
Exploring the Dark Side of AI: Advanced Phishing
Attack Design and Deployment Using ChatGPT

Nils Begou, Jérémy Vinoy, Andrzej Duda, Maciej Korczyński
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Abstract—This paper explores the possibility of using Chat-
GPT to develop advanced phishing attacks and automate their
large-scale deployment. We make ChatGPT generate the follow-
ing parts of a phishing attack: i) cloning a targeted website, ii)
integrating code for stealing credentials, iii) obfuscating code,
iv) automating website deployment on a hosting provider, v)
registering a phishing domain name, and vi) integrating the
website with a reverse proxy. The initial assessment of the
automatically generated phishing kits highlights their rapid gen-
eration and deployment process as well as the close resemblance
of the resulting pages to the target website. More broadly, we
demonstrate that recent advances in AI underscore the potential
risks of its misuse in phishing attacks, which can lead to their
increased prevalence and severity. This highlights the necessity
for enhanced countermeasures within AI systems.

Index Terms—Phishing, AI, ChatGPT

I. INTRODUCTION

ChatGPT (Chat Generative Pre-trained Transformer) [1], a
chatbot powered by an advanced language model developed
by OpenAI, supports dynamic and interactive conversations
with users. It belongs to the GPT-3.5 series of models [2]
representing a significant advancement in natural language
processing. Its adoption extends across individuals, busi-
nesses, developers, and academia with many new applica-
tions spanning various domains [3]. It can function as a
virtual assistant, providing accurate information [4] or assist
customer support by answering frequently asked questions
and addressing common issues [5]. ChatGPT aids students
and programmers in code composition and debugging tasks
[6]. It is also valuable for content generation [7], helping
writers with brainstorming, outlining, creative input, language
translation [8], or even implicit hate speech detection [9].

Even if ChatGPT opens new perspectives in language-
related tasks, the potential for malicious exploitation of the
ChatGPT capabilities is a major concern [10]–[14]. Cy-
bercriminals can use ChatGPT for social engineering, the
generation of malicious content, the automation of attacks on
security systems, or the creation of sophisticated AI-generated
scams.

The analysis of several major underground hacking com-
munities revealed cases in which cybercriminals used Chat-
GPT to develop malicious tools for the creation of informa-
tion stealers, malware-oriented code, establishing dark web
marketplaces, and generating plausible phishing emails [10],
[15]. To mitigate such risks, it is crucial to understand the
potential for misuse and design robust security measures. By

fostering awareness and implementing appropriate safeguards,
contemporary AI systems designers can address at least some
of the challenges raised by the malicious use of ChatGPT.

As the first attempts of using ChatGPT to generate plausi-
ble phishing emails [15] and attacks [16] were successful, this
paper explores the possibility of using ChatGPT to develop
an advanced phishing attack and automate its large-scale
deployment. In particular, we make ChatGPT generate the
following parts of a phishing attack: i) duplicating a targeted
website, ii) substituting authentication forms with code for
capturing credentials, iii) obfuscating code and incorporating
a deceptive modal, iv) automating website deployment on a
hosting provider, v) registering a phishing domain, and vi)
integrating the website with a reverse proxy.

To evaluate the quality of the generated phishing infras-
tructure, we deploy phishing websites and compare the re-
semblance between the original and altered pages, along with
evaluating the similarity of website source code. The assess-
ment demonstrates that ChatGPT is not resilient to malicious
usage despite extended safeguards and filters: adversaries can
leverage ChatGPT to generate and deploy phishing websites
swiftly, significantly increasing the potential risk associated
with using ChatGPT for such illicit activities and expanding
the reach and magnitude of phishing attacks.

The contributions of the paper are as follows:

• We present the first peer-reviewed study on generating
and deploying fully-functional phishing websites using
ChatGPT.

• We bypass the ChatGPT filters designed to hinder the
creation of malicious code.

• We successfully generate code for phishing websites and
automate the deployment of the phishing infrastructure.

