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ABSTRACT
Phishing is one of the most common cyberattacks these days. At-
tackers constantly look for new techniques to make their campaigns
more lucrative by extending the lifespan of phishing pages. To
achieve this goal, they leverage different anti-analysis (i.e., evasion)
techniques to conceal the malicious content from anti-phishing
bots and only reveal the payload to potential victims. In this paper,
we study the resilience of anti-phishing entities to three advanced
anti-analysis techniques based on human verification: Google re-
CAPTCHA, alert box, and session-based evasion. We have designed
a framework for performing our testing experiments, deployed
105 phishing websites, and provided each of them with one of the
three evasion techniques. In the experiments, we report phishing
URLs to major server-side anti-phishing entities (e.g., Google Safe
Browsing, NetCraft, APWG) and monitor their occurrence in the
blacklists. Our results show that Google Safe Browsing was the
only engine that detected all the reported URLs protected by alert
boxes. However, none of the anti-phishing engines could detect
phishing URLs armed with Google re-CAPTCHA, making it so far
the most effective protection solution of phishing content available
to malicious actors. Our experiments show that all the major server-
side anti-phishing bots only detected 8 out of 105 phishing websites
protected by human verification systems. As a mitigation plan, we
intend to disclose our findings to the impacted anti-phishing en-
tities before phishers exploit human verification techniques on a
massive scale.
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1 INTRODUCTION
Phishing is a form of social engineering with the goal of collecting
credentials of end-users usually achieved by either email spoof-
ing [1] or directly luring victims to enter their sensitive information
into a fake website that matches the look and feel of the legitimate
one [2]. There have been much research [3–7] and industry efforts
to combat phishing, just to mention the Anti-Phishing Working
Group (APWG) [8], PhishTank [9], or recently formed the COVID-
19 Cyber Threat Coalition [10]. Nevertheless, according to the latest
report from IBM X-force, phishing is the number one initial infec-
tion vector among attackers [11].

As with any other cybercriminal activity, phishers and security
organizations are constantly in battle. While phishers try to develop
new or misuse the existing techniques such as URL shorteners [12]
to make their attacks more effective, anti-phishing organizations try
to adapt their methods to detect phishing attacks swiftly. One of the
most effective techniques used by miscreants is the anti-analysis
also known as evasion [13]. The term refers to a wide range of
techniques used by attackers to prevent automatic threat analysis
[14]. While these techniques are very popular among malware
developers [15], phishers also begin to use them [16, 17]. Malicious
actors leverage evasion techniques to tell anti-phishing bots and
humans apart. If the end-user is human, they reveal the malicious
payload while for anti-phishing bots, they deliver a benign page to
evade detection.

Previous work analyzed the existing and well known evasion
techniques such as web-cloaking [18], URL redirection [19], using
URL shorteners [12], and code obfuscation [20]. These techniques
can affect the detection time, yet all major anti-phishing systems
can cope with them [21]. For example, to detect web-cloaking, we
can send two requests to the server, one with a user-agent related to
a known anti-phishing bot (e.g., googlebot) and the other one with a
typical browser user-agent (e.g., Mozilla Firefox). If the destination
of the two requests are different (e.g., different domains), then we
can infer the existence of web-cloaking [22].

However, we have recently observedmore advanced anti-analysis
techniques that can severely impede the performance of phishing
detection systems or heavily extend the lifespan of phishing attacks.
Human verification is one such technique that not only hampers the
verification of phishing content but may also induce users to visit a
phishing site due to the use of CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) on benign
websites [23]. CAPTCHA is considered an effective anti-bot pro-
tection solution (e.g., against page scraping) but it is also misused
by cybercriminals to protect their malicious pages from security

https://doi.org/10.1145/3419394.3423632
https://doi.org/10.1145/3419394.3423632


IMC ’20, October 27–29, 2020, Virtual Event, USA Sourena Maroofi, Maciej Korczyński, and Andrzej Duda

organizations. A real-world example of such a usage is a recently
detected phishing campaign with more than 128,000 emails sent
to victims with a link to a fake Microsoft login page protected by
Google reCAPTCHA [24].

