifying assumptions for clarity. We assumed that DNS

resolvers and victim hosts and firewalls are all discoverable

and can communicate with each other. Our second assumption

was that, since DRS-ADAM relies on collecting victim’s DNS

query from the resolvers, we expect that collected DNS query

rates do not change much during the attack period. Both

assumptions can be relaxed by moving from the complete,

global network version of resolver communication to compute

accumulated query rates to a version that uses an optimized

distributed sum computation (described in Section V-F).

C. Communication between the victim and DNS resolvers

When an unknown DNS response (that the victim has not

requested) arrives, the victim adds the IP address of the DNS

resolver that sent the response in its unknown-list— if

the IP address does not already exist. Every time a new IP

address is added, the victim sends only the new IP address to

the second-to-last resolver listed in the unknown-list.

TABLE I: Notations used in the communication protocols

V : A victim’s upgraded firewall.

Di : ith DNS resolver IP address entry in
unknown-list.

DIPi : The IP address of the ith DNS resolver.
unknown-list : A list of unknown DNS resolver IP ad-

dresses (those that are possibly involved in
attack).

SDRi : A spoofed DNS response sent to victim
from ith DNS resolver.

threshold : Threshold absolute value sent by the victim.

Based on the notations from Table I, let us assume at t = 0
a victim host V receives a DNS response from Di, which is

not listed in either the known-list or unknown-list.

V creates a new entry and appends the IP address of Di to

the unknown-list. V then forwards Di’s IP address to

only the DNS resolver listed as the second to last resolver in

the unknown-list. In Section III-D, we explain why that

process is sufficient for DNS resolvers to build the complete

network of resolvers involved in the attack.
If Di is already known, V does not take any action. That

protocol is described below.

Di −→ V : SDRi Victim V receives a
spoofed DNS response
from Di for the first time.

V −→ Di−1 : DIPi, threshold Victim V forwards thresh-
old and IP address of Di

to Di−1.

V also shares its “absolute threshold value” with Di−1,

which is determined based on the victim’s experience of the

expected DNS traffic and sustainable bandwidth. Note that

DNS traffic volume for enterprises is typically less than 1%

of the total traffic [15]. The protocol was designed to minimize

communication complexity and the bandwidth consumed by

the victim. A victim only needs to send a single IP address

each time its unknown-list gets updated. With n number

of resolvers involved in an ADD attack, the total complexity

of messages forwarded to resolvers will be O(n).

D. Query rate sharing between DNS resolvers
We designed a protocol that allows resolvers to quickly

discover all other resolvers involved in an ADD attack while

consuming an acceptable amount of bandwidth. That protocol

is described below.

Dn+1 −→ V : SDRn V receives a spoofed DNS
response from Dn+1 for the
first time.

V −→ Dn : DIPn+1 V forwards Dn+1’s IP ad-
dress to Dn.

Dn −→ D1 : DIPn+1 Dn forwards Dn+1’s IP ad-
dress to D1.

Dn −→ D2 : DIPn+1 Dn forwards Dn+1’s IP ad-
dress to D2.

.

.

. −→
.
.
. :

.

.

.
Dn −→ Dn−1 : DIPn+1 Dn forwards Dn+1’s IP ad-

dress to Dn−1 resolver.
Dn −→ Dn+1 : DnsList Dn forwards its current full

unknown-list to Dn+1.
resolver.

Assume that at time t a victim has an unknown-list
Ln containing n number of DNS resolvers, namely

{D1, D2, . . . , Dn}. At the same time, all of the listed DNS

resolvers {D1, D2, . . . , Dn} maintain the same Ln. At time

t + 1 a new DNS resolver Dn+1 gets added to Ln, and

the victim updates the list to Ln+1. The victim sends the IP

address of the new Dn+1 just to the second last DNS resolver

in Ln+1, which is Dn. Upon receiving that IP address, Dn

sends the IP address of Dn+1 to all of {D1, D2, . . . , Dn}, and

also sends the full unknown-list to the newly added Dn+1.

After that, all DNS resolvers {D1, . . . , Dn+1} have Ln+1 =

{D1, D2, . . . , Dn+1}. This process follows iteratively for the

remaining resolvers involved in the attack. We refer to mes-

sages that carry information related to the unknown-list
as “resolver messages.” These messages are UDP packets, as

planned in our design goals (see Section III-A).
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The Di resolver may receive a resolver message that

contains the IP address of Di+1 from the victim before

it receives the full unknown-list from Di−1. This case

can be handled by making the Di resolver solely respon-

sible for propagating the Di+1 resolver IP to everyone in

the unknown-list as it is continuously updated. This is

achieved by simply keeping track of the unknown-list
resolver IPs to which Di has sent the Di+1 resolver IP.