• We assess the quality of the generated phishing websites
with similarity algorithms to compare both the source
code and visual appearance with the original website.

II. BACKGROUND ON PHISHING ATTACKS

This section provides an overview of constructing phishing
attacks and outlines a specific threat model related to the
malicious exploitation of ChatGPT.1

1In the rest of the paper, ChatGPT denotes the OpenAI chatbot with the
GPT-3.5-turbo-16K model.



A. Overview of Phishing Techniques and Toolkits

Phishing attacks are sophisticated and multifaceted, with
phishers taking advantage of many techniques to mimic
targeted websites, acquiring server and domain names, storing
and transmitting stolen credentials, evading detection, and
distributing fraudulent URLs via spam emails, all of which
contribute to their ability to carry out large-scale and highly
effective phishing attacks [17]–[21].

Phishers mimic targeted websites by creating fake pages
that look like the originals [22]. They use various techniques
such as URL spoofing, website cloning, HTML/CSS ma-
nipulation, content scraping, acquiring SSL certificates, and
injecting dynamic content. Their objective is to deceive users
into thinking they interact with a legitimate website, aiming
at tricking them into entering sensitive information like login
credentials, credit card details, or personal data.

Phishers use various techniques to acquire server and
domain names for their malicious activities [23]. They may
compromise legitimate websites by exploiting vulnerabilities,
and use them as platforms for hosting phishing content. They
may also use free or paid hosting services to set up fraudulent
websites, closely resembling the targeted sites. They usually
register the domain names similar to the legitimate ones or
resort to their slight variations to deceive users [23]. Pro-
viding false registrant information during the domain name
registration helps them to conceal their true identity and make
it harder to trace their activities.

Malicious actors also use different techniques to store and
transmit stolen credentials obtained in phishing campaigns.
They may store the data locally on compromised machines
or servers, send them via email using anonymous services or
hijacked accounts, use file-sharing platforms with encryption
or password protection, or communicate through encrypted
messaging applications like Telegram.

Phishers constantly evolve their tactics to evade detection
[17]–[20]. They take advantage of sophisticated encoding and
obfuscation methods to disguise malicious code or URLs,
alter structures and use URL shorteners to evade security
measures. Time-based triggers and unique attack variants are
used to outsmart pattern recognition algorithms. Malicious
actors leverage proxy servers or change IP addresses for IP
rotation and anonymity, making it challenging to track their
activities. They may also deploy human verification mecha-
nisms on phishing websites to prevent automated detection
[20], [23].

Malicious actors may use phishing kits as tools to stream-
line and amplify their malicious activities [18]. They contain
pre-packaged software and resources that enable attackers to
replicate genuine websites, collect sensitive information, and
carry out fraudulent actions. By using phishing kits, attackers
can enhance the effectiveness and scalability of their phishing
campaigns.

Finally, URLs that lead to phishing websites, supported
by the robust infrastructure, are commonly distributed to
potential victims via spam emails [24]. The deceptive emails

are carefully designed to trick recipients into clicking on
fraudulent URLs.

The combination of these tactics and the capabilities of the
underlying infrastructure enables malicious actors to conduct
large-scale and highly effective phishing attacks, raising a
significant security threat to individuals and organizations.

B. Threat Model

Our threat model involves a sophisticated and fully auto-
mated phishing kit, along with the automated deployment of
the phishing infrastructure using the techniques mentioned
above. We assume that the attacker has some fundamental
Python programming skills and has access to ChatGPT with
the GPT-3.5-turbo-16K model [25] as well as the OpenAI
Codex models [26] optimized for software development.

To streamline their activities, the attacker would leverage
the OpenAI API to automate various tasks. The Codex
model is integrated with the GitHub Copilot [27], an AI
tool that seamlessly integrates with Integrated Development
Environments (IDEs).

We assume that the attacker’s automated process begins
with the meticulous cloning of a selected target website,
replicating its visual design while obfuscating the content
to closely resemble the original site. Then, the attackers
proceed to create and deploy automatically a phishing kit on
a hosting platform. To further deceive victims, the attackers
automatically register a domain name that may resemble a
legitimate one. Additionally, they deploy a TLS certificate to
establish a secure connection and enhance trust of potential
victims in the phishing website.