In this paper, we study three advanced anti-analysis techniques
observed in real-world phishing attacks: Google reCAPTCHA [25],
alert box, and session-based evasion techniques. To evaluate the
effectiveness of the three techniques on anti-phishing bots, we
have designed an experiment in which we emulate the operation
of phishing websites—we register 105 domains, deploy harmless
phishing websites, and protect each of them with one of the three
evasion techniques. Then, we evaluate the detection performance
of seven major anti-phishing engines: the Google Safe Browsing
(GSB), Anti-Phishing Working Group (APWG), NetCraft, Open-
Phish, PhishTank, Microsoft Defender SmartScreen, and Yandex
Safe Browsing (YSB), as well as six most popular client-side anti-
phishing extensions for Mozilla Firefox including the Avast Online
Security and Avira Browser Safety. We show that almost all anti-
phishing engines do not detect the phishing websites and mark the
URLs as benign.

Our main contributions are as follows:

(1) we qualitatively analyze a new category of anti-analysis tech-
niques observed on real-world phishing websites,

(2) we design a semi-automated and scalable framework for ex-
perimentally testing the evasion techniques (it is available on
request for researchers to support reproducibility),

(3) we empirically study the effects of three human verification
evasion techniques on major server-side and client-side anti-
phishing engines,

(4) we show that all the major server-side anti-phishing bots only
detected 8 out of 105 phishing websites protected by human
verification systems.

2 PHISHING DETECTION AND
ANTI-ANALYSIS TECHNIQUES

To better understand the three evasion techniques, we explain them
in detail and discuss the possible approaches for phishing detection.
Note that we have observed examples of phishing pages armed with
all three techniques in real-world attacks (see Figures 1, 2, and 3 in
Appendix A). The main source of our data is the unverified phishing
section of the PhishTank [9] where the submitted URLs are not
directly published as phishing but instead are pending for ‘voters’
to manually verify them as phishing URLs or false positives [26].

2.1 Server-Side vs. Client-Side Detection
Phishing page detection involves either client-side or server-side
systems. In the server-side approach (e.g., GSB), the candidate URL
is sent to the server (either by direct human report or by automatic
URL collection by crawling). With the URL, the server starts to
collect data (e.g., page content, domain content, lexical features,
etc.) and decides whether it is malicious or benign. The client-side
detection systems (e.g., browser add-ons and extensions) have direct
access to the URLs and page content that end-users visit. Therefore,
it is possible to collect features from the visited pages and decide on
the phishing character of the pages either directly on the client-side
or later on by sending data to server-side systems.

Each detection type has its advantages and drawbacks. The
server-side approach can be used globally by every browser that
can interact with the system using an application programming
interface (API). The internal detection algorithm appears as a black-
box to attackers. Users’ privacy is preserved by sending the hashed
version of the URLs to the server. The drawback is that there is
no guarantee that, having the same URL, the server and the client
fetch the same content. If the attacker can detect the anti-phishing
bot (e.g., IP-based or user-agent detection [21]), it will serve benign
content to the bot.

Client-side phishing detection extensions do not suffer from
this problem. They have access to the very same content as users
visit because they are installed on browsers. However, the lack
of sufficient support for extensions in different browsers [27], the
inconsistency between desktop and mobile phone browsers [21],
and privacy concerns related to third-party extensions [28] are
the factors that affect the popularity of client-side extensions. In
this paper, we study seven server-side and six client-side phishing
detection systems.

Below, we describe the three evasion techniques used by phishing
websites to avoid detection.

2.2 Alert Box Evasion
Alert boxes in JavaScript are modal i.e., they pause script execution
and do not allow the visitor to interact with the rest of the page until
the window has been dismissed. Figure 1 in Appendix A shows an
example of such a protection. The code to create a complete PayPal
phishing page with alert box protection can be written in one PHP
file and, for example, injected into one of the legitimate pages on
a compromised machine. After a random number of seconds, the
alert box appears on the screen by blurring the whole page and
displaying the message: ‘Please Sign In To Continue’. When the user
clicks on the ‘OK’ button, an AJAX request is sent to the server to
retrieve the malicious payload and replace the current page content
with it. Code Listing 2 in Appendix C presents example PHP code
of this technique.

To bypass the alert box, anti-phishing engines need to detect it
first. Most browser emulation libraries, e.g., the Selenium1 project,
can distinguish the alert box window if it is present. They can also
confirm or cancel the alert box.