The resolver message packet is designed to contain both

the unknown-list and the rate of incoming DNS queries

targeting the victim—the “DNS query rate.” Resolvers keep

track of the resolvers to which they have sent DNS query

rates and ensure that all resolvers in the unknown-list
have the rates. That way, the victim’s global DNS query rate

is updated at the same time as the resolvers build the complete

list of resolvers involved in the attack.

E. Complexity

In this section, we characterize the complexity of our

communication protocols in terms of the number of resolvers

(n) involved in an ADD attack. As discussed in Section III-D,

each resolver has access to n number of resolver IP addresses

as part of the unknown-list at the end of an attack.

Resolver Di sends the IP address of Di+1 as well as the DNS

query rates of victims to all resolvers in the unknown-list.

Hence, in the worst case, Di will send O(n) messages, and

the total worst case complexity for n resolvers involved in

an attack will be O(n2). In Section V-F, we further explore

the techniques for reducing the complexity to linear and

logarithmic polynomials. The network bandwidth consumed

by victims and resolvers from exchanging resolver messages

will increase linearly with respect to the growing number of

resolvers involved in an attack. About 99% of the resolver

messages will contain just one IP address of a DNS resolver

and a DNS query rate. We expect that such messages will be

about 12 bytes, not including any lower-level headers.

F. Detection checks

Each DNS resolver maintains a local information table

(LIT) containing DNS queries rate per IP. This table can

be maintained as part of a resolver monitoring service and

consumes few memory resources. During the attack, the vic-
tim’s DNS query rate is shared across all suspicious resolvers

involved in the attack. The resolver’s LAD continuously

accumulates those rates and performs the threat assessment.

The LAD computes threat bandwidth (= accumulated DNS

query rate of victim × amplification factor × average query

size) for the victim, which represents the potential bandwidth

of volumetric attack as it builds. Generally, amplification is

≈ 20 − 70x and query size is ≈ 64 bytes. If the calculated

threat bandwidth exceeds a certain threshold, the LAD declares

an attack and the DNS resolver blocks any further traffic to

the victim. We sometimes refer to a resolver that stops traffic

as an activator resolver. Note that the victim could redirect its

clients (or DNS traffic) using abused resolvers to ‘safe’ DNS

resolvers.

IV. PERFORMANCE EVALUATION

A. Prototype implementation

To demonstrate the feasibility and performance of DRS-

ADAM, we implemented a prototype in Python and used

it to build a simulation testbed. All of the core DRS-

ADAM components, including the local detector and query

rate sharing modules deployed on DNS resolvers, and the

victim side module that monitors incoming DNS responses and

communicates with DNS resolvers, were fully implemented.

The DNS resolver message was constructed based on the

packet structure shown in Figure 2. Field Type is used to

identify message type (in our case there is only one kind, i.e.,

the resolver message) and other fields are self-explanatory.

The victim message (used to communicate with resolvers) was

constructed using the same packet structure, but the query

rate was set to NULL. UDP-based communication protocols

were implemented as described in Sections III-C and III-D,

exchanging those two types of messages.

Fig. 2: Packet structure used by DNS resolvers.

the resolver detectors.

B. Methodology

1) Simulation environment: Hardware/virtual network
We used a DELL T320s server with a 2.4 GHz Intel Core

10 CPU and 16 GB of RAM, running VMware ESXi v5.5

virtualization software. An Ubuntu 14.04.1 LTS virtual ma-

chine was deployed on the ESXi server. To build a virtual

network, we used network name spaces and virtual Ethernet

pairs (veth) mechanisms implemented in Linux OS. Emulated

bots, resolvers, and the victim were deployed on the same

virtual machine, but each component had its own isolated stack

of code, application, and network and was connected using a

veth pair.

Emulated topology The tested topology illustrated in Fig-

ure 3 was designed to emulate the attack traffic logical topol-

ogy and the distributed nature of the defense mechanism. Bots

and resolvers were organized in clusters; each cluster emulated

an autonomous system (AS). The size and the number of

clusters for resolvers and bots varied depending on the setting

for each test. Each cluster of bots and resolvers was attached

to an edge router. These edge routers were connected through

transit routers, and the added delay or latency between them

was set to emulate an Internet link—aggregation/core.