To maintain anonymity and impede tracking efforts, the
attackers may use a reverse proxy server. Moreover, they
establish communication using a private Telegram channel
to transmit stolen credentials in a secure way. Python 3.11
is the programming language of choice for all these tasks.
The attackers pre-compile the code on a hosting server and
deploy the phishing kit, ensuring the smooth execution of
their malicious activities.

III. ETHICAL CONSIDERATIONS

Our study is centered around the potential misuse of
AI in the generation and execution of phishing attacks.
To effectively counter such risks, it becomes imperative to
comprehend the potential for abuse and to formulate robust
security measures. By implementing appropriate safeguards,
contemporary AI system designers can begin to address some
of the challenges raised by their malicious use.

To mitigate the risk of malicious actors using the pub-
lished results, we have refrained from disclosing the specific
prompts used in our study and have omitted detailed imple-
mentation specifics.

Finally, we obtained a permission from the domain registrar
responsible for registering the domain names used for our
emulated phishing websites. During the experiments, we
disabled the Telegram API to prevent accidental credential



collection by visitors. The emulated phishing websites used
specific URLs, and we thoroughly explained our experiment
on the registered domain websites.

IV. METHODOLOGY FOR CREATING THE PHISHING
INFRASTRUCTURE

In this section, we present the methodology for creating
and deploying the phishing infrastructure using ChatGPT.

A. Circumventing ChatGPT Filters

OpenAI acknowledges the critical importance of incorpo-
rating countermeasures into ChatGPT to mitigate its potential
for malicious exploitation. To achieve this objective, OpenAI
implemented security means, including advanced content
filtering, to detect and block malicious content proactively.
Both security communities and malicious actors have been
actively seeking ways, referred to as jailbreaks, to circumvent
ChatGPT security filters [28] using tactics like the “Do
Anything Now” (DAN) master prompt, which aims to deceive
ChatGPT into bypassing its own safeguards.

To enhance the stealthiness of our requests and evade
detection by ChatGPT, we have strategically divided the
functionalities of the phishing kit into several parts and used
distinct prompts in various contexts. While each prompt on its
own is harmless, their combination results in a fully functional
phishing kit, making it challenging to detect. Once all partial
objects have been generated, linking them together completes
the process effortlessly.

B. Cloning a Website

We initiate the process by cloning the target website.
ChatGPT creates a Python class to facilitate the copying of the
website and generates a static replica for further adaptation.
When we prompt ChatGPT to generate the Python object,
it acknowledges the potential illegality of the action but
nonetheless generates functional code. ChatGPT suggested
using the subprocess module in Python to invoke an HTTrack
process for website duplication. The generated code contained
an additional function that was not explicitly requested: a
Python web server that automatically launches after the copy
is created. While the code generated by ChatGPT may not
always be error-free, in most cases, it can rectify its mistakes
if the user requests corrections, or provides a traceback.

Notice that the GPT-3.5-turbo-16K model has the limitation
of 16,384 tokens, so it becomes challenging to craft large
phishing websites that exceed the limit.

C. Adapting the Website Code

Once the static copy of the website is stored locally, we
need to modify the login form to link it to our API and
adjust the code by minimizing it, and adding false modals.
To achieve this goal, we have developed Python code that
submits the source code of the copied website to the OpenAI
API and requests the model to optimize the code while
preserving the appearance and functionality. In most cases,
ChatGPT successfully performs this optimization, offering

several advantages. These include improved performance,
faster code processing for subsequent modifications, and
lower resemblance to the original source code. This could
potentially complicate the analysis for phishing detection
systems relying on website code similarity.