2.3 Session-Based Evasion
Major companies like Google or Facebook have used the multi-
page sign-in method for several years [29]. In this method, a user
provides her username on the first page, submits the page, and
enters her password on the second page. Note that the user can
only be redirected to the second page if a session was generated
on the first one. Phishers use this technique to reveal the second
(malicious) page only to the users who have already visited the
first page and clicked on the submit button. Figure 2 in Appendix A
shows a real-world example of a session-based phishing attack. The
first page (top figure) shows the ‘Join Chat’ button to persuade the
victim to join a WhatsApp chat group and after pressing the button,
the second page shows a fake Facebook login page.

1https://www.selenium.dev
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One way to detect this type of evasion techniques is to automati-
cally press the buttons and submit the forms on the suspicious page.
In Section 4.1, we show that some anti-phishing engines submit
forms on the suspicious pages if they can find the HTML form tag.

2.4 CAPTCHA-Based Evasion
Google reCAPTCHA is considered as an effective anti-bot protec-
tion solution against page scraping [25]. Figure 3 in Appendix A
shows the phishing page protected by the Google reCAPTCHA v2
checkbox. By solving the CAPTCHA challenge, the form is submit-
ted to the server and the phishing payload (e.g., PayPal login page)
is served to the end-user without any URL redirection (Figure 3
in Appendix A bottom). To better understand the technique, Code
Listing 1 in Appendix C shows the PHP code to create the phishing
page. The first page is completely benign without an HTML form
tag. When the user solves the CAPTCHA challenge, the HTML
form tag is dynamically generated (using JavaScript) and then sub-
mitted to the server to reload the page using the same URL but
with malicious content. Since the URL has not changed, the built-in
browser anti-phishing system (e.g., GSB in Chrome) or the installed
third-party extension (e.g., NetCraft toolbar) does not resend it to
the server and serves instead the cached result usually valid for 5 to
60 minutes [30]. This behavior makes the detection process difficult
(or impossible) and extends the lifespan of the phishing page.

There is no universal solution to bypass this type of evasion tech-
niques. However, using client-side extensions, there is no need to
automatically bypass CAPTCHA. If the end-user solves CAPTCHA
and visits the second page (potentially malicious), the anti-phishing
extension has also access to the content of the second page. So, it
can detect phishing using the revealed page content.

3 EXPERIMENT METHODOLOGY
To investigate the effectiveness of human verification techniques to
protect phishing websites, we have designed a testing experiment
and evaluated the performance of seven server-side anti-phishing
entities. The experiment has two phases: the initial test to check if
anti-phishing engines can detect the payload itself and the main
test in which we protect the same payload using one of the evasion
techniques and report it to anti-phishing entities. Both phases follow
the same process as explained below.

For security considerations, we do not publish the source code
of the proposed framework. However, it is available to researchers
upon request to support reproducibility.

Tested Server-Side Anti-Phishing Entities. We choose seven
major anti-phishing entities: the Google Safe Browsing (GSB), Net-
Craft, Anti-Phishing Working Group (APWG), OpenPhish, Phish-
Tank, Microsoft Defender SmartScreen, and Yandex Safe Browsing
(YSB). GSB is used by Google Chrome, Mozilla Firefox, and Apple
Safari that cover 87% of the end-user browsers both on desktop and
mobile devices in 2020 [31]. Internet Explorer (IE) and Microsoft
Edge use Microsoft Defender SmartScreen. The Opera browser uses
two blacklist services: NetCraft and PhishTank [32]. To the best
of our knowledge, OpenPhish and APWG are not directly used by
any browser. However, they are two important blacklist feeds that
might be used by anti-phishing engines, so we also consider them

in our experiments. Finally, YSB is used by the Yandex browser, the
second most popular browser in Russia as of May 20202.

Registering Domains. We first register 7 domains for the initial
experiment and 105 for the main experiment, 112 domains in total.
Oest et al. [21] performed a similar experiment to evaluate the
effectiveness of web-cloaking in phishing attacks and registered
fresh domains in bulk. In our study, we make sure that our domains
are reputed enough to emulate the conditions of compromised
domains rather than maliciously registered ones as observed in real-
world cases. Therefore, we first register 50 drop-catch domains [33,
34] with the following new method:
(1) First, we scan the top 1M domains in the Alexa list [35] for

‘SOA’ and ‘NS’ DNS records and only keep the domains with
the NXDOMAIN answer (770 domains).