Attack traffic Each bot in a cluster was programmed to

send spoofed TXT queries to a designed cluster of resolvers.

Each bot in a cluster sends in parallel using a thread to the

list of resolvers in the designed cluster. The query is static for

each thread to the assigned reflector and amplifier resolver.

Once the query for each thread is crafted, the thread will send
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Victim edge RouterMaster Attacker

Bot Router #1

Bot Router #n

Bot cluster #1

Bot cluster #n

DNS server cluster #n

DNS server cluster #1

Fig. 3: The emulated topology.
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the number of involved name servers.

the query—using raw socket functionality—in a loop until the

end of an attack. This process is similar to the way real-world

ADD attacks generate traffic.

The following is a subset of DRS-ADAM test instructions:

(i) set up and start the virtual network with the emulated

topology; (ii) specify the hosts that will behave as bots or

name servers, taking into consideration clustering; (iii) start

the implemented resolver detector module (see Section IV-A)

on every name server-assigned machine; (iv) monitor name

servers’ exchange messages; (v) start the implemented victim

monitor module at the assigned host; (vi) monitor victim

exchange messages and link rates; (vii) master attacker sends

commands to run attack traffic on every assigned bot.

In RRL experiments, BIND 9.9.5 was installed on each

resolver and RRL was enabled. The victim monitor module

was not launched. The resolver response was constructed by

adding a zone file to BIND9 where the TXT query response

size was configurable. RRL was configured by setting up

the responses-per-second parameter and the window
value in ‘/etc/bind/named.conf.options’ file.

Parameters configuration The DRS-ADAM window size

was set to 1s. The responses-per-second value of RRL

was set based on the threshold. The RRL window size was set

to the recommended value of 5 seconds. The rate of the attack

varied depending on the number of bots; in all the experiments,

this number was the same as the number of resolvers. The

query rate per resolver was 10 qps. It takes 5 seconds to build

a full-size attack, which reflects the worst real-world case—

actually, it is in the range of 5− 30 seconds. The duration of

the attack was set to 30 seconds.

The scale of these experiments was the largest we could

obtain in our testbed environment while guaranteeing the

quality and reliability of the results. The performance metrics

used in the experiments are: hit peak attack (HPA), DNS attack

traffic over time, mitigation time, and system overhead. HPA

characterizes the highest point of attack strength, which is

defined here as a percentage of the absolute volume of the

attack. The mitigation time is the time elapsed from when

the attack size at the victim first reaches a minimum and

insignificant amount of traffic to be definitely lower than this

minimum. Indeed, during the attack’s growth phase, the victim

will always receive at least one answer or minimum amount

of traffic from any newly attacked resolver before that resolver

blocks the attack traffic.

C. Results
For our experiment, the threshold percent value in the results

figures is normalized to the attack’s volume. But its real value

is actually the threshold absolute value given by the victim;

this value is a small percentage of the victim’s sustainable

bandwidth. Indeed, the threshold percentages used in our

experiments are very large in comparison to real percentages

in order to show how the performance metrics differ with

respect to the number of resolvers. This size also gives us

more confidence in results when scaling up. In actuality, the

threshold absolute value will be much smaller than 5% of the

attack’s size—in the current attack trends, victim bandwidth

is usually in the range of 0.03 − 16% of attack’s size and

maximum DNS traffic is less than 5% of the victim’s sustain-

able bandwidth. In our simulation, we increased the number

of resolvers while keeping the DNS query rate received by

resolvers constant. Figure 4, Figure 5, and Figure 6 are plotted

for different threshold values.
1) Hit peak attack rate: Figure 4 shows the HPA metric

with a varying number of name servers (nsIn) for different

threshold settings. It demonstrates the impact of an ADD

attack on a victim with DRS-ADAM system in place. We can

observe that the peak attack traffic at the victim fluctuates

with just small variations around the threshold absolute value
(HPA is close to the threshold percentage) as we increase

the number of resolvers; this is clear after 50 resolvers. As a

result, inbound attack traffic at the victim will never reach its

sustainable bandwidth; for instance, if the threshold absolute
value is 5% of the victim’s sustainable bandwidth, the peak

attack traffic at the victim will only be around 5% of the latter

bandwidth when DRS-ADAM is in use.
This result implies that DRS-ADAM is scalable with respect

to resolvers involved in attacks and suitable for mitigating

large DNS amplification attacks without disrupting a victim’s

normal services.
Due to the limited computing resources we had in our

experiment setup, we were not able to emulate more than

100 DNS resolvers. However, we further discuss theoretical

justifications for the scalability of DRS-ADAM in section V-F.
In fact, DRS-ADAM resolvers are exchanging messages and

aware in real-time of the actual global rate of the attack in

parallel with the attack growth. The DRS-ADAM messages

from the activator resolver—used by the attacker at the thresh-

old growth level—activates previously attacked resolvers to
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Fig. 6: System Workload

drop the spoofed queries received from the attacker, since they

already know the past attack’s global rate. HPA depends on

this delay of activation from when the attack size reaches the

threshold to be blocked by all previously attacked resolvers.