Upon obtaining the optimized code, we instruct ChatGPT
to modify the form so that it references our API instead of
the original one, allowing us to capture the login credentials
entered by users. Then, we request the addition of a modal
that informs users of a cyber attack and urges them to change
their password promptly. To avoid the detection by the AI
model, we first ask it to extract the code of the form and
then provide a new conversation for modification. However,
the model response depends on the website characteristics,
occasionally prompting us to explore an alternative approach.
We have revised the prompt to instruct ChatGPT to create a
Python code that extracts the login form from HTML code
using a method of its choice. Notably, ChatGPT demonstrates
the ability to integrate the modal while maintaining the
website appearance appropriately, and the text within the
modal is convincing.

D. Website Code Obfuscation

Initially, when asked for website code obfuscation, Chat-
GPT responded that, being a text language model, it could
not perform such a task. Therefore, we opted for another
approach by inquiring ChatGPT whether it was familiar with
obfuscation and requesting a list of the techniques it was
aware of. Following its response, we further prompted it to
provide a sample code for our website.

While providing the entire page as input, ChatGPT oc-
casionally yielded incorrect responses, such as a truncated
output. Consequently, we opted for enhancing the approach
by segmenting the source code into multiple parts and sending
them individually through prompt edits.

Segmentation has eliminated the context size constraints of
the model, also resulting in a broader range of obfuscation
methods by ChatGPT. Our toolkit uses 800-character seg-
ments, with the possibility of introducing variation in chunk
sizes for greater code divergence and model versatility.

ChatGPT generated code using a range of obfuscation
techniques, including character encoding, e.g.:

__m =\x6d\x65\x74\x68\x6f\x64\x3d\x27
\x50\x4f\x53\x54\x27

The model used these numerous variables in a randomized
sequence along with JavaScript document.write, blend-
ing specific segments of HTML tags, e.g.:

document.write(__z + __l + "f" + __v
+ "=‘password’ " + __t + "de "+ __p +
__y)

We have also observed the use of the createElement
function in JavaScript tags, e.g.:

c=document.createElement(‘code’);
c.setAttribute(‘id’,
‘&#x69;&#x31;&#x38;&#x6e;&#x48;&#x69;



&#x64;&#x65;’);
document.body.appendChild(c);

The results of obfuscation exhibit notable variability. Run-
ning the obfuscation process twice on the same site can
result in different outcomes, demonstrating diverse obfusca-
tion techniques. Occasionally, the model struggles to maintain
page functionality, leading to actions such as removing login
buttons or introducing inconsistent IDs.

E. Collection of Credentials

To retrieve the credentials of victims captured by the
phishing site, we have chosen to create a Flask API in
Python. This API features a single endpoint that uses the GET
method to collect victim login and password information, then
transmitted to Telegram.

To set up the API, we supplied ChatGPT with a single
prompt, and the AI model adeptly generated the complete
code for it. Surprisingly, ChatGPT did not rely on third-party
libraries to communicate with Telegram. Instead, ChatGPT
made a direct HTTP request to the Telegram API sending
endpoint. This approach proved more efficient than using the
complete Telegram library, showcasing the model ability to
optimize the implementation without any specific suggestion.

Alongside the API development, we have also established
a chatbot on Telegram to receive the victim credentials
securely: we have used BotFather provided by Telegram for
creating and managing customized bots. After successfully
creating a bot, BotFather provides a token that grants access
to the HTTP API for controlling the bot. Retrieving this token
is essential as it is one of the parameters required for our API
to function.

After creating the ChatBot and obtaining the token to
connect, we have used another Telegram bot called Raw-
DataBot that enables us to retrieve a message containing
chat information, with the chatID being a crucial piece of
information. The chatID serves as the second parameter
required for correct operation of our API.

F. Automated Deployment of the Toolkit

Once we obtained a fully functional local website, our next
step was to automate the configuration of the kit, package it
into an archive, and deploy it on a cloud instance using Bash
scripts for a streamlined installation.

Our cloud provider API can be used via their Python
library. The library is very complete, but we only used
the endpoints for listing cloud instances (IP, hostname, etc.)
and creating instances (enabling the deployment of a cloud
instance with an SSH connection).