(2) We use Godaddy and Porkbun APIs (two major registrars) to
check the availability of the domains for registration from
step 1 (251 domains).

(3) We collect WHOIS data for 251 domains from the previous
step and only select those with ‘NOT FOUND’ answer to make
sure they are not registered (244 domains).

(4) We submit these domains to VirusTotal3 and Google Safe
Browsing to make sure they have not been recently used in
malicious activity (244 domains).

(5) We select the domains archived at least once by the Inter-
net Archive4 to make sure they have their web history (50
domains).

(6) We select the domains indexed at least once by the Google
search engine based on the site:domain query (50 domains).

For the set of the remaining domains, we randomly generate key-
words from the Unix dictionary and register 21 domains from new
generic top-level domain (gTLDs) and the rest from legacy gTLDs
(.com, .net, and .org). To reduce the impact of bulk registration pat-
terns, we register our domains manually during two weeks in April
2020 with the OVH5 registrar and deploy DNSSEC for all domains.
All steps are taken to reduce the chances of being blacklisted due
to the low reputation of the domain.

Website Content andWeb Servers. Compromised domains are
intrinsically legitimate but hacked to host and serve malicious
content in addition to legitimate content. Therefore, we have to
generate a full-fledged website for each domain. To achieve this, we
propose and develop a fake website generator using the following
algorithm:
(1) We extract meaningful keywords from the registered domain

name.
(2) For each keyword, we find synonyms using the Datamuse6

API.
(3) For each related keyword, we download the related page from

the English version of Wikipedia along with their correspond-
ing images.

(4) For each domain, we randomly generate 30 pages (with .php
extensions) with different names and different directories.

2https://gs.statcounter.com/browser-market-share/all/russian-federation
3https://www.virustotal.com
4https://archive.org
5https://www.ovh.com
6http://www.datamuse.com/api

https://gs.statcounter.com/browser-market-share/all/russian-federation


IMC ’20, October 27–29, 2020, Virtual Event, USA Sourena Maroofi, Maciej Korczyński, and Andrzej Duda

Then, we generate hyperlinks from one page to another to
create a fully functional website.

Having the fake website generator, it takes 2 minutes to generate
a fully functional website with 30 different pages in an automated
manner. The output is a .zip package ready to upload and install
on the server. We upload all the generated websites to our hosting
infrastructures in one of the European countries with 22 different
IP addresses and the Nginx web server. Finally, we issue TLS cer-
tificates for all the domains and keep all websites online without
uploading phishing kits for one week.

Phishing Kits. The next step is to automatically generate phish-
ing kits and upload them to our servers. We keep in mind the
following considerations:
(1) The aim is to assess the effectiveness of phishing detection

bots in bypassing human verification evasion techniques.
Therefore, we have to make sure first that the ‘naked’ phish-
ing payload, i.e., not armed with any evasion technique, can
be easily detected.

(2) So, we have designed our own phishing pages instead of using
existing phishing kits to prevent possible detection based on
the previously observed attacks.

(3) The design of the phishing kits targets three major services:
Gmail, PayPal, and Facebook login pages.

(4) We download all the external resources (e.g., pictures) from
each target and generate a .zip package. This step is necessary
since external resources like web favicons (favorite icons),
logos as well as web beacons [36] play an important role for
anti-phishing companies to track and detect phishing attacks
for their websites [23].

(5) For Facebook and PayPal login pages, we just clone their
HTML source code, remove JavaScript code, and external
requests. We design a Gmail login page from scratch since
the original page uses a heavily obfuscated JavaScript code
to generate HTML tags at run-time. All the three generated
phishing pages look exactly like their true versions.