HPA is close to the threshold percent value as this activation

delay is much smaller than the attack’s double growth speed

after hitting the threshold; the growth phase time of the attack

occurs in seconds, usually around 20 − 30 seconds. The

delay time until message receipt from the activator resolver

is measured in ms for all previous attacked resolvers; the

message delivery time and its transmission delay (including

‘build-out’ DRS-ADAM packet delay; it was around 0.4μs
on our platform) measured in ms and μs (for any network

connection), respectively.

The HPA is slightly sensitive to the number of nsIn as

the time difference between when two previously attacked

resolvers enter the blocked state of the attack traffic is

measured in μs. Note that a victim needs to receive only

one mismatch DNS answer—i.e., inbound answer without a

matching outbound query—to start communicating with the

involved resolvers (see Section III-C).

2) Mitigation time: DRS-ADAM is a quick response sys-

tem that can mitigate ADD attacks within a few seconds, as

shown in Figure 5. We expect even shorter mitigation times

in the real-world, as the threshold will be much smaller while

the attack growth speed is the same as in the test experiments.

Also, mitigation time does not vary with respect to the number

of resolvers for a fixed threshold, which demonstrates the

scalability of DRS-ADAM for mitigating real-world attacks.

The mitigation time is only slightly sensitive to the number

of resolvers as it depends mainly on the following two factors

that are practically independent of the number of resolvers.

(i) The first factor is the time it takes an attack to reach

the threshold percent value of its total size. The defined time

for any fixed threshold percent value is independent of the

number of resolvers—the time taken for an attack to reach its

maximum size is fixed and similar to real cases, independent

of the number of resolvers. (ii) The second factor is how

quickly DRS-ADAM resolvers block their local attack traffic

relative to the growth speed of the attack after the attack has

reached the threshold size. This blocking speed as discussed

for Figure 4 is much faster, and we can apply the same

reasoning about HPA insensitivity to the number of resolvers.

The time taken for the attack to reach the four thresholds of

5, 15, 25, 35 percents are 0.25, 0.75, 1.25, and 1.75 seconds,

respectively. Our mitigation times included those build up

times, so there is half a second difference in mitigation time

between any threshold percentage value, regardless of DRS-

ADAM mitigation time performance at different thresholds.

When DRS-ADAM is used, the victim’s inbound attack

traffic grows in seconds under an ADD attack, hits a peak

value close to the threshold absolute value, and then declines

substantially after this highest point. The peak is short-lived,

measured in ms, and the decline occurs within a few seconds

(< 1.25s for any threshold and number of resolvers).

3) Bandwidth and memory consumption: A victim’s out-

bound bandwidth consumption increases linearly in bytes per

second with respect to number of resolvers involved in an

ADD attack, as shown in Figure 6a. During an attack, a range

of tens of thousands of resolvers corresponds to victim host

bandwidth consumption of a few KBps. This consumption is

negligible in comparison with the MBps or GBps bandwidth

available to a victim, and thus, does not affect its system

workload in any way.

Similarly, the average bandwidth consumption for each re-

solver increases linearly with the number of resolvers involved

in an attack, as shown in Figure 6b. If we again scale the

number of resolvers to tens of thousands, the worst case

corresponds to a few hundred KBps bandwidth consumption

per resolver. This amount of consumption is manageable

and does not disrupt the main activities of a DNS resolver.

Figure 6c represents the total bandwidth consumption per

resolver during the whole attack period. For real-world cases

like spamhaus, this consumption corresponds to a few MB of

bandwidth, which is quite manageable.

Each resolver maintains a state table of query arrival time-

stamps in order to calculate its local attack rate. The maximum

size of this table is the product of maximum queries per second

and window size. Assuming 2 bytes per time-stamp, 600 qps

rate, and a window size of 1 sec, a resolver consumes 1200
bytes of its memory.