The phishing kit requires specific compliance with Python
3.11. Therefore, we have asked ChatGPT to create a Bash
script that automates its installation. ChatGPT has success-
fully developed a fully functional script in its first attempt.

We have further used the OpenAI Codex model, designed
to transform straightforward instructions into code. This ap-
proach streamlined the process of generating an installation

Bash script for deploying on individual cloud instances. Then,
we have used the model to automate the configuration of the
kit and package it into an archive.

Given that communication and file transfers with the cloud
instances take advantage of SSH, we have tasked ChatGPT
with the creation of a Python script. It uses the Paramiko
library to establish an SSH connection using an RSA key
with the cloud instances, facilitating the transmission of both
the Bash script and the compressed kit in the zip format via
SFTP.

G. Domain Name Registration

Following the phishing kit deployment, we associated it
with a domain name for enhanced legitimacy, using a cost-
effective domain registrar that offers registration, management
services, an API for domain purchases, and a Python library
for seamless integration.

Initially, our attempts to register randomly generated
domain names were thwarted by our registrar detec-
tion mechanisms. As an alternative, we used a strat-
egy involving an English dictionary, combining three
words with hyphens, and adding a random number (e.g.,
sun-car-blackhole-99.co). We refrained from ty-
posquatting due to its potential detection by anti-phishing
engines [29]. Using an example domain registration code
from the domain registrar quick start guide on PyPi, ChatGPT
successfully created the necessary class.

During the registration, users must provide their registrant
information. We have automated the generation of random
registration details using ChatGPT.

At first, we used the model to create identity attributes
(name, phone, address, etc.) for testing purposes. Neverthe-
less, it consistently yielded the name “John Doe,” which could
raise suspicion about the accuracy of the information.

We noticed that ChatGPT responded differently based on
the language of the prompt. In another language, it exhibited
better creativity and generated more authentic data. Therefore,
we developed a Python function that introduced variability by
randomizing country choices in the prompt.

As adding a domain name to our reverse proxy provider
involves a change in the name servers, we have sent our
already developed Python class to ChatGPT and asked it
to implement a method to automatically change the name
servers. We prompted ChatGPT to carefully analyze the
transmitted code and it provided us with a clear and well-
commented code.

By default, the language model provides detailed expla-
nations during code generation. Interestingly, when provided
with a source code, ChatGPT optimizes it without considering
a potential malicious intent.

H. Reverse Proxy and CDN

Integrating an online reverse proxy with our toolkit is
interesting for several reasons. Our provider offers a free
AntiBot service acting as a reverse proxy to conceal the



(a) Original/Cloned page (b) Adapted page (c) Adapted page with modal (d) Obfuscated page

Fig. 1. Comparison of the page layout of the original site and the kit outcome.

real IP address of the (malicious) web server, while also
providing a valid TLS certificate. We have used the TLS
“Flexible” mode for encryption between the client and the
CDN, ensuring the green lock on browsers. While there is
no encryption between the CDN and our web server, the
reverse proxy handles the encryption, eliminating the need for
a certificate on the web server. The provider Python library
and API enable a comprehensive configuration.

To create the Python code for our toolkit, which auto-
mates the addition of a domain name to an online reverse
proxy provider, we have supplied ChatGPT with the library
documentation through a prompt. We have instructed the
model to blend the provided documentation with its internal
knowledge, highlighting that the documentation was up to
date, unlike the knowledge base. Consequently, ChatGPT
generated correct code.

V. RESULTS

This section presents the results of testing the methodology.

A. Testing the Generation of Phishing Sites

We first used ChatGPT to generate phishing sites for
80 popular brands [23]. The generation succeeded for 25
websites (31.25%) and failed for others. The number may
appear as low, however, unsuccessful generation was due to
the token size limits (16,384 tokens per prompt) in the GPT-
3.5-turbo-16K model and the future plans of OpenAI include
models with increased token limits that will allow handling
larger websites. Moreover, with potential code modifications
and methodological adjustments (code segmentation), it is
still feasible to create code that functions independently of
the original source website code size.