Reporting and Monitoring Process. We submit phishing re-
ports by either using an online form (GSB, SmartScreen, Net-Craft,
and YSB) or sending an email (OpenPhish, PhishTank, and APWG).
In the main experiment, we only generate one phishing URL for
each domain. We never submit a domain to more than one anti-
phishing bot. To monitor the results of the reports for each URL,
we call GSB API to check if any of the URLs appeared in the GSB
blacklist. Regarding OpenPhish, PhishTank, and APWG, we down-
load the corresponding blacklist feeds every half an hour to check if
they blacklisted our URLs and when. NetCraft notifies the reporter
through emails by sending the results of the reports. SmartScreen
has no publicly available API endpoint to check the results of the
reports. Therefore, we develop a Python script to open the reported
URLs using the Microsoft Edge browser, taking screenshots every
10 minutes for the first 72 hours and every 5 hours for the rest of
the experiment, for several days.

Previouswork showed some inconsistency among different brows-
ers that use the same anti-phishing entities like Mozilla Firefox and
Google Chrome (both use GSB) because of the different caching
implementations of the GSB Update API (v4) in each browser [21].

In this experiment, our goal is not to check which browser faster
blacklists phishing pages but instead, we test which anti-phishing
engines can bypass the human verification evasion techniques.

4 EXPERIMENT RESULTS
Oest et al. [21], showed that the average blacklist time (i.e., the
time between the URL submission and its appearance in one of
the blacklists) was 126 minutes without using the web-cloaking
technique and 238 minutes with web-cloaking. They also showed
that anti-phishing engines could only detect 23% of the phishing
URLs armedwithweb-cloaking.We expect a lower detection rate for
the phishing sites instrumented with the three human verification
techniques because they are more advanced and less observed in
real-world phishing attacks.

4.1 Preliminary Test
In our initial test, we have submitted three URLs to seven anti-
phishing entities targeting PayPal, Facebook, and Gmail without
using any evasion technique. The test lasted for 24 hours. Based
on the results from the previous study [21], 24 hours is enough to
check if a reported URL is classified as malicious. For all seven anti-
phishing bots, we received traffic to our webserver within the first
30 minutes after we reported the URLs. Table 1 shows the results of
the preliminary tests. Since YSB was unable to detect even one of
the phishing sites, we had to exclude it from the main experiment.

We also observed that except for GSB and NetCraft, none of
the anti-phishing bots could identify the fake Gmail login pages as
phishing attacks. Therefore, we also excluded Gmail from our target
list in the final experiment. We suspect that the Gmail login page
was more difficult to detect compared to PayPal and Facebook pages
because of the different design approaches we used. As mentioned
earlier, we have implemented the Gmail login page from scratch,
whereas for PayPal and Facebook, we cloned the original HTML
code.Moreover, log inspection shows that NetCraft, OpenPhish, and
PhishTank submit the HTML form tags automatically by filling the
‘username’ field with different values (we do not log the password
filed on our servers).

The results presented in Table 1 show that:
(1) There exist a relationship between different vendors. For ex-

ample, the URLs we reported to OpenPhish also appeared in
other blacklist feeds. The results also suggest that GSB uses
other major blacklist feeds.

(2) For the URLs submitted to OpenPhish and PhishTank, we
received abuse notification emails from PhishLabs [37] sent
to the registered abuse notification email address related to
our IP addresses.

(3) Within the first two hours after reporting the URLs to Open-
Phish, we received a high amount of requests sent to our
servers (81,967 requests). Their analysis reveals that anti-
phishing bots looked for files related to: i) famous web-shells,
ii) possible phishing kits (.zip files), and iii) possibly stolen
credentials stored on the server (.log and .txt files).

4.2 Main Experiment
Table 2 shows the results of the main experiment to evaluate the ef-
fectiveness of six major anti-phishing entities in detecting phishing
websites protected by evasion techniques. The experiment lasted
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Table 1: Preliminary test results after reporting the Gmail (G), Facebook (F), and PayPal (P) phishing URLs.

Reported to # of requests Unique IPs Reported pages Also blacklisted by Blacklisted targets
GSB 8,396 69 G, F, P - G, F, P

NetCraft 6,057 63 G, F, P GSB G, F, P
APWG 2,381 86 G, F, P GSB F, P

OpenPhish 81,967 852 G, F, P PhishTank, GSB,
APWG, SmartScreen F, P

PhishTank 4,929 275 G, F, P OpenPhish, GSB F, P
SmartScreen 1,590 81 G, F, P GSB F, P

YSB 82 34 G, F, P - -

Table 2: Results of the main experiment after reporting
phishing URLs. X/Y shows the number of detected URLs (X)
out of all submitted ones (Y), where Alert box (A), Session-
based (S), or Google reCAPTCHA (R) are used to hide phish-
ing sites from server-side anti-phishing bots.