4) Comparison with RRL : To show mitigation capabili-

ties against highly distributed ADD attacks, this comparative

experiment with RRL used a fixed attack size regardless of

the number of resolvers. The absolute threshold value stayed

the same for any threshold percentage, while the number of

resolvers increased. As a result, the attack query rate per

resolver decreased. To the best of our knowledge, this work
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presents the first experimental evaluation of BIND9’s RRL

feature in a distributed setting with multiple DNS resolvers;

to date, RRL has been tested only on a single DNS server.

Figure 7 depicts the normalized inbound rate (NIR) observed

at the victim’s router interface for different numbers of re-

solvers. The threshold used is 5%. NIR is the real-time attack

rate percentage of the peak expected attack’s volume at the

victim (the total attack volume after the growth phase when

no mitigation is in place). The responses-per-second
value of RRL is set to 10 based on the 5% threshold.

When the number of resolvers is greater than or equal to 20,

the RRL rate-limit response is not activated during the attack,

and the victim host faces downtime. When the ADD attack

becomes well-distributed, using more resolvers at the same

attack size, it can bypass the RRL detection mechanism when

the attack query rate per resolver becomes less than or equal to

the per-second limit of RRL (10 qps in the 20 resolvers’ case).

Thus, RRL will have little or no impact on highly-distributed

ADD attacks. Even when RRL can detect an attack in the

case of 10 resolvers, it cannot stop the attack traffic before

the HPA hits 34.8% for the 5% threshold value. This trait

shows that high-scale attacks might still be effective even if

they are detected and rate-limited. In contrast, DRS-ADAM

stops all attack traffic in less than two seconds and contains

HPA at around 5%. The NIR of an RRL for 10 resolvers rose

to 19.3% after one second, gradually increased by 3.8%, and

finally settled at 19.3% after 6 seconds. In the first second

(Second 1), two Group 1 resolvers are each attacked at a

rate of 20 qps; the RRL rate-limit response is activated for

a small fraction of queries (one query in the first second).

This response contributes approximately 19.3% to the NIR.

Note that an attack’s start second is different from the first

RRL counting second. Here’s what happens in the test: in

the first RRL counting second, the attacker sends 9 queries,

while in Second 2, the attacker sends 11 queries; because

the responses-per-second limit is 10, the second RRL

account becomes negative at each resolver only at the end

of Second 2. For every received query, the RRL counter is

decremented by one, and at the start of every counting second

it is increased by the responses-per-second value and

is limited to that value. At the start of Second 2, the Group

1 resolvers’ RLL rate-limit response is negative and activated

to send a truncated response to every other incoming query

(BIND9 slip default value is 2). This truncated response

(used for false positive mitigation) is the same size as the query

and guarantees that the query is not amplified. Therefore,

Group 1 adds around 3.8% (≈ 20 unamplified replies—out

of 200 amplified answers—that the same size as the queries)

to the NIR in the full second. Also, at the start of Second

2, two new resolvers (Group 2) are attacked. Their RRL rate-
limit response will be activated for only a few queries (as with

Group 1 during Second 1) in this second and thus contribute

approximately 19.3% to the NIR. In Second 3, Group 2’s

RRL account is negative and starts to behave like Group 1.

Together, Groups 1 and 2 contribute 7.6% to the NIR and

Group 3 contributes 19.3%. In Second 4, the first three groups

contribute 11.4% to the NIR and Group 4 contributes 19.3%.

In Second 4, the first four groups contribute 15.2% to the NIR

and Group 5 contributes 19.3%. In Second 6, all the groups

contribute 19.3% to the NIR and stays the same (RRL account

at any resolver will remain negative) until the end of the attack.

5) Partial deployment of DRS-ADAM: In this section, we

evaluate the effectiveness of DRS-ADAM when it is partially
deployed on a set of resolvers. DRS-ADAM is designed

to propagate the requisite information sequentially from one

resolver to another; i.e., by forming a chain of resolvers to

reduce the message exchange complexity. If DRS-ADAM is

not deployed on any one of the resolvers involved in an ADD

attack, then it will break that chain of information propagation

and form disjointed groups of resolvers that cannot exchange

query rates with other groups. To avoid that situation, we en-

hanced our original victim and DNS resolver communication

protocol described in Section III-C as shown below.

Di −→ V : SDRi Victim V receives a spoofed DNS
response from Di for the first time.

V −→ Di−k : {DIPi, ..,
DIPi−k+1},
threshold

Victim V forwards threshold and
IP address of {DIPi, DIPi−1, ..,
DIPi−k+1} to Di−k .