The kit completes various steps within specific timeframes.
On average, it takes 29 seconds to create a basic phishing
page, involving cloning the original site, removing original
sign-in buttons (e.g., Google Sign-In), cleaning forms, and in-
tegrating our Telegram API. The minification process, which

eliminates unnecessary code parts and optimizes others, takes
57 seconds. Adding a modal requires 59 seconds while
obfuscating an 800-character website content chunk takes an
average of 14 seconds. Importantly, chunk obfuscation can
be performed in parallel, maintaining consistent obfuscation
times even for larger websites. As a result, the average total
completion time for all these combined steps is approximately
4 minutes. The outcomes demonstrate that ChatGPT exhibits
consistent processing times regardless of task complexity.

B. Case Study: the LinkedIn Site

As a case study, we have created a phishing website
mimicking LinkedIn and assessed similarity across various
pages. During each stage of the generation process, we paused
to convert the kit-generated pages into images and computed
Structural Similarity (SSIM) scores between the output and
the original website. SSIM is a metric used to gauge the
resemblance between two images. Figure 1 presents the visual
comparison between the outcomes of our kit at various stages
and the original LinkedIn site.

The similarity stands at 100% following the initial raw copy
of the original site (see Figure 1a), 99.6% after eliminating
authentication elements and integrating our authentication
API (see Figure 1b - adapted website), and 90.9% after
the modal inclusion (see Figure 1c). The disparity between
copying and incorporating the modal is just 8.7%, showcasing
the balance between introducing deceptive modals while
preserving visual fidelity. ChatGPT obfuscation reduces SSIM
to 87.6% (see Figure 1d), with shifted text and missing CSS
tags. As ChatGPT is not specifically trained for obfuscation,
it occasionally omits some elements and struggles with distin-
guishing modifiable data. The segmented code also hampers
context comprehension.

While the primary goal of the kit is to maintain visual sim-
ilarity, the introduced modifications and obfuscation ideally
contribute to lowering the detectability of malicious websites
by code similarity-based anti-phishing engines. In this case,



a lower code similarity value is more favorable (less chances
to be detected).

For assessing source code similarity, we have used the
Term Frequency-Inverse Document Frequency (TF-IDF) al-
gorithm. Initially, the source code similarity between the
original LinkedIn code and the adapted website was 93%.
However, following the obfuscation process using ChatGPT,
the similarity significantly dropped to 56.6%.

C. Testing the Generation and Deployment

Then, we have tested the generation of phishing websites
as well as their deployment. The process expects the OpenAI
API key to interact with ChatGPT, a cloud provider API key,
another one for the reverse proxy provider, an API key for
the domain registration site, and a Telegram API key. During
the experiments, we disabled the Telegram API to prevent
the inadvertent collection of credentials from any visitor to
the websites. The deployed websites used specific URLs,
and we explained our experiment on the registered domain
name website. We discussed the experiment with our domain
registrar and obtained permission to conduct the study. We
removed the phishing websites after deployment and tests.

The entire process, involving generating phishing websites,
crafting phishing kits, registering domain names, deploying
the sites, and running the phishing emulation, averaged
around 10 minutes for completion.

We have tested the complete generation and deployment
process of 20 instances of phishing websites on individually
registered domain names. The deployment of 16 instances
succeeded while 4 instances encountered issues during the
phishing site generation (OpenAI errors like “the models
overloaded” or the creation of non-functional sites that could
not be deployed).

VI. CONCLUSIONS

In this paper, we have shown that ChatGPT makes it
possible to create and deploy a fully automated phishing kit
by a person with little programming or development skills.
The requirement is to learn how phishing works and how to
bypass the filters used by ChatGPT.

To evaluate the efficacy of the generated phishing infras-
tructure, we have deployed several instances of phishing
sites automatically in a matter of minutes. Our case study
demonstrated high quality of the generated phishing site,
exhibiting a significant similarity to the original website.