Anti-phishing
bots

Facebook PayPal
A S R A S R

GSB 3/3 0/3 0/3 3/3 0/3 0/3
NetCraft 0/3 2/3 0/3 0/3 0/3 0/3
APWG 0/3 0/3 0/3 0/3 0/3 0/3

OpenPhish 0/3 0/3 0/3 0/3 0/3 0/3
PhishTank 0/3 0/3 0/3 0/3 0/3 0/3
SmartScreen 0/2 0/2 0/2 0/3 0/3 0/3

for two weeks in May 2020. Nevertheless, we received about 90%
of the traffic during the first 2 hours after reporting the URLs.

Regarding the alert box protection, GSB was the only engine
that detected all 6 reported URLs, on average 132 minutes after
submission, which means that GSB can detect phishing websites
protected by alert boxes by handling them in a browser simulation.
The log analysis on our server reveals that GSB bots clicked on
the ‘confirm’ button in the alert box and successfully retrieved
phishing content, while other anti-phishing engines never reached
the phishing content because they failed to click on the alert box.

When it comes to session-based evasion, NetCraft was the only
engine that detected 2 out of 6 reported URLs (6 and 9 minutes
after the submission). Interestingly, the log analysis indicates that
NetCraft bypassed all six session-based pages and reached the phish-
ing sites, but only 2 of them were detected as such. No other anti-
phishing engine bypassed the session-based protection.

Regarding Google reCAPTCHA, as expected, none of the anti-
phishing engines could detect even one out of 35 reported URLs,
which means that it is so far the most effective protection solution
of phishing websites available to malicious actors.

The results shown in Table 2 indicate that, in general, human
verification techniques raise serious challenges to anti-phishing
bots. In total, all the major server-side anti-phishing bots could only
detect 8 out of 105 phishing URLs used in the main experiment.
Fetching the phishing content depends on bypassing the evasion
technique, which, as our experiment shows, is not a trivial task for
anti-phishing bots. One possible solution to this problem is to let
the end-users solve the challenge and reveal the final page content
to client-side anti-phishing engines.

5 TESTING CLIENT-SIDE ANTI-PHISHING
EXTENSIONS

Client-side extensions have access to the same content as users. If
the user bypasses CAPTCHA (e.g., confirming alert box, solving
Google reCAPTCHA, or pressing ‘proceed’ button in session-based
pages) and visits the second page, the extensions have also access
to the new possibly malicious content.

Therefore, in a separate experiment, we install the six most pop-
ular anti-phishing extensions on Mozilla Firefox (see Table 3). To
make sure there is no conflict between the extensions, we use dif-
ferent Firefox profiles for each extension and disable GSB. For each
extension, we submit 9 phishing URLs (3 URLs per evasion tech-
nique). We also use the Burp Suite7 tool to capture the exchanged
traffic related to each extension. In this way, we can read all TLS-
encrypted requests between extensions and their servers. Then, we
visit each URL three times with a 5-hour window between them.

Table 3 shows that none of the extensions could detect our phish-
ing pages. Monitoring the traffic generated by the extensions reveals
that they only collect the URLs visited by the user, send them to
their servers, and check the URLs against their own blacklists. As
shown in Table 3, four out of six extensions send ‘naked’ URLs
(without hashing) along with all the query parameters to their
servers. Since they do not create any feature vector on the client
machine and only send the URL to the server for further analysis,
they operate like their server-side counterparts, and thus, they are
unable to detect CAPTCHA-protected phishing attacks.

5.1 Discussion
In Section 4, we have presented three quite effective evasion tech-
niques based on human verification to avoid detection by anti-
phishing engines. The important question is how popular these
techniques are among attackers and what is the solution for effec-
tive handling of the attacks that use these techniques.