Resolvers can now receive multiple DNS resolver IPs from

the victim monitor module based on the value k. This flexi-

bility in k helps predecessor resolvers to be connected with

successor resolvers when the chain is broken by a resolver that

is not equipped with DRS-ADAM.
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Figure 8 shows HPA for different percentages of resolvers

equipped with DRS-ADAM. Resolvers that are equipped with

DRS-ADAM were randomly selected from a set of 100

resolvers. In particular deployment scenarios, there will always

be a minimum HPA value, since resolvers that are not equipped

with DRS-ADAM cannot stop an ADD attack. The best per-

formance line in the graph represents this minimum HPA that

will be observed when a theoretically best-possible, resolver-

based (both local and distributed) solution is deployed.

By increasing k, the DRS-ADAM performance improved,

and eventually when k ≥ 5, gave close to that best theoretical

performance. The message complexity for the victim would

now be O(kn), increasing linearly with the value of k. For

a small constant k value; however, it is safe to expect the

complexity to remain at O(n).
6) Manipulating DRS-ADAM and defending against UDP

spoofing : The attacker can use various methods to manip-

ulate (or game) our DRS-ADAM system by exploiting its

communication protocol. In one scenario, an attacker can try

to falsify the DNS query rates or unknown-list circulating

among DNS resolvers by forging UDP packets. The attacker

can send a resolver packet of less than the actual DNS query

rate (even 0). DRS-ADAM solves this problem by considering

the packet with the maximum DNS query rate but limited to

an upper rate bound. This received attack rate limit prevents a

bogus message with a large rate from blocking normal DNS

traffic to a client. The limit is set to the maximum attack

rate per resolver of the real-world largest DNS amplification

attack [14].

An attacker can also send a huge garbage unknown-list
to increase a DNS resolver’s communication overhead. DRS-

ADAM cross validates list by obtaining the DNS query rate

for a few random resolvers; the rate should be greater than 0.

We implemented both these logics in our DRS-ADAM

system and simulated a manipulation attack by constantly

generating forged UDP packets (with an interval of 100 ms)

that each carried either a lower DNS query rate or a huge

garbage list. Our DRS-ADAM successfully dropped all such

packets and our results remained same as shown in Figures 4,5.

Another scenario exploits DRS-ADAM to block normal

DNS traffic even when the victim is not under ADD attack.

Here, the attacker sends forged packets of DNS query rates.

DRS-ADAM cross validates query rates from randomly se-

lected resolvers just before blocking the victim services. The

attacker can further attempt confusion by sending responses

from all resolvers. DRS-ADAM can identify the type of attack

as it does not expect packets from all resolvers. For this

experiment, we sent forged DNS query rates along with normal

DNS queries from the victim to a resolver.

Figure 9 shows that the DRS-ADAM manipulation pre-

vention system successfully continued serving DNS queries

for the victim even when an attacker tried to exploit it. Fur-

thermore, we strengthened our cross validation technique by

attaching a nonce to resolver messages and expecting the same

nonce in return. Additionally, each DNS resolver considers

the lowest threshold retrieved from the ‘victim’ messages

but also limited to a lower threshold value. This measure

eliminates threshold setting manipulation. The lower threshold
value is fixed on the DNS resolver side. A conservative, lower

threshold value of 5Mbps could also be used, as most network

connections are measured in 100Mbps, 1Gbps or 10Gbps.

When these prevention measures are in place, an attacker

could still succeed by using multiple machines and broadcast-

ing fake rate messages to block normal DNS traffic to a client.

A DNS resolver prevents this situation by checking whether

its local ‘victim’ rate is smaller than the lower bound of the

99.999% confidence interval of the received attack rates. When

this measure is in place, an attacker desiring to block normal

DNS traffic to a client by DRS-ADAM manipulation will need

more machines than to DDoS directly to the target host.

V. DISCUSSION

This section examines what it means to deploy DRS-ADAM

in the real world and discuss the scalability and optimization

techniques for reducing communication overhead.

A. Satisfying design goals

Our first design goal, as stated in Section III-A, was to con-

tain ADD attacks under victim-specified acceptable bandwidth

threshold values. Our HPA results (see Section IV-C1), showed

that DRS-ADAM is capable of keeping ADD attacks below

different ranges of threshold values at all times, and stopping

ADD attacks completely. It also surpassed RRL in containing

and stopping ADD attacks, as is evident from section IV-C4.