A noteworthy constraint concerns the prevailing token limit
that hampers the capability to generate and deploy phishing
kits for larger websites. This issue is expected to be mitigated
with future models accommodating 32k (and more) tokens or
by adopting code segmentation strategies, requiring a deeper
level of expertise.

The assessment shows that ChatGPT is not resilient to
malicious usage despite extended safeguards and filters: ad-
versaries can leverage ChatGPT to generate and deploy phish-
ing websites swiftly, significantly increasing the potential risk

associated with using ChatGPT for such illicit activities and
expanding the reach and magnitude of phishing attacks.

REFERENCES

[1] OpenAI, “Introducing ChatGPT,” https://openai.com/blog/chatgpt.
[2] OpenAI, “GPT-3.5,” https://platform.openai.com/docs/models/gpt-3-5.
[3] P. Ray, “ChatGPT: A Comprehensive Review on Background, Appli-

cations, Key Challenges, Bias, Ethics, Limitations and Future Scope,”
Internet of Things and Cyber-Physical Systems, vol. 3, 04 2023.

[4] Nova, “How ChatGPT is Being Used in Virtual Assistants?” https:
//novaapp.ai/blog/chatgpt-virtual-assistant, 2023.

[5] HelpWise, “The Complete Guide to Using Chat-
GPT for Customer Service,” https://helpwise.io/blog/
how-to-use-chatgpt-for-customer-service, 2023.

[6] M. Daun and J. Brings, “How ChatGPT Will Change Software Engi-
neering Education,” in Proc. of the 2023 Conference on Innovation and
Technology in Computer Science Education, 2023, p. 110–116.

[7] J. McCoy, “ChatGPT for Content Creation: How to Write More in Less
Time,” https://contentatscale.ai/chatgpt-for-content-creation/, 2023.

[8] Summa Linguae, “How to Use ChatGPT for Translation,” https:
//summalinguae.com/translation/how-to-use-chatgpt-for-translation,
2023.

[9] F. Huang, H. Kwak, and J. An, “Is ChatGPT Better than Human An-
notators? Potential and Limitations of ChatGPT in Explaining Implicit
Hate Speech,” in Companion Proc. of the ACM Web Conference, 2023.

[10] CheckPoint, “OPWNAI: Cybercriminals Starting to
Use ChatGPT,” https://research.checkpoint.com/2023/
opwnai-cybercriminals-starting-to-use-chatgpt/, 2023.

[11] CyberARC, “Chatting Our Way Into Creating a Polymorphic
Malware,” https://www.cyberark.com/resources/threat-research-blog/
chatting-our-way-into-creating-a-polymorphic-malware, 2023.

[12] Meta, “The Malware Threat Landscape: NodeStealer, DuckTail,
and More,” https://engineering.fb.com/2023/05/03/security/
malware-nodestealer-ducktail/, 2023.

[13] K. T. Gradon, “Electric Sheep on the Pastures of Disinformation and
Targeted Phishing Campaigns: The Security Implications of ChatGPT,”
IEEE Security & Privacy, vol. 21, no. 3, pp. 58–61, 2023.

[14] Y. M. Pa Pa et al., “An Attacker’s Dream? Exploring the Capabilities
of ChatGPT for Developing Malware,” in Proc. of CSET. ACM, 2023.

[15] NameShield, “ChatGPT, Can You Write a Phishing
Email?” https://blog.nameshield.com/blog/2023/06/15/
chatgpt-can-you-write-a-phishing-email/, 2023.

[16] S. S. Roy, K. V. Naragam, and S. Nilizadeh, “Generating Phishing
Attacks using ChatGPT,” arXiv, 2023.

[17] A. Oest et al., “Sunrise to Sunset: Analyzing the End-to-end Life Cycle
and Effectiveness of Phishing Attacks at Scale,” in Proc. of USENIX
Security, 2020, pp. 361–377.

[18] ——, “Inside a Phisher’s Mind: Understanding the Anti-phishing
Ecosystem Through Phishing Kit Analysis,” in Proc. of eCrime, 2018.