With respect to popularity, it is unlikely to find these attacks in
public blacklist feeds because they mainly rely on anti-phishing
engines that cannot bypass advanced types of evasion techniques.
In a parallel and independent research study by Oest et al. [38], the
authors analyzed 4,393 URLs and only found five of them that used
the CAPTCHA challenge and two using the alert box technique
to avoid detection. In recent work, Maroofi et al. [17] studied a
reCAPTCHA-protected phishing URL that prevents crawlers from

7https://portswigger.net/burp
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Table 3: Client-side anti-phishing extensions. Number of installations is the sum of installations for Chrome and Firefox. X/Y
shows the number of detected URLs (X) out of all submitted ones (Y).

Extension Company # of installations Sending URLs Sending Params X/Y
Avast Online Security Avast 10,800,000+ ✓(plain) ✓ 0/9
Avira Browser safety Avira 7,350,000+ ✓(plain) ✓ 0/9

TrafficLight BitDefender 665,000+ ✓(plain) ✓ 0/9
Emsisoft Browser security Emsisoft 80,000+ ✓(hashed) ✗ 0/9
NetCraft Anti-phishing NetCraft 58,000+ ✓(hashed) ✗ 0/9
Online Security Pro Comodo 14,000+ ✓(plain) ✓ 0/9

fetching the real malicious content. Although the URL was submit-
ted to Phishtank, a community-based URL blacklist based on user
reports, it was not confirmed by any other user and thus, it did not
appear on the official blacklist. Therefore, due to the difficulties re-
lated to detecting such attacks, it is not straightforward to evaluate
their popularity.

Another concern is to develop a suitable solution so that anti-
phishing engines can detect these attacks and blacklist the URLs.
Regarding the alert box technique using server-side detection, the
solution is trivial since most automation frameworks (e.g., Sele-
nium library) can interact with alert boxes and modal windows.
For session-based attacks (server-side detection), one possible so-
lution is to simulate form submissions. As shown in Section 4.1,
NetCraft submitted the HTML form for each report but was only
able to detect 2 malicious URLs. Finally, bypassing CAPTCHA by a
server-side anti-phishing engine is not easy in general since there
is no prior information about the characteristics of the CAPTCHA
challenge used by attackers.

For client-side detection systems (in the form of extensions in-
stalled on the browsers), there is no need to implement any extra
mechanism. If the user solves the challenge and visits a malicious
page, it is also visible to extensions for the detection process.

6 CONCLUSION
In this paper, we evaluate the resilience of anti-phishing detection
systems to evasion techniques based on human verification in a con-
trolled experiment. We registered 105 previously-unseen as well as
reputed drop-catching domains. For each domain, we automatically
generated a full-fledged website and a phishing page protected by
either Google reCAPTCHA, alert box, or session-based techniques,
and reported them to major anti-phishing entities. An alarming
picture emerges from our experiments: the overwhelming majority
of phishing sites were not detected. Google Safe Browsing outper-
forms other entities by only bypassing the alert box anti-analysis
technique. NetCraft was able to detect 2 URLs protected with the
session-based technique. Other server-side and client-side detection
systems were unable to detect even one of the phishing URLs as
malicious.

The prevalence of human verification techniques in phishing
kits can severely hinder the detection process and raises serious
challenges for existing anti-phishing engines. As a mitigation plan,
we intend to disclose our findings to the impacted anti-phishing
entities before phishers exploit human verification techniques on a
massive scale.
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A EXAMPLES OF EVASION TECHNIQUES
Figure 1 shows an example of a phishing attack page protected
by the alert box. Due to the modal nature of the alert boxes in
JavaScript, the end-users (or bots) are only allowed to visit the
phishing payload (Figure 1 bottom) if they press the ‘OK’ button
(Figure 1 top).

Figure 2 presents an example of a phishing attack protected by
PHP sessions. End-users can only visit the Facebook login page
(Figure 2 bottom) if they first visit the cover page and click on the
‘Join Chat’ button (Figure 2 top).

Figure 3 shows the phishing attack protected by Google re-
CAPTCHA. Solving CAPTCHA on the first page (Figure 3 top)
redirects the user to the second page without changing the final
destination URL (Figure 3 bottom).

Figure 1: Alert box evasion technique. Alert box protected
page (top) and phishing payload targeting PayPal (bottom).