Since DRS-ADAM is purely a software-based solution that

requires just a small upgrade on DNS resolvers and victim

firewalls, it satisfies our second goal of achieving high deploy-

ability and scalability; we discuss our deployment strategies

in the next section. Lastly, all DRS-ADAM communication

protocols are UDP based, and its architecture does not rely

on any cryptographic key based authentication scheme, which

satisfies our last two goals of developing a purely UDP based

solution and avoiding the use of expensive PKI.

B. Economical incentives for network operators to deploy
DRS-ADAM

With DRS-ADAM installed, in a real ADD attack scenario

like spamhaus [14], all resolvers involved in the attack will

consume bandwidth in KBps for few seconds during the

process of sharing query rates before stopping the attack

completely (see section IV-C3). This amount of bandwidth

consumed to facilitate DRS-ADAM communications during

the initial stages of the attack is infinitesimal compared to

the bandwidth that would be consumed if the attack runs

(i.e., without DRS-ADAM) at ∼10 − 300 Gbps and lasted

for a week. Such network bandwidth costs can be avoided

with DRS-ADAM in place, and result in considerable yearly

cost savings for network operators. In the example scenario

described in Section II, an ADD attack can potentially incur

network costs up to $1, 800, 000 per month, which would be

shared among the network operators involved in an attack.

With the rapidly increasing size and frequency of ADD
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attacks, we expect such bandwidth consumption costs that

network operators would have to pay will also increase expo-

nentially over time. Hence, in long run, network operators (that

manage DNS resolvers) will benefit immensely in terms of

avoiding unwanted bandwidth consumption costs by installing

DRS-ADAM on their resolvers and participating in the global

detection efforts—saving tens of thousands of dollars per year.

C. Deployment strategies

Our solution can be thought of as a pair of small software

packages. The first package needs to be installed on DNS

resolvers; the second package is installed on the victim side

(e.g., on a firewall). The victim package should be small

(our prototype had just 250 lines of code) and should not

require frequent updates. These installation packages need to

be deployed on top of existing DNS software and protection

mechanisms. All existing DNS software such as BIND [3]

already provides real-time statistics about DNS queries and

responses that our solution can exploit. We can thus deploy

our solution as a single upgrade to existing DNS software in

the same manner as RRL was deployed on BIND software

and pushed out so that all DNS resolvers support it.

Our deployment strategy faces fewer challenges than do

domain name system security extensions (DNSSEC) [16] used

for securing DNS systems, which rely on digitally signed

records. DNSSEC deployment is much more complicated ow-

ing to complex key management and backward-compatibility.

In contrast, DRS-ADAM needs only a single software update

and does not add any complex key management or hardware

upgrade overhead. In Section IV-C5, we showed that, even in

partial deployment scenarios, DRS-ADAM can perform close

to the best theoretical possible DNS resolver based solution.

D. Returning to the normal state

Resuming normal traffic for the victim occurs in the same

way as blocking. Resolvers communicate at regular intervals

after blocking the attack to evaluate the threat bandwidth

until it falls below the threshold. In current practice, it is

reasonable for this value to be in the range of 10-30 minutes,

as attackers tend to give up quickly once DNS amplification

is not successful (though, of course, this might change).

E. Effectiveness against highly distributed attacks

To make an ADD attack as difficult as possible to detect,

an attacker could try to perform a highly distributed attack by

involving a huge number of DNS resolvers and sending a very

small number of queries (e.g., one or two) to each resolver.

It would be extremely difficult for any statistical model that

makes decisions based on the locally observed query rates,

including RRL, to detect and stop this kind of attack.

DRS-ADAM, however, would still be effective against such

an attack because it primarily focuses on the total accumulated
DNS query rates, which ensures that it is consistently effective

regardless of the size of the local query rates observed by

DNS resolvers. Moreover, as stated earlier, the capability of

DRS-ADAM to work with dynamic threshold values (see

Section III-C) ensures that attacks are contained within the

victim-specified threshold bandwidth regardless of the size of

an attack or the number of resolvers involved in an attack.

F. Bandwidth optimization and DRS-ADAM scalability

In our current communication protocol, each resolver for-

wards the unknown-list and query rate to a new incoming

resolver and back-propagates the new resolver IP and its own

DNS query rate to all previous known resolvers. It is also

possible to forward only the accumulated DNS rates. Once

the accumulated DNS rates cross the threshold, that activator

resolver can back propagate its decision and inform other

resolvers to stop the traffic. In this case, the activator resolver

sends O(n) messages and all other resolvers send only one. To

protect trust among resolvers, the activator resolver can send

the individual DNS rates of all resolvers. Each resolver can

then verify by randomly sampling the list and validating the

rates for the sample. Rather than just propagating accumulated

DNS rates, a resolver also needs to provide the individual

DNS rates of all previous resolvers. This practice reduces the

number of messages to a single message of increasing size.