[19] P. Zhang et al., “CrawlPhish: Large-scale Analysis of Client-side
Cloaking Techniques in Phishing,” in Proc. of IEEE S&P, 2021.

[20] S. Maroofi, M. Korczyński, and A. Duda, “Are You Human? Resilience
of Phishing Detection to Evasion Techniques Based on Human Verifi-
cation,” in Proc. of ACM IMC, 2020, pp. 78–86.

[21] B. Acharya and P. Vadrevu, “PhishPrint: Evading Phishing Detection
Crawlers by Prior Profiling,” in Proc. of USENIX Security, 2021.

[22] R. Liu et al., “Inferring Phishing Intention via Webpage Appearance
and Dynamics: A Deep Vision Based Approach,” in Proc. of USENIX
Security, 2022.

[23] S. Maroofi et al., “COMAR: Classification of Compromised versus
Maliciously Registered Domains,” in Proc. of IEEE Euro S&P, 2020.

[24] A. Blum et al., “Lexical Feature Based Phishing URL Detection Using
Online Learning,” in Proc. of ACM AISec, 2010.

[25] OpenAI, “Models,” https://platform.openai.com/docs/models/gpt-4.
[26] ——, “OpenAI Codex,” https://openai.com/blog/openai-codex, 2023.
[27] GitHub, “Your AI Pair Programmer,” https://openai.com/blog/

openai-codex, 2023.
[28] A. J. ONeal, “Chat GPT “DAN” (and other “Jailbreaks”),” https://gist.

github.com/coolaj86/6f4f7b30129b0251f61fa7baaa881516, 2023.
[29] E. Fasllija et al., “Phish-Hook: Detecting Phishing Certificates Using

Certificate Transparency Logs,” in SecureComm, 2019.

https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/gpt-3-5
https://novaapp.ai/blog/chatgpt-virtual-assistant
https://novaapp.ai/blog/chatgpt-virtual-assistant
https://helpwise.io/blog/how-to-use-chatgpt-for-customer-service
https://helpwise.io/blog/how-to-use-chatgpt-for-customer-service
https://contentatscale.ai/chatgpt-for-content-creation/ 
https://summalinguae.com/translation/how-to-use-chatgpt-for-translation
https://summalinguae.com/translation/how-to-use-chatgpt-for-translation
https://research.checkpoint.com/2023/opwnai-cybercriminals-starting-to-use-chatgpt/
https://research.checkpoint.com/2023/opwnai-cybercriminals-starting-to-use-chatgpt/
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware 
https://www.cyberark.com/resources/threat-research-blog/chatting-our-way-into-creating-a-polymorphic-malware 
https://engineering.fb.com/2023/05/03/security/malware-nodestealer-ducktail/ 
https://engineering.fb.com/2023/05/03/security/malware-nodestealer-ducktail/ 
https://blog.nameshield.com/blog/2023/06/15/chatgpt-can-you-write-a-phishing-email/ 
https://blog.nameshield.com/blog/2023/06/15/chatgpt-can-you-write-a-phishing-email/ 
https://platform.openai.com/docs/models/gpt-4 
https://openai.com/blog/openai-codex 
https://openai.com/blog/openai-codex 
https://openai.com/blog/openai-codex 
https://gist.github.com/coolaj86/6f4f7b30129b0251f61fa7baaa881516
https://gist.github.com/coolaj86/6f4f7b30129b0251f61fa7baaa881516

	Introduction
	Background on Phishing Attacks
	Overview of Phishing Techniques and Toolkits
	Threat Model

	Ethical Considerations
	Methodology for Creating the Phishing Infrastructure 
	Circumventing ChatGPT Filters
	Cloning a Website
	Adapting the Website Code
	Website Code Obfuscation
	Collection of Credentials 
	Automated Deployment of the Toolkit
	Domain Name Registration
	Reverse Proxy and CDN

	Results
	Testing the Generation of Phishing Sites 
	Case Study: the LinkedIn Site 
	Testing the Generation and Deployment

	Conclusions
	References