Figure 2: Session-based evasion technique. Cover page on
the first visit (top) and the phishing payload targeting Face-
book (bottom).

B ETHICAL CONSIDERATIONS
During our experiment, we were careful that no actual users would
visit our websites. To accomplish that: i)we only reported our phish-
ing URLs directly to anti-phishing bots either through emails or
online forms, and never published our URLs online or on any public
website and ii) for those possible users who accidentally visited
our websites (with low probability), we removed all the sensitive
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Figure 3: Google reCAPTCHA message evasion technique.
Google reCAPTCHA-protected page (top) and the phishing
payload targeting PayPal (bottom).

information (e.g., credentials) from the submission form. We also
issued TLS certificates to make sure that there is no information
leakage if an actual user accidentally enters her credentials.

Considering all the feasible precautions in place to ensure the
safety of the users, the only remaining concern is the impact of
our measurements on the overall performance of the anti-phishing
engines. However, a comparison of the number of the reported
phishing URLs with the daily number of captured phishing attacks
by anti-phishing engines suggests that our reports cannot affect
the overall performance of these engines. For example, for APWG,
we have reported 18 URLs in one day while in March 2020, more
than 2,000 URLs were blacklisted on a daily basis [39].

C PHP SAMPLE CODE
Code Listing 1 shows the sample PHP code to create a single-page
phishing attack protected by the Google reCAPTCHA v2 checkbox.

Code Listing 2 shows the sample PHP code to create and monitor
the alert box protected phishing attack. If the anti-phishing bot is
able to successfully confirm the alert box, we log it on the server
by submitting an HTML form tag with ‘getData’ value as shown in
the code (line 40-44).

1 <?php

2 $isvalid = false;

3 if (isset($_POST['gresponse '])){

4 $secret = 'Google CAPTCHA secret key';

5 $captcha = $_POST['gresponse '];

6 /* Check CAPTCHA result */

7 $ans = chk_captcha($secret ,$captcha);

8 if ($ans ->success)

9 $isvalid = true;

10 else

11 $isvalid = false;

12 }

13 if ($isvalid){

14 echo "Serve phishing payload HTML";

15 }else{

16 echo "Serve CAPTCHA page HTML";

17 }

18 ?>

19 <script >

20 function capback(g_response){

21 $form = $("<form >").attr({ method:'post'});

22 $input = $("<input >");

23 $input.attr({name:"gresponse"});

24 $input.attr({value:g_response });

25 $form.append($input);

26 $('body').append($form);

27 $form.submit ();

28 }

29 </script >

Listing 1: Single-page PHP phishing code with Google
reCAPTCHA protection.
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1 <?php

2 $log_file="name of log file";

3 $a = $_POST['get_data '];

4 if (isset($a) && $a == 'getData '){

5 /*Anti -phishing engine or user managed

6 to confirm the alert box*/

7 $d = array('ip' => getip(),'page'=>'payload ');

8 log_data($d,$log_file);

9 echo "SERVE PHISHING HTML";

10 }else{

11 $d = array('ip' => get_ip (),'page'=>'benign ');

12 log_data($d,$log_file);

13 echo "SERVE BENIGN CONTENT WITH ALERT BOX";

14 }

15 ?>

16 <script >

17 /* Creating JS check variable

18 for the second page load*/

19 <?php

20 if (isset($a) && $a == 'getData '){

21 echo 'first_visit = false;';

22 }else{

23 echo 'first_visit = true;';

24 }

25 $u = $_POST['login_email '];

26 $p = $_POST['login_pass '];

27 if (isset($u) && isset($p)){

28 echo 'already_served = true;';

29 }else{

30 echo 'already_served = false;';

31 }

32 ?>

33 window.onload = function (){

34 /* execute after the window

35 is loaded completely */

36 if (first_visit && already_served){

37 setTimeout(get_real_data ,2000);

38 }

39 }

40 function get_real_data (){

41 var msg='Please sing in to continue ...'

42 var result = confirm(msg);

43 if (result){

44 /*

45 dynamically generate and

46 submit a form with hidden

47 value 'getData '

48 */

49 }else{

50 /*

51 submit an empty form

52 */

53 }

54 }

55 </script >

Listing 2: PHP phishing code with alert box protection.
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