This method is a possible way to optimize communication by

balancing the complexity of messages against the robustness.

To further increase the scalability of DRS-ADAM, we can

include a known, provably-effective method for diluting com-

munication overhead among the resolvers while preserving

accurate estimates of the network-wide, cumulative query rate:

a Gossip-based Push-Sum Protocol (GBPS). GBPS can com-

pute a cumulative query rate over all node-values quickly and

accurately and is completely robust to network size, ensuring

scalability [17]. These methods have also been tailored for on-

going network dynamics with continuous calculation for real-

time updates [18], which may allow easing of the assumption

of constant query rates per resolver (see Section III-B).

G. Generalization

The proposed solution can be generalized to mitigate any

amplification attacks possessing characteristics of DDoS at-

tacks and UDP-based communication. For example, an NTP

amplification attack [19] is similar to DNS amplification but

uses NTP servers instead of DNS servers. The attackers

generate large numbers of spoofed responses targeted at a

victim. These queries are then amplified using the MONLIST

command and sent to the victim by NTP servers with an

amplification factor of about 200. Recently, many NTP am-

plification incidents have been reported, including the largest

ever DDoS attack of 400 Gbps. In our proposed solution, NTP

amplification can be easily detected by replacing the DNS

resolver component with an NTP server and adjusting the

threshold accordingly. This solution can be a software package

installed on both the NTP server and the client for protection

against NTP amplification attacks.

VI. RELATED WORK

The majority of the proposed solutions for mitigating DNS-

based DDoS attacks are deployed at the victim level. As

discussed in Section II, such solutions do not address the
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root cause of the attacks. Sun et al. [13] and Kambourakis et

al. [4] use a basic approach of detecting DNS-based DDoS by

keeping a one-to-one mapping of DNS query and responses;

Jose et al. [20] propose a detection method based on DNS log

monitoring with Hadoop. Rastegari et al. [12] and Deshpande

et al. [21] proposed different versions of neural networks and

probabilistic model to classify attacks. Such approaches are

effective in detecting the attack but cannot avoid flooding the

victim’s bandwidth with DNS responses. For a huge attack,

this approach results in consumption of victim resources and

failure of the system. Other approaches use machine learning

algorithms for classifying the ADD attacks.

ADD relies on the ability to spoof IP addresses, so source

address validation solutions can be effective. These solutions

include authentication-based methods [22], traceback based

methods [23], and filtering-based methods [24], [25]. Deploy-

ment of such solutions is practically limited because they

require fundamental changes in Internet infrastructure. Ingress

filtering allows routers to drop packets with source IPs that do

not match any entry in the FIB forwarding table. The table

lookup time adds an important delay on a router’s forwarding

time, which is unacceptable on high-speed links. Note that

amplified answers from DNS resolvers will not be dropped by

ingress filtering as they have a legitimate DNS source IP ad-

dress, thus this filtering requires a high fraction of deployment.

DNS-Guard [11] addresses the DNS amplification attack at the

root cause by developing a mechanism for detecting spoof

DNS queries for DNS servers. It uses a cookie-embedded

query and response to authenticate the source. However, this

approach introduces a fundamental delay in DNS response

time and requires additional servers running in between hosts

and root servers, which is hard to achieve in practice.

VII. CONCLUSIONS

Existing mitigation techniques for ADD attacks cannot pre-

vent a victim’s network bandwidth from being fully consumed

even with timely detection of the attack. Our novel, distributed

mitigation system, DRS-ADAM, can quickly detect ADD

attacks and fully stop them well before they pose a significant

threat to victims. To detect an ADD attack, DRS-ADAM

utilizes the DNS resolvers that are exploited in the attack

and does not require any additional, dedicated hardware. DNS

resolvers share the local DNS query rates with each other,

facilitating quick and accurate computation of accumulated

query rates.

Our simulation results show that DRS-ADAM is scalable

for both mitigation times and hit peak attack rates. ADD

attacks will always be contained close to victim’s acceptable

thresholds, regardless of the number of DNS resolvers involved

in an attack, and mitigated within a few seconds. DRS-ADAM

is robust against manipulation scenarios such as falsifying the

DNS query rates shared among DNS resolvers (with UPD

packet forging). As part of future work, we plan to further

simulate manipulation attacks, and evaluate the robustness of

DRS-ADAM against such attacks.
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